Model SS-264

Slot Saver IV Controller Technical Manual

Date: 3/4/86
Serial No.:

ZETACO, Inc. has prepared this Technical Manual for use by ZETACO personnel and its customers to assist in the installation, operation, and malntenance of the Model SS-264 SIot Saver IV Controller. The Information contalned herein is the property of ZETACO, Inc. and shall not be reproduced in whole nor in part without prior written approval of ZETACO, Inc.

ZETACO, Inc. makes every effort to produce quality products and documentation, however, the reader must be cautioned that changes may be made to the product not reflected in the supplied documentation. If you find errors or omissions, please notify ZETACO, Inc. to remedy the problem. ZETACO, Inc. shall not be responsible for any damages (including consequential) caused by rellance on this material as presented.

If installation problems arlse after you thoroughly review the manual, please contact the ZETACO Customer Support Hotline at (612) 941-9480.

Copyright 1986. All rights reserved.

Eclipse ${ }^{\bullet}$, Nova${ }^{\bullet}$, and MV^{\bullet} are registered trademarks of Data General Corporation.

REVISION HISTORY

This Manual describes the two available Models of the Custom Systems, Inc. Mode1 26X Slot Saver IV. Model 264 contains the following controllers:

1) Serial Port
2) Real Time Clock
3) Parallel Line Printer
4) Eight Channels of QTY Multiplexer
Model 262 contains the following controller:
5) Eight Channels of QTY Multiplexer
When this Manual is used with the Model 262, the referencing of the additional controllers in the Manual, Logic Schematics and Diagnostics are not applicable.

CUSTOMER SERVICE

Our warranty attests the quallty of materials and workmanship In our products. If a malfunction does occur, our service personnel will assist you in any way possible. If the difflculty cannot be ellminated by use of the following service instructions and technical advise is required, please telephone the Custom Systems' Engineering Department (612-941-9480) giving the serial number, board name, model number and problem description. You will be placed in contact with the appropriate technical assistance.

PRODUCT RETURN
Pre-return Checkout.
If a controller malfunction is suspected, the use of test software is needed to determine if the controller is the problem and what in particular is wrong with the controller. The tests applicable to this board are listed on the next page of the manual. Please run the test sequence BEFORE considering product return.

Returned Material Authorization.
Before returning a product to Custom Systems for repair, please ask our Engineering Secretary for a "Returned Material Authorization" number. Each product returned requires a separate RMA number. Use of this number in correspondence and on a tag attached to the product will ensure proper handiling and avold unnecessary delays.

Returned Material Information.
Information concerning the problem description, system configuration, diagnostic program name, revision level, and results, i.e., error program counter number should be included with the returning material. A form is provided for this information on the next page of the manual.

Packaging.
To safeguard your materials during shipment, please use packaging that is adequate to protect it from damage. Mark the box "Delicate Instrument" and indicate the RMA number(s) on the shipping label.

All possible effort to test a suspected malfunction controller should be made before returning the controller to Custom Systems, Inc. for repair. This will: 1) Determine if in fact the board is defective (many boards returned for repalr are not defective, causing the user unnecessary system down-time, paperwork and handiling while proper testing would indicate the board is working properly). 2) Increase the speed and accuracy of a product's repair which is often dependent upon a complete understanding of the user's checkout test results, problem characteristics, and the user system configuration. Checkout results for the slot Saver IV should be obtained by performing the following tests. (lnclude error program counter numbers and accumulator contents if applicable).

FUNCTION
Serial Port
Real Time Clock Line Printer MUX

TEST
GNSTP
RTCD
LPTD
QTYDR

Other tests performed:

Please allow our service department to do the best job possible by answerling the following questions thoroughly and returning this sheet with the malfunctioning board.

1. Does the problem appear to be intermittent or heat sensitive? (lf yes, explain.)
2. What operating system are you running under? (AOS, RDOS, DDOS, DTOS.)
3. Describe the system configuration (i.e. peripherals, $1 / 0$ controllers, model of computer, etc.)
4. Has the controller been returned before? Same problem?

To be filled out by CUSTOMER

> MODEL \#:
> SERIAL \#:
> RMA \#:

Returned by:

TABLE OF CONTENTS

This technical manual contains the information required to install, operate and maintain the Custom Systems, Inc. Model 264 Multipurpose Controller. The Controller is compatible with the Data General (Nova or Eclipse) minicomputers or Data General emulating computers.

This manual is organized in eight sections. Section 1 contalns general information about the functional and physical characteristics of the Controller. Section 11 contains installation information. Section lll contains programming detalls. Section IV contains option jumpers and switch settings required to configure the various controllers. Section V contains quick maintenance and trouble shooting helps. Section VI lists the Interface Signals, $1 / 0$ Pin Assignments and Distribution Panel Cabling Section VII contains diagnostic programs and listings. Section VIII contains the logic drawings.

GENERAL
Physically, the Controller comprises logic contalned on a $15^{\prime \prime} \times 15^{\prime \prime}$ printed circuit board suitable for Installation in one slot of a Data General, or equivalent, computer chassis. Electrically, the Controller may contain the following interfaces:
A. Eight, asynchronous, full duplex communications channels for local/remote terminals or 103 data sets.
B. A parallel line printer interface to a Data Products, Centronics, Printronix, General Electric, Control Data and other manufacturers of parallel line printers.
C. A programmable Real Time Clock with selectable frequencles of $A C$ line, $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or 1000 Hz .
D. A Serial $1 / 0$ Channel.
E. The Model 264 can be populated to the Custom Systems' Model 262. The Model 262 contalns only the elght asynchronous communications channels.

Connection between the controllers on the board and external equipment is via 1) a cable harness for the communication multiplexer channels and the teletype and 2) a 20 foot cable for the line printer. The Real Time Clock is not connected to an external device. The communication multiplexer cable harness terminates at the computer end in a printed circuit board connector that plugs over the pins of the backpanel. The line printer cable terminates at the computer end in an amphenol block. At the device end the mutiplexer cable harness terminates in DB25 type connectors mounted on a panel suitable for mounting in the rear of a RETMA rack. The nine pin teletype connector is also on the RETMA panel. The line printer cable terminates at the printer end in a connector compatible with the connector on the line printer.

The following are the physical and electrical specifications for the multipurpose controller:

PHYSICAL

POWER

MAXIMUM INTERFACE CONFIGURATION ON ONE BOARD

ENVIRONMENT

WEIGHT

One $15 " \times 15 "$ printed circuit board that plugs into one slot of a Data General NOVA series 1200, 2, 3, 4 or Eclipse computer. +5 volts at . 0 Amps. +15 volts at .2 Amps.
-5 volts at . 2 Amps. All from computer power supply.
A. 8 asynchronous communications channels.
B. 1 parallel line printer interface.
C. 1 Real Time Clock.
D. 1 Serial $1 / 0$ channel.

0 to 55 C operating.
To 90% relative humidity,
non-condensing, operating.
8 pounds includes mounting
panel and manual.

DEVICE INTER-
CONNECT

ASYNCHRONOUS
A. Cable harness that terminatesat "plug-over" connectors atcomputer backplane and atDB25 connectors mounted on abracket sultable for mountingrails on a RETMA cabinet.This harness brings the com-munications channels and theteletype channel to the rackmounted panel.
B. A 20 foot cable connects theprinter interface to a selectedI ine printer.
Up to 8 full duplex channels on
the Controller board; multipleboards can be used in a computersystem.
Eight switch-selectable baud rates
per channel $(110,300,600,1200$,2400, 4800, 9600 and 19200).Byte configuration switch-
selectable on a per-channel
basis are:
a. bits per word (5-8).
b. type of parity (even, odd ornone).
c. 1, 1-1/2 or 2 stop bits percharacter.

SERIAL DEVICE CONTROLLER

```
Elght position switch to select
baud rates from 110 baud to
19,200 baud.
Switch selectable to be elther
20 ma current loop or RS232-C.
Device code 10/11 standard.
Any device code can be jumper
selectable.
Interrupt mask bit 15 (TTY out),
14 (TTY in).
If used to support a Serial
Line Printer the interrupt mask
can be jumper selectable to be
mask bit 12, or mask blt 6.
```

This section contalins installation instructions for the Controller. Detalls of the installation or operation of an associated line printer or terminal will be found in an instruction manual associated with the respective device.
2.1 UNPACKING AND INSPECTION

All parts comprising the Model 264 are shipped in one package consisting of:
a) Controller
b) LIne Printer Cable
c) Communications Panel and associated Cabling
d) Diagnostic Software
e) Technical Manual

On recelpt of the Model 264 from the carrier, inspect the shipping carton immediately for any evidence of damage or mishandiling in transit.

If the shipping carton is water stalned or damaged, contact the carrier and shipper immediately, specifying the nature and extent of the damage and request that the carrier agent be present when the carton is opened.

Custom Systems' warranty does not cover shipping damage.

For repair or replacement of any Custurn Systems' product damaged in shipment, call Custom Systems to obtaln return authorization instructions.

To install the Controller, perform the following steps
In the order listed:

1. Remove the Controller printed circult board, cable assemblies and manuals from the packing carton.
2. Verlfy that the computer power is off. Do not insert or remove the board with power on.
3. Reference Section IV (Board Switch and Jumper Options) to ensure the switch and jumper options selected match your requirements.
4. Select a board slot into which the controller is to be plugged; the controller can be plugged into any unused $1 / 0$ slot in the computer chassis. Once the slot to insert the board has been selected, the interrupt and data channel priority pins A94 and A96 on the computer backplane should come from the card below it. If there isn't any card below it, A94 and A96 should be jumpered to A93 and A95, respectively, of the first active slot below it.
5. The board should be carefully inserted into the proper slot in the computer with the locking tabs extended. If the card is properly seated in the track, very little pressure is required to seat the board in the edge plane connectors. The card should be removed and the alignment checked if resistance to seating is observed.
6. Cable installation. Electrical connections between the Slot Saver IV controller board and peripheral equipment located outside the minicompuer chassis are made with external cable assemblles to the backplane of the computer.

For each controller card slot, there are two horizontal parallel rows of 100 pins on the backplane. The left group of pins is the A connector, and the right group $(a s$ viewed from the left side of the computer) is called the B connector. Numbering of each group of 100 pins is as indicated below (shown only for A connector).

BACK PANEL NUMBERING


```
Pin 1 is on the top left of the connector; pin 2 is on the bottom left directly below pin 1. Pin 99 is the top right pin of the connector, and pin 100 is the bottom right.
```

ASYNCHRONOUS MULTIPLEXER CABLING. PIug the
printed circuit connector over the pins of the
backplane connectors. The mux harness cable plugs
over the pins on the "A" side connector covering
pins 47 through 99. Be sure to connect to the
pins of the same connector slot and not to one
half of the pins of two adjacent connector slots.
(See figure 2.1).

LINE PRINTER CABLING. Plug the amphenol connector over the pins of the backplane connectors. The line printer cable plugs over the "B" side covering pins 13 through 51 with single plugs at B1 and B67. (See Figure 2.1)
7. Press connectors toward the backplane until fully seated. When fully seated, the $1 / 0$ connector assembly should be flush agalnst the backplane.
8. Mount connector panel to RETMA rails at the rear of the rack into which the computer is installed.
9. Connect printer connector to the printer.
10. Power may now be applied to the computer.

NOTES

A. AC power for the Real Time Clock may not be wired to the slot selected for the controller. The Real Time Clock requires a source of $A C$ to develop one of the frequencies. To wire $A C$ to the controller board, connect pin B-6 of the normal Teletypewriter slot to pin $B-6$ of the slot into which the board is plugged. (Customer has to provide this wire).

TYPICAL PERIPHERAL CABLE ASSEMBLIES
FIGURE 2.1
B. If the serial port is to be used as the primary console (10/11) the controller should use the slot allocated for the teletype, i.e., NOVA 1200, NOVA 2 or NOVA $3 / 4$ use slot 3, NOVA 800 or NOVA $3 / 12$ use slot 4. Two wires on the harness are terminated on the computer end using box pins, one red wire and one yellow wire. If the standard $1 / 0$ slot is used for the controller, the red wire is to be connected to the wire wrap pin on the computer backpanel at pin Al01. The yellow wire is to be connected to the wire wrap pin on the computer backpanel at pin A103. If a slot other than the standard $1 / 0$ slot is to be used for the controller, the red wire must be connectd to pin B69 of the slot used and the yellow wire connected to either pin A6 or B81, these pins are -5 volts (A6 and B81). The black wire is Clear to Send and should be connected to B11 of the computer backpanel. If Clear to Send is not needed do not install the black wire.

All device interfaces on the controller operate under program control. This section contains the information required to program the computer to process information through the communications multiplexer channels, provide data to the line printer, provide data to and accept data from the serlal port and set the frequency of the Real Time Clock.
3.1 REAL TIME CLOCK

The Real Time Clock (RTC) generates a sequence of pulses that are independent of processor timing. It uses only one $1 / 0$ transfer instruction to set the RTC frequency. Busy and Done flags are controlled or sensed by bits 8 and 9 in all $1 / 0$ transfer instructions with device code 14 (Jumper Selectable), mnemonic RTC. Interrupt disable 8
is controlled by interrupt priority mask bit 13. The frequencies that may be selcted are as follows:

1. $A C$ line frequency (60 or 50 Hz)
2. 10 Hz
3. 100 Hz
4. 1000 Hz

The following is the configuration of the transfer
instruction for the RTC:
dATA OUT A, REAL TIME CLOCK
DOA - , RTC

0	1	1	$A C$	0	1	0	F	0	0	1	1	0	0	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Setting Busy allows the next pulse from the RTC to set Done, requesting an interrupt if interrupt disable is clear. A DOA to select the frequency need be given only once; following each interrupt an NIOS sets up the clock for the next pulse.

When Busy is first set, the first interrupt can come at any time up to the clock period. But once one interrupt has occurred, further interrupts are at the clock frequency, provided that the progrm always sets Busy before the next clock period expires.

RTC is used primarily for low resolution timing (compared to processor speed) but it has high long-term accuracy. Power up and the $1 / 0$ reset function generated by the program or from the console reset the clock to I ine frequency.

The Ilne printer interface provides parallel-by-bit, serlal-by-character data to either line or character printers with interfaces equivalent to elther the Data Products or Centronics printers. The printing speed is a function of the printer chosen for use with the Interface; the interface has no inherent speed IImitations. Functionally, the printer interface buffers data between the computer $1 / 0$ bus and the input of the printer, synchronizes the character transfers to the printer and transfers status information from the printer to the computer $1 / 0$ bus.

Normally 64 character set printers are used in systems. Therefore, logic within the interface converts the codes for lower case characters to the equivalent upper case character codes. This feature can be disabled by adding jumper J9-1 on the controller board.

The line printer interface uses two $1 / 0$ transfer instructions, one to load a single character into an eight-bit buffer in the interface, the other to read status from the printer. Busy and Done flags are controlled or sensed by bits 8 and 9 in all $1 / 0$ instructions with device code 17 (Jumper Selectable), mnemonic LPT. 8 Interrupt is controlled by interrupt mask bit $12{ }_{8}$, or mask bit 6.

The following are the configurations of the $1 / 0$
transfer instructions for the printer:
dATA OUT A, LINE PRINTER
DOA - , LPT

0	1	1	$A C$	0	1	0	F	0	0	1	1	1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Load AC bits 8 - 15 into the interface character buffer and perform the function specified by F.

DATA IN A, LINE PRINTER
DIA - , LPT

0	1	1	$A C$	0	0	1	F	0	0	1	1	1	1
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Read the Ready status into $A C$ bit 15 , clear $A C$ bits $0-1$ and perform the function specified by F. A 1 bit read Into AC bit 15 indicates the printer is avallable to the program (l.e., it is on-line with power on and with paper loaded).

At the beginning of a print operation the program should check Ready and send a form feed to get rid of anything that may have been left in the buffers, then start a new page. The program begins operation by issuing DOA's that send the desired characters. A Start command sets the Busy flag and sends the character in the controller buffer to the printer. If the character sent neither fills the printer buffer nor is a valid control character, the printer acknowledge signal clears the Busy flag and sets Done. The program can then send additional characters. When either the printer buffer is full or the control character is detected, the busy flag remains set while the printer prints the contents of the printer buffer. When the buffer agaln becomes available, Busy clears and Done sets. This requests an interrupt if interrupt disable is clear and subsequent received characters will be loaded starting in the first buffer position.

3.3 TELETYPEWRITER

The TTY separates the input and output functions into two distinct devices, each with its own device code, its own Busy, Done and Interrupt flags and its own interrupt mask assignment.

Placing a character code in the output buffer and setting Output Busy causes the TTO to print the character or perform the designated control function. Striking a key places the code for the associated character In the input buffer of the TTI for retrieval by the program.

3.3.1 SERIAL PORT OUTPUT

The TTO output uses only one $1 / 0$ transfer instruction. Output Busy and Done are controlled or sensed by bits 8 and 9 in all $1 / 0$ instructions with device code 11-8 (Jumper Selectable) mnemonic TTO. Output interrupt disable is controlled by interrupt mask bit 15 , mask bit 12 or mask bit 6. The configuration of the instruction is as follows:
data out a, teletype output
DOA - , TTO

0	1	1	$A C$	0	1	0	F	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Load the contents of $A C$ bits 8 - 15 into the teletype output buffer and perform the function specified by F. Setting Output Busy turns on the transmitter, causing it to send the contents of the output buffer serlally to the Serial Device (the buffer is cleared during transmission). The printer prints the character or performs the indicated control function. Completion of transmission clears output Busy and sets output Done, requesting an interrupt if output interrupt disable is clear.

Do not give an NIOS without first loading the buffer. To transmit any character, including null, either give a DOAS or give a DOA followed by an NIOS. Clearing output Busy while the transmitter is running (as with an NIOC) terminates the transmission. But the printer still prints whatever character is represented by the Indeterminate code it receives.

A carriage return and a line feed must be given to position the printer at the beginning of a new line.
3.3.2 SERIAL DEVICE INPUT

The TTI input uses only one $1 / 0$ transfer instruction. Input Busy and Done are controlled or sensed by bits 8 and 9 in all $1 / 0$ instructions with device code 10 , (Jumper Selectable) mnemonic TTI. Input interrupt disable is controlled by interrupt mask bit 14. The configuration of the transfer instruction is as follows:
data in a, teletype input
DIA - , TTI

0	1	1	$A C$	0	0	1	F	0	0	1	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Transfer the contents of the input buffer into AC bits 8 - 15 and perform the function specified by F.

Reception from the keyboard requires no initiating action by the program; striking a key transmit the code for the character serially to the input buffer. The completion of reception clears input Busy (if set) and sets input Done, requesting an interrupt if input interrupt disable is clear.

After Done sets, the character is avallable for retrieval by a DIA.

Each communications multiplexer board may have up to eight full duplex channels for the simultaneous serial transmission and reception of data at selectable speeds and character configurations. The computer software will handle a total of 64 channels of communications (eight boards). Each channel within a system operates simultaneously and independently of each other channel.

The serial manipulation of the data is done by the channels; the computer program is involved only in moving parallel characters to or from the communications system via the $1 / 0$ bus. To transmit data the program outputs a word that specifies the channel and supplies the characters. To receive data the program responds to a "System Done Interrupt" then reads a word that contalns both the data character and the number of the channel on which the character was received.

The characteristics of the individual terminals connected to the system are selected by switches or jumpers within each channel. Selectable characteristics on an individual channel basis are as follows:

1. Selection of either RS232-C or 20 ma current loop, input/output.
2. Selection of one of eight baud rates from 110 to 19200 baud.
3. Selection of 5, 6, 7 or 8-bits per data character.
4. Selection of even, odd or no parity.
5. Selection of $1,11 / 2$ or 2 stop bits in each character.

The entire system (a maximum of 64 full duplex channels) appears as one device to the program with one Done flag (no Busy flag). Internally a Recelve flag and a Transmit flag are associate with each channel. The Receive flag is set when a character has been assembled from the serial input stream; the Transmit flag is set when the terminal has accepted one character and is ready to accept another character. The individual channel Receive and Transmit flags are OR-ed to generate a system Done. Therefore, to the program, Done appears set either if any receive lines have completely assembled characters ready for transfer to the computer or if any transmit lines have transmitted a character and are ready for a new character from the computer. I/0 Reset clears all Transmit and Receive flags.

When multiple boards are used in a computer, channel priority lines must be wired from board to board. The entire system responds as a single unit to the INTA instruction. The multiplexer uses three $1 / 0$ instructions, one for input and two for output with device code 30 (Jumper Selectable), mnemonic QTY. The interrupt mask bit is 14 .

The DIAC reads input characters, determines the address of the highest priority channel to be read and clears the Receive flag of the line when it is read. Upon issuance of a DIAC, system Done will be cleared if there are no other lines with data assembled to be read and if all Transmit flags are cleared.

A DOA instruction supplies a character for output on
an addressed line and clears the Transmit flag for that line. If no new character is to be output, a DOB instruction is used to clear the Transmit flag without sending a new character.

Busy and Done are sensed by bits 8 and 9 in the $1 / 0$ skip instructions. The Clear function is used only to clear received flags with the input instruction. Start is not used.

Following are the configurations of the instructions for the multiplexer:

DATA IN A, ASYNCHRONOUS MULTIPLEXER
DIAC -, QTY

| 0 | 1 | 1 | $A C$ | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Read the information from the multiplexer into AC as
follows and clear the Receive Done Flag;

This Section contains the jumper and switch settings required to configure the controller for each of the devices avallable on the board. The jumper and switch setting options are in paragraphs for ease in locating the jumpers associated with a specific device. Note that the jumper/switch locations are also referenced to sheets of the logic diagrams. Also reference jumper sheet option page in logic schematics to further ease jumper and switch physical locations on the board.
4.1 SERIAL PORT
A. Device Code Selection.

The device code for the serial port is usually set at 10/11. For special applications, other device codes may be used. The device code is determined by five hard wire jumpers J4-1 through J4-5 (sheet 4). The table provides a guide to selecting non-standard device codes.

DEVICE CODE SELECTION TABLE

DEVICE	$\begin{aligned} & \text { J4-1 } \\ & \text { (DSO) } \end{aligned}$	$\begin{aligned} & \text { J4-2 } \\ & \text { (DS1) } \end{aligned}$	$\begin{aligned} & J 4-3 \\ & (D S 2) \end{aligned}$		$\begin{aligned} & \text { J4-4 } \\ & \text { (DS3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J4-5} \\ & (\mathrm{DS} 4) \\ & \hline \end{aligned}$
0 O	IN	IN	IN	$\times 0+1$	IN	IN
1 x	IN	IN	OUT	$\times 2+3$	IN	OUT
2X	IN	OUT	IN	$\times 4+5$	OUT	IN
3x	IN	OUT	OUT	X6+7	OUT	OUT
4X	OUT	IN	IN			
5x	OUT	IN	OUT			
6 X	OUT	OUT	IN			
$7 \times$	OUT	OUT	OUT			

[^0]B. Disable Serial Port

JUMPER	STATUS	SHEET	PURPOSE
J4-6	IN	4	Disable Serial Port
J4-6	OUT	4	Enable Serlal Port

C. Baud Rate Selection

Baud Rates for the Serlal Device are selectable by a switch at Location U. Only one switch position can be in the "ON" position and that must correspond to the desired baud rate.

LOCATION U9

9600 BAUD SHOWN
D. UART Characteristics

LOCATION UI2

	ON	OFF
Switch 1	Odd Parity SW2	Even Parity SW3
Switch 2 \& / WORD		

Even Parity, 8 Bit Character, 1 Stop Bit, Inhibit Parity Shown

LOCATION T8

Switch Depressed toward Cl $=20$ MA
Switch Depressed toward C2 $=$ RS232-C

NOT USED

ROCKER SWITCH

RS232-C SHOWN

F. Mask Bit Selection

The following Jumpers are Jumper Pairs, only one of the Jumpers can be installed at a time.

	JUMPER	STATUS	SHEET	PURPOSE
Jumper	\{ J3-3	IN	3	Mask TTO Bit 15
Pair	\{ J3-4	IN	3	Mask TTO Bit 6

G. Serial Line Printer

The Serial Port can support communications to a serial line printer. The following jumpers are applicable for jumper pairs, only one of the jumpers can be installed at a time.

	JUMPER	STATUS	SHEET	PURPOSE
Jumper	J4-8	IN	4	Disable TTI
Pair	J4-7	IN	4	Enable TTI
Jumper	J6-2	IN	6	Mask Bit 12
Pair	J6-1	IN	6	Mask Bit 15 or Bit 6
Jumper	J6-3	IN	6	Enable TTI INT REQ
Pair	J6-4	IN	6	Disable TTI INT REQ

4.2 REAL TIME CLOCK
A. Device Code Selection

	JUMPER	STATUS	SHEET	PURPOSE
Jumper	J7-1	IN	7	Select Device 14-8
Pair	J7-2	IN	7	Select Device 54-8
	$\begin{aligned} & 17-5 \\ & 17-5 \end{aligned}$	$\begin{array}{r} \text { IN } \\ \text { OUT } \end{array}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	I NTA 54-8 INTA 14-8

B. RTC Selection

	JUMPER	STATUS	SHEET	FURPOSE
Jumper	J7-3	IN	7	Disable RTC
Pair	J7-4	IN	7	Enable RTC

C. Clock Frequency Selection

JUMPER	status	SHEET	PURPOSE
J7-6	IN	7	Data 15 always Zero
J7-6	OUT	7	Normal Clock Select
J7-7	IN	7	Data 14 always One
J7-7	OUT	7	Normal CLK Select

```
(For Jumper Pairs, only one of the Jumpers can be
installed at a time).
```

A. Device Code Selection

	JUMPER	STATUS	SHEET	PURPOSE
Jumper	J8-1	IN	8	Select Device 17-8
Palr	J8-2	IN	8	Select Device 57-8
Jumper	J8-5	IN	8	INTA 17-8
Pair	J8-6	IN	8	INTA 57-8

B. Printer Disable

	JUMPER	Status	SHEET	PURPOSE
Jumper	J8-3	IN	8	Enable LPT
Pair	J8-4	IN	8	Disable LPT

	JUMPER	STATUS	SHEET	PURPOSE
	J8-7	IN	8	Install if only one Status Line from printer
	J8-8	IN	8	Status Line is $+3 \vee A c t i v e$
	J8-8	OUT	8	Status Line is ov Active
Jumper	J8-10	IN	8	Printer Select Status
Pair	J8-11	IN	8	Clear to Send Status
	J8-9	IN	8	Status Line is $+3 v A c t i v e$
	J8-9	OUT	8	Status Line is OV Active
Jumper	110-3	IN	10	Strobe is OV Active (Centronics)
Pair	J10-4	IN	10	Strobe is +3 V Active (Data Products)
	J10-5	IN	10	Printer Data is $+3 V$ Active
	J10-5	OUT	10	Printer is oV Active

D. Miscellaneous Printer

	JUMPER	STATUS	SHEET	PURPOSE
	J8-12	IN	8	Disable Busy/ Done Interrupt
	J9-1	IN	9	Both Upper and
	J9-1	OUT	9	Lower Case Lower Case converted to Upper Case
	J10-1	IN	10	No LF to CR conversion
	J10-1	OUT	10	Convert LF to CR
Jumper	J3-1	IN	3	Select Mask Bit 12
Pair	J3-2	IN	3	Select Mask Bit 6

4.4 EIGHT CHANNEL MULTIPLEXER

(For Jumper Pairs, only one of the Jumpers can be
installed at a time).
A. Device Code Selection

JUMPER	STATUS	SHEET	PURPOSE
J11-2	OUT	11	Select Device Code 30-8
J11-2	IN	11	Select Device Code 70-8

B. Line Selection

J18-3	J18-2	J18-1	RESULTS
OUT	OUT	OUT	Lines 0 thru 7
IN	OUT	OUT	Lines 8 thru 15
OUT	IN	OUT	Lines 16 thru 23
IN	IN	OUT	Lines 24 thru 31
OUT	OUT	IN	Lines 32 thru 39
IN	OUT	IN	Lines 40 thru 47
OUT	IN	IN	Lines 48 thru 55
IN	IN	IN	Lines 56 thru 63

C. Baud Rate Selection
Baud rate for each channel of the multiplexer areswitch selectable.
Channel 0 - Switch Position $B 9$
Channel 1 - Switch Position D9
Channel 2 - Switch Position F9
Channel 3 - Switch Position H9
Channel 4 - Switch Position K9
Channel 5 - Switch Position M9
Channel 6 - Switch Position P9
Channel 7 - Switch Position S9

Switch 1 ON - 19200 Baud
Switch 2 ON - 9600 Baud
Switch 3 ON - 4800 Baud
Switch 4 ON - 2400 Baud
Switch 5 ON - 1200 Baud
Switch 6 ON - 600 Baud
Switch 7 ON - 300 Baud
Switch 8 ON - 110 Baud

[^1]
D. UART Characteristics

$$
\begin{aligned}
& \text { Channel } 0 \text { - Switch Location B11 } \\
& \text { Channel } 1 \text { - Switch Location D11 } \\
& \text { Channel } 2 \text { - Switch Location F11 } \\
& \text { Channel } 3 \text { - Switch Location H11 } \\
& \text { Channel } 4 \text { - Switch Location K11 } \\
& \text { Channel } 5 \text { - Switch Location M11 } \\
& \text { Channel } 6 \text { - Switch Location P11 } \\
& \text { Channel } 7 \text { - Switch Location Sil }
\end{aligned}
$$

Even Parity, 8 Bit Character, 1 Stop Bit, Inhibit Parity Shown

E. RS23-C or 20 ma

Channel 0 - Switch Location C8
Channel 1 - Switch Location C8
Channel 2 - Switch Location G8
Channel 3 - Switch Location G8
Channel 4 - Switch Location L8
Channel 5 - Switch Location L8
Channel 6 - Switch Location R8 Channel 7 - Switch Location R8

Switch Depressed toward C1 or C3 = 20 MA

Switch Depressed toward C2 or C4 = RS232-C

Even Line Number

Odd Line Number
F. Transmitter Clock, Done F / F Gating two modes of operation are possible.

Mode 1 - Clear to Send may Inhibit the setting of the Done F/F.

Mode 2 - Clear to Send controls Transmitter Clock.
For jumper palrs, only one of the jumpers can be installed at a time.

	JUMPER	STATUS	SHEET	PURPOSE	
Jumper	J13-1	IN	13	Mode 1	Line
Pair	J3-2	IN	13	Mode 2	Line 0
Jumper	J13-5	IN	13	Mode 1	Line 0
Pair	J13-6	IN	13	Mode 2	Line 0
Jumper (J13-8	IN	13	Mode 1	Line 0
Palr	J13-7	IN	13	Mode 2	Line 0
Jumper	J13-3	IN	13	Mode 1	Line
Pair	J13-4	IN	13	Mode 2	Line
Jumper $\{$	J13-11	IN	13	Mode 1	Line
Pair	J13-12	IN	13	Mode 2	Line
Jumper f	J13-14	IN	13	Mode 1	Line
Pair	J13-13	IN	13	Mode 2	Line
Jumper $\{$	J14-1	IN	14	Mode 1	Line 2
Pair	J14-2	IN	14	Mode 2	Line 2
Jumper	J14-6	IN	14	Mode 1	Line 2
Pair	J14-7	IN	14	Mode 2	Line 2
Jumper	J14-9	IN	14	Mode 1	Line 2
Pair	J14-8	IN	14	Mode 2	Line 2
Jumper	J14-3	IN	14	Mode 1	Line 3
Pair	J14-4	IN	14	Mode 2	Line 3
Jumper	J14-11	IN	14	Mode 1	Line 3
Pair	J14-12	IN	14	Mode 2	Line 3
Jumper	J14-14	IN	14	Mode 1	Line 3
Pair	J14-13	IN	14	Mode 2	Line 3
Jumper	J15-1	IN	15	Mode 1	Line
Pair	J15-2	IN	15	Mode 2	Line
Jumper	J15-6	IN	1.5	Mode 1	Line 4
Pair	J15-7	IN	15	Mode 2	Line 4
Jumper	115-9	IN	15	Mode 1	Line 4
Pair	J15-8	IN	15	Mode 2	Line 4

H. Communications Panel - RCV/XMIT Switches

There is a switch pack (with 4 switches) assoclated with each channel on the Communications Panel. These switches determine to which pins on teh channel connector the RCV and XMIT signals will be assigned. See

Figure 4.1.
Consult the documentation for the CRT you are going to connect to each channel to determine its pin locations for the RCV and XMIT signals. Generally, RCV wlll be at pin 2 and XMIT at pin 3, but on some models these may be reversed.

1. If $\operatorname{pin} 2=R C V$ and $\operatorname{pin} 3=X M I T$, then: $\begin{array}{lllll}S W & 2 & \& & 4 & O F F \\ S W & 1 & \& & 3 & O N\end{array}$
2. If pin $2=X M I T$ and $\operatorname{pin} 3=R C V$, then: $\begin{array}{lllll}S W & 2 & \& & 4 \\ S W & 1 & \& & 0 N \\ & O F F\end{array}$
4.5 POWER JUMPERS
(For Jumper Palrs, only one of the jumpers can be installed at a time).

Some Data General Minicomputers (1.e. NOVA 4) supply $+12 V$ to the backplane while others (i.e. NOVA 3) supply $+15 V$ to the backplane.

JUMPER STATUS SHEET PURPOSE

Jumper	J19-1	IN	19	Use +12V from backplane Regulate
Palr	J19-2	IN	19	to +12V

This section contalns quick maintenance and trouble shooting tips that may be helpful to isolate problems.
5.1 SERIAL PORT

Test A: Program to Repeatedly Output a Single Character Using BUSY/DONE Logic.

The octal program listed below is entered through the console data switches starting at location 100. The starting address (100) is set in the switches and then the EXAMINE switch is hit to load this address. The console switches can then be set to the ASCII value of the character to be printed (l.e. octal $100=$ e, octal $101=A$, etc). The program is started by pressing the CONTINUE switch.

The program reads the selected character from the computer data switches, sends out the character to the teletype or CRT and then waits in a SKIP BUSY (or DONE) loop for the serlal shifting of the character to the terminal to be completed. The process requires no response from the terminal and will repeatedly send out the same character. If the terminal does not have an automatic line feed, it will be necessary to take the terminal off line to advance the line. If proper transmission is occurring, the console switches can be changed on the fly to change the character sent out.

$\begin{aligned} & \text { MEMORY } \\ & \text { LOCATION } \end{aligned}$	$\begin{gathered} \text { OCTAL } \\ \text { PROGRAM } \end{gathered}$	$\begin{aligned} & \text { SYMBOLIC } \\ & \text { CODE } \end{aligned}$	COMMENTS
100	062677	I ORST	
101	060477	READS 0,CPU	Reads console switches
102	061111	DOAS 0,TTO	Send out character
103	063511	SKPBZ TTO	
104	000777	JMP . -1	Walt for completion
105	773	JMP . 5	Repeat

To run uner DONE logic, change the instruction in location 103 to 063611 . If no output occurs, a problem exists with one of the following:

1. The cable has been improperly installed. Carefully check installation.
2. Terminal not on line.
3. Wrong baud rate selected.
4. A problem exists with the controller. Check that controller and cable are plugged to the same slot.

Test B: Device Output Under Interupt Control

$\begin{aligned} & \text { MEMORY } \\ & \text { LOCATION } \end{aligned}$	$\begin{gathered} \text { OCTAL } \\ \text { PROGRAM } \end{gathered}$	$\begin{gathered} \text { SYMBOLIC } \\ \text { CODE } \end{gathered}$		COMMENTS
1	70	JMP	Location 70	
60	062677	IORST		
	060177	INTEN		Enables interrupts
	072077	MSKO	2,CPU	Mask intruction
	061111	DOAS	0,TTO	Output a character
	400	JMP	*	Wait for interrupt
70	065477	INTA	1,CPU	Device code AC1
	063077	HALT		

The program is started at location 60, and the interrupt processing routine is placed at location 70. Before starting the program, the operator must first place a mask word (all zeros for normal operation or 000001 for teletype output disable) in accumulator 2. The character to be printed must also be placed in ACO.

The program sends out one character and then waits for an interrupt. When the interrupt occurs, the program passes through location 1 to get to the interrupt routine at location 70. The INTA instruction places the device code of the interrupting device (device 11 in this case) in AC1 and then halts. By changing the halt to JMP 60 or JMP *-8 (770), the program will run continuously.

If bit 15 in the mask word is equal to one, the TELETYPE OUTPUT flag is disabled and the program will hang on the JMP * instruction at locations 64. If bit 15 is unequal to one, the program will run normally.

Test C: Read One Character Under Either BUSY or DONE Logic

MEMORY LOCATION	OCTAL PROGRAM	$\begin{aligned} & \text { SYMBOLIC } \\ & \text { CODE } \end{aligned}$	COMMENTS
110	062677	IORST	
	060110	NIOS	Enable CRT Interface Controller
	063510	SKPBZ	Wait for character to be struck on keyboard
	777	JMP *-1	
	060410	DIA 0,TTI	Read character ACO
	063077	HALT	Halt, display ACO
	773	JMP *-5	

The program enables the controller and then waits for a key to be struck on the keyboard. The ASCII code for the character is placed in the accumulator zero (i.e. $A=101$). By hitting the CONTINUE switch, the next character tape is read. By changing the third instruction to 063610 SKPDN, you may run under DONE logic.

Test D: Read One Character Using INTERRUPT Logic The program is started at location 40 , and location 50 contains the interrupt processing routine. Before starting the program, the operator must first place a mask word (all zeros for normal operation or 000002 for teletype input disable) in accumulator 2. After the program is started at location 40, the operator should strike a key on the keyboard.

The character read and the device code are placed in accumulators 0 and 1 , respectively. $1 f$ mask bit $14=1$, the reader will advance tape to the next character and load the controller registers, but it will not generate an interrupt. The program will hang on the JMP * instruction at location 44.
5.2 REAL TIME CLOCK

Following installation of the Slot Saver IV controller into the general $1 / 0$ slot of the computer, the machine should be powered up. Proper functioning of the Real Time Clock controller can be determined within a few minutes by entering a few octal diagnostic routines through the computer console data switches. These routines should be checked using all selectable frequencies before proceeding to Custom Systems' Real Time Clock Timing Diagnostic program.

The Real Time Clock has four operating frequencies; namely, $60,10,100$ and 1000 Hz , which are selectable under program control. The diagnostic programs should be run for all frequencies to verify proper operation.

BIT 14		
	BIT 15	
0	0	
0	0	60 Hz
1		10 Hz
1	1	100 Hz
1		1000 Hz

Test A: Program to Test BUSY/DONE Logic
The octal program is entered through the console data switches starting at location 100. The starting address is also 100. Before beginning the program, the operator must first place the code for the selected clock frequency in accumulator 0 . The program will then start the clock. If the clock is operating properly, the BUSY filp flop will be reset and the program will halt at location 105. Accumulator 0 can then be changed to a different frequency selection. Operation using DONE logic can be determined by changing the SKIP instruction to SKPDN (063614).

MEMORY LOCATION	$\begin{aligned} & \text { OCTAL } \\ & \text { PROGRAM } \end{aligned}$	$\begin{gathered} \text { SYMBOLIC } \\ \text { CODE } \end{gathered}$	COMMENTS
100	062677	IORST	
	061014	DOA 0,RTC	Select frequency from ACO
	060114	NIOS RTC	Start clock
	063514	SKPBZ	
	777	JMP *-1	Wait for clock response
	063077	HALT	
	772	JMP *-6	Repeat if desired

Test B: Clock Operation Under Interrupts

MEMORY LOCATION	OCTAL PROGRAM	$\begin{aligned} & \text { SYMBOLIC } \\ & \text { CODE } \end{aligned}$	COMMENTS
1	70	JMP 70	
60	062677	IORST	
	061014	DOA 0,RTC	Select frequency
	072077	MSKO 2,CPU	Mask instruction
	060177	INTEN	Enable interrupts
	060114	NIOS RTC	Start clock
	400	JMP *	Wait for interrupts
70	065477	INTA 1,CPU	Device code AC1
	603077	HALT	
	60	JMP 60	

The program is started at location 60 and location 70 contains the interupt processing routine. Before starting the program, the operator must first place a mask word (all zeros for normal operation or 000004 for clock disable) in accumulator 2.

After receiving the interrupt, the device code is placed in accumulator $1.1 f$ mask bit $13=1$, the device will not generate an interrupt. The program will hang on the JMP * instruction at location 65.
5.3 LINE PRINTER

Checkout of a Line Printer and Controller. The majority of the causes of not belng able to print data from a computer lie with the printer itself. The first things to check when first hooking up a printer are the obvious; such as:

1. Is the printer powered?
2. Has the printer been placed on line?
3. Is there paper in the unit?
4. Is the cable from the computer plugged in tightly?
5. Is the front gate closed?

Abstract

If these conditions are satisfied, the next step is to exercise the printer by itself. Many models of line printers can be ordered with the self-test option. If this option is not available, an external exerciser test box may be available from your serviceman. If no printing occurs using the self-test option, a malfunction exists within the printer. Please note which lights work, whether the motor comes on and any other symptoms before calling for service. If, on the other hand, the printer operates satisfactorily with the selftest feature, then you should proceed to the next step of the checkout process.

Initial Checkout of Computer Controller. Following installation of the controller board and cable (see installation instructions), the next step in the checkout process is to power up the computer with the cable to the printer disconnected at the printer end. If no adverse effects are noted, the computer should be turned off and the cable connected to the printer. The computer can then be turned on again and power applied to the printer.

A few short diagnostic routines entered through the data switches of the computer console will establish within minutes whether the controller, cable and printer have been properly connected and are functioning correctly. These programs should be used to verify proper operation before proceeding the Custom Systems' Comprehensive Printer Diagnostic program.

Test A: Program to Repeatedly Print a Single Character Using BUSY/DONE Logic

The octal program is entered through the console data switches starting at location 100 through location 110. The starting address (100) is set in the switches and then the EXAMINE switch is hit to load this address. The console switches can then be reset to the ASCII value of the character to be printed (i.e. octal $100=0$, octal $101=A, e t c)$. The program should be started by pressing the CONTINUE switch.

The program reads the data switches, sends out the character to the printer and then waits in a SKIP BUSY (or DONE) loop for the printer to request the next character. When the printer acknowledges, a line feed character is sent, thereby initiating a print cylce and advancing the paper. If proper printing is occurring, the console switches can be changed on the fly to change the character printed.

Note that a line feed code octal 012 must be loaded into accumulator 1 before the program is started.

MEMORY LOCATION	OCTAL PROGRAM	$\begin{aligned} & \text { SYMBOLIC } \\ & \text { CODE } \end{aligned}$	COMMENTS
100	062677	IORST	
101	060477	READS 0	Read console switches into ACO
102	061117	DOAS O,LPT	Output character
103	063517	SKPBZ LPT	Wait for printer respons
104	000777	JMP .-1	
105	065117	DOAS 1,LPT	Send line feed
106	063517	SKPBZ	
107	777	JMP .-1	Repeat
110	771	JMP . -1	

To run under DONE logic, change the instruction in Iocation 103 to 063617.

If the program does not cause printing, hit the console stop switch. Then press the instruction step switch several times and observe the program addresses being executed. If the program just cycles in the two instruction BUSY loops (locations 103 and 104), then a problem exists with one of the following:

1. The printer is not working. Test by itself with self-test feature or external test plug.
2. The cable has been improperly installed. Carefully check installation.
3. A problem exists with the controller. Check that controller is in the correct slot.

Prior to calling Custom Systems, run Test A and Test B and note results of these tests plus all symptoms (lights on in printer, prints but doesnlt advance paper, runs Tests A and B but not $C, e+c).$.

Test B: Program to Read Printer Status Bit

MEMORY LOCATION	OCTAL PROGRAM	$\begin{aligned} & \text { SYMBOLIC } \\ & \text { CODE } \end{aligned}$	COMMENTS
120	062677	IORST	
	064417	DIA 1,17	
	063077	HALT	
	000775	JMP . -3	

Enter octal program into memory through console data switches. Start at location 120. The program reads a printer status word and then halts. If the printer is powered, has paper and is on line, examine bit 15 of $A C 1$. The result should be a binary one.

```
Test C: Operation Under Interrupts
```

$\begin{aligned} & \text { MEMORY } \\ & \text { LOCATION } \end{aligned}$	$\begin{gathered} \text { OCTAL } \\ \text { PROGRAM } \end{gathered}$	$\begin{gathered} \text { SYMBOLIC } \\ \text { CODE } \end{gathered}$		COMMENTS
1	210	JMP	210	
200	062677	IORST		Mask out device
	076077	MSKO	3,CPU	
	061117	DOAS	0,LPT	
	063617	SKPDN	LPT	
	777	JMP	.-1	
	065117	DOAS	1, LPT	
	060177	I NTEN		Enable interrupts Wait
	400	JMP	. +0	
210	071477	I NTA	$2, \mathrm{CPU}$	Acknowledge
	060217	NIOC	LPT	
	063077	HALT	(or JMP	. $-10,000766$)

The program starts at location 200. Prior to beginning, a printable character must be placed in ACO and line feed code (012) in AC1. A mask word must also be placed in AC3. The program outputs the first character under DONE logic and then walts for an interrupt from the print cycle at the JMP .to instruction. Upon receiving the interrupt, the program goes through location 1 to the interrupt processing routine at location 210. The INTERRUPT ACKNOWLEDGE instruction should place the printer octal device code (017) in AC2 and then halt. By changing the halt to a jump Instruction, the program can be made to run continuously.

The printer mask bit is bit 12. If there is a binary one in bit 12 of $A C 3$, the printer interrupt scheme is disabled and the program will loop on the JMP . + 0 instruction. If bit 12 of $A C 3$ is zero, the program runs normally.

Test D: Program to Print Characters From Data Swltches

MEMORY LOCATION	OCTAL PROGRAM	$\begin{gathered} \text { SYMBOLIC } \\ \text { CODE } \end{gathered}$		COMMENTS
100	062677	I ORST		
	063077	HALT		Set data switches, press CONTINUE
	020115	LDA	O,CNT	
	040116	STA	0,TEMP	
	060477	READS	0	Read console switches
	061117	DOAS	0,LPT	Output a character
	063617	SKPDN	LPT	
	777	JMP	.-1	
	014116	DSZ	TEMP	Decrement counter
	774	JMP	. -4	
	065117	DOAS	1,LPT	LF character
	063617	SKPDN		
	777	JMP	.-1	
	765	JMP	. -11	
	10	CNT:	10	\# characters to be printed
	0	TEMP :	0	

This program has proven useful in printing out the full character set, since the character to be printed can be changed on the fly by changing the console data switches. A line feed code (012) must be set into AC1 before beginning. The program starts at location 100 and halts immediately for a character to be set on the data switches. Press the CONTINUE switch to start again. The program then sends out eight characters followed by a line feed, thereby causing a print cylce. After each line, the character to be printed is read from the code set in the console data switches. The number of characters printed on $a \operatorname{line}$ can be varled by changing the octal constant CNT in core.

Test E: Program to Output Four Characters
This program provides a means of selectively sending out varlous combinations of letters, control characters and paper feed commands to test the VFU and paperfeed characteristics of the printer.

MEMORY LOCATION	OCTAL PROGRAM	$\begin{gathered} \text { SYMBOLIC } \\ \text { CODE } \\ \hline \end{gathered}$		COMMENTS
100	062677	IORST		
	061117	DOAS	0,LPT	
	063517	SKPBZ	LPT	
	777	JMP	. -1	
	065117	DOAS	1,LPT	
	063517	SKPBZ	LPT	
	777	JMP	.-1	
	071117	DOAS	$2, L P T$	
	063517	SKPBZ	LPT	
	777	JMP	. -1	
	075117	DOAS	3,LPT	
	063517	SKPBZ	LPT	
	777	JMP	. -1	
	763	JMP	. -13	

The four characters to be printed are placed in ACO-AC3. A typical example is $A, B, \operatorname{VTAB}, \operatorname{CC}(101,102,013$, 002). Here the letters $A B$ are printed on each line, and the control code for a double line feed is used.

Special Notes: Common Difficulties. The most frequent reason for an inoperable interface is an internal cable which has been improperly plugged onto the computer end plane. Double checking of this cable cannot be overstressed.
The second most comon difficulty encountered is caused by operating the printer board. This can occur quite by accident long after the interface has been fully verified if another controller or memory board is temporarily removed from the computer. The symptom of this condition is that the printer will run using BUSY/DONE logic but will not operate under interrupt control. The cause is the fact that the interrupt priority continuity is broken by an empty board slot. The condition is corrected by replacing a missing board or jumpering the INTP and DCHP lines (see section on installation).

5.4 EIGHT CHANNEL ASYNCHRONOUS MULTIPLEXER

Test A: Program to Repeatedly Output a Single Character Using BUSY/DONE Logic

The octal program listed below is enterd through the console data switches starting at location 100. The starting address (100) is set in the switches and then the EXAMINE switch is hit to load this address. The console switches can then be reset to the ASCII value of the character to be printed (i.e. octal $100=$ e, octal $101=A$, etc.). The program is started by pressing the CONTINUE switch.

The program reads the selected character from the computer data switches, sends out the character to the CRT and then waits in a SKIP BUSY (or DONE) loop for the serlal shifting of the character to the terminal to be completed. The process requires no response from the terminal and WIII repeatedly send out the same character. If the terminal does not have an automatic line feed, it will be necessary to take the terminal off line to advance the line. If proper transmission is occurring, the console switches can be changed on the fly to change the character sent out.

$\begin{array}{r} \text { MEMORY } \\ \text { LOCATION } \\ \hline \end{array}$	OCTAL PROG RAM	$\begin{gathered} \text { SYMB OL IC } \\ \text { CODE } \\ \hline \end{gathered}$	COMMENTS
100	062677	IORST	
101	060477	READS 0,CPU	Reads console switches
102	061130	DOAS O,QTY	Send out character
103	063530	SKPBZ QTY	
104	000777	JMP .-1	Wait for completion
105	773	JMP .-5	Repeat

Output IIne numbers are controlled by switch positions
7 thru 2 wih bit 7 being least significant. To run uner DONE Iogic, change the instruction In location 103 to 063630. If no output occurs, a problem exists Wlth one of the following:

1. The cable has been improperly installed. Carefully check installation. Are pins 2 and 3 correct for your CRT? (See Page 4-12.)
2. Terminal not on line.
3. Wrong baud rate selected.
4. A problem exists with the controller. Check that controller and cable are plugged to the same slot.
```
Test B: Echo Test
The program reads the character sent by the CRT as the
result of depressing a key on the CRT keyboard. The
program then transmlts the received character back
to the CRT. If proper communications have been
established every time a key is struck on the keyboard
it wlll be displayed on the CRT.
    MEMORY OCTAL SYMBOLIC
LOCATION PROGRAM CODE COMMENTS
    100 062677 IORST
    101 063630 SKPDZ QTY Wait for CRT
    102 777 JUMP-1 Input
    103 060430 DIA Q,QTY Load Input to ACO
    104 061130 DOAS Q,QTY Output ACO
    105 063530 SKPBZ QTY
    106 J77 WaMP-1 for completion
    107 JUMP 10100 Repeat
```


*DCHP IN A9 4
*DCHP OUT A93
DSO A72
DS1 A68
DS2 A66
DS3 A46
DS4 A 62
DS5 A6 4
INTA A 40
*INTP IN A96
*INTP OUT A95
INTR B29
IORST A 70
MSKO A3 8
RQENB B4 1
SELB A82
SELD A80
STRT A52
*For the two pairs of priority-determining signals, the IN signal comes from the processor or the preceeding device, the OUT signal goes to the next device. If the computer is operated with an interface board removed (or a slot is not used), jumper pin A93 to A94 to A96 to maintaln bus continuity.
SIGNALBACKPANEL PIN
SERIAL PORT
SERIAL DATA OUT (+) A83
(20 MA)
SERIAL DATA OUT (-) A85
(RS232-C)
SERIAL DATA IN (+) B6 9
(RS232-C)
SERIAL DATA IN (-) A99
(20 MA)
CLEAR TO SEND B84
READER RUN A89
(OPTIONAL JUMPER)
REAL TIME CLOCK
$50 / 60 \mathrm{~Hz} \mathrm{SIGNAL}$ B6
PRINTER
BIT 1 B67
BIT 2 B40
BIT 3 B5 2
BIT 4 B4 8
BIT 5 B3 8
BIT 6 B49
BIT 7 B25
BIT 8 B3 1
SELECTED B5 1
STROBE B27
PAPER EMPTY B36
DEMAND B3 4

EIGHT CHANNEL MULTIPLEXER

LINE 0 SERIAL DATA OUT A49
LINE 0 SERIAL DATA IN A 57
LINE O CLEAR TO SEND A 47
LINE 1 SERIAL DATA OUT A 61
LINE 1 SERIAL DATA IN A 63
LINE 1 CLEAR TO SEND A59
LINE 2 SERIAL DATA OUT A67
LINE 2 SERIAL DATA IN A 65
LINE 2 CLEAR TO SEND A 71
LINE 3 SERIAL DATA OUT A 76
LINE 3 SERIAL DATA IN A 73
LINE 3 CLEAR TO SEND A78
LINE 4 SERIAL DATA OUT A92
LINE 4 SERIAL DATA IN A91
LINE 4 CLEAR TO SEND A 90
LINE 5 SERIAL DATA OUT A 75
LINE 5 SERIAL DATA IN A8 4
LINE 5 CLEAR TO SEND A88
LINE 6 SERIAL DATA OUT A87
LINE 6 SERIAL DATA IN A 81
LINE 6 CLEAR TO SEND A86
LINE 7 SERIAL DATA OUT A 69
LINE 7 SERIAL DATA IN A 77
LINE 7 CLEAR TO SEND A 79

CABLING FROM PANEL TO EXTERNAL DEVICES

A. SERIAL PORT (TTY CONNECTOR - 9 PIN)
J9-1 Reader Run
J9-2 $+5 \mathrm{~V}$
J9-3 Data from CRT (+)
J9-4 Data from CRT (-
J9-5 Clear to Send
J9-6 Data to CRT (-)
J9-7 Data to CRT (+)
J9-8 Not Used
J9-9 GND

RS232 Cable
J9-3 Data from CRT
J9-5 Clear to Send
J9-6 Data to CRTJ9-9 GND
20 MA Cable
J9-1 Reader Run
J9-3 Data from CRT (+)
J9-4 Data from CRT (-)
J9-6 Data to CRT (-)
J9-7 Data to CRT (+)
B. 8 CHANNEL MULTIPLEXER (25 PIN)
Channel 0 is representative of the other 7 Channels
Jl-2 Data from CRT
J1-3 Data to CRT
Jl-4 Request to Send (pulled high)
Jl-5 Clear to Send
J1-7 GND
Jl-20 Data Terminal Ready (pulled high)
;
:**
; nEGGRIPTTON: JTY NIAGNOGTTC \& KFLTARILITY TFST
;
; rus[niM SYSTFAS [NC, 1*agI

```


いヘいのい1
\(\therefore 00\) の日
    .111s0 \(x=1\)
    - TXT"

    :2. ロトルイムTOn HTSTリアY:
    QFV. nATE.

        Ci CH/OK/RZ CHANRE TO RUN HICHFR THAN 4800 B


    MATHTMF REIUTRFMFNTS
        NOVA(EXCFHT MIRKO)/ECLTPSE PROCFSSOR
        UK RFA /WKTIF MEMORY
        rONSOLF TEIETYDE
        OTY NUL_TTHIEXER RUARO
        TFGT HUR (SFE SFCTION 7.)
    NIARNOGTTC UPERATING PROCEFUHKF
        \(: 4.1\)
        OTGCONNETI THE COMMUNICATIONS EQIIPMFNT ANO TN-
        SFRT THE TFST PLIIG INTO THF CONNFCTOR ON THE
        NワVA BACK PANNFL.
        I OAD THE PROFRAM VTA THE GTNARY LOAUFK
        1 OAI STAPTTNT A!ONHFSS
        DRFSG STAKT
        THF PROGRAM WIIL RFIHEST JHE JFVTCF CONE. THF
        IDFFQATOR SHOHLN TYDE IHE UFVTCF CODE (30 UR 70)
        のORRFSPUNリTAR TU HTS MILTIPLFXFR。
        THF PKOGRAM NIIL KFGIECT THE NIIMRER OF THE FTKST
        TFIFTYDF LTHF. THE UPERATIJR SHOULU TYPF , IN DECI-
        MAI. THE NIIMQEQ OF THE FTKGT TFLFTYPF I INE.
        THF DROGOAM ALIL KFWHESI THE NHMRER OF THE LAST
        TEIFTYPE LTIAF. THE UPEQATIO SHOUIJ TYPF TN THE
        MIMAFK UF TRF I AST LTIF TN IHE SYSTEM.
        THF PKOGRAM VILL KFGIIECI THE NIMPER OF LFVELS
        HGFI. THTS KFFFKS TO THE NIIMRER OF BAUDS
        CONTAINEN TA UNE WORN, NFGIECTING START ANN STOP
        RAIINS. IHE JDEQATUR SHOUII TYPF , [N NETIMAL
        ThF MUMGF: uF rune haung rfr wnin.
        THF DROGQAM WIIL RFIHEGT THE NO OF STOP RAllOS TF
        THF MUMמFK JF IEVEIS IS NUT 5. THE UPERATUR SHOULU
        THFN IYHF 1 OR 2 UFPFNOING IJPINN THF JUMPFRS
        TMGTALIEN OIV HTS GOADI.
        THF DKOGRAM WIIL KFOHEGT THE TTO BAUD RATE, IF THERE
        TS NO DEAL TTMF rLOCK TN THE SYSTEM.
        THF OHFRATOK WTLL RESPNNO WITH A IFCTMAL VALIIE OF


u4 wTrnk
\begin{tabular}{|c|c|}
\hline : 8. & RFI [ARTLTTY ORFRATTINR TNSTPURTTONS \\
\hline ; & TF THF OTACNOSTIR TEQT HAS HFEN RUN, THE PRURKAM \\
\hline ; & TS KFAOY TO RUN. [F NOT REMUVE THE COMMUNIPATIONS \\
\hline ; & FOHIDMFNT ANN INSE゙QI THE TFST PLIUG. \\
\hline : & LOAD THE HRUFKAM VTA THE BTNAKY LOADFR. \\
\hline : & GFT GNTTCHFS ANU PQESS STADT. \\
\hline :9. & RFI IARTITTV STAKTINT, AnOPESSFS \\
\hline ; & GTAKTPMG AMODEQS=OOOOLZ- IISFIINES LAQT TFSTEN, \\
\hline ; & THF PrnGRam ortats the dFVTCF rone anu starts. \\
\hline ; & STAHTYU, A CUDESS=OOUOIA- CHFCKS FOR ACTTVFIINES \\
\hline : &  \\
\hline ; &  \\
\hline : & I INE AVATLAHIE. IT THEN PRINTS THE UFVTCF CODE. \\
\hline ; &  \\
\hline ; & TYPE A LTNF NUMBFR In RE TESTEN FOLLOWED BY A \\
\hline ; & CAPKTAGE KFTURN. PRIGRAM RESPONDS WITH \\
\hline : & I INE VIMMREP, CODF LEVEL, NO. OF STOP BITS, \\
\hline ; & \(\triangle N \cap\) RAllO RATF, THEN \(\triangle\) SKS FOR ANOTHER LINE. \\
\hline ; & TYPE (FSC) TO START THF PROGRAM. IT THEN PRINTS \\
\hline ; & thf nevice coue. \\
\hline \(=10\) & QFMARKS \\
\hline ; & MANY DTFFERENT HAUN RATES CAN RE USED DEPENDTNG \\
\hline : & IIPON THE CRYSTAL AND JIIMPER CONFIGURATION. \\
\hline ; & THF PRIGRAM MEASURFS THE TRANSMISSTON TIME AND \\
\hline ; & COMPARFS IT TO THE CONSOLE TFLFTYPE TRANSMISSION \\
\hline : & TTMF TO nETERMINF THF RAlli R \(\triangle\) TF. ALI_OW +-5\% \\
\hline : & TOIFRANCF TN CALCUATEN VAIUES. \\
\hline : & THF RAIIN RATF AS UFTFRMINET FROM THE TRANSMISSTON \\
\hline ; & TTME IS MEPENDFNT IIPNN THE COUF LEVEL AND THE NUMBER \\
\hline : & OF STOP AND STAKT IINTTS. THF TARLF REI OW DISPLAYS \\
\hline : & AII POSSTHLE COMDINATIONS OF CODF LEVELS ANO \\
\hline ; & IINTTE. \\
\hline ; & CIMF IFVFL , \# IINTTS \\
\hline : & - \\
\hline : & 5 7.5 \\
\hline : & 6 Q \\
\hline ; & 6 - \\
\hline ; & 7 9 \\
\hline ; & 7 10 \\
\hline ; & 8 9 10 \\
\hline ; & Q 11 \\
\hline ; & ThF profram netermtivfs the couf level. Ry examining \\
\hline : & ThF rhakacter reretvfu from a trainsmissinn. \\
\hline ; & THF NIIMRFK IFF STOP HTTS ARF NETERMTNFU FROM A \\
\hline ; & COMPARTSON UF THF TIME RFOHIREN TO TRANSMIT ANC \\
\hline ; & THF TYME RFOUIREN TO RFCFIVE A CHARACTER. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline : 11. & RFI TARTI.TYY PROGRAM NESCRIPTTON \\
\hline ; & \\
\hline : & ONi STARTTING, ALL LTAFS IT DE IFSTEN ARF GIVEN \\
\hline ; & A PANDOM CHADACIFK TO TRANSMTY. WITH EACH \\
\hline ; & SURCFSSFILL "RECETVF DONE" TATERRIIPT A DIFFFRFNT \\
\hline ; & PANDOM NIIMRER TS SFLFCTE \(\triangle\) INT OUTPIITTEN TO \\
\hline ; & THAT I TNF. FArH "PErETVF OOME" TNTERRIIPT TS \\
\hline ; & VFRIFTF! BY I INE NHMRER/DANDIM CHARACTFR \\
\hline ; & COMRTVATTGN. THF PKOGRAM RUNS INUFFTNTTFLY. \\
\hline : & A COIINT OF THE TRANSMITIFO AND RECFIVED \\
\hline ; &  \\
\hline : & QY PDFSSTNG THF TEIETYOE SDACE BAR NHILE \\
\hline ; & THF PROGPAM TS KIVNING. ALL COUNTS ARF \\
\hline : &  \\
\hline \(: 17\). & DFI. IARTLTTY PKOGRAM FKRORS \\
\hline ; & AN INIF IUON NATCH UMG TTMFR IS USFD TO INSURE \\
\hline : & THAT VO LINE BFING TFSTEN HANGS IIP SUCH THAT \\
\hline ; & ПATA TRANSMISSTON STOPS. TF THIS OCCURS THE \\
\hline ; & I IME NIMRER TS PRINTFD ALIONG WTTH AN ERROR \\
\hline ; & MFSSAGF ANO TRANSMTSSION IS TRTED AGAIN. \\
\hline ; & ПATA FRRORS AT THF RFCFIVER RESULT IN A PRINTOIIT \\
\hline ; & OF THF LINF NIJMBFR AND THE GOOD \& BAn CHARACTERS. \\
\hline ; & THF PROGRAM ruNIJNIIES REPEATFDIY SENOING THE FAILING \\
\hline ; & CHARACTER (STOPE LOUP) FOR THE FAILING LINE. \\
\hline ; & ALI OTHER RANDOM TFSTING COVTINUES. SFT SW1 TO "1" \\
\hline : & TO RFSIIMF RANUOM TFSTING UN "ALL" LINES REING \\
\hline ; & TFSTFO. WHILE IN A SCOPF IOOP SFT SW3 TO "1" \\
\hline ; & TO GFT A HPINTOUT OF THE FAILUPE RATE. (I.E. \(89 \%\) ). \\
\hline : 17. & STARTTNG LOCATTUNS \\
\hline \(: 13.1\) & OO0012-0TAFNOSTIC (100n12 IF NFW PARAMETERS DESI \\
\hline \(: 13.7\) & nono13-KFLTARILITY (HSTNF, LAST LTNFS TFSTED) \\
\hline \(: 13.2\) & OOn014- " (nETERMTNFS ACTIVE LINES) \\
\hline :13.4 & OOno15- " (FNTER LINE NIMMRERS) \\
\hline : 11. & SWTTRH SFTTINGS \\
\hline ; & 1 PKOCFED F:ROM ERROR LOUP. \\
\hline : & ? TNHIRIT PRTNTING ON CUNSOLF TEIETYPE. \\
\hline : & 3 PRTNT THF FATLIKF PATE. \\
\hline ; & - \\
\hline ; & 5 OUTPIIT TO LPT \\
\hline
\end{tabular}```


[^0]:    Jumper OUT $=1$ bit; Jumper $1 N=0$ bit.

[^1]:    9600 Baud Shown

