
MPjAOS

Speed Text Editor

• ., Data General

(
[, ./
~-=" ----------------- --.-~--

,0
~

o '-.-

._~ I

Notice Data General Corporation (DGC) has prepared this document for use
by DGC personnel, customers, and prospective customers. The
information contained herein shall not be reproduced in whole or in
part without DGC's prior written approval.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice, and
the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
W ARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE­
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE­
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUIT ABILITY FOR USE OR PERFORMANCE OF PROD­
UCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRAN­
TY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY
OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSO­
EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARIS­
ING OUT OF OR RELATED TO THlS DOCUMENT OR THE INFOR­
MATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED,
KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
microNOVA, NOVA, PRO XI, SUPERNOVA, ECLIPSE MV /8000,
TRENDVIEW, MANAP,and PRESENT are U.S. registered
trademarks of Data General Corporation, and AZ-TEXT, DG/L,
ECLIPSE MV /6000, REV-UP, SWAT, XODIAC, GENAP, DEFINE,
CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT
are U.S. trademarks of Data General Corporation.

Ordering No. 069-400202
© Data General Corporation, 1982
All Rights Reserved
Printed in the United States of America
Rev. 00, August 1982

o
.,

r
t
l.

1
I

~l
~I

--

This manual has been written to serve experienced programmers.
We assume that the reader is familiar with the MP lAOS Operating
System and its Command Line Interpreter (CLI). Those who are not
should read MP/AOS Command Line Interpreter (CLI) (DGC No.
069-400201).

Preface

....
11 Preface

Organization

Conventions and
Abbreviations

The manual comprises four chapters, two appendices, and an index.

Chapter 1, "Speed Concepts and Syntax," covers units of text; buffers
and text files; and the Speed command format.

Chapter 2, "Using Speed," discusses opening and closing files, reading
text into the buffer, editing, writing text to the output file, and
exiting from Speed. Sample sessions are included.

Chapter 3, "Speed Commands and Modifiers," discusses commonly­
used and advanced commands. It also shows command modifiers.

Chapter 4, "Command Dictionary," lists commands in alphabetical
order.

Appendix A contains the ASCII character set.

Appendix B lists Speed error messages.

Some special conventions used in this manual are:

J
$
$$
A X or TX

COMMAND

argument

[optiona~

EXAMPLE LINE

RESPONSE

Tab character, typed as CTRL-I.

New-line, typed as CTRL-J.

Speed command delimiter, typed with Escape key.

Speed command line terminator, typed as CTRL-D.

Control character, typed by pressing the CTRL key and
another character at once. (Depending on the terminal you
are using, A or T is the ASCII character 1368 ,)

Uppercase letters in THIS typeface indicate an instruction
mnemonic. You type an instruction mnemonic exactly as it
appears.

Lowercase italic letters represent a command's argument.
You must replace this symbol with the exact code for the

, argument you need.

Brackets denote an optional argument. (Command switches
appear in this format as well.) If you use this argument or
switch, do not type the brackets into your command line:
they only set off the choice.

Uppercase letters in THIS TYPEFACE are used for programming
examples.

If the program can respond to the command in the example,
the response is shown in uppercase letters in THIS TYPEFACE.

o

o

o

The following manuals also belong to the series of books published
on the MP / AOS operating system.

MP/AOS Concepts and Facilities (DGC No. 069-400200) provides a
concise but thorough introduction to the MP / AOS operating system
for users who want to assess the system's advantages.

MP/AOS System Programmer's Reference (DGC No. 093-400051)
documents MP / AOS system structure and provides a complete
dictionary of system calls and library routines.

MP/AOS Command Line Interpreter (CLI) (DGC No. 069-400201)
describes the interactive CLI program, the user's primary interface
to the MP / AOS system. A command dictionary provides command
descriptions, formats, and examples.

Loading MP/AOS (DGC No. 069-400207) describes how to install
MP / AOS software on ECLIPSE-line computers and how to load
tailored systems.

MP/AOS System Generation and Related Utilities (DGC No.
069-400206) describes the generation of an MP / AOS system tailored
to specific applications. It also describes the following utilities,
including sample dialogues as appropriate:

• SYSGEN, the interactive system generation utility;

• DINIT, the disk initializer;

• FIXUP, the disk repair utility;

• SPOOLER, which controls line printer operations;

• ELOG (error logger), the utility for interpreting the system log file.

MP/AOS Debugger and Performance Monitoring Utilities (DGC No.
069-400205) describes the following utilities, providing a dictionary
of debugger commands and sample dialogues as appropriate:

• FLIT, the process debugger;

• PROFILE, which measures execution-tirre performance;

• OPM, the process monitor that displays current system resource
allocation and status.

MP/AOS Macroassembler, Binder, and Library Utilities (DGC No.
069-400210) documents the MP / AOS macroassembler and binder as
well as the library file editor (LED) and system cross-reference
analyzer (SCAN). It includes programming examples and a dictionary
of assembler pseudo-ops.

......
Preface III

Related Manuals

..
IV Preface

MP/AOS Advanced Program Development Utilities (DGC No.
069-400208) describes the following utilities:

.. Text control system (TCS), a method for managing different
versions of a single file;

• BUILD, which creates a new version of a file from existing files,
thus minimizing effort and errors in program development;

• FIND, which locates occurrences of strings in text files.

MP/AOS SLATE Text Editor (DGC No. 069-400209) documents the
features of SLATE, a screen- and line-oriented text editor.

MP/AOS File Utilities (DGC No. 069-400204) describes the following
utility programs, providing sample dialogues for each:

• FEDIT, a file editor that permits modification of system files,
including program and data files;

• FDISP, which can display the address and data contents of a file
or compare two files, displaying the parts that differ;

• SCMP, which can compare two source programs line by line;

• MOVE, which allows the transfer of files among directories;

• AOSMIC, which allows manipulation of MP / ADS and MP lOS
disks and files on an ADS system;

• FOXFIRE, which permits the transfer of files among MP /OS,
MP / ADS, and ADS systems over asynchronous communication
lines.

SP /Pascal Programmer's Reference (DGC No. 069-400203) documents
an extended Pascal for system programmers. SP /Pascal has all of
the features of MP /Pascal as well as special features targeted for the
MP / ADS and ADS operating systems.

Books on three additional programming languages supported by
MP / ADS have previously been published as part of the bookset for
the MP lOS operating system:

MP/Pascal Programmer's Reference (DGC No. 069-400031) docu­
ments for system programmers a Pascal-based language targeted for
the MP lOS operating system.

MP/FORTRAN IV Programmer's Reference (DGC No. 069-400033)
documents for system programmers a language based on ANSI 1966
standard FORTRAN with extensions.

MP /Basic Programmer's Reference (DGC No. 069-400032) documents
for new users a programming language based on ANSI standard
Basic with extensions.

o

MP/OS

For information on Microproducts and a bibliography of documenta­
tion on the Microproducts line, see Introduction to Microproducts
(DGC No. 014-000685).

For information on cross development between MP / os and MP / AOS,
see MP/OS System Programmer's Reference (DGC No. 093-400001).

Preface

o

()

Preface
Organization

Conventions and Abbreviations.
Related Manuals

... ii
. ... ii

· ii

1. Speed Concepts and Syntax

2.

Correcting Typing Errors . .
Units of Text ..

Character
String ..
Line.
Page.
Window

Buffers and Text Files .
Buffers.
Files.

........ 4
..... 4
..... 4
· 5

.. 5
.5

...... 5
· 5
· 5
· 6

Speed Command Format 6
Commands, Modifiers, and Terminators 6
Numeric Arguments
String Arguments

Using Speed
Invoking Speed . .
Opening Files for Input and Output .

File Read (FR)
File Write (FW)
File Open (Fa)

Reading Text into the Edit Buffer.
Yank (Y)
Read (R)

Editing Text . ..
Text Type-Out
Move Character Pointer ...

Insert Text .
Search.
Delete Text ..

· 7
· ... 10

... 12
· ... 14
· ... 14
... 14

· ... 14
· ... 14
· ... 15
· ... 15
· ... 15
· ... 16
· ... 16

· ... 16
. .17

· ... 17

Contents

Writing Text to the Output File
Put (P)
Read (R)

Closing Input and Output Files
File Update (FU).
File Backup (FB)
File Close (FC) .

Exiting from Speed . .
Sample Sessions

Example 1.

· ... 18
· ... 18
· ... 18
· ... 19
· ... 19
· ... 19
· ... 19
. ... 20

. .20
... 20

· ... 21 Example 2 ..
Example 3. 22

3. Speed Commands and Modifiers
Commonly-Used Commands.

Commands to Open and Close Files
File Input Commands .
Text Type-Out Commands
Character Pointer Commands
Search Commands ..

· ... 26
· ... 26
· ... 28
· ... 29
· ... 30

.30
Insertion Commands .
Deletion Commands

· 35
· ... 36

Buffer Commands · ... 37
· ... 38 File Output Commands .

The Exit Command . · 39
Advanced Commands . .

Input Mode Commands.
Case Control Commands ..

.... 40
· .. .40
· .. .41

Numeric Argument Commands. 42
Numeric Variable Commands 43
Iteration Commands. 43
Flow Control Commands 44
Program Execution Commands . .
Command Line Recall Command

.... 46

.... 46
Command Modifiers. · 46

Contents

4. Command Dictionary. ... 49

A. ASCII Character Set 119

B. Speed Error Messages 121

Index 123

DG Offices

How to Order Technical
Publications

Technical Products Publications
Comment Form
Users' Group Membership Form

Figures
2.1 Text editing example 15

Tables
1.1 Speed pseudo variables 8
1.2 Speed numeric operators 9
2.1 Optional command switches 12
3.1 Commands to open and close files 27
3.1 Commands to open and close files (continued)28

3.2 File Input commands 29
3.3 Text Type-Out commands. 29
3.4 Character Pointer commands 30
3.5 Search commands.31
3.6 Search string templates. 33
3.7 Control of the CP after a search34
3.8 Templates for literals in searches 34
3.9 Effects on searches of Position Mode 35
3.lO Insertion commands 36
3.11 Include File Insertion commands 36
3.12 Deletion commands. 37
3.13 Buffer commands. 38
3.14 File Output commands 39
3.15 Exit command 40
3.16 Window Mode commands 40
3.17 Display Mode Commands.
3.18 Trace Mode command ..

.41
. .41

3.19 Case Control commands. 42
3.20 Numeric Argument commands .. 43
3.21 Alternate Radix commands 43
3.22 Numeric Variable commands
3.23 Iteration commands

.43
......... 44

3.24 Command Loop terminators. . .44
3.25 Flow Control: Unconditional Branch

command.................. 45
3.26 Flow Control: Conditional Skip commands .. 45
3.27 Program Execution commands 46
3.28 Command Line Recall command. 46
3.29 Command modifiers 47

o

o

o

Speed Concepts and
Sy~tax

r, Speed is a character-oriented text editor, and this implementation
runs on I6-bit ECLIPSE® computers under MP / AOS.

Using Speed, you can easily create text files, modify existing files,
and merge data contained in two or more files. You can also perform
very sophisticated editing operations on multiple files by employing
the more advanced commands.

This chapter introduces Speed concepts and syntax, and since you
will usually use Speed from a console, you will first learn how to
correct typing errors.

Speed Concepts and Syntax

Correcting Typing
Errors

Units of Text

Character

Occasionally, you will make typing mistakes while entering com­
mand characters at the console. The system provides you with three
methods of correcting these errors.

Erase a Character

You can erase the last character you entered at the console by
striking the Delete key .. On a video display, the last character
disappears, and the cursor moves one space to the left. Hardcopy
terminals echo a backslash followed by the deleted character.

If you delete several characters in one line on a hardcopy terminal,
the line may become difficult to read. You can retype the entire
current line by striking the CTRL and T keys at the same time. (We
will use the term CTRL-T to denote this action.)

Erase a Line

You can erase an entire line by typing CTRL-U. On video terminals,
the entire line disappears and the cursor moves to the beginning of
the line. Hardcopy terminals echo TU. In both cases you can
immediately type.a new line of characters.

Erase Several Lines

A line is defined as a string of characters ending in a New-line,

o

Carriage Return, Form Feed, or null character. You may enter Speed n
command strings that span two or more lines. If you want to cancel ,~

input that spans more than one line, type CTRL-C CTRL-A. Speed
cancels all of the characters entered from the prompt (!) on.

We define text as a sequence of one or more ASCII characters. A
complete list of the ASCII character set appears in Appendix A. The
units of text that Speed recognizes are:

• Character

• String

• Line

• Page

• Window

A character can be any single ASCII alphanumeric character. Each
character occupies a single position in the edit buffer, the area in
memory where Speed processes your text. Some of the nonalphabetic
ASCII characters do not print on your video display (for example,
New-line or CTRL-J), and some print as more than one symbol.
Nevertheless, they still occupy a single character position in the
stored text. o

I~ \ .

Initially, Speed does not distinguish between uppercase and lower­
case alphabetic characters used for command names and search
strings. However, you can tell Speed to distinguish between uppercase
and lowercase with a case control command.

A string or character string is a sequence of any ASCII characters.
There are two special-purpose characters which are not usually part
of a string, Escape and CTRL-D. Escape is the command delimiter,
and CTRL-D is the command line terminator.

A line is a character string ending in the New-line character (CTRL-J).
Each line of text you type at the console appears as a separate line on
your video display.

A page is a sequence of characters ending in a Form Feed character
(CTRL-L). You usually read text from a file into the edit buffer for
processing in pages. A page of text is not limited in size, and its size
may be altered. You can create a page by inserting a Form Feed into
the text, and you can merge two adjacent pages by deleting the Form
Feed that separates them.

Besides pages, Speed allows you to read text into the edit buffer in
windows. A window is a fixed number of lines of text. It has no
delimiter, and can contain any ASCII character including a Form
Feed. Window units allow you to read text from a file into the edit
buffer in segments whose length you preset. A window length of 20
lines will fit on a console screen, and a window length of 60 lines
will fit on a line printer page.

To read text in windows, you must turn Window Mode on and
specify the window length (see Chapter 3).

Speed performs editing operations by reading text from an input file
into an edit buffer, modifying the contents of the buffer, and writing
the contents of the buffer to the output file (which is therefore the
edited version of the input file).

Speed has 36 edit buffers, named 0 through 9 and A through Z. You
can store text to be modified in as many of these buffers as you
require, but at any given time there is only one current buffer. The
current buffer is the buffer in which text is currently being modified.
The current buffer is initially Buffer 0, but you can issue a Speed
command, for example, to change the current buffer from Buffer 0
to Buffer 4.

Speed Concepts and Syntax

String

Line

Page

Window

Buffers and Text
Files

Buffers

6 Speed Concepts and Syntax

Files

Speed Command
Format a

Commands, Modifiers,
and Terminators

Character Pointer

Your present position for editing text within the current buffer is
indicated by the character pointer (CP). The character pointer is
always placed between two characters, and it is displayed as a
flashing asterisk (*). (On terminals other than 605x, the CP is
displayed as a circumflex (A).) You can move the CP around in the
buffer with character pointer commands (see Chapter 3).

As stated above, Speed reads the text you want to edit from an input
file, and then writes the modified text to an output fiJe. When you
open files for input or for output, the specific command used
determines whether the file is global or local. You can transfer text
to or from any of the 36 edit buffers if the file is global. However, a
local file can only be accessed from one edit buffer (the current
buffer at the time the file was opened).

New Speed users will probably find it easier to work with global
files initially.

The generalized form of a Speed command is as follows:

![modJ[numJCOMMAND[<str > del [<str>demterm

where

! is the Speed prompt, indicating Speed will accept commands.

mod is one of the optional command modifiers @, :, or &.

num is one or two numeric arguments.

COM MAN D is a Speed command mnemonic.

<str> is a string argument.

del is a delimiter (usually Escape with appears as $), required with
string arguments.

term is the command line terminator, CTRL-D (which appears as $$).

A Speed command string includes one or more Speed commands.
The generalized form of a command string is as follows:

COM MAN D[[de~[... commandJ]. .. term

A Speed command, as can be seen above, consists of a command
mnemonic together with optional arguments and modifiers. Chapter
3 introduces all the Speed commands divided into functional
categories, and Chapter 4 describes each command in detail.

Many of the Speed commands accept modifiers which alter the
action taken by the command. These modifiers (:, @, and &) are

o

o

described collectively at the end of Chapter 3, and the descriptions 0.'
of the relevant commands in Chapter 4 include a full discussion of
the effects of modifiers.

A Speed command string consists of one or more commands. Every
command line must be terminated by CTRL-D (which is echoed as
$$). Speed scans the command line/. but will not start to execute
commands until it has found the terminator.

If a command string contains more than one command, the com­
mands may be separated by the standard Speed command delimiter,
Escape (which is echoed as $). Although it is not necessary to delimit
the commands in this way, the beginner will probably find it easier
to check that the commands are correct if they are delimited. For
example, here is a command string containing two Speed commands
(Y and T in this case):

IY$T$$

The command string

IYT$$

has the same effect, but it is not as obvious that there are two
commands in the string.

You should note that the exclamation point (!) is the Speed prompt. It
tells you that Speed is ready to accept commands.

A numeric argument is a number or an expression which evaluates
to a number. Initially, Speed interprets numbers as decimal, but you
can specify that any number should be interpreted in an alternate
radix (octal, binary, etc.).

Some Speed commands accept a single numeric argument (denoted
by n in this manual), and some accept two numeric arguments
(denoted by m,n). *

When a single numeric argument precedes a command that accepts
both positive and negative numeric arguments, it may have any
value within the range - 32768 to 32767. When a numeric argument
precedes a command which accepts only positive numeric arguments
(J/ \ or =)/ it may have any value within the range 0 to 65535.

In a double numeric argument (m,n)/ either argument (m or n) may
have a value within the range 0 to 65535. Remember that double
numeric arguments must always be separated by a comma, and
neither of them may be negative. The first argument (m) must have
a value less than or equal to that of the second argument (n).

"If a numeric argument is a mathematical expression, it may contain any digits,

numeric operators, special symbols, pseudo variables that represent numeric values,

and numeric variables.

Speed Concepts and Syntax

Numeric Arguments

8 Speed Concepts and Syntax

Examples of Speed commands with single numeric arguments are:

!10T$$

which types 10 lines from the current buffer, starting at the line
containing the CP, and

!-70$$

which deletes from the current buffer 7 characters preceding the
CPo

Examples of Speed commands with two numeric arguments are:

!5.9T$$

which types out the 6th through 9th characters in the current buffer,
and

!9.25K$$

which deletes the 10th through 25th characters from the current
buffer.

Special Symbols and Pseudo Variables

There are several special symbols and pseudo variables (see Table
1.1) which represent specific values associated with the position of

()

the character pointer (CP) within the current buffer. You can use the n
special symbols and pseudo variables as numeric arguments. .'''-= ...

Table 1.1 Speed pseudo variables

For example,

!ZM$$

moves the CP Z characters forward in the current buffer (that is, to
the end of the buffer).

o

!-VMD$$

deletes the VM characters preceding the CP from the current buffer
(that is, deletes all the characters between the beginning of the line
and the CPl.

Numeric Variables

Speed has ten numeric variables, named va through V9. Each of the
ten variables is initially set to zero, but you can use the numeric
variable commands to set the variables individually to values,
increment them, or decrement them. You can use numeric variables
as numeric arguments to commands, either alone or in argument
expressions.

For example, if variable va has been set to 5, the command:

!VOD$$

deletes the five characters following the CP from the current buffer.

Numeric Operators

. Table 1.2 lists the numeric operators. None of the operators has
precedence over the others, and numeric arguments containing
operators are always evaluated from left to right. Speed evaluates
numeric arguments before it starts to execute the command.

Table 1.2 Speed numeric operators

Speed Concepts and Syntax 9

10 Speed Concepts and Syntax

String Arguments

Some examples of the use of the numeric operators follow.

!VO+SD$$

If VO has been set to ten, this command deletes the 15 characters
following the CP from the current buffer.

!VN-VLT$$

This command types out every line from the current line to the end
of the buffer.

!Z-60,ZT$$

This command types out the last 60 characters in the current buffer.

A string argument consists of any sequence of ASCII characters
followed by a delimiter (usually Escape, which is echoed as $). Some
Speed commands accept a single string argument, and some accept
two string arguments.

An example of a command with a single string argument is:

!SLOGICAL$$

o

which searches for the string LOGICAL, and places the CP after it.
Notice that in this case the string argument, LOGICAL, is delimited
by CTRL-D, which also terminates the command line. Q
An example of a command with two string arguments is:

!CPROGRAM$MODULE$$

which searches for the string PROGRAM, replaces it with the string
MODULE, and places the CP after the E. Notice that the first string
argument, PROGRAM, is delimited by Escape and the second string
argument, MODULE, is delimited by CTRL-D, which also terminates
the command line.

o

Using Speed

This chapter discusses the steps you must perform when editing text
with Speed. It then describes several sample editing sessions.

A standard edit cycle consists of the following steps:

1. Invoke Speed.

2. Open files for input and output.

3. Read text from the input file into the edit buffer.

4. Edit the text in the buffer.

5. Write the text from the edit buffer into the output file.

6. Close the input and output files.

7. Exit from Speed.

The first step is always to issue a Command Line Interpreter (CLI)
command to invoke Speed. The particular form of the command you
issue determines whether you simply accomplish Step 1, or Steps 1,
2, and 3.

12 Using Speed

Invoking Speed The eLI command line used to invoke Speed is:

XEO SPEED[/switch][pathname]

where

XEO SPEED means execute Speed (this can be abbreviated to X
SPEED).

[/switch] is one or more of the optional command switches shown in
Table 2.1.

[pathname] is an optional argument specifying the file you want to
edit.

Table 2.1 Optional command switches

The effects of the different variations of the XEO SPEED command
are illustrated in the following examples.

Example 1

In this example you want to edit a text file that already exists.

) XEQ SPEED FILE1 J
SPEED REV nun. nn

FILEl is the name of the file you want to edit. Speed starts up and
displays its revision number. It then opens FILEl for input, opens a
new file which it calls FILE1.TM for output, and reads a page of text
from the input file into the edit buffer. Finally, it displays the
prompt (!) which means that it is ready to accept commands.

If you then give the Filestatus command:

!F?$$

Speed displays a report that is similar to the following.

()

o

o

,,-..,
t

Global:
Input File - PATHNAME:FILE1
Output File - PATHNAME:FILE1. TM

Update Mode On

Local:
Input File - None
Output File - None

This version of the XEQ SPEED command opens FILEI as a global
input file and creates FILEl.TM as a global output file, turning
Update Mode on. You will see the significance of this later.

Example 2

In this example you want to enter text into a new file.

) XEQ SPEED FILE2 J
SPEED REV mm. nn
Create new file? yJ

FILE2 is the name of the new file you want to create. Speed starts up
and displays its revision number. It then asks you if you want to
create the new file. You must confirm by typing Y and a New-line (J).
Speed then creates FILE2 as an output file. (There is, of course, no
input file.) Finally, it displays the prompt (1) which means that it is
ready to accept commands. If you then issue the Filestatus command:

!F?$$

Speed responds with a report that is similar to the following:

Global:
Input File - None
Output File - PATHNAME:FILE2

Local:
Input File - None
Output File - None

which confirms that FILE2 is the global output file.

Example 3

In this example you want to invoke Speed without opening or creating
a file at the same time.

) X SPEED J
SPEED REV mm. nn

Using Speed

Using Speed

Opening ~iles for
Input and Output

File Read (FR)

File Write (FW)

File Open (FO)

Reading Text into
the Edit Buffer

If you invoked Speed with an XEQ SPEED pathname command, you
do not have to issue specific commands to open input and output
files. However, if you omitted the pathname argument, you will
need to open input and output files. As stated earlier, you will
probably find it easier to work with global files rather than local
files if you are new to Speed. We will therefore discuss only
commands that open or close global files.

Three commonly used file-open commands are File Read (FR), File
Write (FW), and File Open (FO).

This command opens an existing file as the global input file. For
example:

!FRFILE1$$

opens an existing file called FILEI as the input file. You must issue a
file input command to read text from FILEI into the edit buffer.

This command creates and opens a new file as the global output file.
For example:

!FWFILE2$$

creates a new file called FILE2, and opens it as the output file. You
must issue a file output command to write text from the edit buffer
into FILE2.

The File Open command opens an existing file as the global input
file, reads a page of text from the file into the edit buffer, and
creates and opens a global output file. For example:

!FOFILE1$$

opens an existing file called FILEI as the global input file and reads
the first page of text from FILEl into the edit buffer. It then creates
a file called FILEl.TM and opens it as the global output file.

This command turns global Update Mode on for FILEl. This means
that if, after your editing session, you close your input and output
files with an FU (File Update) command, Speed closes and deletes
the input file FILEl, closes the output file FILEl.TM, and ;renames
FILEl.TM to FILEl. The new FILEI is simply an edited (updated)
version of the original FILE 1.

You must read text from the input file into the edit buffer before you
can issue editing commands. You can read text into the buffer in
window lengths or page lengths. Initially, Speed is in Page Mode and
you must issue a Window Mode command before you can read text
in window lengths. In the following discussion we assume that
Speed is in Page Mode, so text is read from the input file from Form
Feed to Form Feed.

o

o

If you used the XEQ SPEED pathname command to invoke Speed, or
if you opened your input and output files with the FO command, the
first page of the input file was automatically read into the edit
buffer.

Two common commands that you can use to read text into the
buffer are Yank (Y) and Read (R).

This command reads a page of text from the input file into the edit
buffer, overwriting the previous contents of the buffer. If the buffer
is not empty and Update Mode is on when you issue a Y command,
Speed will ask for confirmation. You should type Y to acknowledge
that you want to overwrite the contents of the buffer:

!Y$$
Confirm (Y-command) ? Y j

This command writes the contents of the buffer into the output file,
then reads the next page from the input file into the buffer:

!R$$

You can now start editing text in the current edit buffer. At all
times, Speed marks your current position in the buffer with the
character pointer (CP). (You will not see the CP unless Speed is in
Display Mode, or unless you issue a text Type-Out command.) When
you read text into the buffer, the CP is always positioned before the
first character in the buffer. All the commands that modify text use
the CP as a reference point.

The following paragraphs will give you an indication of the sorts of
editing operations you can perform with Speed. For more informa­
tion about the various types of Speed commands, see Chapter 3,
which divides all the Speed commands into functional categories.

In order to illustrate some edit commands, let us assume that the
text in Figure 2.1 has been read into the buffer.

Using Speed 1

Yank (Y)

Read (R)

Editing Text

The system can be used either
for general purpose applications
oriented toward program development.
or for smaller stand-alone
applications such as rael-time
process control. You can put
all the software in read-only
memory (RAM) to eliminate the need
for mass storage. or you can
take advantage of the powerful
file management system for storing
large amounts of data on disks.

Figure 2.1 Text editing example

Using Speed

Text Type-Out

Move Character
Pointer

First, we want to read the contents of the buffer. T is the Type-Out
command, and # is a special numeric argument (equivalent to 0,2)
which means all the characters in the buffer. Speed displays the
contents of the buffer.

!#T$$
The system can be used ei ther

for general purpose applications
oriented toward program development,

or for smaller stand-alone

applications such as rael-time
process control. You can put

all the software in read-only

memory (RAM) to eliminate the need

for mass storage, or you can

take advantage of the powerful

file management system for storing

large amounts of data on disks.

Character pointer commands are either character-oriented (M) or
line-oriented (J or L). The CP is currently located before the first
character in the buffer, and we want to move it four positions to the
right so that it is immediately before the s in system. (Note that a
space is counted as a character.)

!4M$$

M is the character-oriented CP Move command, and the argument 4
specifies four characters to the right. To see the position of the CP,
we can issue the T command without any arguments, which types
out the current line:

!T$$
The *system can be used either

If you do not have a 605x video display, this line would look like:

!T$$
The (""') system can be used ei ther

The CP location is indicated by C") rather than by a flashing asterisk.

o

Using Speed 1 7

(" We now want to insert an extra word at the CP location. To do this Insert Text
we use the I command. We will also type out the current line:

! Ioperating $$
!T$$
The operating *system can be used either

As you can see, Speed has inserted the character string operating at
the CP location. Notice that we delimited the character string with
CTRL-D, which also terminates the command line.

We will now move the CP to the beginning of the buffer:

!1J$$

This line-oriented CP Jump command, J, moves the CP to the
beginning of the first line in the buffer.

There is a spelling error in the text in the current buffer: rael-time Search
should be real-time. We can use the search command C to correct
this error:

!Crael-time$real-time$$
~ !T$$

r'.
\

applications such as real-time*

The C command searches from the CP location (the beginning of the
buffer in this case) through the buffer until it finds rael-time which
it replaces with real-time. Notice that Escape ($) delimits the first
character string, and that CTRL-D ($$) delimits the second character
string and terminates the command line.

We can use another search command, S, to locate the character
string (RAM) which we will delete from the buffer. First we will
move the CP to the beginning of the buffer:

!J$$
!S(RAM)$T$$
memory (RAM)* to eliminate the need

Here, J (which is the same as lJ) moves the CP to the beginning of
the first line in the buffer. S(RAM)$ searches from the CP location
through the buffer for the character string (RAM), and positions the
CP after the last character in the string. T types out the current line.

Notice that we used Escape to delimit the search string (RAM), and
that we issued two commands (S and T) in the same command line.

18 Using Speed

Delete Text

Writing Text to
the Output File

Put (P)

We can use a delete command to erase (RAM) from the buffer. The
two delete commands are D, which is character-oriented, and K,
which is line-oriented (unless it has a double argument). Bearing in
mind the current CP position, we use the following command to
delete (RAM).

!-60$$

This command deletes the six characters preceding (that is, to the
left of) the CP.

Finally, we will move the CP to the beginning of the buffer, and type
out the entire contents of the buffer:

!-7L$#T$$
The operating system can be used ei ther
for general purpose applications

oriented toward program development.
or for smaller stand-alone

applications such as real-time
process control. You can put

all the software in read-only

memory to eliminate the need
for mass storage. or you can
take advantage of the powerful

file management system for storing
large amounts of data on disks.

The command -7L moves the CP to the beginning of the seventh line
preceding the CP (that is, to the beginning of the first line in the
buffer). Then, #T types out the entire contents of the buffer.

We have again put two commands, separated by Escape, in the same
command line. The following command line (without Escape) has
the same effect:

!-7L#T$$

When you finish editing the text in the edit buffer, you can write it
to the output file using a Put (P) or Read (R) command.

This command writes the text with an appended Form Feed character
from the edit buffer into the output file:

!P$$

o

o

This command writes the contents of the buffer into the output file, Read (R)
then reads the next page from the input file into the buffer:

!R$$

Using Speed 19

After writing the text from the edit buffer, you can close the input
and output files. Speed provides you with a number of commands
which close files, including File Update (FU), File Backup (FB) and
File Close (FC). If Update Mode is on (that is, you opened an existing
file for input with an XEQ SPEED pathname command, or you
opened the input file with an Fa command), you should use FU or
FB to close the files (see the section on File Open (Fa)).

Closing Input and
Output Files

This command writes the contents of the edit buffer to the output
file,copies the remainder of the input file to the output file, and
closes both files. It then deletes the input file and renames the
output file.

For example, if the input file was FILEl and the output file was
FILE1.TM, the command:

!FU$$

copies the buffer and the remainder of FILEl into FILE1.TM, closes
FILEl and FILE1.TM, deletes FILEl, and renames FILE1.TM to
FILE1. The new FILEl is simply the edited (updated) version of the
original FILE 1.

File Update (FU)

This command writes the contents of the edit buffer to the output File Backup (FB)
file, copies the remainder of the input file to the output file, closes
both files, and clears the buffer. It then renames the input and
output files.

For example, if the input file wasFILEl and the output file was
FILE1.TM, the command:

!FB$$

copies the buffer and the remainder of FILEl into FILE1.TM, closes
FILEl and FILE1.TM, clears the buffer, renames FILEl to FILE1.BU,
and renames FILE 1. TM to FILE 1. The new FILE 1 is the edited
version of the original FILE l, and the backup FILE l.BU is the
original FILE 1.

/

This command closes the input and output files. It does not write the File Close (Fe)
r"'; contents of the buffer into the output file.
I

!FC$$

20 Using Speed

Exiting from
Speed

Sample Sessions

Example 1

You exit from Speed with the Halt (H) command. If an input file or
an output file is open, or if any text remains in the buffer, Speed will

, ask for confirmation. You must reply by typing Y before Speed
terminates. When Speed has terminated, you will see the CLI prompt
()) if Speed was executed from the CLI.

!H$$
Confirm? Y J
)

Before discussing the complete set of Speed commands in detail, we
will further illustrate some text editing functions with three sample
editing sessions.

In this session we will:

• Create a file and open it for output.

• Insert several lines of text into the edit buffer.

• Type out some of the characters we inserted into the edit buffer.

• Write the contents of the edit buffer to the output file and close
the file.

• Terminate Speed.

The entire session is as follows:

) XEQ SPEED FILE1 J
SPEED REV nun. nn
Create new file? Y J
! IABCDE TJ
FGHIJK TJ
LMNOPQ$$
!0,13T$$
ABCDE
FGHIJK
!FU$$
!H$$
)

XEQ SPEED FILEI creates FILEI and opens it as the global output
file.

! IABCDETJ
FGHIJKTJ
LMNOPQ$$
inserts the character string in the buffer at the CP location. Notice
that when you enter a New-line character as part of your character
string, the operating system echoes it by starting a new line, not by

o

n --

returning CTRL-J. 0

The command O,13T types out the first 13 characters in the buffer (A
through the New-line character following K). If we had specified the
first 12 characters to be typed out, the display would have been:

!0.12T$$
ABCDE
FGHIJK

FU writes the contents of the buffer into the output file, and closes
the output file. H terminates Speed, and puts you back in the CLI.

In this example, we will:

• Open a three-page file for input.

• Create and open an output file.

• Read the first page of the input file into the buffer.

• Edit the contents of the buffer.

• Write the contents of the buffer and the rest of the input file into
the output file.

• Close the input and output files.

• Exit from Speed.

The entire session is as follows:

f') XEQ SPEED)
SPEED REV mm.nn
!FRFILE1.IN$$
!FWFILE1.0UT$$
!Y$#T$$

(Speed displays the contents of the buffer.)

!Sstring1$Istring2$$
!4L$Cstring3$string4$$
!#T$$

(Speed displays the contents of the buffer.)

!E$$
!FC$H$$
)

Using Speed 21

Example 2

22 Using Speed

Example 3

XEQ SPEED invokes Speed.

FRFILEl.IN$$ opens FILEl.IN (a file that contains three pages of
text) as the input file. FWFILEl.OUT$$ creates FILEl.OUT and
opens it as the output file. Notice that for both of these commands,
the string argument was delimited by CTRL-D, which also terminated
the command line.

Y reads the first page from the input file into the buffer, and #T
types out the entire contents of the buffer. Notice that we have
issued two commands in the same command line, separating them
with Escape.

Sstring 1 $ searches from the CP location through the buffer for string 1
and positions the CP immediately after the last character of string 1.
Istring2$$ inserts string2 into the buffer at the CP location. Notice
that we delimited string1 with Escape and string2 with CTRL-D,
which also terminated the command string.

4L moves the CP to the beginning of the fourth line following its
present location.

Cstring3$string4$$ searches from the new CP location through the
buffer for string3 and replaces it with string4.

#T types out the entire contents of the buffer.

E writes the contents of the buffer and the remainder of the input
file into the output file.

FC closes the input and output files, and H terminates Speed.

This final example is much more complicated than the preceding
ones, and it demonstrates some of Speed's more advanced commands.
It uses nested command loops to change the contents of a file from
variable page lengths to fixed page lengths (20 lines per page).

We will perform the following steps:

• Turn on Window Mode and set the window length to 20 lines.

• Open the file for input and output.

• Read a window of text from the input file into the buffer.

• Repeat the following sequence of events (the outer loop) until no
more text remains in the input file.

o

o

1. Repeat the following sequence of events (the inner loop) until
no Form Feeds remain in the current contents of the buffer:

a. Search for a Form Feed character.

b. Delete the Form Feed character.

2. Jump to the end of the buffer.

3. Insert a Form Feed character.

4. Write the contents of the buffer into the output file, and read
a window of text from the input file into the buffer.

• Close the input and output files.

• Exit from Speed.

The entire session is as follows:
) X SPEED J
SPEED REV mm. nn
!10WD$$
!20WM$$
!FOFILE4$$
! < <STL$;-1D>ZJ$ITL$R; >$$
!FBH$$
)

X SPEED invokes Speed.

lOWD tells Speed to display as much as it can of the 10 lines
preceding and the 10 lines following the CP, showing the CP locati9n
asa flashing asterisk. All this happens before Speed returns the
prompt.

20WM turns Window Mode on and sets the window length to 20
lines.

FOFILE4$$ opens FILE4 as the input file, creates and opens a file
called FILE4.TM as the output file, and reads a window of text from
the input file into the buffer.

The next command line contains the nested command loops. The
inner loop is <STL$;-lD>. The first command STL$ searches from
the CP location (initially the beginning of the buffer) through the
buffer for an occurrence of CTRL-L (the Form Feed character), and
positions the CP immediately after the first occurrence of CTRL-L.
The semicolon tells Speed to terminate the inner loop (and continue
execution at the first command following the loop) if the S command
fails. -lD deletes the character preceding the CP (CTRL-L in this
case). Execution of the command loop continues until the S command
fails.

Using Speed 23

24 Using Speed

The outer loop is <Inner-LoopZJITLR;>. The inner command 0
loop is executed first. When the S command fails, Speed executes the
first command following the inner loop (ZJ) which positions the CP
after the last character in the buffer. ITL$ inserts a Form Feed
character at the CP location. R writes the contents of the buffer into
the output file, clears the buffer, and reads the next window of text
from the input file into the buffer. The semicolon command
terminates the outer loop if the R command fails (that is, when there
is no more text in the input file). Execution of the outer command
loop continues until the R command fails.

Notice that when you enter CTRL-L (the Form Feed character) in the
command line, the operating system echoes it by starting a new
page, not by returning TL. SO, the nested loops
«STL$;-ID>ZJ$ITL$R;> display as follows:

!«5

(Form Feed character echoed)

$;-1D>ZJ$I

(Form Feed character echoed)

$R;>

Finally, FB closes the input and output files, renames the input file,
FILE4, to FILE4.BU, and renames the output file, FILE4.TM, to
FILE4. H terminates Speed. Notice that it is not necessary to separate
FB from H with the delimiter, Escape.

o

o

Speed Commands
and Modifiers

This chapter presents the Speed commands divided into functional
categories. It consists of three sections.

Commonly-used commands are: commands that open and close files,
File Input commands, Text Type-Out commands, Character Pointer
commands, Search commands, Insertion commands, Deletion com­
mands, Buffer commands, File Output commands, and the exit
command.

Advanced commands are: Input Mode commands, Case Control
commands, Numeric Argument commands, Numeric Variable com­
mands, Iteration commands, Flow Control commands, Program
Execution commands, and the Command Line Recall command.

The three command modifiers are :, @, and &.

Chapter 4, "Command Dictionary," provides more information about
each of these commands.

26 Speed Commands and Modifiers

Commonly-Used
Commands

Commands to Open
and Close Files

This section describes the ten types of Speed commands. that you use
most commonly in editing.

When you open an input file or an output file, you must specify the
file to be local to the current buffer, or global to all 36 buffers. A file
that is not associated with a single buffer is global You can access
global files regardless of which buffer is the current buffer, but you
can access a local file only when its associated buffer is the current
buffer.

Each buffer can have only one local input file and one local output
file open at a time. Only one global input file and one global output
file can be open at a time.

The commands listed in Table 3.1 open and close files. Commands
beginning with B, such as BFR and BFW, specify local files, and
commands beginning with F,· such as FR and FW, specify global
files.

o

o

o

Table 3.1 Commands to open and close files

*If local Update Mode is not on, the local output file is not renamed. If there is no
local input file, only the buffer is copied.

Speed Commands and Modifiers 27

28 Speed Commands and Modifiers

File Input Commands

Table 3.1 Commands to open and close files (continued)

"'If there are no global files, this command acts on local files. If there is no global

input file but there is a global output file, then the buffer is copied to the global

output file and the file is closed but not renamed.

The File Input commands listed in Table 3.2 read data from an input
file into the current buffer. The commands read pages or windows
of data into the buffer, depending on whether or not Window Mode
has been turned on.

The Y and A commands accept the colon (:) modifier. This causes the
command to return a 1 if the command was successful, and a 0 if the
command failed.

When you issue file input commands, local files take precedence
over global files; that is, the command applies to an open local file if
one exists; otherwise, it applies to an open global file.

o

o

Table 3.2 File Input commends

The Text Type-Out commands listed in Table 3.3 allow you to
examine part or all of the current buffer, or display data typed at the
console. The commands do not move the character pointer (CPl.

~, The n = command accepts the @, :, and & modifiers. The @ modifier
t suppresses the New-line character from the display; the: modifier

sends the output to the line printer instead of the console; and the &
modifier causes the value of n to be interpreted or displayed in the
alternate radix, instead of in decimal.

Table 3.3 Text Type-Out commands

Speed Commands and Modifiers

Text Type-Out
Commands

29

Speed Commands and Modifiers

Character Pointer
Commands

Search Commands

The CP marks your present position in the current buffer. The CP
always resides between characters: before the first character in the
buffer, between two characters in the buffer, or after the last
character in the buffer.

You can move the CP by using the commands listed in Table 3.4. The
J commands are line oriented and move the CP relative to the first
line in the buffer. The L commands are also line oriented, but they
move the CP relative to its current position. The M command is
character oriented.

To display the current position of the CP in the buffer, use the T
command. This displays the line containing the CP, showing the CP
as a flashing asterisk (or as a circumflex (A) on some terminals).

Table 3.4 Character Pointer commands

Speed executes a search command by attempting to match, character
by character, the character string in the command line with portions
of the current buffer. Character strings being searched for may not
overlap page or window boundaries.

The commands listed in Table 3.5 cause Speed to scan through the
current buffer until it finds the character string specified, and then
position the CP after the last character in the string.

If the search reaches the end of the buffer (or the end of the
specified range when arguments are used) without success when
executing an S or a C command, Speed prints an error message on
the terminal and positions the CP at the beginning of the buffer. For
both Nand Q commands, if Speed searches the last page in the input
file without success, you are left with an empty buffer.

o

I
II

:1
il
I

--------~~-=-=-=-=-======================J

Speed Commands and Modifiers 31

Table 3.5 Search commands

32 Speed Commands and Modifiers

You can use the @ modifier with all Search commands. It changes
the command delimiter from Escape ($) to the character immediately
following the search command mnemonic S, N, C, or Q. For example,
the command @S%string% is the same as Sstring$, except that the
first character after S (% in this case) delimits the string.

You can also use the colon (:) modifier with all of the Search
commands. When you precede a command with the: modifier, the
command returns a value of 1 if it succeeds and 0 if it fails. No error
message appears if the search was unsuccessful. The command can
be used as a numeric argument to the next command.

You can combine the @ and the: command modifiers. For example,
the following commands are legal:
@:S%string%
:@C%string 1%string2%

Control Characters in Searches

You can include certain control characters in Search commands to
alter the normal search process. Any number of these control
characters may appear in the same search string.

The control characters listed and described in Table 3.6 act as
templates in search strings. The examples in the table indicate how
the templates act individually. However, if you combine search
string templates, they can provide a very powerful matching
mechanism. (Note that we represent CTRL-X as TX in the examples
in the table.)

Some examples of the use of various combinations of search string
templates are as follows:

TNTE which matches one or more of anything apart from space or
tab. TXTZ which matches anything to the end of the buffer.
T\0123456789T\ which matches any digit in this position in the
search string. TNT\0123456789T\ which matches anything in this
position in the search string except a digit. TYT01234567T\ which
matches any octal string.

o

o

o

Speed Commands and Modifiers 33

~,
\

Table 3.6 Search string templates

34 Speed Commands and Modifiers

The control characters listed in Table 3.7 affect the CP position after
a successful search. (The value of Position Mode affects the CP
position following an unsuccessful search. See the section, "Speed
Modes Affecting Searches" l.

Table 3.7 Control of the CP after a search

The control characters listed in Table 3.8 indicate that the character
following them should be interpreted literally. Therefore, you can
use them to search for other control characters.

Table 3.8 Templates for literals in searches

Speed Modes Affecting Searches

Two of the Speed modes have direct relevance to Search commands:
Position Mode and Search Case Match mode.

o

o

The value of Position Mode affects the positioning of the CP after an
unsuccessful search, as shown in Table 3.9. You can set the value of
Position Mode with the nWP command, or find the status of Position
Mode with the WP command. (See Chapter 4 for' further details.)

Table 3.9 Effects on searches of Position Mode

The value of Search Case Match mode determines whether Search
commands will match alphabetical characters regardless of their
case (uppercase or lowercase). The nWS command sets the value of
Search Case Match mode, and the WS command returns the value of
Search Case Match mode. (See Chapter 4 for further details.) If the
value of Search Case Match mode is zero, matches will be case
independent (both uppercase and lowercase will match either
uppercase or lowercase); this is the initial (default) status. If the
value of Search Case Match mode is not zero, searches will be case
dependent (uppercase will match only uppercase, and lowercase will
match only lowercase).

All of the Insertion commands listed in Table 3.10 insert a string of
characters, specified in the command, into the current buffer at the
CP position. The CP is then repositioned to follow the last character
of the insertion.

You can use the @ modifier with the I command. It changes the
command delimiter from Escape ($) to the character immediately
following the 1. For example, @I%string% is the same as Istring$,
except that the first character following the command mnemonic (%

in this case) delimits the string. For the effects of modifiers on the C
commands, see the section on Search Commands.

You can use the & modifier with nI and n\ commands. It causes the
value of argument n to be interpreted in the alternate radix, instead
of as a decimal value.

Speed Commands and Modifiers 35

Insertion Commands

Speed Commands and Modifiers

Deletion Commands

Table 3.10 Insertion commands

Character String Insertion

The two Include-File references summarized in Table 3.11 allow you
to insert characters into a command string. The characters inserted
may form text, commands, or both.

Table 3.11 Include File Insertion commands

The commands listed in Table 3.12 delete characters and lines from
the current buffer.

For the effects of command modifiers on the C command, see the
section on Search Commands.

o

1('\

Table 3.12 Deletion commands

You may store text to be modified, command strings, and so on in up
to 36 edit buffers (named 0 through 9 and A through Z). Only one
buffer, however, can be the current buffer at any time. You can use
the commands listed in Table 3.13 to transfer data between buffers,
and to manipulate buffers.

The BGx commands accept the colon modifier, which inhibits Speed
from displaying a ? prompt.

Speed Commands and Modifiers

Buffer Commands

38 Speed Commands and Modifiers

File Output Commands

Table 3.13 Buffer commands

The commands listed in Table 3.14 copy data from the current
buffer to the output file. The CP does not move in any output
command.

The colon modifier causes the P and PW commands to delete from
the buffer all the characters that have been copied to the output file.
The colon modifier causes the R commands to return a value of 1 if
the input was successful and a 0 if the input failed.

o

o

o

When you issue File Output commands, a local file takes precedence
over a global file - that is, the command applies to an open local
file if one exists; otherwise, it applies to a global file.

Table 3.14 File Output commands

You use the H command, described in Table 3.15, to exit from Speed.

Speed Commands and Modifiers

The Exit Command

40 Speed Commands and Modifiers

Advanced
Commands

Input Mode
Commands

Table 3.15 Exit command

This section describes the eight types of Speed commands that offer
you advanced editing features.

Three categories of command can change the way in which Speed
reads data into the current buffer, displays data and commands, and
reads data to the output file: Window Mode commands, Display
Mode commands, and the Trace Mode command.

Window Mode Commands

Speed reads data from an input file to the current buffer either in
page lengths (Form Feed to Form Feed) or in window lengths (a fixed
number of lines). Initially, Speed is in Page Mode, and any file input
command reads page lengths into the current buffer. The commands
listed in Table 3.16 allow you to switch from one data input mode to
the other.

Table 3.16 Window Mode commands

Data read from an input file in Window Mode will include any
Form Feed characters embedded in the file. In Page Mode, Speed
remembers when the last character read by an input command was
a Form Feed, but does not place the Form Feed into the current
buffer. You determine the page size by inserting Form Feeds in text.

o

Display Mode Commands

Normally, Speed does not display text unless you issue the appropriate
Type-Out command. However, if Display Mode is turned on, Speed
will display a specified number of lines preceding and following the
current CP location before it gives the next prompt (I). The current
CP location is indicated on the display by a flashing asterisk.

The commands listed in Table 3.17 turn Display Mode on, return the
status of Display Mode, or turn Display Mode off.

Table 3.17 Display Mode Commands

Trace Mode Command

When trace mode is turned on (see Table 3.18), Speed displays the
characters in the command string as they are executed. Specifically,
each character, including New-line, Form Feed, space, arguments to
a command, and the first letter of the command, is echoed. (For
brevity, the rest of the characters in the command string, for
example, a long insert, are not echoed.) Once the entire command
has been processed, Speed resumes the process of echoing each
character.

Table 3.18 Trace Mode command

The Case Control command and its variations let you create and edit
uppercase and lowercase files from an uppercase terminal. The
general form of the command is:

{n}\NC{x{y]]

where

n may be 0 to deactivate case control, positive for up-shifting, or
negative for down-shifting.

("'\ x is the shift character.

Speed Commands and Modifiers

Case Control
Commands

41

42 Speed Commands and Modifiers

I

Numeric Argument
Commands

y is the shift lock character.

Table 3.19 lists the Case Control commands.

The unmodified case control commands affect characters as they are
being evaluated in the command line, if they were entered from the
keyboard. However, the colon modifier extends case control as
follows.

The :nWCx[yJ commands affect all of the characters in the command
line, regardless of whether they were entered from the keyboard or
expanded from character string insertion references (see Character
String Insertion).

The :WC command returns a 1 if case control has been extended to
include input from buffers and files, and returns a 0 otherwise.

Table 3.19 Case Control commands

Two commands can set or change the interpretation of numeric
arguments to other commands: the Default Argument command and
the Alternate Radix command.

Default Argument

Table 3.20 lists the variations of the WA command that sets or
returns the Default Argument value for D, J, K, L, and M commands.
Initially, the Default Argument value is o.

o

o

o

Speed Commands and Modifiers 43

Table 3.20 Numeric Argument commands

Alternate Radix

Table 3.21 lists the variations of the WR command that sets or
returns the Alternate Radix value. The Standard Radix is always 10
(decimal), and the Alternate Radix is initially 8 (octal). The amper­
sand (&) modifier switches from decimal to the Alternate Radix for
the single argument or command it precedes.

Table 3.21 Alternate Radix commands

Table 3.22 lists the commands that manipulate the numeric integer
variables (named va to V9). Since each command returns a value,
you can use the commands alone, in numeric expressions, or as
numeric arguments to other commands.

Table 3.22 Numeric Variable commands

Speed will execute a command string any number of times when
you place the command string between angle brackets. (The enclosed
command string, together with the angle brackets, is known as a
command loop.) Table 3.23 lists the two forms of the iteration
command.

Numeric Variable
Commands

Iteration Commands

44 Speed Commands and Modifiers

Flow Control
Commands

Table 3.23 Iteration commands

You can use the semicolon command to terminate a command loop
prematurely (see Table 3.24). When a semicolon command terminates
a command loop, control transfers to the command immediately
following the command loop. The colon modifier reverses the action
of the semicolon command. This is also shown in Table 3.24.

Table 3.24 Command Loop terminators

Searches in Command Loops

Speed treats all Search commands (and the file input commands'R,
A, and Y) within command loops as if they were modified by the
colon modifier. That is, the command returns a 1 if it succeeds and
a 0 if it fails, suppressing error messages.

Even if a search fails, command execution within the command loop
continues. Therefore, you should always write Search commands
within command loops so that they act as a numeric argument to the
next command. Alternatively, you can combine the search command
with a semicolon (;) command. This will transfer control out of the
loop ifthe preceding Search command failed. Note that the semicolon
command (without an argument) applies to the preceding Search
command even if other commands appear in the command string
between the Search command and the semicolon.

Flow Control commands enable you to perform unconditional
branches to predefined labels, or conditional blocks based on the
evaluation of certain conditions.

o

" i:

[\ Unconditional Branching

You use the command string labels to name locations within a
command string. A label is a character string delimited by a pair of
exclamation marks 01abel!), and it can appear anywhere in a
command string except in text string arguments. Since Speed ignores
labels unless they are specifically referenced by an Unconditional
Branch command, you can also use them as comments in a command
string.

The 0 command (see Table 3.25) is the Unconditional Branch
command.

Table 3.25 Flow Control: Unconditional Branch command

You can use an Unconditional Branch command to exit from a
command loop.

Conditional Skip

~, Table 3.26 lists the four forms of the conditional statement.
(,

Table 3.26 Flow Control: Conditional Skip commands

If the condition is true, Speed executes the commands in the
command string preceding the single quote (plus, of course, the
commands following the single quote). If the condition is false,
Speed scans but does not execute (in other words, skips) the commands
preceding the single quote, and resumes execution at the command
following the single quote.

You can nest conditional statements: that is, they can contain, or be
contained within, a command loop. If you include a conditional
statement within a nest of command loops, you must ensure that the
whole of the conditional statement (from" to ') is within one level of
the nested loops.

Speed Commands and Modifiers 45

46 Speed Commands and Modifiers

Program Execution
Commands

Command Line Recall
Command

Command
Modifiers

For example:

! <SLDA$O"L 1T>'

is unacceptable.

The Program Execution commands listed in Table 3.27 allow you to
execute CLI commands or your own programs from a Speed command
line.

Table 3.27 Program Execution commands

'String must specify the complete program name, including the .PR extension, if

relevant.

The effect of the Command Line Recall command is summarized in
Table 3.28.

Table 3.28 Command Line Recall command

Command modifiers alter the normal interpretation of Speed com­
mands. Table 3.29 summarizes their effects. A more detailed discus­
sion appears with each relevant command in Chapter 4.

o

o

Speed Commands and Modifiers 47

Table 3.29 Command modifiers

r--,
,

o

n 'S., .• -y-

o

~
\

Command
Dictionary

The Command Dictionary gives a complete definition of all Speed
commands. Each entry in the dictionary starts with the command
mnemonic and the command name, followed by the formats for the
command. The command name generally relates directly to the
command mnemonic so that new users will be able to remember the
mnemonics easily; for example, the N command is called the Nonstop
Search command.

The entries are arranged in alphabetical order, with control and
special characters appearing at the end of the dictionary.

50 Command Dictionary

A

Modifiers

Append

A

This command reads one page or window from the input file and
appends it to the end of the current buffer. The CP position remains
unchanged. Speed prints an error message if it cannot execute the
command.

The A command accepts the colon modifier, which inhibits error
messages and returns a 1 if the command was successful and returns
a 0 if the command failed. You can use the :A command as a
numeric argument to the next command.

o

o

Activate Buffer x

BAx

This command activates buffer x, where buffer x is an existing
buffer left from a previous editing session.

BAx

Command Dictionary 51

52 Command Dictionary

Bex

Example

Buffer Copy

BCx
OBCx
nBCx
-nBCx
m,nBCx

The BCx command copies the entire contents of the current buffer to
buffer x, after clearing buffer x. The contents and CP position of the
current buffer remain unchanged. The CP for buffer x is positioned
before the first character in the buffer.

OBCx copies all the characters from the beginning of the current line
to the current CP position into buffer x, after clearing buffer x.

nBCx copies the next n lines, starting at the current CP position,
from the current buffer to buffer x, after clearing buffer x.

-nBCx copies the n lines preceding the current line, plus the
characters on the current line up to the CP position, from the current
buffer to buffer x, after clearing buffer x.

m,nBCx copies the (m + 1)th through the nth characters from the
current buffer to buffer x, after clearing buffer x.

!5BCA$$

Copies the 5 lines following the CP from the current buffer into
buffer A, after clearing buffer A.

o

o

File Backup (Local)

BFB

The BFB command copies the contents of the current buffer and the
remainder of the local input file to the local output file, closes both
files, and clears the current buffer. If local Update Mode is on, the
input file, FILEIN, is renamed to FILEIN.BU, and the output file is
renamed to FILEIN. This command clears the current buffer.

If your input file was TEST, and your output file was TEST.TM,
with local Update Mode on, a BFB command would have the following
effect:

1. Copy the contents of the current buffer and the remainder of
TEST into TEST.TM.

2. Close TEST and TEST.TM.

3. Rename TEST to TEST.BU.

4. Rename TEST.TM to TEST.

This leaves you with a closed input file, TEST.BU, and a closed
output file, TEST.

If a local input or output file has not been opened, the corresponding
global file is used instead.

Command Dictionary 53

BFB

Example

Note

Command Dictionary

BFC File Close (Local)

BFC

This command closes any local input and output files. It does not
write from the input file or the buffer before closing the files, and it
does not clear the current buffer.

o

File New Read (Local)

B F N Rpathname$
BFNR$

The BFNRpathname$ command closes the current local input file
and opens an existing file (specified by pathname) as the local input
file. After you have issued this command, you must issue a file input
command (Y or A) to read a page or window into the current buffer.

The BFNR$ command closes the current local input file without
opening a new one.

You cannot issue the BFNRpathname$ or the BFNR$ command if
local Update Mode is on, that is, if the current local input file was
opened with a BFO command.

Command Dictionary 55

BFNR

Note

56 Command Dictionary

IBFNW

Note

File New Write (Local)

BFNWpathname$
BFNW$

The BFNWpathname$ command closes the current local output file,
and creates and opens a new local output file (specified by pathname).
It does not clear the current buffer.

The BFNW$ command closes the current local output file, but it does
not open a new file for output.

You cannot use the BFNWpathname$ or the BFNW$ commands if
local Update Mode is on, that is, if the current local output file was
opened by a BFO command.

The file specified by the BFNWpathname$ command cannot already
exist.

o

File Open (Local)

BFOpathname$

This command opens an existing file (specified by pathname) as the
local input file, moves (yanks) a page or window into the current
buffer, and creates a new local output file. The local output file is
given the same name as the input file, but with the extension .TM.
The BFO command turns on Update Mode for the file.

Since the BFO command turns local Update Mode on, you cannot
issue BFNW or BFNR commands as long as the file is open.

The following example illustrates the action taken by Speed when it
executes a BFO command.

!BFOEXAMPLE$F?$$

Global:
Input File - None
Output File - None

Local:
Input File - PATHNAME:E-XAMPLE
Output File - PATHNAME:EXAMPLE. TM
Update Mode On

Command Dictionary 57

BFO

Note

ExaJIlple

58 Command Dictionary

BFR File Read (Local)

BFRpathname$

This command opens an existing file (specified by pathname) as the
local input file. You must issue a file input command (Y or A) to read
a page or window from the file into the current buffer.

o

o

File Update (Local)

BFU

This command copies the contents of the current buffer and the
remainder of the local input file into the local output file, closes both
files, and clears the current buffer.

If Update Mode for the files is on, the command also deletes the
input file and renames the output file to the name of the original
input file.

If the local input file is TEST, the local output file is TEST.TM, and
Update Mode is on, the BFU command will have the following
effect:

1. Copy current buffer and the remainder of TEST into TEST.TM.

2. Close TEST and TEST.TM.

3. Delete TEST.

4. Rename TEST.TM to TEST.

This leaves a closed local output file called TEST, and leaves the
current buffer cleared.

Command Dictionary 59

BFU

Example

60 Command Dictionary

BFW

Note

File Write (Local)

BFWpathname$

This command creates and opens a new file (specified by pathname)
as the local output file. You must close this file before you can issue
another BFW command.

The file specified in this command cannot already exist.

o

I·

o

Get Characters and Store Them in Buffer x

BGx
OBGx
nBGx

The BGx and OBGx commands get a line of characters typed at the
console and store it in buffer x, destroying the previous contents of
buffer x. When this command is executed, Speed displays a question
mark followed by a space as a prompt before reading the line.

nBGx (where n>O) gets n characters typed at the console and stores
them in buffer x, destroying the previous contents of buffer x. A
New-line or other data-sensitive character will terminate the input.
When the command is executed, Speed displays a question mark
followed by a space as a prompt before reading the characters.

The BGx commands accept the colon modifier. This inhibits Speed
from displaying the prompt (?), and allows users to define their own
prompt.

When you use the nBGx command, if n is greater than the default
record length (136), then 136 is used instead; 136 is also used when
n<O.

Command Dictionary 61

BGx

Modifiers

Note

62 Command Dictionary

BKx

Note

Kill Buffer x

BKx·

This command deactivates and deletes buffer x. Buffer x cannot be
the current buffer.

This command does not close any opened local files associated with
the deleted buffer.

o

o

('\
\

~
\ ,

Swap to Buffer x

BSx

This command makes buffer x the current buffer.

Speed saves the status of the CP position and of any open local files
when changing the current edit buffer, and restores them for the
new edit buffer if the new buffer was already active.

Command Dictionary 63

BSx

Note

64 Command Dictionary

BTx

Example

Buffer Transfer

BTx
OBTx
nBTx
-nBTx
m,nBTx

The BTx command copies the entire contents of the current buffer to
buffer x, after clearing buffer x. The characters copied are deleted
from the current buffer, but the CP position for the current buffer
remains unchanged. The CP for buffer x is positioned before the first
character in the buffer.

OBTx copies all the characters from the beginning of the current line
to the current CP position into buffer x, after clearing buffer x. This
command deletes from the current buffer those characters that were
copied.

nBTx copies the next n lines, starting at the current CP position,
from the current buffer to buffer x, after clearing buffer x. This
command deletes from the current buffer those characters that were
copied.

-nBTx copies the n lines preceding the current line, plus the
characters on the current line up to the CP position, from the current
buffer to buffer x, after clearing buffer x. This command deletes
from the current buffer those characters that were copied.

m,nBTx copies the (m + l)th through the nth characters from the
current buffer to buffer x, after clearing buffer x. This command
deletes from the current buffer those characters that were copied.

!5BTA$$

Copies the 5 lines following the CP from the current buffer into
buffer A, after clearing buffer A, and deletes those 5 lines from the
current buffer.

o

Buffer Status

B?$
B?x

The B?$ command lists all the active buffers and their length (in
characters), indicating the current buffer with the symbol = >.

The B?x command displays the status of buffer x.

8?$

might display

= > BUFFER 0 - 225
BUFFER 1- 32
BUFFER A - 1024

Command Dictionary 65

B?

Example

66 Command Dictionary

c Change

Cstring 1$string2$
nCstring 1$string2$
-nCstring 1$string2$
OCstring 1$string2$
m,nCstring 1$string2$
C$string2$

The Cstring1$string2$ command searches from the current CP
position to the end of the buffer for string 1. If found, it deletes
string 1 and inserts string2, positioning the CP after the last character
in string2. If the search is unsuccessful, Speed prints an error message
and positions the CP at the beginning of the buffer.

The nCstring1$string2$ command is the same as Cstring1$string2$,
except that the search is from the current CP position through the
next n New-line characters. If the search is unsuccessful, Speed
prints an error message and positions the CP at the beginning of the
line following the last line searched (that is, at its original location
+ n lines).

The -nCstring1$string2$ command is the same as Cstring1$string2$,
except that the search starts at the beginning of the nth line preceding

o

the current line and ends at the current CP position. If the search is
unsuccessful, Speed prints an error message and it leaves the CP at 0
its original location.

The OCstring1$string2$ command is the same as Cstring1$string2$,
except that the search is from the beginning of the current line to
the CP position. If the search is unsuccessful, Speed prints an error
message and it leaves the CP at its original location.

The m,nCstring1$string2$ command is the same as
Cstring1$string2$, except that the search is from the (m + l)th
through the nth characters in the buffer. If the search is unsuccessful,
Speed prints an error message and positions the CP immediately
after the nth character in the buffer.

If you omit string 1 from any of the previous commands (for example,
use nC$string2$ instead of nC$string1$string2$), the command will
search for the string that was searched for by the previous search
command (C, S, N, or Q). If found, the string is deleted and replaced
by string2. If there was no previous search, or if the previous string
was longer than 31 characters, Speed will display the following
warning message:

Error: Incomplete string in search buffer

o

and the search will continue, using the incomplete string (the first
31 characters of the previous string). Note that C$$ will delete the
next occurrence of the previous string.

Each of the versions of the C command will accept either the @
modifier, or the: modifier, or a combination of the two (@: or :@).

The @ modifier has the effect of changing the command delimiter
from $ to the character immediately following the command
mnemonic. For example, the command @C%stringl%string2% is
the same as the command Cstringl$string2$, except that the com­
mand delimiter is now %. The new delimiter is effective only for the
current command.

The colon modifier has the effect of inhibiting error messages when
a search is unsuccessful. The command will return a value of 1 if the
search succeeds, and a value of 0 if the search fails. The command
can be used as a numeric argument to the next command.

A combination of the two modifiers has the effects of both.

A detailed discussion of the use of templates with Search commands
appears in Chapter 3.

The value of Case Match Mode determines whether or not the C
commands will match characters regardless of case. See WS. The
default value of Case Match Mode is such that matches are case
independent (a will match A).

The Position Mode Value affects the positioning of the CP after an
unsuccessful search. See WP. The default value of Position Mode is
such that the CP position will be as described above, following an
unsuccessful search.

Command Dictionary 67

Modifiers

Notes

68 Command Dictionary

o

Note

Delete

nD
-nD

The nD command deletes the n characters following the CP from the
current buffer.

The -nD command deletes the n characters preceding the CP from
the current buffer.

When the default argument value is 0 (WA=O), the D command has
no effect; but if the default argument value has been set to 1 (WA = 1),
the D command deletes one character from the current buffer. (See
WA.)

o

r'.

End

E

This command copies the contents of the current buffer and the
remainder of the input file (including any Form Feeds) to the output
file. This command leaves the current buffer cleared.

Command Dictionary 69

E

70 Command Dictionary

FB

Example

File Backup

FB

The FB command copies the contents of the current buffer and the
remainder of the global input file to the global output file, closes
both files, and clears the current buffer. If global Update Mode is on,
the input file, FILEIN, is renamed to FILEIN .BU, and the output file
is renamed to FILEIN. This command clears the current buffer.

If your input file was TEST, and your output file was TEST.TM,
with global Update Mode on, an FB command would have the
following effect:

1. Copy the contents of the current buffer and the remainder of
TEST into TEST.TM.

2. Close TEST and TEST.TM.

3. Rename TEST to TEST.BU.

4. Rename TEST.TM to TEST.

This leaves you with a closed input file, TEST.BU, and a closed
output file, TEST.

o

File New Read

FNRpathname$
FNR$

The FNRpathname$ command closes the current global input file
and opens an existing file (specified by pathname) as the global input
file. After you have issued this command, you must issue a file input
command (Y or A) to read a page or window into the current buffer.

The FNR$ command closes the current global input file without
opening a new one.

You cannot issue the FNRpathname$ or the FNR$ command if
global Update Mode is on, that is, if the current global input file was
opened with an FO command.

Commatld Dictionary 71

FNR

Note

Command Dictionary

fNW

Notes

. ;

File New Write

FNWpathname$
FNW$

The FNWpathname$ command closes the current global output file,
and creates and opens a new global output file (specified by
pathname). It does not clear the current buffer.

The FNW$ command closes the current global output file, but it does
not open a new file for output.

You cannot use the FNWpathname$ or the FNW$ commands if
global Update Mode is on, that is, if the current global output file
was opened by an FO command.

The file specified by the FNWpathname$ command cannot already
exist .

o

o

File Open

FOpathname$

This command opens an existing file (specified by pathname) as the
global input file, moves (yanks) a page or window into the current
buffer, and creates a new global output file. The global output file is
given the same name as the input file, but with the extension .TM.
The FO command turns Update Mode on for the file.

Since the FO command turns global Update Mode on, you cannot
issue FNW or FNR commands as long as the file is open.

The following example illustrates the action taken by Speed when it
executes an FO command.

!FOEXAMPLE$F?$$

GLOBAL:
Input File - PATHNAME:EXAMPLE
Output File - PATHNAME:EXAMPLE. TM
Update Mode On

LOCAL:
Input File - None
Output File - None

Command Dictionary 73

FO

Note

Example

74 Command Dictionary

FR File Read

FRpathname$

This command opens an existing file (specified by pathname) as the
global input file. You must issue a file input command (Y or A) to
read a page or window from the file into the current buffer.

o

n

n
'----/

1(\
File Update

FU

This command copies the contents of the current buffer and the
remainder of the global input file into the global output file, closes
both files and clears the current buffer.

If Updat~ ~ode for the files is on, the command also deletes the
input file and renames the output file to the name of the origiilal
input file.

If the global input file is TEST, the global output file is TEST.TM,
and Update Mode is on, the FU command will have the following
effect:

1. Copy current buffer and the remainder of TEST into TEST.TM.

2. Close TEST and TEST.TM.

3. Delete TEST.

4. Rename TEST.TM to TEST.

This leaves a closed global output file called TEST, and leaves the
.,,-.., current buffer cleared.
\

Command Dictionary 75

FU

Example

76 Command Dictionary

FW

Note

File Write

FWpathname$

This command creates and opens a new file (specified by pathname)
as the global output file. You must close this file before you can issue
another FW command.

The file specified in this command cannot already exist.

o

o

Filestatus

F?

The F? command lists the open global and local input and output
files, and indicates whether Update Mode is on.

!F?$$

GLOBAL:
Input File - PATHNAME:EXAMPLE
Output File - PATHNAME:EXAMPLE. TM
Update Mode On

LOCAL:
Input File - None
Output File - None

Command Dictionary 77

F?

Example

78 Command Dictionary

H Halt

H

With this command you can exit from Speed and return to the CLI.
lf any files are open, or if the current buffer is not empty, Speed
prints the message:

Confirm?

Type Y if you wish to exit. Speed will then close all files before
returning to the CLI.

o

o

o

Insert

Istring$
nl

The Istring$ command inserts the character string into the current
buffer at the current CP location, and repositions the CP to follow
the last character in the string.

The nI command inserts a single ASCII character into the current
buffer at the current CP location; .ri is the decimal equivalent of the
ASCII character inserted. This command is particularly useful for
inserting characters that may not be available on the input terminal.

The Istring$ command will accept the @ modifier which has the
effect of changing the command delimiter from $ to the character
immediately following the command mnemonic. For example, the
command @I%string% is the same as the Istring$ command, except
that the command delimiter is now %. The new delimiter is effective
only for the current command.

!101$$

This command inserts a New-line character at the current CP
location. (10 is the decimal equivalent of the ASCII New-line
character.)

Command Dictionary 79

Modifiers

Examples

80 Command Dictionary

J

Note

CP Jump

J
nJ

The J, OJ, and IJ commands cause the CP to jump to the beginning
of the first line in the current buffer.

The nJ command causes the CP to jump to the beginning of the nth
line in the current buffer (n is always relative to the beginning of the
current buffer).

The J command always causes the CP to jump to the beginning of
the first line in the current buffer, regardless of whether the default
argument value (WA) is O'or 1, since OJ and IJ are equivalent. (See
WA.)

o

r-\

Kill

K

OK
nK
-nK
m,nK
#K

The K and OK commands delete all the characters between the
beginning of the current line and the CP loca.tion.

The nK command deletes lines in the current buffer from the CP
position up to and including the next n New-line characters.

The -nK command deletes the n lines preceding the current line,
plus the characters from the beginning of the current line up to the
CP location.

The m,nK command deletes from the (m + l)th through the nth
character in the current buffer, and positions the CP immediately
after the mth character.

The #K command deletes the entire'contents of the current buffer.

When the default argument value is 0 (WA=O), the K command
deletes all the characters between the beginning of the current line
and the CP location. If the default argument value has been set to 1
(WA= 1), the K command will delete all the characters from the CP
to the end of the current line. (See W A.)

Command Dictionary 1

K

Note

82 Command Dictionary

l

Note

CP Line Move

L
OL
nL
-nL

The Land OL commands move the CP to the beginning of the current
line.

The nL command moves the CP forward across n New-line characters
and places it at the beginning of the line following the nth New-line
character.

The -nL command moves the CP backward to the beginning of the
nth line preceding the current line.

When the default argument value is 0 (WA=O), the L command
moves the CP to the beginning of the current line. If the default
argument value has been set to 1 (WA= 1), the L command moves
the CP to the beginning of the next line. (See W A.)

o

CP Move

nM
-nM

The nM command moves the CP from its current location n
characters to the right (forward).

The -nM command moves the CP from its current location n
characters to the left (backward).

When the default argument value is 0 (WA=O), the M command has
no effect; but if the default argument value has been set to 1 (W A = 1),
the M command moves the CP one character forward. (See W A.)

Command Dictionary 83

M

Note

84 Command Dictionary

N

Modifiers

Notes

Nonstop Search

Nstring$
N$

The Nstring$ command searches from the current CP location to the
end of the buffer for the character string. If Speed does not find the
character string in the current buffer, it executes an R command
(moves the contents of the buffer to the output file, clears the buffer,
and yanks another page or window from the input file into the
buffer) and continues the search. Speed will continue the search in
this manner until the character string is found or until it reaches the
end of the input file. If the search is successful, Speed positions the
CP after the last character in the string. If the search is unsuccessful,
Speed displays an error message.

The N$ form searches for the character string that was searched for
by the previous search command (C, S, N, or 0). If there was no

. previous search, or if the previous string was longer than 31
characters, Speed will display the following warning message:

Error: Incomplete string in search buffer

and the search will continue, using the incomplete string (the first
31 characters of the previous string).

The N commands will accept either the @ modifier, or the: modifier,
or a combination of the two (@: or :@).

The @ modifier has the effect of changing the command delimiter
from $ to the character immediately following the command
mnemonic. For example, the command @N%string% is the same as
the command Nstring$, except that the command delimiter is now
%. The new delimiter is effective only for the current command.

The colon modifier has the effect of inhibiting error messages when
a command is unsuccessful. The command will return a value of 1 if
the search succeeds, and a value of 0 if the search fails. The command
can be used as a numeric argument to the next command.

A combination of the two modifiers has the effects of both.

A detailed discussion of the use of templates with Search commands
appears in Chapter 3.

The value of Case Match Mode determines whether or not the N
commands will match characters regardless of case. See WS. The
default value of Case Match Mode is such that matches are case
independent (a will match A).

o

()
., _.F

Over (Unconditional Branch)

O/abe/$

This command unconditionally transfers control to !label! in the
command string, and continues processing the command string from
the first command immediately following !label!.-

The command string label Olabel!l may appear anywhere in a
command string, except in text string arguments or in a command
loop. Label must contain fewer than 32 characters, and any ASCII
characters can be used except Escape (the string delimiter).

Command Dictionary 85

o

86 Command Dictionary

p

Modifiers

Put Buffer into Output File

P
OP
nP
-nP
m,nP

The P command copies the entire contents of the current buffer to
the output file, with an appended Form Feed character.

The OP command copies characters on the current line, from the
beginning of the line to the CP location, from the buffer to the output
file, with an appended Form Feed character.

The nP command copies lines from the current buffer, from the CP
location up to and including the next n New-line characters, to the
output file, with an appended Form Feed character.

The -nP command copies the n lines preceding the current line, plus
the characters from the beginning of the current line up to the CP
position, from the current buffer to the output file, with an appended
Form Feed character.

The m,nP command copies the (m + 1)th to the nth characters
inclusive from the current buffer to the output file, with an appended
Form Feed character.

All of the P commands accept the colon modifier. The modified
commands delete from the current buffer those characters that have
been copied to the output file.

o

o

r-..
(

Put Buffer into Output File Without Form Feed

PW
OPW
nPW
-nPW
m,nPW

The PW command copies the entire contents of the current buffer to
the output file, without an appended Form Feed character.

The OPW command copies characters on the current line, from the
beginning of the line to the CP location, from the buffer to the output
file, without an appended Form Feed character.

The nPW command copies lines from the current buffer, from the
CP location up to and including the next n New-line characters, to
the output file, without an appended Form Feed character.

The -nPW command copies the n lines preceding the current line,
plus the characters from the beginning of the current line up to the
CP position, from the current buffer to the output file, without an
appended Form Feed character.

The m,nPW command copies the (m + 1)th to the nth characters
inclusive from the current buffer to the output file, without an
appended Form Feed character.

All the PW commands accept the colon modifier. The modified
commands delete from the current buffer those characters that have
been copied to the output file.

Command Dictionary 87

PW

Modifiers

Command Dictionary

Q

Modifiers

Quest Search

Qstring$
Q$

The OstringS command searches from the current ep location to the
end of the buffer for the character string. If Speed does not find the
character string in the current buffer, it executes a Y command
(yanks another page or window from the input file into the buffer,
overwriting the previous contents of the buffer) and continues the
search. Speed will continue the search in this manner until the
character string is found or until it reaches the end of the input file.
This command does not transfer any data to the output file. If the
search is successful, Speed positions the ep after the last character
in the string. If the search is unsuccessful, Speed displays an error
message.

The Q$ command searches for the character string that was searched
fOF by the previous search command (e, s, N, or Q). If there was no
previous search, or if the previous string was longer than 31
characters, Speed will display the following warning message:

Error: Incomplete string in search buffer

and the search will continue, using the incomplete string (the first
31 characters of the previous string).

The Q commands will accept either the @ modifier, or the: modifier,
or a combination of the two (@: or :@).

The @ modifier has the effect of changing the command delimiter
from $ to the character immediately following the command
mnemonic. For example, the command @Q%string% is the same as
the command Ostring$, except that the command delimiter is now
%. The new delimiter is effective only for the current command.

The colon modifier has the effect of inhibiting error messages when
a command is unsuccessful. The command will return a value of 1 if
the search succeeds, and a value of a if the search fails. The command
can be used as a numeric argument to the next command.

A combination of the two modifiers has the effects of both.

o

01
I

o

(' ..

If you issue a Q command when global and local Update Modes are
off and Q is not in a command loop, Speed displays the following
message:

Confirm (O-command) ?

If you really meant to use the Q command, you should type Y
followed by New-line. Speed will ignore the command if you type
any other character.

A detailed discussion of the use of templates with Search commands
appears in Chapter 3.

The value of Case Match Mode determines whether or not the Q

commands will match characters regardless of case. See WS. The
default value of Case Match Mode is such that matches are case
independent (a will match A).

Command Dictionary 89

Notes

90 Command Dictionary

R

Modifiers

Read Out and Read In a Page

R
nR

The R command copies the contents of the current buffer to the
output file, clears the buffer, and reads a page or window from the
input file into the current buffer. This command is equivalent to a
combination of the P (or PW) and Y commands.

The nR command performs an R command n times.

The R commands accept the colon modifier. Modified commands
return a value of 1 if input is successful and a value of 0 if it fails.
You can use these values as numeric arguments to the next command.
No error message appears. Command execution continues whether
or not the command succeeds.

o

r--..
!

Search

Sstring$
nSstring$
-nSstring$
wSstring$
m,nSstring$
S$

The Sstring$ command searches from the current CP position to the
end of the buffer for string. If found, it positions the CP after the last
character in string. If the search is unsuccessful, Speed prints an
error message and positions the CP at the beginning of the buffer.

The nSstring$ command is the same as Sstring$, except that the
search is from the current CP position through the next n New-line
characters. If the search is unsuccessful, Speed prints an error
message and positions the CP at the beginning of the line following
the last line searched (that is, at its original location + n lines).

The -nSstring$ command is the same as Sstring$, except that the
search starts at the beginning of the nth line preceding the current
line and ends at the current CP position. If the search is unsuccessful,
Speed prints an error message and it leaves the CP at its original
location.

The OSstring$ command is the same as Sstring$, except that the
search is from the beginning of the current line to the CP position. If
the search is unsuccessful, Speed prints an error message and it
leaves the CP at its original location.

The m,nSstring$ command is the same as Sstring$, except that the
search is from the (m+ l)th through the nth characters in the buffer.
If the search is unsuccessful, Speed prints an error message and
positions the CP immediately after the nth character in the buffer.

If you do not specify a search string with any of the above commands
(for example, you use nS$ instead of nSstring$), the command will
search for the character string that was searched for by the previous
search command (C, S, N, or Q). If there was no previous search, or
if the previous string was longer than 31 characters, Speed will
display the following warning message:

Error: Incomplete string in search buffer

and the search will continue, using the incomplete string (the first
31 characters of the previous string).

Command Dictionary 91

s

Command Dictionary

Modifiers

Notes

Each of the versions of the S command will accept either the @
modifier, or the: modifier, or a combination of the two (@: or :@).
The @ modifier has the effect of changing the command delimiter
from $ to the character immediately following the command
mnemonic. For example, the command @S%string% is the same as
the command Sstring$, except that the command delimiter is now
%. The new delimiter is effective only for the current command.

The colon modifier has the effect of inhibiting error messages when
a search is unsuccessful. The command will return a value of 1 if the
search succeeds, and a value of 0 if the search fails. The command
can be used as a numeric argument to the next command.

A combination of the two modifiers has the effects of both.

A detailed discussion of the use of templates with Search commands
appears in Chapter 3.

The value of Case Match Mode determines whether or not the S
commands will match characters regardless of case or not. See WS.
The default value of Case Match Mode is such that matches are case
independent (a will match A).

The Position Mode value affects the positioning of the CP after an
unsuccessful search. See WP. The default value of Position Mode is
such that the CP position will be as described above following an
unsuccessful search.

o

Type Out

T
OT
nT
-nT
m,nT
#T
@T%string%

The T command types the current line, displaying the CP location
with a flashing asterisk. (A circumflex ("') shows the CP location on
consoles other than models 605x.)

The OT command types the current line from the beginning to the
location of the CP.

The nT command types the contents of the current buffer from the
current CP location through the next n New-line characters.

The -nT command types the contents of the n lines preceding the
current line, plus the contents of the current line up to the CP
location.

The m,nT command types the contents of the current buffer from
r-- the (m + 1)th character up to and inch~ding the nth character.
\

,-.......
{ .

The #T command types the entire contents of the current buffer.

The @T%string% command types out the character string. The first
character after the T (arbitrarily shown here as %) delimits string.

The Type Out commands all accept the colon modifier which causes
the output to be typed at the line printer instead of at the console.

The T commands do not move the CP.

Command Dictionary 93

T

Modifiers

Note

Command Dictionary

VDx

Note

Variable Decrement

VDx

This command decrements the value of variable x by 1, and returns
its new value.

Variable x is one of the ten number integer variables named VO
through V9.

o

n

Variable Increment

Vlx

This command increments the value of variable x by 1, and returns
its new value.

Variable x is one of the ten numeric integer variables named VO
through V9.

Command Dictionary 95

Vlx

Note

Command Dictionary

VSx

Notes

Variable Set

nVSx

This command sets the value of variable x to n, and returns its new
value.

Variable x is one of the ten numeric integer variables named va
through V9.

You cannot use this command with arithmetic operators within a
numeric expression. For example,

9VSO + 3/4

is a legal expression, whereas

9 + VSO + 3/4

is not.

n

o

Variable Value

Vx

This command returns the value of variable x. (The numeric variables
are named va through V9, so x may be any digit, a through 9.)

Vx

Command Dictionary 97

98 Command Dictionary

WA Default Argument Mode

WA
nWA

The Default Argument Mode command sets the Default Argument
value for the Delete (D), Jump (J), Kill (K), CP Line Move (L), and CP
Move (M) commands. Initially, WA is set to zero.

The nWA command sets W A to 1 if n is not equal to zero, and sets
W A to a if n is equal to zero.

When W A is used as an argument to the = command, Speed returns
the current default argument value (1 or 0).

!fyou omit the numeric argument n from the nD, nJ, nK, nL, or nM
commands, the value of the default argument is used instead. You
can also use W A as the numeric argument to any of these commands.
For example, if the default argument value has been set to 1, the
WAD command is equivalent to ID.

o

o

Case Control Mode

WC
OWC
nWCx$
nWCxy

Case Control commands enable you to create and edit uppercase and
lowercase files from an uppercase terminal.

The OWC command turns case control off. Characters are read from
the terminal exactly as typed, with no translation from uppercase to
lowercase.

When n is positive, the nWCx command designates x to be the
shift-up character. Any character that is preceded by an x will be
interpreted as uppercase. All other characters are interpreted as
lowercase.

When n is negative, the nWCx command designates x to be the
shift-down character. Any character that is preceded by an x will be
interpreted as lowercase. All other characters are interpreted as
uppercase.

The nWCxy command has the same effect as the nWCx command,
except that y is designated as the shift-lock character that shifts all
characters it precedes to uppercase (if n is positive) or lowercase (if n
is negative), until the next appearance of y or the command
terminator (CTRL-D).

When you use WC as an argument to the = command, Speed returns
the current status of Case Control Mode, as shown in the table.

Normally, case control affects only those characters in the command
string which were typed from the keyboard. The colon modifier
extends case control to the entire command string. This means that
characters included through the use of lBx and lFpathname$ are
also subject to case control. Speed converts these character sequences
to uppercase, and then interprets the letters as uppercase or lowercase
in the same way as with the nonmodified nWCx and nWCxy
commands.

Command Dictionary 99

we

Modifiers

1 Command Dictionary

Notes

The :WC command returns a value of 1 if case control has been 0
extended to characters included through the use of TEx and TFpath-
name$. Otherwise, it returns a value of o.

You can use WC as a numeric argument to another command in a
command string. Speed replaces WC with 0, 1, or -1, according to
whether case mode is deactivated, up-shifting, or down-shifting.

Case Control Mode can be set and used in the same command string.
Case changes will take effect for the command string containing the
Case Control command once the command has been executed.

Once case control is active, it affects everything you type in, including
WC commands. (However, case control only applies to alphabetic
characters; that is, if you type a shift character preceding a
non alphabetic character, shifting has no effect except as noted
below.)

If you want to enter the characters you have chosen to be the shift
character (such as #) or the shift lock character (such as "), you must
precede them by the shift character (that is, you would type # # or
#").

o

Display Mode

WD
nWD
OWD

The Display Mode commands set the current Display Mode value. If
the Display Mode value is set to zero, Display Mode is off. If the
Display Mode value is set to any other value, Display Mode is on and
Speed tries to display that number of lines of text on either side of
the CP before each prompt. For example, if the Display Mode value
is set to 7, Speed tries to display the 7 lines preceding and the 7 lines
following the CP, showing the CP location with a flashing asterisk.
The Display Mode value may be no larger than 10.

The nWD command turns Display Mode on, and sets WD to the
value specified by n. If n> 10, the value of WD is set to 10.

The OWD command turns Display Mode off.

If you use WD as an argument to the = command, Speed returns the
current Display Mode value.

Even if Display Mode is on, Speed will not display text if the
previous command string generated output or if the previous
command was an Execute (X) command.

When Speed is executed without the global /D switch, WD=O (that
is, Display Mode is off). The /D switch turns Display Mode on,
setting WD= 10.

Command Dictionary

WD

Notes

102 Command Dictionary

WM Window Mode

WM
nWM
OWM

The Window Mode commands set the current Data Input Mode
value. If the Data Input Mode value equals zero, Speed is in Page
Mode; that is, text is moved to and from the current buffer in pages
(from Form Feed to Form Feed*). If the Data Input Mode value is
equal to any other value (say n), Speed is in Window Mode; that is,
text is moved to and from the current buffer in windows (where n is
the number of lines per window).

The nWM command changes the input mode to Window Mode, with
n specifying the number of lines per window.

The OWM command changes the input mode to Page Mode.

If you use WM as an argument to the = command, Speed returns the
current Data Input Mode value .

• The text between Form Feeds is read into the buffer, but the end Form Feed is

not. Its place is remembered by Speed, so that when the page is written out, the

Form Feed is put back. The beginning Form Feed is part of the previous page.

o

0,· -.

o

Position Mode

WP
nWP
OWP

Position Mode affects the positioning of the CP after an unsuccessful
search that has been confined to a single page of the file (C or S). The
Position Mode commands set the Position Mode value. If WP = 0, the
CP is positioned in its normal location after an unsuccessful search
(see the table below). If WP = n (where n is not zero). the CP location
after an unsuccessful search is as shown in the table.

The nWP command sets the Position Mode value to n (WP = n).

The OWP command sets the Position Mode value to zero (WP=O).

If you use WP as an argument to the = command, Speed returns the
current Position Mode value.

WP = 0 is the normal (default) mode.

When WP<>O, the CP is always positioned before the character
where the search actually started.

Command Dictionary 103

WP

Notes

104 Command Dictionary

WR

Note

Alternate Radix

WR
nWR

The nWR command sets the value of the Alternate Radix to n. For
example, if n = 2 the Alternate Radix is binary; n may be any
number between 2 and 36.

If you use WR as an argument to the = command, Speed returns the
current Alternate Radix value.

The Standard Radix is always 10 (decimal), and the Alternate Radix
is initially set to 8 (octal).

The ampersand modifier switches from decimal to the Alternate
Radix for the duration of a single Speed argument or command. See
the section about modifiers in Chapter 3.

o

o

o

Search Case Match Mode

WS
nWS

-OWS

Case Match Mode affects whether Search commands (C, N, Q, and S)
will match letters regardless of their case (uppercase or lowercase).
The Case Match Mode commands set the value of Case Match Mode.
If WS=O, matches will be case independent (that is, a will match A).
If WS<>O, matches will be case dependent (that is, a will only
match a).

The nWS command sets WS=n; that is, matches will be case
dependent.

The OWS command sets WS = 0; that is, matches will be case
independent.

If you use WS as an argument to the = command, Speed will return
the current value of Case Match Mode.

The initial (default) mode is Ws=o (case independent).

Command Dictionary 105

ws

Note

106 Command Dictionary

x

Example

Execute

Xstring$
:X$
:Xprogram.PR$

The Xstring$ command executes string as a CLI command.

The :X$ command executes the CLI.

The :Xprogram.PR$ command is a quick way of executing a program
from Speed when the program does not require switches or arguments
from a command line. Control returns to Speed once the command
or program has completed execution.

!XTIME$$
23:31:12

This command calls the CLI to execute the TIME command.

01

(?'\
Yank

y

The Y command clears the current buffer, reads a page or window
from the input file into the current buffer, and places the CP at the
beginning of the buffer.

The Y command accepts the colon modifier which inhibits error
messages and returns a value of 1 if the command was successful
and a value of 0 if the command was unsuccessful. You can use the
:Y command as a numeric argument to the next command.

If you issue a Y command when global or local Update Mode is on,
the buffer is not empty, and the Y command is not in a command
loop, Speed returns the following message:

Confirm (Y-command) ?

Type Y followed by New-line if you wish to use the command. If you
type any other character, Speed ignores the command.

Command Dictionary

y

Modifiers

Note

108 Command Dictionary

CTRL-Bx

Notes

Insert Buffer x

TBx

This command inserts the contents of buffer x into the command
string in place of the TBx. You may nest the command up to nine
levels, but remember that Insert File (IF) commands also count as
part of the nesting limit.

If you wish to insert a CTRL-B into a command line, type CTRL-B
CTRL-B or CTRL-F CTRL-B. Speed will evaluate this as a single
CTRL-B and will not treat it as part of a reference to a buffer.

Buffer x may contain text to be inserted, commands to be executed,
or both, but it cannot be the current buffer.

o

o

o

10

~. : '

Insert File

TFpathname$

This command inserts the file specified by pathname into the
command string in place of the command. You may nest the
command up to nine levels,. but remember that Insert Buffer (TBx)
commands also count as part of the nesting limit.

If you wish to insert a CTRL-F into a command line, type CTRL-B
CTRL-F or CTRL-F CTRL-F. Speed will evaluate this as a single
CTRL-F and will not treat it as a reference to a file.

The file you wish to insert may contain text, commands to be
executed, or both, but it must not be greater than 65,535 bytes in
length.

Command Dictionary

CTRL-F

Notes

110 Command Dictionary

CTRL-I

Modifiers

Insert String with Tab

Tistring$

This command inserts a tab character followed by string into the
current buffer at the CP location, and repositions the CP after the
last character of the inserted string.

The CTRL-I command accepts the @ modifier. This has the effect of
changing the command delimiter from $ to a tab. For example, the
command @TlstringTI is the same as the command Tlstring, except
that the command delimiter is now Tab.

()

o

Insert String of ASCII Digits

n\

The n \ command inserts a string of ASCII digits having the value of
the decimal number n at t1!e current CP location, suppressing any
leading zeros.

This command accepts the & modifier which causes n to be
interpreted in the Alternate Radix.

&n\ affects the interpretation of n. n&\ affects the way n is inserted.
&n&\ affects both the interpretation of n and the way it is inserted.

-1\

This command will insert 65535 into the buffer at the current CP
location. Note that 65535 is the way that Speed displays negative
one.

Command Dictionary III

\

Modifier

Examples

11 Command Dictionary

n"x

Specific Formats

Conditional Execution

n" xstring'

In this format n is a numeric argument, x is one of the conditions
specified below, and string is a command string.

If the condition is true, the commands in the command string
preceding the single quote are executed (plus, of course, the com­
mands following the single quote). If the condition is false, the
commands preceding the single quote are skipped, and control passes
to the command following the single quote.

n"Gstring'

n"Lstring'

n"Estring'
n" N string'

The action taken depends on the condition specifier as shown in the
table.

o

o

o

Save Command line in Buffer x

_x

This command places the previous command line (if it was larger
than 10 characters) in buffer x, freeing the space occupied by the
string for use by subsequent command strings. If there was no
previous command string longer than 10 characters (the command
string terminator, CTRL-D, being counted as two characters, $$), or
if the last such command string had previously been saved with a
---..X command, then the last command string issued is placed in
buffer x.

The ---..X command may not be executed from a buffer or from a file.

The ---..X command must be the first command after the prompt.

If memory space becomes scarce, Speed will save the space occupied
by the command string waiting to be stored, in order to avoid the
error

Memory Space Exhausted

When this happens, the effect is the same as if there were no
previous commands.

Command Dictionary

Notes

114 Command Dictionary

Modifiers

Examples

Equals

n=

This command types out the value of the numeric argument n,
where n may be any numeric argument or expression.

When a mode command mnemonic (WA, we, WD, WM, WP, WR,
WS) is used as an argument to the = command, Speed returns the
current mode value. For example, WD = returns the current value of
Display Mode.

The @ modifier suppresses the New-line character from the display.
The colon modifier sends the output to the line printer instead of the
console. A combination of the two modifiers has the effects of both.

The & modifier causes n to be interpreted or displayed in the alternate
radix.

&n= affects the interpretation of n. n&= affects the way n is
displayed. &n&= affects both the interpretation and the display of
n.

!8*8=$$
64

This is the normal display of the n = command.

!8*8@=$$

64!

This is the effect of the @ modifier.

o

n

n
"-/

Command Loop

<command string>
n<command string>

Speed will execute a command string any number of times when
you place the command string between angle brackets and specify
the number of iterations. A command string enclosed by angle
brackets is known as a command loop.

The command loop <command string> repeats command string
until a command within the loop terminates the loop.

The command loop n < command string> repeats command string n
times when n is greater than zero, and it will skip the command
string if n is less than or equal to zero.

Speed treats all search commands (S, C, N, and Q) and all file input
commands (Y, R, and A) within command loops as if they were
modified by a colon. That is, the command returns a value of 1 if the
command is successful, returns a value of 0 if it fails, and inhibits
error messages.

Even if a search command fails, command execution within the
command loop continues. Therefore, you should always write Search
commands within command loops so that they provide a numeric
argument to the next command, or combine them with the semicolon
command, which will terminate the loop.

Command Dictionary 115

<>

Notes

116 Command Dictionary

Modifiers

Note

Conditionally Terminate Command Loop or Command Line
Execution

n;

A semicolon (;) may appear anywhere in a command line except as
the first character. When the semicolon appears in a command loop
(angle brackets), the loop may be terminated and the next lower
level of the command line will be executed. When the semicolon
appears outside a command loop, the command line may be
terminated. Termination depends on the specific form of the
semicolon command, as shown below.

The; form of the semicolon command terminates the command loop
(or command line) if the last Search command (e, S, N, or Q) was
unsuccessful.

The n; form of the semicolon command terminates the command
loop (or command line) if n is less than or equal to zero.

The colon modifier reverses the effect of the semicolon command, as
shown below.

o

The :; command terminates the command loop (or command line) if
the last search command was successful. 0
The n:; command terminates the command loop (or command line)
if n is greater than zero.

Speed treats an unsuccessful search outside of a command loop as an
error condition, regardless of whether the Search command was
followed by a semicolon.

Trace Mode Toggle

?

The? command turns Trace Mode on if it was off, and turns it off if
it was on. When Trace Mode is on, Speed displays the characters in
the command line as they are executed. Specifically, each character
including New-line, Form Feed, space, arguments to the command,
and the first letter of the command is echoed. (For brevity, the rest
of the characters in the command string, for example, a long insert,
are not echoed.) Once the entire command has been processed, Speed
resumes the process of echoing each character.

?

Command Dictionary 117

o

() I,
, I'

o

ASCII Character Set

r-..

DG-<JS49S

o

o

o

r\

Speed Error Messages

The following list gives the error messages which Speed can return.
The first column gives the number of the error message; the second
column indicates whether the message is an error (E) or a warning
(W); and the third column lists the messages.

04401 (E) Illegal filename

04402 (E) Syntax error

04403 (E) Illegal variable name

04404 (E) Illegal number of arguments to conunand

04405 (E) Illegal buffer name

04406 (E) Buffer is inacti ve

04407 (E) Maximum iteration level exceeded

04410 (E) No open file

04411 (E) File already exists

04412 (E) File does not exist

04413 (E) File already open

04414 (E) No more characters in input file

04415 (E) Unsuccessful search

04416 (E) Maximum insert depth exceeded

04417 (E) Search string < > or broken over two levels

04420 (E) Insert string too long

122 Speed Error Messages

04421 (E) No more channels available 0
04422 (W) Input line too long
04423 (E) Attempt to delete current buffer
04424 (E) Pari ty error
04425 (E) Stack overflow
04426 (E) Memory space exhausted
04427 (E) Attempt to execute current buffer
04430 (E) Unterminated string
04431 (E) < wi th no corresponding >
04432 (E) with no corresponding •
04433 (E) Label not found
04434 (E) Unable to open $LPT
04435 (E) String argument too long
04436 (E) First argument greater than second argument
04437 (E) T\ wi th no corresponding T\
04440 (E) Renaming error
04441 (E) Illegal conunand
04442 (E) Illegal argument to conunand
04443 (E) Illegal control character in search string
04444 (E) File read protected
04445 (E) File wri te protected -
04446 (E) Update mode on
04447 (E) Filename too long 0 04450 (W) Incomplete string in search buffer
04453 (E) Directory speci fier unknown

A

Alternate radix 43

B

Backslash (\) 112
Branching
unconditional 85

Buffer commands
Insert Buffer (I CTRL-Bx) 108
Save Command (-x) 113

Buffer
defined 5

c
Case

control 99
matching 105

Change (C) 17
Character pointer (CP)

defined 6, 41
Character pointer commands table of 30
Jump (J) 16,80
Line (L) 16, 82
Move (M) 16,83

Character strings
defined 5

CLI
executing from Speed (X, :X) 106
starting Speed from 12
switches 12

Closing file commands table of 27
Closing files

File Backup (FB) 19
File Close (FC) 19
File Close (FC) 19
File Update (FU) 19

Closing Speed 20
Command format 6
Command line terminator (CTRL-D) 5
Command line

displaying characters during execution (?) 117
inserting buffer into (CTRL-B) 108
inserting file into (CTRL-F) 109

Index

Command loop « » 115
Command modifiers. See Modifiers. 46
Commands

Activate buffer x (BAx) 38,51
Append (A) 44, 50
Buffer (BGx) 38
Buffer copy (BCx) 38, 52
Buffer status (B?) 38, 65
Buffer transfer (BTx) 38, 64
buffer, table of 38
case control (nWCx, nWCx4, OWC, WC), 42
Change (C) 66
command line recall (-x) 46
command loop terminators, table of 44
command modifiers, table of 47
conditional skip (n"Estring', n"Gstring', n"Lstring',

n"Nstring') 45
copying to output file (P, PW) 86
correcting (CTRL-C CTRL-A) (CTRL-U) (Delete key) 4
Delete (D) 68
deletion, table of 37
display mode (WD) 41
End (E) 69
equal (=) 43
Exit (H) 39, 40
File backup (FB) 70

(local - BFB) 53
File close (local - BFC) 54
File input 44, 71
File new read (FNR) 71

(local - BFNR) 55
File new write (FNW) 72

(local - BFNW) 56
File open (FO) 14, 73

(local - BFO) 57
File output, table of 39
File read (FR) 74
File update (FU) 75
File write (FW) 76
Filestatus (F?) 77
flow control 44, 45
get characters and store in buffer x 38
Halt (H) 39,40
inserting in buffers (control characters) 108

(-x) 113

124
iteration «command_string» 43,44

(n;) 44
iteration (n <commanLstring» 44
Kill buffer (x BKx) 38, 62
numeric argument (Default) 42, 43
numeric argument (nWA), (WA) 43
numeric variable (VDx) 43
Over (unconditional branch) (0) (Olabel) 45, 85
program execution (:X$) 46
program execution (:Xstring$) 46
Put buffer into output file (P) 29, 39
Put buffer into output file without formfeed (PW) 38, 39
Quest search (Q) 66
Read out and read in a page (R) 39

Search (S) 44
semicolon (;) 47
storing in buffer Lx) 113
swap to buffer x (BSx) 38, 65
terminators(:;) 44
terminators(n:;) 44
trace mode (?) 41
Type out (T) 47
unconditional branching 45
Window mode (WM) 40
Yank (Y) 44,58

Conditional
branching (n'x') 112
execution (n"x) 112
termination of loop command (;) 116

Control character
command terminator (CTRL-D) 17
inserting buffer contents (CTRL-B) 108
inserting file (CTRL-F) 109
New-line (CTRL-J) 04
searches, table of 32

Control characters
inserting tab with string (CTRL-I) 110

Corrections
to text files 15

D

Default argument mode, setting (WA) 98
Delete (D) 18
from input file (:P, :PW) 86
Kill (K) 18,81

Display
/D switch 12
buffer contents 16
character string 30
Type Text (T) 93
values (=) 114
Window Display (WD) 101

E

Editing cycle 11
Editing text. See Text editing.
Erase

character 4
line 4

Executing
CLI (X, :X, XX) 106
commands stored in buffer (CTRL-Bx) 108

Exiting from Speed (H) 20, 78

F

File Backup (FB) 19
File Close (FC) 19
File input

closing 19
global 26
local 22
opening 38

File Open (Fa)
defined 14

File output
closing 19
global 76
local 76

File Read (FR)
defined 14

File Update (FU) 19
File Write (FW) 76

defined 14
File

global 39
inserting into command string (CTRL-F) 109
local 39

Files, closing. See Closing files.
Form Feed 39-41

H

Halt (H) 20, 78

I

Insert (I)
defined 17
with @modifier 35
character string 36

ASCII character (nI) III
file into command string (CTRL-F) 109
numbers (n \) III
string (Istring) 79
tab with string (CTRL-I) 110

Invoking Speed 12
Example 13

Iteration
command loop 116
conditional termination (;) 116
conditional read 90
conditional search 91
semicolon 116

o

o

r-. , '

J

Jump (J) 16
in Default Argument Mode 80

Jump the character pointer (J) 80

K

Kill (K)
in Default Argument Mode 81

L

Line (L) 16, 82
Line

defined 5

M

Mode
? 41
Case Control (WC) 99
Case Match (WS) 105
Command Display (?) 117
Default Argument (W A) 98
Display 41
Page (WM) 102
Page, defined 5
Position (WP) 103
Text Display (WD) 101
Trace toggle (?) 117
Window (nWM, OWM, WM) 40
Window (WM) 102
Window, defined 5 "

Modifier
ampersand, switch to alternate radix 104
ampersand (&) 25
at sign (@) 67
colon (:) 47,67
search commands 91
table of 47

Move (L) 82
Move (M) 16,83

N

Numeric arguments
defined 7

Numeric operators
table of 9

o
Opening file commands (table) 27
Over (0) 85

p

Page
defined 5

Pseudo variable
as numeric argument 6
defined 8
table of 8
V (characters from beginning of buffer) 8
Z (number of characters in buffer) 8

Put (P), defined 18
Put buffer into output file (P) 86

125

Put buffer into output file without formfeed (PW) 87

R

Radix
alternate (ampersand modifiers) 104
changing (WR) 104

Read command modifier (:) 90
Read commands

(R) 15, 19,90
(Y) 15, 107
Insert Buffer (I CTRL-Bx) 108

s
Sample sessions . 20
Search (S) 91

defined 17
Search commands (table) 32
Search templates (table) 33
Search
and Change commands 31
Case Match Mode (WS) 105
control characters in, table of 32
modifier (:) 31,91
modifier (@) 32
Nonstop (N) 32, 84
Position Mode (WP) 103
Quest (Q) 88
within command loops 22

Special symbols. See Pseudo variables. 00
Starting Speed 12

examples 20
String

C 67
defined 5
Over (Olabel) 45

Switches, CLI (lD) 12
Switches, CLI (lI=pathname) 12

1

T

Tab character
inserting into buffer (CTRL-I) 110

Termination
conditional 116

Terminator
defined 6

Text editing
sample sessions 20

Text
deletion

Delete (D) 18
Kill (K) 81

display 30
insertion (I) 1 7
sample 15
search. See Search.

Trace mode
toggle (?) 117

Type (T) 16
Type commands 29
Typographical errors 4

v
Variable

decrement (VDx) 94
increment (Vlx) 95
numeric 9
pseudo 8
returning value of (Vx) 97
set (VSx) 96

w
Window
defined 5
Mode 22,102

Writing to output file
File Backup (FB) 19
File Update (FU) 19
Put (P) 18, 86
Put (PW) 87
Read (R) 19,90

y

U Yank (Y) 15, 107

Unconditional branching
Over (0) 85
within command loops 85

o

o

DG OFFICES

NORTH AMERICAN OFFICES
Alabama: Birmingham

Arizona: Phoenix, Tucson

Arkansas: Little Rock
California: Anaheim, EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto"Riverside,

Sacramento. San Diego, San Francisco. Santa Barbara, Sunnyvale, Van Nuys

Colorado: Colorado Springs, Denver

Connecticut: North Branford, Norwalk

Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise
Iowa: Bettendorf. Des Moines
Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford

h,diana: Indianapolis

Kentucky: Louisville
Louisiana: Baton Rouge. Metairie

Maine: Portland, Westbrook

Maryland: Baltimore
Massachusetts: Cambridge, Framingham, Southboro, Waltham, Wellesley, Westboro,

West Springfield, Worcester

Michigan: Grand Rapids, Southfield

Minnesota: Richfield

Missouri: Creve Coeur, Kansas CitY

Mississippi: Jackson
Montana: Billings

Nebraska: Omaha

Nevada: Reno

New Hampshire: Bedford, Portsmouth

New Jersey: Cherry Hill, Somerset, Wayne
New Mexico: Albuquerque

New York: Buffalo, Lake Success, Latham, Liverpool, Melville, New York City,

Rochester. White Plains
North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park

Ohio: Brooklyn Heights, Cincinnati, Columbus, Dayton

Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego
Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh

Rhode Island: Providence

South Carolina: Columbia
Tennessee: Knoxville, Memphis, Nashville

Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio

Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: Bellevue, Richland, Spokane

West Virginia: Charleston

Wisconsin: Brookfield, Grand Chute, Madison

DG-{N97b

INTERNATIONAL OFFICES
Argentina: Buenos Aires

Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney

Austria: Vienna

Bel~i~m: Brussels
Bohvla: La Paz

Brazil: Sao Paulo

'Canada: Calgary, Edmonton. Montreal, Ottawa, Quebec, Toronto, Vancouver,

Winnipeg

Chile: Santiago

Columbia: Bogata

Costa Rica: San Jose
Denmark: Copenhagen

Ecuador: Quito

Egypt: Cairo
Finland: Helsinki

France: Le Plessis-Robinson, lille. Lyon. Nantes, Paris. Saint Denis, Strasbourg
Guatemala: Guatemala City
Hong Kong
India: Bombay

Indonesia: Jakarta, Pusat

Ireland: Dublin

Israel: Tel Aviv

Italy: Bologna, Florence, Milan, Padua. Rome. Tourin

Japan: Fukuoka, Hiroshima, Nagoya, Osaka, Tokyo, Tsukuba

Jordan: Amman
Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur
Mexico: Mexico City, Monterrey

Morocco: Casablanca

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington

Nicaragua: Managua
Nigeria: Ibadan. Lagos

Norway: Oslo

Paraguay: Asuncion

Peru: Lima
Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jeddah, Riyadh

Singapore
South Africa: Cape Town, Durban, Johannesburg, Pretoria
Spain: Barcelona, Bibao. Madrid

Sweden: Gothenburg, Malmo, Stockholm
Switzerland: Lausanne, Zurich

Taiwan: Taipei

Thailand: Bangkok
Turkey: Ankara

United Kingdom: Birmingham. Bristol, Glasgow. Hounslow, London. Manchester
Uruguay: Montevideo
USSR: Espoo
Venezuela: Maracaibo

West Germany: Dusseldorf. Frankfurt, Hamburg, Hannover. Munich. Nuremburg.
Stuttgart

o

n
.~_/

n

How to Get in
Touch with TIPS

I Ii
t. Data General

Ii

o

o

I'
i ~

o

lJ..i
?;
-l

§
E-
0
Q

\.?
Z
0
-l
«

0 E-
~
lJ

Yes No

o o

0 0

D 0

o 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Technical Products
Publications

COIDDlent FOrDl
Title: __________________ _

Document No. ___ 0_6_9_-4_0_0_2_0_2_-0_0 ___ _

o You (can, cannot) find things easily

o Language (is, is not) appropriate.

o Technical terms (are, are nO.t) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o Other:

o To instruct a class.

o Other

Name: ________________________ Title: ___________________ _

Company: ___________________________ Di~sion: _________________ _

Address: ______________________ City: __________________ _

State: ______ . Zip: ___________ Telephone: ______________ Date: ______ _

DC-06895

t., Data General
Data General Corporation, Westboro, Massachusetts 01580

FOLD FOLD

TAPE TAPE

FOLD FOLD

I II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

t. Data General
ATTN: Technical Products Publications (C -138)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o

o

o

1-

-. Data General
useps

g POUP Installation Membership Form

Name __________________ Position _________________ Date

Company, Organization or School _____________________________________ _

Address _________________ City _____________ State ____ Zip ______ _

Telephone: Area Code ______ No. ___________ Ext. ____________________ ~

o OEM

o End User

o System House

o Government

o Educational

Qty. Installed I Qty. On Order

o AOS o ROOS

o OOS 0 Other

o MP/OS

Specify _____ _

o Algol

DDG/L

o Cobol

o PASCAL

o Assembler

o Fortran

o RPGU

o PUl

o Business BASIC 0 Other

o BASIC

Specify ______ _

o Batch (Central)

o Batch (Via RJE)

o On-Line Interactive

o HASP o CAM

o RJE80 o XODIAC

o RCX 70 o Other

Specify

0 ________ _

From whom was your machine(s)
purchased?

o Data General Corp.

o Other
Specify ______ _

Are you interested in joining a
special interest or regional
Data General Users Group?

0 _________ _

t. DataGeneral
Data General Corporation. Westboro, Massachusetts 01580. (617) 366-8911

FOLD

TAPE

FOLD

" " I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

t. Data General
ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

r:
II

I
i,

I o

o

ji
,I

il

(1

o ---.... ,

0,

o
~. Data General
Data General Corporation, Westboro, Massachusetts 01580

069-400202-00

.•
~.

