Disk Operating
System

(DOS)

Reference Manual

093-000201-02

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000201

© Data General Corporation, 1976, 1977, 1978

All Rights Reserved

Printed in the United States of America

Revision 02, November 1978

Licensed Material - Property of Data General Corporation



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Disk Operating System
(Was Diskette Operating System)
Reference Manual
(93-000201

Revision History:
093-000201
Original Release - August 1976

First Revision - May 1978
Second Revision - November 1978

This document has been extensively revised from revision 01; therefore,
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOURI INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA DG/L

ECLIPSE NOVADISC microNOVA



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

PREFACE

Data General's Disk Operating System is complete,
economical, and versatile. Its software was derived
from the Real-Time Disk Operating System (RDOS),
and it interfaces perfectly with RDOS. DOS is a
capable system in its own right, however; it can
support some very sophisticated equipment, including

8 diskettes, 8 mag tape units, 2 line printers, a
plotter, and process I/O and communications hardware.

DOS originally ran from diskette only, hence the name
Diskette Operating System. Because the system can now
support dual-plotter 10 megabyte subsystems, we have
changed its name to Disk Operating System.

This manual covers all features of programming DOS
from files to multitasking, as they apply to microNOVA
and other NOVA computers.

Note that the DOS system -generation process which was
covered in Chapters 7 and 8 of the last revision of this
manual is now detailed in the manual How to Generate
Your DOS System (093-000222).

We have organized this, the DOS manual, as follows:

¢ Chapter | introduces the Disk Operating System
and outlines diskette and memory organization.

e Chapter 2 explains files and directories.

® Chapter 3 presents most of the system calls you
will need for I/O in a single-user environment.

093-000201-02

® Chapter 4 describes three tools for extending
memory: program swaps, chains, and user
overlays.

e Chapter 5 covers multitasking; it builds on the
topics covered in Chapters 2, 3, and 4.

® Chapter 6 explores user interrupts and power
fails.

Appendix A begins with a yellow page; it lists all
system and task commands and error messages;
Appendixes B and C contain Hollerith and ASCII
character tables, and Appendix D surveys overlay
directory structure.

Appendix E contains a listing of DOS user parameters -
file PARU.SR. Bootstrapping the disk-resident

system is covered in Appendix F, Exceptional System
Status in Appendix G, and RDOS interface considerations
in Appendix H. Appendix I covers maintaining your
diskettes and handling recoverable diskette errors.

Appendix ] discusses advanced multitask programming.
Appendix K presents two multitask programming
examples.

Within this manual, we use the term core generically,
to indicate either semiconductor or core memory.

NOTE: The term "disk" means either hard disk or
diskette; "'diskette'' means only diskette.

PREFACE



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporatior
The following Data General publications offer useful We welcome your suggestions for the improvement
related information. You received some of them with of this and other Data General publications. To
your system. communicate with us, either use the postpaid
remarks form at the end of this manual, or write
14-000065 Technical Reference, Model 6030 directly to:

Diskette Subsystem (NOVA DOS only).
Software Documentation

14-000073 Technical Reference, MicroNOVA Data General Corporation
Computer Systems (microNOVA DOS Westboro, Massachusetts 01581
only).

15-000050 Programmer's Reference Manual
microNOVA Computers (microNOVA READER, PLEASE NOTE:

DOS only). We use certain symbols in special ways:
093-000040 Extended Assembler User's Manual Symbol Means
093-000065 Extended BASIC User's Manual ) Press the RETURN key on your

terminal's keyboard.
093-000106 Software Catalog

O Be sure to put a space here. (We
093-000044 Symbolic Debugger User's Manual use this only when we must; normally,

you can see where to put spaces. )
093-000053 FORTRAN IV User's Manual

All numbers are decimal unless we indicate otherwise;

069-000022 Learning to Use Your RDOS/DOS e.g., 358.
System
Finally, we usually show all examples of entries and
093-000074 Library File Editor User's Manual system responses in CAPITAL LETTERS. But,
where we must clearly differentiate your entries from
093-000081 Macroassembler User's Manual system responses in a dialog, we will underline your
entry.

093-000084 Octal Editor User's Manual

093-000080 Extended Relocatable Loader User's
Manual

093-000041 Relocatable Math Library File User's
Manual

093-000105 RDOS/DOS User's Handbook

093-000109 RDOS/DOS Command Line Interpreter
User's Manual

093-000110 Software Summary and Bibliography
093-000111 SUPEREDIT User's Manual
093-000160 Symbolic Editor User's Manual
093-000018 Text Editor User's Manual

093-000222 How to Generate Your DOS System

v 093-000201-02



Licensed Material - Property of Data General Corporation

CHAPTER 1

CONTENTS

INTRODUCTION

Generating a DOS System

Communicating with DOS ., ,.............
DOS Organization .........e000000. e

CHAPTER 2 FILES, DIRECTORIES, TAPES, AND MULTIPLEXORS

Definition of a File, .. ...
File Overview , , ., .
Reserved Device Fllenames. e e e e
Disk File Names ., ... ... et 0
File Attributes and Charactemstics. .o
Disk Files .....e00teueeeens
DOS File Organization . .........
Random Files ......¢ccee0

Contiguously Organized Files .....
Disk Directories . .. .. ccvvvvev oo
Initial Disk Block Assignments .. .....

System Directory (SYS.DR) .......
User Directories . . ... ..... .
Accessing Directories. . ........
Master Disk . . .....c0c0eeeeennn
Bootstrap Disk.........ce0eeuun
Link Entries , . .. .. 0vivneee v
Directory Command Summary . .
Magnetic Tape Files (NOVA Systems Only)
Nine Track Data Words . .. .. .. .. ..
Magnetic Tape File Organization ...
Initializing and Releasing a Tape Drive
Referencing Files on Magnetic Tapes .
Free Format Tape Reading and Writing

Multiplexors ., ......

Checking Multiplexed Lines for Activity or
Line 64 Reads
Line 64 Writes
Multiple Channels ,.............
ALM Modem Support .. ..

Multiplexor Error Messages
ALMSPD. SR,

CHAPTER 3 SINGLE TASK PROGRAMMING

093-000201-02

Multiple and Single Task Environments . .

System and Task Calls ........ e eens

Status on Return from System Calls ....

1/0 Channel Numbers ...... e e e
Selecting a Channel. . ....... e
Capsule Command Summary ., ..........

P N A I I

e s 66 o 8 0 0 s o0 0 0 s s s s

..

e e e e ..
DR R NS
DRI .
“« e * e
........

. e 0 0
. .. ..

..... o0 .
........
. . ..
e e e
..... . o0 .
.. . . e
DR ..
. . e e
.. . PEEERY
. DR
00 0 .

o e e o 0. .

. v e o0 0 0

oo 0 0 . ..

oo a0 o0 .
.. o e
o e

“ e .

DataGeneral

DOCUMENTATION

SOFTWARE

. oo e e
e o 0 e ..
. ..
.. e 0. .
¢ o . LRI
.« o0 . .
v e o e e o
e o 00 0 0 e 0 e

o e o s 0 s s o

o s o0 0 0
s e v s 0 e

s o 00 s 0 s e
. .. .

oo .. ..

. .

.. . ..

.
_ -
1
[\CRR

E JUN I R R SR Y N DR B R |
BB W W W w NN

1
O O 00 00 o O Ut U

.

Y s e s .
Nl\)l\JNl\)NNNNI\)NA\)NNNNNNNNNNN
1

.2 10
.2-10
. 2-12

.. 2-12

.2-12
.2-12
.2-13
.2-13
.2-13

CONTENTS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

CHAPTER 3 continved

Device and Directory Commands . . .. v v vveveressoeaosoeanasimassss38
Initialize a Directory or Device (.INIT) e . 3-8
Change the Current Directory (DIR) . ., ... tvt v vrennennananseesd9
Release a Directory or Device ((RLSE) ... ... .. vveueeceaeanessa3-l
Get Current Directory Name (.GDIR) , , 3-1
Create a Directory (. CDIR), . e . .. .
Get the Current Operating System Name ( GSYS\ e e J . 22 8 |
Get the Name of the Master Directory (( MDIR), . . ......... et e .3-11

File Maintenance Commands ., . .....ccocvounnonnanssacsesonesaadl2
Create a Contiguously -Organized File w1th all Data Words

Zeroed (CCONT) |, ...t eronnnnassansoeenns e 03-12
Create a Contlguously-Orgamzed File with no Zeromg of
Data Words ((CONN) , . ... .ueeeeeeneennnnnnoassessceseossad=ld

e s 6 0 6 6 8 8 s 0 0 e e 0 0 0 0 s s s e LR

Create a Randomly-Organized File ( CRAND) ., ........ e e eees3-13
Delete a File (DELET) , ... ... veueenosoossonnnenenonncnnns ..3-13
Rename a File ((RENAM) ., . ...t it et vonnsscssansoenss e ee oo 3-14
Get the Current File's Directory Status (.STAT/.RSTAT), . v . et v n.. ..o 3-14

Get the File Directory Information for a Channel (.CHSTS) ............3-15
UpdatetheCurrentFileSize(.UPDAT)..........................3-16
File Attribute COMMANAS, + v v v v v v e e vovosossnsesesssosesnansssss 316
Change File Attributes (.CHATR) S £ ()
Get the File Attributes and Characteristics (.GTATR) .......o00eee..3-17
Link COMMANAS 4 v v vovveeeeeeesaesosnssesnsanesasssesnseseess 3”18
CreateaLinkEntry(.LINK).................................3-18
Delete a Link Entry ((ULNK) .. vveennseoonncanenanoneansess3-19
Change Link Access Entry Attributes ((CHLAT) . ... vvvvveeeeeeee.. 3719
Input/OutputCommands......................................3-19
Open @ File ((OPEN) v vvveveevsesossoocsnsononnanassansosssd2l
Open a File for Exclusive Write Access (.EOPEN) .....c.veveeeas. 3722
Open a File for Reading Only (\ROPEN) . v« vt v v annnnoononsenes. 3-22
Open a File for Appending (. APPEND) I B

OpenaMagneticTapeUnitforFreeFormatI/O....................3-23
Get the Number of a Free Channel (.GCHN) v veevseerensoaocssessss3-23
CloseaFile(.CLOSE).....................................3-24
Close all Files (\RESET) v v v vt veeocsonsocecsascnnsssansaasssd=24
Get the Current File Pointer (4GPOS) . v v v v v v vt et e vonsaneesaneoess 3-24
Set the Current File Pointer (.SPOS) v e e v e v eeveeesaessossnsonssesd=25
ReadaLine(.RDL).......................................3-25
WriteaLine(.WRL)......................................3-26
Use of the Card Reader ($CDR) in . RDL and . RDS CommandS « o oo e oo evos 3-26
Read Sequential (. RDS) . T
Write Sequential (\WRS) ¢ ¢ e v e v veveacososssoscaceetnenns e eese3-28
Read (or Write) Random Record (RDROT .WRR) + v v v envenrceronsse3-28
Write Random Record ((WRR) v v v v e eevasensososenncsacnnsasesssd=29
Read (or Write) a Series of Disk File Blocks (.\RDB/.WRB) «evvesnnseess3-29
Open a Tape Unit and File for Free Format I/O (.MTOPD) v v e v vvoveeese..3-30
Perform Free Format I/0 (. MTDIO) et tecesseeeseeseeensassess3-30
Console I/0 Commands S 13- 71
GetaCharacter(.GCHAR)..................................3—32
Put a Character (.PCHAR) ..... e e e eeseseccecsesssanansesess3-32
GettheInputConsoleName(.GCIN)............................3-32
Get the Output Console Name (. GCOUT) I 4
MemoryAllocationCommands..................................3-33
DetermineAvailableMemory(.MEM)...........................3-33
Change NMAX (. MEMI) S S 1

vi 093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporaiion SOFTWARE DOCUMENTATION

CHAPTER 3 continued

Device Access Commands t et e e e s e e e e s e ee s s e s e s e e e
Read the Front Panel Switches (.RDSW) . . e vt e et vt oo stoocncnasan
Clock/Calendar COommaAandS « « ¢« s o ¢ s ¢ e e 0o o e ooseossseosssssssessass
Get the Time of Day (.GTOD) v vt v eeeoveeseecassanssansancense
Set the Time of Day (.STOD) + v v v e v v oo vvrenoeoscoossossaneoas
Get Today's Date (\GDAY) .+ v v v tveevovoeeseoosooccssosnonse
Set Today's Date (+SDAY) e v vttt ienrevoenossacnccsnosonse
Spooling CommandS  « e v e e e v e oo eeetoecoctosascascoscsnocenesos
Console Control ChaTacterS + e e o e ot v oo v oo seosoosscssososoesssns
Console Interrupts it e e e et s e e s e s ettt e s e e e e
Interrupt Program and Save Main Memory (.BREAK) ......c0ceues.
Disable Console Interrupts (ODIS) ¢ ¢ ¢ ¢ e e o e s s 0 s e s osesoecsassssse
Enable Console Interrupts (.OEBL) . ... .

CHAPTER 4 SWAPS, CHAINS, AND USER OVERLAYS

1
w

.
.
.

W oW W WL wWwWwowwwaww
I

Lo o o L LW WL W W W

IR ENC R IRY TR I N SO N N QY NG G

-
.
.
.
1

Program Swapping and Chaining ... .civ et i iseeeeveveosoecens
Read in a Save File for Swapping (.EXEC) ¢ v v it vetevsvoesoosas
Return from Program Swap (.RTN) .. .¢ ettt ieeneenoeronessonse
Return from Program Swap with Error Status (.ERTN). . .. .. e e eeu ..
Check the Level of a Running Program (.FGND) . ....vtvveeeeceenn
Bootstrap a New Operating System (.BOOT) + e v v e oo e veenssnsocnns

User Overlays..... et s s e e st s e s an et s e e s s ecanseane s .
Open User Overlays for Reading (,OVOPN) . s v o v e v e v vt eovvoeanans
Load a User Overlay (.OVLOD) . s v st e v s v evsooscaesassonesoss

.
.
-

.

.
[T QT QT NG N N N NN
1
OB W W W N

CHAPTER 5 MULTITASK PROGRAMMING

Multitask EnVIironment « « v o o o o oo e o s s s o s sessosscoences .
Task Control BlOCKS v v v c o o e c oot ot eessosecosnsssssssosssasscs
TaSK StAtES & v o v o o o s o s s 6 60 0 e s s 0o oo sosesesssesssssccsccsess
TCBQUEUES 4 o s oo ocesossensssoasssoscsosssssessonsosess
Task Synchronization and Communication . ....cco0eitecovcoocss
User Status Table . .o vt et et v e oo oososeoscscscsosasssnsasecs
System and TaskCalls . .. .ccvveveereennn
Task INQtiation . « v v o « « o o o ¢ o 0 s 0 0 0 606 60 esoscoesecscscssososcss
Createa Task (¢TASK) 4 e e v et v o tonseossossoasessoscnsnssssessse
Task Termination « . « v e o o s o s s s oo s e oeesscosssoscccoososssoccs
Define a Kill-Processing Address (\KILAD) .. .¢citeveeeeesoaoons
Delete a Single Task (\KILL) ¢ v v e e s v v vt eeeeonsoenoaanas
Delete all Tasks of a Given Priority (¢ AKILL) s v v v v v e v envcoooenonns
Abort a TaSk (\ABORT) 4ttt v e veesoseesosoccossnsnscoscsssss
Task State Modificatione o« o« « o o o ¢ ¢ o 0 00 e oo s osecosseasoscsseosscoes
Change the Priorityof a Task ((\PRI) .. ¢.t it iennvernnnneeconons
Suspend a Task (.SUSP) v oo v v v eveeeensocenoannnsas
Suspend all Tasks of a Given Priority ((ASUSP) . ... ieeeecann
Ready all Tasks of a Given Priority ((ARDY) ..ccveiierecnncens
Intertask CommMUNICAtION « « + « o ¢ « s s s 00 0o s s oo caooeseecscsscssaos .
Transmit a Message (. XMT) and Wait (XMTW) .o v e veerncecencsnes
Transmit a Message from a User Interrupt Service Routine (. IXMT)e oo 0o
Receive a Message (\REC) 4 ¢ v e evevtoneneconcesccscsoccsosoas
Locking a Process via the .XMT/. REC Mechanism .......c0. 00000
User Overlay Management. + « v « ¢« c o s o s e oo s o soosssscconcsscsvsss
Load a User Overlay (. TOVLD) & v et ettt vvoseesocccacseonnses
Queue a Core-resident or Overlay Task (QTSK). ..o v e ve v
Dequeue a Core-resident or Overlay Task (\DQTSK) . e v vvvevcuen... .

.
.
.
.
.
.
* .
w1
1 1

1
BwWw W wN

.

.
1

.
[3; I I IV WS, WV, WY, BN, WO, BV, SRS, BNV, SNV Y, B BNV, B, BNV BV, BV, SRV ) SRV BV IS L)
]

1
RS BN- IRV R R RCRICIEN BEN IEN BENEN [ e o SRV AR UV Y

N =

.

.
1

093-000201-02 vii CONTENTS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

CHAPTER 5 continued

Release an Overlay Area (LOVREL) . ¢vvtvveeeereoneonsnasnsnsaad-l2
Release an Overlay and Return to the Caller ((OVEX) .. ..0cteceosaasad-12
Kill an Overlay Task and Release the Overlay (.OVKIL) ..¢.ceveeesessaS5-12
User/System Clock COommandS +eveeeeoesoosacssascscsansassessdld
Define a User Clock (\DUCLK) 4 vt v eeosseesosssesescesascsesssd1l
Exit from a User Clock Routine ((UCEX) ¢ ¢ v v s e s e s sesscossasseasseod=13
Remove a User Clock (¢!RUCLK) &+t 4ot eesvoeossocoononncnaoensssdl13
Examine the System Real Time Clock ((GHRZ) .. ..ccveeennsnnssssd=13
Task Identification CallS o v o o v e e v oo s voeossnsssssessossscsseesesd14
Geta Task's Status ((IDST) « oot vvvoseesessoseonssoosocssesaseso-14
Kill a Task Specified by 1.D. Number (.TIDK) . cveeeveeveanannsosesdld
Change the Priority of a Task Specified by I.D. Number (TIDP) ..........5-14
Ready a Task Specified by I. D. Number (. TIDR) ¢ ¢ e e v o vt voveoossssssd-l4
Suspend a Task Specified by I.D. Number (. TIDS) «vcevvesaosensssss5-14
Disabling and Enabling the Multitask Environment (. SINGL
and.MULTI).............................................5-15
Disable the Multitask Environment (.SINGL): ¢ s ¢« s s e e v evonsessenssesdld
Restore the Multitask Environment (\MULTI) ¢ v e v s s o0 v o s eovavaeoassd=1d
Disabling the Task ScheduleT « v v v v v v v v svenonanassssseceaoanesessd16
Disable Rescheduling (. DRSCH) - 13 )
Reenable Rescheduling (. ERSCH) - 1 ()
Task Call SUMMATY  « v o e vvvevuvuanossososassossasossseeossssdlb

CHAPTER 6 USER INTERRUPTS AND POWER FAIL/AUTO
RESTART PROCEDURES

.

=8
'

o

Servicing USer INtEITUPLS + 4 o vt e s s e st e v o sossrtsanaossssssssses
Identify a User Interrupt Device Routine or Power-Fail
Restart Routine (¢ IDEF) « v s s v e ot v et vossossosasssoossssssnoes
Exit from a User Interrupt Routine ((UIEX) v o v vv v veceoaenes
Remove a non-SYSGENed Interrupt Device (\IRMV) 4 e e v e v v e vt eensns
Modify the Current Interrupt Mask ((SMSK) ¢ v vt v esvevencoccsacnsnse

Power Fail/Auto Restart Procedures . « v o e e e s s e et e s o veseocecssonnse
AUtOMALIC StATE o« o o o ¢ o 6 s s s a s s s s s s sasosssssssssascscossoss
microNOVA Power Fail and Auto Restart . v « s s o s o e e s s s s s oasecovss
NOVA Restart Proce€dUre€S .« e o e e v o eo oo scveosssassnssencsoocssss
Power-up on Devices .. covees st coeosssssosstcsssascessceens
Exit from a User Power-up Routine (.UPEX) ......ccecteccseseeces

.

.
O\O\O\O\OI\O\O\O\O\O\
BB R W W w NN N

CHAPTER 7 GENERATING A DOS SYSTEM ON A MICRONOVA

This information now appears in How to Generate Your DOS System (093-000222)

CHAPTER 8 GENERATING A DOS SYSTEM ON A NOVA

This information now appears in How to Generate Your DOS System (093-000222)

viii 093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

APPENDIX A DOS COMMAND AND ERROR SUMMARY

Command SUMMATY «eeoeesereosonceocesocssosessssenensossnsssensns sosnas A-l
Error Message SUMMATY ceeocecnoeresosssorcsoosovessnssssessssoenassssnse A-10

APPENDIX B HOLLERITH-ASCII CONVERSION TABLE
APPENDIX C ASCIl CHARACTER SET

APPENDIX D OVERLAY DIRECTORY STRUCTURE

APPENDIX E USER PARAMETERS
APPENDIX F BOOTSTRAPPING DOS FROM DISK

From a Cold SYStem e « ¢ e e e s e e e s e s et otecesosoocsoscssocsnansns
From a Running System « e« c s e v e oo e toseccrcoscscsssvooocssosns

APPENDIX G EXCEPTIONAL SYSTEM STATUS

Exceptional Status Messages « « « e v e e e v e e et teeececsoncccccoconcns
Controlling Exceptional Status « « e coceeoe e e et eeocsoososoacoosess
Producinga Core DUmMp s+ e e e e v e co et coceoeotcesosstssncsoocsococns

APPENDIX H RDOS-DOS COMPATIBILITY CONSIDERATIONS

Details o ¢ ¢ ¢« e o o et v o e s c o e s s 00000 s s e 0 s e s o e e e e 0s e

APPENDIX | DISKETTE CONSIDERATIONS

Recoverable ETTOTS ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢ 6 0600066 coeesssesssessssesasoss

APPENDIX J ADVANCED MULTITASK PROGRAMMING

Definitions ¢ ¢ e ¢ e o e e e o0 e v s oo oo 0veocvoesscccsoscscsscscccoscccaos
General TETMS ¢ ¢« + v o e s e s 0 s s v s sesooocsscseocscscescsscscsvn
State Definitions « ¢ « ¢ ¢ s e st 0 e v s s e o e s 00 e et ssssoecosossesssocae

Coding Your Own Task CallS ¢ ¢ ¢ o e s s s s s s s e s v o oo s ooesossscescccss
TCBand Status BitSe ¢ o ¢« ¢ o s e o e e s s s e s 0o e oo e oo cvsooscocccoocscs
Scheduler Calls ¢ vt et v eeeeoorssveeossaosoososccncccsooscscs

Enter Scheduler State (ENoSCHED) v ¢ e e o esooosssececccccscoss
Task State Save (W TSAVE) v v v et et et st voeeosossosocnsascacscs
Leave Scheduler State Normally (RE.SCHED) . v« v e v et e v eveonnens
Leave Scheduler State Abnormally (ER.SCHED) v . ¢t vovevevenannns
Enter Interrupt-Disabled State (INT.DS) .+ oo voeeeseoosansecnenns
Leave Interrupt-Disabled State (INT.EN) v ¢« v et e e v o s e voecnsanns
Task ID Search (ID.SRCH) 4 ¢ s ¢ e o6 v 0o et eseeecesecoosossssoscs

093-000201-02 ix

I-1

J-1
J-1
J-2
1-2
J-2

CONTENTS



DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX J continved

Handling Additional Task Resources . ..o eoeeceeceseees
Task Scheduler Call-outs

Task Initiation Call-out (TSKeX)e ¢ ¢ e ¢ e e e e oo s ce e e

Task Termination Call-out (TRL.X)

--------------

Task Swap Call-out (ESV.X) ¢ v eeeeeeeeeson e e e

Additional Resource Handler . ....c00c v ceec e
Restrictions and Warnings ... .ceecoe e oo eveee .
Providing Even More ReSOUTCES ¢ s o s o s s e o 00 s 0o e v

Extending the Task Queue Table ...... seeasescaesen

Task Control Block Values. .....

APPENDIX K MULTITASK PROGRAMMING EXAMPLES

DUCLK Program
Example Program

CONTENTS x

ooooo

Licensed Material - Property of Data General Corporation

1
ANt U U W

093-000201-02



Licensed Material - Property of Data General Corporation

Table

w w
]
B =

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

ILLUSTRATIONS

Caption

DOS Organization . .....uovveevoveonseeenoeesss =2
Data Encoding (9-track tAPES) 4 v v o v v v o v e o e v oo vesass 2-8

Double-Precision Byte POInter ... v veeeeeeooeeees3

Image BinaryCard Reading . .. ... .0 eevtievnnnnnnas. 3-2
Device Status Word on Normal Return .MTDIO . . .. .0 .0 .. 3-3
«MTDIO Values Returned. . 4 o v v v oo e vvveseeesoeenssd3
Memory Allocation .. v e vt ivvreoeeeeoenoeseess 33
Program with Interrupt Handler .. .....0vvvvvuuuos.. 3-3
Program Interruption Logic Sequence. « v v v v v v v v veveess3-3

USer OVerlays. v o v v v it i itontneneenennsnnennss
Segment 1 of Overlay File FO.OL & & v v v v v v e v v e v nnss

Task State/Priority Information (TPRST) v+ v v v v s e v v s.sao5-1
TCB Free Element Chain. v s v v v e v v oo o veeeeeeeneass 54
. TOVLD Logic Sequence +....... B 13 |
Task Command SUMMATY « v v v vt v e vovreennnsenaeass1

Overlay Directory Structure (multitask) .......400e0...D-1

DULCK Program Listing o+ . v v evovsnnnnnsseeea.s K-2
Example Program Listing .« v v v v v v v eevnnsann I
Caption

System Command List , ... . . ..., ............,..3"2
Common Call Summary, ., ... ......0eeuvrenn.nn... 36

TCB Words and How They Can Be Changed . ... ..o vevu . ]-7

xi






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 1
INTRODUCTION

Data General's Disk Operating System (DOS) com-

bines the advantages of a disk operating system, and the
low cost of a diskette system. DOS is real-time orient-
ed, since it can schedule and allocate program control
to many tasks within a program. DOS offers maximum
system efficiency, economically, to a wide variety of
installations.

Some major features of DOS are:

¢ Disk and Memory resident system

¢ Modular multitask monitor

» Multiple user overlays

* 256 software levels of task priority

« Buffered and nonbuffered 1/0

« Flexible file organization

 Real-time support for FORTRAN and BASIC.

At minimum, the Disk Operating System requires

a Data General computer with 16K words of memory,
a console teletypewriter or CRT video display, a
real-time clock, and a diskette drive or a dual-platter
hard-disk subsystem.

Larger versions of DOS include up to 32K of memory,
power fail/auto restart, 2.5 million bytes of diskette
storage, and/or 20 million bytes of hard-disk storage.
DOS can also handle ALM-driven multiplexor boards,
and up to two line printers, NOVA-based DOS can
support a card reader, a reader/punch, a plotter, and
up to 8 mag tape drives.

GENERATING A DOS SYSTEM

Each system installation is unique; it must perform
diverse tasks with one of many possible hardware
combinations. You can tailor DOS for your own
hardware environment with the system generation
procedure (SYSGEN), as described in How to Generate
Your DOS System.

SYSGEN, the builder of tailored operating systems,

is an executable system program which can operate

in any installation. A standardized starter (bootstrap)
system is delivered with DOS; this starter system and
SYSGEN enable you to generate one or more configured
systems, If future requirements are known, you can
generate other DOS systems to fulfill them.

093-000201-02

1-1

Generated systems must be bootstrapped into execution via
BOOT, the DOS disk bootstrap. Appendix F contains a
convenient summary of DOS disk bootstrap procedures.

COMMUNICATING WITH DOS

There are three principal ways to interface with DOS
and to make the system work for you. They are:

e through console Command Line Interpreter
commands

e via system calls in a program

e via task calls in a program

You issue and use the CLI as a dynamic interface to
DOS via the system console, and, system and task
calls as program instructions. System calls and
task calls activate logic within either system or task
modules.

The multitask monitor has a modular structure: at
load time, you tell the Relocatable Loader utility
the number of tasks and channels your program will
require. The loader automatically loads only those
task modules needed for execution. This conserves
memory space, and allows more of your program to
stay in memory at any given moment.

The Command Line Interpreter (CLI) is a system
utility program that accepts command lines from the
console and translates the input into commands to DOS.
Thus, the CLI is an interface between your console
and DOS. From your console, you use CLI to create,
organize, and maintain files, and access such system
utilities as the Library File Editor and the Extended
Relocatable Loader.

The system restores CLI to memory whenever the

system is idle--after initialization, after a disk
bootstrap, after a console break, after the execution
of a program, etc. CLI indicates that it is in control
by outputting a ready message prompt, "R", and a
carriage return.

You activate the CLI by entering a CLI command via
the system console. You can interrupt the action

of the CLI by depressing the keys CTRL and A, or
CTRL and C.

COMMUNICATING WITH DOS



DataGeneral

SOFTWARE DOCUMENTATION

DOS ORGANIZATION

The DOS executive is the framework of the operating
system, and must be memory-resident before any
processing can occur. This resident portion of DOS
performs interrupt processing, overlay and buffer
management, system call processing, and file
maintenance operations like opening, closing, remaming
or deleting files.

In memory, the lowest 16g memory locations are used
for entry points (interrupt and program) into the
second area of DOS. This second area is located at
the top of memory. The highest portion of DOS is a
series of system buffers. These are used to receive
system overlays and disk files for buffered I/0
transfers.

The portion of page zero memory available for your
programs begins at physical address 16g (labelled USP,
for user stack pointer), and extends to location 377g.
Locations 40-47g are part of user address space but
they have special meanings to the hardware.

Associated with each user program is a User Status
Table, UST. This table starts at address 400g, and
describes, among other things, length, the number of
tasks required, and the number of I/O channels needed,
for the user program.

Above the UST is an area reserved for a pool of Task
Control Blocks (TCBs). TCBs store task state infor-
mation, such as the state of active accumulators and
carry. If you defined overlays in this program, an
overlay directory is found above the TCBs. Your
program follows the TCB pool.

To make a program executable, you use the relocatable
loader utility supplied with your system. After loading
your program onto diskette, this utility loads all

modules referenced by the program. (It extracts these

modules from libraries like the system library, SYS.LB).

The Task Scheduler and task processing modules are
also extracted from the system library.

Licensed Material - Property of Data General Corporation

Following is a simplified map illustrating the positions
of tables and program elements in user address space.

16 <32 K
System Buffers O
Resident DOS Directories
L ] DOS Overlays
7 free area T User Programs
Chained Programs
NREL Swapped Programs
E Data Files
fuser program) o
Disk

Overlay node(s)

. NREL
(user program)

Overlay directory

TCB pool
UST
400
ZREL
(user page zero)
15
DOS page zero
laddresses

Main Memory

S$SD-00423

Figure 1-1. DOS Organization

END OF CHAPTER

1-2 093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 2
FILES, DIRECTORIES, TAPES, AND MULTIPLEXORS

DEFINITION OF A FILE

A file is any collection of information or any device
receiving or providing the information. Typical
examples of both file types are:

¢ Source program file

v Relocatable binary file

e Core image file (Save file)

¢ Listing file

o Teletypewriter keyboard or CRT display
e Magnetic tape file

Each of the first four file types has certain qualities,
and represents a step in program development. You
input a source program file to a compiler or an
assembler which produces as output a relocatable
binary file. You input the relocatable binary file into
the relocatable loader, which produces a core-image
(save) file on disk for execution at absolute locations
in memory. A save file is stored word-for-word as it
will be executed in memory. You can designate a
listing file, to store and/or output the result of any
of these steps. DOS executes each step via your CLI
(Command Line Interpreter) command.

The teletypewriter or CRT display is the default input
and output file; these are discussed below.

Magnetic tape files are also discussed briefly below,
and extensively later in this chapter.

FILE OVERVIEW

All devices and disk files are accessible by device or
file name; all magnetic tape files are accessible by
file number.

A file must be opened (i.e., associated with a DOS
channel) before it can be accessed. You can fully
open a disk file, allowing several concurrent users to
access and modify the file's contents; or open it
exclusively, permitting only one user to modify the
file but permitting other users to read the file; or you
can open it for reading only, by one or more users.

093-000201-02

Reserved Device Filenames

I/0 devices have special filenames which often begin
with the character $. Within the limits of the device,
you can use each device name exactly as you would a
disk file name in a command. You enter each device
name as shown below.

$CDR Punched card reader; mark sense
card reader.

DPn Disk or diskette drive n, range 0-7.

Each microNOVA diskette controller
handles one or two drives (slots). The
first controller manages drives DP0O and
DP1; the second manages drives DP2 and
DP3; the third handles DP4 and DPS; and the
fourth controls DP6 and DP7.

Each NOVA controller handles one to
four drives. Each "drive" is either one
dual-platter hard-disk subsystem or one
diskette slot. The first controller
manages drives DPO, DP1, DP2, and

DP3; the second controller manages DP4,
DP5, DP6, and DP7. If any of these is a
hard-disk, "DPn" indicates the removable
cartridge. The fixed disk has the suffix
"F'" i.e., DPOF, DP1F, DP2F, or DP3F.

DHn, Model 6095 hard disk (microNOVA DOS

DHoF only). For the first controller, n is 0,
for the second controller, n is 1. The
top (removable) disk is DHn; the bottom
(fixed) disk is DHnF.

$LPT First 80- or 132-column line printer
$LPT1 Second 80- or 132-column line printer
MTn 9-track magnetic tape transport n

(n is in range 0-7).

$PLT Incremental plotter
$PTP High-speed paper tape punch
$PTR High -speed paper tape reader
FILE OVERVIEW



DataGeneral

SOFTWARE DOCUMENTATION

QTY:n ALM or QTY multiplexed line. n is in the
range 0-7 for microNOVA, 0-63 for
NOVA.,

$TTI Teletypewriter or display terminal
keyboard* (see footnote next page)

$TTO Teletypewriter printer or CRT display
(80- or 132-columnd).

$TTP teletypewriter punch

$TTR teletypewriter reader

$TTI1 Second teletypewriter or display
terminal keyboard*

$TTO1 Second console printer or CRT

display (80- or 132-column).

*Input devices other than console keyboards and card
readers automatically provide end-of-file when input
ceases for a device-specified time. On TTI line input

' you must indicate an end-of-file by pressing the CTRL
and Z keys.

Disk File Names

A disk file name is a string of up to ten ASCII char-
acters, including upper and lowercase letters

(DOS converts lowercase letters to uppercase), numbers,
and $. The string is packed left to right, and terminated
by a carriage return, form feed, space, or null. You
can use any number of characters in a file name, but

the system recognizes only the first ten. Moreover,

you can use $ whenever you want in a disk file name, but
you must avoid using reserved file names of devices

on your system.

Each filename in a directory must be unique; if you try
to create a file that exists in the current directory,
DOS will return an error message. See User
Directories, later in this chapter.

You can append an extension to any disk file name.
An extension is a string of alphanumeric characters and
may include $. The extension can be any number of
characters, but the system recognizes only the first
two. A period (.) separates the extension from the
file name. An example of a file name with an extension
is:

FOO. PS
The CLI often appends an extension to a filename to
indicate the type of information the file contains and
to distinguish it from other types of files resulting
from the same source file. For example, assume that
your source file is named A. SR. The CLI would
append extensions to different versions of A, as follows:

A.RB relocatable binary file

Licensed Material - Property of Data General Corporation

A.LS listing file
A.SV memory image (save file)
A.OL overlay file

Usually, when you specify a file name to a system
utility, you need not enter the extension; the command
will use a search algorithm to find the file with the
file with the correct extension. Occasionally, the
system will need extension information from you to
find the file you want.

When you choose to add your own extension to a file
name, either avoid a CLI extension or use it properly.
Never give a source file the extension .SV, .OL, or

. RB, because system utility programs may delete this
file when they produce an assembled or save version of it.

File Attributes and Characteristics

A file's attributes protect it; they permit or
restrict reading, writing, renaming, deleting, or
linking.

The attributes listed below apply primarily to disk
files. To protect non-disk files, DOS assigns

certain attributes which you cannot change. Of
course, you can write-protect a file on magnetic

tape by removing the write-enable ring or write-
protect a complete diskette by uncovering the write-
protect hole. You can protect a disk file with any of
the attributes below. Use either the DOS call . CHATR
(Chapter 3) or the CLI command CHATR to alter the
attributes of a file.

P permanent file, which cannot be deleted or
renamed.
S save file (memory image).

A write -protected file, which cannot be written.

R read protected file, which cannot be read.

A attribute -protected file. The attributes of
such a file cannot be changed. After the A

attribute has been set it cannot be removed.

N no resolution file permitted. This attribute
prevents a file from being linked to.

& first user-definable attribute.

? second user -definable attribute.

Note that you can assign your own attributes to a file
with the characters & and ?; these represent bits

9 and 10 of the attributes word. They are described
further under the . CHATR command, Chapter 3.

093-000201-02



Licensed Material - Property of Data General Corporation

Disk file characteristics are determined when a file
is created, and cannot be changed thereafter. The
list of file characteristics is:

C contiguous file organization.
D random file organization.

L link entry. Properly speaking, the L
characteristic is given to directory
entries rather than to the files themselves.

Y directory. This characteristic defines
a file as being a directory.

The CLI LIST command allows you to obtain information
from a file directory about one or more files.

You should avoid giving a file more restrictive
attributes than it needs. Note, for example, that a
file with attributes AP cannot be deleted in any way
except by a full initialization.

DISK FILES

DOS supports up to 8 diskettes or two dual-platter
hard-disk subsystems; its minimum is one diskette or
one hard-disk drive. A system's diskette capacity
ranges between 157,696 and 1, 261,568 words; its
hard-disk capacity ranges from 5 to 10 million words.
DOS uses blocks 0 through 17g of each diskette or disk
for its own files - thus 16 blocks (or 4,096 words) are
not available for user storage.

DOS offers you four ways to access disk files for 1/0.
In all but the last mode (which is called Direct Block
1/0), files are transferred via system buffers. See
Chapter 3, . OPEN command, for the I/O modes.

When DOS writes data into its buffer area, it overwrites
the oldest available buffer block first. When all buffers
have been used, the least -recently-used is the first

to be overwritten.

After DOS has read a block into its buffers, you can
read or write the block’s records directly; no further
disk access is required. The system keeps track of
the blocks that are currently in its buffers, and allows
you to access each record within a buffer block.

When you use direct block 1/0 transfer, DOS transfers
by block from disk to the area you specify in memory.

By avoiding buffering for any specific file you save

time, but must manage records yourself; you lose the
automatic management of the system buffers for that file.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

DOS File Organization

Disk files are organized randomly or contiguously. The
maximum length of either kind of file is the amount of
space remaining on the current disk.

Random Files

All save files employ random organization.

In random files, a File Index contains an entry for each
logical block address on diskette, Each entry in the

File Index is a word which addresses a disk block, This
disk block address may be as high as 608. Blocks in

the random file are assigned relative block numbers 0
through n, where each number is a sequential unsigned
integer. Each index entry has the same relative position
as its block has in the file. Thus the logical address of
the first block in a DOS file is found at entry number zero
in that file's index. All-zero entries in the File Index
indicate that the block has not been written.

Generally, no more than two disk accesses are
required to read or write a block: one for the File
Index and one for the block of data itself. If the

index is memory resident (having previously been read
into a system buffer), only one access need be made.
If the data block itself is resident, no disk accesses at
all are required.

Contiguously Organized Files

Contiguously organized files are files whose blocks

can be accessed randomly without a random File Index.
Contiguous files consist of a fixed number of disk
blocks which are located at an unbroken series of disk
block addresses. These files can be neither expanded
nor reduced in size. Since the data blocks are at
sequential logical block addresses, all that DOS needs
to access a block within a contiguous file is the address
of the first block (or the name of the file) and the
relative block number within the file.

All 1/0 operations permitted on random files can be
performed on contiguous files, but the size of the
contiguous file remains fixed. Block access is faster
in a contiguous file, since there is no need to read a
File Index.

DISK FILES



DataGeneral

SOFTWARE DOCUMENTATION

DISK DIRECTORIES

Each disk contains its own file directory. This
file directory is a file which records all file names
on the disk; it is called SYS. DR.

Each disk also contains its own block allocation file,
called MAP. DR. MAP.DR records blocks which are in
use and which are free for data storage. MAP.DR is
aware of all disk space except blocks 0 through 5

which contain the bootstrap root, and other disk
information. Thus these blocks can never be destroyed,
since the system is unaware of the disk space where
they reside.

Initial Disk Block Assignments

On every disk, blocks 0 through 17g have fixed
assignments; the remaining blocks are free for

system use or user file storage. Blocks 0 and 1 are
reserved for the root portion of the disk bootstrap
program. Blocks 2 through 5 are used by the operating
system for recording disk status and marking bad disk
blocks. Block 6 is the first index block of SYS, DR, the
system directory. Block 7 is reserved for an index of
file index blocks used whenever a program swap occurs.
Blocks 10 through 178 are reserved for swap file indexes.
Block 17g is reserved for the first block of the MAP. DR
file.

Disk Block Number (octal)
root portion of BOOT

unavailable for DOS file space

6 first index block of SYS.DR
7 index of file index blocks used for
swap storage

: } swap storage index blocks

'17 first MAP, DR block

: } free blocks for DOS or user files
11508

(maximum)

As mentioned earlier, the MAP, DR file indicates which
disk blocks are currently in use and which are free for
assignment. Each bit of each word in MAP. DR indicates
whether or not a specific block is in use. Block assign-
ments are from left to right, in ascending block order
starting with block 6. MAP.DR is a contiguous file.

2-4

Licensed Material - Property of Data General Corporation

Word Contents

0 block allocation map, 1 bit per block,
from left to right in ascending block
order

. starting with block number 6.

. 0 means that block is available,

. 1 means that block is in use.

n-1 nis the size of the disk in blocks/16 (and

integer division is used).

System Directory (SYS.DR)

You can create many directories within your DOS
system, and create files in each directory. Each disk
or diskette has a system file directory, SYS.DR, which
maintains information on these directories and files.
Each directory also has a SYS.DR, to keep track of the
files within it. Each SYS.DR is a random file.

The system directory employs a hashing algorithm to
speed up access of directory entries. An initial

system directory area is allocated at the time the

system is fully initialized. This area (called a frame) is a
contiguous set of disk blocks; the set is contiguous to
minimize head travel time.

The first word in each block of SYS.DR is the number

of files listed in the block. Following this word is a
series of 22g -word entries, called user file descriptions
or UFDs, which describe each file. Each block in
SYS.DR looks like this:

Word Contents
0 Number of UFDs in this block of the
directory (168 maximum)
1
. User file description (UFD)
22
23
. User file description (UFD)
4

The UFD describes the file's name, its two-character
name extension, its size, its attributes and characteristics,
the address of the first block, other qualities, and a

logical device code describing the device associated with
this file. A UFD template appears next.

093-000201-02



Licensed Material - Property of Data General Corporation

Word (octal) Contents

0-4 Filename

5 Extension

6 Attributes and characteristics

7 Link access attributes

10 Block count -1

11 Byte count in last block

12 First address (i.e., logical address
of first block in the file.)

13 Year and day last accessed

14 Year and day created or most
recently modified

15 Hour and minute created or
most recently modified

16 UFD variable info

17 UFD variable info

20 Use count

21 Device code (DCT link)

The link access attribute in word 7 permits or restricts
links to the file. See Link Entries, below.

A nonzero file use count indicates that one or more users
have opened the file. If the system fails when a file is
open, its count will often be wrong; you must clear it to
zero (via the CLI command CLEAR) before you can
rename or delete the file.

User Directories

You can create a user directory with the CLI command
CDIR, or the system command .CDIR. Each directory
name on diskette must be unique, as must each file
name within a directory. DOS will return an error
message if you attempt to create a directory that
already exists, or create a file that already exists in

a given directory.

User directories are mutually exclusive subsets of the
SYS.DR file space. A directory has no defined amount
of file space; it takes file space from the diskette as
required and releases the space when it is no longer
needed.

A newly-created directory consists of three blocks:
SYS.DR's initial index block and data blocks for the
SYS.DR and MAP.DR entries. The map directory
entry in each subdirectory's SYS.DR points to the
parent's MAP,DR.

093-000201-02

2-5

DataGeneral

SOFTWARE DOCUMENTATION

Accessing Directories

You must initialize a directory before you can access its
files. Initialization opens a directory, introduces it to
the system, and prepares it for use.

You can use either of two commands to partially
initialize a directory. These are the CLI commands
INIT or DIR (or systems commands . INIT or . DIR).
Use the first command to initialize any directory:

INIT directory)

While many directories can be initialized at any
moment, you can have only one current default
directory. The DIR command changes the current
default directory and initializes it at the same time.
(As mentioned earlier, the default directory is the
one to which all file references without directory
specifiers are directed.) For example:

DIR directory)

During system generation, you specify the maximum
number of directories which can be initialized at any
moment. The current maximum is 32.

To release a directory, issue the CLI command:
RELEASE directory)

When you release a directory, you remove its
initialization and close all its files. If you release

the current default directory, the master directory
becomes the current default directory until you specify
another current directory. The master directory
holds the operating system and the system will shut
down if you release it.

At shutdown, of course, you release the master

diskette (and with it the master directory). You must
release each diskette before physically removing it
from its device. For example:

RELEASE DPO )

Releasing the master directory releases all active
directories and initialized devices in the system.

See Learning to Use Your RDOS/DOS System or the CLI
manual for more on directory access. :

DISK DIRECTORIES



DataGeneral

SOFTWARE DOCUMENTATION

Master Disk

The master disk is the one which contains the current
system. If you bootstrap another disk, it becomes the
master. The master disk has the following uses:

le It becomes the current directory after the

release of a current default directory.
2. It contains the system save and overlay files.

It contains push space for program swaps.
Thus if a user program swaps (Chapter 4),
DOS writes its current core image to the
master directory. This temporarily requires
extra space in the master directory.

Bootstrap Disk

A bootstrap disk can start up a DOS system. Such a
disk must have both the bootstrap root (on blocks 0 and
1),. and a copy of the bootstrap program, BOOT.SV. You
can copy BOOT. SV to any diskette with the CLI MOVE
command; and you can use BOOT. SV to install the root.

A bootstrap disk can start up a DOS system that exists
on any disk in the system; it need not contain a DOS
system itself.

Link Entries

The link entry permits DOS users to access any disk file or
magnetic tape file, by its name or by many different

names (called aliases). Moreover, users can access files
outside their own directories, and on other diskettes,

with link entries.

2-6

Licensed Material - Property of Data General Corporation

Link entries save disk file space by allowing users in
different directories to access a single copy of a commonly-
used disk file; this is their most popular application.

Link entries may point to other link entries, with a

depth of resolution of up to 10. The entry which is finally
linked to is called the resolution entry. You can create a
link entry with the CLI LINK command or the system
command . LINK.

Creating a link entry is easy - the resolution entry need
not even exist when you do it. Your only requirement
is that the link entry name be unique within its directory.

To use a link, you must initialize the diskette and
directory containing the resolution entry and all inter-
vening directories. (You do this with the call .INIT
(Chapter 3), or the CLI command INIT.) The
attributes of the resolution entry must allow linking.

The section "Managing Diskette Space", in Chapters 7
and 8, shows some practical uses of the CLI LINK
command. For other examples, see Leaming to Use
Your RDOS/DOS System or the CLI manual.

Directory Command Summary

Following is a list of CLI and .SYSTM commands
used to manage disk file directories; see Chapter 3
and the CLI manual for more information about these
commands.

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CLI Command

System Command

Meaning

CCONT

CDIR

CHATR

CHLAT

CLEAR

CCONT

CRAND

CREATE

DELETE

DIR

INIT

LINK

RELEASE

RENAME

UNLINK

.CCONT

.CDIR

.CHATR

.CHLAT

not available

.CONN

.CRAND

.CREA

.DELE

.DIR

.INIT

. LINK

«.RLSE

.RENAM

. ULNK

Create a contiguously organized file with
all data words zeroed.

Create a directory.

Change file attributes.

Change a file's link access entry attributes.
Set a file's use count to zero.

Create a contiguously organized file with
no zeroing of data words.

Create a random file.
Create a random file.
Delete a file.

Specify a default directory, initializing
it if necessary.

Initialize a directory or device.

Create link entry to a file in any directory.
Release a directory from the system, and
make the default or master directory the
current directory; or release a diskette unit
from the system.

Rename a file.

Delete a link entry.

093-000201-02

DISK DIRECTORIES




DataGeneral

SOFTWARE DOCUMENTATION

MAGNETIC TAPE FILES
(NOVA SYSTEMS ONLY)

You can access data on magnetic tape by both tape file
1/0 and direct 1/O. DOS permits file access on 9-
track magnetic tape, and supports up to 8 magnetic

tape drives. For direct block I/0, the tape controller
supports reading and writing at any density; other forms
of 1/0 require high density if on a dual-density drive.

The following are the I/O modes generated by the
operating system:
Tape File 1/0: 9-track NRZI800BPI, ODD Parity
9-track PE 1600BPI, ODD Parity
Free Form 1/0: Parity in any hardware combin-
ation except WRITE EOF ODD
for 9-track.

If a controller detects a parity error during reading,
the system will attempt to reread the data 10 times
before issuing error code ERFIL, "file data error."
If a file data error is detected and returned to the CLI,
the message will be output: PARITY ERROR: FILE
MTB:d_d, where n is the unit number and E represents
the file number.

If an error is detected after writing, the system will
attempt, up to 10 times, to backspace, erase, and
rewrite. If the rewrite fails the tenth time, then an
error will be signaled.

If an error is received from a magnetic tape unit
which does not conform to any predefined system error
conditions, the tape status word will be returned as
the error code. If this code is returned to the CLI, it
will be reported as an unknown error code: UNKNOWN
ERROR CODE n. (n is the tape status word.)

Nine Track Data Words

Each data word output to 9-track units, under both
file 1/0 and free format I/0, is written as two
successive eight-bit bytes. Data is encoded as in
Figure 2-1.

Each tape has a physical end-of-tape (EOT) marker.
Whenever access is made beyond this marker, error

ERSPC will be returned after the operation is completed.

A new file cannot be started beyond the physical end of
tape marker.

Upon reaching the physical EOT while writing, you
should terminate the tape file to avoid running the
tape from its reel.

Licensed Material - Property of Data General Corporation

2-8

original data word
ol T2 T aTs l6 17 1s o lioluliz]isfishs]

9-track encoding

parity data
N 4 | 12 \
6 | 14 j
o| 8 )
T 7
/ 2 |10 /
/ 3k 7
[~ T
r 7 | 15
K 5 13
-
SD-00477

Figure 2-1. Data Encoding (9-track tapes)

Magnetic Tape File Organization

In magnetic tape file format, data is written and read

in fixed-length blocks of 257 16 bit words. Data files
are variable in length, each one containing as many
fixed-length blocks as is required. The first 255 words
of each block are user data, and the last two words

each contain the file number. The following illustration
shows the structure of a data block:

Data words 255 words
File number 1 word
File number 1 word

After the first file, a double end-of-file (EOF) mark
is written. The system begins writing at the first
double EOF it finds, overwrites the second EOF in
the pair, writes the file, and signifies the end by
writing another double EOF. Files are written in
consecutive order, starting with file number 0 and
extending through file number 99.

093-000201-02



Licensed Material - Property of Data General Corporation

Initializing and Releasing a Tape Drive

To initialize a tape drive, use the CLI INIT command;

e.g., INIT MTO). INIT automatically rewinds the tape
on that drive to BOT. Full initialization (INIT/F) writes

two EOFs, the logical end-of-tape indication, on the
beginning of the tape, and rewinds the tape.
always perform an INIT /F on all new mag tapes before
using them, Note that INIT /F effectively erases the
tape by permitting DOS to overwrite all files on it.

The CLI RELEASE command rewinds a tape to BOT:
and releases its drive from the system.

Referencing Files on Magnetic Tapes

Files are placed on tape in numeric order, beginning
with file number 0. Up to 100 files may be placed on
any given tape, with the last file having number 99.

To access a tape file in a command line, enter the
command and the tape specifier, followed by a colon
and a file number. For example:

PRINT MTO0:6 )

MT is the specifier for magnetic tape, 0 is the drive
unit number, and 6 is the file number. The format and
definitions of all magnetic tape specifiers are:

MTn:m

Magnetic tape unit n, where n is
from 0-7 and has no leading zero,
with file number m from 0-99.

Either a one-digit or a two-digit number may be used
to reference the first ten file numbers. Thus to
reference file number 8 on magnetic tape unit 2,

you would use the following global specifiers:

MT2:08 or MT2:8

Both the tape global specifier and the file number
must be given. Violation of this rule will cause the
system to respond: ILLEGAL FILE NAME,

Some examples of references to files on tape and
disk are:
DUMP MTO0:0) Dump all nonpermanent files
onto tape from disk (this
provides a magnetic tape
backup). The files become
file number O of the tape
mounted on unit O.

093-000201-02

You should

DataGeneral

SOFTWARE DOCUMENTATION

LOAD MTO0:0 ) Reload the files onto disk

from tape.

ASM MYFILE MTO0:4/L) Assemble MYFILE, and send
assembly listing to tape
file 4 of tape on MTO.

You must write a file on magnetic tape in numeric
order. For example, assume that you transfer a
disk file to tape unit 0. Tape unit 0 contains a new
tape, which has just been fully initialized.

XFER SOURCEFILE MT0:0)

SOURCEFILE becomes the first file on the new tape,
which contains the following:

First file (0) con-
taining the con-
tents of SOURCE-
FILE.

eof
eof

Once a file is
written, the num-
ber of the next
file is assigned.
File 1 is a null
(unwritten) file,

The system recognizes only files number 0 and 1 on
the tape; because numbers are assigned incrementally,
only these numbers exist.

If you try to reference any other file on the tape:

XFER MYFILE MTO0:2)

The system will be unable to find file 2, because file 1
is the last file, An error message will result:

FILE DOES NOT EXIST, FILE: MT0:2

MAGNETIC TAPE FILES
(NOVA SYSTEMS ONLY)



DataGeneral

SOFTWARE DOCUMENTATION

As you write files on tape, you should note their
numbers. Otherwise, you could inadvertantly overwrite
a file, and thus destroy the overwritten file and all
following files. For example, assume a tape on drive

0 contains four files:

e
________ eof
1
________ eof
2
eof
________ eof
3 ________
________ eof
eof

The command:
XFER MYFILE MTO0:1
overwrites the contents of file 1 with MYFILE, and

voids the location data of following files. The original
file 1 and all subsequent files are lost.

<—Original

eof file zero

<«—MYFILE

eof
eof

Licensed Material - Property of Data General Corporation

2-10

Before you physically remove a mag tape reel, you must
RELEASE its transport. This command resets the
system tape file pointer to file 0, for correct file access
in the future.

You must also note the implications of the logical end-
of-tape mark, double EOFs, employed by DOS. For
example, if you deliberately write a null file, no
further files can be referenced on the tape. Your null
file will be the last file.

Free Format Tape Reading and Writing

In addition to fixed block-size tape file I/0, DOS
allows you to read and write data in free format, word
by word, to magnetic tape. You specify free format
with the system call . MTDIO, described in Chapter 3,
under Input/Output Commands.

Essentially, . MTDIO allows you to read or write from 2
to 4096 words within a data record, and to space forward
or backward from 1 to 4095 data records or to the

start of a new data file. Additionally, this call allows
you to rewind a reel, write an end-of-file mark, to

read the transport status, and perform other machine-
level operations. The system does not maintain a

tape file pointer under free format I/0 after it locates
the file you specified in . MTOPD; this contrasts with
tape file I/0.

MULTIPLEXORS

A NOVA DOS system can support either a type 4255-
series Asynchronous Line Multiplexor (ALM) or a
4060-series Asynchronous Communications Multiplexor
(QTY). A microNOVA DOS system can support either

a series 4226-4228 ALM, or one or more Asynchronous
Interface boards (type 4207) configured as a multiplexor.
(See microNOVA Technical Reference 014 -000073 for
details on wiring an Asynchronous PC board.)

In this section, "ALM" always means "Asynchronous
Line Multiplexor"; "QTY" means either an 4060-series
multiplexor (NOVA DOS), or one or more Asynchronous
Interface boards wired as a multiplexor (microNOVA
DOS).

The SYSGEN program allows you to specify either an
ALM or QTY multiplexor; if you specify a QTY for a
microNOVA system, it then asks about the jumper-
selected device codes for the receive and transmit
function of each asynchronous board. You'll use these
codes for 1/0 to the multiplexed lines; they must not
conflict with other device codes on your system.

093-000201-02



Licensed Material - Property of Data General Corporation

SYSGEN uses file ALMSPD. SR (provided by Data ACl
General) to set characteristics for ALM lines; you can DCCRE=1B4
change this by editing ALMSPD. SR and assembling it

with the Macroassembler, then executing SYSGEN again.

ALMSPD. SR is described later in this section.

Either the ALM or QTY can support from one to eight DCLAC=1B6
full- or half-duplex lines (one to 64 on a NOVA). A

full-duplex line allows data to flow two ways simul- DCXON=1B8
taneously; users can transmit to DOS over it, and DOS

can transmit to users' terminals. DOS assumes full-

duplex lines, but you can set up half-duplex protocols if

you want.

Each ALM or QTY line is a filename, of the form DCNAF=1B9

QTY:x
DCKEY=1B10
where x is a number from 0 to 63. For the microNOVA
QTY, each asynchronous interface board is a QTY line.
You can open a multiplexed line on any DOS 1/0 channel
(channels are described in Chapter 3). After you have DCTO=1B11
opened a line on a channel, you can use system calls
.RDL/. WRL and . RDS/. WRS to read and write to it.
In Chapter 3, 1/O Channel Numbers describes selecting DCLOC=1B13
a channel number, and Input/Output Commands describes
opening a file, and the read/write calls. No more than

DataGeneral

SOFTWARE DOCUMENTATION

Meaning

Masking disables carriage return
echoes on line reads (CR then acts
as enter key).

Masking disables line feed after
CR.

Masking enables XON/XOFF
protocol for $TTR. (This
prevents the teletypewriter
reader from overflowing the
multiplexor read buffer.)

Masking disables 20 nulls after
form feed.

Masking disables echo, CTRL Z
end-of-file, and line and character
rubout.

Masking enables backspacing
for rubout (CRT displays only).

Masking makes this a modem line.
Default is local.

one read and one write can be outstanding on any one DCCGN=1B14 Masking disables TAB expansion.
line. To close a line and abort I/O, you must . CLOSE

its channel (because the . ABORT task call doesn't DCNI=1B15 Masking enables multiplexor
affect QTY/ALM I/0). interrupts.

When you . OPEN a multiplexed line (or any file), When ACL equals O on the . OPEN, the multiplexed

the contents of AC1 determine what operations DOS console has the following default characteristics:

will allow on that line. AC1 acts as a characteristic
disable mask, as described under . OPEN (Chapter 3).
The following characteristic bits affect multiplexors:

1. line feeds after carriage returns

2. 20 nulls after form feed

3. during line reads: characters are echoed.
SHIFT -L deletes line.
RUBOUT deletes character and is echoed as

backarrow.

CTRL-Z results in an end-of-file error.
ESCAPE also results in an end-of-file error.

4. this is a local line.

5. TABs are expanded as spaces.

093-000201-02 2-11

MULTIPLEXORS



DataGeneral

SOFTWARE DOCUMENTATION

CHECKING MULTIPLEXED LINES

FOR ACTIVITY OR INTERRUPTS
Line 64 Reads

DOS allows you to monitor both activity on all unopened
QTY/ALM lines and console interrupts from all opened
ALM/QTY lines. If a task opens QTY:64 and issues a
read line or read sequential call, DOS will suspend this
task until someone either presses a key at the end of

an unopened line, or hits an interrupt on an opened

line. When DOS receives the character typed, it readies
the task, takes the normal return from the read call,
and passes the following data in AC2:

bit: 0 1 7 8 15
Multiplexed | Character typed

1| 0] line number.| on unopened
terminal.

When DOS receives and answers a ring from a
modem (ALM only), it will send the following data
to line 64, in AC2:

bit: 0 1 7 8 15

Multiplexed
111 line number. 0

This allows your program to detect a service request
from a distant terminal. If the request comes from an
unopened line, your program can then . OPEN the line
for communications.

If an open line receives an interrupt (CTRL-A and
CTRL-C are defaults), DOS will ready the task which
. OPENed line 64, and pass the following data in AC2:

bit: 0 1 7 8 15

Multiplexed
0 | O |line number.

Interrupt
character
(CTRL-A/CTRL-C
are defaults).

At SYSGEN, you can select interrupts other than
CTRL-A and CTRL-C.

Licensed Material - Property of Data General Corporation

Line 64 Writes

DOS allows you to change the device characteristic
disable mask on any line, and the line speed, or
modem state on any ALM line. Just issue a . WRL to
a channel opened on QTY:64, and pass the following
data:

To change the mask (on . OPENED lines only)

ACO = W64DC + line number
AC1 = new mask

To change line speed:

ACO = W64LS + line number
AC1 = new line speed (0, 1, 2, 0r 3)

To change modem state:

ACO = W64MS + line number
AC1 = [W64DTR] [+] [W64RTS]

(Entries in brackets are optional.) W64DTR raises
Data Terminal Ready ; if you omit it, DTR is lowered.
W64RTS raises Request To Send; if you omit it, RTS is
lowered.

These symbols are defined in the user parameter file
PARU.SR. Appendix E contains a PARU listing.

Multiple Channels

A program can have several channels opened to the same
line. The first channel opened on a line becomes the
master channel, and all other channels opened on it
become subordinate; if you close the master, the
subordinate channel numbers will be unable to use the
line. Before you can reassign (. OPEN) the subordinate
channel numbers on another line, you must close each
one. If you . OPEN a new channel on a line after
.CLOSing the master, the new channel becomes the
master channel.

2-12 093-000201-02



Licensed Material - Property of Data General Corporation

ALM Modem Support

The ALM supports modems with the following six
signals:

DTR - Data Terminal Ready (either DOS or you
set this)

RTS - Request to Send (set either by DOS or yourself).
DSR - DataSet Ready

RD - Ring Detect (handled by the hardware)

CD - Carrier Detect (handled by the hardware)

CTS - Clear to Send (handled by hardware)

When you bootstrap DOS, it raises DTR and RTS,
unless you have changed the ALM parameter file
(ALMSPD. SR) to specify low DTR and/or RTS. On a
disconnect, if DSR goes low, it lowers both DTR and
RTS. Note that certain modem disconnects may cause
multiple indications of line drop. On a ring interrupt,
DOS raises both DTR and RTS. On a disconnect, if
DSR is low, it lowers both DTR and CT'S,

When a modem's DSR (DataSet Ready) is low, it cannot
communicate; DOS will take the error return on all
reads /writes to its modem line, and it will place code
ERRDY in AC2. Note however, that the error return
occurs only if you defined the line as a modem line by
masking DCLOC on the . OPEN. On power fail, local
lines are restored when power returns, and modem lines
are restored when the user dials in.

MULTIPLEXCR ERROR MESSAGES

The following errors relate to reads/writes on
multiplexed lines. For other read/write errors, see
.RDL/.RDS or . WRL/. WRS in Chapter 3. On the

error return, AC2 may contain one of the following codes:

AC2 Mnemonic Meaning

6 EREOF End of file detected while reading.
24 ERPAR Hardware parity error on read.
47 ERSIM Duplicate read or duplicate write.

127 ERRDY Line not ready; modem's DSR is

low.
130 ERINT Console interrupt received.

The following errors clear the read buffer and error the
read request:

131 EROVR Hardware overrun error on read.
132 ERFRM Hardware framing error on read.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

ALMSPD.SR

The ALM source file, ALMSPD. SR, defines the line
characteristics of each line of the ALM. You can edit
this source file and assemble it with MAC (the
macroassembler) to tailor your multiplexed lines for
specific applications. You can then generate a new DOS
system, during which SYSGEN will include the new
ALMSPD. RB. If you do not define a line in this module,
or if you set its characteristics at default, then it has
the following characteristics:

clock frequency as set in SYSGEN
1 stop bit

7 bits per character

even parity

no loopback

DTR + RTS raised on initialization

O\(J‘I:&(.ONP—

You can define these characteristics for any line by
inserting the line

LNDEF xx,DEFAULT
in ALMSPD. SR where xx is the two digit number for
the line you want to set. If you want to define different

line characteristics, then insert a line of the form

LNDEF  xx,spd, stop, bits, par, loop

or
LNDEF xx,spd, stop, bits, par, loop, dtr, rts

where

XX is the two-digit decimal line number;

spd is the clock frequency (may be 0, 1,2, or 3);

stop is the number of stop bits per character (may
be 1 or 2);

bits is the number of bits per character (may be 5,
6, 7, or 8, not including the parity bit);

par defines whether you wish no parity to be
generated or checked (specify NO), even
parity (EVEN), or odd parity (ODD);

loop tells whether you want to enable loopback
(specify LOOPBACK or NOLOOPBACK);

dtr defines the state of Data Terminal Ready on
initialization (DTRHIGH or DTRLOW); and

rts defines the state of the Request To Send on

initialization (RTSHIGH or RTSLOW).
MULTIPLEXOR ERROR MESSAGES



DataGeneral

SOFTWARE DOCUMENTATION

Note that you may omit the arguments for dts and rts if
you wish to set their states as high.

For example, to set line 3 to have clock frequency 1,

2 stop bits, 7 bits per character, even parity, and no
loopback, you'd insert the following line. Both Data
Terminal Ready and Request To Send will be initialized
high.

LNDEF 03,1,2,7, EVEN, NOLOOPBACK

Licensed Material - Property of Data General Corporation

After defining ALMSPD, SR, type

MAC ALMSPD $TTO/L

or

MAC ALMSPD $LPT/L

if you have a line printer before performing a new

DOS SYSGEN. (Before doing this, you must build MAC's
permanent symbol file, MAC.PS, as described in the
Macroassembler User's Manual.)

End of Chapter

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 3
SINGLE TASK PROGRAMMING

This chapter describes most of the system calls you
will need to program in DOS in a single-task
environment. It explains system and task command
structures, summarizes the most commonly-used
system calls, and then lists complete descriptions of
single-task calls, under the headings:

DEVICE AND DIRECTORY COMMANDS
FILE MAINTENANCE COMMANDS
LINK COMMANDS

FILE 1/O0 COMMANDS

CONSOLE 1/0 COMMANDS

MEMORY ALLOCATION COMMANDS
DEVICE ACCESS COMMANDS
CLOCK/CALENDAR COMMANDS
KEYBOARD INTERRUPT COMMANDS

For important single-task material on program swaps
and overlays, read Chapter 4; for user interrupts
read Chapter 6. Chapter 5 covers tasks and multi-
tasking; it includes system clock commands which you
can use in a single-task environment.

MULTIPLE AND SINGLE
TASK ENVIRONMENTS

A program task is an execution path through user
address space which demands use of system resources
such as I/0, overlays, or simply CPU control. User
address space includes all memory from location 16g
through NMAX-1.

In a single-task environment, the program itself is
the only task. A program creates a multitask environ-

ment by creating a task via task calls . TASK or .QTSK.

If you plan a multitask program, you must specify
multiple tasks either with an assembly -language
.COMM TASK statement or with RLDR switches.

If you do so, RLDR will load the multitask scheduler
(called TCBMON) into your program, and allot the
specified number of Task Control Blocks (TCBs).

The format of the . COMM TASK statement is:
. COMM TASK, k*400+c

where k is the octal number of tasks, and c is the
octal number of channels for the program to use.

093-000201-02

If you omit both a . COMM TASK statement and task/
channel switches, RLDR assumes a single-task

program, and loads the single-task scheduler into your
program. RLDR also allots eight channels for the
program - enough for most single-task programs. Either
a single or multitask program can use all system calls

in this chapter, For more on multitasking, see Chapter
5.

SYSTEM AND TASK CALLS

DOS system and task calls allow you to communicate
directly with the operating system. System calls and
task calls are similar, but not identical.

You begin each system call with the mnemonic
.SYSTM, which assembles as a JSR @ 17 instruction.
This instruction enables the system to respond to
your command.

After the system has obeyed a system call, it

takes a normal return to the second instruction

after the command word. If it detects an

exceptional condition, it takes the error return to the
first instruction following the command word.

System calls always reserve AC2 for the error code.

The general form of a system call description is:

ACn - Required input to the call

.SYSTM

command

error return (error code in AC2)

normal return ( each accumulator, except
AC3, is restored unless it
is used to return output)

ACn - Output from the call

ACS - The contents of location 16 (the User Stack

Pointer) is the default value.
There are two basic types of system calls: those

which require a channel number, and those which
don't. Channel numbers are described below.

SYSTEM AND TASK CALLS



DataGeneral

SOFTWARE DOCUMENTATION

Many system calls require you to include a byte
pointer to a specific filename. When you use a

byte pointer to a disk filename, you can include a
directory specifier as well, if you have initialized
the directory. All DOS system calls are summarized
in Table 3-1, below.

A task call resembles a system call, with these
exceptions:

1. You enter no .SYSTM mnemonic before the
task command word.

2. RDOS executes task calls in user address space,
not in system space.

3. Task calls which cannot take an error return
do not reserve an error return location. All
system calls reserve an error return location
even if no error return is possible. The
commands in this chapter are all system calls.

See Chapter 5 for more detail on the differences
between system and task calls.

Licensed Material - Property of Data General Corporation

STATUS ON RETURN FROM SYSTEM CALLS

Status of the accumulators upon return from the system
(+SYSTM or task call) is as follows: if the system
returns no information as a result of the call, the carry
and all accumulators except AC3 are preserved. For
certain calls, the system returns information in ACO,
AC1, and/or AC2.

By default, on return from any system call, AC3
contains the contents of location 16g (the USP), unless
you specified N3SAC3 in the RLDR command line, as
shown below. On an error return, DOS uses AC2 to
return a numeric error code. Appendix A lists the
error codes.

AC3 on Return

If you loaded your
program with module:

then (upon return from
call) AC3 contains
contents of:

NSAC3 (any machine; USP (location 16g).

used by default)

N3SAC3 (NOVA3s and
microNOVAs only)

Table 3-1. System Command List

Frame Pointer register.

Interrupt the current program; save the current state
Create a contiguously orgainzed file with all data

Create a contiguously organized file with no

Get the status of the file currently-opened on a

Open a file for reading and writing by one user only.

On an error, return from program and describe error.

Swap or chain in a new program. Chapter 4.

. APPEND Open a file for appending.
.BOOT Bootstrap a new system. Chapter 4.
.BREAK
of memory in save file format.
.CCONT
words zeroed.
.CONN
zeroing of data words.
.CDIR Create a subdirectory.
.CHATR Change file attributes.
.CHLAT Change link access attributes.
. CHSTS
specified channel.
.CLOSE Close a file.
.CRAND Create a random file.
.CREAT Create a random file.
. DDIS (Provided for RDOS compatibility.)
.DEBL (Provided for RDOS compatibility.)
.DELET Delete a file.
.DIR Change the current directory.
.DUCLK Define a user clock. Chapter S.
. EOPEN
.ERTN
.EXEC
.FGND

Check the levels of the current program. Chapter 4.

3-2

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 3-1. System Command List (continued)

.GCHAR Get character from the console.

. GCHN Get the number of a free channel.

. GCIN Get the operator input console name.
.GCOUT Get the operator output console name.
.GDAY Get today's date.

.GDIR Get the current directory name.

.GHRZ Examine the real time clock, Chapter 5.

. GPOS Get the current file pointer.

.GSYS Get the name of the current operating system.
.GTATR Get file attributes.

.GTOD Get the time of day.

. IDEF Identify a user device.

. INIT Initialize a device or a directory.

. IRMV Remove a user device, Chapter 6.

. LINK Create a link entry.

. MDIR Get the logical name of the master device.

. MEM Determine available memory.

- MEMI Change NMAX.

. MTDIO Perform free format I/0 on tape.

. MTOPD Open a mag tape for free format I/0O.

. ODIS Disable keyboard interrupts for this console.
.DEBL Enable keyboard interrupts for this console.
. OPEN Open a file for reading and writing by one or more users.
.OVLOD Load a user overlay into memory. Chapter 4.
. OVOPN Open a user overlay file. Chapter 4.
.PCHAR Write a character to the console.

. RDB Read one or more disk blocks.

.RDL Read a line.

.RDR Read a random record.

. RDS Read sequential bytes.

. RDSW Read the console switches.

.RENAM Rename a file.

.RESET Close all files.

.RLSE Release a directory or device.

. ROPEN Open a file for reading only by one or more users.
.RSTAT Get a resolution file's statistics.

.RTN Return from a program to a higher-level program. Chapter 4.
. RUCLK Remove a user clock. Chapter 5.

.SDAY Set today's date.

. SPDA (Provided for RDOS compatability. )

.SPEA (Provided for RDOS compatability.)

.SPKL (Provided for RDOS compatability.)

. SPOS Set the current file pointer.

.STAT Get a file's statistics.

.STOD Set the time of day.

. TUOFF (Provided for RDOS compatability. )

. TUON (Provided for RDOS compatability.)

.ULNK Delete a link entry.

.UPDAT Update the current file size.

. WRB Write one or more 256-word blocks to disk.
« WRL Write a line.

. WRR Write a random record.

. WRS Write sequential bytes.

093-000201-02 3-3 STATUS ON RETURN FROM SYSTEM CALLS



DataGeneral

SOFTWARE DOCUMENTATION

I/O CHANNEL NUMBERS

Before you can access a file for I/0, you must give it an
I/0 channel number in your open call. While the file

is open, it retains this channel number, and you must
access it via the number instead of the filename. When
you close the file, the number is released. The number
immediately follows the call word in your program; if
the channel number is n, the I/O calls for a file could
run:

open n
file reads/writes n

closen
The maximum number of channels for a program is 778.

For a single-task program, RLDR allots eight [ /O
channels, numbered O through 7. Usually, this is
enough. [f you want to specify more channels, use
either the RLDR /C switch, or the assembler pseudo-
op . COMM TASK.

Selecting a Channel

There are two ways to assign a channel number to a
file: either directly when you open, e.g.,

. OPEN 3

or via AC2. If you specify number 77 on your open, DOS
will open the file on the channel number contained in the
right byte of AC2. To open a number above 77 (assuming
that your program permits one), you must open on 77
and pass the number in AC2. The major advantage to
opening on 77 is that you can use system call . GCHN to
find a free channel for your open.

Licensed Material - Property of Data General Corporation

. GCHN returns the number of a free channel in AC2,
and you can give this number a name, and use the name
for all I/0 to the file. This method can provide a free
channel for file I/0 (unless all channels are in use, or
another task has opened the channel between the . GCHN
call and this task's OPEN attempt). Here is an
example:

.SYSTM
.GCHN
JMP ER
STA 2, FILE1 ;STORE THIS CHANNEL
. ;NUMBER UNDER "FILE1".

LDA 2, FILEL
.SYSTM
.OPEN 77
JMP ER
.SYSTM

.WRS 77

;OPEN "FILE1" FOR ANYTHING.
;WRITE TO "FILEL".

.SYSTM
.GCHN

JMP ER

STA 2, FILE2
.SYSTM

. APPEND 77
JMP ER

;STORE NUMBER UNDER "FILE2".

;OPEN "FILE2" FOR APPENDING.

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

CAPSULE COMMAND SUMMARY For example:

As you write different programs for your application, .TXTM 1
you will use certain system calls quite frequently,
and others rarely or not at all. The following table

attempts to summarize the most useful calls, in the LDA 0,BTPTR
sequence which you might use in a program. It gives . SYSTM

the call name, format, accumulator data, and .DIR

possible error code. It assumes that you will use the JSR ERROR

CLI to create and initialize directories, and to
execute mag tape I/0, and that your program won't
do such esoteric things as alter file attributes, create

link entries, or manage a multitask environment. BTPTR: .+1*2
Of course, you can do all of these things via DOS calls . TXT "DP1:SUBDIR"
if you choose. ERROR: .SYSTM
«ERTN
The summary also assumes a single-task environment; JMP . +1
it does not cover multitasking (Chapter 5). Many
commands not given below are included in the rest of Each file I/O command requires a channel number,
this chapter (or manual). Each call has the form: as noted. The term "btptr" means byte pointer.
.SYSTM
call name

error return to program
normal return

093-000201-02 3-5 CAPSULE COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 3-2. Common Call Summary

Call

.CRAND

.CCONT

.OPENn

«APPEND n

.RDLn

. RDS

.WRLn

.WRS n

.WRBn,
.RDBn

.CLOSE n

.DELET

Purpose

Create a random file.

Create a contiguous file.

Open a file for I/0 on channel n.

Open a file for appending, on channel n.
Set position for writing at the end of the
file.

Read an ASCII line on channel n.
Counterpart of . WRL.

Read sequentially from the file . OPENed
on channel n. Sequential mode is required
for binary data.

Write an ASCII line to the file OPENed on
channel n. Writing begins at start of
file if you . OPENed the file; at end if you
. APPENDed the file. Limit is 132 char-
acters, terminated by a CR, null, or
form feed.

Write sequential bytes to the file on
channel n. See . WRL for position
information.

Direct-block I/O calls. Write or read a
series of disk blocks to or from the random
or contiguous file on channel n.

Close the file opened on channel n. DOS
then updates the file's UFD information.
(. ERTN and . RTN close all channels in

the current program.)

Delete a file.

Required Input

ACO:btptr to filename. All filenames must be
terminated by a carriage return, form feed, or a null.

ACO:btptr to filename.
blocks for the file.

ACl:number of disk

ACO:btptr to filename.

ACl:characteristic disable mask. You can

specify the system default mask (normal procedure)
by passing 0 via a SUB 1,1 instruction before

the . OPEN.

ACO:btptr to filename. ACI: characteristic
disable mask. As with . OPEN you can use the default
mask by inserting a SUB 1, 1 before the . APPEND.

ACO:btptr to 133 byte area.
of characters read.

AC1 returns the count

ACO:btptr to starting address of data.,
ACl:number of bytes to be read.

ACO:byte pointer to user area which holds
the ASCII line.

ACO:btptr to starting address of data.
ACl:number of bytes to be written.

ACO:starting source address for the block write
or read. ACl:starting relative block number in
the series. AC2:left byte-number of 256-word
blocks to be written or read to the file.

ACO:btptr to filename.

3-6

093-000201-02




Licensed Material - Property of Data General Corporation

The following calls control NMAX (the top of user
NREL+1), execute and return from program swaps or
chains, and load overlays.

DataGeneral

SOFTWARE DOCUMENTATION

.MEM

- MEMI

.ERTN
or
.RTN

. OVOPN n

.OVLOD n

Return the current program’s NMAX

value in ACO, and the value of the Highest
Memory Address available for user programs
in ACI1.

Raise NMAX by the value entered in ACO, or
lower NMAX by the value entered in two's
complement in ACO, DOS returns the new value
in ACL.

Close all channels in the current program

and return to (resume execution of) the next
higher-level program (usually the CLI).

. ERTN returns an error code in AC2; if return
is to the CLI, it also prints an error message
on the console.

Open user overlays, for reading, on channel
n. Before your program can use overlays,
you must open them on a channel. You
close the channel via a . CLOSE n.

Load an overlay from the overlay file
opened on channel n into its reserved
memory node.

ACO: new NMAX

AOS:btptr to overlay filenane,
including . OL extention.

ACO:overlay descriptor.
AC1:conditional load flag.

093-000201-02

3-7

CAPSULE COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

If your program takes the error return from any of
the calls above, AC2 will usually contain one of the
following error codes:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number (legal
range: 0O through 377g.

1 ERFNM Illegal filename (only alpha-
numeric or $ characters are
permitted).

3 ERICD Illegal command for device (for
example, trying to read from
the line printer).

6 EREOF End of file detected while
reading; or attempt to write
beyond the end of a contiguous
file.

7 ERRPR The file is read-protected.
10 ERWPR The file is write-protected.
11 ERCRE The file already exists.

12 ERDLE The file (directory) does not
exist.

13 ERDE! The file cannot be deleted
because it has the permanent
attribute.

15 ERFOP The file hasn't been opened.

21 ERUFT This channel is in use.

22 ERLLI Line limit (132 characters)
exceeded.

26 ERMEM Attempt to allocate more
memory than is available.

27 ERSPC Current disk file space
exhausted.

33 ERRD Attempt to read or write into
system space.

36 ERDNM Device not in system.

37 EROVN Illegal overlay number.

40 EROVA File not accessible by direct-
block 1/0.

47 ERSIM Simultaneous reads or writes
attempted to same QTY/ALM
line.

52 ERIDS Illegal directory specifier.

66 ERDNI Directory not initialized.

101 ERDTO 10-second disk timeout
occurred.

104 ERSRR A short receive request ter-
minated the MCA transmission.

106 ERCLO QTY/ALM/MCA output ter-

minated by channel close.

Licensed Material - Property of Data General Corporation

3-8

DEVICE AND DIRECTORY COMMANDS

This section describes the DOS system commands
which pertain to opening and releasing disks, mag
tape drives, and disk directories; it also covers disk
partition and directory creating commands. It
includes these commands:

LINIT Initialize a directory/device.

.DIR Select a different current directory.
.RLSE Release a directory/device.

.GDIR Get the current directory's name.
.CDIR Create a subdirectory.

.GSYS Get the current RDOS system's name.
. MDIR Get the master directory's name.

Commands for individual files are covered in the
following section, File Maintenance.

DOS can support many directory devices simultaneously.
During SYSGEN, you configured your system for
specific disk and tape devices, and you can address any
of these by a 3- or 4-character code as shown in
Chapter 2.

Initialize a Directory or Device (.INIT)

Your program can initialize devices and directories
via the system command .INIT.

If AC1 contains anything but -1 when you invoke . INIT,

a partial initialization of the device or directory

results; this makes all files in the directory available to
the system software. Partial initialization of a magnetic
tape rewinds the tape and resets the tape file pointer

to file zero. If AC1 contains 177777 when you invoke
.INIT, a full initialization of the device results. Full
initialization on a mag tape rewinds the tape and

writes two EOF's to signify the logical end-of-tape.

You lose all previous files on that tape. Full initialization
of a disk overwrites all files on it, and builds a virgin
SYS.DR and MAP.DR. DOS treats full initialization

of a directory as a partial initialization.

Required input:

ACO - Byte pointer to a directory/device specifier
character string terminated by a null byte.

In each byte pointer, bits 0-14 contain the word

address which holds or will receive the byte. Bit 15
specifies which half (0 left, 1 right).

093-000201-02



Licensed Material - Property of Data General Corporation

Format:

.SYSTM
LINIT

error return
normal return

Possible errors:
AC2 Mnemonic
1 ERFNM
10 ERWPR
12 ERDLE
27 ERSPC
31 ERSEL
36 ERDNM
45 ERIBS
51 ERNMD
52 ERIDS
57 ERLDE
77 ERSDE
101 ERDTO
102 ERENA
112 EROVF
121 ERFMT

Meaning

Illegal file name.

Device is write-protected.
(full initialization only).
Directory does not exist.

Out of disk space.

Unit improperly selected.
Device not in system.
Insufficient number of Device
Control Blocks (DCBs),
specified at SYSGEN time.
Insufficient number of Device
Control Blocks specified at
SYSGEN.

Illegal directory specifier.
Link depth exceeded.

Error detected in SYS.DR of
nonmaster device.

Ten-second disk timeout
occurred.

No linking allowed (N attribute).
Too many chained directory
specifiers caused system stack
overflow. This can occur only
when links are used in the
specifier string.

Disk format error.

Change the Current Directory (.DIR)

When you bootstrap a DOS system, the directory which
holds the system becomes the current directory. The
.DIR command selects a different current directory --
if the new current directory hasn't been initialized, .DIR
will initialize it.

After you . DIR to a directory,- you can access all files
in it without using directory specifiers.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

.DIR is not mandatory for file access in nonmaster
directories, because DOS permits directory specifiers
in all filename arguments to system commands. For
example, both of the following examples could access
MYFILE in DP1, from master directory DPO if DP1
had been initialized:

.MYFILE

1. LDAO,

. SYSTM

. OPEN
.MYFILE: +1*2

. TXT "DP1:MYFILE"

2. LDAO, .DP1

.SYSTM

.DIR

LDA 0O, .MYFILE

.SYSTM

.OPEN
.DP1: L +1%2

.TXT "DP1"

.MYFILE: LH1%2

. TXT "MYFILE"

In the first example, DP0O remains the current
directory; in the second, DP1 becomes the current
directory.

Required input:

ACO - Byte pointer to directory name string
(must be terminated by a null).

Format:
.SYSTM
.DIR
error return

normal return

If DOS takes the error return, the current directory
definition remains unchanged.

DEVICE AND DIRECTORY COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
12 ERDLE Directory does not exist.
27 ERSPC Out of disk space.

36 ERDNM Device or directory not in

system.

51 ERNMD Attempt to initialize too many
directories at one time (not
enough DCB's specified at
SYSGEN).

52 ERIDS Illegal directory specifier.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

101 ERDTO Ten-second disk timeout
occurred.

112 EROVF System stack overflow due to
excessive number of chained
directory specifiers.

121 ERFMT Disk format error.

Release a Directory or Device (.RLSE)

This command dissociates a directory or device from
the system, and prevents further I/0 with it.

You should always release a disk via either the CLI
command RELEASE (or . RLSE) before removing it from
the unit. (If you forget, disk integrity may be destroyed,
as described under "Releasing the System" in Chapter

7 or 8.) You must also close all files within a directory
before you can release it. Release of a master directory
releases all directories. The master directory is the
directory which holds the current DOS system. You can

get its name by using the , MDIR call or the MDIR command.

Required input:

ACO - Byte pointer to a directory or device specifier.

Licensed Material - Property of Data General Carporation

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
31 ERSEL Unit improperly selected.
36 ERDNM Device not in system.
56 ERDIU Directory in use.
66 ERDNI Directory not initialized.
101 ERDTO Ten-second disk timeout
occurred.
114 ERNIR Attempted release of a tape unit

containing an open file.

Get Current Directory Name (.GDIR)

This call returns the name of the current directory or
device. This name is followed by a null (e.g., DP0);
it doesn't include the names of superior directories,
or colon specifiers. For the current directory
DPO:PART?2, it would return PART2.

Required input:

ACO - Byte pointer to 15g-byte area to receive the
current directory /device name,

Format:

.SYSTM
.GDIR

error return
normal return

The first 14g bytes will contain the name and extension
(with trailing nulls, if necessary); byte 15g will contain
a null terminator.

Possible error:

AC2  Mnemonic Meaning
Format:
SYSTM 33 ERRD Attempt to read into system area.
.RLSE
error return
normal return
3-10 093-000201-02



Licensed Material - Property of Data General Corporation

Create a Directory (.CDIR)

This call creates an entry for a directory name in the
current partition's system directory (SYS.DR). The
directory will automatically receive the . DR extension.
If the entry already exists, DOS will return the error
code ERCRE.

Required input:

ACO - Byte pointer to the directory name (directory
specifiers permitted).

Format:
.SYSTM
.CDIR
error return

normal return

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal directory name.
11 ERCRE Attempt to create an existent
directory.
53 ERDSN Directory specifier unknown.
55 ERDDE Attempt to create a directory
within a directory.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.
101 ERDTO Ten-second disk timeout

occurred.

Get the Current Operating System Name (.GSYS)
This call returns the name of the currently-executing
operating system, its .SV extension, and a null
terminator.
Required input:
ACO - Byte pointer to 15g-byte area.
Format:

.SYSTM

.GSYS

error return
normal return

093-000201-02

3-11

DataGeneral

SOFTWARE DOCUMENTATION

Possible error:

AC2 Mnemonic Meaning

33 ERRD Attempt to read

into system area.

Get the Name of the Master Directory (.MDIR)

.MDIR returns the name of the master directory,
which holds the current DOS system.

Required input:

ACO - Byte pointer to 15g byte area to receive the
directory name.

Format:
.SYSTM
. MDIR

error return
normal return

The first 14g bytes will contain the name (with
trailing nulls); byte 144 will contain a null terminator.

Possible error:

AC2 Mnemonic Meaning
33 ERRD Attempt to read
into system area.
DEVICE AND DIRECTORY COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

FILE MAINTENANCE COMMANDS

The commands in this section relate to individual
files; they enable you to create, delete, set position,
and check the status of files. The file maintenance
commands are:

.CCONT Create a contiguous file with data words
zeroed.

«CONN Create a contiguous file with no data
words zeroed. _

.CRAND Create a random file.

+DELET Delete a file.

.RENAM Rename a file.

.GPOS Get the current file pointer.

. SPOS Set the current file pointer.

.STAT Get a file's status.

.RSTAT  Get a link entry's resolution file status.

. CHSTS Get a channel’s file information.

.UPDAT  Update an open file's size information.

Each file maintenance command requires you to specify
the file name(s) by means of a byte pointer to the

file name. In the byte pointer, bits 0-14 contain the
word address which holds or will receive the first
byte. Bit 15 indicates which half: 0 is left, 1 is right.

If you want to specify an extension, separate it from
the filename with a period (.). For example, the
word at location BPTR contains a byte pointer to a
properly specified file name, MYFILE.SR.

.TXTM 1

+17%2
.TXT "MYFILE. SR"

BPTR:

File names can include directory specifiers.

If you attempt to create a file with the same name as a
device in the current system (e.g., $LPT), the system
will treat the command as a no-op and take the normal
return.

Licensed Material - Property of Data General Corporatior

Create a Contiguously-Organized File
with all Data Words Zeroed (.CCONT)

This call creates a contiguously-organized file with
all data words initialized to zero. If the file's

name exists as a link entry, and if no resolution file
exists for this link entry, DOS will create a contiguous
resolution file. If the file already exists, DOS returns
the error code ERCRE.

Required input:

ACO - Byte pointer to the file name.
AC1 - Number of disk blocks in the file.

Format:

«SYSTM
.CCONT
error return
normal return

Possible errors:
AC2 Mnemonic Meaning
1 ERFNM Illegal file name,

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create a SYS.DR entry for
this file.

46 ERICB Insufficient number of free
contiguous disk blocks available
to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

101 ERDTO Ten-second disk timeout

occurred.

093-000201-02



Licensed Material - Property of Data General Corporation

Create a Contiguously-Organized File
with no Zeroing of Data Words (.CONN)

.CONN creates a contiguously-organized file; it is
faster than . CCONT because DOS doesn't need to

zero the data words. If the file's name exists as a
link entry, and if no resolution file exists for this link
entry, DOS will create a contiguous resolution file. If
the file already exists, DOS returns the error code
ERCRE.

Required input:

ACO - Byte pointer to filename.
AC1 - Number of disk blocks in the file.

Format:
.SYSTM
. CONN
error return

normal return

Possible errors:

AC2 Mnemonic  Meaning
1 ERFNM Illegal file name.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to
create a SYS. DR entry for
this file.

46 ERICB Insufficient number of free
contiguous disk blocks available
to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

101 ERDTO Ten-second disk timeout

occurred.

Create a Randomly-Organized File (CRAND)

This command makes an entry for the file name of a
randomly-organized file in the system file directory
(SYS.DR). If the file's name exists as a link entry,
and if no resolution file exists, DOS will create a
random resolution file. If the file already exists, DOS
will return the error code ERCRE.

Required input:

ACO - Byte pointer to the file name.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Format:

.SYSTM
.CRAND
error return
normal return

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
11 ERCRE File already exists.
27 ERSPC Insufficient disk space to
create the file.
53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.

100 ERMDE Error detected in MAP. DR
of non-master device.
Ten-second disk timeout

occurred.

101 ERDTO

Delete a File (.DELET)

Use this command to delete a file and its entry in the
system file directory. Do not delete link entry names
with this call. If you attempt to delete a link entry
name, its resolution file will be deleted unless 1) either
the link access or resolution entry attributes words
contain the permanent attribute (in which case DOS
returns error ERDEL), or 2) a resolution file

doesn't exist (ERDLE returned).

Required input:
ACO - Byte pointer to filename.
Format:

.SYSTM

.DELET

error return
normal return

FILE MAINTENANCE COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
13 ERDE! File is permanent.
53 ERDSN Directory specifier unknown.
56 ERDIU Directory in use.
57 ERLDE Link depth exceeded.
60 ERFIU File in use.
66 ERDNI Directory not initialized.
100 ERMDE Error detected in MAP.DR of
nonmaster device.
101 ERDTO Ten-second disk timeout
occurred.
102 ERENA Link access not allowed (N
attribute).

Rename a File (RENAM)

This call renames a file. You may rename a file in a
different directory, as long as you use the same
directory specifier in both the current name and new
name.

Required input:

ACO - Byte pointer to the current filename.
AC1 - Byte pointer to the new name.

Format:

.SYSTM

. RENAM
error return
normal return

After a normal return, the old name no longer exists
in the file directory.

Licensed Material - Property of Data General Corporation

3-14

Possible errors:

AC2  Mnemonic Meaning
1 ERFNM Illegal file name.
11 ERCRE Attempt to create an
existent name. (AC1)
12 ERDLE Attempt to rename a
nonexistent file. (ACO)
13 ERDEl Attempt to rename a
permanent file. (ACO)
35 ERDIR Files specified in different
directories
53 ERDSN Directory specifier unknown.
60 ERFIU File in use.
66 ERDNI Directory not initialized.
101 ERDTO Ten-second disk timeout

occurred.

Get the Current File's Directory Status (.STAT/.RSTAT)

Use either of these system calls to get a copy of the
current directory status information for a file. These
calls write a copy of the 22g word UFD (as it exists on
disk) into the area you specify.

You can then access this information via the indicated
displacements defined below. If the file is open, the
information returned is a snapshot of the UFD as it
existed on disk at the time of the most recent . CLOSE
or .UPDAT.

Use system call . STAT to return the UFD of a file.
Use . RSTAT to find the UFD of a link's resolution file.
.RSTAT and .STAT have the same effect on a nonlink
file.

Following is a template of a file UFD with displacement
mnemonics:

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Offset or
Displacement Mnemonic Content
00000-000004 UFTFN File name (ASCII file number for open
tape file). )
000005 UFTEX Extension.
000006 UFTAT File attributes.
000007 UFTLK Link access attributes.
000010 UFTBK Number of the last block in the file
(i.e., block count -1).
000011 UFTBC Number of bytes in the last block.
000012 UFTAD Starting logical block address of the
file (the random file index for random files).
000013 UFTAC Year/day last accessed.
000014 UFTYD Year/day created, update or closed after write.
000015 UFTHM Hour and minute the file was created, updated,
or closed after write.
000016 : UFTP1 UFD temporary.
000017 UFTP2 UFD temporary.
000020 UFTUC Use count (1B0 = . EOPEN or . APPEND or
. ROPEN; 1B1 = . OPEN)
000021 UFTDL DCT link; device code.

If you issue .STAT to a link entry, DOS returns the link's
UFD. In a link UFD, words 7 and 14g have mnemonics
UFLAD and UFLAN; words 7-138 and 14-21g contain the
link's alternate directory specifier (if any) and an alias
(if any), respectively.

Required input:

ACO - Byte pointer to file name string.
AC1 - Starting address of 22g word UFD data area.

Format:
.SYSTM .SYSTM
.STAT or «RSTAT
error return error return
normal return normal return

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
33 ERRD Attempt to read or write
into system file spacs.
36 ERDNM Device not in system.
53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded
(. RSTAT only).
66 ERDNI Directory not initialized.
101 ERDTO Device timeout.

093-000201-02

Get the File Directory Information for a Channel
(.CHSTS)

. CHSTS returns a copy of current directory status
information for whatever file is currently open on a
specified channel. DOS returns directory status
information as a copy of the 22g word UFD, as described
in . STAT, except that it shows file status as of last

file 1/O (by the system, not by you) of this channel.

For example, . CHSTS would return the status after

a . WRL, whereas .STAT/.RSTAT would show status,

on disk, as of the last open, close, or update.

Required input:

ACO - Starting address of data area. This area must
be at least 22g words long.

Format:
.SYSTM
.CHSTS n ;n is the file's channel number
error return :

normal return

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP No file opened on the given
channel.
33 ERRD Attempt to read into system
area.
101 ERDTO Ten-second disk timeout
occurred.
3-15 FILE MAINTENANCE COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Update the Current File Size (.UPDAT)

This call allows you to update the size information in a
file's UFD while the file is open. The UFD contains a
file's size, creation date, attributes, and other
information. Specifically, this call updates information
in UFTBK and UFTBC in the disk UFD for the file
opened on a specified channel, and it writes all system
buffers to ensure that the file contains all information
that your program has written into it.

This call is particularly useful when a file is open for

a long time. Any file that is open during 2 system

failure may have inaccurate size information in its UFD;
if so you will be unable to read new data. By .UPDATing
the file frequently, you keep its UFD current and minimize
the amount of data which could be lost.

Format:

.SYSTM
.UPDATn
error return
normal return

;n is the file's channel number

Possible errors:

AC2  Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP File not opened.
101 ERDTO Ten-second timeout occurred.

FILE ATTRIBUTE COMMANDS

File attribute commands allow you to check or
change the current attributes of a file; you can also
use them to check device characteristics. The bit
settings of ACO determine the file attributes; ACl
contains the device characteristics of the file.

3-16

Licensed Material - Property of Data General Corporation

This section describes the following calls:

.CHATR Change the attributes of the file opened
on channel n.
.GTATR Get the attributes or characteristics of the

file opened on channel n.

Note that these calls work only on an open file. For
link commands, see the next section.

Change File Attributes (.CHATR)

This command changes the access attributes of an
open file (or the resolution entry attributes, as
viewed from a link entry), according to the contents
of ACO.

When you create a file, it has no attributes. If a

link user or a user who has opened via . ROPEN issues
.CHATR, DOS temporarily changes his/her copy

or the file attributes until he/she closes the file;
however, the true resolution entry attributes persist.
You must open a file (. EOPEN or . OPEN) before you can
change its attributes via . CHATR.

Note that DOS provides two special attributes bits;
you can use these to define your own unique file
access specifications.

Format:

.SYSTM
.CHATR n
error return
normal return

;n is the file's channel number

Required input:

ACO - An attribute word which contains bits set
according to the attributes you want. Set the
contents of ACO according to the following bit/
attribute relationships:

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Symbolic

Bit Attribute Mnemonic Meaning
1BO R ATRP Read-protected file; cannot be read.
1B1 A ATCHA Attribute-protected file. No attribute

can ever be changed after you set this bit.
1B2 S ATSAV Save file (core image file).
1B7 N ATNRS No link resolution allowed.
1B9 & ATUS1 First user-definable attribute for the file.
1B10 ? ATUS2 Second user-definable attribute for the file.
1B14 P ATPER Permanent file; cannot be deleted or renamed.
1B15 W ATWP Write-protected; cannot be written.

The following are disk file characteristics, DOS assigns
them when you create a file; you cannot change them.

Bit Characteristic =~ Mnemonic  Meaning
1B3 L ATLNK Link entry.
1B5 Y ATDIR Directory file (except MAP. DR).
1B6 - ATRES Link resolution file (temporary).
Other file attributes persist for the
duration of the open.
1B12 C ATCON Contiguous file.
1B13 D ATRAN Random file,
Possible errors: ACI1 will contain the device characteristics of the file.
These pertain to files on reserved devices, e.g., $TTO.
AC2 Mnemonic Meaning These do not reflect the characteristic disable mask
supplied when the file was opened. Use this bit/char-
0 ERFNO Illegal channel number. acteristics table to interpret the bit configuration
14 ERCHA Illegal attempt to change file returned in AC1:
attributes (file has A attribute).
15 ERFOP No file open on this channel. Bit Mnemonic Meaning
101 ERDTO Ten-second disk timeout _
occurred. 1B1 DCC80 80-column device.

Get the File Attributes and Characteristics ((GTATR)

Use this command to obtain the attributes or device
characteristics of a file,

Format:

.SYSTM
.GTATR n

error return
normal return

n is the file's channel number

When DOS returns, ACO will contain the file attributes.
See the .CHATR command for a description of the bit
positions that specify attributes.

093-000201-02

1B2 DCLTU Device changes lowercase
ASCII to uppercase.

Device requiring form feeds

on opening.

Full word device (reads or
writes more than a byte. )
Spoolable device.

Output device requiring line
feeds after carriage returns.
Input device requiring a parity
check; output device requiring
parity to be computed.

Output device requiring a rub-
out after every tab.

Output device requiring nulls
after every form feed.

CTRL Z end-of-file, backslash
line delete, and rubout char-
acter delete are disabled for this
keyboard input device.

FILE ATTRIBUTE COMMANDS

1B3  DCFFO
1B4 DCFWD

1B5 DCSPO
1B6 DCLAC

1B7 DCPCK

1B8 DCRAT
1B9 DCNAF

1B10 DCKEY



DataGeneral

SOFTWARE DOCUMENTATION

Bit Mnemonic Meaning

1B11 DCTO Teletypewriter output device
or equal leader and trailer for
$TTP and $PTP.

1B12 DCCNF Output device without form
feed hardware.

1B13 DCIDI Input device requiring operator
intervention.

1B14 DCCGN Output device without tabbing
hardware.

1B15 DCCPO When file is $TTR/$TTP: output

device requiring leader and
trailer.

For multiplexor mask bits, see "Multiplexors" in
Chapter 2.

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO 1llegal channel number.
15 ERFOP Attempt to get attributes of an
unopened file.
101 ERDTO Ten-second disk timeout

occurred.

LINK COMMANDS

As we described in Chapter 2, DOS permits you to link
files in one directory to files in other directories.
Either directory can be a diskette or user directory.
The link commands are:

. LINK Create a link entry.
.UNLK Delete a link entry.
.CHLAT Change the link access attributes

of a file.

Create a Link Entry (.LINK)

This call creates a link entry in the current directory
to a file in the same or another directory. This link
entry may or may not have the same name as the
resolution file; if not, the link entry name is an alias.
No attributes restrict a link when you create it, but it
cannot reach the resolution file without satisfying both
the link entry and the file access attributes of the
resolution entry. Your program can alter the link
access rights (but not the file access rights) of any
nonlink file by using the . CHLAT call.

Licensed Material - Property of Data General Corporation

Typical examples of alternate directory/alias name
strings are as follows:
Link

Character String Meaning

to DOS

LFE.SV —_— Create link entry
LFE.SV in the
current directory;
link it to resolution
file LFE.SV on

the current direc-
tory's parent
directory.

Create link

NLFE. SV in the
current directory;
link it to resolution
file LFE.SV in
DP1.

NLFE.SV DPL:LFE.SV

Required Input:

ACO - Byte pointer to link entry name string.

ACI1 - Zero if the link and resolution file have same
name, and if the resolution file is in the
parent diskette. Byte pointer to the name
string if the link entry has an alias name,
or is not on the parent directory. You can
omit a directory specifier from the resolution
file name if the resolution file is on the link
entry's parent directory.

Format:

.SYSTM

. LINK

error return
normal return

Possible errors:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
11 ERCRE Link entry name already exists.
27 ERSPC Insufficient disk space to
create SYS.DR entry.
53 ERDSN Directory specifier unknown.
66 ERDNI Directory not initialized.
101 ERDTO Disk timeout occurred.

093-000201-02



Licensed Material - Property of Data General Corporation

Delete a Link Entry (.ULNK)

This call deletes a link entry (created earlier by
LINK or . LINK) in the directory to which the link
entry name points. This call does not delete other
links of the same name in other directories. You
must be sure that the link entry you are deleting does
not also exist between other links and the resolution
entry; if it does, you will not be able to resolve these
more remote links after this deletion.

Required input:
ACO - Byte pointer to the link entry name string.
Format:

.SYSTM

. ULNK

error return
normal return

Possible errors:
AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
53 ERDSN Directory specifier unknown.
66 ERDNI Directory not initialized.
75 ERNLE Not a link entry.
101 ERDTO Disk timeout occurred.

Change Link Access Entry Attributes (.CHLAT)

This command causes a link user's copy of the link
access attributes word to be changed by the contents
of ACO. When a file is opened via a link entry, the
attributes of the file as seen by the link user are a
composite of the resolution entry's file attributes and
the user's copy of the link access entry attributes.
When a file is created, the link entry access attributes
are O (i.e., there are mone).

Required input to . CHLAT is:

ACO - File attributes word (see . CHATR)
The format is:
.SYSTM

.CHLAT n

error return
normal return

;n is the channel number

093-000201-02

DataCeneral

SOFTWARE DOCUMENTATION

The attribute word input in ACO is identical to . CHATR,
Possible errors resulting from a . CHLAT command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
14 ERCHA Resolution entry is attribute -
protected (has A attribute).
15 ERFOP File not opened,
101 ERDTO Ten-second disk timeout

occurred.

INPUT/OUTPUT COMMANDS

This section describes the calls your program can use
to write data to, and read data from, an existing, open
file. It begins by describing the five I/O modes
available, and proceeds to explain the calls which open
and close a file.

It then covers the calls you can use to change position
in a file, and finally lists the different writing/reading
calls themselves.

Generally, you can do nothing with a file until you have
opened it and given it a channel number with one of

the . OPEN commands: .OPEN, .EOPEN, .ROPEN,
+APPEND, or .MTOPD.,

Remember that a file can be a device (e.g., $TTI,
console input; or QTY:xx, multiplexor line) or a disk
file (e.g., MYFILE.SR), which can include a directory
specifier (e.g., DP1:MYFILE. SR) if you have initialized
the directory.

These are the file I/0 calls:

.OPENn Open a file for 1/0 on channel n.
.EOPEN n Open a file for exclusive writing on
- channel n.
.ROPEN n Open a file for reading only on channel
n.
. APPEND n Open a file for appending on channel n.
.GCHN Cet the number of a free channel.
.CLOSE n Close the file on channel n.
.RESET Close all files. -
.GPOS n Get the position of the file pointer.
.SPOS n Set the position of the file pointer.
.RDLn Read an ASCII line from the file on
- channel n.
.WRLn Write an ASCII line to the file on channel
n.
.RDSn Read sequential data from the file on
B channel n .

INPUT/OUTPUT COMMANDS



DataGénera]

SOFTWARE DOCUMENTATION

.WRS n Write sequential data to the file on
channel n,

.RDR n Read a 64 -word record from the file on
channel n.

.WRR n Write a 64-word record to the file on
channel n.

.RDB n Read (or Write) a series of disk blocks

.WRB n from or to the file or channel n, without

a system buffer.

.MTOPD n Open a mag tape or cassette file on
channel n for free-form 1/0.
.MTDIO n Write or read data to or from the mag

tape file on channel n in free form.

If DOS detects an error when it executes your 1/0
command, it will retry the command 10 times before
reporting the error with code ERFIL.

DOS provides five basic modes for reading and
writing files:

e line

* sequential

e random record
e direct block

¢ free form (tape)

This section presents the calls for these modes in order.

You will generally use line and sequential* mode for
ASCII character strings and binary files, respectively.
Random record mode allows you to read or write
64-word records.

Direct-block I/0 allows you to transfer one or more
disk blocks without a system buffer. Free form I/0
allows you to directly control a mag tape drive.

In line mode, the system assumes that the data you want
to read or write consists of ASCII character strings,
terminated by either a carriage return, a form feed,

or a null character. DOS processes file data line-by-
line in sequence from the beginning of the file to its

end.

*The DOS System Library contains a module to speed
up line and sequential mode operations. This module
is called the Buffered 1/0O Package, and is described in
that Application Note.

Licensed Material - Property of Data General Corporation

In line mode, the system handles all device-dependent
editing at the device driver level. For example, it
ignores line feeds on paper tape input devices and
supplies them after carriage returns to all paper

tape output devices. Furthermore, reading and writing
never require byte counts, since reading continues
until DOS reads a terminator and writing proceeds

until you write a terminator. The line mode commands
are Read a Line (. RDL) and Write a Line (. WRL).

The second mode is the unedited sequential mode. In
this mode, DOS transmits data exactly as it reads it from
or writes it to the file or device. You can use this mode
for processing data byte-by-byte. To use sequential
mode, your program must specify the byte count
necessary to satisfy your read or write request. The
sequential mode commands are Read Sequential (. RDS)
and Write Sequential (. WRS).

In line or sequential modes, your position within a

file is always the position at the end of your last line or
sequential mode call, or .SPOS call. The first read or
write occurs at the beginning of the file, unless your
program opened the file for appending.

The third mode, random record, permits random access
to fixed-length records within random or contiguous

disk files. The fixed length of a random recoxd is 100g
words. The random calls are . RDR and . WRR.

The fourth mode, direct block I/0, allows you to trans-
fer a continuous group of blocks in a random or
contiguous file without using a system buffer. DOS

uses sequential memory locations in the transfer, and

it transfers only 512-byte blocks of data between memory
and disk. You can transfer only an unbroken series of
relative block numbers; i.e., you may process the

third, fourth, and fifth blocks in a file in a single call,
but not the third, fifth, and sixth blocks. You can
execute direct-block I/O with . RDB and . WRB.

Finally, free form I/O permits you to read or write

free form blocks of data to magnetic tape. With free

form 1/0, you can read or write from one to 4096-word
data records, you can space forward or backward through
one to 4096 data records or to the start of a new data

file, and you can read the transport status word. To

use free form [/O you must open a file via . MTOPD, and
direct its operation via . MTDIO. You cannot mix . MTDIO
with . WRL, or . WRS on the same tape drive.

093-000201-02



Licensed Material - Property of Data General Corporation

Open a File ((OPEN)

Before your program can issue other [/O commands, it
must link a file to a DOS channel number. .OPEN
links a file with a channel number and makes the file
available to anyone for both reading and writing, The

. OPEN command does not guarantee exclusive use of
the file; other program tasks may also have opened the
file via . OPEN and modified its contents. Every task
using a file must close it before anyone can delete or
rename it. In DOS, there is no command to reduce the
size of a file. This means that files never shrink, and
they maintain space for all material written to them by
any task. If you want to remove redundant or useless
material from a file, you can either edit it with a text
editor utility, or you can overwrite the useless data
with nulls or new material, using file position and
system write calls,

Required input:

ACO - Byte pointer to the filename

AC1 - Characteristic disable mask. For every
bit you set in the mask word, DOS disables
the corresponding device characteristic for
the duration of the . OPEN. (See .GTATR in
the File Attributes Commands section of this
chapter. )

093-000201-02

3-21

DataGeneral

SOFTWARE DOCUMENTATION

For example, if you want to read an ASCII tape without
parity checking from the paper tape reader, you can
disable checking and the operator intervention message
by the following:

LDA 0,READR
LDA 1, MASK
.SYSTM

.OPEN 3

o+1*2
. TXT "$PTR"

READR:

MASK: DCPCK+DCIDI ;DISABLE PARITY
; CHECKING AND OPER,

;INTERVENTION MESSAGE.

To use system mnemonics like mask and error
words, you should assemble your program with the
macroassembler, and the assembler's symbol table
file must include PARU. SR.

In general, you will want to preserve all device
characteristics defined by the system. To preserve
them, insert a SUB 1, 1 instruction before the

« OPEN call.

Format:

.SYSTM
.OPENn ;n becomes the channel
- ;number of the file
suntil n is closed.
error return

normal return

Note that DOS will interleave line printer output if
multiple tasks in the same program open and write to
the printer.

INPUT/OUTPUT COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
If the file opened requires leader, DOS will output it on Possible errors:
the . OPEN. If the file opened requires intervention,
DOS will display the message AC2 Mnemonic Meaning
LOAD filename, STRIKE ANY KEY. 0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
Possible errors: 21 ERUFT Attempt to use channel
already in use.
AC2 Mnemonic Meaning 31 ERSEL Unit improperly selected.
36 ERDNM Device not in system.
0 ERFNO Illegal channel number, 53 ERDSN Directory specifier unknown.
1 ERFNM Illegal file name. 57 ERLDE Link depth exceeded.
12 ERDLE File does not exist. 60 ERFIU File already opened for writing.
21 ERUFT Attempt to use channel already 66 ERDNI Directory not initialized.
in use. 101 ERDTO Ten-second disk timeout
27 ERSPC File space exhausted. occurred.
31 ERSEL Unit improperly selected. 102 ERENA No linking allowed (N attribute).
36 ERDNM Device not in system. 111 ERDOP Attempt to open a file which is
53 ERDSN Directory specifier unknown. already open.
57 ERLDE Link depth exceeded.
60 ERFIU File opened for exclusive use Open a File for Reading Only (.ROPEN)
(. EOPEN).
66 ERDNI Directory not initialized. This call opens a file for reading only. Your program
101 ERDTO Ten-second disk timeout can gain read-only access to a file which is currently
occurred. open by either . EOPEN, .OPEN, or another . ROPEN.
102 ERENA No linking allowed (N attribute). Thus several users may access a file for reading
111 ERDOP Attempted open of an open only while one of those users has write access
tape file. privileges to the file. All users must have closed
the file before anyone can delete or rename it.
Open a File for Exclusive Write Access (EOPEN) Required input:
This command gives you exclusive write access to ACO - Byte pointer to file name
a file. Thus only you can modify a given file when you ACl - Characteristic disable mask
open it via . EOPEN, although other users may gain
read access to this file via . ROPEN. Format:
Required input: -SYSTM
- ROPEN n ;1 is the file's channel number
ACO - Byte pointer to file name. error return
AC1 - Characteristic disable mask. normal return
Format:
.SYSTM
- EOPEN n ;0 is the file's channel number

error return
normal return

3-22 093-000201-02



Licensed Material - Property of Data General Corporation

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel
already in use.
31 ERSEL Unit improperly selected.
36 ERDNM Device not in systems.
53 ERDSN Directory specifier unknown.
57 ERDLE Link depth exceeded.
66 ERDNI Directory not initialized.
101 ERDTO Ten-second disk timeout
occurred.
102 ERENA No linking allowed (N attribute).
111 ERDOP Attempt to open an open

tape file.

Open a File for Appending (.APPEND)

. APPEND is identical to . EOPEN, except that it
opens a file specifically for appending.

If your program tries to read a file which you have
opened for appending, DOS will return error code
EREOF (end-of-file).

Required input:

ACO - Byte pointer to the filename
AC1 - Device characteristic disable mask

Format:

-« SYSTM
. APPEND n
error return
normal return

;n is the file's channel number

On a disk, DOS opens the file, and appends whatever
you write to that file. On a magnetic tape device, DOS
opens the tape file and reads to the end -of-file (EOP);
it then writes from that point. On a line printer, DOS
opens the printer without a form feed.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Possible errors:

3-23

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
3 ERICD Illegal command for device.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel already
in use.
31 ERSEL Unit improperly selected.
36 ERDNM Device not in system.
53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
60 ERFIU File in use (opened by . EOPEN).
66 ERDNI Directory not initialized.
101 ERDTO Ten-second disk timeout
occurred.
102 ERENA No linking allowed (N attribute).
111 ERDOP Attempt to open a file that is

already open.

Open a Magnetic Tape Unit for Free Format 1/0O

The commands . OPEN, .EOPEN, .ROPEN and

. APPEND cannot open a tape file for free format 1/0.
See . MTOPD and . MTDIO at the end of Input/Output
Commands, this chapter.

Get the Number of a Free Channel (GCHN)

This call returns (in AC2) the number of a free
channel. Your program can then use AC2 to open a
file via one of the open file calls. .GCHN does not
open a file on a free channel; it merely indicates a
channel that is free at the moment. Occasionally, in
a multitask environment, you will find that the channel
. GCHN indicated is no longer free when you issue your
open. If this happens, you will receive error return
ERUFT; reissue the call . GCHN, to obtain another
free channel.

Format:
.SYSTM
. GCHN

error return
normal return

Upon a normal return, DOS returns the free channel
number in AC2.

INPUT/OUTPUT COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Possible error:

AC2 Mnemonic Meaning

21 ERUFT No channels are free.

Close a File (.CLOSE)

You must close a file after use to update its UFD
directory information, or delete it, or release its
directory or device. When you close a file, its channel
number becomes available for other 1I/O. The calls
.RTN, ERTN, .BREAK or .RESET automatically close
all channels.

Format:

.SYSTM
.CLOSEn
error return
normal return

;Close channeln

Whenever you . CLOSE a high-speed punch file, DOS
will output the required trailer.

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP Attempt to close a channel
not in use.
101 ERDTO Ten-second disk timeout
occurred.

Close all Files (.RESET)

This command closes all open files after writing

any partially -filled system buffers. You should issue
_RESET in a multitask environment only when no other
task is using a channel.

Format:

.SYSTM
.RESET
error return
normal return

Licensed Material - Property of Data General Corporation

3-24

Possible error:

AC2 Mnemonic Meaning

101 ERDTO Ten-second disk timeout

occurred.

Get the Current File Pointer (GPOS)

Use this call to determine the next character position
within a file where program writes or reads will
occur. DOS indicates a relative character position
within a file by a double -precision byte pointer. This
is a two-word byte pointer containing the high-order
portion of the byte address in ACO, and the low-order
portion of the byte address in ACl. Bit 15 of AC1
indicates the byte selection (left to right):

high order byte address

O =
H
[}

low order byte address

0 14

SD-00427

15

Figure 3-1. Double-Precision Byte Pointer

Format:

.SYSTM
.GPOS n
error return
normal return

;1 is the file's channel numbexr

DOS returns zero if you open a nondisk file on channel
n.

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP No file is open on this channel.

093-000201-02



Licensed Material - Property of Data General Corporation

Set the Current File Pointer (.SPOS)

This call sets the current system file pointer to a
new character position for future program file writes
or reads. DOS indicates the relative character
position within a file by the double-precision byte-
pointer described above in . GPOS. For a mag tape,
you can specify only position 0 (the file starting
location).

This call enables you to access characters and lines
randomly within any block of a given file. You can
read a character after writing or rewriting it simply
by backing up the pointer to its previous position.

If you set the file pointer beyond the end of file, DOS
automatically extends the length of the file. If the
file is contiguous - hence cannot be extended - DOS
will take the error return, and pass ERSCP in AC2.

Required input:

ACO - High-order portion of byte pointer.
AC1 - Low-order portion of byte pointer.

Format:

.SYSTM
.SPOS n
error return
normal return

in is the file's channel number

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP Attempt to reference
an unopened file.
64 ERSCP File position error.

Read a Line (.RDL)

.RDL reads an ASCII line from a file to your
specified area. ACO must contain a byte pointer to
the starting byte address within user memory into
which DOS will read the line. This area should be
133 bytes long.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Reading terminates normally after DOS has read
either a carriage return, form feed, or null, and
transmitted it to your program. The system stops
reading and takes the error return if it transmits

133 characters without detecting a carriage return,
form feed, or null, or upon detection of a parity error,
or end-of-file.

If DOS is reading through a multiplexor, it also
terminates reading if it reads an ESC.

If the file you are reading from is the keyboard
($TTI, $TTIL), keyboard controls work as usual
(unless you have masked DCKEY in ACI -- see
.GTATR). Rubout deletes the preceding character,
and backslash (SHIFT-L) deletes the preceding line,
from the keyboard stream. DOS echoes all printing
characters and ignores line feeds. You can indicate
an end of file by pressing CTRL-Z. Note that when
you are reading from a multiplexed line, ESC also
indicates an end of file.

DOS will always return the number of bytes read
(including the carriage retum, form feed, or null)
in ACl. If the read terminates because of a parity
error, DOS stores the character having incorrect
parity. as the last character read and clears the
parity bit. You can always compute the byte pointer
to the bad character as (ACO) + (AC1)-1. (Note:
(AC0) means the contents of ACO.)

Required input:
ACO - Byte pointer to receiving buffer.
Format:
.SYSTM
.RDLn

error return
normal return

;Read from channel n

After a normal return, AC1 will contain the number of
bytes read.

INPUT/OUTPUT COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO llegal channel number.
3 ERICD Illegal command for device.
6 EREOF End of file.
7 ERRPR Attempt to read a read-
protected file.

15 ERFOP Attempt to reference a file
not open.

22 ERLLI Line limit (133 nonterminator
characters) exceeded.

24 ERPAR Parity error (tape - possibly
dirty heads).

30 ERFIL File read error (bad tape;
possibly dirty heads).

33 ERRD Attempt to read into system
area.

34 ERDIO File accessible by direct block
1/0 only.

47 ERSIM Simultaneous reads from the
same multiplexor (ALM/QTY)
line.

101 ERDTO Ten-second disk timeout
occurred.
106 ERCLO Channel closed by another task.

Write a Line (.\WRL)

.WRL is the counterpart of . RDL; it writes an ASCII
line to the file open on the specified channel. ACO
must contain a byte pointer to the starting byte
address within user memory from which characters
will be written.

When you have opened a file via . OPEN or . EOPEN,
writing begins at the beginning of the file if this is the
first write since the open. For second and subsequent
writes after the open, writing begins at the file position
pointer, which is altered by every 1/0 access. Writing
begins at the end of the file if you open it via . APPEND,
Normally, the system stops writing when it detects a
null, a carriage return, or a form feed. Abnormally,
it stops writing after transmitting 132 (decimal)
characters without a carriage return, a null, or a
form feed as the 133rd character.

Licensed Material - Property of Data General Corporation

Upon termination, AC1 contains the number of bytes
written from your area to the file. The null terminator
does not force a carriage return or line feed. A
carriage return generates a line feed upon output if
the device characteristics so dictate.

Required input:
ACO - Byte pointer to starting byte address,
Format:
.SYSTM
+.WRLn

error return
normal return

;Write to the file on channel n

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF End-of-file when writing to a
contiguous file,
10 ERWPR Attempt to write to a write-
protected file.
15 ERFOP Attempt to write a file not
opened. .
22 ERLLI Line limit (132 characters).
27 ERSPC Out of disk space.
34 ERDIO File accessible by direct-block

1/0 only.
Simultaneous writes to the
same multiplexor (ALM/QTY)

47 ERSIM

line.

101 ERDTO Ten-second disk timeout
occurred.

106 ERCLO Channel closed by another task.

Use of the Card Reader ($CDR)
in RDL and .RDS Commands

When you use the card reader as an input device to
+RDL, indicate an end-of-file by punching all rows in
column 1 (punch the characters "+", "-", and 0
through 9). Hollerith-to- ASCII translation occurs

on a .RDL, not on a .RDS. The translation assumes
the keypunch codes shown in Appendix B.

3-26 093-000201-02



Licensed Material - Property of Data General Corporation

A .RDL terminates upon the first trailing blanks
unless your . OPEN command suppressed DCSTB, thus
causing DOS to transfer all 80 characters. If DOS
transfers all 80 characters, it will append a carriage
return as the eighty-first character, unless your

. OPEN command suppressed DCC80 (allowing DOS to
process a maximum of 72 characters), The system
replaces each illegal character with a backslash.

In . RDL calls, DOS ignores all columns following the
EOF. The card reader driver permits an unlimited
amount of time to elapse until it reads the next card,
thus permitting the operator to correct pick errors,

or insert new card files. The card reader driver
employs double buffering, and you will lose at least

one card image if you close prematurely; therefore your
program must wait until DOS reads the last card or end-
of-file to close $CDR.

You can close the reader after it has read an end-of-
file card, reopen it without losing any data, and
continue card reading. When DOS reads an end-of-
file card it returns a byte count of 0 and error code
EREOF. If you issue another . RDL, it will read the
next card normally.,

If you issue . RDS (see below), DOS reads the card in
image binary. It uses each two bytes to read a single
column, packing them as follows:

Byte - — ——

Row 1211 01,2 3456789

Number

Bit 012345671891 11111
012345

0000dddd

|
|
|
|
I
|
|
|
|
|
:dddddddd

SD-00430

Figure 3-2. Image Binary Card Reading

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Each "d" will be 1 for every punched hole in the column.
In . RDS, you signify an end-of-card (EOC) by a byte

pair containing the word 100000. Thus, to read two
entire 80-column cards, one card at a time, you would
issue two successive . RDS calls for 162 bytes each.

If you requested only 160 bytes for each read, the

second . RDS would return the first end-of-card word, and
the first 79 columns of the second card.

Read Sequential (.RDS)

In the sequential mode, DOS transmits data exactly as
it reads it to or writes it from a file. You can use this
mode for binary data.

The .RDS call tells DOS to read data exactly as it is

in the file, unless it is reading from the system console.
When reading sequentially from a system console, DOS
sets the parity bits to zero. Note that DOS does not
recognize CTRIL-Z from the console as an end-of-file
character in this mode. Upon detection of an end-of-
file, DOS will return the partial bytecount in AC1.

Required input:
ACO - Byte pointer to the starting byte address within
user memory into which DOS will read the data.

AC1 - Number of bytes to be read.
Format:

.SYSTM

.RDS n
error_return
normal return

;Read from channel n

3-27 INPUT/OUTPUT COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Possible errors.

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF End of file.
7 ERRPR Attempt to read a read-
protected file.
15 ERFOP Attempt to reference a file
not open.
24 ERPAR Parity error (tape). Often
caused by dirty heads.
30 ERFIL File read error (bad tape or
dirty tape heads).
33 ERRD Attempt to read into system
area.
34 ERDIO File accessible by direct
block 1/0 only.
47 ERSIM Simultaneous reads from same
multiplexed line.
101 ERDTO Ten-second disk timeout
occurred.
106 ERCLO Channel closed by another
task.

Write Sequential ((WRS)

. WRS is the counterpart of . RDS; it writes data
verbatim from memory to a file. Note that DOS
recognizes no character as an end-of-file in this mode.

If you open a file via . OPEN or . EOPEN, and if this
is the first write since the open, DOS starts writing
at the beginning of the file (unless you moved the file
pointer by the . SPOS command after opening). Sub-
sequent writes after the open begin at the file position
pointer. If you opened the file via . APPEND, DOS
starts writing at the end of the file.

Required input:
ACO - Byte pointer to the starting address of the

data within user memory.
AC1 - Number of bytes to be written.

Format:

.SYSTM
.WRS n ;Write to channel n

error return
pormal return

3-28

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO 1llegal channel number.
3 ERICD Illegal command for device.
6 EREOF End-of-file when writing to a
contiguous file.
10 ERWPR Attempt to write a write-
protected file.
15 ERFOP Attempt to write a file not open.
27 ERSPC Out of disk space.
34 ERDIO File accessible by direct block
1/0 only.
47 ERSIM Simultaneous writes to the same
QTY/ALM line.
101 * ERDTO Disk timeout occurred.
106 ERCLO Channel closed by another task.
113 ERNMC No outstanding receive request.

Read (or Write) Random Record (RDR or .WRR)

These calls allow your program to read (or write) one
64-word record in either a random or contiguous disk
file. There are four 64-word records in a disk block;
for the first disk block in a file, these are numbered O,
1, 2, and 3. For the second block, the numbers are 4,
5, 6, 7, and so on.

Required input:

ACO - Destination memory address.
AC1 - Record number (record numbers start with 0).

Format:
.SYSTM
-RDRn ;Read from the file
error return ;opened on channel n.

normal return

093-000201-02



Licensed Material - Property of Data General Corporation

Possible errors.

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF Attempt to read past the end
of a contiguous file.
7 ERRPR Attempt to read a read-
protected file.
15 ERFOP No file is open on this channel.
30 ERFIL File read errors (mag tape or
cassette - probably a bad tape).
33 ERRD Attempt to read into system area.
34 ERDIO File accessible by direct-block
1/0 only.
101 ERDTO Ten-second disk timeout
occurred.

Write Random Record (.WRR)

.WRR writes a 64-word record from memory to a
randomly- or contiguously- organized disk file.
DOS will write 64 words to the record number you
specify, starting from the address you pass in ACO.

Required input:

ACO - Memory address.
AC1 - Destination record number.

Format:

.SYSTM
.WRRn

error return
normal return

;Write to the file
;opened on channel n.

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF Attempt to write past the
end of a contiguous file.
10 ERWPR Attempt to write a write-
protected file.
15 ERFOP Attempt to reference a file not
opened.
27 ERSPC Out of disk space.
34 ERDIO File accessible by direct block
1/0 only.
101 ERDTO Ten-second disk timeout occurred.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Read (or Write) a Series of Disk File Blocks
(RDB/.WRB)

These are direct block I/0 calls. Use these calls in your
program to transfer blocks to or from random or
contiguous files. DOS uses no system buffers for the
transfer.

Blocks in random and contiguous disk files have a fixed
length of 256, words; they are numbered sequentially
from 0. A .RDB for the first block in a file would
transfer the 64 -word records numbered 0, 1, 2, and 3.

Required input:

ACO - Starting memory address for the block transfer,

AC1 - Starting relative block number in the series
to be transferred.

AC2 - The left half of AC2 must contain the number of
blocks which you want DOS to transfer. If you
set the channel number to 77, the right half of
AC2 must contain the channel number.

Format:
.SYSTM
.RDB (.WRB) n  ;n is the channel number
error return

normal return

Possible errors:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
4 ERSVI Not a random or contiguous

file.

End of file.

File is read-protected (. RDB).
File is write-protected (. WRB).
File is not open.

Disk space is exhausted.

File read error, mag tape.
Probably a bad tape or dirty
head.

Attempt to read into system
area (. RDB).

File not accessible by direct-
block 1/0.

Ten-second disk timeout
occurred.

6 EREOF*

7 ERRPR
10 ERWPR
15 ERFOP
27 ERSPC*
30 ERFIL

33 ERRD

40 EROVA

101 ERDTO

*Upon detection of error EREOF or ERSPC, DOS
returns the code in the right byte of AC2; the left byte
contains the partial read or write count.

INPUT/OUTPUT COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

Open a Tape Unit and File
for Free Format 1/0 (.MTOPD)

Before you can read or write in free format on a
magnetic tape, you must open the device and associate
it with a channel. Use the . MTOPD command to do this.
After you have finished with the drive, release it.

-MTOPD is a global call; after you use it, you can
access all files on the specified device.

To position a free format tape to a specific file, pass
the file name to . MTOPD in the form MTn:m.

Required input:

ACO - Byte pointer to the magnetic tape file
specifier.
ACIl - Characteristic inhibit mask (see . GTATR).

Aside from the tape file specifier, these parameters
are identical to those for . OPEN. If you want to know
more about device characteristics, see . OPEN and
.GTATR above.

Format:

.SYSTM

« MTOPD n
error return
normal return

;n is the channel number

Possible errors:
AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
3 ERICD Illegal command for device.
12 ERDLE File does not exist.
21 ERUFT Attempt to use a channel
already in use.
27 ERSPC File space exhausted.
31 ERSEL Unit improperly selected.
36 ERDNM Device not in system.
53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.
111 ERDOP Attempted open of an open

tape file.

Licensed Material - Property of Data General Corporation

3-30

Perform Free Format 1/0 (MTDIO)

This command gives you a direct interface with
magnetic tape units on a machine level. Using . MTDIO,
you can read or write data in variable length records
from 2 to 4096 words long, you can space forward or
backward from 1 to 4095 data records or to the start

of a new data file, or you can perform other similar
machine-level operations.

Before you can read or write in free format on a tape
unit, you must open the unit for free format I/0 with
the . MTOPD system command. For information about
the hardware characteristics, see Magnetic Tape in
the Programmer's Reference Manual for Peripherals.

Required input (to read device status word):

ACl - Command word - bits 1-3 set, other bits 0.
AC2 - Channel number if n equals 77.

Required input (for other . MTDIO operations):

ACO - Memory address for data transfer.
AC1 - Command word, subdivided into the following

fields:
bit 0: set to 1 for even parity, O for odd
parity.
bits 1-3: set to one of these seven command
codes:
0 - read (words)
1 - rewind the tape
3 - space forward (over records or
over a file of any size up to
4096 records)
4 - space backward (over records or
over a file of any size up to
4096 records)
5 - write (words)
6 - write end-of-file (parity: odd for
9 track, even for 7-track)
7 - read device status word
bits 4-15: word or record count. If 0 on a

space forward (or backward) com-
mand, and the file is no more than
4096 records, DOS positions the tape
to the beginning of the next (or
previous) file on the tape. If 0 on a
read command, DOS reads words
until it encounters either an end-of-
record or 4096 words. IfOon a
write command, the system will
write 4096 words.

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

AC2 - channel number if n equals 77. Possible errors:

Format:

AC2 Mnemonic Meaning
. SYSTM
.MTDIO n ;n is the channel number 0 ERFNO Illegal channel number.
error return - 3 ERICD Illegal command for device
normal return (i.e., improper open).
15 ERFOP Attempt to reference a file
. not opened.
Upon a read status command, if DOS detects no system -
4 .
error, control will go to the normal return and AC2 0 EROVA f‘olxl.trannf/toaccessmle by free

will contain a device status word with one or more of

the following bits set:

bit 0,

error (bit 1, 3, 5, 6, 7, 8, 10, or 14)

bit 1,
bit 2,
bit 3,

data late
tape is rewinding
illegal command

bit 4,

bit 5,
bit 6,

high density if set to 1, otherwise, low
density

parity error

end-of-tape

bit 7,
bit 8.

end -of-file
tape is at load point

bit 9, always set to 1 for 9-track
bit 10, bad tape (or write failure)
bit 11, send clock
bit 12, first character
bit 13, write-protected or write-locked
bit 14, odd character
bit 15, unit ready
Figure 3-3. Device Status Word on Normal Return

. MTDIO

When your program issues a read, write, space

forward, or space backward command, the command

word in AC1 contains the number of words written
(or read) or the number of records spaced. A
word or record count is returned upon a premature
end-of-file.

093-000201-02

3-31

Figure 3-4 summarizes the possible returns by

. MTDIO and the values returned in AC1 and AC2.

On

hardware errors, DOS sets bit 0 of TSW (in AC2);
on system errors it clears this bit.

COMMAND RETURN ACI a2 |
Any . MTDIO Error Same as input System error
command with a code
system error
detected

Rewind Normal
Original input | Transport Status

Rewind (tape at Error lost Word (TSW)
load point, etc.)

Read Status Normal Original input TSW (bit

lost zero reset)
Read Status Error ngo\lvsélg)xt
Read, Write, Normal

Space Forward,
Space Backward;
bit O in TSW is

not set Word or record TSW
Read, Write, Error (only after count
Space Forward, 10 retries
Space Backward; | in read/write)
bit 0 in TSW
is set
Write end-of-file Error Original input lost| TSW

SD-00431

Figure 3-4 .MTDIO Values Returned

As with regular magnetic tape 1/0O, the system will
perform 10 read retries before taking the error
return. For write errors, the system will perform
the following sequence 10 times before taking the
error return: backspace, erase a length of tape,

and write.

INPUT/OUTPUT COMMANDS




DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

CONSOLE 1/0 COMMANDS

To transfer single characters between your primary
($TT1/$TTO) console and ACO, use commands . GCHAR
and . PCHAR. These calls operate like a read or write
sequential of one character. They do not affect the
column counter, nor do they provide special character
handling (e.g., for carriage returns). These commands
reference $TTI/$TTO; the console is always available
to them, and you.need no channel number or open
command.

Get a Character {.GCHAR)

This command places a character typed on the console
in ACO. DOS right-adjusts the character (without
parity) in ACO, and clears the left byte of ACO. You
need no [/0 channel for . GCHAR; DOS always uses the
console for input. DOS will not echo the character on
the console.

Format:
.SYSTM
. GCHAR
error return

normal return

If no character is currently in the console input buffer,
the system waits.

Possible errors: none.

Put a Character (.PCHAR)

This command types the character in bits 9-15 of ACO
on the console.

Format:
.SYSTM
. PCHAR
error return

normal return

Possible errors: none.

Get the Input Console Name {.GCIN)

This command returns the name of the console input
device. This name is always $TTI.

3-32

Required input:

ACO - Byte pointer to a six-byte area which will
receive the console name.

Format
.SYSTM
. GCIN
error return

normal return

Possible error:

AC2 Mnemonic Meaning
33 ERRD Attempt to read into system
area.

Get the Output Console Name (.GCOUT)

This command returns the name of the output console.
This name is always returned as $TTO.

Required input:

ACO - Byte pointer to the six-byte area which will
receive the console name.

Format:
.SYSTM
.GCOUT
error return

normal return

Possible error:

AC2 Mnemonic Meaning
33 ERRD Attempt to read into system
area.

093-000201-02



Licensed Material - Property of Data General Corporation

MEMORY ALLOCATION COMMANDS

Excluding the Task Scheduler, and locations 0-15g,

DOS resides in upper memory. It executes your program
in lower memory. DOS memory looks essentially

like this:

<« top of memory

DOS System
HMA (highest mem-
Unused Address ory address avail-
Space able)
«— NMAX (last loca-
tion of the loaded

User Program (and

Task Scheduler) program)
<« 16
DOS
«— 0

SD-00432

Figure 3-5. Memory Allocation

The highest memory address available (HMA) is
usually the first word below DOS. If, during loading,
RLDR has placed its symbol table at the high end of
user memory, HMA will be the first word below the
table. The table will be in upper memory only if you
include the global switch /S in the RLDR command.
(By default, DOS loads it just above your program.)

Determine Available Memory (.MEM)

This command returns the current value of NMAX in
AC1, and the value of HMA in ACO.

HMA represents the location immediately below the
bottom of DOS (or the bottom of the symbol table, if
the program was loaded with global /S).

Follow . MEM with a SUB 1,0 and INC 0, 0 instruction
to determine the amount of additional memory
available to your program.

Format:

.SYSTM
.MEM

error return
normal return

Possible errors: none.

093-000201-02 3-33

DataGeneral

SOFTWARE DOCUMENTATION

Change NMAX ((MEMI)

This command allows your program to increase or
decrease the value of NMAX. The command updates
the value of NMAX in the UST (in USTNM) and returns
the new NMAX in AC1.

DOS will not change NMAX if its new value would be
greater than HMA + 1. The system does not check
NMAX against its original value (as determined by
RLDR).

Whenever one of your programs will require memory
space above its NMAX, it can invoke . MEMI to
allocate the number of words needed. DOS uses the
value of NMAX to determine the amount of memory to
save if it suspends a program. Generally, you should
update NMAX even for temporary storage above the
current NMAX, If a program swaps without updating
NMAX, the program may be suspended without enough
information to continue. This is explained further in
the discussion of program swaps, Chapter 4.

However, each of your programs should request only
the memory space it actually needs, and should
release memory space when it no longer needs it.

Required input:

ACO - The increment or decrement (as a signed, two's
complement figure) of NMAX.

Format:
.SYSTM
. MEMI

error return
normal return

Possible error:

AC2 Mnemonic Meaning
26 ERMEM Attempt to allocate more

memory than available.

MEMORY ALLOCATION COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

DEVICE ACCESS COMMANDS

The RDOS device access commands, .DEBL and
. DDIS are no-ops under DOS, and take the normal
return. They are provided for RDOS compatibility.

Read the Front Panel Switches ((RDSW)

This system call allows your program to read the

position of the front panel or hand held console switches.

DOS returns the switch configuration in AC0. Bit 0
equals switch 0, etc.

Format:

.« SYSTM

. RDSW

error return
normal return

Possible errors: none.

CLOCK/CALENDAR COMMANDS

DOS provides four commands to keep track of the
time of day and the current date. It stores dates as
days from December 31, 1967 (day 1 is January

1, 1968). DOS uses a 24-hour clock.

Get the Time of Day (.GTOD)

This command requests the system to pass you the
current time in hours, minutes, and seconds. DOS
will return the time in binary as follows:

ACO - Seconds
AC1 - Minutes
AC2 - Hours (24-hour clock)

Format:
.SYSTM
- GTOD

error return
normal return

Possible errors: none.

Licensed Material - Property of Data General Corporation

Set the Time of Day (.STOD)

This command sets the system clock to a specific
hour, minute, and second. You pass the initial
binary values as follows:

ACO - Seconds
AC1 - Minutes
AC2 - Hours (24-hour clock)

Format:
.SYSTM
.STOD
error return
normal return

Possible error:

AC2 Mnemonic Meaning

41 ERTIM Illegal time of day.

Get Today’'s Date (.GDAY)

This command requests the system to return the
number of the current month, day and year. DOS
returns the month in AC1, the day in ACO, and the
current year (less 1968) in AC2.

Format:

. SYSTM
.GDAY

error return
normal return

Possible errors: none.

Set Today's Date (.SDAY)

This command sets the system calendar to a
specific date. The system will increment the date
when the time of day passes 23 hours, 59 minutes,
and 59 seconds. This routine works only on years
from 1968 to 2099,

093-000201-02



Licensed Material - Property of Data General Corporation

Required input:

ACO - Number of the day within the month.
AC1 - Number of the month (January is month 1).
AC2 - Number of the current year, less 1968.

Format:

.SYSTM
.SDAY

error return
normal return

Possible error:

AC2 Mnemonic Meaning

41 ERTIM Illegal day, month, or year.

SPOOLING COMMANDS

The RDOS spooling commands, .SPKL, .SPDA, and
.SPEA are no-ops in DOS, and take the normal
return. They are provided for RDOS compatibility.

CONSOLE CONTROL ZHARACTERS

You can suspend display on any console by typing
CTRL-S, and restore display by typing CTRL-Q.
Output to the console after the CTRL-S is not lost;

it is merely suspended until you type CTRL-Q. This
feature, which works with most Data General
programs, is useful for long displays on CRT
terminals.

CONSOLE INTERRUPTS

You can interrupt the current program from the console
by typing either CTRL and A or CTRL and C.

CTRL-A works abruptly; it halts program execution,
saves nothing, and givd control to a higher-level
program - generally the CLI. CTRL-C writes the
current core image to disk file BREAK. SV and then
does the same thing as CTRL -A, After DOS has
executed CTRL-A, the message - INT will appear

on the console; after CTRL-C, the message BREAK
will appear.

If you want to program an interrupt, use the system
call . BREAK; this produces the same effect as CTRL-C,
If, upon any of these interrupts, you want any program
other than the CLI to gain control, you must set up

its User Status Table as described below.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

For each program level, the system creates a User
Status Table (UST). Each UST is 24, words long, and
resides in user address space, starting at location

400g. Every UST includes two words, USTIT and
USTBR, which contain addresses for CTRL-A and
CTRL-C interrupt routines. USTIT contains the address
of the routine which will gain control after you enter
CTRL-A; USTBR holds the address of the CTRL-C
routine. When you load a program, the loader initializes
both words to -1, and you must change this if you want
to specify your own routines. Chapter 5 describes the
UST in detail.

IF USTIT contains -1 when you hit CTRL-A, or if
USTBR holds -1 on a CTRL-C or .BREAK, the system
closes all channels on the current level and loads the
next higher level program. This level's UST is then
checked for the address of an interrupt routine, The
system continues this process until it finds a program
level whose UST contains the address of an interrupt
routine. If it reaches the CLI on level 0, it uses the
CLI's routine. But if you have CHAINed from the CLI,
and the new level 0 program contains no interrupt
routine address, the system may halt with Exceptional
Status (see Appendix G).

During this search, the system checks each program
level for a TCB queue. If the queue is missing (perhaps
because you accidentally overwrote it (it is in user
address space), the system skips-this program and
examines the next higher level program (see Figure 3-7).

After finding a program with USTIT or USTBR (as
appropriate) containing an address instead of -1, the
system appropriates the TCB of the current highest
priority task (pointed to by USTAC), transfers that
task's PC to temporary storage (TTMP in the TCB),

and places the UST interrupt address in TPC (TPC is

the program storage counter in the TCB). Control then
goes to the scheduler, which starts the highest

priority task. Since the UST interrupt address was
placed in TPC of the highest priority task, DOS executes
the interrupt routine. (In a single task program, the
program is the highest priority task.) Figure 3-6 shows
a program with an interrupt handler.

CONSOLE INTERRUPTS



DataGeneral

SOFTWARE DOCUMENTATION

usTP
.BRKA

iPut LST accr
1Pointer to acor of
iCTRL=A harcoler,
USTIT, 2 iStore CTRL=&
saadr in USTIT,

START: LDA 2,

Loa ¢,

&TA ¢,

iThe main program follows here,
MAINS cace

iCTRL=A nancler=- this cooe will be
rexecutea cr CTRL=A,

BFKAS ceen
BkkA

LERKAZ

ir AC2.

Figure 3-6. Program with Interrupt Handler

The BREAK file created by a CTRIz C (or .BREAK) is
a save file, containing the current state of main
memory from SCSTR (the start of save files, location
16) through the highest of NMAX or the start of the
symbol table, SST. DOS places the break file in the
current directory and uses the file name BREAK.SV;
it deletes any existing BREAK. SV first. If the system
cannot write file BREAK.SV (possibly because it
lacks disk file space), control will go to one location
before the address specified in USTBR, and AC2 will
contain a system error code.

Licensed Material - Property of Data General Corporation

Although the BREAK. SV is a snapshot of the current
state of main memory, the file is not directly
executable; it is generally useful for debugging.
Before you try to execute it, you must consider how
the CTRL-C (or . BREAK) interrupt affected the
system:

1. It closed all open channels, and you must reopen
them if the breakfile requires them.

2. It removed all user-defined clocks and user
interrupts; you must re-identify them if desired.

3-36

Yes
Go to next

higher level

USTIT (USTBR)
contain -1 ?

Get highest
priority task's
TCB

Y

Put its old PC
into TTMP

Y

Put USTIT

(USTBR) contents
into TPC

SD-00433

Figure 3-7. Program Interruption Logic Sequence

093-000201-02




Licensed Material - Property of Data General Corporation

By default, when you execute a program, keyboard
interrupts are enabled. DOS provides two system

calls to disable or re-enable further keyboard
interrupts: .ODIS and . OEBL. These two calls do not
affect the system call . BREAK (below), which performs
the same operation sequence as CTRL-C.

Interrupt Program and Save
Main Memory (.BREAK)

System call .BREAK is operationally enuivalent to
typing CTRL-C on the console; it saves the state of
memory in save file format from location 16 to the
higher of NMAX or the start of the symbol table SST.
The file name used is BREAK, SV. Any previous version
of BREAK. SV is deleted, and the breakfile is written
to the current directory, where you can retain it,
SAVE (CLI command) it under another name, or delete
it. Generally, because system breaks close all
channels, the breakfile is useful only for debugging
with a disk editor, such as OEDIT or SEDIT.

The memory image file created by CTRL-C and
.BREAK saves the program in the following state:

1. all open channels are closed;

2. user-defined clocks, user interrupts and user
device enables (. DEBL) are removed;

Unlike the CTRL-C interrupt mechanism, the . BREAK
call is operative at all times and is not disabled by the
. ODIS command.

If USTBR (see preceding section) contains a valid
address, control goes to this address after DOS

writes BREAK.SV to disk. If USTBR contains -1,
control will return to the next higher level program and
DOS will examine its USTBR. Control eventually goes
to the first higher level program whose USTBR contains
a valid address. If DOS cannot write the break save
file (e.g., due to insufficient file space), control goes
to one location before the address contained in USTBR.

Format:

.SYSTM
.BREAK ;No standard error

;or normal returns

DataGeneral

SOFTWARE DOCUMENTATION

Possible errors:

AC2 Mnemonic Meaning

27 ERSPC Out of disk space.

60 ERFIN BREAK.SV is in use.
101 ERDTO Ten-second disk timeout

occurred.

Disable Console Interrupts (.ODIS)

Use this command to disable CTRL-C and CTRL-A
console interrupts within your program. However,

you can never disable the .BREAK system command with
this command. You can re-enable console interrupts by
issuing system call . OEBL from your program.

Format:

.SYSTM

. ODIS

error return
normal return

Possible errors: none.

Enable Console Interrupts (.OEBL)

When you first bootstrap a system DOS enables
console interrupts CTRL-A, and CTRL-C. If you
disable console interrupts by system call . ODIS
this call re-enables them.

Format:
.SYSTM
. OEBL
error return

normal return

Possible errors: none.

End of Chapter

093-000201-02 3-37

CONSOLE INTERRUPTS






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 4
SWAPS, CHAINS, AND USER OVERLAYS

Frequently, a user program will require more memory
than is available in the user's address space. The
Diskette Operating System provides three ways to
segment user programs that need extra address space.
These are program swaps, program chains, and

user overlays. This chapter explores these DOS
mechanisms.

Program swaps, chains and user overlays effectively
extend main memory with disk space. They do this

by placing segments of programs on disk and calling
them into memory when the programs need them.
During this process, they may overwrite the same
areas of user address space many times with different
data from disk.

Program swaps can call these disk files from 1 of 5
different levels of control, where one level often calls
to another; chained programs are called in sequence
by a program on the same level, and overwrite the
calling program. Overlays also operate on one level,
but they are called in succession by a root program
in core and placed in a reserved area in core.

Swaps and chains are described below; you will find
user overlays in the next section.

In general, the information in this chapter applies
to both single and multiple task environments; in fact,
the mechanisms described below provide an essential
tool for the multitasking environment (Chapter 5).

PROGRAM SWAPPING AND CHAINING

This section describes 5 swapping and chaining calls:
.EXEC (Swap or chain a program), .RTN (return from
a swap or chain), .ERTN (return from a swap or chain
with exceptional status), . FGND (describe the level of
the current program), and .BOOT (bring in a new oper-
ating system).

093-000201-02

For a program swap, a core-image file of user
address space (from address 16g, the USP, to NMAX)
is stored temporarily on disk. While it is on disk, the
current program's task control block (TCB) saves

its accumulators, Carry, and PC. Atter the swap, the
TCB restores them from disk. This restoration of a
program into the user area is called returning.

Any program executing under the operating system can
suspend its own execution and invoke another program or
another segment of itself. Every program requested

in a swap must exist as a save file on disk. '

Program swaps can exist in up to five levels, where one
level calls for another and the Command Line Inter-
preter exists at the highest level, level 0.

The CLI is merely one program executable under the
operating system. Its only special property is that

it normally executes at the highest level in the system,
level 0. Normally, the system utility programs sup-
ported by the CLI (e.g., the Text Editor, Assembler,
and the Relocatable Loader) execute at level 1. The
operating system permits up to five levels of program
swaps. This means that a program invoked by the CLI
(overwriting the CLI) can in turn invoke a third program
(overwriting the second program), the third a fourth,
and the fourth program a fifth before the system rejects
further requests. Programs on these different levels
may communicate via disk files like COM.CM. The CLI
at level 0 uses COM. CM to communicate with utility
programs on level 1.

On any single level, you can divide a calling program
into separate segments whose total size is far larger
than your address space. You do this by chaining
process, where one program segment calls for another
segment of the program, which in turn may call for
another segment, etc. The entire program with all its
segments exists at the same level. You can divide a
single program into a limitless number of segments.

PROGRAM SWAPPING AND CHAINING



DataGeneral

SOFTWARE DOCUMENTATION

When you plan program swaps, you should ensure

that NMAX accurately reflects the core for every
program in use; if it does not, part of some calling
programs might be lost. Upon a program swap, the
current core image is saved up to the higher of NMAX
of SST (start of the user symbol table). It is very
important that no program use temporary storage above
its original value of NMAX at load time without having
the system first allocate more memory (see .NEMI,
Chapter 3) for this space. [f a program exceeds NMAX
and invokes another program, part of calling program's
memory state will not be saved. Even if the executing
program does not call another program, a BREAK from
your console may force suspension. To avoid each

of these problems, NMAX must always correctly
reflect the core in use.

The operations of swapping, chaining, or returning

halt activity in the current program. The operating
system terminates calls and conditions that would not

be appropriate in the new program (most of these involve
multitask activity). The following calls and conditions
are terminated when a change of program occurs.

Many of these calls are detailed elsewhere in this
manual, and you should read the references if you want
more information.

1. A return or chain closes all channels; see the
beginning of Chapter 3.

2.  All $TTT ($TTTD) input is halted; this applies to
such calls as . GCHAR (Chapter 3).

3. Console interrupts are enabled, removing any
outstanding disable calls by . ODIS (Chapter 3).

4. All interrupt message transmissions, . IXMT
(Chapters 5 and 6) are removed.

5. If a user clock (. DUCLK, Chapter 5) has been
defined, it is removed.

6. All user-defined interrupt service (.IDEF,
Chapter 6) is removed.

7. The state of the floating-point unit is not
preserved.

Note: A program cannot swap or chain if
multiplexor lines are open.

When a program's execution resumes after a swap,

all channels which were open when the swap occurred
will be open. To restore the other conditions (2
through 7) to a program, you must use the appropriate
system or task call.

Licensed Material - Property of Data General Corporation

Read in a Save File for Swapping (.EXEC)

This command requests the system to bring in a
program swap. The format of the .EXEC command is:

.SYSTM
.EXEC

error return
normal return

ACO must contain a bytepointer to save filename of

the called program, ACI must contain an appropriate
starting address code. Two possible starting
addresses are allowed: the program starting address
(USTSA)*, and the Debug III starting address (USTDA)*,

If bit 0 of AC1 is 1, the current level will not be saved,
and the operating level will remain unchanged.

(Note that this feature provides unlimited program
chaining. )

The permissible codes input in AC1 are:

Code Meaning
0BO Swap to user program. Control

goes to the highest priority ready
task whether within a swap or
break save program created by

CTRL C.
1BO Chain to user program.
1B15 Swap and start at debugger address.

1BO + 1B15  Chain and start at debugger address.

ERADR status is returned if:

1. No starting address was specified for the save file
and code O is given (i.e., bit 15 is reset to 0).

2. The Debugger was not loaded as part of the save
file and code 1 is given (i.e., bit 15 is set to 1),

*See Chapter 5, User Status Table, for descriptions of
USTSA and USTDA.

093-000201-02



Licensed Material - Property of Data General Corporation

The contents of AC2 are passed to the new program.

AC2 Mnemonic Meaning
1 ERFNM Illegal file name.
4 ERSV1 File requires save attribute (S).
12 ERDLE File does not exist.
25 ERCM3 More than 5 swap levels.
26 ERMEM Attempt to allocate more memory
than is available.
32 ERADR Illegal starting address.
53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.
73 ERUSZ Too few channels defined at load
time or SYSGEN time.
101 ERDTO Ten-second disk timeout
occurred.
102 ERENA No linking allowed (N attribute).
125 ERNSE Program not swappable.

Return from Program Swap (.RTN)

Upon successful completion of a program invoked by
.EXEC, this command returns to the calling program
at its normal return point and closes all channels. All
of the calling program's accumulators are restored,
and control passes to the instruction following . EXEC.
The format of the . RTN command is:

.SYSTM
.RTN
error return

The normal return is impossible, since the calling pro-
gram is restored in memory. The error return is re-
served for compatibility with RTOS but is never taken.
Error conditions cause Exceptional System Status (see
Appendix G).

Return from Program Swap with Error Status
(.ERTN)

This command instructs a called program to return
error information to the calling program. Use it

when you want to know the status of a swapped program.
The format of the . ERTN command is:

.SYSTM
.ERTN
error return

The error return is reserved for compatibility with
RTOS but is never taken. Error conditions cause
Exceptional System Status (see Appendix G).

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

This call is identical to . RTN except that it returns an
error code to the higher-level program's AC2. Ifa
program issuing a . ERTN has been executing at level 1
(and is returning to the CLD the CLI will output an
appropriate message concerning the status code in AC2.
If the code is recognized as a system error code, a
text message will be printed. For example, the code
ERDLE (12) would evoke the message FILE DOES NOT
EXIST. If "null error' ERNUL is returned in AC2,

no error message will be reported by the CLI, If
EREXQ is returned in AC2, the CLI will take its next
command from disk file CLI. CM. If the code is un-
recognized by the CLI, the message UNKNOWN ERROR
CODE nwill be typed out, where nis the numeric code
in octal. This mechanism is described in an appendix
of the CLI manual.

Check the Level of a Running Program (.FGND)

This call returns in AC1 the level at which the current
program is runming; it always returns 0 in ACO. No
inputs are required to the . FGND call.

AC1 returns an integer code indicating the current pro-

gram level. One of the following codes will be returned:

Code Meaning
1 Level 0
2 Level 1
3 Level 2
4 Level 3
5 Level 4

The format of this call is:
.SYSTM
.FGND
error return
normal return

No error condition is currently defined.

PROGRAM SWAPPING AND CHAINING



DataGeneral

SOFTWARE DOCUMENTATION

Bootstrap a New Operating System (.BOOT)

The . BOOT call is operationally equivalent to the CLI
BOOT command. It closes all files, releases the
master directory, and invokes BOOT. SV; BOOT. SV
then looks for the DOS system or program whose
name you indicate in ACO. BOOT. SV then loads the
new system, which asks date/time questions and then
invokes its CLI.

The new system or program can be in any initialized
disk, but not in a user directory. It can also be

the name of a link to a system or program, if all

disks in the resolution chain are initialized (the overlay
file, if any, must also be linked).

For automatic start or restart features of BOOT.SV,
see Chapter 6, Automatic Restarts.

Required input to .BOOT is:
ACO - Byte pointer to system or program name.
The format is:

.SYSTM

.BOOT

error return

There is no normal return, because a successful call
invokes BOOT.SV, which then passes control to the
new system.

Possible errors:

AC2 Mnemonic Meaning
0 ERFNM Illegal file name.

12 ERDLE File does not exist.

23 ERRTN File RESTART.SV does not
exist, yet the jumper or
switches specified a search
for it.

53 ERDSN Directory specifier unknown.

101 ERDTO Ten-second disk timeout.

Licensed Material - Property of Data General Corporation

4-4

USER OVERLAYS

User overlays are blocks of code, placed in an overlay
file, that support a root program. This root program
is a save file that remains in core throughout a pro-
gram level; it extends from location 168 to NMAX, and
calls overlays into core as required. The overlay file
is divided into segments. Each segment contains the
overlays which will be loaded into a reserved area of
core; this reserved core area is called a node, and it
"belongs" to the segment. The RLDR command loads
the program, creates the overlay file, loads overlays
into segments of the file, and determines the core
node size.

Whenever the program needs to use the code in a over-
lay, it loads the overlay from the overlay segment into
the node. When the program has finished using the
overlay, it can overwrite this node with another over-
lay from the same segment, (This process differs
slightly for a multitask program; if you plan a multitask
program, see USER OVERLAY MANAGEMENT in
Chapter 5.)

The size of each node is the smallest multiple of 400g
words large enough to contain the largest overlay in the
node's segment. If any overlay is not exactly the size
of its node, it will be padded out with zeros. This
means that any segment size equals the node size
multiplied by the number of overlays within the seg-
ment. Each segment is identified on disk by its node
number.

Each overlay file is a contiguous disk file, which holds
up to 124 overlay segments. You can place no more than
256 overlays in a segment, and no overlay can be larger
than 126 disk blocks (31,256 words). If the overlays in
a segment differ significantly in size, a lot of disk space
will be used to pad out the smaller overlays to the stand-
ard size. Therefore, if you can, you should place over-
lays of about the same size in the same segment.

Directory information for each overlay resides in an
overlay directory, which RLDR builds into the pro-
gram's save file (see Appendix D). Each overlay has a
label which the system uses to identify it; this label re-
solves to a node number and an overlay number, packed
by half-words.

For an example of all this, take the following RLDR
command:

RLDR RO [A,B,C,D] R1 R2[E, F G, H] )

(A left bracket specifies the start of an overlay node,
and a right bracket specifies the end of this node. For
more on formats, see the Extended Relocatable Loaders
manual or RLDR in the CLI manual.)

093-000201-02



Licensed Material - Property of Data General Corporation

This command creates a disk save file, R0.SV, and a
disk overlay file, R0.OL. The save file contains

RO.RB, R1.RB, R2.RB, and 2 overlay nodes; the over-
lay file has 2 overlay segments containing the binaries
enclosed within each pair of brackets. Segment O of
overlay file RO. OL contains overlay A (number 0, for
node 0), overlay B (number 1 for node 0), overlay C
(number 2 for node 0), and overlay D (number 3 for

node 0). Segment 1 of RO.OL contains overlay E (num-
ber 0 for node 1), overlay F and G (number 1 for node 1),
and overlay H (number 2 for node 1). Note that the order
in which the overlay binaries were given in the command
line determines both the overlay number and node number
for each overlay.

overlay 2 (H)

segment 1 overlay 1 (FG)

overlay 0 (E)
overlay
file RO. OL

Node 1 ’ for overlays

lay 3 (D
] in segment 1 overlay 3 (O

R2 overlay 2 (C)
segment 0

R1
overlay 1 (B)

. s for overlays
Node 0 ) |__in segment 0

RO

overlay 0 (A)

save file
RO.SV

overlay directory RO.SV

400

0

MAIN MEMORY DISK

SD-C0435

Figure 4-1. User Overlays

You can disregard the loading order of a node's over-
lays if you use the . ENTO pseudo-op. .ENTO allows
you to assign a unique label to each overlay, thus mak-
ing the order of overlays in the command line unimpor-
tant, You do this by assigning each binary a unique
label as an argument to , ENTO; you then reference

the binary in your program using the unique label,
which must be declared by a . EXTN psuedo-op. If you
don't use . ENTO, you must ensure that the RLDR com-
mand line lists overlay binaries in the proper order.

The sample RLDR command creates two overlay seg-
ments. The following illustration (Figure 4-2) shows
some possible entry points in the overlays of the
second segment.

093-000201-02 4-5

DataGeneral

SOFTWARE DOCUMENTATION

file name E
.ENTO TAGE
.ENT Z,Y
Node 1
Overlay 0

Z: subprogram entry point
Y: subprogram entry point

file name F
.ENTO TAGF
.ENT

file name G
. ENTO TAGG
.ENT V

X, W

Node 1 .
Overlay 1 X: subprogram entry point
W: subprogram entry point

V: entry point

file name H
.ENTO TAGH
.ENT U
Node 1 :
Overlay 2 .
U: subprogram entry point

Figure 4-2, Segment 1 of Overlay File R0.OL

To call these overlays, the root program R0.SV must
first load the overlay using the overlay label. For
instance:

.EXTN TAGE, TAGF, TAGG, TAGH
. EXTN z, Y, X, W, V, U
.OVE: TAGE ;TAGE IS RESOLVED TO
;iNODE 1, OVERLAY O
;(ENCODED AS 400).
.OVF: TAGF ;TAGF IS RESOLVED TO
;NODE 1, OVERLAY 1
;(ENCODED AS 401).
.OVG: TAGG ;TAGG IS RESOLVED TO
;NODE 1, OVERLAY 1
;(ENCODED AS 401).
. OVH: TAGH ;yTAGH IS RESOLVED TO
. ;NODE 1, OVERLAY 2.
. ;(ENCODED AS 402).
ADC 1,1 ;sPREPARE FOR UNCONDI-
. ;TIONAL LOAD.

LDA 0, .OVE ;GET OVERLAY NUMBER.

.SYSTM ;s LOAD BINARY E
sUNCONDITIONALLY
.OVLOD n s LOAD OVERLAY ON
. ;CHANNEL n

.

USER OVERLAYS



DataGeneral

SOFTWARE DOCUMENTATION

After the program issues the system call .OVLOD, all
of binary E is loaded into core, and routines Z and Y
can be used. Because the binary was loaded using a

. ENTO label, the user didn't need to know which node
or overlay contained the binary; therefore the RLDR
sequence could have been:

RLDR RO [A,B,C,D]R1 R2 [H,E, G F])

Open User Overlays for Reading (OVOPN)

Before you can call an overlay in either a single or
multitask environment, the user overlay file must be
opened on a user channel. Several users can open an
overlay file simultaneously, on different channels. A
normal . CLOSE is used to close this channel. ACO
must contain a bytepointer to the name of the user over-
lay file (including its .OL extension), The format of
the . OVOPN command is as follows:

.SYSTM

.OVOPN1n ;OPEN CHANNEL n
error return

normal return

Possible errors resulting from ,OVOPN are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number
1 ERFNM Illegal file name
12 ERDLE Nonexistent file.
21 ERUFT Attempt to use channel which
is already in use.
53 . ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.

Ten-second disk timeout
occurred.

101 ERDTO

102 ERENA

No linking allowed (N attribute).

Licensed Material - Property of Data General Corporation

Load a User Overlay (.OVLOD)

This command loads an overlay whose node and number
word is in ACO. You must pass the node value in the
left byte, and the overlay number in the right byte; or,
if you used . ENTO in the overlay, pass a byte pointer
to the . ENTO-assigned label.

There are 2 types of overlay load: conditional and un-
conditional, An unconditional load loads an overlay
whether the overlay is in core or not. This guarantees
a fresh copy of the overlay. A conditional overlay
request, on the other hand, loads an overlay only if it is
not already in core. The conditional request can save
you time, but you should use it for reentrant overlays
only.

The .OVLOD command will load the overlay conditionally
if AC1 is set to 0; or unconditionally if AC1 is set to -1,
We recommend that all your overlays be reentrant; if
any overlay is not, be sure to load it unconditionally.

The format of the .OVLOD command is:

.SYSTM
.OVLOD n ;LOAD OVERLAY OPENED ON CHANNEL n
error return

normal return

In a multitask environment, only one task can be allowed
to issue .OVLOD commands. See USER OVERLAY
MANAGEMENT, .TOVLD command in Chapter 5 for
more on multitasking.

Possible errors resulting from .OVLOD are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
6 EREOF End of file.
7 ERRPR Attempt to read a read-
protected file.
15 ERFOP File not opened.
30 ERFIL Read error.
37 EROVN Illegal overlay number.
101 ERDTO Ten-second disk timeout

occurred.

END OF CHAPTER

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 5
MULTITASK PROGRAMMING

MULTITASK ENVIRONMENT

In a multitask environment, more than one task com-
petes for CPU control with an optimum utilization of
this resource resulting, Tasks operate asynchronously
and in real time, with CPU control being allocated to the
highest priority ready task by the Task Scheduler. A
complete list of task calls is given at the end of this
chapter.

Task priorities range from 0 through 255, with priority
0 being the highest priority. One task will automatically
be created at priority O for the task whose starting
address is specified by the . END statement at the end of
the program.

Several tasks may exist at the same priority, Equal
priority tasks receive CPU control on a round-robin
basis. This implies that the task which most recently
received control will be the last to receive control
again, unless other tasks are unable to receive control
at the moment that rescheduling occurs. Whenever a
task has a priority change (. PRI), the task is placed

at the end of the list of all tasks within its new priority.

Task Control Blocks

A task is an asynchronous execution path through user
address space demanding use of system resources.
Many tasks may be assigned to operate in a single
reentrant path, and each of these tasks may be assigned
a unique priority. Given the asynchronous nature of
tasks, the DOS Task Scheduler must maintain certain
status information about each task. This information is
retained within an information structure called a Task
Control Block (TCB), and there is one TCB for each task.
The following illustration describes the structure of
TCBs:

093-000201-02 5-1

Word Mnemonic  Contents

0 TPC User PC and Carry.

1 TACO ACO.

2 TAC1 ACl1.

3 TAC2 AC2,

4 TAC3 AC3.

5 TPRST Status bits and priority.

6 TSYS System call word.

7 TLNK Link word.

10 TUSP Usp.

11 TELN Extended save area.

12 TID Task identification,
right byte.

13 TTMP DOS temporary storage.

14 TKLAD Task kill address.

15 TSP Stack pointer.

16 TFP Frame pointer.

17 TSL Stack limit.

20 TSO Instruction TRAP PC

TPRST contains information describing the state of the
task (discussed following) and the task priority.

Status Field
Suspend Field
Transmit/Receive Field or .TOVLD

ABORT Lock

STole] [al] [ promw ]

bit 0 1 2 4 56 7 8 15

Figure 5-1. Task State/Priority Information (TPRST)

MULTITASK ENVIRONMENT



DataGeneral

SOFTWARE DOCUMENTATION

Field S is set to 1 if the task has become suspended by
either a system call or by a . XMTW/. REC/, TOVLD
task call; field S is set to 0 when the system call or

. XMT'W/.REC/.TOVLD is completed. Field U is set
to 1 only if the task has been suspended by a .SUSP,

. ASUSP, or .TIDS task call. Field T is set to a 1
only if the task has issued either . XMTW/. REC or
.TOVLD. Bit A is set if the task is being aborted.

Bit 5 is reserved. Bits 6 and 7 can help you to expand
the DOS task -handling mechanism, as explained in
Appendix J. The task priority is contained in bits 8-15.

TSYS is used by DOS in executing system calls and
.XMTW/.REC/.TOVLD. TLNK contains the starting
address of the next TCB in the queue. TUSP contains
the value of location USP at the time this task last
changed from the executing state. USP may be used
as a general purpose storage location by each task
when it is not otherwise used. The system will
restore the USP value for each task that gains CPU
control. TELN points to the task's higher-language
save area; if this doesn’t apply, the system sets TELN
to 0. TID contains the task identification number, if
any, in its right byte.

Note: The NOVA 3 and microNOVA hardware stack,
the Trap PC, and the stack limit are moved between
task swaps, in multitasking. The Stack Overflow
Handler (location 43) is not moved. To return the
contents of the hardware frame pointer in AC3 after a
system or task call, load the program with N3SAC3.

TKLAD contains the address which is to receive control
upon a task’s being killed, if such an address has been
defined via a . KILAD call. Bit O is set if a . KILL or

. ABORT of the task has been issued. The remaining
four words contain stack state save information which
are reserved for TCBs.

In a multiple task program ready for assembly, you must
specify both the number of TCBs and the number of DOS
channels which will be required. You can specify these
before assembly in your program by means of a . COMM
TASK statement or -- more conveniently -- you can
specify tasks and channels at load time by means of the
/K and /C local switches in the RLDR command line,

If a . COMM TASK statement is used, it must appear in
the first user relocatable binary loaded since it affects

5-2

Licensed Material - Property of Data General Corporation

the loading process of the remainder of the program

and determines which task scheduler (TMIN or TCBMON)
will be loaded by default. If either /C or /K switches
are used along with a , COMM TASK statement, the
switch information overrides the statement specification,
The format of the , COMM TASK statement is:

. COMM TASK, n*400+m

where: n represents the integer number of tasks and
m represents the integer number of DOS chan-
nels which will be used. Example: .COMM

TASK, 7*400+ 20,

TMIN and TCBMON, all task command modules, the
interrupt-on symbolic debugger, and BFPKG (See Applic-
ation Note #017-000003) are found in the system library,
SYS.LB. All items in SYS. LB which are loaded into the
user address space will be loaded by default at the end
of the root program code.,

TASK STATES

Tasks may exist in any of three states. Tasks are
either ready to perform their functions, they are
actually in control of the CPU and are executing their
assigned instruction paths, or they are suspended.
The Task Scheduler always gives CPU control to the
highest priority task that is ready. A task can also be
dormant ; i.e. not initiated by a . TASK or .QTSK call.

Suspended tasks are tasks which have at least one of
the three status bits (S, U, T) set to a one. A task may
become suspended for one or more of a variety of
reasons:

1. It has been suspended by .SUSP, . ASUP, or

. TIDS.

2, It is waiting for a message from another task,
.REC.

3. It has issued a transmit- message and wait call,
. XMTW.

4. It is waiting for the use of an overlay.
5. It is awaiting the completion of a . SYSTM call.

Just as a number of different events may suspend a
ready task, several events can cause a suspended
task to be readied:

1. The completion of a . SYSTM call such as a
request for 1/0).

2. The posting of a message for a suspended
task awaiting its receipt.

3. A requested overlay is loaded.

4. The readying of a task by . ARDY or by . TIDR
task calls.

5. The reception of a message sent by . XMTW,

093-000201-02



Licensed Material - Property of Data General Corporation

If a task is suspended by both a task suspend call and
by some other event, the call must be readied both
by an . ARDY (or .TIDR) call and by whatever other
event is required to ready the task. Thus a task may
be doubly suspended, with both bits S and U set in

the task's priority and status word, TPRST, Bits S,
U, and T must all be reset in order for the task to

be ready.

Tasks may be deleted from the active queue, either
separately (. KILL or . TIDK) or as a priority class

(. AKILL). Tasks which have been deleted add their
empty TCBs to an inactive chain of free element TCBs.
When a task is created (. TASK or ,QTSK), a TCB is
taken from the free element chain and is entered into
the active queue. The ,TASK or . QTSK command
must be used to initiate a multitask environment.

If all tasks are killed, and no task is awaiting creation
via . QTSK, the effect is the same as:

.SYSTM
.RTN

Program control then returns to the next highest
program level.

TCB Queves

There is one TCB queue for executing, suspended and
ready tasks. This queue consists of a chain of TCBs,
connected by the TLNK words of each TCB, and is
called the active queue. The first TCB is pointed to
by USTAC of the User Status Table. This TCB points
to the next TCB, etc. The last TCB in the chain has a
TLNK of -1,

The free element TCB chain is a simple queue of dor-
mant TCBs. TCBs in the free element chain are joined
by TLNK words; all other words in each of these TCBs
are unused. There is no priority among TCBs in the
free element chain, The first TCB in the free element
chain is pointed to by USTFC of the User Status Table
(See Figure 5-2),

Task Synchronization and Communication

DOS permits tasks to communicate with one another by
sending and receiving one-word messages. A one-word
message is sent to a task in an agreed-upon location in
user address space. User address space includes all
locations from address 16 through NMAX.

093-000201-02

5-3

DataGeneral

SOFTWARE DOCUMENTATION

The task sending a message may either return to the
Task Scheduler immediately (. XMT) or it may wait

(. XMTW) and place itself in the suspended state until

a receiving task has issued a receive request (. REC)
and has received the message. Receipt of the message
includes the resetting of the contents of the message
location to zero. Upon receipt of the message, the
recipient task has the S and T bits set to zero.

USER STATUS TABLE

The User Status Table (UST) is a 248 word table which
records information pertinent to the execution of a pro-
gram level. This table is located at addresses 0400
through 0423* inclusive and has the following structure:

address label contents

400 USTPC Used by the system.

401 USTZM ZMAX.

402 USTSS Start of Symbol Table (SST).

403 USTES End of Symbol Table (EST).

404 USTNM NMAX after runtime . MEMIs.

405 USTSA Starting address of Task
Scheduler.

406 USTDA Debugger address; -1 if
not loaded.

407 USTHU USTNM after relocatable
load.

410 USTCS FORTRAN common area
size.

411 USTIT Interrupt address; -1
initially.

412 USTBR Break address; -1 initially.

413 USTCH Number of channels and
number of TCBs.

414 USTCT Current TCB pointer.

415 USTAC Start of active TCB chain.

416 USTFC Start of free TCB chain.

417 USTIN Initial start of NREL code
(INMAX).

420 USTOD Overlay directory address.

421 USTSV Available for use by the
system.

422 USTRV Revision level number, and
during execution, the
environment state.

423 USTIA Address of TCB for keyboard

interrupt task (For RDOS
compatibility only).

*Location 12 in ZREL, USTP, points to the start of the
UST belonging to the currently executing program.
Symbol USTAD, (at interrupt level) created as an . ENTry
by the loader, points to the base of a program's UST.

USER STATUS TABLE



DataGeneral

SOFTWARE DOCUMENTATION

USTPC is always 0. USTZM contains ZMAX, the first
free location in page zero after a relocatable load,

Locations 402 and 403, USTSS and USTES, point to the
start and end of the symbol table, respectively. Under
default conditions, the loader moves the symbol table
at the termination of loading so that the last location in
the symbol table +1 coincides with the value of NMAX
after all programs are loaded. USTSS, USTES, and
NMAX are updated. If you request that the symbol
table be placed in upper core (/S switch on a RLDR
command), the symbol table is moved so that it

will be immediately below the operating system when
the save file is executed. If the symbol table has not
been loaded, locations 402 and 403 are set to zeros.

USTNM contains the current value of NMAX at run-time.
This value changes as NMAX is increased or decreased.
Location 407, USTHU, is initialized by the loader to

the value of NMAX at the termination of loading. This
word is never changed by the operating system during
program execution.

USTIT is the interrupt address (CTRL A), At the
termination of loading, this address is set to -1. If
unchanged at run time, control goes to the next higher
level program with USTIT set to a valid address when
a CTRL A interrupt occurs. The user core image is
not saved. Your program can set USTIT at execution
time to an address to which control will be transferred
if a CTRL A interrupt occurs.

USTBR is the break address (CTRL C). At the termin-
ation of loading, this address is set to a -1, Whenever
a CTRL C break occurs, the core image will be written
to file BREAK, SV on the default directory device. If un-
changed at run time, control goes to the next higher
level program with USTBR set to a valid address when a
CTRL C interrupt occurs. Alternatively, you can set
USTBR to an address to which control will be directed
upon the successful creation of the break file. If the
creation of the break file is unsuccessful, e.g., due to
insufficient file space, control will go to the address
specified by (USTBR) -1, one less than the address con-
tained in USTBR, with AC2 = error code.

USTCH contains the number of program tasks in its
left byte, and the number of I/O channels in the right

Licensed Material - Property of Data General Corporation

USTRYV is reserved for storage of the revision number
information for this save file. Revision numbers can
extend from 00 to 99; the major revision number is
stored in the left byte, and the minor revision number
is stored in the right byte of this word. While executing
.USTRYV indicates the machine and system environment
for the program. The user parameter file, PARU, SR,
supplied on tape with the system, contains the values of
the following symbols: ENUNV, ENNV3, ENSOS,
ENRTOS and ENRDOS, USTIA is kept for RDOS com-
patibility,

SYSTEM AND TASK CALLS

The following sections describe all the system and task
calls for use specifically in a multitask environment,
You must reference all task calls by their call names in
an ., EXTN statement. Only those task calls which are so
referenced will have the appropriate task call processing
modules loaded by the relocatable loader.

Upon return from all task calls, AC3 contains the con-
tents of USP (unless, on a NOVA 3 or microNOVA, the
program was loaded with N3SAC3, in which case AC3
contains the frame pointer). Program control returns
to the Task Scheduler after all task and system calls
(except for specials: . SMSK .IXMT .UIEX .UCEX

. UPEX).

The significant differences between a DOS (.SYSTM)
call and a task call are as follows:

1. Task calls consist of a one-word call with all
parameters passed in the accumulators,

2. Not all task calls have error returns. Those
which do not have error returns do not reserve
an error return location,

3. Task calls are processed in user address
space, while DOS or system calls require
system action which occurs in DOS space.

4. Task calls are not preceded by the .SYSTM
mnemonic, Task calls are resolved by the
loader to be JSR calls to task processing

byte. modules.
/ TCB, TCB, TCB,
USTFC TLNK TLNK Link Terminator
or
USTAC

Figure 5-2, TCB Free Element Chain

5-4 093-000201-02



Licensed Material - Property of Data General Corporation

TASK INITIATION

Core resident tasks can be initiated by the ., TASK com-
mand, and both core-resident and disk resident tasks
can be initiated for periodic execution. For a descrip-
tion of tasks queued for periodic execution, see

. QTSK in User Overlay Management.

Create a Task {.TASK)

This command initiates a new task at a specified prior-
ity in the user environment, and assigns an identifica-
tion number to the task, if desired. When the program
is loaded, only one task exists, This command must
therefore be issued to initiate a multitask environment.

ACO contains in its right byte the priority at which the
new task will run and in its left byte the optional task
identification number. If the right byte of ACO is set
to zero, the priority of the new task will be identical
to the calling task's priority. More than one task with
an 1,D, number of zero can exists ACI contains the
address where the new task will begin execution. The
contents of AC2 will be passed to the created task.
This permits the relaying of an initial one-word mes-
sage to the newly created task.

. TASK
error return
normal return

Control will return to the error return if there is no
TCB available. AC2 will then contain the error code:

AC2 Mnemonic Meaning
42 ERNOT No TCBs.
61 ERTID A task with the requested I.D.

(except 0) already exists.

TASK TERMINATION

Tasks can be killed within a user program in an orderly
fashion, or task operations can be halted abruptly
(. ABORT).

Tasks can be killed in an orderly fashion either singly
by an I.D. number (. TIDK), as a priority group
(.AKILL), or the calling task can kill itself (. KILL).
To ensure that a task can be terminated in an orderly
fashion, DOS provides a facility to define for each task
a special routine which will gain control upon an
attempted orderly kill.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Upon most orderly task terminations (. AKILL or

. TIDK), each task to be terminated is raised to the
highest possible priority and is readied unless it was
suspended by a .SYSTM call. Thus if it was suspended
by a . REC, .XMTW, .SUSP, or .TIDS task call, the
suspension would be lifted. If the task were in suspen-
sion due to an outstanding .SYSTM call, that call would
be completed before the task was raised to the highest
priority ready state. In either case, after the task

to be killed has been evaluated to the highest priority
ready state, one of two actions then occurs depending
upon the intention of the user. First, if no kill-
processing address is provided, then the task is simply
terminated.

Alternatively, if you wish, you could specify a special
kill-processing address for the task. If you specify
such an address, then when the task to be killed receives
control, control goes to this special processing address.
This facility gives you flexibility in providing an orderly
release of resources should the task be killed. More-
over, the kill-processing routine can act as a reprieve,
since the task executing this routine will not actually be
terminated until it itself issues a ,KILL call. Thus the
kill-processing routine can also be used as a validation
procedure to determine whether or not the target task
should be terminated.

The case of self-termination, .KILL, is special, If

a task attempting to terminate itself has a kill-process-
ing address specified, then upon issuing the . KILL

call this task will gain control as the highest priority
task at its kill-processing address. If it has defined
no such address, then the task will be terminated
immediately.

Whenever a task is terminated (by either an orderly
kill or abort), its TCB is relinquished to the free TCB
pool for possible use in the initiation of other tasks.
The following sections describe task calls used to
terminate task operations from within a user program.

Define a Kill-Processing Address (.KILAD)

The .KILAD task call permits you to define a special
address which will gain control the first time that the
termination of a task, the "target task, " is attempted.
The second time that a termination of this task is
attempted, the task will be terminated without control
transferring to the kill-processing address.

The kill address can be defined to provide a means of
releasing system resources before termination occurs.
Such resources as overlay areas, channels, user
devices and user clock definitions must be released
explicitly by the user. Having released these resources

TASK TERMINATION



DataGeneral

SOFTWARE DOCUMENTATION

and performed any other desired functions, the task
must then itself issue a . KILL call in order for its
termination to occur. Since this would be the second
attempt to terminate the task, termination would occur
immediately.

If, on the other hand, the target task decides not to
terminate itself, then before branching out of the kill-
processing routine it should issue a . KILAD call to the
same or to a different kill-processing routine, This
will ensure that if an attempt is made later to kill this
task, it will not be killed immediately but will branch
again to its kill-processing routine.

Note that a task in a kill- processing routine is in
execution at the highest priority. Thus such routines
will retain control until they relinquish this control by
a task state transition or by a priority level change.

The format of the . KILAD task call is as follows:
ACO - Address of the kill-processing routine,

.KILAD
normal return

There are no error returns from this call.
Delete a Single Task (KILL)

This command deletes the calling task's TCB from the
active queue, and places it in the free element TCB
chain. The calling task is the only task that may be
deleted via this command. There is no return from
this call. If a kill-processing address has been defined
for this task, then the task is raised to the highest
priority and control goes to this address. Otherwise,
control returns to the Task Scheduler which allocates
system resources to the highest priority task that is
ready.

‘The format of this call is:
. KILL

There is no error return nor normal return from this
call.

Delete all Tasks of a Given Priority (.AKILL)

This command first raises all tasks of a given priority
to the highest priority, and then either kills them or

transfers control to their kill-processing address. All
TCBs that are deleted from the active queue are placed

Licensed Material - Property of Data General Corporation

in the free TCB chain, Tasks in suspension due to
-XMTW, ,TIDS, .REC, or .SUSP calls will be raised

to the highest priority ready state immediately. If an
attempt is made to kill a task suspended by an outstand-
ing .SYSTM call, that task will be raised to the highest
priority at the completion of the .SYSTM call. The
calling task itself may be deleted by this command. The
format of this call is:

ACO - Priority class of task to be killed,

. AKILL
normal return

There is no error return from this command. If no
tasks exist with the priority given in ACO, no action
is taken. If all tasks become deleted (and none are
awaiting creation via , QTSK), the effect is to cause
a program return:

.SYSTM
.RTN

Abort a Task ((ABORT)

The . ABORT task call readies a specified task immedi-
ately, and executes the equivalent of an immediate .KILL
task call as soon as it gains control of the CPU, If a
.KILL processing address exists, control will be trans-
ferred to it. The exact time of completion of the , KILL
is dependent on the priority of the aborted task relative
to other ready tasks. For example, a task attempting
to perform a write sequential of 500 bytes might be
aborted after writing any number of bytes, The task
which is to be aborted is specified by I. D. number.
Thus, the call may abort either itself or some other
ready or suspended task.

Task call . ABORT does not release any open channels
used by the aborted task, nor does it release any over-
lays. Outstanding operations performed by the task,
like waiting for a message transmission/reception
(.XMTW/.REC), are terminated. Likewise, all
system calls are aborted, with one exception: calls
performing multiplexor 1/0.

The format of this call is as follows:

ACl1 - 1.D. of the task to be aborted.
.ABORT
error return

normal return

The contents of ACO is lost upon return.

093-000201-02



Licensed Material - Property of Data General Corporat

The error return is taken under one of two conditions:

AC2 Mnemonic Meaning
61 ERTID An 1.D. of zero was specified,
or no such task I.D. was
found.
110 ERABT The specified task is currently

being aborted by another task,
or it was performing multi-
plexor 1/0.

TASK STATE MODIFICATION

Change the Priority of a Task (.PRI)

This command changes the priority of the calling task
to the value contained in ACO. The calling task will be
assigned the lowest priority in its new priority class;
all other ready tasks in the same priority class will be
allocated CPU control by the Task Scheduler before
this task will receive it.

. PRI
normal return

There is no error return from this command. If a

priority greater than 255 is requested, only the
value in bits 8 through 15 will be accepted.

Suspend a Task (.SUSP)
This command places the calling task in the suspended

state by setting bit U of that task's TCB to the suspend-
ed state., There is no error return.

. SUSP
normal return

The suspended task remains until it is readied by an
.ARDY or .TIDR command.

093-000201-02

ion

5-7

DataGeneral

SOFTWARE DOCUMENTATION

Suspend all Tasks of a Given Priority ((LASUSP)

This command suspends all tasks with the priority given
in ACO. The calling task itself may be suspended by
this call, All tasks suspended by .ASUSP, even those
suspended for other reasons (e.g., an outstanding sys-
tem call, setting bit S of TPRST) will remain suspended
until readied by an . ARDY or .TIDR command and by
the readying of bit S.

. ASUSP
normal return

There is no error return from this command. If no
tasks exist with the given priority, no action is taken.
The suspended tasks may be readied only by an . ARDY
or . TIDR command.

Ready all Tasks of a Given Priority (LAARDY)

This command readies all tasks previously suspended
by . ASUSP (,SUSP or .TIDS) whose priority is given in
ACO. That is, bit U in word TPRST of each TCB that
was set by a previous call to . ASUSP, .SUSP, or TIDS
is now reset. Tasks suspended for other reasons too
(e.g., outstanding system calls) will only be readied
when bit S of TPRST in each of the TCBs is also reset,
e.g., by receiving a task message via .REC. In order
for a task to be raised to the ready state, both bit S and
U of that task's word TPRST must be set to the ready
state.

. ARDY
normal return

There is no error return from this command. If there

are no tasks with the given priority in ACO, no action
is taken,

TASK STATE MODIFICATION



DataGeneral

SOFTWARE DOCUMENTATION

INTERTASK COMMUNICATION

A mechanism is provided for transmitting and receiving
one-word messages between single tasks only. You can
also use this mechanism to lock a task process, pre-
venting multiple tasks from entering the process con-
currently, One-word messages are deposited in loca-
tions whose contents are set to zero when they contain
no message. If several tasks attempt to receive
message from the same address, only the highest
priority task will receive the message.

Transmit a Message (XMT) and Wait (XMTW)

These two calls permit the sending of a one word non-
zero message by a task to an empty (all-zero) message
location for another task. The difference between them
is that . XMT simply causes the message to be depos-
ited, while . XMTW deposits the message and suspends
the caller. .XMTW will not cause the caller to be sus-
pended if a . REC has already been issued for this mes-
sage. ACO contains the address in user address space
where the message will be deposited (this address must
not have bit zero set to one). AC! contains the one
word non-zero message which will be passed to the
receiving task in the address given by ACO.

. XMT
error return
normal return

. XMTW
error return
normal return

The following conditions will cause the error return
to be taken and an appropriate error code to be placed
in AC2:

AC2  Mnemonic Meanin,
43 ERXMT The message address is
already in use.
115 ERXMZ Zero message word,

Licensed Material - Property of Data General Corporation

5-8

Transmit a Message from a User Interrupt Service
Routine (IXMT)

Whenever a device requiring special user service gen-
erates an interrupt request, the entire task environment
becomes frozen until servicing of the special user
interrupt is completed. All tasks will resume their
former states when the environment is restarted unless
the user transmits a message to one of them by means
of the ,IXMT call* from the interrupt service routine.
Rescheduling of the program and task environment may
occur when the task environment is restarted, depend-
ing upon the exit selected from the user interrupt
routine,

If the task for which a message is intended has issued

a . REC for the non-zero message that task's state is
changed from suspended to ready even though task activ-
ity is in suspension. Contents of all accumulators are
destroyed upon return from .IXMT, and you must re-
store AC3 and AC2 before attempting an exit from the
service routine (see Chapter 6, Servicing User Inter-
rupts, and ,UIEX)., As with ,XMT, .IXMT deposits the
non-zero message in a location specified by ACO. The
contents of the location must be zero when you invoke
.IXMT. ACI1 contains the message which will be
transm itted.

IXMT
error return

normal return

These error conditions can be signalled in AC2:

AC2 Mnemonic Meaning
43 ERXMT Message address is already
in use.
115 ERXMZ Zero message word.

Receive a Message (REC)

This command returns a message in AC1 that another
task or interrupt service routine has posted by a trans-
mit command, and restores the contents of the message
address to all zeros. The message address must be
lower than 215 (i.e., bit 0 must not be set).

*IXMT and certain other user interrupt calls are not
task calls in the strict sense of the word, since there
are no TCBs associated with them. (The Task Scheduler
and task environments are in suspension.) See

Chapter 6.

093-000201-02



Licensed Material - Property of Data General Corporation

Quevue a Core-resident or Overlay Task (.QTSK)

This command periodically initiates a task and queues
it for execution. If the task resides within a user
overlay, this call loads the user overlay. If there is
no TCB currently available for the creation of the new
task, this call will be carried out as soon as a TCB
becomes available. If two tasks are queued for
execution at the same time of day, the higher priority
task will receive control first. After each time thata
new task is created and activated by this call, you must
ensure that this task is killed, suspended, etc. If the
task resides within an overlay, you must release the
overlay node.

AC?2 contains the starting address of a table, QTLN
(see the PARU. SR listing in Appendix E), words long,
which describes the priority of the task, the time it is
to be created, etc. The following task queue table
describes the queue table’s entries.

User Task Queue Table

Displacement Mnemonic  Meaning

0 QPC Starting address of task.

1 QNUM Number of times to queue
the task (-1 if the task is
to be queued an unlimited
number of times),

2 QTOV Node number/overlay num-
ber (-1 for core-resident
tasks).

3 QSH Starting hour (-1 if the
task is to be queued
immediately).

4 QSMS Starting second in hour
(reserved but unused if
QSH=-1).

5 QPRI Task L.D. /task priority.

6 QRR Rerun time increments in
seconds.

7 QTLNK System word.

10 QOCH Overlay channel (unused by
core-resident tasks).

11 QCOND Conditional/unconditional
load flag (unused by core-
resident tasks).

12 QAC2 System word (load status).

Entry QPC contains the entry point in the user overlay
or core-resident task where control will be directed
when the task is raised to the executing state, QNUM
is an integer value describing the number of times the
task will be queued. The task will be queued QNUM
times (or without limit if QNUM = -1) unless the task

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

call .DQTSK is issued. This call halts the queuing of
the specified task, essentially bypassing the value
specified by QNUM.

QTOV contains the node number in the left byte, the
overlay number in the right byte for overlay tasks; for
core-resident tasks this word must be set to -1. Since
node numbers and overlay numbers are assigned at
load time (depending upon the order of binary names in
the load command) users are cautioned to insure that
the values of QTOV correspond to the values assigned
at load time.

Entries QSH, QSMS, and QRR all affect the time that
the task will be created. QSH contains the hour to
execute, and QSMS contains the second within that hour
that the task will become created. If QSH contains -1,
the task will be created immediately.

If QSH occurs before the current time of day, the task
is queued for the next day. If QSH is greater than
24:00 hours and less than 48:00 hours, the task will be
queued for the next day. If QSH is equal to (24*d) +h,
the task will be queued in d days.

QRR contains the increment in seconds between each
time the task will be created.

QPRI contains the task L. D. (if any) in its left byte and
task priority in its right byte. If a task with the same
I.D. exists at the time this task is activated, this
task's I.D. number will be cleared to zero, QTLNK
is maintained by the system. QOCH must contain the
number of the channel upon which the overlay file was
opened by a previous . OVOPN call. QCOND must con-
tain a minus one if the overlay load is to be uncondi-
tional. Bit 0 of QLDST is set if the task is currently
being loaded; bit 15 is set if a request to dequeue the
task has been received. QOCH, QLDST, and QCOND
are unused by core-resident queued tasks.

With AC2 containing a pointer to QPC of the User Task
Queue Table, the calling sequence of this task call is:

. QTSK
error return
normal return

If the error return is taken, AC2 will contain the
following code:

AC2  Mnemonic Meaning

50 ERQTS Illegal information in Task
Queue Table.
. TOVL not loaded for an

overlay queued task.

117 ERQOV

.QTSK continues on next page.

5-11 USER OVERLAY MANAGEMENT



DataGeneral

SOFTWARE DOCUMENTATION

If the error return is not taken, control returns to the
task issuing the call at the normal return based on the
task's priority; the calling task does not become sus-

pended. When the queued task gets control, AC2 will

contain a pointer to the Task Queue Table.

ERQOV is taken as a .SYSTM. ERTN from the queuing
package. To prevent its occurrence when queuing
overlay tasks, you must include a .EXTN of . OVKIL,
.OVREL, .TOVLD or ,OVEX.

Dequeue a Core-resident or Overlay Task (.DQTSK)

This call dequeues a task which has been queued for
execution by task call . QTSK. In effect, the . DQTSK
call bypasses the value which is currently stored in
displacement QNUM of the task's User Task Queue
Table, If at some later moment the task is requeued
by a call to . QTSK, the queuing process will resume
its normal course since . DQTSK does not actually
modify the contents of QNUM.

The format of this call is as follows:
AC1 - 1,D. of the task to be dequeued.

.DQTSK
error return
normal return

Upon a normal return, AC2 returns the base address of
the task's queue table (QPC), If the error return is
taken, the following code is given:

AC2 Mnemonic

Meaning

61 ERTID Task I.D. error.

Release an Overlay Area (.OVREL)

This command decrements the overlay use count and
releases the area if the use count equals zero. This
command must not be issued from the overlay which
is to be released (see . OVKIL).

Required input to this call is:

ACO - user overlay area number in left byte;
user overlay number in right byte.

.OVREL
error return
normal return

Licensed Material - Property of Data General Corporation

An error return from .OVREL is possible with AC2
containing the error code:

AC2 Mnemonic

Meaning

37 EROVN Invalid overlay number; the
overlay area is not being

occupied by this user overlay.

Release an Overlay and Return to the Caller (.OVEX)

This command decrements the overlay use count and
releases the node if the overlay use count equals zero.
Additionally, control returns to an address specified
by the caller, typically the return address of the caller
if returning from a subroutine within an overlay.

Required input to this call is:
ACO - left byte contains the overlay node number;
right byte contains the overlay number.

AC2 - return address upon successful execution of
this call.

The format of this call is:

.OVEX
error return

One error return from a .OVEX is possible, with AC2
containing the following:

AC2 Mnemonic Meaning

37 EROVN Invalid overlay number;
the overlay area is not
being occupied by this user

overlay.

Kill an Overlay Task and Release the Overlay
(.LOVKIL)

.OVKIL kills the calling task and decrements the over-
lay use count, This is the normal method of terminat-
ing a queued, overlayed task. This call may be issued
from within the user overlay which is to be released.
Required input to this call is:

ACO - user overlay node number in left byte; user
overlay number in right byte.

The format of the call is:

. OVKIL
error return

5-12 093-000201-02



Licensed Material - Property of Data General Corporation

If the . REC task call has been made but the transmitter
has not yet issued the message, the receiving task re-
mains suspended until the message is sent. If the
message has already been issued and if the task has
not also been suspended by , ASUSP (or . TIDS), control
returns to the task scheduler., Otherwise the task re-
mains suspended until readied by . ARDY. If several
tasks attempt to receive the same message, only the
highest priority task will receive the message.

Required input to this call is the message address in
ACO., The format of the call is:

.REC
normal return

There is no error return from a . REC command.

Locking a Process via the .XMT/REC Mechanism

The .REC and . XMT commands can be used to lock
and unlock a process or data base which is shared by
several tasks, preventing more than one task at a time
from accessing the data base or the process path. In
essence, the procedure is to define a synchronization
word, the message location, which all tasks will
ittempt to receive. The task in control of the locked
resource then issues an . XMT to the synchronization
word when the resource is to be made available to

the other waiting tasks., The highest priority task
waiting to receive (. REC) the synchronization word is
then readied and gains unique control of the resource.
This task, in turn captures the use of the resource
until it unlocks the resource by issuing an . XMT to the
synchronization word, etc.

This technique requires that the locking facility be ini-
tialized before any tasks use it. Initialization can be
performed either by setting the synchronization word
initially to a non-zero value, or by having an initializa-
tion task issue an ., XMT to the synchronization word.

USER OVERLAY MANAGEMENT

The use of user overlays in a multitask environment
presents some considerations which were unnecessary
in a single task environment. In a multitask environ-
ment, .OVLOD may be issued by a task if it is the only
task in the environment which will issue overlay re-
quests, Furthermore, .OVLOD and. TOVLD (the mul-
titask overlay load request) command cannot both be
issued in a multitask environment. If . TOVLD is used,
“e overlay numbers range from 0 to 127 (see Appen-
dix D).

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

As part of its resource management activities, the

Task Scheduler maintains a record called the overlay
use count (OUC) of the number of tasks using a currently
resident user overlay. This count is decremented each
time a task issues the overlay release command,
.OVREL, When the overlay count goes to zero, some
other overlay may then be loaded. As long as any

ready task is using a resident overlay and has not yet
released this resource, no other user overlay can be
loaded. This holds true even if some higher priority
task issues an overlay request. Synchronization of tasks
waiting for overlays is accomplished via bit T of each
task's TPRST, If an overlay use count goes to zero and
an overlay load request for the released yet currently
resident overlay is issued, the overlay count is then
incremented. One of two actions then occurs, depending
on whether the overlay load (. TOVLD) request was
issued conditionally or unconditionally,

If . TOVLD is issued conditionally, the requested over-
lay is loaded if it is not core resident, and it is not
loaded if it is already core resident. One consequence
of this is that overlay code must be reentrant if such
overlays are loaded conditionally, This is so since it
would be impossible to initialize the overlay code by
having it reloaded when it is already core resident,

If the overlay use count has gone to zero and . TOVLD is
issued unconditionally, the requested overlay will be
loaded regardless of whether or not it is currently core
resident. Thus use of the . TOVLD command uncondi-
tionally permits the use of non-reentrant overlays, since
unconditional . TOVLD requests always cause the desired
overlay to be loaded.

Load a User Overlay (.TOVLD)

This command requests the use of the overlay node

and the loading of the overlay whose node/number word
is in ACO. The node number is in the left byte and

the overlay number is in the right byte. The request

is issued conditionally if AC1 contains O upon entry,

and is issued unconditionally if AC1 contains -1 upon
entry. AC2 must contain the channel number on which
overlays were previously opened by a . OVOPN command
(see Chapter 4).

If the load request is conditional and the node is free,
the overlay is loaded. If the area already contains the
requested overlay, return to the Scheduler is made
immediately. Since another task is also using the
overlay, this implies that the code must be reentrant.
If another overlay is currently in the node and the
overlay use count has gone to zero, the caller is
suspended until the node becomes free.

USER OVERLAY MANAGEMENT



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
Task
issues
. TOVLD
No Yes
ouc =0

s th
overlay

resident* 1-~0UC

Yes Task is suspended

s th
overlay
resident*

No

OUC+1 ~0uUC Task is suspended
System fetches and
loads overlay
Task Scheduler
*in the proper overlay node Note: OUC means Overlay Use Count.
Figure 5-3. .TOVLD Logic Sequence
If the load request is unconditional and the node is free, will be reserved indefinitely. An error return is pos-
the overlay is loaded regardless of whether it is cur- sible, with the following codes given:
rently core resident or not. If the overlay use count
has not gone to zero (freeing the area), the caller is AC2  Mnemonic Meaning
suspended (bit T of TPRST) until the node becomes free.
37 EROVN Invalid (nonexistent) over-
. TOVLD lay number.
error return 40 EROVA Overlay file is not a contig-
normal return uous file.
101 ERDTO Ten-second disk timeout
All overlay requests must be paired with an eventual occurred.

overlay release (. OVREL/.OVEX/.OVKIL) or the node

5-10 093-000201-02



Licensed Material - Property of Data.General Corporation

One error return is possible:

AC2  Mnemonic Meaning

37 EROVN Invalid overlay number,

USER/SYSTEM CLOCK COMMANDS

All system clock commands can be issued from either
a single task or from a multitask environment. Since
these commands are of little practical use in a single
task environment, the system and user clock commands
are presented in this chapter instead of in Chapter 3.

Define a User Clock (.DUCLK)

This command permits the definition of a user clock.
When the interval you have defined expires, the Task
Scheduler and multitask environment--if any--are
placed in suspension, and control goes to the routine
you have specified. Each time control goes to your
routine, ACO will contain a value indicating where
control came from at the time of the interruption. ACO
will contain 177776 if control was in the system. ACO
will contain -1 if control came from the system while
it was in an idle loop (i.e., awaiting an interrupt). ACO
will contain the PC if control was in user space.

To issue the . DUCLK call, you must pass in ACO the
integer number of system RTC interrupts which are to
elapse between each user clock interruption. ACI must
contain the address of your routine which will receive
control when each interval expires. No system or task
call (except for .UCEX and .IXMT) may be issued from
this routine. Moreover, assembly instruction INTEN
must not be issued. The format of this call is:

.SYSTM
.DUCLK
error return
normal return

If the error return is taken, one of the following error
codes are given: ’

AC2  Mnemonic Meaning

45 ERIBS A user clock already exists.

Upon entering the user clock routine, AC3 will contain
the address of the return upon entry to the user routine.
You must use this address in the .UCEX command to
exit from the user clock routine,

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Exit from a User Clock Routine (.UCEX)

Upon a user clock interrupt, AC3 will contain the
address of the return upon entry to the routine specified
in .DUCLK. To return from the user clock routine,
you must load AC3 with this return address, and issue
.UCEX.

Rescheduling of both the task environment and the pro-
gram environment will occur upon exit only if AC1 con-
tains some non-zero value.

The format of this call is:

AC1 - Zero only if rescheduling is to be suspended.
AC3 - Return address.

.UCEX

Control returns to the point outside the user routine
which was interrupted by the user clock. No errors
are possible from this call, This call can be issued
in a single task environment,

Remove a User Clock (RUCLK)

This system command removes a previously defined
user clock from the system. The format of the call
is:

.SYSTM
.RUCLK
error return
normal return

One error return is possible:

AC2 Mnemonic Meaning

45 ERIBS No user clock is defined.

Examine the System Real Time Clock (.GHRZ)

This system call permits you to examine the Real
Time Clock frequency. The frequency is returned in
ACO, in the following manner:

ACO Meaning

Frequency is 10 Hz,

Frequency is 100 Hz.

Frequency is 1000 Hz.

Frequency is 60 Hz (line frequency).
Frequency is 50 Hz (line frequency).
MicroNOVA internal clock.

N W

.GHRZ continues on the next page.

5-13 USER/SYSTEM CLOCK COMMANDS



DataGeneral

SOFTWARE DOCUMENTATION

The format of this call is:

.SYSTM
.GHRZ

error return
normal return

The error return is never taken.

TASK IDENTIFICATION CALLS

These calls work only with tasks which have non-
zero IDs.

Get a Task’s Status (.IDST)

This command obtains a code describing a task's status
The task whose status is to be obtained is specified by
inputting its identification number in ACl. The format
of this command is:

.IDST
normal return

The code describing the task's status is returned in
ACO.

0 - Ready

1 - Suspended by a .SYSTM call.

2 - Suspended by a .SUSP, .ASUSP, or TIDS.

3 - Waiting for a message to be sent or received.

4 - Waiting for an overlay area.

5 - Suspended by . ASUSP, .SUSP, or . TIDS and
by .SYSTM.

6 - Suspended by . XMTW or .REC and by . SUSP,
. ASUSP, or ,TIDS.

7 - Waiting for an overlay area and suspended by
. ASUSP, .SUSP, or .TIDS.

10 - No task exists with this I. D. number.

The base address (displacement TPC) of the task's
TCB is returned in AC2.

There is no error return from this call.

Kill a Task Specified by 1.D. Number (.TIDK)

This command kills only that task whose identification
number is specified. Tasks suspended by .SUSP,
.TIDS, or . ASUSP will be raised to the highest priority
and will transfer to a kill processing address or will
then be terminated. The format of this command is:

AC1 - L, D. of task to be killed.
. TIDK

error return
normal return

Licensed Material - Property of Data General Corporation

With the error return, this code is given:

AC2 Mnemonic Meaning

61 ERTID Task I,D. error.
Change the Priority of a Task Specified by
I.D. Number (.TIDP)

This command changes the priority of that task whose
identification is specified by ACl. You must give new
priority (from O to 255 inclusive) in ACO, bits 8 to 15.
The format of this command is:

. TIDP

error return
normal return

With the error return, this code is given:

AC2 Mnemonic Meaning

61 ERTID Task I.D. error.

Ready a Task Specified by 1.D. Number (.TIDR)

This command readies only that task whose identifica-
tion number is input in AC1, That is, this command
resets bit U in word TPRST of this task's TCB, which
was set by a previous call to . ASUSP, ,SUSP, or

. TIDS., The format of this call is:

.TIDR

error return
normal return

With the error return, this code is given:

AC2 Mnemonic Meaning

61 ERTID Task I.D. error

If the specified task's bit U of TPRST was already
reset, the normal return is taken.

Suspend a Task Specified by I.D. Number (.TIDS)

This command suspends only that task whose identifi-
cation number is input in AC1, That is, this call sets
bit U in word TPRST of the specified task's TCB. The
format of this command is:

. TIDS
error return
normal return

~ 093-000201-02



Licensed Material - Property of Data General Corporation

If no task exists with the specified I. D, number, the
error return is taken:

AC2 Mnemonic Meaning

61 ERTID Task I.D. error
If the task's bit U in word TPRST is already set, the
normal return is taken,

DISABLING AND ENABLING THE MULTI-
TASK ENVIRONMENT (.SINGL AND .MULTI)

In a normal multitask environment, ready tasks compete
for CPU control according to their relative priority.
Although you can assign the highest priority (0) to one
or more tasks, rescheduling occurs on each system
interrupt, or when the executing task issues a system or
task call -- thus, in a multitask environment, even the
highest priority task may be suspended. Under some
circumstances, you may want a task to retain CPU
control continuously. To give a task such control, DOS
provides the task call

. SINGL

When a task issues . SINGL, it disables the multitask
environment and retains CPU control despite system
calls and most task calls it issues; although interrupts
continue, the Scheduler will allow the task to retain
control. However, user interrupt routines defined via
. IDEF continue to execute as usual. The privileged
task retains CPU control until it restores the multitask
environment by issuing task call

.MULTI

The multitask environment is also restored if the task
suspends or kills itself.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

Generally, a task should not disable the environment
unless it must be absolutely autonomous; certainly it
should not do so if it relies on other tasks. If you must
deny other tasks access to a critical resource, like a
database, use the .XMT /. REC mechanism.

As with other task calls, you must declare , SINGL and
.MULTI external (. EXTN) in a source program if you
want to use them.

Disable the Multitask Environment (.SINGL)

This call disables the multitask environment, and gives
the issuing task continuing CPU control, despite its
priority or any system calls (and most task calls) it
issues. This can be useful for operations outside of user
state (see Appendix J).

There is no required input to . SINGL; there is no error
return.

Format:

. SINGL
normal return

Restore the Multitask Environment (.MULT!)

This call enables normal Scheduler operations and the
multitask environment after they have been disabled by
call .SINGL. There is no required input, nor an error
return from . MULTI.

Format:

.MULTI
normal return

DISABLING AND ENABLING THE MULTITASK
ENVIRONMENT (.SINGL AND .MULTI)



DataGeneral

SOFTWARE DOCUMENTATION

DISABLING THE TASK SCHEDULER

Generally the DOS multitask calls permit you to manage
a multitask program with complete satisfaction; the task
scheduler always gives CPU control to the highest prior-
ity ready task. In some instances, however, you may
want to suspend briefly the rescheduling function per-
formed by the task scheduler. For example, you might
suspend rescheduling to control race conditions between
several tasks competing for a single resource. Since
the disablement of rescheduling--even briefly--is a
drastic step, it should be performed with caution, Note
that disabling rescheduling will not affect system activ-
ities such as interrupt service. Moreover, the system
will reactivate the scheduling function as soon as any
system call is issued, even though you may not yet have
reenabled rescheduling explicitly.

Disable Rescheduling (.DRSCH)

This task call prevents rescheduling in this program
environment until either scheduling is reenabled
explicitly or a system call is issued. Task call .DRSCH
should be issued only with caution since it disrupts the
ordinary management of the multitask environment; the
task that issues this call will retain control even though
other higher priority tasks may be ready.

The format of this call is as follows:

.DRSCH
normal return

No errors are returned.
Reenable Rescheduling (.ERSCH)

Normally, the task scheduler is enabled and manages
the multitask environment within its program. If task
scheduling has been suspended by a call to . DRSCH
and no system call has been issued, you can reactivate

Licensed Material - Property of Data General Corporation

the scheduler by issuing task call ,ERSCH. This call
has the following format:

. ERSCH
normal return

No errors are possible. This call has no effect when
scheduling is enabled,

TASK CALL SUMMARY

NOTE: All task names must be declared external.

.ABORT  Terminate a task immediately.

.AKILL Kill all tasks of a given priority.

.ARDY Ready all tasks of a given priority.

. ASUSP Suspend all tasks of a given priority.

.DQTSK  Dequeue a previously queued task.

.DRSCH Disable the rescheduling of the task
environment.

.ERSCH  Reenable the rescheduling of the task
environment.

.IDST Get the status of a task.

JOXMT Transmit a message from a user interrupt
service routine.

.KILAD Define a kill -processing address.

.KILL Kill the calling task.

.MULTI Restore the multitask environment.

.OVEX Release an overlay and return to the caller.

.OVKILL Kill an overlay task and release the
overlay.

.OVREL Release an overlay node.

. PRI Change the priority of a task.

.QTSK Queue a core-resident of overlay task.

.REC Receive a task message.

. SINGL Disable the multitask environment.

. SMSK Modify the current interrupt mask.

. SUSP Suspend the calling task.

. TASK Initiate a task.

. TIDK Kill a task specified by I. D. number.

. TIDP Change the priority of a task specified by
I.D. number.

. TIDR Ready a task specified by I. D. number.

. TIDS Suspend a task specified by I. D. number.

. TOVLD Load a user overlay in a multitask
environment.

.UCEX Return from a user clock routine.

.UIEX Return from a user interrupt routine.

. UPEX Return from a user power fail service
routine.

. XMT Transmit a task message.

. XMTW Transmit a task message and wait for its
receipt.

Figure 5-4., Task Command Summary

END OF CHAPTER

093-000201-02




Licensed Material - Property of Data General Corporat

ion

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 6
USER INTERRUPTS AND

POWER FAIL/AUTO RESTART PROCEDURES

This chapter has two sections. The first describes
establishing and referencing user interrupts; the second
covers the system's handling of power failures. In some
cases, you may want to write your own routine for hand-
ling power failures. If so, you can use calls from the
first section.

The material in this chapter applies to both single and
multitask environments.

SERVICING USER INTERRUPTS

When the system receives an interrupt request, it chooses
an interrupt service routine from its device interrupt
service table. This table contains pointers to Device
Control Tables (DCTs) for devices specified at SYSGEN;
it also contains pointers to three-word DCTs built by
the user to service interrupts from devices which were
not SYSGENed. An application Note called RDOS User
Device Driver Implementation describes the SYSGENed
DCTs. You use a three-word DCT to provide an inter -
face between the system and your service routine. Your
DCT tells DOS how to mask devices and where to find
the service routine. It looks like this:

Displacement Mnemonic Purpose
0 DCTBS (Unused)
1 DCTMS Interrupt service mask
2 DCTIS Interrupt service routine

address

DCTIS is a pointer to the routine which serves this
specific device interrupt request. DCTMS is the
interrupt mask that you want to be ORed with the
current interrupt mask while DOS is in your interrupt
service routine. This mask establishes which devices -
if any - will be able to interrupt the currently
interrupting device. (The interrupts are on when you
enter the routine but are masked for this priority
device.) Make sure this mask masks out this priority
levice. The mechanism of device interrupts is
covered in the Programmer's Reference Manual for

Peripherals.

093-000201-02

After a user interrupt occurs, control goes to your service
routine; AC3 contains the return address required for

exit from your routine, and AC2 contains the address of
the DCT. The task call . UIEX exits from the routine;

this call may be issued in both single and multitask en-
vironments.

All user devices are removed from the system when
either a program swap or chain occurs. When the sys-
tem receives user interrupt on a program level which
has not identified the user device, it issues a NIOC to

the device and then returns to normal program execution.

Whenever a device requiring special user service gener-
ates an interrupt request, the entire task environment
halts until the interrupt has been serviced. All tasks
will resume former states when the environment re-
starts unless you transmit a message to one of them by
means of the .IXMT call from the interrupt service
routine. See .IXMT, Chapter 5. Rescheduling of the
program and task environment may occur upon return
from the routine, depending on the contents of AC1 in
the return command (. UIEX, below).

In addition to . IXMT, the task calls . SMSK, .UIEX,
and .UPEX can be issued by a user interrupt or user
power fail routine. You will find them all below.

Identify a User Interrupt Device Routine or
Power-Fail Restart Routine (.IDEF)

This call introduces to the system a device which was
not identified at SYSGEN time, whose interrupts you
want the system to recognize. The .IDEF call places
an entry in the interrupt vector table. You can also
use . IDEF to identify your own power-up routines,
Use .UIEX, below, to exit from the routine.

For User Devices:

ACO must contain the device code of the new device;
AC1 must contain the address of the new device's
DCT.

SERVICING USER INTERRUPTS



DataGeneral

SOFTWARE DOCUMENTATION

For Power-up Routines:

Pass 77g in ACO and the starting address of your
power-up routine in ACl. This address must exceed
400g.

The format of this command is:
.SYSTM
. IDEF

error return
normal return

Possible error messages are:

AC2 Mnemonic Meaning

36 ERDNM Illegal device code (more
than 77_.). Device code 77
is reserved for the power
monitor/auto restart option.

45 ERIBS Interrupt device code in use.

Exit from a User Interrupt Routine (.UIEX)

This call returns control to a program after a user inter-
rupt; you can use it in both single and multitask environ-
ments. When a user device interrupt occurs, AC3 will
contain the return address from the user routine and AC2
will contain the address of the user device DCT. If your
routice uses AC3, your program must restore the address
that AC3 had upon entry to the routine. Without this ad-
dress, the system cannot return from your routine. Sim-
ilarly, AC2 must be restored to the address of your DCT.

Upon return, rescheduling of both the task and program
environment will occur upon exit only if AC1 contains
some non-zero value.

Control returns to the point where the interrupt
occurred.

Required input to . UIEX is:

AC1 - Zero only if rescheduling is to suppressed.
AC2 - Original address of DCT (value at interrupt).
AC3 - Original return address (value at interrupt).
The format of the call is:

.UIEX

No errors or returns are possible from this call.

6-2

Licensed Material - Property of Data General Corporation

Remove a non-SYSGENed Interrupt Device (.IRMV)

To prevent the system's recognition of an interrupt de-

vice which was identified by the ,IDEF command, issue
the .IRMV command. ACO must contain the user device
code which is to be removed from the system.

The format of the ., IRMV command is:

.SYSTM
IRMV

error return
normal return

One possible error message may be given:

AC2 Mnemonic

36 ERDNM

Meaning

Illegal device code (more
than 77_), or attempt to re-
move a SYSGENed device.

For more information about communicating with tasks

from a user interrupt service routine, see Chapter 5,

Transmitting a Message from a User Interrupt Service
Routine.

Modify the Current Interrupt Mask (.SMSK)

Use this task call to change the user interrupt mask of

a service routine, in both single and multitask environ-
ments. Whenever a user interrupt occurs, the interrupt
mask is ORed with the mask in DCTMS of the user DCT
to produce the current interrupt mask. The .SMSK call
allows you to produce a new mask which is the logical
OR of the old mask (upon entry to the service routine)
and a new value. The accumulators are destroyed by
.SMSK, and you must restore them for the subsequent

. UIEX.

AC1 - New value to be ORed with old mask.
«SMSK

normal return

There is no error return possible from this call.

093-000201-02



Licensed Material - Property of Data General Corporation

POWER FAIL/AUTO RESTART
PROCEDURES

If you chose the AUTO RESTART ON POWER FAIL
option during system generation, your DOS system
includes support for the power fail/auto restart

option. When the system detects a power loss, it trans-
fers control to a power fail routine which saves the
contents of all accumulators, the PC, carry, and FPU.

For all semiconductor memory, the auto restart routine
requires a working battery backup. If there is no
battery, or if it fails during the power loss, the state

of any program in semiconductor memory will be lost.

Avutomatic Start

If you wish, you can bring up a DOS system without
operator intervention. This is most useful for a ded-
icated system which lacks a console, or for restart
after a power failure where a backup battery fails,
(power fails are described below).

For a start without operator intervention, the system
disk must be in the primary drive on the controller
(DPO, DP2, DP4, or DP6 on microNOVA, DPO or DP4
on NOVA). It must also have the proper bootstrap
root, BOOT, SV, and a DOS system named SYS, SV/
SYS.OL (or links named SYS.SV/SYS.OL to a system)
on ft.

For a microNOVA DOS system, the computer must
have the CPU program load option, and jumper W10
must be in on the CPU control board. For a NOVA,
all data switches must be up.

If all of these conditions exist when you execute the
program load steps, BOOT.SV will invoke SYS; then
SYS will attempt to chain to a file named RESTART. SV
instead of the CLI. File RESTART.SV is not pro-
vided with DOS; you must create it to tell SYS what to
do when it gets control. If the DOS system cannot

find RESTART.SV, it displays a FILE NOT FOUND
error message, then asks date/time questions.

After you answer these, it invokes its CLI.

If you provide auto start (or restart) via RESTART.SV,
remember that RESTART. SV is chained into execution
on level 0. It should either swap to a dedicated program
on level 1, or chain to CLI. SV, or release the master
device to shut down. Also, when RESTART. SV gets
control, the time and date remain 00:00:00, January

1, 1968, and you must update them if your application
requires this.

093-000201-02 6-3

DataGeneral

SOFTWARE DOCUMENTATION

microNOVA Power Fail and Auto Restart

The power fail rules assume that this DOS system has
the hardware power fail option, and that it was
SYSGENed to include AUTO RESTART ON POWER FAIL.,
The system must also have a backup battery.

When power returns:

1. If the battery backup works throughout the outage,
and if the front panel POWER switch is in LOCK
when power returns, DOS will continue the current
program from the point of interruption. If you de-
fined a power fail routine with ., IDEF, DOS will
execute the . IDEF routine after restarting all
SYSGENed devices.

If the backup battery works throughout the outage,
and if the POWER switch is in RUN when power
returns, execute the following steps to have DOS
execute the power-up routine above:

¢ If you have a hand-held console, press CONT.
* If you have the console debug option, type "P."

¢ If you have the CPU program load option, press
the front panel rocker switch to CONTINUE.

2, If the battery fails and if this microNOVA system
lacks the CPU program load option, then control
will go to either the hand-held console or console
debug routine (whichever is present), when power
returns. Rebootstrap the system and CLEAR
all files (see the CLI manual).

If you have the CPU program load option and the
battery backup fails, DOS can automatically
restart. (Naturally, you must have executed

the steps below before the battery failure.) For
an automatic restart, jumper W10 must be in on
the CPU control board, and the POWER switch
must be in LOCK when power is restored. Under
these conditions, the hardware program loads the
device specified in the program -load jumpers.
This brings in BOOT.SV, which searches for a
DOS system named SYS.SV/SYS. OL (or links
named SYS.SV/SYS.OL to a system) when power
returns. If BOOT finds SYS. SV, it executes

SYS. SV, which then types this message on the
console:

MICRONOVA DOS REV x. xx
MANUAL START (STRIKE ANY KEY) ?

POWER FAIL/AUTO RESTART PROCEDURES



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

The system then waits 15 seconds. If a key is struck
on $TTI during this time, DOS asks the normal date/
time questions, then invokes its CLI as described under

The system then restores the current program, which
resumes from the point of interruption.

Automatic Start, above. If 15 seconds pass, DOS
attempts to chain to file RESTART.SV. If DOS can't
find RESTART. SV, it invokes its CLI. See Automatic
Start, above, for details on RESTART,SV,

If jumper W10 is not in on the CPU board, the power
fail routine will invoke BOOT (as above) when power
returns; but BOOT will ask:

FILENAME?
and wait for someone to bring up a system normally.
In summary, if you want the system to resume some
operation automatically after a battery backup failure

during a power outage:

e The system must have the CPU program load option,
you must insert jumper W10 on the CPU board.

e The POWER key must be in LOCK when the
power is restored.

® You must have a DOS system (or links) named
SYS.SV/SYS.OL on DPO (or equivalent in other
enclosure).

® You must build file RESTART. SV to tell DOS what
to do when it regains control.

NOVA Restart Procedures

If the console key was in the LOCK position when power
returns, the console will display this message:

POWER RESTORED

If the console key is in the ON position when power
returns, set all data switches to zero (down), and lift
START when power returns. This outputs the POWER
RESTORED message and restores the current program.

Power-up on Devices

All system peripherals (except mag tape drives) receive
power-up service when power returns. Power-up service
for disks includes a complete reread or rewrite of the
current disk block, thus no disk information is lost.

Character output devices may lose one or more
characters during power up. The card reader may lose
up to eighty columns of information on a single card:

a line printer may lose as much as a line.

No power up service is provided for user devices.
You must use . IDEF to identify a user power-up
routine, and . UPEX, below, to exit from such a
routine.

Exit from a User Power-up Routine (.UPEX)

.UPEX returns from a user power-up routine
(defined by .IDEF). When the system enters a user
power-up routine, AC3 contains the return address,
and your program should save AC3 and restore it
before issuing . UPEX.

.UPEX is a task call, which means that you must
insert a . EXTN .UPEX statement in any program
which includes it.

The format of . UPEX is

AC3 - Return address upon entry to the user routine.

. UPEX

Control returns to the address which the original
program was executing when the power failure
interrupted it. The . UPEX call takes neither an error
nor normal return.

End of Chapter

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

CHAPTER 7
GENERATING A DOS SYSTEM
ON A microNOVA

This information now appears in How to Generate Your DOS System (093-000222).

GENERATING A DOS

093-000201-02 7-1 SYSTEM ON A microNOVA






DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

CHAPTER 8
GENERATING A DOS SYSTEM
ON A NOVA

This information now appears in How to Generate Your DOS System (093-000222).

GENERATING A DOS
093-000201-02 8-1 SYSTEM ON A NOVA






Licensed Material - Property of Data General Corporation

APPENDIX A
DOS COMMAND AND ERROR SUMMARY

COMMAND SUMMARY

DataGeneral

SOFTWARE DOCUMENTATION

After a task or system call, AC3 contains the User Stack Pointer (USP). Error codes, if any, are returned in AC2.
Task calls sometimes destroy ACs, as noted. SYSTM calls preserve ACs if not specifically returning values.

[ caLL || ACO | ACl [ AC2 |
. ABORT Destroyed. Bits 8-15: task I.D. number.
. AKILL(l) Priority of tasks to be killed.
.SYSTM Bytepointer to file name. Device characteristic mask Channel number
. APPENDn (see .GTATR). (ifn=77)
. ARDY(I) Priority of tasks to be readied.
. ASUSP(I) Priority of tasks to be suspended.
.SYSTM Bytepointer to diskette
.Bo0T(?) specifier:filename.
. SYSTMg;
.BREAK
.SYSTM Bytepointer to file name. Integer number of disk blocks.
.CCONT
.SYSTM Bytepointer to new directory
.CDIR name.
.SYSTM 1B0:  read protected. Channel number
.CHATRn 1B1:  attribute protected. (ifn=77)
1B7:  no link resolution.
1B9:  user attribute.
1B10: user attribute.
1B14: permanent file.
1B15: write protected.
.SYSTM same as .CHATR Channel number
.CHLATn (ifn=77)

1)
2

no error return

no normal return

093-000201-02

COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

| caL I ACO ACl Ii AC2 ]
.SYSTM Starting address of 228 Channel number
.CHSTSn word area. (if n = 77)
.SYSTM Channel number
.CLOSEn (ifn =77)
.SYSTM Bytepointer to file name, Integer number of disk blocks.
.CONN
.SYSTM Bytepointer to file name.
.CRAND
.SYSTM Bytepointer to file name.
.CREAT
.SYSTM Bytepointer to file name.
.DELET
.SYSTM Bytepointer to directory/
.DIR directory device specifier.
.DQTSK bits 8-15: task I.D. number. (returned)
Base address of released
queue area.
.DRSCHG)
.SYSTM Number of RTC ticks. Address of user interrupt
.DUCLK routine.
.SYSTM Bytepointer to file name. Characteristic inhibit mask Channel number
. EOPENn (see .GTATR). 0 leaves pre- (ifn=77)
vious characteristics un-
changed.
.ERSCHO)
.SYSTM Data word to be passed
.ERTN() to next higher level.

¢Y)
(2)

no error return

no normal return

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CALL ACO AcCl AC2
.SYSTM Bytepointer to save 0: swap to user Message to new program.,
.EXEC file name. program.

1B0: chain to user
program.,
1: swap to debugger.
1BO+1: chain to debugger.
.SYSTM 0 (returned)
. FGND Program level code
(1 = level 0,..5 = level 4)
.SYSTM (returned)
.GCHAR bits 9-15: character
bits 0-8: cleared
.SYSTM (returned)
. GCHN Free channel number.
.SYSTM Bytepointer to 6-byte area
.GCIN receiving the input console
name.
.SYSTM Bytepointer to 6-byte area
.GCOUT receiving the output console
name,
.SYSTM (returned) (returned) (returned)
.GDAY Day Month Year - 1968
.SYSTM Bytepointer to 13g-byte
.GDIR area.
.SYSTM (returned)
.GHRZ 0: no RTC
1: 10 HZ
2: 100 HZ
3: 1000 HZ
4: 60 HZ
5: 50 HZ
6: microNOVA internal clock
.SYSTM (returned) (returned)
.GPOSn High order portion of byte- Low order portion of byte- Channel number

pointer.

pointer,

(ifn=77)

093-000201-02

COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporatio:
| CALL 1| ACO | ACl AC2 |
.SYSTM Bytepointer to 15g byte
.GSYS area,
.SYSTM (returned) (returned) Channel number
.GTATRn 1B0:  read protected. 1B1:  80-column card. (ifn=77)
1B1:  attribute protected. 1B2: lower-to-upper case. -
1B2:  save file 1B3:  form feed on open.
1B3:  link entry* 1B4:  full word device,
1B5:  directory file* 1B6: LF after CR.
1B6:  link resolution entry* 1B7:  parity check/generation,
1B7:  no link resolution allowed. 1B8:  rubout after tab.
1B9:  user attribute. 1B9:  null after FF.
1B10: user attribute, 1B10: keyboard input.
1B12: contiguous file* 1B11: TTY output.
1B13: random file* 1B12: no FF hardware,
1B14: permanent file 1B13: operator intervention
1B15: write protected needed.

1B14: no TAB hardware.
1B15: leader/trailer.

.SYSTM (returned) (returned) (returned)
.GTOD Seconds Minutes Hours (using a 24-hr,
clock)
.SYSTM Device code DCT. User power fail
.IDEF restart address if
ACO = 77g

. IDST(l) 0: ready. bits 8 - 15: task L. D, number (returned)

1: suspended by .SYSTM call, Base address of task's

2: suspended by .SUSP, .TIDS, TCB

. ASUSP,

3: waiting for . XMTW/,REC.
4: waiting for overlay area.
5: suspended by .SUSP,
. ASUSP, or .TIDS and
.SYSTM call.

6: suspended by . XMTW/.REC
and .SUSP, .ASUSP, or
. TIDS.

7: suspended by . ASUSP,
.SUSP, or . TIDS and
waiting for overlay area.

10: no such task exists.

.SYSTM Bytepointer to directory/ -1: full (tape or diskette)
.INIT global device specifier. 0: partial

*cannot be set by user

(1)
(2)

Nno error return
no normal return

A-4 093-000201-02




Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

| can ] ACO ACl | AC2 |
.SYSTM Device code.
.IRMV
. IXMT Message address Nonzero message
(destroyed). (destroyed) (destroyed)
(1) ;
.KILAD Address of kill-
processing routine.
kL@
. SYSTM Bytepointer to link name 0: link will be resolved in
. LINK diskette of link entry's
residence.
non-0: byte pointer is either to
an alternate directory
alias name or to an alias
name string.
.SYSTM Bytepointer to 13g byte
. MDIR area
.SYSTM HMA NMAX
.MEM
.SYSTM NMAX increment or decre- (returned)
. MEMI ment (2's complement), new NMAX (after change)
.SYSTM Core data address, if a data bit O: 1, even parity; Channel number
« MTDIOn transfer 0, odd parity. (if n = 77g).
bits 1 - 3: Status word or system
0, read (words); error code if error re-
1, rewind tape; turns; status word if
3, space forward; read status normal
4, space backwards; return). Returned:
5, write (words); 1B0:  error.
6, write EOF; 1Bl:  data late.
7, read device status 1B2: tape rewinding.
word. 1B3: illegal command.
bits 4-15: 1B4:  high density if 1;
word or record count. low demnsity if 0.
If 0 on space com- 1B5:  parity error.
mand, position tape 1B6:  end of tape.
to new file if it is less 1B7:  end of file.
than 4096 records 1B8:  tape at load point.
away. 1B9:  9-track if 1.
(returned) 1B10: bad tape; write
number of words failure.
read/written or number 1B11: send clock.
of records spaced. 1B12; first character.
1B13: write protected or
write locked.
1B14: odd character.
1B15: umit ready.

093-000201-02

COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

[ caL || ACO ACl AC2
.SYSTM Bytepointer to tape global Characteristic inhibit mask Channel number ifn = 77g
- MTOPDn specifier. (see .GTATR) -
. MULTI(1)(4)

.SYSTM
.ODIS
.SYSTM
.OEBL
.SYSTM Bytepointer to file name. Characteristic inhibit mask Channel number
.OPENn (see .GTATR); 0 leaves pre- (ifn = 77)
vious characteristic un-
changed.

.OVEX(S) bits 0 - 7: area number (node). Return address.

bits 8 - 15: overlay number.
.OVKIL(4) bits 0 - 7: area number (node).

bits 8 - 15: overlay number.
.SYSTM bits 0 - 7: area number (node). | -1: unconditional Channel number
.OVLODn bits 8 - 15: overlay number. 0: conditional (ifn=77)
.SYSTM Byte pointer to overlay file Channel number
.OVOPNn name (with . OL extension) (ifn = 77)
.OVREL bits 0 - 7: area number (node).

bits 8 - 15: overlay number
.SYSTM bits 9 - 15: character;
.PCHAR bits 0 - 8: ignored.
. PRI(l) bits 8 - 15: new task priority.
.QTSK Address of User Task

Queue table.

1)

no error return

(Z)if error EREOF, error code in bits 8-15, partial read count in bits 0-7.

(S)normal return through AC2

(4

no normal return.

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

caLL || ACO AC1 AC2
.SYSTM Starting core address to Starting disk relative block bits 0 - 7: number of
.RDBn receive data. number blocks to be read(2
bits 8 - 15: channel num-
ber (if n = 77)(2)
.SYSTM Byte pointer to user core (returned) Channel number
.RDLn area, Read byte count (including (ifn=177)
terminator).
.SYSTM Bytepointer to core Number of bytes to be read Channel number
.RDSn buffer. (if EOF detected, partial (ifn=77)
byte count returned).
.SYSTM (returned)
. RDSW Console switch position.
. REC(I) Message address. Message.
.SYSTM Bytepointer to old name. Bytepointer to new name.
.RENAM
.SYSTM
.RESET
.SYSTM Bytepointer to directory
.RLSE or global device specifier.
.SYSTM Bytepointer to file name. Characteristic inhibit mask Channel number
. ROPENn (see .GTATR); O presexves (ifn =77)
characteristics without
change.
.SYSTM Bytepointer to file name Starting address of 22g
.RSTAT string. word area,
.SYSTM
.RTN?)
.SYSTM
.RUCLK

(]')1'10 error return

(z)no normal return

093-000201-02

COMMAND SUMMARY




DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

CALL Il ACO ACl1 AC2
.SYSTM Day Month Year - 1968
.SDAY
.siNg L@
. smskD Lost New interrupt mask to be Lost
ORed with old mask.
.SYSTM High order portion of byte- Low order portion of byte Channel number
.SPOSn pointer, pointer, (ifn 77)
.SYSTM Bytepointer to file name Starting address of 22¢
.STAT string. word area.
.SYSTM Seconds Minutes Hours
.STOD
.SUSP(l)
.TASK bits 0 - 7: task L,D. number; New task entry point Message to new task.
bits 8 - 15: task priority. address.
. TIDK bits 8 - 15: task I.D.
number.
. TIDP bits 8 - 15: new priority. bits 8 - 15: task L.D,
number.
. TIDR bits 8 - 15: task L.D.
number
. TIDS bits 8 - 15: task L.D.
number.
. TOVLD bits 0 - 7: area number; -1: unconditional; Channel number on which
bits 8 - 15: overlay number. 0: conditional. overlays were . OVOPNed.,
.UCEX(l)(2)(3) Any nonzero value if re-
scheduling to occur.

1)
2

no error return
no normal return

(s)return address is input in AC3

A-8 093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

CALL \ ACO ACl AC2 ]
1)(2
.UIEX( 3 Any nonzero value if re- As passed to interrupt
scheduling to occur. handler.
.SYSTM Bytepointer to link entry
.ULNK name,
.SYSTM Channel number
.UPDATn (ifn=77)
_upexN@G)
.SYSTM Starting core address. Starting relative block bits 0 - 7: number of
.WRBn number. disk blocks(®)
bits 8 - 15: channel
number (if n = 77)(4)
.SYSTM Bytepointer to core buffer. Write byte count, including Channel number
.WRLn terminator, returned at end (ifn=77)
of write.
.SYSTM Bytepointer to core buffer. Number of bytes to be right byte:
.WRS n written, Channel number
(ifn=77)
. XMT Message address. 1-word message for
receiving task.
. XMTW Message address. 1-word message for

receiving task.

M
@
3)

no error return

no normal return

return address is input in AC3

(4)on error ERSPC, partial write count returns
in bits 0-7, and error code in bits 8-15.

093-000201-02

COMMAND SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

ERROR MESSAGE SUMMARY

Licensed Material - Property of Data General Corporatior

Applicable commands are arranged alphabetically in columns, in descending order.

CODE MNEMONIC

0 ERFNO
1 ERFNM
2 ERICM
3 ERICD
4 ERSV1
6 EREOF
7 ERRPR

10 ERWPR

11 ERCRE

MEANING

Illegal channel number.

Ilegal file name.

Illegal system command.

Illegal command for
device.

File requires the Save
attribute or the ranDom
characteristic,

End of file.

Attempt to read a read-
protected file.

Attempt to write a
write-protected file.

Attempt to create an
existent file.

APPLICABLE COMMANDS

. APPEND . GPOS
.CHATR .GTATR
.CHSTS .MTDIO
.CHLAT .MTOPD
.CLOSE .OPEN
.EOPEN .OVLOD
. APPEND .CREAT
. BOOT .DELET
.CCONT .DIR
.CDIR .EOPEN
.CONN .EXEC
.CRAND INIT

.OVOPN
.RDB
.RDL
.RDS
.ROPEN
.SPOS

. LINK

. MTOPD
.OPEN
.OVOPN
.RENAM
.ROPEN

.WRB
.WRL
.WRS
.UPDAT

.RLSE
.RSTAT
.STAT
.UNLK

Any unimplemented command passed to system,

. APPEND .MTOPD
.GCHAR .PCHAR
. MTDIO .RDB
.EXEC .RDB
.OVLOD .RDL
. OVOPN . RDS
.RDB .WRB
.RDS .OVLOD
.RDB .OVOPN
. INIT .WRB
.WRS .WRL
.CCONT .CRAND
.CDIR .CREAT
.CONN . LINK
.RENAM

.RDS
.RDL
.WRB

. WRB

.WRL
.WRS

.RDL

.WRL
.WRS

093-000201-02



Licensed Material - Property of Data General Corporation

CODE

12

13

14

15

16

17

20

21

22

23

24

25

26

Attempt to reference a

Attempt to alter a

change file attributes.

Attempt to reference an

Fatal utility error.

Execute CLI.CM on

Attempt to use a channel

Line limit exceeded on
read or write line.

Attempt to restore a non-

Parity error on read line.
Magnetic tape parity.

Trying to push too many

MNEMONIC ME ANING
ERDLE

nonexistent file.
ERDE1

permanent file,
ERCHA Ilegal attempt to
ERFOP

unopened file.
ERFUE
EREXQ

return to CLIL
ERNUL Null error code.
ERUFT

already in use.
ERLLI
ERRTN

existent image.
ERPAR
ERCM3

levels.
ERMEM

093-000201-02

Attempt to allocate more
memory than available.

APPLICABLE COMMANDS

DataGeneral

SOFTWARE DOCUMENTATION

. APPEND .EOPEN .OPEN .STAT
.BOOT .EXEC . OVOPN .ULNK
.DELET .INIT .ROPEN
.DIR . MTOPD .RSTAT
.DELET .RENAM .ULNK
.CHATR .CHLAT
.CHATR . GPOS .RDB .UPDAT
.CHLAT .GTATR .RDL .WRB
.CHSTS . MTDIO .RDS .WRS
.CLOSE .OVLOD .SPOS .WRL
.EXEC (argument to . ERTN)
.EXEC (argument to . ERTN)
. APPEND .GCHN .OPEN
. EOPEN . MTOPD .OVOPN
.RDL .WRL
.BOOT
.RDL .RDS
.EXEC
.EXEC . MEMI .OVOPN

A-11 ERROR MESSAGE SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION

Out of disk space.
Magnetic tape - EOT

File read error. Magnetic
tape - bad tape - odd count.

Unit improperly selected.

Illegal starting address.

Attempt to read into

Attempt to perform direct
block I/O on a sequentially

Files specified on different

Device not in system or
illegal device code.

Illegal overlay number.

File not accessible by

direct (free form) 1I/0.

Attempt to set illegal

CODE MNEMONIC MEANING

27 ERSPC
30 ERFIL
31 ERSEL
32 ERADR
33 ERRD

system area.
34 ERDIO

organized file.
35 ERDIR

directories.
36 ERDNM
37 EROVN
40 EROVA
41 ERTIM

time or date.
42 ERNOT Out of TCB's.
43 ERXMT

Message address is
already in use.

Licensed Material - Property

APPLICABLE COMMANDS

.BREAK
.CCONT
.CDIR

.CRAND

.EXEC
.OVLOD

. APPEND
.DIR
.EOPEN

.EXEC

.CHSTS
.GCIN
.GCOUT

.RDB

.RENAM

. APPEND
.DIR
.EOPEN

.OVEX
.OVKIL

. MTDIO
.OVLOD

.SDAY

. TASK

. IXMT

.CRAND

.CREAT
.DIR

.OVOPN
.RDB

.INIT
.OPEN
.MTOPD

.GDIR
.GSYS
. MDIR

.WRB

.IDEF
. INIT
.IRMV

.OVLOD
.OVREL

.OVOPN
.RDB

.STOD

.XMT

of Data General Corporatic

. INIT .MTOPD
.OPEN .WRL

. LINK .WRS
.ROPEN

.RLSE

.RDB .RSTAT
.RDL .STAT

. RDS

. MTOPD .ROPEN
.OPEN .RSTAT
.RLSE .STAT

. TOVLD

. TOVLD

.WRB

. XMTW

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
CODE MNEMONIC MEANING APPLICABLE COMMANDS
45 ERIBS Interrupt device code .DUCLK .IDEF .RUCLK
in use.
46 ERICB Insufficient number of .CCONT .CONN
free contiguous disk
blocks.,
50 ERQTS Illegal information in . QTSK

task queue table.

51 ERNMD Attempt to open too many .DIR LNIT
devices or directories.

52 ERIDS Illegal directory specifiers .DIR .INIT
53 ERDSN Directory specifier .APPEND .CRAND .EXEC .RENAM
unknown, .BOOT .CREAT . LINK .ROPEN

.CCONT .DELET . MTOPD «RSTAT
.CDIR .DIR .OPEN .STAT
.CONN .EOPEN .OVOPN LULNK

55 ERDDE Directory depth exceeded.  .CDIR

56 ERDIU Directory in use. . INIT .DELET .RLSE

57 ERLDE Link depth exceeded. . APPEND .CREAT . INIT .RENAM
.CCONT .DELET . LINK .ROPEN
.CDIR .DIR . MTOPD .RSTAT
.CONN .EOPEN .OPEN .STAT
.CRAND .EXEC .OVOPN .ULNK

60 ERFIU File is in use. . APPEND .DELET .OPEN
.BREAK .EOPEN .RENAM

61 ERTID Task I.D. error. . ABORT . TASK . TIDP . TIDS
.DQTSK . TIDK . TIDR

64 ERSCP File position error. . SPOS

66 ERDNI Directory/device not . APPEND .CRAND .EXEC .RENAM

initialized. . BOOT .CREAT . LINK .ROPEN

.CCONT .DELET .MTOPD .RSTAT
.CDIR .DIR .OPEN .STAT
.CONN .EOPEN .OVOPN .ULNK

093-000201-02 A-13 ERROR MESSAGE SUMMARY



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporatior
CODE MNEMONIC MEANING APPLICABLE COMMANDS
73 ERUSZ Not enough room for UFTs .EXEC

within USTCH, or attempt-
ing to execute a file loaded
with /Z or /C global

switch.
75 ERNLE Attempt to delete an entry  .ULNK
lacking the link
characteristic.
77 ERSDE Error detected in SYS.DR. .CCONT .CONN .CREATE . LINK
.CDIR .CRAND LINIT .RENAM
100 ERMDE Error detected in MAP,DR .BREAK .CDIR .CREAT
.CCONT .CRAND .DELET
101 ERDTO Device timeout. . APPEND . CRAND . MTOPD .RSTAT
.BOOT .CREAT . OPEN .STAT
.BREAK .DELET .OVOPN . TOVLD
.CCONT .DIR . RDB . ULNK
. CDIR .EOPEN .RDL . WRB
.CHATR .EXEC .RDS . WRL
.CHLAT .GTATR .RENAM .WRS
. CHSTS LINIT .RESET
. CONN . LINK .ROPEN
102 ERENA Link not allowed. .APPEND .EOPEN .INIT .OVOPN
.DELET .EXEC .OPEN .ROPEN
110 ERABT Task abort is not allowed.  .ABORT
111 ERDOP Attempt to open a magnetic . APPEND .MTOPD .ROPEN
tape unit that is already .EOPEN .OPEN
open.
112 EROVF System stack overflow .DIR . INIT
(the current system com-
mand is aborted).
114 ERNIR Attempt to release a tape .RLSE
unit with a currently open
file.
115 ERXMZ Attempt to transmit a zero- . IXMT . XMT . XMTW

word message.

A-14 093-000201-02



Licensed Material - Property of Data General Corporation

CODE

117

121

122

124

125

127

130

131

132

133

MNEMONIC

ERQOV

ERFMT

ERBAD

ERZCB

ERNSE
ERRDY

ERINT

EROVR

ERFRM

ERSFT

093-000201-02

MEANING

. TOVL not loaded for overlay
task.

Disk format error.

Disk has invalid bad block
table.

Attempt to create a contiguous
file of zero length.

Program is not swappable.
Line not ready (multiplexors).

Console interrupt received
(multiplexors).

Character overrun error
(mux hardware).

Character framing error
(mux only).

Too many soft errors on
diskette.

DataGeneral

SOFTWARE DOCUMENTATION

APPLICABLE COMMANDS

.QTASK

.DIR

.DIR

.CCONT

. EXEC

. INIT

. INIT

.CONN

ERROR MESSAGE SUMMARY






Licensed Material - Property of Data General Corporation

APPENDIX B

DataGeneral

SOFTWARE DOCUMENTATION

HOLLERITH - ASCIl CONVERSION TABLE

CHAR. CARD CODE ASCII CODE CHAR. CARD CODE ASCII CODE ]
NUL 12-0-9-8-1 000 SPACE NO PUNCHES 040
SOH 12-9-1 001 ! 12-8-7 041
STX 12-9-2 002 " 8-7 042
ETX 12-9-3 003 # 8-3 043
EOT 9-7 004 $ 11-8-3 044
ENQ 0-9-8-5 005 % 0-8-4 045
ACK 0-9-8-6 006 & 12 046
BEL 0-9-8-7 007 ' 8-5 047
BS 11-9-5 010 ( 12-8-5 050
HT 12-9-5 011 ) 11-8-5 051
LF or NL 0-9-5 012 * 11-8-4 052
VT 12-9-8-3 013 + 12-8-6 053
FF 12-9-8-4 014 , 0-8-3 054
CR 12-9-8-5 015 - 11 055
SO 12-9-8-6 016 12-8-3 056
st 12-9-8-17 017 / 0-1 057
DLE 12-11-9-8-1 020 0 0 060
DC1 11-9-1 021 1 1 061
DC2 11-9-2 022 2 2 062
pcs3 11-9-3 023 3 3 063
DC4 9-8-4 024 4 4 054
NAK 9-8=5 025 5 5 065
SYN 9-2 026 6 6 066
ETB 0-9-6 027 7 7 067
CAN 11-9-8 030 8 8 070
EM 11-9-8-1 031 9 9 071
SUB 9-8-17 032 8-2 072
ESC 0-9-17 033 ; 11-8-6 073
FS 11-9-8-4 034 < 12-8-4 074
GS 11-9-8-5 035 = 8-6 075
RS 11-9-8-6 036 > 0-8-6 076
us 11-9-8-7 037 ? 0-8-7 077

093-000201-02

HOLLERITH - ASCIl CONVERSION TABLE



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
CHAR. CARD CODE ASCII CODE CHAR., CARD CODE ASCII CODE
@ 8-4 100 \ 8-1 140
A 12-1 101 a 12-0-1 141
B 12-2 102 b 12-0-2 142
C 12-3 103 c 12-0-3 143
D 12-4 104 d  12-0-4 144
E 12-5 105 e 12-0-5 145
F 12-6 106 f 12-0-6 146
G 12-17 107 g 12-0-7 147
H 12-8 110 h 12-0-8 150
| 12-9 111 i 12-0-9 151
J 11-1 112 i 12-11-1 152
K 11-2 113 Kk 12-11-2 153
L 11-3 114 1 12-11-3 154
M 11-4 115 m 12-11-4 155
N 11-5 116 n 12-11-5 156
o 11-6 117 o 12-11-6 157
P 11-7 120 p 12-11-7 160
Q 11-8 121 q 12-11-8 161
R 11-9 122 r 12-11-9 162
S 0-2 123 s 11-0-2 163
T 0-3 124 t 11-0-3 164
U 0-4 125 u 11-0-4 165
\Y 0-5 126 v 11-0-5 166
w 0-6 127 w 11-0-6 167
X 0-7 130 X 11-0-7 170
Y 0-8 131 y 11-0-8 171
Z 0-9 132 z 11-0-9 172
{ 12-8-2 133 { 12-0 173
\ 0-8-2 134 | 12-11 174
} 11-8-2 135 ) 11-0 175
t or — 11-8-7 136 ~ 11-0-1 176
‘- or — 0-8-5 137 DEL 12-9-7 171

END OF APPENDIX

B-2 093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

APPENDIX C
ASCIll CHARACTER SET

LEGEND: T
To find the ocral value of a character, locate the character, and Character code in decimal g -
combine the first two digits at the top of the character’s column | i @
with the third digit in the far left column (E:?CD C equivalent hexadecimal code 0 7C ¢

aracter \_____j
OCTAL 00_ 01_ 02_ 03_ 04_ 05_ 06_ 07_
0 8 BS 16 24 32 40 48 56
0f=4 NUL b= (BACK- |red P . X | SPACE }-f — sre
00 18| SPACE) |10 ! 18 ! 40 4D ¢ FO 0 8
1 A 9 HT |17 Q 25 v 33 \ 41 ) 49 )
ns = e el ] — =
01 ! 05| (TAB)  f11 ! 19 ! 5A ' 50 F1 F9 9
2 10| LINE |18 26 34 " 42 50 58
2 jd B —_— ot R B Z — S . ] ed
02 ! 15| FEED [42 ! 3F ! 7F| (QUOTE) [5C F2 2 7A
3 1" VT 19 27 ESC 35 43 51 59
3 e  (VERT  fomnd ed | # el b L -
5] 1 [e8] Yae [13] 1S [Br] Escare) [75 aE t I 3 e '
4 12 FF 20 28 36 44 . 52 60
4 |~ (FORM |l T L] \ ] $ el | aa
571 P 06| FEED) |3g ! T ' 58 s8] comma [ 4 4 <
5 13 CR 21 29 37 45 53 61
5 E — T— V] - ] | 9 e - o] Tl =
o] ! o] wetuAn) [p] | ) T 8C ° 80 F5 5 7€
6 LS . 14 22 v 30 38 N 46 . 54 6 62 o
o] ke it Rl e el |2 <
2E ! OF N 32 ! 1E 1 50 48| (PERIOD) [fg 6
s | BELL 15 23 a1 ] 39 , 47 , 55 ; 63 R
2F 1G oF 10 26 1w 1F 7D| (APOS) |61 F7 6F '
OCTAL 10— 11_ 12_ 13- 14_ 15_ 16_ 17_
64 72 80 88 96 N 104 112 120
v a e ferensesent — —
0 == @ = H 57 P X 78] (GRAVE) |88 el P [T x
1 65 A 73 I 81 a 89 v 97 105 113 121
e ) D8 E8 81 a 89 ' 9 a A8 y
66 74 82 90 98 108 ) 114 122
2 ha J e B z bt b Rkl ] r B
2] B D1 o] " E9 82 99 ) 9 A5 z
7 11 1
B P T S S K A L Lt
c3 D2 E2 8D 83 92 A2 co
4 188 b 76 L 84 T 92 \ 100 d 108 \ 116 ' 124 |
[ D3 E3 EQ 84 93 A3 4F
5 |ee £ 77 M 85 U 93 | 101 R 109 " 117 " 128 |
65 D4 E4 9D 85 94 A4 Do
6 70 c 78 N 86 v 94 I or 102 ; 110 R 118 v 126 ~
A s | —] Kal e L |l =l
c8 05 ES 5F 86 95 AS at| (TILDE)
5 79 87 95 103 111 119 127]  DEL
AR REE il L RARE ] N
c7 G D6 0 E6 w oD of - g7 9 96 ° A6 w 07| RuBoUT)

SD-00476 Character code in octal at top and left of charts. means CONTROL

END OF APPENDIX

093-000201-02 C-1 ASCIl CHARACTER SET






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX D
OVERLAY DIRECTORY STRUCTURE

Every save file with user overlays has an overlay direc-
tory which describes each overlay. This directory re-
sides in user address space, is pointed to by USTOD of
the User Status Table, and can be examined by the user.
Each overlay directory in a multitask environment has
the following structure:

A

increasing
memory
addresses
bits: 0 78 15
overlay OVNAD node address
area "n" ‘ OVBLK starting block number

descrip- ) OVDIS [number of overlays |load [size in blocks
tor frame { OVRES |overlay number overlay use count

overlay ‘ OVNAD node address

area 0 OVBLK starting block number

descrip- ) OVDIS [number of overlays [load [ size in blocks
tor frame I OVRES |overlay number overlay use count

(LSTOD)—~OVDNS [ total node count ]

Figure D-1. Overlay Directory Structure (multitask)

Each overlay area in the save file has a corresponding
four-word descriptor frame, The load bit (bit 8) of
OVDIS is set to 1 during a multitask overlay load., Each
overlay number, during and after loading, is bits 0-7 of
OVRES. Finally, the overlay use count (OUC), bits
8-15 of OVRES, describes the number of tasks using or
requesting the resident overlay. This count must go to
zero before a new overlay can be loaded in this area.

Bits O to 7 of OVDIS describe the number of overlays
which can be loaded into this overlay area. Bits 9 to 15
of this word describe the memory size (integer multiples
of decimal 256, the size of each disk block) of this over-
lay area., OVBLK contains the starting logical disk block
address of this area's segment of the overlay file, and
OVNAD contains the core address for the start of this
overlay area.

The overlay directory built by the relocatable loader

for a single task environment is identical to that de-
scribed above except that the load bit is ignored. Over-
lay areas hold a maximum of 256 overlays in both multi-
task and single task environments., The maximum num-
ber of one-block overlay areas is 124. Page zero and
task scheduler space requirements limit the maximum
overlay size (in a single overlay system) to 126 disk
blocks.

END OF APPENDIX

093-000201-02

OVERLAY DIRECTORY STRUCTURE






DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

APPENDIX E
USER PARAMETERS

This appendix lists file PARU. SR, which describes all DOS user parameters. These
parameters define important system calls, task calls, and mnemonics for user
programs. PARU.SR was delivered with your DOS system. File PARS. SR contains all
system parameters.

LTITL FARU

USER FILE TABLE (UFT) TENPLATE

. we we

; USER FILt DEFINITION (UFD) OF UFT

.CUSR UFTFN=D ;FILE NAME

.CUSR ULFTEX=5 FEXTENSION

LCUSR ULFTAT=6 JFILE ATTRIEBUTES

.CUSR LFTLK=7 sLINK ACCESS ATTRIBLTES

.CUSR UFLAD=7 JLINK ALTERNATE DIRECTORY
.CUSR LFTEK=10 ;NUVBEFR OF LAST BLCCK IN FILE
.CUSR UFTBC=11 ;NUVBEK OF EYTES IN LAST BLCCK
.CUSR LFTAD=1? ;DEVICE ADCRESS CF FIRST BLCCK (€ UNASSIGNEL)
.CUSR LFTAC=13 ;YEAR=DAY LAST ACCESSED

.CUSR LFTYC=14 ;YEAR=-LAY CREATEC

.CUSR LFLAN=14 JLINK ALTAS NAME

«CUSR LFTFM=15 ;HOUR=NMINUTE CREATECL

.CUSR UFTPI=16 sUFD TENMPORARY

.CUSR LFTF2=17 i "

.CUSR LFTUC=20 ;USER COUNT

.CUSR LFTCL=21 OCT LINK

; DEVICE CCATROL BLOCK (DCB) .OF UFT

.CUSR LFTOC=22 ;CCT ACCRESE

.DUSR UFTUN=23 JUNIT NUMBER

.CUSR LUFCAl=24d ;CURKENT BLCCKk ADDRESS (KIGH OKCER)
.CUSR LFTCA=25 ;CURRENT BLCCk ADCRESS (LCw GORCER)
.CUSR LFTCB=26 ;CURRENT BLCCK NUMBER

+CUSR LFTST=27 ;sFILE STATLE

.CUSR LFEA1=30 ENTRY'S BLCCK ADCRESS (HIGH GRCER)
.CUSR UFTEA=31 ;ENTRY'S BLCCK ADCRESS (LCw ORCER)
.CUSR LUFN&1=32 ;NEXT BLOCK ACDRESS (HIGH ORDER)
.CUSR UFTNA=33 ;NEXT BLOCK ACDRESS (LOW CRCER)
LCUSR UFLALI=34 ;LAST ELOCK ACDRESS (kIGH ORDER)
.CUSR LFTLA=35 ;LAST BLCCK ACDRESS (LOW CRCER)
.CUSR UFTLR=36 ;SYS.DR DCB ACDRESS

.CUSR LFFA1=37 ;FIRST ADDRESS (HIGFH ORDER)

.CUSR LFTFA=40 ;FIRST ADCRESS (LCw OKDER)

; DCB EXTENSION

.CUSR LFTBN=41 ;CURRENT FILE BLOCK NUMBER

.CUSR UFTBP=42 ;CURRENT FILE BLOCK BYTE PCINTER
+CUSR UFTCH=43 ;DEVICE CHARACTERISTICS

.CUSR UFTCN=u44 ;ACTIVE REG CGUNT

093-000201-02 E-1 USER PARAMETERS



DataGeneral

SOFTWARE DOCUMENTATION

.CUSR
«CUSR

UFTEL=UFTCN=UFTFN+1
LFDEL=UFTDE-UFTFN+1

sUFT ENTRY
sUFC ENTRY

.DUSR
.CUSR
.CUSR
.CUSR
.CUSR

UCBAT=UFTAT=UFTDC
LCOL=LFTDL=UFTDC

UCBAD=UFTAD=UFTOC
LCBEK=UFTBK=UFTDC
LCBBN=UFTBN=UFTDC

iNEGATIVE
JNEGATIVE
iNEGATIVE
iNEGATIVE
JPOSITIVE

CIsSF.
CIsF,
CISP.
CISF,
CISP.

TC
TG
TC
TC
TG

; FILE ATTRIBUTES (IN UFTAT)

Licensed Material - Property of Data General Corporation

LENGTH
LENGTH

ATTRIBUTES

FIRST ADCRESS (HIGK ORDER)
FIRST ADCRESS (LOW ORDER)
LAST BLOCK

CURRENT BLOCK

.CUSR ATRP =18B% JREAD FROTECTED

.CUSR ATCRA=18B1 ;CHANGE ATTRIBUTE PROTECTED
.CUSR ATSAV=182 FSAVED FILE

.CUSR ATNRS=187 ;CANNOT BE A RESCLLTICN ENTRY
.CUSR ATUS1=189 ;USER ATTRIEUTE # 1

+CUSR ATUSZ=18B14 JUSER ATTRIBUTE # 2

.CUSR ATPER=1B14 JFERMANENT FILE

.CUSR ATWF =1815 sWRITE PROTECTEC

; FILE CHARACTERISTICS (IN UFTAT)

FART OF 3330
LFTDL

=> CEVICE LSES DATA CHANMEL
;VASK OF LCWER PRICRITY DEVICES

.CUSR ATNMSK=T7B7 ;70 GET HIGF CORCER
; ADDRESSES OLT OF

«CUSR ATLAK=1B3 JLINK ENTRY

.CUSR ATPAR=184 sPARTITION ENTRY

.DUSR ATODIR=1BS ;OIRECTCRY ENTRY

.CUSR ATRES=1B6 ;LINK RESCLLTION (TEMPCORARY)

.CUSR ATCON=1B12 ;CONTIGUOUS FILE

.CUSR ATRAN=1813 sRANDOM FILE

i

;7 DCT PARAMETERS,

i

.CUSR CCTES=@ i1B@=1

.CUSR CCTMS=1

.CUSR CCTIE=?

; ADDRESS OF INTERRLFT SERVICE RCLTINE

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

; DEVICE CHARACTERISTICS (IN UFTCH)

«.CUSR
+CUSR
«CUSR
.CUSR

" +LCUSR
.CUSR
.CUSR
«.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
+.CUSR
.CUSR
.CUSR
.CUSR

.CUSR

e we e

.DUSR
«DUSR
+.OUSR

e

«DUSK

~e wo we

7 +DUSR
.OLSR

-

~DUSR
.OUSR
+DUSR

w. we

«WRL

~v ws we we we

.CUSR
.CUSR
.CUSR
.CUSR

.CUSR

093-000201-02

DCSTB=
DCCFO=
DCsT0=
DCCGN=

DCICI=
DCCAF=
DCTC=

DCKEY=
DCNAF=
DCRAT=
DCPCK=
DCLAC=
DCSFC=
DCFWD=
DCFFO=
DCLTU=
Dccees=
CCDIO=
DCBCK=

DCSFC=

PCNI= 1815
DCCGN=  1B14
DCLCC= 1B13
1B12
CCTC= 1811
CCkEY= 1B1@
DCNAF=  1BS
DCXCN= 188
187
DCLAC= 1Bé6
DCSFC= 1BS
CCCKE= 1B4
TO LINE e6d
ACe= CODE+LINE ®
ACt= DATA
wedCC= @87
pedlL Sz 1HB7
wWeunMS= 2R7
pnedDTR= 1RI1S
WE4RTS= 1E14d

1815
1815
1815
1814

1813
1B8te
1811
1ele
1809
1808
1B@7
1806
18¢5
1824
1Be3
1B@2
1821
1800
1800

160@

DEVICE CHARACTERISTICS

SUPPRESS TRAILING BLANKS $CDR CANLY

DEVICE REGUIRING LEADER/TRAILER

USER SPECIFIED TIME OUT CCNSTANT (NMCA)
GRAPHICAL COLTPUT CEVICE WITROLT TABBING
HARDRARE

INPUT DEVICE REGUIRING CPERATCR INTERVENTION
OUTPUT DEVICE WITHCGUT FCRVM FEEC HARDWARE
TELETYPE CUTPUT CEVICE

KEYBOARD CEVICE

OUTPLT DEVICE REGLIRING NLLLS AFTER FORM FEEDS
RUBOUTS AFTER TABS REQUIRED

DEVICE REGUIRING FARITY CFECK

REQGUIRES LINE FEECS AFTER CARKIAGE RTN
SPOCLABLE DEVICE

FULL WORC DEVICE (ANYTHING GREATER THAN

FORM FEECE CN COPEMN

CHANGE LCWER CASE ASCII TC UPPEFR

READ €0 CCLLMS .

SUSPEND PROTOCOL CN TRANSMIT (MCA)

DISK CHARACTERISTIC (SET NON=PARANMETRICALLY)
SET MEANS ITS 333¢

SPOOL CCNTRCL

SET = SPCCLING ENABLED

RESET = SPFGCLING CISABLEC

W3 Ws We e We We We W Ve Ve We We We We Ve W4 We We We Ws We We “o We

FOR GTY ANC ALM (PARL,SR)

i (MASKING ENAELES) CONSOLE INTERRLPTS
; (MASKING CISABLES) TAB EXPANSICA
;LOCAL LINE (MASKING MAKES MODEM LINE)

;SAVE FCR 3 MCDEVM PROGTOCALS
_ FGR FUBCLT (MASKING GIVES BACKEPACE)
(MASKING CISABLES) INPUT ECHOING,

LINE EDITS, AND tZ ECF

w~e we we

; (MASKING CISABLES) 2@ NULLS AFTER FURM FEEC
;(MASKING ENABLES) XON/XOFF PROTCCALL FOR &TTR
;SAVE FCR FLTLRE LSE

; (MASKING CISABLES) LINE FEED AFTER CARRAIGE RETLRAN
;(MUST BE CFF) SPCCLING

JCARRAIGE KETLRN ECKFO

H (MASKING ENABLES CR AS ENTER KEY)

;CHANGE DEVICE CHARACTERISTIC MASK (AC1)
;CHANGE LINE SPEEC (AC1= @ => 3)

;CHANGE MCDEM STATE (AC1) AS FOLLOWS

; FRAISE CATA TERMIMAL FEADY

; ELSE LCWER

; KAISE REGUEST TO SEND

; ELSE LCWEFR

E-3 USER PARAMETERS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporatior

SWITCFES

ws we e

.CUSR A.Sh= 1600
.CUSR B.Sh= 1801
«DUSK C.S5n= 1802
+LUSR D.Skh= 1603

.CUSR E.Sk= 1Bud
.CUSR F.Shh= 1B@S
.LUSk G.Sh= 1BU6
.CUSR HeSh= 18@7
.CUSR I.Skh= 1808
.CUSR J.Sh= 18@9
.CUSR K,Sh= ig1@
.CUSR L.Sk= 1611
.CUSR M.Swn= 112
.CUSR NeSh= 1813
.CUSR 0.Sn= 161¢
.CUSR P.Sh= 1815
.CUSR Q.Sn= 1600
.CUSR R.Sn= 1801
+CUSR S.Sn= 1Bu2

+CUSR T.Ss= 1603
.CUSR U.Sih= 1B8¢d

+CUSR V.Sh= 1885
.LUSR WoSih= 1806
.CUSR X.Skh= 1£@7
.CUSR Y.Sh= 1Be8
.CUSK Z.S0= 1609

E-4 093-000201-02



Licensed Material - Property of Data General Corporation

-. we we

.CUSR
.CUSR
+CUSR
.CUSR
«CUSR
.CUSR
.CUSR
.LUSR
+CUSR
.CUSR
«CUSR
.CUSR
.CUSR
«CUSK
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
+CUSR
.CUSR
+CUSR
+CUSR
.CUSR

SYSTEM CUNSTANTS

SCWFB=255.
SCDES=256.
SCRRL=64.
SCLLG=132.
SCAMX=24.

iWORDS PER ELCCK

;SIZE OF DISK BLCCK

;WORDS PER RANDCM RECCRD

sMAX LINE LENGTH

;VAX ARGUMENT LENGTF IN BYTES

SCFNL=UFTEX=UFTFN+1 FFILE NAME LENGTH
SCEXT=UFTEX=UFTFN F;EXTENSION CFFSET IN NAME AREA

SCMEFR=1C.
SCSTR=16
SCTINV==ED.
SCPFPL=0
SCPFA=6
SCDSk=3
SCBAD=U
SCSysS=6
SCPSH=1
SCPNNM=Y

sMAX ERROR RETRY CCULNT

$SAVE FILE STARTING ACDRESS

;RINGIO 1 MS. LCCF TIME (SN)

sPRIMARY PARTITION LEVEL

;PRIMARY PARTITION BASE ADDRESS

s ABSOLUTE ACDRESS CF CISK INFORMATION BLOCK
;ABSOLUTE ACDRESS CF BAD BLCCK TAELE BLOCK
}SYS.DR ADCRESS CFFEETY

7PUSH DIRECTCRY CFFSET

;MAX NUMBER CGF PUSH LEVELS

SCMAP=SCPNMx2+SCPSH ;RELATIVE BASE ACCRESS CF MAP.CR

SCBFB=1

JRELATIVE BACKROUND PLSH BASE

SCFPB=SCBPB+SCPNM ;RELATIVE FCREGROLAC PUSH BASE
SCFZW=SCPNMx44SCBPB ;FRAME SIZ2E WORC (SKIP COULBLE WCRD PUSH INDICEE)

SCNVvw=SCFZW+1
SFINT=1B¢
SFBRK=1B1S
SCNSC=64,

iNUMBER=OF=SYSTEM=CVERLAYS WORD
i INTERFUPT FLAG

iBREAK FLAG

sNUMBER OF SYSTEM CVERLAYS

; SYSTEM BCCTSTRAP CONSTANTS

.CUSR
«CUSR
«.CUSR
.CUSR
+.CUSR
+.CUSR
«CUSR
+CUSR
.CUSR
«CUSR
.CUSR
«CUSR
+CUSR
.CUSR

.CUSR
«CUSR
+«CUSR
.CUSR

093~000201-02

SCTEP=0
SCINS=1
SCFSA=2
SCPAR=SCPSA
SCINT=3

SCCLI=SCINT+!
SCZMX=SCCLI+1
SCCPL=SCZMX+1
SCPBA=SCCPL+1
SCOFA=SCPBA+1
SCPB1=SCOFA+1
SCOF1=SCPB1+1
SCBAS=SCOF1+1

SCSWC=SCBAS
SCICv=2®

SCALN=V
SCUN=1
SCGC=2
SCNGO=4

;TEXT STRING BYTE FCINTER

;SWITCHED FLLL/PARTIAL-OVERLAYS ACDRESS
;PROGRAM START ADCRESS

;PARTIAL INIT ADDRESS
;FULL/PARTIAL=OVERLAYS INIT ADDRESS
;ADDRESS CF END OF CLI
FSQUASHED/UNSGUASHEL FLAG

jCURRENT PARTITICN LEVEL

JPARTITION BASE ACDRESS (LOwW ORCER)
;OVERLAY BASE ACDRESS (LCOW CRPER)
;PARTITION BASE ACDRESS (HIGH ORDER)
sOVERLAY BASE ADDRESS (HIGH ORDER)
;BASE OF INFCRMATICN BLOCK

;SWITCh FOR SCINS ERTRY

;INITIAL DEVICE CCCE

JASCII UNIT NULMBER

JUNIT (DEVICE CODE)

JENTRY TO PASS FILENANE
;ENTRY 7O ASK FROM CONSOLE

E-5 USER PARAMETERS

DataGeneral

SOFTWARE DOCUMENTATION



DataGeneral

SOFTWARE DOCUMENTATION

$ SYSTEVM ERROR CODES

.DUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.DUSR
+DUSR
.CUSR
«CUSR
.CUSR
.CUSR
.CUSR
+.CUSR
.CUSR
«CUSR
.CUSR
.DUSR
.CUSR
+CUSR
+CUSR
.CUSR
.CUSR
.CUSR
«CUSR
.DUSR
«CUSR
.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
«.CUSR
.CUSR
.CUSR
.DUSR
.CUSR
.CUSR
.CUSR
.OUSR
.CUSR
.CUSR
+CUSR

ERFNC=
ERFNN=
ERICVM=
ERICD=
ERSVis=
ERWRO=
ERECF=
ERRPR=
ERWFR=
ERCRE=
ERDLE=
ERDE1L=
ERCHA=
ERFCPs=
ERFUE=
EREXQ=
ERNLL=

ERUFT=
ERLLI=
ERRTN=
ERPARS=
ERCM3=
ERMENM=
ERSPC=
ERFIL=
ERSEL=
ERACR=
ERRD=

ERDIC=
ERDIR=
ERDNM=
EROVN=
EROVA=
ERTINVS
ERNCT=
ERXMT=
ERSGF=
ERIBS=
ERICB=
ERSINV=
ERQTS=
ERNND=
ERIDS=
ERDSN=
ERC2S=

~NounesuwN—-N

10
11
12

-~.\.ﬁnQ;~¢~.‘o\.\-.-s-\-\.-¢‘-s.suwosos.\.sqscsoncﬁ-\osnsaso—--w\o\¢~c-~o\¢s.\.~.\.

Licensed Material - Property of Data General Corporatior

ILLEGAL CHANNEL NLMBER

ILLEGAL FILE NAME

ILLEGAL SYSTEV CCVMAND

ILLEGAL CCMMAND FCR DEVICE

NOT A SAVED FILE

ATTEMPT TC WRITE AN EXISTENT FILE
END OF FILE

ATTEVMPT TC READ A READ PROTECTED FILE
WRITE PRCTECTED FILE

ATTEVMPT TC CREATE AN EXISTENT FILE
A NON=EXISTENT FILE

ATTEMPT TC ALTER A PERMANENT FILE
ATTRIBUTES PROTECTEC

FILE NOT CPENED

FATAL UTILITY ERRCR

EXECUTE CLI.CM (NC ERROR)

INVISIBLE ERROR CCDE

ATTEMPT TC USE A LFT ALREADY IN USE
LINE LIVMIT EXCEEDED O

ATTENMPT TC RESTCRE A NON-EXISTENT INMAGE
PARITY ERROR CN READ LINE

TRYING TC PLSH TGC MANY LEVELS

NOT ENUF MENORY AVAILABLE

OUT OF FILE SPACE

FILE REAC ERROR

UNIT NOT PRCPERLY SELECTED

JLLEGAL STARTING ‘ADCRESS

ATTEMPT TC READ INTO SYSTEM AREA
FILE ACCESSIBLE BY DIRECT I/0 CALY
FILES SPECIFIED ON DIFF. CIRECTCRIES
DEVICE NCT IN SYSTEV

ILLEGAL CVERLAY MUMBER

FILE NOT ACCESSIBLE BY CIRECT I/0
USER SET TIME ERRCR

QUT CF TCE'S

SIGNAL TC BLSY ADCR

FILE ALREADY SGUASHED ERRCR

DEVICE ALREADY IN SYSTEVW
INSUFFICENT CONTIGUOUS ELCCKS
SIMULTANECUS REAC OR WRITE TO MUX LINE
ERROR IN LSER TASK GUEUE TABLE

NO MORE DCB'S

ILLEGAL DIRECTORY SPECIFIER
DIRECTORY SPECIFIER NOT KANCWN
DIRECTORY IS TGC SMALL

E-6 093-000201-02



Licensed Material - Property of Data General Corporation

«CUSR
«CUSR
+CUSR
»CUSR
+CUSR
«CUSR
+CUSR
«DUSR
«CUSR
«CUSR
«DUSR
+CUSR
+CUSR
+CUSR
.CUSR
.CUSR
+CUSR
«.CUSR
.DUSR
+CUSR
.CUSR
.CUSR
.CUSR
«.CUSR
«.CUSR
«CUSR
+CUSR
.CUSR
+CUSR
+DUSR
«CUSR
«CUSR
.DUSR
.CUSR
«DUSR
.CUSR
.CUSR
«CUSR
.CUSR
«CUSR
.CUSR
.CUSR
«CUSR
.DUSR
.CUSR

093-000201-02

ERDDE=
ERDIU=
ERLDE=
ERFIU=
ERTID=
ERCNVS=
ERCUS=
ERSCFP=
ERDCH=
ERDNI=
ERNCD=
ERFGE=
ERMPT=
EROFD=
ERUSZ=
ERVPR=
ERNLE=
ERNTE=
ERSCE=
ERMDE=
ERDTO=
ERENA=
ERMNCA=
ERSRR=
ERSDOL=
ERCLO=
ERSFA=
ERABT=
ERDCOP=
EROVF=
ERNMC=
ERNIR=
ERXVZ=
ERCANT
ERGQV=
EROFNM=
ERFNT=
ERBALC=
ERBSPC
ERZCB=
ERNSE=
ERBLT=
ERRDY=
ERINT=
EROVR=
ERFRV=
ERSPT=

55
Seé
s7
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
100
101
102
103
104
1es
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
128
126
127
130
131
132
133

Ne We WS Ve We Ve Ve We We We W We We We Ve We Ve Ve We We We Vs Ve Ve Vs Ve Ve Wa Ve W Ws We We W We W We Ve We We We Ve W We Ve Ve wo

DataGeneral

SOFTWARE DOCUMENTATION

DIRECTORY DEPTH EXCEEDED

DIRECTORY IN USE

LINK DEFTH EXCEEDED

FILE IS IN USE

TASK ID ERRCR

COMMCON SIZE ERRCR

COMMON USAGE ERRCF

FILE POSITICN ERRCR

INSUFFICIENT ROCM IN DATA CHANNEL MAP
DIRECTORY NCT INITIALIZED

NO DEFAULT CIRECTCRY

FOREGROUNC ALREACDYS EXISTS

ERROR IN FARTITCN SET

DIRECTORY IN USE BY OTHER PROGRAM

NO RCOCM FCR UFTS CN EXEC/EXFG

ADOR ERRCR CN .SYSTM PARAVW

NCT A LINK ENTRY

CURRENT BC IS NCT CHECKPOINTABLE

SYS.OR ERRGRK

MAP,DR ERFCF

OEVICE TINE OUT

ENTRY NCT ACCESSIBLE VIA LINK

MCA REQUEST OUTSTANDING

INCOMPLETE TRANSMISSION CAUSED BY RECIEVER
SYSTEV DEADLOCK

170 TERMINATED BY CHANNEL CLOSE

SPOOL FILE(S) ACTIVE

TASK NOT FCUND FCR ABORTY

DEVICE PREVIOUSLY OPENED

SYSTEM STACK CVERFLCW

NO MCA RECEIVE REGUEST CUTSTANDING

NO INIT/RELEASE CN CPENED DEVICE (MAG TAPE)
«XMT 8 ,IXMT MESSAGES MUST BE NCN=ZERO
'YOU CAN'T CO THAT!

.TOVLD NOT LOADED FOR GUEUED OVERLAY TASKS
CPERATOR MESSAGE NMOLCULE NCT SYSGENED
DISK FORMAT ERROR

DISK HAS INVALIC BAL BLCCK TAEBLE
INSUFFICIENT SPACE IN BAD BLOCK POCL (CORE)
ATTENPT TC CREATE CONTIG CF ZERC LENGTH
PROGRAM IS NOT SWAPFABLE

BLANK TAPE

LINE NOT READY

CONSOLE INTERRUPT RECEIVEC

CHARACTER OVER RUN ERROR

CHARACTER FRAMING ERROR

700 MANY SOFT ERRCRS (DCS ONLY)

B-7 USER PARAMETERS



DataGeneral

SOFTWARE DOCUMENTATION

; CLI ERRCR CODES

.CUSR
«CUSR
.CUSR
.CUSR
.CUSR
.CUSR
+CUSR
+CUSR
.CUSR
«CUSR
+.CUSR
.CUSR
.CUSR
«.CUSR
+CUSR
+CUSR
.DUSR
«CUSR
.CUSR
+CUSR
.CUSR
.CUSR
+CUSR
+CUSR
.CUSR
.CUSR
.CUSR
+CUSR

.CUSR
.CUSR

CNEAR=
CILAT=
CNDED=
CCLTL=
CNSAD=
CCKER=
CNSFS=
CNACM=
CILBK=
CSPER=
CFHER=
CTVAR=
CIVAD=
CILNA=
CSFLE=
CILAR=
CCANT=
CTVLI=
CSYER=
CBKER=
CPARE=
CCART=
CCAR1=
CINCE=
CPARL=
CIVAR=
CILTA=
CTATL=

CCVAX=
ERVL=

320
301
3be
303
304
385
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
33¢
331
332
333

CTATL
3¢,

me W6 We We We We Ve W8 Wa W Ve We We Ve Ve We Ve Ve We W We We Wa We Ve We we N

—e we

Licensed Material - Property of Data General Corporation

NOT ENCUGH ARGUMEMNTS

ILLEGAL ATTRIBUTE

NO DEBUG ADCRESS

COMMAND LINE TOC LONG

NO STARTING ACDRESS

CHECKSUM ERROR

NO SOURCE FILE SPECIFIED

NGT A COMNAND

ILLEGAL BLOCK TYFE

NO FILES MATCK SPECIFIER
PHASE ERRCR

TGO MANY ARGUMENTS

TOO MANY ACTIVE CEVICES
JILLEGAL NLNMERIC ARGUMENT
FATAL SYSTEM UTILITY ERROR
JLLEGAL ARGLMENT

IMPROPER CR MALICIOUS IANPLT
TOO MANY LEVELS CF INDIRECT FILES
SYNTAX ERRCR

BRACKET ERRCR

PAREN ERRCR

< WITKCUT > OR > WITHOUT <
ILLEGAL NESTING CF <> AND ()
ILLEGAL INDIRECT FILENANE
ILLEGAL NESTING CF () AND 11
ILLEGAL VARIABLE

ILLEGAL TEXT ARGULNENT

TEXT ARGUMENT TCO LCNG

MAX CLI ERRCR CCCE
MAXIMUM ERRCR MESSAGE LENGTH

; EXCEPTICNAL SYSTEM STATUS CODES

.CUSR
+CUSR
.CUSR
.CUSR
.CUSR
.CUSR
«.CUSR
«OUSR
«CUSR

«CUSR
.CUSR
«.CUSR

+CUSR
«CUSR

PNMFES
PNSCE=
PNCSOs=
PNICA=
PNV D=
PNMCT=
PNDFE=

PNCLI=

PNCEK=

PNILL=
PNFSH=
PNIFB=

PNITR=
PNERC=
PNPAR=

al

~e We We We We We WS Ve We We Ws Ws Ve We We wr wo

MAP,DR ERROR

SYSTEM CIRECTORY ERROR

SYSTENM STACK FALLT

INCONSISTENT SYSTEM DATA

MASTER DEVICE DATA ERRCR

MASTER DEVICE TIME OUT

MOVING HEAD DISK ERKROR

UNCLEARAEBLE UNDEFINED INTERRUPT
INSUFFICENT CONTIGUCUS BLCCKS TC BUILD
PUSH SPACE INDICES

ILLEGAL EXTENDEC INSTRUCTION

RTN BEYONC TOP CF WORLD

INCONSISTENT OR IMPCSSIBLE CONCITICN
RELATED TC CUAL PROCESSCRS (IFE)

INT WORLC TRAPPEC

MULTIBIT MEMORY ERRCR

MEMORY PARITY ERRCR

E-8 093-600301-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

i

7 USER STATLS TABLE (UST) TEMPLATE

H

.CUSR UET= 4oe ;7 START OF EACKGRCLND USER STATUS AREA

.CUSR USTF=12 i PZERO LCC FCR UST PCINTER
i NCTE= USTF MUST CORRESPOND TG PAKS FZERC ALLOCATICAS

.CUSR USTFC=

=

@=>BACKGRCUND, 1=>FCREGROLND
(WHEN NOT IN SCHEC STATE)

IMAX

START OF SYMBCGL TABLE

END OF SYMBCL TAELE

NMAX

STARTING ADCRESS

DEBUGGER ADCRESS

HIGHEST ACCRESS USED

FORTRAN CCMNMCN AREA SIZE
INTERRUPT ACDRESS

BREAK ADCRESS

5 TASKS (LEFT), # ChHANS (RIGHT)
CURRENTLY ACTIVE TCB

START OF ACTIVE TCB CHAIN

START OF FREE TCE CHAIN

INITIAL START CF AREL

OvLY DIRECTCRY ACCR

FORTRAN STATE VARIABLE SAVE RCUTINE (OR @)
REVISIOMN

ENVIKONVENT STATE WORD WHEN EXECUTING
TCB ADDR CF INT CR EREAK PROC

.CUSR Ustzm= 1
«CUSR usTSS= ¢
«CUSR USTES= 3
.CUSR USTAM= 4
.CUSR USTSA=z S
.CUSR USTCA= 6
+LUSR UsStku= 7
«CUSR usSTCS= 1@
.CUSR usTIT= 11
.CUSR USTEBR= 12
.CUSR USTCH= 13
«CUSR us1CT= 14
«CUSR USTAC= 1S
+CUSR LUSTFC= 16
+CUSR USTIN= 17
+.DUSR USTCD= 29
+OUSR ustsvs 21
+CUSR USTRV= 22

e W4 WA WA WS We We We We Ve We We We Ve We W "o We We We We W

.CUSR USTIA= 23

.CUSR USTEN= USTIA LAST ENTRY

e

+LUSR UFPT= 30 ;7 SAVE sO08

; ENVIRCNMENT STATUS BITS (IN USTRV CURING EXECUTICN)

.CUSR ENVAP=  1BO iVAPPED MACHINE
.CUSR ENUEC= 1B2 jUNMAPPED ECLIPSE
.CUER ENVEC= 1B3 JMAPPED ECLIPSE
+CUSR ENUNVE 1BY i UNMAPPED NCVA

«CUSR ENVAVE  1BS iVAPPED NOVA

.CUSR ENUN3=  1B6 s UNMAPPED NCVA 3
«CUSR ENMN3= 1BT iMAPPED NCVA 3

.CUSR ENUMN=  1B8 $UNMAPPED MICRO NCVA
.CUSR ENDCS= 1B11 ;D0S SYSTEWN

.CUSR ENINFO= 1B12 i INFOS SYSTEM

«CUSR ENSCS= 1B13 7 STAND ALGCNE SYSTEWM
.CUSR ENRTOS= 1B14 ;RT0S SYSTEW

.CUSR ENRCOS= 1B15S 7RDOS SYSTEV

093-000201-02 E-9 USER PARAMETERS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

TASK CONTROL BLOCK (TCB) TEMPLATE

-e we we

.CUSR TFC= o ;USER PC (B2-14) + CARRY (B15)
.CUSR TACE= 1 iACO

.CUSR TAC1= 2 7ACH

.CUSR TACes= 3 i AC?

.CUSR TAC3= 4 ;AC3

.DUSR TFRST= 5 F;STATUS BITS (LEFT) + PRICRITY (RIGHT)
+CUSR T8YS= 6 7SYSTEM CALL WORD

«DUSR TLNKs= 7 ;LINK WORD

.CUSR TLSP= 1@ i USP

.LUSR TELN= 11 ;TCB EXTENSION ADCR

.CUSR T1D= 12 i TASK 1D

+LUSR TTNMP= 13 i SCHEDULER TEMPORARY

.CUSR TKLAD= 14 jUSER KILL PRCC ACCR

+CUSR TSP= 15 iSTACK POINTER

+CUSR TFF= 16 sFRAME PCINTER

.CUSR TSL= 17 sSTACK LIMIT

+CUSR T8C= 2e FOVERFLOW ACDOR

«CUSR TLNSTKLAD=TPC+1 i SHGRT TCB LENGTH
.CUSR TLNB= TS0~TPC+1 sLONG TCB LENGTH

; TASK STATLS BITS (IN TPRST)

+CUSR TSSYS= 1B@ JSYSTEM BIT

.CUSR TSSLSP= 181 7 SUSPEND BIT

+CUSR TSXxvT= 1B }XMT/REC ANC CVERLAY BIT
«.CUSR TSkCOP= 1B3 ;. TRDOP BIT

+CUSR TSAET= 1B4 7ABORT LOCK BIT

.CUSR TSRSV= 1BS iRESERVED

«CUSR TSUFN= 1Bé6 JUSER FPENC BIT

.CUSR TSUSR= 1B7 JUSER FLAG BIT

E-10 093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

093-000201-02

we we we

«CUSR

3 FOR EACKH NODE:

«CUSR
.CUSR

+.CUSR
+CUSR

~e we we

.CUSR
.CUSR
.CUSR
.CUSR
.CUSR
«CUSR
.CUSR
+.DUSR
.CUSR
.CUSR
«CUSR

.CUSR
.CUSR

we we weo

«CUSR
+CUSR
+CUSR
.CUSR
«.CUSR

.CUSR

.CUSR

OVNCS=

OVRES=
ovDIs=

OVBLK=
OVNAD=

QFC=
GNUN=
QTCv=
QSks=
GSNVS=
GPRI=
ORR=
GTLAK=
QOCFk=
GCCND=
GACe=

GTLA=
GPEX=

LPN=
LCvs=
LCCAD=
LTPR=
LPC=

OVERLAY DIRECTORY

2 iMNUMBER OF NGOCES

1 7CURRENT OVLY(B@-7), USE COLNT(B8=-15)
2 7# OVLYS (Be=7), LCADING BIT (B8),
; SIZE IN BLKS (B9-15)
3 STRT BLK # IN COVLY FILE FOR FIRST OVLY
4 CORE ADDR FOR NOCE(B1~-15)

;7 1B@ FLAGS VIRTUAL NODE

USER TASK QUEUE TABLE

i STARTING PC

;NUMBER OF TINES TG EXEC
iGVERLAY

iSTARTING FHCUR

FSTARTING SEC IN FCLR
TPRST sMUST BE SANE

BWwWNN-—S

6 jREFUN TINE INC IN ESEC
TLNK sMUST BE SANE
ie sCHAN OVERLAYE OPEN ON
11 ;TYPE CF LCAD
12 iWAKEUP ACZ2
; 1B@= LGADING, 1B15= DEGUE REG REC
GAC2=-GPC+1
GTLN JUSER TASK G AREA EXTENSICN

USER FRCGRAM TARLE FOR CPERATOR CCMMUNICATICNS PACKAGE

sPROGRAM NLVBER

;OVERLAY NUMBER QR =1
;CONDITIONAL/ULNCONCITIONAL LOAD
;TASK ID (LEFT) + FRICRITY (RIGHT)
i PRCGRAM CCLNTER

SEWN—-SR

LTLN= LPC=LPN+1 ;TABLE LENGTH

LFEX=

LTLN ;COMMUNICATIONS EXTENSION AREA START

E-11 USER PARAMETERS



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

TUNING FILE DISFLACEMENTS

- we we

+CUSR «TUN=Q 7GFFSET TO NUNMBER WCRC IN PAIR
.CUSR «TUC=.TUNHL jOFFSET TO 18T COULNT IN PAIR
.CUSR LTUF=,TUCt2 iCFFSET TG 2NC CCLNT CF FAIFR
-CUSR «TUNX=,TUP+2 sLENGTH OF COUNT PAIR

.CUSR . TUNSTK=1 sNULVBER STACKS IN SYSTEW
«DUSR LTUSTK= TUNSTK+,TUC=,TUN ?STACK COUNT
.CUSR «TUFSTK=, TUNSTK+.TUP=,TUN ;STACK PEND CCUNT

«CUSR « TUNCEL=, TUNSTK+, TUNX sNUVBER CELLS IN SYSTEM
+.CUSR +TUCEL= ,TUNCEL#+,TUC=,TUN JCELLE COUNTS
.CUSR .TUFCEL=, TUNCEL+,TUP=,TUN

.CUSR +TUNBUF=.TUNCEL+, TUNX ;BUFFERS, EXCLUDING TUNING BUFFERS
«CUSR .TUBUF= . TUNBUF+,TUC=,TUN s COULNTS

.CUSR «TUFBUF=, TUNBUF+,TUP=, TUN

.CUSR .TUNOV= TUNBUF+, TUNX sCVERLAYS

«CUSR .TUCV=  ,TUNOV+,TUC=,TUN

+CUSR .TUFOV= ,TUNOV+,TUP=,TUN

.CUSR TULEN=, TUNOV+, TUNX

End of Appendix

E-12 098-900301 -02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX F
BOOTSTRAPPING DOS FROM DISK

FROM A COLD SYSTEM

For a diskette-based system, ensure that the write-
protect hole of your system diskette is covered. Turn
DP0O ON, and power up all other equipment. Insert
the system diskette into slot DPO, and make sure that
no other slot has the same number. Note: never
change the number of a disk while it is initialized.
RELEASE it before you change its number.

For a disk-based system, make sure that a system
disk in in DHO (microNOVA) or DPO (NOVA); press
the LOAD switch to READY, then wait for the READY
light.

The following steps apply to the first disk or diskette
controller on your system which runs DPO/DP1 or
DHO/DHOF on a microNOVA or DPO through DP3 on
NOVAs. If your system has a second controller, and
you want to bootstrap from it, use device code 73g
instead of 33g. For the third and fourth controllers
(microNOVA only), use 30g and 70g, respectively.

For the first diskette controller on a micrdNOVA with
hand-held console, press RESET, CLR D, enter 33;
then press PR LOAD. For the first hard-disk
controller, press RESET, CLR D, enter 100027, then
press PR LOAD,

If you are using the console debug option to the terminal
asynchronous controller board then:

e Type in: 100027) for hard disk
or
33L)  for diskette

If none of the above is present, the program load
option to the CPU board must be present.

e Set the jumpers for device code 27 (hard disk) or

33 (diskette) as described in the appropriate
SYSGEN chapter.

993~000201-02

® Hit the FRONT PANEL ROCKER SWITCH to the
'PL/START' position.

For the second microNOVA hard-disk controller,
substitute 67 for 27. For the second, third, or fourth
microNOVA diskette controllers, substitute 73, 30 or
70 respectively for 33.

Go to step 2.
On other NOVAs:

la. If your computer has automatic Program Load
hardware: set the data switches to 100033g
(switches 0, 11, 12, 14 and 15 up, the others
down), lift RESET, then PROGRAM LOAD,
(On the SUPERNOVA, put 000033g in the
switches, lift RESET and press CHANNEL
START.) Proceed to step 2.

1b. If your computer lacks automatic Program Load
hardware:

. Set the data switches to 000376g (switches
8 through 14 up, others down) and lift
EXAMINE.

. Set the data switches to 060133g (switches
1, 2, 9, 11, 12, 14 and 15 up, others down)
and lift DEPOSIT

. Set the data switches to 000377g (switches 8
through 15 up, others down) and depress
DEPOSIT NEXT.

‘. Set the data switches to 000376g (put down

switch 15) and lift RESET, then START.
Proceed to step 2.

FROM A COLD SYSTEM



DataGeneral

SOFTWARE DOCUMENTATION

2,

Your manipulation of the data switches brings
the Disk Bootstrap Loader into execution. It
invokes BOOT.SV, which displays this query on
the console:

FILENAME?

You must now respond with the name of your
DOS system save and overlay files. This
name was determined at SYSGEN; if it is

the default name (SYS), you can simply

press RETURN, and the system will be
bootstrapped into execution. If it has any
other name than SYS, you must type its

name and RETURN. You can use a directory
specifier to bootstrap a system not on DHO or
DPO; e.g.,

FILENAME? DP1:SYS)

DOS will now display its revision name and
number, and ask log-on questions about date
and time. After you have answered these,
DOS will output the CLI prompt "R".

Note: you cannot bootstrap a system which
is in a user directory.

Licensed Material - Property of Data General Corporation

FROM A RUNNING SYSTEM

You can use the BOOT command to replace the
current DOS system with a different system, on
the same or on another diskette. All diskettes
involved must be initialized. For example:

BOOT DP1:SECONDSYS
MASTER DEVICE RELEASED
(DOS displays revision data)
DATE (M/D/Y)? 9 2078)
TIME (H:M:S)? 14 32 30)

R

To sign off the current system, type:

RELEASE master-directory -name)

or

RELEASE %MDIR% )

END OF APPENDIX

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX G
EXCEPTIONAL SYSTEM STATUS

Certain serious error conditions can either halt the sys-
tem entirely in a crash, or cause the system to suspend
processing and display an exceptional status message.
The message returned from exceptional status will help
identify the error; no information will return from a
crash,

In both situations, if you selected the core dump feature
at SYSGEN (Appendix E) you can dump a core image of
address space on the line printer or on diskette. This
dump will help identify the error, and we recommend
that you select it during system generation,

As described in Chapter 7 and 8, under "Releasing
the System”, crucial DOS directories may be wrong
when you bootstrap DOS after an exceptional status
or crash; thus we recommend that you fully initlalize
(INIT/F) all disks that were initialized when the
exceptional status or crash occurred.

EXCEPTIONAL STATUS MESSAGES

In an exceptional status, the system will output the
contents of the accumulators and an error code on the
console, for example:

000015 177777 000011 037500 100010
ACO AC1 AC2 AC3 error code

if you selected the core dump feature, the AC data will
be followed by this message:

DUMP TO $LPT (TYPE 0), DPO, (TYPE 1) OR QUIT (TYPE CR)

The AC and error message data are always output; pro-
cedures to follow after you receive the DUMP message
are described below. Note that if a SYSTEM error
caused the exceptional status, bit O of the error code
will be set to 0, and the rest of the code word contain

a system error number, which is explained in Appendix
A. The dump procedures described below apply to both

093-000201-02

kinds of error. If bit 0 is set to 1, the contents of the
rest of the error code have the following meanings:

1

10

File system inconsistency detected. DOS tried to
return a master device block which had no record
in MAP.DR. Run the disk initializer program
(DOSINIT. SV) on the system disk.

SYS.DR error detected while accessing a directory
on the system disk. Either the entry count in
a block of the directory exceeds 16 octal, or a free

“entry in the block was indicated but could not be

found. If ACO contains 16, AC2 contains the illegal
count; if ACO doesn't contain 16, a free entry was
expected but not found. In both cases, process the
disk with the initializer program, DOSINIT, SV,

Interrupt stack overflow. The low order bits of
ACO contain the address of the overflowed interrupt
stack. The stack overflow is generally caused by

a continually-interrupting device, which, in turn,
is often caused by the wrong mask in a user-defined
device. Locate and remove the problem device.

Inconsistent system data, such as illegal device
address or partial overwrite by a user program.

System disk data error; run disk reliability test.

System disk timeout. Make sure that the system
disk is ON, and on-line, If there are no
obvious errors, run disk reliabtlity test.

Illegal device address on the system disk. This
can be caused by misreading of the disk. Run
reliability test.

An undefined interrupt has been detected and cannot
be cleared via an NIOC. The cause is often a faulty
connection. The right byte of AC2 contains the code
of the device. Try to correct the problem.

EXCEPTIONAL STATUS MESSAGES



DataGeneral

SOFTWARE DOCUMENTATION

CONTROLLING EXCEPTIONAL STATUS

You can write your own routine to handle exceptional
status situations. The address of your routine must be
stored in location 11, at run time, since save files
begin at location 16. Your routine will then gain con-
trol at an exceptional status; the console will not dis-
play the accumulator/error code message, but ACO,
AC1, and AC2 will retain the contents they had at the
error, and AC3 will contain the address of ‘the error
code.

PRODUCING A CORE DUMP

If you chose the core dump feature at SYSGEN, you can
dump core on the line printer and/or diskette after an
exceptional status or system crash, The $LPT dump can
help you pinpoint the problem; the diskette dump will
help us at Data General to improve the DOS system, and
minimize future errors. The line printer dump has
three parts: the left column shows a memory address,
the middle 8 columns show the contents of each word in
the address, and the right column shows the ASCII value
(if any) of each byte in the address. The figure below
contains a sample line printer dump.

Before proceding with a core dump, you can select
either $LPT or the diskette in DPO to receive the dump
data; you can also dump in sequence to each device.
Note that if either an exceptional status or crash recurs,
you should dump to both devices (if either condition
recurs on the same diskette, after it has been refor-
matted, you should shelve the diskette).

On exceptional status, the console will show the accumu-
lators and an error code, followed by the message:

DUMP TO $LPT (TYPE 0), DPO(TYPE 1) OR QUIT (TYPE CR)

Licensed Material - Property of Data General Corporation

To dump on diskette, place a formatted diskette in DPO
and type 1. The entire address space will then be dump-
ed to DPO, and the message will reappear.

To dump on the lineprinter, type 0; then, if you want to
dump all address space, press the CONTINUE switch
twice. The dump will execute, and the message re-
appear. If you want to dump selected portions of
memory, place the starting address in the data switches,
and press CONTINUE; the CPU will halt. Enter the
ending address in the switches, and press CONTINUE
again; the dump will proceed, and the message return.
To dump another section of memory, type 0 and repeat
the sequence with the data switches. You can abort
$LPT dump at any time by striking a neutral key

on the console; the message will then occur again.

To quit, press the RETURN key; you can then proceed to
rebootstrap DOS on a backup diskette. If the error
recurs without a plausible explanation, please arrange to
deliver the dump diskette and a software trouble

report (STR) to your Data General representative.

After a system crash, the console will display nothing.
Lift RESET, and enter 11 (octal) in the data switches,
Lift EXAMINE, (on microNOVA, press RESET, CLRD,
enter 000011 in the keys, press MEM and START) and
note the number returned in the data lights. Enter

this number in the data switches, lift RESET, then
START. The console will then display the contents

of the accumulators, an error code, and the DUMP
query:

NNNNNn Dnnnon nDonnnn  Ononnn - eeeeee
DUMPTOS$LPT (TYPE0), DPO(TYPE 1), OR QUIT(TYPE CR)

Disregard the error code, and proceed with the
sequence described for exceptional status dumps.

#1020 062277 014510 060277 214506 060277 M14504 060277 014502 eseeHesoFecaDooed
91030 060277 014500 060277 B14476 060277 M4B532 044532 058832 veelfeeederAll2a02
01040 034532 176660 0354324 024466 125224 PB2420 034018 020742 YZeeYT)B0esele e
91050 163000 042741 023415 021414 101005 045414 020454 025485 ecolecelereke| 00
01060 106414 000404 025406 041406 245408 034012 008408 0448468 ceveeelokelooele
31070 030436 051408 223377 044017 028414 244537 030431 081414 1eBeveleseleiole
81100 @60177 224016 245010 024426 044505 P20536 040422 048422 ee(ejo)ell|eAehAe
21110 0234502 152120 021420 043410 175400 183102 008774 137008 0BePuefocosBovey
81120 028776 244511 214467 000410 176440 0004668 POBY31 PEBYBE ¢ellaVeee o8eese
91130 0PpR11 G001l 001014 015768 000408 PL1766 BIL4ABS DRAA3L secesncttnsnites
91140 0P4404 GPA763 034450 200535 054458 006447 126400 044480 sesed(eeVestonl(
21150 006446 024446 034475 137080 025400 PO6443 024441 010440 oR)EDweesend) |0

#1160 102120 107037 125401 002436 006423 AB0763 000EEE GR0PI3 ePrrssevonssniee
21170 006326 200003 201814 854411 006420 020411 143000 0064068 vecseseYooe|veene
012090 ©@06407 006414 205124 00240 000000 NR2014 044087 0931486 enensTooeneeB/foe
01210 001400 177777 803777 0822076 002013 802617 03137 GE0EED seveveediscnnine
#1220 001631 200000 002021 100000 002031 #O0E00 000000 BOIRTY verneereioditone
01230 002000 002405 232032 200000 008424 000714 002367 177770 eocesecscaseeons

END OF APPENDIX
G-2 093-080201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX H
RDOS - DOS COMPATIBILITY CONSIDERATIONS

Read this appendix before you try to access disks or
diskettes that were created on an RDOS system. RDOS
supports certain commands and features which DOS
does not. Generally, if you try to use an RDOS-only
command or feature, it will behave as a no-op, and
you'll receive an error message.

Mag tape files are 100% compatible between the two
operating systems, therefore need no further
consideration.

All disks and diskettes created under DOS are entirely
compatible with RDOS. Disk(ettes) created under
RDOS may not be compatible with DOS if certain RDOS
features not supported under DOS are used. These
features are:

1. DOS cannot access disk partitions. If a
_disk(ette) to be used under DOS contains
partitions, you cannot initialize the partitions.

2. Diskettes used under DOS must not have any
blocks in the RDOS bad block table. (Hard disks
DO have an RDOS-compatible bad block table. )
When a diskette is initialized under DOSINIT
(the DOS Initializer program), an empty bad
block list is created. If DOS finds a non-empty
list, it returns error ERBAD. If you have a
diskette produced under RDOS and you are not
sure if it has bad blocks, you can run the
DOSINIT LIST command, If there are any bad
blocks, LIST will report them. Your remedy
is to MOVE the files to a good diskette under
RDOS. This will produce a new diskette with
no bad block table, and copy the blocks out of
the remap area to their proper places on the
new diskette. The new diskette will then be
usable under both DOS and RDOS.

3. DOS diskettes have a fixed hash frame size of

5 blocks. This frame size is produced by
DOSINIT.SV. Diskettes created for RDOS using
DKINIT.SV have a default frame size of 5, and
are therefore compatible. If you chose a frame
size other than the default when you ran RDOS
DKINIT on the diskette, the diskette cannot be
used with DOS. The only remedy is to copy the
diskette files using the CLI MOVE command to
a diskette that has the correct frame size.

093-000201-02

DETAILS

DOS does not support:

Any disk type other than 6030 and 6038 series
diskettes or 6095 and 6045 dual -plotter disk
subsystems.

Memory mapping. DOS has no memory write -
protection (., WRPR), expanded memory calls

(. MAPDF), or virtual overlays.
Foreground/Background programming. DOS runs
in the background only; EXFG, .EXFG, GMEM,
SMEM, and .EXBG return error messages.
System call . FGND returns the level of the

program which issues it.

Spooling, or its associated calls and commands
(.SPEA, SPKILL, etc.)

Tuning or its calls or commands (, TUON,
TPRINT, etc).

Task-operator messages (. TRDOP), or system
operator messages (. RDOP), or the OPCOM
feature.

The Batch monitor, or the RDOSSORT program.

Secondary partitions (see note above).

Common-area related operations (. ICMN,
.RDCM, etc.)

System call .DELAY.

The Multiprocessor Communications adapter,
MCA, or its calls,

Device renaming call .EQIV, or command EQUIV,

The overlay replace commands: .OVRP, OVLDR,
or REPLACE.

The user-defined interrupt procedure enabled by
.INTAD.

Cassettes.

DETAILS



DataGeneral

SOFTWARE DOCUMENTATION

DOS and RDOS differ in that:

Licensed Material - Property of Data General Corporation

On a microNOVA, the real-time clock is internal, and
its frequency is fixed; this frequency code, as returned

by system call .GHRZ, is 6.

RDOS subdirectories are called directories in DOS.
DOS system directories, (SYS.DRs) are copied into
each diskette and directory, as in RDOS, but have no
device entries; the device entries (e.g., $LPT.)

remain in memory.

DOS cannot tolerate a hard error (surface inconsistancy
or flaw) on a diskette.

DOS offers three copying commands: the CLI COPY,
and the DOSINIT COPY and DUPLICATE.

The DOS initializer, DOSINIT, differs from the RDOS
initializer, DKINIT, as described above. You can
configure any 4234, 4233 or similar disk as a pseudo-
diskette by answering 6030 to the RDOS DKINIT query,
but you'll be limited to 608 blocks on it.

END OF APPENDIX

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX |
DISKETTE CONSIDERATIONS

Unlike other disks, which are protected by a plastic
cartridge or isolated in sealed drives, diskettes are
protected only by paper envelopes, and they require
careful handling.

Data General supplies each diskette in an outer sleeve
and an inner envelope. You must remove the sleeve
to use the diskette, but you should never remove the
inner envelope, which has a small write-protect

hole in a corner. When this hole is open, DOS will not
write data to the diskette. To write to the diskette,
cover this hole with one of the pieces of adhesive tape
supplied. Note that you must never alter the drive
number of a diskette drive or remove the diskette
while it is on-line (initialized); RELEASE it first.

When you insert a diskette in a drive, the write-protect
hole should be at the left. This will ensure that the
proper diskette surface faces the moving head. After
you have removed a diskette from its drive, return it
to its outer envelope.

Once you have initialized a diskette, via INIT or DIR,
do not open its door until you have RELEASED it.

Temperature extremes - both hot and cold - can warp
diskettes, and you can prolong their lives by storing
them at room temperature. Folding will ruin a disk-
ette. The data on a diskette can be destroyed by
grease, therefore avoid touching the diskette surface
with your hands. You should also keep your diskettes
at least a foot away from strong magnetic fields.

If you write on a label after it has been applied,
use a felt-tipped pen - never a ball-point pen or
pencil.

RECOVERABLE ERRORS

If you selected soft error-reporting at SYSGEN, DOS
itself will help you detect problems with a diskette
before they disable further processing. If you omitted
soft error reporting, DOS will ignore all soft errors
and you'll be unaware of problems until a hard error
develops. When DOS detects a write error, it attempts
to rewrite the data correctly. If it succeeds, and if you
chose soft error-reporting, DOS notes the error in the
recoverable-error table on diskette, and prints the
message:

SOFT ERROR ON DPn/BLOCK bbbbbb, r RETRIES
on the console, and adds the error to the diskette's

error count. In the message, n indicates the diskette,
bbbbbb the block number, and r the number of retries
necessary to write the data correctly. If you receive
this message several times for one diskette, copy the
diskette onto a new, formatted diskette, using the CLI
COPY command. The copy's error count will then be

set to zero.

If you selected soft error-reporting, when the
recoverable-error count reaches 30 for any track

of a diskette, DOS will not permit you to initialize (or
bootstrap) the diskette. Instead, when you attempt to
bootstrap, INIT, or DIR to the diskette, DOS will
print the message:

TOO MANY SOFT ERRORS

You must now precede to copy the faulty diskette with
the DOSINIT COPY command. The DOSINIT COPY
command will produce a perfect copy, with all track
error counts set to zero - thus enabling you to use all
the material on the faulty diskette. DOSINIT is
described in How to Generate Your DOS System
(093-000222).

END OF APPENDIX

093-000201-02

I-1

RECOVERABLE ERRORS






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX J
ADVANCED MULTITASK PROGRAMMING

For most multitask application programs, the features
described in Chapter 5 will suffice. You need read
this appendix only if:

e  You want to write your own multitasking primitives
(task calls)

®  Your tasks require one or more special resources
(for example, floating-point hardware), that the
system does not provide for in a TCB.

The features described in this appendix can:

e provide more programming flexibility
than the standard features alone, without
requiring you to modify the task monitor
sources; and

e provide this flexibility in a system-independent
way.

You can use the calls in this appendix to develop
application programs for any system configuration (DOS,
RTOS or RDOS, NOVA or microNOVA). All you need
do to reconfigure for a different system is load a
program (via RLDR) with the appropriate system
libraries.

Before you proceed, you should be familiar with the
material in Chapter 5.

DEFINITIONS

The following definitions relate to tasks and task
states; they apply throughout DOS, RTOS, and RDOS.

General Terms

Task Resources are those storage elements of the
computer, such as accumulators and special memory
locations, which two or more tasks must share. The
task scheduler allows such sharing by ensuring that

the proper values for each task's resources appear

in the actual storage elements of the computer while the
task is executing. When a task is not executing, the
current values of its resources are held in its TCB.

093-000201-02

J-1

Rescheduling is the process of selecting and executing the
highest priority ready task. The task scheduler performs
rescheduling after each task call, after receiving

control from the system following an interrupt, and

when a system call completes. You can suppress
rescheduling via the . DRSCH or . SINGL task calls,

or by entering scheduler state, as described below.

If you have not disabled rescheduling, you must

assume that it can happen at any time.

A task swap occurs during rescheduling when the task
scheduler determines that it should execute a
different task from the one which was last executing.
If the task which was executing was not terminated
(by .KILL, etc.), the scheduler saves the current
state of the task's resources in the task's TCB.

The scheduler then restores the former state of the
new task's resources from its TCB. Then, the
scheduler places the new task's TCB in the active TCB
chain at the end of its priority class, so that the next
time rescheduling occurs the task will be considered
for execution only after all other tasks in its class.
Finally, the new task receives CPU control and
becomes the current task.

CTCB is a location maintained by the scheduler which
contains the address of the current task's TCB. If no
task is currently active (for example, if all tasks are
suspended or rescheduling is occurring), CT CB contains
the address of the most recently executing task's TCB,

if that task was not terminated. If it was terminated,
then CTCB contains 0. Thus CTCB identifies the task to
which the current values of task resource storage
elements belong; 0 means that these values are no longer
valid.

CTCB is a page zero location. You can access it as
follows to obtain the TCB address for the current task:

.EXTD CTCB
LDA ac, CTCB

Location USTCT in the User Status Table (UST) also

contains the current TCB address. However, you should
use CTCB instead of USTCT.

DEFINITIONS



DataGeneral

SOFTWARE DOCUMENTATION

The hardware stack is an area of memory that you access
via special hardware registers. On a NOVA 3 or micro-
NOVA computer, these registers are the stack and frame
pointers and location 42 (octal), which the system
interprets as the stack limit. DOS treats the hardware
stack registers as a task resource, thus they are
available for use by all tasks.

A reentrant section of code (sequence of instructions)
allows another task to enter this code before the

original task exits. Code which several tasks can access
is reentrant cnly if each task has its own local storage,
which no other task executing the code can access.
Giving each task its own stack area and using the stack
for local storage is a common way to achieve

reentrancy.

State Definitions

User state is the normal state for an application
program. This is the state from which system and
task calls are made, as described in Chapter 5. Code
must be reentrant in user state if more than one task
will use it. In this state, task execution is suspended
on an interrupt if a higher priority task is ready for
execution; it is also suspended on a system or task call.
A task in user state can use the User Stack Pointer
(USP, location 16 octal) and the hardware stack; it

can also examine (but not modify) CTCB and the
current TCB. If there are no indicators of other
states, the program is in user state.

Singletask state is used occasionally for a critical
section of an application program. You enter this
state via the . SINGL task call; it prevents other tasks
from gaining control. However, interrupts continue to
execute. A task can issue system calls from singletask
state as well as from user state; it can also issue any
task call except . MULTI or one which would kill

or suspend itself. If it issues. MULTI, or kills or
suspends itself, the program enters user state. Code
executed from singletask state need not be reentrant.
It can use USP, the hardware stack, CTCB, and the
current TCB as it can in user state. If location SM. SW
contains a nonzero value, the program is in singletask
state.

Scheduler state is the normal state for task call code.
An interrupt can cause temporary loss of control, but,
unlike user and singletask states, control returns to
the point of interruption without rescheduling. Thus,
scheduler state ensures that no other task will get
control, although interrupts continue. Control does
not pass to the scheduler on return from an interrupt,

Licensed Material - Property of Data General Corporation

J-2

and the active TCB chain is not scanned. In scheduler
state, there is no TCB associated with the executing
task. Code executed in scheduler state need not be
reentrant. It should not use USP or the hardware
stack; however it can both read and modify CTCB and
the current TCB, subject to restrictions described
later. A task is in scheduler state for DOS if location
USTPC contains a value other than 0 or 1. For RTOS,
location .SYS. is nonzero in scheduler state.

Use interrupt-disabled state to perform critical
manipulation of TCB data or the active TCB chain.
There is no way for a task in this state to lose control
of the CPU, even temporarily.

CODING YOUR OWN TASK CALLS

TCB and Status Bits

Two status bits of word TPRST in a TCB are allocated
for your use; you can use them to extend the standard
features. Bit TSUPN, the user suspend bit, will
prevent a task from running when set. Bit TSUSR, the
user status bit, will not affect task readiness but is
available for storing an additional piece of task-related
information.

Also, word TELN is available for your own use. A
typical use for TELN is to store the address of a "TCB
extension" in it. This allows you to store as much
additional task-related information as you need.

Scheduler Calls

The scheduler calls defined below are, like task
calls, external symbols which you must identify as

. EXTN in your source program. The relocatable
loader (RLDR) resolves them at load time, according
to system type.

Enter Scheduler State (EN.SCHED)
To enter scheduler state from user or singletask state:
;AC3 not equal toO or 1

EN.SCHED
:Returns here with all ACs and carry preserved.

A task already in scheduler state can safely reissue
EN. SCHED, but no change in state will occur.

093-000201-02



Licensed Material - Property of Data General Corporation

Task State Save (.TSAVE)

For a task in scheduler state, this call saves the ACs,
carry, and program counter in its TCB. The PC saved
is the value in bits 1-15 of AC3 at the time of the last
EN.SCHED.

;ACs, carry, PC to be saved.

. TSAVE

;Returns here with AC0, AC1, and carry unchanged,
H AC2 = value that was in AC3 at

; time of last EN. SCHED;

5 AC3 = TCB address.

EN.SCHED and . TSAVE are meant to be used together
at the start of code which implements a user-designed
task call. For a task call with error return, you might
use them this way:

.ENT . TASK, T.ASK
. EXTN EN.SCHED, .TSAVE
.ZREL
. TASK= SR @.
T.ASK
.NREL
INC 3,3
EN.SCHED
. TSAVE

.

T.ASK: ;Assume normal return.
;Enter scheduler state.

;Save task state.

For a task call without an error return, you would omit
the INCrement instruction.

Leave Scheduler State Normally (RE.SCHED)

When you successfully complete the processing for a
task call, issue RE.SCHED to exit to the scheduler for
rescheduling. Use RE.SCHED in scheduler state.

;yNo input.
RE.SCHED
;No return.

Leave Scheduler State Abnormally (ER.SCHED)

When you detect an error during task call processing,
place an error code in AC2 and exit to the scheduler
via ER.SCHED. This returns control to the location
preceding the one specified by TPC, and passes back
the error code in AC2. Use ER.SCHED in scheduler
state.

;AC2 = error code.

ER.SCHED
sNo return.

093-000201-02

J-3

DataGeneral

SOFTWARE DOCUMENTATION

Enter Interrupt-Disabled State (INT.DS)

Use INT. DS to enter interrupt-disabled state from
scheduler state,

;No input.

INT.DS

;Returns here with AC0O, AC1, AC2,
; and carry unchanged.

Leave Interrupt-Disabled State (INT.EN)

To leave interrupt-disabled state and return to
scheduler state, use INT.EN.

;No input.

INT.EN

;Returns here with AC0, AC1, AC2,
; and carry unchanged.

Task ID Search (ID.SRCH)

Use ID.SRCH to search for a task with a given ID.
You can issue ID.SRCH in either scheduler or
interrupt-disabled state.

;AC1, right byte = ID of sought task.

ID.SRCH

;Error return here, AC2 = error code.
;Normal return here, with AC2 = TCB address
; of sought task.

For both returns, ACO and carry are preserved --
the left byte of AC1 is zeroed and the right is preserved.

HANDLING ADDITIONAL
TASK RESOURCES

This section tells you how to manage task resources
that are not automatically managed by the system.

At certain points in its scheduling process, the
scheduler calls out to routines which 'you may supply
to handle your additional task resources. These call-
outs are described in the first section, below.

If floating-point hardware and/or a block of contiguous
memory locations are among the resources you need,
you can simply use a handler supplied in SYS. LB. This
is explained in the second section below.

If you want to handle additional task resources while
using operator communications, see the final section.

HANDLING ADDITIONAL TASK RESOURCES



DataGeneral

SOFTWARE DOCUMENTATION

Task Scheduler Call-outs

To use any call-out described below, write, assemble,
and load a routine of the appropriate name and function.
You must insert the name of the routine in the RLDR
command line before RLDR searches SYS. LB (by
default, this occurs at the end of the command line).

If you do not supply a routine, RLDR will load a
dummy routine, which does nothing, from SYS.LB.

Task Initiation Call-out (TSK.X)

This call-out allows you to endow a new task with
additional task resources. When the scheduler
initiates a task, it first removes a TCB from the free
TCB chain. Then it initializes certain parts of the TCB,
as described later under ""Task Control Block Values'.
The scheduler then calls out to your TSK.X routine

in scheduler state.

Your TSK.X routine can initialize certain parts of the
TCB and change the parts the scheduler initialized
(subject to the restrictions mentioned in the TCB
Values section). On a normal return, the scheduler
links the TCB for the new task, as modified by your
TSK.X code, into the active TCB chain.

The scheduler transfers control to address TSK.X with
the accumulators set up as follows:

ACO  contains the value passed to . TASK in AC2.
ACO is irrelevant if .QTSK initiates the task.

AC1l contains -1 if . TASK initiates the task or the
address of the task queue table if .QTSK
initiates the task.

AC2  contains the address of the TCB for new task.

AC3  contains the (error) return address.

Licensed Material - Property of Data General Corporation

J-4

The routine you supply with entry address TSK.X need
not preserve accumulators or carry. If you detect

an error, place an error code in AC2 and return

control to the location whose address you received in
AC3. On a normal return, return control to the location
whose address is one greater than the one you received

in AC3. For example:
+ ENT TSK.X
.NREL
TSK. X: STA 3, RTNAD ;SAVE RETURN.
COM# 1,1,SZR ;« TASK OR .QTSK?
JMP QUE
TSK: . ;HANDLE .TASK CASE.
QUE: ;HANDLE .QTSK CASE.
BAD: LDA 2, CODE ;ERROR RETURN.
JMP @RTNAD
GOOD: ISZ RTNAD ;NORMAL RETURN.
JMP @RTNAD
RTNAD: .BLK 1

When you return an error indication, and . TASK is
initiating the task, the task will not be initiated, and
its TCB will return to the free TCB chain; the error
code you place in AC2 will be passed to the task which
issued . TASK. When you return an error

indication and . QTSK is initiating the task, the system
will try again one second later.

093-000201-02



Licensed Material - Property of Data General Corporation

Task Termination Call-out (TRL.X)

The TRL.X call out frees a task's additional resources
when a task is terminated -- typically those resources
you assigned in a TSK.X routine. The scheduler calls
this routine in scheduler state whenever a task is
being killed, with the task's TCB already unlinked
from the active chain but not yet restored to the free
chain. The scheduler transfers control to address
TRL.X with AC2 set up as follows:

AC2 contains the TCB address of task being killed.
AC3 contains the return address.

The routine you supply with entry address TRL.X need
not preserve accumulators or carry. When you have
finished your processing, return control to the location
whose address you received in AC3. There is no way
to signal an error from TRL.X.

Task Swap Call-out (ESV.X)

This call-out allows you to save and restore additional
task resources as needed when a task swap occurs.

The scheduler calls the routine in scheduler state and
transfers control to address ESV.X with the accumulators
set up as follows:

AC2 TCB address for task losing control, or 0
if no task is losing control (as described under
CTCB, earlier).

CTCB TCB address of task gaining control.

AC3 return address.

The routine you supply with entry address ESV.X need
not preserve accumulators or carry. When you have
finished processing, return control to the location whose
address you received in AC3. There is no way to signal
an error from ESV.X.

A 0 passed to you in AC2 indicates that there is no valid
most recently active task whose resources you would
need to save. This situation occurs as the default task
is initially selected for exectuion. ESV.X will be

called with 0 in AC2 and the TCB address for the default
task in CTCB. It also occurs after a task is terminated,
because the terminated task's resources were freed by
TRL.X, and are no longer meaningful to ESV.X.

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

\dditional Resource Handler

The system library (SYS. LB) contains an ESV.X routine,
which partly provides for the additional task resources
of floating-point hardware and a block of contiguous
storage words. To load this module, insert a . EXTN
ESV.X in any source module whose name will occur in
the RLDR command line before SYS. LB is searched.

For each task that needs access to the floating-point
hardware, you must provide a block of words to
store the task's values for its floating point state.
The size and contents of this block depend on the kind
of computer you use. For a NOVA computer, the
block has this format:

FPAC 4 words
TEMP 4 words
Status 1 word

To provide for a block of contiguous memory locations
as an additional task resource, you must define two
symbols with . ENT and give them the following values:

ESV.S
ESV. Z

must equal the starting address of the block.
must equal the number of words in the block.

Also, you will need to provide a block of memory that is
ESV.Z words long for each task that is to use this
additional resource.

Finally, for each task that will use either the floating-
point hardware or contiguous memory locations, you
must initialize offset TELN in the TCB, within the
TSK. X routine that you supply. The value you place
in TELN depends on the task's needs.

e If TELN contains either 0 or 100000 (octal), neither
the floating-point resource nor contiguous memory
resource will be handled. Thus, since DOS
initializes TELN to 0, you need not change it for a
task which needs neither resource.

e If the task requires floating-point hardware but
not the contiguous memory, set TELN to the indirect
address of the appropriate floating-point block
described earlier.

HANDLING ADDITIONAL TASK RESOURCES



DataGeneral

SOFTWARE DOCUMENTATION

e If the task needs the contiguous memory but not the
floating-point hardware, set TELN to the (direct)
address of a block of words ESV. Z+1 words long,
and set the first of these words to either 0 or 100000
(octal). The contiguous memory locations will be
saved in the remaining words of this block.

e If the task requires both resources, set TELN
as immediately above, but set the first word of the
block to the (direct) address of a floating-point
save area as described above.

When you initialize TELN, you can also initialize the
contents of these save areas as well. The values that
your TSK.X routine places in these areas will be the
initial values when the task being initiated starts
executing.

Restrictions and Warnings

The system-supplied additional-resource handler
assumes that TELN is set up properly for either or
both of the resources; it does not prevent an unpre-
pared task from using one of these resources inad-
vertantly. If this occurs, results are unpredictable.

For a task to use these resources, you must set up the
task's TELN in your TSK.X routine. You cannot change
a task's TELN after the task has been initiated.

Providing Even More Resources

If a task needs resources in addition to floating-point
hardware and contiguous memory locations, you can
write your own ESV.X routine to handle the extra
resources and use the supplied handler as a subroutine.
From within your own ESV.X routine, call out to the
supplied handler, using the alias ESV.A instead of
ESV.X, with the accumulators set up appropriately.

Licensed Material - Property of Data General Corporation

J-6

scheduler and seen on input to TSK.X.

Extending the Task Queue Table

When you issue a . QTSK task call, you must pass in
AC2 the address of a task queue table; see Chapter 5
for a description of the format and length of this table.
When the scheduler calls out to TSK.X, it passes the
queue table address in AC1. Thus, you can append
additional information to the queue table (that is, you
can supply a longer table), and access this information
from within TSK.X.

To do this, define symbol LPN.X with . ENT and set

it equal to the number of additional words for the task
queue table. On a .QTSK command, these words will
be copied, in order, to the end of the associated task
queue table, where they will be accessible to TSK.X.

TASK CONTROL BLOCK VALUES

Table J-1 describes the initial values the scheduler
assigns to words in a TCB and when these values can be
changed during a task's lifetime. A bracketed number
indicates a note. Entry Ndame is the symbol in PARU.SR
which represents the offset within the TCB. Initial
Contents describes the value placed there by the

In column
.TASK? a "Yes" means that TSK.X can set or change

the contents of this word if . TASK is initiating the task;

"No" means that TSK.X can't change this word. A "Yes"
or '"No" in column .QTSK means the same thing for
.QTSK. In column Later?, a "Yes" means that this word
can be changed later in the task's life; "No" means it
cannot be changed. In the Initial Contents column, the
entry applies to both . TASK and .QTSK, unless there

are two entries separated by a slash (/); in this case,

the first entry applies to . TASK and the second to . QTSK.

093-000201-02



Licensed Material - Property of Data General Corporation

Table J-1. TCB Words and How They Can Be Changed

DataGeneral

SOFTWARE DOCUMENTATION

Name Initial Contents . TASK? .QTSK? Later?
TPC BO- 14:Start addr;B15:Undefined Yes Yes Yes
TACO Undefined / System-maintained Yes No Yes
TAC1 Undefined / System-maintained Yes No Yes
TAC2 AC2 at ., TASK/System-maintained Yes No Yes
TAC3 K.ILL[1] / System-maintained [2] Yes No Yes
TPRST  B0-7:0 ; B8-15: Start pri. Yes Yes [3]1[4]
TSYS System-maintained No No No
TLNK System-maintained No No No
TUSP Undefined Yes Yes [5]
TELN 0 Yes Yes [6]
TID Task identifier No No No
TTMP System-maintained No No No
TKLAD O Yes Yes Yes
TSP Undefined Yes Yes [5]
TFP Undefined Yes Yes [5]
TSL Undefined Yes Yes [5]
TSO Undefined Yes Yes [S]
Notes:
1. Address K.ILL is the entry for the . KILL task call 4. Don't modify the priority portion of TPRST; use

code. This address is placed in TAC3 so that a
task can kill itself by simply returning to the
address it receives in AC3.

At TSK.X time for a task initiated by Q.TSK, TAC3
does not contain the address K.ILL. However,
after TSK.X completes, but before the new task
gains control, the scheduler places the address
K.ILL in TACS3, so that the task's initial AC3

will be correct (see also note 1).

The modification of a task's status bits must be
an indivisible operation. The interrupt world

can modify the status bits on suspended tasks
only. Thus, modifying the status bits of a ready
task must be a "task-indivisible" operation, while
modification of a suspended task must be an
"interrupt-indivisible" operation. Scheduler state
and interrupt-disable state both provide task-

and interrupt-indivisibility.

5.

6.

the task call . PRI instead.

Because these values are saved and restored
only on task swaps (not by . TSAVE, as are the
accumulators, for example), it is meaningless
to change the values while in scheduler state.
Instead, you should change the actual storage
locations. Change USP (16 octal) instead of
TUSP. On a NOVA 3 or microNOVA computer,
change the hardware stack and frame pointers
and locations 42 (octal) (stack limit) and 46
(octal) (instruction trap PC).

As mentioned earlier, you cannot change word
TELN after TSK.X time, if you use the additional
resource handler (ESV.X routine) supplied in
SYS. LB.

End of Appendix

093-000201-02

J-7

TASK CONTROL BLOCK VALUES






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX K
MULTITASK PROGRAMMING EXAMPLES

This appendix contains two examples of multitask
assembly language programs.

DUCLK PROGRAM

The first example, Figure K-1, is DUCLK, which
creates a second task and uses system call .DUCLK to
give the second task control on a regular basis. Real-
time clock cycles provide this basis, and you can
specify any reasonable number of RTC cycles if you
want to type in the program.

DUCLK also shows the transmit (. IXMT) and receive
(.REC) mechanism in action; generally, this works the
same way for . XMT and .IXMTW as it does here.

When it runs, DUCLK creates a second task, then
types the message:

I"'M THE MAIN PROG., ABOUT TO WAIT FOR A CHAR.

on the console. Then it defines a user clock and waits
for a character to be typed. The second task gets
control as the main program waits, and issues .REC,
which suspends the second task until it receives a
message from the user clock routine. Each time the
clock interval expires, the clock routine issues .IXMT
to the second task's receive address. This wakes up
the second task, which types the message:

I'M TASK: THE CLOCK INTERVAL HAS EXPIRED.

on the console. TASK then loops back to issue . REC
again, and, when the interval has expired again, prints
the message again. The program defines the interval
as 20 seconds, thus for a system with an RTC frequency
of 10Hz (normal for NOVA DOS systems), the message
appears every two seconds. For a microNOVA internal
clock, you might want to specify a value somewhere
around 1000.

093-000201-02

TASK continues typing the "EXPIRED'" message until
someone presses a console key. This wakes up the
main task, which removes the user clock and returns
to the CLIL

EXAMPLE PROGRAM

The second program, EXAMPLE, illustrates the
multitask overlay calls and task queuing. See

Figure K-2. EXAMPLE has two distinct tasks, AGAIN
and READ. AGAIN examines the console for input.

It recognizes only two characters, Band C. If AGAIN
reads a C, it loads overlay COMP, which types the
message "I AM A DATA GENERAL COMPUTER" on
the console. If AGAIN reads a B, it returns to the
CLI, which kills all tasks and closes all channels.

The second task, READ, resides in overlay READ.
is queued by .QTSK to execute every 3 seconds., It
reads the console switches or keys, and, if they have
changed, it types the message "CONSOLE SWITCHES
CHANGED" on the console.

It

EXAMPLE creates READ at a higher priority than it has,
so that if READ is ready to run (every three seconds),
AGAIN will be momentarily unable to return control to
the CLI.

Sample console output from EXAMPLE, after someone
has changed a console data switch three times, then
typed C, is:

CONSOLE SWITCHES CHANGED
CONSOLE SWITCHES CHANGED
CONSOLE SWITCHES CHANGED
I AM A DATA GENERAL COMPUTER

The following pages show the assembler listings for
EXAMPLE, overlay READ, and overlay COMP.



DataGeneral

SOFTWARE DOCUMENTATION

To run EXAMPLE, you must type the EXAMPLE code
into a file named EXAMPLE, SR, the READ code onto a
file named READ. SR, and the COMP code into file
COMP.SR. Then, assemble the three files and load
them.

The command line used to assemble EXAMPLE was:

MAC/L (EXAMPLE, READ, COMP) )

Licensed Material - Property of Data General Corporation

We used the pseudo-op ".NOLOC 1" before all byte
pointers to text strings; this suppressed listing of these,
but did not print them. The ASM assembler does not
recognize . NOLOC, so if you want to use ASM, omit
the ".NOLOC 0" statement as you type in the program.

The load line was:

RLDR 2/K EXAMPLE [READ, COMP] )

21 iThis program sets up & timeslicing task which
©e ;i receives control via a user clock routine,
03 ; defined with system call ,DUCLK,
04 ; The load line is "KLDR 2/K filename",
s
LTITL DUCLK
e7 . NREL
08 LEXTN ,TASK, .REC, IXMT, .UCEX ; Get task code
09 ;i from SYS.LB.
10 veeuol STXTM 1 jPack text tytes left to right,
11
12 Queuay INTVL=CEB. iDefine number of RTC pulses for
13 i clock routine, (For microNOVA
14 i irternsl clock, try "1000.")
15
16 ; Upen conscle output and create new task,
17
186 @0000'020534 INIT: LDA @, NTTO ; Get console neare, ;
19 Qued1'i2e400 suB 1, 1 i 2ero AC1 for default disable mesk,
20 200v2'006017 «SYSTM ;7 Cell systenm,
21 00003'214000 .GPEN 0 ;i Cren console output on chennel €.
22 0wvpg4teeeudy JMP ER ; Process any error,
23
24 Q0RLS'e2442e LDA 1, .TSK ; Get starting acoress of new task,
25 00006'102400 suB e, @ i A tesk ID of B, priority cf 0.
26 00087'@77777 . TASK ; Create the new task.
27 @0010'00Q4U3 JMP ER ; Process error, i
28 00011'@208445 LDA @, .MES1 ; Get start acdress for "WAITING"
29 ; messape,
30 e0012'006017 .SYSTM™ ;i Cea)ll system,
31 pe0il‘etivoe <WRL "] ; hrite "WAITING" message tc conscle,
32 00014'Q0e437 JMP ER ; Process error,
33
34 ; Define user clock and issue GCHAR to wait for
35 i console character.
36
37 ¢ee15'02@sS23 LDA 2, JINTVL ; Get nurber of RTC cycles for
38 . i clock interval, ) L
39 00@016'024425 LDA 1, RGCUT 3 Get sdoress of user clock routine,
4@ eve17'006017 +SYSTM ;7 Cal)l system, i ;
41 @0@20'021001 «DUCLK ; Define the yser clock = which will
42 ; freeze thinas and execute clock
43 ; routine after "INTVL" cycles,
44 00021'000432 JMP ER ;i Frocess error,
45 @0@22'@eee017 .SYSTM ;7 Ce)l systerm.
46 0@@23'0Q7400 .GCHAR ; hait for a console character,
47 ; suscending yourself yntil ycu
48 s receive one. This gives contrgl
49 ; to the other task,
5@ @ee2u4'doeud27 JMP ER ; Process error,
S1
52 i0n receipt of conscle char, wake up, remove clock,
53 H ano return to CLI.
Sy
SS 20025'006017 .SYSTM 7 Lall system,
S6 @0026'¥21002 <RUCLK ; Remove the user clock,
57 00027'0ee424 JMP ER ;i Fandle error.
58 @030 'evenl17 .SYSTM ;i System,
59.00@831'0084400 RTN ; Return to the CLI.
6@ ©0@32'000400 JMP ; Reserved, never taken,

Figure K-1. DUCLK Program Listing

K-2

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

¢0@2 DLCLK
1

2

23

¢4 80@33'00C834',TSK?
05

@6

27

28 @0034'028506 TASK:
89 00@35'077777

1¢

11 200836'022451

12

13

14 @0037'006017

15 gve4e’' 217000

16

17 @0041'008412

18 0BQ42' 200772

19

2e

21

22 €0@43'0@eR44’ ,ROUTS
23

24

25

26 80441054475 ROUT:
27 80245'020475

26 80046'024476

29 20047'077777

12

31 @vese’eec4e’

32 99051'034470

33 00052'077777

34

35

36 ,

37 20053'006217 ER:

38 Q0QS4'VReU0R

39 92055'00e400

4e

41

42

43

44

us

46

47 @00Se6'0UB136" ,MEST:
48 P0057'044447

49 ©8107'000220" . NES2:
5P 00110'0444d47

S1 80134'000272"NTTO:
52 @8135'022124

53 002000

sS4

SS 90148'000024 JINTVL:
56

57 ©@141'002020 RETRN:
58

59 P@142'0@0143' .MADDR:
60 09143'020020 MADDR:

0083 DUCLK

e1

P2 00144'000001 C1:
03

o4

25

jAddress of task.
TASK

i Task coce,

LCA @, .MADDR ; Get receive address.

.REC 7 heit for messape ,IXMT
H from clock routine.

LOA @, .MES2 ; Wwhen awakened by .IXMT, qet
; eaddr of "INTERVAL EXPIREC"
; nmessace.

.SYSTM ; Call system. .

.WRL "] ; Write "EXPIRED" ressage tc
H conscle,

JmP ER ;i Process error, .

JMP TASK 3 Now do the ,REC, wait, enc

- i write again,
i Address of user clock routine,

ROUT

; Code for user clock routine.

STA 3, RETRN i Seve return sddress.

LDA @, .MADDR ;i Get TASK's receive address.

LDA 1, C1 ; Get nonzero messaqe. .

< IXMT ; Trensrit messace, awakering
3 TASK,

JMP ER 3 Process error,

LDA 3, RETRN ; Restore AC3, L.

+UCEX ;7 Leave user clock routire.

jtrror handler,

.SYSTM
JERTN jRecort errcr through the CLI.
JMP ikeserved, never taken,

}Text for messages.
i To suppress text listing for MAC
i assembler, insert ", NOLGC 1" here.
H For ASVM, insert nothine,

.t1%2

STXT "I'M THRE MAIN FROG., ABOUT TC WAIT FOR A CHAR,.<15>"

LH1%2 .
LTXT "I'M TASK; THE CLOCK_ INTVL MAS EXPIRED.<15>"

St1x2 ;i Byte pointer to ctonsole output rane.
LTXT "8$770" i Ccnsole output name,
.NOLOC © ;7 Insert this for MAC, not for ASV,
INTVL ; Aodress which contains the interval,
[} ; Return address from clock routine,
MADDR i Aodress for .IXMT, REC message,
0 i Contents of message address.
1 ; A nonzero value is all that's

H needed for the message,

+END INIT

++00000 TOTAL ERRORS, 00000 PASS 1 ERRORS

093-000201-02

Figure K-1, DUCLK Program Listing (Continued)

K-3



DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

LTITL EXANPLE

02 JENT SWTCH,AGAIN,1COMP, IREAD,ERROR
(] .EXTN  OCONP,OREAC,COMP,READ
04 JEXTN  .PRI,.QTSK,.TOVLD
65 200001 JIXTM 1 ;PACK BYTES LEFT TO0 RIGHT.
06 .NREL
87 :
e8 ; OPEN CONSOLE OUTPULT AND OVERLAY FILE FOR I/0.
29
1¢ 000@0'02044@ START: LDA 2,NTTC ;SPACE FOR THE CONSOLE QUTPUT FILENAME,
11 ©0001'006017 +SYSTM iSYSTEM,
12 eeee2'021037 .GCOUT ; GET THE CONSCLE OUTPUT NAME,
13 ¢0e@3'eve47] JMP ERRCR 3  CAPTURE ANY ERROK.
14
15 20004'126400 suB 1,1 $SET DEFAULT DEVICE CHARACTERISTIC MASK.
16 go@RS'eesel? .SYSTM ;OPEN THE CONSOLE OUTPUT FILE
17 €0006'014000 .OPEN 8 i N CHANNEL €.
18 00027'000465 JMP  ERRCR 7 ERROR RETURN,
19
20 ©0010'020434 LDA @,0FILE ;GET OVERLAY FILENAME,
21 00011'0308476 LDA 2,0CHAN ;GET CHANNEL NUNBER FOR OVERLAY FILE,
22 00012'006017 .SYSTM ;OPEN OVERLAY FILE ON THE
23 eee13'e12e77 .GVOPN  CPUL 7 SPECIFIED CHANNEL.
24 ©0O14'P00U60 JMP ERRCR i  ERROR,
25
26 ;PROCEED WITH MAIN FROGRAVM,
27
28 ©0015'006017 .SYSTM ;KEAD THE INITIAL CONTENTS CF
29 20016'021065 LROSW ; THE SWITCHES OR KEYS,
30 ¢0817'0008455 JMP  ERRCR 7 ERROK RETURN.
31 e0@e20'eu4e43? STA @,ShTCH ;SAVE THE INITIAL CONTENTS.
32
33 90021'020432 LDA @,C40  iNOw SET YOUR PRICRITY
314 @0B22'077777 +PR1 i TC 40.
35
36 00023'030433 LDA 2,RTASK ;SET UP AN OVERLAY TASK TO
37 00024'077777 .QTSK ; RLN EVERY 3 SECONCS.
38 00025'00e44T7 JVMP  ERRCR
39
40 ; THIS IS THE MAIN KEYBUARD LISTENER LOOP,
41
42 0VQ26'006017 AGAIN: .SYSTM FWAIT FOR A CHARACTER FROM THE
43 pee27'ver400 +GCHAR ; CCNSOLE,
44 PRO3C'e0R4Y4Y JMP ERRKCR
45 0@e31'e24423 LDA 1,8 iWAS THE CHARACTER A "B"?
46 @W@32'122415 SuB# 1,8,5NR §
47 @@e33'0oBedle JMP  BYE ; YES, RETUKN TO THE CLI.
48 @PO34'B24421 LDA 1.C ;hAS THE CHARACTER A "C"?
49 @V@35'122415 sub# 1,8,SNR
5@ BU@36'0RR422 JMP  GCOMP  ; YES, GO TO THE 'COMPUTER' OVERLAY,
51 gee37'eseve’ Jvp AGAIN  iNO, IGNORE CHARACTER, TRY 'AGAIN.
52
53
S4 gOU4E'@e0102"NTTO:  ,+1x2 i3 WORDS 70
S5 200u1'0e0eRe3 .BLK 3 iRCLL "$T70",
Se
S7 @8044'000112"0FILE: .+1x2 JOVEKLAY FILE MANE,
58 @Ve45'e42530 JIXT . “EXAMPLE.OL"
59 202000 .NOLOC ©
60

Figure K-2. Example Program and Example Listing

K-4 093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
2002 EXAMP
@1 @0853'e¢e04l Cud: 4p FKEYBUARD TASK FRIORITY,
22 @0PS4'e00182 B: "B JASCII “B",
©3 Qep55'e@e1e3 C: e $ASCII "C".
04 00@56'0Q0077'RTASK: GTAB ;ADCRESS OF THE 'READ' TASK GUEUE TABLE.
@5 @00S7'2ee0e1 SKTCH: ,BLK 1 5STCRAGE FOR LAST SWITCH PGSITION.
26
27 ; THIS COCE PROCESSES THE "C" CHARACTER. IT LOADS AN OVERLAY
08 i AND TRANSFERS TO A ROUTINE IN THE GVERLAY TO PRINT A MESSAGE,
29
10 02062'020410 GCOMP: LDA @,1CONP ;GET 'LUMPLTER' CVERLAY NAME.
11 20061'126400 SUB 1,1 ; SPECIFY CCNDITIONAL LOADING.
12 00062'030425 LDA 2,CCHAN ; GET OVERLAY FILE CHANNEL NUMBER,
13 0ee63'e77777 .TOVLD JHUNBLY REGUEST SYSTEM ACTICN,
14 @0064'200410 JMP ERRCR  ;COOOCPPPPPSSSSS.
15 20P6S'e06402 JSR WACCMP  FEXECUTE THE SUBRCUTINE, THEN
16 00266'000740 JMP AGAIN  ; GC BACK FGKR MORE INPUT,
17
18 @0067'@77777 ACOMP:  COMP 7SUBROUTINE ADDRESS IN QVERLAY,
19 @@@7¢'@77777 1COMP: OCUMP ;'CCMPUTER' QVEKLAY IDENTIFIER.
20
21
22 ; THIS CODE PROCESSES THE "B" CHARACTEK. IT TERMINATES
23 ; THIS PROGRAM AND RETURNS TO ThE CLI.
24
25 20071'226017 BYE: LSYSTV JRETURN TO THE RDCS CLI.
26 00@72'004400 RTN ;
27 00073'00¢40! JMP ERRCR  ;RESEKVED, NEVER TAKEN,
28
29
30 ; THIS IS THE ERROR HANDLER.
31
32 0v@74'€06R17 ERROR: .SYSTM JLET THE CLI TELL US WHAT'S .WRONG.
33 08075'006400 JERTN ;
34 @oB76'@eeTTs J¥vP ERKCR  FNEVER TAKEN.
35
36
37 ; THIS 1S THE GUEUE TABLE FCR THE 'READ' CVERLAY TASK.
38
39 g0@77'@77777 GTAB:  READ 7STAKTING ACDRESS FOR THE TASK,
40 20100'177777 -1 JEXECUTE UNLIMITEL NUMBER OF TIMES.
41 @0101'@77777 IREAD: OREAD sCVERLAY IDENTIFIER.
42 00102'177777 -1 FSTARTING HCUR: RIGHT NOW.
43 20103'00¢00! BLK 1 FSTARTING SECOMC (DOESN'T MATTER HERE).
44 @0104'0@0430 1B7+30 ;TASK 1D OF 1, PRIORITY OF 30,
45 20105'0@eve3 3. JRERUN EVERY 3 SECONDS,
46 0B1P6'0E0001 LBLK 1 7SYSTEM WORC,
47 20107'820001 OCHAN: 1 ;LSE CHANNEL 1 FGR THE OVERLAY FILE,
48 2211¢'0000020 ) ;CONDITIONAL OVERLAY LUADING,
49 00111'0¢0021 LBLK 1 FSYSTEM WGRC.
50
51 LEND  START  ;STARTING ACORESS IS START,
x*00000 TOTAL ERRORS, 0000@ PASS 1 ERKORS

Figure K-2. Example Program and Example Listing (continued)

093-000201-02 K-5



DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

82
03
o4
4]
86
e7
(2]
@9
10
11
12
13
14
15
16
17
18
19
e
2l
22
23
24
25
26
27
28
29
3e
31
32
33
34
35
36

@ve1 KEAD

000021

0000e'006017
00081'021065
20002'00@2416
00003'026413
oeguuteuedle
¥oas'186415
e0e06'edeuLS

Bued7'e20412
000108'006V17
eve11'd17v00
0B012'00224v06

70013'022404
©0ev14'e77777
@0015'002403

00016'077777
ave17'077777
60v2e'e77777

i '"READ'

READ:

NEXT:

SwT:
ORD:
ERR?

00021'0UEVUY4"MESS:

¥ow22'e41517
00¢dv0

xx0Q¥88 TOTAL ERRORS,

Figure K-2,

LTITLE REAC
JENT REAL
LENTO  OREAD
JEXTN  SWTCh,ERRGR, IREAD
JEXTN LOVKIL
JIXTM 1
NREL
OVERLAY = MCNITGRS THE SWITCHES FOR CHANGE.
.SYSTM READ THE CLRRENT STATE CF
RDSW ; THE CONSOLE SWITCHES.
JMP  QERF ; ERROR RETURMN,
LDA 1,3SWT  ;GET CLD STATE CF SWITCHES,
STA 6,aShT  ;STCKE NEW STATE.
suB# ©,1,SNR ;COMPARE,
JMP  NEXT ; THEY'RE THE SANE=-=EXIT.
LCA @,VESS ;THEY DIFFER==- GET MESSAGE ADDR.
.SYSTW iWRITE MESSAGE
JWRL 0 ;70 CONSCLE OUTFLT.
JMP  aERR ; ERROF KETURN,
LDA @,aCRC  ;GET THE OVEKLAY IDENTIFIEFR,
LUVKIL FRELEASE OVERLAY ANL KILL TASK,
JMP  GEFFR
SWTCH $SKWITCH STATE SAVED IN EXANFLE, Sk,
IREAD CVERLAY IDENTIFIER, ’
tRROR JERKUR HANCLER,
LH1R2
LTXT "CONSGLE SWITCFES HAVE CHANGED.<15>"
.NOLOC @
LEND

000¥e PASS 1 ERRORS

Example Program (continued) and Read Overlay Listing

K-6

093-000201-02



Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

093-000201-02

©00e1 COMP

e
3
24
05
2o
e7
08
09
10
11
12
13
14
15
le
17
18
16
e
2l
22
e3
24
25
26
27
28

eveeadl

; 'COMPUTER'

000eB'054016 COMP:
¢oou1'eleud1e
00002'00e017
0v003'017000
000040024006

00008S5'027404
20006'030016
000R7'977177
Que1e'euveder

@¥¥11'077777 0OCP:
00012'@77777 ERR:
00013'00@0@30"CVMESS:
P0214'044440

200009

A*0Q008 TOTAL ERRORS,

Figure K-2. Example Program (continued) and COMP Overlay Listing

LTITLE
SENT
LENTO
CEXTN
+EXTN
«TXTM
«NREL

STA
LDA
.SYSTM
SWRL
JMP

LDA

LDA

OVEX
JmP

1COmMP
ERROR
SH1x2
o TXT

.NoLOoC

+END

00000 PASS 1 ERKORS

OVERLAY = PRINT MESSAGE ANC RETURN,

COMF

COMFP

0CCwNvP
ERRULK, ICONMP
»OVEX

1

3,LEP iFOR RE-ENTRANCY,.
0,CVESS FGET MESSAGE ADCR,

FWRITE I7
0 77C THE CONSOLE.
at kR JEKRUK RETURN.

0,aCCP  ;GET THE OVERLAY IDENTIFIER.
2,USP i AND THE RETURN ADDRESS

7 TC EXIT AND RELEASE THIS CVERLAY,
aERF

sOVEKLAY IDENTIFIER,
JEKRUR HANDLER,

"I AM A DATA GENERAL COMPLTER,<1S5>"
0

END OF APPENDIX






Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

INDEX

NOTE: The letter "f'" means "and the following page"’;
"ff'" means "and the following pages'. Primary command
references are underlined. Generally, capitalized
entries indicate commands. If they follow a period, they
are usually system or task calls (e.g., . ABORT); if they
lack a period, they are acronyms (e.g., CLI).

.ABORT 5-6f
accessing open files 3-25 to 3-29
advanced multitask programming Appendix ]
.AKILL 5-6
ALM multiplexor
line speed 2-12f
operating 2-10 to 2-14
ALMSPD.SR 2-13f
.APPEND 3-23
.ARDY 5-7f
ASCII character set C-1
auto restart
using 6-3f
automatic start 6-3

backup battery 6-3f
BOOT command, see bootstrapping
.BOOT 4-4
bootstrapping
microNOVA F-1f
NOVA F-1f
.BREAK 3-37
breakfile 3-36f
buffers, system 1-2, 2-3
byte pointer 3-12
double-precision 3'-24

093-000201-02

Index-1

card reading 3-26f
.CCONT 3-12
.CDIR 3-11
chaining a program 4-1ff
channels (I/0) 3-4, 3-23f
.CHATR 3-16f
.CHLAT 3-19
.CHSTS 3-15
CLI commands
see RDOS/DOS CLI User's Manual
clock, user 5-13f
clock/calendar calls 3-34f
.CLOSE 5-24
closing files 3-24, 4-3
communicating with DOS 1-1
.COMM TASK statement 3-1
.CONN 3-13
console
control characters 3-35
filename 2-1f
interrupts 3-35ff
core dump G-1f
.CRAND 3-13
CTCB J-1f
CTRL characters 3-35f

DCT 6-1f

.DELET 3-13f

device
characteristics 3-17f
code of disk drive 2-1
control table, see DCT
master 2-6f
names 2-~1f

INDEX



DataGeneral

SOFTWARE DOCUMENTATION

.DIR 3-9f
direct-block /O 3-29f
directory
command summary 2-7
current 2-5
master 2-5
system (SYS.DR) 2-3f
system calls 3-8ff
user 2-5
disk
block assignment 2-3f
capacity 2-3
handling I-1
master 2-6
names 2-1

DOS
buffers 1-2
introduction to 1-1
organization 12
DOS-RDOS compatibility H-1f
.DRSCH 5-16, J-1
.DQTSK 5-12
.DUCLK 5-13

EN.SCHED ]J-2
. ENTO pseudo-op 4-5f
.EOPEN 3-22
errors
exceptional status G- 1f
on diskette I-1

returns from system calls (summary) A-10 to A-15

ER.SCHED J]-3
.ERSCH 5-16
.ERTN 4-3
ESV.X ]-5

examples, multitask programming

DUCLK program K-1ff
Example program K-1, K-4ff
.EXEC 4-2f

failure, system G-1f

.FGND 4-3

file
access 3-16ff
attributes 2-2f, 3-16ff
characteristics 3-14ff
contiguous 2-3, 3-12f
directory, see directory
disk 2-1to 2-4
1/O calls 3-19 to 3-32
mag tape 2-8f
multiplexed line 2-10f
opening 3-19 to 3-32
position in 3-24f
random 2-3, 3-14
status 3-14f

floating-point unit 4-2, J-3f

frame pointer 5-4

.GCHAR 3-32
.GCHN 3-4, 3-23f
.GCIN 3-32
.GCOUT 3-32
.GDAY 3-34
.GDIR 3-10
generating a DOS system 1-1
.GHRZ 5-13f
.GSYS 3-11
.GTATR 3-17f
.GTOD 3-34

hardware problems G-1f
hardware stack J-2, J-7
Hollerith- ASCII conversion B-1f

Index-2

Licensed Material - Property of Data General Corporation

093-000201-02



Licensed Material - Property of Data General Corporation

.IDEF 6-1f
ID.SRCH J-3
. INIT 3-8f
INT.DS J-3
INT.EN ]J-3
interrupt-disabled state J-2
interrupt processing
console 3-35ff
user device routines
entering (.IDEF) 6-1f
mask for device 6-2
messages 5-8
returning from (. UIEX) 6-2
servicing 6-1
JIRMV  6-2
LIXMT 5-8

.KILAD 5-5f
.KILL 5-6

level of program 4-1ff

link
system calls 3-18f
.LINK 3-18

MAC macroassembler 2-14, 3-21

mag tape 2-8f

manuals which relate to DOS iv
MAP, DR directory 2-3

.MDIR 3-11

.MEM 3-33

.MEMI 3-33

093-000201-02

DataGeneral

SOFTWARE DOCUMENTATION

memory
allotting 3-33
extending Chapter 4
system tables in 1-2
user 1-2, 3-33
message, transmitting from task 5-8f
modem 2-12ff
.MTDIO 3-30ff
.MTOPD 3-30
multiplexors 2-10 to 2-14
characteristics of lines 2-11f
checking lines 2-10ff
errors 2-13
line speed (ALM) 2-12f
modem 2-12ff
.MULTI 5-15, J-2
multitask programs Chapter 5, Appendix J, Appendix K

node overlay 4-4f

also see overlay
NMAX

cautions for swap 4-I1f

checking, setting 3-33
NREL 1-2

.ODIS 3-37
.OEBL 3-37
.OPEN 3-21f
opening a file 3-4, 3-22f
organization of manual iii
overlay
calls
system 4-6
task 5-9f, 5-12f
description 4-4f
directory 1-2, D-1
using . ENTO 4-5f

Index -3 INDEX



DataGeneral

SOFTWARE DOCUMENTATION

.OVEX 5-12
. OVKIL 5-12f
.OVLOD 4-6
.OVOPN 4-6
.OVREL 5-12

panic, see exceptional system status
PARU.SR Appendix E

.PCHAR 3-32

power fail 6-3f

.PRI 5-7

program load F-1

QTY multiplexor
checking lines 2-10ff
filenames of lines 2-11

.QTSK 5-11f, J-4, J-6

queuing a task 5-11f

.RDB 3-29f
.RDL 3-25f
RDOS-DOS compatibility H-1f
.RDR 3-28f
.RDS 3-27f
.RDSW 3-34
.REC 5-8f
reentrancy, definition of J-2
.RENAME 3-14
rescheduling, definition of J-1
restart, auto

see auto restart
RESTART.SV 6-3f
.RLSE 3-10

.ROPEN 3-22f
.RSTAT 3-14f
.RTN 4-3

.RUCLK 5-13

scheduler 3-1, 5-15f

calls J-2f

call-outs J-4f

state 5-15, J-2f
.SDAY 3-34f
.SINGL 5-15, J-1f
singletask state ]-2
.SMSK 6-2

soft error
handling Appendix I
.SPOS 3-25
stack, hardware -2, J-7
.STAT 3-14f
.STOD 3-34
summary of
all calls A-1to A-9
all system calls 3-2f
all task calls 5-16
common system calls 3-5ff
directory calls 2-7
errors from calls A-10 to A-15
.Susp 5-7
swapping a program 4-1ff
system
call, see system call
directory, see directory, system
failure G-1f

Index -4

Licensed Material - Property of Data General Corporation

093-000201-02



DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
system call TELN 5-2, J-5ff

capsule summary 3-5ff . TOVLD 5-9f

error summary 3-8 TPRST J-2, J-7

format 3-1 TRL.X J-5

input in ACs 3-1 . TSAVE ]-3

return from  3-2 TSK.X ]J-4

summary 3-2f, A-1ff

sk L.UCEX 5-13
UFD 2-4f, 3-14f
call, see task call
communicati 5-8f HOIEX O
ion .ULNK 3-19

control block, see TCB UPDAT 3-16
creating, see .QTSK, .TASK . UPEX 6-4
definition of 5-1, J-1f :1ser
environments 3-1 clock 5-13f

ID 5-5, 5-14f
killing S5-5f
priority 5-7

devices, see interrupts of . IDEF

directories 2-5
file definition (UFD) 2-4f

tabl -7
Cxl':zg}erinz es_g 5-14 parameter file (PARU.SR) Appendix E
t4 .
rescheduling, definition of J-1 stack pointer, see USP
state J-2

resource, definition of J-1 .
scheduler, see scheduler USP (user stack po1}1_t62:r) 1-2, 3-2, 5-4

states S5-2f
status word (TPRST) 5-1f, J-2, J-7
suspending 5-7f, 5-14

UST (user status table) 1-2, 5-3f

swap J-1, J-5 .WRB 3-29f
task call .WRL 3-26
input to (general) 5-4 .WRR 3-29
return from 5-4 .WRS 3-28

summary 5-16
.TASK 5-5, J-3f, J-6f
TCB (task control block) LXMT, .XMTW  5-8f
chaining 5-3
extending J-4f
in memory 1-2 ZREL 1-2
queue 5-3
structure 5-1ff, J-6f
values J-7

END OF INDEX

093-000201-02 Index-5 INDEX






Title No.

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

O EDP Manager (List in order: 1 = Primary use)

[0 senior System Analyst ——— Introduction to the product
[0 Analyst/Programmer ____ Reference

O operator — Tutorial Text

O other Operating Guide

What programming language(s) do you use?

Yes Somewhat

Is the manual easy to read?

Is it easy to understand?

Is the topic order easy to follow?

Is the technical information accurate?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you everything you need to know ?

Oocooao

(Please note page number and paragraph where applicable.)

Name Company

Address Date

SD-00742



FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States
Postage will be paid by:
[ ]
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Software Documentation
oo cTTTTTTTTTTT TeTTTTTTTTTTT s onD Tt T T T oo B

SD-00742A STAPLE



