¢vDataGeneral

— Software Documentation

Advanced Operating System

- (AQOS)
Link and Library File Editor

(LFE)

User’s Manual

v —

Advanced Operating System
(AOS)
Link and Library File Editor
(LFE)
User’s Manual

093-000254-02

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000254

©Data General Corporation, 1979, 1982, 1984

All Rights Reserved

Printed in the United States of America

Revision 02, October 1984

Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE-
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,

SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW » SWAT,
GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L,
DG/GATE, DG/XAP, ECLIPSE MV/ 10000, GW/4000, GDC/1000, REV-UP, XODIAC, DEFINE, SLATE,
microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Advanced Operating System

(AOS)
Link and Library File Editor
(LFE)
User’s Manual
093-000254
Revision History: Effective with:

Original Release - December 1979
First Revision - November 1982
Second Revision - October 1984 AOS Rev. 4.20

This manual supersedes the Advanced Operating System (AOS) Library File Editor User’s
Manual (093-000198). A vertical bar or an asterisk in the margin of a page indicates
substantive change or deletion, respectively from the previous revision.

CONTENT UNCHANGED

The content and change indicators in this revision are unchanged from 093-000254-01. This
revision changes only printing and binding details.

Preface

This manual describes Link and the Library File Editor (LFE), two fundamental utilities of
the Advanced Operating System (AOS).

We describe the two utilities in one manual because they play related roles in program
development. Link consolidates object modules and library files into executable program files.
The LFE creates, edits, and analyzes library files.

The spectrum of Link users is very broad. Some programmers require little more from this
manual than the fundamental Link command line; others want to know more about Link
switches, overlays, cross-linking, and partitions so that they can optimize the performance of
their applications programs; some programmers want details about object block formats so
that they can write compilers or assemblers that Link can handle.

We've organized the manual to comply with all these different needs:

Chapter 1 briefly describes Link’s purpose and the basic Link command line. It also
contains some sample programs and sample Link command lines for
several AOS languages that use Link. We aimed this chapter at
programmers who have never worked with Link.

Chapter 2 gives an overview of AOS and ECLIPSE® hardware. It will be particularly
useful to programmers who are familiar with other operating systems and
hardware, but are new to AOS and ECLIPSE hardware.

Chapter 3 discusses topics such as modular programming, absolute code and
relocatable code, external symbols and entry symbols. If you want to
know what a relocatable linker does, read this chapter.

Chapter 4 explains attributes, partitions, external numbers, and resource call resolu-
tion. These topics are prerequisites to understanding many of the switches
in Chapter 5 and the object block formats in Appendix B.

Chapter 5 explains all Link command line options (including how to set up overlays).
It also contains many figures showing how Link switches affect .PR files.
All programmers will find this chapter useful.

Chapter 6 presents an overview of LFE functionality and describes several library
programming strategies. It also describes all LFE function-letters. This is
an essential chapter for all LFE users.

Chapter 7 explains how you can transfer object modules, libraries, or program files
across operating systems. It is intended for programmers who want to use
AOS Link to produce a program file that can execute on RDOS or

RTOS.
Appendix A lists all the Link error messages.
Appendix B details object block structure. We aimed it principally at programmers

writing their own compilers or assemblers.

Appendix C lists all symbols generated by the Link utility. It is primarily for
programmers writing their own compilers or assemblers, but some
applications programmers will also find it helpful.

093-000254 Licensed Material-Property of Data General Corporation iii

Appendix D illustrates the structure of the AOS SY, .PR, .ST, .OL, .DS, and .DL
files and the RDOS and RTOS .SV files. Anyone programming on AOS,
RDOS, or RTOS will find this appendix useful.

Appendix E lists all the LFE error messages.
Glossary contains definitions of many Link and LFE terms.
Related Manuals

All Link users should be familiar with AOS CLI commands. Refer to the following manuals:
* Learning to Use Your Advanced Operating System (069-000018)
» Command Line Interpreter User’s Manual (AOS,AO0S/VS) (093-000122)

Information on high-level language source code and on compile and Link command lines can
be found in the following manuals:

* COBOL Reference Manual (A0S) (093-000223)

* DG/L™ Reference Manual (093-000229)

* FORTRAN IV User’s Manual (093-000053)

¢ FORTRAN 5 Reference Manual (093-000085)

* FORTRAN 77 Reference Manual (093-000162)

* PL/I Reference Manual 093-000204)

You can find information on language libraries in the following manuals:

o DG/L™ Runtime Library User’s Manual (AOS,AO0S/VS) (093-000159)
* FORTRAN IV Runtime Library User’s Manual (E CLIPSE®) (093-000142)
* FORTRAN QCALLs Reference Manual (AOS) (093-000239)
Assembly language programming is described in three books:

* AOS Macroassembler Reference Manual (093-000192) — details AOS assembly language
pseudo-ops. Pseudo-ops are special source code directives to Link or the macroassembler.

* AOS Programmer’s Manual (093-000120) — documents the AOS system calls and system
parameters. System calls are the user program’s interface to the operating system.

* appropriate manual in the Programmer’s Reference Series for ECLIPSE-Line Computers
— describes all ECLIPSE assembly language instructions. This manual also describes
concepts specific to your ECLIPSE hardware.

If you intend to use AOS Link to create program files executable under RDOS or RTOS, you
will find the following manuals useful:

* Real-time Disk Operating System (RDOS) Reference Manual (093-000075)
* Real-Time Operating System (RTOS) Reference Manual (093-000135)

¢ RDOS/DOS Macroassembler User’s Manual (093-000081)

* DG/L™ Runtime Library User’s Manual (RDOS) (093-000124)

* FORTRAN IV Runtime Library User’s Manual (NOVA®) (093-000068)

e Library File Editor (LFE) User’s Manual (093-000074)

* RDOS/DOS Command Line Interpreter User’s Manual (093-000109)

If you intend to run your RDOS or RTOS .SV files on a NOVA® computer, you can refer to
the appropriate manual in the Programmer’s Reference Series for NOVA-Line Computers.

iv Licensed Material-Property of Data General Corporation 093-000254

Reader, Please Note:
We use these conventions for command formats in this manual:
COMMAND required <optional> ...
Where Means
COMMAND You must enter the command (or its accepted abbreviation) as shown.

required You must enter some argument (such as a filename). Sometimes, we use:
required,
required,
which means you must enter one of the arguments. Don’t ‘enter the braces;

they only set off the choice.

<optional> You have the option of entering this argument. Don’t enter the brackets; they
only set off what’s optional.

You may repeat the preceding entry or entries. The explanation will tell you
exactly what you may repeat.

Additionally, we use certain symbols in special ways:
Symbol Means
J Press the NEW LINE or carriage return (CR) key on your terminal’s keyboard.

O Be sure to put a space here. (We use this only when we must; normally, you can see
where to put spaces.)

In the error message listings, we use angle brackets << > to indicate the paraphrase of a value
or symbol. For example, the LFE error message SWITCH NOT FOUND, <switch> means
the utility will supply the actual switch string.

All numbers are decimal unless we indicate otherwise; e.g., 35g.

Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRY!
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the CLI prompt.
&) is the AOS CLI prompt for line continuations.

Contacting Data General

« If you have comments on this manual, please use the prepaid Remarks Form that appears
after the Index. We want to know what you like and dislike about this manual.

« If you need additional manuals, please use the enclosed TIPS order form (USA only) or
contact your Data General sales representative.

« If you experience software problems, please notify Data General Systems Engineering.

End of Preface

093-000254 Licensed Material-Property of Data General Corporation v

Contents

Chapter 1 - Link in Brief

The Fundamental Link Command Line 1-1
Linking Programs 1-1
FORTRAN 77 1-2
FORTRAN 5 1-4
FORTRAN IV 1-5

PL/L 1-5
DG/L Languageo 1-7
COBOL 1-9
CBIND and Link 1-9

Sample COBOL Subprograms 1-10

MASM (Assembly Language) 1-11
What to Do if You Get Link Errors 1-13

Chapter 2 - ECLIPSE Hardware Concepts and AOS
ECLIPSE Hardware and AOS Terms oo, o 2-1
How AOS and ECLIPSE Hardware Make a Program Run 2-2
Shared and Unshared Pages 2-2
Logical Address Space 2-5
ZREL and NREL 2-6
Link-Generated Information 2-7
Reserved Storage Locations 2-7
System Tables 2-8
Stack . 2-9
System Calls 2-9
OVerlays . . 2-9
Multiple Basic Areas 2-11
Chapter 3 - Relocatable Linkers and Related Concepts

Absolute Code and Relocatable Code 3-1
Modular Programming 3-2
What a Relocatable Linker Does 3-2
Partitions o oo 3-4
One-pass Linkers and Two-pass Linkers ~ 3-4
Cross-Linking .. 3-4
Intermodular Symbols 3-4
Libraries and Object Modules 3-5
Debuggers and Relocatable Linkers ... 3-6

093-000254 Licensed Material-Property of Data General Corporation

Vii

Chapter 4 - Partitions and Relocation in Link

Attributes ..

Absolute, ZREL, and NREL Attributes
Shared and Unshared Attributes

Normal Base and Common Base Attributes
Alignment (0-12g) Attribute L.
Code and Data Attributes

Overwrite-with-Message and Overwrite-without-Message Attributes
Partition Types
Predefined Partitions
User-Defined Partitions
Generating User-Defined Partitions

Source Code and Partitions
External Numbers
Example
External Numbers in Named Common Blocks and AIBs
Overlays
Generating Overlays
Calling Overlays

Chapter 5 - Link Command Line

Command Line Without Overlays
Sample Link Command Lines
Command Line With Overlays
How Object Modules Contribute to Overlay Areas
Sample Link Command Lines
Linking High-Level Language Object Modules
Switches in High-Level Language Macros
Library Files
The Systems Libraries
Starting Address ...
Radix ... P

Chapter 6 - Introduction to the Library File Editor (LFE)

Functional Overview

Vil Licensed Material-Property of Data General Corporation 093-000254

—

Chapter 7 - Developing RDOS and RTOS Programs on AOS

RDOS, RTOS, and NOVA Overview
RDOS
RTOS
NOVA HardwWare

Writing RDOS Source Code Under AOS
Programming in DG/L Language
Programming in Assembly Language

Writing RDOS Source Code Under RDOS

Preliminary Steps Before Linking
Transferring an RDOS Library to AOS

Cross-Link Command Line
RDOS
RTOS
Incompatible Switcheso
Different Switch Meanings

Cross-Linking For Unmapped Foreground in RDOS

RDOS and RTOS Overlays
Conventional Overlays
Virtual Overlays

After Cross-linking

Appendix A - Link Error Message
Error Messages During Linking

Appendix B - Object Block Structure

Object Block Restrictions ..., ...
Standard Object Block Header
Relocation Entries and Relocation Dictionary Entries
Extended FOrmats
Bit Field Relocation Dictionary Entry
Examining Object Blocks
Object Block Rules
Examples Used in This Appendix
Data Block . ..
Data Block Formats 0, 1, and 2
Example
Title BIOCK . o o
Sample Title Block
End BloCK . ..
Unlabeled Common Block
External Symbols Block
Example ...
Entry Symbols Block
EXample
Local Symbols Block
Library Start Block
Example

093-000254 Licensed Material-Property of Data General Corporation

Address Information Block B-20

Example B-21
Taskblock, e B-22
Named Common Block B-22

Example B-23
Accumulating Symbols Block B-24
Debugger Symbols Block B-24
Debugger Lines Block/Lines Title Block B-25
Library EndBlock e B-26
Partition Definition Block B-26

Example B-28
Revision Block B-28

Example B-29
Filler Block B-29
Module Revision Block B-30
Alignment Block B-31

Appendix C - Link-Generated Symbols and Symbol Types
Symbol Types C-3

Appendix D - Link-Generated Output Files

AOS PR File ... D-1
OL File D-3
ST File D-3
DS and .DL Files D-5
AOS SY File ... D-8
RDOS .SV File D-9
RTOS SV File ... D-10

Appendix E - LFE Errors

Glossary

X Licensed Material-Property of Data General Corporation 093-000254

Table

ww b
LI) N'—‘

LN
SN — [\

'
—_ 0 0 1 O\ L

]
(=

-h-h-?-hk-lk

w
1

LI\KIJIKII
— e BN G DN

~N O
1 ¥ 1

00 www
N — W=

093-000254

Tables

Reserved Storage Locations Built by Link 2-8
System Tables 2-8
Two Absolute Code Subprograms 3-3
Two Relocatable Code Subprograms 3-3
Predefined Partitions 4-5
Attributes That Object Blocks Can Define, 4-5
AOS Macroassembler Pseudo-ops and Partitions They Generate 4-6
7RCALL Resolution if No Resource Call Optimization Switches Are in Link
Command Line. e 4-12
7RCALL Resolution if /NRP Is in Link Command Line 4-12
7RCALL Resolution if /WRL Is in Link Command Line 4-13
7RCALL Resolution if /NRC Switch Is in Link Command Line 4-13
P7KCALL Resolution 4-13
IRCHAIN Resolution 4-13
Abbreviations Used in Tables 4-4 through4-9 4-14
GLOBAL switches 5-8
OB switches 5-13
PARTSYM switches 5-14
OV switches 5-14
LFE Function-letters 6-3
Requirements For Executable .SV Files 7-7
Object Block Types B-1
Object Block Order B-2
Relocation Operations B-4
Link-Generated Symbols C-1
Symbol Types C-3

Licensed Material-Property of Data General Corporation Xi

IHHlustrations

Figure

) o
AN N R WN -

A Large Program Divided into a Program File and an Overlay File

N= CONOUnhAhWN=—=

LARGE.PR Contains Two Basic Areas Within One Overlay Area

& o

Call Word and Target Word for Argument Passed on the Stack .

(V. V) '&A
N - AW

Example Showing Effect of /<ZR,UC,UD,SC,SD>=

<ZR,UC,UD,SC,SD> GLOBAL Switch
Example Showing Effect of /KTOP=n or /NTOP=n Switch ...
Example Showing Effect of /NBOT=nSwitch
Example Showing Effect of /SRES=nSwitch
Example Showing Effect of /STACK=n Switch
Example Showing Effect of /ULAST=nSwitch
Example Showing Effect of /ZBOT=n Switch
Sample /ALPHA Listing FE S

0 Sample /MAP Listing
1 Sample /MODMAP Listing
2 Sample /MODSYM Listing
3 Sample /NUMERIC Listing
4
5

e e s s oo Ut i

MU.LIILIIMUIK.IIMUILIIMMM

Example Showing Effect of /<ZR,UC,UD,SC,SD> =

<ZR,UC,UD,SC,SD>0OB Switch

1
[y

Example Showing Effect of /<ZR,UC,UD,SC,SD>=n Switch

o
Ll
[~ B0 o N

Xii Licensed Material-Property of Data General Corporation

Three FORTRAN 77 Subprograms
Three FORTRAN 5 Subprograms
Three PL/I Subprograms
Three DG/L Subprograms
Three COBOL Subprograms
Three AOS Assembly Language Subprograms

Hierarchy of Program Development
Physical Memory During Execution of KINGS.PR
JAN’s Logical Address Space Before Program Execution
JACK’s Logical Address Space Before Program Execution e
A Typical Logical Address Space

Overlay C in Logical Address Space
Overlay B in Logical Address Space

Allocation of a Partition with the Normal Base Attribute
Allocation of a Partition with the Common Base Attribute

Call Word and Target Word for Argument Passed In Line

A Logical Address Space

Sample /XREF Listing

Example Showing Effect of /ALIGN=n Switch '
Example Showing Effect of partition/SHARED Switch

093-000254

6-1 An Object Module and a Library 6-2
6-2 An Object Module and A Library 6-3
6-3 Inserting Object Modules Into a Library 6-9
7-1 Typical Unmapped RDOS Logical Address Space 7-10
B-1 Object Block Header B-2
B-2 Standard Relocation Entryo B-5
B-3 Standard Relocation Dictionary Entry B-5
B-4 Extended Relocation Entry B-6
B-5 Extended Relocation Dictionary Entry L. B-6
B-6 Bit Field Relocation Dictionary Entry B-7
B-7 Data Block . . . B-9
B-8 Title Block e B-11
B-9 End Block B-12
B-10 Unlabeled Common Block B-13
B-11 External Symbols Block B-15
B-12 Entry Symbols Block B-16
B-13 Library Start Block B-19
B-14 Address Information Block B-21
B-15 Task Block B-22
B-16 Named Common Block B-23
B-17 Accumulating Symbols Block B-24
B-18 Debugger Symbols Block B-25
B-19 Library End Block B-26
B-20 Partition Definition Block B-27
B-21 Revision Block B-29
B-22 Filler Block B-30
B-23 Module Revision Block B-30
B-24 Alignment Block B-31
D-1 PR File Structure D-2
D-2 AOS, RDOS, and RTOS .OL File Structure D-3
D-3 ST File Structure e D-4
D-4 DS File Structure e D-6
D-5 .DL File Structure D-7
D-6 AOS SY File Structure ... D-8
D-7 RDOS SV File D-9
D-8 RTOS .SV File Structure D-10

093-000254 Licensed Material-Property of Data General Corporation X|||

Chapter 1
Link in Brief

This chapter is for new Link users. If you already have some experience with Link, we suggest
that you refer to one of the other chapters in this manual. In particular, Chapter 5 offers a
much more complete discussion of the Link command line. If you are unfamiliar with relocatable
linkers, you might want to read Chapter 3, “QOverview of Relocatable Linkers”.

Link’s job is to take assembled or compiled code and create a program file — a file that the
operating system and hardware can execute. Program files that can run on AOS are called .PR
files. Creating a program file is a three-step process:

1. Coding — You write instructions in a language that a particular compiler or assembler
can read.

2. Compiling or Assembling — A language processor (either a compiler or an assembler)
translates your code into an object module. An object module is a file, ordinarily with the
file name extension .OB, consisting of two or more object blocks. Each object block
consists of three or more 16-bit words arranged in a format that Link can use. (Appendix
B details object block structure.) Basically, an object module contains both a program
recipe and a list of program ingredients.

3. Linking — Link gathers object modules and creates an executable program file (.PR
file). Basically, Link is like a chef that blends the program ingredients into a usable form
by reading the program recipe.

The Fundamental Link Command Line
You can link any number of object files with the following fundamental Link command line:
) X LINK objectfile1 <objectfile2> ...

It is possible, however, to alter this command line with switches and overlay area delimiters
(explained in Chapter 5). An object file must be the name of an .OB file or library file.

Linking Programs
The following Data General Corporation AOS languages use Link:
« FORTRAN 77
e FORTRAN 5
* FORTRAN IV
« PL/I
« COBOL
e DG/L™ language
« MASM (AOS assembly language)

093-000254 Licensed Material-Property of Data General Corporation 1 = 1

Although command lines for different languages differ, the process for creating a .PR file does
not. In ail languages you use the following procedure to create a .PR file:

1. Write one or more files of source code.
2. Separately compile (or assemble) each file of source code to create one or more .OB files.

3. Link the .OB files and the appropriate system library and language libraries to create one
executable .PR file.

For many languages, the Link command line is bundled into a DGC-supplied macro. It is
important to realize that this macro consists of the fundamental Link command line plus
switches and object files appropriate to the language. So, even though the FORTRAN 5 and
PL/I Link command lines are different, they both invoke the same utility.

In the following section, we discuss the compile and Link command lines for seven AOS
languages. We also include a sample program in six of these languages.

FORTRAN 77

If you are programming in FORTRAN 77, you create a .PR file with the following procedure:
1. Write one or more files of source code.

2. Separately compile each file with the following command:

) F77 file)

Each time you compile, the compiler creates one .OB file.
3. Link each .OB file with the Link macro:

) F77LINK .OBfile <.OB file>...)

Link creates one .PR file. ‘
4. If your program is not working properly, you may wish to debug it with the SWATTM

debugger. Then, you may wish to edit one or more of the files of source code, recompile

the faulty source code file(s), and relink.

1-2 Licensed Material-Property of Data General Corporation 093-000254

For instance, consider the three subprograms shown in Figure 1-1.

C This is the MAIN program. It is stored in file MAIN.F77
PROGRAM MAIN
IMPLICIT INTEGER (A-Z)
PRINT *, “Enter today's high temperature. "
READ (*,*) HIGH
PRINT *, “Enter today’'s low temperature.
READ (*,*) LOW

Y = MEAN(HIGH,LOW)
PRINT *, “Today's mean temperature is ", Y
C MEAN(HIGH,LOW) calls out the function MEAN.

PRINT *, “The deviation from normal is ", DEV(Y)
C DEV(Y) calls out the function DEV.

END

C This function averages the high and low.
It is stored in file AVRG.F77

o

FUNCTION MEAN(HIGH2,LOW2)

IMPLICIT INTEGER (A-2)

MEAN = (HIGH2 + LOW2) / 2 Icalcuate the mean.

RETURN IReturn to calling subprogram
END

C This function figures out the deviation from the normal temp (73)
C It is stored in file DIFF.F77

FUNCTION DEV{MEAN2)

IMPLICIT INTEGER (A-2)

DEV = MEAN2 - 73 {Calculate the deviation from normal temp.

RETURN IReturn to calling subprogram
END

Figure 1-1. Three FORTRAN 77 Subprograms

To execute the program in Figure 1-1, you must first separately compile all three files of
source code:

) F77 MAIN |

) F77 AVRG)

) F77 DIFF }

[f there are no compilation errors, you can link the three object modules:
) F77LINK MAIN AVRG DIFF)

If there are no Link errors, you can execute program MAIN.PR:

) X MAIN)

Enter today’s high temperature. 81)

Enter today'’s low temperature. 61)

Today’s mean temperature is 71
The deviation from normal is -2

093-000254 Licensed Material-Property of Data General Corporation 1 ’3

FORTRAN 5

If you are programming in FORTRAN 5, you create a .PR file with the following procedure:
1. Write one or more files of source code.

2. Separately compile each file with the following command:

) F5 file)

Each time you compile, the compiler creates one .OB file.
3. Link each .OB file with the Link macro:

) F5LD .OBfile <.OBfile>...)

Link creates one .PR file.

4. If your program is not working properly you may wish to edit one or more of the files of
source code, recompile the faulty source code file(s), and relink.

For instance, consider the three subprograms shown in Figure 1-2.

C This is the MAIN subprogram. It is stored in file MAIN.FR
IMPLICIT INTEGER (A-Z)
EXTERNAL MEAN,DEV

ACCEPT “Enter today's high temperature. " HIGH
ACCEPT “Enter today's low temperature. ",LOW

Y = MEAN(HIGH,LOW)
C MEAN(HIGH,LOW) calls out the function MEAN.
TYPE “Today's mean temperature is ",Y

TYPE “The deviation from normal is ",DEV(Y)
C DEV(Y) calls out the function DEV.

END

C This function averages the high and low.
C It is stored in file AVRG.FR

INTEGER FUNCTION MEAN{HIGH2,LO0W2)
IMPLICIT INTEGER (A-Z)
MEAN = (HIGH2 + LOW2) / 2
RETURN
C Return to the calling procedure

END

c This function figures out the deviation from the normal temp.
c It is stored in file DIFF.FR

INTEGER FUNCTION DEV(MEAN2)
IMPLICIT INTEGER (A-Z)
DEV = MEAN2 - 73
RETURN
c Return to the calling procedure

END

Figure 1-2. Three FORTRAN 5 Subprograms

1 '4 Licensed Material-Property of Data General Corporation 093-000254

To create an executable program file from the three subprograms shown in Figure 1-2, you
must first separately compile all three files as follows:

) F5§ MAIN)
) F5 AVRG !
) F5 DIFF }

If there are no compilation errors, you can link the three object modules together with the Link
macro FSLD as shown below:

) F5LD MAIN AVRG DIFF)

If there are no Link errors, you can execute program file MAIN.PR with the following
command line:

) X MAIN)

Enter today’s high temperature. 81)
Enter today’s low temperature. 61)
Today’s mean temperature is 71
The deviation from normal is -2

FORTRAN IV
If you are programming in FORTRAN IV, you create a .PR file with the following procedure:
1. Write one or more files of source code.
2. Separately compile each file with the following command:
) FORTA4 file)
3. Link each .OB file with the command line:
) X LINK .OBfile <<.OBfile>... FORT4.LB)
where FORT4.LB is the name of the FORTRAN 1V library. Link creates one .PR file.

4. If your program is not working properly, you may wish to edit one or more subprograms,
recompile the faulty subprogram(s), and relink.

For more details, see the FORTRAN IV User’s Manual.

PL/1
If you are programming in PL/I, you create a .PR file with the following procedure:
1. Write one or more files of source code.
2. Separately compile each file with the following command:
) PL1 file)
Each time you compile, the compiler creates one .OB file.
3. Link each .OB file with the Link macro:
) PL1LINK .OBfile <<.OB file2>...)
Link creates one .PR file.

4. If your program is not working properly, you may wish to debug it with the SWAT
debugger. Then, you may wish to edit one or more of the files of source code, recompile
the faulty source code file(s) and relink.

093-000254 Licensed Material-Property of Data General Corporation 1 '5

!

For instance, consider the three subprograms shown in Figure 1-3.

/* This is the main procedure. It is stored in file MAIN.PL1. */
main: PROCEDURE;
/* variable declaration section */
DECLARE (high,low,meanresult,devresult,y) FIXED BINARY(15);
DECLARE (crt,kbd) FILE;
DECLARE (mean) ENTRY(FIXED BINARY(15),FIXED BINARY(15))RETURNS(FIXED BINARY(15));
DECLARE (dev) ENTRY(FIXED BINARY(15))RETURNS{FIXED BINARY(15));
/* end of variable declaration section */
OPEN FILE(crt) STREAM OUTPUT PRINT TITLE(‘60UTPUT™);
OPEN FILE(kbd) STREAM INPUT TITLE(*@INPUT");

PUT FILE(crt) SKIP LIST(“Enter today’s high temperature.”);
GET FILE(kbd) LIST(high);

PUT FILE(crt) SKIP LIST(“Enter today's low temperature. ");
GET FILE(kbd) LIST(low);

y = mean(high,low);
PUT FILE(crt) SKIP LIST(“Today's mean temperature 1s”,y):

PUT FILE(crt) SKIP LIST(*The deviation from normal is”,dev(y));

END; /* main procedure */

/* This function averages the high and low. It is stored in file AVRG.PL1 */
mean: PROCEDURE(high2,1ow2)RETURNS(FIXED BINARY(15));
DECLARE (high2,low2) FIXED BINARY(15);
RETURN(DIVIDE(high2tlow2,2,15));

/* Calculate the mean and return to the calling program */

END;

/* This function calculates the deviation from normal tempersture. */
/* It 1is stored in file DIFF.PL1. */

dev: PROCEDURE(mean2) RETURNS (FIXED BINARY(15));
DECLARE mean2 FIXED BINARY(15);

RETURN(mean2 - 73);
/* calculate the deviation from normal (73), and return to the calling procedure */

END;

Figure 1-3. Three PL/I Subprograms

1 "6 Licensed Material-Property of Data General Corporation 093-000254

To execute the program in Figure 1-3, you must first separately compile all three files of
source code as follows:

) PL1 MAIN)
) PL1 AVRG)
) PL1 DIFF)

If there are no compilation errors, you can link the three object modules with the following
command line:

) PL1LINK MAIN AVRG DIFF |

If there are no Link errors, you can execute program MAIN.PR:
) X MAIN !

Enter today’s high temperature. 81)

Enter today’s low temperature. 61)

Today’s mean temperature is 71
The deviation from normal is -2

DG/L Language

Programmers frequently use DG/L language for cross-development. You can write DG/L
source code under RDOS, AOS, or AOS/VS. When compiling, you decide what hardware
(NOVA®, ECLIPSE® or MV/Family) the program file will execute on; when linking, you
decide which operating system (RDOS, RTOS, AOS, or AOS/VS) the program file will use.
For complete details on the appropriate DG/L compile command line see the DG/LTM
Reference Manual. For complete details on the DG/L cross-Link command line (that is, using
AOS Link to create an executable RDOS or RTOS program file), see Chapter 7 of this
manual.

You must use ECLIPSE hardware to compile DG/L source code. Use the following procedure
to create a program file that will run on ECLIPSE hardware and AOS:

1. Write one or more files of source code.

2. Separately compile each file of source code with the following command:
) X DGL file)

3. Link each .OB file with the Link command line:
) X LINK/NSLS .OBfile <<.OBfile>... [DGLIB]

[DGLIB] is an indirect file which contains the names of DG/L libraries appropriate for
AOS.

4. If your program is not working properly, you should edit one or more of the files of source
code, recompile the faulty source code files and relink.

093-000254 Licensed Material-Property of Data General Corporation 1 - 7

For instance, consider the three subprograms shown in Figure 1-4.

/* This is the main subprogram. */
/* It is stored in file MAIN */

BEGIN
INTEGER high,low,y;

EXTERNAL INTEGER PROCEDURE mean;

EXTERNAL INTEGER PROCEDURE dev;

EXTERNAL STRING PROCEDURE GETCINPUT, GETCOUTPUT;
OPEN (1, (GETCINPUT));

OPEN (2, (GETCOUTPUT));

WRITE (2,°Enter today's high temperature. ");
READ (1.high);

NRITE (2,°Enter today’s low temperature. ");
READ (1,1ow);

y := mean(high,1low);
WRITE (2,"<NL>The mean temperature for today is "y);

WRITE (2,"<N>The deviation from normal is °,dev(y)):

END;

/* This is the function that calculates the mean */
/* It 1s stored in file AVRG */

INTEGER PROCEDURE mean(high2,1ow2);
INTEGER high2,low2;
BEGIN

mean := (high2tlow2)/2;
/* Calculate the mean and return to the calling procedure */

END;

/* This is the function that calculates the deviation from normal. */
/* It is stored in file DIFF */

INTEGER PROCEDURE dev{mean2);
INTEGER mean2;

BEGIN

dev := mean2 - 73;
/* Calculate the deviation from normal and return to the calling procedure */

END;

Figure 1-4. Three DG/L Subprograms

To create an executable program file from the three subprograms shown in Figure 1-4, you
must first separately compile all three files as follows:

) X DGL MAIN)
) X DGL AVRG)
) X DGL DIFF)

1 '8 Licensed Material-Property of Data General Corporation 093-000254

If there are no compilation errors, you can link the three object modules together with the
following Link command line:

) X LINK/NSLS MAIN AVRG DIFF [DGLIB])

If there are no Link errors, you can execute program file MAIN.PR with the following
command line:

) X MAIN)

Enter today’s high temperature. 81)
Enter today’s low temperature. 61)

Today’s mean temperature is 71
The deviation from normal is -2

COBOL
If you are programming in COBOL, you create a .PR file with the following procedure:

1. Write one or more files of source code.
2. Separately compile each file with the following command:

) COBOL file)

Each time you compile, the compiler creates one .OB file.
3. Link each .OB file (see discussion below). Link creates one .PR file.

4. If your program is not working properly, you may wish to edit one or more source code
files, recompile the faulty source code file(s), and relink.

CBIND and Link

The utility you use to link COBOL-generated .OB files depends on the COBOL revision you
used to compile your source code. When you compile source code, the COBOL revision
number appears in the output listing.

If you get a COBOL revision number less than 3.20, you link with a utility called CBIND.
(Refer to the COBOL Reference Manual for details on this utility.)

If you get a COBOL revision number of 3.20 or higher, you link with the Link utility. There
are two ways to invoke Link.

First, you can issue a CBIND command line. A program called CBIND.PR will automatically
convert your CBIND command line into the equivalent Link command line. Then, CBIND.PR
will issue the Link command line for you. In other words, if you are comfortable with CBIND,
or if you have macros that invoke CBIND, you do not have to change a thing.

Second, you can issue a Link command line. The safest way to do this is to first issue a CBIND
command line containing the /Q switch. CBIND.PR will convert your CBIND command line
into a Link command line and store it in a .CK file; however, the /Q switch prevents
CBIND.PR from issuing the Link command line. You can invoke Link by typing in the name
of the .CK file, or you can edit the .CK file and then issue it. For instance, if you want to
generate a Link command line from .OB files ONE.OB and TWO.OB, you would issue the
following command line:

) CBIND/Q ONE TWO)

CBIND.PR writes a Link command line into file ONE.CK. You can issue this Link command
line straight out, or you can edit it to produce a new Link command line.

NOTE: The .CK file contains vital switches and libraries. You may create a nonexecutable
file by removing the wrong element from the Link command line.

093-000254-01 Licensed Material-Property of Data General Corporation 1 '9

Sample COBOL Subprograms
Consider the sample COBOL program in Figure 1-5.

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
*This is the main program. It is stored in file MAIN

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 high PIC 9(3).
01 low PIC 9(2).

PROCEDURE DIVISION.

DISPLAY “Enter today's high temperature. " NITH NO ADVANCING.
ACCEPT high.

DISPLAY “Enter today's low temperature. " WITH NO ADVANCING.
ACCEPT low.

CALL “MEAN" USING high,low.
*+%% GO TO SUBPROGRAM MEAN. sss+sssssss

STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. MEAN.

*This 1s the subprogram that calculates the mean.
*It 1s stored in file AVRG

ENVIRONMENT DIVISION.

DATA DIVISION.
NORKING-STORAGE SECTION.

01 mean3 PIC 9(2).
LINKAGE SECTION.

01 high2 PIC 9(3).
01 low2 PIC 9(2).

PROCEDURE DIVISION USING high2,low2.

COMPUTE mean3 = (high2 + low2) / 2.
DISPLAY “Today's mean temperature is " mean3.
CALL “DEY" USING mean3.

*4e+++ GO TO SUBPROGRAM DEV ***»*»»

STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEV.

* This is the subprogram that calculates the deviation from normal (73).
* It 1is stored in file DIFF

Figure 1-5. Three COBOL Subprograms (continues)

1 = 1 0 Licensed Material-Property of Data General Corporation

093-000254

dokkokkkkkkkk R Rk kR Rk kR Rk R Rk Rk k kR kKK *kkkkKREERRKK

ENVIRONMENT DIVISION.

kR Rk Kk ROk ok ok ok kR kKR R kR kK kK ok ok Rk Rk ok kkokok Kok Kk 3k kK ok ok kK
DATA DIVISION.

WORKING-STORAGE SECTION.

01 dev2 PIC IS S9(2) SIGN LEADING SEPARATE.

LINKAGE SECTION.

01 mean4 PIC 9(2).

AR R KRR AR R ARk KKK AR ERRARARK

PROCEDURE DIVISION USING meand.

COMPUTE dev2 = meand - 73.
DISPLAY “The deviation from normal is " dev2.

STOP RUN.

Figure 1-5. Three COBOL Subprograms (concluded)

To create an executable program file from the three subprograms shown in Figure 1-5, you
must first separately compile all three files as follows:

) COBOL MAIN)
) COBOL AVRG)
) COBOL DIFF !

If there are no compilation errors, you can link the three object modules with the Link macro
CBIND as shown below:

) CBIND MAIN AVRG DIFF)

If there are no Link errors, you can execute program file MAIN.PR with the following
command line:

) X MAIN)

Enter today’s high temperature. 81)
Enter today’s low temperature. 61)
Today’s mean temperature is 71
The deviation from normal is -02

MASM (Assembly Language)

If you are programming in AOS Assembly Language, you create a .PR file with the following
procedure:

1. Write one or more files of source code.
2. Separately assemble each file with the following command:

) X MASM file)

Each time you assemble, the assembler creates one .OB file.
3. Link each .OB file with the Link command line:

) X LINK .OBfile <.OBfile>...)

Link creates one .PR file.

4. If your program is not working properly, you may wish to debug it with the AOS
Debugger. Then, you may wish to edit one or more of the source code files, reassemble the
faulty source code file(s) and relink.

093-000254 Licensed Material-Property of Data General Corporation 1 - 1 1

For instance, consider the three subprograms shown in Figure 1-6.

;The following source code is stored in file MAIN

.TITLE MAIN ;The title of this object module will be MAIN.
.EXTN DEV MEAN ;DEV and MEAN are labels from other object
;modules that this program will access.
;MASM does not resolve externals; Link does.
;Link will search through the other object
;modules in the command line for entry symbols
;DEV and MEAN. (The pseudo-ops .ENT, .PENT,
; .ENTO, .COMM, and .CSIZ define entry symbols.)
.ENT NORM HOME ; .ENT serves two purposes. First, if any
;external symbols defined in other object
;modules are trying to find NORM and HOME, then
;Link will know that they are defined in this
.ENT RECLI HOLD1 HOLD2 ;object module. Second, this pseudo-op allows
;you to mark labels that you may want to use
;during debugging.

.ZREL ;The following datawords will go into the ZREL
;partition.

HIGH: 81. ;81(base 10) -- Today's high temperature.

LOW: 61. ;61(base 10) -- Today's low temperature.

NORM: 73. ;73(base 10) -- Today's normal temperature.

.NREL 0 ;The following datawords will go into the

;predefined Unshared Code partition.
MAIN: LDA O,HIGH ;Load high temp into ACO.
LDA 1,LOW ;Load low temp into AC1.

;Load return address into accumulator 3.
;:NOTE: The values of ACO, AC1, and AC2 do not
;change during the jump.

STA 1,HOLD1 ;Store the average at location HOLD1.

EJMP DEV ;Jump to the subroutine that starts with “DEV".
HOME: STA 1,HOLD2 ;Store the deviation from normal at HOLD2.
RECLI: SUB 2,2 ;Clear accumulator 2 for a “good” PRETURN.

?PRETURN ;Halt execution and return to the CLI.

JMP RECLI ;If the ?RETURN call did not work then

;Jump back to RECLI, clear accumulator 2,
;and try again.

HOLD1: O ;The mean is stored here.
HOLD2: © ;The deviation from normal is stored here.
.END MAIN ;The instruction at the label MAIN is a

;possible start address.

;The following source code is stored in file AVRG

.TITLE AVRG ;The title of this object module will be AVRG.
(ENT MEAN ;Defines entry symbol MEAN.
-NREL 0 ;The following datawords will go into the
;predefined Unshared Code partititon.
MEAN: PSH 3,3 ;Push the return address onte the stack.
ADD 0,1 ;Add the values of HIGH and LOW together.
HLV 1 ;Divide the sum by 2, keep result in AC1
POPJ ;Return to calling subprogram.
.END ;This subprogram does not define a possible

;start address.

EJSR MEAN ;Jump to the subroutine that starts with ‘MEAN".

Figure 1-6. Three AOS Assembly Language Subprograms (continues)

1 - 1 2 Licensed Material-Property of Data General Corporation

093-000254

;The following source code is stored in file DIFF

.TITLE DIFF ;The title of this object module will be DIFF.

.ENT DEV ;Define entry symbol DEV.

-EXTN HOME ;HOME is located in some part of NREL that can
;only be accessed with a 32-bit instruction.

.EXTD NORM ;Since NORM is in ZREL, it can be accessed with
;@ 16-bit instruction.

.NREL 1 ;The following datawords will go into the

;predefined Shared Code partition.
DEV: LDA 2,NORM ;Load today’'s normal temperature into ACC2.

SUB 2,1 ;Today's mean - normal temp. = deviation from norm.
EJMP HOME ;Jump to the instruction at label HOME in
;subprogram MAIN.
.END ;This object module does not define a possible

;start address.

Figure 1-6. Three AOS Assembly Language Subprograms (concluded)

To execute the code in Figure 1-6, you must first separately assemble all three source code
files:

) X MASM MAIN)
-) X MASM AVRG)
) X MASM DIFF)
Next, if there are no assembly errors, link the three object modules together.
) X LINK MAIN AVRG DIFF)
Finally, if there are no Link errors, you can execute program MAIN.PR.
) X MAIN)

When you execute the program, a blank line and the AOS prompt will appear on your console
to indicate program completion.

Because this program did not contain any I/O system calls, you can find the mean and
deviation from normal only by entering the AOS Debugger. See the AOS Debugger and Disk
File Editor User’s Manual for details on debugging.

What to Do if You Get Link Errors

Appendix A offers remedies for some Link errors. If you get errors while linking AOS
MASM-generated object modules, you may find Figure 1-6 helpful. If you get errors while
linking object modules generated by high-level language compilers, you should probably refer
to the reference or runtime manual for the language.

End of Chapter

093-000254 Licensed Material-Property of Data General Corporation 1 = 1 3

Chapter 2
ECLIPSE Hardware Conceptsand AOS

This chapter summarizes those parts of ECLIPSE hardware and AOS software that are
pertinent to Link. We begin by defining some important AOS and ECLIPSE hardware terms.
Then, we summarize system calls, hardware index-modes, system tables, reserved storage
locations, and the stack. Familiarity with these topics will help you design more efficient
applications programs. Finally, if you have no experience with overlays, we suggest that you
read the “Overlays” section at the end of this chapter.

This chapter will give you an idea of the tools available on the AOS/ECLIPSE configuration;
Chapters 4 and 5 explain how you can manipulate them.

For more information on ECLIPSE hardware, see the appropriate manual in the Programmer’s
Reference Series for ECLIPSE-Line Computers. For more information on the Advanced
Operating System refer to the AOS Programmer’s Manual.

Figure 2-1 illustrates the hierarchical scheme of program development on the AOS/ECLIPSE
configuration. Programming languages are at the top of the hierarchy. In order for a language
processor (a compiler or assembler) to work properly, source code must adhere to strict rules.
Likewise, Link creates an executable program file only if the language processor generated
valid object blocks. Furthermore, AOS can properly manipulate a program file only if Link
has built the proper operating system components into it. Finally, at the base of the hierarchy,
ECLIPSE hardware executes the program only with the preparation of AOS.

PROGRAMMING
LANGUAGES

COMPILERS

LINK 1

AOS

ECLIPSE HARDWARE

DG-25061

Figure 2-1. Hierarchy of Program Development

ECLIPSE Hardware and AOS Terms

The following definitions will be useful to programmers unfamiliar with 16-bit ECLIPSE
hardware or AOS software.

Word A set of 16 contiguous bits. All 16-bit ECLIPSE hardware instructions are
one or two words long.

Block A set of 400g or 256, contiguous words.

Page A set of four contiguous blocks. 1 page = 1024, words = 2000g words.

Disk The device that AOS most frequently uses for mass file storage and
retrieval.

093-000254 Licensed Material-Property of Data General Corporation 2' 1

File
.OB File

library

PR File

Physical
Memory

Swapping
Process

Logical
Address
Space

Mapping

A named set of logically associated blocks which may be read or modified
by AOS system calls. Files in AOS are accessible by name and addressable
by block, record, or byte. Link uses only disk files. That is, Link can read
in only disk files and can write its output files only to disk.

A file, usually with the extension .OB, that a language processor creates
from source code. Each .OB file contains one object module. An object
module consists of two or more contiguous object blocks. These object
blocks must have the characteristics detailed in Appendix B.

A file, usually constructed by the Library File Editor, containing one or
more object modules.

An executable file that Link builds from one or more .OB files and
libraries. .PR files must have the characteristics described in Appendix D.
(.PR files are also called program files.)

Memory stored within the ECLIPSE computer. AOS allocates physical
memory in pages. In general, physical memory holds far less than disk
memory.

Copying program files from disk to physical memory or from physical
memory to disk. AOS performs all swapping.

The executable physical memory copy of a .PR file. For a more comprehen-
sive definition and discussion, refer to the A0S Programmer’s Manual.

The subset of physical memory currently occupied by an executing process.
On a 16-bit ECLIPSE computer, logical address space is 1000005 words
or 32, pages.

Translating a logical address to a physical memory address. ECLIPSE
computers perform mapping on a page basis: each of the 32, pages in a
logical address space has a physical page start address known to the
mapping hardware, and all references to a given logical address are directed
to the correct page without CPU intervention.

How AOS and ECLIPSE Hardware Make a Program Run

AOS begins program execution by swapping a .PR file into physical memory. Then AOS maps
this process into and out of logical address space until the CPU finishes executing it. Because
AOS is a time-sharing system, users compete for physical memory and logical address space;
however, the competition is invisible to the user. Nevertheless, with proper use of shared and
unshared pages, you can reduce system overhead in a multiuser environment, and therefore
speed program execution.

Shared and Unshared Pages

Physical memory pages belong to one of two categories:

¢ Shared page

A page that several users of the same program file can access.

¢ Unshared page A page that only one user can access.

2-2

Licensed Material-Property of Data Géneral Corporation 093-000254

For example, suppose that three users wanted to execute a program called KINGS.PR which
occupies 12 pages in memory — 10 shared pages and 2 unshared pages. Figure 2-2 shows that
since all three users can access the shared pages, AOS needs to swap in only one copy of the
shared pages. Since all three users need their own copies of unshared pages, AOS swaps six
unshared pages (two unshared pages each). (In reality, the pages in Figure 2-2 would not be so
neatly grouped in physical memory. We did that only for clarity.)

(Pages are
grouped for
clarity.)

2 UNSHARED PAGES
}(USER A)

10 SHARED
PAGES

2 UNSHARED PAGES
(USER B)

2 UNSHARED PAGES
(USER C)

DG-25062

Figure 2-2. Physical Memory During Execution of
KINGS.PR

Shared pages reduce the amount of swapping. If KINGS.PR contained 12 unshared pages
(instead of ten shared and two unshared), AOS would be forced to swap in a total of 36 pages
(12 pages each for all three users) instead of 16 pages.

Besides swapping, there is one other difference between shared and unshared pages:

» Shared pages are usually write protected. (Shared pages generated by Link are always write
protected; however, some AOS system calls allow you to generate shared pages that are not
write protected. See the A0S Programmer’s Manual for more information on system calls.)

« Unshared pages are not write protected.

Write-protection means that the CPU will not perform any instruction that changes the
contents of an address in a shared page. When the CPU detects such a change, it traps the
instruction, halts program execution, and sends out an error.

093-000254 Licensed Material-Property of Data General Corporation 2 '3

If shared pages were not write-protected, then two users executing the same process and using
the same input variables might get different results. For example, suppose that users JAN and
JACK both want to execute a program at about the same time. Assume that the program,
ALIKE.PR, consists of one unshared page and one shared page. In this case, AOS swaps in 1
shared page and 2 unshared pages (1 unshared page for each user). Suppose JAN’s process
gains logical address space before JACK’s process. Figure 2-3 shows that unshared address
01000 contains the machine language equivalent of EDSZ 76000 — decrement (and skip on a
zero result) the contents of address 76000. Initially, shared address 76000 contains “000005”.
If shared pages were not write-protected, the CPU would have decremented the contents of
address 76000 to “000004”. Now, when AOS maps JACK’s process into logical address space,
logical address 76000 will initially contain “000004” rather than “000005” as shown in Figure
2-4. Therefore, JACK will probably get different results than JAN.

76000 000005

01000 EDSZ 76000,0

DG-25063

Figure 2-3. JAN'’s Logical Address Space Before Program
Execution

2'4 Licensed Material-Property of Data General Corporation 093-000254

o

76000 000004 (assuming no

write-protection)

01000 EDSZ 76000,0

DG-25064

Figure 2-4. JACK's Logical Address Space Before Program
Execution

To summarize, shared pages reduce system overhead, but since they are usually write protected,
your program cannot attempt to change the contents of any shared address. Consider a text
editing program that many people use simultaneously. The shared pages probably handle some
global text editing commands; the instructions for decoding these commands are identical from
one user to the next. The unshared pages could be used as an input storage buffer; the text that
you enter will be different from the text that another user enters.

Logical Address Space

The logical address space of a 16-bit ECLIPSE computer consists of 32, pages which is
equivalent to 1000005 logical addresses. These logical addresses are numbered from 000003 to
77777.

AOS and Link assume that unshared pages start at the lowest addresses in logical address
space and “grow up”; while shared pages start at the highest addresses and “grow down.”
Between shared and unshared pages is a region called the unused area. Figure 2-5 shows the
logical address space of a process containing 2 unshared pages, 10y shared pages, and an
unused area equivalent to 20,, pages.

093-000254 Licensed Material-Property of Data General Corporation 2 '5

77777 7}

10
-SHARED
PAGES

54000 3

20
UNUSED - UNUSED

AREA PAGES

2
[] gg;gg]- UNSHARED
PAGES

DG-25085

Figure 2-5. A Typical Logical Address Space
ZREL and NREL

In addition to shared and unshared pages, logical address space is also divided into ZREL and
NREL addresses (or locations):

¢« ZREL (Addresses 00000 through 00377) — The range of addresses that can be accessed
from any logical address by an instruction with an 8-bit displacement.

¢« NREL (Addresses 00400 through 77777) — The range of addresses that can be accessed
from any logical address by an instruction with a 16-bit displacement.

A displacement is the part of a machine language instruction that tells the CPU which logical
address it should access. Instructions with 8-bit displacements take up only one word of
memory. Instructions with 16-bit displacements take up two words of memory. Intelligent use
of ZREL addresses, therefore, will keep your program file smaller.

Although instructions with 8-bit cisplacements can always access ZREL addresses, it is also
possible to use them to access NREL addresses. The ability to do this depends not only on the
displacement, but also on the addressing mode (sometimes called indexing mode). Every
machine language instruction that defines a displacement also defines an addressing mode.
The CPU uses the addressing mode to determine how to interpret the displacement. ECLIPSE
hardware distinguishes between the following four types of indexing modes:

¢ Index Mode 0 — absolute addressing: In this mode, displacement refers to the distance
from address 00000. Therefore, an instruction using absolute addressing will access the
address equivalent to the displacement. For instance, an instruction with a displacement of
100, accesses address 00100. Absolute address instructions with 8-bit displacements can
access the contents of any logical address in the range 00000 to 00377 (the range of ZREL).

2 "6 Licensed Material-Property of Data General Corporation 093-000254

* Index Mode 1 — PC (Program Counter) relative addressing: In this mode, the displacement
is the distance between the calling instruction and the instruction to be accessed. For
instance, if an instruction at address 24200 contains a displacement of + 100, then this
instruction will access logical address 24300. A PC relative addressing instruction with 8-bit
displacement can access the contents of any address in the range PC-200 to PC+177. For
example, a PC relative instruction at address 01500 can access the contents of any address
in the range 01300 to 01677.

¢ Index Mode 2 — AC?2 relative addressing: This mode is similar to PC relative addressing,
except that the hardware uses the contents of accumulator 2 in place of the PC. In other
words, displacement measures the distance from the contents of accumulator 2 to the
accessed instruction. For instance, if accumulator 2 contains 013500 and the displacement
is -100, then the CPU accesses address 13400. ACC relative addressing instructions with
8-bit displacements can access the contents of any address in the range AC2-00200 to
AC2+4+00177.

* Index Mode 3 — AC3 relative addressing: Same as index mode 2 except that the contents
of accumulator 3 substitute for the contents of accumulator 2.

Thus, you can use instructions with 8-bit displacements if the logical address you are accessing
is in ZREL or if it is sufficiently close to the PC, the value of accumulator 2, or the value of
accumulator 3.

Link-Generated Information
Broadly speaking, Link builds .PR files from the following three sources:
¢ information generated by Link itself
¢ the object modules you specify in the Link command line
e the AOS system library (URT.LB)

In this section we describe information generated by Link itself, including reserved storage
locations, system tables, and the stack.

Chapter 4 and Appendix B details object modules. We discuss URT.LB in Chapter 5 and in
the “System Calls” section of this chapter.

Reserved Storage Locations

Logical addresses 00000 through 00047 are called reserved storage locations. ECLIPSE
hardware uses some reserved storage locations. For instance, when the hardware detects a
floating-point error, it executes a jump indirect through address 00045.

There are also some software uses for the reserved storage locations. URT.LB stores a variety
of pointers within the reserved storage locations. For instance, URT.LB stores a pointer at
location 00015 to a routine that handles the resource call 7RCHAIN.

The reserved storage locations can be grouped into four categories:

* Addresses 00000 to 00017. These addresses are reserved for a variety of hardware and
software uses. You should not attempt to change the contents of these addresses at runtime.

» Addresses 00020 to 00037. Both 16-bit ECLIPSE and NOVA-line computers contain
auto-incrementing and auto-decrementing functions at these locations, but the ECLIPSE
MYV /Family does not. You should avoid using these addresses if there is any chance that
you will run this program on MV /Family hardware.

¢ Addresses 00040 to 00042. At runtime, the CPU uses these locations to define and monitor
the stack and frame. Link initializes these values, though it is possible to change them at
runtime.

093-000254 Licensed Material-Property of Data General Corporation 2 '7

¢ Addresses 00043 to 00047. These locations contain a variety of pointers to hardware
fault-handling routines. By.default, Link initializes these values, and URT.LB supplies the
appropriate fault-handling routines; however, it is possible to change these values at runtime.

Table 2-1 lists the reserved storage locations known to Link. (For the complete list of reserved
storage locations, see the appropriate manual in the Programmer’s Reference Series for
ECLIPSE-Line Computers.)

Table 2-1. Reserved Storage Locations Built by Link

Address Location Name Function

00040 Stack Pointer Address of the current top of the stack.

00041 Frame Pointer Address of the start of the current frame

00042 Stack Limit Greatest address in the stack

00043 Stack Fault Address Starting address of a routine that handles stack errors.

00045 Floating-point Fault Starting address of a routine that handles floating-
Address point errors.

00046 Commercial Fault Starting address of a routine that handles commercial
Address errors.

System Tables

Starting at the beginning of NREL (location 00400), Link builds two to four system tables.
AOS is the primary user of the information in system tables. For instance, AOS reads an entry
in the User Status Table to determine how many shared pages the .PR file contains. The
number of shared pages is crucial for mapping.

In addition, some of the information in these tables is used by the process itself at execution
time. For instance, the resource manager (a routine which handles some resource calls)
accesses the information in the Resource Handler Table to find out where overlays are located.

Table 2-2 gives an overview of these tables. (Refer to the A0S Programmer’s Manual for
complete details on all system tables.)

Table 2-2. System Tables

Table Name

When Does Link
Build This Table?

Table Contents

User Status Table
(UST)

Task Control Block
(TCB)

Overlay Directory
(OLDIR)

Resource Handler

By default, (but
/UDF switch sup-
presses it).

By default, (but
/UDF switch sup-
presses it).

If the .PR file con-
tains an overlay area
and if the /UDF
switch is not present.

If the .OL file con-

Diverse information on tasks, unshared and shared
page parameters, revision numbers, and more.

Information for each defined task on stacks, accumula-
tors, and starting addresses.

Information on overlays (the number of basic overlay
areas, the number of overlays within each area, the
size of overlays, etc.).

Information on the position of PENTS in overlays.

Table (RHT) tains one or more
PENTS.
2'8 Licensed Material-Property of Data Genera! Corporation 093-000254

Stack

The stack is the section of logical address space that stores data on a “first in-last out” basis.
The CPU keeps track of the stack by monitoring addresses 00040 through 00043. (See Table
2-1 for full details.)

For instance, address 00040 always contains the stack pointer (i.e., the address of the current
top of the stack). The instruction PSH 0,1 (push the contents of accumulators 0 and 1 onto the
stack) increments the contents of address 00040 by 2. Thus, the next time the CPU executes a
stack operation, the stack pointer will be 2 addresses greater.

The stack should be at least 36g addresses long. If not, then it will be impossible to perform
certain system calls. Link sets the default stack length to 36g, but you have the option of
increasing its size when you link.

By default, Link starts reserving space for the stack at the first free address in unshared
NREL. In other words, the stack occupies the highest addresses in unshared NREL. (See
Figures 5-1 through 5-13 for further clarification of stack placement.)

System Calls

AOS creates, destroys, and monitors all processes and tasks executing on the system. AOS also
manages input and output. User processes use system calls to communicate with AOS. System
calls are the set of commands that invoke a wide variety of AOS functions. For instance, the
system call 7GOPEN tells AOS that your process wants to open a file for block input and
output. Another system call, 7TASK, tells AOS that your process wants to initiate one or more
tasks.

System calls resolution is a very complex procedure requiring the cooperation of language
processors, Link, the system library, language libraries, ECLIPSE hardware, and AOS. At
runtime, some system calls are simple JSRs to routines from the system library; while other
system calls force AOS to map the calling process out, map the system file in (which executes
the system call), map the system file out, and map the calling process back in.

Resource calls manage overlays. Chapter 4 details resource call resolution.

If you are programming in a high-level language, the compiler usually makes system call
decisions for you. However, some high-level language programmers and all assembly language
programmers issue system calls in their source code. For information on system calls, refer to
the A0S Programmer’s Manual. You can find additional system call information in files
SYSID.SR and PARU.SR.

Overlays

If you specify a part of logical address space as an overlay area, then two or more datawords
can occupy the same logical address if AOS maps them in at different times. In general,
programmers use overlay areas when the number of datawords exceeds the number of logical
addresses available.

Because the 16-bit ECLIPSE computer can access no more than 100000g logical addresses,
you will have to create overlay areas if you want to execute a program that contains over
100000g datawords. However, you can create overlays for smaller programs.

If you tell Link that you want your program to contain overlays areas, then Link will create
two distinct files:

* .PR file — A file identical to the usual (nonoverlayed) .PR file except that it has one or
more gaps in it. These gaps, called overlay areas, are reserved for overlays. Routines not
part of any overlay are said to be in the root.

e .OL file — A file that contains one or more overlays. An overlay file is not executable, but
the overlays inside the file become executable when mapped into an overlay area within the
process.

093-000254 Licensed Material-Property of Data General Corporation 2 '9

AOS supports up to 63 overlay areas and up to 511 overlays per overlay area. Ordinarily, to
create overlay areas, you tell Link, in your Link command line, which object modules you want
to contribute to overlay areas and which object modules you want to contribute to the .PR file.
Link then builds overlay areas and the .OL file.

Link uses two criteria to determine the size of an overlay area. First, Link determines whether
the overlay area will be in a shared page or an unshared page. Overlay areas in shared pages
are called shared overlay areas; overlay areas in unshared pages are called unshared overlay
areas. Link builds shared overlay areas in pages, and unshared overlay areas in blocks. In other
words, all shared overlay areas take up some multiple of 20005 logical addresses, and unshared
overlay areas take up some multiple of 400 logical addresses.

Second, an overlay area must be large enough to accommodate the largest overlay that can
occupy it. For instance, suppose that several overlays contribute to a shared overlay area. If the
largest overlay takes up 5243g logical addresses, Link reserves 60005 logical addresses (the
next highest page multiple) for this overlay area. If the same overlays contributed to one
unshared overlay area, Link would have reserved 54003 logical addresses (the next highest
block multiple).

For instance, suppose you wrote a program called BIG containing approximately 1200004
datawords. Clearly, 1200003 datawords cannot fit into the 16-bit ECLIPSE computer logical
address space; therefore, overlay areas are mandated. In the Link command line, you tell Link
which object modules you want to contribute to the .OL file. Assume that Link generates one
shared overlay area in the .PR file, and puts three overlays in the .OL file. For convenience, we
will call these overlays A (14367g datawords), B (177545 datawords), and C (3435g datawords).

Overlay B, the largest overlay, determines the size of this overlay area. Link will reserve 200005
logical addresses for this overlay area because 200003 is the next highest multiple of 20004
from 177544. As shown in Figure 2-6, the root takes up 600003 root addresses.

In Figure 2-7, overlay C is mapped into the overlay area. The code from C becomes executable
as soon as it becomes part of logical address space. If the process now requests the code from
overlay B, AOS will map C out and B in (as shown in Figure 2-8).

BIG.PR A
/ \

10000g BIG.OL
datawords
20000g overlay
datawords area .

. A B c_ 1
50000g
datawords

DG-25086

Figure 2-6. A Large Program Divided into a Program File and an Overlay File

2' 1 0 Licensed Material-Property of Data General Corporation 093-000254

BIG.PR A

/[A\
10000g BIG.OL
datawords
200004 overlay
dat d
atawords area A B ‘——C——-|

500004

datawordsj

DG-25087
Figure 2-7. Overlay C in Logical Address Space
BIG.PR A
—
10000g BIG.OL
datawords
20000g overlay
datawords area A B ‘—-]C
-~
500004 ﬁ
datawords
DG-25068

Figure 2-8. Overlay B in Logical Address Space

Multiple Basic Areas
When used properly, multiple basic areas can make your process run faster.

A basic area is an overlay area equal to the size of the largest overlay rounded to the next page
multiple (if it is a shared basic area) or block multiple (if it is an unshared basic area). In other
words, by default, a basic area is exactly the same size as the overlay area.

However, you may tell Link to build an overlay area containing multiple basic areas. That is,
you may want Link to build an overlay area several times larger than the size of the largest
contributing overlay.

For instance, in Figure 2-9 five overlays (D, E, F, G, and H) contribute to a shared overlay
area. The largest overlay, F (containing 11653g machine language words) determines the size
of the basic area (120004 logical addresses). However, in the Link command line, we requested
multiple basic areas. More precisely, the command line told Link to create two basic areas.
Thus, Link reserves 2 x 120003 = 24000g4 addresses for this overlay area.

093-000254 Licensed Material-Property of Data General Corporation 2 - 1 1

Multiple basic areas can reduce the amount of mapping, and consequently make your process
execute faster. For instance, suppose overlays E and G (from Figure 2-9) contribute to the
same overlay area and access each other frequently. If the overlay area consists of only one
basic area, then each time E accesses G, AOS will have to map E out and G in. But, if the
overlay area contains 2 basic areas, then E and G can be in the root simultaneously, thus
reducing the amount of mapping.

LARGE.PR

16000g
datawords

4000 1 2 LARGE.OL
240005 J overiavd BASIC {

datawords] REA AREAS

N

36000g <
datawords

DG-250689

Figure 2-9. LARGE.PR Contains Two Basic Areas Within One Overlay Area

A disadvantage to using multiple basic areas is that they reduce the possible size of the root.
Another disadvantage is that overlays going into multiple basic areas must contain position-
independent routines. That is, routines within the overlay must be written so that it doesn’t
matter at which address they begin. A corollary is that position-independent machine language
instructions cannot use PC relative addressing (index mode 1) to access addresses outside the
overlay.

End of Chapter

2' 1 2 Licensed Material-Property of Data General Corporation 093-000254

Chapter 3

Relocatable Linkers and Related
Concepts

Link belongs to a class of programs known as relocatable linkers. A relocatable linker is a
program that allocates space in a program file for the datawords (i.e., code or data) generated
by a compiler or assembler.

The primary purpose of this chapter is to introduce general concepts about relocatable linkers;
Chapter 4 explores Link specifics. If you have substantial experience with other relocatable
linkers, you may wish to skip this chapter and move ahead to Chapter 4.

This chapter tackles the following questions related to relocatable linkers:
e What is the difference between absolute code and relocatable code?

¢ What is modular programming?

e What does a relocatable linker do?

e What is the difference between a one-pass linker and a two-pass linker?
e What is a partition?

e What is cross-linking?

e What are intermodular symbols?

e What purpose do libraries serve in high-level languages?

« How does the relocatable linker prepare the debugger?

Absolute Code and Relocatable Code

Broadly speaking, source code may consist of either absolute code or relocatable code:

o Absolute code is source code that the programmer earmarks for a specific location in the
program file. For example, in AOS, the assembly language pseudo-op .LOC 500 ultimately
forces Link to put an instruction at location 00500 in the .PR file.

» Relocatable code is source code that the relocatable linker can place anywhere in the
program file. For example, in AOS, the pseudo-op .NREL allows Link to decide where to
put an instruction in the .PR file.

In high-level languages, the compiler usually decides whether source code will be absolute or
relocatable. In assembly language, the programmer usually makes the decision.

Although there are some instances when absolute code is quite useful, relocatable code is
usually more advantageous. The benefits of relocatable code are not obvious unless you
understand the advantages of modular programming.

093-000254 Licensed Material-Property of Data General Corporation 3' 1

Modular Programming

A modular program consists of several separately compiled subprograms. The relocatable
linker then binds these subprograms. Modular programming is practical for three reasons:

¢ It speeds compiling.
« It simplifies debugging.
o It is easier to write and edit several small subprograms than one large program.

The following example should demonstrate some of the benefits of modular programming:

Your assignment is to write a complete statistical package capable of reading in data, doing
40 different complex statistical tests on a subset of the data, and presenting the results
numerically or graphically. You estimate that this package will require 5000 lines of
high-level language source code.

Assume that you decide not to write this program modularly. That is, you attempt to write one
5000-line program. After the first hour of programming, you compile the first subprogram (30
lines of source code); so far you are programming efficiently. By the end of the day, you have
written 90 lines of source code. To make sure that things are running smoothly, you recompile.
Efficiency is reduced because the compiler must recheck the first 30 (already proven) lines of
source code. By the end of a few months and a few thousand lines of source code, you will
probably have recompiled and rechecked hundreds of thousands of lines of source code.

Suppose though, that you decide to write the program modularly. That is, you break the
program into 200 or so subprograms. You write the first subprogram (perhaps 30 lines) and
compile it. Then you write the second subprogram (perhaps 50 lines). Instead of compiling 80
lines (30 + 50), you compile only the 50 lines of the second subprogram. This is a very
efficient programming strategy. At the end of a few months, you will still be compiling very
short subprograms rather than one huge, growing monster over and over.

After you have successfully compiled all 200 subprograms, you can use a relocatable linker to
bind them into one executable program.

What a Relocatable Linker Does

A relocatable linker parcels out just enough space to fit every subprogram’s memory
requirements. If your subprograms contain relocatable code, the relocatable linker calculates
space requirements. But if you program in absolute code, you have to make the space
calculations yourself.

Compare Table 3-1 with Table 3-2. Both contain two subprograms. Because these subprograms
were written in AOS assembly language, the programmers could choose whether they wanted
the Macroassembler to generate absolute code or relocatable code. Both examples contain the
same datawords. The programmer who created the subprograms in Table 3-1, specified
absolute code; while the programmer who wrote the subprograms in Table 3-2, specified
relocatable code. The programmer who wrote the subprograms in Table 3-1 was rather
conservative; he left space (for future expansion or other subprograms) between addresses
00052 and 00067. Note that it is the programmer’s responsibility to specify the proper
addresses. For instance, if the programmer had set .LOC 50 on the second subprogram in
Table 3-1, Link would have overwritten addresses 00050 and 00051.

The programmer in Table 3-2 did not have to decide where to put these numbers. She merely
declared the code relocatable and let Link place the numbers sequentially (leaving no empty
spaces). If she should have to expand her program, Link will have no trouble finding new
addresses for the datawords.

3'2 Licensed Material-Property of Data General Corporation 093-000254

Table 3-1. Two Absolute Code Subprograms

Source Code Macroassembler’s Instructions to Link Address in .PR File
that Link Puts This
Dataword at
.TITLE ABSI
.LOC 50 locate these next instructions sequentially starting at
address 00050
13 50
12532 51
.TITLE ABS2
.LOC 70 locate these next instructions sequentially starting at
address 00070
145 70
030452 71
23632 72
14 73
Table 3-2. Two Relocatable Code Subprograms
Source Code Macroassembler’s Instructions to Link Address in .PR File
That Link Puts This
Dataword at
.TITLE RELI1
.ZREL locate the next instructions sequentially, anywhere
within the address range 00050 — 00377
13 50
12532 51
.TITLE REL2
.ZREL locate the next instructions sequentially, anywhere
within the address range 00050 — 00377
145 52
030452 53
23632 54
14 55

Absolute code can be useful in some instances; particularly when the target operating system
or hardware expects values in specific logical addresses. For instance, when the ECLIPSE
CPU detects a stack error, it always jumps indirect through address 00043 (which contains a
pointer to a stack fault handling routine). A programmer who wants to store a pointer at
address 00043 should probably use absolute code.

For most applications, relocatable code is preferable. Consider, for example, the 200
subprogram statistical package. Assuming that the compiler generates relocatable code, you
do not have to calculate the memory requirements of each subprogram because the relocatable
linker will do that for you. The relocatable linker will minimize the amount of empty space in
the program file. If you make a mistake in one of the subprograms, you merely have to
recompile the offending subprogram and rebind all the subprograms with the relocatable
linker.

093-000254 Licensed Material-Property of Data General Corporation 3'3

Partitions

A partition is a named contiguous area of a program file. A name allows the language
processor to specify which area of a program file it wants to contribute a set of datawords to.
This gives the language processor the opportunity to capitalize on hardware, operating system,
or relocatable linker features. In Link, these features are called attributes.

For instance, datawords stored in the ZREL partition allow your program to take advantage of
a hardware feature because they can be accessed by instructions with 8-bit displacements. If a
language processor wants an instruction to be accessible by an instruction with an 8-bit
displacement, it can tell Link that it wants this dataword to contribute to the ZREL partition.

One-pass Linkers and Two-pass Linkers

Relocatable linkers fall into two classes: one-pass linkers and two-pass linkers. As the name
suggests, one-pass linkers scan the set of input object modules once, and two-pass linkers scan
it twice. ‘

During pass one, a two-pass linker scans all input object modules and adds up the sizes of all
partitions. During pass two, the two-pass linker places datawords into the appropriate partitions.

One-pass linkers usually define only one partition. During its sole scan, the one-pass linker
places datawords into this partition.

One-pass linkers are faster, but two-pass linkers allow for more sophisticated memory allocation.
Link is a two-pass relocatable linker.

Cross-Linking

Usually, a program file can execute only on a specific operating system. For instance, a
program file that can execute on AOS cannot run under RDOS. Generally, the relocatable
linker generates program files that can run on the host operating system. For instance, while on
AOS, most programmers use Link to create program files that can run on AOS. Sometimes,
however, it is desirable to cross-link.

Cross-linking means using a relocatable linker while on one operating system to create a
program file that can execute on a different operating system. For instance, while on AOS, if
you have the proper object modules and system libraries, you can use Link to create program
files that run on RDOS or RTOS.

Cross-linking is particularly effective when you can write, compile, and link a program on a
good development operating system and execute the program on a fast-executing operating
system. For instance, if you use AOS Link to cross-link for RTOS, you get the flexibility of
AOS text editors, language processors, and Link, plus you get RTOS’s rapid execution.

Intermodular Symbols

Subprograms must be able to communicate with each other. That is, portions of some
subprograms must be capable of accessing symbols or variables in other subprograms. For
instance, the subprogram in the statistical package that performs t-tests may need to access the
subprograms that calculate means and standard deviations. Intermodular symbols allow this
communication between subprograms.

Intermodular symbols are symbols (e.g., variables) that appear in two or more subprograms.
Broadly speaking, intermodular symbols fall into two classes: external symbols and entry
symbols. This section explains how a relocatable linker uses external symbols and entry
symbols to allow subprograms to communicate with each other.

3'4 Licensed Material-Property of Data General Corporation 093-000254

AOS language processors are not capable of intermodular communication; they see only the
subprogram that they are currently working on. It is the relocatable linker’s job to put together
the global picture. That is, the relocatable linker resolves intermodular symbols.

When a language processor encounters a symbol that might be defined by another subprogram,
it defines that symbol as an external symbol. This tells the relocatable linker that this
subprogram is searching for a symbol defined by another subprogram. The converse of an
external symbol is an entry symbol. A language processor uses an entry symbol as a marker, so
that the relocatable linker can match external symbols with entry symbols. Thus, an external
symbol tells Link what to search for; an entry symbol tells the relocatable linker where to find
it.

As an example of intermodular communication, consider the three FORTRAN 77 subprograms
in Figure 1-1. While compiling subprogram MAIN.F77, the compiler does not know where the
function MEAN is stored. So, it emits MEAN as an external symbol. While compiling
subprogram AVRG.F77, the compiler determines that other subprograms might need to find
MEAN, so it makes MEAN an entry symbol.

Link matches external symbol MEAN with entry symbol MEAN. When Link calculates the
.PR file addresses of the calling procedure (MAIN) and the target function (MEAN), it can
fill in the information that the FORTRAN 77 compiler could not.

Libraries and Object Modules

A library is a file consisting of a set of one or more object modules. Libraries are convenient for
many reasons, including the following:

* On the Link command line, you can enter the name of a library instead of entering the
names of a long set of object modules.

* Link can load object modules stored in libraries when the program file needs the routines
they contain; when the program file does not need a particular routine, Link does not load
the object module it is contained in.

Every free-standing object module (i.e., .OB file) on the Link command line contributes to the
program file. However, Link loads an object module stored in a library only if either of the
following conditions are met:

* A particular bit in the library is set to 1. This bit is called the forced load flag.

* The object module contains an entry symbol which matches an unresolved external symbol
emitted by one of the other object modules in the Link command line.

Thus, Link binds a subset of a library’s object modules into the program file.

In high-level languages, a compiler puts out only some of the datawords that finally appear in
the program file. For instance, an object module generated by the AOS PL/I compiler might
contain only 1000g or so datawords, yet Link will create a program file many times this size,
perhaps over 200004 datawords long.

This broad difference between compiler output and relocatable linker output is made up for by
the library files. Frequently, a compiler program leaves a certain section of source code
unresolved because it determines that a routine from a library can resolve it. In such
circumstances, the object module emits an external for that routine. The relocatable linker will
find that routine in one of the libraries and place it in the program file.

As an example of libraries in high-level languages, suppose AOS library BLT.LB contains the
routine I_O which handles line-printer output. I_O contains the entry symbol PUT_LP. The
compiler emits an external symbol for PUT_LP whenever it encounters source code that
requires line-printer output. When Link scans BLT.LB, it puts object module I_O into the
program file. In other words, Link binds module I_O into the program file only when needed.
If the program will work without it, then Link will not waste space by putting it in.

093-000254 Licensed Material-Property of Data General Corporation 3'5

Debuggers and Relocatable Linkers

A high-level language debugger needs information about the original source code. The debugger
cannot get this information from the program file, but a compiler and a relocatable linker can
supply this information.

In addition to converting source code into a program file, compilers and relocatable linkers
usually can keep track of what they did to the original source code. For instance, suppose your
program contained the following lines of source code:

INT4: NEWPRIN = OLDLPRIN * (1 + INTRATE)
ASGN: X = NEWPRIN + Z

Assume that the compiler translates source code line INT1 into 123 datawords and that the
relocatable linker stores those 123 datawords at addresses 00500g to 005115 in the program
file. In addition, suppose that the relocatable linker stores the value of variable NEW_PRIN
at address 00104g. Further assume that you want to use a debugger to halt the program (i.e.,
set a breakpoint) just after INT1, and you want to find out the value of variable NEW_PRIN.

The program file does not contain the names of variables; therefore, it does not know where
NEW_PRIN and INT1 are stored. However, the compiler keeps track of source code line
INT1, and the relocatable linker sends this information to debugger files. The debugger, using
the information in the debugger files, halts the program at address 00511 and prints the
contents of address 00104.

AOS Link can build the following debugger files:

¢ .ST (Symbol Table) file

¢ .DS (Debugger Symbols) file

s DL (Debugger Lines) file

* Link listing files (produced with either /L or /L="filename)

See Appendix D for details on the .ST, .DS, and .DL files. See Figures 5-9 through 5-14 for
sample Link listing files, and see Table 5-1 for information on the switches that produce these
files.

End of Chapter

3'6 Licensed Material-Property of Data General Corporation 093-000254

Chapter 4
Partitions and Relocationin Link

If you are writing a compiler, then this chapter is crucial. Many applications programmers will
also find it helpful.

Every dataword (i.e., code or data) in a .PR file belongs to a partition. A partition is a group
of datawords with the same set of attributes. At runtime, each partition corresponds to a
contiguous portion of logical address space. Therefore, to build a program file, Link needs to
know which partition a set of datawords should contribute to. Link gets this information from
external numbers.

This chapter describes attributes, partitions, external numbers, and Resource Call resolution.

Attributes

An attribute is a characteristic of a partition. Each partition consists of a set of the following
six attributes:

« absolute, ZREL, or NREL

» shared or unshared

» code or data

¢ normal base or common base

¢ alignment (0 through 12g)

» overwrite-with-message or overwrite-without-message

The individual attributes in the six groups listed above are mutually exclusive. For instance, a
partition will never have both the normal base and the common base attributes. Similarly, a
partition cannot be part of absolute, ZREL, and NREL partitions at the same time.

The ZREL or NREL attribute capitalizes on an ECLIPSE hardware feature; the shared or
unshared attribute takes advantage of an AOS feature. The remaining attributes are more
important during linking than at runtime because they provide specific linking directives.

Absolute, ZREL, and NREL Attributes

The absolute, ZREL, and NREL attributes determine the general memory location of a
partition.

A language processor assigns the absolute attribute to partitions that contain nonrelocatable
datawords, that is, datawords that source code or the language processor assigned to specific
addresses in the program file. Absolute partitions can reside in any area of a program file.

Relocatable datawords must have either the ZREL or the NREL attribute.

Link places partitions with the ZREL attribute between addresses 000505 and 00377g. Note
that there is a difference between the hardware and Link concepts of ZREL. From a hardware
perspective, ZREL runs from 00000g to 003773 — addresses that can be accessed from
anywhere in memory with an 8-bit displacement. However, because ECLIPSE hardware
reserves the first 50g addresses for certain applications (see Chapter 2), Link will not allocate
space for user-generated datawords until at least address 00050g.

093-000254 Licensed Material-Property of Data General Corporation 4‘ 1

Partitions with the NREL attribute can reside anywhere in NREL memory; that is, anywhere
from addresses 004003 to 77777g. Note that Link places system tables at the beginning of
NREL (unless you use the /UDF switch). Therefore, Link will not allocate space for any
partitions with the NREL attribute below the space for the system tables. (For more information
on NREL and ZREL, see Chapter 2.)

Shared and Unshared Attributes

Partitions having the shared attribute contain datawords that more than one process can
access. At runtime, partitions with the shared attribute reside in shared pages, which are
generally write-protected.

Partitions having the unshared attribute contain datawords that only one process can access.
At runtime, a program’s unshared partitions reside in unshared pages, which do not have write
protection. (See Chapter 2 for more information on shared and unshared pages.)

Normal Base and Common Base Attributes

The normal base and common base attributes determine the way two or more object modules
contribute to the same partition. In order to understand the distinction, you must first
understand relocation bases and displacements.

A partition’s relocation base is its lowest address. Link builds a partition from the relocation
base “up”. Displacement is the distance “up” from the partition relocation base. (If you are not
familiar with partition relocation bases, you might want to generate a Link listing with the
switch /MAP. To find the partition relocation base, read down from “ADDRESS”.)

The total length of a normal base partition is the sum of each object module’s contributions to
that partition. Link assigns a unique displacement to every object module’s partition
contributions.

The total length of a common base partition is not affected by the amount of contributions to
it. Instead, total length is defined by the object block that establishes the common base
partition. That is, when you establish a common base partition (with either a named common
block, unlabeled common block, or partition definition block), you define the length of the
block. If two or more object blocks define the same common base partition, Link sets the total
length of the partition equal to the highest length.

Each object module that contributes to a common base partition has a displacement of 0
relative to that partition.

For instance, suppose that the Link command line includes several object modules which make
the following three contributions to the same partition:

e first contribution — 2 words long
e second contribution — 4 words long
« third contribution — 10g words long

If the partition has the normal attribute, Link allocates 16g addresses for this partition. Link
allocates space for the first contribution at the partition relocation base, for the second at the
partition relocation base+2, and for the third at the partition relocation base+2+4. (See
Figure 4-1.)

4'2 Licensed Material-Property of Data General Corporation 093-000254 -

partition _, — first contribution

relocation
base

— second contribution

DA WN=O

— third contribution

~

10

11
12
13
14
15

DG-25070

Figure 4-1. Allocation of a Partition with the Normal Base Attribute

Suppose that these same three contributions were destined for a common base partition.
Further assume that two object modules define the length of this partition. If one object block
defines a length of 11g for this partition, and another object module defines a length of 13g,
Link sets the total length of the partition equal to 13g. All three contributions have a
displacement of 0. (See Figure 4-2.)

partition -~ 0 — first, second, and third
relocation 1 contributions
base 2
3
4
5
6
7
10
11
12

DG-25071

Figure 4-2. Allocation of a Partition with the Common Base Attribute

The purpose of the common attribute is to allocate a certain area of memory and give it a
name. (For further information, see the pseudo-op .COMM in the 40S Macroassembler

Reference Manual.)

Alignment (0-123) Attribute

A partition’s alignment is a number between 0 and 12g which Link uses to determine the
partition relocation base. For an alignment of X, Link sets the relocation base to:

N * 2X (where N is an integer, and X is any integer from 0 to 12g)
y 8

The default partition alignment is 0. Since 20 equals 1, a partition alignment of 0 permits Link
to set any relocation base. There are two exceptions to the default partition alignment:

 The first shared partition has an alignment of 12g. (Note that the first shared partition
varies from program file to program file.)

¢ All shared overlay areas have an alignment of 12g.

093-000254 Licensed Material-Property of Data General Corporation 4'3

An alignment of 12 forces Link to set the relocation base to the start of a page. (See Chapter
2 for more information on pages.)

To demonstrate alignment, suppose that Link allocates space for unshared code from 030004
through 03056¢. Next, Link chooses to allocate space for Partition Z. If Z has an alignment of
0, then Link will set Z’s relocation base to 03057g. If Z’s alignment had been 12, Link would
have set Z’s relocation base to some multiple of 2000g. Therefore, Link would have set Z’s
relocation base to address 04000g.

Code and Data Attributes

The code and data attributes determine whether a partition can reside in an .OL file. In this
context, the accepted definitions of “code” as machine instructions and “data” as strings,
constants, etc. do not apply.

Link puts partitions with the data attribute inside the program file. Data partitions can not
reside in an .OL file.

Predefined partitions with the code attribute may reside in either the program file or the .OL
file. (See the “Partition Types” section for a definition of predefined partitions.)

Overwrite-with-Message and Overwrite-without-Message Attributes

An overwrite means that Link placed a different value at an address that already contained a
nonzero value. That is, if an address contains a nonzero value (e.g., 000423) and Link places a
different value (e.g., 035423) at this address, then an overwrite has occurred. Note that if Link
had written the same value (e.g., 000423) into this address, then an overwrite would not have
occurred.

The overwrite-with-message attribute directs Link to send out an error message if it overwrites.
The overwrite-without-message attribute forces Link to suppress overwrite error messages.

Partition Types
All partitions fall into one of two categories:
o predefined partitions
* user-defined partitions

The predefined partitions represent those combinations of partition attributes most frequently
used in object modules. User-defined partitions may consist of any set of attributes.

Predefined Partitions

Currently, there are eight predefined partitions. Table 4-1 lists the predefined partitions, their
attributes, and their external numbers. Object modules use external numbers to tell Link
which partition a group of datawords should contribute.

External numbers 2 are 3 are seldom used; 2 resolves to the relocation base of the User Status
Table, and 3 resolves to the relocation base of the unlabeled common area. (We detail external
numbers later in this chapter.) :

4'4 Licensed Material-Property of Data General Corporation 093-000254

Table 4-1. Predefined Partitions

External Partition Name Attributes
Number
0 Absolute absolute, common base, overwrite-with-message, data,
alignment=0
1 ZREL ZREL, unshared, normal base, overwrite-with-message,
data, alignment=0
2 User Status Table not applicable. (Seldom used.)
3 Unlabeled Common | not applicable. (Seldom used.)
Area
4 Unshared Code NREL, unshared, normal base, code, overwrite-with-
message, alignment=0
5 Shared Data NREL, shared, normal base, data, overwrite-with-message,
alignment=0
6 Unshared Data NREL, unshared, normal base, data, overwrite-with-
message, alignment=0
7 Shared Code NREL, shared, normal base, code, overwrite-with-message,
alignment=0

User-Defined Partitions

In addition to the predefined partitions, you may define any number of additional partitions.
There are two general reasons for creating user-defined partitions.

First, you may want to generate several partitions having the same attributes but different
names. Second, you may want to use a partition that has a different set of attributes than any
of the predefined attributes. For instance, suppose you want some words to go into a partition
that has the following attributes: NREL, unshared, normal base, code, overwrite-without-
message, alignment=12. Since none of the predefined partitions has this set of attributes, you
will have to generate a user-defined partition.

Generating User-Defined Partitions

If you are writing a compiler, then you should know that three object blocks can generate
user-defined partitions: the partition definition block, the address information block, and the
named common block. Table 4-2 explains which attributes the three blocks allow you to define.

Table 4-2. Attributes That Object Blocks Can Define

Attribute Partition Address Named
Definition Information Common
Block Block Block

Common Base YES YES
Normal Base YES YES
Code/Data YES YES YES
Shared/Unshared YES YES YES
Local/Global YES
Ov.-With-Mess./Ov.-Without-Mess. YES
Alignment (0-12g) YES

093-000254 Licensed Material-Property of Data General Corporation 4"5

The partition definition block allows you to generate a partition containing any permutation of
attributes. The other two object blocks are not nearly as flexible. For instance, if you wanted to
generate a partition having an alignment of 12, then you would have no choice but to use the
partition definition block.

User-defined partitions generated with the partition definition block can have a global or a
local name. If partition definition blocks in two or more object modules define a global name,
then Link creates one partition with this name. If, however, the same partition definition
blocks defined local names, Link would have created a partition for each partition definition
block. A local partition can only be accessed by the object module that defined it. Link
renames local partitions. Therefore, when writing your source code (or writing a language
processor) keep in mind that the name of a local partition might change.

For instance, suppose two object modules, A and B, each contain partition definition blocks
defining a partition named BLUE. If both of these partition definition blocks define global
names, then Link will create one partition named BLUE. If, however, both of these partition
definition blocks define local names, then Link will create a partition named 2UDPOQO for A’s
contributions to BLUE and a second partition named ?UDPOL1 for B’s contributions to BLUE.

When two or more partition definition blocks or named common blocks define the same name,
Link sends out an error if their attributes do not match. Then, Link substitutes the first set of
attributes for all subsequent sets of attributes.

Source Code and Partitions

If you are programming in a high-level language, the compiler ordinarily decides which
partition should contain a particular group of datawords. Some high-level languages, however,
do permit some user control.

If you are programming in AOS assembly language, then you can use certain pseudo-ops (see
the AOS Macroassembler Reference Manual) to determine which partition will contain your
source code. Table 4-3 shows four assembly language pseudo-ops and the associated predefined
partitions.

Table 4-3. AOS Macroassembler Pseudo-ops and
Partitions They Generate

Assembly Predefined Partition
Language Containing the Results
Pseudo-op

.LOC expression Absolute (assuming that “expres-

sion” is nonrelocatable.)

.ZREL ZREL

.NREL or NREL 0 | Unshared Code

.NREL 1 Shared Code

You can override a language processor’s partition decisions with certain switches in the Link
command line (see Chapter 5). For instance, suppose you have two object modules: A.OB and
B.OB. If you want to move all instructions destined for the predefined Unshared Code
partition into the predefined Unshared Data partition, use the following Link command line:

) XLINK/UC=UD A.OB B.OB!

If, however, you want to move only A.OB’s predefined Unshared Code contributions into the
predefined Unshared Data partition:

) XLINK A.OB/UC=UD B.OB)

4‘6 Licensed Material-Property of Data General Corporation 093-000254

External Numbers

A language processor uses external numbers to send information to Link about partitions and
external symbols. Many types of object blocks define external numbers (see Appendix B). For
instance, the external number in the relocation entry of a data block tells Link which partition
the datawords should contribute to; while the external numbers in the relocation dictionary
entries allow Link to associate a dataword with an external symbol.

If you are writing a language processor, then you must generate Link-compatible external
numbers. Each object module must follow this external numbering scheme:

¢ External numbers 0 — 7 refer to the predefined partitions (see Table 4-1).

e User-defined partitions come next in the external numbering scheme. Assign external
number 10g to the first partition defined by a partition definition block and assign external
numbers in ascending order to each subsequent partition defined by a partition definition
block.

¢ Finally, assign external number 10g + n (where n is the number of partitions defined by
this object module’s partition definition blocks) to the first external symbol, and assign
external numbers in ascending order to subsequent external symbols.

When you use the above external numbering scheme, external numbers in different object
modules need not symbolize the same partition or external symbol. For instance, in the
following example NEWPART has external number 10z in object module A.OB and external
number 11g in object module B.OB, but Link knows that both refer to NEWPART.

Example
The following example demonstrates the external numbering scheme:

Assume that you have two files of source code A and B, and that a language processor uses
these files to generate object files A.OB and B.OB.

Assume that object module A.OB contributes to the predefined ZREL and Unshared Code

partitions and the following user-defined partitions (generated by the Partition Definition
Block):

Partition Name Attributes

NEWPART NREL, shared, common base, alignment=0, data, overwrite-with-
message, global

TJ NREL, unshared, normal base, alignment=0, data, overwrite-with-
message, local

ARF NREL, shared, normal base, alignment=1, code, overwrite-with-
message, global

Object Module A.OB also contains the following external symbols:

FOO
FOO1

Assume that object Module B contributes to the predefined Shared Code and Shared Data
partitions and the following user-defined partitions (generated by the Partition Definition
Block):

Partition Name Attributes

777 NREL, shared, common base, alignment=0, code, overwrite-with-
message, local

NEWPART NREL, shared, common base, alignment=10, data, overwrite-with-

message, global.

093-000254 Licensed Material-Property of Data General Corporation 4'7

The language processor that generated A.OB and B.OB must use the following external
numbering scheme in order to be Link-compatible:

For Object Module A.OB For Object Module B.OB
0 0

1 1

2 2

3 predefined partitions 2 predefined partitions
5 5

6 6

7 7

10g NEWPART 10g 777

11g TJ 11g NEWPART

12¢ FOO

13g FOOL1

If you link A.OB and B.OB, Link knows that external number 10g in A.OB and external
number 11g in B.OB both refer to the same user-defined partition.

External Numbers in Named Common Blocks and AlIBs

User-defined partitions generated by named common blocks are not ordinarily part of the
external numbering scheme. Rather, the names of these partitions are a special form of entry
symbol. If you want to include the names of these partitions in the external numbering scheme,
you must additionally define them as an external symbol.

Link treats external numbers generated by address information blocks (AIBs) differently than
those generated by other object blocks. If you choose to generate partitions this way, then
external numbers can take on any value above 7. However, unlike external numbers generated
by partition definition blocks or external symbols blocks, Link matches external numbers
across object modules.

For instance, suppose an AIB in object module A generates external number 15, and that an
AIB in object module B also generates external number 15. Since Link matches external
numbers across object modules, Link will send out an error if these two AIBs define partitions
with different attributes. Suppose, the AIB in A defines a shared partition and the AIB in B
defines an unshared partition. If A precedes B on the Link command line, Link will send out an
error. Link then assigns the first set of attributes to subsequent AIBs which generated the
same external number. So, datawords in B that were destined for an unshared partition will
actually contribute to a shared partition.

Overlays

The Resource Calls 7RCALL, ?KCALL, and 7RCHAIN are system calls that load and
release overlays under AOS. (For a description of Resource Call functionality, see the A0S
Programmer’s Manual.) The resource manager is a subroutine from URT.LB that helps
execute resource calls at runtime.

This section describes how the language processor, Link, and the resource manager work
together to resolve Resource Calls. This cooperative resolution is transparent to the user;
therefore, we aimed this section mainly at programmers who are writing their own compilers.
However, if you use overlays frequently, you should be aware of the Resource Call optimization
switches described later in this chapter.

4'8 Licensed Material-Property of Data General Corporation 093-000254

Generating Overlays

To generate overlays, you write a Link command line that contains overlay area delimiters. It
is up to you to decide which object modules you want to contribute to overlay areas and which
you want to stay in the root. Your decision should be based on variables like the size of object
modules and the frequency that the code in them will be executed. Chapter 5 details the Link
command line; Chapter 2 discusses overlay concepts.

Calling Overlays

If your .PR file contains overlay areas, you will need some method for calling overlays from the
.OL file into an overlay area at runtime. There are two ways to do this:

¢ Primitive Overlay Calls
¢ Resource Calls
Most programmers prefer to use Resource Calls.

If you use Primitive Overlay Calls, you have to explicitly manage the loading and releasing of
overlays, while Resource Calls let the resource manager handle much of the loading and
releasing for you. For instance, suppose you want to load an overlay and transfer program
control to it. If you use Primitive Overlay Calls, you have to pass the number of the overlay
(through an ENTO symbol) and the name of an ENT symbol that you want to jump to. If you
use Resource Calls, you need only pass the name of the symbol you want to jump to and the
resource manager will load it (if necessary) and transfer control to it.

In short, Resource Calls are easier to use then Primitive Overlay Calls.

Link and Resource Calls

As mentioned earlier, Resource Calls take one argument: a procedure entry symbol (PENT).
PENTs and standard entry symbols (ENTs) are functionally almost identical. Both are
defined by an entry symbols block (see Appendix B), and Link uses both for intermodular
communication. But unlike an ENT, if Link gives a PENT a value in an overlay, then Link
builds the following two word entry in the Resource Handler Table (RHT):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

?0VEDS | O overlay area number overlay number

?0VEOQF offset into overlay of PENT address

DG-15271

(See the A0S Programmer’s Manual for more information on system tables.)

If Link builds one or more of these RHT entries, then it also loads the resource manager from
URT.LB. At runtime, the resource manager uses the information in the RHT to locate PENTs
with overlay values. Once the resource manager has this information, it can execute the
Resource Call.

Link never defines ENTs in the RHT. Therefore, the resource manager will not be able to find
ENTs that are in an overlay. However, as we shall demonstrate later, if an ENT has a root
value, it is still possible to use a Resource Call to load or release it.

093-000254 Licensed Material-Property of Data General Corporation 4'9

In assembly language, there are two ways to pass an argument to the Resource Call:

¢ in line — The argument immediately follows the Resource Call. For instance, if you want to
?RCALL the overlay containing PENT “B1”, then issue the command ?RCALL B1.

» on the stack — The argument is the top word on the stack when the Resource Call is made.
(Refer to the A0S Macroassembler Reference Manual for information on the pseudo-op
.PTARG.)

In order to be Link-compatible, a language processor must translate both the Resource Call
and its argument into two datawords. The first dataword is the call word, and the second is the
target word. For arguments passed in line, a language processor must generate the call word
and target word shown in Figure 4-3. For arguments passed on the stack, a language processor
must generate the call word and target word shown in Figure 4-4.

?KCALL 7RCALL ?RCHAIN
Call Word 006013 006014 006015
Target Word 000000 000001 000002
DG-15269

Figure 4-3. Call Word and Target Word for Argument Passed In Line

?KCALL ?RCALL ?RCHAIN
Call Word 006013 006014 006015
Target Word 000000 000000 000000
DG-15270

Figure 4-4. Call Word and Target Word for Argument Passed on the Stack

4-10

Licensed Material-Property of Data General Corporation

093-000254

Once the call word and target word are in place, the language processor must define the proper
relocation operations. For arguments passed in line, the language processor should define
relocation operation 10 for the call word and relocation operation 13 for the target word. If the
argument is passed on the stack, the language processor should not define relocation operations
for either the call word or the target word since Link cannot know what will be on the stack
when the call is issued. Instead of using relocation operations on the call word or target word,
you may choose to use relocation operation 13 on an argument. Then, at runtime, you can push
the resolved argument onto the stack immediately prior to issuing the resource call. (See the
.PTARG pseudo-op in the AOS Macroassembler Reference Manual.)

Four variables affect Link’s resolution of the call word and target word:
¢ The type of Resource Call (i.e., was the Resource Call 7RCALL, ?KCALL, or 7RCHAIN?)

¢ The Resource Call optimization switches (i.e., does the Link command line include the
switches /NRC, /NRP, or /WRL? The next section details these switches.)

¢ The location the Resource Call will be made from (i.e., will the call be issued from the root
or from an overlay?)

» The location of the argument (i.e., will the target PENT be in the root or in an overlay
area? If the target PENT is in an overlay area, is it the same overlay area that the resource
call will be issued from or some other overlay area?)

Tables 4-4 through 4-9 shows how Link resolves the call and target words for all possible
combinations of these four variables. For instance, suppose that your assembly language source
code contains the following command:

VARIJM: ?RCALL ARF ;ARF is a PENT

Suppose that Link places ARF in an overlay file, and VARJM in the root. Further assume that
the Link command line did not contain any Resource Call optimization switches. Thus, the
Resource Call will travel from “Root” to “Other Overlay”. Table 4-4 shows that Link converts
the call word to a JSR(@ 14 command and the target word to a RHT address. If, however, the
Link command line included the switch /NRC, then Table 4-7 shows that Link would have
changed the call word to EJSR and the target word to the address (within the root) of the
PENT.

Resource Call Optimization Switches
Resource Call resolutions (shown in Tables 4-4 through 4-9) really fall into two categories:
e EJSR commands — At runtime, the CPU jumps direct to the target subroutine.

¢ JSR@ commands — At runtime, the CPU jumps indirect to the resource manager, which
finds the target subroutine, loads it into logical address space (if necessary), and passes
control to it.

Although the resource manager is quick, it is obvious that an EJSR command is quicker.

The Resource Call optimization switches (/NRC, /NRP, and /WRL) allow Link to substitute
106070 (i.e., an EJSR command) for 006014 (i.e., a JSR (@14 commands) in certain ’RCALL
situations. Without any optimization switches set, Table 4-4 shows that Link resolves 4 of the
5 possible 7RCALL situations with JSR@ commands. With /NRP set (Table 4-5), the
number is reduced to 3; while /WRL (Table 4-6) further diminishes it to 2. /NRC (Table 4-7)
converts every call word into an EJSR command. In fact, when you include /NRC in your
Link command line, Link does not even load the resource manager into your .PR file.

Table 4-10 details the terms used in Tables 4-4 through 4-9.

093-000254 Licensed Material-Property of Data General Corporation 4‘ 1 1

The following restrictions apply to the three Resource Call optimization switches:

/NRP

JWRL

JNRC

4-12

—t

——

Do not pass the target word on the stack. (Pass the target word in line.)

Overlay areas cannot have more than one basic area. (That is, you cannot
put /MULT=n and /NRP in the same Link command line.)

Do not pass the target word on the stack. (Pass the target word in line.)

Overlay areas cannot have more than one basic area. (You cannot put
/MULT=n and /WRL in the same Link command line.)

At runtime, this process should not make the following sequence of calls:
ROOT — OVERLAY — ROOT — DIFFERENT OVERLAY.

At runtime, this process cannot issue resource calls. (To manage overlays,
you must use primitive overlay calls. Use /NRC when some of your object
modules contain call and target words, but you are linking for a target
operating system, such as RDOS or RTOS, that does not support Resource
Calls.)

Your program cannot issue system calls ?WALKBACK or 7ZUNWIND.

Table 4-4. 2RCALL Resolution if No Resource Call Optimi-
zation Switches Are in Link Command Line

To Root Same Overlay Other
From Overlay
Root EJSR JSR @14
Root Address RHT Address
Overlay JSR @14 JSR @14 JSR @14
Root Address RHT Address RHT Address

Table 4-5. ZRCALL Resolution if /NRP Is in Link Command

Line
To Root Same Overlay Other
From Overlay
Root EJSR JSR @14
Root Address RHT Address
Overlay JSR @14 EJSR JSR @14
Root Address Root Address RHT Address

Licensed Material-Property of Data General Corporation

083-000254

Table 4-6. 2RCALL Resolution if /WRL Is in Link Com-

mand Line
To Root Same Overlay Other
From Overlay
Root EJSR JSR @14
Root Address RHT Address
Overlay EJSR EJSR JSR @14
Root Address Root Address RHT Address

Table 4-7. 2RCALL Resolution if /NRC Switch Is in Link
Command Line

To Root Same Overlay Other
From Overlay
Root EJSR EJSR
Root Address Root Address
Overlay EJSR EJSR EJSR
Root Address Root Address Root Address
Table 4-8. 2KCALL Resolution
To Root Same Overlay Other
From Overlay
Root EJSR JSR @13
Root Address RHT Address
Overlay JSR @13 JSR @13 JSR @13
Root Address RHT Address RHT Address
Table 4-9. 2RCHAIN Resolution
To Root Same Overlay Other
From Overlay
Root JSR @15 JSR @15
Root Address RHT Address
Overlay JSR @15 JSR @15 JSR @15
Root Address RHT Address RHT Address

093-000254

Licensed Material-Property of Data General Corporation

4-13

Table 4-10. Abbreviations Used in Tables 4-4 through 4-9

Abbreviation

Call Words

Machine Language Comments

ISR@13 [o

6 0 1 3 | Location 13 points to a routine in the

resource manager that performs the
7KCALL.

JSR@MH‘ 0 l 6 I 0 | 1 | 4]Location14pointstoaroutineinthe

resource manager that performs the
7RCALL.

JSR@IS[ol o l 6 I 0 | 1 I 5 lLocationlSpointstoaroutineinthe

resource manager that performs the
?7RCHAIN.

EJSR 1

6 0 7 0 Transfers control to address equal to

value of PENT or without going
through resource manager. Since this

displacement

is an index mode O instruction, dis-
placement is the actual address of the
PENT or ENT.

Target Words

Root Address

Address (not less than 2USTA) of PENT

T 7 T T T T T T T T T T LT

Comment: If Link resolves the call word to an EJSR, then it resolves the target word to
a root address. This address forms the displacement of the EJSR instruction.
RHT Address Address of Resource Handler Table entry for this PENT
— . T T T T : T T r T r T —5
Comment: When the resource manager wants to know which overlay contains this PENT,
it looks it up in the Resource Handler Table. An EJSR can not precede a
RHT address.
End of Chapter
4' 1 4 Licensed Material-Property of Data General Corporation 093-000254

Chapter 5
Link Command Line

You communicate with Link through the AOS Command Line Interpreter (CLI). The CLI
command XEQ (abbreviated X) followed by the argument LINK invokes the Link utility.
This chapter explores the many options available in the Link command line.

Command Line Without Overlays
If you do not want any overlay areas in the .PR file, use the following format to execute Link:

) X LINK</GLOBALswitch...> objectfile</OBswitch...>... &
&) <partition or symbol/PARTSY Mswitch...>)

where:

GLOBAL switch is one or more of the switches listed in Table 5-1.

object file is the name of an .OB file or a library file.

OB switch is one or more of the switches listed in Table 5-2, that
affect a particular object file.

partition or is the name of a partition or symbol defined in one of the

symbol/PARTSYM switch object files in the Link command line followed by one or

more of the switches listed in Table 5-3. You cannot use a
partition or symbol name on the Link command line
without affixing at least one PARTSYM switch to it. A
PARTSYM switch affects only the partition or symbol it
is attached to.

Use one or more spaces, tabs, or commas, to separate each object module name. All switches
must be flush against the argument they act on. For example, if you use a GLOBAL switch,
make sure there are no spaces between LINK and the switch; e.g., X LINK/L. Similarly, if
you modify the same element with more than one switch, make sure there are no spaces
between the switches. For example, X LINK/L/E=MISTAKES, and
X LINK GREEN.OB/OVER/MAIN.

Filenames listed on the Link command line must reside in either your working directory or one
of the directories in your search list. If the file is in neither, you must supply the pathname of
the file.

If you put an unextended filename (e.g., SUM) on the Link command line, Link initially scans
for the filename with the .OB extension (e.g., SUM.OB). If it fails to find the filename with
this extension, it searches for the filename without the extension (e.g., SUM). If Link cannot
find the unextended filename, it puts out an error message. Most programmers find it convenient
to leave off the .OB extension.

If you put a filename with the extension .OB or .LB on the Link command line, Link searches
only for the filename with this extension. For instance, if you include SUM.LB on the Link
command line, Link puts out an error message if it cannot find SUM.LB.

093-000254 Licensed Material-Property of Data General Corporation 5' 1

Sample Link Command Lines

The following are examples of acceptable Link command lines:

1.)XLINKSUM.OB! or)XLINKSUM)

2.) XLINK/REV=4.2 RED/ALIGN=10 SUM.OB MULT.OB)

3.) XLINK/V/L/MODMAP SUM.OB MULT.OB/MAIN INTEGRAL.LB)
4,)XLINK MVT.OB/START/ZR=UC DIFFER.LB/OVER INTEGRAL.LB!
Example 1 links .OB file SUM.OB to form SUM.PR and SUM.ST.

Example 2 links .OB files SUM.OB and MULT.OB. to form SUM.PR and SUM.ST.
J/REV=4.2 is a GLOBAL switch. RED/ALIGN =10 demonstrates a partsym/PARTSYM
switch sequence. Note that RED must be the name of a partition or symbol in SUM.OB or
MULT.OB.

Example 3 links .OB files SUM.OB and MULT.OB with a subset of the files in library
INTEGRAL.LB to form SUM.PR and SUM.ST. The example contains three GLOBAL
switches /V, /L, and /MODMAP, and one OB switch /MAIN.

Example 4 links .OB file MVT.OB with library files DIFFER.LB and INTEGRAL.LB to
create MVT.PR and MVT.ST. The example contains two OB switches (/START and
/ZR=UC) affixed to MVT.OB, and one OB switch affixed to library DIFFER.LB.

Command Line With Overlays

In addition to the options discussed above, you can also set up one or more overlay areas with
a Link command line. You must use the following format to set up an overlay area:

|* </OVswitch...> objectfile<</OBswitch...> <!> <objectfile</OBswitch...>...> *|
where:

1* *l are overlay area delimiters. They force Link to create zero, one, or two
overlay areas. The left overlay area delimiter !* begins an overlay area and
the right overlay area delimiter *! ends it.

OV switch is one or more of the switches listed in Table 5-4 affixed to a left overlay
area delimiter '*. OV switches affect the object modules specified within the
appropriate overlay area delimters.

! is an overlay delimiter. It separates overlays. Note that the overlay area
delimiters also separate overlays.

object file is either an .OB file or a library. -

OB switch is one or more of the object file switches listed in Table 5-2.

The following is the complete format for a Link command line:

) X LINK</GLOBALswitch...> objectfile<</OBswitch...>... &
&) <partsym/PARTSYMswitch...> <!*></OVswitch..> &
&) <objectfile<</OBswitch...>...> <!> <objectfile<</OBswitch...>...> <*|>]

NOTE: You do not have to put the overlay section of the Link command line on a separate
line. We included the CLI line continuation mark (&) for clarity only.

5'2 Licensed Material-Property of Data General Corporation 093-000254

How Object Modules Contribute to Overlay Areas

Object modules outside overlay delimiters contribute to root partitions only. Object modules
inside overlay area delimiters contribute to the root and/or an overlay area according to the
following scheme:

+ Contributions to the predefined Absolute, ZREL, Unshared Data, and Shared Data
partitions and all contributions from user-defined partitions go into the root.

+ Contributions to the predefined Unshared Code and Shared Code partitions go into overlay
areas.

For example, the following list shows eight object modules and the partitions that they can
contribute to:

Object The partitions they can contribute to

Modules

A.OB ZR ucC SD

B.OB ucC

C.OB ZR UD UC

D.OB UC SD

E.OB SC

F.OB ZR SD SC

G.OB SC BLUE (a user defined partition)
H.OB uD SC

If we link four of these object modules with the following Link command line:
)JXLINKA.OB!*B.OB!C.OB!D.OB *!)

Link produces one overlay area containing three overlays. The following list shows that only
the contributions from the predefined Unshared Code partition end up in the .OL file, while
the remaining partitions reside in the .PR file:

Object What it What it Overlay Area Number

Module Contributes to the Contributes to the Link Assigns to This
.PR File .OL file Contribution to the

.OL file

A.OB ZR UC SD --- -

B.OB ucC 0

C.OB ZR UD ucC 0

D.OB SD ucC 0

Usually it is desirable to fit several object modules inside the same overlay. For instance, the
following command line puts the Unshared Code contributions from C.OB and D.OB into the
same overlay:

) XLINKA.OB!*B.OB!C.OBD.OB *!)

A pair of overlay area delimiters generates one, two, or no overlay areas depending on the
following conditions:

+ If the object modules inside the overlay area delimiters can contribute to either Shared
Code or Unshared Code but not to both, then Link generates one overlay area.

+ If the object modules inside overlay area delimiters can contribute to both Shared Code and
Unshared Code, then Link generates two overlay areas.

+ If the object modules inside overlay area delimiters can not contribute to Shared Code or
Unshared Code, then Link generates no overlay areas.

093-000254 Licensed Material-Property of Data General Corporation 5"3

It is a common programming practice to put all the object modules that contribute to
Unshared Code into one overlay area and all the object modules that contribute to Shared
Code in a second overlay area. For instance, the following Link command line generates two
overlay areas:

) X LINK A.OB |* B.OB!C.0OB!D.OB *!1* E.OB!F.OB!G.OB!H.OB *!}

As the following information shows, this Link command line creates one unshared overlay area
and one shared overlay area:

Object What it contributes to the What it Overlay Area Number
Module root Contributes to the Link Assigns to This
.OL file Contribution to the
.OL file
A.OB ZR ucC SD --- -
B.OB .- ucC 0
C.OB ZR UD ucC 0
D.OB SD ucC 0
E.OB - SC 1
F.OB ZR SD SC 1
G.OB BLUE SC 1
H.OB Ub SC 1

The following Link command line also contains two sets of overlay area delimiters:
) X LINK A.OB!* B.OB!C.OB *!!* D.OB{E.OB!F.OB!G.OB!H.OB *1)}

However, the second set of delimiters generates two overlay areas because modules inside it
contribute to both Shared Code and Unshared Code. Therefore, Link generates three overlay

areas — two unshared and one shared as shown below. 2

Object What it contributes to the What it Overlay Area Number
Module root Contributes to the Link Assigns to This
OL Contribution

A.OB ZR UC SD - -
B.OB - ucC 0
C.OB ZR UD ucC 0
D.OB SD ucC 1
E.OB - SC 2
F.OB ZR SD SC 2
G.OB BLUE SC 2
H.OB UD SC 2

Sample Link Command Lines

The following are acceptable Link command lines:

1.) X LINK POWER.OB !* FORCE.OB ! NEWTON.OB *! LAGRANGE.OB)

2.) XLINK/L/MAP/MODMAP REAL !* EXP | |INT/UD=UC !&
&) CHAR.LB/SD=SC ! I_O.LB *! TEST_.IO SYS_INT/OVER!

3.)XLINK MY_PROG.OB [*/ALIGN=10R8 COLL ! COMB &
&) STR ! SUBSTR *!!*/MULT=3 I_O1 I_02 ! I_0O3 !&
&) CHOICE_IO I_O.LB *! INIT/START)

Example 1 loads OB files POWER.OB and LAGRANGE.OB into POWER.PR. FORCE.OB P

and NEWTON.OB can contribute to POWER.PR and/or POWER.OL.

5'4 Licensed Material-Property of Data Genera! Corporation 093-000254 .

Example 2 loads .OB files REAL.OB, TEST_10.0B, and SYS_INT.OB into the REAL.PR.
The four object files inside the overlay area delimiters may contribute to REAL.PR and/or
REAL.OL. This command line contains a variety of GLOBAL switches (/L=, /MAP, and
/MODMAP) and OB switches (/UD=UC, /SD=SC, /OVER.) Note that the programmer
left off the .OB extensions on four input object files; presumably, these are .OB files.

Example 3 loads object files MY_PROG.OB and INIT.OB into MY_PROG.PR. The
remaining object files can contribute to MY_PROG.PR and/or MY_PROG.OL. This
command line contains two sets of overlay area delimiters. The first set contains four .OB files,
and the second set contains four .OB files and a library. The OV switch /ALIGN =10R8
affects the first set of object files; while /MULT=3 affects the second set. The OB switch
/START is attached to the .OB file INIT.OB.

Linking High-Level Language Object Modules

In high-level languages the Link command line is usually bundled into a Link macro. Although
these macros vary between languages, they invoke the same Link utility and must obey the
same Link command line rules. These Link macros serve a two-fold purpose:

* They bind the input object modules to the proper language libraries.

e They contain the appropriate Link switches.

Switches in High-Level Language Macros

High-level language Link macros permit you to use most of the switches listed in this chapter.
Sometimes, to link object modules, you can simply substitute the name of the Link macro in
place of X LINK. For instance, the following command line links object modules generated by
the AOS Macroassembler:

) X LINK/L=COMPLEX.MAP/MAP REAL.OB IMAGINARY.OB/UC=UD |

Suppose though that you wrote NICK and NORA in FORTRAN 77 and you compiled them
with the FORTRAN 77 compiler. You can link REAL.OB and IMAGINARY.OB with the
Link macro for FORTRAN77 (F77LINK):

) F77LINK/L=COMPLEX.MAP/MAP REAL.OB IMAGINARY.OB/UC=UD)

Refer to the appropriate high-level language manual for more information.

Library Files

As already mentioned, you can use a library file in the Link command line anywhere that you
can use an .OB file. A library file, or simply a library, consists of one or more object modules
grouped together by the library file editor. For a complete description of library files, see
Chapter 7.

Link automatically loads free-standing object modules into the .PR or .OL files. However, if

an object module is part of a library, Link uses the following process to decide whether to load

it:

* Is the forced load flag for the object module on? If yes, link it into the .PR (or .OL) file. If
not, proceed to the next test.

* Does the object module satisfy any outstanding (unresolved) external symbols referred to by
the other modules in the command line? If so, load it to the .PR (or .OL) file; otherwise, do
not load it into the .PR (or .OL) file.

Refer to Chapter 6 for more information about the forced load flag; refer to Chapter 3 for
more information about external symbol resolution.

093-000254 Licensed Material-Property of Data General Corporation 5'5

The Systems Libraries

Link automatically scans the appropriate system library to resolve any outstanding external
symbols referred to by the object modules. The AOS system library is called URT.LB and it
contains a variety of object modules. (The AOS Programmer’s Manual explains how you can
get an updated list of these object modules.) In effect, when you enter the following command
line:

) X LINK KINE.OB STAT.OB)
AOS Link actually links the following command line:
) X LINK KINE.OB STAT.OB URT.LB)

By default, Link scans URT.LB; however, you may change this default with the GLOBAL
switch /SYS=n (shown in Table 5-1). If n, which stands for the target operating system, is
RDOS, then Link scan SYS.LB instead of URT.LB. (See Chapter 7 for more information
about SYS.LB.)

To suppress a system library scan entirely, use either the /NSLS or /UDF GLOBAL
switches. (Note that /UDF produces other effects as well.) Table 5-1 describes both /UDF
and /NSLS.

Starting Address

The starting address of a .PR file is the address of the first instruction that the hardware will
execute at runtime. In other words, the starting address is the initial contents of the PC. Link
stores the starting address of a .PR file in the Task Control Block. (See the AOS Programmer’s
Manual for more information about system tables.)

Two factors control the program file’s starting address:
* possible starting addresses stored within object modules.
« the /START switch.

Object modules may optionally define a possible starting addresses. (For more information, see
the “End Block” section in Appendix B.) Therefore, within a Link command line, several
object modules may have possible starting addresses. By default, Link sets the starting address
of the .PR file equal to the last possible starting address it encounters among the object
modules on the command line.

If the /START switch is attached to an .OB file that has a possible starting address, then Link
sets the .PR file starting address equal to this object module’s possible starting address. If the
/START switch is attached to an .OB file that does not have a possible starting address, then
Link sends out the error message NO START ADDRESS HAS BEEN SPECIFIED.

For example, assume that DIVID.OB and SUM.OB have possible starting addresses, but
ADD.OB does not:

Link Command Line .PR file Starting Address

) X LINK ADD.OB SUB.OB DIVID.OB) starting address of DIVID.OB
) X LINK ADD.OB DIVID.OB SUB.OB) starting address of SUB.OB

) X LINK ADD.OB DIVID.OB/START SUB.OB } starting address of DIVID.OB
) X LINK ADD.OB/START DIVID.OB SUB.OB) error

5"6 Licensed Material-Property of Data General Corporation 093-000254

The /MAIN switch forces Link to define a ENT called “.MAIN”. This ENT has the same
value and relocation properties as the possible starting address of the object module it is
attached to.

Radix

By default, Link interprets any numeric values on the command line as decimal values. To
specify an alternate radix, append the designator Rn to numerical values, where n represents a
radix from 2 through 9. For example, the switch /STACK =100 increases the size of the stack
to 100 which is equal to 1444. If you had used /STACK =100RS instead, then Link would
have increased the stack size to 100g.

By default, all addresses in Link output listings (i.e., listings produced or associated with the
/L or /L=filename switch) are in octal. The /HEX switch changes output listings to
hexadecimal.

Examples in This Chapter

Figures 5-1 through 5-18 show the logical address spaces associated with Link-generated .PR
files. The logical address space in Figure 5-1 was generated by a Link command line without
switches, so you can use this figure for comparison.

Link generated the .PR files shown in Figures 5-1 through 5-18 by linking the following object
modules:

¢ Six user-supplied object modules — three object modules in .OB files (DAY.OB,
YOUNG.OB, and YIN2.0B), and three object modules from library OLIB.LB (NIGHT,
OLD, and YANG.)

* Eight object modules from the User Runtime Library — CALL, CALLS, GCRB, RSLOA,
WAIT, DUMMY, URTSC, and SCALL.

093-000254 Licensed Material-Property of Data General Corporation 5'7

Table 5-1. GLOBAL switches

Switch

Description

/<ZR,UC,UD,SC,SD>=
<ZR,UC,UD,SC,SD>

JALPHA

/BUILDSYS

/CHANNELS=n

/DEBUG

/E=pathname
/HEX
/KTOP=n

/L

/L=pathname

Diverts all datawords destined for the partition on the left side of the equal sign into the
partition on the right side of the equal sign. For example:

) X LINK/UC=SD MICRO.OB MACRO.OB!

In this example, Link diverts all contributions to the predefined Unshared Code (UC)
partition into the predefined Shared Data (SD) partition; furthermore, these datawords will
have the attributes of the Shared Data partition.

NOTE: Do not use the same partition on both sides of the equal sign. For instance, this
command line generates a Link error:

) X LINK/UC=UC MICRO.OB MACRO.OB/

NOTE: This switch is valid only for the five predefined relocatable partitions.

Produces an alphabetically sorted list of all symbols and their values.
You must use /L or /L =pathname with this switch. For example,

) X LINK/L/ALPHA ASSETS_INPUT FINANCE.LB)
(Figure 5-9 shows a sample /ALPHA listing.)

NOTE: Link gives undefined symbols the value of 7UNDF. (Refer to symbol 2UNDF in
Table C-1.)

Produces an AOS system (.SY) file. Only AOSGEN uses this switch. (See How to Load
and Generate Your AOS System.)

Generates the symbol 2CHAN which some languages use as a channel directive. When you
use this switch in combination with /SYS=RDOS or /SYS=RTOS, Link will place nin
offset USTCH of the User Status Table. If you use the /SYS=RDOS or /SYS=RTOS
switch, but do not use the /CHANNELS=n switch, then Link will put the value 10g in
offset USTCH.

Directs Link to create a .DL file if any object module in the Link command line contains one
or more debugger lines blocks or lines title blocks. This switch also directs Link to create a
.DS file if any object module in the Link command line contains one or more debugger
symbols blocks. (See Appendix B for details on object blocks.) The /DEBUG switch also
causes Link to emit the external symbol “DEBUG” and to place the value of that symbol in
offset USTDA in the User Status Table (UST). (See the A0S Programmer’s Manual for
information about system tables.)

Sends Link errors to pathname. Without this switch, Link errors go to @OUTPUT.
Converts all numbers in Link output listings from the default (octal) to hexadecimal.

Limits the logical address space to n;q pages (where 1 page = 20005 addresses). The default
value of n is 32,¢. (See Figure 5-3.)

Sends Link information to @LIST. By default, this information includes the titles of all
input object modules (and their revision numbers) and the values of the basic memory
parameters. Also, Link sends error messages to this file. For example, if your @LIST is file
MLF, then the following command line sends Link information to file MLF:

) XLINK/L FOURIER TAYLOR POLY2)

Same as /L except that Link information goes to pathname rather than @LIST. For
example, this command line sends Link information to file LOW:

) XLINK/L=LOW FOURIER TAYLOR POLY2)

5-8

(continues)

Licensed Material-Property of Data General Corporation 093-000254

Table 5-1. GLOBAL switches

Switch

Description

/MAP

/MODMAP

/MODSYM

/N

JNBOT=n

/NRC
(No resource calls)

/NRP
(No Resource Passing)

/NSLS
(No System Library Scan)

/NTOP=n

/NUMERIC

Lists the name, length, lowest and highest address of all partitions in the .PR and .OL file.
You must use /L or /L =pathname with this switch. For example:

) X LINK/L=CALC.MAP/MAP CALC TRIG GEOM.LB)
(See a sample /MAP listing in Figure 5-10.)

Produces a more detailed version of the MAP (see /MAP above). The MODMARP reports
the name, length, highest and lowest addresses of each object module’s contributions to each
partition. You must use /L or /L =pathname with this switch. For example:

) X LINK/L/MODMAP SOLUBILITY.OB)
(See the sample /MODMAP listing in Figure 5-11.)

Lists the .PR file addresses of the following symbol types on an object module-by-object
module basis:

entry symbols (ENTs)

accumulating symbols (ASY Ms)
overlay entry symbols (ENTOs)
local symbols (LOCALs)

procedure entry symbols (PENTS)
system overlay symbols (SOENTOs)

You must use /L or /L=pathname with this switch. For example:
) X LINK/L=RATE.MM/MODMAP RATE MULTIPLIER !
(Also, see Figure 5-12.)

Suppresses the creation of .PR, .ST, .OL, .DS, and .DL output files, but does not suppress
Link output listings (e.g., information stored with /L, /L =pathname, or /E). This switch is
valuable when you are not ready to execute or debug a program, but you want to know how
Link will allocate space in the .PR file.

Changes the lowest NREL address from 004003 (the default address) to n;q. (See Figure
5-4.)
NOTE: Under AOS, unless n equals 400, the resulting .PR file will be nonexecutable.

Converts all 7RCALLs into EJSRs. See “Resource Call Optimization Switches” in
Chapter 4.

Converts 7RCALLSs in certain situations into EJSRs. (See “Resource Call Optimization
Switches” in Chapter 4.)

Suppresses Link from scanning the appropriate system library. If you do not use this switch,
Link automatically scans either the AOS system library URT.LB or the RDOS system
library SYS.LB.

Sets 7NTOP, the highest logical address, to njo. The default value of n is 32767,,. (See

Figure 5-3.)

NOTE: /NTOP is similar to /KTOP. The only difference is that /NTOP takes an address
as an argument, and /KTOP takes the number of pages as an argument.

Lists the same information as /ALPHA except the information is sorted by symbol value
rather than alphabetically. You must use /L or /L=pathname with this switch. For
example:

) X LINK/L/NUMERIC LANG_LIST.OB THREE.OB)
(Also, see Figure 5-13.)

093-000254

(continued)

Licensed Material-Property of Cata General Corporation 5‘9

Table 5-1. GLOBAL switches

Switch

Description

/O=pathname

JOBPRINT

JOVER

/PRSYM
/REV=nl1<.n2>

/SRES=n

/STACK=n

Forces Link to name your program file pathname.PR. Without the switch, Link names the
file after the first .OB file in your Link command line. Compare the following two Link
command lines:

) X LINK ONE.OB TWO.OB)
LINK REVISION 04.20 ON 8/30/82 AT 11:24.02
=ONE.PR CREATED

) X LINK/O=SEQUENCE ONE.OB TWO.0OB)
LINK REVISION 04.20 ON 8/30/82 AT 11:24:38
=SEQUENCE.PR CREATED

Produces an octal dump of every object block on an object module-by-object module basis.
This switch is useful for examining object block structure; however, it usually generates
voluminous output. You must use /L or /L=pathname with this switch.

Suppresses overwrite error messages. By default, Link sends out an error if it overwrites an
address. (See the “Overwrite-with-Message” and “Overwrite-without-Message Attributes”
section in Chapter 4.)

Generates an RDOS-style symbol table in the .PR file. (See Chapter 7.)

Sets offset USTRYV in the User Status Table to n1 <<.n2> where nl and n2 are base 10
integers between 0 and 255 inclusive. (Refer to the AOS Programmer’s Manual for
information on system tables.) If you do not use the /REV switch, Link sets USTRY to the
first module revision number greater than -1 that it encounters. If Link does not encounter
a revision number greater than -1, it sets USTRV to -1.

For example, suppose that object module ELASTICITY has revision number 1.1 and that
object module DEMAND has revision number 4.2. The following Link command line sets
offset USTRYV to 10.0: :

) X LINK/REV=10.0 ELASTICITY DEMAND !}

The following Link command line sets offset USTRV to 1.1:
) X LINK ELASTICITY DEMAND !

The following Link command line sets offset USTRYV to 4.2:
) X LINK DEMAND ELASTICITY }

The CLI command:

) REVISION pathname [major number.minor number])

also sets (or displays) offset USTRYV.

For more information about revision numbers, refer to the “Title Block”, “Revision Block”
and “Module Revision Block” sections in Appendix B.

Reserves n shared pages (1 page = 20005 addresses), starting at 2SBOT, before the existing
shared pages. (See Figure 5-5; also refer to Table C-1 for information on ?SBOT.)

Changes the stack length from 30,4 to n;o addresses. (See Figure 5-6.)
NOTE: Because Link does not build a stack for RDOS or RTOS program files, you cannot

use this switch in a command line that contains either /SYS=RDOS or
/SYS=RTOS.

5-10

(continued)

Licensed Material-Property of Data General Corporation 093-000254

Table 5-1. GLOBAL switches

Switch Description

SUPST Suppresses Link’s creation of the .ST file. .ST files are useful during debug in , but they do
ging y
not affect program execution.

/SYS=n Specifies the target system the output program file should be built to execute on. By default,
Link builds a program file that can run on AOS. With this switch, Link can build a program
file that can run on AOS, RDOS, or RTOS. For example:

) XLINK/SYS=RDOS FUNC1.0B FUNC2.0B CALCF.LB!

Here, Link creates a program file (FUNCI1.SV) that can run on RDOS out of three AOS
object files.

NOTE: This switch will not work properly unless Link has access to the appropriate system
library(s). For more information, see Chapter 7.

/TASKS=n Informs Link that the .PR file will contain n potential tasks. (Task specification affects
construction of the system tables.) If you use this switch and the object modules already
contain task blocks, Link compares n and the information in the task blocks, and takes the
maximum task specification.

/TEMP=pathname pointer Sends Link’s temporary files to the directory given by the pathname pointer. Link creates
and deletes several files during the course of linking. By default, Link stores these temporary
files in your working directory. This switch forces Link to create these files in a different
directory; for instance, a directory stored on a faster disk. In some circumstances, this switch
reduces the amount of time required for linking.

A pathname pointer can be either a valid AOS pathname followed by a colon, or it can be
one or more up arrows [. For instance, if you are in directory :UDD:RB:1:2:3:4 and you want
Link to send its temporary files to directory :UDD:RB, you can issue either of the following
command lines:

) X LINK/TEMP=:UDD:RB: MICRO.OB MACRO.OB A.LB)
or
) X LINK/TEMP=17]] MICRO.OB MACRO.OB A.LB!

NOTE: This switch does not affect the directory that Link sends its output files to. (See the
/O switch.)

/UDF Builds a nonexecutable file (UDF). A UDF file is a program file without system tables, a
stack, or any routines from URT.LB.

JULAST=n Places contents of partition n in the highest unshared portion of the .PR file (just below the
stack). n must be the name of a predefined or user-defined partition. If it is neither, Link
ignores the switch and sends out an error message. (See Figure 5-7.)

/v Reports the full pathname of all input .OB files and library files. Without this switch, Link
reports only the titles of input object modules. You must use /L or /L=pathname with this
switch.

/WRL Converts 7RCALLSs in certain situations into EJSRs. (See the “Resource Call Optimization

Switches” section in Chapter 4.)

(continued)

093-000254 Licensed Material-Property of Data General Corporation 5‘ 1 1

Table 5-1. GLOBAL switches

Switch Description
/XREF Like /ALPHA, this switch directs Link to write an alphabetically sorted list of symbols and
(Cross Reference) their values. In addition, /XREF produces a list of every object module that referred to this
symbol as an external. Also, /XREF lists the .PR file address of every dataword that
accessed this symbol.

Refer to Figure 5-14. Notice that some listings do not contain a symbol type. For instance
.GCRB is an ENTRY symbol, but calls does not have an associated TYPE. Words under
the heading NAME that do not have a TYPE are actually the titles of object modules that
access the entry symbol above it. Therefore, we know that one or more instructions in object
module CALLS accesses symbol .GCRB. If you want to find the value of an entry symbol,
look under the heading ADDRESS in an entry symbol’s row. To find the address(es) of the
instructions that accessed this entry symbol, look under the heading ADDRESS in an object
module’s row. For instance, the value of . GCRB is 76031. An instruction from object
module CALLS accessed it and that instruction ended up at address 75665 in the .PR file.

For a more advanced example, refer to page 5-32 and find the ENTRY symbol 7URTB.
This symbol has a value of 00073. Four object modules (CALLS, WAIT, DUMMY, and
URTSC) accessed it. Five instructions in object module CALLS accessed it. These
instructions occupy addresses 75641, 75672, 75717, 75745, and 76015 in DAY .PR. Also in
DAY.PR, at address 76221, an instruction from object module WAIT accessed 7URTB.
Address 76316 in DAY.PR contains an instruction from object module DUMMY that
accessed 7URTB. In addition, object module URTSC contributed two instructions (at
76532 and 76541) that accessed 7URTB.

NOTE: This switch produces voluminous output.

/ZBOT=n Changes ?ZBOT, the lowest ZREL address, from 000503 (the default) to n)q. See Figure
5-8.

NOTE: When you use the /UDF switch, Link sets 7ZBOT to 00000 unless you use the
/ZBOT=n switch. If n is lower than 503 Link will overwrite the reserved storage
locations. If you set n too high, Link will overwrite the system tables that ordinarily
begin at address 004003. Avoid both extremes if you plan to execute this file.

(concluded)

5' 1 2 Licensed Material-Property of Data General Corporation 093-000254

Table 5-2. OB switches

/<ZR,UC,UD,SC,SD>=n

JLOCAL

/MAIN

JOVER

/START

Switch Description
/<ZR,UC,UD,SC,SD>= Same as the GLOBAL switch except that it acts on one object module (or library) rather
<ZR,UC,UD,SC,SD> than every object module in the Link command line. For example:

) X LINK ONE.OB/UC=SC TWO.OB THREE.OB

Link diverts ONE.OB’s Unshared Code (UC) contributions into the Shared Code (SC)
partition. Unshared Code contributions from TWO.OB and THREE.OB are not affected.
(For a second example, refer to Figure 5-15.)

NOTE: Unlike the equivalent GLOBAL switch, the OB switch allows you to put the same
partition name on both sides of the equal sign. This OB switch can override the
GLOBAL switch. For instance, consider the following Link command line:

) XLINK/UC=SC FL1 FL3/UC=UC FL5!

The GLOBAL switch /UC=SC forces Link to divert all UC contributions into
SC, but the OB switch /UC=UC overrides the GLOBAL switch’s effect on object
file FL3. Therefore, FL1 and FL5 can not contribute to UC, but FL3 can.

Diverts contributions from one of the predefined relocatable partitions into an absolute
partition with relocation base n. For example:

) XLINK FL2.0B FL4.0B/UC=2000R8 FL6.0B !

Without the switch, Link would have allocated FL4.0B’s UC contributions immediately
after it had allocated FL2.0B’s UC contributions. Instead, Link will begin allocating
FL4.OB’s UC contributions at address 2000g. For a second example, see Figure 5-16.

NOTE: Improper placement of absolute partitions will cause overwriting.

Directs Link to place an object module’s local symbols (as defined in a local symbols block)
into the .ST file (if the target operating system is AOS) or PRSYM (if the target operating
system is RDOS). (Refer to the “Local Symbols Block” section in Appendix B.) This switch
does not affect the .PR file or program execution; however, it may simplify debugging.

Directs Link to create ENT symbol “.MAIN". Link sets the value of this symbol equal to
this object module’s possible starting addresses. (See the “Starting Address” section in this
chapter.) For example, assume that TWO.OB has a possible starting address:

) XLINK ONE.OB TWO.OB/MAIN THREE.LB)

Suppose that Link sets TWO’s starting address at 005653 in the .PR file. In this case, Link
also sets the value of .MAIN to 00565.

Suppresses Link from sending out the OVERWRITE PREVIOUS <old contents>
PRESENT <new contents>> error message. (This switch is the local equivalent of the
GLOBAL switch /OVER.)

Directs Link to take the possible starting address of this object module as the starting
address of the .PR file. Without this switch, Link takes the last possible object module
starting address it encounters as the starting address of the .PR file. (See the “Starting
Address” section in this chapter for more information.)

093-000254

Licensed Material-Property of Data General Corporation 5' 1 3

Table 5-3. PARTSYM switches

Switch

Description

partition/ALIGN=n

partition/SHARED

accumulating symbol/VAL=n

Changes the relocation base of a partition to an integral multiple of 2" where n is an integer
between 0 and 12; inclusive. For instance, suppose that without the switch the relocation
base of the predefined Unshared Data partition is 027454.

) XLINK UD/ALIGN=10 NODE.OB WIND.LB!

The switch forces Link to change the relocation base of UD from 02745 to an integral
multiple of 210 (02000g). Link will set UD’s relocation base to 04000z, which is the next
highest multiple of 2000g. (For another example, see Figure 5-17. In this example, note that
PUT is the name of the common base partition abbreviated COMM.)

Changes a partition’s unshared attribute to shared. Suppose object module ORDER.OB
contains a user-defined partition called BUBBLE.

) X LINK BUBBLE/SHARED ORDER.OB !

The switch changes partition BUBBLE from an unshared partition into a shared partition
and allocates space for it in a shared page. (For another example, see Figure 5-18.)

NOTE: This switch only affects the shared/unshared attribute.

Creates accumulating symbol and assigns the value n to it. For example, suppose that object
module LPIO.OB defined a symbol Y having value 100g. Assume that Y has symbol type
ASYM. If we link:

) X LINK Y/VAL=40R8 LP10.0OB)

Link defines Y as an accumulating symbol and assigns the value 140 (140 = 100g + 40g)
to it. If LPIO.OB had not defined Y, then the switch would have created Y, assigned it
symbol type ASYM, and set its value to 40g. If LPIO.OB defined Y with a symbol type
other then ASYM, this switch would have caused a MULTIPLY DEFINED SYMBOL
ERROR.

Table 5-4. OV switches

Switch

Description

/<ZR,UC,UD,SC,SD>=
<ZR,UC,UD,SC,SD>

JALIGN=n

/MULT=n

Same as the GLOBAL switch except that it acts only on object modules in the overlay area.
For example:

)XLINK AOB I*/SD=SC BOB | COB ! D.OB *!)

Because of this switch, Link diverts contributions destined for the predefined Unshared Data
partition into a shared overlay. This switch does not affect A.OB.

Changes the relocation base of an overlay area to an integral multiple of 2" where n is an
integer between 0 and 123 inclusive. Link automatically sets n=12g for shared overlays.
Therefore, all shared overlays begin on a page boundary (i.e, the first word of a new page.)
The default value of n for unshared overlays is 0 which means that unless you use the
/ALIGN switch, they start at the first available unshared address. (See the “Aligned
Attribute” section in Chapter 4.) ‘

Increases the size of an overlay area by a factor of n. (Size of an overlay area = size of basic
overlay area * n.) See the “Multiple Basic Areas” section in Chapter 2.

*/OVER OV switch is no longer supported.

5-14

Licensed Material-Property of Data General Corporation 093-000254

093-000254

DG-25072

?NTOP

FILLER

SC

sD

RED

?7SBOT —>»
UNUSED

AREA

FILLER
?NMAX

STACK

uc

ub

2USTA —» COMM

INBOT SYSTEM TABLES

FILLER
7ZMAX

2ZBOT —» ZREL

ABSOLUTE

77777

76653

75160

72006
72000

03777

02362
02324

00646

00477
00447
00400

00074
00050

00000

)X LINK DAY.OB YOUNG.OB YIN.OB OLIB.LB }

Figure 5-1. A Logical Address Space

Licensed Material-Property of Data General Corporation

5-15

5-16

INTOP: > 77777
FILLER
76331
SsC
74636

70006

7SBOT 70000
UNUSED
AREA

01777
FILLER

00704

STACK 00646
uD

00477

PUSTA ——> SYST:NOIIN'II’I\:BLES Ooa47

NBOT—> 00400
FILLER

7ZMAX —>- e 00074

2ZBOT —> 00050
ABSOLUTE

00000

)X LINK/UC=SD DAY.OB YOUNG.OB NIGHT OLIB.LB}

DG-25073

Figure 5-2. Example Showing Effect of
/<ZR,UC,UD,SC,SD>= <ZR,UC,UD,SC,SD>
GLOBAL Switch

Licensed Material-Property of Data General Corporation

093-000254

093-000264

INTOP
FILLER
22653
sC
21160
)
16006
2SBOT —> RED 16000
UNUSED
AREA
03777
FILLER
INMAX—> 02362
STACK 02324
uc
00646
ub
00477
COMM
2USTA —> 00447
’NBOT —»]__ SYSTEM TABLES 00400
FILLER
2ZMAX. 00074
22BOT ZREL 00050
ABSOLUTE 00000

)X LINK/KTOP =10 DAY.OB YOUNG.OB YIN.OB OLIB.LB!
)X LINK/NTOP=23777R8 DAY.OB YOUNG.OB YIN.OB OLIB.LB}

DG-26074

Figure 5-3. Example Showing Effect of [KTOP=n or
/NTOP=n Switch

Licensed Material-Property of Data General Corporation

INTOP —> 77777
FILLER
76653
sc
76160
)
72006
7SBOT —>- RED 72000
UNUSED
AREA
03777
FILLER
INMAX —» 02762
STACK. 02724
uc
01246
uD
01077
COMM
7USTA —> 01047
NBOT SYSTEM TABLES 01000
2ZMAX 00074
72B0T —» ZREL 00050
ABSOLUTE 00000
) X LINK/NBOT = 1000R8 DAY.OB YOUNG.OB YIN.OB
OLIB.LB)
DG-25076

Figure 5-4. Example Showing Effect of INBOT=n Switch

5' 1 8 Licensed Material-Property of Data General Corporation 093-000254

INTOP 27777
FILLER
76653
sc
75160
)
72006
72000
2SBOT—> 70000
UNUSED
AREA
03777
FILLER
INMAX —> 02362
STACK 02324
uc
00646
uD
00477
2USTA COMM 00447
INBOT—| SYSTEM TABLES 00400
FILLER
2ZMAX—> — 00074
?2ZBOT 00050
ABSOLUTE
00000
)X LINK/SRES=1 DAY.OB YOUNG.OB YIN.OB &
&) LIBEL.LB)
DG-25076

Figure 5-5. Example Showing Effect of /SRES =n Switch

093-000254 Licensed Material-Property of Data General Corporation 5' 1 g

5-20

DG-26077

INTOP —>

FILLER

sC

sD

7SBOT —>

RED

UNUSED
AREA

FILLER

NMAX

uc

uo

MM
TUSTA SYSTZ?VI TABLES
NBOT—> FILLER
1ZMAX —>

ZREL
1ZBOT—>
ABSOLUTE

77777

76653

75160

72006
72000

03777

02724
02324

00646

00477
00447
00400
00074
00050
00000

)X LINK/STACK =400R8 DAY.OB YOUNG.OB &

&) YIN.OB OLIB.LB }

Figure 5-6. Example Showing Effect of [STACK=n Switch

Licensed Material-Property of Data General Corporation

093-000254

INTOP—> 77777
FILLER
76645
sC
75152
SD
72000
UNUSED
AREA
03777
FILLER
?NMAX 02370
STACK 02332
02324
uc
00646
uD
o 00477
2USTA—> 00447
INBOT —— SYSTEM TABLES 00400
, FILLER
ZMAX—> 00074
?7ZBOT —> ZREL 00050
ABSOLUTE
00000
)X LINK/ULAST=RED DAY.OB YOUNG.OB &
&) YIN.OB OLIB.LB)
DG-25078

Figure 5-7. Example Showing Effect of JULAST=n Switch

093-000254 Licensed Material-Property of Data General Corporation 5'2 1

?NTOP > 77777
FILLER
76653
sC
75160
)
72006
7SBOT —> AED 72000
UNUSED
AREA
03777
FILLER
INMAX 02362
NMAX STACK 02324
uc
00646
up
it 00477
USTA —> 00447
NBOT SYSTEM TABLES 00400
FILLER
2ZMAX —> AL 00124
22BOT 00100
f 00050
ABSOLUTE 00000

)X LINK/ZBOT= 100R8 DAY.OB YOUNG.OB YIN.OB OLIB.LB }

DG-2507¢

Figure 5-8. Example Showing Effect of /ZZBOT=n Switch

Licensed Materlal-Property of Data General Corporation

093-000254

093-000254

LINK REVISION 04.20 ON 9/17/82 AT 13:10:24

DAY 11.05
YOUNG
YIN2
NIGHT 11.06
OLD

YANG

CALL
CALLS
GCRB
RSLOA
WAIT
DUMMY
URTSC
SCALL

ZBOT: 000050
ZMAX: 000074
NBOT: 000400
USTA: 000447
NMAX : 002362
SBOT: 072000
NTOP: 077777
STACK SIZE: 000036 (OCTAL)

ALPHABETIC SYMBOL LISTING

TYPE NAME ADDRESS LENGTH END
ENTRY .GCRB 076031
ENTRY .KILL 076444
ENTRY 22KCA 006013
ENTRY 2?2RCA 006014
ENTRY ?2RCH 006015
ENTRY 2BOMB 076314
ENTRY 2CLOC 177777
ENTRY 2CSZE 000000
ENTRY ?DEAD 076251
ENTRY ?EXRS 002321
ENTRY ?INOV 002323
ENTRY 2LBOT 177777
ENTRY 2LODO 076305
ENTRY 2NBOT 000400
ENTRY 2NMAX 002362
ENTRY 2NTOP 077777
ENTRY 20FND 076362
ENTRY 20VAY 076305
ENTRY ?RCMH 076027
ENTRY 2RCML 075625
ENTRY ?RSLO 076073
ENTRY 2RSRE 076142
ENTRY 2SBOT 072000
ENTRY ?SCHE 006072
ENTRY ?SLFN 076305
ENTRY 2SLLO 076305
ENTRY 2SLRE 076305
ENTRY ?SRES 000000
ENTRY 2TERC 076354
ENTRY 2UKIL 076360
ENTRY 2UNDF 77777
ENTRY ~ 2UNWA 076230

Figure 5-9. Sample /JALPHA Listing (continues)

Licensed Material-Property of Data General Corporation

5-23

5-24

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
PENT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
PENT
ENTRY
CoMM UD
ENTRY
ENTRY
ENTRY
PART SD
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
PENT
ENTRY
ENTRY
ENTRY
ENTRY

URTB
USTA
AUTSK
MAIT
?XLD
XSV
?Z80T
PIMAX
AHEAD
CFALT
CITY
FAR
FFALT
FICUS
K?CAL
KNSAS
LIGHT
LOW
LUNCH
MOVIE
ONE
PUT

Q
R?CAL
R?CHA
RED
SCALL
SCHE1
SCHED
SCNUL
SFALT
SLEEP
STAR
STEP
TREE
NORK

=DAY.PR CREATED

000073
000447
076361
076203
076632
076632
000050
000074
000654
076637
072006
075160
076634
002311
075625
075170
072012
000051
000501
000655
002314
000447 000030 000476
000050
075703
075776
072000 0600006 072005
076544
076446
076451
076530
076643
000650
000646
075165
002313
000477

Figure 5-9. Sample JALPHA Listing (concluded)

Licensed Material-Property of Data General Corporation

093-000254

093-000254

LINK REVISION 04.20 ON 09/18/82 AT 11:19:55

DAY 11.05

YOUNG
YIN2
NIGHT 11.
oLD
YANG
CALL
CALLS
GCRB
RSLOA
WAIT
DUMMY
URTSC
SCALL

ZB0T:
ZMAX :
NBOT:
USTA:
NMAX :
SBOT:
NTOP:
STACK SIZE:

TYPE

06

NAME

000050
000074
000400
000447
002362
072000
077777

000036 (OCTAL)

ADDRESS

LENGTH

END

COMM UC
PART UC
COMM UC
CoMM UC
COMM UD
PART UD
PART UC
COMM UC
PART SD
PART SD
PART SC

AB
2R
UsT
TCB
PUT
up
uc
STACK
RED
SD
SC

=DAY.PR CREATED

000000
000050
000400
000423
000447
000477
000646
002324
072000
072006
075160

000020
000024
000023
000024
000030
000147
001456
000036
000006
003152
001473

000017
000073
000422
000446
000476
000645
002323
002361
072005
075157
076652

Figure 5-10. Sample /M AP Listing

Licensed Material-Property of Data General Corporation

5-25

LINK REVISION 04.20 ON 9/17/82 AT 13:09:51

DAY 11.05
YOUNG

YIN2

NIGHT 11.06
OLD

YANG

CALL

CALLS

GCRB

RSLOA

NAIT

DUMMY

URTSC

SCALL

TYPE NAME ADDRESS LENGTH END

DAY
PART UD UD 000477 000147 000645
YOUNG
PART SD SD 072006 003182 075157
PART UC ZR 000050 000001 000050
YIN2
PART SD RED 072000 000006 072005
PART UC UC 000646 000002 000647
NIGHT
PART UC UC 000650 001441 002310
OLD
PART UC UC 002311 000003 002313
YANG
PART UC UC 002314 000005 002320
PART SC SC 075160 000445 075624
PART UC ZR 000051 000021 000071
CALL
CALLS
PART UC UC 002321 000001 002321
PART SC SC 075625 000203 076027
GCRB
PART SC SC 076030 000040 076067
RSLOA
PART SC SC 076070 000113 076202
NAIT
PART SC SC 076203 000102 076304
DUMMY
PART UC UC 002322 000002 002323
PART SC SC 076305 000141 076445
URTSC
PART SC SC 076446 000076 076543
PART UC ZR 000072 000001 000072
SCALL
PART SC SC 076544 600107 076652
PART UC ZR 000073 000001 000073
Z8B0T: 000050
IMAX: 000074
NBOT: 000400
USTA: 000447
NMAX: 002362
SBOT: 072000
NTOP: 077777
STACK SIZE: 000036 (OCTAL)
=DAY.PR CREATED

Figure 5-11. Sample [MODMAP Listing

5'26 Licensed Material-Property of Data General Corporation 093-000254

093-000254

LINK REVISION 04.20 ON 9/17/82 AT 13:10:06

DAY 11.05

YOUNG

YIN2

NIGHT 11.06

OLD

YANG

CALL

CALLS

GCRB

RSLOA

WAIT

DUMMY

URTSC

SCALL

TYPE NAME ADDRESS LENGTH END
DAY

ENTRY LUNCH 000501

ENTRY WORK 000477
YOUNG

PENT CITY 072006

ENTRY LIGHT 072012

ENTRY Q 000050
YIN2

ENTRY AHEAD 000654

ENTRY STAR 000646
NIGHT

PENT MOVIE 000655

PENT SLEEP 000650
OLD

ENTRY TREE 002313

ENTRY FICUS 002311
YANG

ENTRY LOW 000051

ENTRY STEP 075165

ENTRY KNSAS 075170

ENTRY FAR 075160

ENTRY ONE 002314
CALL

ENTRY ??RCH 006015

ENTRY ?22RCA 006014

ENTRY ?22KCA 006013
CALLS

ENTRY ?EXRS 002321

ENTRY 2RCMH 076027

ENTRY 2RCML 075625

ENTRY R?CHA 075776

ENTRY K?CAL 075625

ENTRY R2CAL 075703
GCRB

ENTRY .GCRB 076031
RSLOA

ENTRY ?RSRE 076142

ENTRY ?RSLO 076073
WAIT

ENTRY ?DEAD 076251

ENTRY 2UNWA 076230

ENTRY MAIT 076203

Figure 5-12. Sample /MODSYM Listing (continues)

Licensed Material-Property of Data General Corporation

5-27

5-28

DUMMY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

URTSC
ENTRY
ENTRY
ENTRY
ENTRY

SCALL
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

ZBOT:
ZMAX :
NBOT:
USTA:
NMAX:
SBOT:
NTOP:

STACK SIZE:

2INOV 002323
?SLFN 076305
?EXRS 002321
?5LLO 076305
?SLRE 076305
?L0D0 076305
20VAV 076305
?RSRE 076142
20FND 076362
AKIL 076360
ATSK 076361
2?TERC 076354
KILL 076444
?B0MB 076314
SCHE1 076446
SCNUL 076530
SCHED 076451
?SCHE 006072
URTB 000073
SFALT 076643
CFALT 076637
FFALT 076634
XSy 076632
?XLD 076632
SCALL 076544

000050

000074

000400

000447

002362

072000

077777

=DAY.PR CREATED

000036 (OCTAL)

Figure 5-12. Sample /MODSYM Listing (concluded)

Licensed Material-Property of Data General Corporation

093-000254

o,

093-000254

LINK REVISION 04.20 ON 9/17/82 AT 13:10:41

DAY 11.05

YOUNG
YIN2
NIGHT 1
OLD
YANG
CALL
CALLS
GCRB
RSLOA
WAIT
DUMMY
URTSC
SCALL

280T:
IMAX:
NBOT:
USTA:
NMAX:
SBOT:
NTOP:

1.06

STACK SIZE:

000050
000074
000400
000447
002362
072000
077777
000036

NUMERIC SYMBOL LISTING

(0CTAL)

TYPE NAME ADDRESS LENGTH END
ENTRY 2CSZE 000000
ENTRY ?SRES 000000
ENTRY 2ZBOT 000050
ENTRY Q 000050
ENTRY LOW 000051
ENTRY 2URTB 000073
ENTRY 2ZMAX 000074
ENTRY 2NBOT 000400
ENTRY USTA 000447
COMM UD PUT 000447 000030 000476
ENTRY WORK 000477
ENTRY LUNCH 000501
ENTRY STAR 000646
PENT SLEEP 000650
ENTRY AHEAD 000654
PENT MOVIE 000655
ENTRY FICUS 002311
ENTRY TREE 002313
ENTRY ONE 002314
ENTRY 2EXRS 002321
ENTRY 2INOV 002323
ENTRY ?NMAX 002362
ENTRY 27KCA 006013
ENTRY 22RCA 006014
ENTRY ?2RCH 006015
ENTRY ?SCHE 006072
ENTRY ?SBOT 072000
PART SD RED 072000 000006 072005
PENT cITY 072006
ENTRY LIGHT 072012
ENTRY FAR 075160
ENTRY STEP 075165

Figure 5-13. Sample INUMERIC Listing (continues)

Licensed Material-Property of Data General Corporation

5-29

5-30

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

KNSAS
?RCML
K?CAL
R?CAL
R?CHA
?RCMH
.GCRB
?RSLO
?RSRE
PWAIT
PUNWA
?DEAD
?L0D0
20VAY
?SLFN
SLLO
?SLRE
?80MB
?TERC
UKIL
WTSK
?0FND
KILL
SCHE1
SCHED
SCNUL
SCALL
?XLD

XSy

FFALT
CFALT
SFALT
NTOP
20L0C
2LBOT
PUNDF

=DAY.PR CREATED

075170
075625
075625
075703
075776
076027
076031
076073
076142
076203
076230
076251
076305
076305
076305
076305
076305
076314
076354
076360
076361
076362
076444
076446
076451
076530
076544
076632
076632
076634
076637
076643
077777
177777
77777
177777

Figure 5-13. Sample INUMERIC Listing (concluded)

Licensed Material-Property of Data Genera! Corporation

093-000254

093-000254

LINK REVISION 04.20 ON 03/25/82 AT 11:04:04

DAY 11.05
YOUNG
YIN2
NIGHT 11.06
OLD

YANG

CALL
CALLS
GCRB
RSLOA
WAIT
DUMMY
URTSC
SCALL

ZB0T: 000050
ZMAX - 000074
NBOT: 000400
USTA: 000447
NMAX : 002362
SBOT: 072000
NTOP: 077777
STACK SIZE: 000036 (OCTAL)

CROSS-REFERENCED ALPHABETIC SYMBOL LISTING

TYPE NAME ADDRESS LENGTH END
ENTRY .GCRB 076031
CALLS 075665
ENTRY KILL 076444
ENTRY 22KCA 006013
ENTRY 2?RCA 006014
ENTRY ??RCH 006015
ENTRY 2BOMB 076314
GCRB 076067
RSLOA 076202
WAIT 076304
ENTRY 2CLOC 77777
ENTRY 2CSZE 000000
ENTRY 2DEAD 076251
RSLOA 076136
ENTRY 2EXRS 002321
RSLOA 076132
NAIT 076212
ENTRY ?INOV 002323
WAIT 076252
ENTRY 2LBOT 177777
ENTRY 2LODO 076305
RSLOA 076122
ENTRY 2NBOT 000400
ENTRY ?NMAX 002362
ENTRY 2NTOP 077777
ENTRY 20FND 076362
GCRB 076052
ENTRY 20VAV 076305
RSLOA 076167
ENTRY ?RCMH 076027
ENTRY 2RCML 075625

Figure 5-14. Sample /XREF Listing (continues)

Licensed Material-Property of Data General Corporation

5-31

ENTRY ?RSLO 076073
CALLS 075727 075765 075773
ENTRY ?RSRE 076142
CALLS 075647 075723 075751
076021
ENTRY ?SBOT 072000
ENTRY 2SCHE 006072
CALLS 075656 075667 075742
075767
WAIT 076227
DUMMY 076357
ENTRY ?SLFN 076305
RSLOA 076074
ENTRY ?5LLO 076305
RSLOA 076103
ENTRY ?SLRE 076305
RSLOA 076150
ENTRY ?SRES 000000
ENTRY ?TERC 076354
ENTRY 2UKIL 076360
ENTRY 2UNDF 177777
ENTRY 2UNWA 076230
ENTRY ?2URTB 000073
CALLS 075641 075672 075717
075745 076015
WAIT 076221
DUMMY 076316
URTSC 076532 076541
ENTRY 2USTA 000447
GCRB 076040
RSLOA 076113 076156
ENTRY 2UTSK 076361
ENTRY 7WAIT 076203
ENTRY ?XLD 076632
ENTRY 2XSV 076632
ENTRY ?ZBOT 000050
ENTRY ?7ZMAX 000074
ENTRY AHEAD 000654
ENTRY CFALT 076637
PENT cITY 072006
NIGHT 000656
ENTRY FAR 075160
ENTRY FFALT 076634
ENTRY FICUS 002311
YOUNG 072011
ENTRY K?CAL 075625
CALL 000013
ENTRY KNSAS 075170
ENTRY LIGHT 072012
ENTRY LOW 000051
DAY 000500
ENTRY LUNCH 000501
PENT MOVIE 000655
ENTRY ONE 002314
COMM UD PUT 000447 000030 000476
NIGHT 000652
ENTRY @ 000050
ENTRY R2CAL 075703
CALL 000014
ENTRY R?CHA 075776
CALL 000015
PART SD RED 072000 000006 072005

Figure 5-14. Sample /XREF Listing (continued)

5 = 3 2 Licensed Material-Property of Data General Corporation 093-000254

093-000254

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
PENT

ENTRY
ENTRY
ENTRY
ENTRY

SCALL
SCHE1
SCHED
SCNUL
SFALT
SLEEP
DAY
STAR
STEP
TREE
WORK

=DAY.PR CREATED

076544
076446
076451
076530
076643
000650
000502
000646
075165
002313
000477

Figure 5-14. Sample /XREF Listing (concluded)

Licensed Material-Property of Data General Corporation

5-33

5-34

DG-28080

——<

INTOP —>
FILLER
sC
SD
2SBOT —>- RED
UNUSED
AREA
FILLER
INMAX —>
STACK
PUSTA —> SY51§3?:ZBLES
INBOT —»
7ZMAX —> F;;L:L“
72BOT —>
ABSOLUTE

77777

76653

75160

72006
72000

03777

02362
02324
02317

00477
00447

00400
00074
00050
00000

)X LINK DAY.OB YOUNG.OB YIN.OB OLIB.LB/UC=UD)

Figure 5-15. Example Showing Effect of
/<ZRUC,UD,SC,SD>=<ZRUC,UD,SC,SD>

Licensed Material-Property of Data General Corporation

OB Switch

093-000254

INTOP—> 77777
FILLER
76653
sc
75160
SD
72006
2SBOT —> RED 72000
UNUSED
AREA
05777
FILLER
04147
04000
FILLER
02213
TNMAX STACK 02155
uc
00477
2USTA = COMM 00447
INBOT STEM TABLES 00400
FILLER
2ZMAX — 00074
22BOT ZREL 00050
ABSOLUTE
00000
)X LINK DAY.OB/UD=4000R8 YOUNG.OB &)
&)YIN.OB OLIB.LB
DG-25081

Figure 5-16. Example Showing Effect of
/<ZR,UCUD,SC,SD>=n Switch

093-000254 Licensed Material-Property of Data General Corporation 5‘35

5-36

DG-26082

INTOP —>~

FILLER

sC

SD

2SBOT —» RED

UNUSED
AREA

INMAX —- FILLER

STACK

uc

ubD

COMM

SYSTEM TABLES

FILLER

ZREL

ABSOLUTE

77777

76653

75160

72006
72000

03777
03713
03655

02177

02030
02000

00477
00400
00074
00050
00000

)X LINK DAY.OB YOUNG.OB YIN.OB OLIB.LB &

&) PUT/ALIGN=10

Figure 5-17. Example Showing Effect of JALIGN=n

Switch

Licensed Material-Property of Data General Corporation

093-000254

e

INTOP 27777
FILLER
76331
73160
sD
70006
7SBOT —> RED 70000
UNUSED
AREA
01777
FILLER
INMAX—> 00704
— STACK 00646
)
00477
CoMM
2USTA—> 00447
"NBOT] SYSTEM TABLES 00400
FILLER
2ZMAX —> e 00074
22BOT—> 00050
ABSOLUTE 00000
)X LINK UC/SHARED DAY.OB YOUNG.OB &
&) YIN.OB OLIB.LB)
DG-25083

Figure 5-18. Example Showing Effect of
partition/SHARED Switch

End of Chapter

093-000254 Licensed Material-Property of Data General Corporation 5'37

Chapter 6

Introduction to the Library File Editor
(LFE)

This chapter describes the AOS Library File Editor (LFE) — the utility you use to create,
edit, and analyze library files. A library file, or more simply, a library, is a set of object
modules preceded by a library start block and terminated by a library end block. (Refer to
Appendix B for details on both of these object blocks.) By default, library filenames have the
extension .LB.

LFE works in parallel with Link, since you usually use it to create library files for Link input.
(Throughout this chapter, the term “library” or “library file” refers only to unshared libraries.
AOS Link does not support shared libraries.)

Appendix E details all LFE errors and warnings.

Functional Overview
In addition to building libraries, LFE can also:
* analyze a library’s contents
* delete, insert, or replace object modules in a library
¢ extract object modules from a library
* list the titles of all object modules in a library
* merge two or more libraries into a new library

LFE commands are called function-letters. The end of this chapter describes the LFE command
line in detail.

Link loads an object module within a library if either of the following tests are true:

e If the forced load flag is set. (The library start block contains one forced load flag for each
object module within a library. You can set or clear this flag with the LFE.)

* If the object module contains an entry symbol which matches an external symbol emitted by
some other object module on the Link command line.

Therefore, if you want Link to load a particular object module from a library, you can either
set the module’s forced load flag (for unconditional loading) or define the appropriate entry
symbols in the object module (for conditional loading). You can set or clear the forced load
flag with function-letters I, M, N, or R. The next section of this chapter explains how Link
resolves intermodular symbols (i.e., entry symbols and external symbols) in libraries.

Examples: Link and Libraries

Since Link scans a command line sequentially from left to right and does not rescan it, external
symbols should be emitted before their entry symbol counterparts.

For instance, in Figure 6-1 object module TRIGR.OB defines external symbol COSIN, which
object module TRIG3 defines as an entry symbol. Given the Link command line:

) X LINK TRIGR.OB MATH.LB)

093-000254 Licensed Material-Property of Data General Corporation 6' 1

Link loads object modules A and TRIG3 into the .PR file because external symbol COSIN
precedes entry symbol COSIN. However, if the command line in Figure 6-1 were

) X LINK MATH.LB TRIGR.OB }

Link would load none of MATH.LB’s object modules. Moreover, this command line produces
a Link error, because Link will not be able to satisfy external symbol COSIN.

TRIGR.OB
TITLE
TRIGR
ENTRY SYMBOL
EXTERNAL SYMBOL
COSIN
MATH.LB
/ \
TITLE TITLE TITLE TITLE
TRIG1 TRIG2 TRIG3 TRIG4
ENTRY SYMBOL ENTRY SYMBOL ENTRY SYMBOL ENTRY SYMBOL
TAN SINE COSIN 4YAY
EXTERNAL symeoLs | | EXTERNAL symeoL | | EXTERNAL symsoL EXTERNAL SYMBOL
SINE, COSIN 4YAY
DG-25088

Figure 6-1. An Object Module and a Library

Link also scans object modules within libraries sequentially. For instance, suppose that TRIG1s
forced load flag is set; therefore, Link automatically loads TRIG1. Then, Link satsifies
external symbols SINE and COSIN, by loading object modules TRIG2 and TRIGS3. Now
Link must also satisfy any external symbols emitted by TRIG2 and TRIG3. TRIG2 defines
external symbol 4YAY, and object module TRIG4 satisfies it. Therefore, Link must also load
TRIGA.

Suppose that TRIG1’s forced load flag is set, but TRIG1 came after TRIG2 in MATH.LB. In
this case, Link would send out an error message because it would be unable to resolve external
symbol SINE. Object module order within libraries can be critical.

It is sometimes desirable to put the same entry symbol in more than one library object module.
In such a case, the program usually uses the repeated entry symbol for intermodular
communication purposes, and uses a different symbol to choose which object module Link will
load.

For instance, Figure 6-2 shows that entry symbol UM is defined twice by two different object
modules in PERIPH.LB. Suppose that LP_1 and LP_2 are routines that serve the same
purpose, but for different operating systems. If you issue the following Link command line:

) X LINK DECID.OB PERIPH.LB)

DECID.OB emits the external symbol that causes Link to load the appropriate object module.
In this example, DECID emits external symbol AUM which forces Link to load LP__1. In
either case, external symbol GET forces Link to load CALL_LP also. Now that Link has
loaded the appropriate object modules, it can use UM as an intermodular communication
symbol, so that CALL_LP can access datawords or routines in LP_1.

6"2 Licensed Material-Property of Data General Corporation 093-000254

DG-25088

DECIDE.OB

TITLE

DECIDE

ENTRY SYMBOL

EXTERNAL SYMBOL

AUM

PERIPH.LB

TITLE TITLE TITLE
LP_1 LP_2 CALL_LP
ENTRY SYMBOLS ENTRY SYMBOL ENTRY SYMBOL
UM,AUM UM,RUM GET
EXTERNAL SYMBOLS EXTERNAL SYMBOL EXTERNAL SYMBOL
GET GET UM

Figure 6-2. An Object Module and A Library

Operating the Library File Editor (LFE)

The remainder of this chapter details the LFE command lines that allow you to create, modify,
or analyze a library file. You invoke the Library File Editor (LFE) by typing the AOS CLI
command XEQ (abbreviated X) followed by LFE and the appropriate function-letter, LFE
switches, and object files.

A function-letter is an LFE command. You use only one function-letter per command line.
Table 6-1 categorizes the LFE function-letters. The rest of this chapter details each
function-letter individually.

Table 6-1. LFE Function-letters

Category

Function-letter

Meaning

Analysis

Creation

Editing

Extraction

A(nalyze)
T(itle)

M(erge)
N(ew)
D(elete)

I(nsert)
R (eplace)

(e)X(tract)

analyze one or more object files list the title of each object

module in a library, and list certain library start block informa-

tion

create library from existing libraries and/or .OB files
create library from existing .OB files and/or libraries

delete one or more object modules from a library
insert one or more object files into an existing library

replace a library’s object module with one or more object files

extract one or more object modules from a library

093-000254

Licensed Material-Property of Data General Corporation

A

Analyzes one or more object files

Formats

X LFE/L<=filename> </globalswitch..>> A objectfile</LOCAL...>...
X LFE</globalswitch..> A filename/L objectfile</LOCAL...>...

X LFE</globalswitch...>> A objectfile</LOCAL...>...

where:
/L<=filename> sends the analysis to filename. If you do not specify filename, LFE
or sends the analysis to @LIST. If you do not include /L on the command
filename/L line, LFE sends the analysis to @OUTPUT.
global switch is one or more of the following switches:
/F puts the analysis of each object module on a separate
page in the listing file.
/DECIMAL sets the radix in the analysis to 10. The default
output radix is 8.
/HEX sets the radix in the analysis to 16. The default
output radix is 8.
/XREF generates an alphabetically sorted cross-referenced
list of the following:
the names and symbol types of all symbols
defined by the object file.
predefined and user-defined partitions defined
by the object file, and the potential number of
datawords the object file can contribute to them.
debugger files (.DS or .DL) the object file can
contribute to, and the potential contribution to
these files that the object file can make.
A is the function-letter.
object file is one or more library files or .OB files that you want LFE to analyze.
JLOCAL is an optional switch attached to an object file. By default, LFE
analysis ignores local symbols, but if you use this switch, LFE includes
the object file’s local symbols in the analysis.
Description

The A (analyze) function-letter directs LFE to analyze one or more libraries or .OB files. The
default output analysis includes:

« the name and symbol types of all defined symbols.
¢ the number of datawords that each object module can contribute to each defined partition.

« the total number of datawords all object modules can contribute to all defined partitions.

6'4 Licensed Material-Property of Data General Corporation 093-000254

* the size of each debugger block (debugger symbols block, debugger lines block, or lines
title block) defined by each object module.

. the total number of datawords all object file(s) can contribute to either the .DS or .DL
file.

+ flags marking undefined, previously defined, and multiply defined symbols. These flags
do not mark errors, rather they caution you about possible flaws in library logic which
may cause problems when you link. An explanation of each flag follows:

* MULTIPLY DEFINED SYMBOL — the same entry symbol has been defined in
more than one object module.

~ PREVIOUSLY DEFINED SYMBOL — this external symbol appears after its
matching entry symbol.

? UNDEFINED SYMBOL — LFE could not find a matching entry symbol within
the object file for this external symbol.

To the right of all flagged symbols, LFE writes object module titles. LFE uses the following
rules when it writes these titles:

e If the flagged symbol is an ENT, PENT, or ENTO, LFE lists the titles of all object modules
referring to or defining the symbol.

e If the flagged symbol is an external symbol, LFE lists the titles of object modules defining
this symbol.

e If the flagged symbol is neither of the above, LFE does not list the titles of object modules
referring to or defining the symbol. If you want to find out which other object modules
referred to or defined this symbol, use the /XREF switch.

For function-letter A, LFE initially assumes that unextended object files are libraries, and it
searches for filenames with the .LB extension. If it can’t find the appropriate .LB file, LFE
then searches for a filename with the .OB extension. If LFE cannot find the appropriate .OB
file, it searches for the unextended filename.

NOTE: In other versions of LFE, if you wanted to analyze a particular library object module,
you had to include the name of the library and the title of the object module. This
revision allows you to analyze .OB files and .LB files, but it does not accept object
module titles as input.

Examples

.) XLFE/L=CONSULT A MATH.LB EUCLID.OB)

2.) X LFE A CONSULT/L MATH.LB EUCLID.OB !

3.) X LFE/DECIMAL/XREF/F A TRIG.LB CALC.LB ADD.OB)
4.) XLFE/L A SUB/LOCAL !

Examples 1 and 2 are functionally identical. Both analyze MATH.LB and EUCLID.LB, and
send the analysis to file CONSULT.

Example 3 analyzes TRIG.LB, CALC.LB and ADD.OB, and sends the analysis to @OUT-
PUT. Because of /XREF, the analysis will include a symbolic cross-reference. /DECIMAL
forces LFE to write the analysis in base 10, and /F tells LFE to separate each object module’s
analysis with a form feed.

093-000254 Licensed Material-Property of Data General Corporation 6‘5

A (continued)

Example 4 analyzes only one object file. Because there is no extension name, LFE first tries to
find SUB.LB in your working directory or in one of the directories on your search list. If it
can’t find SUB.LB, it searches for SUB.OB. If it can’t find SUB.OB, it searches for SUB. If
it can’t find SUB, it sends out the error message “FILE DOES NOT EXIST SUB”. Assume
that SUB.LB is in your working directory. In this case, LFE sends the analysis to @LIST.
/LOCAL forces LFE to include all local symbols in the analysis.

Sample Analysis

Assume that library 12.LB contains two object modules. This command line
) XLFE/L=@LPT A 12.LB)

sends the following analysis to the line printer:

TITLE OECON

COMM BUFF 15
* PENT SUPP *TWO

ENTRY MACRO THWO

ENTRY MICRO

?EXT INT.A
? EXT CROSS
~EXT BUFF

PART ZR 04
PART UC 22

TITLE TECON
PENT W1
* ENTRY SUPP *ONE
~EXT MACRO “ONE
PART ZR 06
PART SC §1

TOTAL BUFF 15

TOTAL SC 51
TOTAL UC 22
TOTAL ZR 12

* MULTIPLY DEFINED SYMBOL
~ PREVIOUSLY DEFINED SYMBOL
? UNDEFINED SYMBOL

The analysis shows that library 12.LB contains two object modules titled OECON and
TECON. The first object module can contribute four datawords to the predefined ZREL
partition and 22 to the predefined Unshared Code partition; while the second module can
contribute six datawords to ZREL and 51 datawords to the predefined Shared Code partition.
The first object module also defined a 15 word common base partition named BUFF. The
bottom of the analysis lists the partition totals for the entire library.

This analysis also contains all three warning flags. Both object modules defined SUPP as an
entry symbol, so LFE marked this symbol with the * flag. Since LFE could not find a
matching entry symbol for external symbols INT_I and CROSS, these symbols received the ?
flag. Finally, because entry symbol MACRO precedes external symbol MACRO, LFE marks
the external symbol with a ~ flag. To the right of all flagged symbols, LFE places the title of
the object module defining the conflicting symbol.

6'6 Licensed Material-Property of Data General Corporation 093-000254

o

D

Deletes one or more object modules from a library

Formats

X LFE/I=library/O=library</DELETE> D ftitle...
X LFE</DELETE> D library/l library/O title...
X LFE</DELETE> D library library/O title...

where:

library/| is the input library. If you use the third format (as demonstrated in

or Example 3) the /I is optional.

/1=library

library/O is the output library (a reduced version of the input library).

or

/O=library

/DELETE is an optional switch which forces LFE to delete the output library before
creating a new one. You should use this switch when you want the output
library to have the same name as the input library.

D is the function-letter

title is the title(s) of one or more object modules in the input library that you
want to delete.

Description

The D (Delete) function-letter deletes one or more object modules from the input library to
produce a new library.

Note that a title is a symbol defined within the library start block. The title does not
necessarily have the same name as the .OB file that it was originally contained in.

Examples

1.)XLFE D MATHLB/I NEWMATHLB/O LOG EXP)
2.) XLFE/I=MATH.LB/O=NEWMATH.LB D LOG EXP)

3.)XLFE D MATHLB NEWMATHLB/O LOG EXP!

4.) XLFE/I=MATH.LB/O=MATHLB D LOG EXP!

5.) XLFE/I=MATH.LB/O=MATH.LB/DELETE D LOG EXP)

The LFE command lines in examples 1, 2, and 3 are functionally equivalent. All three
command lines create a new library, NEWMATH.LB, from the input library MATH.LB.
NEWMATH.LB contains all of MATH.LB’s object modules except LOG and EXP.
MATH.LB is unchanged.

The LFE command line in example 4 causes the AOS system error FILE NAME ALREADY
EXISTS because the input and output files have the same name. The /DELETE switch in
example 5 prevents this error.

093-000254 Licensed Material-Property of Data General Corporation 6'7

Inserts one or more object modules or libraries into a library

Formats
X LFE/I=library/O=Ilibrary</DELETE> 1 title/Aortitle/B objectfile<</For /C>...
X LFE</DELETE> | library/| library/O title/A or title/B objectfile</F or /C>...

X LFE</DELETE> | library library/O title/A or title/B objectfile<</F or /C>...
where: ‘

library/| is the input library. If you use the third format (as demonstrated in Example
or 3) the /I is optional.

/1=library

library/O is the output library (an expanded version of the input library containing the
or inserted object module(s)).

/O=library

/DELETE is an optional switch which forces LFE to delete the output library before

creating a new one. You should use this switch when you want the output
library to have the same name as the input library.

| is the function-letter.

titie is the title of an object module in the input library. title must be followed by
either /A or /B. title/A directs LFE to insert the object file(s) immediately
after title in the library. title/B directs LFE to insert the object file(s)
immediately before title in the library.

object file the .OB file(s) and/or library(s) to be inserted. You may optionally append
one of the following switches to an object file:

/F turns on the forced load flag associated with this object file’s object
module(s).

/C turns off the forced load flag associated with this object file’s object
module(s). '

Description

The I (Insert) function-letter inserts one or more object files into the input library (library/I)
to form a new output library (library/O). The input library remains unchanged.

Earlier versions of LFE accepted only .OB files for insertion; this revision allows you to insert
any combination of .OB files and libraries.

Note the distinction between title and object file. A title is the name of an object module; while
an object file is a file name. (For more information on object module titles, refer to the “Title
Block” and “Library Start Block” sections in Appendix B.)

Examples
1.) XLFE/I=MATH.LB/O=NEWMATH.LB | LOG/A LN.OB)
)XLFE | MATHLB/I NEWMATHLB/O LOG/A LN.OB)

2
3.)XLFE | MATHLB NEWMATH.LB/O LOG/A LN.OB)
4,) XLFE/I=MATH.LB/O=NEWMATH.LB | EXP/B CALC.LB/F!

6'8 Licensed Material-Property of Data General Corporation 093-000254

5.) XLFE/I=MATH.LB/O=NEWMATH.LB | SIN/A ARCSIN.OB/C COS/A &)
&) ARCCOS.OB/C TAN/A ARCTAN.OB/C)

6.) XLFE/I=MATH.LB/O=NEWMATH.LB | LOG/A MATRIX.LB JACOBIAN.OB)

The LFE command lines in examples 1, 2, and 3 produce the same result. First, LFE creates
NEWMATH.LB by copying MATH.LB. Then, LFE inserts the object module contained in
LN.OB after the object module titled LOG. LFE does not modify MATH.LB. Figure 6-3
illustrates this transformation.

MATH.LB

[

EXP

LOG

)

LN

NEWMATH.LB

) X LFE/I=MATH.LB/O=NEWMATH.LB | LOG/A LN }

LOG

LN

EXP

1\

DG-25090

Figure 6-3. Inserting Object Modules Into a Library

093-000254 Licensed Material-Property of Data General Corporation

I (continued)

The LFE command line in example 4 inserts all the object modules in CALC.LB just before
the object module titled EXP. The /F switch appended to CALC.LB tells LFE to sct the
forced load flag of every object module in CALC.LB. In other words, whenever
NEWMATH.LB appears on a Link command line, Link will automatically load every object
module originally contained in CALC.LB.

Example 5 shows three separate insertions into NEWMATH.LB. First, LFE inserts the object
module contained in ARCSIN.OB just after the module titled SIN. Second, LFE inserts the
object module contained in ARCCOS.OB immediately after COS. Finally, LFE inserts the
object module contained in ARCTAN.OB after TAN. The /C switch appended to the input
.OB files forces LFE to clear the forced load flags associated with these object modules. In
other words, Link will load the object modules originally contained in ARCSIN.OB,
ARCCOS.OB, and ARCTAN.OB only if they satisfy an unresolved external symbol.

Example 6 creates NEWMATH.LB from MATH.LB and inserts the object modules in
MATRIX.LB and JACOBIAN.OB immediately after the object module titled LOG. For
function-letter I, when two or more object files follow a title, LFE inserts them in the same
order that they had on the command line. Since MATRIX.LB precedes JACOBIAN.OB on
the command line, all the object modules in MATRIX.LB will precede the object module in
JACOBIAN.OB in NEWMATH.LB. If /B had been used instead of /A, then LFE would
have inserted the object modules in MATRIX.LB and the object module in JACOBIAN.OB
immediately before the object module titled LOG.

6' 1 0 Licensed Material-Property of Data General Corporation 093-000254

M & N

Merges Existing Libraries and/or .OB Files Into a New Library

Formats

X LFE</globalswitch..> M
X LFE<</globalswitch...> N

library/O objectfile</F or /C>...
library/O objectfile<</F or /C> ...

X LFE/O=library<</globalswitch...> M objectfile<</F or /C>...
X LFE/O=library </globalswitch..> N objectfile<</F or /C>...

where:

global switch

Mor N

library<</O>
or
/O=library

object file

Description

is one or more of the following switches:

/DELETE

/REV=aa.bb

is an optional switch which forces LFE to delete the
output library before creating a new one. If you do
not use this switch, and if the output filename already
exists, LFE reports the error (to @OUTPUT) and
terminates.

forces LFE to generate an object module consisting
only of a title block and end block. The object module
title is always REVISION and the revision number,
defined by the title block, is aa.bb. LFE then inserts
the object module at the beginning of the library
and sets its forced load flag.

are function-letters.

is the output library (the name you want the new library to have).

is either an .OB file or a library file. You may optionally append one of
the following switches to an object file:

/F

/C

turns on the forced load flag associated with this
object file’s object module(s).

turns off the forced load flag associated with this
object file’s object module(s).

The M (Merge) and N (New) function-letters merge existing libraries and/or .OB files to
form a new output library. The input libraries and .OB files remain unchanged.

093-000254

Licensed Material-Property of Data General Corporation 6" 1 1

M & N (continued)

NOTE: Function-letters M and N are functionally identical except in the way that LFE scans
object files. When you use M, LFE first assumes that object files are library files;
when you use N, LFE initially assumes that object files are .OB files. For instance,
suppose that your working directory contains a library file named TRIG.LB and an
‘OB file named TRIG.OB. The following LFE command line merges MATH.LB and
TRIG.LB:

) X LFE M NEW.LB/O MATH.LB TRIG J

However, because the function-letter N tells LFE to initially assume that all
unextended filenames are .OB files, the following LFE command line merges
MATH.LB and TRIG.OB:

) X LFE N NEW.LB/O MATH.LB TRIG)

Of course, by specifying extensions in the LFE command line, M and N become
functionally identical.

\

Examples
) X LFE M MATH.LB/O TRIG.LB CALC.LB EUCLID.OB
2.)X LFE/O=MATH.LB M TRIG.LB CALC.LB EUCLID.OB
3.) X LFE N MATH.LB/O TRIG.LB CALC.LB EUCLID.OB)
4.)X LFE/O=MATH.LB N TRIG.LB CALC.LB EUCLID.OB)
5.) X LFE/O=MATH.LB/DELETE/REV=2.18 M TRIG.LB CALC.LB EUCLID.OB)
6.)X LFE/O=MATH.LB N TRIG.LB CALC.LB PLANE_TRUTHS.OB/F |

Examples 1, 2, 3, and 4 are functionally identical. All merge two libraries and one .OB file to
form library MATH.LB. If MATH.LB had been in your working directory prior to the
merger, LFE would have sent out an error message and terminated.

Example 5 deletes MATH.LB (if present) and merges TRIG.LB, CALC.LB,and EUCLID.OB
to form a new MATH.LB. In addition, LFE inserts an object module titled REVISION
(containing revision number 2.18) at the very beginning of MATH.LB.

Example 6 merges libraries TRIG.LB and CALC.LB along with the object module stored in
PLANE_TRUTHS.OB to form library MATH.LB. The /F switch sets the forced load flag on
the object module stored in PLANE_TRUTHS.OB. Therefore, if MATH.LB is included in a
Link command line, Link will automatically load the object module originally stored in
PLANE_TRUTHS.OB. ‘

6' 1 2 Licensed Material-Property of Data General Corporation 093-000254

R
Replaces a library object module with an object module or a library

Formats

X LFE/I=library/O=library<</DELETE> R title objectfile<</F or /C>...
XLFE</DELETE> R library/l library/O title objectfile<</F or /C> ...
XLFE</DELETE> R library library/O title objectfile<</F or /C> ...

where:

library/| is the name of the input library file. If you use the third format (as
or demonstrated in Example 3) the /I is optional.

/I=library

library/O is the name of the output library (a modified version of the input library).
or

/O=library

/DELETE is an optional switch which forces LFE to delete the output library before

creating a new one. You should use this switch when you want the output
library to have the same name as the input library.

R is the function-letter.
title is the title of the object module you want to replace.
object file is one or more .OB file(s) or library(s) you want to replace the object

module with. You may optionally append one of the following switches to an
object file:

/F turns on the forced load flag associated with this object file’s object
module(s).

/C turns off the forced load flag associated with this object file’s object
module(s).

Description

The R (Replace) function-letter replaces object modules in the input library with new object
modules to form a new library. This function-letter does not change the input library.

Earlier versions of LFE allowed you to replace an object module only with an .OB file. This
version allows you to replace an object module with either an .OB file or a library file.

On the command line, there must be a one-to-one correspondence between titles and
replacement object files.

093-000254 Licensed Material-Property of Data General Corporation 6' 1 3

R (continued)

Examples

1.

2.
3.
4

) X LFE R MATH.LB/I NEWMATH.LB/O EXP EXP2.0B/F)
) X LFE/I=MATH.LB/O=NEWMATH.LB R EXP EXP2.0B/F)
) X LFE R MATH.LB NEWMATH.LB/O EXP EXP2.0B/F)

) X LFE/I=MATH.LB/O=NEWMATH.LB R SIN FOURIER.LB LOG SYN.LB COS
c0s2.08 !

Examples 1, 2, and 3 all do the same thing — they force LFE to copy NEWMATH.LB from
MATH.LB and to replace the object module titled EXP with the object module stored in
EXP2.0B. The /F switch tells LFE to set the forced load flag in NEWMATH.LB associated
with EXP2.0B. MATH.LB is unaffected.

Example 4 replaces three object modules in MATH.LB to form a new, expanded library called
NEWMATH.LB. First, LFE replaces the object module titled SIN with all the object
modules in FOURIER.LB. Then, LFE replaces the object module titled LOG with all the
object modules in SYN.LB. Finally, LFE replaces the object module titled COS with the
object module stored in COS2.0B.

6' 1 4 Licensed Material-Property of Data General Corporation 093-000254

T

Lists the title of each object module in a library, and certain library
start block information

Formats

X LFE/L<=filename> </globalswitch...> T library...
X LFE<</globalswitch..> T filename/L library...

X LFE</globalswitch...> T library...

where:
/L=filename sends the analysis to filename. If you do not include a filename, LFE
or sends the output to @LIST. If you do not specify any list file, LFE sends
filename/L the analysis to @OUTPUT.
global switch is one or more of the following switches:
/F puts the analysis of each library on a separate page in
the listing file.
/DECIMAL sets the listing radix to 10. The default output radix is
8.
/HEX sets the listing radix to 16. The default output radix is
8.
T is the function-letter.
library is the name of one or more library files to be analyzed.
Description

The T (title) function-letter causes LFE to list the following information:

* the title of every object module in the library

e the starting position of every object module’s OB descriptor.

 the starting position of every object module’s title block.

* the size (in words) of every object module.

* an asterisk in front of any object module in which the forced load flag is set.

The function-letter A produces a much more detailed analysis of a library than T; however, T
is much faster. LFE scans an entire library to produce the full analysis A; however, LFE scans
only the library start block to produce the title analysis T.

Examples

1.)XLFE/L=FAST T MATHLB CALC.LB)
2.)XLFE T FAST/L MATHLB CALCLB!
3.)XLFE/HEX/F T TRIG GEOM INTEGRAL)

Examples 1 and 2 are functionally identical. Both command lines produce title analysis of
libraries MATH.LB and CALC.LB.

Example 3 produces title analysis of libraries TRIG.LB, GEOM.LB, and INTEGRAL.LB.
Because of the /HEX switch, the listing will be in base 16; the /F switch ensures that the title
analysis of each library starts on a fresh page.

093-000254 Licensed Material-Property of Data General Corporation 6‘ 1 5

X

Extract one or more object modules from a library

Formats

X LFE/I=library X title...
X LFE X library/I title...
X LFE X library title...

where:

X is the function-letter.

library/Il is the input library (from which you will extract the object module(s)). If

or you use the third format (as demonstrated in Example 3) the /1 is optional.

/1=library

title is the title of one or more object modules you want to extract from the input
library.

Description

The X (Extract) function-letter extracts one or more object modules from the input library and
builds each into a freestanding .OB file. This.command does not change the input library.

If your working directory already contains an .OB file of the same name, then the command
fails and LFE sends out an error message.

Be careful not to confuse the title of an object module with the name of the .OB file it was
originally stored in.

Examples

1.)X LFE/I=PRIMARY.LB X RED YELLOW BLUE)
2.) X LFE PRIMARY.LB/I X RED YELLOW BLUE !
3.) X LFE X PRIMARY.LB RED YELLOW BLUE !

Command lines 1, 2, and 3 are all functionally identical. All three command lines force LFE
to extract copies of the object modules titled RED, YELLOW, and BLUE from library file
PRIMARY.LB. LFE creates RED.OB, YELLOW.OB, and BLUE.OB, but does not change
PRIMARY.LB in any way.

End of Chapter

6' 1 6 Licensed Material-Property of Data Genera! Corporation 093-000254

Chapter 7

Developing RDOS and RTOS
Programson AOS

If you intend to execute a program file under RDOS or RTOS, and if you also have access to
AOS, you may find it advantageous to develop your program under AOS. Using AOS Link to
create an RDOS or RTOS .SV file is called cross-linking. Program development across two
systems usually follows one of these two strategies:

A. On RDOS, write source code.

On RDOS, create .RB files by compiling or assembling your source code.
Move .RB files from RDOS to AOS.

On AOS, convert your .RB files to .OB files.

On AOS, link your .OB files to form an RDOS or RTOS SV file.

Move your .SV file to RDOS or RTOS and execute it.

B. 1. On AOS, write source code.

S O S e

2. On AOS, compile or assemble the source code to produce .OB files.
3. On AOS, link your .OB files to form an RDOS or RTOS SV file.
4. Move your .SV file to RDOS or RTOS and execute it.

These methods of program development currently apply only if source code is written in
assembly language or DG/L language.

This chapter describes both methods of program development.

RDOS, RTOS, and NOVA Overview

This section briefly describes some aspects of RDOS and RTOS that are relevant to Link. A
full description of these operating systems is outside the scope of this chapter, so we suggest
that you refer to the following manuals:

* Real-time Disk Operating System (RDOS) Reference Manual
* Extended Relocatable Loaders User’s Manual
* Real-Time Operating System (RTOS) Reference Manual

* Programmer’s Reference Series: NOVA® Line Computers

RDOS

RDOS is a disk-based operating system that runs on a variety of mapped or unmapped NOVA
or ECLIPSE computers. Because of the different hardware configurations possible, there are
several different versions of RDOS.

093-000254 Licensed Material-Property of Data General Corporation 7' 1

As in AOS, Link places RDOS system tables at the beginning of NREL. The RDOS .SV file
contains both a User Status Table and one or more Task Control Blocks. If the .SV file
contains one or more overlay areas (also called overlay nodes) Link constructs an Overlay
Directory. RDOS supports primitive overlay calls, but it does not support resource calls
(?RCALL, ?KCALL, and PRCHAIN); consequently, .SV files do not contain a Resource
Handler Table (RHT). (Appendix D contains an illustration of the RDOS SV file.)

RDOS does not support shared pages. Consequently, NREL extends from NBOT to NMAX.
When you cross-link for RDOS, the shared/unshared attribute is irrelevant. Link gives the
Shared Code and Unshared Code partitions different relocation bases (starting addresses);
however, both of these partitions (despite their names) have the unshared attribute.

When you Link for a target system of AOS, Link sets the initial stack parameters; however,
when you cross-link for a target system of RDOS, Link does not set the stack parameters. If
you want to perform stack manipulation, you must set up initial stack parameters within your
object modules. On Data General hardware, reserved storage locations define the stack
parameters. Refer to the appropriate hardware manual for more information on stacks.

Like AOS, RDOS supports overlays. For more information, refer to the “RDOS and RTOS
Overlays™ section in this chapter.

RTOS

RTOS is a real-time memory-resident subset of the RDOS system. It is compatible with
RDOS and has the same general design. Unlike RDOS, it cannot support text editors or the
CLI. Therefore, you will have to develop RTOS programs on RDOS, AOS, or AOS/VS.

When you build RTOS programs, you load in the operating system routines needed for
execution. In effect, an RTOS program contains both user code and the operating system
itself. All the code for executing system calls is actually inside the .SV file. When an RTOS
program issues a system call, no remapping takes place. Consequently, system calls execute
much faster under RTOS than under RDOS or AOS.

The same rules for stack initialization and the shared attribute apply to RTOS and RDOS.
(See the “RDOS” section.)

RTOS supports overlays but to a different extent then RDOS. (See the “RDOS and RTOS
Overlays” section later in this chapter.)

NOVA Hardware

The NOVA hardware instruction set is a subset of the ECLIPSE hardware instruction set. So,
a hardware instruction that works on a NOVA will work on an ECLIPSE; though, the
converse is not always true.

Writing RDOS Source Code Under AOS

As mentioned earlier, there are two ways to create .OB files. One way is to generate .RB files
under RDOS, move them over to AOS, and convert them to .OB files. The next section details
this method. This section explains how you can write and compile (or assemble) RDOS source
code while you are on AOS.

Programming in DG/L Language

DG/L language is ideally suited for cross-development because you can defer decisions about
the target hardware until you compile. In other words, the same file of DG /L source code can
be compiled and linked for either a NOVA or ECLIPSE computer. When you compile your
source code, you specify the target hardware system. For instance, while under AOS, you write
DG/L source code into a file called ACCOUNTS. If you intend to execute this program on a
NOVA computer, you would use the /CODE=N switch:

) X DGL/CODE=N ACCOUNTS)

7 - 2 Licensed Material-Property of Data General Corporation 093-000254

s

If you intend to execute the same program on an ECLIPSE computer running RDOS, you
would use the /CODE=E switch:

) X DGL/CODE=E ACCOUNTS)

(Your compile command line may require other switches. Refer to the DG/LTM Reference
Manual for further information.)

Regardless of the target hardware, either command line produces an .OB file. If the appropriate
system library is on your AOS system, then you are ready to cross-link, and you should refer to
the “Cross-Linking Command Line” section later in this chapter. If the appropriate system
library is not on your AOS system, then read the “Preliminary Steps Before Linking” section
later in this chapter.

Programming in Assembly Language

If you intend to assemble RDOS assembly language source code while under AOS, you first
have to build an RDOS macroassembler symbol table in one of your AOS directories. This
involves moving some source files from RDOS to AOS and using MASM to combine them into
a symbol table.

A macroassembler symbol table associates standard Data General assembly language
commands (such as LDA) with their machine language counterparts. The macroassembler
refers to this table when it assembles source code. This symbol table is often called MASM.PS
for AOS source code, and MAC.PS for RDOS source code.

To build a macroassembler symbol table that will allow you to assemble RDOS assembly
language source code while under AOS, use the four-step procedure listed below. Remember,
you need only do this procedure once:

1. Under RDOS, dump (usually to a tape) the files that comprise a MAC.PS for your target
version of RDOS. The RDOS/DOS Macroassembler User’s Manual explains which files
you need. For instance, if you intend to execute programs on a mapped NOVA 830
running RDOS, use the following RDOS command line:

R
DUMP/V MTO0:0 NBID.SR OSID.SR ODOS.SR PARU.SR)

2. Take the tape to an AOS system.

Under AOS, issue the RDOS LOAD command which translates RDOS files into AOS
files. Because these are text files, use the /C switch to change carriage returns (acceptable
on RDOS) to new lines (acceptable on AOS). For instance:

) X RDOS LOAD/V @MTAO:0 NBID.SR/C OSID.SR/C ODOS.SR/C PARU.SR/C)

4. Under AOS, use the MASM /S switch to build an AOS macroassembler symbol table.
For instance:

) X MASM/S NBID.SR OSID.SR ODOS.SR PARU.SR |

By default, AOS assigns the new symbol table the name MASM.PS. Since the symbol table
that handles AOS assembly language source code is also named MASM.PS, there could be
some confusion. Either of the two methods listed below ensure that your RDOS assembly
language source code gets assembled correctly:

* Do all your RDOS assembly language development in the same directory in which you
stored the RDOS MASM.PS.

* Rename the RDOS MASM.PS and use the /PS=pathname switch on the MASM CLI
command. For instance, if you intend to assemble file SHARK, which contains RDOS
assembly language source code, you could issue the following commands:

) RENAME MASM.PS MAC.PS)
) X MASM/PS=:UDD:KNIFE:MAC.PS SHARK)

093-000254 Licensed Material-Property of Data General Corporation 7 ‘3

If you have the appropriate system library on AOS, then you are ready to link; refer to the
“Cross-Linking Command Line” section in this chapter. If you do not have the proper system
library on AOS, refer to the “Preliminary Steps Before Linking” section.

Writing RDOS Source Code Under RDOS

As an alternative to writing and compiling (or assembling) RDOS source code while on AOS,
you may write and compile (or assemble) your RDOS source code while on RDOS. If you
choose this strategy, you probably will not have to build a special macroassembler table (since
it is probably already on your RDOS system). But there is also a disadvantage. If you compile
or assemble under RDOS, but intend to Link while under AOS, then you will have to change
your .RB files to .OB files. The RDOS-extended relocatable loader uses .RB files, but Link can
use only .OB files. It is not difficult to change .RB files to .OB files, but you will have to do it
for each object module that you intend to cross-link.

Assume that you are on RDOS, and that you have produced .RB files either by compiling
DG/L source code or assembling RDOS assembly language source code. Follow these steps to
convert your .RB files to .OB files:

1. Under RDOS, dump (probably to tape) every .RB file you intend to link. For instance:

R
DUMP/V MTO0:0 TANH.RB SINH.RB)

Take the tape to an AOS system.

Under AOS, issue the RDOS LOAD command. This command converts RDOS files to
AOS files. For instance:

) X RDOS LOAD/V @MTAO0:0 (TANH.RB SINH.RB))

4. Under AOS, issue the CONVERT command. This command translates .RB files into
.OB files. For example, the following command line converts TANH.RB and SINH.RB
into TANH.OB and SINH.OB:

) X CONVERT TANH SINH)

Preliminary Steps Before Linking

Link cannot create an executable program file unless it can scan the appropriate system
library. To produce an executable AOS program file (.PR file), Link must scan the AOS
system library URT.LB. Likewise, to produce an executable RDOS program file (.SV file),
Link must scan the RDOS system library SYS.LB. Furthermore, to produce an executable
RTOS program file, Link must scan RTOS1.LB, RTOS2.LB, and the RTOS trigger module
(which is an .RB file created by RTOSGEN).

All AOS systems come with URT.LB; however, because RDOS and RTOS system libraries
vary with hardware configurations, their system libraries do not come on AOS systems.
Therefore, if you intend to cross-Link, you first have to bring the appropriate system library(s)
to AOS from your target system. '

SYS.LB, RTOS1.LB, and RTOS2.LB perform similar functions to URT.LB. That is, they all
contain vital routines for system call resolution.

If you are programming in DG /L, Link must scan not only the appropriate system library, but
also the appropriate DG/L language libraries. AOS DG/L always comes with the DG/L
language libraries for AOS, RDOS on a NOVA computer, and RDOS on an ECLIPSE
computer. Therefore, you do not have to transfer any DG/L language libraries to AOS,
(though you may still have to bring the appropriate system library(s) over).

7'4 Licensed Material-Property of Data General Corporation 093-000254

Transferring an RDOS Library to AOS

Since SYS.LB is such an essential library, we use it as an example of how to convert an RDOS
library to an AOS library. Note that you can use the same procedure to convert other RDOS
libraries to AOS libraries. Basically, the procedure involves breaking the RDOS library into its
component .RBs, dumping the .RBs to tape, loading the .RBs onto AOS, converting the .RBs
to .OBs, and recombining the .OBs into an AOS library.

Some of the steps in the following procedure are rather lengthy; however, you need only
perform this procedure once:

1. Under RDOS, use the Library File Editor to list the title of every object module in
SYS.LB. The RDOS LFE sends the list to an output file. For instance, you can send the
listing to the line printer with the following command line:

R
LFET SYS.LB $LPT/L)

Keep the list handy. You will need it in steps 2 and 6. (For more information see the
Library File Editor User’s Manual.)

2. Under RDOS, use the Library File Editor to extract every object module on the list. You
may find it easiest to spread the extraction process over several LFE command lines. (In
this example, we are using the SYS.LB from a mapped NOVA 830.)

R
LFE X SYS.LB BFPKG IOPC OPCOM TRDOP TWROP OPMSG TOVLD OVREL !

(verification)
R
LFE X SYS.LB OVKIL OVEX TOVLY QTSK DQTSK TQTAS AKILL ASUSP ARDY)

(verification)

3. Under RDOS, dump the extracted .RB files to tape:

R

INIT MTO)

R

DUMP/V MTO0:0 -.RB)

Note that this command dumps every file in your directory having the extension .RB. If
you are not careful, you may accidentally dump files that were not part of SYS.LB.

4. Take the tape to an AOS system.
Under AOS, use the RDOS LOAD command to change RDOS files to AOS files:

) X RDOS LOAD/V @MTAO)

093-000254 Licensed Material-Property of Data General Corporation 7'5

Tabl

Under AOS, use the CONVERT command to change .RB files to .OB files. There are
several ways to do this. First, you can invoke CONVERT directly as in the following
example:

) X CONVERT (BFPKG.RB IOPC.RB OPCOM.RB) ! (etc. for every .RB file.)

In the second method, you type the names of all the .RB files into a file, and then invoke
CONVERT indirectly. For instance:

) CRE/I INDFL)

)) BFPKG IOPC OPCOM TRDOP TWROP OPMSG TOVLD OVREL OVKIL &)

)) OVEX TOVLY QTSK DQTSK TQTAS AKILL ASUSP ARDY TACAL XMT &)

)) XMTW REC IXMT TXMT TIDS TIDR TIDK TIDP TIDC PRI TPRI &)

)) DRSCH ERSCH TRSCH ABORT TABT SUSP TPEND MTUMO TSVRS SINGL &)
)) MULTI SMTSK TASK KILL KILAD MTCBM TMIN NSAC3 MDEBU DUMMY)

R

) X CONVERT ([INDFL]) !

In the above example, we created file INDFL containing the names of all .RB files that
we wanted to convert to .OB files. (Note the CLI line continuation mark & appended to
each line. Also note that the .RB files are in exactly the same order as in the original
RDOS library.) Then, by enclosing INDFL in square brackets and enclosing the square
brackets in parentheses we ensured that CONVERT would read INDFL as an indirect
file.

At this point you should have 50 or so .OB files. To complete the cycle, you must
recombine them to form an AOS library. There are two methods to this, both of which
invoke the AOS LFE function-letters M or N. In both methods, the .OB files must be in
exactly the same order as the .RB files were in the RDOS library. In the first method, you
enter the names of all the .OB files directly. For instance:

) X LFE/O=SYS.LB M BFPKG |I0PC OPCOM TRDOP TWROP OPMSG TOVLD &}
&) OVREL OVKIL OVEX TOVLY QTSK DQTSK TQTAS AKILL ASUSP ARDY &

&) TACAL XMT XMTW REC IXMT TXMT TIDS TIDR TIDK TIDP TIDC PRI & !

&) TPRI DRSCH ERSCH TRSCH ABORT TABT SUSP TPEND MTUMO TSVRS &)
&) SINGL MULTI SMTSK TASK KILL KILAD MTCBM TMIN NSAC3 MDEBU &)

&) DUMMY)

In the other method, you use an indirect file as an argument to LFE. You can use the
indirect file created in step 6. For instance:

) X LFE/O=8YS.LB M <[INDFL]>)

NOTE: Throughout the manual we use angle brackets < and > to denote optional
arguments; however, in this case, the angle brackets themselves must appear
on the command line. That is, the name of the indirect file must be enclosed by
square brackets and the square brackets must be enclosed by angle brackets.

Cross-Link Command Line
e 7-1 shows what you must have on AOS if you intend to cross-link for either RDOS or

RTOS. For instance, if you intend to cross-link assembly language programs for RDOS, Link
must have access to your .OB files, your libraries, and SYS.LB.

Licensed Material-Property of Data General Corporation 093-000254

Table 7-1. Requirements For Executable .SV Files

Assembly Language DG/L
RDOS your .OB files your .OB files
your libraries (optional) your libraries (optional)
SYS.LB SYS.LB
either

[DGLIBN] for NOVA RDOS
or
[DGLIBE] for ECLIPSE RDOS

your .OB files your .OB files
your libraries (optional) your libraries (optional)
trigger module trigger module
RTOS RTOSI1.LB either
RTOS2.LB edited [DGLIBN] for NOVA RDOS

or
edited [DGLIBE] for ECLIPSE RDOS

Assuming that Link has access to the proper program elements, you cross-link by using either
the /SYS=RDOS or /SYS=RTOS switch on the Link command line. These switches tell
Link to create either a program file that can execute on RDOS or a program file that can
execute on RTOS. Note that some Link switches work differently (or not at all) when the
/SYS switch is present. (See the “Incompatible Switches” section.)

If you intend to execute your program in the foreground of an unmapped RDOS system, you
should read the “Cross-linking for Unmapped Foreground” section.

RDOS

The /SYS=RDOS switch is the only real difference between cross-linking assembly language
programs for RDOS and linking assembly language programs for AOS. You should not
explicitly name SYS.LB on the cross-link command line because Link scans it anyway. For
instance, to create an RDOS .SV file from ONE.OB and TWO.OB (generated by a
macroassembler), you would use the following cross-link command line:

) X LINK/SYS=RDOS ONE.OB TWO.OB)

If you are cross-linking DG/L programs, Link must scan the appropriate DG/L language
libraries. Instead of entering the names of all these libraries, you can simply enter the name
(enclosed in brackets) of an indirect file. This file contains the names of the appropriate DG/L
language libraries. If you intend to execute your DG/L program under RDOS on NOVA
hardware, the indirect file is called DGLIBN. If you intend to execute your DG/L program
under RDOS on ECLIPSE hardware, the indirect file is called DGLIBE. For instance,
suppose you want to cross-link MEAN.OB and MODE.OB (both generated by the DG/L
compiler) and execute the resulting .SV file on a NOVA running RDOS. In that case, use the
following cross-link command line:

) X LINK/SYS=RDOS/NSLS MEAN.OB MODE.OB [DGLIBN]
Since SYS.LB is included in DGLIBN, you should use the /NSLS switch because it prevents
Link from scanning SYS.LB twice.

RTOS

If you use the /SYS=RTOS switch, Link does not automatically scan a system library, so you
will have to find some way of including RTOS1.LB and RTOS2.LB on the cross-link command
line. In addition, Link must scan TRIGR.OB (the RTOS trigger module you created during
RTOSGEN).

093-000254 Licensed Material-Property of Data General Corporation 7 = 7

If you are cross-linking assembly language programs for RTOS, you must explicitly name
TRIGR.OB, RTOS1.LB, and RTOS2.LB on the cross-link command line. For instance, if you
are cross-linking ONE.OB and TWO.OB (created by a macroassembler) for RTOS, you could
issue the following cross-link command line:

) X LINK/SYS=RTOS TRIGR.OB ONE.OB TWO.OB RTOS1.LB RTOS2.LB)

Before you can cross-link DG/L programs for RTOS, you have to create a special version of
either DGLIBN or DGLIBE. To do this, you should first copy DGLIBN (if your target is
NOVA hardware) or DGLIBE (if your target is ECLIPSE hardware). Then, edit (with a text
editor) your copy by replacing SYS.LB with RTOS1.LB and RTOS2.LB.

For instance, suppose you intend to cross-link DG/L programs and execute the .SV file under
RTOS on NOVA hardware. First, you copy DGLIBN to another file, say DGLIBNRT. Then,
you edit DGLIBNRT so that it contains the names of the following libraries:

DGLNTASK RTOS1.LB RTOS2.LB DGLNMATH.LB DGLNOPSYS.LB DGLNENV.LB
DGLNINIT.LB/1 &}

In addition to your edited indirect file, you must also include TRIGR.OB and the .OB files
created by the DG /L compiler on the cross-link command line. TRIGR.OB should be the first
argument on the cross-link command line, then your .OB files, and finally the name of the
indirect file.

For instance, suppose you generated MACRO.OB and MICRO.OB with the DG/L compiler.
In this case, you use the following cross-link command line:

) X LINK/SYS=RTOS TRIGR.OB MACRO.OB MICRO.OB [DLIBNRT] !

Incompatible Switches
The following switches have no effect during cross-linking:

GLOBAL switches

/KTOP=n logical address space under RDOS and RTOS does not extend past
/NTOP=n INMAX (/KTOP, /NTOP) and neither system supports shared pages
/SRES=n (/SRES).

/NRP neither system supports resource calls (/WRL,/NRP).

/WRL '

/STACK=n Link does not know what the target hardware configuration is (/STACK).
OV switch

/MULT=n neither system supports multiple basic overlay areas.

PARTSYM switch

/SHARED neither system supports shared pages.

7 "8 Licensed Material-Property of Data General Corporation 093-000254

pa—

Different Switch Meanings
The following switches have different meanings when cross-linking:

/DEBUG
/PRSYM
JUDF

The GLOBAL switch /DEBUG, which normally emits the external DEBUG for high-level
language debugging, emits the same external under a cross-link, but for use by the RDOS
debugger utility. When you use this switch, Link resolves the debug symbol and forces a copy
of the RDOS Debugger into the .SV file. If the modules contain one or more debugger symbols
blocks or debugger lines blocks, Link also produces a .DS or .DL file. RDOS does not use these
files, so you may want to delete them. (See the “Debugger Symbols Block” and “Debugger
Lines Block/Lines Title Block™ sections in Appendix B. Also, see Appendix D for more
information on the .DS and .DL files.)

If you intend to debug your RDOS or RTOS .SV file, you probably should include the
/PRSYM switch in your cross-link command line. This switch will allow you to use on-line
symbols during a debugging session.

When linking for AOS, the /UDF switch suppresses Link’s default reading of URT.LB; when
cross-linking for RDOS, the /UDF switch suppresses Link’s default reading of SYS.LB. In
either case, if you include the /UDF switch on a Link command line, Link produces a
nonexecutable file.

Cross-Linking For Unmapped Foreground in RDOS

If you intend to execute an .SV file in the foreground of an unmapped RDOS system, then
your cross-link command line should contain both the /ZBOT =n and the /NBOT =n switches.

By default, AOS Link builds system tables at the beginning of NREL (address 004003). In
addition, by default, the relocation base for the ZREL partition is address 00050. However, if
you intend to execute an .SV file in unmapped foreground, system tables cannot begin at
00400, and the predefined ZREL partition cannot begin at 00050.

The /NBOT =n switch forces Link to begin building the system tables at n. The /ZBOT=n
switch forces Link to make ZREL’s relocation base n. Therefore, these switches allow you to
produce a .SV file that can execute in unmapped foreground.

093-000254 Licensed Material-Property of Data General Corporation 7 '9

For instance, Figure 7-1 shows an unmapped RDOS logical address space. Foreground takes
up ZREL addresses 00225 through 00377. To ensure that your .SV file ends up in foreground,
issue the following cross-link command line:

) X LINK/SYS=RDOS/ZBOT=225R8/NBOT=24000R8 FORMAT.OB DATA.OB)

77777
Operating System
50000
Foreground NREL
24000
Background NREL
00400
Foreground ZREL
Background ZREL 00225
- 00050
R d St Locati
eserved Storage Locations 00000
DG-25091
Figure 7-1. Typical Unmapped RDOS Logical Address
Space
RDOS and RTOS Overlays

RDOS supports two kinds of overlays: conventional overlays (which are similar to AOS
overlays) and virtual overlays. RTOS supports virtual overlays only.

Conventional Overlays

Conventional overlays reside in an .OL file on disk. If your cross-link command line requests
conventional overlays, then Link builds overlay areas into your .SV file. Overlay areas, very
similar to overlay areas in AOS PR files, are gaps in the .SV file. When your .SV file issues a
primitive overlay call, RDOS first swaps the appropriate overlay from the .OL file to main
memory. Then, RDOS maps this overlay into the logical address space of the appropriate
overlay area. RDOS does not support resource calls.

If you are cross-linking, you create an RDOS conventional overlay the same way you create
overlays for an AOS PR file. Thus, if you want your .SV file to contain overlay areas for
conventional overlays, you must include overlay area delimiters (!* and *!) on the cross-link
command line. Within overlay area delimiters, an overlay delimiter (!) separates overlays.

7' 1 O Licensed Material-Property of Data General Corporation 093-000254

A pair of overlay area delimiters generates one overlay area if any of the object modules inside
the overlay area delimiters contain datawords destined for the predefined Unshared Code
partition. If the object modules can not contribute to the predefined Unshared Code partition,
then Link will not create an overlay area.

For example:
) X LINK/SYS=RDOS A.OBB.OB !* C.OB ! D.OB | E.OB F.OB *!)

The object modules in A.OB and B.OB contribute to the .SV file; while the object modules in
C.OB, D.OB, E.OB, and F.OB can contribute to both the .SV file and the .OL file. Datawords
in C.OB, D.OB, E.OB, and F.OB destined for the predefined Unshared Code partition will
contribute to the .OL file; other datawords in C.OB, D.OB, E.OB, and F.OB will contribute to
the .SV file. The .OL file will contain three overlays.

RDOS supports up to 124, overlay areas within a .SV file. You can define up to 256, overlays
within each overlay area. All overlay areas are unshared.

Link pads conventional overlay areas to an integral multiple of a block (one block contains 4004
or 2569 words). The size of an overlay area is determined by the largest overlay within it. For
instance, if the largest overlay within a particular overlay area is 1100g words long, then Link
must build an overlay area big enough to contain it, and it must be a multiple of 400g.
Therefore, Link builds an overlay area 14003 words long.

RDOS does not support multiple basic areas.

Virtual Overlays

Virtual overlays reside in extended memory — within physical memory, but outside your
process’s logical address space. When your process loads (with a primitive overlay call) a
virtual overlay, the operating system maps it into a virtual overlay area in your logical address
space.

To declare virtual overlays from the cross-link command line, append the /VIRTUAL switch
to the !*. For instance:

) XLINK/SYS=RDOS A.OB B.OB !*/VIRTUAL COB ! D.OB E.OB *!)

With one exception, Link uses the same rules for building virtual overlays and for building
conventional overlays. The one exception is that virtual overlay areas are built in page
multiples rather than block multiples. In other words, Link pads a virtual overlay area with
zeros so that its length will equal a multiple of 20004 words. Link also sets the alignment of a
virtual overlay area to 12g. Because 2!2 equals 20003, the first address of a virtual overlay area
is always a multiple of 020005.

A computer running unmapped RDOS does not have any extended memory. Therefore,
unmapped RDOS does not support virtual overlays.

NOTE: If you want to create a .SV file supporting both virtual and conventional overlays, the
virtual overlays must precede the conventional overlays on the cross-Link command
line. For instance, the following cross-Link command line is acceptable:

) X LINK/SYS=RDOS A.OB !*/VIRTUAL C.OB ! D.OB *!!* E.OB | F.OB *!
However, the next cross-Link command line is unacceptable:

) X LINK/SYS=RDOS A.OB !* E.OB ! F.OB *! !*/VIRTUAL C.OB ! D.OB *!

093-000254 Licensed Material-Property of Data General Corporation 7' 1 1

o~
After Cross-linking |
After cross-linking, you must bring the .SV file (and the .OL file, if present) over to your
target system. This is a relatively easy procedure.
Use the following procedure to transfer an .SV file from AOS to RDOS:
1. Under AOS, dump your .SV file (and .OL file if present) with the RDOS DUMP
command. This command changes the file(s) to an RDOS format. For instance, to dump
ACCTS.SV, use the following command line:
) X RDOS DUMP/V @MTAO0:0 ACCTS.SV)
Take the tape to an RDOS system.
Under RDOS, load the .SV file (and the .OL file, if present) into one of your directories.
For instance:
R
INIT MTO)
R
LOAD MTO0:0 ACCTS.SV)
R
RELEASE MTO)
4. You can now execute the program by typing the name of the .SV file. For instance:
R
ACCTS)
There are several methods for transferring an .SV file from AOS to RTOS. Here is one:
1. Copy an RTOS bootstrap loader onto file 0 of a tape. This bootstrap loader is stored on all I
AOS systems and has the pathname :TBOOT.
) COPY @MTAO0:0 :TBOOT !
By using the CLI command COPY rather then DUMP, AOS copies only the contents of
the file. (The DUMP command forces AOS to copy the contents of the file plus AOS file
information.)
2. COPY your .SV file to tape. The boot must precede the .SV file on tape. Do not put the
.SV file on file 0 of the tape. For instance, suppose you want to put TAXES.SV on tape:
) COPY @MTAO:1 TAXES.SV)
—

7 = 1 2 Licensed Material-Property of Data Genera! Corporation 093-000254

Take the tape to an RTOS system.

4. Boot the tape up. (See the Real-Time Operating System (RTOS) Reference Manual for
details on booting.) For example, on an ECLIPSE C/350, you could use the following
procedure:

a. Throw the STOP switch (on the front panel) to halt the CPU.

b. Throw the RESET switch.

¢. Set the data switches to the device code for the tape drive (usually 100022).

d. Throw the PROGRAM LOAD switch. This will load TBOOT into main memory.
The following message should appear at console 0:
FROM MT-0:
TBOOT wants to know which tape file you stored the program on.

e. Enter “1”. TBOOT will load the contents of MTO:1 (TAXES.SV) into memory and
transfer control to it.

End of Chapter
093-000254 Licensed Material-Property of Data General Corporation 7' 1 3

Appendix A
Link Error Message

Link reports errors as they occur, and sends them to one or possibly both of the following files:

e the error file the default error file is @OUTPUT, but you can override the default by
using the /E=filename switch. If you use the /E=filename switch,
Link opens filename even if there are no errors.

* the list file if the Link command line contains either the /L or /L=filename
switch, then Link also sends errors to this file.

There are two classes of errors: fatal and nonfatal. Upon detecting a fatal error, Link
terminates immediately, signals FATAL LINK ERROR, and sends the appropriate error
message to the list file or error file (assuming that the error was not due to Link’s inability to
open one of these files). Any of the following conditions can cause a fatal error:

* an unexpected error return from some system calls (primarily file system errors)
* user input errors (e.g., a null command line)
* Link internal errors (e.g., symbol table overflow, or a bad pointer into the symbol table)

Nonfatal errors do not force Link to terminate. When the utility encounters a nonfatal error,
it writes the appropriate error message to the error file and list file. Then, after executing the
command line, Link signals normal termination and returns LINK ERROR to the calling
process. The following conditions can cause nonfatal errors:

* expected error returns from some system calls (e.g., object module does not exist, illegal
pathname, etc.)

* user input errors (e.g., invalid object block, relocation errors)
The general format of the error messages is:
object module title BLOCK <number> PC <<address> specific error

Since Link emits errors as it detects them, it may not include the PC in the error message
(since it cannot calculate actual addresses until the second pass). The specific error may also
contain information such as filenames, overwrite contents, symbol names, and so on. If Link
detects an error that cannot be blamed on a particular object block, it prints out only the
specific error.

Angle brackets <<>> indicate the paraphrase of a value Link supplies. For example, <switch
name>> means Link returns the name of the switch that caused the error.

NOTE: The following messages are not errors, but default output messages that Link passes
to @OUTPUT:

Link revision <<revision number> on <date> at <time>
and

<program name>> file created

093-000254 Licensed Material-Property of Data General Corporation A' 1

The remainder of this appendix contains all AOS Link errors as well as some AOS system
errors that occur as a result of linking. (Occasionally, you might incur AOS errors not listed.
If you do, refer to the A0S Programmer’s Manual.) Since some messages change with each
new release of Link, we advise you to check the current AOS Release Notice for any
enhancements or changes.

Error Messages During Linking
Attempt to load data outside file limits

If your program contains both shared and unshared partitions, you tried to load datawords
beyond ?NTOP; if your program contains only unshared partitions, you tried to load datawords
beyond ?NMAX. This error probably resulted from using absolute code. To correct the error,
either convert the absolute code to relocatable code or change the relocation base of the
absolute code.

Attempt to load outside common partition <name=>

A data block in one of your object modules is trying to store datawords (i.e., code or data) at
an address in a common base partition; however, this address is outside the defined boundaries
of the partition.

Block sequence number <block sequence number> out of sequence.

An object block in one of the input object modules does not have the correct sequence number.
The sequence number is the second word in every object block. The title block of every object
module must have sequence number 1. Subsequent object blocks must have a sequence number
one greater than the preceding object block.

Circularly Defined Externals

An entry symbol’s relocation value is defined in terms of itself. For instance, if an object
module sets the value of entry symbol A with A=B+35, and another object module sets the
value of entry symbol B with B=A+4, Link will not be able to resolve either A’s or B’s values.
Link also emits this error when an entry symbol tries to define its value in terms of itself; e.g.,
A=A+4,

Command line is null!

You did not pass any arguments on the Link command line. Sometimes this error results from
a missing & in a CLI macro. (Refer to the Command Line Interpreter’s User’s Manual
(AOS,AO0S/VS) for information about CLI macros.)

Control point directory max size exceeded 3

Link is using a directory which does not have enough free space for the files it creates. To
correct, send Link-generated files to a different directory with the /TEMP=pathname prefix
or /O=pathname switches, or move your object files to a different directory before linking
them, or create a larger control point directory.

Directory access denied! 3

Link does not have write access to this directory. Therefore, it cannot create its temporary files
or its output files. To correct, either change the directory’s ACL or set the /TEMP=pathname
prefix and /O=pathname switches to a directory where you have write access.

A' 2 Licensed Material-Property of Data General Corporation 093-000254

End of file3

An object module does not have an end block, or an object module is zero length.

Extended relocation error using operation <number=>2

An object block containing an extended relocation entry or extended dictionary relocation
entry was not formatted correctly. (Refer to Appendix B for information on both kinds of
entries.)

File does not exist <filename>3

Filename is not in your working directory or one of the directories on your search list. If the
input filename has no extension, it means that Link found neither the unextended filename nor
the filename with extension .OB. For instance, the error message “FILE DOES NOT EXIST
THREE?” tells you neither THREE nor THREE.OB are in your working directory or one of
the directories on your search list.

Filename already exists! 3

Link tried to create filename, but a permanent file with the same name already exists in the
target directory. To prevent this error, turn OFF the permanence attribute of the appropriate
.PR, ST, .DS, .DL, .SV, or .OL file.

File too large for address space

Your program file contains more datawords (in NREL) than there are logical addresses to
contain them. When this happens, the shared partitions of your program file will start to
overwrite the unshared partitions. Wise use of overlay areas will prevent this from happening;
use the /MAP or /MODMAP to gauge memory requirements. Then, refer to the “Command
Line With Overlays” section in Chapter 5.

Invalid block size <block size>>2

An object block in one of the input object modules was either smaller than 3 words or larger
than 2000g words. Sometimes this error results when Link interprets a file that is not an object
file as an object file.

Invalid block type <block number>?2

An object block contains a block type (the right byte of the first word of every object block)
which is not supported by this revision of Link. (See Appendix B for information on block
types; check the AOS Release Notices for Link revision information.)

Invalid dictionary offset <number>?2

An offset within a dictionary relocation entry does not point to an entry in the data block.
Check the revision format of the data block.

Invalid or missing switch value /<<switch name> = <switch value>

Link expected a switch value with this switch name and you did not provide one or you
provided a faulty value. Tables 5-1 through 5-4 explain the proper syntax for switches.

093-000254 Licensed Material-Property of Data General Corporation A'3

Invalid overlay size <overlay size>

Either an overlay was larger than the entire logical address space, or, more probably, it was
zero length. Link creates an overlay 000000 words long if any modules within overlay area
delimiters fail to contribute to either the predefined Unshared Code or Shared Code partitions.
For instance, suppose object module A.OB contributes only to Unshared Data and to ZREL.
If you put A.OB within overlay area delimiters, Link will emit this message. Note, however,
that your program file is still executable.

Invalid overlay syntax

You used the overlay area delimiter !* without using a matching *!, or you used *! without a
matching !*. Unless object files are within properly paired overlay area delimiters, Link
contributes them to the root. Chapter 5 details the proper overlay area syntax.

Invalid relocation operation <relocation operation>

You specified a relocation operation not supported by your revision of the Link utility.

Invalid switch |<switch name>

You used an illegal combination of switches. For instance, RDOS does not support multiple
basic overlay areas, so the Link command line X LINK/SYS=RDOS A !*/MULT=2B!C
*! would cause this error.

Invalid switch value JULAST= <partition name>

You used a partition name as an argument to the /ULAST switch, but this partition was not
defined by any object modules.

Link revision no. <revision number> conflicts with rev no. <revision number>2

A revision block in one of the input object modules contained a revision of Link newer than you
are now using. In other words, one of your input object modules contained a revision number in
a revision block that was higher then the revision number in the Link utility. To correct, get a
newer revision of Link.

No start address has been specified

None of the object modules contributing to your program file had a possible starting address in
their end block.

NOTE: The /START switch cannot correct this error. /START generates a starting address
only if the object module it is attached to already has a possible starting address in its
end block.

Not enough contiguous blocks! 3

A Link-generated file cannot fit on a device because the file’s element size is greater than the
number of free contiguous blocks on the device. Note that the element size of an RDOS
overlay file is equal to the file size (in blocks); therefore, on a nearly filled disk, it is sometimes
difficult to find enough free contiguous blocks to hold a large RDOS overlay file.

A'4 Licensed Material-Property of Data General Corporation 093-0002654

/NTOP,/KTOP switch conflict

You used both /NTOP=n and /KTOP=n switches in a Link command line. Although these
switches produce similar results, you may not use both of them in the same Link command
line.

Null switch [<switch name> = <switch value>

You used the GLOBAL switch /<ZR,UD,UC,SD,SC> = <ZR,UD,UC,SD,SC> incorrect-
ly. You cannot put the same partition name on both sides of the equal sign. For instance, the
Link command line X LINK/UC=UC A.OB causes this error.

NOTE: When using the equivalent OB switch, you can put the same partition name on both
sides of the equal sign.

Overwrite previous <<old contents> present <new contents>

Link tried to place two datawords (i.e., code or data) at the same address, or a data block tried
to place datawords in a system table. In some cases overwriting is desirable, and there are a
variety of ways to suppress these messages. (See the “Overwrite-with-message, Overwrite-
without-Message Attribute” section in Chapter 4, and see “/OVER” in Table 5-1 and Table
5-2.) In other cases, overwriting is not desirable — check your absolute code for conflicting
addresses. Many times, this error message goes hand in hand with the “File too large for
address space” error message.

Partition <<name> definition attribute <<bits> conflict

Two object modules each defined a partition with the same name, but the partitions have
different attributes. For instance, Link will emit this error if object module A and object
module B both define a partition named RED, but A’s RED has the unshared attribute and B’s
RED has the shared attribute. Link emits this error regardless of the object block used to
generate the conflicting partitions. For example, even if a named common block generated A’s
RED, and a partition definition block generated B’s RED, Link still would have emitted this
error. To find out which partition attributes conflict, refer to the object block structure of the
partition definition block (Figure B-20) and match up the bits in the error message with the
bits in the first word of a partition descriptor. For instance, suppose the error message reports
a “bit 14 conflict”. Bit 14 in the first word of a partition descriptor is the shared /unshared
attribute.

Reference to undefined symbol <external symbol>

Link could not resolve an external symbol. Make sure that you included all the necessary
object files on the Link command line. Also, make sure that the appropriate system library is
in either your working directory or one of the directories on your search list.

Reference to unknown external <<external number=>?2

An object module contains an external number not defined by a predefined partition, partition
definition block, external symbols block, or address information block. (See Chapter 4 for
information about the external numbering scheme.)

093-000254-01 Licensed Material-Property of Data General Corporation A'5

Relocation overflow from <symbol name>

Link could not reference <<symbol name>> with the relocation operation given. The usual
cause is that Link calculated a displacement (from the relocation operation) which could not
fit into the displacement field. For instance, the assembly language command LDA 1,X,2
produces a 16-bit instruction with an 8-bit displacement field. If Link calculates a displacement
greater than +177g or less than -200g, Link will not be able to fit it into the displacement field.
Sometimes an extended instruction (e.g., ELDA) prevents the error. This error also occurs
when ZREL overflows (i.e., 7ZMAX exceeds ?NBOT) and you can no longer access ZREL
locations with index mode O instructions. Finally, Link puts this error out if one of your
datawords tries to access an address higher than 77777s.

Resource Handler Table overflows 16K

The Resource Handler Table (RHT) went beyond address 37777g. To reduce the size of the
RHT, define fewer PENTSs.

Symbol <name> invalid name length?

An object block defined a name length greater than 32 or less than 1. Link truncates symbol
names to 32 characters if they exceed the limit. Thus, entry symbol ACCOUNTS_RECEIV-
ABLE_KANSAS_CITY_MO and external symbol ACCOUNTS_RECEIVABLE_KAN-
SAS_CITY_KN match.

Symbol <name> is multiply defined
Two object modules are attempting to define an entry symbol with the same name.

NOTE: A library sometimes contains two object modules which both define the same entry
symbol. This does not produce an error.

Symbol <symbol name> is not an accumulating symbol

Symbol name has a symbol type other than accumulating symbol, but you tried to redefine it
as an accumulating symbol. There are two ways to cause this error. First, you included the
PARTSYM switch symbol/VAL=n, but an object module already defined symbol as a
different symbol type. Second, one object module defined symbol as an accumulating symbol
and a second object module defined it as a different symbol type.

Symbol <symbol name> is not an EXTC

An object block specified relocation operation 20g for symbol name, but symbol name is not a
chain external. (See the “External Symbols Block” section in Appendix B.)

Symbol <symbol name> is not a PENT

Link can’t resolve a target word and call word because the target argument is in an overlay,
but it is not a PENT. (See the “Resource Call Resolution” section in Chapter 4.)

A'6 Licensed Material-Property of Data General Corporation 093-000254

Symbol <external symbol> is undefined

Link could not find a matching entry symbol for external symbol. The undefined external
symbol was either emitted by your object modules or by Link itself. If one of your object
modules emitted the external symbol, make sure that all the necessary object files are in the
Link command line. If Link emitted the undefined external symbol, it means that Link is not
reading the appropriate system library. Make sure that SYS.LB or URT.LB (depending on
the target operating system) is either in your working directory or one of the directories on
your search list.

NOTE: You will cause this error if you use the /NSLS switch without including the name of
the appropriate system library on the Link command line.

Symbol table overflow

The .ST file is larger than 65536, bytes. This does not affect the .PR file, but it means that
debuggers using the .ST file may not be able to reference symbols stored beyond the 65536th
byte.

Too many overlay areas

The root contains more overlay areas than the target operating system allows. For AQS, this
number is 100g; for RDOS, this number is 174g.

Too many overlays in area <overlay area number>

There are more overlays in overlay area number than the target operating system allows. For
AOS, this number is 1000g; for RDOS this number is 4005.

Unknown symbol type <name>
An entry block contained a symbol type other than 0 (ENT), 4 (ENTO), or 6 (PENT).

User may not define <entry symbol>

You defined an entry symbol which only Link can define. You will cause this error if your
object modules or your Link command line tries to define any of the following: 2CLOC,
?CSZE, 7NMAX, ?SBOT, ?TTOP, ?TBOT, 7USTA, 7ZMAX, and USTAD.

User may not align <name>

You tried to align name, but since it was not a partition, Link could not align it. This error can
also occur when an object module or switch attempts to increase a normal base partition’s
alignment factor, but other object modules have already contributed to the partition.

093-000254 Licensed Material-Property of Data General Corporation A'7

UST TCB or Overlay Directory overflows 1K

AOS and mapped versions of RDOS require the UST (User Status Table), TCBs (Task
Control Blocks) and Overlay Directory to fit within the first page of the program file.
Therefore, Link emits this error if it builds any part of one of these tables at an address above
01777g. The size of these system tables depends on several factors; refer to the A0S
Programmer’s Manual (or Chapter 2 of this manual) for information on system tables. This
restriction does not apply to .SV files that will run on unmapped RDOS.

ZREL overflow

7ZMAX is greater than 00377; your object modules contributed too many datawords (i.e.,
code or data) to the ZREL partition.

1 Fatal error.

2 If you are certain that this error was not due to a faulty command line or some other user
error, please report it to your system manager or the appropriate Data General Corporation
compiler/assembler support personnel.

3 AOS system error. Refer to the AOS Programmer’s Manual for more information.

End of Appendix

A'8 Licensed Material-Property of Data General Corporation 093-000254

Appendix B
Object Block Structure

Each object module consists of a series of two or more object blocks. An object block is a set of
three or more words produced by a language processor as it interprets your source code.
Currently, Link supports 21, different types of object blocks.

This appendix shows the structure of the object blocks Link recognizes. If you’re linking object
modules produced by the AOS Macroassembler or by an AOS language compiler, you may
find this chapter a useful reference. If you're linking object modules produced by your own
language processor, the information in this chapter is essential, since the structure of the object
blocks you create must conform to Link’s expectations.

Object Block Restrictions

An object module need not contain all of the blocks listed in Table B-1. However, Link imposes
several restrictions on the order of the object blocks in a module, as Table B-2 indicates.

Table B-1. Object Block Types

Object Block Block Object Block Block

Type Type
data block 0 accumulating symbol block 15
title block 1 debugger symbols block 16
end block 2 debugger lines block 17
unlabeled common block 3 lines title block 20
external symbols block 4 library end block 21
entry symbols block 5 (reserved) 22
local symbols block 6 partition definition block 23
library start block 7 (reserved) 24
address information block (AIB) 10 (reserved) 25
shared library block (not supported) 11 revision block 26
task block 12 filler block 27
limit block (not supported) 13 module revision block 30
named common block 14 alignment block 31

093-000254 Licensed Material-Property of Data General Corporation B' 1

Table B-2. Object Block Order

Object Block Order
title block must be the first object block in every object module.
revision block if used, must be the second object block in the object module.

address information block(s) (AIB) if used, must appear before any external symbols block or
partition definition block. Must also appear before any other
object block that refers to a partition defined by it.

partition definition block(s) if used, must appear after any AIBs. Must also appear before
any object block that refers to a partition defined by it.

alignment block ‘ if used, must appear after an AIB, partition definition block,
or named common block that it refers to. Must also appear
before any object block that refers to a partition defined by
an AIB, partition definition block, or named common block.

external symbols block(s) if used, must appear after all AIBs and partition definition
blocks. Must also appear before any data block that refers to
an external number defined by the external symbols block.

data block(s) if used, must appear after any external symbols block, AIB,
local symbols block(s) or partition definition block that it refers to. In other words,
entry symbols block(s) these object blocks cannot use an external number until an
named common block(s) external symbols block, AIB, or partition definition block
accumulating symbol block(s) defines it

debugger symbols block(s)
debugger lines block(s)

lines title block if used, must be the next to last object block in the object
module. That is, the end block comes immediately after it.

end block must be the last object block in every object module.

The object blocks in an object module must be contiguous, that is, there can be no extraneous
information between the last word of one block and the first word in the next block. No object
block, except the library start block, can contain more than 20004 words.

Standard Object Block Header

Except for the library start block, every object block begins with the standard three-word
header shown in Figure B-1.

Bits

reserved = 0 block type

sequence number

length of block (in words)

DG-25092

Figure B-1. Object Block Header

B '2 Licensed Material-Property of Data Genera! Corporation 093-000254

The left byte in the first header word must be set to 0 in all object blocks except the data block.
(Refer to the “Data Block” section:)

Block type identifies the object block by its type number. Refer to Table B-1 for a list of the
block types and the corresponding object blocks.

Sequence number, the second header word, indicates the position or sequence of the object
block relative to the other object blocks in the object module. For example, the title block
always has a sequence number of 1 because it must be the first object block in the object
module. The next object block must contain sequence number 2, and so on.

Block length, the third header word, contains the total number of 16-bit words in this object
block, including the header words. For example, the task block always contains four words,
including the header, so its block length is 4.

Relocation Entries and Relocation Dictionary Entries

If you scan the object block formats shown in this appendix, you’ll notice that many contain
one or more relocation entries. Different object blocks use relocation entries differently, but in
most cases, relocation entries help Link calculate symbol values.

Four object blocks contain relocation dictionary entries. Link uses a relocation dictionary
entry to resolve the value of an individual dataword in a data block, debugger symbols block,
debugger lines block, or lines title block.

Although their formats differ, both relocation dictionary entries and relocation entries consist
of an offset, an external number, and a relocation operation.

The function of the offset depends on the object block it is contained in. It may determine the
length of a common base partition, the value of a symbol, or the position of a group of
datawords within a partition.

An external number usually tells Link which partition or external symbol this relocation entry
or relocation dictionary entry refers to.

A relocation operation is a number corresponding to the function shown in Table B-3. Usually,
there are two arguments to these functions: data and relocation base.

Data, in Table B-3, might be either the contents of a particular dataword or it might be the
offset itself. It depends on the object block that defines the relocation entry or relocation
dictionary entry.

The value of relocation base in Table B-3 depends on block type and on the external number
in the relocation entry or relocation dictionary entry. If the external number refers to an
external symbol, then the value of the relocation base is equal to the value of the matching
entry symbol. If the external number refers to a normal base partition, then the value of the
relocation base equals the partition relocation base plus the displacement of previous object
modules’ contributions to this partition. If the external number refers to a common base
partition, then the relocation basc equals the partition relocation base. (Chapter 4 describes
the common base and normal base attributes.)

093-000254 Licensed Material-Property of Data General Corporation B'3

Table B-3. Relocation Operations

Relocation Function Comments
Operation
0 absolute relocation:
result = offset
1 word relocation: -2000003 <= result <= +177777g
result = relocation base + signed 16-bit data.
2 byte relocation: -2000005 <= result <= +177777;
(2 * relocation base + dataword)
3 if dataword’s bits 1 - 15 equal zero, then word -2000003 <= result <= + 177777
relocation:
result = relocation base + 16-bit data.
3 if dataword’s bits 6 and 7 are zero, then index 0 <= intermediate result <= +377g
mode 0 16-bit displacement relocation:
intermediate result = 8-bit relocation base +
unsigned 8-bits data; final result = intermediate
result + high 8-bits of data.
3 if either bit 6 or bit 7 in the dataword is 1, then |-2003 <= intermediate result <= +177g
relative 16-bit displacement relocation:
intermediate result = 8-bit relocation base +
signed 8-bit data; final result = intermediate
result + high 8-bits of data.
4 subtraction relocation: -200000g <= intermediate result <= +177777g
intermediate result = relocation base - signed
15-bit data; final result = intermediate result +
16-bit data (where bit 0 is the indirect bit)
5 primitive overlay relocation:
dataword is replaced by a 0 in bit 0, the overlay
area number in bits 1 through 6, and the overlay
number in bits 7 through 15.
6 multiplication relocation:
result = relocation base * unsigned 16-bit data
7 debugger symbols chain-link: creates a reverse chain of addresses in the .DS file.
dataword replaced by previous chain-link. (See the “Debugger Symbols Block™ section in
Appendix B.)
10 call word relocation: resolves the call word of a resource call. (See
Chapter 4 for details on resource call resolution.)
11 GREF (global reference): -2000003 <= intermediate result <= +177777g
intermediate result = base + signed 15_bit data.
final result = intermediate result + 16_bit data
(including the indirect bit).
12 15-bit PC relative relocation: -200000g <= intermediate result <= +177777g
intermediate result = relocation base + signed
15-bit data minus the address that Link will place
dataword at; final result = intermediate result
+ unsigned 16-bit data (including the indirect
bit).
13 target relocation: resolves the target word of a resource call. (See
Chapter 4 for details on resource call resolution.)
(continues)
B'4 Licensed Material-Property of Data General Corporation 093-000254

Table B-3. Relocation Operations

Relocation Function Comments
Operation

14 16-bit PC relative relocation: -200000g <<= result <= +177777,
result = relocation base + signed 16-bit (data)
minus the address that Link will place dataword
at.

16 bit-field relocation dictionary entry designator
(not an actual relocation operation).

17 extended relocation designator (not an actual
relocation operation).

20 .PR file chain-link: Creates a reverse chain of addresses in the .PR file;
dataword replaced by previous chain-link. used to resolve EXTC external symbols.

21 Offset: -2000003 <<= intermediate result <= +177777g
result = 16-bit unsigned offset + 16-bit data

22 Subtraction relocation (type 2): -2000003 <<= intermediate result <= 4177777,
intermediate result = 15-bit signed data minus
the relocation base; final result = 15-bit interme-
diate result + 16-bit data (including the indirect
bit).

23 Bit relocation: 0 <= result <<= 2000004

result = (4 * relocation base) + 16-bit data.

(concluded)

Figures B-2 and B-3 show the format for standard relocation entries and standard relocation
dictionary entries. These formats are quite similar, the one difference being that relocation
dictionary entries always point to a specific dataword; while relocation entries can point to one
dataword, an entire set of datawords, or no datawords at all.

Bits

2 3 4 5 6 7 8 9 10 11 12 13 14 15

offset or value

external number relocation operation

DG-25093
Figure B-2. Standard Relocation Entry
2 3 4 5 6 7 8 9 10 11 12 13 14 15
offset (pointer to dataword)
external number relocation operation
DG-26094
Figure B-3. Standard Relocation Dictionary Entry

093-000254 Licensed Material-Property of Data General Corporation B'5

Extended Formats

Relocation operations greater than 17g cannot fit within the 4 bits of the second word;
however, they can fit in an extended format. Figures B-4 and B-5 illustrate extended relocation
entries and extended relocation dictionary entries. You must use these formats when the
relocation operation is greater than 17g; you have the option of using these formats for
relocation operations 17g or less.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

external number

reloc.op 17

offset or value

0G-25095
Figure B-4. Extended Relocation Entry
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
offset (pointer to dataword)
reloc.op 17
external number
DG-25096

Figure B-5. Extended Relocation Dictionary Entry

Bit Field Relocation Dictionary Entry

A bit field relocation dictionary entry permits partial word resolution. A bit field relocation
dictionary entry is similar to an extended relocation dictionary entry; however, Link uses an
extended relocation dictionary entry to resolve a word or a byte, and Link uses a bit field
relocation dictionary entry to resolve any contiguous string of bits in a dataword. You can use
a bit field relocation dictionary entry in place of a standard or extended relocation dictionary
entry.

As Figure B-6 shows, a bit field relocation dictionary entry consists of 4 words. The 16 in bits
12 through 15 of the second word tells Link that this is a bit field relocation dictionary entry.
The offset, relocation operation, and external number in a bit field relocation dictionary entry
perform the same function as in an extended relocation dictionary entry. In both types of
entries, the offset points to a particular dataword which serves as “data” for the relocation
operation. In an extended relocation dictionary entry, Link substitutes a new value for the
dataword. In a bit field relocation dictionary entry, Link calculates a. new value for the
dataword, and then uses the start of bit field and and width of bit field - 1 as a sort of bit mask.
Link resolves only the bits within this range. Link does not resolve bits to the left of the start
of bit field or to the right of the start of the bit field plus width of bit field - 1.

B'6 Licensed Material-Property of Data General Corporation 093-000254

For instance, consider the 16-bit dataword 1111111111111111. Suppose that the offset points
to this dataword and that the relocation operation calculates a new value for this dataword —
0000000000000000. If this is an extended relocation dictionary entry, Link would substitute
0000000000000000 for 1111111111111111. Assume though, that this is a bit field relocation
dictionary entry with start of bit field equal to 6, and width of bit field - 1 equal to 3.
Therefore, bits 6 through 9 are affected by the relocation operation, but bits 0 through 5 and
10 through 15 are not affected, and Link substitutes 1111110000111111 for
LI1111181111111.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

offset (pointer to dataword)

reloc.op 16

external number

start of bit field width of bit field - 1

DG-25097

Figure B-6. Bit Field Relocation Dictionary Entry

Examining Object Blocks

You can not examine object blocks with text editors, but there are several utilities you can use:

DEDIT the disk file editor allows you to examine and change the contents of an OB
file. See the AOS Debugger and File Editor User’s Manuall.

DISPLAY the CLI command that produces an octal dump of any file. See the Command
Line Interpreter User’s Manual (AOS,AO0S/VS) for details.

LFE the function-letter A analyzes a library file or .OB file. The listing

summarizes partition contributions and names all entry and external symbols
defined in an object file. See Chapter 6 of this manual for details.

Link the global Link switch /OBPRINT produces an octal dump, grouped by
object block, of every object module that Link loads into a program file or
overlay file.

Note: In an OBPRINT listing, the title of the object module is spelled
out immediately after the title block.

093-000254 Licensed Material-Property of Data General Corporation B'7

Object Block Rules

Many object blocks require the information shown below. Link expects object blocks to obey
the following rules:

o Byte pointers identify the beginning of a byte string. Use the following formula to calculate
the value of a byte pointer:

byte pointer = (2 x number of words preceding the beginning of the byte string) + (1 if
byte string begins on a right byte or 0 if byte string begins on a left byte)

For example, a byte pointer with a value of 0 refers to the left byte of the first word in an
object block; a value of 1 points to the right byte of the first word. A byte pointer with a value
of 2 marks the left byte of the second word, and so on.

o Symbol names are packed two ASCII characters per word. Link truncates symbol names
longer than 405 characters to 40g characters.

Examples Used in This Appendix

This appendix contains sample object blocks for some of the more complex object block
formats. Basically, these sample object blocks show the OBPRINT listing you would get if you
used the specifications described in the example. The numbers at the top and left side of these
sample listings are to aid you in finding the proper word. Note that in our numbering scheme,
the first word in an object block is Word 0.

Data Block

The data block contains the actual datawords that comprise a .PR or .OL file. In addition, the
data block tells Link which partition these datawords will contribute to and where within this
partition they should be allocated. Finally, data blocks help Link resolve the contents of
individual datawords. Figure B-7 shows the structure of the data block.

Bit 4 of Word 0 is an overwrite flag. Overwriting means that Link reallocated the contents of
a previously filled address. If this bit has a value of 1, Link suppresses overwrite messages. If
this bit has a value of 0 and if overwriting occurs, Link sends an error message to the
appropriate error files.

Bit 7 of Word 0 is a code flag. When bit 7 is set, it means that the data block contains code (as
opposed to data). Link ignores this bit’s value, but some utilities use it.

Each data block must contain one relocation entry. This relocation entry defines an external
number usually corresponding to a partition, but occassionally corresponding to an external
symbol (see pseudo-op .GLOC in the A0S Macroassembler Reference Manual). The offset
and the relocation operation tell Link how the entire set of datawords in the data block should
be allocated. Usually, the relocation operation is 1 — word relocation. If the external number
refers to a common base partition, and the relocation operation is 1, Link allocates datawords
beginning at the address equal to the partition relocation base plus the offset. If the external
number refers to a normal base partition, the beginning allocation address depends on the
amount of datawords other data blocks have already contributed to that partition. Assuming
that the relocation operation is 1, Link begins allocating datawords at the partition relocation
base plus the number of addresses already filled by contributions to the partition plus the
offset.

For instance, suppose two object modules each contain one data block that contributes to a
normal base partition. Suppose the first data block contributes 1003 datawords to the partition.
Therefore, the beginning allocation address for the second object block is the partition relocation
base + 100g. If the relocation operation of the second data block’s relocation entry is 1, then
Link begins allocating the second data block’s datawords at the partition relocation base +
100g + offset.

B'8 Licensed Material-Property of Data General Corporation ’ 093-000254

After the relocation entry, the data block contains the datawords that will comprise the .PR
(or .OL) file.

A data block may contain zero or more relocation dictionary entries. A relocation dictionary
entry affects only the dataword that it points to. The external number in a relocation dictionary
entry corresponds to either a partition or an external symbol. The relocation operation tells
Link what it should do with the dataword once it sets a value for the partition or matching
entry symbol.

Sometimes, a relocation dictionary entry helps Link resolve the displacement field of a
memory reference instruction. For example, suppose your language processor chooses to
generate the machine language equivalent of LDA 2,TAX, but symbol TAX is not defined
within this object module. In this case, the language processor can write the machine language
equivalent of LDA 2, and leave the displacement field 000 (i.c., 024000). Then, the language
processor can put TAX in an external symbols block and generate a relocation dictionary entry
pointing to this LDA command. Given the relocation operation within the relocation dictionary
entry, Link will be able to write the correct displacement into the displacement field as soon as
it knows TAX’s .PR file address.

Word © 4 78 15
0 0 c block type
=0
1 sequence number
2 length of block
3 number of datawords

relocation entry
specifying dataword placement address

datawords

I
(¢

zero or more relocation
dictionary entries

DG-25098

Figure B-7. Data Block

093-000254-01 Licensed Material-Property of Data General Corporation B'g

Data Block Formats 0, 1, and 2

Currently, Link defines three formats for data blocks: 0, 1, and 2. The distinction between
Revision 0 and Revision 1 is very slight, the only difference is the way Link interprets the offset
of a relocation dictionary entry. If the format revision is 0:

relocation dictionary entry offset = relocation entry offset + offset within this data block
If the format revision is 1:
relocation dictionary entry offset = offset within this data block

For example, consider an object module containing two data blocks, both of which contribute
to the predefined Unshared Data partition. Assume that the first data block contributes 5
datawords to this partition. Therefore, you set the offset in the relocation entry of the second
data block to 5. Suppose you want a relocation dictionary entry pointing to the third dataword
of the second data block. If you are using a revision 0 data block, set the offset of the relocation
dictionary entry to 7 (= 5 + 2). For a revision 1 data block, set the offset of the relocation
dictionary entry to 2.

Format revision 2 is useful for initializing large arrays. Although AOS Link supports it,
revision 2 is primarily used in 32-bit programs.

A revision 2 data block contains an extra two words between the “number of datawords” and
the “relocation entry specifying dataword placement address”. This double word is called the
repetition count. As the name implies, the repetition count tells Link how many times it should
repeat allocating the datawords in this data block. The first word defines the high-order
portion of the repetition count and the second word (which can only be used by AOS/VS
object modules) defines the low-order portion of the repetition count.

For instance, suppose you wanted to initialize the contents of each word in a 5000 word array
to -1. To accomplish this, you can set the repeat count to 50 and generate 100 datawords
containing -1. Since 50 * 100 = 5000, Link will initialize each word in the 5000 word array to
-1.

Revision 0 is the default format. Use a revision block to change this default. (See the “Revision
Block” section in this chapter.)

Example

0 1 2 3 4 S 6 7
0 000000 000003 000023 0600011 000000 000101 137000 030000
10 133000 106470 000004 152400 006017 100012 000775 000001
20 000223 000004 000212

NOTE: Assume that this is a revision 0 data block and that this is the first data block in an
object module.

The sample data block shown above defines 11 (see Word 3) datawords beginning at Word 6
and continuing through Word 16. Because the external number of the relocation entry (bits 0
through 11 of Word 5) is 4, these datawords will contribute to the predefined Unshared Code
partition. Because the offset is 0 (see Word 4), Link will allocate these datawords at the object
module relocation base for Unshared Data.

This data block defines two relocation dictionary entries. The first relocation dictionary entry
occupies Words 17 and 20. It points to dataword 1 (which corresponds to Word 7) is an LDA
instruction. Link uses relocation operation 3 to calculate the displacement field of the LDA
. instruction.

The second relocation dictionary entry occupies Words 21 and 22. It points to dataword 4
(which corresponds to Word 12) which is the displacement field of an EJSR"instruction. Link
uses relocation operation 12 to calculate the displacement field of the EJSR instruction.

B" 1 0 Licensed Material-Property of Data General Corporation 093-000254

Title Block

The title block defines the name and revision number of one object module. Figure B-8 shows
the structure of the titie block.

Bit 4 of Word 0 is a forced load flag. Link ignores this bit; however, LFE does not. If bit 4 is
set, LFE also sets the forced load flag in the appropriate OB descriptor within the library start
block. Note that force-load decisions made in title blocks are not irrevocable; you can set or
clear the real forced load flag (the one in the library start block) when you use LFE.

Note that the sequence number (Word 1) must always be 1. That is, the title block must
always be the first object block in an object module.

The left byte of Word 3 contains the major revision number, while the right byte contains the
minor revision number. These numbers serve two purposes. First, you can use them as
mnemonic markers. Second, they define a possible .PR file revision number.

Link stores the .PR file revision number in offset USTRYV of the User Status Table (UST).
The value of the .PR file revision number is equal to the value of the first valid revision number
Link encounters in either a title block or a module revision block. (See the “Module Revision
Block” section.) Any revision number other than 255.255 is valid.

The AOS CLI command REYV also sets (or displays) the contents of offset USTRV.

The GLOBAL switch /REV =n overrides revision information in both the title block and the
module revision block.

Bits
0 4 7 8 15 Word
block type
F yp 0
=1
sequence number
=1 1
length of block 2
major rev. minor rev.
number number 3
byte length of title 4
title byte pointer 5
title 6
J‘ -~

DG-25099

Figure B-8. Title Block

Sample Title Block

0 1 2 3 4 5 6 7
000001 000001 000010 006420 000003 000014 051105 042000

The above listing shows a title block with the name “RED” and the revision number “13.16”

093-000254 Licensed Material-Property of Data General Corporation B' 1 1

End Block

The end block defines the end of the object module and, optionally, a potential starting address
for the .PR file. Figure B-9 shows the structure of the end block.

All object modules must contain one end block and it must be the last object block (i.e., it must
have the highest block sequence number).

The relocation entry in an end block optionally defines a possible starting address for the .PR
file. A starting address is the address of the first instruction in the program file that the CPU
will execute at runtime.

If more than one object module defines a possible starting address, Link sets the .PR file
starting address to the last valid possible starting address it encounters on the Link command
line. If the OB switch /START is present, Link sets the .PR file starting address to the
possible starting address of the object module the switch was attached to. If none of the object
modules on the Link command line define a possible start address, then Link sends a “No start
address has been specified” message to the appropriate error files.

If the OB switch /MAIN is present, Link sets the value of symbol .MAIN to the possible
starting address of the object module.

Usually, the relocation operation for the end block relocation entry is “1”. In this case, the
offset points to a particular dataword in the object module. The possible starting address is
simply the address in the .PR file that this particular dataword will occupy. If you do not want
this object module to define a possible starting address, set the offset to a negative number.

Word O 78 16
0 reserved block type
=0 = 2
1 sequence number
2 length of block

relocation entry

DG-26100

Figure B-9. End Block

B' 1 2 Licensed Material-Property of Data General Corporation 093-000254

Unlabeled Common Block

Link generates an unlabeled common area if any of the object modules on the Link command
line contain an unlabeled common block. Under RDOS, the user allocates the unlabeled
common area at runtime. Under AOS, Link always builds the unlabeled common area in
unshared NREL just above the system tables.

Figure B-10 shows the format for the unlabeled common block. The size of an unlabeled
common area is defined by the relocation entry’s offset.

If Link encounters several unlabeled common blocks, it sets the size of the unlabeled common
area to the largest offset it encounters.

Word 0 78 15
o reserved block type
=0 =3
1 block sequence number
2 block length
relocation
entry
specifying length
DG-25101

Figure B-10. Unlabeled Common Block

093-000254 Licensed Material-Property of Data General Corporation B' 1 3

External Symbols Block

An external symbols block defines one or more external symbols. An external symbol is a
symbol (e.g., label, variable) whose value is defined by another object module. Figure B-11
shows the structure of the external symbols block.

When you declare an external symbol, Link searches other object modules for an entry symbol
with the same name. For instance, if you define symbol PUT in an external symbol block, Link
searches in entry symbols blocks, named common blocks, and accumulating symbols blocks for
an entry symbol named PUT. Link can resolve the external symbol if it can find a matching
entry symbol; if Link can’t find a match, it sends an error message to the appropriate files.

Figure B-11 shows the structure of the external symbols block. Notice that this object block
contains no relocation information (i.e., no relocation operations, no external numbers). Instead,
Link gets relocation information from the matching entry symbol.

Word 3 contains the number of external symbols defined in the object block. After Word 3,
you must define one external symbol descriptor for each external symbol.

If external mnemonic in an external symbol descriptor has the value 0, Link considers the
symbol a standard external symbol (symbol type EXT).

If external mnemonic in an external symbol descriptor has the value 1, Link considers it a
chain external (symbol type EXTC). A chain external allows you to build a reverse symbol
chain across two or more object modules. Link records the name and value of each chain
external in the .ST file. If the symbol already exists in the .ST file, but has a different symbol
type, then Link generates an error.

Link sets symbol ?LBOT equal to the value of the first chain external it encounters. When it
encounters subsequent references to a chain external, Link creates a reverse chain of addresses.
At execution time, a reference to a chain external is actually one or more indirect addressing
instructions where the final instruction leads to the value of ?LBOT.

Chain externals must be referred to by relocation operation 20.

If external mnemonic in an external symbol descriptor has the value 2, Link considers the
symbol a suppressed external (symbol type EXTS). Link allows suppressed externals to
remain undefined without issuing an undefined symbol error. That is, suppressed externals do
not cause Link errors when Link can’t find a matching entry symbol.

Link assigns the value 7UNDF to all unresolved external symbols. 7UNDF has a default value
of -1, but you may change this default.

For more information on 7UNDF and ?LBOT, see Appendix C.

B' 1 4 Licensed Material-Property of Data General Corporation 093-000254

Wordo 78 15

o] reserved (=0) | block type (4)

1 sequence number
2 block length
3 number of symbols
external mnemonic | byte length of
EXTERNAL =0,10r2 symbol name
SYMBOL -
DESCRIPTOR i
byte pointer to symbol name
A R A
.
.
symbol names
L]
L]
) [
DG-26102

Figure B-11. External Symbols Block

Example

0 1 2 3 4 5 6 7
0 000004 000003 000014 000002 000003 000020 001004 000023
10 050125 052123 044516 042400

The external symbols block shown above defines 2 (see Word 3) external symbols. The first
external symbol is 3 bytes long (see right byte of Word 4) and begins at byte 20 (see Word 5).
Byte 20 corresponds to the left byte of Word 10. Therefore, the first external symbol is named
A‘PUT”'

The second external symbol is a 4 character (see right byte of Word 6) chain external (see bit
6 of Word 6.) Byte 23 corresponds to the right byte of Word 11. Therefore, the second external
symbol is named “SINE”.

093-000254 Licensed Material-Property of Data General Corporation B‘ 1 5

Entry Symbols Block
An entry symbols block defines one or more entry symbols. Entry symbols serve two purposes:
* Link matches external symbols with entry symbols to perform intermodular communication.

¢ Link stores the values of all entry symbols in the .ST file where you can use them to debug
your program.

Figure B-12 shows the format of an entry symbols block.

Word 3 tells Link how many entry symbols the object block defines. You must build one entry
symbols descriptor” for each entry symbol defined in the object block.

“Symbol type” must contain one of the following numbers:
¢ 0 if the entry symbol is an ENT

* 4 if the entry symbol is an ENTO

¢ 6 if the entry symbol is a PENT

Word 78 15
0 reserved block type
1 block sequence number
2 block length
3 number of symbols

symbol type |length of symbﬂ

=0,4,0r6 name
ENTRY byte-pointer to symbol name
SYMBOL
DESCRIPTOR

relocation entry
defining symbol value

~ . ~
L]
L]

symbol names
.
L]
L]

DG-26103

Figure B-12. Entry Symbols Block

B' 1 6 Licensed Material-Property of Data General Corporation 093-000254

(Refer to Appendix C for more information on symbol types; refer to Chapter 4 for details on
ENTs and PENTs.)

Each entry symbol descriptor contains a relocation entry. This relocation entry allows Link to
define a value for this symbol. Once Link knows the value of a symbol, it can resolve external
symbols.

After the last entry symbol descriptor, an entry symbols block contains the names of all entry
symbols packed two characters to a word.

Example

0 1 2 3 4 5 6 7
0 000005 000002 000021 000002 003007 000030 000000 000161
10 000004 000037 000015 000101 046501 054111 046525 046501
20 053122 043400

The sample entry symbols block shown above defines 2 entry symbols (see Word 3). The first
entry symbol is a PENT (see left byte of Word 4). Its name is 7 characters long (see right byte
of Word 4) and begins at byte 30 (see Word 5). Byte 30 is equivalent to the left byte of Word
14. Therefore, the symbol is named MAXIMUM. Words 6 and 7 form a standard relocation
entry. Bits O through 11 of Word 7 contain the external number 7 (which corresponds to the
predefined Shared Code partition.) The relocation operation (see bits 12 through 15 in Word
7) is 1 which tells Link to set MAXIMUM’s value to the offset plus the beginning address of
the object module’s contributions to SC. Since the offset is 000000 (Word 6), Link will give
MAXIMUM a value equal to the beginning address of the object module’s contributions to
SC.

The second entry symbol is a 4-character ENT named AVRG. Its external number is 4 (which
corresponds to the predefined Unshared Code partition). The offset 15 and the relocation
operation 1 tell Link that symbol AVRG is to have a value equal to 15 plus the beginning
address of the object module’s contributions to UC.

Local Symbols Block
A local symbols block defines one or more local symbols.

Like entry symbols, local symbols are often used in debugging; unlike entry symbols local
symbols can’t be used for intermodular communication. That is, Link does not satisfy external
symbols with local symbols.

Although Link automatically puts entry symbols in the .ST file, it puts an object module’s
local symbols in the .ST file only if you affix the OB switch /LOCAL to the object module.

Aside from block type (which must be 6), there is only one difference between a local symbols
block and an entry symbols block (detailed in Figure B-12). While an entry symbols block can
have a symbol type of 0, 4, or 6, a local symbols block must have a symbol type of 0.

093-000254 Licensed Material-Property of Data General Corporation B' 1 7

Library Start Block

A library consists of a library start block, a set of object modules, and a library end block. The
library start block must be the first object block in a library. The Library File Editor generates
this block. Figure B-13 shows the structure of the library start block.

There is a slight deviation from the ordinary object block header. Unlike other blocks, library
start blocks can exceed 2000g words in length. Also, if bit 0 in Word 1 is set, Link reads the
block length as a double word. That is, if bit O has a value of 1, then Word 1 contains the
high-order portion of the block length and Word 2 the low-order.

A library start block contains one object module descriptor for each object module in the
library. In essence, these object module descriptors allow Link to scan a library’s vital details
(entry symbols and forced load flags) without having to scan the entire library.

In an object module descriptor, Words 1 and 2 contain a number equal to the distance from the
beginning of the first object module in the library. In other words, the offset of the first object
module is always 0. The offset of the second object module is equal to the length of the first
module. The offset of the third object module is equal to the sum of the lengths of the first and
second object modules. Because a library may exceed 100000g words in length, the offset is
always a double word.

Word 3 in an object module descriptor defines the length of the object module (in words).

Bit 5 of Word 5 in an object module descriptor is the forced load flag. If this bit has a value of
1, Link will automatically load the object module. If this bit has a value of 0, Link will load the
object module only if one of its entry symbols resolves an outstanding external symbol. Note
that there is a forced load flag in the title block as well; however, Link only reads the forced
load flag in the object module descriptor. In other words, if the forced load flag in the title
block is set (i.e., equal to 1), but the forced load flag in the corresponding object module
descriptor is clear (i.e., equal to 0), Link will not force load this object module.

Object module descriptors define the title of the appropriate object module. “Title” means the
symbol stored in the title block of the corresponding object module. The title must be packed
two characters per word beginning at Word 6 of an object module descriptor.

A library start block must contain one entry descriptor for each entry symbol (ENT, PENT, or
ENTO) defined in the corresponding object module. The first word of an entry descriptor
defines the the number of characters in the symbol. Then comes the symbol itself packed two
characters per word.

B - 1 8 Licensed Material-Property of Data General Corporation 093-000254

DG-25104

Word 0 4 7

object
module <
descriptor

8 15
reserved block type
. block length (high-order bits)
block length (low-order bits)
number of object modules in the library
Word
length of this object module descriptor 0
offset of this object module (high-order) 1
offset of this object module (low-order) 2
length of object module 3
number of entry symbols 4
F byte length of title 5
object module title 6
(packed two characters per word)
length of ent
g entry symbol, entry
name of entry symbol; packed two descriptor
characters per word
<L : NN
™ . ~—r
bol
length of entry symbol, entry
name of entry symbol,, packed two descriptor,,
characters per word

* IF BIT=1, BLOCK LENGTH IS 32 BITS
IF BIT=0, BLOCK LENGTH IS 16 BITS

093-000254

Figure B-13. Library Start Block

Licensed Material-Property of Data General Corporation

B-19

Example

0 1 2 3 4 S 6 7
0 100067 000001 000040 000002 000015 000000 000000 000076
10 000001 004005 051105 040504 051400 000005 051524 040522
20 052000 000017 000000 000076 000047 000002 000004 043114
30 047527 000004 043111 041501 000005 050101 054522 046000

The library start block listed above was taken from a library generated by LFE. LFE created
the library from 2 (see Word 3) object modules. The first object module descriptor begins at
Word 4, and the second begins at Word 21. Words 5 and 6 contain the first object module’s
offset which is, of course, 0; while Word 7 contains the length of the object module (76).
Logically, the second object module should have an offset of 76 (previous offset + length of
previous object module) and words 22 and 23 verify that fact.

The first object module title is READS (see Words 12 and 13 and the left byte of Word 14)
and it contains one entry symbol: START (see Words 16 and 17, and the left byte of Word
20). READS’s forced load flag (bit 4 in Word 11) is set. Therefore, Link will automatically
load READS if this library is included in a Link command line.

The second object module title is FLOW (see Words 27 and 30) and it contains two entry
symbols: FICA (see Words 32 and 33) and PAYRL (see Words 35 and 36 and the left byte of
Word 37). The force-load flag (bit 4 in Word 26) is clear. Therefore, if this library is included
in a Link command line, Link will load FLOW only if FICA or PAYRL resolve an outstanding
external symbol.

Address Information Block

You can use address information blocks (AIBs) to generate overlays and user-defined partitions.
AlIBs can only define partitions that have the same set of attributes as the predefined NREL
partitions. Also, the external numbering scheme for AIBs is inflexible. Instead of using AIBs,
we recommend generating user-defined partitions with the partition definition block, and we
suggest that you set up overlays by using overlay area delimiters and overlay delimiters on your
Link command line. (See Chapter 4 for a more detailed comparison of AIBs, partition
definition blocks, and named common blocks.) Figure B-14 shows the structure of the address
information block.

Word 3 of an AIB defines the number of user-defined partitions you want to set up with the
AIB. You must then define a one word entry called a partition descriptor for each user-defined
partition in Word 3. The right byte of a partition descriptor contains a predefined partition’s
external number. This number tells Link which attributes the partition defined by the AIB will
contain. For instance, if this byte contains external number 4, Link defines a partition which
has the same attributes as the predefined Unshared Code partition. You may use external
numbers 4, 5, 6, or 7 only.

]

The left byte of each partition descriptor defines the external number that Link will use to
establish a relocation base for this partition. Chapter 4 describes the external numbering
scheme and how AIBs fit into it.

After the last partition descriptor, an AIB may optionally define one or more overlays. If you
do not want to define overlays with this AIB, set the number of overlay descriptors to 0. If you
place a nonzero number here, you must set up a corresponding number of overlay descriptors.
Each overlay descriptor consists of two words.

The right byte of the first word of an overlay descriptor is an external number which tells Link
which predefined partition the overlay should inherit its attributes from. Since partitions with
the data attribute cannot contribute to an overlay area, you must use either 4 (for the
predefined Unshared Code partition) or 7 (for the predefined Shared Code partition).

The left byte of the first word of an overlay descriptor is the external number that Link will use
to define this overlay’s relocation base.

B - 2 0 Licensed Material-Property of Data General Corporation 093-000254

The second word of an overlay descriptor defines the relative overlay area number and overlay
number for the code associated with the external number. The first overlay descriptor in each
AIB must define an overlay area number of 0 and an overlay number of 0. Subsequent overlay
descriptors must be numbered consecutively. The overlay information you use in these AIBs
allows Link to set up overlays, but Link treats these as local values. That is, when Link builds
overlays in the .OL file, it does not necessarily use the same set of overlay area numbers and
overlay numbers that you assigned in the AIB.

(0] 7 8 15
Word reserved block type
0 =0 =10
1 sequence number
2 block length
3 number of partitions defined in this block
partition external number predefined partition’s
descriptor external number
number of overlays defined in this block
| b predefined partition’s
overlay external numoer external number
descriptor overlay area number overlay number
.
.
~ ~~
DG-25105
Figure B-14. Address Information Block
Example

0 1 2 3 4 5 6 7
0 000010 000020 000015 000002 004004 004405 000003 005004
10 000000 005404 000001 006007 000400

Shown above is a sample address information block. Word 3 indicates that this AIB defines 2
partitions. The first partition will have the same attributes as the predefined Unshared Code
partition (right byte of Word 4) and the second partition will have the same attributes as the
predefined Shared Data partition (right byte of Word 5).

Word 6 indicates that this AIB defines 3 overlays. The overlay area number of 0 (see left bytes
of Words 10 and 12), indicates that the first two overlays contribute to the same overlay area.
The third overlay descriptor defines an overlay area number of 1 (see left byte of Word 14),
which means that this overlay contributes to a second overlay area. The first overlay area is
unshared because the right byte of Word 7 and Word 11 contains external number 4 (which
corresponds to the predefined Unshared Code partition). The second overlay area is shared
because the right byte of Word 13 contains a 7 (which corresponds to the predefined Shared
Code partition.)

The left bytes of Words 4, 5, 7, 11, and 13 define external numbers beginning with 10 and
increasing sequentially to 14.

093-000254 Licensed Material-Property of Data General Corporation B"2 1

Task block

Link uses task blocks and/or the GLOBAL switch /TASKS=n to determine the maximum
number of tasks a process may initiate. Link stores this number in the User Status Table.
Figure B-15 shows the structure of the task block.

For a target system of AOS or RDOS, Link builds one Task Control Block (TCB) for each
potential task. For a target system of RTOS, Link does not build TCBs since they are built at
runtime. (See Chapter 2 or the AOS Programmer’s Manual for more information on AOS
system tables.)

Link always uses the maximum task specification, whether you define it with task blocks or
with the GLOBAL switch /TASKS=n in the Link command line. For example, given three
object modules with task block specifications of 2, 3, and 4, Link sets the maximum number of
tasks to 4. If the Link command line for the same object modules specifies /TASKS=35, Link
sets the maximum number of tasks to 5.

If you do not use the /TASKS=n switch, and none of the input object modules contains a task
block, then Link assumes that the .PR file will support only one task, the initial task.

Word © 7 8 16
o reserved block type
=0 =12
1 block sequence number
2 block length
=4
3 reserved =0 number of tasks
DG-25106

Figure B-15. Task Block

Named Common Block

Named common blocks force Link to generate partitions with the common base attribute. If
two or more object modules contain named common blocks with the same name, Link builds
only one common base partition having this name. Otherwise, Link generates one common
base partition for each (uniquely named) named common block it encounters. Figure B-16
shows the structure of the named common block.

Each named common block contains two relocation entries. The first relocation entry defines
the size (in words) of the partition. Link ignores the relocation operation and external number
of this relocation entry.

The second relocation entry defines the partition that the common base partition will inherit its
attributes from. For instance, if this relocation entry defines external number 6, Link creates a
partition with the almost the same attributes as the predefined Unshared Data partition. The
only difference being that this partition will have the common base rather than the normal
base attribute. The external number in this relocation entry must correspond to one of the
NREL predefined partitions; that is, the external number must be 4, 5, 6, or 7. Link ignores
both the offset and relocation operation of the second relocation entry.

B - 2 2 Licensed Material-Property of Data General Corporation 093-000264

If two or more named common blocks define the same name, their external numbers must
match; however, their sizes (offsets) may be different. If their sizes are different, Link sets the
size of the partition equal to the largest of the offsets. For instance, suppose two object modules
each contain named common blocks. Further assume that each named common block defines
the partition name MATRXA. If the first named common block defines a length of 100 and
the second a length of 150, then Link builds the partition 150 words long.

word O 7 8 15
0 reserved block type
=0 = 14
1 block sequence number
2 block length

relocation entry
defining size

reserved

name length
=0 9

byte pointer to name

relocation entry defining
attributes

symbol names
L]

A . A
.

DG-26107

Figure B-16. Named Common Block

Example

0 1 2 3 4) 6 7
0 000014 000007 000014 000052 000000 000005 000022 000000
10 000140 052101 041114 042400

The named common block shown above defines a 52 word long common base partition (see
Word 3). Because the external number is 6 (see bits 0 through 11 of Word 10), Link will
generate a partition with attributes unshared, data, common-base, overwrite-with-message,
NREL, alignment=1. Word 5 indicates that the partition name consists of 5 characters, and
Word 6 tells Link that the name begins at byte 22. Since byte 22 corresponds to the left byte
of Word 11, the partition name is TABLE.

093-000254 Licensed Material-Property of Data General Corporation B‘ 23

Accumulating Symbols Block

An accumulating symbols block defines one accumulating symbol. Figure B-17 shows the
structure of the accumulating symbols block.

The value of an accumulating symbol is equal to the sum of the values of all accumulating
symbols with the same name.

For instance, suppose three object modules A.OB, B.OB, and D.OB each define an accumulating
symbols block with the name Y. Assume that A.OB defines Y’s value as 10, B.OB defines Y’s
value as 12, and D.OB defines Y’s value as 20. Further assume that object module C.OB
contains an ELEF 1,Y instruction in one of its data blocks. For the command line:

JXLINKABCD!

since 10+ 1220 equals 42, Link sets the value of Y to 42. Link converts ELEF 1,Y to ELEF
1,42.

Bits
Word 0 78 15
reserved block type
Y -
=0 =15
1 sequence number
2 length of block
3 reserved length of symbol
=0 name
4 byte pointer to symbol name —
relocation entry
defining symbol’s value
symbol name
. e
.
L]
L A
DG-25108

Figure B-17. Accumulating Symbols Block

Debugger Symbols Block

If Link encounters one or more debugger symbols blocks and the GLOBAL switch /DEBUG,
it creates a .DS file. Typically, high-level language debuggers (such as SWAT) use .DS files,
but you have the option of defining some other use for them. Figure B-18 shows the structure
of the debugger symbols block; Figure D-1 illustrates the .DS file structure.

Beginning with Word 4, a debugger symbols block defines zero or more datawords. These
datawords do not affect the program file or overlay file, and the choice of datawords is
completely up to you.

B - 2 4 Licensed Material-Property of Data General Corporation 093-000264

Following the datawords, you can define zero or more relocation dictionary entries. Link uses
them to relocate the datawords within the .DS file. You may use any relocation operation

except 20g.

If the relocation operation is 7 (link relocation), Link sets up a reverse chain of addresses in
the .DS file, where the first dataword in the file is the address of the last dataword for which

you invoked Link relocation.

DG-25109

Bits

Word 0 78 15

reserved block type
=0 16

sequence number

length of block

number of data words

datawords

.
L -

relocation
dictionary
entries

Debugger Lines Block/Lines Title Block

Figure B-18. Debugger Symbols Block

Given one or more debugger lines blocks in any input object module and the GLOBAL switch
/DEBUG in the Link command line, Link creates a .DL (debugger lines) file. Link does not
use the .DL file, but other utilities (typically high-level language debuggers) do. (Figure D-2

illustrates the .DL file.)

Link also creates a .DL file if it encounters both of the following:

¢ a lines title block in any input object module
e the /DEBUG switch on the Link command line

No object module may contain more than one lines title block.

093-000254

Licensed Material-Property of Data General Corporation

B-25

You may include both debugger lines block(s) and a lines title block in the same object
module. Assuming that /DEBUG is present, Link still creates only one .DL file per Link
command line. All debugger lines block(s) and lines title block contribute to the same .DL file;
however, only a lines title block generates a lines title directory entry. A lines title directory
entry is a section of code within a .DL file that contains information on the relocation bases on
the four predefined NREL partitions. Link generates one lines title directory entry for each
object module that defines a lines title block.

The debugger symbols block, debugger lines block, and lines title block have nearly identical
structures, the only difference being the block numbers — 164 for the debugger symbols block,
17g for the debugger symbols block, and 20z for the lines title block. (Refer to Figure B-18.)

Neither debugger lines blocks nor lines title blocks may use relocation operation 20.

Library End Block

The library end block follows the last object module in the library, and simply defines the end
of the library. This block consists only of the three block header words, as Figure B-19 shows.
LFE builds this object block.

Word 0 78 15
0 reserved block type
=0 =21
1 sequence number (1)
2 block length (3)
DG-25110

Figure B-19. Library End Block

Partition Definition Block

Partition definition blocks allow you to define partitions with almost any combination of
attributes. Figure B-20 shows the structure of the partition definition block.

As we point out in Chapter 4, this is the recommended object block for generating user-defined
partitions. Partition definition blocks have far more attribute versatility than either address
information blocks or named common blocks.

You must generate one partition descriptor for each partition you’re defining with this block.

Word 0 of a partition descriptor defines all partition attributes. For instance, if bit 15 has a
value of 1, Link gives the partition the data attribute.

All partitions generated by a partition definition block automatically have the NREL attribute.

The right byte of Word 1 in a partition descriptor tells Link how many characters are in the
partition’s name. Link truncates partition names longer than 40g characters to 40g characters.

Word 2 of a partition descriptor determines whether a partition will be global or local. If you
want the partition to be global, put a byte pointer to the symbol name. If you want the partition
to be local, put -1 (177777g). (Chapter 4 describes global and local.)

Word 3 and Word 4 of each partition descriptor define the size (in 16-bit words) of a common
base partition. If Link encounters two or more common base partitions with the same name, it
sets the size of the partition to the largest. For instance, suppose a partition descriptor defines
a common base partition named MATRIXB with a length of 10. Further assume that another
partition descriptor (either in the same partition definition block or a different partition
definition block) defines a common base partition named MATRIXB with a length of 20. In
that case, Link builds a common base partition named MATRIXB with a length of 20.

B '26 Licensed Material-Property of Data General Corporation 093-000254

word O 7 8 15
reserved block type
0 =0 = 23
] sequence number
2 length of block
3 number of partitions defined by this block
6 7 8 9 10 11 12 13 14 15
(reserved alignment wW/0| s c d
=0 factor w L n U c
reserved length of partition
=0 name
partition < byte pointer to name (for global);
descriptor -1 (for local)
size of common-base partition
(high-order bits)
size of common-base partition
(low-order bits)
\
[4
[]
// [//
partition name space
[] Bt
°
- ° -
- 7
w/o (bit 11) = 1, if overwrite-without-message
w = 0, if overwrite-with-message
s {bit 12) jgnored by AOS Link but used by
! AOS/VS Link. (Refer to AOS/VS Link
and Library File Editor User’s Manual.)
c {bit 13) = 1, if common-base
n = 0, if normal-base
s (bit 14) = 1, if shared
u = 0, if unshared
d (bit 15) = 1, if data
¢ = 0, if code
DG-25111
Figure B-20. Partition Definition Block
093-000254 Licensed Material-Property of Data General Corporation B'27

Example

0 1 2 3 4 § 6 7
0 000023 000012 000020 000002 000023 000004 000034 000000
10 000000 000505 000000 177777 000000 000052 041114 052505

The sample partition definition block shown above defines 2 partitions. Word 4 defines the
attributes of the first partition: alignment factor = 0, overwrite-without-message, normal
base, shared, data. Since Word 6 contains a positive number, this is a global partition. A byte
pointer value of 34 corresponds to the left byte of Word 16. The name of this partition is
therefore BLUE.

Word 11 defines the attributes of the second partition: alignment factor = 123, overwrite-with-
message, common base, unshared, data. Since it has the common base attribute, the length of
the partition, 523 words, is defined by Word 15. Since Word 13 contains a -1, this is a local
partition.

Revision Block

A revision block specifies the earliest acceptable revision of Link and, optionally, it specifies
how you want Link to interpret specific object blocks. You may use only one revision block per
object module. Figure B-21 shows the structure of the revision block.

Word 3 of a revision block contains a major and minor revision number. Link itself (that is, the
program file LINK.PR) also contains a major and minor revision number. You will cause a
fatal Link error (see Appendix A) if the number in Word 3 is greater than Link’s own revision
number.

Word 4 contains the number of object block revision descriptors that the revision block defines.
Each revision descriptor is two words long. The right byte of the first word of a revision
descriptor defines the object block that you want Link to interpret differently. The second
word defines the revision format that you want Link to use on this block type. Unlike the
two-part revision numbers in title blocks and module revision blocks, the revision format in a
revision block is only a one-part revision number. The revision format tells Link how it should
interpret the block type.

The default revision number for all object block types is 0.

NOTE: A revision descriptor applies only to a particular block type and only within the
defining object module. You can, for instance, define data block revision format 0 in
an object module, and define data block revision format 1 in a different object
module.

Currently, the data block is the only block type with more than one format. (See the “Data
Block” section.) However, future revisions of Link may define multiple formats for other
object block types.

B '28 Licensed Material-Property of Data General Corporation i 093-000264

Word
0 reserved block type
=0 =26
1 block sequence number
2 block length
3 earliest Link earliest Link
revision part 1 revision part 2
4 number of revision descriptors
reserved
=0 block type
Revision -
Descriptor
revision format of this block type
L)
o ~

.

DG-25112

Figure B-21. Revision Block

Example

0 1 2 3 4 S 6
000026 000002 000007 002002 000001 000000 000001

The sample revision block shown above defines a major revision of 4 (left byte of Word 3) and
a minor revision of 2 (right byte of Word 3). Word 4 contains a 1 which means that this
revision block defines one revision descriptor. The right byte of Word 5 contains a 0. Table B-1
says that block type 0 is the data block. Word 6 contains a 1. Therefore, Link will interpret all
data blocks in the object module as revision format 1.

Filler Block

Aside from the standard object block header, Link does not read or interpret any information
in a filler block. For this reason, a filler block is a good place to store information like
copyrights or documentation. Figure B-22 shows the structure of the filler block.

093-000254 Licensed Material-Property of Data General Corporation B = 2 9

Bits

Word 0 7 8 15
0 reserved block type
=0 = 27
1 sequence humber
2 length in words
3 ignored !
L]
L]
.
L]

DG-25113

Figure B-22. Filler Block

Module Revision Block

The module revision block defines a revision number and directs Link to store it in offset
USTRYV of the User Status Table (UST). Since the title block can also define a revision
number, Link uses the module revision block’s revision number only if the revision number in
the title block is set to -1. Figure B-23 shows the structure of the module revision block.

NOTE: Under AOS, offset USTRYV holds a two-part revision number, but under AOS/VS,
offset USTRYV holds a four-part revision number. The title block can define only a
two-part revision number; however, the module revision block can define a four-part
revision number. When building an AOS program file, Link uses all four parts for
listing files (i.e., the files generated by /L or /L=filename), but uses only the first
two parts for offset USTRV. When building an AOS/VS program file, AOS/VS
Link uses all four parts for listing files and for offset USTRV.

Word

0 reserved block type
=0 =30
1 block sequence number
block length
2 =
=5
3 revision part 1 revision part 2
4 revision part 3 revision part 4

DG-25114

Figure B-23. Module Revision Block

B'30 Licensed Material-Property of Data General Corporation 093-000254

Alignment Block

Functionally similar to the PARTSYM switch partition/ALIGN=n, an alignment block
aligns and pads partitions with the normal base attribute, and aligns partitions with the
common base attribute. An alignment block allows you to align any predefined partitions or
user defined partitions. Figure B-24 shows the structure of the alignment block.

The external number (Word 3) tells Link which partition you want aligned. For instance, if
Word 3 contains external number 4, Link attempts to align the predefined Unshared Code
partition. (Chapter 4 explains the external numbering scheme.)

An alignment factor is the number x (between 0 and 12g inclusive) in the following equation:
relocation base = (1)2X

where 1 is any integer. Thus, an alignment factor of x tells Link to set the relocation base of
this partition at the next free integral multiple of 2*. For instance, suppose an alignment block
contains an external number of 6 (the predefined Unshared Data partition) and a alignment
factor of 12g. Because 212 equals 2000g, Link must set Unshared Data’s relocation base to
some integral multiple of 2000g.

If the external number in an alignment block refers to a partition with the normal-base
attribute, Link pads and aligns every object module’s contributions to that partition. For
example, consider an alignment block containing external number 13 (a user-defined normal
base partition entitled RED) and alignment factor 10g. Since 210 = 4004, Link must set
RED’s relocation base to an integral multiple of 400g, say 5400. If any other object modules
contribute to RED, they too will be aligned on an integral multiple of 400g. Link pads the gaps
created by alignment with 000000s.

If the external number in an alignment block refers to a partition with the common base
attribute, then Link aligns the partition’s relocation base, but it does not pad it.

Word
0 reserved block type
=0 =31
1 block sequence number
block length
2
=5
3 external number
4 alignment factor
DG-25115

Figure B-24. Alignment Block

End of Appendix

093-000254 Licensed Material-Property of Data General Corporation 8'3 1

Table C-

Appendix C

Link-Generated Symbols
and Symbol Types

1 explains all Link-emitted external symbols and Link-defined entry symbols and

their values. These symbols fall into one of four categories:

A Link emits this external symbol and a system library (either URT.LB or SYS.LB)
defines the corresponding entry symbol. You should not define this symbol. If you do
define this symbol, Link has no way of detecting the error.

B Link emits this external symbol and a system library (either URT.LB or SYS.LB)
defines the corresponding entry symbol; however, you can override the system library
routine by defining this symbol in an input object module.

C Link defines this entry symbol. You will cause a Link error if you try to define this
symbol.

D Link defines this entry symbol, but you may override Link’s value for this symbol by
defining this symbol in one of your input object modules or by using the appropriate
Link switch.

Table C-1. Link-Generated Symbols
Symbol Category Value

77RCA A an entry symbol into the resource manager — a resource handler routine.
Some indirect user control through resource call optimization switches.
(See the “Resource Call Optimization Switches” section in Chapter 4.)

7CHAN D maximum number of 1/O channels this process can open. By convention,
some AOS language processors use this symbol for similar purposes. You
may control the value of 7CHAN with the /CHANNELS=n switch.

7CLOC C relocation base of the unlabeled common area, default value is-1. External
number 3 is equivalent to 7CLOC.

7CSZE C size of the unlabeled common area, default value is 0. Indirect user
control through unlabeled common blocks.

7LBOT D base value of EXTC links, default value is 7ZUNDF.

?7LODO A entry symbol into an URT.LB or SYS.LB object module that contains
some of the code necessary to execute system calls.

INBOT D relocation base of NREL, default value is 400. Although rarely used,
external number 2 is equivalent to 7?NBOT.

INMAX C highest unshared NREL address that Link used plus 1.

INTOP D highest address in the .PR file, default value is 777774, but you may
override default with either /KTOP=n or /NTOP=n.

7SBOT C lowest shared address in the .PR file.

7SRES D size (in pages) of the shared reserve area, default value is 0, but you may
override the default by using the /SRES=n switch.

(continues)
093-000254 Licensed Material-Property of Data General Corporation C' 1

Table C-1. Link-Generated Symbols

Symbol Category Value

7TBOT C lowest address in the PRSYM table minus 1. Link defines ?TBOT only if
you set the /PRSYM switch.

TTOP C highest address in the PRSYM table (RDOS-style symbol table). Link
defines ?TTOP only if you set the /PRSYM switch.

7UNDF D the default symbol value. Link gives undefined symbols the value of
7UNDF. 7UNDF has a default value of -1, but you may override the
default. ’

7URTB A an entry symbol in an URT.LB object module that handles many system
calls.

7USTA C highesi system table address used plus 1.

7ZBOT D lowest used address in the predefined ZREL partition; default value is
50, but you may override the default with the /ZBOT=n switch.

7ZMAX C highest address used in ZREL plus 1

CFALT B starting address of the commercial fault handler routine.

DEBUG B an entry symbol within a SYS.LB routine that handles debugging.

FFALT B starting address of the floating-point fault handler routine.

SFALT B starting address of the stack fault handler routine.

TMAX A entry symbol into a SYS.LB routine that must be in your .SV file if you
intend to do multitasking.

TMIN A relocation base of a SYS.LB routine called the single-task scheduler.

USTAD C relocation base of the RDOS or RTOS User Status Table (UST).

(concluded)
C'2 Licensed Material-Property of Data General Corporation 093-000254

Symbol Types

Table C-2 lists all currently supported symbol types and type numbers. Except for PENT
(which applies only to AOS) and SOENT (which applies only to the AOS .SY file), all symbol
types apply to RDOS, RTOS, and AOS.

Table C-2. Symbol Types

Symbol Type Meaning
Type Number
ENT 0 standard entry symbol; defined by an entry symbols block.
EXT 1 standard external symbol; defined by an external symbols block.
COMM 2 common symbol; Link gives this symbol type to any partition with the
common base attribute.
ASYM 3 accumulating symbol; defined by an accumulating symbols block or by
the /VAL=n switch.
ENTO 4 overlay entry symbol; defined by an entry block. Under RDOS or RTOS,
ENTO?’s value is equal to the value of the following word:
I overlay area number [overiay number l
Yo T N ' T T N 7 s T T T T T T 5
Under AOS, ENTO’s value is equal to the value of the following word:
[0 | overlay area number 1 overlay number _J
L I \ T T & 7 T T T T 75
TITLE 5 title symbol; defined by a title block
PENT 6 procedure entry symbol; defined by an entry symbols block.
EXTS 7 suppressed external symbol; defined by an external symbols block.
LOCAL 10 local symbol; defined by a local symbols block.
EXTC 11 chain external; defined by an external symbols block.
LIMIT 12 not supported by AOS Link.
BOUND 13 not supported by AOS Link.
SLPENT
SLPENT 14 not supported by AOS Link.
PART 15 partition; Link gives this symbol type to any partition generated by an
address information block.
SOENT 16 operating system ENTO
End of Appendix
093-000254 Licensed Material-Property of Data General Corporation C'3

Appendix D
Link-Generated Output Files

This appendix details the structures of the following Link-generated files:
» AOS .PR file

e AOS, RDOS, and RTOS .OL file

* AOS .ST file

* AOS .DS file

* AOS .DL file

* AOS .SY file

*« RDOS .SV file

e RTOS .SV file

In these figures, statements that appear in parentheses are conditionally built. For instance,
Figure D-1 includes the following:

(overlay directory)

Since Link builds the overlay directory only if the program contains overlays, overlay directory
is enclosed by parentheses.

We listed symbol names where appropriate. For details on these symbols, see Table C-1.

AOS .PRFile

Figure D-1 shows the structure of the .PR file. A .PR file becomes executable when AOS maps
it into logical address space. Refer to the AOS Programmer’s Manual for information on the
system tables (UST, TCB, overlay directory, and resource-handler table). Also, see Chapter 2
for a summary of logical address space. In addition, refer to the appropriate manual in the
Programmer’s Reference Series for ECLIPSE-Line Computers for more information on the
reserved storage locations (addresses 00000 through 00047).

093-000254 Licensed Material-Property of Data General Corporation D‘ 1

(reserved storage locations)

stack pointer

frame pointer

stack limit

pointer to SFALT

pointer to FFALT

pointer to CFALT

7ZBOT]

{(ZREL contributions)

INBOT 3,

- User Status Table

Task Control Block(s)

\

{overlay directory)

(resource handler table)

USTA

{unshared overlay(s))

7CLOC 3]

(unnamed common area)

?7TBOT — 3|

(contributions to unshared NREL)

7TTOP >

{symbol table)

(default stack)

INMAX 3]

(unused area)

7SBOT 31

(reserved shared pages)

(shared overlays)

INTOP >

(contributions to shared NREL)

DG-25116

00000

00040
00041

00042
00043

00045

00046

00050
padded to
00377
00400

00422
00423

block padded

page aligned

page padded
page aligned

page padded
page aligned

77777 maximum

Figure D-1. .PR File Structure

Licensed Material-Property of Data General Corporation

093-000254

.OLFile

Figure D-2 shows the structure of the AOS, RDOS, and RTOS .OL (overlay) file.

In the figure, “Overlay Area n” refers to the overlay area within a .PR or .SV file that an
overlay can contribute to at runtime. Within an .OL file, Link always builds overlays

sequeritially; however, it does not necessarily build overlay areas sequentially.

Virtual overlays (RDOS and RTOS) and shared overlays (AOS) are page-aligned and
page-padded. Unshared AOS overlays and conventional RDOS overlays are block-aligned and

block-padded.

overlay area n, overlay O

(overlay area n, overlay 1)

{overlay area n, overlay 2)

DG-26117

aligned
padded

aligned
padded

aligned
padded

Figure D-2. AOS, RDOS, and RTOS .OL File Structure

.STFile

Figure D-3 shows the structure of the AOS .ST (symbol table) file. By default, Link builds the
ST file; however, if you include either /N or /SUPST on the Link command line, Link does
not build it. The primary purpose of the .ST file is to store symbol names, symbol types, and
symbol values for possible use by a debugger. The .ST file is nonexecutable, and it does not

affect program file execution.
Link uses the following hash function:
ASCII value of first character
+ ASCII value of last character
+ ASCII value of third character (if present)

093-000254 Licensed Material-Property of Data General Corporation

D-3

DG-25118

(o]
entry symbol hash frame O 377
400
1
entry symbol hash frame 777
L]
.
L]
7400
entry symbol hash frame 17 7777
10000
reserved 10377
10400
(local symbol hash frame 0) 10777
] 11000
(first overflow hash frame) 11377
.

location relative to

entry symbol hash frame start of hash frame

{symbol descriptor for an entry symbol) 0

(symbol descriptor for an entry symbol)

0 376

block number of overflow hash frame

377
or O if no overflow

local symbol hash frame location relative to

(symbol descriptor for the title of start of hash frame
the contributing object module) 0

(symbol descriptor for a local symbol
from this object module)

{symbol descriptor for a local symbol
from this object module)

.
.
.

(symbol descriptor for the title of
another contributing object module)

{symbol descriptor for a local symbol
from this object module)

(symbol descriptor for a local symbol
from this object module)

0 376

block number of overflow hash frame

or O if no overflow 377

Figure D-3. .ST File Structure (continues)

Licensed Material-Property of Data General Corporation

093-000254

symbol descriptor

o] 2 3 78 15
Word

0 0 0 1 | symbol type symbol name length

1 symbol value

2 (o]

3 area/overlay number this symbol is in, or -1

4 .

5 first character of name [second character of name‘

null, if name length is
odd

»

if a LOCAL symbol contains a pointer to the start of
the title entry.

if a COMM symbol contains the length of the partition.

if a PART symbol contains the length of the partition.

if a PENT symbol contains address of the appropriate
Resource Handler Table (RHT) entry.

any other symbol undefined

type

DG-25118

Figure D-3. ST File Structure (concluded)

.DS and .DL Files

Figures D-4 and D-5 illustrate the structures of the .DS and .DL files. If any object module on
the Link command line contains a debugger symbols block, and if you include the GLOBAL
switch /DEBUG, then Link generates the .DS file. If any object module on the Link command
line contains a debugger lines block or a lines title block, and if you include the GLOBAL
switch /DEBUG, then Link generates the .DL file.

Except for the lines title directory in the .DL file, the composition and organization of both
files is user-defined (through relocation dictionary entries in debugger symbols blocks or
debugger lines blocks.) Aside from lines title directories, the structure of both files is very
similar.

093-000254 Licensed Material-Property of Data General Corporation D'5

If you set up a backwards-linked list (with relocation operation 7 in the relocation dictionary
entries), then the first word in the .DS file will point to the terminal point in the list. If you did
not set up a backwards-linked list, thefirst word in the .DS file will contain a 0.

Within the .DL file, Link generates one lines title directory for each lines title block it
encounters. This directory contains the value of the relocation base of this module’s contributions
to the predefined NREL partitions. It also defines the relocation base of the next module’s
contributions to those partitions. Link uses the datawords and relocation dictionary entries in
lines title blocks to generate “lines title block data”.

pointer to last location of DS Linking relocation,
one for each object or 0

module containing one or

more debugger symbols
blocks

debugger symbols data for an object module

DG-25119

Figure D-4. .DS File Structure

D '6 Licensed Material-Property of Data General Corporation 093-000254

DG-25120

{one for each object

pointer to start of first lines title directory

module containing
one or more {
debugger lines
block(s))

(debugger lines data for an object module)

number of lines title directory entries

pointer to start of this module’s debugger lines data

pointer to end of this module’s debugger lines data

address of start of this module’s contributions to UC

address of start of nextmodule's contributions to UC

address of start of this module’s contributions to SD

address of start of next module’s contributions to SD

address of start of this module’s contributions to UD

address of start of next module’s contributions to UD

address of start of this module’s contributions to SC

address of start of next module’s contributions to SC

{one for each lines | nes P
title block) title
directory
~
—

number of datawords from this lines title block

lines title block data

093-000254

Figure D-5. .DL File Structure

Licensed Material-Property of Data General Corporation

D-7

AOS .SY File

Figure D-6 shows the structure of the AOS .SY (operating system) file.

In an .SY file, the UST and the TCBs have a nearly identical structure to the UST and TCBs
in a .PR file. The only current difference concerns offset USTOD of the UST. In a .PR file,
USTOD contains a pointer to the overlay directory (or 0 if there is no overlay directory); while
in a .SY file, USTOD contains the value of 7ZNMAX rounded to the next highest page
boundary. (Refer to the AOS Programmer’s Manual for details on the UST and TCB.)

Although, Link never builds .PR files larger than 32;o pages (100000g words), Link usually
builds .SY files many times larger than 32 pages. Instead of storing overlays in an .OL file as
it does for a .PR file, Link stores an .SY file’s overlays within the .SY file itself. Of course, at
execution time, AOS does not map in the entire .SY file. Instead, an .SY file maintains one
overlay area (not marked in Figure D-6) and maps in overlays from itself as needed.

00000
pointer to SFALT 00043
pointer to FFALT 00045
pointer to CFALT 00046
7ZBOT — 3] 00050
ZREL contributions
1ZMAX
{(unused ZREL)
00377
INBOT — 00400
User Status Table
00422
Task Control Block(s)
01777 (maximum)
?USTA
NREL.contributions
TBOT
(symbol table)
?TTOP >
INMAX page padded
overlay O
overlay 1
L]
L]
DG-25121

Figure D-6. AOS .SY File Structure

D'8 Licensed Material-Property of Data General Corporation 093-000254

RDOS .SV File

Figure D-7 shows the structure of the RDOS .SV file. Refer to the Real-Time Disk Operating
System Reference Manual for more details on the RDOS .SV file structure. Refer to Chapter

7 for more information on cross-linking for RDOS.

?ZBOT — 3

ZREL contributions
1ZMAX

{unused ZREL)

USTAD —— 3

User Status Table

Task Control Block(s)

{overlay directory)

7USTA

(overlay area for virtual overlay(s))

(overlay area for conventional overlay(s))

NREL contributions
?TBOT 3

(RDOS symbol table)
2TTOP >

?NMAX

DG-25122

47
50

377
400
423

page aligned

page padded

block padded

Figure D-7. RDOS .SV File

093-000254 Licensed Material-Property of Data General Corporation

RTOS .SV File

Figure D-8 shows the structure of the RTOS .SV file. Refer to the Real-time Operating
System Reference Manual for more details on the .SV file structure. Refer to Chapter 7 for
information on cross-linking for RTOS.

0
?7ZBOT] 50
ZREL contributions
PZMAX ey]
(unused ZREL)
USTAD —— 3 400
User Status Table
427
used by system
PUSTA 440
(overlay directory)
page aligned
(overlay area for virtual overlay(s))
page padded
NREL contributions
TBOT]
(RDOS symbol table)
?TTOP >
?NMAX
DG-25123

Figure D-8. RTOS .SV File Structure

End of Appendix

D' 1 0 Licensed Material-Property of Data General Corporation 093-000254

Appendix E
LFEErrors

BLOCK NUMBER OUT OF SEQUENCE

An object block in one of the object files specified on the LFE command line does not have the
right sequence number. Refer to Appendix B for information on sequence numbers. There are
two possible causes for the error. First, LFE may have tried to interpret a nonobject module as
an object module. The second possibility, though rare, is that the language processor generated
an object block with the wrong sequence number. If you can verify this, please contact the
compiler or assembler maintenance personnel.

DUPLICATE INPUT FILE SPECIFICATION

You specified an input file (with /I) more than once on the LFE command line.

DUPLICATE LISTING FILE SPECIFICATION

You specified a listing file (with /L) more than once on the LFE command line.

DUPLICATE OUTPUT FILE SPECIFICATION

You specified an output file (with /O) more than once on the LFE command line.

FILE ACCESS DENIED!

You tried to access a file, but you did not have permission to do so. Change the file’s ACL.

FILE ALREADY EXISTS!

You specified an output file already contained in your working directory.

FILE IS NOT A LIBRARY <(filename>

While using function-letter T, you used an .OB file as either an argument or as an input file.
Both the argument and the input file must be libraries.

FUNCTION DOES NOT ACCEPT INPUT FILE

You specified an input file while using function-letter A, M, N, or T.

1 AOS system error. Refer to the AOS Programmer’s Manual for more information.

093-000254 Licensed Material-Property of Data General Corporation E" 1

FUNCTION DOES NOT ACCEPT OUTPUT FILE
You specified an output file while using function-letter D, I, M, N, or R.

/
/I SWITCH REQUIRES ARGUMENT
You failed to qualify an /I switch with a filename.

ILLEGAL FUNCTION

You did not specify a valid function-letter on the LFE command line. In most cases, this error
occurs when you do not specify a function-letter and LFE interprets the first argument on the
LFE command line as a function-letter.

INVALID BLOCK SIZE

One of the object blocks in an object module is more than 2000g words long. There are two
possible causes for this error. The first is that LFE interpreted a title or some other nonobject
module on the command line as an object module. The second possibility, though rare, is that
the compiler or assembler produced an object block that was too large. If you can verify this,
please contact the compiler or assembler maintenance personnel.

MODULE NOT FOUND <object module title>

This object module title is not present in the input library. First, for function-letters I or R,
make sure that object module titles precede their corresponding object file arguments on the
LFE command line. Second, make sure that you are using the name of an object module title
and not the name of the .OB file that it was originally stored in. You can check title names
with the function-letter T.

NO INPUT FILE SPECIFIED

While using function-letters D, I, R, or X you did not specify the input file. You can specify it
either explicitly (with /I) or implicitly (by the file’s position in the LFE command line.) Check
the command line format for this function-letter.

E '2 Licensed Material-Property of Data General Corporation 093-000254

NO MODULES IN LIBRARY

You have generated a library that contains only a library start block and a library end block;
no object modules in-between. The probable cause of this error is that you deleted (with D)
every object module in the library. Another possibility is that while creating a file (with M or
N) LFE could not open any input files.

NO OUTPUT FILE SPECIFIED

You used function-letter A, T, or X in your LFE command line, but you did not specify an
output file.

NOT ENOUGH ARGUMENTS

Either you did not specify any arguments (i.e., object files) on the LFE command line, or while
using function-letters I or R, you did not specify an object file after a title.

/O SWITCH REQUIRES ARGUMENT

You failed to qualify an /O switch with a filename.

OBJECT FILE DOES NOT FOLLOW TITLE
While using either I or R, you did not qualify an object module title with an object file.

End of Appendix

093-000254 Licensed Material-Property of Data General Corporation E'3

absolute code

alignment factor

attributes

bit field relocation
dictionary entry

block
byte pointer

cross-linking
dataword

displacement

.DL (debugger lines) file

.DS (debugger symbols) file

entry symbol

error file

093-000254

Glossary

datawords assigned to specific (i.e., absolute) addresses in a program file.

a number that Link uses as a partition attribute. Allows user to set the relocation
base to a power-of-2 boundary.

the set of characteristics defining a partition; the attributes are:
absolute, ZREL, or NREL
shared or unshared
normal base or common base
alignment (0-12g)
code or data
overwrite-with-message or overwrite-without-message
local or global (user-defined partitions only)

an element within certain object blocks that Link uses to resolve the value of a
contiguous set of bits in a particular dataword.

4004 sequential words of memory.
a 16-bit value defining the start of a byte string.

logging on to an operating system, and using a relocatable linker to create a
program file that can execute on a different operating system.

16 contiguous bits; code or data. An element that can fill one logical address in a
program file.

in object blocks — a dataword’s position relative to some other point in the object
block or object module. In memory reference instructions — a value which tells the
CPU which logical address to access.

an output file Link creates to store information for eventual high-level language
debugging; built when any input object module contains one or more debugger lines
blocks or one lines title block and the Link command line includes the /DEBUG
switch.

an output file Link creates to store information for eventual high-level language
debugging; built when any input object module contains one or more debugger
symbols blocks and the Link command line includes the /DEBUG switch.

a symbol defined in an entry symbols block. Entry symbols can be accessed by any
object module.

a Link-generated output file containing Link errors and standard Link output
messages.

Licensed Material-Property of Data General Corporation Glossary_ 1

extended relocation
dictionary entry

external symbol
forced load flag

function-letters

language processor
library

library file
Library File Editor (LFE)
LFE command line

lines title directory
Link

Link command line
logical address space
GLOBAL switch
NREL

object blocks

object block header

object file
.OB file

OB switch
object module

.OL (overlay) file

Glossary-2

a relocation dictionary entry capable of defining relocation operations greater than
17.

a symbol defined in an external symbols block; a symbol whose value is defined by
a different object module.

a bit within a library file that, if set, forces Link to unconditionally load the object
module it is associated with.

Library File Editor (LFE) commands.

an assembler (e.g., MASM) or a high-level language compiler; a program that
analyzes a file of source code and produces an .OB file.

a library start block, a library end block, and one or more object modules in-between;
produced by LFE.

a library; usually has the file name extension .LB.
the utility that creates, edits, and analyzes library files.
a set of directives beginning with X LFE that invokes the Library File Editor.

an optionally built section of the .DL file that describes the program file addresses
of all four predefined NREL partitions.

the name of the AOS relocatable linker (a program that can produce a program
file, an overlay file, debugger files, and Link listing files from object files).

a set of directives beginning with X LINK that invokes Link.

the entire range of addresses (00000g to 77777g) that a process may access.

a switch flush with the word LINK in the Link command line. See Table 5-1.
addresses 00400 through 77777 in 2 .PR or .SV file.

any of 314 sets of machine language that Link can interpret.

the first three words in every object block; states the block’s type, length, and
sequence number relative to the other object blocks in an object module.

an OB file or library.

a file produced by a language processor that usually has the extension .OB. An .OB
file contains one object module.

a switch attached to an object file in the Link command line. See Table 5-2.

a series of object blocks bounded by a title block and an end block; produced by
assembling or compiling source code. Object modules are stored in either a library
or an .OB file. ‘

a Link-built file that retains a program’s overlays.

Licensed Material-Property of Data General Corporation 093-000254

OV switch
overlay

overlay area
overlay delimiter

overlay area delimiter

page
partition
PARTSYM switch

.PR file

program file

process

.RB file (relocatable binary)

relocatable code

relocation
relocation base

relocation dictionary entry
relocation entry

relocation operation

Resource Calls
resource manager
root

shared pages

.ST file

stack

093-000254

a switch attached to overlay area delimiter !* in the Link command line. See Table
5-4.

a shared or unshared routine residing in an .OL file that a process may call into
logical address space as needed.

a section of the .PR file reserved for overlays.
the character !; you include them on a Link command line to separate overlays.

the series !* and *!; you use them on a Link command line to mark object files that
can potentially contribute to the overlay file.

2000g sequential words of memory.
a named contiguous section of a program file with the same set of attributes.

a switch attached to the name of a partition or symbol in the Link command line.
See Table 5-3.

a program file that can run on AOS; also a program file that can run on AOS/VS.
an executable file.
the executable physical memory copy of a .PR file.

the RDOS equivalent of an .OB file; that is, a series of RLDR-compatible object
blocks generated by an RDOS language processor and usually having the file name
extension .RB.

datawords that Link can reposition (relocate) anywhere within a broad memory
range in the .PR or .OL file. (Compare absolute code.)

the process in which Link assigns a value to a relocatable dataword or symbol.
the lowest address of a partition; the value of a symbol.

an element within certain object blocks that Link uses to resolve the value of a
particular dataword.

an element within certain object blocks that Link uses to resolve symbol values, or
to allocate space for a set of datawords in a program file or debugger file.

a number within a relocation entry or relocation dictionary entry corresponding to
a function. Link uses this function to calculate values for datawords and symbols
and to calculate displacements from partitions.

the system calls 2RCALL, 7’KCALL, and 7RCHAIN; used to load and release
overlays and to jump to the address of an entry symbol.

a routine stored in URT.LB which Link loads (conditionally) into the .PR file to
handle Resource Calls in some situations.

the part of a process that is stored in a program file; the part of a process that is not
stored in an .OL file.

physical memory pages accessible to more than one process.

a nonexecutable file generated by Link and used for debugging. The file contains
the names and values of all global symbols (and, optionally, local symbols) in the
program.

a special sequential section of logical address space initalized by Link and used by
the CPU for certain machine language instructions.

Licensed Material-Property of Data General Corporation

Glossary-3

.SV file
switch

SYS.LB
system library

system tables

unshared pages
URT.LB
virtual overlays

ZREL

Glossary-4

a program file that RDOS can execute; or, a program file that RTOS can execute.

an optional element of a Link or LFE command line; a slash followed by an
alphanumeric character or character string (e.g., /ALPHA).

the RDOS system library.

a library that Link scans by default; it contains vital routines that allow your
process to communicate with the operating system at runtime.

Link-generated tables stored at the beginning of NREL; used at runtime by the
operating system and by the process itself.

physical memory pages that only one process may access.
the AOS system library.

i
overlays that reside outside logical address space but within physical memory; used
in RDOS and RTOS only. By contrast, conventional overlays reside on disk until a
process loads them into physical memory.

addresses 00000 through 00377;. Addresses that can be accessed from any location
in memory by an instruction with an 8-bit displacement.

End of Glossary

Licensed Material-Property of Data General Corporation 093-000254

Index

Within this index, “f” or “ff” after a page number means
“and the following page” (or “pages”). In addition,
primary page references for each topic are listed first.
Commands, calls, and acronyms are in uppercase letters
(e.g., CREATE); all others are lowercase.

*! (overlay area delimiter) 5-2
'* (overlay area delimiter) 5-2

/<ZR,UC,UD,SC,SD>=<ZR,UC,UD,SC,SD> 5-2
GLOBAL switch 5-8
GLOBAL switch example 4-6, 5-16
OB switch 5-13
OB switch example 4-6, 5-4f, 5-34f
OV switch 5-14

?7?7RCA (Link-generated symbol) C-1
A

A, function-letter 6-4ff
absolute addressing 2-6
absolute code 3-1, 3-2f
absolute partition 4-5
AC relative addressing 2-7
accumulating symbols B-24, 5-14
accumulating symbols block B-1f, B-24
address information block (AIB) B-1f, B-20f
user-defined partitions 4-5
addressing mode 2-6
JALIGN=n
OV switch 5-14
OV switch example 5-4f
PARTSYM switch B-31, 5-14
PARTSYM switch example 5-2, 5-36
alignment
attribute 4-5
block B-1f, B-31
factor B-31
shared overlay areas 4-3
/ALPHA
GLOBAL switch 5-8
GLOBAL switch example 5-23f
AOS (Advanced Operating System) 1-1, Chapter 2
assembler 1-1f
assembly language
cross-linking 7-3f, 7-7f
example 1-11, 3-3
partitions 3-1ff, 4-6
system calls 2-9

093-000254

ASYM (symbol type) C-3
attributes 3-4, 4-1

alignment(0-12) 4-1

code 4-1

common base 4-1

data 4-1

normal base 4-1

NREL 4-1

overwrite-with-message 4-1

overwrite-without-message 4-1

shared 4-1

unshared 4-1

ZREL 4-1
auto-decrementing locations 2-7
auto-incrementing locations 2-7

background 7-9
backwards-linked list D-6
basic area 2-11, 5-14

resource call optimization switches 4-12
bit field relocation dictionary entry B-6f
block 2-1
block length (object blocks) B-3
block type B-3
booting RDOS 7-11
booting RTOS 7-11f
BOUND SLPENT (symbol type) C-3
/BUILDSYS GLOBAL switch 5-8
byte pointers B-8

C

call word (for resource calls) 4-10f
CBIND (utility) 1-9, 1-11
CFALT (Link-generated symbol) C-2
chain external B-14f
7CHAN (Link-generated symbol) C-1
JCHANNELS=n GLOBAL switch 5-8
.CK file 1-9
7CLOC (Link-generated symbol) C-1, D-2
COBOL 1-1, 1-9

example 1-10f
code attribute 4-4f
code flag B-8
coding 1-1
COMM (symbol type) C-3
.COMM (pseudo-op) 4-3

Licensed Material-Property of Data General Corporation

command line
overlays 5-1ff
LFE 6-3ff
commercial fault address 2-8

common base attribute 4-2f, 4-5, B-3, B-8, B-22f, B-26,

B-31
compiling 1-2ff, 1-7ff, 1-11, 2-1, 3-1ff
concept 1-1f
modular programming 3-2
CONVERT (CLI Command) 7-5f
cross-linking 3-4, Chapter 7
7CSZE (Link-generated symbol) C-1

D

D, function-letter 6-7
data attribute 4-4f
data block B-1ff, B-8ff
data block revision format B-10, B-28f
DEBUG (Link-generated symbol) 7-8, C-2
/DEBUG GLOBAL switch 5-8, 7-8, B-24ff, D-5
debugger lines block B-1f, B-25f
cross-linking 7-8
LFE 6-4 ‘
debugger symbols block B-1f, B-24f
cross-linking 7-8
LFE 6-4
debugger symbols chain-link relocation B-4
debugging B-16f, D-3
modular programming 3-2
relocatable linkers 3-6
DEDIT (utility) B-7
DG/L 1-1
AOS 1-7
cross-development 7-2f
ECLIPSE hardware 1-7
NOVA hardware 1-7
RDOS 1-7
DGLIBE, library 7-7f
DGLIBN, library 7-7f
disk 2-1
displacement
machine language 2-6f, 3-4, 4-14
relocation base 4-2
DISPLAY (utility) B-7
.DL file 3-6, 7-8, B-24ff
structure D-5ff
.DS file B-24f
cross-linking 7-8
structure D-5f

/E=pathname GLOBAL switch 5-8, A-1
ECLIPSE computer 2-1ff, 2-6f, 2-7, 2-9, 3-3, 4-1
end block B-1f, B-12
ENT B-16ff, 4-9, C-3
ENTO 4-9, B-16, B-18, C-3
entry symbols 3-4f, B-16f

libraries 6-1f

Index-2

entry symbols block B-1f, B-16f
errors

LFE E-1ff

Link A-1
EXT (symbol type) B-14, C-3
EXTC (symbol type) B-14f, C-3

extended relocation dictionary entry B-6

extended relocation entry B-6
external numbering scheme 4-7f, B-20f
external numbers 4-4f
address information blocks 4-8
data blocks B-8ff
named common blocks 4-8
object blocks B-3ff
unlabeled common area 4-4
User Status Table 4-4
external symbols 3-4f, B-14f
libraries 5-5, 6-1f
external symbols block B-1f, B-14f
EXTS (symbol type) B-14, C-3

F

F5LD 1-4f
F77LINK 1-2f
switches 5-5
fatal errors A-1, A-8
fault-handling routines 2-8
FFALT (Link-generated symbol) C-2
file 2-2
filler block B-1, B-29f
floating-point fault address 2-8
forced load flag 3-5, 5-5, 6-1f, B-18ff
title block B-11
foreground RDOS 7-9
FORTRAN 5 1-1, 1-4f
example 1-4
FORTRAN 77 1-1, 1-2f
example 1-3
intermodular communication 3-5
FORTRAN IV 1-1, 1-5
frame 2-7
frame pointer 2-8
function-letters 6-1
A 6-4ff
D 6-7
I 6-8ff

global attribute 4-5, B-26ff
global partition name 4-6
GLOBAL switch 5-1f, 5-8ff
.GLOC (pseudo-op) B-8

Licensed Material-Property of Data General Corporation

093-000254 -

H

hardware traps 2-3

/JHEX 5-7f

high-level language
Link macros 5-5
system calls 2-9

I, function-letter 6-8ff

in-line (arguments) 4-10f

index mode 0 2-6

index mode 1 2-7, 2-12

index mode 2 2-7

index mode 3 2-7

indirect file 7-6

intermodular communication 3-5, 4-9, 6-3
intermodular symbols 3-4f

K

7KCALL 4-8, 4-11
/KTOP=n GLOBAL switch 5-8, 7-8
example 5-17

L

/L 3-6, 5-2, 5-4f, 5-7f, A-1,B-30
.LB extension 5-1
7LBOT (Link-generated symbol) B-14, C-1
LFE (Library File Editor) 6-1ff, B-18, B-20
library 2-2, 3-5, 5-5, 6-1ff, B-18, B-20, B-26
library end block B-1, B-26
library start block B-1, B-18ff
LIMIT (symbol type) C-3
limit block B-1
lines title block 6-4, B-1f, B-25f
lines title directory B-26, D-5, D-7
Link 2-1
command line 1-1
errors 1-13, Appendix A
high-level language 5-5
revision number B-28f
link relocation (relocation operation 7) B-25
Link-generated information 2-7
.LOC (pseudo-op) 3-1ff
LOCAL (symbol type) C-3
local attribute 4-5
/LOCAL OB switch 5-13, B-17
local partition name 4-6, B-26ff
local symbols B-17
local symbols block B-1f, B-17
7LODO (Link-generated symbol) C-1
logical address space 2-2, 2-5f
example 5-15
overlays 2-9ff

M

M, function-letter 6-11f, 7-6
MAC.PS 7-3
Macroassembler 1-1, 1-11, 3-3
example 1-12f
symbol table 7-3
/MAIN example 5-2
/MAIN GLOBAL switch 5-7, B-12
/MAIN OB switch 5-13
/MAP 4-2
example 5-4f
/MAP GLOBAL switch 5-9
example 5-24f
mapping 2-2
overlays 2-10, 2-12
MASM 1-1, 1-11, 3-3
example 1-12f
symbol table 7-3
MASM.PS 7-3
/MODMAP GLOBAL switch 5-9
example 5-4, 5-26ff
modular programming 3-2
module revision block B-1, B-30
/MULT=n switch 7-8
example 5-4f
resource call optimization switches 4-12
multiple basic areas 2-11f
multiply defined symbol (LFE message) 6-5f
MYV /Family hardware 2-7

N

/N GLOBAL switch 5-9, D-3
N, function-letter 6-11f, 7-6
named common block B-1f, B-22f
common base partition 4-2
user-defined partitions 4-5
INBOT (Link-generated symbol) C-1, D-2, D-8
/NBOT=n GLOBAL switch 5-9, 7-9
example 5-18
INMAX (Link-generated symbol) C-1, D-2, D-8ff
nonfatal errors A-1
normal base attribute 4-2f, 4-5, B-3, B-8, B-31
NOVA hardware 7-2
/NRC GLOBAL switch 4-11f, 5-9
NREL 2-6, 2-8f, 4-2
.NREL (pseudo-op) 3-1

/NRP GLOBAL switch 4-11ff, 5-9, 7-8
/NSLS GLOBAL switch 1-7, 1-9, 5-6, 5-9, 7
/NTOP=n GLOBAL switch 5-9, 7-8, C-1, D

example 5-17
/NUMERIC GLOBAL switch 5-9
example 5-29f

093-000254 Licensed Material-Property of Data General Corporation IndeX‘3

o

/O=pathname GLOBAL switch 5-10
.OB extension 5-1
.OB file 1-2, 2-2
OB switch 5-1f
object block 1-1, B-1ff
header B-2
revision B-28f
rules B-8
cbject file 5-1
object module 1-1, B-1ff

object module descriptor (in library start block) B-18ff

JOBPRINT GLOBAL switch 5-10, B-7f
offset, (in object block) B-3ff
.OL file 5-3f, B-21
code and data attributes 4-4
system tables 2-8
structure D-3
on the stack (arguments) 4-10f
one-pass linker 3-4
OV switch 5-2
?70VEDS (RHT offset) 4-9
/OVER
example 5-4
GLOBAL switch 5-10
OB switch 5-13
overlay area 2-10ff
delimiter 5-2
resource call resolution 4-11, 4-12
system tables 2-8
Overlay Directory 2-8
overlays 2-9ff
address information block B-20f
delimiter 5-2
RDOS 7-10
system tables 2-8
overwrite 4-4
overwrite flag B-8
overwrite-with-message attribute 4-4f
overwrite-without-message attribute 4-4f

P

page 2-1
PART (symbol type) C-3
partition definition block B-1f, B-26ff
common base partition 4-2
user-defined partitions 4-5
partition or symbol 5-1
partitions 3-4, 4-1, 4-4ff
overlay areas 5-3f
source code 4-6
PARTSYM switch 5-1
PARU.SR 2-9
passing arguments to resource calls 4-10f
PC (program counter) 2-7

I n d ex ‘4 Licensed Material-Property of Data General Corporation

PC relative addressing 2-7, 2-12
PENT (symbol type) 2-8, 4-9, 4-11, B-16ff, C-3
physical memory 2-2f
PL/I 1-1, 1-5ff

example 1-8

libraries 3-5
PLILINK 1-5, 1-7
position-independent instructions 2-12
possible starting address 5-6
potential starting address B-12
PR file 1-1f, 2-2, 2-7

chain-link B-5

structure D-1f
predefined partitions 4-4
previously defined symbol (LFE message) 6-5f
Primitive Overlay Calls 4-9
process 2-2
program file 1-1, 3-1ff
programming languages 2-1
programming strategy 3-2
/PRSYM GLOBAL switch 5-10, 7-8f
/PS=pathname (MASM switch) 7-3
.PTARG pseudo-op 4-11

R

R, function-letter 6-14
Radix 5-7
IRCALL 4-8, 4-10f, 4-12ff
7RCHAIN 2-7, 4-8, 4-11, 4-13f
RDOS 7-1
assembly language 7-3
cross-linking 3-4
libraries 7-5
Link command line 7-7
overlays 7-10
SV file structure D-9
virtual overlays 7-10
RDOS LOAD (CLI command) 7-3ff
relocatable code 3-1, 3-2f
relocatable linker 3-1ff
relocation base 4-2ff, B-3ff
relocation dictionary entry B-3, B-5, B-9f
relocation entry B-3, B-5, B-8ff, B-12
relocation operation B-3ff, B-8ff
repetition count B-10
reserved storage locations 2-7f
Resource Call 2-8f, 4-8ff
resolution 4-8ff
Resource Handler Table (RHT) 2-8, 4-9, 4-11ff
resource manager 2-8, 4-9, 4-11
REV (CLI command) B-11
/REV GLOBAL switch 5-10, B-11
example 5-2

093-000264

reverse symbol chain B-14
revision block B-1f, B-28f
revision formats

data block B-10

object blocks B-28f
revision number

object module B-11

.PR file B-30

system tables 2-8

RHT (Resource Handler Table) 2-8, 4-9, 4-11ff

root 2-9, 2-12
resource call resolution 4-11ff
RTOS 7-2
cross-linking 3-4
libraries 7-4, 7-7f
Link command line 7-7
trigger module 7-4, 7-7f

S

/S (MASM switch) 7-3
?SBOT (Link-generated symbol) C-1
search list 5-1)
sequence number (object blocks) B-3
SFALT (Link-generated symbol) C-2
shared attribute 4-2, 4-5
Shared Code (partition) 4-5
overlays 5-3ff
Shared Data (partition) 4-5
overlays 5-3ff
shared library block B-1
shared overlay areas 2-10, 4-3
shared pages 2-2ff
overlay areas 2-10f
system tables 2-8
shared partition, alignment 4-3
/SHARED PARTSYM switch 5-14, 7-8
example 5-37
SLPENT (symbol type) C-3
SOENT (symbol type) C-3
source code 1-2
?SRES (Link-generated symbol) C-1
/SRES=n GLOBAL switch 5-10, 7-8
example 5-19
ST file 3-6, B-14, B-16
structure D-3ff
stack 2-7ff
fault address 2-8
fault handling routine 3-3
pointer 2-8f
/STACK=n GLOBAL switch 5-7, 5-10, 7-8
example 5-20
/START OB switch 5-6, 5-13, B-12
example 5-2, 5-4f

starting address 5-6, B-12
system tables 2-8
statistical package 3-2f
subprogram 3-2f
suppressed external B-14
/SUPST GLOBAL switch 5-11, D-3
.SV file
RDOS D-9
RTOS D-10
swapping 2-2f
SWAT 1-2, 1-5, B-24
switches
high-level language Link macros 5-5
Link Chapter 5
LFE Chapter 6
.SY file structure D-8
symbol names (in object blocks) B-8
symbol types 6-5
SYS.LB 7-4, 7-7ff
/SYS=n GLOBAL switch 5-6, 5-11, 7-7ff
SYSID.,PR 2-9
system calls 2-9
library 5-6
overhead 2-2, 2-5f
tables 2-8
system errors A-1f, A-8
system tables 2-8

T

T, function-letter 6-15
target word (for resource calls) 4-10f
task block B-1, B-22
Task Control Block 2-8, 5-6
tasks B-22
system tables 2-8
/TASKS=n GLOBAL switch 5-11, B-22
TBOOT (RTOS booting program) 7-11f

?TBOT (Link-generated symbol) C-2, D-2, D-8ff

TCB 2-8, 5-6

/TEMP=pathname pointer GLOBAL switch 5-11

time-sharing 2-2

TITLE (symbol type) C-3

title block B-1f, B-11, B-18

TMAX (Link-generated symbol) C-2
TMIN (Link-generated symbol) C-2
TRIGR.OB (RTOS trigger module) 7-7f

?TTOP (Link-generated symbol) C-2, D-2, D-8ff

two-pass linker 3-4
U

UC, overlays 5-3f

/UDF GLOBAL switch 4-2, 5-6, 5-11, 7-8f
system tables 2-8

27UDPOQO (partition name) 4-6

093-000254 Licensed Material-Property of Data General Corporation

JULAST=n GLOBAL switch 5-11
example 5-21
undefined symbol (LFE message) 6-5f
7UNDF (Link-generated symbol) B-14, C-2
unlabeled common area B-13
unlabeled common block 4-2, B-1, B-13
unmapped RDOS 7-9, 7-11
unshared attribute 4-2, 4-5
Unshared Code partition 4-5
overlay 5-3ff
Unshared Data partition 4-5
overlays 5-3ff
unshared overlay areas 2-10
unshared pages 2-2ff
overlay areas 2-10
system tables 2-8
unused area 2-5
URT.LB 2-7f, 5-6, 7-4, 7-9
7URTB (Link-generated symbol) C-2
User Status Table 2-8, B-30
user-defined partition 4-4f, B-20, B-26
UST 2-8, B-30
?7USTA (Link-generated symbol) C-2, D-8ff
USTAD (Link-generated symbol) C-2, D-9f
USTRYV (offset) B-11, B-30

In d eX'G Licensed Material-Property of Data General Corporation

\'

/V GLOBAL switch 5-11

example 5-2
/VAL=n PARTSYM switch 5-14
variable names and debuggers 3-6
virtual overlays 7-10
/VIRTUAL OV switch 7-10

w

word 2-1
write protection 2-3f, 4-2
/WRL GLOBAL switch 4-11ff, 5-11, 7-8

X

X, function-letter 6-16
/XREF GLOBAL switch 5-12
example 5-31ff

y 4

7ZBOT (Link-generated symbol) C-2, D-2, D-8ff
/ZBOT=n GLOBAL switch 5-12

example 5-22, 7-9
7ZMAX (Link-generated symbol) C-2, D-8ff
ZREL 2-6f, 3-4, 4-1, 4-5 ‘
.ZREL (pseudo-op) 3-2f

093-000254

CU1 nLONG DOTTED LINE

¢»DataGeneral

group Installation Membership Form

Name

Position Date

Company, Organization or School

Address

City State Zip

Telephone: Area Code

No. Ext.

0O OEM
0O End User
O Systern House

O Batch (Central)
0 Batch (Via RJE)

O On-Line Interactive
0O Government

0O Educational

Qty. Installed | Qty. On Order 0O HASP 0 CaM
O RJE8O 0O XODIAC

O RCX 70 O Other

Specify

O A0S O RDOS
0 DOS O Other From whom was your machine(s)
h ?
O MP/0S purchased
Specif () Data General Corp.
pectly O Other
Specify
0O Algol O Assembler
O DGL O Fortran Are you interested in joining a
0 Cobol ORPGI special interest or regional
0O PASCAL O PLN Data General Users Group ?

O Business BASIC O Other
0O BASIC

O

Specify

¢»DataGeneral

Data General Corporation, Westboro, Massachusetts 01580. (617) 366-8911

FOLD

FOLD

TAPE

FOLD

TAPE

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

. -LbNG DOTTED LINE

Cu.

¢»DataGeneral

TP
Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE ZIP STATE ALY
ATTN: ATTN:
UNIT LINE TOTAL
QTY | MODEL # DESCRIPTION PRICE DISC PRICE
(Additional items can be included on second order form) {Minimum order is $50.00] TOTAL
TaxExempt#___ Sales Tax
or Sales Tax (if applicable) —
Shipping
TOTAL
METHOD OF PAYMENT SHIP VIA
(J Check or money order enclosed 0 DGC will select best way (U.P.S or Postal)
For orders less than $100.00
O Other:
O Chargemy [Visa [JMasterCard 0 U.P.S. Blue Label
Acc’tNo.____ ExpirationDate______ O Air Freight
OO0 Other
O Purchase Order Number:
NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.
Person to contact about this order Phone Extension
Mail Orders to: Buyer’s Authorized Signature Date
Data General Corporation (agrees to terms & conditions on reverse side)
Attn: Educational Services/TIPS F019
4400 Computer Drive -
Westboro, MA 01580 Title
Tel. (617) 366-8911 ext. 4032
DGC Sales Representative (If Known) Badge #

DISCOUNTS APPLY TO
MAIL ORDERS ONLY 012-1780

eaygqliees’

DATA GENERAL CORPORATION -
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”’) provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1.

PRICES

Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer’s order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

SHIPMENT

Shipment will be made F.0.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

. TERM

Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice, It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

DATA AND PROPRIETARY RIGHTS —
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such ¢
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details

and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and

conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into

this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

. LIMITATIONS OF LIABILITY

IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

¢»DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service’s Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked “subtotal”
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS

Educational Services - M.S. F019
Data General Corporation

4400 Computer Drive

Westboro, MA 01580

8. We'll take care of the rest!

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual No.

Who are you? OEDP Manager OAnalyst/Programmer OOther
OSenior Systems Analyst (JOOperator

What programming language(s) do you use?

How do you use this manual? (List in order: | = Primary Use)

— Introduction to the product — Tutorial Text —_ Other
— Reference —_ Operating Guide

Yes Somewhat
About the manual: Is it easy to read?
Is it easy to understand? O
Are the topics logically organized? 0
Is the technical information accurate? [m]
O
0O

O

Can you easily find what you want?
Does it tell you everything you need to know
Do the illustrations help you?

ooooooo
oooooooZ

]

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

134-664

/ﬂ
f'/\
| || " | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
I
BUSINESS REPLY MAIL | s
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772 [
POSTAGE WILL BE PAID BY ADDRESSEE I
R
.
I
1
.
¢» DataGeneral
R
User Documentation, M.S. E-111
4400 Computer Drive N
Westborough, Massachusetts 01581 [] o~
L]
I

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual No.

Who are you? OEDP Manager OAnalyst/Programmer OOther
OSenior Systems Analyst OOperator

What programming language(s) do you use?

How do you use this manual? (List in order: I = Primary Use)

___ Introduction to the product — Tutorial Text ___ Other
— Reference — Operating Guide

Yes Somewhat
About the manual: Is it easy to read?
Is it easy to understand? O
Are the topics logically organized? O
Is the technical information accurate? O
O
O

O

Can you easily find what you want?
Does it tell you everything you need to know
Do the illustrations help you?

ooooooo
ooooooo#

O

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

134-664

: | || || I NOPOSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

POSTAGE WILL BE PAID BY ADDRESSEE

¢» DataGeneral

User Documentation, M.S. E-111
4400 Computer Drive
Westborough, Massachusetts 01581

— .

I

Data General Corporation, Westboro, MA 01580 ‘ 093-000254-02

