L~

to Use

earning

L

=
mdp o
P

RDOS/DOS
‘System

069-000022-01

Learning to Use
Your
RDOS/DOS
System

069-000022-01

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 069-000022

© Data General Corporation, 1978, 1979
All Rights Reserved

Printed in the United States of America
Revision 01, August 1979

Preface

RDOS is an acronym for Data General’s Real-time
Disk Operating System; DOS stands for Disk Operating
System. In an hour or two, you can develop a working
sense of either system by using it. This book leads you
through the steps required to:

® Talk to the system through the Command Line
Interpreter (CLI);

Write programs with a text editor progfam; '

Produce and runa FORTRAN IV program;

Program in Extended BASIC; and

Write, produce debug, and execute an assembly
language program.

We don’t attempt to describe all features of your
operating system, the CLI, other utility programs, or
the compilers you’ll be using. These are all described
completely in the manuals listed below.

If your operating system is new to you, this book will
give you a practical basis for using it. If you want to
generatea system (which someone must do before you
can really use this manual), see How to Load and
Generate Your RDOS Systemfor RDOS, or the
appropriate chapter of The DOS Reference Manualfor .
DOS. After you have generated a system, return to this
manual.

If you plan to program in an advanced language other
than FORTRAN IV or BASIC, you’ll be using a
different compiler, but the material on the CLI and
assembly language will be useful nonetheless.

069-000022-01

Reader, Please Note:

We use these conventions for command formats in this
manual:

COMMAND required [optional] ..

Where Means

COMMAND You must enter the command (or
its accepted abbreviation) as
shown.

You must enter some argument
(such as a filename). Sometimes,
we use:

required

required;
required,

which means you must enter one of
the arguments. Don’t enter the
braces; they only set off the choice.

You have the option of entering
this argument. Don’t enter the
brackets; they only set off what’s
optional.

[optional]

You may repeat the preceding
entry or entries. The explanation
will tell you exactly what you may
repeat.

Contents

Chapter 1 - Terms and Concepts

Whatare RDOSand DOS?., 1-1
How DoIDevelop Programs?. 1-1
Managing Main Memory, 1-2
Whatisa File?. 1-2
Let’sGetStarted 1-2

Chapter 2 - At the Console - RDOS

Starting Up (Bootstrapping) 2-1
Typing Mistakes, Control Charactersand BREAK Key. 2-2
TheSession 2-2
LogFile. 2-2
Master Directory Name 2-2
CreatingSome Files. 2-2
Creating Some Directories. 2-4
Link Entries 2-8
Concluding the Session 2-10

Chapter 3 - At the Concole - DOS

Program Load Steps (Bootstrapping) 3-1
Computers with Programmed Consoles 3-1
Computers without Programmed Consoles 3-2
Bringing Up DOS. 3-2
Typing Mistakes, Control Characters,and BREAKKey 3.2
TheSession 3-3
LogFile 3-3
Master Directory Name 3-3
CreatingSome Files. 3-3
Creating Some Directories. 3-5
Link Entries 3-8
Concluding the Session 3-9
File Backup on a Double-density Diskette or Hard-disk System. 3-9
File Backup On Single-Density Diskettes 3-10
Cleaning Up 3-10
Using the Backup Diskette. 3-10
Shutting Down. 3-11

069-000022-01

Chapter 6 - Instant FORTRAN IV Programming

Program StePS e 6-1
Writing the FORTRAN Source Program, 6-1
Compiling the FORTRAN Program6-2
CreatingtheSave File. 6-5
Executing the FORTRAN Program 6-5
Compile, Loadand Go 6-6

Chapter 7 - Extended BASIC Programming

Writing BASIC Programs. 7-1
Sample Session, 7-2
Strings and AITAYS 7-3
BASIC Program 7-4
Running the BASIC Program 7-7
Itemized Deductionsand Tax Bracket 7-9

TaxBracket. e 7-9

Chapter 8 - Assembly - Language Programming: The Assemblers

069-000022-01

The Assemblers e 8-1
Understanding Program Listings. 8-2
Symbols 8-4
Argument Operators 8-4
Numbers e 8-5
Instruction Types 8-5
Special Instruction Symbols L 8-7
Special Characters. P, 8-7
Pseudo-ops. e 8-8
BLK e 8-10

END . . e 8-10

ENT. e 8-11

EXTD. . . . e 8-12

EXTN . e 8-13

NREL . . . 8-13

TITL . . e 8-14

TXTM e 8-14

TXT. . e 8-14

ZREL. . . . e 8-15

Vii

Illustrations

Figure Caption

069-000022-01

Master Directory Listing. L 2-4
Disk with Subdirectory. 2-5
Disk with Secondary Partition and Subdirectories.0 2-7
Disk with Secondary Partition, Subdirectoriesanda Link Entry 2-9
Master Directory Listing. o o ot 3-5
Disk with Directory. o o o e 3-6
Disk with TwWo Directories. o o i e e e e e e 3-7
Disk with Directoriesanda Link Entry 3-9
MORTGAGE.FR Program Flowchart 6-2
MORTGAGE.FR Program With Errors 6-3
Compile-Time Error Messages oo ittt 6-4
Sample of Extended Schedule from MORTGAGE. 6-6
MORTGAGE Program Flowchart., 7-5
MORTGAGE Program With Errors. 7-6
Program Listing e 8-3
Cross-Reference Listing e 8-4
Byte Pointer Structure 9-1
WRITE Flowchart. e 9-6
WRITE.SR Program with Errors. 9-9
WRITE.SR Program without Errors 9-17
RLDR Load Mapfrom WRITE 9-19

ix

Chapter 1
Terms and Concepts

What are RDOS and DOS?

The Real-time Disk Operating System (RDOS) is a
general-purpose software package that can support
real-time control, batch, or program development.
RDOS runs on NOVA®and ECLIPSE®computers; it
can.use many different kinds of disks, and supports up
to 512K bytes of memory. ’

The Disk Operating System (DOS) is a compatible
subset of RDOS, and supports up to 64K bytes of
memory. DOS runs on diskettes or hard disks, on
NOVA and microNOVA ™ computers.

Both RDOS and DOS permit multitasking. This means
that different program tasks can run concurrently, and
that each task can respond individually to its own
environment. Multitasking can make a program more
efficient by permitting it to do useful processing while
waiting for a slow peripheral device to complete an
operation. However, multitasking is outside the scope
of this book. You can find more information on
multitasking in Chapter S of your RDOS or DOS
Reference Manual.

How Do | Develop Programs?

Depending on your programming language interests,
you’ll use one or more system programs or utilities
(two terms we use interchangeably). You’ll always
need the CLI, whose operating procedures we describe
in Chapters 2 and 3, and whose common commands we
survey in Chapter 4.

Unless you’re a BASIC programmer, you’ll be using a
text editor utility to write your programs. Chapter 5
explains Superedit - one of our editors.

If you are a FORTRAN IV programmer, this is the

cycle you will follow from creating through executing a
program:

069-000022-01

1) Create a FORTRAN source file using Superedit.

2) Compile the source file; compilation produces a
binary file.

3) Load the.binary file with the required FORTRAN
libraries; the result is an executable program.

4) Execute the program.

Chapter 6 leads you through the steps to produce and
run a sample FORTRAN program.’ ’

If you are a BASIC programmer, you need no system

utilities except the CLI. Chapter 7 gives a capsule
sketch of BASIC programming. .

If you are an assembly language programmer, your
procedure is much the same as the FORTRAN
programmer’s:

1) Create an assembly language source file using
Superedit.

2) Asserhbl,e:the source file; the assembly produces a
binary file. Chapter 8 describes the assemblers.

3) Load the binary file. This produces an executable
program.

4) Execute the program.

Chapter 9 leads you through the procedures to create
and execute an assembly language program.

The remainder of this chapter describes two

fundamental system concepts: memory management
and files. ’

1-1

Chapter2
At the Console - RDOS

This chapter describes a sample session with RDOS and
the CLI, and leads you through many of the things you
do on the keyboard to create and organize files. When
you’ve finished the session, you’ll have a practical
working knowledge of RDOS basics. (For a session
with DOS, see Chapter 3.)

If you inadvertently depart from a step we describe,
your later experiences may differ from the text
description. This is ok; mistakes are a primary vehicle
for learning, and the CLI will usually prevent disasters.
If you get really lost, go back to the beginning of the
section you are in and give the files and directories
different names; for example, FILEA1.MC instead of
FILEA.MC.

Later on, you can find more detail on the features and
ramifications of your commands in the RDOS/DOS
Command Line Interpreter User’s Manual or the RDOS
Reference Manual. If you generated your own RDOS
system, you already have some experience with RDOS.

Starting Up (Bootstrapping)

Turn your system console ON, and make sure it is ON
LINE. On some DASHER ™ displays, the LINE switch
is in back of the console. If this console has both upper-
and lowercase letters, set it in uppercase mode with the
ALPHA LOCK key because the program that brings up
the system doesn’t accept lowercase letters. Later you
can change back to upper- and lowercase mode.

Press or turn the computer’s POWER switch to ON and
flip the disk power switch (not the LOAD/READY or
START switch) to ON. If your system is on a
removable disk and the diskette is not in its drive,
insert it in drive 0 and flip the LOAD/READY switch
to READY (or press START). On any disk, wait for
the READY light.

Now, turn to the system console. If it shows an
exclamation point (!) prompt, then you have a virtual
or programmed console. If it shows nothing, then your
computer has hardware data switches.

For a machine with a programmed console, find nn in
Table 2-1. Type 1000nnL (for example, 100033L) on
the system console next to the ! prompt. Skip the next
paragraph.

069-000022-01

Table 2-1. Disk Device Codes

Disk Type Model No. Device Set These
Code (octal) Switches Up
(Others
nn = Down):*
Fixed-head
Model 6001-08 20 0,11
Model 6063/64 26 0,11,13,14
Moving-head
Model 6060/61 27 0,11, 13,
14,15
All others 33 0,11, 12,
14, 15

* For a disk on the second controller, also set switch 10 up

For a machine with hardware data switches, turn to the
computer front panel and make sure the data switches
are set properly for your type of disk, as shown in Table
2-1. The data switches are toggle-type switches,
numbered 0 through 15. If the switches aren’t set
properly, fix them. (If your computer lacks automatic
program load, see Chapter 2 of How to Load and
Generate Your RDOS System for the manual load
procedure.) Now, lift the RESET switch, then the
PROGRAM LOAD switch.. ‘

For either type of computer, the system console will
ask:

FILENAME?

It’s asking for the name of your RDOS system. If the
person who generated this system gave it any name
other than SYS, you must type that name; but let’s
assume it was named SYS. To indicate SYS, type SYS
and press the RETURN key ()), or simply press).

2-1

Vonla You now have an empty disk file named FILEA.
FILEA was an argumentto your command, it told the
CLI what to name the new file. Some CLI commands
require arguments, others don’t.

You can verify FILEA’s exiétence with the LIST
command:

LIST FILEA)
FILEA. 0D
R

and remove FILEA with the DELETE command:

DELETE/V FILEA)
DELETED FILEA
R

The /V is a switch, which modifies the basic meaning of
a command; here, it told the CLI to verify the deletion.
Now, create a different version of FILEA:

CRAND FILEA.MC)
R

Now there’s an empty FILEA.MC on the disk.
Normally, you’d use a text editor to put something in
it, but you haven’t reached Chapter 5 -- Creating and
Editing Text-- yet. You can, however, insert text by
transferring it directly from the console into
FILEA.MC:

XFER/A/B $TTI FILEA.MC

MESSAGE HELLO)

CTRL-Z (Hold down CTRL key and press Z)
R

The CTRL and Z keys won’t echo as characters on the
console. On a display terminal, the R prompt may leap
to the top of the screen when you type CTRL-Z. If so,
type CTRL-L to clear the screen and proceed with a
clear screen.

You’ve just transferred the CLI command MESSAGE
and the text string HELLO into FILEA.MC. The
XFER command transfers the contents of one file (the
console input file, $TTI) to another file (disk file
FILEA.MC). XFER requires two arguments; in this
case, they were $TTI and FILEA.MC. The /A switch
specifies ASCII transfer; /B tells XFER to append to
the existing file. If you omitted /B, XFER would try to
create FILEA.MC, which would produce an error
message because FILEA .MC already exists.

Try to execute FILEA.MC:
FILEA)

HELLO
R

069-000022-01

Your FILEA.MC is a CLI macro. The .MC extension
tells the CLI to execute all commands within it. You
can omit the .MC extension to executea file, but you
must include it for all other commands that involve the
file. Check FILEA.MC’s statistics with LIST:

LIST/E FILEA:MC)
FILEA.MC 14 D 04/02/79 13:20 04/02/79 [000444]0
R .

the /E switch tells the CLI to list every statistic about
the file. These include byte-length (14), organization
type (D means random), date and time created or last
modified, date last opened, starting disk block address
in octal, and use count. Obviously, the central four
categories will differ for your own FILEA.MC.

To check the file’s contents, type:

TYPE FILEA.MC)
MESSAGE HELLO
R

Now, you can add a little sophistication to FILEA.MC:

XFER/A/B $TTI FILEA.MC)-

MESSAGE HOW MANY BLOCKS ARE LEFT)
MESSAGE ON THIS DISK ? ;DISK)

MESSAGE WHAT’S THE CURRENT DIRECTORY)
GDIR)

CTRL-Z

R

One problem with inserting text this way is that you
can’t edit. If you make a mistake and don’t correct it
before you terminate the line with a),you must delete
the file and rebuild it from the beginning. Having made
no mistakes, check the improved macro:

FILEA)

HELLO

HOW MANY BLOCKS ARE LEFT
ON THIS DISK?

LEFT:9008 USED:768

 WHAT’S THE CURRENT DIRECTORY?
* Dxx

R

FILEA .MC is much larger now, as you can see:

LIST FILEA.MC)
FILEAMC 118D
R

FILEA.MC now contains four MESSAGE commands,
a DISK command, and a GDIR command. Each would
work separately, but you’ve combined them. (Your
own DISK figures may differ from those here).

The MOVE command copies the files into the new
directory; the /V switch instructs the CLI to verify their
names as they arrive. Now, the files are safely in
MACRODIR; you can make MACRODIR the current
directory and then list the files in it:

DIR MACRODIR)
R .

LIST)

FILEA.MC 118D
FILEB.MC 14

R

The DIR command makes MACRODIR the current
directory. DIR also /nitializes a directory, if it hasn’t
been initialized. Initialization opens a directory for
access to its files. The MOVE command - an exception
to the rule - doesn’t require initialization, but other
commands do. Starting up RDOS automatically
initializes the master directory, but you must
specifically initialize other directories to use them. DIR
does this for you.

Now you can check the current directory with another
useful command:

GDIR)
MACRODIR
R

For neatness, let’s delete the original files in master
directory Dxx. First, get back to the master directory:

DIR %MDIR%)
R

%MDIR% is a CLI variable that contains the master
directory name. You can use it in command lines just as
you’d use Dxx.

069-000022-01

Now to delete the original files:

DELETE/V FIELA.MC FILEB.MC)
FILEDOES NOT EXIST: FIELA.MC
DELETED FILEB.MC

R

Typos are no-noes.

DELETE/V FILEA)
FILE DOES NOT EXIST: FILEA
R

(sigh)

DELETE/V FILEA.MC)
DELETED FILEA.MC
R

At this point, your disk looks like Figure 2-2; the
current directory is Dxx.

SD-00730

Figure 2-2. Disk with Subdirectory

2-5

SD-00731

Figure 2-3. Disk with Secondary Partition and Subdirectories

The master directory, Dxx, is the primary partition; it
has one secondary partition, ALPHA, and one
subdirectory, MACRODIR, ALPHA, in turn, has one
subdirectory, BETADIR.

Your directory structure is growing. Take a breather,
and offer thanks for the GDIR and DIR commands. If
the hierarchy seems too complex, you can always
delete the new directories later.

The system allows you to execute any file simply by
typing the directory name, a colon, and the file name
(of course, you could always DIR to the directory you
wanted, then type the file name, but that requires an
extra step).

GDIR)

BETADIR

R

INALPHA)

FILE DOES NOT EXIST: INALPHA.SV
R

(True, in directory BETADIR.) Try a directory
specifier:

ALPHA:INALPHA)

I'M A FILE IN SECONDARY
PARTITION ALPHA.

R

069-000022-01

Eureka. The directory specifier (:) also works with most
other CLI commands:

LIST ALPHA:INALPHA.MC)
ALPHA:INALPHA.MC 57

R

TYPE ALPHA:INALPHA.MC)

MESSAGE I'M A FILE IN SECONDARY
MESSAGE PARTITION ALPHA.

R

Try it with FILEA.MC in MACRODIR: -

MACRODIR:FILEA)

HELLO

HOW MANY BLOCKS ARE LEFT
MESSAGE ON THIS DISK?

LEFT:97 USED:31

WHAT'S THE CURRENT DIRECTORY?
BETADIR

R

This example shows two things: that DISK always
returns the space left in the current partition (here,
ALPHA), and that GDIR always returns the current
directory name (even though a file in another directory
issues GDIR).

2-7

You can use any name you want for a link, but if you
forget it, your link will be useless. In this example, the
link name had to.-be FILEA.MC because FILEB.MC
would search for that name only.

You’ll use the same procedure to create all links. For
example, the RDOS Macroassembler uses three files,
which can require up to 250 disk blocks. You can link to
the files from any directory, use the assembler, and
consume only a few bytes per link.

You have now created files, a subdirectory, a secondary
partition, another subdirectory, and a link entry, and
used the commands LOG, CRAND, LIST, DELETE,
XFER, TYPE, MESSAGE, DISK, GDIR, RENAME,
CTRL-A (not really a command, but an interrupt),
CDIR, MOVE, DIR, CPART, INIT, RELEASE,
LINK, and UNLINK. You’ve also used switches and
template characters, - and *, and CLI variable
%MDIR%.

Your disk structure now looks like Figure 2-4.

SD-00732

Figure 2-4. Disk with Secondary Partition, Subdirectories and a Link Entry

069-000022-01

2-9

Normally, whatever device you’re dumping to, you’ll
want to dump selected files, not the entire disk. To
dump files by date, use the /A switch, which instructs
the CLI to dump only those files created or modified on
or after a specific date. The counterpart of /A (after) is
/B (before).

MTO:0

04-01-79/A)
DP1:040279.DU

DUMP/V {

You DUMP any specific directory from within it:

DIR ALPHA)
R

MTO:n
DUMP/V { })
DPn:040279.DU

By dumping a directory, you dump its contents; hence,
dumping ALPHA also dumps BETADIR.

You can also use the template characters within the
current directory. For example, to dump all save and
overlay files from current directory Dxx, you would
type:

DUMP/V destinationfile -.SV -.0OL)

Later on, to return the DUMPed files to the current
directory, you must use the LOAD command. The /R
switch, described under LOAD in Chapter 4, conflicts
with identical filenames that exist in the current
directory. After readying the source device, you must
INIT it, then do the LOAD:

DIR %MDIR%)

{ MTO }
INIT)
DP1

R

MTO0:0
LOAD/V)
DP1:040279.DU

069-000022-01

You can also use local date switches and the template
characters in the LOAD command.

At this point, we assume that you’ve DUMPed all the
files you created during this session. If you want, you
can now delete them and restore the disk to its original
state with only the system files on master directory
Dxx. This requires little effort:

DIR %MDIR%)

R

RELEASE ALPHA)

R

DELETE/V ALPHA.DR)
DELETED ALPHA.DR

R

RELEASE MACRODIR)

R

DELETE/V MACRODIR.DR)
DELETED MACRODIR.DR
R

The RELEASE command removes the directory or
device that you introduced by INIT (or DIR) to the
system. It also releases any subordinate directories. At
this point, if you opened log file LOG.CM earlier, you
might want to close it and print it. This will give you a
hard-copy record of your dialog with the CLI. If you
have a line printer, turn it on, place it ON LINE, and
type:

ENDLOG)
R
DIR %MDIR%)

R
PRINT LOG.CM)

R

If you have no line printer, but have a printing console
connected to the second keyboard/printer interface,
type:

ENDLOG)

R

DIR %MDIR%)

R

XFER/ALOG.CM $TTO1)

2-11

Chapter 3
At the Console - DOS

This chapter describes a sample session with DOS and
the CLI, and leads you through many of the things you
would do on the keyboard to create and organize files.
When you’ve finished the session, you’ll have a
practical working knowledge of DOS basics. (For a
session with RDOS, see Chapter 2.)

If you inadvertently depart from a step we describe,
your later experiences may differ from the text
description. This is ok; mistakes are a primary vehicle
for learning and the CLI will usually prevent disasters.
If you get really lost, go back to the beginning of the
section you are in and give the files and directories
different names; for example, FILEA1.MC instead of
FILEA.MC.

Later on, you can find more detail on the features and
ramifications of your commands in the RDOS/DOS CL/I
User’s Manual or the DOS Reference Manual. If you
generated your own DOS system, you already have
some experience with DOS.

This session assumes that you’ll be using a hard disk
with diskette or dual-diskette drive and that the system
disk (ette) will be in drive 0. You can, however, do
almost everything in this chapter with a single diskette
drive.

Within this chapter and book, the word disk means
either hard disk or diskette; diskette means only
diskette.

Program Load Steps (Bootstrapping)

Turn your system console ON, and make sure it is ON
LINE. On some DASHER ™ displays, the LINE switch
is in back of the console. If this console has both upper-
and lowercase letters, set it in uppercase mode with the
ALPHA LOCK key because the program that brings up
the system doesn’t accept lowercase letters. Later you
can change back to upper- and lowercase mode.

Turn or press the computer power switch to ON or
RUN, whichever applies. Turn the disk or diskette
drive ON. If your DOS system is on a removable
hard-disk cartridge, make sure this cartridge is in its
drive; press the LOAD/READY switchto READY.
For any hard disk, wait for the READY lamp to light.

069-000022-01

For diskette-based DOS, make sure the write-protect
hole of the system diskette is taped. Then insert this
diskette in diskette drive 0 and close the door. (If you
don’t know which drive is 0, try the left; then if
program loading doesn’t work, try the right. The one
that works is drive 0.) '

Look at the system console. If it shows an exclamation
point (!) prompt, then you have a virtual or
programmed console. If it shows nothing, then your
computer has either a hand-held console, console
debug, or CPU program load.

Computers with Programmed Consoles

For a microNOV A machine with a programmed
console, find n in Table 3-1. Type nL (for example,
100026L) on the system console. Skip to Bringing Up
DOS.

For a NOV A computer with a programmed console,

type 100033L on the system console. Skip to Bringing
Up DOS. '

Table 3-1. microNOVA Device Codes

Disk type: n=-

Hard, sealed disk (hard disk 100026
without a LOAD/READY

switch).

Hard dual-platter disk
subsystem (disk drive with a
LOAD/READY or
LOAD/RUN switch).

100027

Double-density diskette (these 100026
drives have a lamp in the center

of the latch).

Single-density diskette (these 33
drives have three lamps above
the diskette slot).

3-1

The Session

If your system console has a display screen instead ofa
printer, you should record console dialog in the disk log
file so that you can print and review it later. If the |
system console has a printer, it provides reviewable
copy as you type; you don’t need a disk log file and can
proceed to the section called Master Directory Name.

Log File
With a display terminal, type
LIST LOG.CM)

If there is an old LOG.CM log file on the disk, the
screen will display

LOG.CM

and a number and letter, then the R prompt. Preserve
the old log file by typing

RENAME LOG.CM LOGOLD.CM)
R

Next, whether or not there was an old log file, type
LOG/H)
to create a new log file, open it, and start recording

cconsole dialog in it. Later, to close the log file, you’ll
type ENDLOG).

Master Directory Name

Next you should discover your master directory name
So type:

)

MDIR)

The CLI returns the master directory name, which
varies with the type of disk you have. Generally, itis
either DEO, DP0, or DHO. We use Dxxto indicate the
master directory name, so you should mentally
substitute the name returned from MDIR) for Dxxin
this session.

069-000022-01

Creating Some Files -

The next step, naturally, is to create a file. The CLI

offers several file-creating commands, and we choose
CRAND:

CRAND FILEA)
R

Voila. You now have an empty disk file named FILEA.
FILEA was an argumentto your command; it told the
CLI what to name the new file. Some CLI commands
require arguments, others don’t.

You can verify FILEA’s existence with the LIST
command:

LIST FILEA)
FILEA. 0D
R

and remove FILEA with the DELETE command:

DELETE/V FILEA)
DELETED FILEA
R

The /V is a switch, which modifies the basic meaning of
a command; here, it told the CLI to verify the deletion.
Now, create a different version of FILEA:

CRAND FILEA.MC)
R

Now there’s an empty FILEA.MC on the disk.
Normally, you’d use a text editor to put something in
it, but you haven’t reached Chapter 5 -- Creating and
Editing Text-- yet. You can, however, insert text by
transferring it directly from the console into
FILEA.MC:

XFER/A/B $TTI FILEA.MC

MESSAGE HELLO)

CTRL-Z (Hold down CTRL key and press Z)
R

3-3

The CLI looked for FILEB.MC, then for the save file,
FILEB.SV; finding neither, it returned the error
message. To fix it, give FILEB the :MC extension:

RENAME FILEB FILEB.MC)
R B
FILEB)

MESSAGE HELLO

MESSAGE HOW MANY BLOCKS ARE LEFT
MESSAGE ON THIS DISK ?;DISK

You planned to have your second file type your first file
and succeeded. Now, you’d like to compare the files, so
you type LIST/E without an argument, as in Figure
3-1.

Y our command told the CLI to list all nonpermanent
files in the master directory; who knows how long the
listing would have continued if you hadn’t hit the
CTRL-A keys to interrupt the command and return the
CLI prompt. (Your own listing will differ from that
above). The letters following the byte count indicate
the file type and organization.

There are some old friends shown in Figure 3-1:-
SYS.SV, CLLSV (save files always end in .SV), and
FILEA.MC. If you generated your own system, you’ll
recognize BOOT.SV. Unfortunately, FILEB.MC didn’t
show up. You could list the entire contents of directory
DPO to find FILEB.MC, but there’s a better way: create
a directory for the two macro files.

Creating Some Directories
Proceed to create a directory:

CDIR MACRODIR)
R

Now, to move the macros into the new directory.

MOVE/V MACRODIR FILEA.MC FILEB.MC)
FILEA-MC

FILEB.MC

R

The MOVE command copies the files into the new
directory: the /V switch instructs the CLI to verify their
names as they arrive. Now, the files are safely in
MACRODIR; you can make MACRODIR the current
directory and then list the files in it:

DIR MACRODIR)
R

LIST)
FILEA.MC 118
FILEBMC 14
R

The DIR command makes MACRODIR the current
directory. DIR also initializes a directory, if it hasn’t
been initialized. Initialization opens a directory for
access to its files. The MOVE command - an exception
to the rule - doesn’t require initialization, but other
commands do. Starting up DOS automatically initializes
the master directory, but you must specifically initialize
other directories to use them. DIR does this for you.

LIST/E)

SY8,SV 36864 SO 03/26/79 13:36 03/26/79 (002707) "]
DSKED,SV 18432 SO 03/29/78 16:18 03/29/78 [(001670) 0
RLDOR, SV 4608 SD 13/723/78 13:16 ©03/23/78 [(015741) 0
CLI.OL 43008 C 10/05/78 10:14 03/308/79 (000366) 1
B800T,. 8V 6656 SD 10/05/78 23:03 10/05/78 [(080522) 2
FILEA ,MC 118 D Q4/02/79 13:24 0QU/02/79 (BGBU4UY) 0
CLI,SV 10752 8D 10/05/78 108:14 10/05/78 (003467) "]
CTRL-A

INT

R

Figure 3-1. Master Directory Listing

069-000022-01"

3-5

Templates work only with certain commands, in certain
contexts. Don’t be afraid to experiment with them
(except DELETE); at worst, you’ll get an error
message.

At this point, you can explore disk directories further.
Your disk has the master directory (Dxx) and one
other directory (MACRODIR). Because you’ve just
started using your system, you don’t have enough
different kinds of files to require another directory; but
eventually you will want others. So, make sure Dxx, is
the current directory, and create another directory.

DIR %MDIR%)

R

CDIR ALPHA)

R

LISTO-.DR)
MACRODIR.DR 512DY
ALPHA.DR 512DY
R

Now, you can proceed with your file hierarchy by
giving the new directory a little file:

DIR ALPHA)

R

XFER/A $TTI INALPHA.MC)

MESSAGE I'M A FILE IN DIRECTORY ALPHA.)
CTRL-Z

R

DIR %MDIR%)

R

Your disk structure looks like Figure 3-3. The current
directory is ALPHA.

$D-00739
Figure 3-3. Disk with Two Directories

069-000022-01

The system allows you to access or execute any file
simply by typing the directory name, a colon, and the
file name (of course, you could always DIR to the
directory you wanted, then type the file name, but that
requires an extra step).

GDIR)

Dxx

R

INALPHA))

FILEDOES NOT EXIST: INALPHA.SV
R

(True, in directory Dxx.) Try a directory specifier:

ALPHA:INALPHA)
I’M A FILE IN DIRECTORY ALPHA.
R

Eureka. The directory specifier (:) also works with most
other CLI commands:

LIST ALPHA:INALPHA.MC)

INALPHA.MC 39

R

TYPE ALPHA:INALPHA.MC)

MESSAGEI'M A FILE IN DIRECTORY ALPHA.
R .

Try it with FILEA.MC in MACRODIR:

MACRODIR:FILEA)

HELLO

HOW MANY BLOCKS ARE LEFT
MESSAGE ON THIS DISK ?

LEFT:2022 USED:434

WHAT'S THE CURRENT DIRECTORY?
Dxx

R

This example shows that GDIR always returns the
current directory name (even though a file in another
directory issues GDIR).

There are some restrictions on directory specifiers; for
example, they don’t work with template characters:

LIST MACRODIR:-.MC)
R

Now that you’ve tried directory specifiers, you can use
them to clarify the idea of initialization. The rules say
that a directory must be initialized before we can access
its files. Let’s release MACRODIR (remove its
initialization), and see.

RELEASE MACRODIR)

R

MACRODIR:FILEA)

NOSUCH DIRECTORY: MACRODIR:FILEA
R

SD-00740

Figure 3-4. Disk with Directories and a Link Entry

Concluding the Session

Before terminating the session, you might want to back
up your disk material on a diskette. Take a fresh
diskette, tape the write-protect hole, and insert it in the
appropriate diskette drive. This drive is DE1 if “‘Dxx’’ ..
is DEO; otherwise it is DP1. If this copy diskette hasn’t
been initialized with DOSINIT, read the appropriate
Chapter (7 or 8) of How to Generate Your DOS System,
Backing Up Your Files.

The dump procedure itself depends whether the master
directory Dxx is (1) a double-density diskette or hard
disk or (2) a single-density diskette.

069-000022-01

File Backup on a Double-density Diskette or
Hard-disk System

On this kind of system, you’ll create facsimile backup
directories on your backup diskette and MOVE the files
into them. To do ALPHA, type the following ’
commands:

INITDE1) (for NOVA systems, substitute DP1 for
R DE] in this section)

CDIR DE1:ALPHABU)

R

INIT DE1:ALPHABU)

R

DIR ALPHA)

R .

MOVE/V ALPHABU)

(names of files copied to directory ALPHABU)
R

Shutting Down

At this point, if you opened log file LOG.CM earlier,
you might want to close it and print it. This will give you
a hard-copy record of your dialog with the CLI. If you
have a printing console connected to the second
teletypewriter interface, type:

ENDLOG)
R
XFER/ALOG.CM $TTO1)

R

If you have a line printer, place it ON LINE and type:

ENDLOG)
R
PRINT LOG.CM)

R

You don’t need a directory specifier to access LOG.CM
(although a specifier would do no harm) because you
started the log file in the current directory. For more on
LOG and any other commands you’ve used, see the
command in the CLI User’s Manual. The log file is quite
large by now (check it with LIST LOG.CM); you might
want to delete it.

Now you can RELEASE the system. The RELEASE
command removes a directory or device that INIT or
DIR introduced to the system. In so doing, it updates
the directory on disk. You can RELEASE any directory
from any directory -- including itself. To shut down the
system, RELEASE the master directory:

RELEASE %MDIR%) (or Dxx)

The CLIand DOS will shut down; their final message
will be:

MASTER DEVICE RELEASED

You can now remove all diskettes from their drives and
turn off the disk drives, computer, console and line
printer (if any). Don’t forget to write a label for the
backup diskette (e.g., DOS SYSTEM BACKUP and the
date) and apply the label. Never write on a diskette
label after applying it -- unless you use a felt-tipped pen.
After labeling, insert each diskette in its outer envelope
and store it safely.

Congratulations. You’ve just completed a session with
DOS. This isn’t a toddler’s lesson; it includes most of
the concepts and commands you’ll use in your
day-to-day interaction with DOS, and it provides a
sound background for the intricacies of other CLI
commands, DOS itself, and the next chapters.

You can find details on certain CLI commands in
Chapter 4; these are covered more deeply in the CL/
User’s Manual. Y ou may feel ready to proceed to
Chapter 5, which describes using the Superedit
text-editing utility.

End of Chapter

069-000022-01

3-11

Chapter 4
Common CLI Commands

The CL1is a powerful system utility that provides many
commands, plus a macro facility so you can create still
more. As you saw in the last chapter, you can do a lot of
work using just a small subset of CLI commands.

In this chapter, we will describe CLI commands in
greater detail. Most of these.commands have features
that are not described here: For.a complete description
of every command, see the RDOS/DOS CLI User's
Manual.

From the sample session, you have some sense of
switches. We divide switches into two categories. Those
that affect entire commands are called globalswitches:
those that affect one argument in the command are .
called /ocalswitches. For example, say you want to copy
all files with the extension .SR to directory XDIR excepr
files whose names begin with MYPROG, and you want
console verification. You would type

MOVE/VOXDIRO-.SROMYPROG-/N)
/V is the global switch which instructs the CLI to verify

files moved. /N is a local switch which directs the CL1
not to move files beginning with MYPROG.

069-000022-01

Wherever you can use the template characters (- and *)
in acommand, we have noted this.

If the CL1 command you want to type is too long to fit
on a single line, simply type an uparrow (SHIFT-6 or
SHIFT-N) immediately before you type). (Note that |
works only in CLI commands. It does not function this
way in other programs.) You can now continue the
command on the next line. Naturally, you omit the |
before the last)in the command line. Forexample.

CRANDOT)
XFILE)
R -

You can also stack CLI commands on one line by
lyping a semicolon between them; e.g.,

CRAND MYFILE;LIST MYFILE)
MYFILE 0 D
R

CDIR

CPART

Create a subdirectory
directory (DOS)

(RDOS) or

Format:
CDIR (sub)directoryname

The new (sub)directory will receive the .DR extension.

Switches:
None

Examples:

DIR DP1)
R
CDIR BETH)

DIR makes DP1 the current directory; CDIR creates

(sub)directory BETH.DR on DP1. CDIR DP1:BETH is
an equivalent command.

069-000022-01

Create a secondary partition (RDOS)

Format:
CPART partname blockcount

Create the secondary partition named partname with
the length specified in blockcount. A disk block is 512
bytes or 256 words. The new partition will be a
contiguous disk file and will receive the extension .DR.

You cannot create a partition with less than 48 disk
blocks. Also, if blockcount is not a multiple of 16,
RDOS truncates it to the nearest lower multiple.

Switches:
None

Examples:
DIR DP4F)

R
CPART ALEPH 128)
R

The DIR command makes primary partition DP4F the
current directory; CPART creates secondary partition
ALEPH on DP4F. An equivalent command would be
CPART DP4F:ALEPH 128). ALEPH is 128 disk blocks

long and is logically distinct from primary partition
DP4F.

Local Switches:

mm-dd-yy/A Delete only files created this date or
after. Arguments mm (month) and dd
(day) can be one or two digits.

mm-dd-yy/‘B Delete only files created before this date.

name/N Do not delete any files that match this

name.

Template Characters:

Permitted only when filename argument is in the
current directory.

Examples:
DELETE/V LIMIT.-)

This command deletes all files which have the name
LIMIT and any extension (including none); e.g.,
LIMIT.SR, LIMIT.RB, LIMIT.SV, and LIMIT. This
also verifies their names on the console.

DELETE/VOA**B)

This command deletes all files with four-character
filenames that begin with A, end with B, and have no
extensions. It also verifies files deleted.

DELETE/VOA-B)

This command deletés all files whose names begin with
A, end with B, and have no extensions.

DELETE/CD-.LS)

ALS:)* Delete file A.LS
COM.LS:)* Delete COM.LS
MAP.LS: Don’t delete MAP.LS

Confirm before deleting. The system asks for a
confirmation of each deletion. When you confirm a
deletion with a carriage return, the system echoes an
asterisk (*). Any other character echoes a carriage
return.

069-000022-01

DIR

Change the current directory

Format:

DIR directory [:subordinate directory]

At bootstrap time, the master directory becomes the
current directory. The DIR command specifies another
device or directory as the current device or directory. If

necessary, this command will also initialize the device
or directory.

Switches:
None

Examples:
DIR ACCTSDUE)

This command makes directory ACCTSDUE, on the
current partition or disk, the current directory.

DIR DP1:DEF).

This command makes directory DEF, on DP1, the
current directory.

Template Characters:

Permitted only when filename argument is in the
current directory.

Examples:
DUMP/A/L MTO0:0 2-20-79/A)

This dumps all permanent and nonpermanent disk files
created on or after February 20, 1979 onto file 0 (the
first file) of magnetic tape unit number 0. It also sends a
listing to the line printer. You can then save this tape
file as a backup for the disk.

DUMP/A/L DP4:SOURCE -.SR 7-14-77/A)

This tells the system to dump all files with the .SR
extension created on or after July 14, 1977 to file’
SOURCE on DP4, and to send a listing of filenames to
the printer.

DUMP/VOMTO:0 -.-0-.RB/NOTEMP.DR

Dump all nonpermanent files in the current directory

(except .RB files) and directory TEMP and all its files,
to file 0 of the tape MTO.

069-000022-01

ENDLOG

Close the LOG file

Format:

ENDLOG [password]

Close the log file which you opened by a previous LOG
command. You must close this file before you can
TYPE, PRINT or DELETE it. If the previous LOG

command included a password argument, you must use
the password with the ENDLOG command.

This command, ENDLOG password, appears in the log
file.

Switches:
None

Examples:
ENDLOG GSTONE)

The password GSTONE is used since it was specified
when the log file was last opened.

Note that you must type the full name of the log file to
PRINT or DELETE it; this name is LOG.CM.

4-7

LINK

Create a link to a file in another directory

Format:

resfilename/2 }

LINK { linkentryname [directory specifier:] resfilename

resfilename is the file you’re linking to. If your link
entry will have the same name as the resolution file
(resfilename), and resfilename is in the current
directory’s parent directory, you can create your link
with the first command format (the local /2 switch
specifies the same filename). Linkentryname will always
be created in the current directory unless you specify
another directory.

If the resolution file is not in the current directory’s
parent, or if your link name will differ from the
resolution file’s, use the second command format. The
resolution file resfilename may exist in any initialized
directory.

Global Switches:
None

Local Switches:

Iinkentryname/z

Create linkentryname to a resolution file of the same
name in linkentryname’s parent partition. The parent
partition is the disk or secondary partition that contains
the current directory.

069-000022-01

Examples:

MDIR)
DEO

R
DIR MYDIR)

R

LINK EDIT.SV/2)

The master directory is DEO, and it contains
(sub)directory MYDIR. DEO is MYDIR’s parent
directory, so the LINK EDIT.SV/2 links to EDIT.SV
(the Text Editor) in directory DEOQ. Typing LINK
EDIT.SV/2is easier than typing LINK EDIT.SV
DEO:EDIT.SV, which would have the same effect.

DIRDP1)
LINK NSPEED.SV DPO:NSPEED.SV)
LINK SPEED.ER DPO:SPEED.ER)

This command creates two link entries named
NSPEED.SV and SPEED.ER in DP1 to the editor files
on DPO. This permits anyone in directory DP1 to use
the NOVA (NSPEED) Supereditor.

UNK ASM.SV DZ0:ASM.SV)

This command creates a link entry named ASM.SV in
the current directory to the extended assembler in
directory DZ0.

DIR FORT4)

LINK FORT.SV DPO:FORT.SV)
LINK FIV.SV DPO:FIV.8V)
LINK ASM.SV DPO:ASM.SV)

These commands create link entries to the FORTRAN

IV compiler files and to the extended assembler (which
the compiler needs) in directory FORT4.

4-9

LIST (continued)

Examples:
UST/E/A)

This command lists every type of information on all
files and link entries in the current directory. A typical
line of information would look like this:

FLI.SV 8160SD 03/23/79 13:56 03/23/79 [000164]0

In this example, FLL.SV is the filename; it consists of
8,160 bytes, is a randomly organized save file, was
created (or modified) at 1:56 p.m. on the 23rd day of
March 1979, was last opened on that same date, has a
starting logical block address of 164 ¢, and has a file use
count of zero.

Typical lines describing link entries would look like
this:

ASM.SV DP0:ASM.SV

The link entry name is ASM.SV; the link was created to
resolution file ASM.SV on DPO.

EDIT.SV @ :EDIT.SV

In this example, the link entry name is EDIT.SV-and
the resolution file was defined to have the same name
and to reside on the parent partition or diskette.

UST/K/S0O-.8VO5-2-79/A)

List all nonpermanent save files (.SV extension)
created after May 1, 1979 and sort the list
alphabetically. This will not list links and output will go
to the console. ‘

LIST/AD-TEXT-.SRO-TEXT1-.-/N)
List all files whose names include the letters TEXT,

with the extension .SR, except those filenames which
include TEXTI1.

069-000022-01

LOAD

Load dumped files

Format:
LOAD inputfilename [filename...]

Load a previously-dumped file from inputfilename into
the current directory. If you omit filenames and
switches, all nonpermanent files in the input file are
loaded. With global switches, you can select filenames
for LOADing, or you can choose simply to list on the
console or printer the filenames in the input file.

The LOAD command can load only those files that
were previously DUMPed. Files you want to load must
bear different names from files in the current directory
(unless you specify the /N, /O or /R switches).

Global Switches: ,
/A Load allfiles, including permanem'files.

/K Do not load link entries:

/L List loaded filenames on the line printer.
(Overrides /V switch and listing by /N.)

/N Do not load files; output the filenames to the
console.

/0 Delete current file if it exists and replace with file
being loaded that has the same name.

/R Select most recent version. If a file in the current
directory has the same name as a file in the
inputfile, check both files’ creation dates. If the
version in the inputfile is newer, delete the version
in the current directory and replace it with the
newer one in the inputfile. If the version in the
inputfile is not newer, take no action.

/V Verify the load by listing filenames loaded on the

console. Filenames in a directory are listed before
the directory name.

4-11

MOVE

Copy files to any directory

Format:

MOVE destination-directoryname [filename...] 1‘)
[old filenamelS new filename]...

This command will copy a given file or files in the _
current directory to anothér directory. Filename cannot
be a directory. If you omit filenames and switches, all
nonpermanent files in the current directory are moved.

Global Switches:

/A Move all files, including permanent files.

/D Delete original files after MOVE.

/K Do not move links.

/L List moved filenames on the line printer.

/R Select most recent version. If a file in the
destination-directory has the same name as a file to

be MOVEd, check both files’ creation dates. If the
version to be MOVEd is newer, delete the version

in the destination-directory and replace it with the

newer version. If the version to be MOVEd is not
newer, take no action.

NV Verify MOVEdA filenames on the console.

Local Switches:

mm-dd-yy/A Move any file created or
modified this date or after.
Arguments mm (month) and dd
(day) may be one or two digits.
Date switches move all matching
links unless you include the

global /K switch.

069-000022-01

mm-dd-yy/B Move any file created or
modified before this date.
name/N Do not move files that match

name.

oldname/S newname Assign newname to the
preceding file but retain its
oldname in the current directory.

Template Characters:
Permitted.

Examples:
MOVE/D/KOMYDIRO-.SR)

This command moves all nonpermanent files in the
current directory with .SR extension (except link
entries) into destination-directory MYDIR, and deletes
the original files after the transfer.

MOVE/A ACCTSDUED-.-03/1/79/B)

This command moves to directory ACCTSDUE all
files created or modified before March 1, 1979.

DIR MYDIR)
MOVE/V %GDIR% FILEA/S FILEA1)
FILEAI

This command copies a file, under a different name, in
the current directory. By doing this when you plan
extensive changes to a file, you preserve a backup
version. In this case, FILEAI1 is a backup version of
FILEA.

4-13

RENAME

TYPE

Rename a file

Format:

RENAME oldname newname [oldname newname] ...
Rename a file in the current directory. You can rename
any nonpermanent file that is not open, but note that
some system utilities (e.g., the assemblers or the
FORTRAN compiler) will not work if you RENAME

them. No save (program) file can execute without the
.SV extension.

Switches:
None

Examples:
RENAME LOG.CM LOGOLD.CM)
R

Rename the current log file LOGOLD.CM. The log file
must have been closed via ENDLOG before you can
RENAME it.

RENAME FILEB FILEB.MC)
R

Give FILEB the .MC extension so that the CLI can
execute it as a macro file.

069-000022-01

Type a file on the system console

Format:
TYPE filename filename...

Copy an ASCII file or files on the console. The source
files may come from any device.

Switches:
None

Examples:
TYPE A.SR B.SR DP1:XX.SR)

This command displays or types the following disk files
on the program console: A.SR and B.SR in the current
directory, and source file XX.SR on DP1.

4-15

The Next Steps

If you’ll be working exclusively in BASIC, skip all the
way to Chapter 7; you don’t need the next two
chapters.

To code in another high-level language, you’ll use a
text editor program (described in Chapter 5), a
compiler, then another utility to make the compiled
code executable. Chapter 6 covers the compiling and
processing steps fora FORTRAN IV program; steps

for other languages are similar. For the precise details,
of course, see the language reference manual for
your compiler.

If you’re an assembly language programmer, you’ll
follow the same procedure as the FORTRAN
programmer, except that you’ll use an assembler
instead of a compiler. You’ll need Superedit (Chapter
5), then the assembly language information in
Chapters 8 and 9.

End of Chapter

069-000022-01

4-17

Chapter 5
Creating and Editing Text

You received two different editor utilities with your
system: the text editor (EDIT) and the Supereditor.
Superedit, the topic of this chapter, is the more
advanced editor and is much handier than the XFER/A
command you used in the last chapter. Within this
chapter, we explain enough Supereditor features to let
you use it. A complete description of the editor is
outside the scope of this book; you can find a complete
description in the Superedit Text Editor User’s Manual
(RDOS/DOS).

It’s sound practice, especially for a new user, to save a
backup copy of each text file under a different name.

Superedit Features

The editor is a utility program which you evoke by a
CLI command, but its commands bear no relation to
the CLI’s. Superedit lets you create and modify files
containing upper- and lowercase ASCII text. During
editing you can change, delete, search for, or insert
single text characters, lines of text, or large portions of
whole files. The editor is string-oriented. This means
that its commands work with character sequences,
which need not be complete lines. A line of textisa
string of characters terminated by a carriage return.
You can change or search for character combinations
without knowing where they are.

Superedit maintains a character pointer (CP), which
indicates the current editing position in the file. It also
provides a command to show you where the CP is; but
for the most part, you simply keep a mental note of the
pointer’s position. You change the CP’s position by
executing edit commands. 2L, for example, moves the
CP down to the start of the second line beyond its
current position. :

069-000022-01

executing edit commands. 2L, for example, moves the
CP down to the start of the second line beyond its
current position.

You can enter two kinds of input when you edit: editor
commands and text you want in your file. When you
are inserting new text, your Superedit command,
which may include many lines, will include text you
want inserted.

When it is ready to execute a command, Superedit
types an exclamation point (!) prompt character. After
you see this prompt, you can type in one or more
editing commands. You can enter two or more
commands on one line by typing an ESC character
between each command; you terminate the entire
command line by typing ESC twice. When you type
ESC, Superedit echoes a dollar sign on your screen;
obviously, ESC ESC appears as two consecutive dollar
signs. Superedit executes the commands in a multiple
command entry sequentially, from left to right. If you
enter an incorrect command anywhere in a multiple
command line, Superedit informs you of the error,
then ignores the remainder of the command line; that
is, it processes only those commands to the left of the
invalid command.

Note: Although Superedit accepts both upper- and
lowercase characters, the FORTRAN
compiler and assemblers do not, except in
text or comment strings. Thus, for all text
you intend to compile or assemble, you must
enter letters in uppercase, except for

comment or text strings.

5-1

A

PO

If you want to delete the entire current line, simply type
CTRL-X. This is equivalent to typing DEL or

sRUBOUT back to the beginning of the line. CTRL-X

deletes the last line only.

Finally, if you want to cancel a command that Superedit
is executing (after you’ve type ESC ESC), type
CTRL-A. With the commands we’ve described here,
however, you will usually not be quick enough to stop
the whole command from being executed.

A Note of Caution

Superedit is a powerful editor -- practically a
text-processing language -- but its power and speed can
sometimes make life difficult for a novice user. Until
you learn it well, you should update your file often,
saving a backup version with the US and H commands
(USHS) to minimize lost effort. If text seems to have
vanished from the edit buffer after a command, type
USS$HS to update the file and save the original version,
then examine both the current and original versions
with either Superedit or the CLI TYPE command and
work with the one you want. The US and H commands
are detailed later in this chapter.

Insert New Text (1)

When you evoke Superedit, it reads some or all of your
file into its buffer (if the file already exists), or simply
starts with a clear buffer. In either case, its CP
(character pointer) always points to the first position in
the buffer. Since you have just created a file, there is
nothing to edit and you can start by inserting llnes of
source code. 3

'tabREAL INT, ITD, LB) -
5tabTYPE “ENTER AMOUNT, RATER, YEARS")
tabTYPE “AND, 0 FOR SUMMARY OR 1 FOR")
$$

tab represents pressing the CTRL and I keys to produce -

a tab.

After each insertion, the CP points after the last
inserted character. This lets you repeat insert
commands in the same order that you would type
words or lines of text on a typewriter. In the text above,
we could have typed the text between quotes in
lowercase, however, the compiler requires the REAL
statement in uppercase.)

069-000022-01

@

Generally, you should not insert more than ten lines of
text in one I command. It’s sound practice to end each
Insert with $$ after typing several lines, then continue
inserting with anew I command.

Jump CP to the Beginning of the Buffer (J)

At any time in the editing process you can move the CP
to the start of the buffer; simply key in the J command.
You can also use the L command to move the CP from
one line to another, but J gets you to the start of the
buffer immediately.

Examine Some Lines in Your File (T)

It’s pretty good practice to review each addition or
change after you make it, so after every change you
should type the T command. There are three variations
of this command, and none of them moves the CP:

O,nT Type the buffer from the beginning to
character n. To type the entire buffer, simply

insert a number sign before T;i.e., # T.

nT Starting at the current CP, type the next or
previous n lines of the buffer. n is positive
(forward) unless you precede it with a minus

sign.
-mTnT Type text from m lines backward to n lines
forward, to show the text surrounding the CP.
T Type the current line and show where the CP

is. Superedit uses the 3-character combination
(1) to show where the CP is.

The command

2T$$

types the current line and the next line, while
-2T3$% |

types the two previous lines. In the example above, the
string J$3T$$ displays the three lines typed.

Set the CP at the Start of a New Line (L)

Often ydu may want to set the CP several lines forward
or backward from its current position. You use the L
command to do this, and it has two variations:

L Setthe CP to the beginning of the current line.

nL Set the CP to the start of a different line. If n is
positive, the CP moves n lines forward from the
current line. If you precede it with a minus sign,
the CP moves nlines backward.

L moves the CP to the start of the current line, 2L
moves the CP to the start of the second line down from
the current line.

Again, you can use the T command to check the CP
position:

IUSTSS

(1) REAL INT, ITD, LB

ILSTS2LSTSS

(1) REAL INT, ITD, LB

(1) TYPE “AND, 0 FOR SUMMARY OR 1 FOR”’
1 .

The first command line starts at the beginning of the
buffer and types the first line. The second command
line moves the CP to the beginning of the line, types
the line, then moves the CP two lines forward and
types that line.

Move the CP (M)

The M command, format nM, moves the CP backwards
or forwards by n number of characters. To move the
CP to the left, make n negative; e.g., -2M. To move it
to the right, use a positive number; e.g., 2M.
Generally, you’ll use M to move the CP within a line,
but you need not do so. For example, if you move the
CP past a carriage return character, it will move into
another line of text.

If the current line (displayed by T$$) is:
(1) REAL INT, ITD, LB
And you type the command 2M$T$$

12MSTS$
RE (1) AL INT, ITD, LB
!

069-000022-01

Then, type -2M$T$$ to restore the CP to its original
position:

1-2M$T$$
(1 REAL INT, ITD, LB
!

Delete Lines (K)

Sometimes you may want to delete an entire line.
(Often it’s easier to delete a bad line and insert a new
one than to try to correct the original.) To delete one or
more lines, use the K command. This command takes
an argument n indicating how many lines to delete:

3K$$

This command Kills (deletes) three lines from the
current CP position (the first line is everything to the
right of the CP on the current line). We suggest that
you use only positive values of n to keep your editing
simple. (A negative n when the CP is in the middle of a
line will delete not only the previous line but also the
left portion of the current line).

For example, assume you want to delete the second
line, which begins with 5. First, use the S, L, and T
commands to check the surrounding lines:

1J$S5$-1L$3T$S
REAL INT, ITD, LB
5 TYPE “ENTER AMOUNT, RATE, YEARS”’

TYPE “AND, 0 FOR SUMMARY OR 1 FOR”’
!

Then get to the target line with S, and verify the line
with T. Get to the beginning of the line with L, delete
the line with K, and verify the deletion with T.

IS5TS

5Q4) TYPE "ENTER AMOUNT, RATE, YEARS”’
IL$T1KS-1L.$2T3

REAL INT, ITD, LB

TYPE “AND, 0 FOR SUMMARY AND 1 FOR”’
!

To restore the line, set CP position after the carriage
return character in line one, and use the I command:

1J$SLB)

$$

!I5tabTYPE “ENTER AMOUNT,RATE,YEARS")
$$

Table 5-1. Superedit Command Examples

069-000022-01

Command Examples Result Command Examples Result
#T #TS Type the entire buffer M ZMSTS-ZMSTS Move the CP two
on the console. characters right, type
line, then move the
3T$$ Type three lines from CP two characters left,
CP including the type line.
current line.
S SOUNT,$$ Set the CP after the
TS Type the current line comma following
and show where the OUNT as shown in
character pointer is. this example string:
SOUNT, $T$$ Given this string. ..ENTER AMOUNT,...
...ENTER AMOUNT, C SOUNT, $$ Set the CP after
RATE AS.. CTERS$TESS OUNT, then change
TER to TE Applied to
this command shows this string,
the pointer located
immediately after the ..ENTER AMOUNT,
comma after RATER AS... ’
AMOUNT:
it produces this result:
...ENTER AMOUNT,(1)
RATE AS... ...ENTER AMOUNT,
RATE AS...
J J$s5T Go to the start of the
buffer and type the | L$ I HELLOSS Insert the string
first 5 lines. HELLO before the
current line.
L L$I) Insert two blank lines
) before the current K L$1KSS Delete the entire
$$ line. current line.
3L$$ Set the CP to the start UE . UEH$$ Apply editing changes
of the 3rd line down us USH$$ to the file, close it,
from the current line. and return to the CLI.
End of Chapter

5-7

Chapter 6
Instant FORTRAN IV Programming

This chapter assumes that you have the optional
FORTRAN IV compiler utility programs, and that you
have loaded them, along with the FORTR AN libraries,
into your master directory, as described in an appendix
of the FORTRAN IV User’s Manual. The FORTRAN
IV compiler consists of two files: FORT.SV and
FIV.SV. (If your machine has only 16K of memory,
not use the FIV.SV file; instead use FIVNS8.SV,
DUMP or COPY FIV.SV to save it, then delete the
originaland RENAME FIVNS8.SV to FIV.SV.) The
compiler also expects that the Extended Assembler,
ASM.SV, isin this directory.

Program Steps

These are the steps you follow to write a FORTRAN IV
program.

1) Create or edit a FORTRAN IV source file with
Superedit.

2) Compile and assemble the source file with the CLI
command

FORT filename)
This produces a relocatable binary file.

3) Ifthere are any compile-time errors, go to 1; if not,
goto 4.

4) Make the relocatable binary file into an executable
save file with RLDR:

RLDR filename [subroutine names...] FORTO.LB1)
FORT1.LB FORT2.LB FORT3.LB SMPYD.LB)

069-000022-01

5) Run the save file with the CLI command

filename)

6) If the program is correct, go to 9; if not, go to 7.

7) Diagnose your program using runtime error
messages or erroneous output.

8) Gotol.

) You’re done!

his chapter guides you through all the steps you need
to write and execute such a program.

riting the FORTRAN Source Program

FORTRAN example in this chapter is a simple
ram to calculate home mortgage payments; it
uces a schedule of monthly principal and interest.
program uses only ordinary arithmetic operations,
no subroutines, and (excluding comments) is only
t half a page long. The program uses two formulas.
You/need not understand how these formulas work to
understand the illustration. We have chosen
FOfTRAN IV for this program (instead of FORTRAN
f)) ecause FORTRAN IV runs under both RDOS and
0Os.

6-1

130

o o o o o

140
3e

40

REAL INT, 17D, LB ; Else these would be integers,
TYPE "ENTER AMOUNT, RATE, YEARS"

TYPE "AND, @ FOR SUMMARY OR 1 FOR"

TYPE "FULL SCHEDULE. SEPARATE EACH"

TYPE "ENTRY WITH A COMMA,"

TYPE "TERMINATE INPUT WITH RETURN,"

ACCEPT AMOUNT,RATE,IYEARS,IFULL ; Get figures from conmsole,

Change yearly rate RATE to monthly rate R,
R s RATE/12

Change years IYEARS to months N,
N 3 JYEARSx12

Calculate monthly paymemt PAY, write header and PAY,
PAY = AMOUNT#Rx(1+R)*%xN/((1+R)%x%xN=1)
WRITE (10,110) AMOUNT,RATE, IYEARS
FORMAT. (1H@, "AMOUNT = §",F9.2,/," INTEREST RATE =",F7,4,/,

X " LOAN LIFE IS",I4," YEARS",/) i Char, in pos. 6 continues line,

WRITE (1@,120) PAY
FORMAT (1HO@,"MONTHLY PAYMENT = $",F10,2,/)

Summary or full schedule?
IF (IFULL .LE. @) GO TO 40

Full schedule == set up variables,
LB = AMOUNT i Inftial Loan Balance equals original amount,
NN = N ;i Save orjginel number of months in NN,
ITD = 0 i Interest To Dete is initisally @.

Write header, then cajculate and write figupres month by month.
WRITE (10,130)
FORMAT (1H@," NUM",7X,"INTEREST",SX,"PRIN., PAY PRIN,"
X "BAL",6X,"INTEREST PAID TO DATE",/)

DO 30 I=1,NN } DO until you resch NN months ==
Calculate amount of principal {n payment, PN,
PN = LBAR/((R+1)%x%Nel)
Decrement month,
s Nel .
Calculate amount of interest in payment, INT,
INT s PAYePN
Update loan balance,
LB = LBePN .
Update interest paid to date,
17D = ITD+INT .
Write figures .for this month,
WRITE (10,140) I, INT, PN, LB, ITD
FORMAT (1H@,I13,7X,"8",F9,.2," $",F9,2," $",F9,2, 8X,"%",
CONTINUE

ACCEPT " TYPE 1 TO REPEAT, @ TO STOP. ', ISTOP
IF (ISTOP .GT, @) GO TO S
END :

Fe.2)

069-000022-01

Figure 6-2. MORTGAGE.FR Program With Errors

6-3

Creating the Save File
The RLDR command line for MORTGAGE is:

RLDR MORTGAGE FORTO.LB FORT1.LBt)
FORT2.LB FORT3.LB SMPYD.LB)

The -.LB names following MORTGAGE are the names
of libraries that you must always use when loading a
FORTRAN IV program. Typing the four library names
is a nuisance; eventually you may want to merge the
libraries under a single name (e.g., FORT.LB) with the
Library File Editor (LFE) utility.

Later, for more on the LFE command, see the
appropriate appendix of the FORTRAN IV User’s
Manual. Note that if your computer has hardware
multiply-divide, you might want to select the
hardware-multiply-divide library (instead of
SMPYD.LB) for later programs, or for your single
merged library file. For now, if you want, you can
create a CLI macro to do the load; or you can simply
type in the filenames.

As RLDR processes MORTGAGE, you see the
following series of messages on the console:

MORTGAGE.SVLOADED BY RLDR
REV xx.xx AT time date

.MAIN
1
FREAD

NMAX 012177
ZMAX 000210
CSZE 000000
EST 000000
SST 000000

Following the initial line, which tells you the name of
the save file and when it was created, RLDR describes
all the modules that it extracted from the FORTRAN
libraries and the system library to build the program.
.MAIN is always the title of the main FORTRAN
program; you can ignore the other modules. The next
group of entries describes the memory addresses at
which MORTGAGE will execute. NMAX is the
highest address of normal-relocatable code plus one.

CSZE is the unlabeled common area size; here, there is
none. EST and SST are the end and start of the symbol
table, and, again, there is none. In most FORTRAN
applications, you won’t care about the information
produced by RLDR; but if you plan to run dual
programs or have limited memory, the NMAX and
ZMAX figures may concern you. You can find more
detail on this in your system reference manual or the
Extended Relocatable Loaders User’s Manual.

069-000022-01

Executing the FORTRAN Program

You now proceed to the next step, executing
MORTGAGE.SV. To execute this or any other
program, simply type the program name and follow it
with a). '

MORTGAGE)

ENTER AMOUNT, RATE, YEARS
AND, 0 FOR SUMMARY OR 1 FOR
FULL SCHEDULE. SEPARATE EACH
ENTRY WITH A COMMA.
TERMINATE INPUT WITH RETURN.

You then respond with a request for the summary
information (monthly payment only) given a mortgage
of $20,000 at 9% for 25 years:

20000,.09,25,0)

MORTGAGE then types:

AMOUNT = $20000.00
INTERESTRATE = 0.0900
LOANLIFEIS 25 YEARS

MONTHLY PAYMENT = $167.84
on the console, and then says:
TYPE 1TO REPEAT, 0TO STOP
To continue, type:

1)

Since you responded with 1, the same instructions
appear on the console. This time, enter the same
arguments but ask for a full schedule:

20000,.09,25,1)

AMOUNT = $20000.00
INTERESTRATE = 0.0900
LOANLIFEIS 25 YEARS

MONTHLY PAYMENT = $167.84

NUM. INTERESTPRIN. PAY...

FATAL RUNTIME ERROR 15 AT LOC. xxxxxx
CALLED FROM LOC. yyyyyy

R

and find the CLI running on the console. The
FORTRAN IV manual describes Runtime Error 15as a
“‘field”’ error, which might have occurred in an F or E
entry ina FORMAT statement. Checking the Fs in our
program, we find a typo in statement 140: 0.2 should
be F9.2. Fix this with the Superedit command

JSCFO0.28F9.23T$$

6-5

Chapter 7
Extended BASIC Programming

This chapter leads you through a sample session in
Extended BASIC. It assumes that you have some
experience with the BASIC language, and that you
have loaded the BASIC System Generation program
(BSG) from tape or diskette, and generated a BASIC
system. Chapter 2, the Extended BASIC System
Manager’s Guide covers BSG. This chapter also assumes
that you are the only person on the system using
BASIC. On a multiuser BASIC system, log on
according to your system manager. Skip step 1 below
and all the CLI material in this chapter.

Aside from the Extended BASIC System Manager’s
Guide, we offer two other books on Extended BASIC:
basic BASIC, for beginners, and the Extended BASIC
User’s Manual, which covers the features and
commands of our BASIC. Here are the steps you follow
to create a BASIC program:

1) Invoke the BASIC interpreter and get into BASIC
by typing the CLI command:

BASIC)

2) Write a series of BASIC program statements.
BASIC has its own editor and an interactive
compiler that rejects bad syntax as you type each
statement.

3) Run the program with the BASIC command:

RUN)

069-000022-01

4) If the program runs correctly, you’re done! Save
the program on disk with the LIST command. Type
BYE)to get back to the CLI.

5) If your program contains runtime errors, fix it
using erroneous output or BASIC runtime error
messages. Go to 3.

Writing BASIC Programs

You write a BASIC program as a series of statements,
which you must begin with a number between 1 and
9999. Each statement includes a command to BASIC,
which then executes the statements sequentially, by
number; thus, your program can do useful work.

At various points, you can examine the statements in
your program with the LIST command, or tell BASIC .
to execute the statements with the RUN command.
BASIC’s error messages will help you correct errors;
you can correct offending statements by typing their
line numbers, then the new text. When you’re satisfied
with a program, save it on disk with the command LIST
“filename”); later, you can read it back into memory
with the command ENTER “filename”). To print it on
the line printer, type LIST “$LPT”). To start work on
another program, type NEW), then proceed. To sign off
BASIC and return to the CLI, type BYE).

You can execute a BASIC program only from BASIC;
you can’t do it from the CLI. The BASIC interpreter
accepts both upper- and lowercase characters, and
translates lowercase letters to uppercase. You can make
lowercase text part of your program (in PRINT and
comment statements) by editing your BASIC program
file with Superedit, after the program runs.

7-1

Strings and Arrays

BASIC strings and arrays allow you to store and access
alphanumeric strings and numbers by subscript. You
can declare a string or array, assign it a fixed number of
elements with a DIM statement, and then access
elements by the string or array name, followed by the
element subscript number in parentheses or brackets.
String names begin with a letter and end with a dollar
sign (e.g., A$, A1$); array names don’t include the
dollar sign (e.g., A,Al). For example, type:

*NEW)
*10 DIM N$(30))
*20 INPUT “WHAT'S YOUR NAME ?”,N$)

Run it:

*RUN)
WHAT'S YOUR NAME?

Type a name:

WHAT'S YOUR NAME? MELINA)

Line 20 uses a string literal, which you simply enclose in
quotes, and BASIC accepts it literally; line 10
dimensions string variable, N$. Your response assigned
values MELINA to the first six elements of N$, which
look like this in memory:

M E L | N A null null
N$(1) N$(2) N$(3) N$(4) N$(5) N$(6) N$(7) N$(30)

Elements $N(7) through $N(30) contain nulls (ASCII
000).

You can reference substrings using the form
stringname (elementl, elementn). For example, append a
statement to your program and run it:

*30 PRINT N$(1,3))

*RUN)

WHAT'S YOUR NAME? MELINA)
MEL ‘

The subscripts specified elements 1 through 3; hence,
MEL.

Now, we can try a more sophisticated version of the
program, which dimensions two strings, compares
them, and acts on the comparison. Note that whenever
you change mode in a PRINT statement, from string
literal or string variable or numeric variable, you must
insert a semicolon (or comma). This rule accounts for
the complex punctuation in lines 30 and 80. Type
NEW), then type in this program. If you make a
mistake, retype the bad line from the beginning.

069-000022-01

10 DIM N$(30) 0$(30))

20 INPUT “WHAT’S YOUR NAME ?0”,N$)

30 PRINT “IS IT REALLYO™;N$;“?0TYPE IT AGAIN.”)
40 INPUT O$)

50 IF 0$< >N$ THEN GOTO 80)

60 PRINT N$;“OMUST REALLY BE YOUR NAME.”)
70 STOP)

80 PRINT“IS ITO”;N$;“OORO”;0$;“?"

Now, try running the program. If you want to save it on
disk, type LIST “name”), where name s any legal RDOS
or DOS filename. Chapter 8 of basic BASIC describes
strings further.

BASIC arrays resemble strings, but each element in an
array must be a number, whereas each element in a
string must be an alphanumeric character. For example,

10 DIM A(20))

20A(1) = 9.5)

30 A(2) = 46)

40 A(20) = A(1) +A(2))
50 PRINT A(1),A(2),A(20))

These statements dimension array A and assign values
to three of its elements; the other elements contain nulls.
Chapter 7 of basic BASIC explains elementary arrays.

BASIC Program

The BASIC program flowcharted in Figure 7-1 and
shown in Figure 7-2 is a variation of the FORTRAN
program in Chapter 6. It computes mortgage payments,
taxes, and deductions in a'general way; and writes its
computations to the console. You can enter the
program using Superedit from the BASIC directory
(link to the Superedit files first), or you can use the
BASIC interpreter. If you use the BASIC interpreter, it
will check the syntax of each line as you type it in. If
you use Superedit and make a syntax mistake, the
BASIC interpreter will reject the bad line when you
ENTER the program.

If you use the BASIC interpreter, you can examine the
lines you’ve typed by typing LIST. To list a portion of
the lines, type LIST number comma number, where each
number is a line number, e.g., LIST 10,100).

Periodically as you type the program in, and when
you’re done, type LIST “MORTGAGE.BA”, to write the
program to disk; you can also get a hardcopy listing by
typing LIST), or LIST “$LPT”) if you have a line printer.

If you want the program to write to the line printer,
insert the statement OPEN FILE (0,2), “SLPT" before
the first PRINT statement. Then change the PRINT or
PRINT USING statements to PRINT FILE (0), or PRINT
FILE (0), USING statements wherever you want the
program to write to the printer. Insert the statement
CLOSE right before the STOP statement (line 300).

You should examine Figures 7-1 and 7-2 before
proceeding to the next section.

7-3

2010
0020
0030
0040
2050
0050
eeve
0080
2090
0100
2110
0120
0130
0140
0150
0160
0180
2190
0200
0210
8220
0230
0240
0250
0260
0270
0280
2290
0300
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

REM PROGRAM MORTGAGE.BA, COMPUTES MCORTGAGE PAYMENTS, HAS TAX SUBROUTINE,
PRINT "«<12> I CALCULATE MORTGAGE PAYMENTS, INTEREST, AND TAXES."

PRINT "TYPE AMOUNT OF PRINCIPAL, INTEREST RATE IN WHOLE NUMBERS,"

PRINT "MORTGAGE LIFE IN YEARS, AND ANNUAL PROPERTY TAX BILL FOR HOUSE,"
PRINT "SEPARATE ENTRIES WITH A COMMA; FOR EXAMPLE 40000,10,5,25,20008,"
PRINT)

PRINT " AMOUNT? RATE? YEARS? TAXES?"

INPUT " ? ",A,R1,Y,T

REM GET MONTHLY RATE R (R1/12), MAKE INTO FRACTION AS R1 WAS WHOLE NUMBER,
LET R=R1/1200

REM GET NUMBER OF MONTHS M FOR LOAN,

LET Ms12sY

REM COMPUTE MONTHLY PAYMENT,

LET PSA2Rx(14R)TM/((1¢R)TMe=q)

REM DEFINE FORMAT F$ THAT ROUNDS NUMBERS TO NEAREST WHOLE CENT,.

LET FS:".-.‘-..,‘”"

REM PRINT TOTALS AND GIVE OPTION FOR TAX SUBROUTINE,

PRINT "MONTHLY PAYMENT: TAXES: HIDEOUS TOTAL:s"

PRINT USING F$,P," ", T," ",P+T7

PRINT

PRINT "WANT TO COMPUTE THE TRUE COST AFTER U.S.TAX DEDUCTIONS ON THE"

PRINT "INTEREST AND TAXES? YOU MUST ITEMIZE TO GUALIFY."

INPUT "ANSWER Y (YES) OR N (NO), ", Q%

REM & SPECIFIES STRING INPUT (E,G,"Y") INSTEAD OF NUMERIC,

IF @$s"Y" THEN GOSUB 10080

PRINT

INPUT "TYPE Y (YES) TO RUN PROGRAM AGAIN, ANYTHING ELSE TO STOP, ",Q%

IF Q$sz"Y" THEN GOTO 0069

8TOP

REM TAX DEDUCTION COMPUTATION SUBROUTINE,

INPUT "WHAT IS YOUR TAX BRACKET, IN WHOLE NUMBERS? ",B1

LET B=B1/100

PRINT

PRINT "SHOULD 1 LIST PAYMENTS FOR THE FIRST TWO YEARS? I HAVE"

INPUT "TO FIGURE THE INTEREST ANYWAY, ANSWER Y (YES) OR N (NO)., ",Q$

REM SET UP VARIABLES Al (PRINCIPAL PD PER MONTH) AND Il (FOR TOTAL INTEREST)."

LET A1sA

LET I1=0

IF G$<>"Y" THEN GOTO {110

PRINT * MONTH PRIN, INT, INT, TOTAL"

REM FOReNEXT LOOP COMPUTES (OPTIONALLY LISTS) FIGURES BY MONTH AND TOTALS.

FOR Jsi TO 24
LET P13A12R/((R+1)1tM=1)
LET I1sl1+(P=P1)
LET AlzAle-pPl
IF Q%<>"Y" THEN GOTO 1180
PRINT USING F$,J,P1,P=P1,I1
NEXT J
PRINT
REM GET DEDUCTIONS D FOR 1 YEAR, T(AXES) + I1/2 (HALF OF 2 YRS, INTEREST)
LET D=T+I1/2
PRINT "ANNUAL MORTGAGE<RELATED DEDUCTIONS AREs"
PRINT USING F$,0 !
PRINT "BUT I MUST SUBTRACT THE $320@ STANDARD (@ BRACKET) DEDUCTION"
PRINT "BUILT INTO THE TAX TABLES, THE TRUE MONTHLY COST IS:"
LET Di=D-3200 .
REM GET REAL MO, COST, (TOTAL MO, PAY = P+T12) = ((BRKT = ADJ, DEDS)/12)
LET C=(P+T/12)=(BxD1/12)
PRINT USING F$,C

PRINT " Axkk SUMMARY &k & ®

PRINT " LIFE? AMOUNT RATE: CASH PAYS BRKT? TRUE COSTs"
PS%N;NUSING F8,Y,A,R{,P+T/12,B1,C

RETU

Figure 7-2. MORTGAGE Program With Errors

069-000022-01

7-5

Unfortunately, there is a problem in this schedule--the
amount of interest paid each month increases while it
should decrease. This must be wrong, and being
wrong, it voids the entire deduction figure. Looking
over the FOR-NEXT loop that computes the monthly
interest, note that we forgot to decrement the month
indicator, N, for each circuit through the FOR-NEXT
loop. You can fix this easily. First, stop the program:

)
STOP AT 300

Having incremented line numbers by 10, you can easily
insert a new statement:

1155 LETM=M-1)

Now RUN) it again, giving the same figures (40000,
10.5, 25, 20, and 2000) and tax bracket (25), to
compare the results. The monthly schedule now says:

MONTH PRIN. INT. INT. TOTAL
1.00 27.67 350.00 350.00

2.00 27.92 349.76 699.76

3.00 28.16 349.51 1049.27
4.00 28.41 349.27 1398.54

MORTGAGE-RELATED DEDUCTIONS ARE:
6164.34

BUTIMUSTSUBTRACT...
...TRUEMONTHLY COSTIS:
482.58

****SUMMAR Y-*’k*’k
LIFE:AMOUNT:RATE:CASH PAY:BRKT:TRUE
COST:
25.0040000.00 10.50 544.34 25.00 482.58

TYPE Y (YES) TO RUN PROGRAM AGAIN,.....

Eureka! The interest is now declining, and the program
works correctly. (The difference may not seem
significant here, but if the FOR-NEXT loop covered 60
months instead of 24; i.e., J = 1 TO 60; it would be
immense.)

069-000022-01

You’ve fixed the program, so you can write it to-disk
under its original name; this overwrites the old,
erroneous version:

LIST “MOQRTGAGE.BA")

You can also print it (LIST “$LPT”) if you have a line
printer, or type it (LIST). To leave BASIC and return to
the CLI, type:

BYE)

R

All programs you write via the BASIC interpreter
reside in the BASIC directory, the interpreter
automatically goes to this directory when you invoke it.

Itemized Deductions and Tax Bracket

For simplicity, this sample BASIC program assumes
you are married and, when you acquire this mortgage,
you will start itemizing deductions instead of taking the
standard deduction. When you itemize, the IRS allows
you to deduct only the itemized amount over the
standard deduction ($3200 if married filing jointly,
$2200 if single) . The standard deduction is already
figured into the tax tables. This is why line 420 of the
program subtracts the standard deduction from the
mortgage-related deductions. If you are, in fact,
moving to itemized deductions, you can deduct much
more than mortgage-related expenses (e.g., medical
expenses, casualty losses), but the program doesn’t
deal with these. It figures the TRUE COST amount as
if you were deducting only the mortgage-related
amounts.

Thus, if the mortgage moves you from the standard
deduction to itemized deductions, your real cost per
month will be less than the TRUE COST figure. If this
is true for you, you can modify the program to compute
the TRUE figure more accurately. The critical figure is
the ‘3200’ in line 1260. Your program statements
should get all mortgage-unrelated deductions (medical,
contributions, casualty losses, etc.) and put them in a
variable, let’s say Q. Then it should add Q to D in line
1260; e.g., LET D1 = D+Q-3200.

In any case, if you are single, change the 3200 in line
1260 to 2200; e.g., LET D1 = D-2200.

Chapter 8
Assembly - Language Programming:
The Assemblers

This primer can’t possibly teach you all you must know
to program in assembly language, but this chapter will
introduce some of the basics. We assume that you have
some familiarity with the mechanism of assembly
language and with the instruction set for your
computer. But even if you do not, you will profit by
reading this chapter, for it will familiarize you with
fundamental concepts before you study them in greater
detail. Also, you’ll need some of the basics described in
this chapter to fully understand the next chapter where
we write, assemble, execute, and debug our own
assembly language program.

Before it can do useful work, a program must be
translated into machine-level instructions. System
software does this: programs like the FORTRAN
compiler, the Relocatable Loader, and the BASIC
interpreter, translate your program commands into
machine code: binary numbers that physically direct the
computer. Assembly language is no exception; it also
employs symbolic commands which translate into
machine code. The software that does the translation is
called an assembler.

The Assemblers

You can choose between two assemblers: the
Macroassembler (MAC) and the Extended Assembler
(ASM). MAC is more powerful and more flexible,
while ASM is faster. Each assembler has a manual of its
own, which you can read for more detail. For the
concepts we’ll study in this chapter, and the program
we’ll write in the next, there is no practical difference
between the two. We have chosen to emphasize the
Macroassembler (MAC); but if you want to use ASM,
go ahead. The term assemblerin this chapter and the
next applies to either MAC or ASM.

069-000022-01

To produce a program, you start by coding a source file
in assembly language and emerge with a save file. The
sequence looks like this:

SOURCEPROGRAM
MAG or ASM

SOURGEPROGRAM RB
kLDA

SOURGEPROGRAM SV

A source program (also called a module) employs
symbolic instruction codes (such as LDA 0,2 for ‘‘load
the contents of location 2 into accumulator 0°’) and
operating system calls (such as .RDL for “‘read a
line’’). Your modules will also use assembler
pseudo-instructions (pseudo-ops), which direct the
assembly process but do not result in any final program
instructions themselves.

Each is a two-pass assembler (i.e., it examines the
modules twice), and at the end of the second pass, it
produces one or more of the following:

® an assembly listing of the module(s)
® an error code listing
® a binary module

The assembly listing shows your original source
module(s) and additional information such as the octal
codes of your instructions and data, the absolute or
relative locations of these items in the executable
program, and other miscellaneous information.

ve
03
by
85
0ve
07
08
29
10
11
12
13
14
15
16
17
18
19
20
el
22
23
]
2s

0001

0000V0'006017 START:

20001'021052
00002'000776
¥0Y03'050427
00004'022433
00005'126410
00006'006917
00007'014077
00010'000423
00011'020432
Qv012'077777
20013'020431
00014'024431
QV015'077777

00016'000415
00017'006017
00020'907400
00021'000412

AGAIN:

0001 EXAMP MACRO REV 06,10

15311:42 @7/26/77

. TITL EXAMPLE

«NREL
o TXTM 1

+ENT START,ER,TASKY,

SEXTN ,TASK,

«SYSTM

«GCHN

JMP START
STA 2, CHNUM
LDA ©, NTTO
suB 1, 1
«SYSTM

.0OPEN 77

JMP ER

LOA @, P4
PRI

LDA @, IDPRI
LDA 1,TASK]
« TASK

JMP ER
«SYSTM
«GCHAR
JMP ER

02017'006017 AGAIN:

iPACK TXT BYTES LEFT=TO RIGHT,
AGAIN 7DEFINED HERE.

«PRI,TOVLD ;GET MULTITASK HANDLERS.

iSYSTEM, GET A FREE

iCHANNEL NUMBER, PUT IN AC2.

iON ERROR, TRY AGAIN,

;STORE CHANNEL NUMBER IN "CHNUM",

JPOINTER TO CONSULE OUTPUT NAME,

7USE DEFAULT DISABLE MASK,

SYSTEM, OPEN CONSOLE OUT=

;PUT ON CHANNEL NUMBER IN AC2.

7ON ERROUR, GET CLI TO REPORT.

3GET NUMBER "4",

;CHANGE YOUR PRIORITY TO 4,

JGET NEW TASK'S ID AND PRIGRITY.

;START NEW TASK AT THIS ADDRESS.,

;CREATE NEW TASK, WHICH GAINS CONTROL

; IMMEDIATELY, SINCE IT9 PRIORITY IS 3,

JGET CLI TO REPORT ERRUR, '
THIS IS THE MAIN KEYBOARD LISTENER TASK,
JGET A CHARACTER FROM THE CONSOLE.

069-000022-01

23 cSYSTM sTHIS IS THE
24 2@220'607420 « GCHAR s GET A CHARA
25 ¢vwel'avedle JMP ER
:i' ‘4 5 6 :‘ 9 l1(’! 111213 14 15.16|17 ,
| | - - _
Line Source Line
N:m:er3 Data Field Relocation Flag Comment
Td Data Field or Expression
Error Flag Relocaﬁo‘n Flag
Location Counter (LC)
SD-00468A
Figure 8-1. Program Listing

8-3

Argument Operators

From time to time, you may want to perform some
operations on symbols. Typical operations include
forming a byte pointer from a symbol name, and
créating indexes in a table. For example, if START is
the name of the beginning of a text string, 2 times
START would be a byte pointer to the beginning of this
string (the next chapter reviews byte pointer and byte
string concepts). Similarly, if TABLE is the name of the
beginning of a table with one-word entries, then
TABLE+ 1 would name the second entry in the table,
TABLE+ 2 the third entry in the table, etc.

You may apply the following operators to symbols,
integers, and the current location counter:

Operator Meaning
+ Addition (24 3) or unary plus
(+3)
- Subtraction, (5-2) or unary
Arithmetic minus (-7)
* Multiplication
/ Division

Thus you could write JMP .+ 5 to jump 5 words from
the current location. If your program reserves a series
of addresses whose first word is address TABLE,
indexes off TABLE wold be TABLE+1, TABLE+2,
etc.

Numbers

All numbers that you use in your programs are octal
unless you specify otherwise. Indicate decimal values
by placing a decimal point after the number. Thus 10
equals octal 10 (decimal 8), while 10. equals decimal 10.

Instruction Types:

Most Data General machine instructions assemble into
one 16-bit storage word. There are three types of
instruction:

® Memory Reference Instructions (MRIs). MRIs concern

‘memory locations or their contents. They permit
one of four different kinds of indexing into these
locations. The address they reference must fit in 8
bits, because their address field is 8 bits long.
Examples of MRIs are LDA 0, TEMP (load
accumulator 0 with the contents of address
identified with label TEMP) JMP ER (Jump to the
instruction identified by label ER), and JSR PRINT
(Jump to subroutine PRINT, save return address in
AC3). Some basic MRI instructions and their
simplestformats are shown in Table 8-1.

® Arithmetic-Logical Instructions (ALCs). ALCs can add
and subtract values, shift bits, swap bytes, use the
overflow (Carry), and redirect program execution.
They can also AND values to mask portions of
words. All ALC instructions require a source
accumulator and a destination accumulator to
receive the result of the arithmetic-logical operation.
Examples of ALC instructions are MOV0, 1 (copy
the contents of ACOto AC1) and SUB #0, 1, SZR
(Subtract the contents of ACO from AC1, don’t load
AC1 with the result, skip the next instruction if the
result is 0). Some common ALC instructions are
shown in Table 8-2.

® [nput-Output (I/0) Instructions. 1/0 instructions
govern the operation of all system devices.
Generally, operating system calls will manage 1/0
devices, and you’ll need these instructions only to
write your own interrupt handlers, which are outside
the scope of this book.

Table 8-1. Common MRI Instructions

Instruction and Exol .
Format xplanation Example
JMP addr Jump to address addr, which can be a symbolic or numeric address or JMP ER
expression. This definition of addr applies to all instructions. JMP LOOP +6
: JMP 300
JSR addr Jump to addr, save return address (current addr + 1) in AC3. You can JSR SUBR1
_ return from a JSR with a JMP 03 instruction (if the code to write you
jumped didn’t overwrite AC3). .
LDA ac addr Load accumulator (ac) with contents of addr. LDA O, MYFIL
STA ac addr Store the contents of ac in addr. STA 3LOOPO
DSZ addr Decrement the contents of addr by 1, skip the next instruction if contents DSZ COUNT
equal O.

069-000022-01

8-5

In a source program line containing a memory
reference instruction (such as LDA, load an
accumulator; or JSR, jump to a subroutine, save return
address), or before an expression, you may use the
commercial at sign (@). An @anywhere in a memory
reference instruction argument sets bit 5 in that
instruction, the indirect addressing bit. For example:

024060 LDA 1,60
026060 LDA 1,@60

The first instruction loads accumulator 1 (AC1) with
the contents of memory location 60; the second loads
ACI1 with the word whose addressis in location 60.
Likewise, using @in a data word sets bit 0 (the indirect
bit for a data word) of that word to one:

000025 25
100025 @25

Like @, a number sign (#) may appear anywhere in an
arithmetic/logical instruction. A #sets bit 12 of the
instruction to 1; this is the no-load bit, and you use it
with one of the arithmetic/logical instruction symbols
when you want to test for equality, zero or other values
without changing the value in the accumulator.

133102 ADDL 1,2,SZC
133112 ADDL # 1,2,SZC

The first instruction adds the contents of AC1 to AC2,
places the result in AC2, and skips the next instruction
if the carry bit equals 0; the second instruction does the
same thing, but does not load AC2 with the result. in
the first instruction, AC2 is loaded with the result; in
the second, it is unchanged.

The following examples show you how you can use
special instruction symbols and special characters to
modify the ADD instruction.

Instruction Meaning

ADD 1,2 Add the contents of accumulator
AClto AC2.

ADDL 1,2 Add the contents of AC1 and 'AC2,

shift the result one bit to the left,
placing the carry in bit 15, and leave
the result in AC2 and carry.

ADDL 1,2,8ZC Add the contents of AC1 and AC2,
shift the result one bit to the left,
leave the result in AC2 and carry, and
skip if this operation yields a zero
carry.

ADDL#1,2,SZC Add the contents of AC1 and AC2,
shift the result one bit to the left, and
skip if this operation yields a zero
carry. Do not alter the original
contents of AC2.

069-000022-01

Note that whenever you use the no-load (#) symbol
you must specify one of the skip symbols (SZR, etc.)
and specify a shift operation (L for shift left, R for shift
right, etc.). The shift operation can be a dummy (e.g.,
SUB C,0,0,SZR when you don’t care about the carry
bit) but it must be present for no-load to work.

Pseudo-ops

A pseudo-op instruction directs the operation of the
assembler. It is called a ‘‘pseudo instruction’’ because
your program never executes it. The pseudo-ops that
you need to start assembly language programming are:

Pseudo-op Function

.BLK Reserve a series of 16-bit words.

.END symbol Terminate a module and name a starting

address

.ENT Declare an entry point or symbol to be

available for other modules’ use.

.EXTD Declare a symbol (unsigned 8-bit or

signed 7-bit quantity) or page-zero
(ZREL) entry point to be external; that
is, found in some other module. .ZREL
references are useful because they will fit
into the 8-bit field of an MRI instruction.

.EXTN Declare an entry point or 16-bit symbol

to be external; that is, found in some
other module.

.NREL Assemble the following code and data for
execution in normal-relocatable (NREL)
memory.

.TITL Assign a title to a module.

TIXT Create an ASCII text string.

TXTM Specify text string byte packing (e.g., left
to right).

.ZREL Assemble the following code and data for

execution in page zero (ZREL).

8-7

.BLK

.END

Allocate a Block of Storage

Format:

BLK expression

Description:

This pseudo-op allocates a block of memory storage.
Expression is the number of words you want reserved,;
the current location counter is incremented by
expression. ‘

Examples:
TABLE:.BLK 10.
This example reserves a block of ten memory words;

the first word in the series has the symbolic name
TABLE, the second TABLE + 1, and so on.

069-000022-01

Indicate the End of a Module

Format:
.END [expression]

Description:

This pseudo-op terminates each assembly language
module. If the program you are building has several
modules, one of these modules must supply an
expression argument to .END indicating the address to
receive control when the program is executed. ASM
requires a .END for each module; MAC does not.

Examples:
START: SUB 0,0

END START

In this example, the .END pseudo-op terminates the
module and defines START as the address that will
receive control when you run the program.

.EXTD

Declare an External Displacement

Format:
.EXTD symbol [symbol...]

Description:

This pseudo-op declares that oné:\or more symbols
referenced by this module are defined ((ENTered) in
other modules. The value of the symbol must be an

8-bit quantity; e.g., a ZREL address. Generally, you

Example:

will use .EXTD when the symbol is defined in another
module’s ZREL space. '

Here, the ERR routine in module MAIN is available to
module MOD1 through a pointer in MAIN’s ZREL
space. This allows the assembler to resolve ERR’s
address for the JSR instruction (which it could not
otherwise do because JSR’s address field is only eight
bits). All of a program’s ZREL space (locations 50-377)
is accessible to the eight bits of an MRI instruction.

.TITL MAIN
LENT LERR
LEXTN FOO
STXTM 1

.ZREL
.ERR: ERR

.NREL
START: LDA O ...

~e we

ERR: . ;
LEND START
LTITL MoD1
JENT FOO
"EXTD .ERR
JTXTM 1
INREL

FOO: LDA ...

JSR @ .ERR

JEND

.

i Main proaram.
Error handler is here.
FOO code is in other module,

e we

; ERR defined in MAIN's ZREL,
MAIN's NREL
code is here,

Error handler,

;7 Module MODI,

; .ERR defined in
3 another module's ZREL,

MOD1's code is
here,

Use LEXTD error
handler,

e e we we

069-000022-01

8-11

JITL

TXTM

Entitle a Binary Module

Format:
.TITL symbol

Description:

This pseudo-op gives an RB module a title, which is
printed at the top of every listing page. The title need
not be different from other symbols in the module. The
title has no inherent relationship to the module’s
filename, although you might want to use the same
names for clarity.

Examples:
.TITL EXAMPLE

.NREL

END

This example assigns the title EXAMPLE to this
module and prints EXAMPLE at-the top of each listing
page. (The assembler, which considers all symbols to
be unique within the first five characters only, will
discard the ““LE”’ of “EXAMPLE’’; the listings will
start with “EXAMP”’.) '

069-000022-01

Specify .TXT Byte Packing

JIXT

Create a Text String

Formats:

.TXTM number
.TXT u stringu

Description:

Normally, the assembler packs bytes right to left -
which is the wrong order for ASCII text strings and
other required items. To correct this, inserta . TXTM 1
statement before the . TXT appears in your program.

The .TXT pseudo-op creates an ASCII string, which
can contain any ASCII characters. You must delimit the
text with a character that is unique (u);thatis, not
found in the string. You can put nonprinting characters
in the string by enclosing them within angle brackets.

Examples:
TIXTM 1

TXT “ABCDE”

This example creates the ASCII string consisting of
three words. The first contains the letters AB, the
second contains the letters CD, and the last word
contains an E in the left byte and a terminating null in
the right byte.

TXT “AB<011>CDE"
This example creates the ASCII string consisting of AB

and CDE, separated by a horizontal tab (ASCII code
011).

Chapter 9
Programming RDOS or DOS
Assembly Language System Calls

This chapter first introduces some operating system
calls, with examples, and then shows the examples
coded into a viable program. We’ll then write an
assembly language program, assemble it, correct
assembly errors, process it with RLDR, and execute it.
We will finish this chapter by showing you how to
debug the program.

Operating System Conventions

Most Data General computer words are 16 bits long,
and bit positions are numbered left to right, 0 to 15
inclusive. A byte is 8 bits long. A byte string consists of
a sequence of bytes, packed right to left in series of one
or more words. A byte pointer consists of a single word
with two fields (see Figure 9-1). To pack bytes left to
right, as required for system calls, inserta TXTM 1
statement at the beginning of the program.

: ’.ﬁ;_vlm@f

SD-00526 : '
Figure 9-1. Byte Pointer Structure

The left field (bit positions 0 through 14) contains the
address of the word that holds the selected byte. When
right field (bit 15) equals 1, the pointer selects the right
half, or byte; when this bit equals 0, the pointer selects
the left byte. You can produce a byte pointer by
multiplying the address at which it begins by 2; this
shifts all bits left and zero (which specifies the left byte)
in bit 15.

069-000022-01

Here is a byte pointer example:

TIXTM 1

BPTR: +172
TXT “$TTI

.+1 is the address of the next location - the start of text
string $TTI. The label BPTR contains the start address
of the text string. The multiplier *2 zeros bit 15,
thereby specifying the first byte, $.

System Call Format

Code each system call in the form:

.SYST™M
call-name
error return
normal return

You must precede the call with the mnemonic
.SYSTM, and reserve a word after the call for the error
return, which receives control on either an error
condition, or an unusual condition such as an
end-of-file. You must always reserve an error return
word, even if you envision no possible exception
condition, or even if no condition is currently defined.
If no error or exception condition exists, control goes
to the normal return.

Whenever control goes to the error return, the system
places a numeric error code in AC2. These error codes
are defined in the user parameter file. PARU.SR and
they are explained in Appendix A of your system
reference manual.

Upon either an error return or a normal return, AC3
contains the current contents of location 163, the user
stack pointer. You can use this location as you want.
Unless the text indicates otherwise, all other
accumulators will remain unchanged.

9-1

.OPEN

Open a File for Reading or Writing

.APPEND

‘Open aFile for Appending

.OPEN associates a file with an I/0 channel and opens
it for any kind of I/0. .APPEND associates a file with
an I/0 channel and opens it for writing only. If the file
is an output device like a line printer, .OPEN and
.APPEND are practically identical. For a disk file, if you
open via .OPEN, lines are written to the beginning of
the file. If you open via . APPEND, reads aren’t allowed
and lines are appended to the file.

While the file is open, your program references it by
the channel number assigned in the open call. It keeps
the channel number until the program issues .RTN or
.CLOSEs it. We do not describe .CLOSE in this book
because the .RTN or .ERTN calls automatically close all
channels.

You can allocate a number of channels (and tasks) to a
program in the RLDR command line. If you omit
channel and task data entirely, the program receives
one task and eight channels; this will suffice for the
program in this chapter.

Format

.SYSTM

.OPEN n
or

.APPEND n

error return
normal return

; nis the I/0 channel number

Required input:

ACO - byte pointer to the file or device to be opened.

AC1 -if the file is a device, AC1 acts as a characteristic
disable mask. You’ll probably want to keep the

default characteristics by setting AC1 to 0 (via a
SUB # 1,1 instruction).

069-000022-01

Return:

AC2 -error code.

Example (within a program):

This program just created the file ““OUTPUT"’.

NTTI:

OUTPUT:

LDA O, NTTI

SuB 1,1
.SYSTM
.OPENO

JMP ER

LDA O, OUTPUT
SuUB 1,1
.SYSTM
.APPEND 1

JMP ER

4172
TXT “$TTI

+1r2
TIXT “OUTPUT”

:BYTE POINTER TO
CONSOLE
;INPUT FILENAME.

;USE DEFAULT MASK FOR

OPEN.

;0 1S THE 1I/0 CHANNEL
NUMBER-

:WHILE THE $TTI IS’
;OPEN ON O,

:YOU'LL ADDRESS IT
;AS 0.

:ER WAS DEFINED
EARLIER.

;DEFAULT MASK.

;OPEN “OUTPUT”
;FOR APPENDING ON
;CHANNEL 1.

;FILENAME $TTI.

9-3

.RTN or .ERTN

Return to the Program Above

RDOS and DOS offer five levels of program operation;
the CLI normally operates on level 0, and any program
you execute from the CLI executeson level 1.

By ending your program with .RTN (or .ERTN), you’ll
return control to the CLI when the program has
executed. If you omitted .RTN (or .ERTN), you’d
need to hit an interrupt like CTRL-A to return the CLI,
but this lacks finesse.

Call .RTN simply returns control to the CLI, while
.ERTN passes the contents of AC2 to the CLI. On a
system call error, the system places an identifying error
number in AC2. So, if a program issues .ERTN when a
call error occurs, the system will pass the error code to
the CLI; the CLI will interpret the number returned in
AC?2 and type an explanatory message on the console.
Thus .ERTN is generally useful as an error handler, as
shown in the . CRAND example.

Format:

SYSTM
.RTN (or .ERTN)
error return

Required input:
None.)

Example (to terminate our little program):

SYSTM
RTN
JMP ER

Common Errors

The following errors are the most common ones that
can occur on the system calls we have shown. If one of
them occurs, the system places the appropriate octal

069-000022-01

error number in AC2, then goes to the error return.
You can have an error processing routine examine this
number and act on what it finds. The ‘““mnemonic’’
shown next to the error number means the same thing
as the number; it is defined in the system parameter
file, PARU.SR, and you can use it instead of the
number if you insert PARU/S (PARU/Scan) in the
assembler command before the program filename; e.g.,
ASM PARU/S filename).

AC2 Mnemonic Error on call was:

0 ERFNO Illegal channel number.
1 ERFNM Illegal filename.

6 EREOF End of file.

11 ERCRE File already exists.

12 ERDLE File does not exist.

15 ERFOP File not open.

Example Program

The example program, called WRITE, is a short
assembly language program that goes through the
standard 1/0 cycle and uses three files:-a disk file
named W, the console output file (reserved filename
$TTO) and console input file (reserved filename
$TTI).

If disk file W doesn’t exist, WRITE creates it; then
WRITE opens all three files and prompts you with a
question mark. It accepts a line typed on the console,
and, after you press) to end the line, writes the line to
disk file W and echoes the line on the console. It then
prompts you again. WRITE opens W for appending via
call APPEND, which means that all lines you type will
accumulate in file W. When you type a special
terminating line (&)), WRITE returns to the CLI.
Figure 9-2 is the flowchart for program WRITE. The
slashed numbers are page/line abbreviations; e.g., 1/12
means page 1, line 12.

9-5

Writing and Assembling WRITE.SR

The following pages show WRITE and analyze it line by
line. They show listing lines as page/line; e.g., 1/6
means page 1, line 6. You might want to examine
WRITE in Figure 9-3 before reading the next
paragraph.

If you want to try WRITE, you’ll need a number of
utility files, so begin in the master directory. Use
Superedit to create a file named WRITE.SR and type in
all the instructions shown in the program listing in
Figure 9-3. This is an assembler listing so donttype in
any of the numbers or punctuation in columns 1-16. It
might help you to pencil a straight line down the
beginning of the instruction field (e.g., from the space
before .ER: down to the space before .ERDL on the
first page of the listing) and use this as a guide.

If you have an upper- and lowercase console, you can
code in either. The most legible way is to put source
code in CAPITALS and comments and text strings in
upper- and lowercase. The assemblers don’t care what
case you use, but legibility is important.

When you’ve finished typing in WRITE, close the file
(UESHSS). '

Assembling WRITE

You can choose between the ASM and MAC
asemblers for WRITE. We have used MAC for the
listing shown, but either one will work.

To use ASM, type:

ASM/X PARU/S WRITE $LPT/L)

or, if you don’t have a line printer, type:

ASM/X PARU/S WRITE $TTO/L)

If your printing terminal is connected to the second
teletypewriter interface, type $TTO1/L instead of
$TTO/L. From either ASM command, you should get
a listing like the one in Figure 9-3, but without the

MACRO header. Although the paging will differ a
little, the critical locations are the same.

069-000022-01

If, as we did, you want to use the MAC assembler, you
may need to build the permanent symbol file for it.
Generally, this is needed only once; MAC then uses it
for all future assemblies. Try typing:

MAC PARU/S WRITE)

If you get U or F errors on instructions like LDA or
.SYSTM, then you must build a new MAC.PS. This is
easy to do.

If you have a NOV A 4 computer, type:

MAC/S NBID OSID NSID N4ID PARU)

Fora NOVA 3, type:

MAC/S NBID OSID NSID PARU)

For a microNOVA | type:

MAC/S MBID OSID NSID PARU)

For other NOV A computers, type:

MAC/S NBID OSID PARU)

For ECLIPSE machines, type:

MAC/S NBID OSID NEID PARU)

The proper command creates MAC.PS for your
machine; you need not create MAC.PS again for this
book. Other source (-.SR) files you may eventually
need for the Macroassembler are described on the
Release Notice supplied with your system.

Having checked (or built) MAC.PS, type:

MAC WRITE $LPT/L)

or, lacking a line printer, type:

MAC WRITE $TTO/L)

for a console listing. If your printing terminal is
connected to the second teletypewriter interface, type
$TTO1/L instead of $TTO/L. From either MAC

command, you should get a listing like the one in
Figure 9-3, plus the cross-reference.

9-7

0002 WRITE

~e

H
¥
H

}

-e

e we - we we we

we we we

«*90008 TOTAL ERRORS, 00000 PASS 1 ERRORS

System,
return to CLI,
Error (can't ‘heppen).,

Point to filename W,

Point to filename $TTO,

Point to filename $TTI,

Point to prompt

"?2" and CR (¥).

Point (addr%2) to ist byte in line buffer,

133, bytes for ‘read/write line buffere
let the assembler compute ft., :

System,

return to CLI eand have CLI report,

Error (cen't happen),

21 $Normal return to CLI,
02
93 .00051'006017 TOCLI: ,L,SYSTM
04 00052'004400 +RTN
0S 00053'002000- JMP @ LER
o6
07 3 Filenemes, prompt, buffer, etc.
08
09 000S4'000132"NNWS ot1n2
10 806055'053400 o TXT "W"
11
FUBB0GS6'0800B0 NTTO ot1%2
13 00057'022124 «TXT "S$TTO"
14 852060
1S 000000
16 00062'000146"NTTI: ot1%2
17 00063'022124 o TXT "STTI"
18 252111
19 000000
20
2l 00066'000156"PROMT: ot1%2
22 B00B67'037415 W TXT "2«15>"
23 000000
24
25 00071'00016U"SPACP: SPACE=x?
26
27 00072'000103 SPACE: .BLK 132./2+1
28
29
30 jError return to CLI,
31
32 00175'006017 ERROR: ,SYSTM
33 00176'006400 +ERTN
34 90177'002000< JMP @ LER
35
uu +END START

Figure 9-3. WRITE.SR Program with Errors (continued)

The program .ENTers its starting address, START, not
because other modules will use it, but because we want
to identify START symbolically to the debugger. Later
this will help us debug the program. The .ENT line is
flagged with a GU error.

The .ZREL pointer on line 1/6 points to error handler
ERROR at the end of page 2. Through this pointer, any

location in 32K words can get to ERROR. Without the -

pointer, ERROR would be nearly out of range of the
JMP in line 1/20. All system calls except the first,
APPEND, make use of this .ER pointer for their error
returns.

The .NREL in line 8 specifies normal relocation, which
applies to the rest of the program.

069-000022-01

The first group of code, in lines 1/12-1/24, opens disk
file W for appending and opens the console output and
input files for normal I/0 (line 16 has a U error). If
.APPEND cannot open file, it takes the error return on
1/15; this jumps to the routine on lines 1/52-1/60. This
routine creates file Wif it doesn’t exist, then jumps
back to the beginning of the program.

The next block of code starts with LOOP and extends
from line 1/28 to line 1/48. This code reads a line typed
on the console, and checks to see if the first two
characters are & and).It does this by loading the first
two words (two bytes or two characters) from line 2/25
and comparing this to a match word (1/47) set up to
contain &).If they match, the program returns to the
CLI via sequence TOCLI, 2/3. If they don’t match, the
program writes the entire line to disk file W, echoes it
on the console, and returns to LOOP.

9-9

The CLI’s explanation of the error (FILE DOES NOT
EXIST)is accurate, though. One of WRITE’S system
calls took the error return because it could not find a
file. This particular call must be one of the first three
calls because WRITE didn’t type the prompt on the
console. It couldn’t have been the . APPEND call,
because .APPEND will jump to a file-creating routine if
its file doesn’t exist. Therefore it must be one of the
console-opening .OPEN calls. The calls themselves
look ok, as do the byte pointers (one of whose labels
you fixed) onlines 2/12 and 2/16. The console device
names on lines 2/13'and 2/17 also seem ok -- but no!
Line 2/13 has the console output name as $TTO. The
correct name is $TTO. This explains the error: WRITE
tried to open file $TTO, which didn’t exist.

Using Superedit, change $TT0 to $TTO in WRITE.SR.
Then assemble the program again as shown earlier and
run it through RLDR again. The assembler will delete

the old, defective RB binary file and replace it with the
new one; RLDR will do the same with the save file.

Run the new WRITE.SV again:

WRITE)
$TTI

At least it didn’t bomb. ‘$TTI’’ may not be the correct
prompt, but it’s an improvement over ‘‘FILE DOES
NOT EXIST”’. Type)

)
?

The question mark is the right prompt. Type something:

SOMETHING)
SOMETHING
?

WRITE repeated the line on the console -- so far so
good -- but we don’t know whether it wrote to the disk
file yet. The prompt problem seems to have fixed itself.

SOMETHING ELSE)

SOMETHING ELSE
?

069-000022-01

To check the disk file, you’ll need to get back to the
CLI. Try the terminating sequence (&)):

&)
R

The terminator works and you’re back to the CLI. Now
what about the disk file, W?

TYPE W)
SOMETHING
SOMETHING ELSE
R

The disk file mechanism seems fine, too. Aside from
the initial prompt problem, WRITE seems to be in
pretty good shape. Check by running it again:

WRITE)
$TTI)

?
SIGH)
SIGH
?

Clearly the problem isn’t going to go away. Stop
WRITE and check file W from the CLI:

&)

R

TYPE W)
SOMETHING
SOMETHING ELSE

SIGH
R

Everything works except the inital prompt, which is
$TTI when it should be ?. The next step is a very
common one in assembly language programming:
debugging.

9-11

EXamining and Changing Memory Locations

You can display the contents of any location by typing
the symbolic or numberic address of the location
followed by a slash. For example,

START/ 020454

displays the contents of START. START is a debug
address. (Remember that we show user input in
boldface type and system output in italic type.) To
display successively higher locations, press the NEW
LINE key, or if your terminal doesn’t have a NEW
LINE key, the LINE FEED key. We show this key as
downarrow (}) although the debugger doesn’t echo it.at
all on the terminal. To display successively lower
locations, type uparrows via the SHIFT-6 or SHIFT-N
key. We show uparrows as (1) , as does the debugger.
For example:

!

START+1 006017 |
START+2 0124001
START+1 006017

Octal numbers by themselves don’t mean very much.
You can tell the debugger to interpret them by typing
one or more local display commands. '

For example, address START contains an octal
number:

START/ 020454

Semicolon () displays this number in instruction
format:

:LDASTART+ 54
Question mark (?) displays it in .SYSTM call format:
?.CCON 54

Apostrophe ()displays it in ASCII format:

’ ./’
and finally, ampersand (&) displays it in byte-pointer
format: .)

&010226 0

For any location, only one local display command gives
a useful picture of the contents. If a locations holds an
instruction, like JMP LDA, the appropriate command
is ¢“;”’, which displays in instruction format. The
assembler listing can help in this process; for example,
the listing in Figure 9-3 tells you that START contains
an instruction, thus the semicolon is the appropriate

display command.

069-000022-01

If a location holds a system call, like . OPEN 1 or . RDL
2, the appropriate command is ““?”’, which displays in
.SYSTM call format. If a location holds ASCII
characters, like $T or W, the appropriate command is
«» which gives ASCII format. For a byte pointer, like
$T, the command is &, followed by a slash, which
displays the contents of the location pointed to.
Usually, you can tell which kind of display command is
correct because other commands will give absurd
results, like .CCON 54 and !, and 010226 0 above.

To change the contents of memory location, display the
location with a / or | or { command, then type in the
contents you want and press). The new contents can be
an octal number or it can be an instruction like LDA 0,
START+55. A word of caution about changing
locations: the computer will execute the new contents
without asking questions, so problems could occur if
you make a mistake. Also, be wary of changing a
location’s contents accidentally. If, when a location is
open, after /or |, or {, you inadvertently type
something and press.), the character(s) you typed may
replace the old contents of the location. These new
contents may cause problems when you run the
program. If you suspect that you have accidentally
modified a location, and haven’t yet pressed), press
the DEL or RUBOUT key. The debugger will reject the
entire line and then will type ? or U; you can then
proceed. If you have pressed) after accidentally
changing something, type CTRL-A to get back to the
CLI and type the debug command again; this will bring
the original program (which remains unchanged on
disk) back into memory.

Starting or Continuing to Run Your Program

To run your program for the first time, type $R;
thereafter you can proceed with program execution by
typing P or addr$R. For P, the debugger will proceed at
the address contained in P, the program counter.
Initially, P contains the value specified by the .END
pseudo-op in the assembly language source program. If
you are waiting at a breakpoint, P contains the address
at which execution stopped, so all you have to do is type
$P to continue where you left off.

Ending a Debugging Session

When you are done debugging and want to return to
the CLI, simply type

$V (or CTRL-A)

The changes you have made to your program during
the debugging session do not become part of the disk
file when you leave the debugger. To make permanent
changes to your program you must go through the cycle
of editing your source program, assembling it, and
processing it with RLDR.

9-13

After you have type $R once, you use $P to proceed
with the program. You can use $R again only if you
precede it with an address, like START. Type:

$P
6BSTART+1
0001244 1 000000 2 000000 3 000000

Something got into ACO -- looks like a byte pointer.
You can check by displaying ACO’s contents in
byte-pointer format, then displaying the byte pointer
location’s contents in ACSII:

0%A 001244 & 0005220)

ACO contains 1244, which, in byte-pointer format, is
522. Now what does 522 contain in ASCII?

552/ 053400 @ W<0>

It contains W for the disk filename -- as it should.

Return to START +2 and move forward to the next
LDA instruction:

START+2/ 012400 ?.APPEO |
START+3 000436 ; JMPSTART+41 |
START+4 020452 ; LDAOSTART+56 |
START+5 126400 ; SUBI11

This looks like a good place -- after the LD A instruction
in START +4. Set another breakpoint and proceed:

)

START+5%B

$P

SBSTART+S5

0001250 1 00000 2 000000 3 000000

Another byte pointer in ACO; check it out:
0$A 0012508 000524 0524/ 022124 $T

ACO contains a pointer to a text string beginning with
$T. The LDA in START +4 worked and everything is
ok thus far.

Now, get to LOOP and see if the byte pointer to the ?
prompt gets loaded:

)
START+13/ 014002 ;DSZ +2 ?.OPEN 2 |
START+14 020452 ;LDAOSTART+H+66

Set another breakpoint after the LDA in START+ 14:
)

START+15%$B

$P

4BSTART+15
0 001260 1 000000 2 000000 3 000000

069-000022-01

ACO contains 1260, which should be a bytepointer to
the prompt (? <15 >). Check it out:

0SA 001260 & 000530 0 530/ 022124 8T

The ““$T”’ doesn’t look much like the prompt, but try
the next location:

START+64052111 °TI

ACO still has the byte pointer to $TTI, notto ? < 15 >,
as it should. This explains why WRITE says $TTI
instead of ?. It means that the LD A in location LOOP
isn’t happening. Why not? Continue the program:

)
$P $TTI

This is WRITE’s .WRL at line 1/30. Type some text
next to the $STTI prompt:

FOO)
FOO
4BSTARTH+15
0001270 1 000004 2 027070 3 000000

WRITE has jumped back to LOOP and is executing the
LOOP breakpoint again. AC1 shows the byte count,
including the CR (carriage return), from the .WRL on
1/44; the byte counts from .RDLs don’t include CRs.
AC2 shows the results of the SUB on line 1/38.

But ACO differs from the first time you saw this
breakpoint. It probably has the right byte pointer now.
Check it:

08%A 0012708 0005340534/ 037415 2 < 15>)

Yes. This is the right prompt. WRITE will display it
when you proceed:

P ?

? is the correct prompt. Try typing something else:

ZUT ALORS)
ZUTALORS

4BSTART+15
0 001270 1 000012 2 032110 3 000000

The byte pointer in ACO remains the same, which is
consistent with your earlier experience: WRITE gave
the correct prompt every time after the first pass.
Clearly the loop is ok now.

9-15

02
83
24
8s
06
87
28
029
10
11
12
13
14
15
16
17
18
19
20
2l
ee
23
L
2s
26
e7
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4s
46
47
48
49
50
51
52
53
S4
SS
56
57
S8
59

0001 WRITE

60

20000}

00000-000176" ,ER?

$ Open the three files,

00000'820455
00001'006017
00002'012400
20003'000437
00004'020453
00005'126400
00006'0606017
00007'014001
00010'002000~
00011'020452

00012'0060617
00013'014002
00014'002000~

; Begin

000815'@2@452 LOOP!
00016'006017
00017'017001
06920'002000
00021 '020451
00022'006017
00023'015402
00024'002000~
0002S'030446
00026'024412
00027'132405
80030'000422
00031'006017
00032'017000
00033'002000~
000834'006017
00035'017001
00036'002000~
00037'000756
09040'023015 TWORD:
o000

} Error processing iroutine, creates file W if it doesn't exist,

MACRO REV 06,30

«TITL WRITE
+ENT START
«TXTM 1

«ZREL
ERROR

+NREL

LDA @, NW
«SYSTM
+APPEND @
JMP NOFIL
LDA @, NTTO
suB 1, 1
«SYSTM
+OPEN 1

JMP @ LER
LDA @, NTTL

«SYSTM

Ve Wo Ve We Ve Ve VI WO We Ve We We Wo

17:58313 04/02/79

Title js optional but sometimes useful,
Globsl entry for debugging.
Pack text bytes left to right,

Pointer in pege zero avoids asgembler A error,

‘wER contains "ERROR" address im NREL space,

Now for the code proper.,

Point to disk filename W,
Systenm,
open file W for append on channel @,

Error on APPEND, go to NOFIL routine,
Point to conscle output fileneme.

To open a device, use default disable mask,
System,
open console output on channel 1,

Error return vie ZREL pointer to CLI,
Point to console 1nput (keyboard) filenasme,
Default mesk: AC1 still = @,

Systenm,
open console keyboard on .channel 2.

the main program loop,

LDA @,PROMT
+SYSTM

JWRL 1

JMP @ LER

LDA @, ' SPACP
+SYSTM

+RDL 2

JMP @ LER

LDA 2, 'SPACE
LDA §, TWORD
SUB 1, 2, SNR
JMP TOCLI
+SYSTM

LNRL ©

JMP. @ LER
+SYSTM

JWRL 1

JMP @ LER

JMP LOOP

+TXT "gei5>"

WO We WO WO Ve We Ve Wo We Ve Ve W We We Ve Ve We Ve Ve W

Point to prompt character,

SYOtem,

write prompt to channel 1 (conscle out),
Error = report vis CLI.

Point to beginning of line buffer,

System,

read a 1ine from channel 2 (console keyboard),

Error = repart vie CLI,
Get .18t word (2 bytes) of 1ine buffer in AC2.
Put termimator word (&¢) |n ACt,
Were 1st 2 bytes 8¢ ? (Skip #f not,)
Yegs = returmn to CLI,
No _e= Systenm,
write Yine to channel @,
Error == report,
System,
echo the 1ine on console out,
Error == report,
Now do it all again,
Terminator word, & in left byte, CR im right,

file w,

When

} system gets here, ACO® st{ll has W pointer, AC2 hes errcor ‘number,

00042'024407 NOFILS
00043'146404
00044'002000+
80045'006017
00046'007000
00047'002000+
00050'0060730

000851'000012 LERDLS

LDA 1§,
sSuB 2,

«ERDL
1, SZR

UMP @ LER

LSYSTM

. CRAND
JMP @ ER
JMP START
ERDLE

H
H
i
H
H
}
}
}

Get code ERDLE (file does not exist),

Skip next instruction 1t $ile ‘aliready exists,
Error other .than ERDLE, exit,

System,

create file W,
Error, exit and roport.

Now go back and open the new file,

ERDLE = 12,

069-000022-01

Figure 9-4. WRITE.SR Program without Errors

9-17

Figure 9-5 shows RLDR information (called a load
map) from WRITE.

The RLDR load map, shown for WRITE in Figure 9-5,
shows the module names and program size
information. It also gives some module starting
addresses, which makes a useful debugging tool,
although you didn’t use it during this debugging
session. In Figure 9-5, WRITE is the .TITL of the
module. TMIN is the single-task scheduler. If WRITE
were a multitask program, you’d have specified the
number of tasks with the local /K switch in the RLDR
line, and the RLDR would have loaded the multitask
scheduler, TCBMON.

NSACS3 tells the system to copy the contents of location
165, the USP or User Stack Pointer, into AC3 after
each system or task call. Thus you can use USP, a
handy ZREL location, to store the return address from
a subroutine. No matter how the subroutine uses AC3,
a system or task call will restore it to the value it had on
entry. The program can then JMP 0,3 to return from
the subroutine. The .ENT pseudo-op in Chapter 8
shows an example of USP usage.

WRITE,SV LOADED BY
RLDR REV 07,10 AT 17:59:02 04/02/79
WRITE
TMIN
NSAC3

NMAX @ee742
IMAX 000051
CSzt 000000
EST 000000
SST 000000
USTAD 000400
START 200445
TMIN 200647
«SACO 820016
»SAC1 824016
«SAC2 230016
+SAC3 234816

Figure 9-5. RLDR Load Map from WRITE

NMAX, the first unused word of NREL memory
above WRITE code, is 7425. ZMAX, the first free word
of ZREL memory, is 515 because the program uses
location 504 for the ERROR pointer. CSZE is the
FORTRAN COMMON area size; here there is no
COMMON. EST is the (bottom) of the symbol table.
SST is the start of this table. The symbol table helped
you debug WRITE, but you didn’t tell RLDR to load it
(global /D) with this version of WRITE, hence, figures
for it are zero.

USTAD is the starting address of WRITE’s User Status
Table. RLDR builds this table into each program and
the system uses it to store runtime information on the
program. START is WRITE’s START address. TMIN,
the task scheduler, starts at 6475. The .SAC entries are
LDA instructions, not locations. RLDR takes them
from the module NSAC3, described above.

Running WRITE

WRITE should run properly now; you’ve spend
enough time on it. Try it out:

WRITE)
?

You’ve fixed it; the intial prompt is correct.

WRITE RUNS RIGHT, Q.E.D.)
WRITE RUNS RIGHT, Q.E.D.

?

&)
R

TYPE W), and find that it contains all messages.
WRITE is right, and all ventures into Superedit, the
assembler, RLDR and the debugger have paid off.
WRITE is a neat little program, and you can use it, or
parts of it, to produce impromtu logfiles and do other
things.

In the future, if you plan to do a lot of assembly
language programming, you might want to create a
directory (e.g., ASM.DR) for your assembly language
programs, and link to the needed utilities from it.
You’ll need links to the following files:
(N)SPEED.SV/SPEED.ER, ASM.SV/XREF.SV or
MAC.SV/MACXR.SV/MAC.PS,
RLDR.SV/RLDR.OL, and SYS.LB.

End of Chapter

069-000022-01

9-19

Index

Within this index, the letter ‘“‘f”” means ‘‘and the
following page’; “‘ff”’ means ‘‘and the following
pages’’. For each topic, primary page references are
listed first. All letters are lowercase, except CLI
commands (e.g., BUILD), Superedit commands (e.g.,
C), FORTRAN, BASIC or assembly language symbols
(e.g., FORMAT, LIST, JSR), pseudo-ops (e.g., .BLK),
and system calls (e.g., CRAND).

) (RETURN) iv
I (exclamation point) prompt S-1f
(don’t load accumulator) assembly language 8-7
$ (ESC) Superedit command 5-1
$ (ESC) debugger command 9-12
$ (dollar sign) BASIC strings 7-3
& debugger command 9-12
> (apostrophe) debugger command 9-12
* (asterisk) CLI template 2-6, 3-6f
+ (plus) addition
assembly language 8-5
BASIC 7-2
- (dash) subtraction
assembly language 8-5
BASIC 7-2
* multiplication in FORTRAN BASIC
assembler 6-3,7-2, 8-5,9-1
* (BASIC prompt) 7-2
- (dash) CLI template 2-6, 3-6f
. (period) current location 8-4
. (period) indicates decimal to assembler 9-4
/ (slash) CLI switch indicator 2-3, 3-3
/ debugger command 9-12
/ division in FORTRAN, BASIC, assembly
language 6-3, 7-2, 8-5,9-1°
: (colon) directory specifier 2-7, 3-7
: (colon) in label 8-2
; (semicolon) in CLI 4-1
; (semicolon) indicates comment to assembler 8-2
; (semicolon) debugger command 9-12
? debugger command 9-12
@ (indirect addressing) assembly language 8-7f
1 (uparrow) in CLI 4-1
1 (uparrow) debugger command 9-12
1 exponentiation in BASIC 7-2
| (NEW LINE/LINE FEED) debugger
command 9-12 ** exponentiation in FORTRAN' 6-3

069-000022-01

A

A debugger command 9-12
ADD instruction 8-6
AND instruction 8-6
AND (logical) 8-5f
.APPEND system call 9-3, 9-5ff
arrays (BASIC) 7-2f
arithmetic-logical instructions see instructions
ASM 8-1, 9-7, also see assemblers
assemblers 8-1ff

command lines 9-7

instruction set 8-5ff

operators 8-6

program listings 8-2f, 9-17f

pseudo-ops 8-7ff

relocatable binary file 8-1f
asterisk see *

B (debugger command) 9-12
backing up your files
DOS 3-9f, 4-6f
RDOS 2-10ff, 4-6ff
backup file 4-13, 5-3, 5-6
BASIC programming
MORTGAGE program
analysis 7-6
flow chart 7-4
listing 7-5
overview 7-1f
sample session 7-1ff
strings and arrays 7-2f
writing programs 7-1
.BLK pseudo-op 8-9, 9-9f
bootstrapping
DOS 3-1f
RDOS 2-1f
BREAK key 2-2, 3-2
breakpoints (debugger) 9-12
buffer
location in memory 9-8ff
superedit edit 5-2
BUILD command 4-2
byte
definition 9-1
pointer 9-1
fixing 9-15

Index-1

file
attributes 4-10f
backup 2-10ff (RDOS), 3- 9f (DOS), 4-6
BASIC files 7-2ff '
definition of 1-2
directory see directory, file
extension 1-2
required for
assemblers 9-7
BASIC 7-1
FORTRAN 6-1
source 8-1

transfer see XFER, DUMP, LOAD, MOVE, COPY

filename extensions 1-2, 8-1
FORT command 6-2, 6-4
FORTRAN programming Chapter 6
compiling program 6-2, 6-4
executing program 6-5f
loading program 6-5
required files 6-1
writing program 6-1f

GDIR command 4-8

H

H command (Superedit) 5-5

I command (Superedit) 5-3

INIT command 4-9, 4-8

initializing
directories 4-8, 2-5, 2-8, 3-5, 3-8
tapes 4-8, 2-10f

inserting text 5-3

instructions (assembly language) 8-5f

J

J command (Superedit) 5-6
JMP instruction 8-5
JSR instruction 8-5

069-000022-01

L

L command (Superedit) 5-5
labels (assembly language) 8-2f
LDA instruction 8-5,9-8, 9-15
LINK command 4-9, 2-8f, 3-8f
LIST command 4-10f, 2-3f, 3-3f
LIST command (BASIC) 7-2ff
listing assembly-language programs §-2f
listing file switches 9-7

LOAD command 4-11f, 2-11
loader see RLDR

LOG command 4-12, 2- , 2,3-3
log file (LOG.CM) 2-2, 3-3
lowercase see case

M

M command (Superedit) 5-5
MAC 8-1, 9-7, also see assemblers
MAC.PS file 9-7
macro

assembler 8-1f

file (MC) in CLI 2-3, 3- 2
manuals, related iv
master directory

DOS 3-3

RDOS 2-2
MDIR command 2-2, 3-3
memory

managing 1-2

reference instructions see instructions
MESSAGE command 2-3, 3-4
mistakes, typing 2-2, 3-2

in CLI 2-2, 3-2

in Superedit 5-2f
module (definition of) 8-1
MOV instruction 8-6
MOVE command 4-13, 2-4f, 3-5

N

names
console 9-5
disk 2-2, 3-3
NMAX 6-5,9-19
NREL 9-19
.NREL pseudo-op 8-12, 9-8f
numbers (assembly language) 8-5

Index-3

T U

T command (Superedit) 5-3 UE command (Superedit) 5-6
tab (CTRL-I) 5-3 UNLINK command 4-16, 2-9, 3-8
tape uppercase see case
backup 2-10ff US command (Superedit) 5-6
device names 2-10 user parameter file (PARU.SR) 9-1, 9-7
files on 2-10f
usage 2-10f A
templates (* and -) 2-6, 3-6f)
terminal, using 2-1f, 3-1f virtual console 2-1f, 3-1f
terms and concepts 1-1f
text W
changing 5-4
deleting (K command) 5-6 -WRL System Call 9-4, 9-8
inserting 5-3
strings, search for 5-4 X
typing lines 5-3 ,
text editor see Superedit XFER command 4-16, 2-3, 3-3
.TITL pseudo-op 8-13,9-6,9-16, 8-13, 9-8
.TXT pseudo-op 8-13, 9-8f z
.TXTM pseudo-op 8-13,9-8
TYPE command 4-15 ZMAX 6-5,9-19
typing lines of text 5-3 ZREL pointer 9-19
typing mistakes see mistakes .ZREL pseudo-op 8-14, 9-8f

069-000022-01 Index-5

€vDataGeneral

Installation Membership Form

Name Position Date

Company, Organization or School

Address City State Zip

Telephone: Area Code No. Ext.

0O OEM
0O End User
O System House

O Batch (Central)
0O Batch (Via RJE)

O On-Line Interactive
O Government

Qty. Installed | Qty. On Order O RSTCP a CAM
O HASP g 4025
0O RJEBO O Other
O SAM
. Specify

a A0S 0O RDOS
a DOS O RTOS From whom was your machine(s)
purchased?
a SOS O Other
) 0O Data General Corp.
Specify O Other
Specify
0O Algol O Assembler
0O DG/L 0O Interactive Are you interested in joining a
0O Cobol O Fortran special interest or regional
0 ECLIPSE Cobol O RPG II Data General Users Group ?
0O Business BASIC O PL/1 @)
O BASIC O Other
Specify

¢»DataGeneral

Data General Corporation, Westboro, Massachusetts 01581, (617) 366-8911

Title

a
0
a
a
a
W

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General représentative. If you wish to
order manuals, consult the Publications Catalog (012-330).

G i
. .

EDP Manager : (Listin order: 1 = Primary use)

Senior System Analyst — Introduction to the product
Analyst/Programmer Reference

Operator ___ Tutorial Text
Other Operating Guide

hat programming language(s) do you use ?

Yes Somewhat

Is the manual easy to read?

Is it easy to understand?

Is the topic order easy to follow?

Is the technical information accurate?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you everything you need to know ?

.

(Please note page number and paragraph where applicable.)

SD-00742

Company

Date

