
t. Data General
Software Documentation

RDOS
System Reference

,r---

ROOS
System Reference

093-400027 -01

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-400027
©Data General Corporation, 1983, 1985
All Rights Reserved
Printed in the United States of America
Revision 01, January 1985
Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION

. OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, mlcroNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/aOOO, TRENDVIEW, SWAT,
GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L,
DG/GATE, DG/XAP, ECLIPSE MV/l0000, GW/4000, GOC/l000, REV-UP, XODIAC, DEFINE, SLATE,
microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Revision History:

RDOS
System Reference

093-400027

Original Release - October 1983

First Revision - January 1985

CONTENT UNCHANGED

The content in this revision is unchanged from 093-400027-00. This revision changes only
printing and binding details.

,~.

This is the primary reference manual for Data General's
Real-Time Disk Operating System, RDOS. It describes all
features of the operating system for the NOV A and ECLIPSE
computers that it supports, and covers the salient points of
dual programming for mapped machines. Much of the man
ual concerns system and task calls that can be used in as
sembly language programs. Users who intend to program
in a higher-level language, such as FORTRAN, will find
this book most helpful in conjunction with the manual that
specifically describes that language.

Reading Path
This manual assumes (1) a basic understanding of RDOS
features and concepts, (2) a currently running system that
has been tailored to the user's hardware and software needs,
and (3) a working knowledge of the RDOS/DOS Command
Line Interpreter (CLI) program. First-time users of RDOS
are strongly urged to consult the following manuals before
this one.

Introduction to RDOS (DGC No. 069-400010)familiarizes
readers with RDOS concepts and capabilities. The manual
describes the Command Line Interpreter (CLI), the RDOS
file system, input/output, memory organization and man
agement, and special uses of RDOS such as user device
drivers and multiple-processor systems. The manual also
introduces RDOS utilities, providing practical examples in
some cases to demonstrate their use.

How to Load and Generate RDOS (DGC No. 069-400013)
steps readers through the procedures of program loading,
disk initialization, installing the bootstrap root and RDOS
starter system, and generating an RDOS system that meets
their particular needs.

RDOSIDOS Command Line Interpreter (DGC No. 069-
400015) describes the features and commands of the CLI
the primary interface between RDOS and its users. Among
their many functions, CLI commands enable the user to
create and protect files, and to invoke such utility programs
as assemblers and text editors.

RDOSIDOS User's Handbook (DGC No. 069-400018) pro
vides a handy summary of all CLI, utility, and RDOS com
mands.

Organization
This manual contains ten chapters and nine appendices, as
follows.

Licensed Materlal··Property of Data Genaral

Preface

Chapter 1, "Overview," introduces RDOS and explains
how it runs in memory.

Chapter 2, "Files and Directories," explains RDOS files
and file access, including file types, access modes, direc
tories, linking, magnetic tape files, and multiplexors.

Chapter 3, "Single-task Programming," describes most of
the system calls needed to program RDOS in a single-task
environment. It summarizes the most commonly used sys
tem calls in table form.

Chapter 4, "Extending User Address Space," explains cer
tain tools for extending addressable memory space, among
them, program swaps, chains, user and virtual overlays, and
window mapping.

Chapter 5, "Multitask Programming," explains the pro
cedure of creating tasks within one program to manage
diverse, real·time requirements.

Chapter 6, "Foreground-Background Programming," out
lines the technique of running two programs simultane
ously-in the foreground and background-{)n mapped and
unmapped machines.

Chapter 7, "Interrupts and Power Failures," assists users
who want to write their own interrupt handlers or define
nonstandard devices in their RDOS systems.

Chapter 8, "Multiple Processor Systems," covers multi
processor programming for those with more than one CPU
who want to implement communications between them.

Chapter 9, "System Tuning," describes how RDOS uses
stacks, cells, and buffers, and how the RDOS tuning feature
checks and improves a system's performance.

Chapter 10, "Running in LEF Mode," explains for users
with mapped ECLIPSE computers how to use the Load
Effective Address (LEF) instruction.

Appendix A summarizes all RDOS system calls, task calls,
and error messages.

Appendix B lists the source file PARU.SR, which describes
all RDOS user parameters. This listing helps the user build
program tables and understand how RDOS operates.

RDOS System Reference

Appendix C demonstrates real-time programming with two
examples.

Appendix D describes the directory RDOS uses to manage
overlays.

Appendix E explains two error conditions, traps and ex
ceptional system status, and how to recover from them.

Appendix F lists page zero and hardware reserved locations.

Appendix G contains a Hollerith-ASCII conversion table.

Appendix H contains the ASCII character set.

Appendix I explains advanced multitask programming fea
tures for users who want to extend their multitasking en
vironments.

The index alphabetically lists the concepts and terms in this
book and references the pages on which they appear.

Several lists and forms follow the index.

"DG Offices" lists all Data General facilities world-wide.

"How to Order Technical Publications" points to the agen
cies from which order forms and manuals can be obtained.

"Technical Publications Comment Form" invites you to
assist DGC in improving future publications by evaluating
this book.

"Users' Group Membership Form" brings DGC software
users together, in group meetings and through various pub
lications, to exchange ideas, applications, problems, and
solutions.

ii ROOS System Reference

Related Manuals
Prerequisite readings are described under "Reading Paths"
in this Preface.

Additional manuals describing RDOS are listed below.

RDOS/DOS Text Editor (DGC No. 069-400016)

SUPEREDIT Text Editor (DGC No. 069-400017)

RDOS/DOS Assembly Language and Programming Utilities
(DGC No. 069-400019)

RDOS/DOS Debugging Utilities (DGC NO. 069-400020)

RDOSIDOS Backup Utilities (DGC No. 069-400022)

RDOS/DOS Sort/Merge and Vertical Format Utilities (DGC
No. 069-400021)

Conventions
We use these conventions for command formats in this manual:

COMMAND required [optiona~ •.•

Where

COMMAND

required

[optional]

Means

Enter the command (or its accepted ab
breviation) as shown. Upper-case letters
indicate the command mnemonic.

Enter some argument (such as a filename).
Sometimes, we use:

required1 I required2

You can choose between the arguments
listed.Do not use the vertical bar; it merely
separates the choices. Lower-case italic
letters indicate an argument.

Brackets mean that you have the option
of entering the argument. (Command
switches also appear in this format.) Do
not include the brackets in your code; they
only set off the choices.

Repeat the preceding entry or entries. The
explanation will tell you exactly what to
repeat.

The process has continued without inci
dent, and you may now take the next ac
tion described.

Licensed Materla'··Property of Data General

I~

-

Additionally, we use certain symbols in special ways:

Symbol

(CR)

o

Means

Press the RETURN key on your keyboard.

Include a space at this point. (We use this
to clarify in some cases. Normally, you
can see where to put spaces.)

All numbers are decimal unless otherwise indicated, for
example, 358 •

In examples of dialogue, we use:

THIS TYPEFACE TO SHOW YOUR ENTRY

and

THIS TYPEFACE FOR SYSTEM RESPONSES.

R is the RDOSIDOS Command Line Interpreter prompt.

L1cen .. d Material--Property of Data General

Contacting Data General
• If you have comments on this manual, please use the

prepaid Remarks Form that appears after the Index.
We want to know what you like and dislike about this
manual.

• If you need additional manuals, please use the enclosed
TIPS order form (USA only) or contact your Data
General sales representative.

RDDS System Reference iii

\

.-

Preface

Reading Path
Organization i
Related Manuals ii
Conventions ii

Chapter 1
Overview

Generating an RDOS System 1
Communicating with RDOS 1
Program Development 2

Higher-Level Languages 2
Assembly Language 2

Main Memory Considerations 2
Foreground/Background

Programming 2
Mapped Features 3

Device Access 3
RDOS Organization 3
System Library and Source Files 6

Chapter 2
Files and Directories

Definition of a File 7
File Overview 7

Reserved Device Names 7
Disk Filenames 9
File Attributes and

Characteristics 9
Disk File Characteristics 10
File Transfer 10

Disk File Block Organization 10
Sequentially Organized Files 11
Randomly Organized Files 12
Contiguously Organized Files 13

RDOS Disk Directories 13
Initial Disk Block

Assignments 14
System Directory (SYS.DR) 14

Table of Contents

Master Directory 15
User Directories 15

Partitions and Subdirectories 15
Initializing and Releasing User

Directories 17
Referencing Disk Files 18

Link Entries 18
File Access Example 20
Directory Command Summary 23
Magnetic Tape Files 23

Nine and Seven Track Data
Words 24

Tape File 110 25
Free Form lIO 25
Initializing and Releasing a Tape

Drive 25
Referencing Tape Files with File

110 26
Linking to Tape Files 27

Multiplexors 27
Line 64 Reads 28
Line 64 Writes (ALM and ULM

only) 29
ULM Line Codes 29
Multiple Channels 29
Modem Support Under RDOS 29
Multiplexor Error Messages 30
ALMSPD.SR 30

Chapter 3
Single-task Programming

Multiple and Single-task
Environments 33

System Task Calls 33
Status On Return From System

Calls 34
110 Channel Numbers 34

Commonly Used Commands 35
Device and Directory Commands 39
File Maintenance Commands 45
File Attribute Commands 51

Link Commands 53
Input/Output Commands 56
Console 110 Commands 72
Memory Allocation Commands 74
Device Access Commands 76
Clock and Calendar Commands 78
Spooling Commands 80
Keyboard Interrupts 82

Defining Interrupt Routines 83
Summary 88

Chapter 4
Extending User Address Space

Program Swapping and Chaining 91.
User Overlays 97
Protecting User Memory Under

Mapped RDOS 102
Virtual Overlays 105
Window Mapping 107

Defining a Window Map 107
Performing a Remap 109

Extended Direct Block 110 112
Extended Direct Block 110

Example 115
Summary 116

Chapter 5
Multitask Programming

Task Priorities 117
Task Control Blocks 117
Building Multitask Programs 119

Conserving ZREL Space 119
Task States 119
TCB Queues 120
Task Synchronization and

communication 121
User Status Table 121
Task and System Calls 123
Task Initiation 123
Task Termination 124
Task State Modification 127
Inter-task Communication 129

Locking a Process Via Transmit
and Receive Commands 130

User Overlay Management 131
Enqueuing Tasks 135
User/System Clock Commands 138
Managing Tasks by ID Number 141
Task/Operator Communications Calls 144
Task/Operator Communications

Module (OPCOM) 146

OPCOM Command Syntax 147
OPCOM Command Example 153

Disabling and Enabling the Multitask
Environment 154

Disabling and Enabling the Task
Scheduler 155

Summary 157

Chapter 6
Foreground and Background Programming

Overview 159
Dual Programming in Mapped

Systems 160
Executing Dual Programs 160
Checkpointing a Background

Program 161
Dual Programming in Unmapped

Systems 161
Building Foreground

Programs 161
Executing Dual Programs 162

Foreground/Background System
Calls 164

Summary 170

Chapter 7
Interrupts and Power Failures

Servicing User Interrupts 171
Commands for Interrupt and

Power Fail Routines 171
Power Fail! Auto Restart

Procedures 175
Power-up Service for User

Devices 176
Summary 176

Chapter 8
Multiple Processor Systems

Overview 177
Interprocessor Buffer (IPB)

Programming 178
Interval Timer 178
Dual Processor Program

Communications 178
IPB Example 178

MCA Programming 180
Data Transmissions 180
Using CLI Commands on MCA

Lines 180
Transmitting Copies of Systems or

Stand-alone Programs 181

Multiprocessor System
Illustration 182

Chapter 9
System Tuning

Overview 185
System Stacks, Cells, and

Buffers 185
System Stack Requirements 186
System Cell Requirements 186
System Buffer Requirements 187

How Tuning Works 189

Chapter 10
Running In LEF Mode

Appendices

Appendix A
RDOS System and Task Calls

Appendix B
User Parameters

Appendix C
Real-time Programming Examples

TIMEC Program 231
EXAMPLE Program 234

Appendix D
Overlay Directory Structure

Appendix E
Exceptional System Status

Traps 243
Exceptional Status 243
Controlling Exceptional Status 244

Producing a Core Dump 244

193

195

197

213

241

Appendix F 249
Page Zero and Hardware Reserved Locations

Appendix G 251
Hollerith-ASCII Conversion Table

Appendix H 255
ASCII Character Set

Appendix I
Advanced Multitask Programming

Definitions 257
General Terms 257
State Definitions 258

Coding Your Own Task Calls 258
TCB and Status Bits 258
Scheduler Calls 258

Handling Additional Task
Resources 262

Task Scheduler Call-Outs 262
Additional Resource Handler 265
Operator Communications 266

Task Control Block Values 266

Index

DG Offices

How to Order Technical Publications

ISD User Documentation Remarks Form

Users' Groups Membership Form

269

Figures
1.1 RDOS address space 5
2.1 Sequential file block organization 11
2.2 Random file block organization 12
2.3 Contiguous file block organization 13
2.4 Apportioning disk space 16
2.5 Link entries 19
2.6 Sample organization of an RDOS disk 21
2.7 Data encoding (nine-track units) 24
2.8 Data encoding (seven-track units) 24
2.9 Data block structure 25
2.10 Writing the first tape file 26
2.11 Overwriting tape files 27
3.1 Double-precision byte pointer 62
3.2 Image binary code reading 65
3.3 MTDIO status word bits 71
3.4 Unmapped background memory 74
3.5 Program with interrupt handler 83
3.6 Program with .INTAD task 84
3-.7 Program interruption logic sequence 85
4.1 Program swapping 93
4.2 Program chaining 94
4.3 User overlays 98
4.4 Segment I of overlay file RO.OL 99
4.5 Loading the overlay root programs 99
4.6 Write-protecting memory 103
4.7 Virtual overlays before .OVLD 106
4.8 Virtual overlays after .OVLD 106
4.9 Defining a window map 108
4.10 Memory before remap 109
4.11 Remapping 109
4.12 Extended block read 115
5.1 Task state/priority information (TPRST) 118
5.2 TCB chain 120
5.3 TOVLD logic sequence 133
5.4 QTSK example 137
5.5 Sample console commands and messages 153
6.1 Loading foreground and background programs in an

unmapped system 163
8.1 Multiple processor line connections 180
8.2 Multiprocessor system illustration 183
9.1 Adequate cell apportionment 187
9.2 Inadequate cell apportionment 187
9.3 Disk blocks of the tuning file 190
9.4 Details of the tuning summary report, first disk

9.5
B.I
C.I
C.2
C.3
C.4
C.5
D.I
E.I
F.I

block 190
Tuning overlay report 190
PARU.LS 213
TIMEC and TASK messages 231
TIMEC flowchart 232
TIMEC program listing 233
EXAMPLE flowchart 235
EXAMPLE program listing 236
Overlay directory structure (multitask) 241
Sample line printer dump 246
Listing of PARS, giving page zero and hardware
reserved locations 249

Tables
1.1 System file names 6
2.1 Reserved device names 8
2.2 Initial disk block assignments 14
2.3 Directory command summary 23
2.4 Characteristic bits that affect multiplexors 28
2.5 Selecting a ULM line speed 29
2.6 Multiplexor error messages 30
3.1 Commonly used commands 36
3.2 Calls that control memory, returns and

overlays 37
3.3 Possible errors from calls that control memory,

returns and overlays 38
3.4 UFO template with displacement mnemonics 49
3.5 Bit-attribute relationships 51
3.6 Disk file characteristics assigned by RDOS 52
3.7 B its and associated device characteristics 53
3.8 .MTDIO values returned 71
3.9 System call summary 88
4.1 System and task call summary 116
5.1 Structure of a task control block (TCB) 118
5.2 Structure of user status table (UST) 121
5.3 User task queue table 136
5.4 System, task, and OPCOM command

summary 157
6.1 System call summary 170
7.1 System and task call summary 176
9.1 System overlays and their functions 188
A.I RDOS command summary 197 .~.

A.2 Error summary 210
1.1 TCB words and how they can be changed 267

Data General's Real-Time Disk Operating System (RDOS)
combines the advantages of a disk operating system with
the speed of a memory-resident system. RDOS is real-time
oriented: it can allocate program control to many tasks within
separate foreground and background programs, while of
fering maximum efficiency and economy to a wide variety
of installations.

Some of the major features that RDOS offers include:

• Disk and memory-residence

• Support for real-time FORTRAN IV, FORTRAN 5,
DG/L, Extended and Business BASIC, and other ad
vanced languages

• Support for BATCH processing

• A flexible file structure that allows disk partitionin,g and
sharing of user files, buffered and unbuffered 110 and
multiple user overlays

• Modular multitask levels of task priority

• 256 software levels of task priority

• Hardware mapping support for foreground/background
programming, including protection and management of
each program; access to mapped extended memory; and
checkpointing of background programs

• Spooling (disk buffering) of output to slow peripherals

• Dual processor-shared disk support

• Multiprocessor support

• Tuning for improved performance

These and other basic RDOS concepts are explained in
Introduction to RDOS (DGC No. 069-400010).

The minimum of hardware needed to run RDOS is a suitable
Data General computer, a hard-copy or CRT terminal, and
a disk. Larger versions of RDOS can support a real-time
clock, power fail-auto restart, up to 16 megabytes of fixed
head disk storage, and more than 1,500 megabytes of mov
ing-head disk storage. In addition, RDOS can support 16
magnetic tape units, multiple line printers, terminals, plot
ters, readers and punches, multiplexors, and CPUs. Mapped

Licensed Material··Property of Data General

Chapter 1

Overview

RDOS features hardware memory protection, and can sup
port up to 256K bytes (NOV A) or 2M bytes (ECLIPSE) of
memory.

Generating an RDOS System
Each system installation is unique; it must perform diverse
tasks with one of many possible hardware combinations.
An RDOS system is tailored to the user's environment with
the system generation program, SYSGEN.

The builder of tailored operating systems, SYSGEN is an
executable system program that can operate in any instal
lation. Data General delivers a standardized starter (boot
strap) system with RDOS; this starter system, along with
the SYSGEN program, enables the user to generate one or
more configured systems. If you know your future require
ments, you can generate other RDOS systems at this time
to fulfill them. How to Load and Generate RDOS (DGC
No. 069-400013) describes the procedures for doing so. The
tailored system is bootstrapped into execution via BOOT,
the RDOS bootstrap program.

Communicating with RDOS
You can communicate with RDOS and make it work for
you in four ways:

via system and task calls in an assembly language pro
gram,

with Command Line Interpreter commands,

with the Batch monitor, or

indirectly, through a higher-level language.

The user writes system and task calls as instructions in a
program, using the CLI as a dynamic console interface to
RDOS. System and task calls activate logic within the sys
tem or task processing modules. Only those task-processing
modules that the program needs become part of it.

The Command Line Interpreter (CLI) is a system utility
program that accepts command lines from the console and
translates them into commands to RDOS. Thus, the CLI is
an interface between your console and the system. Unless

RDDS System Reference

otherwise directed, RDOS will load the CLI at system in
itialization. RDOS will reload the CLI upon termination of
a user program if the user did not chain to that program
from the CLI (with the CLI CHAIN command). The CLI
indicates that it is ready for input by outputting a ready
message prompt, R, and a carriage return, and is interrupted
when you press the keys CTRL and A, CTRL and C, or
CTRL and F. (Keyboard interrupts are discussed further in
Chapter 3.)

CLI commands allow the user to load programs, invoke
other utility programs, and activate the BATCH monitor.
BATCH executes jobs serially, without operator interven
tion, using job control commands in the job stream.

Advanced Data General compilers, and the BASIC inter
preter, allow users to write programs in languages like
DG/L, FORTRAN, and BASIC.

Program Development
Along with the CLI, Data General supplies a number of
utility programs with RDOS. Each program is described in
a separate manual, as listed in the Preface. The utilities help
the user write code and develope it into useful, executable
programs. During system generation, the utility programs
are transferred to disk, making each of them accessible by
a CLI command.

Your first step in program development is to write a source
program that performs useful work for your computer ap
plication. This program can be written in a higher-level
language like DG/L or FORTRAN, or in assembly language
via one ofthe text editor utilities. The CLI's EDIT command
invokes the Text Editor; Its MEDIT command invokes the
Multiuser Text Editor; and its NSPEED or SPEED com
mands invoke the Supereditor. Your next step depends on
whether you have used a higher-level language like FOR
TRAN, or assembly language. This manual will be most
useful to assembly language requirements.

Higher-Level Languages
If you have written your program in FORTRAN, DG/L, or
another higher-level language, you will compile and assem
ble it by invoking the appropriate utility with a CLI com
mand. You will then use the Relocatable Loader utility,
invoked with the CLI's RLDR command, to produce an
executable program file. A program written with the BASIC
interpreter can be corrected with the aid of the appropriate
manual for that language, while using the CLI to access,
maintain, and protect files and devices.

Assembly Language
A source program written in assembly language with the
Text Editor or Supereditor utilities must be assembled into
a relocatable binary file, using the CLI's ASM or MAC

2 ROOS System Reference

commands. After assembling the source program into a
binary file, you will use another utility to process the binary
file into an executable program, or save, file. This utility
is the Relocatable Loader, invoked with the CLI's RLDR
command. A program generally requires debugging the first
time it is loaded; you may therefore load it with a symbolic
debugger. You can then try to execute the program and, if
it fails to run properly, debug it via the CLI's DEB com
mand. CLI commands can be issued after any of these steps
to maintain, protect, and examine the file.

Main Memory Considerations
Your computer arrived with a given amount of memory.
The amount of this memory available for user programs will
necessarily be a percentage of the total figure, as determined
by the requirements of your tailored RDOS system. Each
of the peripherals and software structures specified during
system generation requires a certain portion of memory, as
listed in How to Load and Generate RDOS. After deducting
the system's memory from your maximum figure, you must
also consider the space, aside from your own code, that
each user program will actually require.

When you load a program, RLDR builds certain required
tables, modules, directories, and the Task Scheduler into
it. The code for each task call used is taken from the system
library and loaded into the program. (Because system calls
are executed in RDOS space, they require a minimum of
user space.) These components require user memory space
when the program executes. You may therefore want to
conserve space by coding certain segments of the program
as overlays. Overlays are called into memory one by one,
as the program needs them; otherwise, they reside on disk.
You define overlays within a program in the RLDR com
mand line. Another way to extend effective user address
space is to instruct an executing program to swap itself to
disk, call a new program into memory, and return to memory
when the new program has executed. This method, called
swapping, has a variation called chaining. Overlays, swaps,
and chains are described in Chapter 4, along with the ex
tended memory available to users with mapped machines.

Foreground/Background
Programming
You may want to run two logically distinct programs con
currently. RDOS allows the user to divide memory into two
areas, calledforeground and background, and to run a pro
gram simultaneously in each. When bootstrapped, RDOS
starts up in the background; similarly, all executing pro
grams run in the background until you command RDOS to
execute one in the foreground. When running in two grounds,
programs share such system resources as CPU time and
1/0 devices. The foreground program has priority unless
otherwise specified by the user. Foreground and background
programs can communicate with one another via system

Licensed Material--Property of Data General

calls or commonly-known disk files, as explained in Chapter
6.

A system that has no hardware mapping device is unmapped,
and runs under unmapped RDOS. Such a system requires
that memory be manually assigned to a program that runs
in the foreground. You do this in the RLDR command line
by specifying two starting addresses for the foreground pro
gram. They are the start of page zero relocatable memory,
called ZREL, and the start of normal relocatable memory,
called NREL. Once the program has been loaded and ex
ecuted in the foreground, these addresses separate the two
grounds. Up to 32K words of user address space, excluding
RDOS space, can be directly addressed in an unmapped
system.

Certain system calls, features, and CLI commands apply
only to mapped systems. These exceptions are noted in the
text. If a discussion makes no reference to mapping or the
MAP unit, it applies to both mapped and unmapped systems.

Mapped Features
If your hardware features a MAP unit, it runs under mapped
RDOS. In mapped RDOS, background and foreground pro
grams can operate autonomously, either alone or via a CLI.
Using mapped address space, both programs can share all
memory not used by the system. Naturally, this amount
depends on the total memory afforded by your computer
and the size of your RDOS system, as determined by the
features selected during system generation. Tools for ac
cessing extended memory include virtual overlays and win
dow mapping, as explained in Chapter 4. Any Data General
computer with mapping hardware can support mapped RDOS.

Addresses are specified similarly in mapped and unmapped
systems, except that a mapped system can remap addresses
in pages of 1,024 words. Addresses in mapped systems are
called logical, instead of physical, addresses.

When you run two programs, the system maps them sep
arately; each program is aware of its address space only,
and cannot reference locations outside it. The system allots
memory to each program according to its highest address.
It assigns each program a complete logical address space
from page zero through its highest address NMAX, in 1,024-
word pages.

When RDOS starts up, it assigns all memory to the back
ground; you reserve memory for the foreground with the
CLI's SMEM command, and execute a program in the fore
ground with the EXFG command.

Aside from hardware separation of foreground and back
ground address space, the mapped system protects itself in
three ways: it guards system devices, prevents infinite ad
dress defers, and protects data channel operations.

Licensed Material··Property of Data General

Device Access
Initially, no user can access any device directly, including
the MAP and CPU, on a machine-language level. If the
user attempts to reference a device on a machine level with
out having been enabled to do so, the system refuses the
request, prints a "trap" message, creates a break save file
called BREAK.SV, and returns to a higher-level program
usually the CLI. The system responds in the same way if
it encounters more than 16 levels of indirect address-that
is, it traps, creates the break file, and returns. Appendix E
describes traps in more detail.

Users can gain direct access to any system device-and
avoid the map's safeguards-by using the system call .DEBL,
discussed in Chapter 3. The map also monitors the data
channel and allows user devices to access it through the
system call . STMAP, described in Chapter 7 . You can in
clude your own devices in a system and allow them to
communicate with RDOS by writing device drivers and user
interrupt service routines for them.

RDOS Organization
The RDOS executive is the main framework of the operating
system and must be memory-resident before any processing
can occur. This resident portion of RDOS processes system
calls and interrupts, and manages RDOS buffers. Other
modules of the system reside in system overlays; they are
brought into memory from disk as required to perform such
functions as initializing the system, opening, closing, re
naming or deleting files, and spooling control.

In an unmapped system, the RDOS executive resides at the
top and bottom of memory. Locations ° through 158 contain
program and interrupt entry points into the top area of RDOS.
In a mapped system, resident RDOS begins at location °
and extends to the highest address required; it is invisible
to user programs. Above resident RDOS in all systems
and at the very top of memory in unmapped systems-is a
series of system buffers. The system buffers handle buffered
110 transfers, and hold system overlays and directories from
disk.

The portion of page zero memory available for user pro
grams begins at location 16s (labelled USP); skips to lo
cations 20s through 378 ; and then extends from 50s through
address 3778 , In an unmapped system, these are physical
addreses; in a mapped system, they are logical addresses.
NREL memory is allocated in much the same way for both
mapped and unmapped systems. In a mapped system, ZREL
and NREL addresses are logical; in an unmapped system,
they are absolute. This distinction is not important, how
ever, to user programs.

Above program ZREL, the Relocatable Loader (RLDR)
builds a User Status Table, called UST, for your program.

ROOS System Reference 3

This table starts at address 4008 in an unmapped background,
and at logical address 4008 in both the mapped foreground
and mapped background areas. The UST describes, among
other things,. your program's length, number of tasks re
quired, and number of 110 channels needed.

Above the UST RDDS reserves an area for a pool of Task
COiltrol Blocks (TCBs). RODS uses TCBs to store task state
information, such as the state of the accumulators and carry.
If you have defined overlays in your program via RLDR,
an overlay directory resides above the TeBs. And above
the overlay directory, if any, is NREL memory, which holds
the rest of your program. RLDR reserves a node, or vacant
space, in the program for each overlay segment you defined;
overlays from each group will occupy this mode one by
one.

4 RDOS System Reference

Above your background or foreground program, but still in
NREL memory, are the task-processing modules and Task
Scheduler that it requires in order to run. RLDR searches
the system library for these components and places them on
disk with your program. During execution, they are gen
erally highest in NREL memory.

Figure 1.1 is a simplified illustration of unmapped and mapped
memory, in which each system is running foreground and
background programs, and each program has one overlay
node.

Licensed Material··Property of Data General

~ ...

.. -
.:::; 77777 8

~

~

RODS Buffers

Resident

RODS

~ ~

Foreground NREL

Foreground overlay

node

Foreground NREL

FG overlay directory

Foreground TCB pool

Foreground UST

~ ~

Background NREL

Background

overlay node

Background NREL

BG overlay directory

~

~

mapping or virtual

overlays)

Program B's NREL

Overlay node

Program B' s page °

UST.TCB's overlay

directory ZREL

t----------IO

Program A's NREL

Overlay node

Program A's page °
UST.TCB's overlay

directory ZREL

Background TCB pool t----------I0

Background UST

Foreground ZREL

Background ZREL

RODS space

Physical
addresses (words)

UNMAPPED

RODS ADDRESS SPACE

RODS buffers

RODS

logical

addresses (words)

MAPPED

Shading indicates RODS address space

* in a mapped system, resident RODS is invisible.

Figure 1.1 RDOS address space

Licensed Material·-Property of Data General

20°°8

20°°8

All memory not used

by Program A and system

(and optionally, Program B)

Program B
(optional)

Program A

10-00334

RODS System Reference 5

System Library and Source Files Depending on the programs you write, you may want to
include some or all of these files in the Macroassembler's
permanent symbol file, MAC.PS, as described in RDOS/
DOS Assembly Language and Programming Utilities (DGC
No. 069-400019). The CLI's LIST or PRINT commands
can be used to display the files' contents or obtain a hard
copy. Table 1.1 lists and describes the most common of
these files.

The system library, named SYS.LB, contains task-proc
essing modules, task schedulers, and other useful routines
for user programs.

Other files supplied with your system contain definitions
for system features and for system and user parameters.

Filename

PARU.SR

PARS.SR

NBtD,SR

Description

User parameter file containing mnemonics for all system constants
and errors (see Appendix B for a listing of PARU.SR)

System parameter file containing internal RDOS constants and
some macros for system-level tables, such as device control blocks
and certain buffers

NOVA basic instruction definition, providing the basic instruction
set for a/l DG machines

Where Used

Aids in assembly language programming on all
Data General computers

All Data General· computers

All Data General computers

Operating system instruction definition All Data General computers

:,':NEID.SR

'NCID,S~

'Multiply-divide instructions, provided with your language All Data General computers

,:Uteral macros, used by RDOS, which can also be incorporated in All Data General computers
, "the user's programs 1

: .: Contains default charact~ristics ofrnu1tiplexed lines. Can be edit~d,
. iass~mbfed, .and include~in tailor~dsysternlo reflect special line

configurations (see Chapter 2 fonpeta!ls) 'i'

':Map~d, RDOS switch settings

NQVA ;e~~ncJed instructiondefiriitlons

cO~~~~Cial, ECLIPSE jrlstru~iori~
;:;,:,;1 . :.!, : ,'i·' 'I':

·U!lmap~d. ~DOS switc~ :settings

:Ma~Pe(i~DOS $wltchs~tting$
·M~P~~:: ~p()S switc~ !settings

: !,! i:i:"II::d:. "I;;: '.:1',,1 i!:r
I :M~~pe~: ~9ps syst~m Instru~tio~~

" '. :. ~; ,,' ~ I: , . . I' ; :, I

Table 1.1 System file names

6 RDOS System Reference Licensed Material··Property of Data General

This chapter defines the different RDOS media for files
generally disk and magnetic tape-and explains how to use
each medium. A section on disk files describes the mech
anisms used to organize and speed up access to files on
disk, and outlines the file structure that RDOS imposes on
every disk it uses. These mechanisms include directories
called partitions and subdirectories-which contain groups
of files, and link entries. Link entries allow users in different
directories to use a single file. The chapter concludes with
a description of multiplexors.

Definition of a File
A file is any collection of information, or one of several
devices for receiving or sending that information. Typical
examples of both file types include:

source files
relocatable binary files
executable program files (save files)
listing files
teletypewriter or CRT keyboards
teletypewriter printers or CRT screens
line printers
magnetic tape files

Source, binary, program, and listing files have special char
acteristics; each represents a step in program development.
The developer writes a source file with a text editor and
inputs it to an assembler, which produces a relocatable bi
nary file. The relocatable binary file is processed with the
loader; as a result, the file is placed on disk, with absolute
location data, as a save file. A save file is an executable
program version of the original. Each save file is a core
image file: it is stored on disk word-for-word as it will be
loaded into memory and executed.

Unless otherwise specified, the keyboard and printer or screen
are the default input and output files for most system op
erations. The line printer is another type of output file.
Magnetic tape files are discussed extensively later in this
chapter. Cassette files are handled exactly as magnetic tape.

Licen8ed Material--Property of Data General

Chapter 2

Files and Directories

File Overview
All devices and disk files are accessed by filename; all
magnetic tape files are accessed by device name and file
number. Both reserved device names and disk filenames are
discussed at the outset of this section.

A file must be opened-that is, associated with an RDOS
channel via an .OPEN system call-before the user can
access it. The CLI's file 110 commands do this automati
cally, but an RDOS program must be coded to open any
files that it needs. You can open a disk file and allow several
concurrent users to access and modify its contents; you
might open it exclusively, permitting only one user to mod
ify the file and allowing others to read it; or you could open
it for reading only by several users. This section describes
the attributes that control file access in general terms.

Finally in this section, certain characteristics of disk files
and methods of transferring one file to another file or device
are briefly discussed.

Reserved Device Names
110 devices have special names, most of them beginning
with the character $. Within the limits of the particular
device, each device name can be used in a command exactly
as a disk file's name would be. Table 2.1 shows how to
enter each device name reserved by RDOS.

RODS System Reference 7

Device
Name

Device

$CDR Punchedcard reader; mark sense card reader.

CTn Data General cassette unit n, first controller, where
n is in the range of 0-7.

OKO

OPn

Data General modeI6001~008 fixed-head disk.
first controller.

Data General moving-head disk pack,first con
troller, where n is a unit numbered 0,1,2, or 3,
second controller where fI is a unit numbered 4,
5,6; or 7.

i Top ,loader (dual-platter' Disk Subsystem), first
'controller, where n is a unitnumberedO,1, 2,
, or 3, second controller where n, isa unit num-
bered 4, 5, 6, or 7. Each unit has two disks. The

;: top (removable) disk is DPn, the fixed disk DPnF.
", '. This controller also supports diskette drives.

'Data General Model 6063/6064 fixed-head disk.
r > The 6063 is single-density, the 6064 is double

denSity, and n Is ,a unilllumbered 0, 1,2, or 3.

:'/6060-$eries and 61.22, 6160; 6161 disk units,
;:'1irst controller,where n is 0,1, 2, or3,second
, Controller where n is a unit numbered 4,5, 6, or

7. Model 6060 uses single-density disks; 6061,
uses doubJe~density disks.

Input duat processor link (see Chapter 8).

'Output dual processor link (see Chapter 8).

$LPT 80- or 132-column.line printer.

$LPT:1 , ;Second line printer.

MCAR

MCAT

MIn

$PLT

$PLT1

$PTP

$PTP1

$PTR

Multiprocessor communications adapter trans- .
mitter.

'7~or 9~trackmagnetictape transport,' first con
troller. where n ,S in the, range of 0-7, second i

"controllerwheren is in therangeof,1.o-17~.

Incremental. plotter.

Table 2.1 Reserved device names

8 ROOS System Reference

$TT11

$TTO

$TTO,

$TTP

$TTP' .

$TTR

$TTR1

Table 2.1 Reserved device names (continued)
*For most devices, RDOS supplies an end-of-file mark. On $TII and
QTY input, however, you must indicate an end-of-file by pressing
the CTRL and Z keys (CTRL-Z).

Aside from the ALM and QTY, device drivers have been
written reentrantly, allowing RDOS to support devices in
pairs. Thus, an RDOS system can support two controllers
for every type of disk drive that Data General provides.
Each controller~xcept for models 6001-6008--can su
pervise up to four disk drives. The 6045 or 4234 controllers
can support both disk and diskette drives. Use the following
names to address second device controllers on your system:

DK1

DPn

DPnF

DSn

DZn

eTn

MTn

Second Data General fixed-head disk.

Second moving-head disk pack controller, where
n is 4,5, 6, or 7.

Second top loader (model 6045 or 4234A) con
troller, where n is 4, 5, 6, or 7. The removeable
disk is DPn, and the fixed disk is DPnF.

Second 6063/6064 fixed-head disk controller,
where n is 4, 5, 6, or 7.

6060-series unit, second controller, where n is
4, 5, 6, or 7.

Second cassette controller, where n is 10 through
17 octal.

Second magnetic tape controller, where n is 10
through 17 octal.

For other secondary device names, append a 1 to the primary
name, for example, $LPT1, $PTP1, $CDR1, and so on.

Licensed Materlal--Property of Data General

"..-..

Disk Filenames
A disk filename is a string of up to 10 ASCII characters,
including upper- and lower-case letters, numbers, and the
dollar sign ($). (RDOS converts lower-case letters to upper
case by default.) The string is packed from left to right and
terminated by a carriage return, form feed, space, or null.
A filename may consist of any number of characters, but
the system recognizes only the first ten. The dollar sign can
also be used freely in a disk filename. However, the reserved
device name combinations should be avoided.

A disk filename may contain an extension-a period fol
lowed by one or two alphanumeric characters, which may
include the dollar sign. Although an extension may consist
of any number of characters, the system recognizes only
the first two. SIMULATOR.SV is an example of a filename
with an extension.

The CLI often appends an extension to a filename to indicate
the type of information the file contains and to distinguish
it from other types of files created from the same source
file. Assume, for example, that your source file is named
FORECAST. SR. The CLI will append extensions to dif
ferent versions of FORECAST as follows:

FORECAST .RB Relocatable binary file (after assem
bling source file).

FORECAST.SV Core image, or save, file (after loading
or binding binary file).

FORECAST.LS Listing file (only if such a file was
specified during the assembly step).

FORECAST.OL Overlay file (only if overlays were
specified in the load or bind com
mand).

While developing source programs into executable save files
via the system assemblers and binders, you may ignore
extensions if you assign the extension .SR, or no extension,
to your assembly language source files. The utilities use a
search algorithm to find the file with the appropriate exten
sion. RDOS will always be given the extension .SV. Al
though RDOS assigns the extension .SV to each executable
program, you need not enter .SV to execute it. Instead,
simply type the file's name-for example, FORECAST (CR)-

from your console. If you append a unique extension to a
filename, you must always include it when accessing the
file via the CLI or a system call. (Save files will not execute
with an extension other than .SV.) When adding your own
extension to a filename, either avoid a CLI extension or use
it properly. Do not, for example, confuse the CLI by giving
a source file the extension .SV.

Licensed Material··Property of Data General

File Attributes and Characteristics
A file's attributes protect it by permitting or restricting the
functions of reading, writing, renaming, deleting, or link
ing.

The attributes listed here apply primarily to disk files. RDOS
protects nondisk files by assigning attributes that cannot be
altered. (Of course, the user can write-protect a file on
magnetic tape by removing the write-enable ring.) Use either
the RDOS system call .CHATR (Chapter 3) or the CLI
command CHATR to change the access attributes of a file.

P Permanent file. No user can delete or rename a file
that has this attribute.

S Save file (core image). RLDR assigns this attribute
automatically, and no file can be executed without it.

W Write-protected file, which no one can modify.

R Read-protected file, which no one can read.

A Attribute-protected file, whose attributes cannot be
changed. Once the A attribute has been set, it cannot
be removed.

N

?

&

No resolution permitted. A file with this attribute can
not be linked to.

First user-definable attribute. When placed in bit 9 of
the attributes word, permits the user to assign his own
file attribute. (See Chapter 3, under the .CHATR com
mand, for details.)

Second user-definable attribute. When placed in bit
10 of the attributes word, permits the user to assign
his own file attribute. (See Chapter 3, under the
.CHATR command, for details.)

Note that user-defined attributes should not be more restric
tive than the file requires. A file with the attributes AP, for
example, can only be deleted by erasing the entire disk with
a procedure called full initialization.

RDOS System Reference 9

Disk File Characteristics
Disk file characteristics are determined when you create a
disk file, and cannot be changed thereafter. These charac
teristics include:

D Randomly organized file. (All save files must have
this characteristic.)

C Contiguously organized file.

L 'Link entry. (Such a file contains nothing, but points
to another file.)

T Partition file. (All partitions also have the C charac
teristic.)

Y Directory file. (A directory may include partitions and
subdirectories.)

The CLl's LIST/A command allows the user to obtain in
formation from a file directory about one or more files.

File Transfer
The CLI's XFER command copies a file from one device
to any other. It requires two arguments:

XFER sourcefile destinationfile

For example, the statement

XFER @MTO:O INDEX (CR)

causesthe CLI to create a disk file named INDEX and to
copy to it the contents of the first file on magnetic tape unit
o. (The symbol (CR) represents a carriage return.) In a
second example, this statement

XFER MYFILE YOURFILE (CR)

creates YOURFILE on disk and transfers the contents of
MYFILE to it.

10 RODS System Reference

Disk File Block Organization
The primary unit in an RDOS disk file is the disk block,
which contains 256 16-bit words, or 512 bytes. When you
create a disk file, the system call or CLI command directs
the system to organize the file in one of three ways: se
quentially, randomly, or contiguously.

In a sequential file, the system reads disk blocks in logical
sequence, one by one. It reserves the last word, or last two
words (depending on the disk), for a pointer to the next
block. RDOS always reads and writes sequential files in
blocks via system buffers, which slows the process signif
icantly. Sequential files are created with the system call
.CREAT or the CLI command CREATE.

In a random file, the system uses a file index to access any
block. Generally, no more than two disk accesses are needed
to access a block. (Very large files may require more.)
RDOS uses all 256 words for data storage. Random file
blocks can be read or written via direct block 110, without
system buffering, to save time. To create a random file, use
the system call . CRAND or CLI command CRAND.

In a contiguous file, access is the fastest because all blocks
are contiguous on disk and each contiguous file has a fixed,
unalterable length in blocks. This means that RDOS does
not need a file index and requires only one disk access.
Each block uses all 256 words for data storage. Direct block
1/0 can be used for contiguous files. They are created with
the system calls .CCONT or .CONN, or with the CLI com
mand CCONT. Chapter 3 explains the difference between
.CCONT and .CONN.

RDOS offers five ways to access disk files for 110. In all
but direct block 1/0, RDOS transfers files via system buff
ers. Chapter 3 discusses the 110 modes in detail.

Licensed Material--Property of Data General

/""""'.
!

I
!

Sequentially Organized Files
When the system writes a sequential file to disk, the first
block has relative number 0, the second 1, and so on. RDOS
assigns each block a logical address, which it uses to derive
the block's physical sector/track location on disk. In the last
word of this block (or last two words on multiple-platter
disks), RDOS stores a link to the next block. This link is
invisible to the user but not to RDOS, which uses it to
compute the physical address of the next relative block.

ds 376 8 data war
(3758 for double-wo

addressing disk
rd <
s)

d

/

Link war
(2 words for double-word

addressing disks)-1
"'

Assume, for example, that RDOS is reading block ° of a
sequential file. When it reaches the link at the end, RDOS
finds the logical address of block 1, moves to block 1, and
continues reading. Blocks ° and 1 need not be contiguous
on disk. From block 1, RDOS reads forward but can never
skip a block. Thus, to reach block 7, RDOS would have to
read forward until it encountered the link at the end of block
6. Figure 2. 1 illustrates this concept.

Logical block
address 7

word 0

228

Logical block
address 228

word 0

118

Logical block
address 168

word 0

228

Relative
block 0

Relative
block 1

Relative
block 2

Any link word is the block address of the
previous block, XORed with the block address
of the next block. Links for the first and last relative
blocks are XORed with zero. (as there is no previous or
next block, respectively).

Figure 2.1 Sequential file block organization

licensed Material··Property of Data General RDDS System Reference

50-00534

11

When you access a sequential file for 1/0, RDDS transfers
it via system buffers. Block by block, RODS reads the file
into a system buffer for the transfer. When writing data into
its system buffer area, ROOS overwrites the oldest available
buffer block frrst. When all buffers have been used, the
least-recently used is the first to be overwritten. After RODS
has read a block into its buffers, you can read or write the
block's records directly; no further disk access is required.

Randomly Organized Files

In RDDS, all save files employ random organization. RODS
creates a file index for any random file that you create. In

entry

entry

entry
(or 1

0

1 *

3768
768)

FILE INDEX

Block O's address

Block 1 's address

Block 2's address -
·
·
·

Block 376 (177) address

Link

Block 377 (177) address

0

· ..
0

·
0

link

this index, the system enters one or two words, depending
on the disk size, for each block that you write in the file.
These index entries contain the block's logical disk address,
allowing you to access any block on the disk. Index blocks
are linked in the same way as sequential blocks, except that
the last word or two points to the next index block. The
first data block in the file is numbered 0, the second I, and
so on; the first entry in the index, entry 0, contains the
logical address of block 0, and so on. If an index entry
contains zeros, or no address, its corresponding block has
not been written.

Figure 2.2 shows the relationship between the file index
and data blocks in a randomly organized disk file.

.

~

DATA BLOCKS

Word 0

· · · · ·
·

word 3778

word 0

· · · ·
·
0

·
·

word 3778

Relative
block 0

Relative
block 2

*tndex entries are two words for some disks.

Figure 2.2 Random fUe block organization 50-00535

12 RDOS. System Reference Licensed Material··Property of Data General

,~.

/-

For files that contain less than 255 data blocks, RDOS
generally needs only two disk accesses to read or write a
block: one for the file index, and one for the block of data
itself. If the file index is memory-resident-as it would be
if you accessed the file previously and the index remained
in a system buffer-only one access need be made. If the
data block itself resides in memory, RDOS requires no disk
accesses at all.

You can use all 110 commands available for sequential or
random files. Because random organization is more effi
cient, 110 is generally faster on these files. For large-scale
110, processing time can be shortened even further by using
direct block 110 commands to transfer random files. Direct
block 110 transfers cause RDOS to transfer an entire block
from disk to the specified memory area without using system
buffers. By avoiding buffering, you save time but forfeit
the automatic management of the system buffers.

Contiguously Organized Files
As shown in Figure 2.3, RDOS accesses data blocks in
contiguously organized files randomly, without a file index.
Contiguous files consist of a fixed number of disk blocks
located at an unbroken series of disk block addresses. The
user can neither expand nor reduce the size of these files.
Since the data blocks are at sequential logical block ad
dresses, all that RDOS requires to access a block within a
contiguous file is the address of its first block, or the file's
name, and the relative block number within it. RDOS organ
izes all disk partitions and overlay files contiguously.

All 110 operations permitted on randomly organized files
can be performed on contiguous ones, but the size of the
contiguous file remains fixed. Block access is faster in a
contiguous file, because RDOS does not need to read a file
index.

Licenaed Material··Property of Data General

Block address n word 0

word 3778

Block address n + 1 word 0

word 3778

Block address n + 2 word 0

word 3778

Figure 2.3 Contiguous file block organization

RDOS Disk Directories

Relative
block 0

Relative
block 1

Relative
block 2

50-00536

Before introducing a disk to the system, the user must check
and fully initialize it with the disk initializer, DKINIT. SV.
DKINIT, a stand-alone program, accompanies RDOS on
your DG-supplied release tape or diskette, and is described
in How to Load and Generate RDOS. After running DKINIT
on the disk, the user may elect to install a bootstrap root
on it. This routine enables you to bootstrap an RDOS system
on any other disk from this one, as long as the new disk
also contains the program BOOT.SV. The bootstrap root
occupies blocks 0 and I of the disk; the disk ID is in block
3; and the bad block pool created by DKINIT occupies block
4.

When a disk is first introduced into the system, RDOS
creates on it two system directories, SYS.DR and MAP.DR.
SYS.DR records all filenames and other file data on the
disk, and is updated by RDOS whenever you create. modify,
or delete a file or user directory. MAP. DR is a block al
location map. It records those blocks which are in use and
those that are free for data storage. MAP.DR is aware of
all disk space except blocks 0 through 5.

RDOS System Reference 13

Initial Disk Block Assignments
Certain blocks on every disk have fixed assignments, while
the remaining blocks are free for system use or file storage.
Table 2.2 shows the initial block assignments on an RDOS
disk.

Disk block Assignment
no. (octal)

0,1 Root portion of the disk bootstrap program,
BOOT

3 Disk 10

4,5 Bad block pool index

6 First index block of SYS.OR

7 Index· of file index blocks used whenever a
program swap occurs

8 to 16 : Storage for swap file index blocks

MAP.DRblocks. where n depends on disk size

BOOTSYS.O.L (always allocated by INIT/F)

Table 2.2 InItial disk block assignments

The MAP .DR file starts at block 178 , It is a contiguous file.

System Directory (SYS.DR)
A user can create many directories within an RDOS system,
and numerous files in each directory. RDOS creates a SYS.DR
for each directory to keep track of the files within it. Each
copy of SYS.DR is a random file.

The system directory employs a hashing algorithm to speed
up access of directory entries. RDOS allocates an initial
system directory area when the disk is initialized with
DKINIT.SV. This area, called a frame, is a contiguous set
of disk blocks, minimizing head travel time. Users can check
and modify the frame size on a disk with DKINIT com
mands.

The first word in each block of SYS.DR is the number of
files listed in the block. Following this word is a series of
228-word entries called user file descriptors, or UFDs, which
describe each file. Each block in SYS.DR is composed as
follows:

Word (octal)

o

Contents

Number of files in this block of the di
rectory (168 maximum)

User file descriptor (UFD)

Each bit of each word in MAP.DR indicates whether or not 22
a specific block is in use, as follows:

Word (octal)

o

n-l

Contents

Block allocation map. One bit for each
block, from left to right in ascending or
der, starting with block number 6.0 means
that a block is available, 1 means that a
block is in use.

Variable n represents the size of the par
tition in blocks divided by 16 (integer di
vision).

14 ROOS System Reference

23

44

376

User file descriptor (UFD)

Remainder of block

Contains maximum number of UFDs that
ever existed in this block; if the number
is 16, an overflow block may exist.

Licensed Materlal··Property of Data General

,...-

,-

The UFD describes the file's name, its two-character name
extension, its size, its attributes and characteristics, the ad-
dress of the first block, other qualities, and a logical code
for the device that holds this file, as follows:

Word (octal) Contents

0--4 Filename (padded with nulls, if necessary)

5 Extension (padded with nulls, if neces-
sary)

6 Attributes and characteristics

7 Link access attributes

10 Number of last block in file

11 Byte count in last block

12 First address (physical address of first block
in sequential or contiguous file, or first
block of index for a random file)

13 Year and day last accessed

14 Year and day created or most recently
modified

15 Hour and minute created or most recently
modified

16 UFD variable information

l7 UFD variable information

20 Use count

21 Device code DCT link

The attributes in words 6 and 7 permit or restrict access to
the file, as explained in the discussion of . CHA TR and
. CHLA T in Chapter 3. A nonzero file use count indicates
that one or more users have opened the file. If a malfunction
occurs when a file is open, its count will often be incorrect,
requiring that you clear it to zero (via the CLI's CLEAR
command) before closing, renaming, or deleting the file.

Licensed Material··Property of Data General

Master Directory
The master directory (device) on each disk has the following
uses:

• It becomes the current directory after you bring up the
system, bootstrap a new system, or release a different
current directory.

• It contains the current RDOS system save and overlay
files, and usually contains the system utilities and library
unless they were loaded into another directory, or were
never loaded or copied.

• It contains push space for program swaps.

• It holds the spool files and tuning file, if any.

The master directory is determined when you bootstrap RDOS
into operation. It remains the master until released, or until
you bootstrap another system or program via the CLI's
BOOT command.

User Directories
Within any RDOS system, each user requires disk space
for files. Disk partitions and subdirectories permit you to
organize and assign file space flexibly, by user or category
name.

Although either CLI commands or system calls can be used
to organize disk space, the CLI is the method of choice.
Error interpretation is faster and simpler via the CLL Once
a hierarchy has been created from the console, you can
access its directories and manipulate files via system calls
in your programs.

Partitions and Subdirectories
Each disk introduced to the system contains a given number
of blocks available for storage. These blocks comprise an
area called the primary partition. Sections of the primary
partition can be logically detached and assigned different
filenames, according to the users' needs. These discrete
sections are called secondary partitions; you create them
and give them a fixed size with the CLI's CPART command
or . CP AR system call.

Within the primary partition (and secondary partitions, if
any) are smaller groups called subdirectories. You create a
subdirectory with the CLI's CDIR command or .CDIR sys
tem calL Each subdirectory is flexible: it grows or shrinks
according to the files that you append to or delete from it.
A file may also exist in the master directory. A subdirectory
and its files can never outgrow the fixed size of its parent
partition. A newly-created subdirectory consists of three
blocks: SYS.DR's initial index block, and two data blocks
for the SYS.DR and MAP.DR entries.

ROOS System Reference 15

In a multiuser RDOS system, the type of disk space a user
receives depends on the installation. Typically, each user
has a personal directory and unlimited reading access to
several, common public files. In some systems, each user
has a large secondary partition for subdirectories and files;
in others, each has a subdirectory on the primary partition.

Figure 2.4 shows a disk before and after partitioning, along
with the eLI commands that make partitioning possible.
DXn is a general term that varies according to your own
disk name(s), as described in Table 2.1.

Each primary partition, secondary partition, and subdirec
tory contains a version of the disk's system directory to keep
track of the files within it and enable it to access 110 devices.
Each partition's SYS.DR also contains a version of the map
directory. to maintain a record of free and occupied data
blocks. Each subdirectory's SYS.DR uses a copy of its
parent partition's MAP.DR.

CLI DIALOG
R
OIR Oxn)
R

One important advantage of secondary partitions is that a
disk failure in a secondary partition will not affect files in
other partitions. This is because the map directories in other
partitions are not vulnerable to a failure. For this reason,
some users prefer to place their systems and utilities in a
secondary partition, and operate from that partition, using
directory specifiers.

Parititons are contiguous files, while subdirectories are ran
domly organized. Both are unusual in that they contain other
files and receive the extension .DR, but are no more priv
ileged than data files. You can dump, list, or load partitions
and subdirectories, and delete all but the primary partition.

CPART SECONOPART 2000)
R

__ S_U_BD_I_R_A __)

Primary Partition Oxn

Figure 2.4 Apportioning disk space

16 ROOS System Reference

OIR SECONOPART)
R
COIR SUBOIR)
R
OIR Oxn)
R
COIR SUBOIRA)
R Primary Partition Oxn

80-00537

Licensed Materlal··Property of Data General

Initializing and Releasing User Directories
Subdirectories and partitions must be initialized before you
can access the files or subdirectories within them. Initiali
zation opens a subdirectory or partition, introduces it to the
system, and prepares it for use. This procedure is called
partial initialization. (Full initialization introduces new disks
to the operating system; it writes a new SYS.DR, MAP.DR,
and BOOTSYS.OL on the disk, effectively destroying all
existing file structures.)

Once you have bootstrapped RDOS and set the parameters
of date and time, the CLI displays its R prompt. At this
point RDOS has initialized only the master directory, which
holds the current RDOS system. Most often the master
directory is DPO, DPOF, DZO, or DSO, but it may also be
another disk or secondary partition.

The CLI' s INIT or D IR commands (or the system calls. IN IT
or .DIR) are used to initialize a subdirectory or partition,
for example:

R
INIT partition-or-subdirectory (GR)

While many partitions and subdirectories can be initialized
at any moment, RDOS allows only one current directory at
a time. The current directory is the one in which RDOS
searches for all files, unless you have directed it to search
elsewhere. The DIR command simultaneously selects and
initializes a new current directory, for example:

R
DIR partition-or-subdirectory (GR)

During system generation, the user specifies a maximum
number of subdirectories and partitions that can be initial
ized at any moment. The current maximum is 64. If the
number of initializations exceeds the maximum defined for
your system, the eLI returns an error message (or the pro
gram takes an error return).

Once a directory has been initialized, it is part of the system;
RDOS will remember where it is, and access it, even if it
resides on another partition or subdirectory. It remains in
the system until you release it. The eLI's RELEASE com
mand (or system call .RLSE) performs this function, for
example:

R
RELEASE sUbdirectory-or-partition (GR)

The act of releasing a directory removes its initialization.
When the current directory is released, the master directory
becomes current until you specify another directory via DIR
or .DIR. The master directory holds the operating system,
which closes down when you release it.

Licen8ed Material··Property of Data General

During an orderly shutdown, the master directory is released
via the eLI. This directory must be released before phys
ically removing the disk that holds it. If two programs are
running, the foreground program must be terminated and
the master directory released from the background console.
RDOS verifies the release as follows:

R
RELEASE DPO (GR)
MASTER DEVICE RELEASED

At this point you may tum off the computer, disk drive(s),
and peripherals.

When more than one disk unit is present in the system, a
global directory specifier is required to initialize each one.
Global specifiers were listed earlier under "Reserved De
vice Names"; examples include DPO and DPOF (removable
and nonremovable disks in unit ° of the first top-loader
controller), and DZO (first 6060-series unit).

Assume, for example, that you have just bootstrapped a
system that includes three disks: DPO, DPOF, and DZO. The
disk from which RDOS was bootstrapped automatically be
comes the current and master directory.

For runtime convenience, RDOS offers the eLI's equiva
lence command, EQUIV, or system call .EQIV. Either ver
sion allows the user to change the global specifier of any
tape drive or disk--except the master device-before ini
tializing it. Thus, the developer can write programs using
a generic, rather than a specific, name for a disk or tape
device. At runtime, an available device is selected and its
global specifier changed to the generic one via EQUIV. In
the example that follows, the global specifier DP4 takes on
the generic name DISK:

R
EQUIV DISK DP4 (GR)

Now DP4 can be initialized under its new name and the
program can be executed. When the device is released,
RDOS restores its old specifier.

RDOS System Reference 17

Referencing Disk Files
Because a file may exist in one of many subdirectories and
a subdirectory may reside in one of many partitions, your
CLI command or system call must indicate where RDOS
can find this file. When more than one disk unit is present,
you may need to enter a global specifier (eg, DP4) when
initializing the directory that holds the file. A directory need
only be initialized once with the INIT or DIR commands.
Afterwards, the directory's name followed by a colon and
filename will suffice, as shown earlier in Table 2.4. As
sume, for example, that you want to execute file MY
PROG.SV, in subdirectory SUBDIR, on secondary partition
SECONDP ART. Further assume that SUBDIR has not been
initialized. (Otherwise, the statement SUBDIR:MYPROG (CR)
would suffice.) You initialize SUBDIR, or any other di
rectory, by entering the hierarchy of names in descending
order, separating each from the next with a colon, for ex
ample:

R
INIT SECONDPART:SUBDIR (CR)

Or, using the same format with the DIR command instead
of INIT, you can designate the directory you want as the
current directory, for example:

R
DIR SECONDPART:SUBDIR (CR)

This statement initializes SUBDIR and makes it the current
directory. All references to filenames that do not include
directory specifiers are directed to the current directory.
With one or more colons present, RDOS assumes that you
want a file in another directory and searches for it there.
The simple statement

R
MYPROG (CR)

executes the program MYPROG.SV because SUBDIR is
now the current directory.

Link Entries
The link entry allows a user in any directory to access any
disk file by its name or by any other filename. Link entries
are most often employed to save disk file space by allowing
users in different directories to access a single copy of a
commonly-used disk file. A link entry may point to other
link entries, with a depth of resolution of up to ten. The
file that is finally linked to is called the resolution file. Link
entries are created with the CLI's LINK command or .LINK
system call.

18 RDOS System Reference

Creating a link entry is simple, requiring only its name be
unique within its directory; the resolution file need not even
exist when you do it. The link entry can have the same
name as the resolution file, or not; it can exist on the same
partition as the resolution file, or not.

The LINK command has two arguments:

LINK link-entry-name resolution-file-name

RDOS creates the link entry in the current directory unless
instructed otherwise. It assumes that the resolution file re
sides in the current directory's parent partition-which can
be either a secondary or the primary partition- not in a
subdirectory. If the resolution file is elsewhere, its location
must be indicated with one or more colons and specifiers.

Although the link entry need not have the same name as
the resolution file, link operations are clearer and simpler
ifthe entry shares a name with its resolution file. Link entries
with different names are called aliases.

To use a link, the user or program must initialize the di
rectory containing its resolution entry, along with all direc
tories containing intermediate links. Moreover, the attributes
of the resolution entry and of all intervening link entries
must allow this operation. (The discussions of .CHATR and
.CHLAT in Chapter 3 include the relevant attributes.)

As shown in Figure 2.5, two links exist to the resolution
entry EDIT .SV on primary partition DPO. The resolution
file, EDIT.SV, is the Text Editor utility supplied with RDOS
systems. Normally, Data General utilities are loaded onto
the master directory before system generation, and EDIT.SV
is included among them. Because it is not in a subdirectory ,
linking to it is easy.

Licensed Materlal··Property of Data General

OPO

Figure 2.5 Link entries

To recreate the structure of DPO in Figure 2.5, you would
enter the CLI command line

R

DIR SECONDPART (CR)

to initialize the secondary partition and make it the current
directory. The next statement creates a link to the resolution
file, EDIT.SV

R

LINK EDIT.SV EDIT.SV (CR) or LINK EDIT.SV/2 (CR)

where the first argument is the link entry's name, and the
second, the name of the resolution file. The alternative
command format containing the 12 switch directs RDOS to
repeat the arguments twice. The result is an entry named
EDIT.SV in the secondary partition that links to the Text
Editor on DPO. This only works if you are in the parent
directory. Otherwise you must specify a directory. For ex
ample, in the command line

LINK EDIT.SV UTIL: EDIT.SV

UTIL is the directory specifier. Users in partItIOn
SECONDPART can work with the editor while it occupies
disk space on DPO only.

Licensed Material··Property of Data General

"CREDIT"

Link "BILLING"

Link "BILLING"

OPOF

SO-00502

The following command sequence creates a link from sub
directory SUBDIR to the Text Editor:

R
DIR SUBDIR (CR)

R
LINK EDIT.SV DPO:EDIT.SV (CR) or LINK EDIT.SV/2 (CR)

In a third command sequence, SUBDIRA is initialized,
made current, and linked to EDIT.SV:

R
DIR DPO:SUBDIRA (CR)

R
LINK EDIT.SV/2 (CR)

The next series of commands creates two links-~me in
subdirectory CREDIT and the other in subdirectory AR
REARS-from DPOF to file BILLING on DPO:

R
DIR DPOF:CREDIT (CR)

R
LINK BILLING DPO:BILLING (CR)

R
DIR ARREARS (CR)

R
LINK BILLING DPO:BILLING (CR)

RDOS System Reference 19

Again, colons and specifiers are required if the resolution
file does not reside on the partition that holds the current
directory.

Before a link can be used, all intermediate links must be
resolvable. This is accomplished by initializing all inter
vening directories. Figure 2.5 provides examples: if DPO
had not been initialized, neither link in DPOF would work;
and if the link entry in SECONDPART were removed, the
link in SUBDIR would be useless while the link in SUB
DIRA would still function. Note that the CLI's UNLINK
command or the system call . ULNK are the only ways to
remove a link entry. The DELETE command and .DELET
system call cause the link to persist and the resolution file
to be deleted.

Each link entry is a filename whose sole function is to point
to the resolution entry, or to a closer, intermediate link.
Like other files, each resolution entry has a user file defi
nition which includes two sets of attributes: (1) file access
attributes, called resolution entry attributes; and (2) link
access attributes.

Resolution entry attributes govern direct access to the file.
They can be changed via the CLI command CHATR or the
system call .CHATR, as explained in Chapter 3. The at
tribute N allows a link to exist but prevents anyone from
using it. Other attributes govern reading, writing, renaming,
or deletion. The A attribute makes permanent all other at
tributes of a resolution entry or file.

Link access attributes permit or restrict access to the reso
lution entry. Again, the N attribute forbids linking. The CLI
command CHLA T or system call .CHLAT can be used to
change these attributes.

Thus, although links to a resolution file are easily estab
lished, two sets of resolution entry attributes guard the res
olution file. As seen by a link entry, the resolution file has
a composite of link attributes and resolution entry attributes.
More than one link entry may point to a resolution entry.
Single user read-write opens and multiple read-only opens
are allowed. In any command or system call, links and
resolution filenames have the same effect. For an example,
return to Figure 2.5 and assume that the current directory
is CREDIT on DPOF. The statement

CRAND DPO:RATINGS (CR)

creates a randomly organized file named RATINGS on DPO,
as do the statements

R
LINK RATINGS DPO:RATINGS (CR)

R
CRAND RATINGS (CR)

20 RODS System Reference

After either set of commands, the current directory remains
CREDIT and file RATINGS exists on DPO.

After creating and linking a file, all directories in the path
to the resolution file must be initialized before that file can
be opened with the .OPEN system call. Otherwise, the
system returns error ERDNI (Directory Not Initialized) or
error ERDSN (Device Not In System) from . OPEN , indi
cating that one or more intervening directories are unini
tialized.

Note that the link entry offers much more than a simple
way to share user files. A link entry can be created for any
file, including a reserved device such as the line printer.

If a link is established to a file on magnetic tape, the device
must be initialized before the link will work. A nondisk
device cannot be linked, in tum, to another resolution file.

File Access Example
When a new disk is introduced to the system, only its pri
mary partition exists. This section shows, by example, how
a new disk might be organized according to the structures
partitions, subdirectories, and links~iscussed earlier in
this chapter. The example assumes that five users-two
developers, two documentation specialists, and one support
person-need space on one disk for their files. Ideally, each
user would have as much disk space as needed; file space
would be used efficiently; and each user's files would be
safe from unauthorized access or alteration.

There are at least two obvious ways to approach these goals:

1. Create five secondary partitions and assign one user to
each.

2. Create a single, large secondary partition and assign
each person to a distinct subdirectory within it.

Both approaches protect all disk files while allowing each
person to access files, such as utility programs, in the pri
mary partition. The first option guarantees a fixed amount
of file space to each user. A person who exhausts his or
her space, cannot appropriate unused space on another per
son's partition. The second option allows each person to
use as much file space as required from within the common
secondary partition, as long as any unused space remains.
Although this option guarantees no user a minimum amount
of file space at any moment, it organizes file space more
efficiently than the first alternative.

The best solution for this hypothetical installation adopts a
middle ground, and is illustrated in Figure 2.6. The disk,
DPO, is organized into one secondary position (DE
VELOP.DR) for two application programmers, and another
secondary partition (DOCUUMENT.DR) for two writers;

Licensed Materlal··Property of Data General

.-

the fifth, more modest user works in a subdirectory
(MARGE.DR) with files. Commonly-used public files are
divided into two categories-system-related software, and
all other utilities-and assigned discrete subdirectories
(SYSTEM.DR and UTILITIES. DR). Users can link to these
files from their directories, allowing an application program
to run in the primary partition. A sample dialogue with this
system's CLI follows Figure 2.6 to show how this orga
nization might work in practice.

PAT.DR

BOOK$1

MARGE.DR

PROJECTS

EDIT.SV

UTILITIES. DR

•

Figure 2.6 Sample organization of an RDOS disk

Licensed Malerial--Property of DsIs Genersl

10-00485

RODS System Reference 21

The first objective of this session is to obtain a line printer
copy of file PROJECTS in subdirectory MARGE. After a
bootstrap and log-on sequence, the CLI announces itself
with the R prompt and the master directory, DPO, auto
matically becomes the current directory. The CLI's PRINT
command is used to obtain line printer copies of a file:

R
PRINT MARGE:PROJECTS (CR)
NO SUCH DIRECTORY :MARGE:PROJECTS

The CLI returned an error because, to RDOS, an unini
tialized directory does not exist. The INIT command opens
directory MARGE so that file PROJECTS can be printed.

R
INIT MARGE (CR)

R
PRINT MARGE:PROJECTS (CR)

Two directories, DPO and MARGE are initialized at this
time. The CLI's GDIR command shows which one is the
current directory:

R
GDIR (CR)
DPO

The next objective-to print a copy of BOOK$l-requires
that secondary partition DOCUMENT and subdirectory PAT
be opened.

R
DIR DOCUMENT:PAT (CR)
NO MORE DCBS :PAT

The CLI's error message indicated that this RDOS system
was generated to allow only three partitions to be initialized
at any given time. Since DPO and MARGE are already open,
the addition of directories DOCUMENT and PAT brought
the total to four.

The CLI's RELEASE command solves this problem by
closing MARGE, allowing the DIR command to open two
more directories and make PAT the current one. Once di
rectory PAT has been opened, the CLI can print BOOK$l.

R
RELEASE MARGE (CR)

R
DIR DOCUMENT:PAT (CR)

R
PRINT BOOKS$1 (CR)

22 RDOS System Reference

The next sequence of commands creates a link from sec
ondary partition DOCUMENT to the Text Editor program,
EDIT.SV, contained in subdirectory UTILITIES. First the
DIR command makes DOCUMENT the current directory.
Then the LINK command creates a link entry named EDIT.SV
that resolves to file EDIT.SV in the UTILITIES directory.
Finally, the RELEASE command closes the current direc
tory, causing DPO to become current in its place.

R
DIR DOCUMENT (CR)

R
LINK EDIT.SV UTILITIES:EDIT.SV (CR)

R
RELEASE DOCUMENT (CR)

As a result of this sequence, the Text Editor can be refer
enced and used from partition DOCUMENT, while the ac
tual program occupies significant amounts of space in
subdirectory UTILITIES only.

The objective of the last sequence is to back up all files in
partition DEVELOP onto magnetic tape. First the DIR com
mand makes this partition the current directory. Then the
INIT command introduces the magnetic tape device to the
system. Next, the DUMP command instructs RDOS to copy
the contents of DEVELOP to the first file on magnetic tape.
Note the use of the IV switch, which verifies each file on
the console as it is copied.

R
DIR DEVELOP (CR)

R
INIT MTO (CR)

R
DUMPN MTO:O DEVELOP (CR)
PROG$1.DR

*STEVE.DR
PROG$2.DR

* KEN. DR
EDIT.SV
RDOS.LB
REVIEW
SYSGEN.SV
TOOLS.SV

To conclude this session, the RELEASE command closes
current directory DEVELOP, causing DPO to become cur
rent in its place. Then DPO itself is released, enabling an
orderly shut-down of the operating system.

R
RELEASE DEVELOP (CR)

R
RELEASE DPO (CR)
MASTER DEVICE RELEASED

licensed Materlal··Property of Data General

-

. -

-.

Directory Command Summary
Table 2.3 summarizes the CLI commands and system calls
used to manage disk files and directories. Chapter 3 dis
cusses each system call in detail. The manual RDOSIDOS
Command Line Interpreter provides more information on
the CLI commands.

CLiCommand System Call Meaning

CCONT .CCONT Create a contiguous file
with all words zeroed.

CDIR .CDIR Create subdirectory.

CHATR . CHATR Change file attributes .

CHLAT .CHLA Change link access entry
attributes.

CLEAR Set a file's use count to
zero.

.CONN Create a contiguous file
without zeroing words.

CPART .CPART Create a secondary par-
tition.

CRAND . CRAND Create a random file .

CREATE . CREAT Create a sequential file .

DELETE . DELET Delete a file .

DIR .DIR Specify a new current di-
rectory and initialize it if
necessary.

EQUIV .EQIV Assign a new name to a
global directory specifier,
removing the old name or
system name.

INIT .INIT Initialize and open a di-
rectory or device.

LINK .L1NK Create link entry to a file
in any directory .

RELEASE . RLSE Remove a directory or de-
vice from the system.

RENAME .RENAM Rename a file.

UNLINK .ULNK Delete a link entry.

Table 2.3 Directory command summary

Licensed Material--Property of Data General

Magnetic Tape Files
Data on magnetic tape can be accessed by both file and free
form 110. RDOS permits file access on nine- and seven
track magnetic tape, and supports up to 16 magnetic tape
drives. The tape controller supports reading and writing at
any density.

The operating system generates the following 110 modes:

Tape File I/O: 7-track 800BPI, even parity
9-track NRZI800BPI, odd parity
9-track PE 1600BPI, odd parity

Free Form I/O: Parity in any hardware combination ex
cept WRITE EOF is always even for 7-
track, and odd for 9-track

If a controller detects an error during reading, the system
makes ten attempts to reread the data before issuing error
ERFIL, "File Data Error." If a data error is detected and
returned to the CLI, the system displays the message PAR
ITY ERROR: FIE MTn:dd, where n is the unit number and
dd the file number.

When an error after writing is detected, RDOS attempts to
backspace, erase, and rewrite up to ten times. The user
receives an error message if the rewrite fails the tenth time .

An undefined error causes RDOS to return the tape status
word as the error code. When this code is returned to the
CLI, the message UNKNOWN ERROR CODE n is dis
played, where n is the tape status word.

ROOS System Reference 23

Nine and Seven Track Data Words
Under file and free fonnat I/O, each data word output to
nine-track units is written as two successive eight-bit bytes.
Figure 2.7 shows how data is encoded on nine-track units.

original data word

9-track encoding

'\ 4 12 \
\ 6 14 \

I 0 8 I

J 1 9 /
/ 2 10 /

I p p I
I 3 11 I

l 7 15 l
\ 5 13 \

Figure 2.7 Data encoding (nine-track units) 80·00538

TAPE FILE liD

'\ P P P P \ ""\
\ * * * * \ \
I * * * * J I
J 0 4 8 12 / I

/ 1 5 9 13 / /
I 2 6 10 14 I I
I 3 7 11 15 I r

*Forced to 0 on writing; don't care on reading.

Figure 2.8 Data encoding (seven-track units)

24 RDOS System Reference

Data output to seven-track units is necessarily encoded in
tape file 1/0. RDOS encodes each 16-bit word as two data
words, in four successive frames. The system encodes each
word as two successive frames in free fonn 110. Figure 2.8
shows how data is encoded on seven-track units.

Each tape has a physical end-of-tape (EOT) marker. An
attempt to write beyond this marker causes RDOS to return
the error ERSPC after completing the operation. A new file
cannot be started beyond the physical end-of-tape marker.
If you are writing to tape via the CLI's DUMP command
and the system reaches the EOT mark, it stops writing and
aborts the command. When writing on a system level, make
sure that the reel holds enough tape to accept the file. If it
reaches the physical end of tape (EOT) while writing, it
will tenninate writing to the tape.

FREE FORM (DIRECT BLOCK) liD

P P \
2 10 _\
3 11 J
4 12 I
5 13 /
6 14 I
7 15 I

80-00539

Licensed Materlal-·Property of Data General

.-

Tape File I/O
In tape file format, RDOS writes and reads data in fixed
length blocks of 257, 16-bit words. It fills short blocks with
nulls. Data files are variable in length; each one contains
as many fixed-length blocks as the user needs. The first 255
words of each block contain user data, while each of the
last two words contains the file number. Figure 2.9 shows
how a data block is structured.

Data words
255 words

file number 1 word

file number 1 word

Figure 2.9 Data block structure SD·01032

RDOS writes a double end-of-file (EOF) mark after the first
file on tape. The system begins writing at the first double
EOF that it finds, overwriting the second EOF in the pair.
After writing the file, RDOS leaves another double EOF at
the end of it. The system writes files in consecutive order,
starting with file number 0 and continuing through file num
ber 99.

Licensed Material··Property of Data Genersl

Free Form I/O
In addition to tape file 110, RDOS allows users to read and
write data to magnetic tape in free format, record by record.
The system call .MTOPD opens a tape unit for free form.
Data is read or written via the system call .MTDIO. (Both
calls are fully described under "Input/Output Commands"
in Chapter 3.)

Essentially, .MTDIO allows a program to read or write from
two to 4096 words within a data record, and to space forward
or backward through one to 4096 data records or to the start
of a new data file. Additionally, this call allows the program
to rewind a reel, write an end-of-file mark, read the transport
status, and perform other machine-level operations. Under
free form 110, the system does not maintain a tape file
pointer after it locates the file specified in .MTOPD.

Initializing and Releasing a Tape Drive
The CLI's INIT command initializes a tape drive and re
winds the tape on that unit, for example, INIT MTO (CR). Full
initialization with the INIT/F command rewinds the tape
and writes two EOFs (logical end-of-tape indications) at its
beginning. The INIT/F command must be executed on all
new magnetic tapes before they are used. Note that this
command effectively erases a tape by permitting the system
to overwrite all files on it.

The CLI's RELEASE command rewinds a tape and releases
its drive from the system.

RODS System Reference 25

Referencing Tape Files with File 1/0
Files are placed on tape in numeric order, beginning with
file number O. A tape that is long enough can contain up
to 100 files, the last having file number 99.

To access a tape file in a CLI command line, enter the
command followed by the tape specifier and drive number,
colon, and a file number. In this statement, for example,

R
PRINT MTO:6 (CR)

MT is the specifier for magnetic tape, 0 is the unit number,
and 6 is the file number. All tape specifiers have the format
MTn:m or CTn:m, where n is a drive number between 0 and
17 octal and has no leading zero, and m is a file number in
the range of 0 through 99. No leading zero is needed to
enter the first 10 file numbers. Thus, file number 8 on
magnetic tape unit 2, could be represented as MT2:08 or
MT2:8. Both the global tape specifier and file number must
be entered. Otherwise the system responds with an error
message, ILLEGAL FILE NAME.

The following examples reference files on magnetic tape
and disk from the CLI:

R
DUMP MTO:O (CR)

Dump all nonpermanent files from the current directory onto
tape. (This statement is commonly used to perform magnetic
tape backups.) The disk files will comprise file number 0
of the tape on unit 0 when this command line is executed.

R
LOAD MTO:O (CR)

Load the files from tape file 0 into the current disk directory .
Note that the LOAD command transfers only files that have
been previously dumped with the CLI's DUMP command.
Likewise, the FLOAD command transfers only files that
have been previously dumped with the CLI's FDUMP com
mand. The XFER command must be used to transfer any
file that is not in DUMP format.

XFER MTO:O DATABASE (CR)

Transfer the contents of the first file on tape unit 0 to DA
T ABASE, the current disk directory.

26 RDOS System Reference

Files must be written on magnetic tape in numeric order.
Assume, for example, that you have transfered a disk file
to tape unit 0, which contains a new, fully initialized tape.
The command line

R
XFER SOURCEFILE MTO:O (CR)

posits SOURCEFILE on tape as shown in Figure 2.10. The
system recognizes only file numbers 0 and 1 on this tape;
that is, because RDOS assigns numbers incrementally, only
these numbers exist. An attempt to reference any other file
on the tape would result in an error message, FILE DOES
NOT EXIST:MTO:n, because file 0 is the last file on this
tape.

First file (0)
containing the
contents of
SOURCEFILE.

I-------~---_I eof 1----.-......;------_1 eof

Figure 2.10 Writing the first tape file

Once a file is
written, the
number of the next
file is assigned.
File 1 is a null file

DG-25453

Users are advised to make a note of each file number when
writing files on tape. Otherwise, a file may be inadvertently
overwritten and destroyed, along with all subsequent files.
Assume, for example, that a tape on drive 0 contains four
files, as shown in Figure 2.11. The XFER command over
writes the contents of file 1 with MYFILE, voiding the
location data of files 2 and 3 in the process. As a result,
the original file 1 and all subsequent files are lost.

Licensed Msterlsl··Property of Data General

/~\

1 A tape file on drive 0 contains four files.

•
• •

eof

eof

eof

eof

eOf}
eof

Logical end

of tape;

null file

2 User issues XFER MYFILE MTO: 1 %pi(22)

3 Command overwrites contents of file 1 with

MYFILE. The original file 1 and all sub

sequent files are lost.

•
•
•

Figure 2.11 Overwriting tape flies

... ~II--__ Original
file zero

eof

~ MYFILE

eof } Logical end

eof of tape;
null file

.... ~II---- Lost data

10-00487

Before physically removing a reel of tape, its transport must
be released with the CLI's RELEASE command. This com
mand rewinds a tape and resets the system's tape file pointer
to file 0 for correct file access in the future. The implications
of the logical end-of-tape mark employed by RDOS should
also be noted. For example, a user who deliberately writes
a null file can write no other files to that tape; the null file
becomes the last file.

Licensed Materiaf--Property of Data General

Linking to Tape Files
Links can be established from disk files to resolution files
on tape using the linking mechanism described earlier. The
act of linking disk file STATISTICS to tape file MTO:O
creates a link entry in the current disk directory for resolution
file MTO:O; the link entry to file MTO:O is named ST A TIS
TICS. References to this file in the current disk directory
are resolved as references to file MTO:O.

Multiplexors
The SYSGEN program allows users to specify multiplexors
and their characteristics. RDOS supports three kinds of Data
General multiplexors:

1. Type 4255-4258 Asynchronous Line Multiplexor (ALM),
with device code 348 for the primary unit and 448 for
the secondary unit. The ALM supports from one to 64
full- or half-duplex lines.

2. Type 4060-4063 Asynchronous Communications Mul
tiplexor (QTY), with device code. 308 for the primary
unit and 708 for the secondary unit. The QTY supports
from one to 64 full- or half-duplex lines.

3. The Universal Line Multiplexor (ULM), with device
code 348 for the primary unit and 448 for the secondary
unit. The ULM handles up to one synchronous and four
asynchronous, full-duplex lines. *

A full-duplex line allows data to flow two ways simulta
neously: users can transmit to RDOS over it, while RDOS
transmits to users' terminals. Although RDOS assumes full
duplex lines, half-duplex protocols can be incorporated if
desired.

Each ALM, ULM, or QTY line is a filename, of the form
QTY:x where x is a number from 0 to 63. A multiplexed
line can be opened on any RDOS I/O channel; the system
calls .RDLI.WRL and .RDS/.WRS are used to read and
write to it. (Chapter 3 explains how to select a channel
number, open files, and use the read/write calls.) No more
than one read and one write may be outstanding on any
single line. The system call .CLOSE must be used to close
a line and abort 110, since the task call .ABORT does not
affect QTY / ALM 110.

When you open a multiplexed line, or any other file, the
contents of AC I determine what operations RDOS will al
low on it. AC I acts as a characteristic disable mask, as
described in Chapter 3. Table 2.4 lists the characteristic bits
that affect multiplexors.

*RDOS does not support the synchronous lines; rather, other software
available with RDOS, such as the Communications Access Manager, sup
ports them.

RDOS System Reference 27

AC1 Meaning

DCEDT =1 BO Masking allows editing features such as
rub-out and backslash to work even when
echoing is suppressed.

DCCRE = 1 B4 Masking disables carriage return echoes
on line reads. (CR then acts as enter key.)

DC LAC .'~ .1 B6 Masking disables line feed after CA.

DCPCK =.187 Masking disables software paritY on OTY;
no effect on' ALM or ULM.

DCXON ;::::.188 Masking enables XONIXOFF protocol for
$TTA.(Thisprotocol prevents the .tele
typewriter reader' from overflowing ;<the
multiplexor read buffer.)

Masking disables 20 nulls after line feed.

Masking disables echo, CTRL-Z (end-Of
. file). CTRL S, and CTRL O,along with

line and . characterrubout.

. Masking enables backspacing for rubout
; on CRTdisplays only. ~or QTYfALM/ULM

~ IIne~,the. Newline key is·treated as a car-
i i riagEr return. .
". ". '·i.' i. i·i.. i i .;. '. ' _~'.
ii Masking '~akes this ia ~oderi, line.
,) 1" .,'.<,

• Masking ~isablesi' TAB~~patision.
~, " ;« ;: . . :. ;.:' . i ",

• i Maskin~i ~mabies·mt.dtjptexor Jnterrupts.

Table 2.4 Characteristic bits that affect multiplexors

When AC I equals zero on the . OPEN, the multiplexed
console has the following default characteristics:

• Line feeds after carriage returns.

• Twenty nulls after line feed.

• Characters echoed during line reads. SHIFf-L (\) de
letes line. RUB OUT deletes character and is echoed as
~. CTRL-Z and ESCAPE also result in end-of-file
error.

• This is a local line.

• TABS are expanded as spaces.

Line 64 Reads
ROOS allows you to monitor activity on all unopened mul
tiplexed lines, and to monitor console interrupts from all
opened multiplexed lines. If a task opens QTY:64 and issues
a read line or read sequential call, ROOS suspends this task
until (I) a user presses a key at the end of an unopened
line, or (2) a user hits an interrupt on an opened line. After
receiving the character typed, ROOS readies the task, takes

28 ROOS System Reference

the normal return from the read call, and passes the follow
ing data in AC2:

Multiplexed line number Character typed on unopened terminal

o 2 8 15

When RODS receives and answers a ring from a modem,
it sends the following data to line 64, in AC2:

o
o 2 8 15

This data allows your program to detect a service request
from a distant terminal. If the request comes from an un
opened line, your program can then .OPEN the line for
communications. QTY:64 can be opened by a foreground
and a background task; when this occurs, each task receives
characters from unopened lines. If an open line receives an
interrupt (CTRL-A and CTRL-C are defaults), RDOS readies
the task that opened line 64 and passes the following data
in AC2:

Multiplexed line number Interrupt character

o 2 8 15

The system generation program allows you to select inter
rupts other than CTRL-A and CTRL-C. A task receives and
interrupts from an opened line only if it is in the ground
that opened that line's channel.

If an open line receives a hangup notification, RODS returns
the following data in AC2:

Line number
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I

o 2 8 9 10 11 12 13 14 15

Llcenaed Materlal··Property of Data General

Line 64 Writes (ALM and ULM only)
RDOS allows you to change the device characteristic disable
mask, line speed, or modem state on any ALM line. To
effect these changes, issue the system call . WRL to a chan
nel opened on QTY:64 and pass the following data.

To change the mask (on opened lines only):

ACO
ACI

W64DC + line number
new mask.

To change the line speed:

ACO
ACI

W64LS + line speed
new line speed (0, I, 2, or 3 for ALM clock;
through 15 for ULM line code, as shown in Table
2.5.)

To change the modem state:

ACO
ACI

W64MS + line number
[W64DTR][+][W64RTS]

These bracketed entries are optional. W64DTR raises Data
Tenninal Ready; if you omit it, DTR is lowered. W64RTS
raises Request To Send; without it, RTS is lowered.

To change any or all characteristics on any line:

ACO
ACI

W64CH + line number
new characteristic mask

These symbols are defined in the user parameter file,
PARU.SR, which is listed in Appendix B. Note that RDOS
does not check the validity of user input, requiring that you
exercise care when changing the characteristics of an open
line.

ULM Line Codes
During system generation, a line speed is selected for all
ULM lines. Subsequently, a user can change the line speed
of any ULM line via the line 64 write mechanism described
earlier. Table 2.5 lists the 15 (decimal) ULM codes, one
of which you will specify in AC I to select the matching
line speed.

Licensed Material··Property of Data General

ULM code Matching line speed

19200

2 50

3 75

4 134.5

5 200

6 600

7 2400

8 9600

9 4800

10 1800

11 1200

12 2400

13 300

14 150

15 110

Table 2.5 Selecting a UlM line speed

Multiple Channels
A ground may have several channels opened to the same
line. Except for line 64, however, the same line cannot be
opened in both grounds. The first channel opened on a line
becomes the master channel, and all other channels opened
on this line become subordinate to it. Closing the master
channel prevents subordinate channel numbers from using
the line. Each subordinate channel must be closed before it
can be opened again, or reassigned, on another line. If you
open a new channel on a line after closing the master, the
new channel becomes the master channel.

Modem Support Under RDOS
A modem control interface allows software to be written
that controls various asynchronous modems. These modems
must support a subset of the EIA RS-232C interface stan
dard. A modem must supply the following signals:

• Recei ve Data

• Clear to Send (may be strapped to DSR or RTS)

• Ring Indicator

• Carrier Detect or Data Set Ready

RDDS System Reference 29

Any inactive signal that is wired in the interface cable should
be properly terminated to avoid false activation.

The modem must be fully operative by controlling only the
Transmit Data, Request to Send, and Data Terminal Ready
signals. In situations where remote consoles are connected
to a DG system via the Bell switched voice network, the
modem must also have full-duplex and auto-answer capa
bilities; transmit and receive data at equal rates; and drop
Data Terminal Ready low, forcing a disconnect.

If standard modem timer software is selected during system
generation, the modem must supply the Carrier Detect sig
nal, which ensures proper handling of connect and discon
nect procedures by RDOS. If the standard modem timer is
not included, the modem must provide the Data Set Ready
signal. Further, it should be capable of raising this signal
after Carrier Detect and lowering it after a disconnect.

It is essential that the modem be able to recognize a dis
connect and drop Data Set Ready. Loss of Carrier Detect
is not sufficient to determine when to drop this signal. Bell
modems use direct current on the phone line as an indication
of a disconnect, and drop Data Set Ready as a result. If the
modem does not provide this function, the line will appear
busy to the next caller if the previous caller has hung up.

When RDOS is bootstrapped, it raises DTR and RTS unless
you have changed the ALM parameter file (ALMSPD.SR)
to drop either or both signals. On a ring interrupt, RDOS
raises both DTR and RTS; on a disconnect, if DSR is low,
it lowers DTR and CTS.

When a modem's Data Set Ready signal is low, it cannot
communicate. In this case, RDOS takes the error return on
all reads and writes to its modem line, and places code
ERRDY in AC2. Note, however, that the error return occurs
only if you defined the line as a modem line by masking
DCLOC on the .OPEN.

Multiplexor Error Messages
Table 2.6 lists the errors that relate to reads and writes on
multiplexed lines. Other read/write errors are described in
Chapter 3.

30 RDDS System Reference

AC2 Mnemonic Meaning

24 ERPAR Parity error detected on read.

47 ERSIM ',Duplicate .'read or duplicate write.

127 ERRDY

130 ERINT ' Console. interrupt received.

131 EROVR

132 ERFRM Hardware framing error on read. *

Table 2.6 Multiplexor error messages
*This error clears the read buffer and errors the read request.

ALMSPD.SR
The source file ALMSPD.SR defines the characteristics of
each line of the ALM or ULM. This source file can be
edited with the Text Editor and assembled with MAC, the
macroassembler utility, to tailor multiplexed lines for spe
cific applications. The new line specifications are contained
in the binary file ALMSPD.RB and incorporated by the
system generator when it builds a new RDOS system. If
you do not define a line in this module, or if you set its
characteristics at default, the line has these characteristics:

clock frequency (ALM) or line speed (ULM) as defined
to SYSGEN

one stop bit

seven bits per character

even parity

no loopback

signals DTR and RTS raised on initialization

no mQdem support

no carrier monitoring protection

Licensed Material--Property of Data General

/~,

,-

These characteristics can be defined for any line by entering
the statement

LNDEF xx,DEFAUL T

in ALMSPD.SR, where xx is the two-digit, decimal number
for the line to be set. To define unique line characteristics,
insert a line of the form

LNDEF xx,spd,stop,bits,par,loop or

LNDEF xx,spd,stop,bits,par,loop,dtr,rts where

xx is the two-digit decimal line number

spd

stop

is the clock frequency (may be 0, 1, 2, or 3 for
ALM clock or 1 through 15 for ULM line speed

is the number of stop bits per character (may be 1
or 2)

bits is the number of bits per character (may be 5, 6,
7, or 8, not including the parity bit)

par indicates whether you wish no parity to be gen
erated or checked (specify NO), even parity (EVEN),
or odd parity (ODD)

loop indicates whether you want to enable loopback
(specify LOOPBACK or NOLOOPBACK)

dtr defines the state of Data Terminal Ready on ini
tialization (DTRHIGH or DTRLOW)

rts defines the state of Request To Send on (RTSHIGH
or RTSLOW)

licensed Material--Property of Data General

Note that the arguments for dts and rts may be omitted if
you wish to set their states high. The following example
defines the characteristics of ALM line 3, including a clock
frequency of one; two stop bits; seven bits per character;
even parity; and no loopback. Upon initialization, the DTR
and RTS signals will be high.

LNDEF 03,1 ,2,7,EVEN,NOLOOPBACK

The next example determines that ULM line 4 will run at
4800 baud, and have one stop bit, seven bits per character,
odd parity, and no loopback. Again, the DTR and RTS
signals will be initialized high.

LNDEF 04,9,1 ,7,ODD,NOLOOPBACK

After defining ALMSPD.SR, execute the command line
MAC ALMSPD $LPT/L (CR) before generating a new RDOS
system.

RDDS System Reference 31

Chapter 3

Single-task Programming

This chapter describes most of the system calls needed to
program under RDOS in a single-task environment. It ex
plains system and task command structures, summarizes the
most commonly-used system calls, and then discusses in
dividual, single-task calls under the following headings:

• Device and Directory Commands

• File Maintenance Commands

• File Attribute Commands

• Link Commands

• Input/Output Commands

• Console 110 Commands

• Memory Allocation Commands

• Device Access Commands

• Clock and Calendar Commands

• Spooling Commands

• Keyboard Interrupt Commands

In conclusion, the system calls described in this chapter are
summarized in table form.

Readers will find further information on single-task pro
gramming in Chapter 4, where program swaps and overlays
are discussed; in Chapter 5, which covers system clock
commands used in single-task environments; in Chapter 6,
which explains how to run in two grounds; and in Chapter
7, where user interrupts are explained.

Multiple and Single-task
Environments
A program task is an execution path through user address
space that uses system resources such as 110, overlays, or
simple CPU control. User address space includes all mem
ory from location 168 through NMAX-l.

In a single-task environment, the program itself is the only
task. A program initiates a multitask environment by cre
ating a task via task calls . TASK or . QTSK. In planning a

Licensed Material··Property of Data General

multitask program, you must specify multiple tasks with
assembly language pseudo-ops or with RLDR switches. Then
RLDR will copy the multitask scheduler, called TCBMON,
into your program and allot the number of Task Control
Blocks (TCBs) specified.

If you omit task and 110 channel pseudo-ops and task/chan
nel switches, RLDR assumes a single-task program and
copies the single-task scheduler into it. RLDR also allots
eight channels - enough for most single-task programs.
Either a single- or multitask program can use all system
calls described in this chapter. For more information on
multitasking, consult Chapter 5.

Note that the task scheduler and other modules differ for
certain kinds of systems (eg, unmapped and mapped NOV A
and ECLIPSE systems), meaning that programs loaded un
der one type of system may not execute on a system of
another type. When loading for a different system, obtain
the appropriate system library (SYS.LB) for the target sys
tem and ensure that RLDR searches it, rather than the current
library, during the loading process. This procedure is most
easily accomplished from a subdirectory that contains the
target system's library and links to RLDR.

System and Task Calls
RDOS system and task calls allow users to communicate
directly with the operating system; they are similar, but not
identical.

You begin each system call with the mnemonic .SYSTM,
which assembles as a JSR @, 17 instruction. This instruction
enables the system to respond to your command. After ex
ecuting a system call, the system (1) takes a normal return
to the second instruction after the command word, or (2)
takes the error return to the first instruction following the
command word, if an exceptional condition is detected.
System calls always reserve AC2 for the error code.

RODS System Reference 33

Descriptions of system calls in this manual abide by the
following, generic format:

ACn - Required input to the call.

.SYSTM
command
error return
normal return

On an error return, RDOS passes an error code in AC2. On
a normal return, each accumulator, except AC3, is restored
unless used to return output.

ACn - Output from the call.

AC3 - The content of location 16 (the User Stack Pointer)
is the default value.

Required input for many system calls includes a byte pointer
to a specific filename. When you include this byte pointer,
the filename pointed to may include directory specifiers as
well.

A task call resembles a system call, with these exceptions:
(I) you enter no .SYSTM mnemonic before the task com
mand word; (2) RDOS executes task calls in user address
space, not in system space; and (3) task calls that cannot
take an error return do not reserve an error return location.
Almost all system calls reserve an error return location,
even if no error return is possible. The comands in this
chapter are all system calls.

Status On Return From System Calls
This discussion summarizes the status of the accumulators
upon return from a system or task call.

For certain calls, the system returns information in ACO,
AC I, and/or AC2; if it does not, the carry and all accu
mulators except AC3 are preserved. The system always
returns the contents of location 168 (the USP) in AC3 by
default, unless you specified a particular module, such as
ESAC3, in the RLDR command line. Thus, if you loaded
a program with module N3SAC3 (NOVA3s only), AC3
would contain the contents of the frame pointer register upon
return from a call. Similarly, if you loaded a program with
module ESAC3 (ECLIPSEs only), the system would return
the contents of location 418, the frame pointer, in AC3. On
error returns, RDOS uses AC2 to return numeric error codes,
which are listed in Appendix A.

34

NOTE: In this book, the error codes associated with
each system call represent the most common errors
only; their meanings have been expanded and inter
preted in light of the call.

RODS System Reference

110 Channel Numbers
Before a file can be accessed for 110, it must receive an
I/O channel number in your open call. The file retains its
channel number while it is open, and must be accessed via
this number instead of the filename. The associated channel
number is released when you close the file. An 110 channel
number immediately follows the call word in your program.
Thus, if the channel number is n, the 110 calls for a file
could run as follows:

open n

file reads/writes n

close n

In a mapped system, the number of foreground and back
ground channels is specified during system generation; the
maximum for each ground is 3778, SYSGEN asks no ques
tion about channels for an unmapped system, whose max
imum of 3778 is predefined. RLDR allots eight 110 channels,
numbered 0 through 7, for a single-task program. Although
this number is generally sufficient, you may want to specify
more channels using the RLDR program's /C switch or the
macroassembler's pseudo-op, .COMM TASK.

Selecting a Channel

There are two ways to assign a channel number to a file:
either directly when you open, for example,

.OPEN 3

or via AC2. If your opening specifies number 77 (or CPU),
RDOS opens the file on the channel number contained in
the right byte of AC2. To open on a number above 77-
assuming that your program permits one- you must open
on 77 and pass the number in AC2.

The major advantage to opening' on 77' is that the system
call . GCHN can be used to find a free channel for your
open .. GCHN returns the number of a free channel in AC2.
This number can be assigned a name that identifies the
channel for all 110 to the file. Unless all channels are in
use, this method ensures a free channel for file 110. The
following example demonstrates:

Licensed Material--Property of Data General

.-

·SYSTM
.GCHN
JMP ER
STA 2, FILE1

LDA 2,FILE1
.SYSTM
. OPEN 77
JMP ER
.SYSTM
.WRS 77

. SYSTM

.GCHN
JMP ER
STA 2, FILE2
.SYSTM
.APPEND 77
JMP ER

; STORE THIS CHANNEL
;NUMBER UNDER "FILE1".

;OPEN "FILE1" .

; WRITE TO "FILE1"

; STORE NUMBER UNDER "FILE2".

; OPEN "FILE2" FOR APPENDING.

Licensed Material··Property of Data General

Commonly Used Commands
In the process of developing application programs, you will
use certain system calls quite frequently and others rarely
or not at all. Table 3. I attempts to summarize the most
useful calls in the sequence that you might use them in a
program. Each call is described by name, format, accu
mulator data, and possible error codes. The table assumes
that you will use the CLI to create and initialize partitions
and subdirectories, to execute magnetic tape 110, and to
control spooling. It further assumes that your program will
not attempt to alter file attributes, create link entries, or
manage a multitask environment, although these objectives
can be accomplished via RDOS system calls if you choose .

Note that Table 3.1 assumes a single-task environment; it
does not cover foreground/background calls (Chapter 6) or
multitasking (Chapter 5). Each file 110 command requires
a channel number, as indicated; the term btptr means byte
pointer; and each system call has the generic form:

.SYSTM
call name
error return to program

The following example shows this format in practice:

BTPTR:

ERROR:

LDA O,BTPTR
.SYSTM
.DIR
JSR ERROR

. + 1*2

.TXT "DP1 :SUBDIR"

.SYSTM

.ERTN
JMP.-2

ROOS System Reference 35

.'Call

. CRAND

. CCOND

. 0PENn.

• APPEND ri

.CLOSE n

Purpose

Creates a random file.

Create a contiguous file.

Opens a file for appending, on channel n. Sets position
for writing at the end of the file.

. Reads an ASCII line on channel n. Counterpart of . WRL
command .

. Reads sequentially from the file opened on channel n.
Sequential mode is required for binary data.

Writes an ASCII line to the file opened on channel n.
, Writing begins at start of file if you opened it with .OPEN;
at end if you opened it with .APPEND. Limit is 132
characters terminated by a CR, null, or form feed.

Writes sequential bytes to ttie file on channel n. See
the .WRL command for position Information.

Direct block I/O calls that write or read a series of disk
blocks to or from the random or contiguous file on chan-
nel n. .

Closes the file opened on channel n. RDOS then up
dates the file's UFO information. (.ERTN and .RTN close
all channels in the current program.)

Delete a file.

Table 3.1 Commonly used commands

36 RDDS System Reference

Remarks

ACO: btptr to filename .

ACO:btptr to filename .
AC1: number of disk blocks for the file.

ACO: btptr to filename. , ' .
AC1: characteristic disable mask. You can specifY the
system default mask (normal procedure) by passing 0
via a SUB 1,1 instruction before the .OPEN .

ACO: btptr to filename.
AC1: characteristic disable mask. As with .OPEN you
can specify the system default mask before the .AP·
PEND.

ACO: btptr to area large enough for line (133 maximum) .
AC1: returns the count of characters read.

ACO: btptr to starting byte address of data.
AC1 : number of bytes to be read.

ACO: btptr to area that holds the ASCII line.

ACO: btptr to starting byte address of data.
AC1: number of bytes to be written.

ACO:starting address for the block write or read.
AC1 : starting relative block number in the series.
AC2: left byte number of 256·word blocks to be written
or read to the file. .

ACO: btptr to filename.

Licensed Materlal··Property of Data General

Table 3.2 lists the system calls that control NMAX, that
execute and return from program swaps or chains, and that

.... - load overlays. Table 3.3 lists the error codes that AC2 may
contain if your program takes the error return from any of
these system calls.

/-

Call

.MEM

.MEMI

. ERTN
or
.RTN

.OVOPN n

.OVLOD n

Purpose

Return the current program's NMAX value in ACO, along
with the value of the highest memory address available
for user programs in AC 1 .

Raise NMAX to the value entered in ACO, or lower
NMAX by the value entered in two's complement in
ACO. RDOS returns the new value in AC1 .

Close the channels in the current program and return
to (resume execution of) the next higher-level program
(usually the CLI) .. ERTN returns an error code in AC2;
if return is to the CLI, it also prints an error message
on the console.

Open overlay file for reading on channel n. Before your
program can use overlays, you must open them on a
channel. You close the channel via a .CLOSE n.

Load an overlay from the overlay file opened on chan
nel n into its reserved memory node.

Table 3.2 Calls that control memory, returns and overlays

Licensed Material··Property of Data General

Remarks

ACO: btptr to overlay filename, including .OL extension.

ACO: overlay descriptor.
AC1: conditional load flag.

RODS System Reference 37

AC2 Mnemonic Meaning

o ERFNO

1 ERFNM

3 ERleD

Illegal channel number (Jegal range is
o through 3778,

Illegal filename (only alphanumeric or
$ characters are permitted).

Illegal command for device, '(for ex
ample, trying to read from'the line
printer).

,'" End of file. detected while reading, or
" attempttowrite beyond the end of a

contiguous file.

File is read-protected.

File already exists.

. File (directory) does nC)t:exist.

• ' File ,cannot be deleted because it has
• the permanent attribute. '

·Filehasnotbeen o~~~~dj
"':' .," .. , ,

This chanriells in use.

Line limit (132 characters) exceeded.

Table 3.3 Possible errors from calls that control memory,
returns and overlays

38 RODS System Reference

AC2 Mnemonic Meaning

36

37

40

ERDNM

EROVN

EROVA

Device not in system.

Illegal overlay number;

File not accessible by direct block
.1/0.

Simultaneous reads. or writes at
'tempted tO$ameQTY/ALM line.
! ." :

· Illegal directoryspecifier~!,
\' '. 't·.·.. '

:! Directol)'c ndtlnitialized.;
: •• Ii: , .. !;.<;;.
! Address out~ide addr,e~ssspace
!(mappepsistafYls only).!. !

Disk U01aouloccurred.;!,

!Jhis MeA Ctlannel!lslnUse.·

;A~hdrt iec~lv~ ~eQ~estterlTttnaiedthe' ' .
. MeA trarisrillssion. ! ,,' .•. ' ••••

i~CAlQTY/J~M ltWlte~~i~ by
! channe(close; . ,.

!AUempt!toJ~Jte'i c~nti9uoo~file Of:'
zero !Ierigth~;: ..,

I~'

Table 3.3 Possible errors from calls that control memory, I~
returns and overlays (continued)

Licensed Material··Property of Data General

,-

Device and Directory Commands
This section describes the RDOS system calls that pertain
to opening and releasing disk and magnetic tape drives and
disk directories; it also covers the commands that create disk
partitions and subdirectories. In order of discussion, these
commands are:

.INIT

.DIR

.RLSE

.GDIR

.CDIR

.CPART

.EQIV

.GSYS

.MDIR

Initialize a directory or device

Select a different current directory

Release a directory or device

Get the current directory's name

Create a subdirectory

Create a secondary partition

Temporarily rename a nonmaster device
or tape drive

Get the current RDOS system's name

Get the master directory's name

Licensed Material··Property of Data General

.INIT
Initialize a directory or device

A program can initialize devices and directories via the
system call .INIT. When this command is invoked and AC 1
does not contain - 1, a partial initialization of the device
or directory occurs, making all files in the directory available
to the system software, as a result. Partial initialization of
a magnetic tape rewinds the tape and resets the tape file
pointer to file zero. If AC 1 contains 177777 when you
invoke .IN IT , a full initialization of the device results. Full
initialization of a magnetic tape rewinds the tape and writes
two EOFs to signify the logical end-of-tape. All files on
that tape are lost as a result. Full initialization of a disk
builds new system (SYS.DR) and map (MAP. DR) direc
tories on it, effectively destroying all existing files. RDOS
treats full initialization of a secondary partition or subdi
rectory as a partial initialization.

Required Input

ACO - Byte pointer to a directory or device specifier.

In each byte pointer, bits 0--14 contain the word address
that holds or will receive the byte. Bit 15 specifies which
half (0 left, 1 right).

Format

.SYSTM

.INIT
error return
normal return

RDOS System Reference 39

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename

10 ERWPR Device is write-protected (full initial
ization only).

12 ERDLE

27 ERSPC

31 ERSEL

36 ERDNM

45 ERIBS

51 ERNMD

52 ERIDS

56 ERDIU

57 ERLDE

74 ERMPR

77 ERSDE

101 ERDTO

102 ERENA

112 EROVF

121 ERFMT

122 ERBAD

Directory does not exist.

Out of disk space.

Unit improperly selected.

Device not in system.

Insufficient number of Device Control
Blocks (DCBs) specified during sys
tem generation.

Same as above.

Illegal directory specifier.

In a dual processor system using an
IPB: the other CPU is using this direc
tory.

Link depth exceeded.

Address outside address space.

Error detected in SYS.DR of nonmas
ter device.

Disk timeout occurred.

No linking allowed (N attribute).

Too many chained directory specifiers
caused system stack overflow. Occurs
only when links are used in the spe
cifier string.

Disk format error. Try to dump the disk
and run DKINIT on it.

Disk has invalid bad block table. Dump
the disk and run DKINIT on it.

40 RODS System Reference

.DIR
Initialize a directory or device

When you bootstrap an RDOS system, the directory that
holds the system becomes the current directory. The .DIR
command selects a different current directory, and-pro
vided that directory has not been initialized-performs a
partial initialization.

After invoking the .DIR command, you can access all files
in the new directory without using directory specifiers .. DIR
is not mandatory for file access in nonmaster directories,
however, since RDOS permits directory specifiers in all
filename arguments to system commands. The following
example shows how a directory specifier isused to access
MYFILE, in DP4, from master directory DPOF.

.TXTM 1

LOA 0, .MYFILE

MYFILE: .+1*2
.TXT "OP4:MYFILE"

The next example invokes the .DIR command to achieve
the same results.

.OP4:

.MYFILE:

.TXTM 1

LOA 0, .OP4
.SYSTM
.OIR

LOA 0, .MYFILE

.+1*2

.TXT "OP4"

.+1*2

.TXT "MYFILE"

In the first example, DPOF remained the current directory;
in the second, the .DIR command made DP4 the current
directory.

Required Input

ACO - Byte pointer to directory name string.

Format

.SYSTM

.OIR
error return
normal return

Licensed Materlal··Property of Data General

c-

If RDOS takes the error return, the current directory defi
nition remains unchanged.

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

12 ERDLE Directory does not exist.

27 ERSPC Out of disk space.

36 ERDNM

51 ERNMD

52 ERIDS

53 ERDSN

57 ERLDE

74 ERMPR

101 ERDTO

112 EROVF

121 ERFMT

122 ERBAD

Device or directory not in system.

Attempt to initialize too many direc
tories at one time (not enough DCBs
specified during system generation).

Illegal directory specifier.

Directory specifier unknown.

Link depth exceeded.

Address outside address space.

Disk timeout occurred.

System stack overflow due to excessive
number of chained directory specifiers.

Disk format error. Try to dump the disk
and run DKINIT on it.

Disk has invalid bad block table. Dump
the disk and run DKINIT on it.

Licensed Material··Property of Data General

.RLSE
Release a directory or device

This command dissociates a directory or device from the
system and prevents further 110 with it. A removable disk
should always be released via the CLI's RELEASE com
mand or . RLSE before removing it from the unit. All files
within a directory must be closed before releasing it. Release
of a master directory releases all directories. The master
directory is the directory that holds the current RDOS sys
tem; its name is returned by system call .MDIR or the CLI's
MDIR command.

Required Input

ACO - Byte pointer to a directory or device specifier.

Format

.SYSTM

.RLSE
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

56 ERDIU Directory in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

114 ERNIR Attempted release of a tape unit con-
taining an open file.

ROOS System Reference 41

·GDIR
Get current directory name

This call returns the name of the current directory or device,
for example, DPO. This name is followed by a null; it does
not include the names of superior directories or colon spe
cifiers. In the case of current directory DPOF:PART2:DIR1,
for example, it would return DIRl.

Required Input

ACO - Byte pointer to 138 byte area to receive the current
. directory or device name.

Format

.SYSTM

.GOIR
error return
normal return

The first 128 bytes will contain the name, with trailing nulls
if necessary; byte 138 will contain a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read into system area.

74 ERMPR Address outside address space.

42 RODS System Reference

.CDIR
Create a subdirectory

This call creates an entry for a subdirectory name in the
current partition's system directory (SYS.DR). The subdi
rectory automatically receives the extension .DR.

Required Input

ACO - Byte pointer to the directory name (directory spe
cifiers permitted).

Format

.SYSTM

.COIR
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal directory name.

11 ERCRE Attempt to create an existent directory.

53 ERDSN Directory specifier unknown.

55 ERDDE Attempt to create a subdirectory within
a subdirectory.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Material"Property of Data General

,.-..

,-

--

.CPART
Create a secondary partition

This command creates an entry for a secondary partition
name in the current SYS.DR. The secondary partition au
tomatically receives the extension .DR.

Required Input

ACO - Byte pointer to secondary partition name.

AC 1 - Number of contiguous disk blocks in secondary par
tition. (The minimum is 608 ,) RDOS allocates disk
blocks in integer multiples of 20g ; if your number
is not an integer multiple of 20g , the system will
truncate it to the lower multiple.

Format

. SYSTM

.CPART
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM

11 ERCRE

46 ERICB

53 ERDSN

54 ERD2S

55 ERDDE

57 ERLDE

66 ERDNI

74 ERMPR

101 ERDTO

Illegal secondary partition name.

Attempt to create an existing secondary
partition.

Insufficient number of free, contiguous
disk blocks available.

Directory specifier unknown.

Partition too small (must have at least
608 blocks).

Attempt to create a secondary partition
within a secondary partition, that is, a
tertiary partition.

Link depth exceeded.

Directory not initialized.

Address outside address space.

Disk timeout occurred.

Licensed Material--Property of Data General

.EQIV
Assign temporary name to disk or tape unit

This command assigns a temporary name to a disk or tape
unit, permitting unit independence during the execution of
your program. Thus, you might write all magnetic tape
references in a program as MTAPE and, at runtime, use the
.EQUIV command to assign the name MTAPE to a specific
device such as MT6. This command must be issued before
initializing the device under its new name. The master de
vice cannot be assigned a temporary name.

A device keeps a temporary name until released, then reverts
to its original specifier. You can then assign another, tem
porary name before initialization, if desired.

Required Input

ACO - Byte pointer to current global specifer name .

AC 1 - Byte pointer to temporary name.

Format

.SYSTM

.EQIV
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

53 ERDSN Directory specifier unknown.

56 ERDIU Device in use, that is, already initial
ized.

74 ERMPR Address outside address space.

RODS System Reference 43

.GSYS
Get the current operating system name

This call returns the name of the currently executing op
erating system, its .SV extension, and a null terminator.

Required Input

ACO - Byte pointer to 158 byte area.

Format

. SYSTM

.GSYS
error return
normal return

The first 128 bytes contain the name, with trailing nulls if
necessary; bytes 138 and 148 contain SV, and byte 158 con
tains a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read or write into system
area.

74 ERMPR Address outside address space.

44 ROOS System Reference

.MDIR
Get the name of the master directory

Because you can bootstrap an RDOS system in a secondary
partition, the master directory may not have an obvious disk
name like DPO. The .MDIR command returns the name of
the master directory.

Required Input

ACO - Byte pointer to 138 byte area to receive the directory
name .

Format

.SYSTM

.MDIR
error return
normal return

The first 128 bytes contains the name, with trailing nulls if
necessary; byte 13 contains a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read or write into system
area.

74 ERMPR Address outside address space.

Licensed Materlal--Property of Data General

,"--"

-',

--

File Maintenance Commands
The commands described in this section relate to individual
files; they enable you to create, delete, set position, and
check the status of files. In order of discussion, the file
maintenance commands are:

.CCONT Create a contiguous file with data words
zeroed

.CONN Create a contiguous file with no data words
zeroed

.CRAND Create a random file

.CREAT Create a sequential file

.DELET Delete a file

.RENAM Rename a file

.GPOS Get the current file pointer

.SPOS Set the current file pointer

.STAT Get a file's status

. RSTAT Get a link entry's resolution file status

.CHSTS Get a channel's file information

.UPDAT Update an open file's size information

Each file maintenance command requires that you specify
the filename(s) by means of a byte pointer to it. Bits 0-
14 of the pointer contain the word address that holds or will
receive the first byte. Bit 15 indicates which half: 0 is left,
1 is right. To specify an extension, separate it from the
filename with a period. In the following example, the word
at location BTPR contains a byte pointer to a properly spec
ified file name, MYFILE.SR.

.TXTM 1

BPTR: . + 1*2
.TXT "MYFILE.SR"

Filenames may include directory specifiers. If you attempt
to create a file with the same name as a device in the current
system (eg, $LPT), the system treats the command as a no
op and takes the normal return.

Licensed Material··Property of Data General

.CCONT
Create a contiguously organized file with all data words
zeroed

This call creates a contiguously organized file with all data
words initialized to zero. If the file's name exists as a link
entry and if no resolution file exists for it, RDOS creates a
contiguous resolution file.

Required Input

ACO - Byte pointer to the filename.

AC 1 - Number of disk blocks in the file.

Format

.SYSTM

.CCONT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create a
.SYS.DR for this file.

46 ERICB Insufficient number of free, contiguous
disk blocks available to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

124 ERZCB Attempt to create a zero length, con-
tiguous file.

RODS System Reference 45

.CONN
Create a contiguously organized file with data words zeroed

This command creates a contiguously organized file; it is
faster than system call .CCONT because it does not require
RDOS to zero the data words. If the file's name exists as
a link entry and if no resolution file exists for it, RDOS
creates a contiguous, resolution file.

Required Input

ACO - Byte pointer to filename.

ACI - Number of disk blocks in the file.

Format

.SYSTM

.CONN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create a
SYS.DR entry for this file.

46 ERICB Insufficient number of free, contiguous
disk blocks available to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

124 ERCZB Attempt to create a zero length, con-
tiguous file.

46 ROOS System Reference

.CRAND
Create a randomly organized file

This command makes an entry for the filename of a ran
domly organized file in the system directory (SYS.DR), and
assigns the first index block to the file. If the file's name
exists as a link entry and if no resolution file exists, RDOS
creates a random, resolution file.

Required Input

ACO - Byte pointer to the filename.

Format

.SYSTM

.CRAND
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

100 ERMDE Error detected in MAP.DR of non-
master device.

101 ERDTO Disk timeout occurred.

Licensed Materlal··Property of Data General

1--'·

,-'

.CREAT
Create a sequentially organized file

This call creates an entry in the system directory (SYS.DR)
for the filename of a sequentially organized file, and assigns
the first index block to it. If the file's name exists as a link
entry and if no resolution file exists, RDOS creates a se
quential resolution file.

Required Input

ACO - Byte pointer to the filename

Format

.SYSTM

.CREAT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Materisl--Property of Data General

.DELET
Delete a file

Use this command to delete a file and its entry in the system
directory. Do not apply it to link entry names, however, or
the resolution file will be deleted unless (1) the link access
or resolution entry attribute words contain the permanent
attribute (in which case RDOS returns error ERDEl); or (2)
a resolution file does not exist (ERDLE is returned).

Required Input

ACO - Byte pointer to filename.

Format

.SYSTM

.DELET
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

12 ERDLE File does not exist.

13 ERDEI File is permanent.

53 ERDSN Directory specifier unknown.

56 ERDIU Directory in use.

57 ERLDE Link depth exceeded.

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

100 ERMDE Error detected in MAP.DR of
master device.

101 ERDTO Disk timeout occurred.

non-

102 ERENA Link access not allowed (N attribute).

RODS System Reference 47

.RENAM
Rename a file

This call renames a file. It can be applied to a file in a
different directory as long as you use the same directory
specifier in both the current and new names.

Required Input

ACO - Byte pointer to the current filename.

ACI - Byte pointer to the new filename.

Format

.SYSTM

.RENAM
error return
normal return

After a normal return, the original name no longer exists in
the system directory.

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE Attempt to create an existent name
(ACt).

12 ERDLE Attempt to rename a nonexistent file
(ACO).

13 ERDEI Attempt to rename a permanent file
(ACO).

35 ERDIR Files specified in different directories.

53 ERDSN Directory specifier unknown.

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occured.

48 ROOS System Reference

.STAT and .RSTAT
Get a file's current directory status

~

These system calls obtain a copy of a file's current directory
status. Both calls write a copy of the 22s-word UFD, as it
exists on disk, into an area that you specify. The resulting
information can then be accessed via the displacements de-
fined in Table 3.4. When this information pertains to an
open file, the result is a "snapshot" of the UFD as it existed
on disk at the time of the most recent .CLOSE or .UPDAT.

Use system call .STAT to return the UFD of a file, and
.RSTAT to find the UFD of a link's resolution file. Both
calls have the same effect on a nonlink file. If you issue
.STAT to a link entry, RDOS returns the link's UFD. In a
link UFD, words 7 and 14 octal have mnemonics UFLAD
and UFLAN while words 7-13 and 14-21 contain the
link's alternate directory specifier and alias (if any), re
spectively.

Licensed Materlal··Property of Data General

,--....

Required Input

Offset or Mnemonic Content ACO - Byte pointer to filename string
Displacement

-.~

00000-00004 UFTFN Filename (ASCII file num-
ACt - Starting address of 228 word UFO data area.

ber for open tape file)
Format

000005 UFTEX Extension .SYSTM

000006 UFTAT File attributes
.STAT or .RSTAT
error return

000007 UFTLK Link access attributes
normal return

000010 UFTBK Number of the last block in Possible Errors
the file (ie, block count -1)

000011 UFTBC Number of bytes in the last AC2 Mnemonic Meaning
block

000012 UFTAD Starting logical block ad- ERFNM Illegal filename.

dress of the file (the random
file index for random files) 12 ERDLE File does not exist.

000013 UFTAC Year/day last accessed 33 ERRD Attempt to read or write into system

000014 UFTYD Year/day created, updated, file space.

or closed after write
36 ERDNM Device not in system.

000015 UFTHM Hour and minute the file was
created, updated, or closed 53 ERDSN Directory specifier unknown.
after write

000016 UFTP1 UFO temporary 57 ERLDE Link depth exceeded (.RSTAT only).

- UFTP2 000017 Number of data words on a 66 ERDNI Directory not initialized.
disk block

000020 UFTUC User count (1 BO = 74 ERMPR Address outside address space.

.EOPEN, .APPEND,

.TOPEN; 1B1 = .OPEN) 101 ERDTO Device timeout.

000021 UDTDL OCT link, where bits 10-
16 contain device code of
device that holds file; left
byte is unused except for
large disks, for which bits
0-2 contains the high or-
der of the disk address.

Table 3.4 UFO template with displacement mnemonics

Licensed Material .. Property of Data General RDOS System Reference 49

·CHSTS
Get the file directory information for a channel

This command returns a copy of current directory status
information for the file that is currently open on a specified
channel. RDOS returns directory status information as a
copy of the 228-word UFD, except that it reports status as
of the last system-not user-file 110 for this channel. Thus,
. CHSTS would return the status after a . WRL, while. STAT
or .RSTAT would return the status, on disk, as of the last
update or close.

Required Input

ACO - Starting address of data area. This area must be at
least 228 words long.

Format

.SYSTM

.CHSTS n
error return
normal return

Variable n is the file's channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP No file opened on the given channel.

33 ERRD Attempt to read into system area.

75 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

50 ROOS System Reference

.UPDAT
Update the current file size

This system call allows you to update the size information
in a file's UFD while the file is open. The UFD contains a
file's size, date of creation, attributes, and other informa
tion. In particular, this call updates information in UFTBK
and UFTBC in the disk UFD for the file opened on a spec
ified channel, and it writes all modified system buffers not
in use to ensure that the file contains all information written
to it by your program.

The . UPDAT command is especially useful when a file is
open for a long time. Any file that is open during a system
failure may contain inaccurate size information in its UFD,
preventing you from reading new data. By updating the file
frequently, you keep its UFD current and minimize the
amount of data that could be lost.

Format

.SYSTM

.UPDAT n
error return
normal return

Variable n is the file's channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP File not opened.

101 ERDTO Disk timeout occurred.

Licensed Materlal--Property of Data General

,.r- ..

~ ..

,........-...

File Attribute Commands
File attribute commands allow you to check or change the
current attributes of a file. They can also be used to check
device characteristics. The bit settings of ACO determine
the file attributes, while AC 1 contains device characteristics
of the file. In order of discussion, the file attribute com
mands are:

.CHATR

.GTATR

Change the attributes of the file opened
on channel n.

Get the attributes or characteristics of the
file opened on channel n.

Note that these calls work only on an open file. Link com
mands are discussed in the next section.

licensed Material··Property of Data General

.CHATR
Change file attributes

This command changes the access attributes of an open
file--or the resolution entry attributes, as viewed from a
link entry-according to the contents of ACO.

When you create a file, it has no attributes. If a link user,
or a user who has opened via system call .ROPEN, issues
the .CHATR command, RDOS temporarily changes his copy
of the file attributes until he closes the file; meanwhile, the
true resolution entry attributes persist. You must open a file
before changing its attributes.

Note that RDOS provides two special attribute bits that can
be used to define unique, file access specifications.

Format

.SYSTM

.CHATR n
error return
normal return

Variable n is the file's channel number.

Required Input

ACO - An attribute word that contains bits set according
to the desired attributes. Set the contents of ACO
according to the bit/attribute relationships show in
Table 3.5.

Sit Symbolic Mnemonic Meaning
Attribute

1BO R ATRP Read-protected file;
cannot be read

1 BO A ATCHA Attribute-protected file;
no attribute can be
changed after you set
this bit

1B2 S ATSAV Save file (core image
file)

1 B7 N ATNRS No link resolution al
lowed

1B9? ATUS1 First user-definable at
tribute for the file

1B10 & ATUS2 Second user-definable
attribute for the file

1B14 P ATPER Permanent file; cannot
be deleted or renamed

1B15 W ATWP

Table 3.5 Bit-attribute relationships

Write-protected file;
cannot be written

RDOS System Reference 51

Table 3.6 lists the disk file characteristics that RDOS assigns
when you create a file. These characteristics cannot be changed
by the user.

Bit Characteristic Mnemonic Meaning

1B3 L ATLNK Link entry

1B4 T ATPAR Disk partition

1B5 y ATDtR Subdirectory

186 ATRES Link resolution file
(temporary); other
file attributes per-
sist . for the dura-
tion of the open

Contiguous file

Random file

Table 3.6 Disk file characteristics aSSigned by RDOS

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

14 ERCHA Illegal attempt to change file attributes
(file has A attribute).

15 ERFOP No file open on this channel.

101 ERDTO Disk timeout occurred.

52 ROOS System Reference

.GTATR
Get the file attributes and characteristics

This command obtains the attributes or device character
istics of a file.

Format

.SYSTM

.GTATR n
error return
normal return

Variable n is the file's channel number. When RDOS re
turns, ACO will contain the file attributes. (Table 3.5 de
scribed the bit positions that specify attributes.) AC1 will
contain the device characteristics of the file. These char
acteristics pertain to files on reserved devices such as $LPT.
They do not reflect the characteristic disable mask supplied
when th~ file was opened. Table 3.7 lists bits and their
associated characteristics to aid you in interpreting the bit
configuration returned in AC 1.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP Attempt to get attributes of an un-
opened file.

101 ERDTO Disk timeout occurred.

Licensed Msterlsl··Property of Data General

~.

Link Commands
""'- AC2 Mnemonic Meaning

As described in Chapter 2, RDOS permits you to link files
180 DCSPC When file is a spoolable device: in one directory to files in another. Either directory can be

spooling enabled (disabled if 080) a primary partition, secondary partition, or subdirectory. In

180 DCDIO When file an MCA link: protocol is order of discussion, the link commands are:

suspended on transmit
. LINK Create a link entry .

181 DCCSO SO-column device

182 DCLTU Device changes lower-case ASCII to
. UNLK Delete a link entry .

upper-case
. CHLAT Change the link access attributes of a file .

183 DCFFO Device requiring form feeds on open-
ing

184 DCFWD Full-word device (reads or writes more
than a byte)

185 DCSPO Spoolable device

186 DCLAC Output device requiring line feeds af-
ter carriage returns

187 DCPCK Input device requiring a parity check;
output device requiring parity to be
computed

188 DCRAT Output device requiring a rubout after
every tab

/- 189 DCNAF Output device requiring nulls after
every form feed

1810 DCKEY CTRL Z (end-of-file), backslash (line
delete), and rubout (character de-
lete) are disabled for this keyboard
input device

1811 OCTO Teleteypewriter output device or equal
leader and trailer $TTP and $PTP

1812 DCCNF Output device without form-feed
hardware

1813 DCIDI Input device requiring operator inter-
vention

1814 DCCGN Output device without tabbing hard-
ware

1815 DCCPO When file is $TTR/$TTP: output de-
vice requiring leader and trailer

1815 DCSTO When file is MCA line: user-specified
MCA transmitter timeout

1815 DeNI When file is MUX line: no CTRL-A or
CTRL-C interrupts from this line

1815 DCST8 When file is $CDR: trailing blanks are
suppressed

Table 3.7 Bits and associated device characteristics

Licensed Material··Property of Data General RDOS System Reference 53

• LINK
Create a link entry

This system call creates a link entry from the current di
rectory to a file in the same or another directory. The re
sulting link entry mayor may not have the same name as
the resolution file; if not, the link entry's name is referred
to as an alias. Although no attributes restrict a link when
you create it, it cannot reach the resolution file without
satisfying both the link entry and file access attributes of
the resolution entry. Your program can alter the link, but
not the file, access rights of any nonlink file by using the
system call . CHLA T. The following examples show the
relationships between linknames and various resolution file
names, and their meaning to RDOS.

Linkname Resolution Meaning to RDOS

LFE.SV

LFE.SV

Filename

LFE.SV Create link entry LFE.SV in the
current directory, and link it to
resolution file LFE.SV on the
current directory's parent parti
tion.

SAM:LFE.SV Create link LFE.SV in the cur
rent directory, and link it to re
solution file LFE.SV in directory
SAM.

NLFE.SV DP1 :LFE.SV Create link NLFE.SV in the cur
rent directory, and link it to re
solution file LFE.SV in primary
partition DPI.

Required Input

ACO - Byte pointer to link entry name string.

ACI - Zero if the link and resolution file have the same
name, and if the resolution file resides in the parent
partition. Byte pointer to the name string if the link
entry has an alias or is not on the parent partition.
You may omit a directory specifier from the reso
lution filename if the resolution file resides on the
link entry's parent partition.

54 ROOS System Reference

Format

.SYSTM

.LlNK I~~
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

11 ERCRE Link entry name already exists.

27 ERSPC Insufficient disk space to create SYS.DR
entry.

53 ERDSN Directory specifier unknown.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Material··Property of Data General

,,--

-

.ULNK
Delete a link entry

This command deletes a link entry in the directory to which
the link entry name points. This command does not delete
other links of the same name in other directories. Before
issuing . ULNK, make sure that the link entry you are de
leting does not also exist between other links and the re
solution entry; otherwise, you will be unable to resolve these
more remote links after this deletion.

Required Input

ACO - Byte pointer to the link entry name string.

Format

.SYSTM

.ULNK
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

12 ERDLE File does not exist.

53 ERDSN Directory specifier unknown.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

75 ERNLE Not a link entry.

101 ERDTO Disk timeout occurred.

Licensed Material··Property of Data General

.CHLAT
Change link access entry attributes

This command changes the link attributes word of the file
opened on a channel, according to the contents of ACO.
When you open a file via a link entry, the attributes you
see will be a composite of the resolution entry's file attri
butes and your copy of the link access entry attributes. When
you create a file, no link entry access attributes exist. Note
that RDOS provides two special attribute bits that can be
used to define unique, link access specifications.

Required Input

ACO - File attributes word (identical to .CHATR)

Format

.SYSTM

.CHLAT n
error return
normal return

Variable n is the channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

14 ERCHA Resolution entry is attribute-protected
(has A attribute).

15 ERFOP No file is open on this channel.

101 ERDTO Disk timeout occurred.

RODS System Reference 55

Input/Output Commands

This section describes the system calls a program may use
to write data to, and read data from, an existing, open file.
It begins by describing the five I/O tnodes available, and
goes on to explain the calls that open and close a file. Then
the calls used to change position in a file are discussed,
followed by descriptions of the different writing and reading
calls themselves.

Generally, you can do nothing with a file until you have
opened and assigned it a channel number with one of these
commands: .OPEN, . EO PEN , .ROPEN,.APPEND, or
.MTOPD. Remember, too, that a file maybe a device such
as $ITI for console input, or a disk file such as MY·
FILE.SR, which can include a directory specifier (eg,
DPl:MYFILE.SR) if you have initialized the directory.

In order of discussion, the file I/O calls are:

. OPEN n

.EOPEN n

.ROPEN n

. APPEND n

.GCHN

.CLOSE n

. RESET

. GPOS n

.SPOS n

.RDLn

. WRLn

. RDS n

.WRS n

.RDRn

.WRRn

.RDB n

Open a file for I/O on channel n .

Open a file for exclusive writing on chan·
nel n.

Open a file for reading only on channel
n.

Open a file for appending on channel n .

Get the number of a free channel.

Close the file on channel n.

Close all files .

Get the position of the file pointer .

Set the position of the file pointer.

Read an ASCII line from a file.

Write an ASCII line to a file.

Read sequential bytes from a file .

Write sequential bytes to a file.

Read a 64·word record.

Write a 64-word record.

Read a series of disk blocks from or to a
file, without a system buffer.

56 ROOS System Reference

.WRBn

.MTOPD n

.MTDIO n

Write a series of disk blocks from or to a
file, without a system buffer.

Open a magnetic tape file for free-form
I/O.

Write or read data to or from a magnetic
tape file in free form.

If RDOS detects an error when it executes an I/O command,
it reattempts the command, if possible, before reporting the
error with code ERFIL.

Input/Output Modes
RDOS provides five basic modes for reading and writing
files:

line
sequential
random record
direct block
free form (tape)

The line and sequential modes are generally used for ASCII
character strings and binary files, respectively. * Random
record mode allows you to read or write 64-word records,
while direct-block 1/0 allows you to transfer a contiguous
group of disk blocks without a system buffer. Free-form
1/0 allows you to read or write free form blocks of data to
magnetic tape.

Line Mode

In line mode, the system assumes that the data you want to
read or write consists of ASCII character strings terminated
by a carriage return, form feed, or null character. RDOS
processes file data line by line, in sequence, from the be
ginning of the file to its end.

In line mode, the system handles all device-dependent ed
iting at the device driver level. Furthermore, reading and
writing never require byte counts, since reading continues
until RDOS reads a terminator and writing proceeds until
the user writes one. The line mode commands include .RDL
(read a line) and. WRL (write a line) .

Sequential Mode

In unedited sequential mode, RDOS transmits data exactly
as it is read from or written to the file or device. This mode
is required for the processing of sequential, binary files. To
use sequential mode, your program must specify the byte
count necessary to satisfy a read or write request. The se
quential mode commands are .RSD (read sequential) and
.WRS (write sequential). - r--
*The RDOS system library contains a module called the Buffer 1/0 Package
that speeds up line and sequential mode operations. The module is described
in application notes.

licensed Material··Property of Data General

In line or sequential modes, your position within a file is
always the position at the end of your last .SPOS, line mode,
or sequential mode command. The first read or write occurs
at the beginning of the file unless your program opened this
file for appending.

Random Record Mode

Random record mode permits random access to fixed-length
records within random or contiguous disk files. The fixed
length of a random record is 1008 words. The system calls
for this mode are .RDR (read a record) and .WRR (write
a record).

Direct Block Mode

Direct block I/O allows you to transfer a continuous group
of blocks in a random or contiguous file without using a
system buffer. RDOS uses sequential memory locations for
this purpose, and transfers only 512-byte blocks of data
between memory and disk. Relative block numbers must be
transferred in an unbroken series. Thus, you may process
the third, fourth, and fifth blocks in a file in a single call,
but not the third, fifth, and sixth blocks. Direct block I/O
can be executed with the system calls .RDB (read a series
of blocks) and .WRB (write a series of blocks). Note that
window mapping, which permits extended, direct block
I/O, can be employed in a mapped system. In this mode,
your program can transfer disk blocks to and from extended
address space via the system calls .ERDB and .EWRB, as
described in Chapter 4.

Free Form Mode

Finally, free form I/O permits you to read or write free
form blocks of data to magnetic tape. In this mode, you
can read or write from two to 4096-word data records; space
forward or backward through one to 4096 data records or
to the start of a new data file; and read the transport status
word. To use free-form I/O, a file must be opened via the
.MTOPD command and its operation directed via call
.MTDIO. The latter cannot be mixed with the .WRL or
.WRS commands on the same tape drive.

Licensed Msterial··Property of Data General

.OPEN
Open a file

Before a program can issue other I/O commands, it must
associate a file to an RDOS channel number. The .OPEN
command associates a file with a channel number and makes
the file available to any user for reading and writing. The
command does not guarantee exclusive use of the file; others
may also have opened the file via .OPEN and modified its
contents. A file must be closed before it can be deleted or
renamed.

There is no RDOS command that reduces the size of a file.
Thus, files never shrink but maintain space for all material
written to them by any user. To remove redundant or useless
material from a file, edit it with the Text Editor utility; or,
using file position and system write calls, overwrite the
useless data with nulls or new material.

Required Input

ACO - Byte pointer to the filename.

ACI - Characteristic disable mask (except for MCA lines).

READR:

MASK:

For every bit set in the mask word, RDOS disables
the corresponding device characteristic for the du
ration of the .OPEN. (See also Table 3.7 under
"File Attribute Commands" earlier in this chapter.)
For example, if you want to read an ASCII tape
without parity checking from the paper tape reader,
you can disable checking by the following:

LOA O,READR
LOA 1,MASK
.SYSTM
.OPEN 3

+ 1*2
.TXT "$PTR"
DCPCK ; DISABLE PARITY

;CHECKING.

RDOS normally restricts console output to 80 columns. If
your terminal is a DASHER ®, you can instruct RDOS to
print the full 132 columns by opening $TTO ($TTO 1) with
disable bit DCC80 set, for example:

LOA 0, Nno
LDA 1, DMASK
.SYSTM
.OPEN n

Nno:

DMASK:

+ 1*2
.TXT

DCC80
"$no"

RDDS System Reference 57

To use system mnemonics like mask and error words, your Possible Errors
program should be assembled with the macroassembler util-
ity. The assembler's symbol table file must include PARU.SR.
In general, you will want to preserve all device character-

AC2 Mnemonic Meaning ,~

istics defined by the system. To do so, insert a SUB 1, 1
instruction before the .OPEN call. 0 ERFNO Illegal channel number.

To open an MCA line for transmit, you must specify a ERFNM Illegal filename.

transmit timeout period, rather than a mask, in ACI. Set
AC 1 to 0 to specify the default timeout period of 655 sec- 12 ERDLE File does not exist.

onds. For a shorter timeout period, set AC1 to 1, specifying
the actual timeout period in the write-sequential call, .WRS. 21 ERUFT Attempt to use channel already in use.

Pass 0 in AC1 to open an MCA line for receiving.
27 ERSPC File space exhausted.

Format

.SYSTM
31 ERSEL Unit improperly selected.

.OPEN n
error return 36 ERDNM Device not in system.
normal return

53 ERDSN Directory specifier unknown.
Variable n becomes the channel number of the file until it
is closed. 57 ERLDE Link depth exceeded.

In a multitask environment, a task that opens a disk file 60 ERFIU File opened for exclusive use (.EOPEN).
previously opened by another task cannot read past the end-
of-file point that existed when it opened the file, even if a 66 ERDNI Directory not initialized.
previous task extends the file. Also note that the .OPEN
system call executes in two parts to allow efficient per- 74 ERMPR Address outside address space.
formance in a multitasking environment. If . OPEN is im- ",-.

mediately followed by a .CLOSE or a .RESET, timing 101 ERDTO Disk timeout occurred.
problems may arise. If a timing problem exists, insert the
command .DELA Y ahead of the .CLOSE or .RESET calls. 102 ERENA No linking allowed (N attribute).
One further point of interest to multitask developers is that
RDOS interleaves line printer output if multiple tasks in the 111 ERDOP Attempted open of an open tape file.
same program write to the printer. If an opened file requires
leader, RDOS outputs it on the .OPEN. If an opened file
requires intervention, RDOS displays the message LOAD
filename, STRIKE ANY KEY.

58 ROOS System Reference Licensed Materlal--Property of Data General

.EOPEN
Open a file for exclusive write access

This command gives you exclusive write access to a file.
Thus, only you can modify a file when you open it via
. EOPEN , although other users may gain read access to it
via the .ROPEN command. RDOS cannot exclusively open
peripheral filenames such as $LPT, although an attempt to
do so will not result in an error. Multiple .EOPENs have
exactly the same effect as multiple .OPENs.

Required Input

ACO - Byte pointer to filename.

AC 1 - Characteristic disable mask.

Format

.SYSTM

.EOPEN n
error return
normal return

Variable n is the file's channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

ERFNM Illegal filename.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel already in use.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

60 ERFIU File already opened for writing.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N attribute).

III ERDOP Attempt to open a file that is already
open.

Licensed Material··Property of Data General

.ROPEN
Open a file for reading only

This system call opens a file for reading only. A program
may gain read-only access to a file that is currently open
as a result of an . EOPEN , .OPEN, or another .ROPEN
command. Thus, several users may access a file for reading
only while one of them has write-access to it. All users
must have closed the file before anyone can delete or rename
it.

Required Input

ACO Byte pointer to filename.

AC 1 Characteristic disable mask.

Format

.SYSTM

.ROPEN n
error return
normal return

Variable n is the file's channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

ERFNM Illegal filename

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel already in use.

32 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N attribute).

III ERDOP Attempt to open an open tape file.

RODS System Reference 59

• APPEND Possible Errors

Open a file for appending
AC2 Mnemonic Meaning ".,-.,

This system call is identical to the .EOPEN command, ex-
cept that it opens a file specifically for appending. If your 0 ERFNO Illegal channel number.
program attempts to read such a file, RDOS returns error
code EREOF (end-of-file), because the file pointer is po- ERFNM Illegal filename.
sitioned after the last byte.

3 ERICD Illegal command for device.
RDOS opens a disk file and appends whatever you write to
it. On a magnetic tape device, RDOS opens the tape file, 12 ERDLE File does not exist.
reads to the end-of-file (EOF), and then writes from that
point. RDOS opens the line printer without a form feed. 21 ERUFf Attempt to use channel already in use.

Note that if you plan a BATCH environment in which a 31 ERSEL Unit improperly selected.
program outputs to, say, file SYSOUT, that file must be
opened for appending, not simply opened. 36 ERDNM Device not in system.

Required Input 53 ERDSN Directory specifier unknown.
ACO - Byte pointer to filename.

57 ERLDE Link depth exceeded.
AC 1 - Device characteristic disable mask.

60 ERFIU File in use.
Format

.SYSTM 66 ERDNI Directory not initialized.

.APPEND n
error return 74 ERMPR Address outside address space.
normal return

101 ERDTO Disk timeout occurred.
,,-.

Variable n is the file's channel number.

102 ERENA No linking allowed (N attribute).

111 ERDOP Attempt to open a file that is already
open.

,.-,

60 RDOS System Reference Llcen8ed Materlat··Property of Data Generat

.-

.-

.GCHN
Get the number of a free channel

This system call returns the number of a free channel in
AC2. Your program can then use AC2 to open a file via
one of the open calls. The command does not open a file
on a free channel, but merely indicates a channel that is
free at the moment. Occasionally, in a multi task environ
ment, you will find that the channel indicated by .GCHN
is no longer free when you issue your open. In this case,
the system returns error ER UFf, indicating that you should
reissue . GCHN to discover another free channel.

Format

.SYSTM

.GCHN
error return
normal return

Upon a normal return, RDOS returns the free channel num
ber in AC2.

Possible Errors

Only one error is possible: its mnemonic is ERUFf, its error
code (returned in AC2) is 21, and it occurs when no channels
are free.

Liceneed Materlal··Property of Data General

.CLOSE
Close a file

A file must be closed after use in order to update its UFD
in the system directory, to delete it, or to release its directory
or device. When you close a file, its channel number be
comes available for other VO. The system calls .RTN, .ERTN,
.BREAK, and .RESET automatically close all channels. In
a multitask environment, it is imperative that all read and
write commands to the same channel be allowed to complete
their execution before issuing the .CLOSE command. The
only exception is when using . CLOSE to abort 110 opera
tions on an MCA or QTY device.

Format

.SYSTM

.CLOSE n
error return
normal return

Variable n is the channel number.

Possible Errors

AC2 Mnemonic Meaning

o ERFNO Illegal channel number.

15 ERFOP Attempt to close a channel not in use.

101 ERDTO Disk timeout occurred.

RDOS System Reference 61

.RESET
Close all files

This command closes all open files after writing any partially
filled system buffers. The .RESET command can be issued
in a multitask environment only when no other task is using
a channel.

Format

.SYSTM

.RESET
error return
normal return

Possible Errors

Only one error is possible. Its mnemonic is EROTO, its
error code (returned in AC2) is 101, and it results when a
disk timeout has occurred.

62 RODS System Reference

.GPOS
Get the current file pointer

This command is used to determine the next character po
sition within a file where program writes or reads will occur.
RODS indicates a relative character position within a file
by a double-precision byte pointer. This two-word byte pointer
contains the high-order portion of the byte address in ACO
and the low-order portion of the byte address in ACI. Bit
15 of the second word indicates the byte selection (left or
right), as shown in Figure 3.1.

o

high order byte address

16w order byte address

14
I 1=R

O=L

15

Figure 3.1 Double-precision byte pOinter

Format

.SYSTM

.GPOS n
error return
normal return

DG·25452

Variable n is the file's channel number. ROOS returns the
pointer position in ACO and AC 1 as just described. It returns
zero if you open a nondisk file on channel n.

Possible Errors

AC2 Mnemonic Meaning

o ERFNO Illegal channel number.

15 ERFDP No file is open on this channel.

Licensed Materlal··Property of Data General

,/

-.

.SPOS
Set the current file pointer

This system call sets the current, system file pointer to a
new character position in preparation for future writing or
reading. It enables you to access characters and lines ran
domly within any block of a given file, and allows you to
read a character after writing or rewriting it by simply back
ing up the pointer to its previous position.

RDOS indicates the relative character position within a file
by the double-precision byte-pointer illustrated in Figure
3.1. If you set the file pointer beyond the end of a file,
RDOS automatically extends its length. If the file is con
tiguous, that is, cannot be extended, RDOS takes the error
return and passes ERSCP in AC2. Only position 0, the file
starting location, can be specified on magnetic tape.

Required Input

ACO - High-order portion of byte pointer.

AC 1 - Low-order portion of byte pointer.

Format

.SYSTM

. SPOS n
error return
normal return

Variable n is the file's channel number.

Possible Errors

AC2 Mnemonic Meaning

o ERFNO Illegal channel number.

15 ERFOP Attempt to reference an unopened file.

64 ERSCP File position error.

licenaed Material··Property of Data General

.RDL
Read a line

This command reads an ASCII line from a file to the area
of user memory that you specify. This are should be 133
decimal bytes in length, and ACO must contain a byte pointer
to the starting byte address within user memory into which
RDOS will read the line.

An . RDL operation terminates normally after RDOS has
read either a carriage return, form feed, or null and trans
mitted it to your program. The system stops reading and
takes the error return if it transmits 133 characters without
detecting a terminator or upon discovering a parity error or
end of file. The operation also terminates if RDOS reads a
preassigned interrupt character from a multiplexed line.

If RDOS is reading from the keyboard ($TTI or $TTI 1), its
controls work as usual unless you have masked DCKEY in
ACI, as discussed under the .GTATR command. Rubout
deletes the preceding character, and backslash (SHIFT-L)
deletes the preceding line, from the keyboard stream. RDOS
echoes all printing characters and ignores line feeds. An
end of file is indicated by pressing CTRL-Z. Note that when
reading from a multiplexed line, ESC also indicates an end
of file .

When the card reader serves as an input device to the .RDL
command an end of file must be indicated by punching all
rows in column 1, that is, multipunching the characters +,
-, and 0 through 9. The Hollerith-to-ASCII translation that
occurs during an .RDL operation assumes the keypunch
codes shown in Appendix B. The operation terminates the
first trailing blank unless your. OPEN command suppressed
DCSTB, causing RDOS to transfer all 80 characters. In this
case, RDOS appends a carriage return as the 81 st character
unless your .OPEN command suppressed DCC80, allowing
the system to process a maximum of 72 characters. RDOS
replaces each illegal character with a backslash.

Note that where card readers are concerned, RDOS ignores
all columns following the EOF. The card reader driver per
mits an unlimited amount of time to elapse until it reads the
next card, thereby permitting the operator to correct pick
errors or insert new card files. Because the driver employs
double buffering, you will lose at least one card image if
you close prematurely; a program must therefore wait until
RDOS reads the last card or end of file to close $CDR.
After closing, the reader can be reopened without loss of
data. and reading may continue. When RDOS reads an end
of-file card, it returns a byte count of 0 along with EREOF.
If another .RDL command is issued, RDOS reads the next
card normally.

For all files and devices, RDOS returns the number of bytes
read, including the terminator, in ACI. If the read terminates

RDDS System Reference 63

because of a parity error, RDOS stores the character having
incorrect parity as the last character read and clears the parity
bit. The algorithm for computing the byte pointer to the bad
character is (ACO) + (ACl) - 1, where (ACO) means the
contents of accumulator.

Required Input

ACO - Byte pointer to receiving buffer.

Format

. SYSTM

.RDLn
error return
normal return

Variable n is the channel number of the file from which
RDOS will read. After a normal return, ACI contains the
number of bytes read.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICE Illegal command for device.

6 EREOF End of file.

7 ERRPR Attempt to read a read-protected file.

15 ERFOP Attempt to reference a file not open.

22 ERLLI Line limit (133 nonterminator charac-
ters) exceeded.

24 ERPAR Parity error; often occurs on tape due
to dirty heads.

30 ERFIL File read error; often signals a bad tape
or a tape drive with dirty heads.

33 ERRD Attempt to read into system area.

34 ERDIO File accessible by direct block 110 only.

47 ERSIM Simultaneous reads from the same mul-
tiplexor (ALM/QTY) line.

74 ERMPR On mapped systems only: address out-
side address space.

101 ERDTO Disk timeout occurred.

106 ERCLO Channel closed by another, task.

64 ROOS System Reference

Write a line

This command, the counterpart of .RDL, writes an ASCII
line to the file open on a specified channel. ACO must
contain a byte pointer to the starting byte address within
user memory from which characters will be written. Writing
commences at the start of the file unless you have moved
the file pointer via the . SPOS command or opened the file
via . APPEND .

Normal operation stops when the system detects a null,
carriage return, or form feed. Under abnormal circum
stances, the system stops writing after it transmits 132 dec
imal characters without detecting a terminator as the 133rd
character.

Upon termination, AC 1 contains the number of bytes written
from your area of memory to the file. The null terminator
does not force a carriage return or line feed. A carriage
return generates a line feed on ouput, provided the device
characteristics so dictate.

Required Input

ACO - Byte pointer to starting byte address.

Format

.SYSTM

.WRLn
error return
normal return

Variable n represents the channel number of a file to which
the system will write.

Licensed Materlal··Property of Data General

i-----"

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file when writing to a contig-
uous file.

10 ERWPR Attempt to write to a write-protected
file.

15 ERFOP Attempt to write to a file not opened.

22 ERLLI Line limit (132 characters).

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block I/O only.

47 ERSIM Simultaneous writes to the same mul-
tiplexor (ALM/QTY) line.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA receiver on this channel is-
sued no transmit request.

104 ERSRR MCA transmission terminated by re-
ceiver (short receive request).

106 ERCLO Channel closed by another task.

* If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Materlal··Property of Data General

.RDS
Read sequential

In sequential mode, RDOS transmits data exactly as read
to or written from a file. This mode must be used for binary
data, and is often helpful for MCA transmissions. The com
mand instructs RDOS to read data exactly as it appears in
the file, unless it is reading from the system console. In this
case, RDOS sets the parity bits to zero. Note that in read
sequential mode, the system does not recognize CTRL-Z
from the console as an end-of-file character. Upon detecting
a legitimate end of file, RDOS returns the partial byte count
in ACI.

Where card readers are concerned, RDOS reads the card in
image binary, using each of two bytes to read a single
column and packing them as shown in Figure 3.2. Each
variable d in this figure will be 1 for every punched hole
in the column. A byte pair containing the word 100000
signifies an end of card (EOC). Thus, to read two entire
80-column cards one at a time, you would issue two suc
cessive .RDS commands for 162 bytes each. If you request
only 160 bytes for each read, the second .RDS command
returns the first end-of-card word, along with the first 79
columns of the second card.

Byte .. -1-- 2 -
I

Row I
Number 1211 0 12 3 4 5 6 7 8 9

I
I

Bit o 1 2 3 4 5 6 7 18 9 1 1 1 1 1

I 0 2 3 4 5

0 0 o 0 d d d did
1

d d d d d d d

Figure 3.2 Image binary card reading SD·00430A

Required Input

ACO - Byte pointer to the starting byte address within user
memory into which RDOS will read data.

AC 1 - Number of bytes to be read.

Format

.SYSTM

.RDS n
error return
normal return

Variable n is the channel number of a file from which data
will be read.

RDOS System Reference 65

Possible Errors .WRS
Write sequential

AC2 Mnemonic Meaning

This command, the counterpart of .RDS, writes data ver,:"

0 ERFNO Illegal character number. batim from memory to a file. Note that RDOS recognizes
no character as an end of file in this mode. The system

3 ERICD Illegal command for device. commences writing at the start of the file unless you have
moved the file pointer via the . SPOS command or opened

6 EREOF End of file. the file via . APPEND.

7 ERRPR Attempt to read a read-protected file. Required Input

ACO - Byte pointer to the starting address of the data within
15 ERFOP Attempt to reference a file not open. user memory.

24 ERPAR Parity error on tape, often caused by ACI - Number of bytes to be written.
dirty heads.

Format
30 ERFIL File read error, often caused by bad .SYSTM

tape or dirty heads. .WRSn
error return

33 ERRD Attempt to read into system area. normal return

34 ERDIO File accessible by directory block 1/0 Variable n is the channel of a file to which data will be

only. written. To transmit (write) data over an MCA line, you
must pass an even byte pointer in ACO and specify an even

47 ERSIM Simultaneous reads from same multi- byte count in ACl. If you opened this MCA channel and

plexed line. specified a nondefault retry period in AC I, you must also
define the length of the timeout period in the left byte of

/~'
74 ERMPR Address outside address space. AC2. Each retry takes about 200 milliseconds. Accepta~le

values for AC2 range from I to 3778 , If the left byte of

101 ERDTO Disk timeout occurred. AC2 is 0, RDOS allots the maximum transmit retry period
of approximately 655 seconds.

103 ERMCA The MCA transmitter issued no trans-
mit request. To send an end of file over an MCA line, set ACI to 0;

RDOS disregards the contents of ACO. Chapter 8 describes
106 ERCLO Channel closed by another task. MCA programming in greater depth.

66 ROOS System Reference Licensed Materlal··Property of Data General

... -

/-

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file when writing to a contig-
uous file.

10 ERWPR Attempt to write to a write-protected
file.

15 ERFOP Attempt to write to a file not open.

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block VO only.

47 ERSIM Simultaneous writes to the same QTY/
ALM line.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA receiver on this channel is-
sued no receive request.

104 ERSRR MCA transmission terminated by re-
ceiver (short receive request).

106 ERCLO Channel closed by another task.

113 ERNMC No outstanding receive request.

* If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Material··Property of Data General

.RDR
Read random record

This system call allows a program to read one 64-word
record in either a random or contiguous disk file. Each disk
block contains four, 64-word records numbered 0, 1, 2, and
3 in the first block of a file; 4, 5, 6, and 7 in the second
block; and so on. These numbers need only be considered
when issuing the random record commands. To read or write
blocks, that is, four records at a time, you would use system
calls .RDB or .WRB, and the commands .RDL, .WRL,
. RDS, or . WRS to read or write lines.

Required Input

ACO - Destination memory address.

AC1 - Record number. (Record numbers start with 0.)

Format

.SYSTM

.ADA n
error return
normal return

Variable n is the channel number of a file from which data
will be read.

Possible Errors

AC2 Mnemonic Meaning

o ERFNO

3 ERlCD

6 EREOF

7 ERRPR

15 ERFOP

30 ERFlL

33 ERRD

34 ERDIO

74 ERMPR

101 ERDTO

Illegal channel number.

Illegal comand for device.

Attempt to read past the end of a con
tiguous file.

Attempt to read a read-protected file.

No file is open on this channel.

File read errors, usually due to bad tape.

Attempt to read into system area.

File accessible by direct block VO only.

Address outside address space.

Disk timeout occurred.

ROOS System Reference 67

.WRR
Write random record

This command writes a 64-word record from memory to a
randomly or contiguously organized disk file. RDOS writes
64 words to the record number specified, starting from the
address that you pass in ACO.

Required Input

ACO - Memory address.

AC 1 - Destination record number.

Format

.SYSTM

.WRRn
error return
normal return

Variable n is the channel number of a file to which data
will be written.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF Atempt to write past the end of a con-
tiguous file.

10 ERWPR Attempt to write to a write-protected
file.

15 ERFOP Attempt to reference a file not opened.

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block 110 only.

74 ERMPR Address outside address ·space.

101 ERDTO 'Disk timeout occurred.

* If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

68 ROOS System Reference

.RDB or .WRB
Read or write a series of disk file blocks

These system calls, for direct block 1/0, are used to transfer
blocks to or from random or contigous files. RDOS employs
no system buffers for the transfer. Blocks in random and
contiguous disk files have a fixed length of 256 decimal
words, and are numbered sequentially from O. Thus, an
.RDB command issued for the first block in a file would
transfer the 64-word records numbered 1, 2, and 3, as de
scribed earlier under system call .RDR.

Required Input

ACO - Starting memory address for the block transfer.

AC 1 - Starting relative block number in the series to be
transferred.

AC2 - The left half of AC2 must contain the number of
blocks to be transferred. The right half of AC2 must
contain the channel number if you specify channel
77.

Format

.SYSTM

.ROB or .WRB n
error return
normal return

Variable n represents the channel number.

Licensed Materlal··Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

4 ERSVI Not a random or contiguous file.

6 EREOF* End of file.

7 ERRPR File is read-protected (.RDB).

10 ERWPR File is write-protected (. WRB).

15 ERFOP File is not open.

27 ERSPC* Disk space is exhausted.

30 ERFIL File read error, usually on magnetic
tape due to a bad tape or dirty head.

33 ERRD Attempt to read into system area
(.RDB).

40 EROVA File not accessible by direct block 110.

74 ERMPR On mapped systems only: address out-
side address space.

101 ERDTO Disk timeout occurred.

* Upon detection of error EREOF or ERSPC, RDOS returns the code in
the right byte of AC2; the left byte contains the partial read or write count.

If you write to a sequential or random file and get ERSPC, you must delete
the file in order to recover the disk space allocated to the file before the
error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Malerial··Property of Dala General

.MTOPD
Open a tape unit and file for free format 110

Before you can read or write in free format on magnetic
tape, the device must be opened and associated with a chan
nel. The .MTOPD command performs this function. It is a
global system call, allowing access to all files on the spec
ified device after it is issued.

To position a free format tape to a specific file, pass the
filename to .MTOPD in the form MTn:m, where n is the
drive number, and m, the file number. After completing all
operations on a tape drive, remember to release it.

Required Input

ACO - Byte pointer to the magnetic tape file specifier.

AC I - Characteristic disable mask, as described earlier un
der system call .GTATR.

Aside from the tape file specifier, these parameters are iden
tical to those for the .OPEN command. To learn more about
device characteristics, see the descriptions of the .OPEN
and . GT A TR commands earlier in this chapter.

Format

.SYSTM

.MTOPD n
error return
normal return

Variable n represents the channel number.

RODS System Reference 69

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

ERFNM Illegal filename.

3 ERICD Illegal command for device.

12 ERDLE File does not exist.

21 ERUFf Attempt to use a channel already in
use.

27 ERSPC File space exhausted.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

111 ERDOP Attempted open of an open tape file.

70 ROOS System Reference

.MTDIO
Perform free format I/O

This command provides a direct interface with magnetic
tape units on a machine level. It enables you to read or
write data in variable length records of 2 to 4096 words; to
space forward or backward from 1 to 4096 data records or
to the start of a new data file; and to perform similar,
machine-level operations.Before any of these operations can
be performed, the tape unit must be opened for free format
110 with system call .MTOPD. For information about the
hardware characteristics, see the manual Peripherals, Pro
grammer's Reference Series (DGC No. 014-000632).

Required Input
The following input is required to read the device status
word.

ACO - Command word, with bits 1 through 3 set and all
other bits O.

AC2 - Channel number, if equal to 77.

The following input is required for other .MTDIO opera
tions.

ACO - Memory address for data transfer.

ACI - Command word, subdivided into three fields:

Bit 0 Set to 1 for even parity, 0 for odd
parity.

Bits 1-3 Set to one of these seven command
codes: 0 for reading words;* 1 for
rewinding the tape; 3 for spacing
forward over records or over a file
of any size up to 4096 words; 4 for
spacing backward over records or a
file of up to 4096 records in size; 5
for writing words; 6 for writing end
of file (odd parity for 9-track, even
parity for 7 -track); 7 for reading de
vice status word.

Bits 4-15 Word or record count. If 0 on a space
forward or backward command and
the file is no more than 4096 words,
RDOS positions the tape to the be
ginning of the next (or previous) file
on the tape. If 0 on a read command,
RDOS reads words until it encoun
ters either an end of record or 4096
words. If 0 on a write command,
the system writes 4096 words.

AC2 - Channel number, if equal to 77.

*When reading a 7 -track tape with odd parity, that is, a tape not written i~
on an RDOS system, the controller does not detect the end of file; instead,
it reads the first word in the next record as 007417. Thus, RDOS appends
the first record of each file after the first to the EOF of the previous file.

Licensed Material··Property of Data General

,-
Format

.SYSTM

.MTDIO n
error return
normal return

Variable n represents the channel number.

If no system error is detected during a read status command,
RDOS takes the normal return and AC2 contains a device
status word with one or more bits set. These bits are shown
in Figure 3.3.

When your program issues a read, write, space forward, or
space backward command, the command word in AC 1 con
tains the number of words written or read, or the number
of records spaced. The system returns a word or record
count if it encounters a premature end of file.

bit 0, error (bit 1,3,5,6,7,8, 10, or 14)

bit 1, data late
bit 2, tape is rewinding
bit 3, illegal command

bit 4, high density if set to 1, otherwise, low
density (always 1 for cassettes)

bit 5, parity error
bit 6, end-of-tape

bit 7, end-of-file
bit 8, tape is at load point
bit 9, 1 for 9-track. ° for 7 -track

(always 1 for cassettes)

bit 10, bad tape (or write failure)
bit 11, send clock (0 for cassettes)
bit 12, first character (0 for cassettes)

bit 13, write-protected or write-locked
bit 14, odd character (0 for cassettes)
bit 15, unit ready

Figure 3.3 MTDIO status word bits SD-00540A

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device (ie, im-
proper open).

15 ERFOP Attempt to reference a file not opened.

40 EROVA File not accessible by free form 110.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

Table 3.8 summarizes the possible returns by .MTDIO and
the values passed in ACl and AC2. RDOS sets bit 0 of
TSW (in AC2) when a hardware error occurs, and clears
this bit in the event of a system error. The system retries a
read operation 10 times before taking the error return. For
write errors, it takes the error return after 10 attempts to
backspace, erase a length of tape, and write.

COMMAND RETURN AC1 AC2

Any.MTDIO Error Same as System error
command input code
with a
system error
detected

Rewind Normal Transport
Original input status word

Rewind (tape lost (TSW)
at load point, Error
etc.)

Read Status Normal TSW
Original input

Read Status Error lost TSW

Read, Write Normal
Space For-
ward
Space Back-
ward Word or re-

cord count TSW

Read, Write, Error
Space For- (only after 10
ward, retries in read/
Space Back- write
ward

Write EOF Error Original input TSW
lost

Table 3.8 .MTDIO values returned

RODS System Reference 71

Console 1/0 Commands
This section begins by describing the .GCHAR and .PCHAR
commands, which transfer single characters between your
console and ACO. These calls operate in the manner of a
read or write sequential of one character. They do not affect
the column counter, nor do they provide special character
handling (eg, of carriage returns). Both commands reference
$TTII$TTO or $TTIl/$TTOI; the console is always avail
able to them, and no channel number or open command is
required.

Also discussed in this section are the .GCIN and .GCOUT
commands, which return the name of the console 110 device.

72 ROOS System Reference

.GCHAR
Get a character

This command places a character typed on the console in
ACO. RDOS right-adjusts the character, without parity in
ACO, and clears the left byte of this accumulator. The sys
tem does not echo this character on the console. No 1/0
channel for .GCHAR need be specified to issue the .GCHAR
command.

Format

.SYSTM

.GHCAR
error return
normal return

If the console input buffer does not contain a character, the
system waits.

Possible Errors

Only one error is possible as a result of this command. Its
mnemonic is ERICD, meaning that the console is not in the
system, and RDOS passes code 3 in AC2 when it occurs .

Licensed Materlal··Property of Data General

. ~ ..

. -

.PCHAR
Put a character

This system call types the character in bits 9 through 15 of
ACO on the console.

Format

.SYSTM

. PCHAR
error return
normal return

Possible Errors

Only one error is possible as a result of this command. Its
mnemonic is ERICD, meaning that the console has not been
defined to the system, and RDOS passes error code 3 in
AC2 when it occurs.

Licensed Material--Property of Data General

.GCIN
Get the input console name

This command returns the name of the current console input
device: $TTI for the background program, and $TTIl for
the foreground program. The. GCIN command and its coun
terpart, .GCOUT, are useful in dual-ground systems be
cause they allow each program to select the appropriate
console for its ground at runtime .

Required Input

ACO - Byte pointer to a six-byte area that will receive the
console name.

Format

.SYSTM

.GCIN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

33 ERRD

74 ERMPR

On unmapped systems only: attempt to
read into system area .

Address outside address space.

ROOS System Rpference 73

.GCOUT
Get the output console name

This command returns the name of the current output con
sole: $TIO for the background program, and $TTOI for
the foreground program.

Required Input

ACO - Byte pointer to the six-byte area that will receive
the console name.

Format

.SYSTM

.GCOUT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

33 ERRD

74 ERMPR

Attempt to read into system area (un
mapped only).

Address outside address space.

74 RDDS System Reference

Memory Allocation Commands
Excluding the Task Scheduler and octal locations 0 through
15, RDOS resides in upper memory and excutes user pro
grams in lower memory. Figure 3.4 diagrams RDOS mem
ory as it exists in unmapped systems.

RDOS system and
buffers

Unused address space
I---------~~NMAX (first unused

location above the
executing program)

User program

~--------~168
RDOS

~-------------~O

Figure 3.4 Unmapped background memory SD-00432A

The highest memory address available (HMA) is usually
the first word below an unmapped RDOS system. However,
the RLDR symbol table also occupies upper memory if the
global switch /S was included in the RLDR command. In
this case, the HMA falls directly below the symbol table;
otherwise, RLDR loads its table just above your program
by default.

This section discusses the . MEM and . MEMI commands,
which allow you to monitor and control the amount of mem
ory available to your programs.

Licensed Material--Property of Dsta General

.MEM
Determine available memory

This command returns the current value of NMAX in AC1,
and the value of HMA in ACO. It can be followed with a
SUB 1,0 instruction to determine the amount of additional
memory available to your program.

In unmapped systems, HMA represents the location im
mediately below the bottom of RDOS-or the bottom of
the symbol table, if the program was loaded or bound with
the global /S switch. In mapped systems, HMA is the highest
logical address available in the current program space.

Format

.SYSTM

.MEM
error return
normal return

Possible Errors

None.

Licensed Material--Property of Oats General

.MEMI
Change NMAX

This system call allows a program to increase or decrease
the value of NMAX. It updates the value of NMAX in the
UST (in USTNM), and returns the new value of NMAX in
AC 1. RDOS does not permit an adjustment to NMAX that
would cause its value to exceed HMA + 1. Nor does the
system check NMAX against the original value that RLDR
determined for it.

A program that requires memory space above its current
NMAX can invoke the . MEMI command to allocate the
number of words needed. RDOS uses the value of NMAX
to determine the amount of memory to save if it suspends
a program. Generally, NMAX should be updated even for
temporary storage that exceeds its current value. Otherwise,
the stored program may be suspended without enough in
formation to continue. For the largest possible save file,
NMAX must be a value less than or equal to 77416. As a
general rule, each program should request only the amount
of memory that it requires, and should release memory space
when needed.

Required Input

ACO - The incremet (positive) or decrement (in two's com
plement) of NMAX.

Format

.SYSTM

.MEMI
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

26 ERMEM

74 ERMPR

Attempt to allocate more memory than
available.

Address outside address space.

RDOS System Reference 75

Device Access Commands
This section describes the .DEBL and .DDIS commands,
which enable or disable device access at the machine level,
and the .RDSW command, which permits a program to read
the position of the front panel switches or the contents of
the switch register.

In mapped RDOS systems, the map unit traps if a user
program attempts to access system devices such as the CPU
or floating point unit (FPU). System call .DEBL makes it
possible for a program to access a system device. It should
be used carefully, however, since it circumvents the map
unit's safeguards. Instructions such as INTDS or 10RST,
for example, can deactivate the system if access to the CPU
is enabled.

The .DEBL command must be used in any system with
floating point hardware and programs, running in two grounds,
that use floating point arithmetic. Each program in such a
system must enable access to the FPU so that the system
can save and restore it.

In mapped NOV A systems, the .DEBL command can be
issued from either ground to device code 75 or 76. The call
enables access to all three FPU devices (codes 74, 75, 76).
It should not be issued to device code 74 in a NOVA system.

In ECLIPSE systems, programs enable access to the FPU
by issuing the .DEBL command to device code 74, unless
a device such as the I/O bus is already wired to device codes
74, 75, or 76. If yours is an ECLIPSE system in which only
one ground uses floating point arithmetic and a device is
wired to codes 74, 75, or 76, programs can access these
devices via system call .IDEF as explained in Chapter 7.

Similarly, if your system has an optional interger MPYI
DVD and both programs need to use it, they must enable
access via the .DEBL command, and then save and restore
the MPY/DVD. In an unmapped system whose grounds will
not access the FPU, the device access calls .DEBL and
.DDIS are no-ops, and take the normal return. In any sys
tem, it is recommended that the .DEBL command be issued
for the FPU before using it.

76 ROOS System Reference

.DEBL
Enable user access of a device

This system call permits a program to reference any device
on a machine level; it bypasses the normal system safe
guards, in order to do so, and should be used carefully for
that reason. The command is a no-op in unmapped systems
except for hardware FPUs, as noted earlier.

Required Input

ACO - Device code of the device to be accessed.

Format

.SYSTM

.DEBl
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERDNM, meaning that the device code in ACO
exceeds 77 octal. The system passes error code 36 in AC2
as a result.

Ucensed Material··Property of Data General

,.-

.DDIS
Disable user access of a device

This system call, the complement of the .DEBL command,
prevents further machine-level access of a device in the
system. Thus it restores the system safeguards removed if
a .DEBL command was issued previously. The comma!1d
is a no-op in unmapped systems, except as noted earlier.

Required Input

ACO - Device code of the device to which user access will
be disabled.

Format

.SYSTM

.DDIS
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERDNM, meaning that the device code exceeds
77 octal, and RDOS passes error code 36 in AC2 when it
occurs.

licensed Material··Property of Data General

.RDSW
Read the front panel switches or register

This system call allows a program to read the position of
the front panel switches or the contents of the switch reg
ister. RDOS returns the switch configuration in ACO, where
bit 0 equals switch 0, bit 1 equals switch 1, and so forth.
To locate the contents of the switch register in a computer
with a virtual console, consult the Internal Calls table in the
Programmer's Reference guide for your CPU.

Format

.SYSTM

.RDSW
error return
normal return

Possible Errors

None.

RDOS System Reference 77

Clock and Calendar Commands
RDOS provides four commands to keep track of the time
of day and the current date. It stores dates as days from
December 31, 1967, where day one is January 1,1968. The
24-hour clock can be set by passing binary hours, minutes,
and seconds in three accumulators

In order of discussion, the clock and calendar commands
include:

.GTOD Get the current time.

.STOD Set the time of day.

. GDAY Get the current date .

. SDAY Set today's date .

78 RDOS System Reference

.GTOD
Get the time of day

This command causes RDOS to pass the current time in
binary form. The system returns seconds in ACO, minutes
in AC 1, and hours in AC2 according to 24-hour format.

Format

.SYSTM

.GTOD
error return
normal return

Possible Errors

None.

Licensed Materlal··Property of Data General

,-

.STOD
Set the time of day

This command sets the system clock to a specific hour,
minute, and second when the user passes seconds in ACO;
minutes in ACl; and hours, according to 24-hour format,
in AC2. All values passed must be in binary form.

Format

.SYSTM

.STOD
erorr return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERTIM, signifying an illegal time of day, and the
system passes error code 41 in AC2 when it occurs.

Licensed Material-·Property of Data General

.GDAY
Get today' s date

This command causes the system to return the number of
the current month, day and year. RDOS returns the month
in AC 1, the day in ACO, and the current year-less 1968-
in AC2.

Format

.SYSTM

.GDAY
error return
normal return

Possible Errors

None.

RDOS System Reference 79

.SDAY
Set today's date

This command sets the system calendar to a specific date.
The system increments the date when the time of day passes
23 hours, 59 minutes, and 59 seconds. This routine applies
to the years 1968 to 2099.

Required Input

ACO - Number of the day within the month.

ACI - Number of the month where January is month one.

AC2 - Number of the current year less 1968.

Format

.SYSTM

.SDAY
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERTIM, signifying an illegal day, month or year,
and RDOS returns error code 41 in AC2 when it occurs.

80 RDOS System Reference

Spooling Commands
SPOOL is an acronym for simultaneous peripheral operation
on line. RDOS automatically spools data output to devices
$DPO, $LPT, $LPT1,$PTP, $PTP1, $TTO, $TT01, $TTP,
and $TTPI. Spooling to plotter devices $PLT and $PLTI
must be explicitly enabled.

The system performs spooling by queuing data on disk for
one or more spoolable devices to receive, leaving the CPU
available for further processing. This procedure occurs only
when no other system operations are ready, and is controlled
by means of the system calls described in this section. In
order of discussion, they are the .SPKL, .SPDA, and .SPEA
commands.

Spooling requires that you include, during system genera
tion, at least two stacks for a single-program environment,
and at least three system stacks for a dual-program envi
ronment. All spooling commands become inoperative if the
number of stacks specified is insufficient for RDOS to ex
ecute them. Spooling also requires disk buffering, an op
eration for which RDOS dynamically allocates space from
the master directory. The system temporarily disables spool
ing if it requires more disk space for its buffers than is
currently available. Spooling operations can be re-enabled
when more disk space is free.

Licensed Materlal··Property of Data General

.~
/

,,,,.-....,

.SPKL
Stop a spool operation

This command halts a current spool operation for a given
device. All data on the output queue is forfeited as a result.

Required Input

ACO - Byte pointer to the name of the device receiving
spooled data.

Format

.SYSTM

. SPKL
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

3 ERICD Illegal command for device.

36 ERDNM Device not in system.

74 ERMPR Address outside address space.

Licensed Material··Property of Data General

.SPDA
Disable Device Spooling

This command stops a device from spooling its output. If
issued while a device is spooling, execution is delayed until
RDOS has completed the spooling operation. Data output
to the device before the spooled data has been exhausted
will itself be spooled, delaying execution of the .SPDA
command even longer.

Required Input

ACO - Byte pointer to the device for which spooling will
be disabled .

Format

.SYSTM

.SPDA
error return
normal return

Possible Errors

AC2 Mnemonic

ERFNM

3 ERICD

36 ERDNM

74 ERMPR

Meaning

Illegal filename.

Illegal command for device.

Device not in system.

Address outside address space.

RDDS System Reference 81

·SPEA
Enable device spooling

This system call enables spooling after it has previously
been disabled for a given device. RDOS itself may have
disabled spooling because of'insufficient disk space, or a
user may have stopped spooled operations with system call
.SPDA or CLI comand SPDIS.

Required Input

ACO - Byte pointer to the device name.

Format

.SYSTM

.SPEA
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

3 ERICD Illegal command for device.

36 ERDNM Device not in system.

74 ERMPR Address outside address space.

82 RDOS System Reference

Keyboard Interrupts
Programs that run under RDOS can be interrupted by typing
certain control characters from the console. This book rep
resents control characters as CTRL-x, where x is an alpha
betic character that is pressed simultaneously with the CTRL
pad on your keyboard. Typing CTRL-A or CTRL-C inter
rupts a background program from the console, while typing
CTRL-F halts a foreground program from the background
console.

The control characters CTRL-A and CTRL-F work abruptly:
they halt program execution in their respective grounds, save
nothing, and pass control to the higher-level program
generally the CLI. The control character CTRL-C writes
the current core image to disk file BREAK.SV-{)r to
FBREAK.SV, if you issued CTRL-C from the foreground
console-and passes control to the CLI. The system returns
the message -INT to your console after executing CTRL
A, or the message BREAK after executing CTRL-C. Chap
ter 6 explains the effects of CTRL-F in more detail.

Interrupts can also be programmed with the aid of the system
calls described in this section. In order of discussion, they
are:

. BREAK

. .ODIS

.OEBL

.INTAD

Interrupt a program and save the state of
main memory.

Disable console interrupts.

Enable console interrupts .

Assign a task to service keyboard inter
rupts.

To pass control to a program other than the CLI after a
keyboard interrupt, you must set up its user status table, or
UST, as described next. Note that processing of the .BREAK
command is invalidated after an exceptional status condi
tion.

licensed Materlal··Property of Data General

Defining Interrupt Routines
For each program level, the system creates a user status
table (UST). Each UST is 248 words long and resides in
user address space, starting at location 400 octal. A UST
includes two words, USTIT and USTBR, which contain
addresses for interrupt routines that service CTRL-A and
CTRL-C. Word USTIT contains the address of the routine
that gains control after you enter CTRL-A, while word
USTBR holds the address of the routine for CTRL-C. Both
words are initialized to -1 when you load a program. This
number must be changed in order to specify your own in
terrupt routines. Note, however, that the value of word
USTBR is set to zero whenever ROOS passes control to its
address as a result of a user trap. Thus, if a program is to
receive control at address USTBR after traps, it must reset
that address after each trap occurs. Chapter 5 describes the
user status table in more detail.

If word USTIT contains -1 when you hit CTRL-A, or if
word USTBR holds -1 when you type CTRL-C or issue
the .BREAK command, the system closes all channels on
the current level and loads the next higher level program.
Then ROOS checks this level's UST for the address of an
interrupt routine; it will not pass control to the address of
a user-defined break routine if that adddress is less than 16
octal. The system continues this process until it reaches a
program and level whose UST contains the address of an
interrupt routine. If it reaches the CLI on level 0, it uses
the CLI's routine. If you have chained from the CLI, how
ever, and the new program at level 0 contains no address
for an interrupt routine, the system halts in an exceptional
status condition as explained in Appendix E.

During its search for the address of an interrupt routine, the
system checks each program level for a TCB queue. If the
queue is missing-perhaps because you accidentally over
wrote it or because it is in user address space-the system
skips this program and examines one at the next-higher
level.

After finding a program with words USTIT or USTBR set
to an address other than - 1, RDOS checks word USTIA,
also contained in the UST, to find a task's TCB address.
Although the loader initializes word USTIA zero it may
contain a TCB address under certain conditions. '

licen8ed Material··Property of Data General

If word USTIA contains zero, the system appropriates the
TCB of the task (pointed to by UST AC) whose priority is
currently highest; transfers that task's PC to temporary stor
age (TTMP in the TCB); and places the UST's interrupt
address in TPC. (TPC is the program storage counter in the
TCB.) Control then passes to the scheduler, which launches
the task of highest priority. Since the UST's interrupt ad
dress is placed in TPC of the highest priority task, ROOS
executes the interrupt routine. (A single-task program is
itself the highest priority task.) Figure 3.5 shows a program
with an interrupt handler.

START: LDA 2, USTP
LDA 0, .SRKA

STA 0, USTIT, 2

; The main program follows here.

MAIN:

; Put UST address in AC2.
; Pointer to address of
; CTRL-A handler.
; Store CTRL-A address
; in USTIT.

; CTRL-A handler, whose code will be
; executed on CTRL-A.

SRKA:

.SRKA: SRKA

Figure 3.5 Program with interrupt handler

RDOS System Reference 83

If a task issues system call .INT AD before the interrupt,
RDOS finds a nonzero value in word USTIA. This value
is. the issuing task's TCB address. RDOS then readies the
issuing task and stores the value of USTIT or USTBR in
its TPC. Next, the system disables further interrupts via
CTRL-A or CTRL-C, and passes control to the Task Sched
uler. When the .INTAD task gains control, it executes the
appropriate interrupt service and reenables console inter
rupts-if desired-by issuing system calls .INTAD or .OEBL,
described later in this section. Note that your main program
should not issue the .INT AD command unless you want it
to suspend itself. Figure 3.6 shows a program containing
an .INTAD task, while Figure 3.7 shows the logic of pro
gram interrupts in flow chart form.

The break file created by an interrupt via CTRL-C or the
.BREAK command is a save file. This file contains the
current state of main memory, from SCSTR (the start of
save files, location 16) through the highest of NMAX or
the start of the symbol table, SST. RDOS creates the break
file in the current directory under the filename BREAK.SV,
or under FBREAK.SV if the foreground program issued a
.BREAK command. The system deletes any existing break
file before writing a new one. If RDOS cannot write a break
file, possibly because it lacks sufficient file space on disk,
control passes to the address specified in USTBR less one
location, and the system returns an error code in AC2. If
disk space is insufficient for a new break file, RDOS uses
the available disk blocks but lists this file as zero bytes. To
release these blocks, delete the file.

84 ROOS System Reference

; The main task creates the .INTAD task and
; initializes the CTRL-A processing address.

START: SUB 0,0
LDA 1, .INTSK
. TASK
JMP ER
LDA 2, USTP
LDA 0, ,ROUT1
STA 0, USTIT,2

;0 priority for .INTAD task ..
; Add of .INTAD task.
; Create the .INTAD task .
; Mandatory.
; Put UST address in ·AC2.
; Name of CTRL-A routine.
; Put CTRL-A routine in address
; of .INTAD task in USTIT.

; The main program follows here.

MAIN:

.INTSK: INTSK

.ROUT1: ROUT1

; This is the INTAD task.
INTSK: .SYSTM

.ROUT1:

.ER:

.INTAD

JMP ER
JMP INTSK

JMP INTSK

.SYSTM

.ERTN
JMP.

. END START

; On program execution, the .INTAD
; task issues .INTAD, suspending
; itself until CTRL-A is entered.
; System never takes error or
; normal return from .INTAD
; On CTRL-A, the .INTAD task
; executes this code.

; After performing its routine, the
; .INTAD task reissues .INTAD,
; thereby suspending itself and
; reenabling CTRL-A interrupts.

; If program reads from console,
; error handler must pass EREOFs,
; since CTRL-A and CTRL-C supply
; EOFs to console .

Figure 3.6 Program with .INTAD task

Licensed Materlal··Property of Data General

/".-.

. -

Get highest
priority task's

TCB.

Put task's old PC
in TTMP.

Put USTIT (USTBR)
contents into

TPC.

No

*If break fails, USTBR-1 is placed in TPC.

Figure 3.7 Program interruption logic sequence

Licensed Material--Property of Data General

Yes

Yes

Go to next
higher level.

Disable further
CTRL A (CTRL C)

Interrupts.

Ready the .INTAD
task; place contents
of USTIT (USTBR) in

TPC* .

RODS System Reference

SD-00753

85

Although the break file is, in essence, a snapshot of main
memory's current state, the file is not directly executable;
it is generally useful for debugging. Before attempting to
execute it, you must consider how the interruption generated"
by CTRL-C or the . BREAK command has affected the
system:

1. It closed all open channels, requiring that you reopen
them if needed by the break file.

2. It purged all .DELA Y commands, yet their tasks remain
suspended.

3. It removed all user-defined clocks and interrupt devices,
which must now be redefined if you require them.

4. It destroyed all read-operator messages.

5. It disabled your access to all devices enabled via the
.DEBL command, including the floating point unit.
Access must be reenabled if the break file needs these
devices.

Keyboard interrupts are enabled by default when you exe
cute a program. RDOS provides two system calls, .ODIS
and .OEBL, to disable or reenable further keyboard inter
rupts. Neither call affects the .BREAK command, which
performs the same operation as CTRL-C. To restore key
board interrupts after an .INT AD operation-and any in
terrupt via CTRL-A, CTRL-C, or the .BREAK command
the .INT AD task must issue the. OEBL command or another
call to .INT AD.

86 ROOS System Reference

.BREAK
Interrupt program and save main memory

This system call is operationally equivalent to typing CTRL
C on the console. It saves the state of memory in save file
format from location 16 to the highest of NMAX or the start
of the symbol table, SST. The filename used is BREAK.SV,
or FBREAK.SV if the command was issued by the fore
ground program). Any previous break file is deleted before
the new one is written to the current directory, where you
may retain it, save it under another name with the CLI's
SAVE command, or delete it. Generally, because system
breaks close all channels, the break file is useful only for
debugging with a disk editor such as OEDIT or SED IT.

The break file that results from an interruption via CTRL
C or BREAK saves the program in the following state:

• All open channels are closed.

• All .DELAY commands have been purged, while their
tasks remain suspended.

• Blocks and interrupt devices defined by the user are
removed.

• All read-operator messages are lost.

• All user accesses enabled via the .DEBL command are
lost.

Unlike its console counterpart CTRL-C, the .BREAK call
is operative at all times and the .ODIS command, described
later, cannot disable it.

As explained earlier, if word USTBR contains a valid ad
dress, control passes to this address after RDOS writes the
break file to disk. If USTBR contains -1, RDOS searches
the user status tables of programs at progressively higher
levels until it finds a valid address in word USTBR. Control
goes to the first higher-level program whose USTBR con
tains such an address. If RDOS cannot write the break file
due, for example, to insufficient file space, control passes
to the address contained in word USTBR less one location.

Format

.SYSTM

.BREAK

There are no standard error or normal returns.

Possible Errors

AC2 Mnemonic Meaning

27 ERSPC Out of disk space.

60 ERFIN BREAK.SV (or FBREAK.SV) is in use.

101 ERDTO Disk timeout occured.

Licensed Material··Property of Data General

.ODIS
Disable console interrupts

This command disables console interrupts within a program.
When issued from the background, it disables interrupts via
CTRL-A and CTRL-C. When issued from the foreground,
it disables interruptions that result from CTRL-A and CTRL
C, and CTRL-F. Operations that issue from the .BREAK
command cannot be disabled with this system call. The
.OEBL, presented next, reenables console interrupts when
issued from your program.

Format

.SYSTM

.ODIS
error return
normal return

Possible Errors

None.

Licensed Material--Property of Data General

.OEBL
Enable console interrupts

When you first bootstrap a system, RDOS enables console
interrupts via CTRL-A, CTRL-C, and CTRL-F. If you dis
able console interrupts by system call .ODIS or by proc
essing a console interrupt with an .INT AD task, this call
reenables them within its program environment.

Format

.SYSTM

.OEBL
error return
normal return

Possible Errors

None.

RDDS System Reference 87

.INTAD
Reserve a program interrupt task

This system call enables keyboard interrupts and permits
you to assign a task to service interrupts from CTRL-A,
CTRL-C, and the .BREAK command. The servicing task
must issue the .INTAD call; RDOS will recognize it as the
interrupt task. Because the .INT AD command causes the
issuing task to suspend itself, the servicing and main tasks
are generally not the same; that is, the main program or
task should not issue this command. RDOS uses the .INT AD
task (instead of a program task's TCB) for interrupts, thereby
preserving the current program environment aside from any
system call executing when the interrupt occurs.

Format

.SYSTM

.INTAD
error return
normal return

Possible Errors

None.

88 RDOS System' Reference

Summary
This section summarizes all commands discussed in this
chapter in Table 3.9.

System Call

.APPEND

.BREAK

. DELAY

. DELET

. DIR

.DUCLK

.EOPEN

. EQIV

.ERTN

. GCHAI1

.GCHNi

',' .. ;' "~I '

: Createia' $~4~~ntjalfile.
Disableuser'access toad~vice in a mapped
system.' '

Enable: user aCcess to. a (mapped) system
device.

Delay :theexecutioq of a task .
) '.' "

Delete a file .

Change the currrent directory .

Define a user clock!

Open~ file for reading ~nd writing by one
user only. .

Assfgn:a teimporaryname to a device .

On ~ri ,'error,: return' from program and de
scrib~ ;error, (if ito CUI).

Getc~ara#~r ~rom the console .
,:, ",I

Get ih~i nu~ber of a free channel.
,·1 •. , l'

Table 3.9 System call summary

Licensed Material .. Property of Data General

System Call Function System Call Function ,.-
. GCIN Get the operator input console name . .RDSW Read the console switches.

. GCOUT Get the operator output console name. .RENAM Rename a file .

. GDAY Get today's date. .RESET Close all files .

. GDIR Get the current directory name . . RLSE Release a directory or device .

.GPOS Get the current file pointer. .ROPEN Open a file for reading only by one or more
users.

.GSYS Get the name of the current operating sys-
tem. . RSTAT Get a resolution file's statistics.

. GTATR Get file attributes. .SDAY Set today's date .

. GTOD Get the time of day. .SPDA Disable spooling .

. IDEF Identify a user device . . SPEA Enable spooling .

.INIT Initialize a device or a directory. . SPKL Delete the current spool file .

·.INTAD Define a program interrupt task. .SPOS Set the current file pointer.

. L1NK Create a link entry. .STAT Get a file's statistics .

.MDIR Get the logical name of the master device. . STOD Set the time of day .

. MEM Determine available memory . .ULNK Delete a link entry.

. MEMI Change NMAX. .UPDAT Update the current file size . -.

. MTDIO Perform free format 1/0 on tape or cassette . .VMEM Determine the number of memory blocks.

. MTOPD Open a magnetic tape or cassette for free .WRB Write one or more 256-word blocks to disk .
format 1/0.

. WRL Write a line .
.ODIS Disable keyboard interrupts for this console.

.WROPR Write an operator message .
. OEBL Enable keyboard interrupts for this console.

. WRR Write a random record .
.OPEN Open a file for reading and/or writing by one

or more users . .WRS Write sequential bytes.

. OVLOD Load a user overlay into memory. Table 3.9 System call summary (continued)

. OVOPN Open a user overlay file .

. OVRP Replace an overlay file .

.PCHAR Write a character to the console .

. RDB Read one or more disk blocks .

. RDL Read a line .

. RDR Read a random record.

. RDS Read sequential bytes .

Table 3.9 System call summary (continued)

Licensed Material··Property of Data General ROOS System Reference 89

.- Chapter 4

Extending User Address Space

Occasionally a program will require more memory than is
available in the computer. This chapter introduces the fa
cilities that ROOS provides for augmenting the limits of
main memory, and explains how to use them. Its two major
sections cover the following subjects:

• Program swapping and chaining

• User overlays

• Memory protection

• Virtual user overlays

• Window mapping

• Extended direct block 110

All system calls described in these sections are summarized
at the end of the chapter in table form.

Program swaps, chains, and user overlays are tools that
effectively extend main memory with disk space. These
tools apply to all systems and applications, and must be
understood in order to write advanced programs in ROOS.

When a program swaps or chains, it calls another program
into execution. Ouring this process, the same areas of your
address space can be used for diverse operations.

Program swapping is executed from one of four ROOS
levels of control, where one level calls another.

Chained programs are called in sequence by a program on
the same level, and overwrite the calling program.

Overlays also operate on one level, but are called in succes
sion by a core-resident root program and placed in a reserved
area (node) of memory.

In any Oata General computer, mapped or unmapped, the
directly addressable memory available to a program cannot
exceed 32K words. Naturally, this depends on the total
amount available in the machine. In a dual-program envi
ronment, each of two programs may use up to 32K of this
space, known as logical address space in mapped systems.

licen8ed M8terial··Property of Data General

Mapped ROOS permits a program in either a single or dual
environment to access memory outside its logical address
space. This supplementary area of memory is called ex
tended address space, or extended memory. The total ad
dress space (both logical and extended) is allotted to a program
in a mapped system via the CLI's SMEM command.

Mapped ROOS offers two programming tools for manip
ulating extended address space: window mapping and virtual
overlays. Window mapping is most useful for extended data
storage, made possible by a window map defined by your
program. It also allows you to transfer 256-word blocks of
data via extended direct block 110. Virtual overlays, like
conventional ones, are most useful for storing subroutines,
and are defined via utility RLOR. Both features can be
implemented in one program.

The tools of memory protection and extended direct block
110 are also available for programming with extended mem
ory, and the sections that discuss them apply to users of
mapped ROOS only.

Program Swapping and Chaining
This section discusses the operations of swapping and chain
ing, along with the system calls that enable you to implement
these operations in your programs. In order of discussion,
the system calls are:

. EXEC

. RTN

.ERTN

Swap or chain a save file into execution .

Return to the next higher level program .

Return from a program swap with the error
status of the calling program.

Any program executing under ROOS can suspend its own
execution and swap in another program, or chain to an
executable segment of itself. Occasionally this book uses
the term push instead of swap. The terms are synonymous,
meaning to execute a program on the next lower level via
the .EXEC command. The CLI command POP, which in
structs ROOS to execute the program on the next higher
level, corresponds roughly to system call .RTN.

ROOS System Reference 91

1
Programs with open multiplexor lines must close them be
fore swapping; otherwise, they will take the error return
from system call .EXEC. Note that any program you plan
to swap or chain must be an executable save file.

Program swaps may exist in up to five levels, where one
level calls for another and the Command Line Interpreter
exists at the highest level, level O. The CLI is merely one
program that RDOS can execute. Its only special property
is that it normally executes at the highest level in the system.
Generally, the utilities supported by the CLI-that is, the
text editors, assemblers, and binder or loader--execute at
level 1. When you execute a program or utility from the
CLI, RDOS commonly swaps the CLI to disk and calls it
back automatically, via the .RTN command, after the pro
gram has completed its execution. Figure 4.1 illustrates the
swapping process.

Alternatively, a large program can be composed of a se
quence of executable segments in which the end of each
segment invokes the beginning of the next, ending with the
CLI. This process, called chaining, occurs on one level.
The length of the entire program is limited only by the disk
space available to it. A program chain can be invoked with
system call .EXEC or, from the console, via the CLI's
CHAIN command. Figure 4.2 diagrams the chaining proc
ess.

When a program issues the .EXEC command, a swap or
chain occurs depending on your input in AC I. If a swap is
specified, RDOS saves a core image of the current program;
brings the new program, specified in ACO, into main mem
ory; and executes this program. The calling program's task
control block (TCB) saves its accumulators, carry, and PC.
The new program can swap itself and execute the original
one by issuing the .RTN or .ERTN commands, or it may
swap to a lower level by issuing system call .EXEC. Any
program can check its current level via the .FGND command
discussed in Chapter 4.

If ACI specifies a chain, RDOS brings the program spec
ified in ACO into core and executes it. The system does not
save a core image of this program. After it has finished,
this program can launch any other into execution via the
. EXEC command.

92 ROOS System Reference

When planning program swaps, make sure that NMAX ac
curately reflects core memory for every program in use.
Remember that during a swap RDOS saves the current core
image up to the higher ofNMAX or SST (start of the user
symbol table). Thus, if your program exceeds NMAX -and
invokes another program, RDOS can save only a portion
of the calling program's memory state; the remainder of the
calling program will be lost. Even if the executing program
does not call another, a break from your console may force
suspension. To avoid these problems, your program should
never use temporary storage at load time above its original
value of NMAX without first instructing the system to al
locate more memory for this purpose. The .MEMIcom
mand, discussed in Chapter 3, performs this. function.

The operations of swapping, chaining, and returning halt
activity in the current program. RDOS terminates calls and
conditions that would not be appropriate in the new program,
most of them involving multitask activity. The following
conditions are terminated when a change of program occurs;
to restore them, refer to the appropriate chapter and system
call, as indicated:

1. A return or chain closes all channels, requiring the new
program to open the channels it needs as described under
InpuUOutput Commands in Chapter 3. When the calling
program's execution resumes after a swap, all channels that
were open when the swap occurred will be open.

2. All $TTI or $TIIl input is halted. The system calls
affecting this condition include .GCHAR, discussed in Chapter
3; .TRDOP, discussed in Chapter 5; and .RDOP, discussed
in Chapter 6.

3. Any system devices enabled for user access via the .DEBL
command (Chapter 3) are disabled. Thus, the new program
must enable access to the hardware floating point unit, if
one is present.

4. Console interrupts are enabled, cancelling any outstand
ing instructions to disable them via the .ODIS command
(Chapter 3).

S. The state of the floating point unit is not preserved .

lIcenaed Material··Property of Data General

~ ..
i •

,.-

6. All interrupt message transmissions are removed. Refer
to the .IXMT command in Chapter 5 for details.

7. If you have defined a user clock or a system delay, it is
removed. Consult the .DUCLK and .DELA Y commands in
Chapter 5 for details.

8. If your system has operator messages, the state of the
OPCOM, discussed in Chapter 5, is lost.

9. All user-defined interrupt service is removed, as is any
mapped system data channel map setting in a mapped sys
tem. See the discussions of .lDEF and .STMAP in Chapter
7 for details.

R
MYSWAP)
R ~

.TITL MYSWAP
I
I

SUB 1,1
LOA 0, byte pointer to LEVEL2.SV
.SYSTM
.EXEC

I ! I
I

- f- .RTN

JMP ERR .TITL LEVEL2
I

.END I

SUB 1,1

10. Mapped systems only: all write-protection of mapped
memory, defined via the .WRPR command (Chapter 4), is
removed.

11. Mapped systems only: extended space reserved for vir
tual overlays is released, and all definitions of extended
memory made via window mapping are removed.

12. Mapped systems only: any dual-program communica
tions area, defined via system call .ICMN (Chapter 6), is
removed.

LEVEL 0

LEVEL 1

LOA 0, byte pointer to LEVEL3.SV LEVEL 2
.SYSTM
.EXEC

I .. ! I
I

- f-.RTN

JMP ERR .TITL LEVEL3
.END I

I
I

'--- -.RTN LEVEL 3
JMP ERR

.END

Figure 4.1 Program swapping 80-00504

licensed Material--Property of Data General ROOS System Reference 93

R
CHAIN MYCHAIN)

'-"R) ... - ".-.,.
! ..

~ I-- .TlTL MYCHAIN .TITL CHAIN1 .TITL CHAIN2
I I I

I I I
I I I
I I I ' LEVEL
I I I

o
I I I

SUBZR 1,1 SUBZR 1,1 LOA 0, byte pointer to "CLI.SV"
LOA 0, byte painter to "CHAIN1.SV" LOA 0, byte painter to "CHAIN2.SV" .SYSTM

.SYSTM . .SYSTM .EXEC

.EXEC .EXEC .JMP ERR

.JMP ERR .JMP ERR .END

.END .END

Figure 4.2 Program chaining 50-00505

,r

94 ROOS System Reference Licensed Material-·Property of Data General

.EXEC
Swap or chain a save file into execution

This command requests the system to swap or chain a pro
gram. See Figures 4.1 and 4.2, shown earlier, illustrate
each process.

Required Input

ACO - Byte pointer to filename of new program (save file).

AC1 - Specifies a code for swap or chain, as shown in the
following table.

Code in ACt Meaning

o Swap to user program. Control goes to the
ready task with highest priority.

1BO Chain to user program.

Swap and start at debugger address.

1BO+ 1B15 Chain and start at debugger address.

The code in AC 1 indicates one of two starting addresses:
the program starting address (USTSA), and the Debug III
starting address (USTDA). Chapter 5 discusses these ad
dresses in detail.

Note that if bit 0 of AC 1 is 1, RDOS does not save the
current level, and the operating level remains unchanged.
This feature provides unlimited program chaining. Also note
that you cannot swap from the foreground of an unmapped
system. An attempt to do so causes RDOS to return error
code 25 (ERCM3). You can, however, chain from an un
mapped foreground provided the new program's memory
requirement is less than or equal to that of the previous
program.

The new program receives the contents of AC2. If this
program is the CLI (CLI.SY) and AC2 contains a nonzero
value, the CLI searches its special command file, CLl.CM,
for commands. This mechanism is fully described in RDOS/
DOS Command Line Interpreter.

Format

.SYSTM

.EXEC
error return
normal return

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

ERFNM

4 ERSY1

12 ERDLE

25 ERCM3

26 ERMEM

32 ERADR

53 ERDSN

57 ERLDE

66 ERDNI

73 ERUSZ

74 ERMPR

101 ERDTO

102 ERENA

125 ERNSE

Illegal filename.

File requires save attribute (S).

File does not exist.

More than five swap levels, or swap
ping from unmapped foreground.

Attempt to allocate more memory than
is available.

Illegal starting address. *

Directory specifier unknown.

Link depth exceeded.

Directory not initialized.

Too few channels defined at load time
or during system generation.

Address outside address space.

Disk timeout occurred.

No linking allowed (N attribute).

Program not swappable.

*RDOS returns ERA DR status if (I) no starting address was specified for
the save file and bit 15 is reset to 0, or (2) the debugger was not loaded
as part of the save file and bit 15 is set to I.

ROOS System Reference 95

.RTN
Return to the program at the next higher level

This system call closes all open channels and returns to the
calling program at its normal return point. All the calling
program's accumulators are restored,and control passes to
the instruction at the return point. If the level 0 foreground
program issues this command, RDOS closes all foreground
channels, releases the foreground, and displays the message
FG TERM on the background console.

Format

. SYSTM

.RTN
error return

Normal returns are precluded by the fact that RDOS restores
the calling program in memory. The error return, reserved
for compatibility with RTOS, is never taken. Error condi
tions cause exceptional system status, as explained in Ap
pendix E.

96 ROOS System Reference

.ERTN
Return from program swap with calling program's error
status

This command instructs a called program to return error
information to its caller, enabling you to determine why a
swapped program took the error return. The command is
identical to system call .RTN, except that normal return is
made to the error return of the higher-level program. Upon
return, AC2 contains the value for the lower-level program
instead of the value for the higher-level program. A single
word of status can therefore be returned .

If a program issuing the .ERTN command executes at level
I and returns to the CLI, the CLI outputs an appropriate
message concerning the status code in AC2. The CLI prints
a textual message if it recognizes a system error code; the
error ERDLE, for example, corresponds to system error
code 12 and evokes the message FILE DOES NOT EXIST.
If RDOS returns null error ERNUL (code 20) in AC2, the
CLI reports no error message.

Note that if the called program passes error EREXQ (code
17) in AC2, the CLI takes its next command from disk file
CLI.CM. If the CLI does not recognize the code, RDOS
displays the message UNKNOWN ERROR CODE n, where
n is the numeric code in octal.

Format

.SYSTM

.ERTN
error return

The error return, reserved for compatibility with RTOS, is
never taken. Error conditions cause exceptional system sta
tus, as explained in Appendix E.

Licensed Material··Property of Data General

.-

"-

User Overlays
This section explains how to extend your memory resources
with user overlays, which apply to mapped and unmapped
systems alike. After a thorough examination of how user
overlays are constructed, the system calls that control them
are presented. In order of discussion, these calls are:

.OVOPN

.OVLOD

. OVRP

Open an overlay file on a specified chan
nel.

Load an overlay into the area of memory
reserved for it.

Replace the overlays in an overlay file .

User overlays are blocks of code, placed in an overlay file,
that support a root program. The root program is a save file
that remains in memory throughout a program level; it ex
tends from location 168 to NMAX, and calls overlays from
disk into core memory as required. The overlay file is con
tiguously organized, and divided into segments. Each seg
ment contains the overlays that the root program will load,
one at a time, into a reserved area of memory called a node.

The RLDR command loads the root program; creates the
overlay file; places overlays into segments of the file; and
sizes the reserved area of memory, or node. If you specify
overlays in the RLDR command line, the loader program
produces a save file, filename. S V, and an overlay file, file
name.OL, where filename is the name of the first binary in
the command line unless you specify otherwise with switches.

To use overlays, your program must (1) open the overlay
file on an RDOS channel vis system call .OVOPN, and (2)
instruct RDOS, via system call OVLOD to load one overlay
at a time from a segment into its node. The node is reserved
for the overlays in its segment until the program terminates.
Your program can free the channel by closing it via the
.CLOSE command. (This process differs slightly for a mul
titask program, as explained under "User Overlay Man
agement" in Chapter 5.) Appendix C demonstrates the use
of overlays in a real-time programming example that in
cludes a root program supporting two overlays.

The size of each node is the smallest multiple of 4008 words
large enough to contain the largest overlay in the node's
segment. Any overlay that is not the same size as its node
will be padded out with zeroes. This means that any segment
size equals the node size multiplied by the number of over
lays within the segment. Each segment is identified on disk
by its corresponding node number.

An overlay file can hold up to 124 overlay segments; a
segment may contain a maximum of 125 overlays; and each
overlay can be as large as 126 disk blocks, or 31,256 words,

liceneed Meterial··Property of Data General

in size. When a segment contains overlays dissimilar in
length, considerable disk space will be used to pad out the
smaller overlays to standard size; likewise, valuable mem
ory is consumed to pad out the core node. for this reason,
you should place overlays of roughly equal size in the same
segment whenever possible.

Directory information for each overlay resides in an overlay
directory. RLDR builds this directory into your program's
save file, as explained in Appendix D. Each overlay has a
label which the system uses to identify it; the label resolves
to a node number and an overlay number, packed by half
words.

The format used to create an overlay file and associate it
with a root program is explained under the RLDR command
in RDOSIDOS Command Line Interpreter. The following
command line, examined in conjunction with Figure 4.3,
serves as an example:

RLDR RO [A,B,C,D] R1 R2 [E,FG,H] (CR)

As Figure 4.3 shows, this statement creates a disk save file,
RO.SV, and an overlay file, RO.OL. The save file contains
RO, RI, and R2, along with vacant areas, or nodes, for the
overlays in each segment. The overlay file contains seven
overlays-binary versions of A, B, C, D, E, F, G, and H.
These overlays are grouped in two segments of overlay file
RO.OL, where Segment 0 contains overlays A through D
(numbered 0 through 3)-all destined for node 0 in main
memory-and Segment 1 contains overlays E through H
(numbered 0 through 2)-which will occupy node 1 in core.
Note that the order in which you specify the overlay binaries
in the command line determines both the overlay number
and node number of each overlay.

RDDS System Reference 97

Segment 1

Segment 0

..

For overlays
in segment 1 Node 1

R2

R1

Node 0 { For overlays in
segment 0

Node 0

RO

:

Overlay Directory

400

,
o

MAIN MEMORY

Figure 4.3 User overlays

98 RDOS System Reference

I

I

I
<

I
\

:~

(
l

{

Overlay 2(H)

Overlay 1 (F G)

Overlay OlE)

Overlay 3(0)

Overlay 2(C)

Overlay 1 (B)

Overlay O(A)

Vacant disk space for
overlays in segment 1

R2

R1

Vacant disk space for
overlays in segment 0

RO

Overlay Directory

DISK

~~

Overlay file
RO.OL

Save file RO.SV

50-00498

Licensed Material--Property of Data General

~'"

.-

-

You may disregard the loading order of overlays in a node
if you use pseudo-op .ENTO. (Appendix C demonstrates
the use of .ENTO in a real-time programming example.)

This pseudo-op allows you to assign a unique name to each
overlay, rendering the order of overlays in the RLDR com
mand line unimportant. Each binary is given a unique name
in argument to . EN TO , and is referenced by that name in
your program. All unique labels must be declared with pseudo
op .EXTN. Whenever .ENTO has not been used, your RLDR
command line must list overlay binaries in their proper
order.

Figure 4.4 takes a closer look at the overlay file, RO.OL,
that resulted from our sample RLDR command line. It fo
cuses on Segment I to show some of the possible entry
points in overlays E, F, G, and H. Note that these binaries
have been assigned unique names via pseudo-op . ENTO,
eliminating the need to know which node and overlay num
bercorresponds to them. Thus, our sample RLDR command
line could have read:

RLDR RO [A,B,C,D] R1 R2 [H,E,F G] (CR)

Node 1
Overlay 0

Node 1
Overlay 1

Node 1
Overlay 2

filename E
.ENTO TAGE
. ENT Z,Y

Z: subprogram entry point
Y: subprogram entry point

filename F
.ENTO TAGF
.ENT X,W

X: subprogram entry point
W: subprogram entry point

filename H
.ENTO TAGH
.ENT U

U: subprogram entry point

Figure 4.4 Segment 1 of overlay file RO.OL

licensed Material--Property of Data General

filename G
.ENTO TAGG
.ENT V

V: entry point

5D-00533

Figure 4.5 shows how save file RO.SY uses unique labels,
created via .ENTO, to load each overlay root program.
When RO.SY issues system call .OYLOD, RDOS loads all
of binary E into core, where routines Z and Y serve as entry
points.

.EXTN TAGE, TAGF, TAGG, TAGH

.EXTN Z, Y, X, W, V, U

.OVE:

.OVF:

.OVG:

.OVH:

TAGE ; TAGE IS RESOLVED TO
; NODE 1, OVERLAY 0
; (ENCODED AS 400).

TAGF ;TAGF IS RESOLVED TO
; NODE 1, OVERLAY 1
;(ENCODED AS 401).

TAGG ;TAGG IS RESOLVED TO
; NODE 1 OVERLAY 1
; (ENCODED AS 401).

TAGH ;TAGH IS RESOLVED TO
; NODE 1, OVERLAY 2
; (ENCODED AS 402).

LDA O,bptr-to-RO.OL
.SYSTM
; OPEN RO.OL ON
.OVOPN 3
JMP ERR
LDA 0, .OVE
ADC 1,1

.SYSTM

.OVLOD 3

;CHANNEL 3.
; ERROR RETURN.
; GET OVERLAY NUMBER.
; PREPARE FOR UNCON-
; DITIONAL LOAD .
; LOAD OVERLAY E
; UNCONDITIONALLY.

Figure 4.5 Loading the overlay root programs

RDOS System Reference 99

.OVOPN Possible Errors

Open overlays for reading
AC2 Mnemonic Meaning ~,

i

Before you can call an overlay in either a single or multitask
environment, you must open the overlay file on a channel. 0 ERFNO Illegal channel number
(The same rule applies to virtual overlays in a mapped
system, as a later section explains.) Several users can open ERFNM Illegal filename
an overlay file simultaneously, on different channels. The
.CLOSE command closes the channel on which an overlay 6 EREOF Mapped systems only: end of virtual
file has been opened. overlay.

Required Input 7 ERRPR Mapped systems only: attempt to open
ACO - Byte pointer to the name of the program overlay a read-protected overlay node.

file, including its .OL extension.
12 ERDLE Nonexistent file.

Format

.SYSTM 21 ERUPT Attempt to use a channel already in

. OVOPN n use .
error return
normal return 26 ERMEM Mapped systems only: insufficient

memory to load (.OVLD or .TOVLD)
Variable n represents the channel number. virtual overlays.

30 ERFIL File read error on virtual overlay file
(mapped only), mag tape (bad tape).

40 EROVA Mapped systems with virtual overlays
only: not a contiguous file. ,~

53 ERDSN Nonexistent file.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N attribute).

100 RDDS System Reference Licensed Material--Property of Data General

.OVLOD
Load an overlay

This command loads an overlay into its reserved memory
node using one of two methods. The first method, called
unconditional loading, loads an overlay regardless of whether
it resides in memory or not. This method guarantees a fresh
copy of the overlay (but does not apply to virtual overlays).
The second method, called conditional loading, loads an
overlay only if it is not already in memory. Although the
conditional request saves you time, it should be used for
reentrant overlays only.

The .OVLOD command loads an overlay conditionally
if you set ACI to 0, or unconditionally if you set ACI to
-1. It is recommended that you make your overlays reen
trant, or load them unconditionally if they are not.

Required Input

ACO - Left byte contains the value of the overlay node;
right byte contains the value of the overlay number.
Alternatively, contains the symbolic name, if the
.ENTO pseudo-op was used to create one.

AC 1 - Input 0 to load conditionally, or -1 to load un
conditionally.

/- Format

. ,..-

.SYSTM

.OVLOD n
error return
normal return

Variable n represents the channel number. Note that only
one task may issue .OVLOD in a multitask environment,
and that, under certain conditions (such as a nonmatching
save and overlay file), the left byte of AC2 may be nonzero
on an error return .

Licensed Material··Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

6 EREOF End of file.

7 ERRPR Attempt to read a read-protected file.

15 ERFOP File not opened.

30 ERFIL Read error (tape).

37 EROVN Illegal overlay number.

40 EROVA Overlay file is not a contiguous file.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

RDOS System Reference 101

·OVRP
Replace overlays in an overlay file

Although the RLDR utility can create an overlay file, it
cannot modify one. You can, however, create a replacement
for an overlay file with the CLI'sOVLDR command, and
execute the replacement with system call .OVRP or CLI
command REPLACE.

With the OVLDR facility, you create a new overlay file,
make the desired changes, and assign to this file the same
name as the overlay it will replace. The CLI appends the
extension .OR to this name. The original file is not affected
by the execution of the OVLDR command; it remains the
current overlay file until you execute either the .OVRP or
REPLACE commands. Even if both grounds are using the
original overlay file, your program can update it via system
call .OVRP without halting the programs that are using it.
RDOS/DOS Command Line Interpreter discusses the OVLDR
facility in full detail.

Required Input

ACO - Byte pointer to the overlay replacement's filename
(save filename . OR).

ACI - Byte pointer to overlay filename. (savefile
name.OL).

Format

.SYSTM

.OVAP
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

ERFNM Illegal filename.

6 EREOF End of file.

12 ERDLE One or both files do not exist.

27 ERSPC Out of disk space.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout.

102 RODS System Reference

Protecting User Memory Under
Mapped RDOS
This section applies to users with mapped RDOS systems.
It . explains how to enable and disable protection of user
memory with the .WRPR and .WREBL commands. System
call . WRPR allows your programs to write-protect memory
in IK blocks. This protection, which RDOS does not pro
vide by default, remains in force until· you disable it via
system call . WREBL or by executing a new program.

Write protection prevents system read calls such as .RDL
or .RDB-which read from a file and write to a specified
address-from writing to the protected block. It also pre
vents such instructions as ST A from writing to protected
blocks. The.WRPR command does not prevent a program
from loading overlays, or swapping or chaining a new pro
gram, into the write-protected blocks.

An RDOS memory block contains 1,024 decimal OK) words;
the system allots mapped memory to programs (via the CLI's
SMEM command) in 1,024-word blocks; and system call
. WRPR write-protects memory accordingly, in blocks of
1,024 words. If an area defined for write-protection extends
across a 1024-word boundary, RDOS write-protects both
blocks.

Overlay nodes can be write-protected to enhance the integ
rity of user code. This operation should be performed care
fully, however, since a program that inadvertantly write
protects areas other than the overlay node may be unable
to run properly. The RLDR utility reserves overlay nodes
in integer multiples of 4008 words, which can aid you in
aligning your write-protection.

The following example steps you through the process of
write-protecting an overlay node. It assumes that you are
about to bind/load a program that will have one overlay
segment and include 3 overlays. Ordinarily, you would enter
this command line:

ALOA AO A1 A2 [A,B,C OJ (CA)

Instead, you begin by checking the sizes of all binaries with
the Library File Editor, LFE. RO, RI, and R2 require 36008

words, which you round off to 4000 octal. A and B are
10008 words each, while C D is 1500 octal words. The
loader reserves an overlay node for the largest overlay-in
this case, the third one of 15008 words. Thus, the overlay
node will be 20008 words in length, since 15008 exceeds
3*4008 • Because 2000 octal words convert to 1,024 in dec
imal, this size dovetails perfectly with one block of memory.
As a result, you need only write-protect one memory block
for this overlay node, provided you align it properly.

Licensed Material··Property of Data General

.-

.. -

You align the node for future write. protection by judicious
use of the RLDR program's local IN switch. The following
command line demonstrates its use:

RLDR RO 2000/N R1 R2 4000/N [A,B,CD] (CR)

The IN switch forces the NREL pointer to the specified octal
value. RLDR builds NREL upward from the bottom of user
space for each binary loaded. The NREL figure pertains to
the file whose name follows the switch. (RDOSIDOS Com
mand Line Interpreter explains the use of the IN switch in
full detail.) As a result of this command line, locations 40008

through 60008 are reserved for the overlay node.

•
•
•
•
•
• 60008

Figure 4.6 shows the correct and incorrect alignment of the
overlay node in memory. RO contains enough room to insert
the . WRPR instruction that will protect this node without
affecting the rest of the save file, for example:

lDA O,lA
lDA 1,HA
,SYSTM
.WRPR
JMP ER

lA:4000
HA:5???

; THE lOWER ADDRESS
; THE HIGHER ADDRESS

•
•
•
•
•
•

Overlay Node

Overl a y Node 1,024

4000 8 R2

R2

R1
R1 1,024

RO RO

2000 8
• • · • · · • •
• 1,024 · · · · • · •
• •

CORRECT INCORRECT

Shading indicates memory protection.

Figure 4.6 Write-protecting memory SD-00499

Licensed Material··Property of Data General RDDS System Reference 103

.WRPR
Protect a memory area from modification

RDOS write-enables all memory blocks by default. This
system call write-protects contiguous sections of mapped
memory as specified in ACO and ACl. The blocks you
specify remain protected until (1) your program disables this
protection via the . WREBL command; (2) your program
issues system call .EXEC, .RTN, or .ERTN; or (3) you
enter a keyboard intenupt. RDOS protects memory in 102410-

word blocks, just as it allocates mapped memory in blocks
of 1024 decimal words. If the addresses you specify cross
a block boundary, RDOS write-protects both blocks in their
entirety.

Required Input

ACO - Lower address of the series to be protected.

ACO - Higher address of the series to be protected.

Format

.SYSTM

.WRPR
error return
normal return

The . WRPR command isa no-op in unmapped systems,
and takes the normal return.

Possible Errors

This command has only one possible error: its mnemonic
is ERMPR, meaning illegal address, and RDOS returns error
code 74 in AC2 when it occurs.

104 RODS System Reference

.WREBL
Remove the write protection from a protected memory area

This system call removes the write-protect restriction from
one or more blocks of memory. It write-enables memory in
1024 1O-word blocks, just as the .WRPR command protects
blocks of 102410 words. Thus, if the addresses you specify
cross a block boundary, RDOS write-enables all addresses
in both blocks.

Required Input

ACO - Lower address of the series to be write-enabled.

AC 1 - Higher address of the series to be write-enabled.

Format

.SYSTM

.WREBL
error return
normal return

Possible Errors

This command has only one possible error: its mnemonic
is ERMPR, meaning illegal address, and RDOS returns error
code 74 in AC2 when it occurs.

Licensed Materlal··Property of Data General

Virtual Overlays
This section applies to users with mapped RDOS systems.
It explains how to incorporate virtual overlays in your pro
grams as a means of using extended address space. The
major difference between user and virtual overlays is that
the former are disk-resident, permitting only one memory
resident overlay at a time from any segment, while all virtual
overlays reside simultaneously in extended address space.

After you build a virtual overlay file into your program,
your program handles it as a conventional overlay file. That
is, user and virtual overlays are contained in the overlay
(.OL) file, which must be opened via the .OVOPN com
mand before you can access any overlay within it. And each
virtual overlay, like each conventional one, must be loaded
via the .OVLOD command (or system call .TOVLD, de
scribed in Chapter5) before your program can use it. Mul
tiple tasks may share a virtual overlay reentrantly; when all
tasks have released the overlay (via system call .OVREL,
in Chapter 5), another task can use the overlay node. Virtual
overlays load more quickly than conventional ones because
only a memory remap operation-rather than a disc access
is required. Note that you cannot "refresh" virtual overlays
by reloading them. Virtual overlays are defined with the
IV switch in an RLDR command line, as follows:

RLDR root program ... [virtual overlay, ...]1V

Virtual overlays must precede conventional ones in the RLDR
command line. Space for each virtual overlay is allocated
in lK-word (1,02410) pages. The loader program pads un
used space. Each page begins on a IK boundary (from page
0).

The virtual overlay node always occupies logical address
space. It holds the first virtual overlay in the RLDR com
mand line when you open the overlay file. Other virtual
overlays occupy extended address space. When the program
loads another virtual overlay, the new one remaps into log
ical space, while the original remaps into extended space.
Thus, the amount of extended space that RDOS uses for
each virtual overlay segment equals the node size multiplied
by the number of virtual overlays in segment I.

The following example steps through the procedures of load
ing and remapping virtual overlays. It is premised on the
RLDR command line

RLDR MAIN [VW,X,Y,Z)IV [A,B,C]

which creates save file MAIN.SV and overlay file MAIN.OL.
MAIN.OL contains binaries A, B, and C as conventional
overlays, and VW,X, Y, and Z as virtual overlays.

Licensed Material··Property of Data General

When MAIN opens the overlay file, RDOS uses the map
to set up a pointer from the virtual node to overlay VW.
The .OVOPN command allocates extended memory to vir
tual overlays and loads them from disk into this area. Mean
while, RDOS ignores the conventional overlay node. Figure
4.7 shows the structure of memory and disk at this time.

Next, assume that program MAIN has opened overlays on
channel 3; has used virtual overlay VW; and required the
use of virtual overlay Z. The new overlay is loaded as
follows:

LDA O,OVZ

SUB 1,1
.SYSTM

. OVLOD 3

;OVZ WAS ASSIGNED
;VIA .ENTO.
;VIRTUAL OVERLAYS ARE
;ALWAYS LOADED
; CONDITIONALLY.
; LOAD VIRTUAL OVERLAY Z .

As a result of this step, VW remaps into extended memory
and Z remaps into logical address space, as shown in Figure
4.8.

Remember that virtual overlays are page-buffered, and that
RDOS uses the largest one to determine the overlay size.
Thus, overlays should be roughly equal in length or use of
memory will be inefficient.

Also note that virtual overlays release extended address
space only when the program performs a program swap,
chain, or return. For this reason, a program that has opened
virtual overlays should close them before swapping and
reopen them when it returns.

RODS System Reference 105

. .
/

I c

Segment 1 < B

A

· · · ·
\ ,

· · z MAIN.Ol

· Virtual · · Overlay Z

· · Virtual
I Y

User Overlay Overlay Y Segment 0

Node I X
Virtual

Virtual Overlay Overlay X
Node VW

Virtual \

MAIN
Overlay V W

"'~ ... 1,. · · · · · · · · MAIN.SV

LOGICAL EXTENDED

I
MEMORY DISK

Figure 4.7 Virtual overlays before .OVLD 50-00509

·
· · · · · ·

User Overlay
Node

Virtual Overlay
Node (Z)

MAIN

· · ·
LOGICAL

Figure 4.8 Virtual overlays after .OVLD

106 ROOS System Reference

I
MEMORY

· · ·
Virtual

Overlay VW

Virtual Overlay
Y

Virtual Overlay
X

· · ·

· ·
EXTENDED

50-00506

Licensed Material--Property of Data General

.~.

,-

Window Mapping
Swaps, chains, and overlays help you write large programs
that can run in limited amounts of address space. If your
main program requires more logical memory than the com
puter provides, RDOS offers a different solution: window
mapping.

Window mapping applies to mapped systems only. It per
mits direct access to portions of extended memory and al
lows you to transfer blocks between extended memory and
disk. Both virtual overlays and window mapping can be
incorporated in one program. To use a window map, follow
these steps:

1. Determine the amount of memory available for extended
addressing. The. VMEM command, described later in this
section, enables you to do so. Check the available memory
after .OVOPN and all .MEMI operations.

2. Define the size and position of the window in user ad
dress space, along with the number of blocks in the extended
map. System call .MAPDF, discussed later in this section,
performs these functions.

3. Logically transfer data between the window and ex
tended memory by activating the memory management unit.
Task call .REMAP, described later in this section, is used
for this purpose. (Note that no true data transfer occurs; a
remap operation changes the address of the data.)

After defining the map, your program can repeat the .RE
MAP operation as often as needed. The command should
not be issued, however, when another task is using the
window for I/O; .ERDB and .EWRB, the extended read/
write block calls described later in this chapter, are per
missible, but a task will mistakenly access the new window
if other calls are issued during this time.

A program can also redefine the window, but may have
only one window and one window map at a time.

Windows, like virtual overlays, are defined in multiples of
1024-word pages; they are also page-aligned. Your program
accesses data in extended space by redefining the start of
the window in logical address space. RDOS returns window
blocks (allocated via the .MAPDF command) to the pool
only when a program executes a swap, chain, or return. If
your program performs a swap, the window goes away and
the program must redefine it. Note that after a break or trap
the state of the window in the break file is indeterminate.

Licensed Material··Property of Data General

Defining a Window Map
The following example demonstrates the use of the. YMEM
and .MAPDF commands in defining a window map. You
may want to refer to the descirptions of these commands,
later is this section, to aid your understanding of how they
are used here.

The example assumes that you want to define a window of
2K in logical space, with a total of 10 blocks in extended
address space. Considering the rest of your program, you
decide to start the window at 200008 ; it will end at 237778 ,

The following sequence defines this map:

.SYSTM

.VMEM

LDA 0,C10

LDA 1,CB

LDA 2,C2
.SYSTM
.MAPDF
JMP ER

C10: 10.
CB: B.
C2: 2

;ALWAYS CHECK THE NUMBER
;OF EXTENDED BLOCKS
AVAILABLE. THIS CODE
;GIVES THE PROGRAM
; AN OPTION IF, FOR
;WHATEVER REASON, THE
; REQUIRED NUMBER OF
; 16K BLOCKS ARE
; UNAVAILABLE.
;TOTAL SIZE OF WINDOW (2
; BLOCKS IN LOGICAL SPACE,
; 10 TOTAL IN EXTENDED
;SPACE).
; BOTTOM OF WINDOW AT 2000 =

; RELATIVE LOGICAL BLOCK.
; SPECIFY 2 BLOCKS
;IN AC2.
;DEFINE THE MAP.

Figure 4.9 shows what logical and extended memory look
like as a result of this sequence.

RDOS System Reference 107

Logical {
block 9 WINDOW

I-- (Contents --
Logical { unchanged by .MAPDF)
block 8

200008~--------------~

20008~ ____________ ~

Logical {
block 0

Forbidden

~--------------~

LOGICAL MEMORY

Figure 4.9 Defining a window map

108 ROOS System Reference

Relative extended
block numbers:

9 {Jo--------I'"
a{ t-------t
7 {t-------t
6 {t--------I
S{t------t
4 {t--------I
3{t-------t
2 {t---------t
1{t------t
o {",--------,

EXTENDED MEMORY

Window
Map

SO-00507

Licensed Materiat--Property of Data Generat

.-

Performing a Remap
The following example demonstrates a remap operation. It
is based on the two-block window and ten-block window
map discussed previously and shown in Figure 4.10. The
blocks now occupying this window have become relative
block numbers 0 and 1. In the coming example, a program
using the . REMAP command will instruct RDOS to remap
relative blocks 2 and 3 from the extended address area into
the logical window.

.EXTN .REMAP

.LDA 1,BLK2

LDA 2,C2

.REMAP

BLK2: 2B7 + OB15
C2: 2

Logical block 9

Logical block 8

Logical block 0

;THE CODE IN FIGURE 4.8 IS
;IN HERE.

; PUT 1 ST BLOCK NUMBER(S)
;TO BE REMAPPED IN LEFT BYTE
;OF AC1. PUT 1ST BLOCK
; IN WINDOW INTO RIGHT BYTE
;OF AC1. AC1 NOW CONTAINS
; THE CORRECT DATA IN
; EACH BYTE FOR THE REMAP.
; SPECIFY THE NUMBER OF
; BLOCKS TO BE REMAPPED
;IN AC2 (2).
; PERFORM THE REMAP.

Relative block 9

Relative block 3

Relative block 2

Relative block 1

Relative block 0

LOGICAL EXTENDED

Window
Map

Figure 4.10 Memory before remap DG-25463

licensed Material--Property 01 Data General

The remap occurs with little system overhead because RDOS
does not actually transfer data between memory locations;
rather, it simply updates the map of the memory manage
ment unit and then triggers that map. As mentioned earlier,
the . REMAP command should not be issued when another
task has 110 outstanding to or from a window, or this task's
110 will reference the new window.

This sequence remapped two blocks, relative block numbers
2 and 3, into the window. Alternatively, either of the blocks
could have been mapped independently. Figure 4.11 shows
the results of the remap operation.

Relative block 9

~:::::: :::::: t-----~ ~
Relative block 3

Relative block 2

Relative block 1

Logical block 0 Relative block 0

LOGICAL EXTENDED

Figure 4.11 Remapping

RDOS System Reference

I,

,

1

I

t

I

Window
Map

SD-00508

109

.VMEM
Determine the number of free blocks

The CLI's SMEM command allocates your address space.
System call . VMEM provides a count of the number of free
blocks available to your program for extended map use. If
too few blocks are free for your program, you can change
memory allotments via the SMEM command.

Required Input

None. ACO returns the number or free memory blocks for
this program.

Format

.SYSTM

.VMEM
error return
normal return

Possible Errors

None in a mapped system.

110 ROOS System Reference

.MAPDF
Define a window and window map

As described earlier, window mapping allows your program
to transfer data between a window area within logical ad
dress space and a series of blocks in extended address space.
An extended or window map contains a list of physical
memory blocks that can be mapped into the window. System
call .MAPDF defines a window and window map; only one
window and map can exist within a program. You must
define the window area in the address space below NMAX.

The .MAPDF command assigns relative extended block
numbers 0 to n-l to the blocks in extended memory, where
n equals the number specified in ACO. The first window
block in logical space receives extended relative block num
ber 0, the second block (if any) in logical space receives
number 1, and so forth; the numbers proceed sequentially
in extended space, as Figure 4.9 showed earlier. Note that
defining the window map does not alter the initial contents
of the window.

Required Input

ACO - Total number of memory blocks to be assigned to
the extended memory area. (This number includes
any blocks in logical address space that currently
reside within the window.)

AC 1 - The starting page number for the window in logical
space, from 1 through 3110 (or 1 through 30 for
NOVA 830 and 840 computers). The first block,
number 0, cannot be specified in AC 1 because it
includes page zero. Remember that a window is
block-aligned, causing its logical starting address to
coincide with the start of a block.

AC2 - The size of the window in lK blocks.

Format

.SYSTM

.MAPDF
error return
normal return

Possible Errors

Only one possible error results from this command: its mne
monic is ERMEM, indicating that the specified block is out
of the window map's range. RDOS returns error code 26
in AC2 as a result.

Licensed Material··Property of Data General

·REMAP
Perform a logical window transfer

Once your program has defined a window and window map,
it can remap data from the memory in the window map to
or from any part of the window in logical space. The .RE
MAP command performs a remap operation by placing blocks
from the extended address area into the window.

On machines with a memory expansion option, user pro
grams can access main memory above the 256th lKW page.
If you chose the option of a shared data area during system
generation, the .REMAP command allows you access to it.
In systems that incorporate an array processor, array pro
cessor memory can be mapped into the user program win
dow. Note that .REMAP may be issued from either ground;
if both grounds issue this call, the same address can be
allocated to both. However, interground communication via
the array processor is not supported. Also note that the
. REMAP command is a task call, requiring that you specify
its name in an . EXTN statement.

Required Input

AC 1: - Window position in MAP table as follows:

Relative block in map

o 8 9 10 11 15

The left byte of ACI contains the starting, relative block
number in the map. Pass the starting, relative block number
of the array processor if you have this feature and plan to
use window mapping in conjunction with it.

The right byte of ACI contains an extension field, QUADR,
and the relative window page. For all except the ZRDOS
version of mapped RDOS, bits 8 through 10 must be zero.
For ZRDOS, bit 8 must be zero, while bits 9 and 10 select
the desired 256-page segment in the program's extended
memory mapping table.

Bits 9 and 10 may be nonzero only if the program will run
on a mapped ECLIPSE system having more than 256 KW
of main memory, and that program has reserved more than
256 one-KW memory pages.

Bits 11 through 15 contain the relative window page num
ber.

Main Memory access extension field, "QUADR" -
"ZRDOS" only

Licensed Material··Property of Data General

QUADR Relative position (page) in MAP table

00
01
10
11

o - 255 decimal

256 - 511
512 - 767
768 - 1023

(0 - 377 octal)

(400 - 777)
(1000 - 1377)
(1400 - 1777)

AC2 - The call parameters passed in AC2 determine into
which area of extended memory the user program's
mapping window is to be remapped, along with the
number of pages to be remapped. The window may
be mapped into the program's own unshared, ex
tended memory space; the shared data pages; or the
array processor memory in systems that include ar
ray processor hardware. The option of shared data
pages is available with all mapped RDOS systems
and is selected during system generation.

For unshared, extended memory access, the parameters passed
in AC2 are:

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I pa~e co~nt I I
o 1 2 3 4 5 6 7 8 9 10 11 15

For shared, extended memory access, the parameters passed
in AC2 are:

o 1 2 3 4 5 6 7 8 9 10 11 15

For array processor memory access, the parameters passed
in AC2 are:

2's complement of page count

o 15

RODS System Reference 111

Note that all bits indicated as set to zero must be zero for
proper operation of the .REMAP system call. Also note that
block numbers within the windows and map are relative
numbers beginning with O.

Format

. REMAP
error return
normal return

The contents of all accumulators are lost upon return from
this call.

Possible Errors

AC2 Mnemonic Meaning

32 ERADR

36 ERDNM

26 ERMEM

Illegal starting address.

The array processor was not specified
during system generation.

Insufficient memory; attempt to .RE
MAP past the end of memory.

112 RDDS System Reference

Extended Direct Block 1/0
After your program has defined a window map, it can use
extended, direct block IIO-a special form of liD similar
in concept and operation to direct block 110, which transfers
256-word blocks between core and disk without using an
intermediary system buffer .

The extended direct block 110 commands .ERDB and .EWRB
apply to mapped RDOS systems only and are the subject
of this section. Descriptions of these commands are followed
by an example illustrating their use. Both system calls trans
fer 256-word data blocks between the map in extended mem
ory and disk files. This liD type provides a quick means of
altering data in the extended memory area. Your reference
is independent of any remaps that have occurred or may
occur during the execution of these calls. Moreover, this
form of liD transfers disk file data directly to the extended
memory area, without passing it through the window in
logical address space.

Neither the .ERDB or .EWRB commands use an interme
diary buffer, and their calling sequences resemble those of
the direct block liD commands (. RD Band. WRB) discussed
in Chapter 3.

Note that the .ERDB and .EWRB commands are restricted
from access to the shared data area, if you reserved one
during system generation. /~

Licensed Materlal··Property of Data General

,,-

.ERDB
Extended read direct block

This system call reads up to 128 disk blocks (256 words
each) from a randomly or contiguously organized file into
one or more 1024-word extended memory pages. The com
mand resembles its direct block 110 counterpart, system call
.ROB, except for the parameter passed in ACO. Because
.EROB reads into extended memory rather than directly
addressable, logical memory, the parameter you pass in ACO
specifies the map's relative memory page number (in the
range 0-1023), and a 256-word offset into this page. Since
you must have defined a window map in order to issue this
command, you should know the relative block numbers in
the map.

Required Input

ACO - Contains the extended map page number, the block
offset into the page, and the high order bits of the
page number. The bits are organized as shown be
low:

I I I I I
o 3 45678 -..,-...- -..,-...-

Extended map page

I L- Sector offset on page

Extended map page (high bits)

15

The following table shows the organization of bits
six and seven, which point to one of the four page
sectors, which we call quarter block sectors.

Contents of
bits 6-7

00
01
10
II

Quarter block sector
ranges (octal)

0- 377
400 - 777

1000-1377
1400 - 1777

ACI - The starting, relative disk block number in the file
from 0 to n-I for a file consisting of n disk blocks.

AC2 - Left byte specifies the number of 256-word disk
blocks to be read. Right byte specifies the channel
number, if file was opened on channel 77.

Format

.SYSTM

.ERDS n
error return
normal return

Variable n signifies a read from the disk file opened on
channel n (or 77).

Licensed Material··Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERENO

3 ERICD

4 ERSVI

6 EREOF*

7 ERRPR

15 ERFOP

30 ERFIL

40 EROVA

74 ERMPR

101 ERDTO

Illegal channel number.

Illegal command for device.

Not a randomly or contiguously orga
nized file.

End of file.

File is read-protected.

No file is open on this channel.

File read error (on magnetic tape, sig
nalling a bad tape).

File not accessible by direct block
110.

Address outside address space.

Disk timeout occurred.

*Upon detection of error EREOF, RDOS returns code 6 in the right byte
of AC2; the left byte contains the partial read count.

RODS System Reference 113

.EWRB
Extended direct write block

This command writes up to 128, 256-word blocks from
extended memory to a randomly or contiguously organized
disk file. The current contents of the window remain un
changed, as do the contents of the map.

The .EWRB call resembles its direct block 110 counterpart,
system call . WRB, except for the parameter passed in ACO.
This parameter must indicate both the relative, extended
memory block number (in the range 0--244) and a 256-
word offset into this block. Your program must have defined
a map via the .MAPDF command before issuing .EWRB;
thus, you should know the relative, 1K block numbers in
the map. For details on the offset, see the previous discus
sion of system call .ERDB.

Required Input

ACO - Right byte specifies the extended memory block
number. Left byte specifies a write from the first
256-word group if set to 0; a write from the second
256-word group if set to 1; a write from the third
256-word group if set to 2; or a write from the fourth
group of 256 words if set to 3.

AC 1 - Start writing to this relative block number in the
disk file.

AC2 - Left byte specifies the number of 256-word blocks
to be written. Right byte specifies the channel, if
file was opened on channel 77.

Format

.SYSTM

.EWRB n
error return
normal return

Variable n signifies a write to the disk file opened on channel
n (or 77).

114 ROOS System Reference

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

4 ERSVI Not a randomly or contiguously orga-
nized file.

6 EREOF End of file in a contiguous file.

10 ERWPR File is write-protected.

15 ERFOP No file is opened on this channel.

27 ERSPC* Disk space is exhausted.

40 EROVA File not accessible by direct block
I/O.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*Upon detection of error ERSPC, RDOS returns code 27 in the right byte
of AC2; the left byte contains the partial write count.

If you write to a sequential or random file and get ERSPC, you must delete
the file in order to recover the disk space allocated to the file before the
error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Materlal··Property of Data General

Extended Direct Block 1/0 Example
To conclude the discussion of extended, direct block 110,
Figure 4. 12 demonstrates the use of the . ERO B command
to transfer a disk file to the map. This figure continues the
example of Figures 4.10 and 4.11, in which the .REMAP
command was used to remap relative blocks 2 and 3 their
extended address area into the logical window. Now, in
structed by the code in Figure 4.12, ROOS writes file E to
relative block number 0 and 1 in the map.

RELATIVE
BLOCK NUMBERS:

-,:~
21--____ -1

LOGICAL

LDA 0, FILEE
SUB 1,1

. SYSTM

.OPEN 3

.
SUB 0, °
SUB 1, 1

LDA 2, C8

. SYSTM

.ERDB 3

C8: 8.B7
FILEE:.x1 *2

.TXT "E"

LOGICAL

11--____ -1
0L.-____

EXTENDED

;BYTE POINTER TO DISK FILE E.
;DEFAUL T DISABLE MASK .

;OPEN E ON CHANNEL 3 .

;GET ° TO START READING
;TO EXTENDED BLOCK 0.
;GET ° TO START READING
;FROM STARTING POSITION IN
;DISK FILE E.
;SPECIFY THE NUMBER OF DISK
;BLOCKS TO BE READ, IN LEFT
;BYTE OF AC2 -- 8. THESE
;BLOCKS WILL FILL MAP BLOCKS
;OAND 1 .

;READ FROM FILE E ON CHANNEL 3.

· · · ·
- FILE E -
EXTENDED

Figure 4.12 Extended block read 50-00746

Licensed Material--Property of Data General

The 256-word offset into the selected block will indicate
either 0, 400s, 1 OOOs , or 1400s, for the start of each 256-
word disk block. ROOS adds the extended memory block
number and the offset. This produces the memory block
number in the right byte and either 0, 1, 2, or 3 in the left
byte for the first, second, third, or fourth 256-word disk
block.

RDDS System Reference 115

Summary
This section summarizes all system (and task) calls dis
cussed in this chapter in Table 4.1.

System Call Function

.ERDB Read data blocks from disk into extended
memory.

.ERTN

. EWRB

. EXEC

. MAPDF

, .OVLOD

. OVOPN

. OVRP

. REMAP

.RTN

.WREBL

. WRPR

Return from a program swap with the error
status of the calling program.

Write blocks from extended memory to disk .

Swap or chain in a new program .

Define a window and window map .

Load. an overlay into. the area of memory
reserved for it.

Open an overlay file on a specified channel .

Replace the overlays in an overlay file .

Activate a logical window transfer .

Return from a program to a higher-level pro
gram.

Determine the number of memory blocks
available for extended addressing.

Remove the write-protection from a pro
tected area of memory.

Protect an area of memory from modification .

Table 4.1 System and task call summary

116 ROOS System Reference Licensed Materlal-·Property of Data General

,-

-

This chapter describes tasks, task management, task overlay
management, and task control from the console via operator
messages. It begins by explaining task prioritites and the
Task Control Block, which the RDOS Task Scheduler uses
to keep track of each task in a program. Then the possible
task states and the User Status Table, which monitors all
TCBs during program execution, are described. The re
maining sections discuss the commands that task may issue
to control itself or other tasks. In order of appearance, these
sections are:

• Task Initiation

• Task Termination

• Task State Modification

• Intertask Communication

• Overlay Management

• Enqueuing Tasks

• User/System Clock Commands

• Task Management by ID Number

• Task/Operator Communications

• Task/Operator Communications Module (OPCOM)

• Disabling and Enabling the Multitask Environment

• Disabling and Enabling the Task Scheduler

The task and system calls discussed in each section are
summarized at the end of the chapter in table form.

Your program is the initial task in a multitasking environ
ment. After it initiates one or more tasks, any of those tasks
may issue a task or system call. It is recommended that you
assign an ID to each task routine that you write. Although
not mandatory, an ID number is required by certain useful
task calls and by OPCOM, the console communications
feature described later in this chapter.

Your program initiates a task via the . TASK or . QTSK
commands or, from the console, via OPCOM commands
RUN or QUE. RDOS then assigns the task a TCB from the
TCB pool that you establish via a .COMM TASK statement

Licensed Material··Property of Data General

Chapter 5

Multitask Programming

or during loading. The task is then ready for execution.
Depending on its priority and other conditions specified in
your program, the task achieves CPU control and executes.
It retains control of the CPU until it suspends itself, or until
it is suspended by a task of equal or higher priority that has
requested the CPU's services after an interrupt.

When suspended, the task's TCB saves its current state.
The program's User Status Table monitors all TCBs and
their associated tasks, enabling the Task Scheduler to re
sume execution of any suspended task from the point of
suspension. The task retains its TCB until it is killed (or
kills itself) via the .KILL, .AKILL, .ABORT, or .OVKIL
commands, or via the OPCOM command KIL. After a task
has been killed, its TCB returns to the free TCB pool. The
task remains inert until you reinitiate it, when it receives
another TCB.

Each task that you include in your program is memory
resident during program execution unless it resides in an
overlay. If a task resides in an overlay, the program must
open the overlay with system call .OVOPN and load it via
the .TOVLD or .QTSK commands discussed later in this
chapter.

Task Priorities
Task priorities range from 0 through 255 decimal, where 0
is the highest priority. RDOS automatically assigns priority
o for the task whose starting address you specify in the
.END statement at the end of your program.

Several tasks may exist at the same priority. Tasks of equal
priority receive CPU control on a round-robin basis, in
which the task that most recently received control will be
the last to receive it again, unless other tasks are unable to
assume control when they are scheduled to do so. When
your program changes a task's priority via the .PRI com
mand, RDOS places this task at the end of a list of all other
tasks that share its new priority.

Task Control Blocks
A task is an asynchronous, execution path through user
address space that demands the use of system resources.
You can assign many tasks to a single reentrant path, and
you can assign each of these tasks a unique priority. Given

RDDS System Reference 117

the asynchronous nature of tasks, the RDOS Task Scheduler
must maintain information about the status of each. RDOS
retains status information within a Task Control Block (TCB);
there is one TCB for each task. Table 5.1 describes the
structure of TCBs. The text that follows expands on the
information in this table.

Word Mnemonic Contents

0 TPC User PC (60-14) and Carry (615)

1 TACO ACO

2 TAC1 AC1

3 TAC2 AC2

4 TAC3 AC3

5 TPRST Status bits and priority

6 TSYS System .call word

7 TLNK Link word, to next TC6

10 TUSP USP (User Stack Painter)

11 TELN Extended save area

12 TtD Task to number, right byte

13 TTMP Temporary storage area for Sched-
uler

Task kill address, if program speci-
fied one

Stack pointer

Frame pOinter

Stack limit

Overflowaddress,for single task
environment

Table 5.1 Structure of a task control block (TCB)

Words 1 through 4 of the TCB structure are self-explanatory .
Figure 5.1 diagrams the task state and priority information
contained in word 5, TPRST.

118 ROOS System Reference

System Field
Suspend Field

Transmit/Receive Field or .TOVLD

.TROOP 1 .ABORTlock

Priority

bit a 1 2 3 4 5-7 8 15

Figure 5.1 Task state/priority information (TPRST) SO-00541

Note that word TPRST divides into five fields, associated
with letters S, U, T, R, and A. The Task Scheduler sets
these fields as follows:

Field Bit Setting/Meaning

S 1 = Task has issued a system call and has been
suspended until the call has executed. ° = Sys
tem call has finished executing, or no call is
outstanding for the task.

U 1 = Task is suspended by a .SUSP, .ASUSP,
or . TIDS command.

T 1 = Task has issued either the .XMTW and
.REC commands or call . TOVLD.

R 1 = Task is awaiting a message via the. TRDOP
command.

A 1 = Task is in the process of aborting.

As shown in Figure 5.1, the remainder of word TPRST
contains a reserved bit 5; two extension bits (6 and 7, or
TSUPN and TSUSR), which allow you to expand the RDOS
task-handling mechanism as described in Appendix I; and
bits 8 through 15, which hold the task's priority.

RDOS uses word 6 of the Task Control Block, TSYS, to
store information about system calls and the .XMTW, .REC,
and .TOVLD commands.

Word 7, TLNK, contains the· starting address of the next
TCB in the chain.

Word 10, TUSP, contains the value of location USP at the
time this task last changed from the executing state. You
may use USP as a general-purpose storage location for each
task while it is executing. The system restores the value of
USP for each task that gains control of the CPU.

Licensed Materlal-·Property of Data General

,,--. ..

Word 11, TELN, points to the task' s highest-level language
save area; if you do not use it, the system sets TELN to O.

Word 12, TID, contains the task identification number, if
any, in its right byte.

Word 14, TKLAD, contains the address that will receive
control whenever a task is killed, provided you have defined
such an address via the .KILAD command. Bit 0 is set if
a .KILL or .ABORT command has been issued for this task.

Words 15 through 20 of the TCB contain save information
pertaining to a stack's state. This information is reserved
for TCBs.

Building Multitask Programs
Before running a multitask program, you must specify both
the number of RDOS channels and the number of TCBs
that this program needs. You can do this before assembly,
within the program, via a .COMM TASK statement. You
can also specify tasks and channels with the local IK and
IC switches in an RLDR command line.

A .COMM TASK statement must appear in the first binary
of the RLDR command line, since it affects the loading
process of the remaining program and determines which
task scheduler (TMIN or TCBMON) will become a part of
it. When the IC or IK switches are used in conjunction with
a .COMM TASK statement, the switch information over
rides that of the statment. The format of source program
statements is:

.COMM TASK, k*400 + c

where k represents the octal number of tasks, and c repre
sents the octal number of RDOS channels that your program
will use, for example:

.COMM TASK, 7*400 + 16

In mapped systems, the maximum number of tasks (k) can
not exceed 44 10 , This is due to the requirement, in mapped
systems, that all TCBs reside in NREL, in the first, I K
page of memory. If the program uses overlays, the overlay
directory must also reside in the first I K-page, which re
duces space for TCBs.

Data General supplies task schedulers TMIN and TCBMON,
all task command modules, and the interrupt-on symbolic
debugger in the system library, SYS.LB. Unless you specify
otherwise with an RLDR switch, the loader program places
all items required from the library directly above the pro
gram code.

Licensed Material--Property of Data General

NOTE: Because the system library differs for each type
(~lsystem (eg, unmapped and mapped NOVA), programs
loaded under one type of system may not execute under
another type. To loadfor a d~fferent kind of system, you
must obtain the proper system library for it and ensure
that RLDR searches for this library, rather than the cur
rent one, during the loading process . You can do this by
loading from a subdirectory that contains the target sys
tem's library and links to RLDR.

To write your own task command modules or define a task
memory or FPU save area, you can refer to the source
listings for the system library if you acquired them with
your system.

Conserving ZREL Space

Normally, each unique task call in your program requires
one word of page zero (ZREL) space. Note, for example,
the conventional use of the . TASK command:

.EXTN .TASK

;SET UP ACCUMULATORS .

.TASK

In this example the task call word (. TASK) is resolved by
SYS.LB to a JSR instruction that transfers control through
a page zero address. Thus, .TASK requires one word of
ZREL. (Subsequent. TASK calls will not require additional
ZREL.) Alternatively, to conserve ZREL space, replace
each task call with a transfer to a label with the same name
as the original task call, but with the first two characters
transposed. The transfer must be a JSR or equivalent, and
you must declare the transposed call in an . EXTN statement.
The following example demonstrates this transposition
scheme, and uses no ZREL space:

.EXTN T.ASK

JSR (u TASKO

TASKO: T.ASK

;SET UP ACCUMULATORS.

Task States

A task can exist in any of three states: (1) it is ready to
perform its functions; (2) it is actually in control of the CPU
and is executing its assigned instruction path; or (3) it is
suspended and temporarily unable to receive CPU control.
A task can also be dormant, having relinquished its TCB
(or never having had one); a dormant task has no priority
and no chance of gaining CPU control until activated by a
.TASK or .QTSK command. The Task Scheduler always
gives CPU control to the highest priority task that is ready.

ROOS System Reference 119

Suspended tasks are those having at least one of the four
status bits (S, U, T, or R) in word TRPST set to 1. A task
may become suspended for one or more of the following
reasons:

• It has been suspended by an .ASUSP or . TIDS com
mand.

• It has suspended itself for a specified period via the
.DELA Y command, or for an indefinite period via the
.SUSP command.

• It is waiting for a message from another task via the
.REC command.

• It has issued a message-and-wait command, .XMTW.

• It is waiting for the use of an overlay node.

• It has issued a system call and is waiting for it to finish
executing.

Just as a number of different events can suspend a ready
task; several events can ready a suspended task:

• The .ARDY or .TIDR commands can be issued for the
task.

• The task message that it has been instructed to wait for
via the .REC command.

• The loading of a requested overlay.

• The completion of a .SYSTM call (such as a request for
110).

(TCB 1 V
USTFC TLNK

or · · USTAC · ·
Figure 5.2 Tee chain

120 ROOS System Reference

A task that is suspended by a command and by some other
event must be readied by an .ARDY or .TIDR call and by
whatever other event suspended it. Such a task is said to
be doubly suspended, with bits Sand U set in word TPRST
of its Task Control Block. The environment must allow
RDOS to reset bits S, U, T and R to ready this task.

You can delete tasks from the active queue and place them
in dormancy either separately, via the .KILL, .TIDK or
.ABORT commands, or by priority group, via the .AKILL
command. Tasks that you have deleted add their empty
TCBs to an inactive chain of free element TCBs.

If all tasks are killed and no task is awaiting execution via
the .QTSK command, the effect is the same as if system
call .RTN had been issued. Program control then returns to
the next-higher program level. .

TeB Queues
There is one TCB queue for tasks that are currently exe
cuting, suspended, or ready. This queue consists of a chain
of TCBs, connected by word TLNK in each TCB, and is
called the active chain. USTAC of the User Status Table
points to the first TCB; this TCB points to the next one,
and so forth. The last TCB in the chain has the value -1 in
word TLNK.

A free element chain is a simple queue of dormant TCBs.
TCBs in the free element chain are joined by TLNK words;
all other words in each dormant TCB are unused. There is
no priority among TCBs in this kind of chain. USTFC of
the User Status Table points to the first TCB in the free
element chain, as shown in Figure 5.2.

TCB 2 V TCBn

TLNK Terminator (TLNK=-1)

· · · · · · · ·
SO-O0542

licensed Material"Property of Data General

.-.

,-
Task Synchronization and communication
Each task can communicate with another by sending a one
word message to an agreed-upon location in user address
space. This address space includes all locations from address
16 through NMAX. (Avoid locations 0 through 178 and 40
through 478 in ZREL, along with system tables directly
above 4008 ,)

The task sending a message may either return to the Task
Scheduler immediately (.XMT) or suspend itself (.XMTW)
until a receiving task has issued a receive request (.REe)
and has received the message. Receipt of the message in
cludes resetting the contents of the message location to zero.
Upon receipt of the message, its recipient has bit T set to
O. The message location must contain 0 before the message
is sent.

User Status Table
The User Status Table (UST) is a 248 word table that records
runtime information about a program. This table is located
at addresses 04008 through 04238 , Table 5.2 shows the struc
ture of the UST in memory; the contents of each address
are expanded on in the text that follows.

licensed Material··Property of Data General

Address Label

012 USTP

400 USTPC

401 USTZM

402 USTSS

403 USTES

404 USTNM

405 USTSA

406 USTDA

407 USTHU

410 USTCS

411 USTIT

412 USTBR

413 USTCH

414 USTCT

415 USTAC

416 USTFC

417 USTIN

420 USTOD

421 USTSV

422 USTRV

423 USTIA

Contents

ZREl pointer to UST*

Used by the system

ZMAX

Start of Symbol Table (SST)

End of Symbol Table (EST)

NMAX after runtime .MEMls

Starting address of Task Sched
uler

Debugger address: -1 if the de
bugger was not loaded

USTNM after loading (original
NMAX)

FORTRAN common area size

CTRl-A interrupt address: -1 in
itially

CTRl-C or .BREAK address: -1
initially

Number of TeBs (left byte) and
channels (right byte)

Current TCB pointer

Start of active TCB chain

Start of free TCB chain

Initial start of NREl code (IN
MAX)

Overlay directory address

Available for use by the system

Revision level number, and, dur
ing execution, the environment
state.

Address of TCB for console in
terrupt task: 0 initially.

Table 5.2 Structure of user status table (UST)
*The UST for a program running in an unmapped foreground starts
at the beginning of the foreground memory partition.

RODS System Reference 121

Location 12 in page zero is USTP, which points to the start
of the User Status Table belonging to the currently executing
foreground or background program. The loader creates sym
bol USTAD as an .ENTO declaration. This symbol also
points to the base of the program's UST.

Location 400, or USTPC, indicates which program is run
ning, where 0 indicates the background program and 1 in
dicates the' foreground program.

Location 401, or USTZM, contains ZMAX, the first free
location in· page zero after loading.

Locations 402 and 403, USTSS and USTES, point to the
start and end of the symbol table, respectively. By default,
RLDR loads the symbol table so that its last location plus
one coincides with the value of NMAX. If you request that
RDOS place the symbol table in upper memory (via the
global/S switch in your RLDR command line), the symbol
table is moved so that it will be immediately below RDOS
space when the save file is executed. If the symbol table
has not been loaded, locations 402 and 403 contain zeroes.

Location 404, or USTNM, contains the current value of
NMAX at runtime. This value changes as NMAX is in
creased or decreased. Location 407, USTHU, is set by the
loader to the value of NMAX after loading. RDOS never
changes this word during program execution.

Location 411, USTIT, is the interrupt address (CTRL-A).
After loading, this address is set to -1. If it is unchanged
at runtime, control goes to the next higher-level program
with USTIT set to a valid address when a CTRL-A interrupt
occurs. (If the foreground is interrupted and no higher level
program exists in the foreground with a valid USTIT ad
dress, RDOS terminates the foreground.) .The user core
image is not saved. At execution time, your program can
set USTIT to an address to which the system will transfer
control when a CTRL-A interrupt occurs.

122 RODS System Reference

Location 412, or USTBR, is the break address (CTRL-C).
After loading, RDOS sets this address to -1. Whenever a
CTRL-C break occurs, the system writes the core image to ,"-'"
file BREAK.SV (or FBREAK.SV in the foreground) in the
current directory. If USTBR remains unchanged at runtime,
control passes to the next higher-level program with USTBR
set to a valid address when a CTRL-C interrupt occurs.
Alternatively, you can set USTBR to an address to which
control will pass upon successful creation of the break file.
If RDOS cannot create a break file (eg, because it is out of
disk space), control goes to the address specified byUSTBR
minus one. AC2 will contain the error code.

Location 413, USTCH, contains the number of program
TCBs in its left byte, and the number of 110 channels in its
right byte.

Location 421, USTSV, is reserved for RDOS.

Location 422, USTRV, is reserved for storage of the re
vision number for this save file, and for runtime data on
the machine that is running the program. Revision numbers
can extend from 00 to 256; RDOS stores the major revision
number in the left byte, and the minor revision number in
the right byte, of this word. During a program's execution,
USTRV contains values that indicate what kind of machine
and RDOS system is running the program. You can find
these values, along with interpretations of them in the listing
of file PARU.SR contained in Appendix B. (Refer to the ",-,
heading ENVIRONMENT STATUS BITS IN USTRV.) Location
423, or USTIA, of the User Status Table contains the TCB
address of the task that issued an .INTAD system call. The
loader initializes this word to O.

Licensed Materlal--Property of Data General

Task and System Calls
,- There are four essential differences between task calls and

system calls:

• Task calls have no .SYSTM mechanism. Instead, each
call uses a module from the system library, requiring
that you declare each task call included in a program as
external via an .EXTN statement. If your program fails
to declare each call external, RLDR neglects to load the
call's module and the call will not work.

• RDOS executes all system calls in RDOS space, but
executes all tasks calls in user space. Thus, the diversity
of task calls in a program affects the program's size,
while the diversity of system calls does not.

• Most task calls do not have error returns, and hence do
not reserve an error return location.

• Accumulators are used to pass all parameters to most
task calls. You will generally use ACO and AC 1 to enter
or return data. Occasionally, AC2 is used to enter data.
When an error is defined for a call, AC2 will contain
the code on an error return.

On return from all task calls, AC3 contains USP, the con
tents of location 168 , by default. RDOS maintains the frame
pointer in location CSP. If yours is a NOY A 3 computer,
you can return the contents of the hardware frame pointer
in AC3 by loading the program with module N3SAC. (In
NOY A 3s, the hardware stack is moved for each task swap,
but the stack overflow handler remains at location 438 .) On
an ECLIPSE computer, you can return the frame pointer by
inserting module ESAC3 in the RLDR command line. Re
turns in AC3 can be summarized as follows:

If program was loaded with
module:

NSAC3 (any machine;
always used by
default)

NSAC3 (NOY A 3s only)

ESAC3 (ECLIPSEs only)

Licensed Material··Property of Data General

Then upon return AC3 con
tains:

Contents of USP (location
168)

Contents of frame pointer
register

Contents of frame pointer
(location 41 8)

In summary, task calls differ from .SYSTM calls in four
ways:

1. Task calls reference library modules, and must be de
clared external. Task calls are not preceded by the. S YSTM
mnemonic, and are resolved by the binder/loader to be JSR
calls to task processing modules.

2. Task calls are processed in user address space, while
RDOS or system calls require system action which occurs
in RDOS space.

3. Only some task calls have error returns. Those without
error returns do not reserve an error return location.

4. You must pass all parameters to task calls via the ac
cumulators. (The . QTSK command is the only exception to
this rule.)

Task Initiation
This section describes the. TASK command, which initiates
any memory-resident task. The .QTSK command, described
in a later section, initiates either a core-resident or overlayed
task for periodic execution.

RODS System Reference 123

.TASK
Create a task

This command initiates a new task at a specified priority in
your program, and assigns an identification number to the
task if you desire. When you load the program, only one
task exists; therefore your system must issue this or the
. QTSK command to initiate a multi task environment.

The .TASK command passes the contents of AC2 to the
created task. This permits your program to relay an initial,
one-word message to the newly created task.

Required Input

ACO - Right byte: priority of the new task, ranging from
1 to 377. If you set this byte to zero, the priority
of the new task will be identical to that of the calling
task. Left byte (optional but recommended): ID
number for the new task, ranging from 1 to 377.
You may give an ID number of zero to more than
one task. Each nonzero ID must be unique.

ACl - Address where the new task will begin execution.

Format

.TASK
errorretum
'normal rerum

Possible Errors

AC2 Mnemonic Meaning

42 ERNOT

61 ERTID

No TCBs available.

A task with the requested ID (except
0) already exists.

124 RODS System Reference

Task Termination
This section describes the commands your program can use
to kill tasks without using their ID numbers. * In order of
discussion, these commands include:

.KILAD

. KILL

. AKILL

.ABORT

Define an address that will receive control
when a task is killed .

Kill the calling task .

Kill all tasks of the specified priority .

Kill the specified task and its currently
executing system call, if any.

So that your program can proceed efficiently, RDDS pro
vides the .KILAD command, which specifies an address to
receive control before a task is killed. This address can
instruct the task to close its channel(s), release its overlay(s),
or give it a choice of action.

For most orderly terminations, or for those that occur via
the .AKILL or .TIDK commands, RDDS raises each task
you are terminating to the highest possible priority and read
ies it. If several tasks exist with a priority of 0, RDOS
services them before killing the specified task(s). Thus, if
a task has been suspended by the .REC, .XMTW, .SUSP,
or .TIDS commands, ROOS lifts the suspension. If the task
is suspended because of an outstanding system call, ROOS
completes that call before readying the task. In either case,
RDOS terminates the task you wish to kill when it receives
control of the CPU, unless your program has specified a
kill-processing address.

When you specify a kill-processing address via task call
.KILAO, control passes to that address when the task gains
control of the CPU. This allows the task to close any chan
nels or release any overlays it was using. Moreover, the
kill-processing routine serves as a reprieve, since RDOS
does not actually terminate the routine until it is killed a
second time. The kill-processing routine can thus act as a
validating procedure in which it determines whether or not
the target task should be terminated. At this point, the task
being killed can renew its kill-processing address by reis
suing the .KILAD command.

After a task has been killed by any means, it relinquishes
its TCB to the free TeB pool for possible use by future
tasks.

*Commands that control tasks by ID number are described in the section
entitled "Task Management By ID Number" later in this chapter.

Licensed Material--PropeTty of Oata General

!

--

.-

.KILAD
Define a kill-processing address

This task call permits a task to define a special address that
will gain control the first time that your program tries to
terminate the target task. On a second attempt to kill the
task, RDOS terminates it without transferring control to the
kill-processing address.

The kill address allows a task to release system resources
before terminating. Each task must explicitly release such
resources as overlays, channels, user devices and user clock
definitions; the code that performs this function can be writ
ten into the task's . KILAD routine. After releasing these
resources and following any other instructions, the task must
issue a . KILL command to terminate itself. On this second
attempt to terminate the task, termination occurs immedi
ately.

Alternatively, the target task may decide not to terminate
itself. In this case, before branching out of the kill-proc
essing routine, the task should issue a .KILAD call to the
same or to a different kill-processing routine. This measure
ensures that a later attempt to kill this task will cause it to
branch once again to its kill-processing routine.

A task in a kill-processing routine executes at the highest
priority; it has CPU control. Such routines retain control
until they relinquish it via a transition in task state or a
change of priority level.

Required Input

AeO - Address of the kill-processing routine.

Format

.KILAD
normal return

Possible Errors

None.

Licensed Material--Property of Data General

.KILL
Delete the calling task

This command deletes the calling task's TeB from the active
queue and places it in the free element TeB chain. The
calling task is the only one that you may delete via this
command. There is no return from this call. If you have
defined a kill-processing address for this task, RDOS raises
it to the highest priority and control returns to the Task
Scheduler. Otherwise, control returns to the Task Scheduler
so that it can allocate system resources to the ready task of
highest priority.

Format

.KILL

Possible Errors

None.

ROOS System Reference 125

·AKILL
Kill all tasks of a given priority

This command first raises all tasks of a given priority to the
highest priority, and then either kills them or transfers con
trol to their kill-processing addresses. All TCBs that it de
letes from the active queue are placed in the free TCB chain.
This command also immediately kills any tasks suspended
by the .XMTW, .TIDS, .REC, or .SUSP calls. An attempt
to kill a task waiting for completion of a system call will
not succeed until the system call has executed. If the calling
task itself belongs to the specified priority, RDOS deletes
it.

Required Input

ACO - Priority class of the tasks you wish to kill.

Format

.AKILL
normal return

Possible Errors

None. If no tasks exist with the priority specified in ACO,
RDOS takes no action.

126 RDDS System Reference

.ABORT
Abort a task

This command readies a specified task immediately and
instructs it to execute the equivalent of task call . KILL when
it gains CPU control. If a kill-processing address exists,
RDOS transfers control to it. The exact time of completion
depends on the internal priorities of the system. For ex
ample, a task attempting to perform a sequential write of
500 bytes might be aborted after writing any number of
bytes. You use an ID number to specify the task you want
to abort. Thus, the caller can abort either itself or some
other ready or suspended task.

Task call .ABORT does not release open channels or over
lays used by the aborted task. All outstanding operations
performed by the task, such as message transmission or
reception, are terminated. Likewise, all system calls are
aborted, with two exceptions: (1) calls performing multi
plexor or MCA I/O, and (2) System read or write operator
message calls, such as the .RDOPR and .WROPR described
in Chapter 6.

Your program can abort multiplexor or MCA I/O by closing
their channel(s). Operator messages initiated by task calls
. TRDOP and. TWROP can also be aborted. (Only messages
initiated by the system call versions, .RDOPR and . WROPR,
are not aborted; a single program cannot use both task and
system versions of these calls.)

Required Input

AC 1 - ID of the task to be aborted.

Format

.ABORT
error return
normal return

The contents of ACO are lost upon return.

Possible Errors

AC2 Mnemonic Meaning

61 ERTID

110 ERABT

An ID of zero was specified, or no such
task ID was found.

The specified task was in the process
of performing multiplexor or MCA
I/O; of performing a system read/write
operator message call; or of being
aborted by another task.

Licensed Material--Property of Data General

,-

Task State Modification
This section describes commands that modify the priority
or state of a task. In order of discussion, they are:

.PRI Change the calling task's priority.

.AROY Ready all tasks of a given priority.

. SUSP Suspend the calling task .

. ASUSP Suspend all tasks of a given priority .

Licenaed Material··Property of Data General

.PRI
Change the calling task's priority

This command changes the priority of the calling task to
the value contained in ACO. ROOS assigns this task the
lowest priority in its new priority class; the Task Scheduler
allocates CPU control to all other ready tasks in the same
class before passing control to this one. Naturally, its po
sition in this priority class will change as rescheduling pro
ceeds.

Required Input

ACO - New priority value for the calling task. If you re
quest a priority higher than 377 x' ROOS accepts
only the value in bits 8 through 15.

Format

.PRI
normal return

Possible Errors

None.

RDOS System Reference 127

.ARDY
Ready all tasks of a given priority

This command readies all tasks that have been suspended
by the .ASUSP, .SUSP, or .TIDS commands and that share
the priority you specify in ACO. That is, the .ARDY com
mand resets bit U in word TPRST of each Task Control
Block that was set by a previous call to .ASUSP, .SUSP,
or .TIDS. Tasks suspended for any other reason (eg, out
standing system calls) will not be readied until bit S of word
TPRST is also reset (eg, by receiving a task message via
the .REC command). RDOS cannot ready a task until the
program environment allows it to zero bits Sand U of word
TPRST in the task's TCB.

Required Input

ACO - Priority of task(s) you wish to ready.

Format

.ARDY
normal return

Possible Error

None. If there are no tasks of the priority given in ACO,
RDOS takes no action.

128 ROOS System Reference

.SUSP
Suspend the calling task

I

This command suspends the calling task by setting bit U of
that task's TCB to one. The task remains suspended until
your program readies it with the .ARDY or .TIDR com
mand.

Format

.SUSP
normal return

Possible Errors

None.

.ASUSP
Suspend all tasks of a given priority

This command suspends all tasks of the priority you specify
in ACO. The calling task may suspend itself with this call.
All tasks suspended by .ASUSP-even those suspended for
other reasons, such as an outstanding system call or setting
bit S of TPRST -remain suspended until readied by an
.ARDY or . TIDR command.

Required Input

ACO - Priority of the task(s) you wish to suspend.

Format

.ASUSP
normal return

Possible Errors

None. If no tasks exist with the priority given in ACO, RDOS
takes no action.

Licensed Materia/··Property of Data General

,-

Inter-task Communication
RDOS provides a mechanism that allows single tasks to
transmit and receive one-word messages. You can also use
this mechanism to lock a task process and prevent mUltiple
tasks from entering the process concurrently. Your program
specifies an address for the one-word message, and must
clear this address to 0 before depositing the message via a
transmit call. If several tasks attempt to receive a message
from the same address, only the task of highest priority will
receive the message.

Licensed Material--Property of Data General

.XMT and .XMTW
Transmit a message and wait

These commands instruct the calling task to send a one
word. nonzero message to an empty (all zero) message
location for another task. If a task has issued call. REC for
this location, it will receive the message and be readied. If
no .REC command is outstanding, RDOS deposits the mes
sage. The . XMTW command does not return until the mes
sage has been received, while the .XMT command returns
as soon as the transmitting task is readied.

Required Input

ACO - The address in user address space where you want
to deposit the message. This address must not have
bit 0 set to l.

AC I - The one-word, nonzero message that RDOS will
pass to the address in ACO, for the receiving task.

Format

.xMT or .XMTW
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

43 ERXMT The message address is already in use.

lIS ERXMZ Zero message word.

RODS System Reference 129

.IXMT
Transmit a message from a user interrupt service routine

This command enables an interrupt routine to send a mes
sage to a task in the current environment. The .IXMT com
mand issued from an interrupt routine has the same effect
as the .XMT command issued from a task. *

As Chapter 7 explains, your program can specify a user
defined device-that is, a device not defined during system
generation-via the .IDEF command. When a user-defined,
device interrupt occurs, control passes to the interrupt ser
vice routine that you have written for the device. RDOS
freezes the entire task environment while the interrupt rou
tine executes; the routine ends with task call .UIEX. If AC1
contains 0 at call . UIEX, RDOS restarts the environment
at its former state; if AC1 contains nonzero, it forces re
scheduling. If the message sent to a task will affect the
environment, you may want to force rescheduling on exit
from the interrupt· routine.

Even though the task environment may be frozen, RDOS
immediately readies a task that has issued a .REC call for
the message that it is intended to receive via .IXMT. The
contents of all accumulators are destroyed upon return from
.IXMT. Hence, your program must restore AC3 and AC2
(if unmapped) before attempting to exit from the service
routine via. UIEX. For full details, refer to Chapter 7 under
"Servicing User Interrupts."

Required Input

ACO - Location of the message. The contents of this lo
cation must be zero before you invoke the .IXMT
command.

AC1 - The nonzero message you want to transmit.

Format

.IXMT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

43 ERXMT Message address is already in use.

115 ERXMZ Zero message word.

*The IXMT command and certain other user interrupt calls are not really
task calls, since you can issue them only from an interrupt-processing
routine. When you use them, the task scheduler and task environment are
in suspension. Refer to Chapter 7 for details.

130 RDDS System Reference

.REC
Receive a message

This command returns a message in AC1 that another task
(or interrupt service routine) has posted by a transmit com
mand, and restores the contents of the message address to
all zeroes. The message address must be lower than 215 ,

and bit 0 must not be set.

If a task issues a .REC command and no other task has
posted a message to the message address, the receiving task
remains suspended until the message is sent. If the message
has already been issued and if the receiving task has not
also been suspended by an .ASUSP or .TIDS command,
control returns to the Task Scheduler. Otherwise, the task
remains suspended until you ready it with task call .ARDY.
If several tasks attempt to receive the same message, only
the task of highest priority will receive it.

Required Input

ACO - The message address.

Format

.REC
normal return

Possible Errors

None. RDOS returns AC2 unchanged.

Locking a Process Via Transmit and Receive
Commands
You can use the .REC and .XMT commands to lock and
unlock a process or database shared by several tasks, and
to prevent more than one task at a time from accessing the
database or process path. To do this, your program must
define a synchronization word, the message location, to
which all tasks will issue a .REC comand. The task in
control of the locked resource then issues call .XMT to the
synchronization word when it wants to open the resource
to other, waiting tasks. RDOS then readies the task of high
est priority waiting to receive (.REC) the synchronization
word, and gives it unique control of the resource. This task,
in tum, uses and then unlocks the resource for another task,
and so forth.

Your program must initialize the locking facility before any
tasks can use it. It can do this by initially setting the syn
chronization word to a nonzero value, or by having an
initialization task issue .XMT to the synchronization word.

Licensed Material··Property of Data General

-

User Overlay Management
In a multitask environment, different tasks can compete for
an overlay node, or can use the same overlay simultane
ously. These factors create the need for overlay management
strategies that do not apply in single-task environments. The
commands described in this section enable you to handle
user overlays effectively in multi task programs. In order of
discussion, they are:

.TOYLD

. OYREL

.OYEX

.OYKIL

Load a user overlay.

Release an overlay.

Release an overlay and return to the caller.

Kill the calling task and release its over
lay.

The .TOYLD command is the task call version of .OYLOD,
and should always be used to load overlays in a multitask
program. If you use system call .OYLOD, only one task in
the program can load overlays; moreover, the two calls
cannot be included in the same program. When the .TOYLD
command is used, the maximum number of overlay nodes
you can reserve is 125.

As part of its resource management actIvItIes, the Task
Scheduler maintains a record, called the overlay use count
(OUC), of the number of tasks using a currently-resident
overlay. It keeps the OUC in an overlay directory created
by RLDR for each node in your program. (See Appendix
E.)

Licensed Material··Property of Data General

A ready task can request an overlay (via .TOYLD) either
by segment and overlay number, or by symbolic name if
you assign the name via an .ENTO pseudo-op. Whenever
a task requests an overlay, RDOS checks the overlay di
rectory and the overlay request for certain parameters. If
the parameters permit, RDOS loads the overlay into the
node, increments the OUC by 1, and gives control to the
Scheduler. If the parameters disallow the load, RDOS sus
pends the calling task (bit T of TPRST) and passes control
to the Scheduler; the task will be readied and the overlay
loaded when the parameters permit. These actions occur
each time a task requests an overlay load .

Every time a task releases a resident overlay (via the .OYREL,
OVEX, or .OVKIL commands), the overlay's use count is
decremented by 1. The overlay currently occupying the node
is not released (allowing a task to load another overlay into
the node) until the OUC reaches O. When the use count
equals 0, another task can load a new overlay, resulting in
an OUC of 1.

An unconditional disk overlay request (not virtual) guar
antees a fresh copy of the overlay. A conditional overlay
request loads the overlay only if it is not already in memory;
if the overlay is memory-resident, RDOS increments the
OUC by 1. Conditional loads can save time, but may be
used only for reentrant overlays. As mentioned in Chapter
4, it is recommended that all your overlays be reentrant; if
any overlay is not, a task requiring its use must load it
unconditionally.

RDDS System Reference 131

.TOVLD
Load a user overlay

This command requests the use of the appropriate overlay
node and the loading of the overlay whose node and number
you specify in ACO.

If you did not assign a symbolic name to the overlay via
.ENTO before loading the program, you must pass the node
number that it will occupy in the left byte, and its overlay
number in the right byte, of ACO. The node number cor
responds to the segment number within the overlay file. The
first segment, number 0, is defined by the first set of brackets
in your RLDR command line; it corresponds to node 0 in
memory.

The overlay number is the relative position of the overlay
within its segment. Segment O's overlays are numbered 0,
1, and upward sequentially through n. The second segment
loaded is segment 1, corresponding to node 1; its overlays
are also numbered sequentially from 0 through n, and so
forth.

You can specify either a conditional or unconditional load
in AC 1. If the load request is conditional and the node is
free, RDOS loads the overlay. If the node already contains
the requested overlay, RDOS returns to the Scheduler im
mediately. Because another task is also using the overlay,
it must be reentrant. If another overlay currently occupies
the node and its OUC is a nonzero value, the caller is
suspended until the node becomes free.

If the load request is unconditional and the node is free,
RDOS loads the overlay whether it is currently memory
resident or not. If the overlay use count has not decremented
to zero (freeing the node), the caller is suspended (bit T of
TPRST) until the node becomes free. Figure 5.3 charts the
sequence that RDOS follows when you issue the .TOVLD
command.

Required Input

ACO - Overlay node/number word.

AC 1 - For a conditional load, pass O. For an unconditional
load, pass -1.

AC2 - The channel number on which you opened the over
lay file. (See the description of .OVOPN in Chapter
4.

Format

.TOVLD
error return
normal return

132 RDDS System Reference

Note that you must pair all overlay load requests with an
eventual overlay release (.OVREL/.OVKIL) or the node
will be reserved indefinitely. Also note that under certain
conditions-such as a nonmatching save and overlay file
the left byte of AC2 may be nonzero on an error return.

Possible Errors

AC2 Mnemonic Meaning

37 EROVN Invalid (nonexistent) overlay name or
segment.

40 EROVA Overlay file is not a contiguous file.

101 ERDTO Ten-second disk timeout occurred.

Licensed Materlal··Property of Data General

No

QUG becomes 1

System suspends
task until load

is complete

Figure 5.3 TOVLD logic sequence

Licensed Material--Property of Data General

No

No System suspends
task until
QUG=O

Yes

Yes

QUG becomes
QUG+1

System suspends
task until load

is complete

RODS System Reference

80-00540

133

.OVREL
Release an overlay

This command decrements the overlay use count (OUC) and
releases the node if the use count equals zero. The overlay
that you wish to release must not issue this command.

Required Input

ACO - Overlay node/number word. Pass the node number
in the left byte and the overlay number in the right
byte.

Format

. OVREL
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is EROVN, signifying an invalid overlay node/num
ber, or that the overlay node is not occupied by the overlay
specified. RDOS passes error code 37 in AC2 when this
error occurs.

134 RDDS System Reference

.OVEX
Release an overlay and return to the caller

This command decrements the overlay use count (OUC) and
releases the node if the use count equals O. Additionally,
control returns to an address specified by the caller-typi
cally the return address of the caller if returning from a
subroutine within an overlay.

Required Input

ACO - Overlay node/number word.

AC2 - Return address upon successful execution of this
call .

Format

.OVEX
error return

Possible Errors

Only one possible error message results from this command.
Its mnemonic is EROVN, signifying an invalid overlay
number, or that the overlay node is not occupied by the
overlay specified. RDOS passes code 37 in AC2 when this
error occurs.

Llcenaed Materlal··Property of Data General

,-

.OVKIL
Kill the calling task and release its overlay

This command kills the caller and decrements the overlay
use count; it also releases the node if the OUC equals O.
This is the conventional method of terminating a queued,
overlayed task. The overlay that you wish to release can
issue this call.

Required Input

ACO - Overlay node number in the left byte; overlay num
ber in the right byte.

Format

.OVKIL
error return

Possible Errors

Only one possible error results from this command. Its mne
monic is EROVN, signifying an invalid overlay number,
and RDOS returns error code 37 in AC2 when it occurs.

Licensed Materlal--Property of Data General

Enqueuing Tasks

.QTSK
Queue a memory-resident or overlay task

This command periodically initiates a task and queues it for
execution. If the task resides within an overlay, this com
mand loads the overlay. You need not issue . TOVLD for
an overlayed task, but the .QTSK mechanism requires that
you declare .TOVLD external, via an .EXTN statement, in
the program. If no TCB is currently available for the creation
of the new task, RDOS executes this command as soon as
a TCB becomes available. If two tasks are queued for ex
ecution at the same time of day, the task of highest priority
receives control first. (Appendix C demonstrates the use of
.QTSK and overlays in a real-time programming example.)

A task created and queued by . QTSK resembles any other
task, and it is your responsibility to kill or suspend it after
it has performed its function. If it resides in an overlay, it
can kill itself and release the overlay node via the .OVKIL
command. (If the overlay node is not released, no other
task will be able to use it.)

If RDOS does not take the error return, control returns to
the task issuing the call at the normal return based on the
task's priority; the calling task is not suspended. When the
queued task gains control, AC2 contains a pointer to the
Task Queue Table.

If your program does not declare either .TOVLD, OVKIL,
OVREL, or .OVEX external via an .EXTN statement, RDOS
executes the equivalent of an .ERTN command, and passes
error code 117 (ERQOV) in AC2.

The .QTSK command needs no input to ACO or ACl, but
requires you to build a table of specifications for the new
task and to input the starting address of this table in AC2.
The table must be QTLN* words long and contain the entries
shown in Table 5.3.

*These symbols are defined under USER TASK QUEUE TABLE in the
listing of file PARU.SR in Appendix B.

RDOS System Reference 135

Displacement Mnemonic ,Meaning

o ope Starting address of task

1 ONUM Number of times to queue'
the task (-1 if task is to be
queued an unlimited num
ber of times)

Symbolic name or node
:< ·numberfoverlaynumber (-1
. for a memory-resident task)

!'Starting hour (-1 if task is to
;, be queued immediately)

Starting second in hour (re
served' but unused If aSH
= -1)

Task IO/task priority

Rerun time increment in·
~econds

Table 5.3 User task queue table

According to Table 5.3, entry OPC must contain the entry
address in the overlay or memory-resident task where con
trol will be directed when RDOS raises the task to the
executing state.

Entry QNUM is an integer value describing the number of
times the task will be queued. The task is queued QNUM
times-or without limit if QNUM equals-I-unless you
issue task call .DQTSK. This call halts the queuing of the
specified task. RDOS decrements QNUM each time it queues
the task.

Entry QTOV must contain the overlay's .ENTO name or
its number in the left byte, and the overlay number in the
right byte for overlay tasks; for memory-resident tasks, set
this word to -1. If you did not assign a symbolic name to
the overlay via .ENTO, you must use the segment/node and
overlay numbers assigned by the loader. Make sure that the
values of QTOV correspond to the values assigned at load
time.

Entries QSH, QSMS, and QRR all affect the time at which
RDOS creates the task. QSH sets the hour to execute, and
QSMS sets the second within that hour that the task will be
created. If QSH contains -1, RDOS creates the task im-

136 RODS System Reference

mediately; if QSH occurs before the current time of day,
or is greater than 24 but less than 48 hours, RDOS queues
the task for the next day; and if QSH equals (24*d) +h,

RDOS queues the task in d days. Entry QRR sets the interval
(in seconds) between the times the task will be queued.

Entry QPRI contains the task ID (if any) in its left byte and
the task priority in its right byte. If a task with the same ID
exists at the time that RDOS activates the task, the system
clears this task's ID number to zero.

The system maintains word QTLNK.

Entry QOCH must contain the' number of 'the channel on
which y'ou opened the overlay file with an .OVOPN com
mand. Entry QCOND must contain -1 if you want the over
lay load to be unconditional. Both entries are unused by
memory-resident, queued tasks.

QAC2 is used as a temporary storage area by RDOS.

Required Input

AC2 - Pointer to the task queue table.

Format

.aTSK
error return
normal return

On the normal return, AC2 contains the contents of .QAC2.

Possible Errors

AC2 Mnemonic Meaning

50 ERQTS Illegal information in Task Queue
Table.

117 RQOV .TOVLD not loaded for an overlay
queued task.

.QTSK Example

To demonstrate the use of the .QTSK command, Figure 5,4
shows its application in a closed-circuit, television display
network of airline arrivals and departures. The figure con
tains excerpts from a main program in which one overlayed
task checks a central control panel for each arrival and
departure, and displays it, along with pending or recent
arrivals and departures, on network screens throughout the
terminal. The amount of air traffic varies with the time of
day; accordingly, .QTSK adjusts the interval at which the
task checks the control panel. Figure 5.4 shows . QTSK
code for 12:30 p.m., a time of relatively slow traffic; thus,
. QTSK specifies a 60-second check on the panel.

Licensed Materlal--Property of Data General

;f"'--"'"

-

.EXTN

LOA 2,
.QTSK

TABLE
TABLE

01214

12.
30.*60.
7*400+4

60.

o
3

-1
o
o

.OTSK

.TABLE

:TABLE
:START

Figure 5.4 arSK example

Licensed Material .. Property of Data General

.TOVLD .DOTSK .OVKIL etc.

; STARTING ADDRESS OF PANEL MONITOR TASK.
; ~UEUE THE TASK CONTINUOUSLY (UNTIL
;A DOTSK AND NEW OTSK CHANGE THE INTERVAL).
; GET THE TASK FROM OVERLAY 01214
; IN THE OVERLAY FILE.
;OUEUE THE TASK AT THE 12TH HOUR.
;30 MINUTES PAST THE HOUR.
;THE TASK'S 10 IS 7, AND ITS PRIORITY
;WILL BE 4.
; ~UEUE THE TASK FOR EXECUTION
; EVERY 60 SECONDS.
; RDOS WILL USE THIS WORD.
;THE PROGRAM'S OVERLAY FILE
; WAS OPENED ON CHANNEL 3.
; LOAD THE OVERLAY UNCONDITIONALLY.
; RDOS WILL USE THIS WORD,
;AND THIS WORD.

; DECLARE ALL RELEVANT
; CALLS EXTERNAL.

RDOS SYstem Reference 137

.DQTSK
Dequeue a memory-resident or overlay task

This command de queues a task which has been queued for
execution by task call .QTSK. In effect, the .DQTSK com
mand bypasses the value currently stored in QNUM of the
queued task's queue table. (See Table 5.3.) If, at some later
moment, the task is requeued by a call to .QTSK, the queuing
process resumes its normal course since .DQTSK does not
actually modify the contents of QNUM.

Required Input

AC I - ID of the task to be queued.

Format

. OQTSK
error return
normal return

Upon a normal return, AC2 returns the base address of the
task's queue table.

Possible Errors

Only one possible error results from this command. Its mne
monic is ERTID, signifying a task ID error, and RDOS
returns code 61 in AC2 when it occurs.

138 RODS System Reference

llserlSystem Clock Commands
All system clock commands can be issued from either a
single-task or multi task environment. These commands are
of little practical use in a single-task environment, however,
and are presented here for that reason. The commands in
this section permit your program to define, exit from, and
remove a clock driven by the system's Real Time Clock
(RTC). In order of discussion, they include:

.DELAY Delay the calling task's execution.

.DUCLK Define a user clock.

.UCEX Exit from a user clock routine.

.GHRZ Examine the system's RTC frequency .

The Real Time Clock suspends the environment at the in
tervals you define, and passes control to the routine whose
address you specify. You can exit from this routine and
return to the environment via system call. UCEX. You may

, not issue any system or task calls (other than .IXMT, .SMSK,
or . UCEX) from this routine because RDOS freezes all
multi task activity, just as it does for a user interrupt. (See
Chapter 7.) Any user clock routine executes in the interrupt
world, not in program space; for this reason, you should
make sure that your routine is correct.

Licensed Materlal··Property of Data General

,-

-

.DELAY
Delay execution of the calling task

This command suspends the calling task for the number of
real time pulses indicated by AC 1. You set the Real Time
Clock's frequency during system generation. (See and check
it via the .GHRZ command described later in this section.)

The accuracy of the .DELA Y command can be affected by
three variables:

• The frequency of the Real Time Clock, as set during
system generation

• The priority of the issuing task, compared to other tasks

• The priority of the issuing program (ground) compared
to the other program.

RTC pulses are not synchronized with the .DELA Y call;
thus, it may be unrealistic to request single-pulse delays.
Single-pulse delay requests can be delayed anywhere be
tween 0 and 1 R TC pulse.

Required Input

ACI - Number of RTC pulses.

Format

.SYSTM

.DELAY
error return
normal return

Possible Errors

None. The error return is never taken. You lose the contents
of AC 1 upon return.

Licensed Material··Property of Data General

.DUCLK
Define a user clock

This command defines a user clock, which will be entered
at the intervals you specify in ACO. When this interval
expires, RDOS suspends the Task Scheduler and multitask
environment, if any; control then goes to the address spec
ified in AC 1. Each time control passes to this address, ACO
contains a value indicating where control came from at the
interrupt. ACO contains -1 if control originated from the
system while it was in an idle loop (ie, awaiting an interrupt);
it contains 100000 if the other ground's program held con
trol; or it contains the current PC if control originated from
your program.

When control passes to your user clock routine, AC3 con
tains the address of the return upon entry to the user routine.
In unmapped systems, you must use this address in the
. UCEX command to return to the multitask environment.

Required Input

ACO - The integer number of system RTC cycles that you
want to elapse between each clock interrupt.

AC 1 - The address of the routine to receive control when
each interval expires. Note that no system or task
calls (excepting .UCEX, .lXMT, or .SMSK) can
be issued from this routine. Nor should assembly
instruction INTEN be issued in an unmapped sys
tem.

Format

.SYSTM

.DUCLK
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

45 ERIBS

74 ERMPR

A user clock already exists.

Mapped systems only: address outside
address space.

RODS System Reference 139

.UCEX
Exit from a user clock routine

When RDOS enters a user clock interrupt routine, it places
the return address in AC3. In an unmapped system, RDOS
requires this address to return to the multitask environment;
thus, if your interrupt routine uses AC3, it must restore this
accumulator before issuing the. UCEX command. In a mapped
system, RDOS ignores the value input in AC3 when you
issue this command. In all systems, RDOS reschedules both
the task and program environments only if AC 1 contains a
nonzero value upon exit. Control returns to the point where
the .DUCLK interrupt occurred. You may issue this com
mand in a single-task environment.

Required Input

AC 1 - Zero to continue the environment; nonzero to re
schedule.

AC3 - Return address to routine (unmapped systems only).

Format

.UCEX

Possible Errors

None.

140 ROOS System Reference

.RUCLK
Remove a user clock

This system call removes a previously defined user clock
from the system.

Format

.SYSTM

.RUCLK
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERIBS, indicating that no user clock is defined,
and RDOS passes code 45 in AC2 when it occurs.

Ucenaed Materlal··Property of Data General

~,
/

.GHRZ
Examine the system real time clock

This system call returns a code for the Real Time Clock
frequency in ACO. The possible codes and their meanings
are:

o There is no Real Time Clock in the system.

Frequency is 10HZ.

2 Frequency is 100 HZ.

3 Frequency is 1000 HZ.

4 Line Frequency is 60 HZ.

5 Line Frequency is 50 HZ.

Format

.SYSTM

.GHRZ
error return
normal return

Required Input

None.

Possible Errors

None.

Licensed Material··Property of Data General

Managing Tasks by ID Number
This section describes commands that manage tasks ac
cording to the lD number specified in AC 1. In order of
discussion, they include:

.IDST Get a task's status.

.TIDP Change a tasks's priority.

.TIDR Ready a task.

.TIDS Suspend a task.

.TIDK Kill a task.

RDDS System Reference 141

·IDST
Get a task's status

This command returns a code in ACO describing a task's
status. The possible codes and their meanings are:

o

2

3

4

5

6

Ready

Suspended by a .SYSTM call or .TRDOP command

Suspended by a .SUSP, .ASUSP, or TIDS command

Suspended by a .XMTW or .REC command

Waiting for an overlay node

Doubly suspended by .ASUSP, .SUSP, or .TIDS and
by.SYSTM

Doubly suspended by .XMTW or .REC and .SUSP,
.ASUSP, or .TIDS

7 Waiting for an overlay node and suspended by .ASUSP,
. SUSP, or . TIDS

10 No task exists with this ID number

Required Input

ACI - The task's identification number.

Format

.IDST
normal return

On the normal return, RDOS passes a status code in ACO
and the base address (displacement TCB) of the task's TCB
in AC2.

Possible Errors

None.

142 ROOS System Reference

.TIDP
Change a task's priority

This command changes the priority of the task whose ID
you specify in ACI.

Required Input

ACO - The new priority (from 0 to 255 inclusive) in the
right byte (bits 8 through 15).

AC I - ID of task.

Format

.TIDP
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERTID, indicating an erroneous task ID, and RDOS
returns code 61 in AC2 when it occurs.

Licensed Materlal··Property of Data General

.TIDR
Ready a task by ID number

This command readies only the task whose identification
number you place in AC 1. It resets bit U in word TPRST
of this task's TCB, which was set by a previous call to
. ASUSP, .SUSP, or .TIDS. If bit U has already been reset,
RDOS takes the normal return.

Required Input

AC 1 - ID number of the task you wish to ready.

Format

.TIDR
error return
normal return

Possible Errors

Only one possible error results from this commend. Its mne
monic is ERTID, indicating an erroneous task ID, and RDOS
returns code 61 in AC2 when it occurs.

Licensed Material··Property of Data General

.TIDS
Suspend a task by ID number

This command suspends only the task whose identification
number you pass in AC 1. It sets bit U in word TPRST of
the specified task's TCB. If bit U in word TPRST is already
set, RDOS takes the normal return .

Required Input

AC 1 - ID number of the task you wish to suspend.

Format

.TIDS
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic is ERTID, indicating that no task exists with the
specified ID number, and RDOS returns code 61 in AC2
when it occurs.

RODS System Reference 143

·TIDK
Kill a task by ID number

This command kills only the task whose identification num
ber is specified in AC 1. RDOS raises the task to the highest
priority (0); places it at the end of that priority chain; and
transfers it to a kill-processing address (if any) or terminates
it. If the task is executing a system call, it will not be killed
until the system call is completed.

Required Input

ACI - ID number of the task you wish to kill.

Format

.TIDK
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne
monic, ERTID, signifies a task ID error, and RDOS returns
code 61 in AC2 when it occurs.

144 RODS System Reference

Task/Operator Communications
Calls
This section describes two commands, . TWROP and
. TRDOP, that a task can issue to communicate with the
system console, $TTOI$TTI. You can use these calls to
interact directly with tasks in your program via OPCOM
commands, discussed in the next section; or you can use
the task calls or OPCOM commands alone. To use either
(or both) features, you must have selected the option of
operator messages during system generation. If your pro
gram uses operator message calls or OPCOM commands,
you must specify an extra task in the RLDR command line
to provide a TCB for system use. The format of console
commands is similar for the task calls and OPCOM mes
sages.

Note that your program cannot use both system and task
versions of the operator message calls. The system versions,
.WROPR and.RDOPR, are described in Chapter 6.

Licensed Material··Property of Data General

/---

.TWROP
Write a task message to the console

This command instructs the calling task to write an ASCII
string to the system console, $TTO. The message may in
clude up to 129 characters, including the required carriage
return, form feed, or null terminator. ROOS always displays
two exclamation points (!!), along with the letters "B" or
"F," before it displays the text string. These letters indicate
that a background (B) or foreground (F) task issued the
message. Then, depending on your input, ROOS displays
the task's 10 number and the message. Thus, the format of
task messages to the console is:

!!F [TID) message or !!B [TID) message

If AC 1 contains -1 when the task issues call . TWROP,
ROOS displays the three-character prefix (!!F or !! B) fol
lowed by a message string of up to 129 characters, including
the required terminator. If AC 1 contains a value other than
-Ion this call, the first four characters of the message area
are overwritten by the three octal digits of the task 10 num
ber and one space. Text written to the console includes a
three-character prefix (!!B or ! !F) followed by the task 10
number and the remainder of the message-a string of up
to 124 characters, including the terminator.

More than one task may have an outstanding request to
write task messages to the console. However, the save file
cannot include both task and system calls to read or write
messages to or from the console. Several tasks can use the
same message string (same byte pointer), but only if you
suppress TID information. Note that the .TWROP command
requires an extra TCB in the program.

Required Input

ACO - Byte pointer to area that holds the message. (If ACI
does not equal -1, this area must include a four-byte
null prefix to receive the task 10 and space sepa
rator.)

AC 1 - Specify -1 to suppress the task 10, or some other
value to display the 10 (see ACO, above).

Format

.TWROP
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR

120 EROPM

Address outside address space.

Operator messages not specified during
system generation.

Licensed Material--Property of Data General

.TRDOP
Read a task message from the console

This task call prepares the calling task to receive a message
from the system console, $TTI. The task issuing this call
may reside in either the foreground or background program
areas, and more than one task may issue an outstanding
request for a task message. However, if you use task calls
.TWROP/.TROOP to write or read messages to or from the
console, you cannot also use system calls .WROP/.ROOP
within the save file.

You must type CTRL-E as the first character (echoed on
the console as an exclamation point, !). If the cursor is not
at column 0, press the RETURN key first. The second
character must be either an ForB to indicate whether the
task resides in the foreground or background. If you type
some character other than For B in column 2, ROOS sounds
the console bell as a warning and accepts no further char
acters until you provide the correct input.

After letters ForB, type the 10 of the task to receive the
message, followed by a comma delimiter; then type the
message itself immediately after the comma. The last char
acter in the message string must be a carriage return, form
feed, or null terminator. Your input-including CTRL-E,
letters B or F, the task's lO and comma, your message, and
the terminator-should not exceed 132 characters. The re
quired format for an input message is as follows, where
angle brackets indicate an ASCII character:

, CTRL E) F or TID, message ,CR)

If, after pressing CTRL-E, you want to cancel the message
transmission, press the RUBOUT key. This key erases a
command or message starting with the most recent character
typed. On TTY consoles, a left arrow.- is echoed for
each rubout.

Remember to specify an extra TCB for the. TROOP com
mand in your RLOR command line (or two extra TCBs for
both reads and writes). There must also be one TCB avail
able for use by the system. ROOS uses this TCB to create
a task to monitor the $TTI keyboard for task-keyboard
messages, allowing one or more tasks to issue the .TROOP
command.

RODS System Reference 145

RDOS can dislay two messages to indicate errors in mes
sages intended for tasks. These messages and their meanings
are:

TID NOT
FOUND

No task with the specified ID number was
waiting for a console message.

INPUT ERROR Nonnumeric character found in task ID.

Required Input

ACO - Byte pointer to message area. RDOS will not trans
mit the task ID and comma to the message area.

Format

.TROOP
error return
normal return

On the normal return, RDOS gives the byte count in ACI
(including the terminator but excluding the task ID and
delimiter).

Possible Errors

AC2 Mnemonic Meaning

42· ERNOT

74 ERMPR

120 EROPM

Out of TCBs (ie, there is no TCB avail
able to monitor the console).

Mapped systems only: address outside
address space.

Operator messages not specified during
system generation.

146 ROOS System Reference

Task/Operator Communications
Module (OPCOM)
This section presents the task/operator communications
package, OPCOM, which allows you to use console com
mands to check or change the status of tasks, and to run
these tasks or queue them for periodic execution.

OPCOM is unrelated to the Command Line Interpreter (CLI),
and has its own syntax and command definitions. OPCOM
has a limited command repertoire since it-unlike the CLI
is part of the save file with which it is being used.

Following a discussion of command line syntax, the .I0PC
command, which initializes the OPCOM package, is intro
duced. Then the OPCOM commands themselves are de~
scribed. In order of discussion, they are:

DEQ Dequeue a queued task.

KIL Kill a task.

PRI Change a task's priority.

QUE Queue a task for periodic execution.

RDY Ready a task.

RUN Execute a task.

SUS Suspend a task.

TST Display a task's status.

An example at the end of the section demonstrates the use
of these commands.

In addition to the OPCOM module, this package requires
modules OPMSG (unmapped) or MOPMS (mapped). The
RLDR program loads these modules if you declare the in
itialization command, .I0PC, external via an .EXTN state
ment. You must also specify an extra TCB (or two for reads
and writes) for RDOS, unless you have included one or two
extra TCBs for the operator task calls described earlier. In
addition, you must have selected the option of operator
messages during system generation.

The OPCOM module requires approximately 4578 NREL
words, while the OPMSG or MOPMS modules require ap
proximately 4728 • Thus, you will need a total of roughly
11508 NREL words for any system.

Licensed Materlal··Property of Data General

Each OPCOM command evokes a task call that performs
the desired function; accordingly, you will find details on
the internal operation of each command under its related
task call (eg, QUE and .QTSK). Each OPCOM command
requires that you enter a program number for the task; you
specify this number in a table that you build for each task
before initializing OPCOM. The program number can be
the task lO number, or not. Certain commands require 10
numbers, while others (RUN and QUE) require program
numbers; to avoid confusion, it is recommended that you
use the task's lO number as its program number. After
initializing the communications package, you can enter
commands using the format and syntax described next. OP
COM responds with the message OK if it has executed a
command, or with one of four descriptive error messages.

OPCOM Command Syntax
OPCOM has been designed to accept a limited number of
keyboard commands to keep the command processor small,
since it must always remain a resident part of the save file.
All OPCOM commands have the following, fixed format,
where angle brackets indicate an ASCII character and brack
ets surround any optional input:

(CTRL-E > B or F *,command,task,[arg1, ... argn](CR>

You enter CTRL-E by pressing the CTRL and E keys si
multaneously. If the cursor is not at column 0, press the
RETURN key first. You must then type either B or F to
indicate whether the save file being commanded is in the
background or foreground. Both background and foreground
programs use $TTII$TTO. Immediately following letters B
or F, type an asterisk followed by a comma. Enter the
OPCOM command immediately after the comma. Follow
the command with a comma and one or more task argu
ments; separate multiple arguments by commas. Terminate
the command line with a carriage return.

Note that the command structure is rigid; if you depart from
the command format (eg, use spaces or delimiters), OPCOM
rejects the command and displayss the messge

INPUT ERROR

on the console. When OPCOM has executed a command,
it reports to your console as follows:

ffB or F OK

Licensed Material··Property of Data General

.IOPC
Initializing the operator communications package

This command initializes the OPCOM package, and must
be issued before you can execute any of OPCOM's com
mands. If you do not plan to use OPCOM commands RUN
and QUE or DEQ, the first three accumulators (ACO, ACl,
and AC2) must each contain ° when you issue the .I0PC
call. Otherwise, you must input three parameters to the
.I0PC command.

The first of these parameters, passed in ACO, is the address
of the queue area reserved for this call. OPCOM needs one
queue area frame for each RUN or QUE command. (The
QUE command awaits execution until the task has been
queued for the last time.) The total queue area is n*QTLN
words long, where n equals the number of queue frames
and QTLN is the queue frame size. (QTLN is defined in
the listinng of PARU.SR found in Appendix B.) The queue
area is managed exclusively by OPCOM.

You pass the second parameter in AC 1. The left byte must
contain the channel number on which you opend the overlay
file; if no overlay is involved, this byte must contain 0. The
right byte of AC 1 must describe the maximum number of
different tasks that you will queue or run simultaneously.
(This value defines the queue area when multiplied by QTLN.)
OPCOM can load overlay tasks on request, but your pro
gram must release each node used for these tasks by issuing
the .OVKIL or .OVEX commands.

The last parameter, passed in AC2, is the base address
(displacement 0) of the task table. This table consists of a
series of five-word frames that describe each task to be run
or queued. To build this table, use the following specifi
cations:

Displacement Contents

°

2

3

4

Program number

Overlay symbolic name, or node (left byte)/
number (right byte); (-1 if a core-resident
task)

-1 only if unconditional loading is re
quired

Task 10 (left byte); task priority (right
byte)

Task starting address

RDOS System Reference 147

The program number is distinct from the task ID, but you
may assign the same value to them if desired. You can
modify the task priority by an appropriate OPCOM com
mand. Terminate the task table series with a word containing
-1.

Required Input

Pass the following parameters only if you plan to issue
OPCOM commands RUN or QUE. Otherwise, clear ACO,
AC1, and AC2 to zero when you issue the .I0PC command.

ACO - Queue area address.

ACI - Left byte: overlay channel (or zero). Right byte:
maximum number of queues.

AC2 - Task table address.

Format

.IOPC
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

42 ERNOT

120 EROPM

Out of TCBs.

Operator messages not specified during
system generation.

148 RODS System Reference

DEQ
Dequeue a previously queued task

This OPCOM command dequeues the previously-queued
task whose ID you specify as an argument. The task ar
gument must be an octal integer ranging from 1 to 377; it
cannot be O. After executing the command, OPCOM dis
plays the message OK; you can then issue another command.
If OPCOM cannot execute the command, it displays one of
two error messages and await another command.

Format

(CTRL-E) For B *,DEQ,task ID (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

Licensed MateriaJ--Property of Data General

,-

-

KIL
Kill a task

This OPCOM command immediately kills the task whose
ID you specify as an argument. The task ID argument must
be an octal integer in the range of 1 to 377; it cannot be O.
After executing the command, OPCOM displays the mes
sage OK; you can then issue another command.

Format

(CTRL E) ForB *,KIL,task 10 (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

Licensed Material··Property of Data General

PRI
Change a task's priority

The PRI command changes the specified task's priority to
the priority given as an argument. The task ID and new
priority arguments must each be an octal integer within the
range I to 377. After executing the command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format

(CTRL-E) For B *,PRI,task 10, new priority (CR)

Possible Errors

Message

INPUT ERROR

Meaning

New priority exceeded 377H, or syn
tax error detected.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

RODS System Reference 149

QUE
Queue a task for periodic execution

This command creates and periodically executes a task for
execution using task· call . QTSK' s logic. The task may be
either memory-resident or an overlay.

If the task resides in an overlay, the QUE command loads
the overlay. If no TCB is currently available for the creation
of a new task, RDOS waits for one and then carries out this
command. If two or more tasks are queued for execution
at the same time of day, the task of highest priority receives
control first. After this call creates and activates a new task,
you must ensure that the system kills or suspends it. If the
task resides within an overlay, your program must release
the node after the task has executed; otherwise, no other
task will be able to use the node.

After successful completion of the QUE command, OPCOM
displays the message OK on the system console; you can
then issue another command. If OPCOM cannot execute
the command, it displays one of four error messages and
awaits another command.

Format

(CTRL-E) For B *,QUE,program#, + (CR)
[hour,minute,second,repeats,] interval [,priority](CR)

In this command line, program # is the number that you
chose when initializing OPCOM via the .I0PC command.
This argument may be the same as the task ID, or not. Note
the use of the up-arrow (t) to continue a long statement
on the next line.

All bracketed entries are optional. If hour is less than the
current time of day, or is between 24 and 48, RDOS queues
the task for the new day. If hour equals (24*d) + h, RDOS
queues the task in d days. To queue for midnight, queue
for hour 24. To queue the task immediately, omit hour,

minute, and second (but retain their comma delimiters in the
command line.

Argument repeats defines the number of times the task will
be executed, and interval determines the number of seconds
to elapse between each time RDOS queues the task. The
interval may not exceed 65,535 seconds (about 18 hours).
If argument repeats is omitted, the task is queued an unlim
ited number of times. (Even if you omit this argument, you
must include its comma delimiter.)

150 RDDS System Reference

The priority argument indicates the priority of the task you
want to queue; it is optional because the task's priority
(along with other task information) is required in the task
table that you input to the .I0PC command. If you enter
the priority argument here, it overrides the one you specified
to .I0PC. The priority argument is an octal integer; all others
are decimal.

Possible Errors

Message

INPUT ERROR

Meaning

One or more required arguments are
missing in the command string, or
you specified an invalid priority ar
gument.

PROG NOT FOUND You did not issue the .I0PC call,
or did not define the program num
ber in this call (ie, the program table
is incomplete).

NO QUEUE AREA You defined an insufficient number
of queue area frames in the call to
.I0PC, hence no free queue area is
available.

ILLOGICAL QUEUE You input illegal information in the
argument string (RDOS detected this
when it passed to . QTSK).

Licensed Material .. Property of Data General

RDY
Ready a task

This command readies the task whose ID you specify as an
argument. The task ID must be an octal integer ranging
from 1 to 377. After executing this command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format

(CTRL-E) For B *,ROY, task 10!& (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

Licensed Material··Property of Data General

RUN
Execute a task

This OPCOM command initiates either a memory-resident
task or one within an overlay, and queues this task for
immediate execution. If the task resides within an overlay,
this command loads the overlay. If no TCB is currently
available for the creation of a new task, RDOS carries out
the command as soon as a TCB becomes free. After creating
and activating a task with the RUN command, you must
ensure that it is killed or suspended. If the task resides within
an overlay, you must release the overlay node.

After completing this command, OPCOM displays the mes
sage OK on the system console, indicating that it is ready
to accept another command.

Format

(CTRL-E) For B *RUN,program #,[priority] (CR)

In this command line, program # is the number assigned to
this program when you issued the initialization command,
.lOPC. This argument mayor may not be the same as the
task ID, and must be expressed as a decimal integer.

The priority is an optional argument indicating the priority
of the task you wish to queue. If you enter the priority here,
it overrides the one specified to the .lOPC command when
you initialized the OPCOM package. The priority must be
an octal integer.

Possible Errors

Message

INPUT ERROR

Meaning

You did not specify a program num
ber in the command line, or you
specified an invalid priority.

PROG NOT FOUND You did not issue the .lOPC call,
or did not define the program num
ber in this .lOPC call (ie, the pro
gram table is incomplete).

NO QUEUE AREA You defined an insufficient number
of queue area frames in the call to
.lOPC; thus no free queue area is
available.

RODS System Reference 151

sus
Suspend a task

This command suspends the task whose ID you specify as
an argument. The task ID must be an octal integer in the
range of 1 to 377. After executing this command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format

(CTRL E > F or B * ,SUS,task 10 (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

152 RDOS System Reference

TST
Di~play a task's status

This OPCOM command displays a specified task's status
on the console. After executing the command, OPCOM
displays the following status on the console:

STAT = s, PRI = ppp

Where s is an octal integer from 0 to 7 representing one of
eight states; and ppp is an octal number, ranging from 0 to
377, indicating the task's priority. The possible values of s
and their meanings are:

o Ready

2

Suspended by a .SYSTM call or TRDOP command

Suspended by a .SUSP, .ASUSP, or TIDS (SUS)
command

3 Suspended by a .XMTW or .REC command

4 Waiting for an overlay node

5 Doubly suspended by .ASUSP, .SUSP, or .TIDS (SUS)
and by a .SYSTM call

6 Doubly suspended by .XMTW or .REC and by a
.SUSP, .ASUSP, or .TIDS (SUS) command

7 Waiting for an overlay node and suspended by an
.ASUSP, .SUSP, or .TIDS (SUS) command

Format

(CTRL E) For B *,TST, task 10 (CR)

The task ID argument must be an octal integer ranging from
1 to 377.

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden
tification number was found.

Licensed Material··Property of Data General

\
\

,-

-

OPCOM Command Example
Figure 5.5 demonstrates the use of the OPCOM commands
discussed in this section. It shows a typical series of console
commands and messages, along with explanations of each
sequence.

Dialogue

!B* ,RUN, 1 J

!fB OK
!B* ,RUN2J

!fB OK

!B*RUN,3)

!fB INPUT ERROR

!B* ,TST, 1 J

!lB STAT= 1,PRI=002

!B*,SUS,1J

!fB OK

!B* ,TST, 1J

!lBSTAT= 2,PRI=002

!B*,KIL,1J

!fB OK

!B* ,TST, 1J

!fB TID NOT ACTIVE

Meaning

Run task with program number 1 in the background, and OPCOM

verifies execution of the command. Similarly, program 2 is run and is

verified.

An attempt is made to run 3, but OPCOM detects a syntax error

(missing comma).

Operator requests status of program 1.

OPCOM responds with status 1, ready, and priority 2. Operator

suspends 1 and OPCOM verifies execution of the command.

Operator gets status of 1 again;

status is suspended by SUS.

Operator Kills program 1, and after system verifies this, operator tries

to test its status.

OPCOM responds with error message.

Figure 5.5 Sample console commands and messages

Licensed Material··Property of Data General
RDDS System Reference

DG-25445

153

Disabling and Enabling the
Multitask Environment
This section describes the .SINGL and .MULTI commands,
which disable and enable the multitask environment, re
spectively. In a normal multitask environment, ready tasks
compete for CPU control according to their relative priority.
Although you can assign the highest priority (0) to one or
more tasks, rescheduling occurs on each system interrupt,
or when the executing task issues a system or task call.
Thus, in a multitask environment, even the highest priority
task may be suspended. Under some circumstances, you
may want a task to retain CPU control continuously. To
give a task such control, RDOS provides the task call.SINGL.

When a task issues .SINGL, it disables the multitask en
vironment and retains CPU control despite system calls and
most task calls that it issues; although interrupts continue,
the task Scheduler allows the task to retain control. How
ever, user interrupt routines defined via the .IDEF command
continue to execute as usual. The privileged task retains
CPU control until it restores the multi task environment by
issuing task call .MULTI. The multitask environment is also
restored if the task suspends or kills itself.

Generally, a task should not disable the environment unless
it must be absolutely autonomous; certainly it should not
do so. if it relies on other tasks. If you must deny other tasks
access to a critical resource, such as a database, use the
transmit and receive (.XMT/.REC) mechanism provided by
RDOS and discussed earlier in this chapter.

Neither the .SINGL or .MULTI commands affect the other
program in a foreground/background environment. As with
other task calls, you must declare these two external (.EXTN)
in a source program if you want to use them.

154 ROOS System Reference

.SINGL
Disable the multitask environment

This command disables the multi task environment and gives
the issuing task continuing CPU control, despite its priority
or any system calls (and most task calls) that it issues. The
command is useful for operations outside of user state, as
described under "State Definitions" in Appendix I.

Required Input

None.

Format

.SINGL
normal return

Possible Errors

None.

Licensed Materlal··Property of Data General

-

.MULTI
Restore the multi task environment

This command enables normal scheduler operations and the
multi task environment after they have been disabled by the
.SlNGL command.

Required Input

None.

Format

. MULTI

Possible Errors

None.

Licensed Material··Property of Data General

Disabling and Enabling the Task
Scheduler
Generally, the ROOS multitask commmands permit you to
manage a multi task program with complete satisfaction; the
task scheduler always gives CPU control to the ready task
of highest priority. In some instances, however, you may
want to suspend the task scheduler briefly. You might, for
example, suspend rescheduling to control race conditions
between several tasks competing for a single resource. This
section describes the .ORSCH and .ERSCH commands,
which enable you to do so .

Note that disabling the scheduler--even briefly-is a drastic
step. The action does not affect system activities such as
interrupt service. Moreover, ROOS reactivates the sched
uling function as soon as the issuing task loses control of
the CPU, even though you may not yet have reenabled
rescheduling explicitly. For instance, all system calls, as
well as the .SUSP and .KILL commands, reenable sched
uling.

ROOS System Reference 155

.DRseR
Disable rescheduling

This task call prevents rescheduling in this program envi
ronment until you explicitly reenable scheduling or the is
suing task loses control of the CPU. Issue task call .DRSCH
with caution, since it disrupts the ordinary management of
the multitask environment. The task that issues this com
mand retains control even though other, higher priority tasks
are ready. This call has no effect when scheduling is dis
abled.

Required Input

None.·

Format

.DRSCH
normal return

Possible Errors

None.

156 RDOS System Reference

.ERSCR
Reenable rescheduling

Normally, the task scheduler is enabled and manages the
multitask environment within its program. If you have sus
pended task scheduling by a call to .DRSCH, you can reac
tivate the scheduler by issuing task call .ERSCH. This call
has no effect when scheduling is enabled.

Required Input

None.

Format

.ERSCH
normal return

Possible Errors

None.

Ucensed Material·.property of Data General

Summary
,- Table 5.4 summarizes the task, system, and OPCOM com

mands described in this chapter. Remember that all task
names must be declared external via the pseudo-op . EX TN .

Task or Function
Syst~m Call

. ABORT Terminate a task immediately .

. AKILL Kill all tasks of a given priority .

. ARDY Ready a" tasks of a given priority .

. ASUSP Suspend a" tasks of a given priority .

.DELAY Delay the caller for the specified number of
RTC pulses.

. DQTSK Dequeue a previously-queued task.

. DUCLK Define a user clock .

.DRSCH Disable the rescheduling of the task envi-
ronment.

. ERSCH Reenable the rescheduling of the task en-
vironment.

- . GHRZ Examine the system real time clock.

.IDST Get a task's status .

.I0PC Initialize the Operator Communications
Package (OPCOM).

.IXMT Transmit a message from a user interrupt.

. KILAD Define a kill-processing address .

. KILL Kill the calling task .

.MULTI Enable the multitask environment.

.OVEX Release an overlay and return to the caller.

.OVKIL Kill an overlayed task and release the over-
lay.

.OVREL Release an overlay node.

. PRI Change the calling task's priority .

. QTSK Queue a core-resident or overlay task .

. REC Receive a message from a task .

. RUCLK Remove a user clock from the system .

~,

Licensed Material--Property of Data General

Task or Function
System Call

.SINGL Disable the multitask environment.

.SUSP Suspend the calling task.

.TASK Initiate a task.

.TIDK Kill a task by ID number.

. TIDP Change the priority of a task by ID number .

.TIDR Ready a task by ID number .

.TIDS Suspend a task by ID number.

.TOVLD Load a user overlay in a multitask environ-
ment.

.TRDOP Read an operator message .

.TWROP Write an operator message.

.UCEX Exit from a user clock routine .

. XMT Transmit a message to another task .

.XMTW Transmit a message to another task and wait
for its receipt.

OPCOM Commands
DEQ Dequeue a previously queued task.

KIL Kill a task.

PRI Change a task's priority.

QUE Queue a task for periodic execution.

RDY Ready a task.

RUN Execute a task.

SUS Suspend a task.

TST Get a task's status.

Table 5.4 System, task, and OPCOM command summary

RDOS System Reference 157

Chapter 6

Foreground and Background Programming

So far this book has described tools for using RDOS effec
tively in one program. Chapter 3 explained the essential
system calls, Chapter 4 introduced tools for extending mem
ory resources, and Chapter 5 described multitasking; each
chapter built upon the features explained in preceding chap
ters, but all were presented in the context of a single pro
gram.

This chapter describes dual programming-the technique of
running two, discrete programs simultaneously and letting
RDOS apportion CPU and disk I/O time between them.

When you first bootstrap RDOS, only the background is
running; the CLI, running in background memory, displays
its R prompt. You can then execute a foreground program
directly, via the CLI's EXFO command, or you can execute
a background program, which in turn may execute another
program in the foreground via system call . EXFO.

How you handle dual programming depends largely on
whether or not your system has a hardware map to separate
the two programs. Dual programming is safer and easier in
mapped systems, which offer the added advantages of ex
tended address space described in Chapter 4. If your system
is unmapped, you must configure a program for foreground
execution by specifying starting ZREL and NREL addresses
in the RLDR command line; nonetheless, with a little care,
you can execute a program in both an unmapped foreground
and background.

This chapter contains the following, major sections:

• Overview

• Dual Programming in Mapped Systems

• Dual Programming in Unmapped Systems

• Foreground/Background System Calls

Licensed Material--Property of Data General

In a final section, the commands presented in this chapter
are summarized in table form. Occasionally a discussion
will refer to certain, related commands whose descriptions,
in earlier chapters, you may want to refer to. These com
mands include:

.MEM

.MEMI

.EXEC

.ERTN
and
.RTN

.WRPR

Check the current program's NMAX (Chapter
3).

Change the value of NMAX (Chapter 3).

Swap or chain a save file (Chapter 4).

Return to the next higher level program (Chapter
4).

Write-protect a memory block, in mapped sys
tems only (Chapter 4).

Overview

The two programs that run under RDOS are called the fore
ground and background programs. These programs exist
independently of each other, and each has its own task
scheduler. The two programs can have equal priority, or
you may assign a higher priority to the foreground program.
In this case, control goes to the background only when no
task in the foreground is ready. When you need to run a
real-time program with critical response time, execute it in
the foreground. The foreground will then receive the higher
priority, while the background can be used for programs
not requiring fast response (eg, assemblies, compilations,
and the like).

Foreground and background programs can communicate via
a Multiprocessor Communications Adapter line, or they can
each define a common communications area via the. ICMN
command and transmit messages to the other via system
calls .WRCMN and .RDCMN. The .FOND command en
ables the background program to determine whether or not
a foreground program exists. The foreground program can
terminate itself via .RTN from level 0 (or you can terminate
it by typing CTRL-F from the background console), and it
can release all its former memory.

RODS System Reference 159

Foreground and background programs can access common
disk files and common directories. If foreground and back
ground tasks are using the same directory, either task may
release that directory without affecting the other task's use
of it. If one program, F for example, releases a directory
which is in use by program B, F receives the error return
with error code EROPD as an indication that the directory
is in use by B. Nonetheless, RDOS releases the directory
from F.

The foreground and background cannot use the same re
served device file simultaneously; nor can they spool data
simultaneously to the same output device. Only the first
ground to open the reserved device request will be able to
use that device. Similarly, foreground and background pro
grams should not issue simultaneous read commands to a
common input device, since RDOS has no way to separate
elements in an input data stream and divert them to two
different programs.

If you have a mapped system, you can use all mapped system
and task calls. RDOS treats any special mapped calls issued
in an unmapped environment as no-ops, and gives control
to the call's normal return.

Dual Programming in
Mapped Systems
Mapped systems provide an absolute hardware boundary
between the foreground and background programs. More
over, the map provides both programs with a complete page
zero (including auto increment/decrement locations) and a
complete NREL memory area. You can run two CLls con
currently in a mapped environment, if two consoles are
available.

In mapped systems, all programs may use locations 168 and
above, up to the limits of available memory, since each
program has its own page zero. The system initially allots
all memory blocks to the background program. You can
change the initial memory allocation via the CLI's SMEM
command, and can check the current memory allocations
via CLI command GMEM or system call .MEM. Each
program can change its own NMAX value via system call
.MEMI.

Whenever a map violation occurs in an instruction that is
not a call (eg, an infinite defer, illegal address, or illegal
attempt to reference a system device), RDOS outputs the
contents of the program counter and accumulators as fol
lows:

TRAP PC ACO AC1 AC2 AC3

PC gives either the location of the instruction that caused
the trap, or -1 if RDOS is unable to report a meaningful
address. You might receive -1, for example, if your program

160 ROOS System Reference

tried a seriously illogical operation such as existing from a
user interrupt routine (. UIEX) when no such routine had
been defined.

Following its TRAP message, RDOS creates a break save
file (named BREAK.SV); places it in the current directory;
and displays the message BREAK on the console. Control
then goes to the next higher level program in which location
USTBR of the UST is set to a valid address. (See Chapter
3 under "Keyboard Interrupts.")

If you pass an illegal address to a system call, RDOS returns
error code 74, ERMPR.

Writing interrupt routines for special user devices is slightly
easier in a mapped system. If you want a user device to use
the data channel, however, you must identify the device via
system call . STMAP, described in Chapter 7.

When your program issues a .MEMI command in a mapped
environment, RDOS sets NMAX at whatever value is re
quired by the specified memory increment, up to the highest
memory address (HMA) available to your program. None
the less , the map always allocates memory in blocks of 20008

words. Thus, for example, if NMAX is set to 40008 and
you request a memory increment of 5008 , NMAX becomes
40500 even though a total of 42000 memory words are
reserved for the program.

You can build foreground save and overlay files for either
ground in a mapped system in the same way that you would
for a single-program background, since RDOS reserves an
entire ZREL and NREL memory for each ground.

Executing Dual Programs
The RDOS system bootstrap operation brings the CLI into
execution in the background. At this point, when the fore
ground program has yet to be loaded, all available memory
is allocated to the background. Thus, before you can issue
any foreground command on a mapped machine, you must
allocate memory to the foreground with the SMEM com
mand.

After you have built an executable foreground save file (with
optional overlays), you can load and execute in the fore
ground area by entering the CLI's EXFG command followed
by the save file's name and a terminator. (Any background
program can also execute a program in the foreground by
issuing system call. EXFG .)

You can issue the EXFG or .EXFG commands for any
executable program, including a system utility or the CLI
itself, and access it via a second system console, $TTIlI
$TTOI. (If you use system call .EXFG instead of its CLI
counterpart-a utility command-you must set up the fore-

Licensed Materlal··Property of Data General

~

,,-....

ground command file, FCOM.CM, as described in the man
ual RDOS/DOS Command Line Interpreter.)

To execute a single-system utility program in the fore
ground, issue the following command from the background
console:

EXFG system-utility-command-stream (CAl

For example, to assemble source file ABC in the foreground
with a cross reference and listing to the line printer, you
would type:

EXFG MAC ABC $LPT/L (CAl

To execute the CLI itself or any other save file in the fore
ground, use the form:

EXFG programname (CAl

Any program executing in the foreground may push other
program levels into execution via system call . EXEC.

The foreground program can terminate by issuing as many
.RTN (or .ERTN) commands as needed to pop through level
o (if the CLI is not active in the foreground). This occurs
when a single-system program, executed at level 0 in the
foreground, terminates its operation. Alternatively, you can
terminate a foreground program by typing CTRL-F on the
background console . You must use this second method to
terminate a program that incorporates a CTRL-A or CTRL
C handler. When you issue CTRL-A or CTRL-C via the
foreground console (if any), the foreground program ter
minates if (1) RDOS finds no interrupt processing address
in USTIT/USTBR of the foreground UST, and (2) no higher
level program contains such a processing address in its UST.
Each system utility automatically issues a .RTN command
when it terminates to return control to the background (or,
if executing in the background, to return control to the CLI).

Whenever the foreground program terminates via system
calls .RTN or . ERTN , RDOS displays the message

FG TERM

on the console. The same message appears if you terminate
the foreground with a CTRL-F interrupt.

Checkpointing a Background Program
Checkpointing allows a foreground program to interrupt the
current background program, run a new program in the
background, and then restore the original background pro
gram.

Some processing applications function more effectively if
the foreground program can make use of the background's
resources in this way. One example of such an application

licensed Material··Property of Data General

is a mapped, dual-program system containing a data col
lection program in the foreground and one of several system
utilities in the background. In such an application, the fore
ground might occasionally need to execute a data reduction
program in the background. Checkpointing the data reduc
tion program into execution from time to time would fulfill
this need. You can checkpoint via the mapped RDOS system
call . EXBG, described in this chapter.

Dual Programming in Unmapped
Systems
Unmapped systems must use software boundaries to sepa
rate the foreground and background program areas. You
must define these boundaries before execution, in the RLDR
command line.

Each boundary is a starting address for execution; the local
/F switch defines the starting NREL address, and the /Z
switch defines the starting ZREL address for execution.
Locations 208 through 378 are reserved for use by the back
ground.

Building Foreground Programs
When you plan to run foreground and background programs
in an unmapped system, bear in mind that the memory
requirements of each will be critical. Aside from this factor
and any foreground/background system calls that you plan
to use, writing the source code for a foreground program
does not require special consideration.

Depending on your application, you may want a background
program to change NMAX (.MEMI, Chapter 3) if it will
execute a specific program in the foreground via system call
.EXFG.

After writing and assembling your source program, con
figure it for foreground operation by including the starting
ZREL and NREL addresses in the RLDR command line.
(Adopt the practice of checking the ZMAX and NMAX
requirements of programs that you may want to execute
simultaneously in the background; you can do this with the
program load map or with the SEDIT utility.) The software
boundaries must include both NREL and ZREL address
information in local switches F and Z, for example:

ALDA 13000/F 250/Z AO A1 [OVO OV1, OV2 1

This command line creates a save file named RO.SY (con
taining binary files RO and R 1), and an overlay file named
RO.OL (containing two overlays). When you load the save
file into memory, RDOS loads its ZREL portion into lo
cations 250x and above, and its NREL portion into locations
130168 and above.

RDOS System Reference 161

When building programs for an unmapped foreground, re
member that they will be separated by soft boundaries only;
hardware does not protect the address space of the two
programs. Thus, for example, you must ensure that no back
ground program attempts to return to a higher-level, back
ground program requiring more core storage. If such a return
is performed (eg, via .RTN) and the larger background
program requires space now occupied by the foreground
program, system failure results. This situtation would occur
after the following sequence of program loads:

1. The CLI resides in the background, and no foreground
program is executing.

2. A background program named BOD, smaller than the
CLI, is executed via the CLI on level 1.

3. BOD issues the foreground load command, .EXFO,
loading a larger program whose starting address immedi
ately follows BOD's NMAX.

4. BOD issues the .RTN command, attempting to return to
the CLI. The CLI, however, requires memory storage which
the foreground program now occupies. System failure oc
curs.

You can avoid this mistake by planning your program flow
with care.

Executing Dual Programs
The RDOS bootstrap operation brings the CLI into execution
in the background. At this point, when the foreground pro
gram has yet to be loaded, all memory is allocated to the
background. Once you have built an executable save file,
you can execute it in the foreground via the CLI's EXFO
command or with,system call .EXFO. For either command
to work, you must have loaded the foreground-program with
information about its software boundaries.

To load and execute a program in the foreground, type the
command line:

EXFG programname (CR)

If the boundary requirements of this program threaten to
overwrite any portion of the CLI or background program,
RDOS will not load the foreground program. Otherwise, if
its boundaries are valid, RDOS loads and executes the fore
ground program; the CLI displays its R prompt when ex
ecution begins. You can then try to execute a new background
program via the CLI, thereby swapping the CLI to disk. If
the program you wish to execute in the background requires
more memory than is available, RDOS does not execute it.

You can terminate a foreground program by typing CTRL
F on the background console, or CTRL-A (or CTRL-C) on

162 RDOS System Reference

the foreground console, $TTII (if any). Any of thos actions
terminate a foreground program as long as (1) it has no
interrupt processing address in USTIT (or USTBR) in its
UST, and (2) no higher-level foreground program has such
a processing address in its UST. The foreground program
can release its memory to the background by issuing a .RTN
command.

When you terminate the foreground via CTRL-F, CTRL
A, or CTRL-C, or when the foreground program yields its
memory to the background via a .ERTN or .RTN command,
the message FO TERM appears on the background console.

Figure 6.1 depicts two possible command sequences to pro
duce foreground/background operation in an unmapped sys
tem. It uses two sample programs, FON and BOD. Shaded
areas represent storage areas occupied by User File Tables
(UFT's). These are 458-word structures used by the oper
ating system to record file and device information for each
disk file opened on a channel. RDOS stores file information
in a section of each UFT called a UFD; you can access UFD
information with the . STAT command, described in Chapter
3. In all mapped systems, UFTs reside in system space.

Licensed Materlal--Property of Data Genera'

I~

ROOS

free area
NREL

BG NMAX -----
CLI

free area

CLI
} ZREL

Execute program FGO
via the CLI: EXFG FGO)

(
STAGE 1

\

Execute program BGO via
CLI on level 1; CLI is
swapped to disk: BGO)

ROOS ROOS
\

free area
FG NMAX -----

FGO'S NREL NREL
free area

NREL

BG NMAX
free area

'-------- BG NMAX 1--- -----

CLI BGO'S NREL

FGO'S ZREL

CLI

free area }

r-- BGO'S ZREL -
ZREL }ZREL

STAGE 2 STAGE 2

Execute program BGO via
the CLI on level 1; the CLI
is swapped to disk: BGO)

Program BGO executes program
FGO via ,EXFG

~

FG NMAX

BG NMAX

ROOS

free area

FGO'S NREL

free area --------
BOG'S NREL

FGO'S ZREL
--- -----

BOG'S ZR'EL

STAGE 3

______ I UFT Storage

'--_ 1 ROOS

To return to stage 1, FGO issues RTN, relinquishing its
memory to BGO. BGO then issues .RTN. From the console,
typing CTRL-A, then CTRL-F would achieve the same
end by interrupting the programs.

Figure 6.1 Loading foreground and background programs in an unmapped system SO-00531

Licensed Material--Property of Data General RDDS System Reference 163

Foreground/Background System
Calls
This section describes the system calls used to implement
dual programming. In order of discussion, they are:

. EXFG

.FGND

.ICMN

Execute a program in the foreground .

See if the foreground is running, and check the
status of the current program.

Define a program communications area .

. WRCMN Write a message to the other program.

. RDCMN Read a message from the other program

.WROPR Write an operator message.

.RDOPR Read an operator message.

.EXBG Checkpoint a mapped background program

164 RODS System Reference

.EXFG
Execute a program in the foreground

This call loads a program save file into foreground memory
and transfers control to it. Only a background program can
issue this command. In an unmapped system, you must have
loaded the save file with boundary information as explained
in the preceding section. RDOS passes the contents of AC2
to the foreground program.

Required Input

ACO - Byte pointer to the foreground program save file's
name .

AC 1 - Appropriate starting address/foreground priority code .
Two possible addresses are allowed: the program
starting address (USTSA), and the Debug III starting
address (USTDA). The codes permitted in ACl, and
their meanings, are:

OB15 USTSA. Pass control to the ready task of
highest priority in the program. (Initially
this is the program itself.)

IB15 USTDA. Pass control to the debugger.

OBI Give the foreground program a higher
priority than the background.

1 B 1 Give the foreground and background the
same priority.

Format

.SYSTM

.EXFG
error retrn
normal return

Licensed Materlal··Property of Oat. General

Possible Errors

,,,",- AC2 Mnemonic Meaning

ERFNM Illegal filename.

4 ERSVI File requires Save attribute.

12 ERDLE File does not exist.

21 ERUFT Mapped systems only: not enough
channels defined during system gen-
eration to satisfy the value specified in
USTCH of the save file.

26 ERMEM Attempt to allocate more memory than
is available.

32 ERADR* Illegal starting address.

53 ERDSN Directory specifier unknown.

66 ERDNI Directory not initialized.

70 ERFGE Foreground already exists.

73 ERUSZ Too few channels defined at load time

. - or during system generation .

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*RDOS returns ERADR if the code input in AC I is illegal or if the required
address is missing from the UST. This can occur if (I) you did not specify
a starting address for the save file and you input code OB 15 in AC I. or
(2) you did not load the debugger as part of the save file and you input
code IBI5 in ACI.

Licensed Material··Property of Data General

.FGND
See if a foreground program is running and check your own
level

This system call is used to determine whether or not a
foreground program is running in the system, and at what
level the calling program is running. The command passes
-1 in ACO if it finds a foreground program, and passes 0
in ACO if it does not. In AC 1, the .FGND command returns
a code indicating the calling program's level. The possible
codes and their meanings are:

Background level 0

2 Background level 1

3 Background level 2

4 Background kvel 3

5 Background level 4

6 Foreground level 0

7 Foreground level 1

10 Foreground level 2

11 Foreground level 3

12 Foreground level 4

Required Input

None.

Format

.SYSTM

.FGND
error return
normal return

Possible Errors

None.

RODS System Reference 165

.ICMN
Define a program communications area

This system call permits your program to define a contiguous
area of up to 25610 words within its own address space to
send or receive messages from another program. The fore
ground and background may each define one communica
tions area.

Required Input

ACO - Starting address of the communications area.

ACt - Size of the communications area in words.

Format

.SYSTM

.ICMN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

62 ERCMS

74 ERMPR

Communications area exceeds the pro
gram size or would overwrite the sys
tem.

Address outside address space.

166 RDDS System Reference

.WRCMN
Write a message to the other program

This system call writes a message of up to 25610 words from
the calling program (foreground or background) into the
other program's communication area. The message sent may
originate from anywhere within the sender program's ad
dress space.

Required Input

ACO - Word address of the start of the message.

ACt - Word offset within the other program's communi
cations area which will receive the message.

AC2 - Number of words to be sent.

Format

.SYSTM

.WRCMN
error return
normal return

Possible Errors

AC2 Mnemonic

62 ERCMS

63 ERCUS

74 ERMPR

Meaning

Message too large for communications
area.

No communications area is defined in
the other program.

Address outside address space.

Licensed Materlal .. Property of Data General

~

,-

.RDCMN
Read a message from the other program

This system call allows the calling program to read a mes
sage of up to 256 decimal words from another program's
communications area. The receiving program may accept
the message anywhere within its address space.

Required Input

ACO - Starting word address to receive the message.

ACI - Word offset within the other program's communi
cations area where the message originated.

AC2 - Number of words to be read.

Format

.SYSTM

.RDCMN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

62 ERCMS

63 ERCUS

74 ERMPR

The size of the requested message ex
ceeds the size of the communications
area.

No communications area is defined in
the other program.

Address outside address space.

Licensed Material··Property of Data General

.WROPR
Write an operator message

This system call instructs the calling program to write a text
string to the system console, $TTO. There may be only one
outstanding write-operator command in a program area. The
message must consist of an ASCII string less than or equal
to 129 characters in length, including a carriage return, form
feed, or null terminator. On the console, RDOS displays
two exclamation points (!!), either an ForB, and then the
message. Letters ForB indicate whether the message came
from the foreground or background program, respectively.
Thus, text strings appear on the console are in one of two
forms:

!!Ftext string or !!Btext string

You should not issue this call if you have also used OPCOM
commands or task calls . TWROP and . TRDOP in the en
vironment.

Required Input

ACO - Byte pointer to text string.

Format

,SYSTM
,WROPR
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR

120 EROPM

Address outside address space.

Operator messages not specified during
system generation.

RDOS System Reference 167

.RDOPR
Read an operator message

This system call prepares the calling task to receive an
operator message from the system console, $TTI; the task
may exist in either the foreground or background programs.

Before typing the message to the program, you must type
CTRL-E (echoed on the console as !), followed by an For
a B to indicate whether a foreground or background program
is to receive the message. RDOS recognizes CTRL-E only
if it is the first character in a line.

If no program has requested a console message, the TTY
bell (if any) rings when you press CTRL-E; if the second
character is any other than an For B (or rubout), the TTY
bell rings again and RDOS accepts no further input until
you type the correct character.

If immediately after pressing CTRL-E you wish to cancel
the message transmission, press the RUB OUT key instead
of characters F or B. This key erases message characters,
starting with the most recent one typed. RDOS echoes a
left arrow (..-) on teletypewriters; on CRT displays, it
erases the last character each time you press the key. The
last character in the message string must be a carriage return,
form feed or null, and the total length of the message,
including its terminator, can be up to 132 characters.

Only one program (task) in each ground may have a read
operator message request outstanding at any given moment.
The .RDOPR command should not be issued if you are
using OPCOM commands or task calls. TWROP and . TRDOP
in this program environment.

Required Input

ACO - Byte pointer to message area.

Format

.SYSTM

. RDOPR
error return
normal return

On the normal return, RDOS passes the message byte count
(including the terminator) in ACt.

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR

120 EROPM

Address outside address space.

Operator messages not specified during
system generation.

168 RDDS System Reference

.EXBG
Checkpoint a mapped background program

Checkpointing is the practice of suspending one background
program (the checkpointed program) temporarily so that you
can execute a new program in the ba~kground. Only a mapped,
foreground program may issue the checkpoint call. The
foreground can also pass an optional, one-word message to
the new background program. There may be only one check
pointed program at a time; RDOS does not allow nested
checkpoints.

Before you can checkpoint a background program, it must
meet two conditions: (1) it must not perform any multiplexor
110, and (2) it must not use any of the following system
calls:

.DELAY

.RDOP

.IDEF/.lRMV

. DUCLK/.RUCLK

When a background program is checkpointed, RDOS dis
plays the message

CPENT

on the console. RDOS saves the following constants from
the original background program, and restores them when
it restores that program:

priority
floating-point processor state
ongoing console input
current directory.

During the checkpoint, the current directory for both grounds
is the foreground's current directory. Thus, if the new back
ground program needs to access files, they must be in the
current directory or you must include directory specifiers to
them .

The new program can be assigned one of two priorities: that
of the foreground, or that of the checkpointed program.

Since RDOS preserves $TTI input to the checkpointed pro
gram, $TTI becomes unavailable for use by the new back
ground program except via the .RDOP command. The new
program can direct output to $TTO via system call. WROP,
which writes an operator message.

The new program can restore the checkpointed program by
issuing the .ERTN or .RTN commands; you can also restore
the checkpointed program by entering CTRL-A or CTRL
C from $TTI, provided the new program's UST does not
specify a different interrupt routine.

Licensed Materlal··Property of Data General

On a keyboard interrupt, RDOS displays the message

CPINT

on $TTO. It displays the message

CPRTN

on $TTO when the new program restores the checkpointed
program normally, via a .RTN or .ERTN command.

Required Input

ACO - Byte pointer to the new background save file's name.

AC 1 - 1 BO: give the new background program the same
priority as the checkpointed program. Clear all other
bits in ACI to zero.

AC2 - Optional, one-word message to the new background
program.

Format

.SYSTM

. EX8G
error return
normal return

Licensed Material··Property of Data General

Possible Errors

AC2 Mnemonic Meaning

ERFNM

2 ERICM

4 ERSVI

12 ERDLE

21 ERUFT

25 ERCM3

26 ERMEM

53 ERDSN

57 ERLDE

66 ERDNI

73 ERUSZ

74 ERMPR

76 ERNTE

101 ERDTO

Illegal filename.

Attempt to checkpoint in an unmapped
system.

File requires S (save) attribute.

File does not exist.

Not enough channels defined during
system generation to satisfy the value
specified in USTCH of the new back
ground program.

Attempt to checkpoint a checkpointed
background program.

Attempt to allocate more memory than
is available .

Directory specifier unknown.

Link depth exceeded.

Directory not initialized.

Too few channels defined at load time
or during system generation.

Address outside address space.

Program to be checkpointed is not
checkpointable, or attempt to create two
outstanding checkpoints.

Disk time-out occurred.

RODS System Reference 169

Example

In the following sequence, three sample programs complete
a checkpoint procedure. The background program to be
suspended with a checkpoint is called BACK, the fore
ground program that will execute the checkpoint is called
FORE; and the program to be checkpointed into the back
ground is named CaMP.

1. First the programs FORE and BACK are executed from
the CLI:

EXFG FORE (CR)
R

EXFG BACK (CR)

2. While both FORE and BACK are running, FORE issues
the .EXBG command to CaMP, checkpointing CaMP into
execution. BACK is suspended, but RDOS saves its current
state, the FPU, all $ITI input to it, and remembers its
current directory. The console displays the message CP ENT.

3. CaMP reads data from some of FORE's files; it issues
a few . WRap and .RDOP commands and receives replies
from the console.

Having done its work, CaMP writes data to a file in FORE's
current directory. It then signals FORE that it is done via
call.WRCMN. FORE receives the message, reads CaMP's
data from the file, and continues.

4. CaMP issues system call .ERTN. The console displays
CP RTN. And BACK resumes execution from its original,
current directory. The console displays CP RTN.

170 ROOS System Reference

Summary
Table 6.1 summarizes the system calls for dual program- . (\
ming discussed in this chapter.

,RDOPR

Suspend ·onem~ppea.;bacl<gr6ul1dpr()gram· .. : .• '.;
and execute' another.' ,.~ •.

.... Lokda .,program '.s~ve·':fiieihtoforegr()uhd
memory and execute it. , . .'. ", .

"' '~'" ,;.,

, • '. " .' , v

Read 'anoperatormesS~ge'fro~the$ystem
: eonsole, $TTI. . . . ,

,.-) ",'?:.

Write'. a messagefrom·thecaUing~rograrn.
'. (foreground()f backgrC?und). totheotherpro-:
. gram's communications area, ..

Table 6.1 System call summary

Licensed Materlal··Property of Data General

,,--.,

".-',

-

Chapter 7

Interrupts and Power Failures

Many real-time computer control systems require interaction
with nonstandard devices to obtain information from, and
provide information to, real world environments. This chap
ter explains how to service interrupts from devices, how the
system handles power failures, and how you can write user
power-fail routines.

Servicing User Interrupts
This section includes

• Commands for Interrupt and Power Fail Routines

• Generalized 110 Routines

• 110 Buffer Module

When the CPU detects an interrupt request, it suspends the
current program and directs control to its device interrupt
service program, INTD. (INTD is part of RDOS and is
always memory-resident.) The CPU then directs control
through the interrupt vector table to the proper device control
table (DCT), using the device code as a guide.

After a user interrupt occurs, control goes to your service
routine; AC3 contains the return address required for exit
from your routine, and AC2 contains the address of the
DCT. The task call. UIEX exits from the routine and returns
to the current environment. You can issue . UIEX in both
single- and multi task environments.

RDOS removes all user devices from the system when either
a program swap or a chain occurs. When the system receives
a user interrupt on a program level that has not identified
the user device, it issues an NIOC to the device and then
returns to normal program execution.

Whenever a device requiring special user service generates
an interrupt request, the entire task environment halts until
RDOS has serviced the interrupt. All tasks resume their
former states when the environment restarts, unless you
transmit a message to one of them via the .IXMT command
from the interrupt service routine. (The .IXMT command
was discussed in Chapter 5.) Rescheduling of the program
and task environment can occur upon return from the rou
tine, depending on the contents of ACl in the return com
mand. (See .UIEX, described next.)

Licensed Material··Property of Data General

Commands for Interrupt and
Power Fail Routines
In addition to the .IXMT command, your user interrupt or
user power fail routine can issue task calls. SMSK, . UIEX,
and .UPEX. These commands, along with system calls .IDEF,
.IRMV, and .STMAP, are described in this section. They
apply to both single- and multitask environments, and, un
less otherwise noted, to both mapped and unmapped ma
chines.

ROOS System Reference 171

.IDEF
Identify ,~~ tis~r interrupt device

This sy~t~~· call introduces to RDOS a device that you did
not id{!ntifyduring system generation, but whose interrupts
you want the· system to recognize. (The .IDEF call places
an entry in the interrupt vector table.) A maximum of 10
user devices can be identified to the system at any moment.
An .IDEF to any device also provides access to device code
778, so that you can do such things as disable and enable
interrupts.

The number of free device codes (those that you can assign
to user devices) depends on the hardware in your RDOS
system. You can find system devices and their codes on the
instruction reference card for your computer.

If your system has an IPB ,and you want control when the
watchdog timer times out, you must identify the timer via
the .IDEF command. (See Chapter 8.) If you generated the
current RDOS system without an IPB and subsequently
introduce a device on device code 36, RDOS issues a NIOP
to device code 37 whenever the real-time clock or power
fail monitor interrupts. (The IPB has device code 36, and
the watchdog timer, device code 37,) To prevent this in
teraction from occurring, avoid using device codes 36 or
37 for a user device.

To introduce a data channel device, your program must
establish the data channel map for the device via the .STMAP
command discussed later in this section. (The .STMAP
command applies to mapped systems only.)

If you introduce communication software such as CAM,
RDOS throws away interrupts left outstanding from pro
grams that terminate without clearing their devices.

Required Input

ACO - Device code of the new device.

ACl - Address of the new device's DCT. In a mapped
system, this address must be in NREL space, ie,
above 4008, Also in a mapped system, set bit 0 to
1 if you want the new device to use the data channel.

AC2 - Mapped systems only: number of IK core blocks
required by the data channel map. This number must
be one larger than the integer number of I,024-word
blocks used for data channel core buffers. (Appli
cable only if you have set bit 0 of AC 1 to 1 for this
call.)

172 ~DOS Sys;tem Reference

Format

.SYSTM

.IDEF
normal return
error return

Possible Errors

AC2 Mnemonic Meaning

36 ERDNM Illegal device code (greater than 768),
Device code 778 is reserved for CPU
which supervises the power monitor!
auto restart option.

45 ERIBS Interrupt device code in use, or 10 user
devices already identified.

65 ERDCH

74 ERMPR

Unmapped systems only: insufficient
room in data channel map.

Mapped systems only:" address outside
address space.

licensed Mate"rlal-Property of Data General

. -

--

.UIEX
Exit from a user interrupt routine

This command returns control to a program environment
after a user interrupt; you can use it only to terminate an
interrupt service routine. In all systems, you can force re
scheduling by passing a nonzero value in AC 1; if AC 1
contains 0 when you issue this command, the environment
resumes without rescheduling. In a mapped system, RDOS
ignores values input in the other accumulators. In an un
mapped system, you must restore AC2 and AC3 to the
addresses they held on entry to the routine; otherwise, the
system will crash.

Required Input

ACI - Zero only to suppress rescheduling.

AC2 - Unmapped systems only: address upon entry to rou
tine (DCT).

AC3 - Unmapped systems only: address upon entry to rou
tine (return address).

Format

.UIEX

Possible Errors

None .

Licenaed Material--Property of Data General

.UPEX
Exit from a powwer fail service routine

This command accomplishes an exit from a user power fail
service routine, forcing rescheduling. Control returns to the
location that was interrupted by a power failure. The same
restrictions applying to system and task calls in a user in
terrupt service routine apply to a user power fail routine.
The . UPEX command is discussed again in the context of
power fail/auto restart procedures at the end of the chapter.

Required Input

AC3 - Return address upon entry to the routine (unmapped
systems only).

Format

.UPEX

Possible Errors

None.

RDOS System Reference 173

.IRMV
Remove a nonSYSGENed interrupt device

To prevent the system from recognizing an interrupt device
that was identified by the .IDEF command, issue system
call .IRMV.

Required Input

ACO - Device code for the device that you want to remove
from the system.

Format

. SYSTM

.IRMV
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne- ,
monicis ERDNM, indicating an illegal device code (greater
than 778) or an attempt to remove a SYSGENed device.
RDOS returns code 36 in AC2 when this error occurs.

174 ROOS System Reference

.SMSK
Modify the current interrupt mask

Use this task call to change your interrupt mask for a service
routine in both single- and multitask environments. When
ever a user interrupt occurs, RDOS ORs the interrupt mask
with the mask in the DCTMS of your DCT to produce the
current interrrupt mask. The .SMSK command allows your
interrupt routine to change the old mask and produce a new
one which is the logical OR of the old mask and a new
value. The .SMSK command destroys the accumulators, so
you must restore them for the subsequent exit via task call
.UIEX .

Required Input

ACt - New value to be ORed with old mask.

Format

.SMSK
normal return

Possible Errors

None.

Licensed Material··Property of Data General

.STMAP
Set the data channel map

Before a user device can employ the data channel in a
mapped system, your program must issue the .STMAP com
mand to set up the data channel map. This is a special map
maintained by the mapping hardware for data channel use.
The . STMAP command sets up the data channel map for
the user device and returns in AC 1 the logical address that
you should send to the device. This call is a no-op when
issued in an unmapped system.

Required Input

ACO - Device code.

AC 1 - Starting address (in your address space) of the de
vice buffer.

Format

. SYSTM

.STMAP
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

36 ERDNM

74 ERMPR

Device code not previously identified
via .IDEF as a data channel device.

Address outside address space.

Licensed Material··Property of Data General

Power Fail/Auto Restart
Procedures
RDOS provides software support for the power fail/auto
matic restart option. When the system detects a power loss,
it transfers control to a power fail routine that saves the
status of all accumulators, the PC, and Carry.

If the console key is in the LOCK position when power
returns, the system console displays this message once power
is restored:

POWER RESTORED

If possible, the system restores task state variables, resuming
operating at the point of interruption. After this message
appears, your disk drives may require extra time (up to one
minute) to come back on line .

If the console key is in the ON position when power returns,
you must set all data switches to zero (down) and lift START
once power is restored. The message POWER RESTORED
is then displayed; task state variables are restored, and op
eration resumes.

RDOS provides power-up restart service to the following
system devices:

Teletypewriters and CRTs

Disks

Multiplexors

Line printers

Paper tape readers and punches

Card readers

Plotters

Character output devices may lose one or more characters
during power up. Since power-up service for disks includes
a complete reread or rewrite of the current disk block, you
will lose no disk information, although you must wait for
the disk unit's READY indicator to light. When power
returns, RDOS restores modem multiplexor lines when the
user dials in. Line printers may lose up to a single line of
information. Card readers may lose up to 80 columns of
information on a single card. Devices requiring operator
intervention, such as line printers, must receive an opera
tor's attention if power was lost for an extended period of
time.

Note that RDOS does not provide power-up service for
magnetic tape units, and that no power-up service is possible
for semiconductor memory without a backup battery.

RDDS System Reference 175

Power-up Service for User Devices
. To provide power-up service for a magnetic tape unit or for
your own device, you must write an interrupt service routine
using the .IDEF command as follows.

Required Input

AC 1 - Starting address of the user power-up service rou
tine.

Format

.SYSTM

.IDEF
error return
normal return

The error return is never taken.

In both mapped and unmapped systems, exiting from a user
power-up service routine forces rescheduling and is accom
plished by task call .UPEX. The same restrictions applying
to the use of system and task calls in a user interrupt service
routine apply to a user power fail routine.

Upon entering a user power fail service routine, AC3 con
tains the address required to exit from it. To return from
the routine in an unmapped environment, AC3 must be
loaded with this return address, and task call . UPEX must
be issued. In mapped systems, the value input in AC3 when
this call is issued is ignored. Issue the . UPEX command
according to the following guidelines.

Required Input

AC3 - Return address upon entry to the routine (unmapped
systems only).

Format

.UPEX

Control returns to the location which was interrupted by a
power failure. No error or normal returns need be reserved.
The . UPEX command can be issued in a single-task envi
ronment. Note that this command applies only to revisions
03 and higher of RDOS.

176 ROOS System Reference

Summary
This chapter described several system and task calls that
figure importantly in interrupt and power fail programs.
These commands are summarized in Table 7.1.

Command Function

.IDEF Introduce to RDOS a device, not defined dur·
Ing system generation, whose' interrupts' you
want the system, to recQgnize~

.IRMV Prevent the system from recognizing a device
defined via the JDEF command. . ..

.SMSK Modify ihe current interrupt mask.

. STMAP

.UPEX

.UIEX

Setup the data channel map for a user device .

Table 7.1 System and task call summary

Ucenaed Materlal"Property of Data General

-

Chapter 8

Multiple Processor Systems

This chapter describes managing a system that includes more
than one Data General computer. There are two hardware
options available to manage such a system: (I) an Interpro
cessor Buffer (lPB), Model 4240, which allows two CPUs
to communicate via full duplex lines; and (2) a Multipro
cessor Communications Adapter (MCA), Model 4206, which
allows up to 15 CPUs to communicate via full duplex lines.
The MCA also allows foreground and background programs
to communicate at data channel speeds.

Overview
If you have an IPB or MCA, you can run your processors
together, in a multiprocessor system; this system can use
any or all of the features described in previous chapters of
this book. If you have neither device, each CPU in your
installation must run independently.

You can configure an RDOS system to support either (or
both) an IPB or MCA during system generation by correctly
answering the questions that SYSGEN asks these devices.

The IPB provides one, full-duplex line for sequential and
line I/O between two processors. It also provides a half
duplex line for RDOS; this enables RDOS to assure that
systems sharing disk partitions do not simultaneously mod
ify the system (SYS.DR) or map (MAP.DR) directories of
any partition. The IPB also provides an interval timer that
permits each processor to monitor the activity of the other.
If either processor fails to service its real time clock pe
riodically, the timer alerts the other processor.

Note that on a hardware level, each shared disk must be
installed with the same device code and unit name. If one
processor has a disk hard-wired as the first controller, DPO,
the second processor must also have the disk hardwired as
the first controller, DPO. Both processors reference the disk
as DPO. If a disk is unshared, however, its device name
must be unique.

Both processors must run with an RDOS of the same re
vision level for IPB support to work. If not, one processor
or the other will very likely enter Exceptional Status, a
condition described in Appendix E.

IPB support maintains the integrity of system files and disk

licensed Material··Property of Data General

file structures, but does not provide protection for the con
tents of user files. Thus, if both users try to access the same
file simultaneously one file, or fractions of it, may be lost.

A typical IPB system consists of two CPU's operating in
dependently. This system permits each CPU to have a fore
ground and background program; programs in both CPUs
can access files in the same disk partition. The IPB maintains
the integrity of SYS.DR and MAP.DR in common disk
partitions, and allows each CPU to monitor the other's ac
tivity.

Another dual-processor application might use the IPB to
back up a critical, real-time program. In critical real-time
situations, redundancy helps safeguard the total system, and
allows it to continue running even if a CPU fails. One
example of a fail-safe IPB application is a main system that
runs the critical process, while a back-up system stands
ready to assume the main system's functions should it fail.
While it is standing by, the back-up system runs jobs of
lower priority, such as data analysis, summary reporting,
and program development. If the main system fails, the
interval timer detects this failure and signals the back-up
system to take control.

The MCA does not have an interval timer; nor does it allow
CPUs to share disk directories. It does, however, enable up
to 15 CPUs to communicate via their data channels. Each
MCA controller supports up to 15 separate lines, and each
MCA line provides asynchronous, full-duplex communi
cations links for sequential I/O. Each line is a filename,
which your program can access via system calls and which
you can access via CLI commands. You can also transmit
an entire RDOS system via the special CLI command,
MCABOOT. Each MCA line offers high-speed, interpro
gram or interprocessor communications with little processor
overhead.

RDOS itself does not use the MCA. Unless you generate
RDOS with IPB support, it does not maintain the integrity
of a partition accessed by more than one processor.

To run a multiprocessor system under either IPB or MCA,
each CPU must bootstrap an operating system in a seperate
disk partition, and each partition must have its own copy

RODS System Reference 177

of an RDOS system and CLI (files CLI.SV, CLI.OL; and
CLI.ER).

Interprocessor Buffer (IPB)
Programming
This section discusses IPB programming considerations such
as the interval timer and full-duplex, communications line
featured IPB hardware. The section also examines a hy
pothetical IPB program, and describes system call .BOOT,
which bootstraps the separate operating systems required in
multiprocessor environments.

Interval Timer

The Interprocessor Buffer (lPB) hardware features an in
terval timer that tells one processor when the other processor
has stopped. Specifically, the timer generates an interrupt
request if either processor fails to service its real time clock
every second. RDOS treats this interrupt request as a user
interrupt. You can write routines to identify the interrupt
via system call .IDEF, described in Chapter 7. The device
code of the interval timer is 378 •

An interval timer interrupt indicates to RDOS that the other
processor has stopped; hence, you should not use IDEB, or
any other program that suspends interrupts for extended
periods, while both processors are running.

Dual Processor Program Communications

IPB hardware also allows two processors to communicate
via a full-duplex line. This communications link permits a
user program running in either processor to read or write
line or sequential I/O to the other processor, via special
filenames. The filenames for the read and write operations
are:

$DPI - Input dual processor link (device code 408).

$DPO - Output dual processor link (device code 418.)

Each side has links $DPI and a $DPO. The output link
($DPO) of each side is connected to the other side's input
link ($DPI). Thus, one side's $DPO writes to the other side's
$DPI. To show how this scheme works in practice, assume
two CPUs named CPU A and CPUB, and their respective
programs, PROGA and PROGB. If PROGA wants to write
to PROGB, it would do so via output link $DPO; PROGB
would read from input link $DPI. Simultaneously, PROGB
could write a message to PROGA via its own output link.
Each $DPO is a spoolable device. (PROGB should issue
the read request before PROGA issues the write, or a char
acter will be lost.)

178 ROOS System Reference

IPB Example
In this example, the main program (P) monitors and controls
a real-time environment, and a secondary program (S) stands
by to take over if P fails. A special restart task will bootstrap
a system for S via system call . BOOT, described next.

P, the control program, runs in the foreground of one CPU,
while less critical programs run in the background. (P could
also run in the background of a single-ground environment.)

As the primary program (P) monitors and controls the real
time environment, it sends periodic status reports to a log
file on its disk so that, in the event of its failure, S can seize
control and maintain continuity.

The backup program, S, runs in the second CPU, in either
a single- or dual-ground environment. At its very beginning,
S creates a highest-priority restart task, which suspends itself
by issuing a .REC call to the user's interval timer interrupt
routine. This interrupt routine issues the .IXMT command
to activate the restart task, which then bootstraps S.

If the main CPU, running P, develops a problem, the interval
timer generates an interrupt, and the interval timer service
program in S readies the restart task. The restart task then
closes all files in program S; releases all of S' s directories;
resets I/O; and bootstraps a new RDOS system, identical to
P's. Having bootstrapped this new system, S reads P's status
reports to determine where it stopped, and proceeds to mon
itor and control the real-time environment.

licensed Materlal··Property of Data General

-

.BOOT
Bootstrap a new operating system

This command executes an orderly shutdown of the current
RDOS system, and bootstraps the system you have indicated
by a byte pointer in ACO. Specifically, a .BOOT operation
resembles that of the CLI' s BOOT command-it closes all
background and foreground files; releases their directories;
resets all lIO; and then bootstraps the new system, which
must exist in a secondary or primary partition. If the byte
pointer specifies a link entry to the new system, you must
also link the new system's overlay file and initialize all
partitions involved in the resolution chain.

When you bootstrap a system conventionally, it asks ques
tions about the date and time, and then invokes the eLI. If
all data switches are in the up position or the switch register
contains -1, RDOS searches for a file named RESTART.SY
and, if unable to find it, invokes the CLI. If a program
issues the . BOOT command and all data switches are in the
up position or the register contains -1, the new system comes
up automatically with the default time and date of January
1, 1968; then .BOOT chains control on level 0 to the file
RESTART.SY. If this file does not exist, the .BOOT com
mand asks the conventional log-on questions.

The file RESTART.SY does not initially exist, but must be
created in order to bootstrap a system without operator in
tervention. It could also be the name of the user program
itself, or linked to the program name. If the current date
and time are important to the real-time process, you must
find some way to get them to the new program-perhaps
via RESTART .SY itself, if the old program periodically
stored date/time data in a file that RESTART can read when
it assumes control.

Required Input

ACO - Byte pointer to name of new operating system.

Format

.SYSTM

.BOOT
error return

There is no normal return, since upon the normal completion
of this call BOOT receives and then passes control to the
new operating system.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

23 ERRTN

53 ERDSN

74 ERMPR

101 ERDTO

107 ERSFA

File RESTART.SY does not exist, yet
data switches were set for restarting
without operator intervention.

Unknown directory specifier.

Address outside address space (mapped
systems only).

Disk timeout occurred.

Spool file is active.

RODS System Reference 179

MeA Programming
This section discusses the MCA programming considera
tions of data transmission, the use of CLI commands on
MCA lines, and the transmission of operating systems or
stand-alone programs from one MCA unit to another. The
section also describes the .GMCA command which retrieves
the MCA number of the current CPU.

Data Transmissions
The type 4206 Multiprocessor Communications Adapter re
ceiver/transmitter (MCARIMCAT) allows programs to com
municate over full-duplex lines, in blocks of up to 8192
bytes, via the data channel. Each program can exist within
the program space of a single CPU, or within up to 14 other
CPUs, or both. A second 4206 receiver/transmitter, MCARlI
MCATl, provides up to 15 more communications links.
Each CPU may communicate with any other CPU.

Depending on whether it is transmitting or receiving, each
MCA line is a filename of the following fonn:

MCAT(1):rr

or
MCAR(2):tt

where rr represents a receiver unit number from 1 through
15, and tt represents a transmitter unit number in the range
of 0 through 15. Thus, four CPU's, each running foreground
and background programs, may have ten possible lines con
nections, as shown in Figure 8.1.

CPU
No.1

MCA ~
MCA ~ MCA

CPU) (CPU
NO.3 No.2

MCA A---..

CPU
No.4

Figure 8.1 Multiple processor line connections 50-00554

180 ROOS System Reference

Referring to Figure 8.1 and assuming that CPU 1 wants to
read (receive) from CPU 3, each unit would issue the fol
lowing sets of instructions:

CPU 1
.OPEN n
.RDS n

CPU 3
.OPEN n
. WRSn

;OPEN MCAR:3.
;WAIT FOR THE DATA.
; READ IT WHEN SENT.

;WRITE (TRANSMIT) TO .
;WRITE (TRANSMIT) TO
;THE RECEIVER LINE.

CPUs 1 and 3 operate under distinct RDOS systems. Thus,
in the excerpt of code just shown, there is no relationship
between channel n for unit 1 and channel n for unit 3.

A receiver can request a transmission from any transmitter
by. issuing a read call to receiver 0 (filename MCAR:O).
After a receiver issues this call, any transmitter can write
to it. Thus, if a program in CPU 1 had issued three receive
requests-to MCAR:l, MCAR:3, and MCAR:O-it would
receive transmissions from three sources: (1) from its own
machine (transmission from the other ground), (2) from a
program in CPU 3, and (3) from any other program that
wanted to transmit to it. Each transmitter would transmit
by issuing a write to MCAT: 1.

All messages must begin on a word boundry, and the receive
and transmit byte counts must match. To transmit an end
of file, you can transmit a zero-byte message (eg, a . WRS
operation of zero bytes).

A timeout occurs only in an MCA transmitter; a receiver
can wait indefinitely. The timeout period ranges approxi
mately from 200 miliseconds to 655 seconds. The default
timeout is 655 seconds; you can select a shorter period when
you open the MCA line and issue a write sequential. Refer
to the descriptions of the .OPEN and .WRS commands in
Chapter 3 for details.

Using CLI Commands on MCA Lines
As described earlier, each MCA line has a filename. This
name can be used in conjunction with many of the CLI
commands that take a filename in argument. The only spe
cial requirement is that the CLI command be present in both
receiver and transmitter, since no data transmission can
occur without simultaneous receive and transmit requests.

Moreover, you can transfer (via the XFER, but not the
LOAD or DUMP, command) disk files across MCA lines.
Thus, assuming the configuration shown earlier in Figure
8.1 , the following CLI sessions would occur to transfer file
ABC from CPU 4's disk to that of CPU 2.

Licensed Materlal .. Property of Data General

,.--.
f '

From CPU 2, an operator enters this statement on the system
console:

R
XFER MCAR:4 ABC (CR)

With this command, CPU 2 tells its MCA to transfer the
contents of MCAR:4 to ABC on its disk. Because CPU 2
is addressing a receive line, this is a receive request. Al
ternatively, the same operator could type:

R
XFER MCAR:O ABC (CR)

With this statement, CPU 2 tells its MCA to transfer any
transmitter's input to ABC on its disk.

From CPU 4, an operator enters the following command
line on the system console:

R
XFER ABC MCA T:2 (CR)

With this statement, CPU 4 tells its MCA to transfer the
contents of ABC on its disk to MCAT:2. Because CPU 4
is addressing its transmitter, this is a transmit request.

When a CPU issues a CLI command over an MCA line,
the CLI prompt does not return to its console until RDOS
has executed the command--or, if the transmitter issues the
request-until the transmitter has timed out.

Transmitting Copies of Systems or Stand-alone
Programs
RDOS provides a bootstrap program, MCABOOT, that
transfers and bootstraps a copy of an RDOS system to an
other unit's disk. Before sending the system, MCABOOT
can either fully or partially initialize the receiver's disk.
Alternatively, MCABOOT can send and bootstrap a copy
of a stand-alone program to another unit's disk, provided
that this program follows the conventions of programs which
BOOT can load. (BOOT need not reside in the receiving
unit's disk space.) As with other MCA data transfers, both
receiver and transmitter must participate.

You execute the MCA bootstrap by issuing the CLI's MCA
BOOT command. The transmitter and receiver must be on
the same network (MCA or MCA I) for transmission to
occur. An operator at the receiving CPU must have re
quested the transmission by placing 1000078 (MCA) or
1000478 (MCAI) in the receiver's data switches, and by
pressing RESET followed by PROGRAM LOAD. The
transmitting unit waits for the request from the receiver, but
only up to the timeout period of 655 seconds.

Licensed Malerial--Property of Dala General

.GMCA
Get the current CPU's MCA number

Your program can get the MCA unit number of its CPU by
issuing system call .GMCA. It can then communicate this
number to programs running in other CPUs.

Required Input

ACO - MCA transmitter octal device code (6 for MCAT,
46 for MCATI).

Format

.SYSTM

.GMCA
error return
normal return

Upon the normal return, ACI contains the MCA unit num
ber.

Possible Errors

AC2 Mnemonic Meaning

3 ERICD

36 ERDNM

Improper device code input to system
call

Device not in system, that is, you did
not specify an MCA for this RDOS
system during system generation.

ROOS System Reference 181

Multiprocessor System Illustration
This section illustrates one applicati'on of a mUltiprocessor
system. It assumes a large, laboratory complex in need of
an automated system to control the environmental conditions
within the complex; to keep track of the number of personnel
at different locations; to monitor the complex for alarm
conditions; and to alert key personnel if it cannot correct a
condition. This system must be fail-safe, and can allow
down-time for no longer than a few seconds.

Figure 8.2 suggests one configuration for this system. Two
master CPUs, running under mapped RDOS, are connected
via an IPB, so that each can act as a watchdog on the other's
behavior and can take control if the other fails. The IPB
also allows the CPUs to access common disk files. The
masters access a common data base which contains, among
other information, alarm messages and destinations to which
they should go on an alert. This file space also contains a
log of the current master's activity, providing a record of
recent events for the alternate, master CPU in the event that
the current one fails.

182 RDOS System Reference

The laboratory includes three vital zones; a slave CPU mon
itors and controls conditons within each zone. Each slave
can monitor and adjust both humidity and temperature. Ad
ditionally, each slave keeps track of the positions of per
sonnel within each zone. Finally, each slave monitors its
zone for alarm conditions; if they occur, it takes some re
medial action, such as, activating a sprinkler system in the
event of fire. Each slave computer performs relatively sim
ple operations, and could therefore run under RTOS, a core
resident compatible subset of RDOS.

Each slave has a data channel line through its MCA to each
master computer (lines MeAl through MCA6). This allows
the current master to generate continuous status reports and
transmit them to CRT monitors via the bus switch to an
ALM. An SLM multiplexor connects' 'hot lines" to security
guards and fire station personnel to alert them in an emer
gency.

Licensed Material··Property of Data General

~'
I

CRTs

r-----} "HOT LINES"

SLM

I/O BUS SWITCH

DISK

---i-'--"',~/

CPU 1 IPB CPU 2
(MASTER) (MASTER)

SLAVE 1 SLAVE 2 SLAVE 3

abc dab cd abc d
~~~ 

BUILDING ZONE 1 BUILDING ZONE 2 BUILDING ZONE 3 

a - temperature sensor and control 
b - personnel monitor 
c - humidity sensor and control 
d - intrusion, fire, smoke alarm and control 

Figure 8.2 Multiprocessor system illustration 

Licensed Material--Property ot Data General RDOS System Reference 

DG-25449 

183 





This chapter describes the tuning facility, which allows an 
RDOS system to monitor its own performance and suggests 
more efficient configurations for any application. The chap
ter begins with a discussion of the data structures involved 
in tuning, including system stacks, cells, and buffers. In 
the course of this discussion, the RDOS system overlays 
are listed by name and function. Then the operation of tuning 
is explained, followed by a description of pertinent system 
calls. 

Overview 
During system generation, you tailor an RDOS system for 
a specific environment by answering the questions of the 
program SYSGEN.SV. (For details on SYSGEN, refer to 
How to Load and Generate RDOS, DGC No. 069-400013. 
This manual also provides a practical discussion on tuning.) 
Your answers to SYSGEN's questions determine the fea
tures that your RDOS system will include, and the peripheral 
hardware that it will support. SYSGEN also asks questions 
about the tuning facility, allowing you to choose whether 
your RDOS sytem will have tuning at all, and how extensive 
the tuning function will be. 

The tuning mechanism itself deals with certain software data 
structures, called stacks, cells, and buffers. SYSGEN asks 
you to supply specifications for each of these structures; the 
tuning mechanism takes your answers and tests them as 
RDOS runs. It can then print a tuning report that allows 
you to decide on more efficient answers, or it can instruct 
SYSGEN to modify your original answers when you gen
erate a new system. 

The latter approach, called self-tuning can generate a mod
erately efficient version of RDOS for any application. Dur
ing self-tuning, SYSGEN examines a previously generated 
tuning report file and selects more appropriate responses to 
questions about buffers, stacks, and cells. You can direct a 
system to tune itself by including the name of the original 
SYSGEN dialog file, along with the IT switch, in the com
mand line that invokes SYSGEN: 

SYSGEN dialog-file/A tuning-filelT (CR) 

SYSGEN examines the tuning file and attempts to generate 
a system more efficient for this application than the one that 

Licensed Material··Property of Data General 

Chapter 9 

System Tuning 

was running when the tuning file was recorded. During self
tuning, SYSGEN does not have a global view: it has only 
the tuning file to work from, and must therefore make cer
tain, arbitrary decisions-the value of user memory to this 
given application, for example. As a result, SYSGEN can
not completely determine the impact of tuning decisior.s 
upon any given application's efficiency. Nonetheless, it does 
an adequate job for applications not requiring maximum 
efficiency. By themselves, tuning file statistics are helpful; 
but, in the final analysis, comparative timing of different 
system configurations provides the true measure of effi
ciency. 

System Stacks, Cells, and Buffers 
Before exploring tuning, it is important to understand how 
system buffers, stacks, and cells are defined. RDOS is par
tially core-resident and partially disk-resident. This design 
enables RDOS to offer features ordinarily found only on 
larger operating systems, while the total, memory-resident 
portion of the system remains modest. Stacks, cells, and 
system buffers are all memory-resident parts of RDOS. 

RDOS uses a system stack as a data base, to execute each 
concurrent system call. The greater the number of outstand
ing .SYSTM requests, the more system stacks RDOS needs 
to service each request in parallel. If, for example, two 
executing user tasks issue a system call concurrently, two 
system tasks are then outstanding. To service both system 
tasks in parallel, RDOS would require two system stacks. 
At a single moment, RDOS services only as many requests 
as it has available system stacks, in the order that these calls 
were made. System tasks are associated not only with system 
calls, but also with 110 device requests and with spooling. 

Each system task also requires a cell, to save state infor
mation, just as each user task has a task control block. There 
is a fundamental difference between cells and TCBs, how
ever: RDOS sometimes appropriates cells for temporary data 
storage, but it never uses TCBs for this purpose. 

A large part of memory-resident RDOS is a collection of 
system buffers, which serve two functions. First, RDOS 
uses buffers to receive system overlays, which provide code 
not found in the resident portion of the system. Second, 
RDOS buffers all 110, except read/write block operations, 

RODS System Reference 185 



via system buffers. RDOS requests and uses system stacks, 
buffers and cells dynamically, as resources. When it needs 
and cannot get any of these resources a fault occurs, it 
suspends the calling system task, and system operation suf
fers. 

System Stack Requirements 
The following guidelines will help you select the proper 
number of system stacks during system generation. RDOS 
requires stacks for disk I/O, spooling, and the concurrent 
execution of system calls, as follows: 

System Task 

Disk I/O 

Spooling 

System calls 

Number of stacks required 

Two stacks if you will be running multi
task programs, or foreground and back
ground programs that need to issue disk 
I/O system calls concurrently (eg, . OPEN , 
.INIT, .WRL). 

One stack. 

One stack for each user task permitted to 
execute a .SYSTM call (requiring the use 
of an I/O device) concurrently with other 
user tasks. 

SYSGEN offers a choice of one to 10 (decimal) system 
stacks. If this RDOS system will run single-task programs 
in a background-:only environment, you need only specify 
one system stack. To spool output data, add another system 
stack. If you allocate only one stack, RDOS will not spool 
and will treat any system spooling commands that you issue 
as no-ops. Likewise, if a system also has a foreground 
program active and you have defined only two stacks, no 
spooling will occur. At least two stacks are recommended 
for a single-ground system; three, for a dual-ground system; 
and more for Extended BASIC. 

To illustrate further, suppose that you plan a background
only, multi task program that spools to the line printer and 
performs disk I/O on only one channel at a time. This 
program requires the allocation of three system stacks: one 
stack for disk 110, a second for line printer output, and a 
third for the spooler. 

In general, you should allocate enough stacks to prevent 
system calls issued to slow peripherals ($PTR, MTA, etc.) 
from interfering with system calls necessary to support a 
real-time environment. Each .RDL or .RDS call to a non
multiplexed console requires a system stack until the read 
is completed. 

Each system stack requires approximately 250g or 350g words, 
depending on your computer; the manual How to Load and 

186 RODS System Reference 

Generate RDOS provides exact figures. Add the stack total 
to the basic memory requirements of the RDOS system. 

When the system attempts to allocate a stack and none is 
free, it suspends the calling task and passes control to the 
next system task that is ready for execution; RDOS will 
attempt to allocate a stack for the suspended task at some 
future moment. Thus, the tuning report may indicate mul
tiple, unsuccessful stack requests for the same system task. 
The same is true of certain cell requests. However, all un
successful buffer and overlay requests, and most unsuc
cessful cell requests, cause the system task to wait until the 
appropriate resource becomes free. 

System Cell Requirements 
A system cell is a 20g-word control table that the system 
uses primarily to save system task state information. The 
optimum number of cells depends largely upon your sys
tem's application 

.SYSGEN automatically allocates two cells for future read/ 
write block operations; three cells for each stack; and two 
cells for an IPB, if you selected this option. It is recom
mended that you specify two extra cells for each active spool 
request, and one or two extra cells to improve the perform
ance of the IPB, if any. Each active system call also needs 
an extra cell. 

Since one goal of tuning is to keep all peripheral devices 
active concurrently,you need not allocate a cell for every 
possible, future concurrent system call. For slow periph
erals, a lack of cells can degrade the system's operation. 
Consider the apportionments of cells illustrated in Figures 
9.1 and 9.2. In Figure 9.1, this RDOS system contains three 
devices-a disk, a tape drive, and a line printer-and has 
nine cells. The program environment contains 20 user tasks, 
each one desiring the use of each of. the three devices. As 
it happens, these tasks want to use different devices; hence, 
the system runs efficiently. As each task issues an I/O re
quest, RDOS enqueues its cell to that device so that the 
next task in line will eventually be able to use it when it 
becomes free. Thus, RDOS enqueues only nine system tasks 
for the devices (and stores 11 requests in a special system 
table, PTBL). Even though 11 requests are waiting in table 
PTBL, the system runs efficiently. 

Notice the difference in Figure 9.2. This is the same system, 
except that nine ready tasks want to use the magnetic tape 
drive; and these tasks monopolize the cell queue. Although 
up to 11 other tasks want to use the disk and line printer, 
they can not be readied until they receive a cell. RDOS 
frees cells one by one as the ready tasks finish with the tape 
drives; meanwhile, the other tasks stagnate in PTBL. Nine 
cells are too few for this program, although this number is 
sufficient for the same system and a different program, 
demonstrated in Figure 9.1. The waiting tasks cannot use 

Licensed Materlal··Property of Data General 



-
the disk and line printer, even though these devices are not 
busy, and the system is running inefficiently. 

RDOS would report cell faults in both of the environments 
illustrated by these figures. Yet additional cells would not 
improve system efficiency in the example of Figure 9. 1. 
Thus, you must supplement the fault information provided 
in the tuning report by timing your application programs to 
determine whether the reported faults actually degrade sys
tem performance. 

DEVICE QUEUE 

Task 

Cell? 

Task 

Cell 8 

Task 

Cell 9 

PTBL 

Task 

Cell 4 

Task 

CeliS 

Task 

Cel16 

Task 10 

• 
• 

Task 20 

Task 

Cell 1 

Task 

Cel13 

Task 

Cell 2 

DEVICE 

Disk 

Mag 
Tape 

Line 
Printer 

Figure 9.1 Adequate cell apportionment DG-25450 

DEVICE QUEUE DEVICE 

Task Task 
I---~ ••• 1-----1 

Cell 9 Cell 2 

PTBL 

Task 10 

Task 20 

Task 

Cell 1 

Figure 9.2 Inadequate cell apportionment 

Licensed Material--Property of Data General 

Mag 
Tape 

Line 
~ Printer 

DG-25451 

System Buffer Requirements 
System buffers are portions of memory which RDOS al
locates dynamically to receive either user data or system 
overlays_ RDOS requires a minimum of two buffers per 
system stack, or six buffers total, whichever is greater. 
SYSGEN automatically allocates this minimum; during sys
tem generation, you can specify as many extra buffers as 
core memory will allow. Each system buffer requires 4168 

or 27410 words. In mapped systems, any multiples of 274 
words available in the last 1024-word block of system space 
are used by RDOS for additional system buffers. 

When RDOS needs a buffer, it flushes the contents of the 
oldest buffer that is not in use. However, if extra buffers 
are available, fewer of them are flushed and their contents 
remain accessible to system memory. If your application 
favors having buffered data in core (for fast reaccess), or 
having many system overlays resident in core (for fast sys
tem call execution), you should specify extra buffers. Extra 
buffers increase system speed but reduce the total amount 
of memory available for your programs. The ideal solution 
incorporates enough system buffers to provide the desired 
speed while leaving adequate memory for your programs. 

RDOS requires some system buffers to receive system ov
erlays. Table 9.1 describes each overlay and the system 
calls or functions that it executes. Each overlay's number 
(octal) precedes its name in the list; you will need this 
number to understand the tuning report, since the report 
does not refer to system overlays by their names . 

RDDS System Reference 187 



Overlay Name Functions 
Number 

o DFRWS Disk fHe .WRL, .RDR/.WRR, .RDSI 
.WRS. 

1 . 'DFRWS Disk file ,CHSTS •. RDL, .L1NK, .RDL, 
.sTAT. 

UTIl1 Magnetic tape .G.CHN •. GMEM, 
.SMEM;tape .MTDtO. 

CREATE . Starts file, creation: .CONN, .CCONT, 
. CRAND~ .CREAT. 

:OI:LETE 

FILSY 

SOV2 

I,: 
'SOV4 

JOVINI 

,CRSFS 

!RING1 

'RING2 

IRING3 

SOV5 

MTAtO 

Delete a file, a subdirectory. or 'Eli 
secondary partition: <.OELET .. 

Maintains 'directories 'and '~ea'rches' 
for entries in them. 

implements periodic:reschadufiqg for; 
,QTASK and QUE. ~Iso implements' 
the. following system. calls::.pHATR • 
. CHLAT, .;FGNO,.GeIN,::.GCO~T, 
;GTATR.~GTOD, ;OOIS, .O!;SL; and 
;STOO,' 

CheckSfilemameS fonralidity, interprets 
direclorY specifier prefixes, and unpab~ , 
filenames ihto SYS.DRformat. ' 

Processes disk 'file errors and reads:· 
disk CC)reinlages. 

, "i,:, ,;: I 

opensfiles:t.OPENf;~bp,E't·t: ' 
.ROPEN); .CLOSE~' ,RESET"Fnd 
implements ell CLEAR command.' • 

CreatesEi MAP.DR ent~;iri SYS.DR. 
and creates peripheral device .. entries 
in SYS.OR after a full initialization .• : 

Opens 'and closeS characte~devices 
on, level;; writes'messages: to the; 
console .. 

Performs' systemllevel ~h~rabter lie> 
(ACHI1, WRS, PCH). . . 

Pert~rms house~eep~"g ,,~cessary. 
to exec~te keyboard. interrupt· O.f, I 
:SREAK. :' 

,INfT, .RLSE,i .CLOSE; bl¢k-lev$,l! 
reading and :wfltlng i for.' magnetic 
tapes units..; . ! . .. 

Table 9.1 System overlays and their functions 

t88 RDOS System Reference 

Overlay 
Number 

21 

22. 

23 

24 

25 

26 

27 

30 

Name 

MTAUC 

TUON 

CDROV 

WDBLK 

SPOLR 

CODER 

SOV6 

SOV7 

Functions 

Supports, spoolipg . 

:Cc>~tinubs the functionperforrned'by 
SOV5; creates ftieBREAK.SVarid 

: cOl'11plet~s.a program breal<caus~d 
.eitberby ,BREAK 'or consote k~y~ 
boardintel'rupt.· . . . 

pr~pr~s$es· •. ·tttei:~el;ti~~:~f ,~~~ii 
tions and subdirectories; .RENAM. 

"., ~ > 
{ . ~ 

••. Fiflishes '. the housekeeping.started 
. . i . <by :SOV5 for .• EXEC/.RTNarlcike,y: 

boardlnterrupts;.I~MV. .: : . 

Table 9.1 System overlays and their functions (contlnued) 

Ucenaect Materlat-Property of Data General 

,~, 



OVerlay Name Functions 
How Tuning Works 

Number After you have generated a system with tuning (having 

45 SOV18 Produces an orderly shutdown upon 
specified a number of stacks, cells, and system buffers), 

a system release; . BOOT. you can tum tuning on and start recording in the tuning file. 
If you find your system inefficient, you can examine the 

46 WOCBK Withdraws a series of contiguous tuning report and generate a new system, specifying a dif-
blocks from MAP.DR; creates an el- ferent number of stacks, cells, and/or buffers. As mentioned 
emental MAP.DR for DIVINJ and earlier, you can also instruct SYSGEN to examine the tuning 
SOV1S. 

file and modify your original answers to these questions. 

47 SOV19 Determines size of a moving head This procedure, known as self-tuning, can be performed as 
disk during .lNIT system call; per- often as needed to arrive at one or more RDOS systems that 
forms OTY open/close. run your application(s) well. You will cause a system failure, 

50 SOV20 Prepares program environment for 
however, if you activate tuning in a system before deleting 

a core-image load (mapped sys- the tuning file of a previous system with the same name. 

tems only). 
As with many RDOS features, you can use either system 

51 SOV21 Provides MeA read/write sequential calls or CLI commands to tum tuning on or off. You must, 
and other MeA support functions. of course, have selected the tuning option during system 

SFTAB Data overlay used to build pd pe- generation, along with the type of tuning report you desire. 

ripheral device entries during a full SYSGEN automatically reserves extra buffers within the sys-
system initialization. tem for use by the report function. One buffer is required for 

53 SOV22 Continues the code begun in SOV18; 
the summary report; detailed reports require three buffers. 

.OVRP. 
The CLI commands that tum tuning on and off are TUON 

54 SOV23 Aborts a system process. and TUOFF, respectively. The command that displays the 
contents of the tuning file is TPRINT. The system calls 

55 SOV24 Resolves spOOling deadlocks; corresponding to these commands are. TUON and. TUOFF . 
. GPOSI.SPOS, .CA; .OPEN for MCA. Use of the CLEAR command to clear the tuning file does 

56 SOV25 Completes the operation initiated by not tum tuning off or affect the report file. However, you 

overlay 46 (WOCBK). must not delete this file while tuning is on. To produce a 
fresh tuning report, issue CLI commands TUOFF, RE-

57 FSTAT Provides support to other system 
overlays by getting and/or updating 

NAME or DELETE, and TUON. 

file status and by obtaining block ad-
When tuning is on, the tuning feature accumulates the num-dress for disk I/O. Deposits a free 

block in MAP.DR. ber of requests for stacks, cells, buffers, and system ov-
erlays. RDOS records this information in a disk file named 

60 DVRLS Releases a directory; determines the sysname.TU, where sysname is the name of the current RDOS 
OCT of a device for the spooling rou- system. This file resides in the master directory. Addition-
tines in overlay 26 (CODER); .GOtR, ally, RDOS records the number of times it defaulted a re-
.MOIR, . GSYS. 

quest because the resource was not available. You can then 

61 SOV26 .WRPR, .WREBL, .STMAP. compute the ratio of requests to faults as an indication of 
your system's efficiency. 

62 SOV27 Completes the execute functions 
started in SOV8; continues the func- Note that your program can access the tuning file by opening 
tlons performed by SOV3, SOV5, and 
SOV12; .RTN/.ERTN. it and then issuing system call .RDS for 2*TULEN bytes. 

(TULEN defines the number of words in the summary re-
63 SOV28 . OVOPN; .MAPOF and .VMEM for port) . 

mapped systems only. 

64 TUNOV .TUOFF: turn tuning off. 
The tuning report file is a contiguous disk file consisting of 
either one or three disk blocks, depending on whether you 

65 orvov Provides OTY / ALM driver support. requested an overlay report during system generation. The 
first disk block contains the summary report. The overlay 

66 SOV29 Replaces overlays in an overlay file. report, if requested, follows on the next two disk blocks. 
Figure 9.3 shows the composition of disk blocks in the 

Table 9.1 System overlays and their functions (continued) tuning file. 

Lieeneed Material .. Property of Data General ROOS System Reference 189 



B} ~~~o~rY {t-_B_I_OC_k_O ..... 

Detailed 
Report 

Figure 9.3 Disk blocks of the tuning file 

Block 1 

Block 2 

50-00569 

The summary report contains four sections: one each for 
system stacks, cells, buffers, and overlays. Each section in 
the summary is composed of five, 16-bit words. The first 
word in each section lists the number of elements (stacks, 
buffers, etc.) in the system. The next two words are a 
double-precision integer count (two, 16-bit words) of all 
requests for this element. The last two words are a double
precision integer count of faults, ie, unsuccessful requests 
for the resource. Each double-precision count returns to zero 
upon overflow. The remaining words in the summary disk 
block are not meaningful. 

Figure 9.4 shows the arrangement of information in the 
summary portion of the tuning report file. The named word 
displacements relative to the beginning of the file are defined 
in PARU.SR, a file of user parameters supplied with your 
RDOS system and listed in Appendix B. 

Stack j 
Data l 

Cell 1 Data 

Buffer j 
Data t 

Overlay 1 
Request 
Data 

Number of stacks in system 
stack 

requests 
stack 
faults 

Number of cells in system 
cell 

requests 
cell 

faults 
Number of buffers in system 

buffer 
requests 

buffer 
faults 

Number of system overlays 
system overlay 

requests 
system overlay 

faults 

meaningless 

Word 

.TUNSTK 

. TUSTK 

.TUSTK+1 

.TUPSTK 

.TUPSTK+1 

.TUNCEL 

.TUCEL 

.TUCEL+1 

.TUPCEL 

.TUPCEL+1 

.TUNBUF 

.TUBUF 

.TUBUF + 1 

.TUPBUF 

.TUPBUF+1 

.TUNOV 

.TUOV 

.TUOV+1 

.TUPOV 

.TUPOV+1 

Figure 9.4 Details of the tuning summary report, first disk 
block 50-00570 

190 RODS System Reference 

Referring to Figure 9.4, the number of stacks and cells 
(displacements .TUNSTK and .TUNCEL) is the total of 
each in the system; the number of buffers (displacement 
. TUNBUF) is the total number of buffers, excluding tuning 
buffers. The buffer request count reflects requests for buffers 
needed to receive data or system overlays. As indicated 
earlier, multiple stack and cell faults can occur and be re
corded for the same system task. 

If you specified a detailed tuning report during system gen
eration, RDOS places it in the blocks immediately following 
the summary in the tuning report file. The detailed report 
consists of a series of four-word descriptors, with one de
scriptor for each system overlay. Each descriptor contains 
a count of requests for a system overlay, and a count of the 
number of requests that required the overlay to be read from 
disk because it was not then resident in memory. Each count 
is a double-precision integer; if an overflow occurs, RDOS 
returns the count to zero. The detailed report can list up to 
128, separate system overlays. The counts of defined, but 
unused, overlays are set to zero. 

Figure 9.5 depicts the arrangement of information in the 
detailed tuning report for a system with m overlays. Each 
system overlay was described earlier in Table 9.1. 

Tuning file 
block 1 

Tuning file 
block 2 

overlay zero request 

count 

overlay zero fault 

count 

· 
(other system overlay 

descr~ptors) . 
overlay m-1 request 

count 

overlay m-1 fault 

count 

· 
(meani~gless) · · 

Figure 9.5 Tuning overlay report 50-00571 

Licensed Materlal--Property of Data General 

.~ . 



-
·TUON 
Start recording in the tuning file 

This system call turns on the tuning mechanism, which 
reports system resources and faults in the tuning file. If the 
tuning report file does not exist, this command creates it as 
a contiguous file of either one or three blocks; the size 
depends upon your choice of report functions during system 
generation. RDOS names the file sysname. TU, where sys

name is the name of the current RDOS system. This file 
resides in the master directory. 

If the tuning file already exists, any new information will 
be added to it. If the tuning report function is already on, 
the .TUON command is an effective no-op. 

Required Input 

ACO - Set to zero. 

Format 

.SYSTM 

.TUON 
error return 
normal return 

Possible Errors 

AC2 Mnemonic Meaning 

2 ERICM 

27 ERSPC 

46 ERICB 

101 ERDTO 

Illegal system command. (Tuning was 
not selected during system generation.) 

Insufficient disk space to create tuning 
file. 

Insufficient number of free contiguous 
disk blocks available to create the tun
ing file. 

Disk timeout occurred. 

licensed Material--Property of Data General 

.TUOFF 
Stop recording in the tuning file 

This system call halts the tuning report function until and 
unless you turn it back on with the .TUON command. The 
. TUOFF command does not delete the tuning file itself. 
Any extra system buffers used by the tuning function are 
released to the system. If the tuning report function is al
ready turned off, this call is an effective no-op. 

Required Input 

None. 

Format 

.SYSTM 

.TUOFF 
error return 
normal return 

Possible Errors 

AC2 Mnemonic Meaning 

12 ERDLE 

101 ERDTO 

Tuning file was deleted before tuning 
was turned off. 

Disk timeout occurred. 

RODS System Reference 191 





This chapter applies to users running RDOS on mapped, 
ECLIPSE computers. It describes the Load Effective Ad
dress (LEF) instruction, which allows you to load an address 
directly into an accumulator, or to load, add, or subtract a 
constant between + 127 and - 128 (1778 and - 2008) to an 
accumulator without using a separate memory location to 
hold that constant. 

Before you issue this instruction, you must set bit 9 in the 
user status word to put the CPU into LEF mode. Task call 
.LEFE, described in this chapter, serves this purpose. Once 
the CPU is in LEF mode, you cannot issue lIO instructions 
because the system interprets them as LEF instructions. To 
disable LEF mode, use task call . LEFD. 

When you plan to use LEF mode, you can determine whether 
it is currently set or reset with task call .LEFS. This and 
other LEF calls are used according to your program's needs. 
If, for example, you define a device service routine via the 
.IDEF command, you must start the device at base or pro
gram level in order for it to generate an interrupt and be 
serviced. If the CPU is in LEF mode, you cannot issue the 
device start (or any other lIO) instruction until the LEF mode 
is disabled. Further details on LEF mode and the LEF in
struction can be found in Programmer's Reference Manual, 
ECLIPSE Line Computers, 014-000626. 

By default, LEF mode is disabled. Once you enable it, it 
remains set only for the duration of current program; a .RTN 
or .EXEC call will disable it for the new program. The LEF 
tasks calls are: 

. LEFD Disable the LEF mode . 

. LEFE Enable the LEF mode . 

. LEFS Get the LEF mode status . 

As with task calls you must reference these names in a 
.EXTN statement before issuing the calls. LEF commands 
may be issued in both single- and multi task environments. 

Licen8ect Mat8fial--Property of Data General 

Chapter 10 

Running In LEF Mode 

.LEFD 
Disable the LEF mode 

This task call disables the LEF mode. After you issue it, 
single-word LEF instructions cannot be issued. If the CPU 
is currently set with LEF mode disabled, this call becomes 
an effective no-op. The contents of ACO and AC3 are lost 
upon return. 

Required Input 

None. 

Format 

.LEFD 
normal return 

Possible Errors 

None . 

RDOS System Reference 193 



.LEFE 
Enable the LEF mode 

This task call enables the LEF mode and allows user pro
grams to issue single-word LEF instructions. If the LEF 
mode is already set on your CPU, this call becomes a no
op. The contents of ACO and AC3 are lost upon return from 
this command. 

Required Input 

None. 

Format 

. LEFE 
normal return 

Possible Errors 

None. 

194 RDDS System Reference 

.LEFS 
Get the LEF mode status 

Issue this task call to determine whether the LEF mode is 
currently set or reset in the CPU. When you issue this call, 
RDOS returns the user status word in ACO; bit 9 of this 
word is set only if you enabled LEF mode. Consult the 
Programmer's Reference Manual, ECLIPSE Line Com
puters (DGC No. 014-00626) for a complete definition of 
the user status word. The contents of AC3 are lost upon 
return. 

Required Input 

None . 

Format 

.LEFS 
normal return 

ACO contains the user status word upon return. 

Possible Errors 

None. 

Licensed Materlal··Property of Data General 



licensed Material--Property of Data General 

Appendices 

The nine appendices that follow supplement the foregoing 
chapters with command and error summaries, programming 
examples, conversion tables, and more. In order of ap
pearance, the appendices include: 

• Appendix A: RDOS System and Task Calls and Error 
Summary 

• Appendix B: User Parameters 

• Appendix C: Real-time Programming Examples 

• Appendix D: Overlay Directory Structure 

• Appendix E: Exceptional System Status 

• Appendix F: Page Zero and Hardware Reserved Lo
cations 

• Appendix G: Hollerith-ASCII Conversion Table 

• Appendix H: ASCII Characater Set 

• Appendix I: Advanced Multitask Programming 

RODS System Reference 195 



I~ 



Appendix A 

RDOS System and Task Calls 
and Error Summary 

Table A.I describes each RDOS system and task call, along 
with the required input to (or remarks on) the accumulators. 
Variable n in this table represents the file's channel number, 
as assigned on the open. After a task or system call, AC3 
contains the user stack pointer (USP) by default. To return 
the frame pointer, refer to the section "System and Task 

Command Description 

. ABORT Abort a task. 

. AK/LL' Kill all tasks of a given priority . 

. SYSTM Open a file for appending . 

.APPEND n 

. ARDyl Ready all tasks of a given priority . 

. ASUSPl Suspend all tasks of a given priority . 

. SYSTM Bootstrap a new system . 

. BOOT2 

.SYSTM' Interrupt the current program and save the current 

.BREAK2 state of memory in save file format. 

.SYSTM Create a contiguously organized file with all data 

. CCONT words zeroed . 

. SYSTM Create a subdirectory . 

.CDIR 

Table A.1 RDOS command summary 

Licensed Materisl .. Property of Data General 

Calls" in Chapter 3. RDOS returns error codes, if any, in 
AC2. Task calls sometime destroy accumulators, as noted. 
System calls preserve accumulators if they do not specifi
cally return values. 

Table A.2 lists and describes error codes in numeric order. 

Input and Remarks 

ACO: Destroyed . 

AC1: Task /0 number in bits 8-15. 

ACO: Priority of task to be killed. 

ACO: Byte pOinter to filename. 

AC1: Device characteristic mask (see .GTATR). 

AC2: Channel number, if n = 77. 

ACO: Priority of tasks to be readied. 

ACO: Priority of tasks to be suspended. 

ACO: Byte pointer to primary partition or specifier: filename . 

ACO: Byte pointer to filename. 

AC1: Integer number of disk blocks. 

ACO: Byte directory to new directory name. 

RODS System Reference 197 



Command 

·.SYSTM 
.CHATRn 

Description 

Change file attributes. 

Table A.1 RDOS command summary (continued) 

198 RDOS System Reference 

Input and Remarks 

ACO: 1 80, read~protect this file. 

1 81 t attribute~protect this file. 

187, allow \10 link resolution. 

189, user attribute •. 

Licensed Materlal··Property of Data General 



Command Description Input and Remarks ,.-
. SYSTM Define a user clock . ACO: Number of ATC pulses. 
. DUCLK 

AC1: Address of user interrupt routine. 

. SYSTM Open a file for reading and writing by one user only . ACO: Byte pointer to filename . 

. EOPEN n 
AC1: Characteristic disable mask (see .GTATA). 0 leaves char-

acteristics unchanged. 

AC2: Channel number, if n = 77. 

. SYSTM Assign a temporary name to a device . ACO: Byte pointer to current disk or tape specifier. 

.EQIV 
AC 1: Byte pointer to temporary specifier . 

. SYSTM Aead one or more disk blocks into extended, mapped ACO: External memory block number (0,1,2, or 3) in right byte. 

.ERDB memory. 
AC1: Starting relative block number in disk file. 

AC2: In right byte, number of 256-word blocks to be read. In 
left byte, channel number if n = 77.3 

. ERSCHf Aeenable the task scheduler . 

.SYSTM On an error, return from program and describe error AC2: Data word to be passed to next-higher level. 

.ERTN2 (if to CLI). 

.SYSTM Write one or more 256-word blocks from extended, ACO: Extended memory block number in right byte. 256-word 

.EWRB mapped memory to disk. group number (0,1,2, or 3) in left byte . 

AC1: Starting relative block number in disk file. 

AC2: In right byte, number of 256-word blocks to be written. In 
left byte, channel number if n = 77.3 

.SYSTM Checkpoint a background program in a mapped ACO: Byte pointer to new background program's name. 

.EXBG system. 
AC1: OB1, new background to have same priority as old. 

1 B 1, new background to have same priority as fore-
ground. 

AC2: Optional message to new background. 

. SYSTM Swap or chain in a new program . ACO: Byte pointer to new save file's name. 

.EXEC 
AC1: 0, swap to user program. 

1 BO, chain to user program. 

1, swap to debugger. 

1 BO + 1, chain to debugger. 

Table A.1 RDOS command summary (continued) 

licensed Material .. Property of Data General RDOS System Reference 199 



Command 

• SYSTM 
. EXFG 

Description 

Execute a program in the foreground • 

Table A.1 RDOS command summary (continued) 

200 ROOS System Reference 

Input and Remarks 

ACO: 6yte pOinter to save file's name . 

AC1: 061, foreground to have over background. 

161, foreground/backgroundequalpriority. 

0615, pass control to save file. 

1615, pass control to debugger. 

ACO: (returned) O. 

0= no RTC 

1 = 10 HZ 

2,= 100 HZ 

3 = 1000 HZ 

ACO: MCA transmitter device code (6 or 46 octal). 

AC1: (returned) MCA unit number. 

ACO: (returned) high-order portlondt byte pointer. 

AC1: (returned) low-order portion of byte pointer. 

AC2: Channel number, if n = 77. 

ACO; 6yte pointer to 15e-byte area. 

Licensed Materlal··Property of Data General 



-

Command 

. SYSTM 

.GTATR n 

Description 

Get file attributes . 

Table A.1 RDOS command summary (continued) 

Licensed Material··Property of Data General 

Input and Remarks 

ACO: (returned) 

1 BO, read-protected. 

1 B1, attribute-protected. 

1B2, save file 

1 B3, link entry. 5 

1 B4, partition.s 

1 B5, directory file.s 

1 B6, link resolution entry. 5 

1 B7, no link resolution allowed. 

1 B9, user attribute. 

1 B10, user attribute. 

1B12, contiguous file.s 

1B13, random file.s 

1B14, permanent file 

1 B 15, write-protected 

AC1: (returned) 

MCA shares ° and 15; see file PARU.SR 

1 BO, spoolable device. 

1 B1, 8O-column card. 

1B2,lower-to-uppercase. 

1 B3, form feed on open. 

184, full word device. 

1 B6, LF after CR. 

1 B7. parity check/generation. 

1 B8, rubout after tab. 

1 B9. nutl after FF. 

1B10. keyboard input. 

1B11, nv output. 

1 B 12, no FF hardware. 

1B13, operator intervention needed. 

1B14. no TAB hardware. 

1 B15, leader/trailer. 

AC2: Channel number, if n = 77. 

RODS System Reference 201 



Command 

• SYSTM 
.G10D 

• SYS1M 
.ICMN 

. SYSTM 
JOEF 

Description 

Get the time of day . 

Define a program communications area . 

Identify a user device . 

Get a task's .status 

Table A.1 RDOS command summary (continued) 

202 RDOS System Reference 

Input and Remarks 

ACO: (returned) seconds. 

AC1: (returned) minutes. 

AC2: (returned) hours (using a 24-hour clock). 

ACO: Starting word address of communications area. 

AC1: Size of area in words. 

ACO: O. ready. 

1, suspended by .SYS1M call. 

2, suspended by .SUSP, .llbs .. AUSUSP. 

3, waiting for.XMTW/.REC .. 

4, waiting for overlay node, 

Licensed Material··Property of Data General 

(.,,-.... 



Command Description Input and Remarks ,-
.lXMT Transmit a one-word message from a user interrupt ACO: Message address (destroyed) . 

routine. 
AC1: Nonzero message (destroyed). 

AC2: Destroyed. 

. KILAD' Define a kill-processing address. ACO: Address of kill-processing routine . 

. Klll1t2 Kill the calling task . 

.lEFD' Disable the lEF mode in a mapped, ECLIPSE sys- ACO: Contents lost upon return. 
tem. 

. lEFEt Enable the lEF mode in a mapped, ECLIPSE sys- ACO: Contents lost upon return . 
tem 

.lEFS' Get the LEF mode status in a mapped, ECLIPSE ACO: (returned) user status word; 
system. 

1 B9, LEF mode is enabled. 

OB9, LEF mode is disabled. 

. SYSTM Create a link entry. ACO: Byte pointer to link name . 

.lINK 
AC1: If 0, link will be resolved in parent partition of link entry's 

residence. 

If not 0, byte pointer is either to an alternate directory 
alias name or to an alias name string . 

. SYSTM Define a window map in a mapped system. ACO: Number of blocks for extended addressing use . 

. MAPDF 
AC1: Starting logical block number of window. 

AC2: Size of window in 1 K blocks. 

. SYSTM Get the logical name of the master device . ACO: Byte pointer to 138-byte area. 

.MDIA 

. SYSTM Determine available memory . ACO: HMA. 

.MEM 
AC1: NMAX. 

. SYSTM Change NMAX . ACO: NMAX increment of decrement (2's complement). 

.MEMI 
AC1: (returned) new NMAX (after change). 

Table A.1 RDOS command summary (continued) 

Licensed Material··Property of Data General RDDS System Reference 203 



Command Description 

.SYSTM 
• MTDIOn 

Perform free format 110 on tape or cassette . 

Table A.1 RDOS command summary (continued) 

204 ROOS System Reference 

Input and Remarks 

ACO: Core data address, if a data transfer. 

Even parity if bit 0 = 1; odd parity if bit 0 =0. 

Bits 1 .. 3: 

0, read (words). 

1, rewind tape. 

3, space forward. 

4, space backwards,. 

5, write (words). 

6. write EOF. 

7, read device status word. 

Bits 4-15: word or record count; if 0 on space command. 
position tape to new file if it is less than 4096 records away. 

(returned) number of words .read/written, or number of 
records spaced. 

AC1: Status word or system error code jf error returns; sta.tus 
word if read status normal return, 

Returned: 

1BO error. 

1 B 1, data late. 

1 B2, tape rewinding. 

1 B3. illegal command. 

low density ifO. 

1 B7 ,endoffile. 

1 B8, tape at load point 

1B10, badtape;wri~efajhJre. 

Licensed Material-Property of Data General 

.,-.. 
! 

,,r--. 



Command Description Input and Remarks 

.SYSTM Open a magnetic tape or cassette for free format ACO: Byte pointer to tape global specifier. 

. MTOPo n 1/0 . 
AC1: Characteristics inhibit mask (see .GTATR). 

AC2: Channel number, if n=77. 

.MULTI Restore the multitask environment. 

. SYSTM Disable keyboard interrupts for this console . 

.001S 

. SYSTM Enable keyboard interrupts for this console . 

.OEBL 

. SYSTM Open a file for reading andlor writing by one or more ACO: Byte pointer to filename . 

.OPEN n users. 
AC1: Characateristic inhibit mask (see .GTATR). 0 leaves prew 

vious characteristic unchanged. 0 for MCA, or 1 to specify 
your own MCAT retry timeout. 

AC2: Channel number, if n = 77. 

.OVEX6 Release an overlay and return to a specified adw ACO: Node number in bits 0-7. 
dress. 

Overlay number in bits 8-15. 

AC2: Return address . 

. 0VKIl2 Kill the calling task and release its overlay node. ACO: Node number in bits 0-7. 

Overlay number in bits 8-15. 

. SYSTM Load a user overlay into memory . ACO: Node number in bits 0-7. 

.OVLOO n 
Overlay number in bits 8-15. 

AC1: -1 for unconditional load; 

o for conditional load. 

AC2: Channel number, if n = 77.4 

. SYSTM Open a user overlay file . ACO: Byte pointer to overlay filename (with .OL extension). 

.OVOPN n 
AC2: Channel number, if n=77.4 

. OVREL Release an overlay . ACO: Node number in bits 0-7. 

Overlay number in bits 8w 15. 

. SYSTM Replace an overlay file . ACO: Byte pointer to overlay replacement filename. 

.OVRP 
AC1: Byte pointer to overlay filename (with .OL extension). 

. SYSTM Write a character to the console . ACO: Character in bits 9w 15; 

.PCHAR 
bits 0-8 ignored. 

. PRI' Change a task's priority . ACO: New task priority in bits 8-15. 

AC2: Address of user task queue table. 

Table A.1 RDOS command summary (continued) 

Licensed Malerial .. Property of Dala General RDDS System Reference 205 



Command 

• QTSK 

• SYSTM 
.RDBn 

Description 

Queue a memory-resident or overlay task . 

Read one or more disk blocks . 

Input and Remarks 

ACO: Starting core address to receive data. 

AC1: Starting disk relative block number, 

• SYSTM 
.RDCMN ~ 

Read· a ··message from i the· other. prog,ram1s com- ACO: Word address to read into . 
. munlcationsarea. j;. . 

.SYSTM 

.RDLn 

Table A.1 RDOS command summary (continued) 

206 RODS System Reference licensed Material--Property of Data General 

.~. 



Command Description Input and Remarks 

. SYSTM Open a file for reading only by one or more users . ACO: Byte pointer to filename . 

. ROPEN n 
AC1: Characteristic inhibit mask (see .GTATR). 0 preserves 

characteristics without change. For MCA, see .OPEN. 

AC2: Channel number, if n = 77 . 

. SYSTM Get a resolution file's statistics . ACO: Byte pointer to filename string. 

. RSTAT 
AC 1: Starting address of 22s-word area . 

. SYSTM Retum from a program to a higher-level program . 

. RTNt 

.SYSTM Remove a user clock . 

. RUClK 

. SYSTM Set today's date . ACO: Day . 

. SDAY 
AC1: Month. 

AC2: Year minus 1968 . 

. SINGl Disable the multitask environment. 

. SMSK' Modify the current interrupt mask . ACO: Lost. 

AC1: New interrupt mask to be ORed with old mask. 

AC2: Lost. 

.SYSTM Disable spooling. ACO: Byte pointer to device name . 

. SPDA 

. SYSTM Enable spooling. ACO: Byte pointer to device name . 

.SPEA 

• SYSTM Delete the current spool file . ACO: Byte pointer to device name . 
. SPKl 

. SYSTM Set the current file pointer . ACO: High-order portion of byte pointer . 

. SPOS n 
AC1: Low-order portion of byte pOinter. 

AC2: Channel number, if n = 77. 

. SYSTM Get a file's statistics . ACO: Byte pointer to filename string . 

. STAT 
AC1: Starting address of 22s-word area. 

.SYSTM Set the data channel map for a user device in a ACO: Device code . 

. STMAP mapped system. 
AC1: Starting user address of device buffer. Logical address 

of device buffer is returned. 

Table A.1 RDOS command summary (continued) 

Licensed Material··Property of Data General RODS System Reference 207 



Command 

• SYSTM 
.STOO 

. SUSP1 

. TASK 

• TIOK 

• TIOP 

Description 

Set the time of day . 

Suspend the calling task • 

Create a task . 

Kill a task . 

Change a task's priority . 

Table A.1 ROOS command summary (continued) 

208 RDOS System Reference 

Input and Remarks 

ACO: Seconds. 

AC1: Minutes. 

AC2: Hours. 

ACO: Task 10 number in left byte. 

T~sk priority in right byte. 

AC1: New task entry point address. 

AC2: Contents passed to new task. 

AC1: Task 10 number in right byte. 

ACO: New priority in bits 8-15. 

AC1: Task 10 number in right byte. 

AC1: Task 10 number in right byte. 

AC1: Task 10 number in right byte. 

ACO: Area number In bits 0-7. 

Overlay number in bits 8-15. 

AC1: ·1 for unconditional load. 

o for conditional load. 

AC2: Channel number on which overlay file was opened. 

ACO: Byte pointer to message area (must be even). 

AC1: (returned) byte count. 

ACO: O. 

ACO: Byte pointer to message area. 

AC1: -1 to suppress task 10 number. 

AC1: Any nonzero value to force rescheduling. 

AC1: Any nonzero value to force rescheduling .. 

AC2: In unmapped systems, value upon thecafl = return ad- . 
dress. In mapped systems, unimportallt. 

ACO: Byte pointer to link entry name. 

AC2: Channel number. if n=77. 

Licensed Material··Property of Data General 



Command Description 

.UPIEX1t2,7 

. SVSTM Determine the number of memory blocks. 

.VMEM 

. SYSTM Write one or more 256-word blocks to disk . 

.WRBn 

. SVSTM Write a message to the other program's commu-

. WRCMN nications area . 

. SYSTM Remove the write-protection of a memory area . 

.WRESL 

. SYSTM Write a line . 

. WRLn 

. SYSTM Write an operator message. 
WROPR 

. SVSTM Protect an area of memory in a mapped system . 

.WRPR 

. SVSTM Write a random record . 

. WAAn 

. SYSTM Write sequential bytes . 

.WASn 

. XMT Transmit a message . 

.XMTW Transmit a message and wait. 

Table A.1 ADOS command summary (continued) 

1 No error return. 
2No normal return. 
31f error EOF, error code in right byte, partial count in left byte. 
41f error EREOF, error code in bits 8-15, partial read count in bits 0-7. 
5 Cannot be set by user. 

Input and Aemarks 

ACO: (returned) number of available blocks . 

ACO: Starting memory address. 

AC1: Starting relative block number. 

AC2: Number of disk blocks in left byte; channel number, if 
n=77, in right byte.s 

ACO: Word address of message . 

AC1: Offset into communication area. 

AC2: Word count. 

ACO: Starting address of series. 

AC1: Ending address of series. 

ACO: Byte pointer to core buffer . 

AC1: Write byte count, including terminator, returned at end of 
write. 

AC2: Channel number, if n=77. 

ACO: Byte pOinter to text string . 

ACO: Starting address of 1 K-block series. 

AC1: Ending address of 1 K-block series . 

ACO: Core address of record. 

AC1: Record number. 

AC2: Channel number, if n = 77. 

ACO: Byte pointer to core buffer (must be even for MCA). 

AC 1: Number of bytes to be written. 

AC2: In right byte, channel number if n = n; in left byte, number 
of MCA retries. (Each MCA retry takes milliseconds.) 

ACO: Message address. 

AC1: Message must be nonzero. 

ACO: Message address. 

AC1: Message must be nonzero. 

6 Normal return through AC2. 
7Unmapped systems: on the interrupt, AC3 contained the return address. You must restore AC3 to this value before issuing this call. 
81f error ERSPC, error code in right byte, partial read count in left byte. 

Licensed Material··Property of Data General RDOS System Reference 209 



Code Mnemonic 

2 ' EAICM 

3 ERICO 

4 ERSV1 

6 EREOF 

7 ERAPR 

10 ERWPA 

11 ERCRE 

12 EROLE 

13 ERDE1 

14 ERCHA 

15 ERFOP 

ERFUE 

ERExa 

Meaning 

Illegal channel number. 

Illegal filename. 

Illegal system command. 

Illegal command for device. 

File requires the Save attribute and 
the random characteristic. 

End of file. 

Attempt to read a read-protected file, 

Attempt to write a write-protected file. 

Attempt to create an existing file. 

Attempt to reference a nonexistent 
file. 

Attempt to alter a permanent file. 

Illegal attempt to, change file attri-
butes. 

~ttempt to reference ' an unopened 
file. 

Fatal utility error. 

I Llina limit exceeded on read or write 
line command. 

, I' 

.~ttempt to restore a nonexistent im7 
age. 

, , 

parity error on read line. Magnetib 
tape parity. (Often caused by dirty 
h~ads.) , . 

Table A.2 Error summary 

210 RDOS System Reference 

Code Mnemonic 

30 EAFIL /~ 

31 EASEL Unit improperly selected~ 

32 ERADA 

33 EAAD 

34 EADIO ,Attempt to' perform direct bl,ockl/O" 
Orl a' sequentially organize~file" 

35 EADIA Files specified 'on different di,recto;. 
'ries. 

36 ERDNM 

37 EAOVN 

40 

,~' 

Table A.2 Error summary (continued) 

Licensed Material··Property of Data General 



Licensed Material--Property of Data General RODS System Reference 211 





--

Appendix B 

User Parameters 

This appendix provides a listing of source file PARU.SR, 
which describes all RDOS user parameters. These param
eters define important system calls, task calls, and mne
monics for user programs. PARU.SR was delivered with 
your RDOS system, along with the file PARS.SR, which 
contains all system parameters. Both files were loaded into 
your master directory during system generation. 

An assembler, cross-reference listing follows the listing of 
parameters. Use this cross-reference to find individual pa
rameters. The numbers in the cross-reference indicate list
ing, not appendix, pages. Parameter UFTeN, for example, 
has entries 1/56 and 2/05; these indicate listing page one, 
line 56 and listing page two, line five, respectively. 

0001 PARU 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

000000 
000005 
000006 
000007 
000007 
000010 
000011 
000012 
000013 
000014 
000014 
000015 
000016 
000017 
000020 
000021 

000022 
000023 
000024 
000025 
000026 

Licensed Material··Property of Data General 

; COPYRIGHT (C) DATA GENERAL CORPORATION 1977,1978,1979,1980,1982,1983 
; ALL RIGHTS RESERVED. 
; LICENSED MATERIAL-PROPERTY OF DATA GENERAL CORPORATION. 

,---------------------,----------------------
; RDOS REVISION 07.10 USER PARAMETERS 

.TITL PARU 

, 
; USER FILE TABLE (UFT) TEMPLATE 

; USER FILE DEFINITION (UFO) OF UFT 

.DUSR UFTFN = 0 

.DUSR UFTEX=5 

.DUSR UFTAT=6 

.DUSR UFTLK=7 

.DUSR UFLAD = 7 

.DUSR UFTBK = 10 

.DUSR UFTBC = 11 

.DUSR UFTAD= 12 

.DUSR UFTAC= 13 

.DUSR UFTYD= 14 

.DUSR UFLAN = 14 

.DUSR UFTHM = 15 

.DUSR UFTP1 = 16 

.DUSR UFTP2 = 17 

.DUSR UFTUC = 20 

.DUSR UFTDL = 21 

;FILE NAME 
; EXTENSION 
; FILE A TIRIBUTES 
;LlNK ACCESS ATIRIBUTES 
; LINK ALTERNATE DIRECTORY 
; NUMBER OF LAST BLOCK IN FILE 
; NUMBER OF BYTES IN LAST BLOCK 
; DEVICE ADDRESS OF FIRST BLOCK (0 UNASSIGNED) 
; YEAR-DAY LAST ACCESSED 
; YEAR-DAY CREATED 
; LINK ALIAS NAME 
; HOUR-MINUTE CREATED 
; UFO TEMPORARY 
;WORDS/BLOCK .STAT.RSTA.CHST 
;USER COUNT 
; OCT LINK (RH) HIGH-ORDER DEVICE ADDRESS (LH) 

; DEVICE CONTROL BLOCK (DCB) OF UFT 

.DUSR UFTDC = 22 

.DUSR UFTUN = 23 

.DUSR UFCA 1 = 24 

.DUSR UFTCA = 25 

.DUSR UFTCB = 26 

; OCT ADDRESS 
; UNIT NUMBER 
; CURRENT BLOCK ADDRESS (HIGH ORDER) 
; CURRENT BLOCK ADDRESS (LOW ORDER) 
; CURRENT BLOCK NUMBER 

RDDS System Reference 213 



45 000027 .DUSR UFTST = 27 ;FILE STATUS 
46 000030 .DUSR UFEA 1 = 30 ; ENTRY'S BLOCK ADDRESS (HIGH ORDER) 
47 000031 .DUSR UFTEA=31 ; ENTRY'S BLOCK ADDRESS (LOW ORDER) 
48 000032 .DUSR UFNA 1 = 32 ; NEXT BLOCK ADDRESS (HIGH ORDER) r-, 
49 000033 .DUSR UFTNA = 33 ; NEXT BLOCK ADDRESS (LOW ORDER) 
50 000034 .DUSR UFLA1 =34 ; LAST BLOCK ADDRESS (HIGH ORDER) 
51 000035 .DUSR UFTLA=35 ; LAST BLOCK ADDRESS (LOW ORDER) 
52 000036 .DUSR UFTDR = 36 ; SYS.DR DCB ADDRESS 
53 000037 .DUSR UFFA1 =37 ; FIRST ADDRESS (HIGH ORDER) 
54 000040 .DUSR UFTFA=40 ; FIRST ADDRESS (LOW ORDER) 
55 
56 ; DCB EXTENSION 
57 
58 000041 .DUSR UFTBN = 41 ; CURRENT FILE BLOCK NUMBER 
59 000042 .DUSR UFTBP = 42 ; CURRENT FILE BLOCK BYTE POINTER 
0002 PARU 
60 000043 .DUSR UFTCH = 43 ; DEVICE CHARACTERISTICS 
01 000044 .DUSR UFTCN = 44 ;ACTIVE REO COUNT 
02 ;BO INDICATES 0, 0=DS01,1 = DS02 
03 
04 
05 
06 
07 000045 .DUSR UFTEL = UFTCN - UFTFN + 1 ; UFT ENTRY LENGTH 
08 000022 .DUSR UFDEL = UFTDL - UFTFN + 1 ; UFD ENTRY LENGTH 
09 
10 177764 .DUSR UDBAT=UFTAT-UFTDC ; NEGATIVE DISP. TO ATTRIBUTES 
11 177777 .DUSR UDDL = UFTDL - UFTDC ; NEGATIVE DISP. TO FIRST ADDRESS (HIGH ORDER) 
12 177770 .DUSR UDBAD=UFTAD-UFTDC ; NEGATIVE DISP. TO FIRST ADDRESS (LOW ORDER) 
13 1n766 .DUSR UDBBK = UFTBK - UFTDC ; NEGATIVE DISP. TO LAST BLOCK 
14 000017 .DUSR UDBBN = UFTBN - UFTDC ; POSITIVE DISP. TO CURRENT BLOCK 
15 
16 
17 

1""-'" 18 ; FILE ATTRIBUTES (IN UFT AT) 
19 
20 100000 .DUSR ATRP = 1 BO ; READ PROTECTED 
21 040000 .DUSR ATCHA=1B1 ; CHANGE ATTRIBUTE PROTECTED 
22 020000 .DUSR ATSAV= 1B2 ;SAVED FILE 
23 000400 .DUSR ATNRS = 1 B7 ; CANNOT BE A RESOLUTION ENTRY 
24 000100 .DUSR ATUS1 = 1B9 ; USER ATTRIBUTE # 1 
25 000040 .DUSR ATUS2=1B10 ;USER ATTRIBUTE # 2 
26 000002 .DUSR ATPER=1B14 ; PERMANENT FILE 
27 000001 .DUSR ATWP = 1B15 ; WRITE PROTECTED 
28 
29 
30 ; FILE CHARACTERISTICS (IN UFT AT) 
31 
32 007400 .DUSR ATMSK = 17B7 ;TO GET HIGH ORDER PART OF 3330 
33 ; ADDRESSES OUT OF UFTDL 
34 010000 .DUSR ATLNK=1B3 ;L1NK ENTRY 
35 004000 .DUSR ATPAR= 1B4 ; PARTITION ENTRY 
36 002000 .DUSR ATDIR = 1 B5 ; DIRECTORY ENTRY 
37 001000 .DUSR ATRES = 1 B6 ; LINK RESOLUTION (TEMPORARY) 
38 000010 .DUSR ATCON= 1B12 ; CONTIGUOUS FILE 
39 000004 .DUSR ATRAN= 1B13 ; RANDOM FILE 
40 
41 ; 
42 ; OCT PARAMETERS. 
43 
44 
45 000000 .DUSR DCTBS = 0 ; 1 BO = 1 =) DEVICE USES DATA CHANNEL 
46 000001 .DUSR DCTMS = 1 ; MASK OF LOWER PRIORITY DEVICES 
47 000002 .DUSR DCTIS = 2 ;ADDRESS OF INTERRUPT SERVICE ROUTINE 
0003 PARU ;--" 
01 
02 ; DEVICE CHARACTERISTICS (IN UFTCH) 
03 

214 RDOS System Reference Licensed Materlal··Property of Data General 



04 000001 .DUSR DC100= 1B15 ; CONSOLE INPUT DEVICE IS D100 OR D200 
05 ; TERMINAL (SET BY INIT1) 
06 000001 .DUSR DCSTB= 1B15 ; SUPPRESS TRAILING BLANKS $CDR ONL Y ,- 07 000001 .DUSR DCCPO= 1B15 ; DEVICE REQUIRING LEADERITRAILER 
08 000001 .DUSR DCSTO= 1 B15 ; USER SPECIFIED TIME OUT CONSTANT (MCA) 
09 000002 .DUSR DCCGN= 1B14 ; GRAPHICAL OUTPUT DEVICE WITHOUT TABBING 
10 ; HARDWARE 
11 000004 .DUSR DCIDI= 1B13 ; INPUT DEVICE REQUIRING OPERATOR INTERVENTION 
12 000010 .DUSR DCLCD= 1 B12 ; INPUT DEVICE IS 6053-TYPE TERMINAL 
13 000010 .DUSR DCCNF= 1 B12 ; OUTPUT DEVICE WITHOUT FORM FEED HARDWARE 
14 000020 .DUSR DCTO= 1 B11 ; TELETYPE OUTPUT DEVICE 
15 000040 .DUSR DCKEY= 1B10 ; KEYBOARD DEVICE 
16 000100 .DUSR DCNAF= 1B09 ; OUTPUT DEVICE REQUIRING NULLS AFTER FORM FEEDS 
17 000200 .DUSR DCRAT= 1B08 ; RUBOUTS AFTER TABS REQUIRED 
18 000400 .DUSR DCPCK= 1B07 ; DEVICE REQUIRING PARITY CHECK 
19 001000 .DUSR DCLAC= 1B06 ; REQUIRES LINE FEEDS AFTER CARRIAGE RTN 
20 002000 .DUSR DCSPO= 1B05 ; SPOOLABLE DEVICE 
21 004000 .DUSR DCFWD= 1B04 ; FULL WORD DEVICE (ANYTHING GREATER THAN 
22 004000 .DUSR DCLT8= 1B04 ; LESS THAN 8 BITS I CHARACTER (BYTE DEVICES). 
23 010000 .DUSR DCFFO= 1B03 ; FORM FEEDS ON OPEN 
24 020000 .DUSR DCLTU= 1B02 ; CHANGE LOWER CASE ASCII TO UPPER 
25 040000 .DUSR DCC80= 1B01 ; READ 80 COLUMNS 
26 100000 .DUSR DCDIO= 1 BOO ; SUSPEND PROTOCOL ON TRANSMIT (MCA) 
27 100000 .DUSR DCBDK= 1 BOO ; DISK CHARACTERISTIC (SET NON-PARAMETRICALL Y) 
28 ; SET MEANS ITS 3330 
29 100000 .DUSR DCSPC= 1 BOO ; SPOOL CONTROL 
30 ; SET = SPOOLING ENABLED 
31 ; RESET = SPOOLING DISABLED 
32 
33 ; CHARACTERISTICS WORD FOR MY DCT'S 
34 
35 143432 .DUSR TTOCH = DCCGN + DCCNF + DCTO + DCPCK + DCLAC + DCC80 + DCSPO + DCSPC 
36 020040 .DUSR TTICH = DCKEY + DCL TU 
37 
0004 PARU 
01 
02 ; DEVICE CHARACTERISTICS FOR QTY, ULM, AND ALM (PARU.SR) 
03 
04 000001 .DUSR DCNI= 1B15 ; (MASKING ENABLES) CONSOLE INTERRUPTS 
05 ;.DUSR DCCGN= 1B14 ;(MASKING DISABLES) TAB EXPANSION 
06 000004 .DUSR DCLOC= 1 B13 ; LOCAL LINE (MASKING MAKES MODEM LINE) 
07 
08 ;.DUSR DCTO= 1 B11 ;_ FOR RUBOUT (MASKING GIVES BACKSPACE) 
09 ; IGNORE LlNEFEED (MASKING CONVERTS 
10 ; LF/NL TO CR) 
11 ;.DUSR DCKEY= 1 B10 ; (MASKING DISABLES) INPUT ECHOING. 
12 ; MASKING ALSO DISABLES LINE EDIT 
13 ; ( Z,ESC,DEL, \ ), 
14 ; UNLESS "DCEDT" ALSO MASKED. 
15 
16 ;.DUSR DCNAF= 1B9 ; (MASKING DISABLES) 20 NULLS AFTER FORM FEED 
17 000200 .DUSR DCXON= 1B8 ; (MASKING ENABLES) XON/XOFF FOR $TTR 
18 1B7 ; SAVE FOR FUTURE USE 
19 
20 ;.DUSR DCLAC= 1B6 ; (MASKING DISABLES) LINE FEED AFTER 
21 , CARRIAGE RETURN 
22 ;.DUSR DCSPO= 1B5 ; (MUST BE OFF) SPOOLING 
23 004000 .DUSR DCCRE= 1B4 ; CARRIAGE RETURN ECHO (MASKING DISABLES) 
24 100000 .DUSR DCEDT= 1BO ; LINE EDIT (ESC, Z,DEL, \) DISABLED IF 
25 ; MASK THIS BIT OR "DCKEY", BUT NOT BOTH. 
26 
27 ; .WRL TO QTY:64 
28 
29 ACO = CODE + LINE # 
30 AC1 = DATA 
31 
32 000000 .DUSR W64DC= OB7 ; NEW DEVICE CHARACTERISTIC MASK 
33 ; FOR OPEN CHANNEL, AC1 AS ABOVE. 

Licensed Material--Property of Data General RDDS System Reference 215 



34 000400 . DUSR W64LS= 1B7 ;CHANGE LINE SPEED FOR DG/CS, . 
35 ; AC1 RIGHT-JUSTfFIED CLOCK SELECT. 
36 001000 .DUSR W64MS= 2B7 ;CHANGE DG/CS MODEM STATE, AC1 = 

~ . 
37 000001 . DUSR W64DTR= 1B15 RAISE DATA TERMINAL READY f 

38 ; ELSE LOWER 
39 000002 .DUSR W64RTS= 1814 ; RAISE REQUEST TO SEND 
40 ; ELSE LOWER 
41 001400 .DUSR W64CH= 3B7 ;CHANGE CHARACTERfSTfCS FOR LINE 
42 ;AC1 SAME AS DG/CS HARDWARE SPEC. 
43 
0005 PARU 
01 ; 
02 ; SWITCHES 
03 
04 
05 100000 .DUSR A.SW= 1 BOO 
06 040000 .DUSR B.SW= 1B01 
07 020000 .DUSR C.SW= 1B02 
08 010000 .DUSR D.SW= 1B03 
09 004000 .DUSR E.SW= 1B04 
10 002000 .DUSR F.SW= 1B05 
11 001000 .DUSR G.SW= 1B06 
12 000400 .DUSR H.SW= 1B07 
13 000200 .DUSR I.SW= 1808 
14 000100 .DUSR J.SW= 1B09 
15 000040 .DUSR K.SW= 1B10 
16 000020 .DUSR l.SW= 1B11 
17 000010 .DUSR M.SW= 1B12 
18 000004 .DUSR N.SW= 1B13 
19 000002 .DUSR O.SW= 1B14 
20 000001 .DUSR P.SW= 1B15 
21 100000 .DUSR Q.SW= 1 BOO 
22 040000 .DUSR R.SW= 1B01 
23 020000 .DUSR S.SW= 1B02 
24 010000 .DUSR T.SW= 1B03 
25 004000 .DUSR U.SW= 1B04 
26 002000 .DUSR V.SW= 1B05 
27 001000 .DUSR W.SW= 1B06 
28 000400 .DUSR X.SW= 1B07 
29 000200 .DUSR Y.SW= 1B08 
30 000100 .DUSR Z.SW= 1B09 
0006 PARU 
01 
02 ; 
03 ; SYSTEM CONSTANTS 
04 
05 
06 000377 .DUSR SCWPB = 255. ; WORDS PER BLOCK 
07 000400 .DUSR SCDBS=256. ; SIZE OF DISK BLOCK 
08 000100 .DUSR SCRRL = 64. ; WORDS PER RANDOM RECORD 
09 000204 .DUSR SCLLG = 132. ; MAX LINE LENGTH 
10 000030 .DUSR SCAMX = 24. ; MAX ARGUMENT LENGTH IN BYTES 
11 000006 .DUSR SCFNL = UFTEX - UFTFN + 1 ; FILE NAME LENGTH 
12 000005 .DUSR SCEXT = UFTEX - UFTFN ; EXTENSION OFFSET IN NAME AREA 
13 000012 .DUSR SCMER = 10. ; MAX ERROR RETRY COUNT 
14 000016 .DUSR SCSTR = 16 ; SAVE FILE STARTING ADDRESS 
15 177660 .DUSR SCTIM = -80. ; RINGIO 1 MS. LOOP TIME (SN) 
16 000000 .DUSR SCPPL = 0 ; PRIMARY PARTITION LEVEL 
17 000006 .DUSR SCPPA=6 ; PRIMARY PARTITION BASE ADDRESS 
18 000003 .DUSR SCDSK = 3 ; ABSOLUTE ADDRESS OF DISK INFORMATION BLOCK 
19 000004 .DUSR SCBAD=4 ;ABSOLUTE ADDRESS OF BAD BLOCK TABLE BLOCK 
20 000000 .DUSR SCSYS=O ; SYS.DR ADDRESS OFFSET 
21 000001 .DUSR SCPSH = 1 ; PUSH DIRECTORY OFFSET 
22 000004 .DUSR SCPNM = 4 ; MAX NUMBER OF PUSH LEVELS 
23 000011 .DUSR SCMAP = SCPNM*2 + SCPSH ; RELATIVE BASE ADDRESS OF MAP.DR r--
24 000001 .DUSR SCBPB = 1 ; RELATIVE BACKGROUND PUSH BASE 
25 000006 .DUSR SCFPB = SCBPB + SCPNM + 1 ; RELATIVE FOREGROUND PUSH BASE 
26 000021 .DUSR SCFZW = SCPNM*4 + SCBPB ; FRAME SIZE WORD (SKIP DOUBLE WORD PUSH INDICES) 

216 ROOS System Reference Licensed Materlal··Property of Data General 



27 000022 .DUSR SCNVW = SCFZW + 1 ; NUMBER-OF-SYSTEM-OVERLAYS WORD 
28 100000 .DUSR SFINT = 1 BO ; INTERRUPT FLAG 
29 000001 .DUSR SFBRK = 1 B15 ;BREAK FLAG ,,- 30 000100 .DUSR SCNSO = 64. ; NUMBER OF SYSTEM OVERLAYS 
31 000072 .DUSR SNSOU = 72 ; NUMBER OF SYSTEM OVERLAYS IN USE 
32 000017 .DUSR SCSOP = SNSOU + 3/4 ; NUMBER OF MEMORY PAGES TO HOLD SYSTEM OVERLAYS 
33 
34 
35 ; SYSTEM BOOTSTRAP CONSTANTS 
36 
37 000000 .DUSR SCTBP=O ; TEXT STRING BYTE POINTER 
38 000001 .DUSR SCINS= 1 ; SWITCHED FULL/PARTIAL-OVERLAYS ADDRESS 
39 000002 .DUSR SCPSA=2 ; PROGRAM START ADDRESS 
40 000002 .DUSR SCPAR = SCPSA ; PARTIAL INIT ADDRESS 
41 000003 .DUSR SCINT=3 ; FULL/PARTIAL-OVERLAYS INIT ADDRESS 
42 000004 .DUSR SCCLI = SCINT + 1 ; ADDRESS OF END OF CLI 
43 000005 .DUSR SCZMX = SCCLI + 1 ; SQUASHED/UNSQUASHED FLAG 
44 000006 .DUSR SCCPL = SCZMX + 1 ; CURRENT PARTITION LEVEL 
45 000007 .DUSR SCPBA = SCCPL + 1 ; PARTITION BASE ADDRESS (LOW ORDER) 
46 000010 .DUSR SCOFA = SCPBA + 1 ; OVERLAY BASE ADDRESS (LOW ORDER) 
47 000011 .DUSR SCPB1 =SCOFA+ 1 ; PARTITION BASE ADDRESS (HIGH ORDER) 
48 000012 .DUSR SCOF1 = SCPB1 + 1 ; OVERLAY BASE ADDRESS (HIGH ORDER) 
49 000013 .DUSR SCBAS=SCOF1 + 1 ;BASE OF INFORMATION BLOCK 
50 000013 .DUSR SCSWC = SCBAS ; SWITCH FOR SCINS ENTRY 
51 000020 .DUSR SCIDV=20 ; INITIAL DEVICE CODE 
52 
53 000000 .DUSR SCAUN=O ;ASCII UNIT NUMBER 
54 000001 .DUSR SCUN=1 ; UNIT (DEVICE CODE) 
55 000002 .DUSR SCGO=2 ; ENTRY TO PASS FILENAME 
56 000004 .DUSR SCNGO=4 ; ENTRY TO ASK FROM CONSOLE 
0007 PARU 
01 
02 ; SYSTEM ERROR CODES 
03 - 04 000000 .DUSR ERFNO = 0 ; ILLEGAL CHANNEL NUMBER 
05 000001 .DUSR ERFNM = 1 ; ILLEGAL FILE NAME 
06 000002 .DUSR ERICM = 2 ; ILLEGAL SYSTEM COMMAND 
07 000003 .DUSR ERICD = 3 ; ILLEGAL COMMAND FOR DEVICE 
08 000004 .DUSR ERSV1 = 4 ; NOT A SAVED FILE 
09 000005 .DUSR ERWRO= 5 ; A TIEMPT TO WRITE AN EXISTENT FILE 
10 000006 .DUSR EREOF = 6 ; END OF FILE 
11 000007 .DUSR ERRPR = 7 ; ATIEMPT TO READ A READ PROTECTED FILE 
12 000010 .DUSR ERWPR = 10 ; WRITE PROTECTED FILE 
13 000011 .DUSR ERCRE = 11 ; ATIEMPT TO CREATE AN EXISTENT FILE 
14 000012 .DUSR ERDLE = 12 ; A NON-EXISTENT FILE 
15 000013 .DUSR ERDE1 = 13 ; ATIEMPT TO ALTER A PERMANENT FILE 
16 000014 .DUSR ERCHA= 14 ; ATIRIBUTES PROTECTED 
17 000015 .DUSR ERFOP = 15 ; FILE NOT OPENED 
18 000016 .DUSR ERFUE = 16 ; FATAL UTILITY ERROR 
19 000017 .DUSR EREXQ= 17 ; EXECUTE CLI.CM (NO ERROR) 
20 000020 .DUSR ERNUL= 20 ; INVISIBLE ERROR CODE 
21 000021 .DUSR ERUFT = 21 ; ATIEMPT TO USE A UFT ALREADY IN USE 
22 000022 .DUSR ERLLI = 22 ; LINE LIMIT EXCEEDED 0 
23 000023 .DUSR ERRTN = 23 ; ATIEMPT TO RESTORE A NON-EXISTENT IMAGE 
24 000024 .DUSR ERPAR = 24 ; PARITY ERROR ON READ LINE 
25 000025 .DUSR ERCM3 = 25 ; TRYING TO PUSH TOO MANY LEVELS 
26 000026 .DUSR ERMEM = 26 ; NOT ENUF MEMORY AVAILABLE 
27 000027 .DUSR ERSPC = 27 ; OUT OF FILE SPACE 
28 000030 ,DUSR ERFIL = 30 ; FILE READ ERROR 
29 000031 .DUSR ERSEL = 31 ; UNIT NOT PROPERLY SELECTED 
30 000032 .DUSR ERADR = 32 ; ILLEGAL STARTING ADDRESS 
31 000033 .DUSR ERRD= 33 ; ATIEMPT TO READ INTO SYSTEM AREA 
32 000034 .DUSR ERDIO = 34 ; FILE ACCESSIBLE BY DIRECT 1/0 ONL Y 
33 000035 .DUSR ERDIR = 35 ; FILES SPECIFIED ON DIFF. DIRECTORIES - 34 000036 .DUSR ERDNM = 36 ; DEVICE NOT IN SYSTEM 
35 000037 .DUSR EROVN= 37 ; ILLEGAL OVERLAY NUMBER 
36 000040 .DUSR EROVA= 40 ; FILE NOT ACCESSIBLE BY DIRECT 1/0 
37 000041 .DUSR ERTIM = 41 ; USER SET TIME ERROR 

Licensed Material··Property of Data General RDOS System Reference 217 



38 000042 .DUSR ERNOT = 42 ; OUT OF TCB'S 
39 000043 .DUSR ERXMT = 43 ; SIGNAL TO BUSY ADDR 
40 000044 .DUSR ERSQF = 44 ; FILE ALREADY SQUASHED ERROR 
41 000045 .DUSR ERIBS = 45 ; DEVICE ALREADY IN SYSTEM ~, 
42 000046 .DUSR ERICB = 46 ; INSUFFICENT CONTIGUOUS BLOCKS 
43 000047 .DUSR ERSIM = 47 ; SIMULTANEOUS READ OR WRITE TO MUX LINE 
44 000050 .DUSR ERQTS = 50 ; ERROR IN USER TASK QUEUE TABLE 
45 000051 .DUSR ERNMD = 51 ; NO MORE DCB'S 
46 000052 .DUSR ERIDS = 52 ; ILLEGAL DIRECTORY SPECIFIER 
47 000053 .DUSR ERDSN = 53 ; DIRECTORY SPECIFIER NOT KNOWN 
48 000054 .DUSR ERD2S = 54 ; DIRECTORY IS TOO SMALL 
49 000055 .DUSR ERDDE= 55 ; DIRECTORY DEPTH EXCEEDED 
50 000056 .DUSR ERDIU = 56 ; DIRECTORY IN USE 
51 000057 .DUSR ERLDE = 57 ; LINK DEPTH EXCEEDED 
52 000060 .DUSR ERFIU = 60 ; FILE IS IN USE 
53 000061 .DUSR ERTID = 61 ; TASK 10 ERROR 
54 000062 .DUSR ERCMS = 62 ; COMMON SIZE ERROR 
55 000063 .DUSR ERCUS = 63 ; COMMON USAGE ERROR 
56 000064 .DUSR ERSCP = 64 ; FILE POSITION ERROR 
57 000065 .DUSR ERDCH= 65 ; INSUFFICIENT ROOM IN DATA CHANNEL MAP 
58 000066 .DUSR ERDNI = 66 ; DIRECTORY NOT INITIALIZED 
59 000067 .DUSR ERNDD = 67 ; NO DEFAULT DIRECTORY 
60 000070 .DUSR ERFGE = 70 ; FOREGROUND ALREADY EXISTS 
0008 PARU 
01 000071 .DUSR ERMPT = 71 ; ERROR IN PARTITON SET 
02 000072 .DUSR EROPD = 72 ; DIRECTORY IN USE BY OTHER PROGRAM 
03 000073 .DUSR ERUSZ = 73 ; NO ROOM FOR UFTS ON EXEC/EXFG 
04 000074 .DUSR ERMPR = 74 ; ADDR ERROR ON .SYSTM PARAM 
05 000075 .DUSR ERNLE = 75 ; NOT A LINK ENTRY 
06 000076 .DUSR ERNTE = 76 ; CURRENT BG IS NOT CHECKPOINTABLE 
07 000077 .DUSR ERSDE = 77 ; SYS.DR ERROR 
08 000100 .DUSR ERMDE = 100 ; MAP.DR ERROR 
09 000101 .DUSR ERDTO = 101 ; DEVICE TIME OUT 
10 000102 .DUSR ERENA = 102 ; ENTRY NOT ACCESSIBLE VIA LINK 
11 000103 .DUSR ERMCA = 103 ; MCA REQUEST OUTSTANDING I'-'~ 

12 000104 .DUSR ERSRR= 104 ; INCOMPLETE TRANSMISSION CAUSED BY RECIEVER 
13 000105 .DUSR ERSDL = 105 ; SYSTEM DEADLOCK 
14 000106 .DUSR ERCLO = 106 ; I/O TERMINATED BY CHANNEL CLOSE 
15 000107 .DUSR ERSFA= 107 ; SPOOL FILE(S) ACTIVE 
16 000110 .DUSR ERABT = 110 ; TASK NOT FOUND FOR ABORT 
17 000111 .DUSR ERDOP = 111 ; DEVICE PREVIOUSL Y OPENED 
18 000112 .DUSR EROVF = 112 ; SYSTEM STACK OVERFLOW 
19 000113 .DUSR ERNMC= 113 ; NO MCA RECEIVE REQUEST OUTSTANDING 
20 000114 .DUSR ERNIR = 114 ; NO INIT/RELEASE ON OPENED DEVICE (MAG TAPE) 
21 000115 .DUSR ERXMZ = 115 ; .XMT & .IXMT MESSAGES MUST BE NON-ZERO 
22 000116 .DUSR ERCANT= 116 ; 'YOU CAN'T DO THAT' 
23 000117 .DUSR ERQOV = 117 ; .TOVLD NOT LOADED FOR QUEUED OVERLAY TASKS 
24 000120 .DUSR EROPM = 120 ; OPERATOR MESSAGE MODULE NOT SYSGENED 
25 000121 .DUSR ERFMT = 121 ; DISK FORMAT ERROR 
26 000122 .DUSR ERBAD = 122 ; DISK HAS INVALID BAD BLOCK TABLE 
27 000123 .DUSR ERBSPC = 123 ; INSUFFICIENT SPACE IN BAD BLOCK POOL (CORE) 
28 000124 .DUSR ERZCB = 124 ; A TIEMPT TO CREATE CONTIG OF ZERO LENGTH 
29 000125 .DUSR ERNSE= 125 ; PROGRAM IS NOT SWAPPABLE 
30 000126 .DUSR ERBL T = 126 ; BLANK TAPE 
31 000127 .DUSR ERRDY = 127 ; LINE NOT READY 
32 000130 .DUSR ERINT = 130 ; CONSOLE INTERRUPT RECEIVED 
33 000131 .DUSR EROVR = 131 ; CHARACTER OVER RUN ERROR 
34 000132 .DUSR ERFRM = 132 ; CHARACTER FRAMING ERROR 
35 000133 .DUSR ERSPT= 133 ; TOO MANY SOFT ERRORS (DOS ONLY) 
36 000134 .DUSR ERSOF = 134 ; QTY BUFFER OVERFLOW 
0009 PARU 
01 
02 ; CLI ERROR CODES 
03 
04 000300 .DUSR CNEAR= 300 ; NOT ENOUGH ARGUMENTS 
05 000301 .DUSR CILAT= 301 ; ILLEGAL A TIRIBUTE ~, 

06 000302 .DUSR CNDBD= 302 ; NO DEBUG ADDRESS 
07 000303 .DUSR CCLTL= 303 ; COMMAND LINE TOO LONG 

218 ROOS System Reference Licensed Materlal .. Property of Data General 



08 000304 .DUSR CNSAD= 304 ; NO STARTING ADDRESS 
09 000305 .DUSR CCKER= 305 ; CHECKSUM ERROR 
10 000306 .DUSR CNSFS= 306 ; NO SOURCE FILE SPECIFIED ",- 11 000307 .DUSR CNACM= 307 ; NOT A COMMAND 
12 000301 .DUSR CILBK= 310 ; ILLEGAL BLOCK TYPE 
13 000311 .DUSR CSPER= 311 ; NO FILES MATCH SPECIFIER 
14 000312 .DUSR CPHER= 312 ; PHASE ERROR 
15 000313 .DUSR CTMAR= 313 ; TOO MANY ARGUMENTS 
16 000314 .DUSR CTMAD= 314 ; TOO MANY ACTIVE DEVICES 
17 000315 .DUSR CILNA= 315 ; ILLEGAL NUMERIC ARGUMENT 
18 000316 .DUSR CSFUE= 316 ; FATAL SYSTEM UTILITY ERROR 
19 000317 .DUSR CILAR= 317 ; ILLEGAL ARGUMENT 
20 000320 .DUSR CCANT= 320 ; IMPROPER OR MALICIOUS INPUT 
21 000321 .DUSR CTMLI= 321 ; TOO MANY LEVELS OF INDIRECT FILES 
22 000322 .DUSR CSYER= 322 ; SYNTAX ERROR 
23 000323 .DUSR CBKER= 323 ; BRACKET ERROR 
24 000324 .DUSR CPARE= 324 ; PAREN ERROR 
25 000325 .DUSR CCART= 325 ; ( WITHOUT 1 OR 1 WITHOUT ( 
26 000326 .DUSR CCAR1= 326 ; ILLEGAL NESTING OF 0 AND () 
27 000327 .DUSR CINDE= 327 ; ILLEGAL INDIRECT FILENAME 
28 000330 .DUSR CPAR1= 330 ; ILLEGAL NESTING OF () AND [] 
29 000331 .DUSR CIVAR= 331 ; ILLEGAL VARIABLE 
30 000332 .DUSR CILTA= 332 ; ILLEGAL TEXT ARGUMENT 
31 000333 .DUSR CTATL= 333 ; TEXT ARGUMENT TOO LONG 
32 
33 000333 .DUSR CCMAX= CTATL ; MAX CLI ERROR CODE 
34 000036 .DUSR ERML= 30. ; MAXIMUM ERROR MESSAGE LENGTH 
35 
36 
37 
38 
39 ; EXCEPTIONAL SYSTEM STATUS CODES 
40 
41 100001 .DUSR PNMPE= 01 ; MAP.DR ERROR 
42 100002 .DUSR PNSDE= 02 ; SYSTEM DIRECTORY ERROR 
43 100003 .DUSR PNCSO= (a3 ; SYSTEM STACK FAULT 
44 100004 .DUSR PNIDA= 04 ; INCONSISTENT SYSTEM DATA 
45 100005 .DUSR PNMDD= (as ; MASTER DEVICE DATA ERROR 
46 100006 .DUSR PNMDT= (a'6 ; MASTER DEVICE TIME OUT 
47 100007 .DUSR PNDPE= (07 ; MOVING HEAD DISK ERROR 
48 100010 .DUSR PNCUI= ((l10 ; UNCLEARABLE UNDEFINED INTERRUPT 
49 100012 .DUSR PNCBK= ((l12 ; INSUFFICENT CONTIGUOUS BLOCKS TO BUILD 
50 ; PUSH SPACE INDICES 
51 100011 .DUSR PNILL= (a11 ; ILLEGAL EXTENDED INSTRUCTION 
52 100013 .DUSR PNPSH= (a13 ; RTN BEYOND TOP OF WORLD 
53 100014 .DUSR PNIPB= (((14 ; INCONSISTENT OR IMPOSSIBLE CONDITION 
54 ; RELATED TO DUAL PROCESSORS (IPB) 
55 100015 .DUSR PNITR= ((l15 ; INT WORLD TRAPPED 
56 100016 .DUSR PNERC= (a16 ; MUL TIBIT MEMORY ERROR 
57 100017 .DUSR PNPAR= (w17 ; MEMORY PARITY ERROR 
58 100020 .DUSR PNMEM= (((20 ; INFOS INSUFFICIENT MEMORY (INIT TIME) 
59 100021 .DUSR PNSPL= (u21 ; SPOOLER 
60 100022 .DUSR PNEMT= ((1.22 ; MICRO-ECLIPSE EMULATOR TRAP 
0010 PARU 
01 ; PANIC -- UNMAPPED RDOS ONLY!!!! 
02 100023 .DUSR PNPSF= (ii23 ; POWER SUPPLY FAUL T-UPSC 
0011 PARU 
01 
02 ; PANIC CODES MADE FROM GENERIC EXCEPTIONAL SYSTEM STATUS CODES 
03 ;#R013 ED6 8/31/79 
04 
05 
06 PANIC STAT MODULE 
07 - 08 110002 .DUSR P1SDE = 1B3!PNSDE ;WDBLK 
09 
10 110003 .DUSR P1CSO = 1B3!PNCSO ;GSUB 
11 120003 .DUSR P2CSO = 2B3!PNCSO ;INTD 

Licensed Material--Properfy of Data General RDOS System Reference 219 



12 130003 ,OUSR P3CSO = 3B3!PNCSO ;GSUB 
13 140003 ,OUSR P4CSO = 4B3!PNCSO ;GSUB 
14 150003 ,OUSR P5CSO = 5B3!PNCSO ~GSUB 
15 
16 110004 ,OUSR P110A = 1B3!PNIOA ;FILIO 
17 120004 ,OUSR P210A = 2B3!PNIOA ;BLKIO 
18 130004 ,OUSR P3lOA = 3B3!PNIOA ;IOBUF 
19 140004 ,OUSR P410A = 4B3!PNIOA ;OPPRO 
20 
21 110005 ,DUSR P1MDD = 1B3!PNMOD ;OVLAY 
22 120005 ,OUSR P2MOO = 2B3!PNMDD ;INIT3 
23 130005 ,OUSR P3MDD = 3B31PNMDD ;SOV3 
24 140005 ,OUSR P4MDO :::: 4B3!PNMDO ;SOV6 
25 150005 ,OUSR P5MDD == 5B3!PNMDO ;SOV7 
26 160005 ,OUSR P6MDD = 6B3!PNMDD ;SOV3 
27 
28 
29 170005 ,OUSR P7MDO == 7B3!PNMDO ;FILIO 
30 110006 .OUSR P1MDT == 1B3!PNMDT ;INIT3 
31 120006 .OUSR P2MDT == 2B3!PNMDT ;OVLAY 
32 130006 ,DUSR P3MDT == 3B3!PNMDT ;SOV3 
33 140006 ,OUSR P4MDT == 4B3!PNMDT ;SOV6 
34 150006 ,DUSR P5MDT = 5B3!PNMDT ;SOV7 
35 160006 ,DUSR P6MDT = 6B3!PNMDT ;SOV3 
36 
37 110007 ,OUSR P10PE == 1B3!PNDPE ; DZPDR 
38 110010 ,OUSR P1CUI == 1B3!PNCUI ; INTO 
39 
40 110012 .OUSR P1CBK == 1B3!PNCBK ; FlNIT2 
41 120012 ,OUSR P2CBK == 2B3!PNCBK ;INIT2 
42 
43 110011 .OUSR PllLL == 1B3!PNILL ;GSUB 
44 
45 110013 .DUSR P1PSH == lB3!PNPSH ;SOV12. 
46 120013 .OUSR P2PSH = 2B3!PNPSH ;SOV27 ~. 

47 

" 48 110014 .OUSR P11PB == 1B3!PNIPB ;DPMOO 
49 120014 .DUSR P21PB = 2B3!PNIPB ; DPMOD 
50 130014 .DUSR P31PB == 3B3!PNIPB ; DPMOD 
51 140014 .DUSR P41PB = 4B3!PNIPB ; DPMOD 
52 
53 110015 .OUSR P11TR == 1B3!PNITR ;MAPZ 
54 120015 ,OUSR P21TR == 2B3!PNITR ;MAPZ 
55 
56 110016 .OUSR P1ERC == lB3!PNERC ;INTD 
57 
58 110017 ,OUSR P1PAR == 1B3!PNPAR ;INTD 
59 
60 110021 .OUSR P1SPL = 1B3!PNSPL ;SPOLR 
0012 PARU 
01 110022 .OUSR P1EMT == 1B3!PNEMT ; PANIC 
02 110023 .DUSR P1PSF = 1B3!PNPSF ;UPSC 
03 
0013 PARU 
01 
02 ; 
03 ; USER STATUS TABLE (UST) TEMPLATE 
04 ; 
05 000400 .OUSR UST = 400 ; START OF BACKGROUND USER STATUS AREA 
06 
07 000012 .DUSR USTP= 12 ; PZERD LOC FOR UST POINTER 
08 ; NOTE· USTP MUST CORRESPOND TO PARS PZERQ ALLOCATIONS 
09 
10 000000 .DUSR USTPC= 0 ; 0 = )BACKGROUND, 1 = )FOREGRQUND 
11 ; (WHEN NOT IN SCHEO STATE) ('. 12 000001 ,DUSR USTZM== 1 ;ZMAX 
13 000002 .DUSR USTSS= 2 ; START OF SYMBOL TABLE 
14 000003 .DUSR USTES= 3 ; END OF SYMBOL TABLE 

220 RDOS System Reference Llc;en.,d; Me.teclet·..propertv of Data General 



15 000004 .DUSR USTNM= 4 ; NMAX 
16 000005 .DUSR USTSA= 5 ; STARTING ADDRESS 
17 000006 .DUSR USTDA= 6 ; DEBUGGER ADDRESS 
18 000007 .DUSR USTHU= 7 ; HIGHEST ADDRESS USED 
19 000010 .DUSR USTCS= 10 ; FORTRAN COMMON AREA SIZE 
20 000011 .DUSR USTIT= 11 ; INTERRUPT ADDRESS 
21 000012 .DUSR USTBR= 12 ; BREAK ADDRESS 
22 000013 .DUSR USTCH= 13 ; # TASKS (LEFT), # CHANS (RIGHT) 
23 000014 .DUSR USTCT= 14 ; CURRENTLY ACTIVE TCB 
24 000015 .DUSR USTAC= 15 ; START OF ACTIVE TCB CHAIN 
25 000016 .DUSR USTFC= 16 ; START OF FREE TCB CHAIN 
26 000017 .DUSR USTIN= 17 ; INITIAL START OF NREL 
27 000020 .DUSR USTOD= 20 ; OVL Y DIRECTORY ADDR 
28 000021 .DUSR USTSV= 21 ; FORTRAN STATE VARIABLE SAVE ROUTINE (OR 0) 
29 000022 .DUSR USTRV= 22 ; REVISION 
30 ; ENVIRONMENT STATE WORD WHEN EXECUTING 
31 000023 .DUSR USTIA= 23 ; TCB ADDR OF INT OR BREAK PROC 
32 
33 000023 .DUSR USTEN= USTIA ; LAST ENTRY 
34 
35 000030 .DUSR UFPT= 30 ; SAVE SOS 
36 
37 
38 
39 ; ENVIRONMENT STATUS BITS (IN USTRV DURING EXECUTION) 
40 
41 100000 .DUSR ENMAP= 1BO ; MAPPED MACHINE 
42 020000 .DUSR ENUEC= 1B2 ; UNMAPPED ECLIPSE 
43 010000 .DUSR ENMEC= 1B3 ; MAPPED ECLIPSE 
44 004000 .DUSR ENUNV= 1B4 ; UNMAPPED NOVA 
45 002000 .DUSR ENMNV= 1B5 ; MAPPED NOVA 
46 001000 .DUSR ENUN3= 1B6 ; UNMAPPED NOVA 3 
47 000400 .DUSR ENMN3= 1B7 ; MAPPED NOVA 3 
48 000200 .DUSR ENUMN= 1B8 ; UNMAPPED MICRO NOVA 
49 
50 000100 .DUSR ENCTD= 1B9 ;#MSB# D FROM TIY FOR ICOS SYSTEMS 
51 000020 .DUSR ENDOS= 1B11 ;DOS SYSTEM 
52 000010 .DUSR ENINFO= 1B12 ; INFOS SYSTEM 
53 000004 .DUSR ENSOS= 1B13 ; STAND ALONE SYSTEM 
54 000002 .DUSR ENRTOS= 1 B14 ; RTOS SYSTEM 
55 000001 .DUSR ENRDOS= 1B15 ; RDOS SYSTEM 
0014 PARU 
01 
02 
03 ; TASK CONTROL BLOCK (TCB) TEMPLATE 
04 
05 
06 000000 .DUSR TPC= 0 ;USER PC (BO-14) + CARRY (B15) 
07 000001 .DUSR TACO = 1 ;ACO 
08 000002 .DUSR TAC1 = 2 ;AC1 
09 000003 .DUSR TAC2= 3 ;AC2 
10 000004 .DUSR TAC3= 4 ;AC3 
11 000005 .DUSR TPRST = 5 ; STATUS BITS (LEFT) + PRIORITY (RIGHT) 
12 000006 .DUSR TSYS= 6 ; SYSTEM CALL WORD 
13 000007 .DUSR TLNK= 7 ;LlNK WORD 
14 000010 .DUSR TUSP= 10 ;USP 
15 000011 .DUSR TELN= 11 ;TCB EXTENSION ADDR 
16 000012 .DUSR TID= 12 ;TASK ID 
17 000013 .DUSR TIMP= 13 ; SCHEDULER TEMPORARY 
18 000014 .DUSR TKLAD = 14 ; USER KILL PROC ADDR 
19 000015 .DUSR TSP= 15 ; STACK POINTER 
20 000016 .DUSR TFP= 16 ; FRAME POINTER 
21 000017 .DUSR TSL= 17 ; STACK LIMIT 
22 000020 .DUSR TSO= 20 ; OVERFLOW ADDR 
23 ,- 24 000015 .DUSR TLN = TKLAD - TPC + 1 ; SHORT TCB LENGTH 
25 000021 .DUSR TLNB= TSO- TPC+ 1 ; LONG TCB LENGTH 
26 
27 

licensed Materiat--Property of Data General ROOS System Reference 221 



28 ; TASK STATUS BITS (IN TPRST) 
29 
30 100000 .DUSR TSSYS= 1BO ;SYSTEM BIT 
31 040000 .DUSR TSSUSP= 1B1 ; SUSPEND BIT (", 
32 020000 .DUSR TSXMT= 1B2 ;XMT/REC AND OVERLAY BIT 
33 010000 .DUSR TSRDOP= 1B3 ;.TRDOP BIT 
34 004000 .DUSR TSABT= 1B4 ; ABORT LOCK BIT 
35 002000 .DUSR TSRSV= 1B5 ; RESERVED 
36 001000 .DUSR TSUPN= 1B6 ; USER PEND BIT 
37 000400 .DUSR TSUSR= 1B7 ; USER FLAG BIT 
0015 PARU 
01 ; 
02 ; OVERLAY DIRECTORY 
03 
04 
05 000000 .DUSR OVNDS= 0 ; NUMBER OF NODES 
06 
07 ; FOR EACH NODE: 
08 
09 000001 .DUSR OVRES= 1 ;CURRENT OVLY(BO-7), USE COUNT(B8-15) 
10 000002 .DUSR OVDIS= 2 ;# OVLYS (BO-7), LOADING BIT (B8), 
11 ; SIZE IN BLKS (B9-15) 
12 000003 .DUSR OVBLK= 3 ;STRT BLK # IN OVLY FILE FOR FIRST OVLY 
13 000004 .DUSR OVNAD= 4 ;CORE ADDR FOR NODE(B1-15) 
14 ; 1 BO FLAGS VIRTUAL NODE 
15 
16 
17 
18 ; 
19 ; USER TASK ~UEUE TABLE 
20 
21 
22 000000 .DUSR OPC= 0 ;STARTING PC 
23 000001 .DUSR ONUM= 1 ; NUMBER OF TIMES TO EXEC 

~,-24 000002 .DUSR aTOV= 2 ; OVERLAY 
25 000003 .DUSR OSH= 3 ;STARTING HOUR 
26 000004 .DUSR OSMS= 4 ;STARTING SEC IN HOUR 
27 000005 .DUSR OPRI= TPRST ; MUST BE SAME 
28 000006 .DUSR ORR= 6 ; RERUN TIME INC IN SEC 
29 000007 .DUSR OTLNK= TLNK ; MUST BE SAME 
30 000010 .DUSR OOCH= 10 ; CHAN OVERLAYS OPEN ON 
31 000011 .DUSR OCOND= 11 ; TYPE OF LOAD 
32 000012 .DUSR OAC2= 12 ;WAKEUPAC2 
33 ; 1BO= LOADING, 1B15= DEOUE REO REC 
34 000013 .DUSR OTLN= OAC2-0PC+1 
35 000013 .DUSR OPEX= OTLN ; USER TASK 0 AREA EXTENSION 
36 
37 
38 
39 ; 
40 ; USER PROGRAM TABLE FOR OPERATOR COMMUNICATIONS PACKAGE 
41 
42 
43 000000 .DUSR LPN= 0 ; PROGRAM NUMBER 
44 000001 .DUSR LOV= 1 ;OVERLAY NUMBER OR -1 
45 000002 .DUSR LCOND= 2 ; CONDITIONAUUNCONDITIONAL LOAD 
46 000003 .DUSR LTPR= 3 ;TASK ID (LEFT) + PRIORITY (RIGHT) 
47 000004 .DUSR LPC= 4 ; PROGRAM COUNTER 
48 
49 000005 .DUSR L TLN = LPC-LPN + 1 ; TABLE LENGTH 
50 
51 000005 .DUSR LPEX= LTLN ; COMMUNICATIONS EXTENSION AREA START 
0016 PARU 
01 , 
02 ; TUNING FILE DISPLACEMENTS ,(", 
03 
04 
05 000000 .DUSR .TUN=O ;OFFSET TO NUMBER WORD IN PAIR 

222 ROOS System Reference Licensed Material··Property of Data General 



06 000001 .DUSR .TUC = .TUN + 1 ;OFFSET TO 1ST COUNT IN PAIR 
07 000003 .DUSR .TUP=.TUC+2 ; OFFSET TO 2ND COUNT OF PAIR 
08 000005 .DUSR .TUNX= .TUP+2 ; LENGTH OF COUNT PAIR 

,-. 09 
10 000001 .DUSR .TUNSTK= 1 ;NUMBER STACKS IN SYSTEM 
11 000002 .DUSR .TUSTK= .TUNSTK + .TUC - .TUN ; STACK COUNT 
12 000004 .DUSR .TUPSTK = .TUNSTK + .TUP - .TUN ; STACK PEND COUNT 
13 
14 000006 .DUSR .TUNCEL = .TUNSTK + .TUNX ; NUMBER CELLS IN SYSTEM 
15 000007 .DUSR .TUCEL= .TUNCEL + .TUC - .TUN ; CELLS COUNTS 
16 000011 .DUSR .TUPCEL = .TUNCEL + .TUP - .TUN 
17 
18 000013 .DUSR .TUNBUF = .TUNCEL + .TUNX ; BUFFERS, EXCLUDING TUNING BUFFERS 
19 000014 .DUSR .TUBUF= .TUNBUF + .TUC - .TUN ;COUNTS 
20 000016 .DUSR .TUPBUF = .TUNBUF + .TUP - .TUN 
21 
22 000020 .DUSR .TUNOV= .TUNBUF + .TUNX ; OVERLAYS 
23 000021 .DUSR .TUOV= .TUNOV + .TUC - .TUN 
24 000023 .DUSR .TUPOV= .TUNOV + .TUP - .TUN 
25 
26 000025 .DUSR TULEN = .TUNOV + .TUNX 

**0000 TOTAL ERRORS, 00000 PASS 1 ERRORS 

0017 PARU 
ATCHA 040000 2/21 
ATCON 000010 2/38 
ATDIR 002000 2/36 
ATLNK 010000 2/34 
ATMSK 007400 2/32 
ATNRS 000400 2/23 
ATPAR 004000 2/35 
ATPER 000002 2/26 
ATRAN 000004 2/39 
ATRES 001000 2/37 
ATRP 100000 2/20 
ATSAV 020000 2/22 
ATUS1 000100 2/24 
ATUS2 000040 2/25 
ATWP 000001 2/27 
A.SW 100000 5/05 
B.SW 040000 5/06 
CBKER 000323 9/23 
CCANT 000320 9/20 
CCAR1 000326 9/26 
CCART 000325 9/25 
CCKER 000305 9/09 
CCLTL 000303 9/07 
CCMAX 000333 9/33 
CILAR 000317 9/19 
CILAT 000301 9/05 
CILBK 000310 9/12 
CILNA 000315 9/17 
CILTA 000332 9/30 
CINDE 000327 9/27 
CIVAR 000331 9/29 
CNACM 000307 9/11 
CNDBD 000302 9/06 
CNEAR 000300 9/04 
CNSAD 000304 9/08 
CNSFS 000306 9/10 
CPAR1 000330 9/28 
CPARE 000324 9/24 
CPHER 000312 9/14 
CSFUE 000316 9/18 
CSPER 000311 9/13 
CSYER 000322 9/22 
CTATL 000333 9/31 9/33 

Licensed Material .. Property of Data General RODS System Reference 223 



CTMAD 000314 9/16 
CTMAR 000313 9/15 
CTMU 000321 9/21 
C.SW 020000 5/07 (, 
DC100 000001 3/04 I i 

DCBDK 100000 3/27 
DCCBO 040000 3/25 3/35 
DCCGN 000002 3/09 3/35 
DCCNF 000010 3/13 3/35 
DCCPO 000001 3/07 
DCCRE 004000 4/23 
DCDIO 100000 3/26 
DCEDT 100000 4/24 
DCFFO 010000 3/23 
DCFWD 004000 3/21 
DCIDI 000004 3/11 
0018 PARU 
DCKEY 000040 3/15 3/36 
DCLAC 001000 3/19 3/35 
DClCD 000010 3/12 
DClOC 000004 4/06 
DClT8 004000 3/22 
DClTU 020000 3/24 3/36 
DCNAF 000100 3/16 
DCNI 000001 4/04 
DCPCK 000400 3/18 3/35 
DCRAT 000200 3/17 
DCSPC 100000 3/29 3/35 
DCSPO 002000 3/20 3/35 
DCSTB 000001 3/06 
DCSTO 000001 3/08 
DCTBS 000000 2145 
DCTIS 000002 2147 
DCTMS 000001 2146 
OCTO 000020 3/14 3/35 
DCXON 000200 4/17 
D.SW 010000 5/08 
ENCTD 000100 13/50 
EN DOS 000020 13/51 
ENINF 000010 13/52 
EN MAP 100000 13/41 
ENMEC 010000 13/43 
ENMN3 000400 13/47 
ENMNV 002000 13/45 
ENRDO 000001 13/55 
ENRTO 000002 13/54 
ENSOS 000004 13/53 
ENUEC 020000 13/42 
ENUMN 000200 13/48 
ENUN3 001000 13/46 
ENUNV 004000 13/44 
ERABT 000110 8/16 
ERADR 000032 7/30 
ERBAD 000122 8/26 
ERBlT 000126 8/30 
ERBSP 000123 8/27 
ERCAN 000116 8/22 
ERCHA 000014 7/16 
ERClO 000106 8/14 
ERCM3 000025 7/25 
ERCMS 000062 7/54 
ERCRE 000011 7/13 
ERCUS 000063 7/55 
ERD2S 000054 7/48 
ERDCH 000065 7/57 ( ... 
ERODE 000055 7/49 
ERDE1 000013 7/15 
ERDIO 000034 7/32 

224 RDOS System Reference Ucen8ed Materlaf·..property of Data General 



ERDIR 000035 7/33 
ERDIU 000056 7/50 
ERDLE 000012 7/14 
ERDNI 000066 7/58 
ERDNM 000036 7/34 
ERDOP 000111 8/17 
ERDSN 000053 7/47 
0019 PARU 
ERDTO 000101 8/09 
ERENA 000102 8/10 
EREOF 000006 7/10 
EREXO 000017 7/19 
ERFGE 000070 7/60 
ERFIL 000030 7/28 
ERFIU 000060 7/52 
ERFMT 000121 8/25 
ERFNM 000001 7/05 
ERFNO 000000 7/04 
ERFOP 000015 7/17 
ERFRM 000132 8/34 
ERFUE 000016 7/18 
ERIBS 000045 7/41 
ERICB 000046 7/42 
ERICD 000003 7/07 
ERICM 000002 7/06 
ERIDS 000052 7/46 
ERINT 000130 8/32 
ERLDE 000057 7/51 
ERLLI 000022 7/22 
ERMCA 000103 8/11 
ERMDE 000100 8/08 
ERMEM 000026 7/26 
ERML 000036 9/34 
ERMPR 000074 8/04 
ERMPT 000071 8/01 
ERNDD 000067 7/59 
ERNIR 000114 8/20 
ERNLE 000075 8/05 
ERNMC 000113 8/19 
ERNMD 000051 7/45 
ERNOT 000042 7/38 
ERNSE 000125 8/29 
ERNTE 000076 8/06 
ERNUL 000020 7/20 
EROPD 000072 8/02 
EROPM 000120 8/24 
EROVA 000040 7/36 
EROVF 000112 8/18 
EROVN 000037 7/35 
EROVR 000131 8/33 
ERPAR 000024 7/24 
EROOV 000117 8/23 
EROTS 000050 7/44 
ERRD 000033 7/31 
ERRDY 000127 8/31 
ERRPR 000007 7/11 
ERRTN 000023 7/23 
ERSCP 000064 7/56 
ERSDE 000077 8/07 
ERSDL 000105 8/13 
ERSEL 000031 7/29 
ERSFA 000107 8/15 
ERSIM 000047 7/43 
ERSOF 000134 8/36 
ERSPC 000027 7/27 
ERSPT 000133 8/35 
0020 PARU 
ERSOF 000044 7/40 

Licensed Material--Property of Data General ROOS System Reference 225 



EASAA 000104 8/12 
EASV1 000004 7/08 
EATID 000061 7/53 

~ EATIM 000041 7/37 i 
EAUFT 000021 7/21 
EAUSl 000073 8/03 
EAWPA 000010 7/12 
EAWAO 000005 7/09 
EAXMT 000043 7/39 
EAXMl 000115 8/21 
EAlCB 000124 8/28 
E.SW 004000 5/09 
F.SW 002000 5/10 
G.SW 001000 5/11 
H.SW 000400 5/12 
I.SW 000200 5/13 
J.SW 000100 5/14 
K.SW 000040 5/15 
LCOND 000002 15/45 
LOV 000001 15/44 
LPC 000004 15/47 15/49 
LPEX 000005 15/51 
LPN 00000o 15/43 15/49 
LTLN 000005 15/49 15/51 
LTPA 000003 15/46 
l.SW 000020 5/16 
M.SW 000010 5/17 
N.SW 000004 5/18 
OVBLK 000003 15/12 
OVOIS 000002 15/10 
OVNAD 000004 15/13 
OVNDS 000000 15/05 
OVAES 000001 15/09 
O.SW 000002 5/19 

/'--'", 
P1CBK 110012 11/40 
P1CSO 110003 11/10 
P1CUI 110010 11/38 
P10PE 110007 11/37 
P1EMT 110022 12101 
P1EAC 110016 11/56 
P11DA 110004 11/16 
P11LL 110011 11143 
P11PB 110014 11/48 
P11TA 110015 11/53 
P1MDD 110005 11/21 
P1MDT 110006 11/30 
P1PAA 110017 11/58 
P1PSF 110023 12102 
P1PSH 110013 11/45 
P1SDE 110002 11/08 
P1SPL 110021 11/60 
P2CBK 120012 11/41 
P2CSO 120003 11/11 
P21DA 120004 11/17 
P21PB 120014 11/49 
P21TA 120015 11/54 
P2MDD 120005 11/22 
0021 PAAU 
P2MOT 120006 11/31 
P2PSH 120013 11/46 
P3CSO 130003 11/12 
P31DA 130004 11/18 
P31PB 130014 11/50 
P3MDD 130005 11/23 
P3MDT 130006 11/32 /~'\., 
P4CSO 140003 11/13 
P41DA 140004 11/19 
P41PB 140014 11/51 

226 ROOS System Reference Licensed Materlal··Property of Data General 



P4MDD 140005 11/24 
P4MDT 140006 11/33 
P5CSO 150003 11/14 -- P5MDD 150005 11/25 
P5MDT 150006 11/34 
P6MDD 160005 11/26 
P6MDT 160006 11/35 
P7MDD 170005 11/29 
PNCBK 100012 9/49 11/40 11/41 
PNCSO 100003 9/43 11/10 11/11 11/12 11/13 11/14 
PNCUI 100010 9/48 11/38 
PNDPE 100007 9/47 11/37 
PNEMT 100022 9/60 12/01 
PNERC 100016 9/56 11/56 
PNIDA 100004 9/44 11/16 11117 11118 11/19 
PNILL 100011 9/51 11143 
PNIPB 100014 9/53 11/48 11/49 1150 11/51 
PNITR 100015 9/55 11/53 11/54 
PNMDD 100005 9/45 11/21 11/22 11/23 11/24 11/25 11/26 

11/29 
PNMDT 100006 9/46 11/30 11/31 11/32 11/33 11/34 11/35 
PNMEM 100020 9/58 
PNMPE 100001 9/41 
PNPAR 100017 9/57 11/58 
PNPSF 100023 10/02 12/02 
PNPSH 100013 9/52 11/45 11/46 
PNSDE 100002 9/42 11/08 
PNSPL 100021 9/59 11/60 
P.SW 000001 5/20 
QAC2 000012 15/32 15/34 
acOND 000011 15/31 
ONUM 000001 15/23 
aoCH 000010 15/30 
OPC 000000 15/22 15/34 
OPEX 000013 15/35 
OPRI 000005 15/27 
ORR 000006 15/28 
OSH 000003 15/25 
OSMS 000004 15/26 
OTLN 000013 15/34 15/35 
OTLNK 000007 15/29 
OTOV 000002 15/24 
O.SW 100000 5/21 
R.SW 040000 5/22 
SCAMX 000030 6/10 
SCAUN 000000 6/53 
SCBAD 000004 6/19 
SCBAS 000013 6/49 6/50 
0022 PARU 
SCBPB 000001 6/24 6/25 6/26 
SCCLI 000004 6/42 6/43 
SCCPL 000006 6/44 6/45 
SCDBS 000400 6/07 
SCDSK 000003 6/18 
SCEXT 000005 6/12 
SCFNL 000006 6/11 
SCFPB 000006 6/25 
SCFZW 000021 6/26 6/27 
SCGO 000002 6/55 
SCIDV 000020 6/51 
SCINS 000001 6/38 
SCINT 000003 6/41 6/42 
SCLLG 000204 6/09 
SCMAP 000011 6/23 
SCMER 000012 6/13 
SCNGO 000004 6/56 
SCNSO 000100 6/30 
SCNVW 000022 6/27 

licensed Material··Property of Data General RDOS System Reference 227 



SCOF1 000012 6/48 6/49 
SCOFA 000010 6/46 6/47 
SCPAR 000002 6/40 
SCPB1 000011 6/47 6/48 ~' 

SCPBA 000007 6/45 6/46 
SCPNM 000004 6/22 6/23 6/25 6/26 
SCPPA 000006 6/17 
SCPPl 000000 6/16 
SCPSA 000002 6/39 6/40 
SCPSH 000001 6/21 6/23 
SCRRl 000100 6/08 
SCSOP 000017 6/32 
SCSTR 000016 6/14 
SCSWC 000013 6/50 
SCSYS 000000 6/20 
SCTBP 000000 6/37 
SCTIM 177660 6/15 
SCUN 000001 6/54 
SCWPB 000377 6/06 
SCZMX 000005 6/43 6/44 
SFBRK 000001 6/29 
SFINT 100000 6/28 
SNSOU 000072 6/31 6/32 
S.SW 020000 5/23 
TACO 000001 14/07 
TAC1 000002 14/08 
TAC2 000003 14/09 
TAC3 000004 14/10 
TElN 000011 14/15 
TFP 000016 14/20 
TID 000012 14/16 
TKLAO 000014 14118 14/24 
TlN 000015 14/24 
TlNB 000021 14/25 
TlNK 000007 14/13 15/29 ~. 

TPC 000000 14/06 14/24 14/25 
TPRST 000005 14111 15/27 
TSAST 004000 14/34 
TSl 000017 14/21 
0023 PARU 
TSO 000020 14/22 14/25 
TSP 000015 14119 
TSRDO 010000 14/33 
TSRSV 002000 14/35 
TSSUS 040000 14/31 
TSSYS 100000 14/30 
TSUPN 001000 14/36 
TSUSR 000400 14/37 
TSXMT 020000 14/32 
TSYS 000006 14/12 
TTICH 020040 3/36 
TTMP 000013 14/17 
TTOCH 143432 3/35 
TUlEN 000025 16/26 
TUSP 000010 14/14 
T.SW 010000 5/24 
UOBAO 177770 2/12 
UOBAT 177764 2110 
UOBBK 177766 2113 
UOBBN 000017 2114 
UOOl 177777 2111 
UFCA1 000024 1/42 
UFOEl 000022 2108 
UFEA1 000030 1/46 
UFFA1 000037 1/53 r""-"· UFLA1 000034 1/50 
UFLAO 000007 1/25 
UFLAN 000014 1/31 

228 RDOS System Reference Licensed Materlal··Property of Data General 



UFNA1 000032 1/48 
UFPT 000030 13/35 
UFTAC 000013 1/29 

...... ..-....,~ UFTAD 000012 1/28 2/12 
UFTAT 000006 1/23 2/10 
UFTBC 000011 1/27 
UFTBK 000010 1/26 2/13 
UFTBN 000041 1/58 2/14 
UFTBP 000042 1/59 
UFTCA 000025 1/43 
UFTCB 000026 1/44 
UFTCH 000043 1/60 
UFTCN 000044 2/01 2/07 
UFTDC 000022 1/40 2/10 2/11 2/12 2/13 2/14 
UFTDL 000021 1/36 2/08 2/11 
UFTDR 000036 1/52 
UFTEA 000031 1/47 
UFTEL 000045 2/07 
UFTEX 000005 1/22 6/11 6/12 
UFTFA 000040 1/54 
UFTFN 000000 1/21 2/07 2/08 6/11 6/12 
UFTHM 000015 1/32 
UFTLA 000035 1/51 
UFTLK 000007 1/24 
UFTNA 000033 1/49 
UFTP1 000016 1/33 
UFTP2 000017 1/34 
UFTST 000027 1/45 
UFTUC 000020 1/35 
UFTUN 000023 1/41 
0024 PARU 
UFTYD 000014 1/30 
UST 000400 13/05 
USTAC 000015 13/24 .-- USTBR 000012 13/21 
USTCH 000013 13/22 
USTCS 000010 13/19 
USTCT 000014 13/23 
USTDA 000006 13/17 
USTEN 000023 13/33 
USTES 000003 13/14 
USTFC 000016 13/25 
USTHU 000007 13/18 
USTIA 000023 13/31 13/33 
USTIN 000017 13/26 
USTIT 000011 13/20 
USTNM 000004 13/15 
USTOD 000020 13/27 
USTP 000012 13/07 
USTPC 000000 13/10 
USTRV 000022 13/29 
USTSA 000005 13/16 
USTSS 000002 13/13 
USTSV 000021 13/28 
USTZM 000001 13/12 
U.SW 004000 5/25 
V.SW 002000 5/26 
W64CH 001400 4/41 
W64DC 000000 4/32 
W64DT 000001 4/37 
W64LS 000400 4/34 
W64MS 001000 4/36 
W64RT 000002 4/39 
W.SW 001000 5/27 
X.SW 000400 5/28 
Y.SW 000200 5/29 
Z.SW 000100 5/30 
.TUBU 000014 16/19 

Licensed Material··Property of Data General RDOS System Reference 229 



.TUC 000001 16/06 16/07 16/11 16/15 16/19 16/23 

.TUCE 000007 16/15 

.TUN 000000 16/05 16/06 16/11 16/12 16/15 16/16 16/19 
16/20 16/23 16/24 ~, 

.TUNB 000013 16/18 16/19 16/20 16/22 f 

.TUNC 000006 16/14 16/15 16/16 16/18 

.TUNO 000020 16/22 16/23 16/24 16/26 

.TUNS 000001 16/10 16/11 16/12 16/14 

.TUNX 000005 16/08 16/14 16/18 16/22 16/26 

.TUOV 000021 16/23 

.TUP 000003 16/07 16/08 16/12 16/16 16/20 16/24 

.TUPB 000016 16/20 

.TUPC 000011 16/16 

.TUPO 000023 16/24 

.TUPS 000004 16/12 

.TUST 000002 16/11 

Figure B.1 Listing of PARU.LS 

230 RODS System Reference Lic::ensed Material··Property of Data General 



Appendix C 

Real-time Programming Examples 

This appendix contains two examples of assembly language 
programs written for a real-time environment. 

TIMEC Program 
The first example is TIMEC, a bare-bones program that 
creates an additional task at the same priority. During ex
ecution, TIMEC creates TASK at the same priority as itself 
(0). The new task competes for CPU control, gets it when 
TIMEC suspends itself, and retains it until it suspends itself. 
Each task prints a message on the console when it gains 
control. TIMEC suspends itself for two seconds, and TASK 
suspends itself for four seconds. After roughly eight seconds 
elapse, the console shows the following messages: 

I'M TIMEC I'M TIMEC I'M TASK I'M TIMEC I'M TASK 

Seconds -O---2---4---6---8~ 

I'M TASK I'M TIMEC I'M TIMEC 

Figure C.1 TIMEC and TASK messages 10-00497 

Licensed Material--Property of Data General 

I'M TlMEC 
I'M TASK 
I'M TIMEC 
I'M TASK 
I'M TlMEC 
I'M TIMEC 
I'M TASK 
I'M TlMEC 

The messages appear in syncopated fashion because the 
tasks suspend themselves for different times, as shown in 
Figure C. 1. A flowchart of the TIMEC program appears in 
Figure C.2, and Figure C.3 lists the program code. 

Because TIMEC includes no code to return to the CLI, you 
must use the RDOS interrupts CTRL-A or CTRL-C to stop 
it and return to the CLI. 

RODS System Reference 231 



Figure C.2 TIMEC flow chart 

232 RDDS System Reference 

TIMEC opens 
$TTO 

TIMEC creates 
TADDR 

TIMEC gets 
and writes 

"I'M TIMEC" 

TIMEC delays itself 
for 2 seconds 

Each procedure box represents a request 
to the system, which then surrenders control 

to the task scheduler. 

TADDR gets 
and writes 
"I'M TASK" 

TADDR delays itself 
for 4 seconds 

50-00572 

Licensed Materlal--Property of Data General 

.~. 



.TITL TIMEC 

.COMM TASK,2*400+ 1 

.EXTN .TASK 

.ENT START 

.TXTM 1 

.NREL 

START: LOA 0, NTIO ; Pointer to console 
; output filename. 

SUB 1,1 ; Use default mask 
;on $TIO . 

. SYSTM 

.OPEN 0 ; Open $TIO on channel O. 
JMP ERROR ; On most errors, let the 

; CLI explain. 
SUB 0,0 ; Give new task priority 

;and 10 of O. 
LOA 1,.TADDR ; Start task at this 

; address . 
.TASK ; Create the task. 
JMP ERROR 

TIMEC: LOA 0, .TIMES ;TIMEC, pick up 
; pointer to message . 

. SYSTM 

.WRLO ;Write message . 

. JMP ERROR 
LOA 1, .S2 ; Pointer to interval. 
.SYSTM 
.DELAY ; TIMEC, delay 
JMP ERROR ; yourself, giving TASK 
JMP TMEC ; control until delay 

- ;expires. 

TADDR: LOA 0, .T2MES ;TASK, pick up 
; pointer to message . 

. SYSTM 

.WRLO ; Write message. 
JMP ERROR 
LDA 1, .S4 ; Pointer to interval. 
.SYSTM ; Delay yourself, 
.DELAY ; giving TIMEC control. 
JMP ERROR 
JMP TADDR ; When you awaken, write 

; message again. 
NTIO: · + 1*2 

.TXT "$TIO" 
.TADDR: TADDR 

.TIMES: · + 1*2 
.TXT "I'M TIMEC.(15)" 

T2MES: · + 1*2 
.TXT "I'M TASK.(15)" 

.S2: 20. ;20*10 Hz RTC frequency 
; is 2 seconds. 

.S4: 40 ;40*10Hz is 4 seconds . 

ERROR: . SYSTM 
.ERTN 
JMP ERROR ; Reserved, never taken . 
. END START 

Figure C.3 TIMEC program listing 

Licensed Malerial--Property of Dala General ROOS System Reference 233 



EXAMPLE Program 
The second program, EXAMPLE, is a multitasking program 
that uses overlays; it shows multitask overlay calls and a 
queued overlay task. Figure C.4 charts the program flow. 
The assembler listings for EXAMPLE and its two overlays, 
QUE and COMP, appear in Figure C.5. In EXAMPLE, the 
main program task opens the console input, output, and 
overlay files; then it sets its priority to 408 and creates a 
second task via call .QTSK at priority 308 • The new task, 
called QUE, will be created and readied every three seconds. 
After creating task QUE, the main program momentarily 
retains CPU control and types a prompt (?) on the system 
console. The main program task recognizes two commands: 
the letter 8, meaning return to the CLI, and the letter C, 
meaning load overlay COMP and execute the code within 
it. 

Overlay COMP types the message: 

I AM A DATA GENERAL COMPUTER. 

COMP then releases the overlay node and returns to the 
prompt loop in the main program. (On characters other than 
8 or C, the main program repeats the prompt loop.) 

Shortly after the main program has typed its prompt, and 
while it is waiting for input, the QUE task is readied. At 
the next device interrupt (from the real time clock, console, 
etc.), rescheduling occurs and the task scheduler gives QUE 
control of the CPU because it has a higher priority than the 
main program. The system, under direction of the task 
scheduler, suspends the main program, loads the overlay 
containing QUE, and transfers control to code in QUE. QUE 
then types the message: 

I'M THE QUEUED TASK .. ABOUT TO .OVKIL MYSELF. 

At this point, QUE prints the prompt (?) and kills itself via 
the call .OVKIL command. Control returns to the main 
program, which again waits for input. In three seconds, task 
QUE is recreated and readied, and the entire sequence re
peats itself. 

When QUE is ready to run, it gains control, types its mes
sage, and kills itself very quickly. In fact, because QUE 
issues system calls, it is briefly suspended before it can type 
the message and prompt-thus allowing the main program 
a slice of CPU control. This scheme enables the person who 
runs the program to type commands 8 or C at any time and 
receive a very fast response. 

80th tasks (the main program and QUE) are completely 
unaware of one another. Furthermore, when an interrupt 
occurs and the scheduler decides to suspend one task and 
execute another, the original task simply continues from the 
point at which it was suspended-which can be from any 

234 ROOS System Reference 

location in its address space. When QUE kills itself, its 
entire state (TC8 data) is wiped out; after the .QTSK in
terval, it is created as a brand-new task. Thus, there is no 
simple way that QUE can return control to the prompt loop 
in the main program. This is why QUE is coded to type a 
prompt before killing itself. (The .XMT and .REC com
mands could return control to the main prompt loop, but 
this would produce a far more complex example.) 

A dialogue with the EXAMPLE program might transpire 
as follows: 

R 
EXAMPLE (CR) 

? 
I'M THE QUEUED TASK .. ABOUT TO .OVKIL MYSELF. 

? 
C (CR) 
I'M A DATA GENERAL COMPUTER. 

? 
I'M THE QUEUED TASK .. ABOUT TO .OVKIL MYSELF. 
B (CR) 

R 

The assembler command for the EXAMPLE program was: 

MAC/L (EXAMPLE,QUE,COMP) (CR) 

The load line was: 

RLDR 2/K EXAMPLE [QUE,COMP] (CR) 

Licensed Materlal··Property of Data General 

,''-'' 



Open console 
output file 

Open console 
input file 

Open overlay 
file 

Change priority 
to 40 

Queue "QUE" task 
every 3 seconds 

at priority 30 

Write prompt 
to console 

Read line 
from console 

Yes 

Yes 

Return to 
the CLI 

Load "COMP" 
overlay 

As with TIMEC, each procedure box represents a request 
a request to the system, which then surrenders full control 

to the task scheduler. 

Figure C.4 EXAMPLE flowchart 

Licensed Malerial--Property of Dala General 

Write message 
to console 

Write prompt 
to console 

Kill self, 
release overlay 

Overlay routines 
prints "COMPUTER" 

message 

RODS System Reference 

80-00573 

235 



02 
03 
04 
05000001 
06 

.TITLE 

.ENT 

.EXTN 

. EXTN 

. TXTM 1 

EXAMPLE 
AGAIN ICOMP,IQUE,ERROR 
OCOMP,OQUE,COMP,QUE 
.PHI,.QTSK,.TOVLD 

07 
08 
09 
10 
11 

; For RDOS revisions 6.00 through 6.20, apply patch "JMP . + 2" to 
;Iocation "Q.TSK + 333" of any save file that uses .GTSK. 
; Include the debugger (RLDR/D) or symbol table (.EXTN .SYM.) 
;to patch with the SEDIT editor. 

12 .ZREL 
1300000-177400 PMASK: 
14oooo1-oo0226'OCHAIN: 
150ooo2-oo2oo3-ERROR: 
16 00003-000213' 
17 
18 

.177400 
OVCHN 
JMP 
SERR 

.NREL 

@.+1 

;OVERLAYS NEED THESE 
;OVERLAYS CONTAIN THESE. 
; GET TASK CODE FROM SYS.LB . 
; PACK BYTES LEFT TO RIGHT . 

; MASK FOR FIRST 2 BYTES IN LINE BUFFER. 
; POINTER TO CHANNEL NUMBER OF OVL Y FILE. 
; ON ERROR, JUMP TO 

ERROR HANDLER SERR. 

10 
20 
21 

; OPEN CONSOLE OUTPUT, INUT, AND OVERLAY FILES FOR 1/0. 

22 0000'020445 START 
23 
24 
2500001'126400 
2600002'006017 
27 00003'014000 
2800004'004002-
29 
30 00005'020444 
31 00006'006017 
32 00007'014001 
33 00010'004002-
34 
35 00011 '020444 
3600012'032001-
37 00013'006017 
38 00014'012077 
39 00015'004002-
40 

LOA 

SUB 1,1 
.SYSTM 
. OPEN, 

JSR 

LOA 
.SYSTM 
.OPEN 

JSR 

LOA 
LOA 
.SYSTM 
.OVOPN 

JSR 

O,NnO ; BYTE POINTER TO CONSOLE OUTPUT FILENAME. 
;(FOR OPERATION IN EITHER GROUND, INCLUDE 
; .GCOUT, .GCTN CALLS BEFORE OPEN CALLS.) 
; SET DEFAULT DEVICE CHARACTERISTIC MASK. 
; OPEN THE CONSOLE OUTPUT FILE 

0 ; ON CHANNEL O . 
ERROR ;CAPTURE ANY ERROR. (JSR HELPS DEBUG.) 

O,Nnl ; BIT POINTER TO CONSOLE INPUT FILENAME. 
;OPEN CONSOLE INPUT FILE ON 

1 ; CHANNEL 1. (AC1 STILL CONTAINS MASK 0.) 
ERROR ; ERROR. 

O,OFILE ; GET OVERLAY FILENAME. 
2,@OCHAN ; GET CHANNEL NUMBER FOR OVERLAY FILE. 

; OPEN OVERLAY FILE ON THE 
77 ; SPECIFIED CHANNEL. 
ERROR ; ERROR. 

41 
42 

; PROCEED--SET YOUR PRIORITY TO 40 AND QUEUE A TASK. 

43 00016'020446 
44 00017'077777 
45 
46 00020'030556 
47 00021 '077777 
48 00022'004002-
49 

LOA 
.PRI 

LOA 
.QTSK 

JSR 

O,C40 

2,QADDR 

ERROR 

;GET A 40. 
; SET YOUR PRIORITY TO 40. 

;GET TASK QUEUE TABLE ADDR. 
; SET UP OVL Y TASK TO RUN EVERY 3 SECONDS. 
; ERROR. 

50 
51 

;THIS IS THE MAIN PROMPT AND KEYBOARD LISTENER LOOP. 

52 00023'020442 
53 00024'006017 
54 00025'017000 
55 00026'004002-
56 00027'020441 
57 00030'006017 
58 00031 '015401 
5900032'004002-

AGAIN: LOA O,PROMPT 
.SYSTM 
. WRLO 
JSR ERROR 
LOA O,LlNER 
.SYSTM 
. RDL 1 
JSR ERROR 

; BYTE POINTER TO PROMPT. 
; WRITE THE PROMPT 
; TO THE CONSOLE ON CHANNEL O . 
; ERROR. 
; BYTE POINTER TO LINE BUFFER. 
; READ A LINE FROM 
; CONSOLE KEYBOARD ON CHANNEL 1 . 
; ERROR. 

01 ; CHECK LINE FOR B OR C. (THIS MIGHT BE STREAMLINED FOR A COMPUTER 
02 ; WITH HARDWARE LOAD, STORE BYTE.) 
03 

Figure C.5 EXAMPLE program listing 

236 ROOS System Reference Licensed Material--Property of Data General 

/----., 

~. 



04 0033'024436 
05 00034'03000-
06 00035'133700 
0700036'023536 
0800037'147415 
09 00040'000550 
10 00041 '024534 
11 00042'146415 
12 00043'000514 
13 00044'000757 
14 
15 
16 ooo45'000114"NTIO: 
17 00046'022124 
18 052117 
19 000000 
20 
21 00051 '000124"NTTI: 
22 00052'022124 
23 052111 
24 000000 
25 
26 ooo55'000134"OFILE: 
27 00056'042530 
28 040515 
29 050114 
30 042456 
31 047514 
32 000000 
33 
34 00064'000040 C40: 
35 
36 ooo65'000154"PROMPT: 
37 00066'037415 
38 000000 
39 
40 ooo70'000162"LlNEP: 
41 00071'000103 LINE: 
42 
43 00174'000102 B: 
44 00175'000103 C: 
45 oo176'000216'QADDH: 
46 
47 

LOA 
LOA 
ANDS 
LOA 
SUB 

JMP 
LOA 
SUB# 

JMP 
JMP 

.+ 1*2 

.TXT 

.+ 1*2 

.TXT 

.+ 1*2 

.TXT 

40 

.+ 1*2 

.TXT 

LlNE*2 
.BLK 

"B 
"c 
QTAR 

1,LlNE 
2,PMASK 
1,2 
1,B 
2,1,SNR 
BYE 
1,C 
2,1,SNR 
GCOMP 
AGAIN 

"$TTO" 

"$TTI" 

"EXAMPLE.OL" 

"?(15)" 

132.12*1 

; GET RIGHT WORD (2 CHARS) FROM LINE BUFFER. 
; MASK TO STRIP PARITY, RIGHT CHAR IN AC2. 
; ISOLATE FIRST CHAR IN BITS 0-6 OF AC2,SWAP. 
;GET A "B". 
;SKIP IF FIRST CHAR WASN'T A "B". 
; ON "B", RETURN TO THE CLI. 
;GET A "C". 
;SKIP IF FIRST CHAR WASN'T A "C". 
; ON "C", GO TO THE "COMPUTER" OVERLAY. 
;NOT "R" OR "C", IGNORE CHARACTER, TRY AGAIN. 

;POINT TO 
; FILENAME "$TTO". 

;POINT TO 
; FILENAME "$TTI". 

;POINT TO 
; OVERLAY FILENAME. 

;NEW PRIORITY FOR MAIN PROGRAM TASK. 

; POINT TO 
; MAIN PROGRAM PROMP. 

; POINTER TO FIRST BYTE OF LINE BUFFER. 
; BUFFER TO HOLD MAX. LINE LENGTH. 

;ASCII "B". 
;ASCII "C". 
;ADDRESS OF "QUE" TASK QUEUE TABLE. 

48 
49 
50 

; THIS CODE PROCESSES THE "C" CHARACTER. IT LOADS THE "COMP" 
; OVERLAY AND TRANSFERS TO WRITE-LINE CODE IN THE OVERLAY. 

51 00177'020410 GCOMP: 
52 00200' 126400 
53 00201'032001-
54 00202'077777 
55 00203'004002-
56 00204'006402 
5700205'000616 
58 
59 00206'077777 ACOMP: 
60 00207'077777 ICOMP: 

LOA 
SUB 
LOA 
.TOVLD 

JSR 
JSR 
JSR 

COMP 
OCOMP 

O,ICOMP 
1,1 
2,@OCHAN 

ERROR 
@ACOMP 
AGAIN 

; GET "COMPUTER" OVERLAY NAME. 
; SPECIFY CONDITIONAL LOADING. 
; GET OVERLAY FILE CHANNEL NUMBER. 
; REQUEST SYSTEM ACTION. 
; ERROR. 
; EXECUTE THE OVERLAY CODE, THEN 
; GO BACK FOR MORE INPUT. 

; START ADDRESS IN OVERLAY. 
; "COMPUTER" OVERLAY IDENTIFIER. 

01 
02 
03 
04 
05 

; THIS CODE PROCESSES THE "B" CHARACTER. IT TERMINATES 
; THE PROGRAM AND RETURNS TO THE CLI. 

Figure C.S EXAMPLE program listing (continued) 

Licensed Material--Property of Data General RDOS System Reference 237 



06 00210'006017 BYE: 
07 00211 '004400 
08 00212'000002-
10 

.SYSTM 

.RTN 
JMP ERROR 

11 
12 

; THIS IS THE ERROR HANDLER. 

13 00213'006017 SERR: 
1400214'006400 
15 00215'000776 
16 
17 

. SYSTM 

.ERTN 
JMP 

; RETURN TO THE RDOS CLI. 
, 
;RESERVED, NEVER TAKEN. 

; lET THE CLI REPORT WHAT'S WRONG . 
, 
; NEVER TAKEN. 

18 
19 

; THIS IS THE QUEUE TABLE FOR THE "QUE" OVERLAY TASK. 

2000216'077777 QTAB: 
21 00217'177777 
22 00220'On777 IQUE: 
23 00221' 177777 
2400222'000001 
25 00223'000430 
26 00224'000003 
2700225'000001 
2800226'0000020VCHN: 
29 00227'000000 
30 00230'000001 
31 00231 '000001 
32 
33 

QUE 
-1 
OQUE 
-1 
. BlK 
1B7+30 
3. 
. BlK 
2 
o 
. BlK 
.BlK 

.END START 

**00000 TOTAL ERRORS, 000000 PASS 1 ERRORS 

02 
03 
04 
05 
06 
07 
08 

000001 

.TITlE 

.ENT 

.ENTO 

.EXTN 

.TXTM 

.NREl 

QUE 
QUE 
OQUE 
ERROR,IQUE,AGAIN 
1 

; STARTING ADDRESS FOR THE TASK. 
; EXECUTE UNLIMITED NUMBER OF TIMES. 
; OVERLAY IDENTIFIER -- .ENTO. 
;STARTING HOUR: RIGHT NOW. 
;STARTING SECOND (UNIMPORTANT HERE) . 
; TASK 10 OF 1, PRIORITY OF 30. 
; RERUN EVERY 3 SECONDS. 
; SYSTEM WORD . 
; USE CHANNEL 2 FOR THE OVERLAY FilE. 
; CONDITIONAL OVERLAY lOADING. 
; SYSTEM WORD . 
;WORD FOR EXTENDED QUEUE TABLE USAGE. 

;STARING ADDRESS IS START. 

09 
10 
11 

; "QUE" OVERLAY - WRITES MESSAGE TO CONSOLE, KillS SELF AND 
; QUEUED TASK. 

1200000'020420 QUE: 
13 00001 '006017 
14 00002'017000 
1500003'006411 
1600004'020411 
1700005'006017 
18 00006'017000 
19 00007'006405 
20 
21 00010'022403 
22 00011 '077777 
23 00012'006402 
24 
25 00013'077777 OQ: 
26 00014'077777 ERR: 
27 

lOA 
.SYSTM 
.WRl 

JSR 
lOA 
.SYSTM 
.WRl 
JSR 

lOA 
. OVKll 

JSR 

IQUE 
ERROR 

28 00015'000034"PROMPT: . + 1 *2 
29 00016'037415 .TXT 
30 000000 
31 
32 00020'OOOO42"MESS: . + 1 *2 
33 00021'044447 .TXT 
34 066440 
35 072150 

O,MESS 

o 
@ERR 
O,PROMPT 

o 
@ERR 

O,@OQ 

@ERR 

"?(15)" 

; BYTE POINTER TO MESSAGE. 
; WRITE MESSAGE 
; TO CONSOLE OUT. 
; ERROR RETURN. 

; BYTE POINTER TO PROMPT. 
; WRITE PROMPT 
; TO CONSOLE OUT (FOR CONSISTENCY). 
; ERROR. 

; GET THE OVERLAY IDENTIFIER. 
; RELEASE OVERLAY AND Kill TASK . 
; ERROR. 

; OVERLAY IDENTIFIER. 
; ERROR HANDLER. 

; POINT TO 
; PROMPT. 

; POINT TO "QUEUED" MESSAGE. 
"I'M THE QUEUED TASK ... READY TO .OVKll MYSElF.(15)" 

Figure C.S EXAMPLE program listing (continued) 

238 RDOS System Reference Licensed Materlal··Property of Data General 

,.-,., 
; 



36 062440 
37 070565 
38 062565 
39 062544 
40 020164 
41 060563 
42 065456 
43 027056 
44 071145 
45 060544 
46 074440 
47 072157 
48 020117 
49 053113 
50 044514 
51 020155 
52 074536 
53 062554 
54 063056 
55 006400 
56 
57 .END 

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS 

000001 

.TITLE 

.ENT 

.ENTO 

.EXTN 

.TXTM 

.NREL 

COMP 
COMP 
OCOMP 
.OVEX 

02 
03 
04 
05 
06 
07 
08 
09 ; 'COMPUTER' OVERLAY - PRINT MESSAGE AND RETURN. 
10 
11 00000'054016 COMP: 
1200001'020412 
13 00002'006017 
14 00003'017000 
15 00004'006405 
16 
17 00005'022405 
18 00006'030016 
19 00007'077777 
20 00010'006401 
21 
22 00011'077777 ERR: 
23 00012'077777 OCP: 
24 

STA 
LOA 
.SYSTM 
.WRL 

JSR 

LOA 
LOA 
.OVEX 

JSR 

ERROR 
ICOMP 

3,USP 
O,CMESS 

o 
@lERR 

O,@OCP 
2,USP 

@lERR 

; FOR REENTRANCY. 
;GET MESSAGE ADDR. 
;WRITE IT 
; TO THE CONSOLE. 
; ERROR RETURN. 

;GET THE OVERLAY IDENTIFIER. 
; AND THE RETURN ADDRESS 
;TO EXIT AND RELEASE THIS OVERLAY. 
;ERROR 

; ERROR HANDLER. 
; OVERLAY IDENTIFIER. 

; POINT TO "COMPUTER" MESSAGE . 25 ooo13'oo0030"CMESS: 
26 00014'044440 

. + 1*2 

.TXT "I AM A DATA GENERAL COMPUTER.(15)" 
27 060555 
28 020141 
29 020104 
30 060564 
31 060440 
32 043545 
33 067145 
34 071141 
35 066040 
36 061557 
37 066560 
38 072564 
39 062562 

Figure C.S EXAMPLE program listing (continued) 

Licensed Material .. Property of Data General RDDS System Reference 239 



40 
41 
42 
43 

027015 
000000 

.END 

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS 

Figure C.S EXAMPLE program listing (continued) 

240 ROOS System Reference Licensed Material··Property of Data General 



Appendix D 

Overlay Directory Structure 

When you load a program that has an associated overlay 
file, the loader program creates an overlay directory for it. 
During program execution, this directory occupies low NREL 
memory, right above the TCB pool, and contains a four
word descriptor for each overlay. In a mapped system, the 
directory must fit into the lowest, 1 K -block of memory. 

You, or your program, can examine the overlay directory 
through entry USTOD in the user status table. USTOD 
points to the directory base; it contains -1 if there are no 
overlays. The overlay directory built for each multitask pro
gram has the structure shown in Figure D. 1 . 

bits: 
Overlay (OVNAO ~ ____ ""';=~~;";;";;';=-:--______ ---I 

node "n" ) OVBLK 
descriptor) OVOIS 
frame ~ OVRES 

Overlay (OVNAO ~V-,--___ :---:-,n,:...:o....;;;.dei-:a=d:..:::d.;..;:re....;;;.ss~ _____ ---I 
node 0 ) OVBLK starting block number 
descriptor) OVOIS number of overla s load size in blocks 
frame ~ OVRES overlay number overlay use count 

--.OVONS I d total no e count 

I 
Increasing 

memory 

Task Control Blocks 
addresse~ 

User Status Table 

USTOO 

4008 

Figure 0.1 Overlay directory structure (multitask) SO-00532 

Licensed Material··Property of Data General 

As Figure 0.1 shows, each overlay node in the save 
file has a corresponding, four-word descriptor frame in the 
overlay directory. Bits 0 through 7 of OVRES contains the 
number of the overlay that currently resides in the overlay 
node or which RDOS is loading into it. The overlay use 
count (OUC) (bits 8 through 15 of OVRES) describes the 
number of tasks using or requesting the resident overlay. 
RDOS uses OUC only in a multitask environment, as 
explained in Chapter 5. 

Bits 0 to 7 of OVIDS describe the number of overlays 
associated with this overlay node (ie, included in the same 
pair of square brackets in the RLDR command line. RDOS 
uses the load bit, bit 8, in multitask programs (.TOVLD). 
Bits 9 to 15 of this word describe the size (in integer multiples 
of 4008 words, the size of each disk block) of this overlay 
node. OVBLK contains the starting, logical disk block address 
of this node's segment in the overlay file, and OVNAD 
contains the memory address for the start of this overlay 
mode. For a virtual overlay node, RDOS sets BO ofOVNAD 
to one. 

The overlay directory built for a single-task environment is 
identical to that described here except that the system ignores 
the load bit. A program can define a maximum of 256 
overlay nodes in both single- and multitask environments. 
The maximum number of 256-word overlay nodes is 124 
(which need about 60K bytes of memory). Page zero and 
task scheduler space requirements limit the maximum size 
of a single overlay to 126 disk blocks (64K bytes). 

RDOS System Reference 241 





-

Appendix E 

Exceptional System Status 

Certain serious error conditions can either halt the entire 
system in a crash, or cause the system to suspend processing 
and display an exceptional status or trap message. The mes
sage returned from exceptional status or a trap helps identify 
the error; no information is returned from a crash. Both 
exceptional status and crash conditions require full initial
ization of all disks that were initialized when the condition 
occurred. 

Traps 
A trap is less serious than an exceptional status or a crash; 
they are described here, however, because they do stop 
program execution. On a trap, the system displays the con
tents of the program counter and the accumulators on the 
console in this format: 

TRAP (PC) (A CO)(AC1 )(AC2)(AC3) 

Bit 0 of the PC is carry. In both mapped and unmapped 
systems, a trap usually results from a violation of map 
protection. The memory-image file (F)BREAK.SY is cre
ated and placed in the current directory. 

In its discussion of dual programming in mapped systems, 
Chapter 6 provides details on certain user-caused traps. Among 
the most common of these causes are: 

• An attempt to access memory outside your logical space 

• An attempt to modify write-protected memory 

• More than 16 indirect references to an address 

• An attempt to access a system device without having 
issued the .DEBL command. 

Exceptional Status 
In exceptional status, the system outputs the contents of the 
accumulators and an error code on the console, for example: 

000015 

ACO 
177777 

ACI 
000011 

AC2 
037500 

AC3 
100010 

Error Code 

Note that if a system error caused the exceptional status, 
bit 0 of the error code will be reset to 0, and the rest of the 
code word will contain a system error number (explained 

Licensed Material··Property of Data General 

in Appendix A). The dump procedure described later in this 
section applies to both kinds of error. 

If bit 0 of the error code is set to 1, the last two digits of 
the error code have the following meanings: 

File system inconsistency detected, that is, RDOS tried 
to return a master device block which had no record in 
MAP.DR. 

2 RDOS detected a SYS.DR error while accessing a di
rectory on the master device. This means that either the 
entry count in a block of the directory exceeds 168 , or 
a free entry in the block was indicated but RDOS could 
not find it. If ACO contains 16, AC2 contains the illegal 
count; otherwise RDOS expected a free entry but did 
not find it. 

3 Interrupt stack overflow. The low-order bits of ACO 
contain the address of the overflowed stack. If this is a 
system stack address (see load map), the cause can be 
a system device. If the address is not a system stack 
address, the cause is a software stack fault. 

4 Inconsistent system data, such as an illegal device ad
dress. This also occurs if you issue INIT or DIR to a 
new disk before fully initializing it with INIT/F. 

5 Master device data error; run a disk reliability test. 

6 Master device timeout. If there are no obvious errors, 
run a disk reliability test. 

7 Illegal device address on the moving-head master de
vice. This can be caused by a misreading of the disk. 
Run a disk reliability test. 

10 RDOS has detected an undefined interrupt and cannot 
clear it via an NIOC. The right byte of AC2 contains 
the code of the device. 

12 There are not enough contiguous disk blocks available 
to build push space indexes. 

RDOS System Reference 243 



13 Attempted RTN from level 0 in the background. Remove 
this instruction from the level 0 program, or execute it 
at a lower level. 

14 Inconsistent IPB data. Perform an IPB reliability test. 
AC2 can give a clue to the problem, if the following 
conditions were true when the exceptional status oc
curred: 

• Both processors were up and running the same re
vision of ROOS. 

• No user program issued 110 commands to the IPB 
or overwrote the (unmapped) system. 

If both conditions are true and AC2 contains -lor a 
OCB address, the exceptional system status indicates an 
internal system (software) bug. 

If AC2 has a cell address, ROOS has received an invalid 
message type. ACI has the type byte. This problem 
indicates IPB hardware failure. 

If AC2 has an address in the IPB interrupt handler (be
tween IPBOC and IVTINT), this is the address at which 
the exceptional system status actually occurred. If ACO 
and ACI do not contain 644008 , the interrupt handler 
detected an invalid condition such as incorrect message 
length. This indicates an IPB hardware failure. If ACO 
and ACI equal 644008 , one processor timed out to the 
other processor, but resumed communication without 
booting. This would occur if the operator pressed the 
STOP switch and more than one-and-a-half seconds later 
pressed CONTINUE; or if a user program turned inter
rupts off for more than one-and-a-half seconds (eg, via 
the interrupt-disable debugger). 

15 A hardware map violation (trap) occurred while a user 
interrupt routine or user clock had control. The ACO 
data field output on the console will contain the PC, not 
the contents of ACO, in this exceptional status. 

16 ECLIPSEs with ERCC option only. Multibit ERCC 
memory error. Consult the appropriate Technical Ref
erence for your computer. 

17 NOV A 3s with hardware parity option only. Hardware 
parity error. 

20 INFOS systems only. Insufficient memory available at 
initialization time. 

21 The spooler detected a MAP.OR error. 

244 RDOS System Reference 

Controlling Exceptional Status 
If you have an unmapped system, you can write your own 
routine to handle exceptional status situations. Your pro
grams must store the address of your routine in location 118 
at runtime, and restore the original value before the program 
ends . Your routine will then gain control at an exceptionall 
status; the console will not display the accumulators and 
error code, but ACO, ACI, and AC2 will retain the contents 
they held at the error, and AC3 will contain the address of 
the error code. 

If yours is a mapped system, you must modify the operating 
system at source level to insert your own exceptional status 
routine. 

Producing a Core Dump 
If you select the core dump feature during system genera
tion, you can dump a core image of address space after a 
system crash or an exceptional status. A SYSGEN question 
asks if the core dump facility is desired and where the dump 
should go: 

CORE DUMP? (0 = NO, 1 = LPT,2 = MTA,3 = 6030,4= 6097) 

If you answer 0, no core dump routine is included in the 
operating system you are generating. If you answer I, the 
line printer routine is included and dumps will go to the 
primary line printer, $LPT. Answering 2 causes the routine 
for magnetic tape to be included, and SYSGEN will ask for 
the number of the magnetic tape unit to receive the dump. 
You may specify any unit (0 through 7) on the primary 
controller. Answering 3 will include the routine for single
density diskette (6030), and 4, the routine for double-density 
diskette (6097). 

An answer of 3 or 4 prompts another SYSGEN question to 
determine whether the dump should go to the primary or 
secondary controller. Single-density diskette dumps go to 
the third unit on the selected controller (OP3 for the primary 
controller, OP7 for the secondary). For double-density disk
ette dumps, SYSGEN asks the unit number of the device 
that will receive the core dump. 

Note that a device need not be generated to receive core 
dumps, and that any diskette used to receive a core dump 
must be hardware formatted. 

The advantages of dumping to magnetic tape or diskette are 
that these media are more easily shipped to Data General 
for analysis. Moreover, once there, the dumps can easily 
be duplicated to facilitate distribution to various areas for 
investigation of the problem. 

Licensed Material··Property of Data General 



To produce a core dump after an exceptional status, follow 
the instructions for the device that will receive it. After a 
system crash, the console will display nothing. To prepare 
for a core dump, if your computer's front panel has data 
switches, read the section called Oata Switches. If your 
computer has a virtual console, read the section called Vir
tual Console. 

Data Switches 

l. Press the STOP switch on the front panel of the CPU. 

2. Record the contents of the accumulators, the PC, carry, 
USER MOOE, and the state of ION. 

3. Lift the RESET switch. 

4. Enter Ilg in the data switches. 

s. Lift the EXAMINE switch and note the number re
turned in the data lights. 

6. Set the CPU front panel switches to the number found 
in location Ilg. 

7. Oeposit the contents of location Ilg into AC3. 

8. Push the CONTINUE switch. ROOS displays the con
tents of the accumulators and carry. 

9. Continue by responding to questions about the device 
you have chosen to receive the core dump. Questions 
will vary, depending upon how you did your sysgen. 

Virtual Console 

l. Enter the Virtual Console. (Refer to the Programmer's 
Reference Guide for your CPU for specifics on how to 
do this.) 

2. At the (!) prompt, type: 11/ (NEW LINE). 

ROOS displays two sets of numbers, one set beside the 
slash and the other after a space, at the right. For ex
ample, if you type III (NEW LINE) your console dis
plays numbers similar to the following: 

!11/000011 025173 

3. Type 3A without typing NEW LINE. 

ROOS displays the contents of accumulator three. 
Whatever you type at this point goes into accumulator 
three. 

Licensed Material··Property of Data General 

4. Type the right-hand number that displayed when you 
typed Ill. In our example, the number is 25173 (Note 
that you do not need to include leading zeros). Then 
type NEW LINE to put the number into AC3. Your 
console displays numbers similar to the following: 

!3A 0003A 25173 

This means that ROOS will start running at address 
25173. 

s. Next, to execute the panic routine, (not a true panic 
but one forced by these procedures), type 25173R (with
out a NEW LINE). 

ROOS displays the panic code and the contents of all 
of the accumulators. 

6. To proceed with the core dump, type P (without a NEW 
LINE). 

7. Continue by responding to questions that ROOS dis
plays about the device that you have chosen to receive 
the core dump. The questions will vary depending upon 
how you did your sysgen. 

Line Printer Dump 

In this dump, you can select portions of memory, or dump 
all of memory. The line printer dump has three parts: the 
left column shows a memory address; the middle eight col
umns show the contents of each word in the address; and 
the right column shows the ASCII value, if any, of each 
byte in the address. Figure E.I illustrates a sample line 
printer dump. 

To dump the entire address space of either a mapped or 
unmapped machine, press CONTINUE twice. To dump se
lected portions of address space, follow one of these pro
cedures: 

Unmapped Machines Load the desired starting dump ad
dress into the data switches. Press CONTINUE; the CPU 
will halt. Load the desired ending address of the dump into 
the data switches, and again press CONTINUE. You can 
enter as many starting/ending address pairs as you wish. 

RODS System Reference 245 



Mapped Machines RDOS will shift three bits to the left press CONTINUE. RDOS will dump all locations from the 
of each address that you input via the data switches, so that low-order address (times lOs) to (but not including) the high-
you can dump the full range of possible mapped addresses. order address (times lOs). That is, if you select low address 

r-'~ That is, if data switch 15 is up and the rest down, RDOS 1 and high address h on the data switches, RDOS dumps 
interprets this as address lOs, adding an implicit zero to any locations lOs * 1 through (lOs *h) -1. Repeat the dumping 
address you enter. To dump a range of mapped addresses, process as often as you wish. 
load the desired starting dump address into the data switches, 

You can abort the core dump any time by striking any key and press CONTINUE. The CPU will halt. Load the desired 
ending address of the dump into the data switches, and again 

on the console and proceed with another dump sequence as 
you desire. 

01020 060227 014510 060277 014506 060277 014504 060277 014502 ***H***H***O***8 
01030 060277 014500 060277 014476 060277 040532 044532 040432 ***@***>**AZIZaZ 
01040 054532 176660 054524 024466 125224 000420 034012 020742 YZ**YT)6****8* !* 
01050 163000 042741 025415 021414 101005 045414 020454 025405 **E*** #***K*!, ** 
01060 106414 000404 025406 041406 045405 034012 025405 044546 ******C*K*8***I* 
01070 030436 061405 025377 044017 025414 044537 030431 051414 1 *S***H***1*1 *S* 
01000 060177 024016 045010 024426 044505 020536 040422 040422 **(* J*)*IE!* A * A * 
01110 034502 152120 021420 043410 175400 153102 000774 137000 98*P#*G****8**** 
01120 025776 044511 014467 000410 176440 002466 005731 005756 + *11*7*** *6**** 
01130 000011 000011 001014 015766 000406 011766 030453 004434 ************ 1 *** 

01140 004404 000763 034450 000535 054455 006447 126400 044450 ****9(**Y -*1 **I( 
01150 006446 024446 034475 137000 025400 006443 024441 010440 * &)&9****** #)!* 
01160 102120 107037 125401 002436 006423 00076~ 000000 000013 *P************** 

01170 006326 000005 001014 054411 006420 020411 143000 006426 .*****y*** !***** 

01200 006407 006414 005124 005124 000000 002014 041057 003146 *****T******8/** 
01210 001400 177777 003777 002076 002013 002617 003137 000000 *******>******** 
01220 001631 000000 002001 100000 002031 000000 006000 003257 **************** 

01230 002000 000405 002032 000000 000424 000714 002367 177770 **************** 

Figure E.1 Sample line printer dump 

,~' 

246 RDOS System Reference Licensed Materlal--Property of Data General 



,-

Magnetic Tape Dump 

To dump to magnetic tape, follow these steps: 

l. Select the same unit number specified to SYSGEN on a 
magnetic tape drive, and make sure no other drive has this 
number. Mount a blank tape (300 feet or more), with write
enable ring inserted, on this drive. Then press drive switches 
LOAD and ON LINE. 

2. Press the CPU switch CONTINUE. The dump program 
then displays the message, READY? 

3. Again, press the CPU switch CONTINUE. The dump 
program copies all memory addresses to the tape and then 
displays the message DONE, followed by READY, on the 
console. To stop the program, press CPU switch STOP. To 
produce another dump, press the RESET and UNLOAD 
switches on the tape drive; mount another tape; and repeat 
steps two and three. 

4. If you have forgotten a step, the program dislays the 
message ERROR, then READY? Execute the step and press 
the CPU switch CONTINUE. 

Core dumps from machines with the maximum amount of 
memory supported by RDOS (512 KB) will fit onto one 
tape. The magnetic tape cannot be read or copied under 
RDOS. You may, however, write to file numbers one and 
higher on the tape, since the dump is written to file number 
zero. 

Diskette Dump 

To dump to diskette, follow these steps: 

l. For a single-density diskette on the primary controller, 
select unit number three on the diskette drive. For a single
density diskette on the secondary controller, select unit num
ber three on the diskette drive. For a double-density diskette, 
select the unit number and controller specified to SYSGEN. 
Make sure that no other diskette drive has the same unit 
number. 

2. Tape the write-protect hole of a Data General diskette 
(or other diskette that has been hardware formatted); insert 
this diskette in the drive. Shut the door and tum the diskette 
drive ON. 

3. Press the CPU's CONTINUE switch. The dump program 
then displays the message READY? 

Licensed Material··Property of Data General 

4. Again press the CPU switch CONTINUE. The dump 
routine copies memory to the diskette; if it displays the 
messages DONE and READY, proceed to step nine. 

5. If all addresses cannot fit on one diskette, the program 
displays the message REPLACE, followed by READY? 
Open the diskette door, remove the diskette, insert another 
hardware-formatted diskette in the drive, and close the door. 
Press the CPU switch CONTINUE. The program then cop
ies the rest of memory to the second diskette, and displays 
the messages DONE and READY? 

6. The diskette dump is complete. To stop the program, 
press the CPU switch STOP; to produce another dump, 
remove the diskette, and repeat steps three, four, and five. 

7. If you have forgotten a step, the program displays the 
message ERROR, then READY? Execute the step and press 
CONTINUE. 

CORE DUMPS taken from a machine with the maximum 
amount of memory supported by RDOS (2048 KB) will fit 
onto two double-density diskettes. If dumping to single
density diskette, eight diskettes will be needed. When the 
first diskette is full, the message REPLACE followed by 
UNIT X READY? will be displayed on the console. Replace 
the diskette and lift the CONTINUE switch. The diskette 
dump cannot be copied under RDOS. In order to read a 
diskette dump as an RDOS file, the diskette must have been 
fully initialized with the disk initialization program, DKINIT, 
before the dump was taken. Then, after taking the dump, 
bring up RDOS on another RDOS disk. Type INITIF to the 
diskette containing the core dump. Next, create a three
block, contiguous file on this disk with the CCONT com
mand. Create a second continguous file, without zeroing 
the data blocks, by issuing the CCONT command followed 
by the IN switch. The number of blocks in this file should 
be equal to four times the size of memory. This file will 
contain the core dump. 

When the core dump is complete, the message DONE, 
followed by UNIT X READY? appears on the master con
sole. To replicate the core dump, mount another tape or 
insert another diskette (as appropriate); ensure that the de
vice is ready to receive a core dump, and press the CON
TINUE key on the front panel. The core dump procedure 
will then be repeated. 

If an error is encountered (ie, unit off line, etc.), the message 
ERROR! followed by UNIT X READY? appears on the 
system console, and the CPU halts. After the error has been 
corrected, press CONTINUE and the process will auto
matically restart. 

RDDS System Reference 247 





Appendix F 

Page Zero and Hardware Reserved Locations 

This appendix provides a listing of the page zero and hardware reserved locations from the PARS file. 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

12 
13 
003 PARS 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

000000 

000020 

, 
; COPYRIGHT (C) DATA GENERAL CORPORATION 1977, 1978, 1979, 1980, 1981, 1982, 1983 

; ALL RIGHTS RESERVED. 
; LICENSED MATERIAL-PROPERTY OF DATA GENERAL CORPORATION. 

; RDOS REVISION 07.10 SYSTEM PARAMETERS 

.TITLE PARS 

, 
; PAGE ZERO 

.00 ?ANSW 

;.DUSR SYST= 
;.DUSR NSTOV= 
;.DUSR .RTN= 
.DUSR CC= 
.DUSR RLOC= 
.DUSR .SAV= 
.DUSR CSP= 
.DUSR .PNIC= 
;.DUSR USTP= 
.DUSR CQ= 
.DUSR CRSEG= 
.DUSR CMSK== 

.DUSR HRBEG= 
; DEFINED IN NSID.SR 
;.DUSR TRPC= 
;.DUSR TRHN=: 
;.DUSR CSL= 
;.DUSR CSO= 

.ENDC 

2 
3 
4 
5 
6 
7 
10 
11 
12 
13 
14 
15 

40 

46 
47 
42 
43 

; SYSTEM CALL ADDRESS 
; NOVA STACK OVER FLOW VECTOR 
; ADDRESS OF RETURN ROUTINE 
; CURRENT CELL 
; PAGE ZERO TEMP. 
; ADDRESS OF SAVE ROUTINE 
; STACK POINTER 
; PANIC 
; USTP DEFINED IN PARU 
; CURRENT TASK QUEUE 
; PTR TO OVERLAY TABLE ENTRY 
; CURRENT MASK 

; START OF HARDWARE RESERVED AREA 

INSTRUCTION TRAP PC FOR NOVA 3 
INSTRUCCTION TRAP HANDLER FOR NOVA 3 
STACK LIMIT FOR NOVA 3 
STACK OVERFLOW HANDLER FOR NOVA 3 

; 29 OCTOBER 1980 PR5 SAF # R-101 
; AUTO-INCREMENT TEST LOCATION FOR DETECTING ALPHA 
; (MICRO-ECLIPSE) 
.DUSR AITST == 20 

Figure F.1 Listing of PARS, giving page zero and hardware reserved locations 

Licensed Material--Property of Oats General RDOS System Reference 249 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

000001 

000040 

000010 
000011 
000013 

.00 ?ABSW 

; HARDWARE RESERVED LOCATIONS 
.DUSR HRBEG= 40 ; START OF HARDWARE RESERVED AREA 
; DEFINED IN NEID.SR 
;.DUSR SP= 
;.DUSR CSP= 
;.DUSR CSL= 
;.DUSR CSO= 
;.DUSR XOPA = 
;.DUSR FPFA = 
, 

40 
41 
42 
43 
44 
45 

; STACK POINTER 
; FRAME POINTER (LOGICAL STACK PTR) 
; STACK LIMIT 
; STACK OVERFLOW ROUTINE PTR 
; XOP ORIGIN ADDRESS 
; FLOATING POINT FAULT ADDRESS 

;; DEFINE OFFSETS FOR PAGE OINT STK LOCATIONS 
;.DUSR ISP = 4 ; SKP SP 
;.DUSR CMSK = 5 ; CURRENT MASK 
;.DUSR ISL = 6 ; LIMIT 
;.DUSR ISO = 7 ; OVERFLOR ADDR 

; OTHER PAGE ZERO LOCATIONS 

, 
.DUSR 
.DUSR 
.DUSR 

LOCATION 12 IS USTP (DEFINED IN PARU) 
LOCATION 2 IS THE SYSTEM ENTRY POINT 
LOCATION 31S THE PROTECTION FAULT ROUTINE POINTER 
CC = 10 ; CURRENT CELL 
.PNIC = 11 ; PANIC 
CQ= 13 ; CURRENT TASK QUEUE 

Figure F.1 Listing of PARS, giving page zero and hardware reserved locations 

250 ROOS System Reference Licensed Materlal··Property of Data General 

/---. 



,,- Appendix G 

Hollerith-ASCII Conversion Table 

Char. Card Code ASCII Code Char. Card Code ASCII Code 

NUL 12-0-9-8-1 000 NAK 9-8-5 025 

SOH 12-9-1 001 SYN 9-2 026 

STX 12-9-2 002 ETB 0-9-6 027 

ETX 12-9-3 003 CAN 11-9-8 030 

EOT 9-7 004 EM 11-9-8-1 031 

ENQ 0-9-8-5 005 SUB 9-8-7 032 

ACK 0-9-8-6 006 ESC 0-9-7 033 

BEL 0-9-8-7 007 FS 11-9-8-4 034 

BS 11-9-6 010 GS 11-9-8-5 035 

HT 12-9-5 011 RS 11-9-8-6 036 

LF 11-9-5 012 US 11-9-8-7 037 

VT 12-9-8-3 013 SPACE NO PUNCHES 040 

FF 12-9-8-4 014 11-8-2 041 

CR 12-9-8-5 015 8-7 042 

SO 12-9-8-6 016 # 8-3 043 

SI 12-9-8-7 017 $ 11-8-3 044 

OLE 12-11-9-8-1 020 % 0-8-4 045 

DCl 11-9-1 021 & 12 046 

DC2 11-9-2 022 8-5 047 

DC3 11-9-3 023 12-8-5 050 

DC4 4-8-9 024 11-8-5 051 

Licensed Material--Property of Data General RDDS System Reference 251 



---

Char. Card Code ASCII Code Char. Card Code ASCII Code 

* 11-8-4 052 C 12-3 103 ~, 
f 

+ 12-8-6 053 D 12-4 104 

0-8-3 054 E 12-5 105 

11 055 F 12-6 106 

12-8-3 056 G 12-7 107 

/ 0-1 057 H 12-8 110 

0 0 060 I 12-9 111 

061 J 11-1 112 

2 2 062 K 11-2 113 

3 3 063 L 11-3 114 

4 4 064 M 11-4 115 

5 5 065 N 11-5 116 

6 6 066 0 11-6 117 

7 7 067 P 11-7 120 

8 8 070 Q 11-8 121 

9 9 071 R 11-9 122 

8-2 072 S 0-2 123 

11-8-6 073 T 0-3 124 

( 12-8-4 074 U 0-4 125 

8-6 075 V 0-5 126 

) 0-8-6 076 W 0-6 127 

? 0-8-7 077 X 0-7 130 

@ 8-4 100 Y 0-8 131 

A 12-1 101 Z 0-9 132 

B 12-2 102 12-0-5-8 133 

\ 0-8-2 134 

1"'-'" 

252 RODS System Reference licensed Material--Property of Data General 



Char. Card Code ASCII Code Char. Card Code ASCII Code 

,,- 12-11-5-8 135 0 12-11-6 157 

--, or t 11-8-7 136 P 12-11-7 160 

-or'- 0-8-5 137 q 12-11-8 161 

\ 8-1 140 r 12-11-9 162 

a 12-0-1 141 s 11-0-2 163 

b 12-0-2 142 11-0-3 164 

c 12-0-3 143 u 11-0-4 165 

d 12-0-4 144 v 11-0-5 166 

e 12-0-5 145 w 11-0-6 167 

f 12-0-6 146 x 11-0-7 170 

g 12-0-7 147 Y 11-0-8 171 

h 12-0-8 150 z 11-0-9 172 

12-0-9 151 12-0 173 

12-11-1 152 12-7-8 174 

k 12-11-2 153 11-0 175 

12-11-3 154 ~ 11-0-1 176 

m 12-11-4 155 DEL 12-9-7 177 

n 12-11-5 156 

Licensed Matenat--Property of Data General RDOS System Reference 253 





Appendix H 

ASCII Character Set 
To use this chart in octal, find the character whose code 
you want, then read straight up the column. The figures at 
the top are the first two digits. Now, return to the character 

and read the figure at the far left of its row; this is the third 
digit in the octal code. (In the legend, the octal code for @ 
is 1(0). 

KEY 
DECIMAL OCTAL HEX SYMBOL MNEMONIC 

01000 1001 t@1 NUL I 
1 I 001 I 01 I t A I SOH I 
2 1 0021 02 1 t B 1 STX 1 

3 1 003 1 03 1 tel ETX I 
4 1 0041 04 1 t D I EOT 

5 1 0051 05 1 tEl ENG 

6 1 0061 06 1 tF 1 ACK 

7 1 007 1 07 I t G 1 BEL 

8 1 010 08 1 t H 18AC~~ACElI 
91011 09 1 t I TAB I 

10 012 OA t J NEW 
1 LINE 

11 013 OB tK (VfYJTA8l1 

12 014 OC t l FORM 
FEED 

13 015 OD t M I~:~~GE 
I 14 016 OE t N 1 SO 

15 017 OF to I SI 

16 1 020 I lOt p 1 DLE 

1 7 1 021 1 11 1 t Q DC 1 

18 1 022 1 12 1 t R DC2 1 

19 1 023 1 13 1 t S DC3 I 
20 1 0241 14 1 tT DC4 I 

1 2110251'51 tul§S] 

22 1 026 1 16 1 t v I SYN 

23 1 027 1 1 7 1 t w 1 ETB 

24 030 I 18 I t x 1 CAN 

25 0311 19 1 t y 1 EM 

I 26 0321 1 A I t z I SUB 

I 27 0331 1 B 1 ESC 1 ESCAPE 

I 28 I 0341 1 C I h I FS 

I 29 I 0351 1 D I tl 1 GS 

I 30 1 0361 1 E 1 ttl AS 

13'10371'F It-I us 

Figure H.1 ASCII character set 

Licensed Material··Property of Data General 

KEY 
DECIMAL OCTAL HEX SYMBOL 

32 040 I 20 I SP4CE I 
33 041 21 1 ! 1 

34 042 22 IQ~~TE~ 
35 043 23 # 

36 044 24 $ 

37 0451 25 0" 
38 046 26 & 

39 1047 27 I 

IAPQS 

40 1050 28 1 ( 

41 1051 29
1 

) 

42 1052 2AI * 
43 1 0531 2B 1 + 

44 1 054 1 2C I'(Q~MA I 
45 1 0551 2D 1 - 1 

146 10561 2E IPERIOD) 

47 057 1 2F I 

48 0601 30 0 

49 061 I 31 

50 0621 32 2 

51 063\ 33 I 3 

52 064 34 1 
4 

153 065 35 1 5 

54 066 361 6 

55 067 37 I 7 

56 1 070 I 38 1 8 

57 1071 1 39 I 9 

58 1072 1 3A 1 : 

59 1 0731 3B 1 ; 

60 1 074 1 3C I < 
61 1075 1 3D 1 ~ 

62 1 076 1 3E I > 
63 1077 1 3F 1 ? 

64 1100 I 40 I @ 

KEY KEY 
DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL 

65 11011 41 1 A 97 1141 1 61 a 

6611021 421 B 98 11421 62 b 

6711031 43 1 C 99 11431 63 c 

6811041 441 D 10011441 64 d 

69 1051 45 1 E 10111451 65 e 

70 106 1 461 F 10211461661 f 

I 71 107 1 471 G 10311471 67 1 g 

72 1101481 H 1041150 I 68 1 h 

73 1111 49 I I 1051151 I 69 I 
74 1121 4A I 106115216A 1 

75 113 4B K 107115316BI k 

76 114 4C l 10811541 6C 1 I 

77 115 4D M 10911551 6D 1 m 

78 116 4E N 11 0 11561 6E 1 n 

79 11714F 0 \111 11571 6F 1 0 

80 1120 I 50 P 1121160 I 70 I P 

81 11211 51 Q 11311611711 q 

821122152 1 R 11411621 72 1 r 

83 1123 53 S 11511631 73 I s 

841124 54 T 11611641 74 1 t 

851125 55 Ul 11711651 75 I u \ 

861126 56 V 11811661 76 1 v 

87 127 57 W 11911671 771 w 

I 88 130 58 X 120 1170 I 78 I x 

I 89 131 59 Y 1'21 1171 1 79 1 y 

I 90 132 5A z 112211721 7 A 1 z 

91 1331 58 I 1'2311731 78 I I 
92 1341 5C I \ 1'2411741 7C I I I 
93 1351 5D 1 1 1'2511751 7D 1 1 

94 136 1 5E It
oR/\ 1'2611761 7E I '~EI 1 

95 1371 5F 1;;-_ 1'2711771 7F ~ • .?~~TlI 
961140 I 60 I,GR:vElI 

DG·05495 

RDOS System Reference 255 





,-

Appendix I 

Advanced Multitask Programming 

For most multitask application programs, the features de
scribed in Chapter 5 of this manual are sufficient. This 
appendix is intended for users who want to write their own 
multitasking primitives (task calls), or whose tasks require 
one or more special resources, such as floating-point hard
ware, that the system does not provide for in a TCB. All 
discussions assume a familiarity with the material covered 
in Chapter 5. 

The features described in this appendix can ( I ) provide more 
programming flexibility than the standard features alone, 
without requiring you to modify the task monitor sources: 
and (2) provide this flexibility in a system-independent way. 
You can use the calls in this appendix to develop application 
programs for any system configuration-RDOS or RTOS, 
mapped or unmapped. All you need do to reconfigure for 
a different system is load a program, via RLDR, with the 
appropriate system libraries. 

Definitions 
The following definitions relate to tasks and task states; they 
apply throughout RDOS and RTOS. 

General Terms 
Task Resources are those storage elements of the computer, 
such as accumulators and special memory locations, that 
two or more tasks must share. The task scheduler allows 
such sharing by ensuring that the proper values for each 
task's resources appear in the actual storage elements of the 
computer while the task is executing. When a task is not 
executing, the current values of its resources are held in its 
TCB. 

Rescheduling is the process of selecting and executing the 
ready task of highest priority. The task scheduler performs 
rescheduling after each task call, after receiving control from 
the system following an interrupt, and when a system call 
completes. You can suppress rescheduling via task calls 
.DRSCH or .SINGLE, or by entering the scheduler state, 
as described later in this section. If you have not disabled 
rescheduling, you must assume that it can happen at any 
time. 

Task swaps occur during rescheduling, when the task sched
uler determines that it should execute a different task from 

Licensed Material··Property 01 Data General 

the last one executed. I f the last task to execute was not 
terminated, the scheduler saves the current state of its re
sources in its TCB. Then the scheduler restores to a new 
task its resources, in their former state, from its TCB. The 
scheduler places the new task's TCB in the active TCB 
chain at the end of its priority class; thus, the next time 
rescheduling occurs, this task will be considered for exe
cution only after all others in its class. Finally, the new task 
receives CPU control and becomes the current task. 

CTCB is a location maintained by the scheduler containing 
the address of the current task's TCB. If no task is currently 
active-for example, if all tasks are suspended or resched
uling is occuring-CTCB contains the address of the most 
recent task's TCB, as long as that task was not terminated; 
otherwise CTCB contains O. Thus, CTCB identifies the task 
to which the current values of task resource storage elements 
belong; zero means that these values are no longer relevant. 

CTCB is a page zero location. You can access it as folows 
to obtain the TCB address for the current task: 

.EXTO CTCB 
LOA ac, CTCB 

Location USTCT in the user status table (UST) also contains 
the current TCB address. However, you should use CTCB 
instead of USTCT. 

Hardware stacks are the storage elements of the computer 
with built-in stack functions. The hardware stack on an 
ECLIPSE computer occupies locations 40g through 43 g • On 
a NOVA 3 or microNOVA computer, the stack occupies 
the stack and frame pointers and location 42H, which the 
system interprets as the stack limit. RDOS treats the hard
ware stack as a task resource, thereby making it available 
for use by all tasks. 

A reentrant section of code (sequence of instructions) allows 
another task to enter this code before the original task exits. 
Code which several tasks can access is reentrant only if each 
task has its own local storage, which no other task executing 
the code can access. Reentrancy is commonly achieved by 
giving each task its own stack area and using the stack for 
local storage. 

ROOS System Reference 257 



State Definitions 
User state is the normal state for an application program. 
This is the state from which system and task calls are made, 
as described in Chapter 5. Code must be reentrant in user 
state'if more than one task will use it. In this state, task 
execution is suspended on an interrupt if a higher-priority 
task is ready for execution. A task in user state can use the 
user stack pointer (USP) and the hardware stack; it can also 
examine, but not modify, CTCB and the current TCB. In 
dual-ground operation, it can determine the current ground 
by examining USTPC in the UST; USTPC contains 0 for 
the background, or 1 for the foreground. If there are no 
indicators of other states, the program is in user state. 

Single-task state is used occasionally for a critical section 
of an application program. You enter this state via task call 
.SINGL; it prevents other tasks from gaining control. How
ever, interrupts and the other ground (if any) continue to 
execute. A task can issue system calls from single-task state 
as well as from user state; it can also issue any task call 
except . MULTI , kill, or suspension commands. If a task 
issues .MULTI, or kills or suspends itself, the progrm enters 
user state. Code executed from single-task state need not 
be reentrant. It can use USP, the hardware stack, CTCB, 
and the current TCB as it can in user state. If location 
SM.SW contains a nonzero value, the program is in single
task state. 

Scheduler state is the normal state for task call code. An 
interrupt can cause temporary loss of control, but, unlike 
user and single-task states, control returns to the point of 
interruption without rescheduling. Thus, scheduler state en
sures that no other task in the same ground will get control, 
although interrupts and the other ground continue. Code 
executed in scheduler state need not be reentrant. It should 
not use USP or the hardware stack; but it can both read and 
modify CTCB and the current TCB, subject to restrictions 
described later. In unmapped RDOS systems, code cannot 
use USTPC to distinguish foreground from background; 
instead, it should compare the UST base (UST AD) to the 
value 4008 , A value of 4008 for USTAD indicates the back
ground; a value other than 4008 indicates the foreground. 
A task is in scheduler state for unmapped RDOS if location 
USTPC contains a value other than 0 or 1; or, for mapped 
RDOS, if location 1 is nonzero. For RTOS, location .SYS 
is nonzero in scheduler state. 

Interrupt-disable state is used to perform critical manipu
lation of TCB data or the active TCB chain. There is no 
way for a task in this state to lose control of the CPU, even 
temporarily. 

258 RDDS System Reference 

Coding Your Own Task Calls 
This section describes components of the task control block 
available for your use, along with the following, task sched
uler commands: 

EN.SCHED Enter the task scheduler state. 

. TSA VE Save the task state. 

RE.SCHED Take normal exit from task scheduler state. 

ER.SCHED Take abnormal exit from scheduler state. 

INT.DS Enter interrupt-disabled state. 

INT.EN Exit from interrupt-disabled state. 

ID.SRCH Search for a task of a given priority. 

TCB and Status Bits 
Two status bits of word TPRST in a TCB are allocated for 
your use; you can use them to extend the standard features. 
Bit TSUPN, the user suspend bit, prevents a task from 
running when set. Bit TSUSR, the user status bit, does not 
affect task readiness but is available for storing an additional 
piece of task-related information. 

Word TELN is also available for your own use. This word 
is typically employed to store the address of a TCB exten
sion, allowing you to store as much additional, task-related 
information as you need. 

Scheduler Calls 
Like task calls, the scheduler commands defined here are 
external symbols that must be identified as such via an 
.EXTN statement in your source program. The relocatable 
loader, RLDR, resolves them at load time, according to 
system type. Each version of SYS.LB defines the scheduler 
commands for its version of the system .. ~-RDOS or RTOS, 
mapped or unmapped, and NOVA or ECLIPSE computers. 

Licensed Materlal .... Property of Data General 



.-

EN.SCHED 
Enter scheduler state 

Use the following format to enter scheduler state from user 
or single-task state: 

; AC3 NOT EQUAL TO ° AND NOT EQUAL TO 1 
; FOR UNMAPPED RDOS SYSTEMS. 
EN.SCHED 
; RETURNS HERE WITH ALL ACS AND CARRY PRESERVED. 

A task already in scheduler state can safely reissue 
EN. SCHED, but no change in state will occur. 

Licensed Malerial--Property of Dala General 

.TSAVE 
Task state save 

For a task in scheduler state, this command saves the ACs, 
carry, and program counter in its TCB. The PC saved is 
the value in bits 1 through 15 of AC3 at the time of the last 
EN.SCHED command. The format for .TSAVE is as fol
lows: 

;ACS, CARRY, PC TO BE SAVED . 
.TSAVE 
; RETURNS HERE WITH ACO, AC1, AND CARRY UNCHANGED, 
; AND AC2 = VALUE THAT WAS IN AC3 
; AT TIME OF LAST EN.SCHED; 
; AT AC3 = TCB ADDRESS 

The . EN. SCHED and . TSA VE commands are meant to be 
used together at the start of code which implements a user
designed task call. For a task call with error return, they 
might be used as follows: 

.TASK= 

T.ASK: 

.ENT .TASK, T.ASK 

.EXTN EN.SCHED, .TSAVE 

.ZREL 
JSR(ci 
T.ASK 
.NREL 
INC 3,3 
EN.SCHED 
TSAVE 

;ASSUME NORMAL RETURN. 
; ENTER SCHEDULER STATE. 
; SAVE TASK STATE. 

For a task call without an error return, this code would omit 
the increment instruction, INC . 

RDDS System Reference 259 



RE.SCHED 
Leave scheduler state normally 

When you successfully complete the processing for a task 
call, issue the RE.SCHED command to exit to the scheduler 
for rescheduling. Use RE.SCHED in scheduler state, ac
cording to the following format: 

;NO INPUT. 
RE.SCHED 
;NO RETURN. 

260 ROOS System Reference 

ER.SCHED 
Leave scheduler state abnormally 

When you detect an error during task call processing, place 
an error code in AC2 and exit to the scheduler via the 
ER.SCHED command. This returns control to the location 
preceding the one specified by TPC, and passes back the 
error code in AC2. Use ER.SCHED in scheduler state, 
according to the following format: 

; AC2 = ERROR CODE. 
ER.SCHED 
;NO RETURN. 

Licensed Materlal-·Property of Data General 



INT.DS 
Enter interrupt-disabled state 

Use this command to enter interrupt-disabled state from 
scheduler state. Its format is as follows: 

;NO INPUT 
.INT.DS 
; RETURNS HERE WITH ACO, AC1, AC2, 
;AND CARRY UNCHANGED. 

Licensed Material--Property of Data General 

INT.EN 
Leave interrupt-disabled state 

Use this command to leave interrupt-disabled state and re
turn to scheduler state. Its format is as follows: 

;NO INPUT. 
INT.EN 
; RETURNS HERE WITH ACO, AC1 , AC2, 
;AND CARRY UNCHANGED. 

ROOS System Reference 261 



ID.SRCH 
Task ID search 

Use this command to search for a task with a given ID. 
You can issue ID.SRCH in either scheduler or interrupt
disabled state. Its format is as follows: 

; RIGHT BYTE OF AC1 = 10 OF SOUGHT TASK. 
ID.SRCH 
; ERROR RETURN HERE, WHERE AC2 = ERROR CODE. 
; NORMAL RETURN HERE, WHERE 
;AC2 = TCB ADDRESS OF SOUGHT TASK. 

For both returns, ACO and carry are preserved, while the 
left byte of AC I is zeroed and the right is preserved. 

262 ROOS System Reference 

Handling Additional 
Task Resources 
This section explains how to manage task resources that are 
not automatically managed by the system. It contains three 
discussions. At certain points in its scheduling process, the 
scheduler calls out to routines which you may supply to 
handle your additional task resources. These call outs are 
described first. 

Second, if floating-point hardware and/or a block of con
tiguous memory locations are among the resources you need, 
you can simply use a handler supplied in SYS.LB, as dis
cussed under "Additional Resource Handler." 

Third, under "Operator Communications," the method of 
handling additional task resources while using the operator 
communications package (OPCOM) is explained. 

Task Scheduler Call·Outs 
To use any callout described here, write, assemble, and load 
a routine of the appropriate name and function. You must 
insert the name of the routine in the RDLR command line 
before the loader program searches SYS.LB. (By default, 
this search occurs at the end of the command line.) If you 
do not supply a routine, RDLR loads a dummy routine, 
which does nothing, from SYS.LB. 

Licensed Material··Property of Data General 

/~ 



TSK.X 
Task initiation callout 

This callout allows you to endow a new task with additional 
resources. When the scheduler initates a task, it first removes 
a TCB from the free TCB chain. Then it initializes certain 
parts of the TCB, as described in a later section titled' 'Task 
Control Block Values. " The scheduler then calls out to your 
TSK.X routine in scheduler state. 

Your TSK.X routine can initialize certain parts of the TCB 
and change other parts initialized by the scheduler (subject 
to restrictions noted under "Task Control Block Values"). 
On a normal return, the scheduler links the TCB for the 
new task, as modified by your TSK.X code, into the active 
TCB chain. 

The scheduler transfers control to address TSK.X with the 
accumulators set up as follows: 

ACO Contains the value passed to .TASK in AC2. ACO 
is irrelevant if .QTSK initiates the task. 

AC 1 Contains -1 if . TASK initiates the task, or the address 
of the task queue table if .QTSK initiates the task. 

AC2 Contains the address of the new task's TCB. 

AC3 Contains the (error) return address. 

The routine you supply with entry address TSK.X need not 
preserve accumulators or carry. If you detect an error, place 
an error code in AC2 and return control to the location 
whose address you received in AC3. On a normal return, 
pass control to the location whose address is one greater 
than the one you received in AC3, for example: 

Licensed Material··Property of Data General 

TSK.X: 

QUE: 

.BAD: 

GOOD: 

RTNAD: 

.ENT TSK.X 

.NREL 
STA 3, RTNAD 

COM # 1,1SZR 
JMP QUE 

LDA 2, CODE 
JMP (ZLRTNAD 

ISZ RTNAD 
JMP (hRTNAD 

.BLK 1 

; SAVE RETURN. 

;.TASK OR .QTSK? 

; HANDLE .QTSK CASE. 

; ERROR RETURN. 

; NORMAL RETURN. 

When you return an error indication and . TASK is the in
itiator, the task is not initated, and its TCB returns to the 
free TCB chain; the error code that you place in AC2 is 
passed to the task which issued . TASK. When you return 
an error indication and .QTSK is initiating the task, the 
system tries again one second later. 

RDDS System Reference 263 



TRL.X / 

Task tennination callout 

This callout frees a task's additional resources when it ter
minates-typically those resources that you assigned in a 
TSK.X routine. The scheduler calls this routine in scheduler 
state whenever a task is being killed, with the task's TCB 
already unlinked from the active chain but not yet restored 
to the free chain. The scheduler transfers control to address 
TRL.X, with ACs set up as follows: 

AC2 Contains the TCB address of the task being killed. 

AC3 Contains the return address. 

The routine supplied with entry address TRL.X need not 
preserve accumulators or carry. When you have finished 
your processing, return control to the location whose address 
you received in AC3. There is no way to signal an error 
from TRL.X. 

264 ROOS System Reference 

ESV.X 
Task swap callout 

This callout allows you to save and restore additional task 
resources as needed when a task swap occurs. The scheduler 
calls the routine in scheduler state and transfers control to 
address ESV.X, with the accumulators set up as follows: 

AC2 TCB address for the task losing control, or 0 if no 
task is losing control (as described in the definition 
of CTCB, earlier) 

.CTCB TCB address of the task gaining control. 

AC3 Return address. 

The routine supplied with entry address ESV.X need not 
preserve accumulators or carry. When you have finished 
processing, return control to the location whose address you 
received in AC3. There is no way to signal an error from 
ESV.X. 

A 0 passed to you in AC2 indicates that no valid, most 
recently active task exists whose resources should be saved. 
This situation occurs as the default task is initially selected 
for execution. ESV.X will be called with 0 in AC2, and 
the TCB address for the default task in CTCB. It also occurs 
after a task terminates, because its resources were freed by r-- .. 
TRL.X and are no longer meaningful to ESV.X. 

Licensed Material--Property of Data General 



Additional Resource Handler 
The system library, SYS.LB, contains an ESV.X routine 
that provides, in part, for the additional task resources of 
floating-point hardware and a block of contiguous storage 
words. To load this module, insert the statement .EXTN 
ESV.X in any source module whose name will occur in the 
RLDR command line before SYS.LB is searched. 

For each task requiring access to the floating-point hard
ware, you must provide a block of words to store the task's 
values for its floating-point state. The size and content of 
this block depend on the kind of computer you use. For an 
ECLIPSE computer, the block has this format: 

Status 2 words 

FPACO 4 words 

FPACI 4 words 

FPAC2 4 words 

FPAC3 4 words 

This format matches the one used by the FPSH and FPOP 
instructions. For a NOVA computer, storage block has the 
following format: 

FPAC 4 words 

TEMP 4 words 

Status 1 word 

To provide for a block of contiguous, memory locations as 
an additional task resource, you must define two symbols 
via .ENT and give them the following values: 

ESV.S Equals the starting address of the block. 

ESV.Z Equals the number of words in the block. 

In addition, you will need to provide a block of memory, 
whose length in words equals the value of ESV.Z, for each 
task that is to use this additional resource. 

Licensed Malerial··Property of Dala General 

Finally, for each task that will use either the floating-point 
hardware or contiguous memory locations, you must ini
tialize offset TELN in the TCB, within the TSK.X routine 
that you must supply. The value placed in TELN depends 
on the task's needs. 

• IfTELN contains either 0 or 100008 , neither the floating
point nor the contiguous memory resources will be han
dled. RDOS initializes TELN to 0; thus, you need not 
change it for a task requiring neither resource. 

• If the task requires floating-point hardware but not con
tiguous memory, set TELN to the indirect address of the 
appropriate floating-point block described earlier. 

• If the task needs contiguous memory but not floating
point hardware, set TELN to the (direct) address of a 
block of words ESV.Z + 1 words long, and set the first 
of these words to either 0 or 1000008 , The contiguous 
memory locations will be saved in the remaining words 
of this block. 

• If the task requires both resources, set TELN as described 
immediately above, but set the first word of the block 
to the (direct) address of a floating-point save area. 

When initializing TELN, you can also initialize the contents 
of these save areas. The values that your TSK.X routine 
places in these areas will be the initial values when the task 
being initiated starts executing. 

Restrictions and Warnings 

The system-supplied, additional resource handler assumes 
that TELN is set up properly for either or both of the re
sources; it does not prevent an unprepared task from using 
one of these resources inadvertantly. If this occurs, results 
are unpredictable. 

For a task to use these resources, you must set up the task's 
TELN in your TSK.X routine. You cannot change a task's 
TELN after the task has been initiated. 

Extra Resources 

If a task requires resources in addition to floating-point 
hardware and contiguous memory locations, you can write 
your own ESV.X routine to handle the extra resources, using 
the system-supplied handler as a subroutine. From within 
your own ES V . X routine, call out to the supplied handler 
using the alias ESV.A instead of ESV.X, with the accu
mulators set up appropriately. 

RDOS System Reference 265 



Operator Communications 
When issuing a task call .QTSK, you must pass in AC2 the 
address of a task queue table, whose format and length 
conform to the description in Chapter 5. When the scheduler 
calls out to TSK.X, it passes the queue table address in 
ACt. Thus, you can append additional information to the 
queue table-that is, supply a longer table-and access this 
information from within TSK.X. 

The operator communications feature (OPCOM) describes 
programs to be run from the console by means of a program 
table consisting of program frames of a given length. When 
the operator types a QUE command, the scheduler copies 
information from a program frame into a queue table. You 
can increase the size of a program frame, causing the sched
uler to pass additional information about a program to TSK.X 
via a longer queue table. To do this, define symbol LPN.X 
via .ENT, assigning it a value equal to the number of ad
ditional words in each program frame. On an OPCOM QUE 
command, these words will be copied, in order, to the end 
of the associated task queue table, where they will be ac
cessible to TSK.X. 

266 RDOS System Reference 

Task Control Block Values 
Table 1.1 describes the initial values that the scheduler as
signs to words in a TCB, and when these values can be 
changed during a task's lifetime. Each name is a symbol in 
PARU.SR representing the offset within the TCB. Initial 
contents are values placed in a TCB word by the task sched
uler and seen on input to TSK.X. Each value applies to 
both . TASK and . QTSK unless two of them are separated 
by a slash (I); in this case, the first entry applies to . TASK 
and the second to .QTSK. A "Yes" under column .TASK? 
means that TSK.X can set or change the contents of this 
word if .TASK is initiating the task; "No" means that 
TSK.X can not change this word. A "Yes" or "No" in 
column .QTSK? means the same thing as applied to .QTSK. 
A "Yes" in column "Later?" means that this word can be 
changed later in the task's life; "No" means it cannot be 
changed. Each italicized number refers to a note at the end 
of the table. 

Licensed Material--Property of Data General 

I 
,,-., 

~, 

I 



Name Initial Contents .TASK? .QTSK? Later? "..-
TPC BO-14: Start addr; B15: Undefined Yes Yes Yes 

TACO Undefined/System-maintained Yes No Yes 

TAC1 Undefined/System-maintained Yes No Yes 

TAC2 AC2 at .TASK/System-maintained Yes No Yes 

TAC3 K.lLL 1 /System-malntained2 Yes No Yes 

TPRST 80-7: 0; 88-15: Start pri. Yes Yes 3, 4 

TSYS System-maintained No No No 

TLNK System-maintained No No No 

TUSP Undefined Yes Yes 5 

TElN 0 Yes Yes 6 

TID Task identifier No No No 

TTMP System-maintained No No No 

TKLAD 0 Yes Yes Yes 

TSP Undefined Yes Yes 5 

TFP Undefined Yes Yes 5 

TSL Undefined Yes Yes 5 

TSO Undefined Yes Yes 5 

Table 1.1 TCB words and how they can be changed 
1Address K.ILL is the entry for the .KILL task call code. This address is placed in TAC3 so that a task can kill itself by simply returning to 
the address it receives in AC3. 

2At TSK.X time for a task initiated by Q.TSK, TAC3 does not contain the address K.ILL. However, after TSK.X completes but before the new 
task gains control, the scheduler places the address K.ILL in TAC3, so that the task's initial AC3 will be correct. (See also note 1.) 

3The interrupt world can modify the status bits on suspended tasks only. Thus, modifying status bits of a ready task must be a "task-indivisible" 
operation, while modification of a suspended task must be an "interrupt-indivisible" operation. The scheduler and interrupt-disabled states 
provide task-indivisibility. Interrupt-disabled state provides interrupt-indivisibility, as does the use of bit instructions on an ECLIPSE computer. 

400 not modify the priority portion of TPRST; use task call .PRI instead. 
5Because these values are saved and restored only on task swaps, it is meaningless to change them while in scheduler state. Instead, you 
should change the actual storage locations. Change USP (168) instead of TUSP. On an ECLIPSE computer, change locations 40 through 
43 octal instead of TSP through TSO. On a NOVA computer with hardware stack, change the hardware stack and frame pointers, and 
locations 428 (stack limit) and 468 (instruction trap PC). 

6As mentioned earlier, you cannot change word TELN after TSK.X time if you use the additional resource handler (ESV.X routine) supplied 
in SYS.LB. 

Licensed Material··Property of Data General RDDS System Reference 267 



/~ 



A 

A (attribute protect) 9 
.ABORT (abort a task) 126 
Accumulators, status upon return from system calls 34 
Active chain 120 
Additional resource handler 249 
Addressa ble memory, see logical address space 
Addresses, mapped and unmapped system 3 
.AKILL (kill all tasks of a given priority) 126 
Aliases, link entries 19 
ALMSPD.SR (line characteristics sourcefile) 30 
.APPEND (open file for appending) 60 
.ARDY (Ready all tasks of a given priority) 128 
ASCII character set 239 
Assembler cross-reference listing, see PARU.sR 
Assembly language programs, examples 215 
Assembly language source filename extensions 9 
Assembly language, executable program files 2 
.ASUSP (suspend all tasks of a given priority) 128 
Asynchronous communications multiplexor (QTY), see 

multiplexors 
Asynchronous line multiplexor (ALM), see multiplexors 

B 

Background memory, introduction to 2 
Background program, checkpoints in 161 
Background programming, introduction to 2 
Bad block pool, location on disk 13 
Binary file, definition of 7 
Bits and associated device characteristics (Table 3.7) 53 
Block access, contiguous file 13 
.BOOT (bootstrap a new operating system) 179 
BOOT.SV 13 
Bootstrap root, location on disk 13 
BOOTSYS.OL 17 
.BREAK (interrupt program and save main memory) 

86 

c 
C (contiguously organized file) 10 
.CCONT (create contiguously organized file) 45 
.CDIR (create a subdirectory) 42 

Licensed Material··Property of Data General 

Index 

Chained programs, definition of 91 
Chaining process (Figure) 94 
Chaining, introduction to 2 
Channel selection 34 

example 35 
Channels, multiple 29 
.CHA TR (change a file's attributes) 51 
Checkpoint procedure, example 170 
.CHLAT (change link access entry attributes) 55 
.CHSTS (get the file directory information for a 

channel) 50 
CLI commands 

CDIR 15 
CHATR 9 
CHATR 20 
CHLAT 20 
CRANDI0 
CREATE 10 
DEB 2 
DELETE 20 
DIR 17 
DUMP 26 
EQUIV 17 
EXFG 159 
INIT 17 
INIT/F 25 
LINK 18 
LIST/A 10 
LOAD 26 
on MCA lines 180 
POP 91 
RELEASE 17 
tuning 189 
UNLINK 20 
XFERI0 

CLI levels 92 
CLI LINK command examples 18 
CLI, function of 1 
CLI, use to organize user disk space 15 
.CLOSE (close a file) 61 
Closing down the operating system, see system shutdown 
Commands 

clock 138 
commonly used 35 
file maintenance 45 

269 



.CONN (create contiguously organized file) 46 
Console I/O commands 72 
Contiguous file 10 
Contiguous file block organization (Figure) 13 
Contiguous file block organization, block access speed 

16 
Contiguous file block organization, definition of 13 
Contiguous memory locations block, to provide 249 
Control calls (Table 3.2) 37 
Control characters interrupts, see keyboard interrupts 
Controller support, disk drives 8 
Core dump 

procedures for 229 
to produce 228 

.CPART (create a secondary partition) 43 

.CRAND (create randomly organized file) 46 

.CREAT (create sequentially organized file) 47 
Current directory, definition of 17 

D 

D (randomly organized file) 10 
Data block structure (Figure) 24 
Data channel, mapped system 3 
Data encoding 

nine-track units (Figure) 24 
seven-track units (Figure) 24 

.DDIS (disable user access of a device) 77 

.DEBL (enable user access of a device) 76 

.DELAY (delay execution of the calling task) 139 

.DELET (delete a file) 47 
DEQ (dequeue a previously queued task) 148 
Device access 3 
Device access commands 76 
Device and directory commands 39 
Device name 

in command lines 7 
reserved 7 

.DIR (initialize a directory or device) 40 
Direct block input/output 10 
Direct block input/output transfers 13 
Direct block mode 57 
Directory commands (Table 2.3) 23 
Disk block 10 
Disk file characteristics (Table 3.6) 52 
Disk file 

access 7 
attributes 9 
characteristics 10 
methods for finding 18 
to open 7 
to reference 18 

Disk filename, definition of 9 
Disk space 

apportionment (Figure) 16 
multiuser system 16 

Diskette dump 231 
DKINIT.SV 13 
.DQTSK (dequeue a memory-resident or overlay task) 

138 

270 

.DRSCH (disable rescheduling) 156 
DSR (data set ready) signal 30 
Dual processor, program communication 178 
Dual programming 159 
Dual programs 159 

in unmapped system (Figure) 163 
to execute 162 

.DUCLK (define a user clock) 139 

E 

EN.SCHED (enter scheduler state) 243 
End-of-file(EOF) marker 24 
End-of-tape (EOT) marker 24 
.EOPEN (open file for exclusive write access) 59 
.EQIV (assign a temporary name to disk or tape unit) 

43 
ER.SCHED (leave scheduler state abnormally) 244 
.ERDB (extended read direct block) 113 
Error codes, exceptional status 227 
Error summary 210 
Errors from control calls (Table 3.3) 38 
.ERSCH (reenable rescheduling) 156 
.ER TN (return from program swap with call program's 

error status) 96 
ESV.X (task swap) 248 
.EWRB (extended direct write block) 114 
EXAMPLE program listing (Figure) 219 
Examples, line printer dump (Figure E.1) 230 
.EXBG (checkpoint a mapped background program) 

168 
Exceptional status 227 
.EXEC (swap or chain a save file into execution) 95 
.EXFG (execute a program in the foreground) 164 
EXFG command (execute a program in foreground) 03 
Extended address space, window mapping and virtual 

overlays 91 
Extended direct block I/O 

example 115 
overview of 112 

Extended memory, see extended address space 

F 

.FGND (see if foreground program running and check 
level) 165 . 

File access attributes 20 
File access, change attributes 9 
File attribute commands 51 
File types, examples 7 
File 

backup on magnetic tape 22 
index 12 
overview of 7 
random organization 12 
save 12 
transfer 10 

Licensed Material--Property of Data General 



Filename extensions 9 
Filename.OL 97 
Filename.SV 97 
Floating point hardware, to manage task 249 
Foreground memory, introduction to 2 
Foreground program priority 2 
Foreground program, to execute 162 
Foreground programming, introduction to 2 
Foreground/background system calls 164 
Frame, definition of 14 
Free element chain 120 
Free form input/output modes 23 
Free form mode 57 
Full initialization, function of 17 

G 

.GCHAR (get a character) 72 

.GCHN (get the number of a free channel) 61 

.GCIN (get the input console name) 73 

.GCOUT (get the output console name) 74 

.GDA Y (get today's date) 79 

.GDIR (get current directory name) 42 

.G HRZ (examine the system real time clock) 141 
Global directory specifier 17 
.GMCA (get current CPU's MCA number) 181 
.GPOS (get the current file pointer) 62 
.GSYS (get current operating system name) 44 
.GTATR (get the file attributes and characteristics) 52 
.GTOD (get the time of day) 78 

H 

High level languages, executable program files 2 
Hollerith-ASCII conversion table 235 

I 

.ICMN (define a program communication area) 166 
ID.SRCH (task 10 search) 246 
.IDEF (identify a user interrupt device) 172 
.lOST (get a task's status) 141 
Index blocks 12 
.INIT (initialize a directory or device) 39 
Initial disk block assignments 14 
Initial disk block assignments (Table 2.2) 14 
Input files, default 7 
Input/output 

calls 56 
device names 7 
modes 23 

INT.DS (enter interrupt-disabled state) 245 
INT.EN (leave interrupt-disabled state) 245 
.INTAD (reserve a program interrupt task) 88 

task program 84 
Interprocessor buffer (IPB) 178 

introduction 177 
to program 178 

Licensed Material--Property of Data General 

Interrupt handler program (Figure) 83 
Interrupt routines, to define 83 
Interrupts, to service 171 
.I0PC (initializing the operator communications 

package) 147 
IPB, see interprocessor buffer 
.IRMV (remove a nonSYSGENed interrupt device) 174 
.IXMT (transmit a message from a user interrupt 

service) 130 

K 

Keyboard interrupts 82 
KIL (kill a task) 149 
.KILAD (define a kill-processing address) 125 
.KILL (delete the calling task) 125 

L 

L (link entry) 10 
.LEFD (disable the LEF mode) 193 
.LEFE (enable the LEF mode) 194 
.LEFS (get the LEF mode status) 194 
LFE instruction, see mapped systems 
Line characteristics, to define 31 
Line mode 56 
Line printer copy of file, to obtain 21 
Line printer dump 229 
Line sixty-four reads and writes 28 
.LINK (create a link entry) 54 
Link commands 53 
Link entries 

aliases 18 
definition of 7 
overview of 19 

Load effective address (LFE) instruction 193 
Loading the overlay root programs (Figure) 99 
Logical address 

mapped system 3 
sequentially organized files 11 
space 91 

Lower case letters, RDOS conversion of 9 

M 

MAC.PS (macroassembler permanent symbol file) 6 
Magnetic tape dump 231 
Magnetic tape files 23 
MAP unit, introduction of 3 
.MAPDF (define a window and window map) 110 
MAP.DR 

definition of 14 
function of 13 

Mapped and unmapped memory (Figure) 05 
Mapped system 

addresses 3 
affect of program swaps and chains 93 
extended block input/output 112 

271 



extending address space 103 
load effective address (LFE) instruction 193 
page length 3 
protecting user memory 102 
traps 3 
window mapping 107 

Master device, see master directory 
Master directory 15 
MCA, see multiprocessor communications adaptor 
MCABOOT program 181 
.MDIR (get name of master directory) 44 
.MEM (determine available memory) 75 
.MEMI (change NMAX) 75 
Memory allocation commands 74 
Memory allotment, see mapped system 
Memory block size 102 
Memory considerations 2 
Memory extension with disk space 91 
Memory location numbers and mnemonics. 122 
Minimum hardware to run RDOS 1 
Modem support 29 
Modes, input/output 56 
.MTDIO (perform free format I/O) 70 
.MTDIO values 71 
.MTOPD (open a tape unit and file for free format I/O) 

69 
Muliplexors, to monitor line interrupts 28 
.MULTI (restore the multitask environment) 155 
Multi-task and single-task environments, definition of 

33 
Multiple processor line connections 180 
Multiple processor systems 177 
Multiplexor error messages (Table 2.6) 30 
Multiplexor lines, condition for swapping 92 
Multiplexors, bits that affect (Table 2.4) 28 
Multiplexors, overview of 27 
Multiprocessor communications adaptor (MCA) 

introduction to 177 
MCABOOT program 181 
to program 180 

Multiprocessor system, example 182 
Multitask environment, disabling and enabling 154 
Multitask programs, procedures for building 119 
Multitask scheduler (TCBMON) 33 

N 

N (no links possible) 9 
NMAX (highest address) 3 
NMAX, affect upon program swaps 92 
NREL (normal relocatable memory) 3 

o 
.ODIS (disable console interrupts) 87 
OPCOM, see task 
OPCOM command examples (Figure) 153 
OPCOM commands 

DEQ 148 

272 

..... 

KIL 149 
PRI 149 
QUE 150 
RDY 151 
RUN 151 
SUS 152 
TST 152 

.OPEN (open a file) 57 

.OPEN system call, function of 7 
Operator communication module (OPCOM) 146 
Output files, default 7 
Overlay directory 

place in memory 225 
structure (Figure) 225 

Overlays 
directory of 97 
file size 97 
format to 97 
in swaps and chains 91 
management of 131 
memory considerations 02 
node size 97 
procedures for using 97 
program 91 
user 97 
user (Figure) 98 

.OVEX (release an overlay and return to the caller) 134 

.OVKIL (kill the calling task and release its overlay) 
135 

.OVLOD (load an overlay) 101 

.OVOPN (open overlays for reading) 100 

.OVREL (release an overlay) 134 

.OVRP (replace overlays in an overlay file) 102 

p 

P (permanent file) 9 
Page length, see mapped system 
Page zero memory locations for user programs 3 
Parameters, user 213 
PARS, page zero and hardware reserved locations 233 
Partial initialization, function of 17 
Partitions and subdirectories 15 
Partitions, primary and secondary 15 
PARU.SR, assembler cross-reference listing 223 
PARU.SR, file 213 
.PCHAR (put a character) 73 
Power fail-auto restart procedures 175 
Power-up service, user devices 176 
PRI (change a task's priority) 149 
.PRI (change the calling task's priority) 127 
Primary partition subdirectories 15 
Program development, steps 2 
Program frame, to increase size 250 
Program return, affect on current program 92 
Program swapping (Figure) 93 
Program swaps and chains 91 
Program swaps, definition of 91 
Pseudo-op .ENTO 99 
Push, see program swapping 

Licensed Material--Property of Data General 

( 
I 



-

Q 

.QTSK (queue a memory-resident or overlay task) 135 

.QTSK example (Figure) 137 
QUE (queue a task for periodic execution) 150 

R 

R (read protect) 9 
Random file 15 
Random file block organization (Figure) 12 
Random record mode 57 
.RDB (read a series of disk file blocks) 68 
.RDCMN (read a message from the other program) 

167 
.RDL (read a line) 63 
.RDOPR (read an operator message) 168 
RDOS command summary (Table A.l) 197 
RDOS 

disk organization ( Figure) 21 
executive 3 
features 1 
media 7 
minimum hardware 1 
organization 3 

.RDR (read random record) 67 

.RDS (read sequential) 65 

.RDSW (read the front panel switches or register) 77 
RDY (ready A task) 151 
.REC (receive a message) 130 
Relocatable binary file, see binary file 
.REMAP (perform a logical window transfer) III 
.RENAM (rename a file) 48 
RE.SCHED (leave scheduler state normally) 244 
Reserved device names (Table 2.1) 08 
.RESET (close all files) 62 
Resolution file 18 
RLDR 

function of 3 
in program load 2 

.RLSE (release a directory or device) 41 
Root program, definition of 97 
.ROPEN (open file for reading only) 59 
.RSTAT (get a file's current directory status) 57 
.RTN (return to the program at the next higher level) 

96 
.RUCLK (remove a user clock) 140 
RUN (execute a task) 151 

s 
S (save file) 9 
Save file, definition of 7 
Scheduler call, . TSA VE 243 
.SDA Y (set today's date) 80 
Second controller, names 8 
Secondary partitions, use of to prevent loss 16 
Sequential file block organization 11 

(Figure) 11 

Licensed Material··Property 01 Data General 

Sequential file, definition 10 
Sequential mode 56 
.sINGL (disable the multi task environment) 154 
SMEM (reserve memory in foreground) 3 
.SMSK (modify the current interrupt mask) 174 
.SPDA (disable device spooling) 81 
.SPEA (enable device spooling) 82 
.SPKL (stop a spool operation) 81 
.SPOS (set the current file pointer) 63 
.STAT (get a file's current directory status) 48 
State, definitions 242 
.STMAP (set the data channel map) 175 
.STOD (set the time of day) 79 
Subdirectories, see primary partition subdirectories 
Subdirectories and partitions, maximum number allowed 

17 
Summaries, error code meanings 227 
SUS (suspend a task) 152 
.SUSP (suspend the calling task) 128 
Swapping, introduction to 2 
Symbolic debugger, use with file load 2 
SYS.DR 

block composition 14 
contents 16 
function of 13 

SYS.LB (system library) 
contents of 6 
memory considerations 2 

SYSGEN, see system generation program 
System 

buffer requirements 187 
cell requirements 186 
self-tuning 189 
stack requirements 186 
tuning 185 

System and task calls 
definition of 33 
function of 1 
(Table 3.9) 88 
(Table 4.1) 116 

System buffers 
loca tion in memory 3 
use in file access 12 

System calls 
.APPEND 60 
.BOOT 179 
.BREAK 86 
.CCONT 45 
.CDIR 15,42 
.CHATR 51 
.CHLAT 20, 55 
.CHSTS 50 
clock/calendar 77 
.CLOSE 61 
commonly used (Table 3.1) 36 
.CONN 46 
.CPART 43 
.CRAND 10, 46 
.CREAT 47 

273 



.DDIS 77 .RESET 62 

.DEBL 76 .RLSE 17,41 

.DELET 20, 47 .ROPEN 59 

.DIR 17,40 .RSTAT 57 

.EOPEN 59 .RTN 96 ,,.-,, 

.EQIV 17,43 .sDAY 80 

.ERDB 113 .SMSK 174 

.ERTN 96 .SPDA 81 

.EWRB 114 .SPEA 82 

.EXBG 168 .SPKL 81 

.EXEC 95 .SPOS 63 

.EXFG 164 .STAT 48 

.FGND 165 .STOD 79 
file attribute 51 .TUOFF 191 
file maintenance 45 .TUON 191 
.GCHAR 72 .UIEX 173 
.GCHN 61 .ULNK 20,55 
.GCIN 73 .UPDAT 50 
.GCOUT74 .UPEX 173 
.GDAY 79 .VMEM 110 
.GDIR 42 .WRB 68 
generic format for 34 .WRCMN 166 
.GMCA 181 .WREBL 104 
.GPOS 62 .WRL64 
.GSYS 44 .WROPR 167 
.GTATR 52 .WRPR 104 
.GTOD 78 .WRR68 
.ICMN 166 .WRS 66 
.IDEF 172 with multiplexors 27 
.INIT 17,39 System directory, see SYS.DR 
.INTAD 88 System file names (Table 1.1) 6 r--
.IRMV 174 System generation program (SYSGEN) 1 
.LEFD 193 System library, see SYS.LB 
.LEFE 194 System overlays and their functions (Table 9.1) 187 
.LEFS 194 System shutdown 
.LINK 18,54 examples 22 
.MAPDF 110 procedures for 17 
.MDIR 44 
.MEM 75 T 
.MEMI75 

T (partition file) 10 
.MTDIO 24, 70 
.MTOPD 24, 69 

Tape drive 

.ODIS 87 initializing and releasing 24 

.OPEN 7, 57 rewinding with RELEASE command 26 

.OVLOD 101 Tape file 

.OVOPN 100 input/output modes 23 

.OVRP 102 overwrite (Figure) 27 

.PCHAR 73 to link 27 

program swaps and chains 91 to reference 26 

.RDB 68 write first file (Figure) 26 

.RDCMN 167 Task 

.RDL 63 clock commands 138 

.RDOPR 168 definitions 241 

.RDR 67 ID 117 

.RDS 65 initial 117 

.RDSW 77 initiation 123 

.REMAP III inter-task communication 129 ,-" 

.RENAM 48 managing by ID number 141 
operator communication module (OPCOM) 146 

274 Licensed Material--Property of Data General 



overview 11 7 
priorities 117 
states 119 
suspended 120 
synchronization and communication 121 
to delete 120 
to enqueue 135 
to lock a process 130 

Task and system calls 123 
.TASK (create a task) 124 
Task calls 

.ABORT 126 

.AKILL 126 

.ARDY 128 

.ASUSP 128 

.DELAY 139 

.DQTSK 138 

.DRSCH 156 

.DUCLK 139 

.ERSCH 156 

.IDST 141 

.I0PC 147 

.IXMT 130 

.KILAD 125 

.KILL 125 

.MULTII55 
operator communication 144 
.OVEX 134 
.OVKIL 135 
.OVREL 134 
.PRI 127 
.REC 130 
.RUCLK 140 
.SINGL 154 
single-task 33 
.SUSP 128 
.TASK 124 
.TIDK 144 
.TIDP 142 
.TIDR 143 
.TIDS 143 
.TOVLD 132 
to write 241 
.TRDOP 145 
.TWROP 145 
.UCEX 140 
.XMT and .XMTW 129 

Task control block (TCB) 117 
queues 120 
structure (Table 5.1) 118 
values 250 

Task-processing modules, location in memory 4 
Task resources, to handle additional 246 
Task scheduler 

enabling and disabling 155 
location in memory 4 
memory considerations 2 

Task scheduler callouts, ESV.X 248 

Licensed Material··Property of Data General 

Task scheduler callouts, TRL.X 248 
Task scheduler callouts, TSK.X 247 
Task scheduler commands 

ER.SCHED 244 
ID.SRCH 246 
INT.DS 245 
INT.EN 245 
RE.SCHED 244 
summary of 242 

Task state modification 127 
TCB, see task control block 
.TIDK (kill a task by ID number) 144 
.TIDP (change a task's priority) 142 
.TIDR (ready a task by ID number) 143 
.TIDS (suspend a task by ID number) 143 
TIMEC program listing (Figure) 217 
.TOVLD (load a user overlay) 132 
TOVLD logic sequence (Figure) 133 
Traps 

comparison with exceptional status reports 227 
mapped system 3 

.TRDOP (read a task message from the console) 145 
TRL.X (task termination) 248 
.TSA VE (task state save) 243 
TSK.X (task initiation) 247 
TST (display a task's status) 152 
Tuning commands, CLI 189 
.TUOFF (stop recording in the tuning file) 191 
.TUON (start recording in the tuning file) 191 
.TWROP (write a message to the console) 145 

u 
.UCEX (exit from a user clock routine) 140 
UFD (user file descriptor) 14 

template with displacement mnemonics (Table 3.4) 
49 

.UIEX (exit from a user interrupt routine) 173 
ULM line codes 29 
ULM line speed selection (Table 2.5) 29 
. ULNK (get the file directory information for a channel) 

55 
Universal line multiplexor (ULM), see multiplexors 
Unmapped RDOS, see unmapped system 
Unmapped system 

definition of 3 
dual programs in 161 
location of executive 3 

.UPDAT (update a file) 50 

.UPEX (exit from a power fail service routine) 173 
User address space, to extend 2 
User-defined attribute 

& (ampersand) 9 
? (question mark) 9 

User directories 15 
User file descriptors 14 
User overlay management 131 
User status table (UST), contents of 3 
User status table (UST), structure of (Table 5.2) 121 
User task queue table (Table 5.3) 136 
UST, see user status table 

275 



v 
Virtual overlays 

procedures for loading and remapping 102 
use to store subroutines 91 
with .OVLD 106 

.VMEM (determine the number of free blocks) 110 

w 
W (write protect) 9 
Window map 

to define and perform 107 
use in mapped system 91 

· WRB (write a series of disk file blocks) 68 
.WRCMN (write a message to the other program) 166 
· WREBL (remove write protection from protected 

memory area) 104 
Write-protecting memory (Figure) 103 
· WRL (write aline) 64 
.WROPR (write an operator message) 167 
.WRPR (protect memory area from modification) 104 
.WRR (write random record) 68 
.WRS (write sequential) 66 

x 
.XMT and .XMTW (transmit a message and wait) 129 

y 

y (directory file) 10 

z 
ZREL (page zero relocatable memory) 3 
ZREL space, to conserve 119 

276 
licensed Material··Property of Data General 



LUI 
~I 
--J, 

8-
t-
0_ 
Q, 
v 
Z' 
0, 
• ..,J 

«' 
f-, 
::J 
(,), 

~. Data General 
users 
gpoup Installation Membership Form 

Name ______________ _ Position _________________ _ Date _____ _ 

Company. Organization or School ___________________________________ _ 

Address ______________ _ City ___________ Stat\:' ______ Zip _____ _ 

Telephone: Area Code _____ _ No. ___________ _ 
Ext 

1. Account 
Category 

2. Hardware 

M/600 
MV /Series ECLIPSE" 

Commercial ECLIPSE 
Scientific ECLIPSE 

Array Processors 

CS Series 
NOVA"4 Family 

Other NOVAs 

microNOVA" Family 

MPT Family 

Other 
(Specify) 

3. Software 

4. Languages 

o OEM 

o End User 
[] System House 

D Government 

Qty. Installed I Qty. On Order 

0 AOS [J RDOS 

0 AOS/VS [J DOS 

0 AOS/RT32 [1 RTOS 

[J MP/OS [J Other 

0 MP/AOS 

Specify 

0 ALGOL 0 BASIC 

0 DG/L 0 Assembler 

0 COBOL 0 FORTRAN 77 

0 Interactive 0 FORTRAN 5 
COBOL 0 RPG II 

0 PASCAL 0 PL/1 
0 Business 0 APL 

BASIC [J Other 
Specify 

5. Mode of 
Operation 

6. Communication 

7. Application 
Description 

8. Purchase 

9. Users Group 

C Batch (Central) 

C Batch (Via RJE) 

L On-Line Interactive 

0 HASP 0 X.25 

0 HASP II 0 SAM 

0 RJE80 0 CAM 

[.I RCX 70 0 XODIACTM 

[J RSTCP 0 DG/SNA 

C] 4025 0 3270 

D Other 

Specify 

° 

From whom was your machine(s) 
purchased? 

[J Data General Corp. 
[J Other 

Specify ______ _ 

Are you interested in joining a 
special interest or regional 

Data General Users Group? 

0 _________ __ 

t. Data General 
Data General Corporation. Westboro. Massachusetts 01580. (617) 366-8911 



" 

FOLD 

TAPE 

FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772 

Postage will be paid by addressee: 

~. DataGeneral 
ATTN: Users Group Coordinator (C-228) 
4400 Comput er Drive 
Westboro, MA 01581 

FOLD 

TAPE 

FOW 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



-

t. Data General TP ____ _ 

TIPS ORDER FORM 
Technical Information & Publications Service 

BILL TO: SHIP TO: (if different) 

COMPANY NAME COMPANY NAME 

ADDRESS ADDRESS 

CITY CITY 

STATE ZIP STATE ZIP 

ATTN. ATTN: 

QTY MODEL # DESCRIPTION 
UNIT LINE 
PRICE DISC 

(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL 

Tax Exempt II Sales Tax 
or Sales Tax (if applicable) 

Shipping 

TOTAL 

METHOD OF PAYMENT --------- SHIP VIA 
D Check or money order enclosed D DGC will select best way (U.P.S or Postal) 

For orders less than $100.00 

D Charge my D Visa D MasterCard 
Acc't No. ___ _ Expiration Date ___ _ 

D Purchase Order Number: ________ _ 

D Other: 
D U .P.S. Blue Label 
D Air Freight 
D Other 

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING. 

Person to contact about this order 

Mail Orders to: 

Data General Corporation 
Attn: Educational ServiceslTIPS F019 
4400 Computer Drive 
Westboro, MA 01580 
Tel. (617) 366-8911 ext. 4032 

_________________ Phone _________ __ Extension 

Buyer's Authorized Signature 
(agrees to terms & conditions on reverse side) 

Title 

TOTAL 
PRICE 

Date 

DGC Sales Representative (If Known) Badge II 

DISCOUNTS APPLY TO 
MAIL ORDERS ONLY 012-1780 

[~) 



DATA GENERAL CORPORATION 
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE 

TERMS AND CONDITIONS 

Data General Corporation ("DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following 
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof 
which is accepted by DGC. 

1. PRICES 
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or 
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof. Prices are 
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to 
collect or pay on the sale, license or delivery of the materials provided hereunder. 

2. PAYMENT 
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30) 
days from date of invoice. 

3. SHIPMENT 
Shipment will be made F .O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon 
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard 
to loss, damage or delay during shipment. 

4. TERM 
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon 
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC 
publications will be governed by the terms and conditions of this Agreement. 

5. CUSTOMER CERTIFICATION 
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject 
matter of the publication(s) ordered hereunder. 

6. DATA AND PROPRIETARY RIGHTS 
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such 
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details 
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and 
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into 
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure. 

7. DISCLAIMER OF WARRANTY 
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER. 

8. LIMITATIONS OF LIABILITY 
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN 
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS. 

9. GENERAL 
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order 
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written 
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi
tional terms and conditions which may appear on any order submitted by Customer. 

DISCOUNT SCHEDULES 

DISCOUNTS APPLY TO MAIL ORDERS ONLY. 

LINE ITEM DISCOUNT 

5-14 manuals of the same part number - 20% 
15 or more manuals of the same part number - 30% 

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY. 



t. DataGeneral 

TIPS ORDERING PROCEDURE: 

Technical literature may be ordered through the Customer Education Service's Technical Information 
and Publications Service (TIPS). 

1. Turn to the TIPS Order Form. 

2. Fill in the requested information. If you need more space to list the items you are ordering, use an 
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal" 
on the form. 

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the 
back of the TIPS Order Form.) 

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.) 

If your order totals less than 100.00, enclose a certified check or money order for the total (include 
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling. 

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified, 
orders are normally shipped U.P.S. 

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order 
Form. 

7. Sign on the line provided on the form and enclose with payment. Mail to: 

TIPS 
Educational Services - M.S. F019 
Data General Corporation 
4400 Computer Drive 
Westboro, MA 01580 

8. We'll take care of the rest! 





User Documentation Remarks Form 
Your Name ___________________ Your Title ______________ _ 

Company ____________________________________________ __ 

Street _________________________________________________________________ ___ 

City _______________________ State _______ Zip ______ _ 

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your 
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond. 
Thank you. 

Manual Title __________________________ Manual No. __________ _ 

Who are youl o EDP Manager 

o Senior Systems Analyst 

o Analyst/Programmer 

DOperator 

DOther ________ _ 

What programming language(s) do you usel __________________________ _ 

How do you use this manuaU (List in order: I = Primary Use) _____________________ _ 

About the manual: 

Introduction to the product 
Reference 

Tutorial Text 
Operating Guide 

___ Other 

Is it easy to readl 
Is it easy to understandl 
Are the topics logically organizedl 
Is the technical information accuratel 
Can you easily find what you wanH 
Does it tell you everything you need to know 
Do the illustrations help youl 

Yes Somewhat 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

No 
o 
o 
o 
o 
o 
o 
o 

If you have any comments on the software itself, please contact Data General Systems Engineering. 
If you wish to order manuals, use the enclosed TIPS Order Form (USA only). 

Remarks: 

Date 



II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772 

POSTAGE WILL BE PAID BY ADDRESSEE 

t. DataGeneral 
User Documentation, M.S. E-111 
4400 Computer Drive 
Westborough, Massachusetts 01581 

tr99-v£1 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED ST ATES 



1-



-
Data General Corporation, Westboro, MA 01580 

·111~11~11~11~~UII~IIII~m~1 . 
093-400027-01 


