SPEED Text Editor
(AOS and AOS/VS)

User’s Manual

SPEED Text Editor
(AOS and AOS/VS)

User’s Manual

093-000197-03

For the latest enhancements, cautions, documentation changes, and other information on this product, please see the
Release Notice (085-series) supplied with the software.

Ordering No. 093-000197

© Data General Corporation, 1976, 1977, 1978, 1980

All Rights Reserved

Printed in the United States of America

Revision 03, December 1980

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

SPEED Text Editor
(AOS and AOS/VS)
User’s Manual
093-000197-03

Revision History:

Original Release - April 1976
First Revision - April 1977
Second Revision - June 1978

Third Revision - December 1980 AOS SPEED 3.20
AOS/VSSPEED 1.10

A vertical bar or an asterisk in the margin of the pages in Chapter 7, “*A SPEED Dictionary,”
substantive change or deletion, respectively, from revision 02.

indicates

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
DATAPREP NOVA AZ-TEXT ECLIPSEMV/8000 SWAT
ECLIPSE SUPERNOVA DASHER microNOVA XODIAC

INFOS DG/L

This manual shows you how to compose and edit text
using the Text Editor SPEED. It assumes that you are
ready to call SPEED with the Command Line
Interpreter (CLI) of the Advanced Operating System
(AOS) or Advanced Operating System/Virtual Storage
(AOS/VS).

Related Manuals

If you have never worked at a terminal or used a text
editor before, you may find it helpful to read the first
four chapters of Learning to Use Your Advanced
Operating System (AOS) (69-000018). If you are not
familiar with the CLI, consult the Command Line
Interpreter (CLI) User’s Manual (AOS and AOS/VS)
(093-000122).

How to Use This Manual

If you are a beginner, this manual takes you, chapter by
chapter, through the steps you need to master SPEED.
Each chapter contains explanations, examples, and
exercises. Each chapter builds on the preceding ones. As
you work, keep the manual at your terminal. Read it
thoroughly, practice with the examples, and work
through the exercises.

If you have experience programming or using a text
editor, you may wish to use this manual as a reference
work rather than as a tutorial. If so, turn directly to
Chapter 7, A SPEED Dictionary, it contains
information about SPEED in a compact form.

You will find change bars in the margins of some entries
in Chapter 7. These bars show changes in functionality,
including enhancements, from the previous version of
SPEED.

About the Exercises

Your ability to work with SPEED will grow quickly if
you keep practicing with SPEED. Reading through the
exercises and examples helps less than working through
them patiently at the terminal. Don’t worry about
making errors. You cannot harm the system, and the
more mistakes you make while learning SPEED, the
Sfewer you will make later when you actually use it. If
the first exercise in a group puzzles you and, after
several tries, you feel that you cannot work it, consult
the answer and explanation at the end of the chapter.

093-000197-03

Preface

Then go back, work through the first exercise, and try a
second one.

About the Dictionary

Chapter 7, the dictionary, contains an entry for each
SPEED command, console control key, switch, symbol,
and template control key. As you work through this
manual, consult these entries to confirm that you
understand the relevant parts of each example or
exercise. Don’t worry if some parts of the entry at first
make no sense to you. Things will fall into place as you
learn more about SPEED. After you work through the
manual, you can use Chapter 7 as a reference tool for
looking up information quickly.

Organization of the Manual
Chapter 1 introduces you to SPEED. It describes the use

of the terminal and presents the format of SPEED
commands.

Chapter 2 shows you how to perform elementary editing
tasks by forming simple command lines and executing
them with the control key CTRL-D.

Chapter 3 shows you how to handle more than one text
file and use more than one buffer at a time.

Chapter 4 shows you how to perform more complicated
editing tasks using numbers, variables, and command
modifiers. You also learn how to use control keys other
than CTRL-D.

Chapter 5 shows you how to make a command or string
of commands repeat a number of times and how to set
up conditions for the execution of commands.

Chapter 6 shows you how to create and store your own
commands and command strings for editing tasks that
you are likely to encounter frequently.

Chapter 7 is your SPEED dictionary.

Appendix A exhibits the ASCII character set.

Appendix B interprets SPEED error messages.
Appendix C is your SPEED code graph.

Appendix D contains a functional analysis of SPEED
commands.

Licensed Material-Property of Data General Corporation 11

Reader, Please Note:

We use these conventions for command formats in this

Additionally, we use certain symbols in special ways:

manual: Symbol Means
COMMAND required [optional] ...
) Press the NEW LINE or RETURN
Where Means key on your terminal’s keyboard.
COMMAND You must enter the command U Be sure to put a space here. (We use
(or its accepted abbreviation) this only when we must; normally, you
as shown. can see where to put spaces.)
required You must enter some — Press the TAB key on your terminal’s
argument (such as a filename). keyboard.
Sometimes, we use:
required, All numbers are decimal unless we indicate otherwise;
required, e.g., 35;.
which means you must enter In the text and in examples, we distinguish between your
one of the arguments. Don’t entries and system responses. We use
enter the braces; they only set
off the choice. THIS TYPEFACE TO SHOW YOUR ENTRY$$
[optional] You have the option of THIS TYPEFACE FOR THE SYSTEM RESPONSE.
entering some argument. Don’t
enter the brackets; they only ! is the SPEED prompt. It indicates that SPEED is
set off what is optional. ready to accept commands.
You may repeat the preceding By convention, we cite alphabetic SPEED command
entry or entries. The names in uppercase letters in the examples. In fact,
explanation will tell you SPEED accepts command names both in uppercase and
exactly what you may repeat. in lowercase. Use whichever is convenient.
End of Preface
iV Licensed Material-Property of Data General Corporation 093-000197-03

Contents

Chapter 1 - An Introduction to SPEED

What IsSPEED? 1-1
What Can SPEED Do? 1-1
What Does SPEED Require? 1-1
The Terminal Display 1-1
Gettinga Display 1-1
What SPEED Displays 1-1
The Prompt and the Character Pointer 1-2
The Terminal Keyboard 1-2
Usesof Keys e, 1-2
Console Control Keys 1-3
Distinguishing Keys 1-3
Text . .o, 1-4
Characters 1-4
Lines, 1-5
Pages, 1-5
SINNES . . o o 1-5
Windows e, 1-5
Files 1-5
Buffers 1-5
Commands and Command Lines 1-5
BuildingaCommand Line 1-6
The Insand OQutsof SPEED 1-7
Making Errors in SPEED: Don’t Worry 1-7
Correcting Typing Errors 1-7
Cancellinga SPEED Command Line 1-7
Inadvertent Commands 1-7
Finding Your Status 1-7
Aborting SPEED 1-7
EXErcise 1-7

Chapter 2 - Elementary Editing with SPEED

Entering SPEED, 2-1
OpeningaFile. 2-1
ReadinginaPage 2-1
Displaying Text 2-1
CreatingaFile. 2-1

Inserting Text 2-1
HowtolInsert Text 2-1
Whatto CountasaCharacter. 2-2
WheretoInsert Text 2-2

093-000197-03 Licensed Material-Property of Data General Corporation

Vi

Correcting Text 2-2

Moving the CP from LinetoLine _. 2-2
Moving the CP across Characters 2-3
Deleting Characters 2-3
Searching for Text 2-3
Changing Text. 2-3
KillingLines 2-3
Inserting Text 2-4
Checking the Statusof the Buffer. 2-4
TypingOutText. 2-4
Finding the Status of Lines and Characters. 2-4
Checking the Statusof Files. 2-5
Endinga SPEED Session 2-5
WritingtoaFile 2-5
Closing Files 2-5
Exiting 2-5
Exercise 2-5

UsingGlobal Files 3-1
Opening Global Files. 3-1
Readingfrom Files 3-1
Writingto Files, 3-2
Closing Global Files 3-2

Using Multiple Buffers 3-2
Copying to Another Buffer 3-2
Switching to Another Buffer, 3-3
KillingaBuffer 3-4

Using Local Files 3-4
Local File Commands 3-4
Manipulating Local and Global Files 3-4
Command Precedence 3-5

Checking the Statusof Buffers 3-5

Exercises 3-5

Chapter 4 - Intermediate Editing with SPEED

Arithmeticin SPEED. 4-1
Numerical Expressionsas Text 4-1
Storing Numerical Expressions, 4-1
Using Decimal Equivalents of Characters 4-2

Boolean Functionsin SPEED 4-2

Using Variables in Housekeeping 4-2

Modifying Commands 4-3
Conditionalizing the Next Command. 4-3
Setting a Temporary Delimiter. 4-3
Using the Alternate Radix 4-4

Choosingthe SPEED Modes 4-4
Default ArgumentMode 4-4
Case ControlMode 4-4
Display Mode 4-5
Window Mode 4-5
PositionMode 4-5
Alternate Radix 4-5
Shift Sensitive Mode 4-6

Licensed Material-Property of Data General Corporation 093-000197-03

SPEED Control Charactersand Templates 4-6

Expansionsto Buffersand Files 4-6
Search Templates and Control Characters 4-7
Executing Commands Across WindowsorPages 4-8
Executingthe CLI. 4-9
EXEICISES . . o o o o o e e e, 4-9

Chapter 5 - The Iteration and Flow of SPEED Commands

Command Loops 5-1
Numerical Control 5-1
Conditional Control 5-1
Nesting Command Loops. 5-2

Conditional Execution 5-2
The Execution Conditions, 5-2
Branch Overto Label 5-2
Conditional Iteration 5-3

EXErcises o o 5-3

Chapter 6 - Advanced Editing with SPEED

SavingaCommand Line 6-1

TracingaCommand Line 6-1

Interacting with SPEED 6-1

Writing SPEED Commands 6-1

Creating and Using SPEED Macros L o 6-2
ExecutingaBuffer 6-2
Executing Files 6-3
Using the /I=Switch 6-3

EXErcises e 6-3

Envoi . . . e 6-4

Chapter 7 - A SPEED Dictionary

How to Use this Dictionary. 7-1

Entering SPEED 7-1
Entering without a Filename 7-1
Entering with a Filename 7-1
Permanence, 7-1
Switches 7-2

Exiting from SPEED 7-2
The ExitCommand 7-2
A Note about Line Printer Listings 7-2

Organization of the Entries 7-2
Format e 7-2
Function 7-2
Numerical Arguments 7-2
Symbolic Modifiers. 7-3
CharacteriStiCs o 7-3
Precautions and Error Messages 7-3
Related Commands 7-3
Examples. e 7-3

093-000197-03 Licensed Material-Property of Data General Corporation

vii

The Structure of SPEED Commands 7-3

Numerical Arguments 7-3
Symbolic Modifiers 7-4
Command Name 7-4
Search Strings and Text Strings, 7-4
Delimiters 7-4
Command Line Terminator. 7-4
Conventionon Capitals 7-4
A Noteon Command Precedance 7-4
Functional Analysis of SPEED Commands 7-4
Entry Sequence in this Dictionary. 7-4
A 7-5
BC 7-6
BEB . 7-8
BEC 7-9
BENR 7-10
BENW 7-11
BEO . 7-12
BER 7-14
BEU o 7-15
BEW 7-16
BG . 7-17
BK 7-19
BS 7-20
B 7-21
B 7-23
C o 7-24
D 7-27
3 7-28
E 7-29
BB 7-30
FC 7-31
FNR 7-32
ENW 7-33
FO 7-34
FR 7-36
FU 7-37
FW 7-38
B 7-38
5 7-39
L 7-40
= 7-42
T 7-43
Ko 7-44
L 7-46
M 7-47
N o 7-48
O 7-49
P 7-51
PW 7-53
Q 7-54
R 7-56
S 7-57
T, 7-59
/2 7-61
2 7-62
VD 7-63
VL 7-64
VL 7-65

Vil Licensed Material-Property of Data Genera! Corporation 093-000197-03

093-000197-03

VM 7-66
VN 7-67
VP 7-68
VS 7-69
W A e e 7-70
W . 7-71
WD . e 7-72
WM 7-73
WP 7-74
W e 7-75
WS 7-76
X 7-77
X e 7-79
22 P 7-80
S (ESC) . . 7-80
PO 7-81
Habell . . . 7-82
nXcommand-string’ 7-82
B 7-85
& e 7-85
U 7-86
s 7-87
PP 7-87

.. 7-88
/2 P 7-88
... 7-89
S P 7-90
X > 7-91
3 OO 7-93
2 P 7-94
@ . 7-95
1 U 7-96
U 7-97
R 7-98
N 7-98
L PP 7-99
X 7-99
CTRL- \character-listCTRL-\ 7-100
CTRL-Bbuffer-name e 7-101
CTRL-C, CTRL-A . . e 7-102
CTRL-C,CTRL-B e 7-102
CTRL-D . . . e 7-103
CTRL-E . . 7-103
CTRL-Ffilename. e 7-104
CTRL-G . . . e e 7-105
CTRL-L . 7-105
CTRL-J 7-106
CTRL-L | e 7-106
CTRL-M . e 7-107
CTRL-N e 7-107
CTRL-Q 7-108
CTRL-S . e 7-108
CTRL-T | e 7-109
CTRL-U | 7-109
CTRL-W e 7-110
CTRL-X . e 7-110
CTRL-Y 7-111
CTRL-Z 7-111

Licensed Material-Property of Data General Corporation

Appendix A - ASCII Character Set

Appendix B - Errors in SPEED
SPEED Error Messages B-1

Appendix C - SPEED Code Graph

Appendix D - Functional Analysis of SPEED Commands

Tables

Table Caption

3-1 Inputand Output Functions. e 3.3
3-2 File Handling Commands e 3-5
4-1 Boolean Functions. 4-3
7-1 Numerical Argumentsto Commands 7-3
[]
Illustrations
Figure Caption
1-1 Keyboard Differences. 1-4
1-2 English-SPEED DifferencesinSyntax. 1-6
7-1 Command Control. e 7-50

Licensed Materiai-Property of Data General Corporation 093-000197-03

Welcome to the SPEED Text Editor! This manual
assumes that you are ready to enter SPEED under the
Command Line Interpreter (CLI) of the Advanced
Operating System (AOS) or the Advanced Operating
System/Virtual Storage (AOS/VS). It also assumes, in
the first six chapters, that you have little or no
experience with programming or other text editors. (If
you do have some experience, read the introductory
remarks to Chapter 7; if they seem to make sense, try
skipping the six tutorial chapters.)

Before you begin your first editing session, you need
some general information about the SPEED Text
Editor.

What Is SPEED?

SPEED is a character-oriented text editor that can help
you edit pieces of text as various as poems and programs
-- and you need not be a poet or a programmer to use it.
(The author of this manual is neither!)

Editing a text includes

® adding new material

@ changing material

@ deleting old material

@ making copies of the material

An editing task may be as simple as correcting a
misspelling, or as complex as writing a manual like this
one.

What Can SPEED Do?

SPEED allows you to open existing text files or create
new ones. You can create copies or variants of existing
files, combine them, or divide them. You can work on
several files at the same time. SPEED can give you
multiple workspaces or buffers so that you can carry out
several different tasks at the same time, or one larger
task that requires more than one working area. SPEED
can undertake repetitive tasks automatically, and you
can set conditions for SPEED to check before carrying
out a task. With SPEED you can create your own
editing programs for use during an editing session, and
you can file them as SPEED macros for use later.

093-000197-03

Chapter 1

An Introduction to SPEED

What Does SPEED Require?

You need very few tools before you start editing with
SPEED. If you can type, the initial strangeness of using
SPEED will wear off more quickly.

If you haven’t done so already, familiarize yourself with
the structure of AOS files and directories in the chapter
“AOS Terms and Concepts,” of the manual Learning to
Use Your Advanced Operating System (AOS)
(69-000018).

The best asset you can bring to your initial SPEED
sessions is patience. You may think at first that a
madman devised SPEED as an instrument of torture.
With patience and practice, your frustrations will turn
into an understanding of SPEED’s psychology. SPEED
was designed for the use of the expert -- one who makes
few mistakes. It was also designed to require the
minimum number of key strokes from the user, to be as
efficient as possible. Therefore, SPEED is compact and
unforgiving.

The Terminal Display

An editor needs to be able to look at text, and to change
it. When you enter SPEED, it creates a buffer or
workspace from which you can display the text you wish
to edit.

Getting a Display

SPEED does not display text automatically. You must
get a display either by issuing T commands or by
entering SPEED with the display switch. You will find
out how to do these things in your first editing session in
the next chapter.

What SPEED Displays
SPEED displays two sorts of things. It shows you

@ the rext that you are currently editing, whether you
keyed it in from the terminal or brought it into the
buffer from an open file

® the command line you type in from the keyboard
containing the changes you ask SPEED to make in the
text

When both text and a command line are on the screen,
the current command line always follows the text.

Licensed Material-Property of Data General Corporation 1 . 1

The Prompt and the Character Pointer

SPEED gives you two different signals as you work. One
tells you that SPEED is ready for your commands, and
the other tells you where in the text SPEED is ready to
work.

The SPEED prompt has the form of an exclamation
point. On video display terminals, SPEED follows the
prompt with the cursor, which it represents as a blinking
underline on models 6052 and 6053, and as a white
rectangle on models D100 and D200. In this manual, we
represent the cursor with an underline.

!

SPEED gives you a prompt when it is ready to accept
your commands. It tries to interpret whatever you type
as a command line. SPEED echoes the line you type in
after the exclamation point, moving the cursor to the
right. If, for example, you ask SPEED to insert two
words, SPEED displays

I Orwo words_

before you execute the command by entering a
CTRL-D.

The SPEED Character Pointer has two different forms.
If you are working at a terminal model 6052, 6053,
D100, or D200, the Character Pointer (CP) is a blinking
asterisk. On other models, SPEED represents the CP
with a caret in parentheses (~). In this manual, we
represent the CP with an asterisk.

The CP shows the point in the text where SPEED tries
to work. If, for example, it shows you

type* in

and you successfully ask SPEED to insert

OtwoJwords, the result will appear as

type two words* in

The CP lies between two characters, and not on a
character. SPEED marks the location of the CP with the
preceding character. The first position of the CP when
you enter SPEED is 0, at the beginning of the buffer.

1 - 2 Licensed Material-Property of Data General Corporation

The relevant prompt, preceding your current command
line, lies below the most recent CP in your text. Keep the
distinction between the two constantly in mind: the
prompt signals you what you are doing, the CP tells you
where you are doing it.

The Terminal Keyboard

SPEED takes its commands from you by interpreting
what you type at the keyboard. The terminal keyboard
resembles that of a typewriter, but has additional keys
and functions. A key on the alphanumeric keypad may
have up to three uses in SPEED.

Uses of Keys

SPEED uses keys and sequences of keys as command
names, text characters, and control keys:

® Keys serve as characters when you enter them in
sequence after a search (C, N, Q, S), insertion (C, I,
BG), or display (@T) command

® Keys serve as command names when you enter them
alone or in sequence and they do not follow a search,
insertion, or display command, or occur in a label

® Keys serve as control keys when you depress CTRL
and another key at the same time. A control key may
have one of two uses. When you use it within a search
command, it may function as a template for portions
of the search string. When you use it elsewhere, the
control key has its standard CLI function

For example, the N key

Character is a text key in a command to change
the next /Vin the text to M

CNM

Command is the command name in a command to
search throughout the file for the next

Ni$ occurrence in the text of /

Template is a template control key in a command
to find the next character in the text

SpNP$ that is nota P

093-000197-03

Console Control Keys

Control characters allow you to alter the activity of your
terminal. To enter a control character, press and hold
the CTRL key, then press the other key. In this manual
we mention a control character with a preceding CTRL
(CTRL-A) and show its echo as TA.

CTRL-C, CTRL-A When you key in a [C,JA
sequence, you abort the entire
current command line, even if
it contains NEW LINEs.
CTRL-C, CTRL-B When you key in a |C,|B
sequence, you abort the entire
SPEED editing session. Your
input file, if you have one,
remains unchanged, but you
lose any editing carried out
during the session. This is a
fast way to kill bad command
execution.

CTRL-D This control key echoes as $$
rather than [D. It terminates
and attempts to execute your
current SPEED command line.
CTRL-I Keying in JI or TAB is the
same as issuing an | command
followed by a TAB.

CTRL-J Keying in [J in an | command
equates to inserting a NEW
LINE.

CTRL-L Keying in TL in an | command
equates to inserting a form
feed.

CTRL-M Keying in M in an | command
cquates to inserting a carriage
return.

CTRL-O When you key in O, you
discard information written to
the terminal. Cancel a
CTRL-O with a CTRL-Q.
CTRL-P When you key in [P, you tell
SPEED not to interpret the
next character you type. (In
search commands, use the
sequence CTRL-P, CTRL-T
to echo IT.)

093-000197-03

CTRL-Q When you key in TQ, you
unfreeze the terminal if you
have frozen it beforehand.

CTRL-S When you key in S, you
freeze the current display until
you key in Q. You do not lock
the keyboard, so you may type
“ahead.”

CTRL-U When you key in U, you

cancel that part of the
command line following the
last NEW LINE.

Distinguishing Keys

You must distinguish certain keys that look alike or
appear to function alike. (If you are an experienced
typist, this may mean breaking some habits you have
acquired on other machines.) You should never
substitute for each other

® zero and the letter O
@ one and the letters 1 or |

@ the standard dollar sign ($) and the dollar sign that
SPEED echoes the ESC key with

@ the caret (™) and the circumflex that SPEED echoes
the CTRL key with

® the NEW LINE key, which causes a carriage return
and a line feed, creating a new line, and the carriage
return key, CR, which merely takes you back to the
beginning of the current line

The ALPHA LOCK key acts as a toggle: if you key it in
while in lowercase, it shifts you to upper; rekeying it
shifts you back to lowercase.

You may use either the numeric keypad or the numbers
on the alphanumeric keypad while you are in SPEED. In
the console control keypad of terminal models 6052 and
6053, only the TAB and repeat (REPT) keys function
(but SPEED has no need of them). SPEED makes no
use of the function keypad(s). Figure 1-1 highlights
crucial aspects of the keyboard models.

Licensed Material-Property of Data General Corporation 1 - 3

=)

: n ¥ 3 B z I ¥ () - : T oe mef | S | e 7 81[18
=fflQ E Y DUCHBIE [EDT Fod| 4] ANEIE
1
Sa=1THIE plilFIllaclITHIIJ T) , n | | [rome| || = 1 21113
v 2z Ix el viis]INTIIM{{ R B st eot|| ¢ || foren 0 I

([
\L

7 3
In le IFa IFA lss [‘FG IF7 |F8 IFQ Imo I an lnz |F|3 |F14 |F\5 l j
T s HIHIIBIRNEIR IR s | e | o 7]|[8]]]9
w ||[a]|[w Y DUCHEHE . a4]]]e ANENEUE
[ETTall[s]| o] {[FI|Ial[HT]]Y O T G | | e <[oo | [+ 2] |[3]|T:]
I'_Wv zHIx el TvitsTINT M BN st v cal|[v]| [ce 0 \E_
[o =] &5
= =
SD-02344
Figure I-1. Keyboard Differences
Text @ carriage return (CR)
For SPEED, text comes in units of different types and
sizes. @® carriage rcturn/line feed, which you insert with a
NEW LINE
Characters

Some SPEED commands operate on characters. ® form feed, or page break, which you insert with a
Characters include, as you might expect, letters of the CTRL-L

alphabet, the digits O through 9, and units of

punctuation. SPEED also counts as a single character a

Each text character in SPEED has a position. Character

@ space positions begin with 0.

® tab

1-4

Licensed Material-Property of Data General Corporation 093-000197-03

Lines

A line is a sequence of characters ending with NEW
LINE. Each line of text that you type in or SPEED
displays echoes as a separate line on the terminal screen.

A sequence of characters followed by a carriage return
(CR) does not count as a separate line, and SPEED does
not display it separately.

Each line in SPEED has a number. Line numbers begin
with 1, not O.

Pages

A page is a sequence of characters extending from form
feed (CTRL-L) to form feed, or from a form feed to the
end of the file. You may think of a SPEED page as the
counterpart of the black and white variety, if you wish,
but SPEED pages are more supple: you may change
their length, split them in two, or combine them by
inserting and deleting form feeds.

If you open a paged input file and do not reset your
Window Mode, SPEED reads the file into the buffer one
page at a time.

Strings

A string is any sequence of characters that has as its last
character a standard or temporary delimiter. (The
standard delimiter is ESC, and its echo is the dollar sign
($).) A string may contain spaces, tabs, NEW LINEs,
and form feeds. SPEED uses strings in two ways:

@ SPEED tries to match the search strings you type into
a command line with equivalent strings of text in the
current buffer. When it finds one, it repositions the
CP after the string and carries out subsequent
commands from the new CP position

® SPEED inserts the text strings you type in as part of a
command line into the text at the position of the CP

When you type in a delimiter, or the CTRL-D command
line terminator, you end the string.

Windows

Whether or not your input file is paged, you may read it
into the buffer in windows, or a specific number of lines
at a time that you select with a WM command. When
you select a window length, SPEED ignores the page
breaks in the file, displaying in the place of each the
CTRL-L (JL) you inserted.

If you do not issue a WM command, SPEED reads a file
in one page at a time.

093-000197-03

You may find certain window modes useful: SPEED can
display up to 23 lines on many screens. You can obtain
an automatic 20-line display if you enter SPEED with
the /D switch. You can simulate a standard 8 1/2- by
I1-inch typewriter page with 66 lines. A standard line
printer page can hold 63 lines at six lines per inch and
not print across the perforations.

Files

Text files contain the text you edit. To edit files in
SPEED, you must open or create them. Input files
contain the text you wish to edit. If you wish to retain
the editing you do during a SPEED session, you place
your results in one or more output files. SPEED has a
procedure for using a single file for both input and
output, and you may have more than one input and
output file open at the same time.

You may have input files open without open output files
and vice versa. In fact, you can insert material into the
buffer from the terminal with no files open at all. If you
have no output file open, of course, you will retain

nothing of the editing session after you exit from
SPEED.

Buffers

SPEED can, if you wish, create more than one
workspace, or buffer. You may place different pieces of
text in each buffer, and you can copy text from one
buffer to another.

You retain access to input and output files from various
buffers by opening them globally. By using local
file-opening and file-closing commands, you may use
additional files in each buffer.

SPEED can activate, open files, and store text in 36
buffers.

Commands and Command Lines

The sequence of elements in a SPEED command does
not always correspond closely to the sequence of words
you would use to translate it into English, and you must
take precautions in stringing commands together that
are peculiar to SPEED. For example,

13:Sform$* 17$$
corresponds to

Search for form in the next three lines, and if you find
it, type out the rest of the current line.

See Figure 1-2, which explodes the command string
following the SPEED prompt (!).

Because of such syntactic differences, you must learn
the structure of SPEED commands very carefully.

Licensed Material-Property of Data General Corporation 1 - 5

SD-02345

Figure 1-2. English-SPEED Differences in Syntax

Building a Command Line

A SPEED command line consists of one or more
commands and a command line terminator. You can
construct and execute a SPEED command line by
following these rules:

Rule 1.

Rule 2.

Rule 3.

Rule 4.

1-6

If the command takes a numerical
argument, type it in. Numerical
arguments may be positive integers,
negative integers, or pairs of integers.
SPEED accepts as a numerical
argument any numerical expression
that it can evaluate to an integer or
pair of integers. In SPEED, 0 counts as
a positive integer.

If the command takes symbolic
modifiers (@ : &), type them in.

You may apply rules 1 and 2 in the
opposite order, if you wish.

The command must have a command
name. Type it in next.

Licensed Material-Property of Data General Corporation

Rule 5.

Rule 6.

Rule 7.

Rule 8.

If the command takes a character
string, type it in next. The character
string may be either a search string or
a text string. If this command is not to
be the last one, or if the string is the
search string of a C command, enter
the ESC delimiter (which echoes as $)
as the final character of the string.

If you typed in a search string for a C
command, and you wish to insert a text
string, type it in. If this command is
not to be the last one, enter the ESC
delimiter to end the string.

If you are ready for another command,
go back torule 1.

If you have typed in all the commands
you want SPEED to execute, type in
the command line terminator - depress
CTRL and type D before releasing
CTRL.

Most SPEED commands obey these rules exactly. The
dictionary in Chapter 7 describes the few commands
that these rules do not cover in the section “The
Structure of SPEED Commands” and in the individual

entries.

093-000197-03

The Ins and Outs of SPEED
You may enter SPEED with or without a filename. Type

) X SPEED)
or, if you have a specific file to edit in mind,
) X SPEED filename)

When SPEED shows you its revision number and
displays the prompt, you are ready to begin editing.

When you wish to end your editing session, type

HS (That is, type H, depress CTRL, type
D.)

If, in response, SPEED asks you
Confirm?

then you have text in the buffer, an open file, or both.
Type yl to exit from SPEED; type any other character to
remain in the editing session.

Making Errors in SPEED: Don’t
Worry

In your first practice sessions with SPEED, you will
make many errors of several different kinds. Go ahead
and make them! It is better to make them during
practice sessions and learn what to expect than it is to
make them later during serious editing sessions. Use
these tips to reduce the seriousness of your errors.

Correcting Typing Errors

Erase the preceding character by pressing the DEL or
RUBOUT key. On video display terminals, the last
character disappears and the CP moves left one space.
Hardcopy terminals echo a backarrow or underscore.

You may use the DEL and REPT keys jointly to delete
a sequence of characters.

Cancelling a SPEED Command Line

You can cancel an entire command line by issuing a
CTRL-U (depress CTRL and type in a U).

If your unexecuted commands range over more than one
line, and you wish to cancel them, you may do so by
issuing a CTRL-C, CTRL-A sequence. SPEED deletes
the command sequence and restores your prompt.

Inadvertent Commands

If, during an editing session, you lose control of the
terminal and “nothing seems to work,” you may have
inadvertently struck a CTRL-S, which freezes the
terminal. (It is easy to do this, since S lies next to D,

093-000197-03

which you must use constantly to execute command

lines.) To regain control of the terminal, issue a
CTRL-Q.

It is easy, especially if you are an experienced typist, to
forget the | command name preceding the text you wish
to insert in the buffer. When you do this, SPEED tries to
interpret the line you type in as a command line. If your
line begins with H, Q, or Y, SPEED’s response may
surprise you: SPEED will ask you

Confirm?
Confirm (Q-command)?
Confirm (Y-command)?

when you already have text in the buffer, because you
have inadvertently told SPEED to terminate the SPEED
session (H) or to clear the buffer (discard its contents)
and read in the next page of your input file. Type in any
other characters but y) to remain in the session. You
may then type in the | command name and begin your
insertion anew.

Finding Your Status

It is easy, especially at first, to lose track of your SPEED
editing session and forget which buffers you have stored
text in and which files remain open. You may find it
useful to check on the status of your buffers and files
before issuing the H exit command. You can do this
quickly by issuing the command line

IF?B?7$$

SPEED tells you which files are open in the current
buffer, and tells you which buffer you are in and which
other buffers are active.

Aborting SPEED

If you need to leave the SPEED session and no other
method seems to work, you can abort SPEED and return
control to its parent process by issuing a CTRL-C,
CTRL-B sequence. You lose the results of your editing
session when you do this. Do not issue this sequence in a
panic; try first to think your situation through. You
harm nothing by letting SPEED ““idle” as you do so.

Exercise

From time to time in this manual, we offer an exercise
so that you can practice your SPEED skills. Here’s the
first one:

Licensed Material-Property of Data General Corporation 1 - 7

1-8

Exercise [-1.

Enter SPEED. Make a note of the revision number.
Check your file and buffer status. Exit from SPEED.

) X SPEED)
SPEED REVmm.nn
IF?B7%%
Global:
Input File - None
Output File - None

Input File - None
Output File - None

Buffer0 - 0

$D-02377
Answer |-1.

End of Chapter

Licensed Material-Property of Data General Corporation

093-000197-03

Chapter 2

Elementary Editing with SPEED

Now that you have a grasp of the basic elements of
SPEED, you can undertake a simple editing session. If
you have little experience with SPEED, please work
through the examples as you read. As you use each
command, look up the entry for it in Chapter 7, “A
SPEED Dictionary.”

Entering SPEED

Before you enter SPEED, please create, or ask your
supervisor to create, a file to practice with. Call it
MYFILE. Place some text in it using the CLI, perhaps

Here is a sentence to work with.)
If you’re ready, let’s begin.

Enter SPEED from the CLI by typing after the CLI
prompt

) X SPEED)

Your screen then displays the SPEED revision number
and gives you its prompt.

SPEED REV mm.nn
!

SPEED is ready for your first command. Let’s create a
new file using the contents of the one you already have.
MYFILE will be the input file, and the file we create
will be the output file.

Opening a File

To open MYFILE for reading, issue an FR (File Read)
command

IFRmyfile$$

Remember not to place a space between the command
name FR and the filename, and remember to terminate
the command with ESC or with CTRL-D--depress
CTRL, type in D, and observe the $3 echo.

Reading in a Page

When SPEED restores your prompt, it has carried out
your command and opened the file. But it has not yet
read any contents of the file into the buffer. Append the
first page of the file (in the present case, the entire file)

093-000197-03

to the buffer with the A (Append) command. Since your
file contains lowercase letters, you will see

IAS
** Lower case input encountered **

SPEED has now appended the first page of the file to
the buffer. In the present case, since the buffer was

empty, its current contents equal the contents of your
file.

Displaying Text

To verify that SPEED has done what you asked it to do,
call for a type out with the a T or 1T (Type) command.
The CP is at the beginning of the first line of the buffer.
Either of the T commands will display everything on
that line to the right of the CP. If you have been
successful, you will see

IT$$
*Here is a sentence to work with.
/

Creating a File

Now that you have brought text into the buffer, create
the output file that you wish to copy it to. Name the
output file NEWFILE with the FW (File Write)
command

IFWnewfile$$

We now have an input file, an output file, and text in the
buffer. You are ready to begin editing with SPEED.

Inserting Text

Let’s put another sentence in the buffer, so that the
contents of the buffer will differ from the contents of the
input file. (We are altering the buffer, but not the input
file itself.)

How to Insert Text

You make text insertions by typing in the | (Insert)
command and the text you want to insert. You follow
the text with a delimiter (ESC, which echoes as $,) if
you wish to continue the command line. You follow the
text with a CTRL-D if you wish to terminate and
execute the command line.

Licensed Material-Property of Data General Corporation 2_ 1

Let’s type in the sentence and ask SPEED to show us
the contents of the buffer at the same time. The symbol
abbreviates the pair of arguments (0,Z), where 0
stands for the beginning of the buffer, and Z stands for
the last character in the buffer. Since T is the Type Out
command for a display, a #T command asks SPEED to
display the entire buffer. Try, for example,

lIHere is a second sentence to type in.)
SHTSS

What to Count as a Character

You typed a NEW LINE ()) just as you did every other
character. SPEED counts as characters not only letters
of the alphabet, digits, and punctuation symbols, but
also spaces, tabs, NEW LINEs, carriage returns, and
form feeds. Each of these, even the tab, counts as a
single character.

Where to Insert Text
The result of your insertion, alas, is

Here is a second sentence to type in.
Here is a sentence to work with.

with the sentences in the wrong order. Type out a
another display with a T command to see where the CP
is and then insert another sentence.

IIThis is my third sentence in SPEED.)
$$

When you issue another #T command, you see

Here is a second sentence to type in.
This is my third sentence in SPEED.
Here is a sentence to work with.

SPEED made the insertions at the position of the CP. At
the time of the first insertion, the CP was at the head of
the buffer. At the end of that insertion, it followed the
NEW LINE, the last character you inserted. The
general rule is that SPEED carries out its operations
(insertions, deletions, movements) at the position of the
CP, and the CP follows inserted material.

Correcting Text

By now, you are probably wondering how to correct the
errors you made when you typed in your insertions. On
the off chance that you made none, please insert the
following text in the buffer, preserving the intentional
errors we have made in it. Don’t omit the initial I
Insertion command, and don’t forget to type in a NEW
LINE after each of the periods.

Hgere is a setnece fo you tocrrrect.
Please put thge missing wrod.
Womethg iswrong on this lin.

2 = 2 Licensed Material-Property of Data General Corporation

Use a #T (Type) command to verify that buffer now
looks something like this:

Here is a second sentence to type in.
This is my third sentence in SPEED.
Hgere is a setnece fo you tocrrrect.
Please put thge missing wrod.
Womethg iswrong on this lin.

Here is a sentence to work with.

Your CP should be at the beginning of the last line (use
a 1T command to verify that it is). Don’t worry if your
actual text contains different or additional errors; you're
going to learn to correct them all in this editing session.

During the rest of this session, enter #T and T
commands at will, in order to see exactly what you are
doing as you do it.

Moving the CP from Line to Line

You are eager to correct your errors, but you are not in a
position to do so. You need to move your CP so that you
can work in the appropriate place. To move to a
different line, use the L (Line) command

1-2L$$

and check the result. You should be at the beginning of
the line that is missing a word. L (Line) commands move
the CP across the number of NEW LINEs you specify.
When you give the command name a positive numerical
argument, it moves the CP forward in the buffer (down
in the display) from its previous position. When you give
it a negative argument, it moves the CP backward in the
buffer (up in the display) from its previous position. So
your command moved the CP to the beginning of the
second line preceding your previous position.

If you know which line from the beginning of the buffer
you wish to work on, you can use a J (Jump) command
instead. Enter a 3J command and check the result. Line
3 in the buffer contains the first of the intentionally
incorrect sentences, and you should be at the beginning
of that line.

A -1L command takes you to the beginning of the
preceding line. A 1L command puts you at the beginning
of the following line. An OL command puts you at the
beginning of the current line. Since zero is the default
value for L commands, you need not type the zero if you
want to be at the beginning of the current line; L alone
has the same effect.

An 0J, 1J or J command places you at the beginning of

the buffer. A ZJ command places you at the end of the
buffer.)

093-000197-03

Moving the CP across Characters

You can move across characters with M commands.
Enter a 1M (Move) command and check the result. You
should be in front of a spurious letter, g. As with L,
positive numerical arguments to the M command carry
you forward in the buffer, and negative ones carry you
backward.

Deleting Characters

You have now moved to a position from which you can
use the D (Delete) command to delete characters. This
time you wish to delete one character to the right of the
CP, so enter a positive 1D command and check the
result. You should see

H*ere is a setnece fo you tocrrrect.

You can delete characters preceding the CP with -nD
commands. You can delete all material preceding the
CP with a -.D or -ZD command.

Searching for Text

You do not need to specify any specific number of
characters or lines in order to reposition the CP. Instead,
you can use an S (Search) command. From your present
position you can see that you need to make an insertion
in the fourth word. Type in the S (Search) command
and enough text as a search string to distinguish the
position you wish to move to, and check the result, for
example

1Sse$TSS
The result should be

Here is a se*tnece fo you tocrrrect.

An nS command searches within the next » lines. A -nS
command searches within the preceding lines. A m,nS
command searches from the character following the m "
character in the buffer to the n" character. The default
value of this command is from the CP forward to the
end of the buffer.

An 0S8 command searches from the beginning of the line
up to the CP. An 1S command searches from the CP to
the end of the line. A #S command searches the entire
buffer.

If you do not follow the search string in the command
line with a CTRL-D, you must end the string with a
delimiter, as you did above.

If you issue the command without a search string
argument, SPEED will attempt to use the search string
you used in the last search (C, N, Q, S) command. Try it
yourself. Enter

IS$TSS

093-000197-03

Licensed Material-Property of Data General Corporation

The result should be
Please* put thge missing wrod.

since your preceding search was for se.

Changing text

You can see letters in the wrong order in the last word in
this sentence. You can change it by issuing a C
(Change) command. A quick glance shows that the
sequence of letters you want to change is the first and
only such sequence. Type in the C (Change) command,
the search string (or string you want to correct), a
delimiter, and the text string (or string you want to
change it to), and a final delimiter. If you type

ICroorT$$
you will see
Please put thge missing wor*d.

The C command takes numerical arguments in the same
way as the S command. If you issue the command
without a search string as

1IC$string$$

it will try to find another instance of the last thing you
searched for with a search command, and change that.
If you issue the command without a text string as

ICstring$$$

it will try to delete the next instance it finds of your
searchstring. Try it: tell SPEED to change the only g in
the preceding part of the line. If you enter the Change
and Type commands

I0Cg$3TSS
(with two delimiters following g) you should see
Please put th*e missing word.

Killing Lines

You may delete entire lines with a K (Kill) command,
regardless of how many characters each contains. For
example, enter

12J1K$$

and delete the second line, including the NEW LINE
character that followed it.

The K (Kill) command takes numerical arguments in

the same way as the S and C commands. The #K
command kills the entire buffer.

2-3

Inserting Text

You insert text into the buffer from the terminal with |
(Insert) commands. Like search commands, the |
command requires either a CTRL-D or a delimiter at
the end of the text string. If you omit the delimiter,
SPEED treats the keying you intend for a command line
as a continuation of the character string of the insertion.

You are missing a word in the third line. Have SPEED
conduct a search for put and insert in.

ISputlindT$$
The result will be
Please putin* the missing word.

which contains an unfortunate error. Move two
characters backward and insert the missing space by
entering

1-2MSIOITSS
Please put *in the missing word.

You may want to follow these hints to make SPEED
insertions more easily:

@ Always check the screen when making an insertion to
ensure that you typed in the | command name first.

® Decide on a maximum line length and type a NEW
LINE as you approach that length. (Screen
wrap-around may otherwise mislead you to think that
you have distinct lines when you don’t.) Or type in a
paragraph as a single line and go to the front of the
line. Looking at the screen, you will see how many
lines to create. For example,

loLg<7oMCO$!
$>88%

tells SPEED to create 8 lines that are at least 70
characters long, starting at the beginning of the
paragraph, by replacing the first space after each 70"
character with a NEW LINE.

® Use DEL or RUBOUT within an insertion just as you
would in the rest of a command line.

@ Make several shorter insertions rather than one longer
one in order to limit the consequences of an incorrect
insertion.

Checking the Status of the Buffer

After you have spent some time in an editing session,
carrying out various tasks, you may wish to verify in
several ways where you are and what you have done.

2-4

Licensed Material-Property of Data General Corporation

Typing Out Text

You have already used a couple of variants of the T
(Type) command. nT displays lines following the CP,
and -nT displays lines preceding the CP. 1T displays the
current line to the right of the CP, OT displays the
current line to the left of the CP. The default value for T
is the entire current line.

m,nT displays text from the m+1* to the n™ character
in the buffer.

#T displays the entire buffer. (If the buffer is longer
than the maximum that the video display allows, the
display will roll.) Enter

1HTSS

You should see

Here is a second sentence to type in.
Here is a setnece fo you tocrrrect.
Please put in the missing word.
Womethg iswrong on this lin.

Here is a sentence to work with.

In subsequent SPEED editing sessions, you may find it
convenient to set an automatic 20-line display, in order
to avoid entering a stream of T commands. You do this
by using the /D Display switch.

) X SPEED /D [filename])

Finding the Status of Lines and Characters

You may check on the status of your SPEED editing
session in other ways by using the = Equals command
and some SPEED housekeeping variables.

To find out which line your CP is on, interrogate the
Value Line variable

IVL=%$

To find out the number of lines you have in the buffer,
interrogate the Value Number variable

IVN=8$3%

To find out how many characters the CP has moved

from the beginning of the line, interrogate the Value
Moved variable

IVM=8$$

To find out how many characters precede the CP,
interrogate the Current CP Position variable

1.=§$

And to find out how many characters there are in the
buffer, interrogate the Z Last Character variable

1Z=%%

093-000197-03

For example, if you enter
IVN=Z=8%$%

you should see

5
168

which tells you that you have S lines and 168 characters
in the buffer.

Checking the Status of Files

Let’s suppose at this point that you are ready to end this
SPEED editing session even though you haven’t finished
filing everything. Do you remember which files you have
open?

If you don’t recall, enter a F? (Files?) command:

F?%$$
You should see

Global:
Input File - :UDD:YOURDIR:MYFILE
Output File - NEWFILE
Local:
Input File - None
Output File - None

which tells you that your input file is MYFILE and
gives you its path. It also tells you that your output file
is NEWFILE. You created it a little earlier in this
session, remember? (We will discuss the distinction
between global and local files in Chapter 3.)

Ending a SPEED Session

To save the editing you have done for use after this
session, you must place it in an output file.

Writing to a File

You can put all or some of the contents of the buffer
into the output file with one of the P, :P, PW, :PW
commands. To put the entire buffer into the output file,
enter the P (Put) command without a numerical
argument as

P$$

These commands without the symbolic colon modifier (:)
put text in the output file but do not clear the buffer.
The commands with the colon modifier clear from the
buffer the material they put in the output file. The P
commands append a form feed to the end of the output
material, creating pages out of the successive buffer
contents that you put into the file. The PW commands
do not append a form feed, so that you may continue
building a single page with successive buffer contents.

093-000197-03

All the P commands, like the C, K, S, and T commands,
take positive, negative, and paired numerical arguments:
nP copies lines forward from the CP, -nP copies lines
preceding the CP, and m,nP copies text from the m+1*
through to the n* character to the output file.

Closing Files

Although you have now written to the output file, you
have not closed it: it is still open for further copying of
text from the buffer. (Your input file is still open, too. If
it had another page, we could read it into the buffer and
do some more editing.)

To close both files, issue an FC (File Close) command
IFC$$

If you were to issue another F? (Files?) command, you
would now see that all entries are None.

Exiting
You may now ask SPEED to end the SPEED editing
session with an H Halt command:

IHS
SPEED asks you this time
Confirm?

because, although you have closed your files, you still
have text in the buffer. (You did not use the colon with
the P command, remember?) Since you are willing to
discard the buffer contents, go ahead and type in a yl.
Shortly you will receive the prompt of your parent
process, usually the CLI.

SPEED will query you about exiting only if you have
text in the buffer or open files. If you decide not to exit,
type any other character but y) and proceed with your
editing. If you decide to exit, SPEED will kill the buffer
and close any open files, but it will not copy the contents
of the buffer to an output file.

You have now worked through your first SPEED editing
session.

Exercise
Try this exercise before reading through one possible
answer on the next page.

Exercise 2-1.

Enter SPEED. Open NEWFILE and edit the rest of its
contents. Put the edited text in an output (file,
RIGHTFILE. Exit SPEED.

Licensed Material-Property of Data General Corporation 2 - 5

SD-02378

SD-02379

S$D-02380

2-6

Answer to Exercise 2.

) X SPEED/D)
IFRnewfileSA$S

*Here is a second sentence to type in.
Here is a setnece fo you tocrrrect.
Please put in the missing word.

Womethg iswrong on this lin.
Here is a sentence to work with.

ICtne$nten$$

Here is a second sentence to type in.
Here is a senten™ce fo you tocrrrect.
Please put in the missing word.
Womethg iswrong on this lin.

Here is a sentence to work with.

I1SfoIrSto$II$$

Here is a second sentence to type in.
Here is a sentence for you to *crrrect.
Please put in the missing word.

Womethg iswrong on this lin.
Here is a sentence to work with.

Licensed Material-Property of Data General Corporation

093-000197-03

ICr$o0$2LCwWSSS

Here is a second sentence to type in.
Here is a sentence for you to correct
Please put in the missing word.

S*omethg iswrong on this lin.
Here is a sentence to work with.

SD-02381

ISthlin4MICI$$

Here is a second sentence to type in.
Here is a sentence for you to correct.
Please put in the missing word.
Something is *wrong on this lin.
Here is a sentence to work with.

SD-02382

IC.%e.$$

Here is a second sentence to type in.
Here is a sentence for you to correct.
Please put in the missing word.

Some thing is wrong on this line. *
Here is a sentence to work with.

SD-02383

IFWrightfile$:PWFCHS$$
) —

End of Chapter

093-000197-03 Licensed Material-Property of Data General Corporation

—

Chapter 3

Using Files and Buffers in SPEED

You can manipulate multiple files and buffers in
SPEED in order to carry out complex editing tasks.
SPEED can create up to 36 buffers for you to use as
workspaces. During an editing session, you can move
from one buffer to another, and you can copy material
from one buffer to another. You can open different input
and output files for each buffer. If you want access to a
file from every buffer, you open it globally with one of
the Fx commands. If you need access to a file only from
a single buffer, you open it locally with one of the BFx
commands. You may have only one pair of input and
output files open globally at a time, and each buffer may
have only one pair of input and output files open locally.

Using Global Files

When you use global files, you have access to them from
every buffer. You could, for example, read successive
pages of a global input file to different buffers, and then
copy the buffers in a different order to a global output
file, so that the two files would differ only in the order of
their pages.

Opening Global Files

You have already learned two ways of opening global
files. The FR (File Read) command opens an already
existing file for input. You must enter a filename
argument with the FR command, and either the ESC
delimiter or a CTRL-D. The editing session will not
change the contents of a file opened with the FR
command.

You have also already learned how to create a global
output file with the FW (File Write) command. You
must enter a filename argument with this command, and
the filename must be new to the current directory. You
create contents for this file by copying to it from the
buffer.

If you finish with the input file ALPHA and want to
open a new input file BETA, you may close the current
input file ALPHA and open a new file with a FNRbeta$
(File New Read) command. (If you do not specify a
filename argument, the command merely closes the
current input file.)

You can work with a succession of output files in the
same way. If you have copied everything you want to the

093-000197-03

file OMICRON, you can create the new output file
OMEGA and close the current file with a FNWomega$
(File New Write) command. (If you do not specify a
filename argument, the command merely closes the
current output file.)

SPEED has a strategy for updating already existing
files. Instead of entering an FR command, open a file for
updating with an FOfilename$ (File Open) command.
When you do this, SPEED creates an output file for you,
with the same name as the input file and a .TM
extension. When you later update your file with an FU
command, SPEED writes your edited copy to
FILENAME.TM, deletes the file FILENAME, and
renames FILENAME.TM to FILENAME. As a result,
your edited material has the old filename. When a file is
open for updating, no one else can have access to it, nor
can you gain a second access to it. SPEED automatically
clears the buffer and yanks the first page of a file
opened for updating into the buffer.

You may also open a file by entering SPEED with a
filename argument. If the file exists, SPEED opens it for
updating. If the file does not exist, SPEED asks you if
you want to create it. If you type in y), SPEED creates
an output file with that name.

Reading from Files

If your file is not paged (you have selected a nonzero
window mode) SPEED reads only the number of lines
you specify; otherwise (page mode) it reads up to the
first form feed. When you open an input file for
updating, SPEED reads the first page or window into
the buffer.

If you open an input file with an FR or FNR command,
you must bring text into the buffer with an explicit
command. You have already learned one of these: the A
(Append) command reads the first page or window of
the file into the buffer. If there is already material in the
buffer, the material you append follows it. If your CP is
at the bottom of the buffer before you append, the CP
precedes the appended material.

If you are ready to discard the current contents of the
buffer, and wish to bring the next page or window of the
input file into the buffer for editing, issue a Y (Yank)
command. With this command, you lose the current
buffer permanently. If Update Mode is on (if you have a

Licensed Material-Property of Data General Corporation 3- 1

file open for updating), there are characters in the
buffer, and the Y command is not in a Command Loop,

SPEED will query you
Confirm (Y-command) ?

before it yanks a page or window. If Update Mode is not
on, or there are no characters in the buffer, or the Y
command is in a Command Loop, SPEED carries out
the yank without querying first.

A good rule of thumb is never to issue a Y command
until you have considered the alternatives to it.

If you are done editing the current buffer, and wish to
write to an output file, clear the buffer, and read in
another page of the input file, you may do so in a single
command. Enter an R (Read) command. This command
does the work of a PY sequence.

The R command takes a positive numerical argument.
An nR command reads pages or windows out and in n
times.

Writing to Files

You already know of two ways to write to output files.
You learned of the P (Put) and PW (Put Without
Formfeed) commands during the editing session of
Chapter 2. These commands copy the buffer to an
output file. They have no input functions. They clear the
buffer if preceded by a colon (:).

In the “Reading from Files” section of this chapter we
sketched the R (Read) command. That command writes
the contents of the current buffer to an output file and
yanks the next window or page of the input file into the
buffer.

If you are content with the current buffer text, wish to
make no further changes in the rest of the windows or
pages of the input file, but wish to copy the rest of the
input file to the output file, issue an E (End) command.
The E command also clears the buffer.

Closing Global Files

You have already learned of some ways to close files. In
Chapter 2, you used the FC (File Close) command. This
command does nothing more than close any open global
file: it does not write to a file, and it does not clear the
buffer.

In the “Opening Global Files™ section of this chapter,
you learned that the FNR (File New Read) and FNW
(File New Write) commands close current input and
output files as they open new ones. Those commands
also do not clear the buffer or write to files.

3‘ 2 Licensed Material-Property of Data General Corporation

If you have opened a file for updating, you may close it
with an FU (File Update) command. This command
copies the buffer and the rest of the input file to the
output file. It also clears the buffer. If the input file is
FILENAME and the output file is FILENAME.TM
(which SPEED created when you issued an FO (File
Open) command or entered SPEED with a filename
argument), the command deletes FILENAME and
renames FILENAME.TM to FILENAME. The result
is a closed, updated file.

If you wish to retain both the updated and the original
versions of your file for future reference, issue a FB (File
Backup) command. This command also copies the buffer
and the rest of the input file to the output file before it
closes the files. It also clears the buffer. If the output file
is FILENAME.TM, as above, the FB command
renames FILENAME to FILENAME.BU, and then
renames FILENAME.TM to FILENAME.

Table 3-1 summarizes file opening, reading, writing, and
closing possibilities.

Using Multiple Buffers

In Chapter 2, you learned how to edit text in a single
buffer. You can use other buffers to simplify otherwise
tedious editing tasks. Please open your file RIGHTFILE
for updating by entering SPEED and issuing an
FOrightfile$ command. When you do, the buffer should
look something like:

*Here is a second sentence to type in.
Here is a sentence for you to correct.
Please put in the missing word.
Something is wrong on this line.
Here is a sentence to work with.

Let’s try to make the sentence containing the phrase
second sentence the second sentence -- without retyping
it.

Copying to Another Buffer

There are two ways to copy material to another buffer.
One way leaves the original material in the current
buffer, and the other deletes the original material.

To retain a copy of the entire current buffer, which is
Buffer 0, issue a BC (Buffer Copy) command for any
other buffer name, for instance,

IBCASS

The only legal buffer names are the digits 0 through 9
and single letters of the alphabet.

093-000197-03

Table 3-1. Input and Output Functions

Appends buffer Clears buffer

to output file

FO - +
A - -
Y - +
R + +
E +

P, PW + -
P, :PW + +!
FU + +
FB + +

! May not clear entire buffer if command has numerical arguments

Like the S and C commands, the BC command takes all
three kinds of numerical arguments. An nBCx command
copies the 7 lines following the CP to Buffer x, a -nBCx
command copies the n lines preceding the CP, and an
m,nBCx command copies from the m+ /" through the
n™ character. The default value, which you have just
used, is the entire buffer. (The value is independent of
the CP position.)

The BT (Buffer Take) command behaves like the BC
command except that it deletes from the current buffer
the material it copies to the destination buffer.
Remember to give the command a numerical argument,
or you will delete the whole buffer! To move the first
sentence down a line, we first transfer it to another
buffer, say Buffer 2.

11BT2$$
Your buffer should now look like this.

*Here is a sentence for you to correct.
Please put in the missing word.
Something is wrong on this line.
Here is a sentence to work with.

Place your CP at the point where you want to reinsert
the sentence with a 1L command. To insert one buffer in
another, you must issue an | command with a buffer
expansion. (We will discuss expansions in general in
Chapter 4.) The expansion consists of CTRL-B and the

093-000197-03

Appends one Copies Clears buffer
window of input remainder of
file to buffer input file to

output file
+ - -
_+. - -
+ - -
+ - -
- + +
- + -
- + -

Legend: + yes -no

buffer name (you depress CTRL and key in B and the
buffer name). For example, enter

11B2%$$
Your buffer should now look like this.

Here is a sentence for you to correct.
Here is a second sentence to type in.
*Please put in the missing word.
Something is wrong on this line.
Here is a sentence to work with.

And you've done the trick. A word of caution: both the
BC and BT commands delete the current contents of the
buffer to which you copy. If a buffer contains text you
want to save, do not issue a BC or BT command to that
buffer.

Switching to Another Buffer

When you enter SPEED, your current buffer is Buffer
0. You don’t have to stay there. You can switch to any of
the other 35 buffers to continue editing. For example,
let’s switch to Buffer 2 by entering a BS2$$ (Buffer
Set) command:

1BS2%$$

Licensed Material-Property of Data General Corporation 3 - 3

Your current buffer now holds
*Here is a second sentence to type in.

since that is what you transferred to this buffer a
moment ago. You can edit in this buffer if you want to,
by entering

ICsecond$third$$

To return to your original buffer, enter

IBS0$$

and reinsert the fruits of your labors by entering
1B2%$

with this end result.

Here is a sentence for you to correct.
Here is a second sentence to type in.
Here is a third sentence to type in.
*Please put in the missing word.
Something is wrong on this line.
Here is a sentence to work with.

These examples will, no doubt, suggest experiments of
your own.

Killing a Buffer

You may kill, or delete a buffer with a BK (Buffer Kill)
command. It requires a buffer name argument. Let’s say
we’re done with Buffer 2. Go ahead and enter

IBK2$$
You cannot kill the current buffer with a BK command.

Using Local Files

At the moment, you have a global file, RIGHTFILE,
open for updating. You have access to RIGHTFILE
from any buffer. For example, you could put the current
buffer in RIGHTFILE with a P command, switch to
another active buffer, and put its contents in
RIGHTFILE. But suppose, instead, that you want to
put the contents of Buffer A in a different file without
closing RIGHTFILE (since you want to continue editing
it). Can you do that?

Local File Commands

Yes, you can open another output file without closing
RIGHTFILE. Switch to Buffer A, where we placed a
copy of the contents of RIGHTFILE for safekeeping.
You may create a local output file for Buffer A and
write the buffer to it. For example,

IBFWcopyfile$P$$

3— 4 Licensed Material-Property of Data General Corporation

In doing this, you do not disturb the contents of other
buffers, or the contents of any open global files.

If you check your file status now, while you are in
Buffer A, you see

Global:
Input File - :UDD:YOURDIR:RIGHTFILE
Output File - UDD:YOURDIR:RIGHTFILE. TM
Update Mode On

Local:
Input File - None
Output file - COPYFILE

In order to close your local file, you will issue a BFC
(Buffer File Close) command.

In the sections “Opening Global Files” and ‘““Closing
Global Files” we sketched file opening and closing
maneuvers. To each global file opening and closing
command, there corresponds a local file opening or
closing command, which you can construct simply by
prefiring a B to the Fx command. See Table 3-2.

A word of caution: do not attempt to execute both FO
and BFO commands in the same buffer without an
intervening file closing command; you may lose material
from the file you open first.

Manipulating Local and Global Files

How might you split a file into two files, using SPEED
buffers and local file commands? Something like this
would do the trick, assuming the file CHICKEN
contains only one page.

® Open CHICKEN for updating in, say, Buffer 0 with
an FO command

® Locate the CP where you want the split to occur with
L, J, and M commands

® Copy the material following the CP to, say, Buffer A,
and delete the original, with a ZBTA command

@ Switch to Buffer A

® Creatc an output file EGG with the local file
command BFWegg$

® Write the contents of Buffer A to EGG with a P
command

After any editing of EGG, you would close it with a BFC
command. You could then return to Buffer 0 and
continue editing CHICKEN. If you do no further
editing on CHICKEN or EGG, the result of the steps
above is two files: a truncated CHICKEN file, and an
EGG file that contains the material you deleted from
CHICKEN.

093-000197-03

Table 3-2. File Handling Commands

Global Local
Opening Opening
Commands Commands
FNR BFNR
FNW BFNW

FO BFO

FR BFR

Fw BFW

How might you combine two files into a single one?
Assuming, again, that your files consist of single pages,
you might proceed this way.

® Open DOUBLE for updating with an FO command in
Buffer 0

® Switch to Buffer A and open ORNONE for updating
with a local BFO command

@ Switch back to Buffer 0

@ Locate the CP where you want to insert the contents
of ORNONE

@ Enter an I|/BA$$ command

You can then continue editing in either buffer or close
the files. If you do no other editing, your file DOUBLE
now contains its previous contents and the contents of
ORNONE.

Command Precedence

When you open files both locally and globally in the
same buffer, subsequent commands will apply to the
local file first. Only after you close the local file will
commands apply to the global file. For example, if you
enter the command line

IFRwait$BFRgrab$A$$

SPEED opens WAIT globally and GRAB locally. The A
command applies to GRAB, and SPEED reads into the
buffer the first page of GRAB, not WAIT.

Checking the Status of Buffers

It is easy to lose track of which buffers you have
activated during an editing session. You may need to
check on them, especially toward the end of the session,

093-000197-03

Global Local
Closing Closing
Commands Commands
FB BFB

FC BFC

FU BFU

if you plan to write to various output files from different
buffers. The B? (Buffers?) command allows you to do
this.

During this session, we activated three buffers: Buffer 0
when we entered SPEED, Buffer A when we copied
Buffer 0 to it, and Buffer 2 when we decided to
rearrange the lines of Buffer 0. Later, we killed Buffer
2, so if you now enter

'B?$$
you should see

= >Buffer 0-212
Buffer A-172

The arrow points to your current buffer. The figure

following the buffer name gives you the number of
characters in that buffer.

If you are interested only in the status of a specific
buffer, Buffer Q, you may enter the command with a
buffer name argument

IB?Q$$

Exercises

Exercise 3-1.

Duplicate a file within itself.

Exercise 3-2.

Type in five lines. Reverse their order.

Exercise 3-3.

Open a three-page input file. Create a new file for each

page. Create an output file with the pages in reverse
order.

Licensed Material-Property of Data General Corporation 3' 5

Answer 3-1.

IFOdoublefun$$
IBCR$$

IIBRS

IFUS

ANSWER 3-2.
ILine 5)
Line 4}
Line 3!}
Line 2)
Line 1)
$3

SD-02384

1J$1BT5$ 1BT4$1BT3$1BT2$$
11LI|B2]B3]B4|B5$$

$D-02385
Answer 3-3.
IFRinfile$$
IYSBCASS
1Y$BCB$$
IY$BCC$$

IFC$FWoutfile$$
IBSC$BFWfile.c$P3
'BFC$P3$$
|BSB$BFWfile.b$P$$
'BFC$P$$
'BSA$BFWfile.a$P3
'BFC$P$$

IFC$$

End of Chapter

3- 6 Licensed Material-Property of Data General Corporation 093-000197-03

Chapter 4

Intermediate Editing with SPEED

This chapter explores the SPEED environment, showing
the use of numerical expressions and symbolic modifiers.
It acquaints you with the various variable and mode
commands that make SPEED housekeeping easier. It
shows you how to use the control keys as expansions and
templates. And it introduces you to commands that work
across windows or pages.

Arithmetic in SPEED

You can carry out simple arithmetic tasks in SPEED,
and you can use the evaluations of numerical expressions
as arguments to other commands.

addmton m+n
subtract n from m m-n
multiply m by n m*n
divide m by n m/n
negate m -m

To display the value that SPEED returns for a
numerical expression, follow it with the = (Equals)
command.

SPEED evaluates numerical expressions from left to
right. That is, SPEED first adds, then multiplies, then
divides, then subtracts in the following example to get
the result

19+3%4/2-3=%%
21

Parentheses are illegal in SPEED numerical expressions.
SPEED performs only integral arithmetic, truncating
after division. SPEED commands that take both positive
and negative numerical arguments are restricted to the
range -32768 through +32767. Commands which take
double or positive arguments range from O through
+65533.

093-000197-03

Numerical Expressions as Text

You can ask SPEED to perform simple computations for
you, and then insert the result in the text. For example,
if you want to include the correct answer in the text as
part of the conjecture “I wonder whether 144*144=___
or not?” you need not make the calculation. You can use
the \ (Backslash) command instead to insert the result
as follows.

IOwonderwhether[0144* 144=$$
1144* 144\%$
NorOnot?$$

I wonder whether 144*144= 20736 or not?*

Storing Numerical Expressions

SPEED uses 10 variables, VO through V9, for storing
the evaluations of numerical expressions. You can
display or insert the values of the variables by using
them as arguments to = and \ commands.

You may set a variable to a numerical result with a VS
(Value Set) command, you can increment a variable by
one with a VI command, and you can decrement a
variable by one with a VD command. You can set and
insert, or set and display, a variable in one command.
For example,

113*69VSO\$$

897*

'VO/3VS0=$$%$

299

VIO=8$

300

Licensed Material-Property of Data General Corporation 4‘ 1

You may also store the values of the SPEED
pseudo-variables in variables. For example, if there are
117 lines in the buffer, then the command VNVSO stores
the number 117 in Variable 0.

You can perform arithmetic operations on both variables
and pseudo-variables. For example, if you want to know
your average line length, you can ask SPEED to divide
Z, the number of characters in the buffer, by VN, the
number of lines in the buffer, with a Z/VN=$$
command.

Using Decimal Equivalents of Characters

Some characters, such as NEW LINE or form feed, are
awkward to type in on occasion, for instance, when you
are composing a command line for later use. SPEED
allows you to insert characters by typing in the ASCII
decimal value of the character as a numerical argument
to the 1 command. Since 10 is the ASCII decimal for
NEW LINE, you can type

1IS.$10I1$TS
and get the same result as you would with

1S.$l)
TS

(Of course, if you want to save key strokes, you will use
the second option. Use the nl command when here is no
other way to insert a character, such as [D.)

In the example above, SPEED evaluates the numerical
expression before making the insertion, so 15/3*21$$
also inserts a NEW LINE.

Appendix A gives the ASCII character set.

Boolean Functions in SPEED

SPEED can perform Boolean operations on binary
numbers. SPEED represents them as in Table 4-1.

where x, y range from 0 to 65536, or from -32768 to
32767. (If you are not a programmer or do not know
what a Boolean function is, you may disregard this
section entirely.) Please consult each Boolean operator
under its entry in Chapter 7 for details.

4- 2 Licensed Material-Property of Data General Corporation

Using Variables in Housekeeping

Suppose that you are working on a certain line of text
and recall an error that you made elsewhere that you
want to correct before you forget it. You don’t know or
care what line you are on, but you want to return to it
when the interruption is over. You store the line number,
VL, in a free variable (one you don’t need for anything
else), say 6, by entering a VLVS6$$ command. You go
hunting for the location of the error, make the
correction, and are ready to return to your previous
editing site. To do so, you merely enter a V6J$$
command. SPEED substitutes the value you put in V6
and carries out the J command with that line number.
Now you're back on the main job!

The example shows that you can use the values of
pseudo-variables to simplify your editing tasks. You can
display or insert them with = and \ commands, and you
can usec their values as numerical arguments to other
commands as well.

These SPEED pseudo-variables are available as
numerical arguments.

VC Value Character gives the ASCII'® value of the
character to the right of the CP or zero when CP is
at the end of the buffer

VL Value Line gives the current line number

VM Value Moved gives the number of single moves
between the beginning of the line and the CP

VN Value Number gives the total number of lines in
the buffer

VP Value Previous gives the previous CP position at
start of the last search in number of characters
from beginning of the buffer

Z 7 Last Character gives the total number of
characters in the buffer

. Current CP Position gives the number of

characters between the beginning of the buffer and
the CP

093-000197-03

Table 4-1. Boolean Functions

Logical

Function or Boolean Operation Representation
AND Intersection Xty

inclusive OR Union x~+y

exclusive OR Symmetric Difference ' Xy

NOT Negation ~-x

Modifying Commands

SPEED uses three nonnumeric symbolic modifiers to
adjust the functions of SPEED commands: the colon (:)
modifier, the commercial at (@) modifier, and the
ampersand (&) modifier. Each precedes the command
name. When you use more than one, they can occur in
any order before the command name.

Conditionalizing the Next Command

Suppose you want to issue a D (Delete) command only if
an S (Search) command is successful. You can do this
with the colon modifier preceding the search (C, N, Q,
S) commands. Using the colon modifier, SPEED returns
a +1 if the command succeeds, and a 0 if the command
fails. You may use this value as part of a numerical
expression serving as a numerical argument to the next
command.

For example, suppose you want to get rid of some, but
not all, instances of ue (the one in catalogue, but not the
one in value or Tuesday). You might type in

1:Slog$*2D%$$

SPEED searches for log. When it finds the string, it
returns a value of 1 to carry out the multiplication on.
That gives 2 as the numerical argument for the D
command, which then deletes two characters. If SPEED
fails to find /og, it returns a zero. SPEED does not
display an error message, but since 0¥*2=0, SPEED
deletes nothing.

093-000197-03

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

The colon modifier has several other uses, too. (You
learned one with the P command earlier; using the colon
there clears the buffer.) Please consult the entry for the
colon symbol in Chapter 7.

Setting a Temporary Delimiter

Suppose you are reading a SPEED command file of your
friend Nick’s. (You will learn about command files in
Chapter 6.) You see the command line

Ci1807J$3

and are certain from the context that Nick meant to say
“Change 1 to 0 and jump to the end of the buffer”
rather than ““Change 1 to 0ZJ.” Nick is missing a
delimiter. You would like to help Nick out, but if you try
to insert a delimiter with something like

1C0ZJ0ZJ$S

you will merely delete the ZJ in Nick’s text and jump
yourself to the bottom of the buffer. SPEED cannot
treat the delimiter as text without special provisions.
Instead, you must type

1S0$@1/$/$$

Licensed Material-Property of Data General Corporation 4 - 3

When you type in the commercial at (@) modifier before
the | (Insert) command, you tell SPEED to accept the
character following the command name as a temporary
delimiter. This time you choose the slash sign (/) for a
temporary delimiter. SPEED searches for 0. Next,
SPEED inserts an ESC (8$) since you typed it in between
the temporary delimiters you selected. SPEED restores
the standard delimiter to its function as soon as it
executes the command.

You may set a temporary delimiter for any of the
insertion and search commands. Please consult the entry
for this symbol in Chapter 7 for more details.

Using the Alternate Radix

SPEED allows you to do not only decimal arithmetic,
but arithmetic in an alternate radix from 2 to 36. (Your
default alternate radix is octal.) You use the alternate
radix by prefixing the appropriate number or command
with the ampersand (&) symbol.

An ampersand before the command name, for instance
= or \, interprets the result of the command in the
alternate radix. An ampersand before the numerical
arguments to the command interprets those arguments
in the alternate radix. For instance, for the octal radix,

10*10& =144
&10*&10=064
&10*&10& =100

Digits following the ampersand must be valid digits in
the alternate radix: 8 and 9, for example, are not valid
digits in the octal radix. Please consult the entry for this
symbol in Chapter 7.

Choosing the SPEED Modes

When you enter SPEED, default values for some of
SPEED’s parameters are set. You can alter them for
ease and efficiency. (You have already learned to adjust
one, display mode, by entering SPEED with the D
switch.) For each mode except WR, the default value is
0. By changing that value, you change a SPEED
characteristic.

Default Argument Mode

The setting of the default argument mode determines
how SPEED treats certain commands when you issue
them without explicit numerical arguments.

4'4 Licensed Material-Property of Data General Corporation

If you issue no WA Window Advance command, or reset
the mode with a OWA command, SPEED treats certain
commands without numerical arguments as if they had
an argument of 0. A D or M command without an
argument has no effect, a J command sends you to the
beginning of the buffer, and an L command takes you to
the beginning of the current line.

If you issue a 1WA Window Advance command, SPEED
treats certain commands without numerical arguments
as if they had an argument of 1. A D command deletes
one character to the right, and an M command moves
you one character to the right. A J command still sends
you to the beginning of the buffer (because lines are
numbered from 1), and an L command takes you
forward to the beginning of the next line.

You should be aware, however, that many variable
expressions and operations automatically provide a
numeric argument for the following command. When in
doubt, it is safer to add O before the command,
particularly in command files that run blind (see the
/1=Invocation switch). Suppose, for example, that you
set WA to 0, and later issue a Command Loop of the
form

<...:Stext$L...>

in the expectation that a successful search will return
you to the beginning of the line. Instead, however, the
successful search furnishes the next command with an
argument of 1 and takes you down a line.

Case Control Mode

The case control mode allows you to enter both
lowercase and uppercase text from a terminal that has
only uppercase characters.

A OWC Window Case command turns case control off.
The terminal reads characters exactly as you type them,
with no translation from uppercase to lowercase.

A 1WCx$ Window Case command turns case control on
and allows you to designate x as the shift-up character.
SPEED treats the next immediate alphabetic character
following an x as uppercase, and all others as lowercase.

A -1WCx$ Window Case command turns case control
on and allows you to designate x as the shift-down
character. SPEED treats the next immediate alphabetic
character following an x as lowercase, and all others as
uppercase.

In addition, the 1WCxy or -1WCxy Window Case
command lets you designate a second character y as the
shift-lock toggle. SPEED treats all alphabetic characters
following the shift-lock as the same case (upper for 1
and lower for -1) until it encounters another shift-lock or
a CTRL-D.

093-000197-03

To insert the shift or shift-lock character as text, rather
than use it, precede it with the shift character.

To see the effect of this command at an uppercase
terminal, turn the ALPHA LOCK toggle on. Set
Window Case Mode to 1, selecting / as the shift
character and \ as the shift-lock toggle

1TWC/\$$
Now make an insertion, perhaps

W/SETO/CASE]/CONTROLOTOO 1JAND
DISPLAY[J\THIS.$0T$$

SPEED then displays

JSET /CASE JCONTROL TO | AND
DISPLAY JT/H/I/S.

Then, when printed on an upper- and lowercase printer,
the line is

Set Case Control to | and
display THIS.

Display Mode

The display mode allows you to specify how much
automatic screen display you want.

The OWD (Window Display) command turns display
mode off, giving you no automatic display of text lines.
For displays, you must enter appropriate T commands
individually.

The nWD (Window Display) command, where n ranges
from 1 to 10, specifies the n lines of text on either side of
the CP you want SPEED to display after executing each
command line, and before restoring your prompt.

The mode value is 10 if you enter SPEED with the /D
switch. The default value is 0. This mode treats a value
greater than 10 or less than 0 as 10.

Window Mode

The window mode allows you to specify how much text
you wish SPEED to read into the buffer at one time.

The OWM (Window Mode) command sets SPEED to
read in the text a page at a time, from form feed to form
feed. If your file contains no page breaks (form feeds),
SPEED will attempt to bring in the entire file. With the
OWM value, SPEED does not display the original form
feeds (JL), and you cannot delete them except by using
the A (or Y) command.

093-000197-03

An nWM (Window Mode) command sets SPEED to
read in n lines at a time, where n is positive. With these
values, SPEED enters and displays form feeds as L, and
you can search for and delete them.

Position Mode

The position mode allows you to determine the way
SPEED repositions the CP after an unsuccessful C or S
search command.

The OWP (Window Position) command specifies the
beginning of the buffer for default search commands. It
specifies the previous position of the CP followed by n
lines for positive nC and nS commands, the position
before the search for negative -nC and -nS commands,
and the position after the n* character for m,nC and
m,nS commands. That is, it repositions the CP where the
search ends.

The 1WP (Window Position) command specifies the
position of the CP before the search for default
commands, the position before the search for positive nC
and nS commands, n lines before the previous position
for negative -nC and -nS commands, and the position
following the m™ character for m,nC and m,nS
commands. That is, it repositions the CP where the
search began.

Alternate Radix

The alternate radix command allows you to specify an
alternate radix from 2 to 36 for SPEED arithmetic. The
default alternate radix is 8 (octal). The standard radix is
always decimal.

Enter an nWR (Window Radix) command, where n
ranges from 2 to 36 and is the value of the radix you
wish to use.

To use the alternate radix, you must key in appropriate
instances of the ampersand (&) character, discussed in
the section “Modifying SPEED Commands.” For
example, if you set the alternate radix to hexadecimal
and issue some = (Equals) commands

116WR100& =& 100=$$%

SPEED tells you

64
256

Licensed Material-Property of Data General Corporation 4 - 5

Shift Sensitive Mode

This command allows you to specify whether SPEED is
to ignore or take into account the case of alphabetic
characters when conducting searches.

The OWS (Window Shifts) command sets
case-independent searches: U matches U and u, and ¢
matches C and c.

The 1WS (Window Shifts) command sets
case-dependent searches: U matches only U and not u,
and ¢ matches only ¢ and not C.

SPEED Control Characters and
Templates

SPEED provides you with certain control characters
that make it easier for you to

@ insert the contents of other buffers or files

@ cxecute command lines contained in other buffers or
files

@ conduct modified or generalized searches

Where A is an arbitrary control key, we mention it with
CTRL-A, and designate it by JA in a command line.
When you wish to key in CTRL-A, depress the CTRL
key and, while holding it down, type A.

Expansions to Buffers and Files

CTRL-Bbuffer-name In a command string, where x

is a legal name of an active but
noncurrent buffer, SPEED
expands the current command
string at [Bx to include the
data stored in Buffer x, if
there is any. If Buffer C
contains

CourSor

and your location in the text is
*a colour programme

the command

11BC$$

will respell colour to color.

CTRL-Bbuffer-name
(continued)

CTRL-Ffilename$

4' 6 Licensed Material-Property of Data General Corporation

In a search or text string,
where x is a legal name of an
active but noncurrent buffer,
[Bx represents the contents of

Buffer x. SPEED tries to
match
pass|Bxword

with pass, the contents of
Buffer x, and word. For
example, if Buffer 3 contains
alongthis

and you tell SPEED

llpass|B3word$$

SPEED inserts
passalongthisword

in the current buffer.

To insert 1B in a command
line, instead of referring to a

buffer’s contents, use [B]B,
1F1B, or 2I$.

In a command string, where x
is the name of a file (to which
you have access), SPEED
expands the current command
string at JFx$ to include the
data in file x, if there is any. If
file BRIT contains just
Cammelam

and your location in the text is
a color* programme

the command string

1Fbrit$$

will correct programme to
program.

093-000197-03

CTRL-Ffilename$
(continued)

093-000197-03

In a search command, where x
is the name of a file (to which
you have access), SPEED tries
to match pass|Fx$word with
pass, the entire contents of the
file, and word. You must
follow the filename with the
ESC delimiter or CTRL-D; if
you do not, you will get the
wrong file or no file at all.

In an insertion command, if
you wish SPEED to treat what
follows the filename as text,
type in a single ESC. If instead
you wish SPEED to treat what
follows the filename as a
command, you must type in
two delimiters. If your file
WORD contains exactly

me the next
and you tell SPEED

llpass[]]Fword$Isword$$

SPEED inserts
pass me the next sword
but if you tell SPEED instead

llpass [[Fword$$] Sword$$

(where the first 3 echoes two
delimiters and the second a
CTRL-D) SPEED inserts only

pass me the next

and undertakes a search for
the next occurrence of word.

To insert |F in a command
line, instead of referring to a
file’s contents, use JF]F, [BJF,
or a 6!$ command.

Licensed Material-Property of Data General Corporation

Search Templates and Control Characters

CTRL-E

CTRL-G-

CTRL-N

CTRL-T

In a search string, JE
represents one or more tabs or
spaces. SPEED tries to match
pass]Eword with pass, one or
more tabs and spaces, and
word. So it would find

pass O O Oword

To match zero or more tabs
and spaces, use [T instead.

SPEED tries to match the
search string. If it finds the
string, it positions the CP at
the position in the string at
which you inserted [G. SPEED
tries to match pass]Gword
with password and position the
CP as in pass*word. On
models other than 6052, 6053,
D100, or D200, you may use []
instead of]G. Insert it with a
71$ command.

In a search string, SPEED
accepts as a match in the
position following [N any
character except the character
(or one character from the
following T\...7\ list) following
IN. SPEED tries to match
pass|Nsword with pass, any
next character except s, and
word. For example, it would
match

pass Oword

A sequence of CTRL-Ns has
the same effect as a single one.
(SPEED bypasses only one
character.)

To enter this control character,
type in the sequence CTRL-P,
CTRL-T. In a search string, [T
represents zero or more tabs or
spaces. SPEED tries to match
pass]Tword with pass, zero or
more tabs and spaces, and
word. To match one or more
tabs and spaces, use |E instead.

4-7

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

4-8

In a search string, SPEED
interprets the character
following W literally. SPEED
tries to match pass{W]Eword
with pass, an occurrence of [E,
and word, rather than with
pass, one or more tabs and
spaces, and word. This
template is, of course,
especially useful when editing
SPEED command lines. On
models other than 6052, 6053,
D100, or D200, you may use
T— instead of JW. Insert it with
a 23I$ command.

In a search string, X
represents zero Or more
occurrences of the next
character (or one character
from the following T\...]\ list).
SPEED tries to match
pass|Xsword with pass, zero
or more occurrences of the
next character, and word.
Thus it would match both the
nonword passsword and the
word password. To match one
or more occurrences of the
next character, use TY instead.

In a search string, Y
represents one or more
occurrences of the next
character (or the character
from the following T\...]\ list).
SPEED tries to match
pass|Yword with pass, one or
more occurrences of the next
character, and word. Thus it
would match both password
and the nonword passwword.
To match zero or more
occurrences of the next
character, use [X instead.

In a search string, JZ
represents any next single
character. SPEED tries to
match pass]Zword with pass,
any single character, and
word. Thus pass]Zword would
match any of pass word,
pass-word, or passsword, but
not password.

Licensed Material-Property of Data General Corporation

CTRL-\1istCTRL-\ In a search string, these paired
control characters enclose a list
of single characters that
SPEED may use as a match in
that position. SPEED tries to
match pass]\xyz[\word with
pass, any one of x, y, or z, and
word. Thus it would match
passxword, passyword, or
passzword, but not
passxyzword or password. To
place any control character
other than W, TAB, NEW
LINE, form feed, CR, K, or
T— in a \...7\ list, precede it
with TW.

You may combine the templates for additional search
strategies. For example, SPEED tries to match
pass|GINT\xyz]\word with pass, any one character
that is not an x, y, or z, and word, and position the CP
following pass.

In search strings, SPEED flags any control character
other than B (expansion to a buffer), JF (expansion to a
file), TAB (]I), NEW LINE (]J), vertical tab (JK), form
feed (JL), or CR (JM) as an error unless you precede it
with the control characters |G or W (or with 1] or T_ on
models other than 6052, 6053, D100, or D200).

Executing Commands across
Windows or Pages

You may move forward (but never backward) from
window to window with some SPEED commands. You
have already learned that the R command reads the
current buffer into an output file, clears the buffer, and
reads the next page or window of the input file into the
buffer.

You have also already learned that the Y command
clears the buffer (without writing to an output file) and
reads in the next page or window of the input file.

The N Nonstop search command resembles the S
command in that it looks for an occurrence of the search
string in the current buffer. If it doesn’t find one,
however, instead of giving you an error message, it
writes the buffer to an output file, clears the buffer,
reads in a new page or window from the input file and
continues trying to match the search string. The
command keeps reading pages in and out until it either
matches the search string or exhausts the file. The N
Nonstop search command acts as an abbreviation for a
series of S Search and R Read commands.

093-000197-03

-

Similarly, the Q Quick search command also looks for
an occurrence of the search string in the current buffer.
If it doesn’t find one, it clears the buffer (without
writing to an output file) and reads in the page or
window of the input file. The command keeps reading
pages in and discarding them until it either matches the
search string or exhausts the file. If you ask SPEED to
conduct a Quick when you have a file open for updating,
the buffer is not empty, local or global Update Mode is
on, and the Q Quick search command is not in a
Command Loop, SPEED will query

Confirm (Q-Command) ?

Type y! if you are willing to lose file contents, and any
other character if you’re not. The Q Quick command
acts as an abbreviation for a series of S Search and Y
Yank commands.

Executing the CLI

On occasion, you may need to execute a CLI command
without leaving the SPEED editing session. For
example, you might want a printout of your editing after
you close your files, and at the same time want to retain
the contents of your buffers for further editing.

You can execute one or more CLI commands without
leaving SPEED by prefixing them with the SPEED X
command and terminating them with a CTRL-D
(instead of a NEW LINE). For example, without
leaving SPEED, you can ask for

IXQPRINTOrightfile$$

The :X command executes a copy of the parent program,
usually the CLI. If you want to execute a series of
parent commands, issue a :X$$ command. You will get
the parent prompt. Assuming the CLI is the parent, you
must issue a BYE) to return to SPEED.

093-000197-03

The :Xprogram.PR$ command is a quick way of
executing a program from SPEED when the program
does not require arguments from a command line.

The :X command does not actually return you to your
parent process. Instead, it creates a new son process. For
that reason, you cannot change parent CLI
characteristics from SPEED. See the entry for the X
command in Chapter 7 for details.

If you have the privilege of creating at least two son
processes, you may create a secondary SPEED process
with its own buffers and open files. Issue the appropriate
SPEED entry command with a prefixed X command
name

IXXOSPEEDO [filename] $$

Exercises

Exercise 4-1.

Open RIGHTFILE for updating. Without typing any
digits, insert on each line its line number, a period, and a
tab. At the bottom of the file, again without typing any
digits, make a record of its length in characters and in
lines.

Exercise 4-2.

With the file still open, jump to the beginning of the
buffer. Ask SPEED to look for for you and, only if it
finds the phrase, delete it.

Exercise 4-3.

With the file still open, correct the character count. Do
not issue any M or D commands, and do not insert any
numbers by hand.

Licensed Material-Property of Data General Corporation 4 - 9

Since solutions are not unique, your answers may differ from these.

Answer 4-1.

SD-02386

SD-02387

SD-02388

4-10

IFOrightfile$$

*Here is a sentence for you to correct.
Here is second sentence to type in.
Here is a third sentence to type in.

Please put in the missing wrod.
Something is wrong on this line.
Here is a sentence to work with.

IVLAL—$1L$$

IVL\I.—$1L$$

(six times)

Here is a sentence for you to correct.
Here is a second sentence to type in.
Here is a third sentence to type in.

Please put in the missing wrod.
Something is wrong on this line.
Here is a sentence to work with.

lIFite O contains[(J$Z\I0characters.)
IFilecontains CJ$VN\IClines.)

$$

Here is a sentence for you to correct.

Here is a second sentence for you to type in.

Here is a third sentence to type in.

Please put in the missing wrod.
Something is wrong on this line.
Here is a sentence to work with.
File contains 244 characters.

File contains 7 lines.

Licensed Material-Property of Data General Corporation

093-000197-03

(Of course, SPEED includes the characters and lines it is inserting in the count.)

Answer 4-2.

1J$S
1:81G0forOyou$ *8D$S

Here is a sentence* to correct.
Here is a second sentence to type in.
Here is a third sentence to type in.

Please put in the missing wrod.
Something is wrong on this line.
Here is a sentence to work with.
Flle contains 244 characters.
File contains 7 lines.

SD-02389

Answer 4-3.

1S1G244%%
1C244$$Z + 3\$$

Here is a sentence to correct.
Here is a second sentence to type in.
Here is a third sentence to type in.

Please put in the missing wrod.
Something is wrong on this line.
Here is a sentence to work with.
Fnle contains 272 characters
File contains 7 lines.

SD-02390

End of Chapter

093-000197-03 Licensed Material-Property of Data General Corporation

4-11

Chapter 5

The Iteration and Flow of SPEED Commands

You can ask SPEED to execute a command string
several times. You can set conditions under which
SPEED stops execution or continues execution of a
command string. You can arrange for SPEED to skip
forward in a command string, or return to an earlier
point in the string for further execution of commands.

Command Loops

A Command Loop is a SPEED command string
enclosed in angle brackets. You set a Command Loop
when you wish to execute a command string
automatically several times. You control the execution
of the Loop in one of two ways: either you prefix the
Loop with a numerical argument, or you include a ;
Conditional Termination command in an appropriate
place in the command string inside the Loop. If you do
not successfully control the Loop in one of these ways,
the Loop may attempt to cycle endlessly.

If a search or insertion command is the last command in
the Loop, remember to include the final delimiter before
the closing bracket.

Numerical Control

You may set a Loop with a specific number in mind. For
example, suppose you want to insert the word Week and
a NEW LINE in the text four times. If you tell SPEED

14 <<IWeek)
$>%$$

SPEED will automatically insert

Week
Week
Week
Week

and if subsequently you tell SPEED
14 < Month$>$$

SPEED produces

Week
Week
Week

Week
ee Month Month Month Month

to give you a form you might use for scheduling.

093-000197-03

You might not know a given value, but still use it. Let’s
automate the line-numbering task we undertook earlier.
We can do that by using VN, the number of lines in the
buffer as the controlling numerical argument:

IVN<VL\$I.-$1L>$$
Or suppose your buffer contains just

Trapper Jeff

You could ask SPEED to encode your text with
IZ<VC\$1.$1D>$$

where Z is the number of characters in the buffer, and
VC is the ASCII digital value of a character. (You
happen not to recall the value of either of them, but you
can use them anyway.) SPEED responds with

84.114.97.112.112.101.114.32.74.101.102.102.*

As usual, SPEED evaluates numerical expressions used
as numerical arguments. If you tell SPEED

12*4<lboard$>%$$

it will insert board eight times.

Conditional Control

You may want SPEED to carry out a task several times,
even though you can’t specify the number in any way.
For example, you might want SPEED to find out how
many times you have used a given word. To do this, you
want SPEED to search for the word as many times as it
takes for the search to fail. But you can’t tell SPEED
how many times to look, because that’s the figure you
want to know. You can conduct such searches by setting
the Command Loop omitting a numerical argument, but
using a ; (Conditional Termination) command following
the final delimiter of a search command. For example, if
you had this chapter in the buffer, and wanted to know
how many times a comma occurs in this page or window,
you could tell SPEED

I0VS0$J<S,$;VIO$>VOo=8$

Licensed Material-Property of Data Generai Corporation 5" 1

That is, jump to the beginning of the buffer and enter
the following Loop: search for a comma; each time you
find it, increment Variable 0 by one. When the search
fails, exit the Loop and tell me the current value of
Variable 0. SPEED does your bidding and responds with

16

You can reverse the condition for exiting the Loop by
prefixing the ; command with the colon modifier (). In
that case, SPEED exits the Loop on the first successful
search, successful R, Y, or A command, or positive
argument (n:;).

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

Nesting Command Loops
You can nest or place one Command Loop within
another. For example, if you tell SPEED

14<56<<1.$>1
$>8%

it gives you a four by five array of periods.

You may nest Loops to a depth of ten.

Conditional Execution

You can set conditions for the execution of a command
line with the Conditional Execution command. You do
this by having SPEED compare a specified number with
zero; depending on the outcome, SPEED executes the
command line or not. A Conditional Execution contains

@ a numerical expression you specify

® a quotation mark (**)

@ one of the four condition codes G, L, E, N

@ the command string you want to execute conditionally
@ an apostrophe (°)

The Execution Conditions

SPEED checks your numerical argument against one of
the four conditions. If the condition holds, SPEED
executes the command string between the condition code
and the apostrophe. If the condition fails, SPEED skips
to the apostrophe and continues execution forward from
there.

5 - 2 Licensed Material-Property of Data General Corporation

SPEED compares your numerical argument to zero.
Given the

Condition code SPEED executes the string

G if n is greater than zero
L if n is less than zero
E if n is equal to zero
N if n is not equal to zero

Two arithmetically trivial examples will show how the
command operates. If you tell SPEED

13""'Glperhaps[1$’ltrue$$

SPEED makes both insertions

perhaps true

since three is greater than zero. If you tell SPEED
13”LIperhaps[1$'false$$

SPEED skips to the apostrophe and inserts only
false

since three is not less than zero.

The Conditional Execution command may look like a lot
of machinery to do very little in these examples. In fact,
it is a powerful editing tool, especially if you use it in
conjunction with the O (Over) command and numerical
expressions that change while SPEED executes the
command line.

Branch Over to Label

The O (Over) command allows you to skip forward in a
command line, or return to an earlier point in it. The O
command requires a string of 32 or fewer characters and
an ESC delimiter. (It ignores the rest of a longer string.)
The string you assign to the O command must be
identical to a string, somewhere in the command line,
that you place between exclamation points, which is
called a label.

When SPEED encounters the O command in a
command string, it scans the command line for an
instance of the label. Given

stringl!label!string2$Olabel$string3
with the label preceding the O command, SPEED
returns to the label, and begins execution of string?2

again. (Under certain conditions, which you will want to
avoid, SPEED will loop continuously between !label!

093-000197-03

and Olabel$, and never manage to execute string3. To
avoid this, you might, for example, place an O command
with a different label in string2, to transfer execution to
string3.)

Given instead
stringl$O0label$string2!label!string3

with the label following the O command, SPEED skips
the commands in string2 and begins execution of
string3. (Under certain conditions, which you may want
to avoid, SPEED may never manage to execute string?.
To avoid this, you might, for example, place an O
command with a different label in string3, to transfer
execution back to string2.)

SPEED does not execute a !label! when it encounters
one. SPEED ignores a label except during execution of
an Olabel$ command. (This allows you to use !label! for
writing comments and reminders to yourself as you
compose command lines. You will find this, and the fact
that SPEED ignores O and) outside of text strings,
helpful when you begin constructing command files.)

If the O command is within the Command Loop, and
the llabel! outside, SPEED executes the commands in
the Loop until it reads the O command, and then jumps
out to the label. It is illegal to branch into a Command
Loop. If the !label! is within the Command Loop, and
the O command outside, SPEED displays the message

Error: lllegal command

Conditional Iteration

You now have the tools for putting together a command
line that SPEED executes automatically a given number
of times, but only if certain conditions hold.

Suppose you want (for whatever reason) to insert a
series of 15 decrementing numbers. You accomplish this

by

@ Sctting a variable, V0, to 15

@ Setting a label

® Typing in a Backslash command

® Using a Decrement command on the same variable,
VO, as an argument to the Conditional Execution

@® Typing in a space-insertion command (for aesthetics)

@® Placing an Olabel$ command within the Conditional
Execution

093-000197-03

If you select dec as your label and Variable 0 as your
variable, the command line looks like

116VS0$!dec!VO\VDO ' GIL2$O0dec$' T$$

Here’s the sequence of events: SPEED sets VO to 15. It
ignores the label, since it hasn’t yet encountered an O
command. It inserts the current value of VO (15). Then
it decrements VO by one to 14. But VO is also the
numerical argument to the following Conditional
Execution. The condition is G, so SPEED checks to see
whether VO is greater than 0. VO is 14, so the condition
is true and SPEED begins execution of the command
string in the Conditional Execution. The command line
consists of an insertion and Odec$, so SPEED inserts a
space and hunts for the label !dec! It finds the label in
the preceding command line, and begins execution from
that point. So the next command to execute is the
Backslash. This time, however, VO is 14, because of the
earlier VD command, and this time around, SPEED
inserts that new value. It again decrements VO, this time
to 13. But since 13 is still greater than zero, SPEED
again inserts a space and returns once more to the label.

This continues until SPEED inserts a 1 with the
Backslash command, and decrements VO once more.
This time, the decrement sets VO to zero. When SPEED
checks VO against the G condition, the condition at last
is false, and SPEED skips past the insertion and O
command to the apostrophe and executes the T
command. The result is

151413121110987654321*

As you might suspect from the examples, simple as they
are, you can automate many tedious editing tasks with
Command Loops, Conditional Executions, and Over to
label commands. '

Exercises

Exercise 5-1.

Open a convenient file. Use a Command Loop to
number the lines on its first page automatically. Do not
type in any numbers.

Exercise 5-2.

Using the same file, get an estimate of the number of
words in the file by asking SPEED to count spaces and
NEW LINEs. Get a display each time it finds one, and
get a count.

Exercise 5-3.

Using a label and a Conditional Execution, have SPEED
insert an incrementing series of numbers.

Licensed Material-Property of Data General Corporation 5 - 3

Answer 5-1.

Here’saline.
Here’s another.

Here’s a fourth line.

And this makes line five.
*

SD-02391
IVN<VL\.-$1L>$$
Here’s a line.
Here’s another.
Here’s a fourth line.
And this line makes line five.
SD-02392

5 - 4 Licensed Material-Property of Data General Corporation 093-000197-03

Answer 5-2.

t<<SN\[N
N\$;TVIO>V0=8$$

Here’s *aline.
Here’s a *line.
Here’s another.
Here’s *another.

Here’s a fourth line.
Here’s *a fourth line.
Here’s a *fourth line.
Here’s a fourth *line..
And this makes line five.
And *this makes line five.
And this *makes line five.
And this makes *line five.
And this makes line *five.

4.
4.
4.
5.
5.
5.
5.
5.
*15
!

SD-02393

Answer 5-3.

115VS08$!inc! 16-VO\VDO" ' NII$0inc$’ T$$

123456789101112131415*

End of Chapter

093-000197-03 Licensed Material-Property of Data General Corporation 5 = 5

Chapter 6

Advanced Editing with SPEED

In this chapter, you acquire the tools for constructing,
checking, storing, and using SPEED macros.

Saving a Command Line

The _x command, where x is not the current buffer, lets
you salvage a long command after an error. If, in the
current buffer, you have just issued a command line that
produced an unexpected result, or that you realize you
will want to use again, you need only issue a _x$$
command immediately, where x is a free buffer. You
may then switch to Buffer x to edit the command line, if
it needs correction, or issue the command line again with
a 1Bx command. The command line must be at least 10
characters long, or there must be no previous unsaved
command line 10 or more characters long.

Suppose that you have just issued the command
IJVN<<VL\l.-$1L>$$

for numbering the lines of a page, and realize that you
will need it again when you have finished editing another
page. Before issuing any other command, pick an
appropriate buffer, say Buffer N, and tell SPEED

I_N$$

SPEED then stores your command line in Buffer N for
later use.

Tracing a Command Line

You may trace the execution of a command line with the
Trace Mode Toggle. The ? command turns Trace Mode
on if it was off, and off if it was on. When Trace Mode is
on, SPEED displays the characters in the command line
as it executes them. SPEED echoes each character
including NEW LINE, form feed, space, arguments to
the command, and the first letter of the command. For
brevity, the rest of the characters in a command string,
such as a long insertion, do not echo.

093-000197-03

When the Toggle is on, you can trace an error in the
current command line by noting where execution
stopped.

Interacting with SPEED

You can provide for interactions between SPEED and
its users with the BG Buffer Get command if you place
it in a command string. For example, suppose you are in
Buffer 0, and Buffer A contains

@ T$Choose Ua Odigit: O O81:BGN§
IYour Cnumber Ois: O T817 BN3$

(The commercial at (@) modifier of the T command
allows you to specify the string that follows for display;
the first character following the T command functions as
a delimiter of the string, and must recur at the end of
the string. The colon (:) modifier of the BG command
suppresses the question mark prompt (?) of the BG
command in favor of the string you display. The
numerical argument to the BG command specifies that it
will take one character as input.)

If you execute Buffer A, SPEED displays
Choose a digit:

When you type in 9, for instance, SPEED puts that
character in Buffer N and then makes the insertion

Your number is: 9

SPEED inserts whichever digit you select.

Writing SPEED Commands

If you plan fairly elaborate command lines, you may
wish to compose and study them, typing in a few
elements at a time to see how they work, before
executing them. Several reminders from earlier sections
will perhaps make your task easier.

Licensed Material-Property of Data General Corporation 6" 1

If you wish to insert, rather than execute, a delimiter,
you must set a different, temporary delimiter, so as to
include the ESC delimiter in the text you are typing.
You do this with search and insertion commands by
prefixing them with the commercial at (@) modifier.
The first character you type after the command name
serves as your temporary delimiter for the duration of
the command. If, for example, you wish to create as text
(perhaps in a command file), rather than execute, the
command

Ccat$dog$$

you must issue an | command with this command as the
text string. To avoid truncating the insertion with the
first occurrence of the ESC delimiter, you must issue the
i command with a temporary one.

@I%Ccatdog%$$
SPEED then inserts the C command as text.

If you wish to insert, rather than execute, certain control
keys, you must take certain precautions.

® To insert B as part of a command line you are
composing, double the CTRL-B, typing |B1B

® To insert TF as part of a command line you are
composing, double the CTRL-F, typing [FF

@® To undertake a search for template characters, rather
than the strings they are templates for, prefix them
with a CTRL-W: [WIN in a search string tries to
match [N, rather than anything that is not the next
character.

® To enter T, type CTRL-P, CTRL-T.

Thus, if you want to write a command for storage that
tells SPEED to insert abc, the contents of Buffer 9, and
xyz, you must type in the | command as a text string to
an | command name as

llabc|B|B9xyz$$

If you omit one of the CTRL-Bs, and Buffer 9 currently
contains 000, SPEED will insert

labcO00xyz
instead of your intended

labc | B9xy:z

6- 2 Licensed Material-Property of Data General Corporation

Creating and Using SPEED Macros

It is possible to reuse SPEED command lines, both in
the current editing session and in subsequent ones.

Executing a Buffer

Once you have created and stored a SPEED command
line in a noncurrent buffer, regardless of whether you
saved the line with an _x command, or wrote the
command line in that buffer and then switched buffers,
you can reissue the command line. Simply issue [Bx$$
as a command.

For instance, if you have stored in Buffer 5 the command
line
S<3<looo— 8 >VL\II

3>

and, in the current buffer (with the CP at line 231),
issue the command

11B5$$

SPEED will insert

000 000 o000 232
000 o000 ooo 233
000 000 o000 234
000 000 o000 235
o000 o000 ooo 236

For another example, if Buffer T contains the command
line

I<<ST\.?2!1\$;VIO>$$

Then your command line (assuming this chapter is in
the current buffer)

10VS0$J[BTSVO=5$%

will get from SPEED in response

42

which approximates the number of sentences in the
current buffer. (There is no reason why you should not

put the rest of the command line in the buffer; go ahead
and do so.)

093-000197-03

Executing Files

You recall that, when you exit from SPEED, you lose all
buffer contents that you have not written to output files.
If, therefore, you wish to save a command line that you
have stored in, say, Buffer T, you can switch to Buffer
T, create an output file, and write the buffer contents
(the SPEED macro) to the file.

IBST$BFWcount.spd$:P$BFC$$

(Use the .SPD extension to remind yourself that this is a
SPEED command file.) Later in this session, or in a
subsequent session, you can issue the commands in the
file simply by invoking the file as a command.

!TFcount.spd$$
The result, for this buffer in this session, is

55

(We've added a few sentences since we executed the
buffer.)

When placing commands in a file, you may want to
write yourself a note about what the commands do, or
precautions to take with them. Since SPEED disregards
characters between pairs of exclamation points, you
might have inserted in the file COUNT.SPD, before you
closed it:

!This macro counts sentences!

If you use notes, you can remind yourself of the file’s
contents when you display it.

Using the /1= Switch

You may execute a file of SPEED commands by
entering SPEED with the /1= (Invocation) switch. You
set the switch with the filename of the file containing
the commands, and follow that with the filename of the
file you want SPEED to carry out the commands on. If
the file for this chapter is CHAPTER.6, then from the
CLI you can issue the command

X SPEED/i=count.spd chapter.6)

093-000197-03

SPEED in this case takes no commands from the
terminal, and you get the CLI prompt back as soon as
SPEED has carried out the commands in COUNT.SPD
on CHAPTER.6.

If you plan to use a command file with the /1= switch,
include in the file an updating FU or FB command;
otherwise SPEED will not update the text file with the
editing commands in the command file.

An effective SPEED macro file

@® has an extension, perhaps .SPD, which you give to the
names of all and only SPEED command files

@ contains !'notes! to remind yourself of the functioning
of the commands

@ is formatted with spaces and NEW LINEs for easy
reading (when you need to remind yourself of its
contents)

@ contains appropriate closing commands for udating
the text file

Exercises

Exercise 6-1.

In Buffer N, construct a SPEED command line that will
automatically number the pages of a file.

Exercise 6-2.

Check out the commands in Buffer N on a convenient
file. Edit them if necessary. When they seem right,
create a command file and place them in it.

Exercise 6-3.

Bring a paged text file into SPEED. Execute your
command file on it to see how it works.

Exit from SPEED. Enter SPEED with the | switch and
execute your command file on a text file.

Licensed Material-Property of Data General Corporation 6 ‘3

Buffer N should contain something like

I0VS0$ <7 <—$>IPageI$VIO\N
$R;>FU$$

Answer 6-2.

IFWpage.spd$PWFC$$

6-4

IFOanyfile$$
ll[Fpage.spd$$
H$$

)
) X SPEED/I=page.spd anotherfile)

Envoi

If you have come this far, congratulations! You have
mastered the clements of SPEED. Please consult
Chapter 7, “A Dictionary of SPEED,” when you need
further details about the use of the SPEED Text Editor.

End of Chapter

Licensed Material-Property of Data General Corporation 093-000197-03

This dictionary contains detailed information about each
SPEED command, console control key, search template
control key, switch, and symbol. The entries
cross-reference each other so that you can efficiently
look up distinctions of function and use.

How to Use this Dictionary

If you are an experienced SPEED user and have little
need of the preceding tutorial chapters, you may use this
chapter as a self-contained SPEED reference manual.
Change bars indicate changes in functionality from the
last revision of the manual, including enhancements.
Where there are multiple examples, more complex cases
follow simpler ones.

If you are a beginning SPEED user, you may wish to
consult individual entries as you encounter specific
commands and other SPEED apparatus in the preceding
chapters. Use the dictionary to confirm what you have
learned. Do not try to master every detail of an entry at
once. If, after careful reading, an entry still seems
obscure to you, study the examples carefully and try
them out step by step at the terminal. Read the entries
for any related commands in order to grasp the
differences between them.

Entering SPEED

You may enter SPEED in different ways for various
editing tasks. You may enter with or without a filename
argument, and you may use either of the two SPEED
switches.

Entering without a Filename
If you enter without a filename argument,

) XEQ SPEED!

SPEED displays its revision number and gives you a
prompt:

SPEED REV mm.nn
!

SPEED is then ready to take input from the terminal.
You must open or create any files you wish to work with.

093-000197-03

Chapter 7
A SPEED Dictionary

Entering with a Filename
If you enter SPEED with a filename,

) XEQ SPEED first. 1)

SPEED does one of two things, depending on whether
the file already exists or not. If there is no such file,
SPEED displays its revision number as before and asks
you

Create new file?

If you type in y}, SPEED creates an output file with that
name and gives you a prompt. If you do not want a new
file (because, for example, you made a typo when you
tried to type in the name of an existing file), type in any
other character. SPEED will not create a file but will
give you a prompt.

If the file does exist, SPEED opens your file FIRST.]
for input, creates a file for output with the same name
and an extension, FIRST.1.TM, turns global Update
Mode on, reads in the first page, and gives you a
prompt. If your file contains lowercase letters, SPEED
tells you

** [ower case input encountered **

before it gives you a prompt.

SPEED strips nulls on input.

Permanence

If Permanence is On for the filename you enter, SPEED
does not open the file for updating. Instead, you receive
the message

Error: Attempt to edit a permanent file

and the command line, if any, aborts. If you wish to edit
the file’s contents, you must either change its
PERMANENCE to OFF or open it in some other way
(perhaps with an FR command) after you enter SPEED.

Licensed Material-Property of Data General Corporation 7' 1

Switches

You may enhance your use of SPEED with one of two
switches. If you enter SPEED with the /D (Display)
switch,

) XEQ SPEED/D [first.1])

SPEED gives you an automatic 20-line display of the
current buffer contents surrounding the position of the
Character Pointer after executing each command line
and before restoring your prompt. This saves you the
effort of constantly issuing T commands to check the
contents of the buffer. For details, consult the entry for
the /D switch.

If you have a file of SPEED commands that you wish to
carry out on another file, you may do so by using the
/1= (Invocation) switch.

) XEQOSPEED/I=command.file dtext.file/)

This switch causes SPEED to take its commands from
command.file rather than from the keyboard. You
receive no SPEED prompt, but SPEED tells you if it
encouters lowercase letters. If you wish SPEED to
update text.file with the commands, command.file must
contain appropriate FU or FB file-closing commands.
For details, consult the entry for the /1= switch.

Exiting from SPEED

To make an orderly exit from SPEED, copy the contents
of all buffers that you wish to save to appropriate output
files, close all files, and issue the Exit command.

The Exit Command

The H command permits you to exit from a SPEED
editing session. It closes any files that you have left open,
but it does not update files or create backup files.

The H command does not save the contents of buffers. If
your current buffer is not empty or you have open files,
SPEED asks you

Confirm?

which requires a yl reply for execution. SPEED does rot
query you about active but noncurrent buffers, and you
lose their contents permanently. Consult the H
command.

A Note about Line Printer Listings

If you edit files which contain SPEED commands, and
cxit from SPEED with the intention of getting a line
printer listing of the file, you should be aware that
delimiters and control key characters will not show in
the line printer listing. SPEED echoes these symbols at

7 - 2 Licensed Material-Property of Data General Corporation

the terminal and copies them to output files, but they do
not print.

If you wish to have a listing of filename that shows
CTRL characters, you might consider

@ creating filename.CC (for “CTRL character”)
@ copying filename to filename.CC

® replacing all ESCs ($) in filename.CC with dollar
signs ($)

@ replacing all other CTRL characters with a caret (])
and the uppercase character corresponding to the
CTRL character (VC+64, for all VC less than 32)

® replacing resultant 1, 1J, TM with their corresponding
CTRL characters (for a readable format)

The edited filename.CC will be a readable (but not
executable) version of filename.

Organization of the Entries

Each entry begins with its name or characteristic shape
(in color) and the type of entry (command, console
control, switch, symbol, or template). A boldface
sentence or phrase briefly and roughly sketches the
entry.

The description of each command follows this outline:

Format

The format specifies the obligatory and optional parts of
the command line, with options in italics. We list
alternate formats showing choices of numerical
arguments on separate lines. We show the positioning of
search strings and text strings, and necessary delimiters.
Where arguments must be of a specific sort, we spell
them out in lowercase letters.

Function

The function describes in more detail what the
command does. Where the purpose of the command is
not apparent, we sketch some possible uses. In a few
instances, we refer you to other commands that interact
importantly with the command we are describing.

Numerical Arguments

Numerical arguments precede some but not all
commands. We describe the use of possible positive,
negative, and paired numerical arguments. We single
out special cases (such as zero), and characterize the
default value of the numerical argument when you do
not enter an argument explicitly.

093-000197-03

Symbolic Modifiers

Symbolic modifiers allow you to select an alternate
delimiter, use an alternate radix, or condition the
execution of the next command on the success of the
preceding one. They also have specialized uses which we
describe in the individual entries.

Characteristics

Characteristics of the command not easily covered in
other sections occupy this section. We specify which
forms of the command require a delimiter, what effect
the omission of string arguments has, how some file
opening and closing commands operate, and how to
implement certain powerful devices such as Command
Loops and Conditional Executions.

Precautions and Error Messages

Precautions and error messages attempt to warn you
about characteristic difficulties you may encounter with

the command, especially if you are a novice user of
SPEED.

Related Commands

Other commands may be more appropriate to your
needs than the command under description. We
distinguish them briefly in this section.

Examples

Examples follow all else. In some cases, we first give a
simple example for the neophyte, and then a more
elaborate one for users with sophisticated needs.

Where appropriate, somewhat abbreviated entries
describe the noncommand characters (console control
keys, switches, symbols, expansion and template control
keys), but every entry specifies format and function, and
gives at least one example.

The Structure of SPEED Commands

In SPEED commands, numerical arguments and
symbolic modifiers precede the command name;
character strings and delimiters follow the command
name.

Numerical Arguments

A SPEED command may begin with a numerical
argument, which tells SPEED such things as how far to
move the Character Pointer, how much text to delete or
copy, or how many times to carry out the following
command. See Table 7-1.

093-000197-03

Under some entries, we give extended examples of the
sorts of numerical arguments that can lend power and
efficiency to your use of SPEED. As numerical
arguments you may use not only simple numbers, but
also more complex numerical expressions, values of
variables and pseudo-variables, and functions you can
define on them.

Take, for example, the command line
1Z/2MVN<VIOI>$$

and suppose that you are at the beginning of the buffer,
that the buffer contains 26 lines, and that the current
value of Variable 0 is 64. The effect of this command
line is to insert the alphabet in the middle of the buffer.
SPEED represents the number of characters in the
buffer by Z. Dividing Z by 2 specifies the middle of the
buffer, so using Z/2 as an argument to the M command
places the CP at the midpoint of the buffer, where the
following insertion takes place. The insertion is in a
Command Loop, whose numerical argument is the value
of VN, the number of lines in the buffer. Since the value
of VN is 26, SPEED executes the Command Loop 26
times. The content of the Loop is the insertion of the
ASCII character corresponding to an ASCII value that
is in turn equivalent to the number stored in Variable 0
plus one. Since you stored 64 in Variable 0, SPEED
increments Variable 0 to 65. Since A corresponds to
ASCII decimal 65, SPEED inserts A the first time
around. The next time around, SPEED inserts the
character corresponding to the new increment, 66, which
is B, and so on for 24 more times to Z.

The example exhibits overkill, since we have used simple
commands in it. You will appreciate the full force of
complex numerical arguments when you issue Command
Loops and Conditional Executions.

Numerical arguments may either precede or follow

symbolic modifiers, but must precede the command
name.

Table 7-1. Numerical Arguments to Commands

By We denote Which refer to
n positive integers positions and operations to
and 0 the right or below the CP
-n negative integers positions and operations to
the left or above the CP
m,n pairs of positive a string in the buffer from

the m=+1°* to the n™
character inclusive

integers, where m
is not greater
than n

Licensed Material-Property of Data General Corporation 7 - 3

Symbolic Modifiers

The symbolic modifiers (@ : &) precede the command
name, if the command takes any. The ampersand
modifier (&), which specifies the alternate radix, may
precede both a numerical argument and the command
name.

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

Command Name

Every SPEED command must contain a command
name. SPEED command names are short and have
several forms:

@ from one to four letters of the alphabet

@ single nonalphabetic symbols for commands (= ; ?'\)
and arithmetic operators (* - + /)

@® double nonalphabetic symbols for Boolean operators
(/\‘ A /\+ /\/)

@ pairs of symbols containing other command lines:

< command-line> Command
Loop
G
L Conditional
“ command-line’ Execution
E
N

labellcommand-line$Olabel$
or Over to Label
Olabel$command-line!label!

Search Strings and Text Strings

Search strings and text strings, if any, follow the
command name. SPEED uses the search strings you
type into the command line after a C, N, Q, or S
command name in attempts to match them against the
text you have placed in the buffer.

SPEED uses text strings you type into the command line
after Csearch[string$ or an |, or @T command name
for insertion into a buffer or for display.

Delimiters

The standard SPEED delimiter, << ESC > , echoes on
the screen as a dollar sign ($). The SPEED command
line terminator, CTRL-D, which echoes on the screen as
a double dollar sign ($$), also acts as a delimiter.

Delimiters must follow all search strings and text strings
in command lines. A delimiter should follow the B?
command when you do not wish to query a single buffer.

7 - 4 Licensed Material-Property of Data General Corporation

A delimiter should intervene between a Vx or Wx
command and the next command name if that command
name takes a numerical argument and you do not wish it
to do so.

NEW LINE does not serve as a delimiter in SPEED.
Outside of search strings and text strings, however, you
may place it in command lines with no effect.
Consequently, you may insert it to improve the
readability of your command lines.

Command Line Terminator

The SPEED command line terminator, CTRL-D, echoes
on your screen as a double dollar sign ($$). When you
have typed in a command line and are satisfied with it,
you must issue a CTRL-D for SPEED to execute the
command line. NEW LINE does not serve as a SPEED
command line terminator.

This completes the sketch of the sequence of elements in
a SPEED command line.

Convention on Capitals

In the examples in this manual, we cite SPEED
command names in capital letters so that you can see
them easily. In fact, SPEED accepts alphabetic
command names in ‘either lowercase or uppercase. Use
whichever is convenient.

A Note on Command Precedence

Please recall that if you have opened files both locally
and globally in a single buffer, SPEED executes its
commands for the local file first. Only after you close
the local file does SPEED execute commands for the
global file.

Functional Analysis of SPEED
Commands

If you need only a general reminder of what a SPEED
command does, you may find it useful to look it up in
Table 7-2, “Functional Analysis of SPEED
Commands,” rather than under its entry in the main
body of the dictionary. Appendix C contains a
convenient SPEED code graph.

Entry Sequence in this Dictionary

SPEED commands with alphabetic names precede all
other entries in the dictionary. The /D and /I=
switches follow the D and | commands.

Commands and modifiers with nonalphabetic names
follow immediately, in the order of the ASCII digital
value of the first punctuation mark.

The dictionary concludes with an alphabetic listing of
control keys.

093-000197-03

A Command

Append text from an input file to the
buffer.

Format
A

Function

This command finds the next window or page of text in
the input file and puts a copy of it at the end of the
buffer, following all other buffer contents. Use the A
command to add material to the buffer without affecting
the current contents of the buffer.

Numerical Arguments
None

Symbolic Modifier

This command takes the colon modifier, which inhibits
error messages. It returns a +1 if the command
succeeds or a 0O if the command fails, so that you may
use the :A form of this command as a numeric argument
to the next command; see the colon symbol in this
dictionary and the second example below.

Inclusion in an iteration automatically simulates the :
colon modifier.

Characteristics

If the remainder of the input file contains no form feeds
and Window Mode is set at 0, the A command appends
the rest of the input to the end of the buffer. It also
appends the rest of the file if Window Mode is set to n
and fewer than n lines remain in the input file. If you are
in page mode (WM=0), and the file contains form
feeds, it appends to the next form feed (the L never
shows).

If you have both local and global input files open for the
current buffer, this command appends a page from the
local file rather than from the global file.

The A command appends to the end of the buffer rather
than at the position of the CP. This command does not
affect the position of the CP. (If the CP is at the end of
the current buffer when you issue this command, it will
immediately precede the appended page or window.)

093-000187-03

Precautions and Error Messages
If SPEED displays the error message

Error: No more characters in input file

it merely means that you have already brought the last
page or window of the input file into the buffer.

Related Commands

The A command does not copy previous buffer contents
to an output file or clear the buffer. To clear the buffer
of current contents while getting new input, see the Y
command. To copy the previous buffer contents to an
output file, and get new input, see the R command. To
copy the buffer without getting new input, see the P and
PW commands. To copy the buffer and the rest of the
input file to an output file, see the E command.

Examples
IFC$FRdistrib$A$S

You close global files without clearing the buffer, open
the file DISTRIB and append the first page or window
of it to the buffer. After performing some editing tasks,
you find yourself in the text at

*Consider:
1LA*OMS
Consider:*

You issue the command to append a page, using the
colon modifier. If the command succeeds, the CP will
move +1 times 9 = 9 places to the right. If it fails, the
CP will move O times 9 = 0 places to the right. It
succeeds, and you have repositioned your CP where you
wanted it in case there was another page to append.

Licensed Material-Property of Data General Corporation 7 - 5

BC Command

Buffer Copy: copy from the current
buffer to another buffer.

Formats

BCbuffer-name
nBCbuffer-name
-nBCbuffer-name
m,nBCbuffer-name

Function

This command copies some or all of the contents of the
current buffer from that buffer to a second buffer,
buffer-name. The only legal buffer names are the digits
0 through 9 and single letters of the alphabet.

The BC command clears the destination buffer of
previous text. It does not delete the copied text from the
current buffer. Use this command to copy text from the
current buffer to other buffers, where, for instance, you
can perform further editing on the text and insert it in
various open local output files.

Numerical Arguments

This command takes positive, negative, and paired
numerical arguments. It copies text to Buffer x as
follows:

nBCx, except for 0BCx
text from the current CP position up to the n”* NEW
LINE. That is, it copies the next » lines of text, but
the first line copied will only contain text from the CP
forward

1BCx
text from the CP to the end of the line

0BCx
text from the beginning of the current line up to the
current CP position

7 - 6 Licensed Material-Property of Data General Corporation

-nBCx
text from the beginning of the n” line preceding the
current line through n NEW LINEs up to the
position of the CP; that is, text from the previous n
lines and, if the CP is not at the beginning of the
current line, text on the current line up to the position
of the CP

-1BCx
text from the previous line and the current line up to
the CP

m,nBCx
text from the character after the m™ character up to
and including the n" character. Simple numbers
refer to positions in the current buffer. You may also
use numerical expressions containing arithmetic
operators, and the wvalues of variables and
pseudo-variables such as VO, ., and VN. For example:

17,41BCx copies from the 18" character in the
current buffer through the 41%.

17,20+ VOBCx (VO positive) copies from the 18"
character in the buffer through the character
whose position from the beginning of the buffer is
20 plus the current value of Variable 0.

using your current CP position, 0,.BCx copies from
the beginning of the buffer up to the position of the
CP, and .,ZBCx copies from the position of the CP
to the end of the buffer.

#BCx
abbreviates 0,ZBCx, which copies the entire current
buffer to buffer x.

The default value
for this command (issuing the command without a
numerical argument as BCx) is also 0,Z, which
represents the entire buffer.

093-000197-03

BC (continued)

Symbolic Modifiers

None

Characteristics
The BC command does not require a delimiter.
This command does not affect the position of the CP in

the current buffer. The CP of the destination buffer will
precede the copied text.

Precautions and Error Messages

The value of m in m,nBCx commands must not be
greater than the value of n. If it is, SPEED will send you
the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

If you inadvertently try to copy to the current buffer,
SPEED will send you the message

Error: Attempt to delete current buffer

093-000197-03

Related Commands

To copy text to other buffers and delete it from the
current buffer, see the BT command.

If the destination buffer already contains text, BC
deletes it. If you wish to save the contents of that buffer,
you may wish to copy your new text to an inactive
buffer. To find out which buffers are active, issue the B?
command.

If you want to copy text from another buffer into the
current buffer and you don’t want to delete the contents
of the current buffer, see the CTRL-B template in this
dictionary. Do not attempt to add text to the current
buffer by switching to a new buffer containing text,
issuing a BC command for the original buffer, and
switching back. You will destroy all material in the
current buffer except the copied text.

Example
1.-10,ZBC 1$3BC2$2L $40MSOBC3$$

You copy to Buffer 1 text from the 10" character
preceding the CP to the end of the buffer. Next you
copy the current line to the right of the CP, and the next
two lines, to Buffer 2. Then you go down two lines, move
40 characters to the right, and copy them to Buffer 3.

Licensed Material-Property of Data General Corporation 7 - 7

BFB Command

Buffer File Backup: create a local
backup file and close local files.

Format
BFB

Function

This command copies the current buffer and remainder
of the local input file, if any, to the local output file,
retains a copy of the input file, clears the current buffer,
and closes both files. The effect of this command is to
update your old local file with the changes you made. It
retains a copy of the original input file as a backup file if
Update Mode is on. Using this command, you

@ place the edited contents of the input file in the new
output file

@ close both local files

@ if Update Mode is on, rename the original input file as
a backup file, filename.BU

@ if Update Mode is on, rename the output file with the
original name, filename, of the input file

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The BFB command works in several steps. When you
open a file with the BFO command, you automatically
turn Update Mode on. SPEED then creates a temporary
local output file with the same name as your input file
and a .TM extension. Later, your BFB command

@® copies the current buffer and the remainder of the
local input file, filename, into filename.TM

@ clears the current buffer

7 - 8 Licensed Material-Property of Data General Corporation

@ closes both filename and filename.TM
@ rcnames filename to filename.BU and
@® renames filename.TM to filename

Update Mode then turns off, and you may issue new
local file opening commands.

Precautions and Error Messages

You can execute the BFB command successfully only if
there is an output file available. The command will close
a file opened with the BFO (Buffer File Open)
command, the BFW (Buffer File Write) command, or
the BFNW (Buffer File New Write) command. It does
not close a file opened with the BFR (Buffer File Read)
command unless there is a corresponding output file, for
instance, one opened with the BFW command.

If you issue the BFB command in a buffer that has a
global output file open, but no local output file open,
SPEED will display the message

Error: No open file

and will abort the rest of the command line. Reissue the
next command, if you still wish to execute it.

If you try to issue the BFB command when you have no
open files, you will receive the message

Error: No open file

and the rest of the command line will not execute.
Reissue the next command, if you still wish to execute it.

Related Commands

If you wish to reject the editing you have done and
retain the old file without changes, see the BFC
command. If you do not wish to keep the old version of
the file, see the BFU command.

093-000197-03

BFB (continued)

Example
IF?$B7$$

Global:
Input File - None
Output File - None

Local:
Input File - :UDD:LUCI.SCHED
Output File - :UDD:LUCI:SCHED.TM
Update Mode On

= > Buffer 0 - 666
IBFB$BFOillo$$

User Luci checks the status of her files and buffers. She
has a locally open file. Only the current buffer is active.
She wants to save the local input file as a backup. She
closes the local files with the BFB command, renaming
them appropriately. Next, she opens the file ILLO
locally for updating. When she again issues the F?B?$$
command line, she sees

Global:
Input File - None
Output File - None

Local:
Input File - :UDD:LUCIL:ILLO
Output File - :UDD:LUCI:ILLO.TM
Update Mode On

= >Buffer 0 - 498

093-000187-03

BFC Command

Buffer File Close: close local input and
output files.

Format
BFC

Function

Use this command to close local input and output files.
Since this command does not clear the buffer or copy it
to the output file, use it only when you have in the buffer
and in the output file exactly what you want or wish to
keep in the input file without making editing changes.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The BFC command only closes the current local files. It
does not copy from the buffer to the output file, clear the
buffer, rename input or output files, or create a backup
file

Precautions and Error Messages

This command closes any local file, no matter how you
opened it. If you have turned Update Mode on by
opening a file with a BFO command, you have separate
files filename and filename.TM when you exit from
SPEED. The .TM file contains the results of your
editing if you copied them from the buffer. (See the
various output commands E, P, PW, R for transferring
material from the buffer to an output file.)

The BFC command has no effect on global files.

You will not receive a message from SPEED if you try
to execute BFC with no file open.

Related Commands

If you wish to copy and clear the buffer, see the BFU
(Buffer File Update) command. If you wish to create a
backup file, see the BFB (Buffer File Backup)
command. If you wish to close current files and open
new ones, see the BFNR (Buffer File New Read) and
BFNW (Buffer File New Write) commands.

Licensed Material-Property of Data General Corporation 7 - 9

BFC (continued)

Example

IBFRprime$AS#T$S
IBFC$$

You open the local input file PRIME, append a page or
window to the buffer, display it, and discover that
PRIME is not the file you want. You close the file, and
are now ready to open another local input file.

7- 1 O Licensed Material-Property of Data General Corporation

BFNR Command
Buffer File New Read: open a new
local file for input.

Format

BFNR [filename]$

This command closes the old local input file, if any, and
opens a new local input file, filename, if you specify one.

The file must already exist. Use this command when you
wish to open, edit, and close a series of input files.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics
This command requires a delimiter.
If you omit filenarhe and Update Mode is off, the

command merely closes the current local input file, if
any.

The BFNR command does not copy from the input file to
the buffer (see the input commands A, R, and Y), copy
the buffer to an output file, or clear the buffer

Precautions and Error Messages

If the BFNR command does not open a new input file for
you, you may have turned Update Mode on by issuing a
BFO command. You will receive the message

Error: Update mode on

and the rest of the command line will abort. Reissue the
next command, if you still wish to execute it.

This command has no effect on local files opened with a
BFW or BFNW command.

The BFNR command has no effect on files opened
globally.

The BFU and BFB commands will not close files opened
with the BFNR command unless you have opened a local
output file. SPEED will send you the message

Error: No open file

and the rest of the command line will abort. Reissue the
next command, if you still wish to execute it.

093-000197-03

BFNR (continued)

Example
IBFRyr8 1$$

(editing commands)
IBFNRyr825$
. (editing commands)
IBFNRyr835$
. (editing commands)
IBFNRSBFWyr81_83$$
You open, use, and close a series of local input files. You

close your last file by issuing the command without a
filename argument, and open a local output file.

093-000197-03

BFNW Command
Buffer File New Write: create a new
local file for output.

Format
BFNW /new.filename]$

Function

This command closes the old local output file, if any,
and opens new.filename, which you create with this
command. The filename you select must not already
exist. Use the BFNW command when you wish to create,
open, edit, and close a series of output files.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires an ESC delimiter.

If you omit new.filename and Update Mode is off, this
command merely closes the current local output file, if
any.

The BFNW command does not copy from the buffer to

the output file, and does not clear the buffer. (See the
output commands E, P, PW, and R.)

Precautions and Error Messages

If you have turned Update Mode on by issuing a BFO
command, you will receive the message

Error: Update mode on

and the rest of the command line will abort. Reissue the
next command, if you still wish to execute it.

This command has no effect on local files opened with a
BFR or BFNR command.

The BFNW command has no effect on files opened
globally.

Licensed Material-Property of Data General Corporation 7— 1 1

BFNW (continued)

Example
IBFWexample.A$$

(editing commands)
iBFNWexampIe.B$$
. (editing commands)
iBFNWexampIe.C$$
' (editing commands)
IBENWS$BFRbiblio$$
You create, open, use, and close a series of local output
files. You close your last file by issuing the command
without a filename argument. After you finish with that

editing task, you open a new local input file, BIBLIO, to
begin another.

7-12

Licensed Material-Property of Data General Corporation

BFO Command
Buffer File Open: open local file for
update.

Format

BFOfilename$

Function

Use this command when you wish to make changes in an
already existing file, filename. The BFO command

@® opens filename for local input
@ turns Update Mode on for filename
@ creates a new local file, filename.TM, for output

@ yanks the first page or window of filename into the
buffer

You are now ready to carry out your editing tasks on
filename. When you are through, you use either the BFB
(Buffer File Backup) command or the BFU (Buffer
File Update) command to complete the editing cycle.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires an ESC delimiter.

The BFO command turns Update Mode on. When
Update Mode is on, the file is opened exclusively. No
one, including yourself, may have additional access to
the file.

Precautions and Error Messages

If you attempt to open a file with the BFO command,
and the file has PERMANENCE ON, SPEED will
display the message

Error: Attempt 10 edit a permanent file

and abort the command line.

093-000197-03

BFO (continued)

If you attempt to open two files for updating in the same
buffer with an FO and a BFO command, you lose text
from one of the two files. Avoid using BFO and FO
commands in the same buffer. If you want to open a
second file for updating without closing the first, switch
to an available buffer with the BS command and open
the file locally in that buffer with a BFO command.

When Update Mode is on for a file, no one can have
additional access to the file, including yourself if you try,
for example, an X TYPE filename or X QPRINT filename
command.

When you open a file with the BFO command, you
preserve the record type (data sensitive, dynamic, fixed
length, variable) of the input file and of the associated
output file, either filename.BU or filename.TM (see the
BFB and BFU commands). Opening for update also
preserves file type, record length if fixed, element size,
and UDA (User Data Area).

You cannot issue BFNR or BFNW commands while
Update Mode is on, whether or not you issue them with
filename arguments. You must first close the file opened
with the BFO command. If you do not, you will receive
the message

Error: Update mode on

If you try to open a second local file in the current
buffer when Update Mode is on, you will receive the
message

Error: File already open

whether you attempt the opening with BFO, BFR, or
BFW.

SPEED strips nulls on input.

093-000197-03

Licensed Material-Property of Data General Corporation

Related Commands

If you don’t know whether you want to open a file locally
or globally, consult the section “Using Local Files” in
Chapter 3.

Instead of updating a current file, you may want to
create new files by rewriting or combining old ones. If
so, see the BFR (Buffer File Read) and BFNR (Buffer
File New Read) commands for opening input files, and
the BFW (Buffer File Write) and BFNW (Buffer File
New Write) commands for creating output files.

Use one of the three local closing commands when you
finish editing the file you opened with the BFO
command. If you are happy with the changes you made,
see the BFU (Buffer File Update) command. If in
addition you want to keep the previous contents of the
file, sec the BFB (Buffer File Backup) command. If you
decide to reject your changes and keep the original file,
see the BFC (Buffer File Close) command.

Example
IBFOshort$BS9$FOlong$F?$$

Global:
Input File - :UDD:PAT:LONG
Output File - :UDD:PAT:LONG.TM
Update Mode On

Local:
Input File - :UDD:PAT:SHORT
Output File - UDD:PAT-SHORT.TM
Update Mode On

User Pat opens exclusively the local file SHORT,
switches to Buffer 9, opens exclusively the global file
LONG, and verifies what she has done by issuing the F?
command to get a display.

7-13

BFR Command

Buffer File Read: open local file for
input.

Format
BFRfilename$

Function

This command opens a file for local input, where
filename names the file you wish to open. The file must
exist. Use this command to open a file especially when
you plan to add to another file or create a new output
file from its contents, rather than update the input file
itself. Since Update Mode will be off, you will have to
create a file for output, if you want one, with the BFW
(Buffer File Write) or BFNW (Buffer File New Write)
command.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not copy from the input file to the
buffer. See the input commands A, R, and Y.

This command does not copy from the buffer to the
output file, and it does not clear the buffer.

7-14

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

The BFU and BFB commands will not close a file opened
with the BFR command unless you have opened a local
output file. SPEED displays the message

Error: No open file

and aborts the rest of the command line. Reissue the
next command, if you still wish to execute it.

Related Commands

To open a series of files locally for input, see the BFNR
(Buffer File New Read) command. To open a file locally
for updating, see the BFO (Buffer File Open) command.

Example
IBFRsupplyAS#T$BFWorder$$
You open the file SUPPLY, append a page or window to

the buffer, display it, and create an output file ORDER
whose contents you will edit from SUPPLY.

093-000197-03

BFU Command

Buffer File Update: update and close
local files.

Format
BFU

Function

This command updates your local input file and retains
the original filename. It renames a new local file for
output with the same name as the old local input file.
The new local output file contains the material of the
input file as you have edited it during the current
session.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The BFU command carries out the updating in several
steps. When you open a file with the BFO (Buffer File
Open) command, you automatically turn Update Mode
on. SPEED then creates a temporary local output file,
filename.TM, with the same name as your input file and
a .TM extension. When you subsequently issue the BFU
command, it

@ copies the current buffer and the remainder of the
local input file, filename, into filename.TM

® clears the current buffer

@ closes both filename and filename. TM
@ dcletes filename

@ renames filename. TM to filename

@ turns Update Mode off

You may issue new local file opening commands, if you
wish.

093-000197-03

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

The BFU command applies only to open files with
Update Mode on. If global Update Mode is on, but local
Update Mode is off, the BFU command applies to global
files.

You can execute the BFU command successfully only if
@ local Update Mode is on, or

@® a local output file is open, or

@ global Update Mode is on, or

@ a global output file is open

The BFU updates and closes files opened with the BFO
(Buffer File Open) command, the BFW (Buffer File
Write) command, and the BFNW (Buffer File New
Write) command, or with the corresponding global
commands (FO, FW, FNW). The BFU command does
not close a file opened with the BFR or BFNR commands
or their global counterparts (FR, FNR) unless you have
opened a corresponding output file, for instance, one
opened with the BFW command.

If you have no open local or global file, or if you shift
from the buffer in which you opened a global file for
updating to a buffer which has no local output file open,
and issue a BFU command in that buffer, SPEED
displays the message

Error: No open file

and aborts the rest of the command line. Reissue the
next command, if you still wish to execute it.

Related Commands

If you wish to reject the editing you have done and
retain the local input file without change, sec the BFC
(Buffer File Close) command. If you wish to keep both
the old and new versions of the file, see the BFB (Buffer
File Update) command.

7-15

BFU (continued)

Example
IF?$B7$$

Global:
Input File - None
Output File - None

Local:
Input File - :UDD:CHRIS:DESIGN
Output File - :.UDD:CHRIS:DESIGN.TM
Update Mode On

= >Buffer 0-4702

IBFUH$$

User Chris checks the status of her files and buffers. She
has a locally open file. Only the current buffer is active.
She updates her file, automatically clearing the buffer
and closing both files, and exits from SPEED.

7- 1 6 Licensed Material-Property of Data General Corporation

BFW Command
Buffer File Write: create a local file for
output.

Format

BFWnew.filename$

Function

This command creates and opens a local output file,
where new.filename names the file you want to open
and create. The filename you select must not already
exist. Use this command to create a new output file in
which, for example, you might store the edited contents
of old files.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires an ESC delimiter.

Precautions and Error Messages

This file does not copy the buffer to the output file, and
it does not clear the buffer. See the output commands E,
P,R,and Y.

Update Mode must be off to issue this command. The
BFW command does not turn Update Mode on. If you
wish to have an input file, you must issue a BFR or
BFNR command.

You must close the current local output file before you
can execute another BFW command.

Related Commands

To update an existing file, rather than create a new
output file, see the BFO command. To create and open
local output files in series, see the BFNW command.

093-000197-03

BFW (continued)

Example

IBFRsurveyAS

' (editing commands)

iBFWreport$EFC$$

You open the input file SURVEY locally, append a page
or window to the buffer, edit in the buffer, create and

open the file REPORT, copy the buffer to it, and close
both files.

093-000197-03

BG Command

Buffer Get: get a line and copy it to a
buffer.

Formats

BGbuffer-name
nBGbuffer-name

Function

Read a line of characters that the user types in at the
terminal and store it in the specified buffer,
buffer-name. The only legal buffer names are the digits
0 through 9 and single letters of the alphabet.

Issue the BG command and a CTRL-D. SPEED will
display a question mark and space as a prompt. Enter
the characters from the keyboard. You regain the
standard ! prompt after SPEED executes this command.

Use this command to store in another buffer a line you
plan to use during the current editing session, either as a
recurring line of text or as a command line you will need
later.

Numerical Arguments

The BG command accepts single numerical arguments

nBGx
stores in buffer x the n characters you type.

0BGx
accepts up to 136 characters, the default record
length. This command accepts as a character a
data-sensitive delimiter such as ESC.

SPEED also uses the default record length, 136, if n is
negative or if you give the command no numerical
argument.

Symbolic Modifier

This command accepts a colon modifier before the
numerical argument. The :nBGx or :BGx form of the
command inhibits SPEED from displaying the ?
prompt. This allows you to define your own prompt. See
the @T form of the T command.

Licensed Material-Property of Data General Corporation 7 - 1 7

BG (continued)

Characteristics

This command does not affect the CP in the current
buffer. The CP of the destination buffer precedes the
stored characters.

When you issue a positive, fixed-length nBGx command,
you terminate input if you issue a CTRL-D.
Data-sensitive 0BGx and BGx commands require a
terminating CTRL-D.

This command accepts as a character a data-sensitive
delimiter such as ESC in the string you type in, allowing
you to store a command line of more than one command.

Precautions and Error Messages

This command destroys the previous contents of the
destination buffer.

The BG command does not enter the typed line in the
current buffer.

Do not issue a CTRL-D at the end of the input string in
a positive, fixed-length nBGx command.

If you issue nonzero nBGx (fixed length input)
commands within a Command Loop, and type text in
excess of the length, the excess text passes to the next
execution of the BG command in the loop. Outside of a
Command Loop, if you exceed the number n (or the
default value) in the line you type, SPEED will try to
interpret the next symbols entered as commands. If you
do not keep track of your text, you may issue inadvertent
D, K, or Y commands. You will receive error messages
appropriate to inadvertent commands that abort.

Related Commands

To copy text from the current buffer to another buffer,
see the BT and BC commands. For other strategies for
storing and reusing lines, see the CTRL-B and CTRL-F
templates in this dictionary.

7_ 1 8 Licensed Material-Property of Data General Corporation

Examples
BG1$$

?
WaitCforOtheOsignal(OtoOturnOthe Opage.$$
(editing commands)
B1$$
(editing commands)
11B1$$
While you are constructing a timed test at the terminal,
you realize that you are going to use a line repeatedly.
You store it in a buffer with the BG command and insert
it in your text when you need it with an | command using
a CTRL-B template.
1:BG2%$$
— (system response)
liLinesO=0$VN\IOandOcharacters(0=$Z\$$
You wish to keep a record in your text of the text’s
length as you go along. You issue the BG command
above and from time to time insert the information with
a CTRL-B. SPEED inserts
Lines = 103 and characters = 2882
if that is your place in the text.
You need to type lines of text that are mostly repetitive
but contain a variation at one point. You type in answers

to some problems this way

13<ITheldanswerJis(1$BGQIIBQ$>$$

093-000197-03

BG (continued)

Each time you get the question prompt, you type in the
next answer and a CTRL-D:

?

?_ 1047 <CTRL-D> 7_

2.1047? 31 <CTRL-D> 7_
2.1047?31? 6.8584<<CTRL-D> /_
2.104723176.8584! $$

You thereby create the text

The answas is .1047
The answer is 31
The answer is 6.8584

You must convert a list of words from British to
American spellings. You must change flavour to flavor
without changing four to for. You want SPEED to ask
you whether to make the change or not each time. You
specify

1<Sou$;T@T$Delete?$
:1BGDBSDVCVS0$BS0
VO0-89"E-1D'>$$

Your Command Loop tells SPEED: find successive
instances of ou. Display each one and the question
Delete? Read my one-character reply into Buffer D.
Switch to Buffer D and store the ASCII decimal value
of the character in Variable 0. Switch back to Buffer 0.
If VO=89 -- that is, if the character was Y (for yes) --
delete the preceding character u. If VO is anything else,
continue with the search.

Given a list containing hour, behavioural, and valour, in
that order, if you make the right choices, SPEED
ultimately displays

hou*r
Delete? Nbehaviou*ral
Delete? Yvalou*r

Delete?Y
/

Remember in this fixed-length case not to enter a
CTRL-D after your Y or N response.

093-000197-03

BK Command
Buffer Kill: kill another buffer.

Format

BKbuffer-name

Function

This command deletes a buffer, buffer-name. The only
legal buffer names are the digits O through 9 and single
letters of the alphabet. The buffer must not be the
current buffer.

Use this command when you no longer need the contents
of a buffer other than the one you are in.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

You may have files open locally n the buffer you kill.
This command does not copy fror the noncurrent buffer
to an output file, nor does it close files.

Precautions and Error Messages

If you issue a BK command with an illegal buffer name,
SPEED displays the message

Error: lllegal buffer name

If you try to kill an inactive buffer, SPEED displays the
message

Error: Buffer is inactive

Related Commands

You do not need to kill buffers before copying to them.
See the BC and BT commands.

You do not need to kill buffers before exiting from an
editing session; SPEED does that automatically. See the
H command.

To kill any or all lines in the current buffer, see the K
command.

Licensed Material-Property of Data General Corporation 7- 1 9

BK (continued)

Example

'B?$$

= >Buffer 0- 1532
Buffer 1 -0
Buffer 4-767
Buffer 5- 14
Buffer C-5

IBK1BK5SBKC$$

You inspect the status of your buffers and recall that
only Buffer 0 and Buffer 4 contain material you need to
retain. You kill the other buffers.

7 - 2 0 Licensed Material-Property of Data General Corporation

BS Command
Buffer Set: switch to another buffer.

Format
BSbuffer-name

Function

This command makes a new buffer, buffer-name, the
current buffer. The only legal buffer names are the
digits 0 through 9 and single letters of the alphabet.

Use an additional buffer, switching to and from it, when,
for example, you wish to

@ cxamine and edit text that you place there with a BC,
BG, BT or _buffer-name command

@ cxamine and edit a file opened locally in that buffer

Numerical Arguments
None

Symbolic Modifiers

None

Characteristics

You do not modify the contents of a buffer by switching
to or from it.

You may have up to 36 buffers active in an editing
session.

When you set the current buffer to n, SPEED activates
automatically the buffer that you switch to.

This command does not affect the positioning of CPs.
SPEED saves the CP position in each buffer and
restores it when you switch into the buffer.

This command does not affect the status of files. The
local files open in the current buffer will still be open
when you switch back to that buffer.

If you issue no BS commands, you remain in the default
buffer, Buffer 0.

093-000197-03

BS (continued)

Precautions and Error Messages

If you issue the command with an illegal buffer name,
SPEED displays the message

Error: Illegal buffer name

Related Commands

To find out the status of your buffers, issue a B?
command.

Example
IFObiblio$BS 1$BF Oarticles$$
While in your current buffer you open the file BIBLIO

for updating. You switch to Buffer 1 and open the file
ARTICLES locally for updating.

093-000197-03

BT Command

Buffer Take: take text to another
buffer.

Formats

BTbuffer-name
nBTbuffer-name
-nBTbuffer-name
m,nBTbuffer-name

Function

This command transfers some or all of the contents of
the current buffer to a second buffer, buffer-name. The
only legal buffer names are the digits O through 9 and
single letters of the alphabet.

This command deletes from the current buffer the text it
takes to the destination buffer.

Numerical Arguments

This command takes positive, negative and paired
numerical arguments. It takes text out of the current
buffer and puts it into Buffer x as follows

nBTx, except for OBTx
from the current CP position up to the n” NEW
LINE. That is, it takes the next n lines of text, but
the first line copied will contain text only from the CP
forward.

1BTx
from the CP through the next NEW LINE.

0BTx
from the beginning of the current line up to the
current CP position.

-nBTx
from the beginning of the n" line preceding the
current line through » NEW LINEs up to the
position of the CP. That is, it takes text to buffer x
from the previous n lines and, if the CP is not at the
beginning of the current line, text on the current line
up to the position of the CP.

-1BTx

from the previous line and the current line up to the
CP.

Licensed Material-Property of Data General Corporation 7 - 2 1

BT (continued)

m,nBTx
from the character after the m" character up to and
including the n" character. Numbers in this
command refer to positions in the current buffer. You
may use numerical expressions containing arithmetic
operators, and the values of variables and
pseudo-variables such as VO, ., and VN. For example

19,43BTx takes from the 20" character in the
current buffer through the 43™.

23,20+ VOBTx takes from the 24" character in
the buffer through the character whose position
from the beginning of the buffer is 20 plus the
current value of Variable 0.

0,.BTx takes from the beginning of the buffer up to
the position of the CP, and .,ZBTx takes from the
position of the CP to the end of the buffer.

The command #BTx
abbreviates 0,ZBTx, which takes the entire current
buffer to buffer x.

The default value
for this command (issuing the command without a
numerical argument as BTx) is 0,Z, which refers to
the entire buffer.

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter.

This command does not affect the position of the CP in
the current buffer relative to remaining text, although

the value of the CP position (denoted by .) may change.
The CP of the destination buffer precedes the text.

7-22

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

If you inadvertently try to take text to the current
buffer, SPEED displays the message

Error: Attempt to delete current buffer

In the m,nBTx variant of this command, the value of m
must not be greater than the value of n. If it is, SPEED
displays the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

Do not attempt to add text to the current buffer by
switching buffers, issuing a BT command and switching
back. You will destroy all material in the current buffer
except the transferred text.

Related Commands

To copy text to other buffers but retain it in the current
buffer, see the BC command.

To insert text into the current buffer without deleting its
present contents, use an I[Bx command. See the
IBbuffer-name expansion in this dictionary.

Example
l.+12,ZBT 1$-4BT2$0BT3$$

You take to Buffer 1 text from the 12™ character
following the CP to the end of the buffer. Next you take
the four lines preceding the current line, and the current
line up to the CP, to Buffer 2. Then you take the new
last line of the current buffer to Buffer 3.

093-000197-03

B? Command
Buffers? give the status of active

buffers.

Formats

B?$
B?buffer-name

Function

The B? (Buffers?) command tells you which of the 36
buffers are active, how many characters each contains,
and which buffer is current. The only legal buffer names
are the digits O through 9 and single letters of the
alphabet.

Use this command to keep track of your buffer use,
especially during complex editing tasks which require
the manipulation of several buffers.

Numerical Arguments
None

Symbolic Modifiers

This command takes the ampersand (&) modifier. When
you issue a &B? command, SPEED displays the
character count in the alternate radix. (The alternate
radix is octal unless you reset it with a WR command.)

Characteristics

If you have not switched buffers, you are in the default
buffer, Buffer 0.

The B? form of this command lists all active buffers. It
requires a delimiter, since it tries to interpret any other
character as the name of a buffer. An arrow points at
the current buffer. You may use this form of the
command in any buffer to determine the status of all
buffers.

This command does not tell you whether a buffer has
files open locally.

Precautions and Error Messages

Remember that the question mark precedes the buffer
name.

093-000197-03

Licensed Material-Property of Data General Corporation

SPEED displays the message
Error: lllegal buffer name

if you follow B? with any character other than a letter, a
digit, ESC, or CTRL-D.
Related Commands

To keep track of which files you have open in a buffer,
see the F? (Files?) command.

Examples

You decide to check your buffers. You enter

'B?$$
Buffer 0-1728
= > Buffer 2-144
Buffer P-0
Buffer D- 12

Your current buffer, Buffer 2, contains 144 characters.
Buffer O contains 1728 and Buffer D contains 12. Buffer
P contains no characters but has been active at some
time in the editing session, or it would not be listed.
IB?1$$

Buffer I - 3

Buffer 1 contains 3 characters.

1B?%%$$

Error: llegal buffer name

You forgot to release the shift key to check on Buffer 5.
IB?D$$

Buffer D - Inactive

You have not placed any text in Buffer D, or used

Buffer D in any way (for example, a BSD command)
during the editing session.

7-23

C Command

Change one string of text into
another.

Formats

C [stringl] $ [string2] $

nC [stringl] $ [string2] $
-nC [stringl] $ [string2] $
m,nC [stringl] $ [string2] $

Function

This command conducts a search in the text for the first
argument stringl. If the command finds the string, it
replaces that string with the second argument, string2.
The range in which the C command conducts the search
depends upon the numerical arguments you furnish to
the command.

Numerical Arguments

This command takes positive, negative, and paired
numerical arguments.

OCstring1$string2$
searches from the beginning of the current line up to
the CP position.

1Cstring 1$string2$
limits the search from the CP position through the
end of the current line (NEW LINE).

nCstring 1$string2$, except for 0Cstring 1$string2$,
limits the search for string! from the current CP
position up to the n” NEW LINE forward. That is, it
searches through the next » lines forward, but
searches the first line only from the CP position
forward.

-1Cstring 1$string2$
limits the search to the preceding line and the current
line up to the CP.

-nCstring 1$string2%$
limits the search to the n lines preceding the current
line and, if the CP is not at the beginning of the
current line, the current line up to the position of the
CP.

m,nCstring 1$string2$

limits the search from the character after the m"
character up to and including the n™ character.

7-24

Licensed Material-Property of Data General Corporation

Numbers in this command refer to positions in the
current buffer. You may also use numerical
expressions containing arithmetic operators, and the
values of variables and pseudovariables such as VO, .,
and VP. For example:

60+ VO0,.+40Cstring 1$string2$$ limits the range
of the search from the character after the
character whose position is 60 plus the current
value of Variable 0 to the 40" character following
the current position of the CP.

VP,.Cstring 18string2$$ limits the range of the
search from the previous position of the CP to the
current position of the CP.

The default value
for the C command, when you issue it without a
numerical modifier, is .,Z, the range from the current
position of the CP to the end of the buffer.

Symbolic Modifiers

This command takes both the colon (:) and commercial
at (@) modifiers. You may use both in a single
command.

@C%string 1%string2%$

allows you to define as a temporary delimiter the
character immediately following the command name,
in the example the percent sign (%). This allows you
to include the standard delimiter, ESC (which echoes
on the screen as $), as a part of either of the string
arguments. Choose as a temporary delimiter any
convenient character which will not itself appear in
the string arguments.

:Cstring1$string2$
inhibits an error message, returning a +1 if the
search succeeds and a 0 if the search fails. You may
use this form of the command as a numeric argument
for the next command; see the colon symbol and the
example below.

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

You may define a temporary delimiter and inhibit error

messages by combining the two modifiers in either
order.

093-000197-03

Characteristics

This command requires two delimiters, one following the
first string argument, and one following the second. The
standard delimiters are ESC, which echoes as $, for the
first argument, and either ESC or CTRL-D, which
echoes as $3, for the second. You may define a different
temporary delimiter as outlined in the “Symbolic
Modifiers” section.

When the command has a negative numerical modifier,
and there is more than one instance of stringl in the
range of the search, the command operates on the
earliest instance of stringl rather than on the instance
closest to the CP.

To find the current position of the CP in terms of
characters from the beginning of the buffer, issue a .=
command. To find the current position of the CP in
terms of characters to the end of the buffer, issue a Z-.=
command.

Both string arguments are optional. If you omit the first
string argument but include the first delimiter, issuing
the command in the form C$string2$, the command
searches for an instance of the string that you searched
for with the last previous search command (C, S, N, or
Q). If it finds the string, it replaces it with your current
string2.

If you omit the second string argument but include both
delimiters, issuing the command in the form Cstring 1$$,
SPEED searches for the string and, if it finds the string,
deletes it.

If you omit both string arguments but include both
delimiters, issuing the command in the form C$$,
SPEED will search for an instance of the previous
string, as outlined above, and, if it finds the string, delete
1t

093-000197-03

In all cases, if the search for the first string argument is
successful, SPEED replaces the string with the second
string argument, and the CP follows the last replacing
character.

The position of the CP following an unsuccessful search
depends on the value assigned to position mode. (To find
out your position mode, issue a WP = command; see the
WP command for details.) If your position mode is set at
0, the default setting, the new position of the CP after an
unsuccessful search will be

@ n lines after its position before the search for nC
commands and unchanged for 0C commands

@ at the position before the search for -nC commands
@ after the n character for m,nC commands
@ at the beginning of the buffer for default C commands

If you set the position mode to a nonzero value, the new
position of the CP after an unsuccessful search will be at
the position where the search actually starts, that is,

@ at the position before the search for nC commands

@ 1 lines before the previous position for -nC commands
and OC commands

@ after the m™ character for m,nC commands

@ at the position before the search for default C
commands

The value of search case match mode determines
whether or not the C commands will match alphabetic
characters regardless of case; see the WS command. In
the default value of case match mode, 0, the command
matches independently of case (@ matches 4 in the first
string argument), but insertions are case dependent. If
you set the value at anything other than 0, the match in
the first string argument is case independent (a will
match a but not A4).

Licensed Material-Property of Data General Corporation 7 - 2 5

C (continued)

Precautions and Error Messages

In the m,nCstring1$string2$ variant of the command,
the value of m must not be greater than the value of n. If
it is, SPEED will display the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

If you inadvertently omit the third and final occurrence
of the temporary delimiter, SPEED sends you the
message, after you type CTRL-D,

Error: Unterminated string

SPEED carries out the search. If it is successful,
SPEED replaces the first string argument with
everything between the second instance of the temporary
delimiter and the CTRL-D, including any material you
intended as a command line, and ends with the
CTRL-D echo, $§.

If you type the first argument and inadvertently type
CTRL-D instead of ESC, SPEED will search for the
string and, if it finds the string, delete it.

If you have executed no previous search, or the previous
string exceeded 31 characters, SPEED will send you the
message

Error: Incomplete string in search buffer

and continue the search, using the incomplete string (the
first 31 characters of the previous string).

This command accepts templates and expansions, like
the other search commands S, N, and Q. The C
command takes templates in the usual fashion of a
search command in the first string argument, the search
component of the command. If you type in any other
template in the second string argument, the command
will treat it literally and insert the template character
instead of that part of the string you are trying to match
with it.

In search strings, SPEED flags any control character
other than B (expansion to a buffer), JF (expansion to a
file), TAB (1I), NEW LINE (]J), vertical tab (JK), form
feed (JL), CR (M), or ESC as an error unless you
precede it with the control characters |G or W (on
models other than 6052, 6053, D100, or D200, 1] or 1_).

7-26

Licensed Material-Property of Data General Corporation

Remember to treat form feed, NEW LINE, carriage
return, tab and space as single characters when using
the C command.

Related Commands

To apply a single C command throughout a section of
text, use it in conjunction with a Command Loop; see
the <<command-line> command.

To perform searches without changing text, see the S, N,
and Q commands. To alter text at the position of the CP,
see the D, K, l and \ commands.

Examples
Pr*essing htis key has no affect, for esample,

IChtthC O a$ e$ClesSexss
Pressing this key has no effect, for ex*ample,

You spot several errors in the current line to the right of
the CP. Your first command corrects a typo to this, your
second command picks out the proper instance of a to
change to e, and your third command closes up a space
and spells example correctly.

*wiht Dick, who tried to to kiss Jane to.
IChtthCto$$3MCS too$$
with Dick, who tried to kiss Jane too*.

You make three changes in this line: you exchange the
misplaced letters in with. The second C command finds
the first instance of ro. Since you intentionally omitted
the second argument, it deletes the redundant word. You
delete the extra space and move over the next instance of
to. The third command uses the first argument of the
previous C command to find fo again, since you omitted
its first argument, and replaces the string with the
correct word.

*had less cavities. They ate less sweets and had regular
ICless$fewer$C$almostIno$$

had fewer cavities. They ate almost no* sweets and had
regular

093-000197-03

You correct less to fewer with the first command. You
omit the first string argument in the second command to
find the second instance of less and revise it to
almost Ono.

all agents. Send 3 copies to all agents, and remind* all
agents that

1.-25,.CalllJagents$eachJagent$$

all agents. Send 3 copies to each agent*, and remind all
agents that

You single out the one instance of all agents that you
want to change by restricting the range of the search to
the 25 characters before the CP with the double
numerical modifier.

You spot an error in one of Walter’s command lines,
which reads

IEnd of File. FU$

Walter intended to insert the phrase End of File and
then update the file. The command line as it stands
inserts the phrase and the letters FU since Walter
omitted a necessary delimiter. When you try to edit
Walter’s line for him by entering

1C.$$8%

You merely succeed in deleting the period. Then you
recall that you must set a temporary delimiter in order
to treat the standard ESC delimiter as text. You issue
the command with the commercial at modifier and
select the percent sign as the temporary delimiter
1@C%.%.$%T$$

End of File.$*FU$

This time you manage to help Walter out.

093-000197-03

Licensed Material-Property of Data General Corporation

D Command
Delete a number of characters.

Formats

nD
-nD

Function

This command deletes a specified number of characters
from the position of the CP.

Numerical Arguments

This command takes positive and negative numerical
arguments. It does not take double numerical
arguments.

nD

deletes the n characters following the CP from the
current buffer.

-nD
deletes the n characters preceding the CP from the
current buffer.

The default value
of the D command depends on the setting of the
default argument mode. (To find out the setting, issue
a WA= command; for details, see the WA command.)
If the default argument value is set at 0, the D
command without a numerical modifier has no effect.
If you set the default argument value at +1, the D
command deletes one character after the CP from the
current buffer.

Symbolic Modifiers

None

Characteristics

If you issue an nD or -nD command when n exceeds the
number of characters in the buffer in that direction, the
command will delete all characters in that direction.

Precautions and Error Messages
Remember to count a form feed (JL), NEW LINE,
carriage return, tab, or space as a single character.

You may be able to save some material that you
inadvertently deleted. See the _buffer-name command
(Save a Line).

7-27

D (continued)

Related Commands

To delete entire lines, see the K command. To delete
material from the current buffer but store it in another
buffer, see the BT command. To delete a noncurrent
buffer, see the BK command.

To delete characters as you are typing them in, use the
DEL or RUBOUT key.

To delete unexecuted commands on a single line, use
CTRL-U, and to delete unexecuted commands on
severa! contiguous lines, use the CTRL-C, CTRL-A
sequence.

Example

There is no reasons* to write up a longish description
1-1DSlong$3D$$

There is no reason to write up a long* description

You delete the character immediately preceding the CP,

search forward for /ong and delete the suffix following
it.

7 - 2 8 Licensed Materiai-Property of Data General Corporation

/D Switch
Display text automatically

Formats

) XOSPEED/DOfilename)
) XOSPEED/D)

Function

When you enter SPEED with the /D switch, SPEED
tries to give you an automatic display of 10 lines on
cither side of the CP. SPEED executes your command
line, gives you a display, and restores your prompt. Use
this switch when you need a constant display and wish to
avoid issuing T commands continuously.

Characteristics

When the CP is closer than 10 lines to the beginning or
end of the buffer, SPEED displays the first or last 20
lines in the buffer.

Even if you enter SPEED with the /D switch, SPEED
will not display text if the previous command line
generates output from the terminal or if the previous
command is an X command.

If you turn the Trace Toggle (?) on, SPEED inhibits the
automatic display of text. When you turn the toggle off,
SPEED restores the automatic display. See the ?
command.

Precautions and Error Messages

The /D switch has no effect when you use it with the
/1= (Invoke) switch. To get displays when using the
/1= switch, place appropriate T, @T$string$ and ?
commands in the command file.

Related Commands

If you wish to alter the display characteristics during the
current editing session, see the WD command.

Example
) XOSPEED /D lux)
You open SPEED with a filename and the /D switch.

SPEED opens file LUX and displays the first 20 lines of
that file.

093-000197-03

oo

E Command

End: copy buffer and input file to
output file.

Format
E

Function

The E (End) command ends the editing of the current
file by copying the contents of the buffer and the rest of
the input file into the output file.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command clears the buffer. It does not close input
or output files.

If you have both local and global files open in the
current buffer, the command operates on the local files
first.

Precautions and Error Messages

If you happen to issue the command a second time on
the same input file, SPEED does not reduplicate the

093-000197-03

input file in the output file. If you issue the command
without an open input file, SPEED displays the message

Error: No open file

Related Commands

To bring material from the input file into the buffer,
rather than send it to the output file, see the A
command. To copy a page into the output file and bring
another page into the buffer, see the R command. To
discard the buffer and obtain more text from the input
file, see the Y command. To copy the buffer to the
output file without also copying the rest of the input file,
see the P and PW commands.

Example
IFRdraftSFWrevise$A$$

(editing commands)
IEFCSS$

You open global input and output files, append a page or
window to the buffer and carry out your editing tasks.
The buffer contains the editing you have done, and you
wish to leave the rest of the input file as it is. You issue
the E command, which copies the buffer and the rest of
the file DRAFT to the file REVISE. Then you close
both files.

Licensed Material-Property of Data General Corporation 7 - 2 9

FB Command

File Backup: create a global backup
file and close files.

Format
FB

Function

The FB (File Backup) command copies the current
buffer and remainder of the input file, if any, to the
output file. It retains a copy of the input file, clears the
current buffer, and closes both files.

The effect of this command is to update your old global
file with the changes you wish to make, retaining a copy
of the original file as a backup if Update Mode is on.
Using this command, you

@ place the edited contents of the input file in the new
output file

@® close both files

@ if Update Mode is on, rename the original input file as
a backup file, filename.BU

@ if Update Mode is on, rename the output file with the
original name, filename, of the input file

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The FB command works in several steps. When you
open a file with the FO command, you automatically
turn Update Mode on. SPEED then creates a temporary
global output file with the same name as your input file
and a .TM extension. Later, your FB command

® deletes the current file filename.BU, if there is one

7-30

Licensed Material-Property of Data General Corporation

@ copies the current buffer and the remainder of the
global input file, filename, into filename.TM

@ clears the current buffer

® closes both filename and filename. TM
@® renames filename to filename.BU

@ rcnames filename.TM to filename

Update Mode then turns off, and you may issue new
global file opening commands.

Precautions and Error Messages

You can execute the FB command successfully only if
there is an output file available. The command closes a
file opened with the FO (File Open) command, the FW
(File Write) command, and the FNW (File New Write)
command. It does not close a file opened with the FR
(File Read) command, unless there is a corresponding
output file, for instance, onc opened with the FW
command.

If you issue this command in a current buffer which has
both local and global output files open, the command
closes the local file first if it can, in spite of the fact that
it is not the BFB command. The command also operates
on local files if you have no open global files.

If you try to issue the FB command when you have no
open files, SPEED displays the message

Error: No open file

and aborts the rest of the command line. Reissue the
next command, if you still wish to execute it.

Related Commands

If you wish to reject the editing you have done and
retain the old file without change, see the FC (File
Close) command. If you do not wish to keep the old
version of the file, see the FU (File Update) command.

093-000197-03

Example

IF?$B?7%$$

Global:
Input File - .UDD:MIKE:FORMULA
Output File
:UDD:MIKE:FORMULA.TM
Update Mode On

Local:
Input File - None
Output File - None

=> Buffer 0 - 3405

IFB$FOmatrix$$

User Mike checks the status of his files and buffers. He
has a globally open file, and only the current buffer is
active. He has finished his editing, but is uncertain of
the results. He issues the FB command, closing and
retaining both versions of the file. He turns to another
editing task, opening the file MATRIX for updating.

093-000197-03

FC Command

File Close: close input and output
files.

Format
FC

Function

Use this command to close input and output files.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command only closes files. It does not
® copy from the buffer to the output file
@ clear the buffer

@ rename input or output files

@ create a backup file

Precautions and Error Messages

This command closes any file, no matter how you
opened it. If you have turned Update Mode on by
opening a file with an FO command, you have separate
files filename and filename.TM when you exit from
SPEED. The .TM file contains the results of your
editing if you copy them from the buffer. (See the
various output commands E, P, PW, R for transferring
material from the buffer to an output file.)

The FC command has no effect if you have no files open.

The FC command has no effect on files opened locally.

Licensed Material-Property of Data General Corporation 7 - 3 1

FC (continued)

Related Commands

If you wish to copy and clear the buffer, see the FU (File
Update) command. If you wish to create a backup file,
see the FB (File Backup) command. If you wish to close
current files and open new ones, see the FNR (File New
Read) and FNW (File New Write) commands.

Example

IFRalphaA#TS
IFC$$

You open the global input file ALPHA, read in a page
or window to the buffer, display it, and discover that
ALPHA is not the file you want. You close the file, and
are now ready to open another global input file.

7-32

Licensed Material-Property of Data General Corporation

FNR Command
File New Read: open a new file for
input.

Format

FNR /[filename/$

Function

This command closes the old global input file, if any,
and opens a new global input file, filename, if you
specify one. The file must already exist. Use this
command when you wish to open, edit, and close a series
of input files.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires a delimiter.

If you omit filename and Update Mode is off, the
command merely closes the global input file, if there is
one.

This command does not copy from the input file to the

buffer (see the input commands A, R, and Y), copy the
buffer to an output file, or clear the buffer.

Precautions and Error Messages

If the FNR command does not open a new file for you,
you may have turned Update Mode on by issuing an FO
command. You will receive the message

Error: Update mode on

and the rest of the command line will abort. Reissue the
next command, if you still wish to execute it.

This command has no effect on files opened with an FW
or FNW command.

The FNR command has no effect on files opened locally.

093-000197-03

The FU and FB commands will not close files opened
with the FNR command unless you have opened a global
output file. SPEED sends you the message

Error: No open file

and the rest of the command line aborts. Reissue the
next command, if you still wish to execute it.

Example
IFRcase 1$$
(editing commands)
iFNRcase2$$
(editing commands)
iFNRcase3$$
(editing commands)
IFNRSHSS
You open, use, and close a series of global input files.

You close your last file by issuing the command without
a filename argument, and exit from SPEED.

093-000197-03

FNW Command

File New Write: create a new file for
output.

Format
FNW [new. filename]$

Function

This command closes the old global output file, if any,
and opens new.filename, if you specify it. You create
the file with this command. The filename must not
already exist. Use the FNW command when you wish to
create, open, edit, and close a series of output files.

Numerical Arguments

None

Symbolic Modifiers

None
Characteristics
This command requires a delimiter.

If you omit new.filename and Update Mode is off, this
command merely closes the output file, if any.

This command does not copy the buffer to the output

file, and does not clear the buffer. (See the output
commands E, P, PW and R.)

Precautions and Error Messages

If you have turned Update Mode on by issuing an FO
command, SPEED sends you the message

Error: Update mode on

and the rest of the command line aborts. Reissue the
next command, if you still wish to execute it.

This command has no effect on global files opened with
an FR or FNR command.

The FNW command has no effect on files opened locally.

Licensed Material-Property of Data General Corporation 7' 33

FNW (continued)

Example

IFWproof1$$

. (editing commands)

iFNWproof2$$

‘ (editing commands)

iFNWproof3$$

‘ (editing commands)

IFNWSHSS

You create, open, use, and close a series of global output

files. You close your last file by issuing the command
without a filename argument, and exit from SPEED.

7 - 3 4 Licensed Material-Property of Data General Corporation

FO Command
File Open: open a file for updating.

Format
FOfilename$

Function

Use this command when you wish to make changes in an
already existing file, filename. The FO command

@ opens filename for global input

@ turns Update Mode on for filename

@ deletes the current file filename.TM, if there is one
@ creates a new global file, filename.TM, for output

@ yanks the first page or window of filename into the
buffer

You are now ready to carry out your editing tasks on
filename. When you are through, you use either the FB
(File Backup) command or FU (File Update) command
to complete the editing cycle.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires a delimiter.

The FO command turns Update Mode on. When Update
Mode is on, the file is opened exclusively. No one,
including yourself, may have additional access to the
file.

Precautions and Error Messages

If you attempt to open a file with the FO command, and
the file has PERMANENCE ON, SPEED will display
the message

Error: Attempt to edit a permanent file

and abort the command line.

093-000197-03

If you attempt to open two files for updating in the same
buffer with a BFO and an FO command, you lose text
from one of the two files. Avoid using FO and BFO
commands in the same buffer. If you want to open a
second file for updating without closing the first, switch
to an available buffer with the BS command and open
the file locally in that buffer with a BFO command.

When Update Mode is on for a file, no one can have
additional access to the file, including yourself if you try,
for example, an X TYPE filename or X QPRINT filename
command. You receive the message at the terminal (or
from the line printer)

WARNING: FILE IS EXCLUSIVELY OPENED,
CAN'T OPEN, FILE filename

When you open a file with the FO command, you
preserve the record type (data sensitive, dynamic,
fixed-length, variable) of the input file and of the
associated output file filename.BU or filename.TM (see
the FB and FU commands). Opening for update also
preserves file type, record length (if fixed), element size,
and UDA (User Data Area).

You cannot issue other file-opening commands such as
FNW or FNR when Update Mode is on. If you try to do
so, SPEED displays the message

Error: Update mode on

If you try to open a second global file in the current
buffer when Update Mode is on, you will receive the
message

Error: File already open

whether you attempt the opening with FO, FR, or FW.

093-000197-03

SPEED strips nulls on input. This means that you may
create a file (containing nulls) and file it, but you cannot
modify it thereafter (without losing the nulls).

Related Commands

If, at the close of the editing session, you are happy with
the result, see the FU (File Update) command. If you
like the result but would like also to retain the previous
contents of the file, see the FB (File Backup) command.
If you wish to discard the result of the editing session
and retain the original file, see the FC (File Close)
command.

Instead of updating a current file, you may want to
create new files by rewriting or combining old ones. If
so, see the FR (File Read) and FNR (File New Read)
commands for opening input files, and the FW (File
Write) and FNW (File New Write) commands for
creating and opening output files.

Example
IFOmain$BSABFOvariant$F?$$

Global:
Input File - :UDD:BOB:M AIN
Output File - :UDD:BOB-MAIN.TM
Update Mode On

Local:
Input File - :UDD:BOB:VARIANT
Output File - -UDD:BOB:VARIANT.TM
Update Mode On

User Bob opens exclusively the global file MAIN,
switches to Buffer A, opens exclusively the local file
VARIANT, and verifies what he has done by issuing the
F? command to get the display that follows.

Licensed Material-Property of Data General Corporation 7 -3 5

FR Command

File Read: open an existing file for
input.

Format
FRfilename$

Function

This command opens filename for global input. The file
must already exist. Use this command to open a file
especially when you plan to add to another file or create
a new output file from its contents, rather than update
the input file itself. Since Update Mode will be off, you
will have to create a file for output, if you want one, with
the FW or FNW command.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires a delimiter.

The FR (File Read) command only references the file to
be read. It does not copy from the buffer to the output

file, clear the buffer, or copy from the input file to the
buffer. (See the input commands A, R, and Y.)

7-36

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

The FU and FB commands do not close a file opened
with the FR command unless you have opened a global
output file. SPEED displays the message

Error: No open file

and aborts the rest of the command line. Reissue the
next command, if you still wish to execute it.

Related Commands

To create a series of files for input, see the FNR (File
New Read) command. To open a file for updating, see
the FO (File Open) command.

Example

IFRmenu$A# TFWshoplist$$

You open the file MENU, append a page or window to
the buffer, display it, and create an output file

SHOPLIST whose contents will consist of MENU’s
edited pages. You do not alter MENU.

093-000197-03

FU Command
File Update: update and close files.

Format
FU

Function

This command in effect updates your input file with the
changes you wish to make, and retains the original
filename. This command renames a new global file for
output with the same name as the old input file. It
contains the material of the input file as you have edited
it during the current sessions.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The FU command carries out the updating in several
steps. When you open a file with the FO (File Open)
command, you automatically turn Update Mode on.
SPEED then creates a temporary output file,
filename.TM, with the same name as your input file and
a .TM extension. When you subsequently issue the FU
command, it

@® copies the current buffer and the remainder of the
input file, filename, into filename.TM

@ clears the current buffer

@ closes both filename and filename. TM
@ deletes filename

@ rcnames filename.TM to filename

Update Mode then turns off. You may issue new global
file opening commands, if you wish.

Precautions and Error Messages

You can execute the FU command successfully only if
there is an output file available. The command closes a
file opened with the FO (File Open) command, the FW
(File Write) command, or the FNW (File New Write)
command.

093-000197-03

Licensed Material-Property of Data General Corporation

The FU command closes an input file opened with the
FR (File Read) command if there is a corresponding
output file, opened with the FW (File Write) command.

If you issue this command in a current buffer that has
both local and global output files open, the command
closes the local file first if it can, in spite of the fact that
it is not the BFU command. The command operates on
local files if you have no global files open.

If you try to issue the FU command when you have no
open output files, SPEED displays the message

Error: No open file

and aborts the rest of the command line. Reissue the
next command, if you still wish to execute it.

Related Commands

If you wish to reject the editing you have done and
retain the old file without change, see the FC (File
Close) command. If you wish to keep both the old and
new versions of the file, see the FB (File Backup)
command.

Example

IF?$B?7$$

Global:
Input File - :UDD:CHRIS:LAYOUT
Output File
:UDD:CHRIS:LAYOUT.TM
Update Mode On

Local:
Input File - None
Output File - None

= > Buffer 0 - 3601

IFUH$$

User Chris checks the status of her files and buffers. She
has a globally open file. Only the current buffer is
active. She updates her file, automatically clearing the
buffer and closing both files, and exits from SPEED.

7-37

FW Command
File Write: create a file for global

F? Command
Files? list files open in the current

output. buffer.
Format Format
FWnew.filename$ F?
Function Function

This command creates and opens new.filename for
global output. The file must not already exist.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command requires a delimiter.

Precautions and Error Messages

This file does not copy the buffer to the output file, and
it does not clear the buffer. See the output commands E,
P, PW, and R.

Update Mode for this command is off. If you wish to
have a global input file, you must open one with an FR
or FNR command.

You must close the current file before you can execute
another FW command.

Related Commands

To update an existing file, rather than create a new
output file, see the FO (File Open) command. To create
and open global files in series, see the FNW (File New
Write) command.

Example

IFRinquiries$A$$

. (editing commands)

iFWreply.form$EFC$$

You open the input file INQUIRIES, append a page or
window to the buffer, edit in the buffer, create and open

the file REPLY.FORM, copy the buffer to it, and close
both files.

7-38

Licensed Material-Property of Data General Corporation

The F? (Files?) command tells you which files you have
open in the current buffer and whether Update Mode is
on.

This command lets you check on the status of your files,
in case you need to do so, before you issue any
commands opening or closing files, or exit from SPEED.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

If you have opened any files locally, you may wish to
check each active buffer in turn, since F? gives the
status of the current buffer only.

Precautions and Error Messages

If you issue a B? (Buffers?) and F? (Files?) command
in the same command line, remember to follow the B?
command with a delimiter, or to give the commands in
the order F?B? SPEED takes B?F? as an inquiry about
Buffer F followed by the ? Trace Toggle.

Related Commands

To find out which of your buffers are active, see the B?
(Buffers?) command.

Examples
IF?$$

Global:
Input File - :UDD:LIL:CHECK
Output File - :UDD:LIL:CHECK.TM
Update Mode On

Local:
Input File - None
Output file - None

093-000197-03

User Lil determines that she opened the file CHECK
with Update Mode on; SPEED therefore created the
temporary file with the extension .TM.

IBS1F?$$

Global:
Input File - :UDD:LIL:CHECK
Output File - :UDD:LIL-CHECK.TM
Update Mode On

Local:
Input File - :UDD:LIL:BALANCE
Output File - SCALES

User Lil switches to Buffer 1 and reissues the F?

command. She sees that she had locally opened
BALANCE for input and created SCALES for output.

093-000197-03

Licensed Material-Property of Data General Corporation

H Command
Halt: exit from SPEED.

Format
H

Function

The H (Halt) command ends the editing session and
returns you to your parent process, usually the CLI. Use
this command to make an orderly exit from SPEED.

Numerical Arguments
None

Symbolic Modifiers

None

Characteristics

If the current buffer is not empty or you have files open
in the current buffer, SPEED asks you

Confirm?

If you type y! for yes, the H command closes all files and
terminates the session. If you type any other character,
SPEED ignores the command.

If, when you are already in SPEED, you successfully
issue an XXOSPEED or XXOSPEED[Ifilename$
command, you create a SPEED son process. An H
command in the second, offspring SPEED process will
return you to the parent SPEED process rather than to
the CLI.

Similarly, if you enter SPEED with multiple filenames,
using a CLI command like XCOSPEED O (file. 1(file.2)),
an H command will open files successively for updating
rather than return you to the parent process.

Precautions and Error Messages

This command does not send the query for noncurrent
buffers that are not empty. It does not save any buffers
Jor subsequent editing sessions, so make certain that
you have copied all buffer contents that you wish to save
to the appropriate output files.

7-39

H (continued)

This command does not send the query for local files
open in noncurrent buffers. It will close any such files,
but will not copy the relevant buffer to an output file. If,
for example, you opened a local file in a noncurrent
buffer for updating with the BFO command, and issue
the H command in a different buffer, SPEED closes both
the input file filename and the output file filename.TM.
The input file will contain none of your editing from this
session, and the output file will be empty.

Related Commands

You may wish to check on the status of your buffers and
files before issuing this command; see the F? and B?
commands.

To abort a SPEED session, use the CTRL-C, CTRL-B
sequence. See that console control sequence in this
dictionary.

Example

IFCH$$

Confirm?

yl

) — (system response)

You close files without clearing the buffer and issue the
exit command. SPEED queries you but you are willing
to discard the buffer contents. You reply yes to

SPEED’s query and return to the parent CLI, as the
new prompt shows.

7-40

Licensed Material-Property of Data General Corporation

| Command
Insert text at the current CP position.

Formats

Istring$
ni

Function

This command inserts into the current buffer the text
string that you type at the keyboard. It also allows you
to type in a character using its ASCII decimal
equivalent.

Numerical Arguments

None

Symbolic Modifiers

This command accepts the commercial at modifier (@).
This allows you to define as a temporary delimiter the
character immediately following the command name.
This permits you to insert as part of the text the
standard delimiter ESC.

Choose for the temporary delimiter any convenient
character that will not appear as part of the text you
want to insert. For example, you might issue the
command @I%C#$No.$% with % as the temporary
delimiter. (The | command inserts a C command in your
current buffer.) The temporary delimiter is in effect only
for the current command.

The nl version of this command accepts the ampersand
modifier (&) preceding the numeral. If the alternate
radix is set at the default value (octal), and you issue a
&1021$$ command, the command will type in B rather
than f, since 1024 is 66 ,, and the ASCII decimal
equivalent of B is 66. See the WR command and the
ampersand symbol for specification and use of an
alternate radix.

Characteristics

The Istring$ form of this command requires a delimiter.
The standard delimiters are ESC, which echoes as §,
and CTRL-D, which echoes as $$. To define a
temporary delimiter, see the preceding section. The nl
form of this command does not require a delimiter.

The string in the Istring$ form of the command may be
longer than a line. That is, it may contain NEW LINEs
and carriage returns, since these do not act as delimiters
in SPEED.

093-000197-03

The command repositions the CP at the end of the
inserted text.

The nl form of the command allows you to insert ASCII
characters that are difficult to insert from the keyboard.
For example, if you wish to type on a single line a
command line involving form feeds, line feeds, and tabs,
you can type

1))
—Page(12)
)

$$

on a single line with the command string
110I91IPage[12$101$10i$$

Normally, however, you save keystrokes (and looking up
ASCII values) by typing in the character directly. Use
the nl command when it is not possible to key the
character; for instance, issue 41 to type in [D.

Precautions and Error Messages

If you inadvertently omit the second instance of the
temporary delimiter before you type in a CTRL-D,
SPEED displays the message

Error: Unterminated string

SPEED inserts your text, including any commands you
intended to issue after the insertion, and echoes
CTRL-D as $$.

For the ASCII decimal equivalents of characters, see
Appendix A. Although the nl command allows you to
type control keys into your current buffer (and output
file) and echo them on the keyboard, the line printer will
not print them out. If you wish listings showing control
characters, follow the procedure outlined in “A Note
about Line Printer Listings™ in the introduction to this
chapter.

093-000197-03

If you are inserting both ASCII decimal equivalents and
other text, you must reissue the Istring$ command after
the nl command; if you fail to do so, and type 10IDear
Sir: instead SPEED will try to interpret everything after
the 1 as a command line. Issue instead the command line
10lDear Sir:.

It is easy, especially for an experienced typist, to forget
the | command name and simply start typing in text.
When you do this, SPEED tries to interpret your
keyboard input as a command line. This can be harmful
to the contents of your current buffer, especially if you
inadvertently issue a Y or H command because your text
contains either letter. Check your command line to make
sure you began it with the | command name before
keying in CTRL-D.

To abort a single-line insertion before typing in a
CTRL-D, use CTRL-U or hold down DEL and REPT
at the same time. To abort a multiple-line insertion, use
the CTRL-C, CTRL-A sequence.

Related Commands

You may use this command with the templates
[Bbuffer-name and |Ffilename$ to insert into the
current buffer material from other active buffers or files
to which you have access. See the entries for those
templates in this dictionary.

To insert the values of numerical expressions,
pseudo-variables, and variables, use the Backslash; see
the n\ command.

The | command inserts text into the current buffer as
you type it from the keyboard, and has no direct effect
on the contents of your open files. To copy the buffer,
including your insertions, to an output file, see E, P, and
PW output commands, and the BFU, FU, BFB, and FB
file-closing commands.

Licensed Material-Property of Data General Corporation 7' 4 1

I (continued)

Examples

You are writing a letter and are checking for typos.
you may available at you* desk.

r$0Smay$lChave$ZJiC] Uin)
conclusion,[1$$

you may have available at your desk. In
conclusion, *

You insert r, correcting you to its possessive form. You
spot an omission earlier in the line, restrict your search
for the place to insert to the current line, and insert a
space and the missing verb. You then jump to the end of
the buffer and continue composing.

You want to check the numbers in your text. You type
IBSN$@1%S 1234567890$%$BSO0

SPEED switches you to Buffer N. By modifying the |
command with the commercial at (@), you were able to
insert

S1234567890%

including the delimiter ($) in that buffer. Now,
whenever you want to search for the next number in
Buffer 0, you will merely issue the command [BN
instead of the long string above. The delimiter ensures
that you will not include extraneous material in your
search.

7-42

Licensed Material-Property of Data General Corporation

/1= Switch
Invoke a commandfile.

Format
) XOSPEED /1=command.file Otext.file)

Function

When you enter SPEED with the /1= switch, SPEED
takes its commands from the file you mention in the /I
switch, command.file, and executes them on the file
argument of the entry command, text.file. This switch
allows you to execute entire SPEED editing programs
from the parent process.

Give your SPEED command files names with a unique
extension, perhaps .SCF (for SPEED Command File),
so that you can tell quickly which files you may invoke
with the /1= switch.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

When you use the /I switch, SPEED terminates itself
when it reaches the end of file, and restores the prompt
of the parent process.

SPEED does not give you a display when you enter it
with the /I switch, unless your command file contains
display commands.

The CLI permits you to enter a series of command files
if you wish

) X SPEED/I=(file.10file.20file.3).scftext.filel

Precautions and Error Messages

When you enter SPEED with this switch and a filename
argument, Upade Mode is on. For the editing in the
command file to take effect on the text file, the
command file must contain an updating command, such
as FU. Otherwise, SPEED will close the text file without
making editing changes.

Related Commands

You may also execute a command file from within
SPEED. See the CTRL-F template in this dictionary.

093-000197-03

Example
Your file PROOF contains

If x wants a motorcycle, the market will fall.
Bob wants a motorcycle.
Therefore, the market will fall.

) XOSPEED/1=line.scfproof!

1. If x wants a motorcycle, the market will fall.
2. Bob wants a motorcycle.
3. Therefore, the market will fall.

You previously created a file of SPEED commands,
LINE.SCF, which numbers the lines of text in other
files. Now you execute it on the file PROOF from your
parent process.

093-000197-03

Licensed Material-Property of Data General Corporation

J Command

Jump the CP to the beginning of a
specified line.

Formats

J
nJ

Move the CP from its current position to the beginning
of a line specified by its line number.

Numerical Modifier

This command takes only nonnegative numerical
modifiers.

J,0Jand 1J
are equivalent and move the CP to the beginning of

the buffer, regardless of the default argument value;
see WA.

nJ
moves the CP to the beginning of the n " line from
the beginning of the buffer.

zJ
moves the CP to the very end of the buffer, past the
last character of the last line.

The default value
for the J command is 0, which represents the
beginning of the buffer.

Symbolic Modifiers

None

Characteristics

This command repositions the CP relative to the
beginning of the buffer, not relative to the current
position of the CP. To use the command effectively, you
must know the number of the line you want the CP on.
To find out which line the CP is currently on, issue a
VL= command.

This command counts as a line a string terminated by a
NEW LINE character. It does not count as two lines a
string containing a carriage return (CR) character.

If you issue the command with n greater than the

number of lines you actually have on the buffer, the CP
will reposition at the very end of the buffer.

7-43

) (continued)

You may use numerical expressions other than simple
numbers with the J command. For example, VN/2J will
place the CP at the beginning of the line nearest the
middle of the buffer.

The J command takes arguments in the range O through
+65535 1.

Precautions and Error Messages

If you inadvertently issue the command with a negative
number, the CP will reposition at the end of the buffer.
If you inadvertently issue the command with a double
numerical argument, the CP will not move and SPEED
will send you an error message

Error: Illegal number of arguments to command

Related Commands

To move the CP backward or forward relative to its
current position, see the L (Line) command. To
reposition the CP from one character to another, see the
M (Move) command. To place the CP after a particular
string, see the S (Search) command.

Example

(text)
.wizh hte utmost care and precision.
(more text)
.Yours sincerely,*
110JChtth$ZJ$$
You spot a typo on the tenth line in the buffer, jump the
CP to the beginning of that line, make the correction,

and jump back to the end of the buffer so that you can
continue composing your letter.

7-44

Licensed Material-Property of Data General Corporation

K Command
Kill lines of text in the buffer.

Formats

K

nK
-nK
m,nK
#K
ZK
-ZK

The K (Kill) command deletes, or kills, lines and parts
of lines in the buffer relative to the position of the CP.

Numerical Modifiers

This command takes positive, 0, negative, and paired
numerical arguments.

OK
deletes text from the beginning of the current line up
to the current CP position.

1K
deletes text from the CP to the end of the line,
including the NEW LINE character.

nK
deletes text from the current CP position up to the n"*
NEW LINE. That is, it deletes the next n lines of
text, but will delete the first line only from the CP
forward.

ZK
deletes text from the current CP position to the end of
the buffer.

-1K
deletes text from the previous line and the current line
up to the CP.

-nK
deletes text from the beginning of the n™ line
preceding the current line through # NEW LINEs up
to the position of the CP. That is, it deletes text from
the previous » lines and, if the CP is not at the
beginning of the current line, text on the current line
up to the positign of the CP.

093-000197-03

m,nK
deletes text from the character after the m'™
character up to and including the n™ character. The
value of m must be less than the value of n. Numbers
in this command refer to positions in the current
buffer. You may also use numerical expressions
containing arithmetic operators, and the values of
variables and pseudo-variables such as VO, ., and VN:

For example, 67,100K deletes from the 68"
character in the current buffer to the 100th.

For another example, 67,80+ VOK deletes from the
68" character in the buffer to the character whose
position from the beginning of the buffer is 80 plus
the current value of Variable 0.

0,.Kor -ZK
deletes from the beginning of the buffer up to the
position of the CP.

The command #K

abbreviates 0,ZK, which deletes the entire current
buffer.

The default value
for this command (issuing the command without a
numerical argument as K) depends upon the default
argument value; see the WA command.

When the default argument mode is set at 0, the K
command acts like the OK command, deleting all
characters from the beginning of the line up to the
CP.

If you set the default argument mode at + 1, the K
command acts like the 1K command, deleting all
characters from the CP to the end of the line
(including the NEW LINE character).

Symbolic Modifiers

None

093-000197-03

Characteristics

If you specify a numerical argument which exceeds the
limits of the buffer, SPEED deletes only the material
between the CP and the limit of the buffer. It does not
reposition the CP to delete the full amount of text
specified. For example, if you issue a -10K command
when the CP is on line 7, SPEED kills only the
preceding seven lines.

The default value for this command depends upon the
value of the default argument mode. See the WA
command and the “Numerical Arguments” section of
this command.

Precautions and Error Messages

In the m,nK form of the command, m must not be
greater than a. If it is, SPEED displays the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

Related Commands

To delete a specific number of characters at the position
of the CP, see the D command. To delete a specific
string, see the Cstring1$$ form in the “Characteristics”
section of the C command entry. To delete noncurrent
buffers, see the BK command. To delete lines from the
current buffer but store them in another buffer, see the
BT command.

Example
1-2KJ0, 10KS
You delete the preceding two lines, jump to the

beginning of the buffer and delete the first 10
characters.

Licensed Material-Property of Data General Corporation 7 - 4 5

L

Move the CP from Line to line.

Formats

L
nL
-nL

The L (Line) command repositions the CP relative to the
current position of the CP, placing it at the beginning of
an earlier or later line.

Numerical Arguments

This command takes positive and negative numerical
arguments, but not paired arguments.

oL
moves the CP to the beginning of the current line.

1L
moves the CP across one NEW LINE, that is, to the
beginning of the next line.

nl
moves the CP forward across n NEW LINE
characters, that is, to the beginning of the n" line
forward from the CP.

ZL
moves the CP to the very end of the buffer, to the end
of the last line.

-1L
moves the CP to the beginning of the previous line.

-nL
moves the CP backward to the beginning of the n"
line preceding the current line.

The default value
of the L command depends upon the setting of the
default argument value; see the WA command.

If the value is set at 0, the L command acts like the

OL command, moving the CP to the beginning of
the current line.

7-46

Licensed Material-Property of Data General Corporation

If you set the value to +1, the L command acts like
the 1L command, moving the CP to the beginning
of the next line. To find your default argument
value, issue a WA= command.

Symbolic Modifiers

None

Characteristics

If the numerical argument exceeds the limits of the
buffer, the CP repositions at the limit. For example, if
the CP is on line 15 and you inadvertently specify a
-100L command, the CP repositions at the beginning of
the buffer.

Precautions and Error Messages

Instead of issuing sequences of commands such as -nL$C
or -nL$S, simplify your command lines by issuing -nC
and -nS commands.

Related Commands

To move to a particular line in the text regardless of the
current position of the CP, see the J command. To move
the CP within the current line or from character to
character, sce the M command.

Example

1980
1981
1983
1984*

1-1L.$119828Z2J%%
You spot an omitted line, move to the beginning of the
line it should come before, insert the line (and NEW

LINE) and jump back to the end of the buffer to
continue entering text.

093-000197-03

M Command

Move the character pointer across
characters.

Formats

M
nM
-nM

This command repositions the CP backward and to the
left, or forward and to the right, relative to its current
position.

Numerical Arguments

This command takes positive and negative numerical
arguments, but not paired arguments.

nM
moves the CP from its current location n characters to
the right, or forward.

M
moves the CP to the end of the current buffer.

-nM
moves the CP from its current location » characters to
the left, or backward.

-ZM and -.M
move the CP to the beginning of the current buffer.

The default value
of M depends on the setting of the default argument
value; see the WA command. To find your default
argument value, issue a WA= command.

If the default argument value is set at 0, the M
command has no effect.

If you set the default argument value at + 1, the M
command moves the CP one character forward.

093-000197-03

Symbolic Modifiers

None

Characteristics

If the numerical argument exceeds the limits of the
buffer, the CP repositions at that limit of the buffer. For
example, if there are 70 characters in the buffer, and
you inadvertently issue a 500M command, the CP
repositions at the end of the buffer.

To use this command effectively, you may need to know
your exact position in the buffer. To find out how far
(how many characters) the CP is from the beginning of
the current buffer, issue a .= command. To find out
how far the CP is from the end of the current buffer,
issue a Z-.= command. To find out how far the CP is
from the beginning of the current line, issue a VM=
command.

Related Commands

To move from line to line, rather than from character to
character, see the J and L commands. To search for a
particular string of text and reposition the CP relative to
it, see the S8 command and the related N and Q
commands.

Example

You are proofreading some instructions. You read
If you try issue* the command

I-5M$Ito[1$$

If you try to *issue the command

You have omitted a word to the left of the CP. You
move 5 characters back and insert the missing material.

Licensed Material-Property of Data General Corporation 7 = 4 7

N Command
Conduct a Nonstop search.

Format
N [string] $

Function

This command searches from the current position of the
CP to the end of the buffer for string. If SPEED does
not find the string in the current buffer, it executes an R
command, copying the contents of the buffer to the
output file, if you have one open. It then clears the
buffer, reads the next page or window of the input file
into the buffer, and continues the search. SPEED works
through the input file in this manner until it locates the
string or reaches the end of the file (at which point the
buffer will be empty).

Numerical Arguments

None

Symbolic Modifiers

This command takes both the colon (:) and commercial
at (@) modifiers. You may use both in a single
command.

@N2%string%$

allows you to define as a temporary delimiter the
character immediately following the command name,
in this case the percent sign (%). This permits you to
include the standard delimiter, ESC (which echoes on
the screen as $), as a part of the string argument,
rather than as a delimiter of it. Choose as a
temporary delimiter any convenient character which
does not itself appear in the string argument.

:Nstring$
inhibits an error message, returning a +1 if the
search succeeds and a 0 if the search fails. You may
use this form of the command as a numerical
argument for the next command; see the colon
symbol.

You may define a temporary delimiter and inhibit error

messages by combining the two modifiers in either
order.

7-48

Licensed Material-Property of Data General Corporation

Characteristics

This command requires a delimiter. The standard
delimiters are ESC, which echoes as $, and CTRL-D,
which echoes as $$. For a different, temporary delimiter,
see the commercial at modifier (@) in the section above.

If you omit the string argument, the N$ command
searches for the same string that the immediately
preceding search command (C, N, Q, or S) searched for.

If the nonstop search succeeds, the CP follows the string
it finds.

This command accepts control key templates in the
search string. For their behavior, consult the individual
entry for each template in this dictionary.

The value of the search case match mode determines
whether or not this command matches characters
independently of case; see the WS command. If the
mode is set at its default value, 0, the N command is case
independent (@ matches A). If you set the value at
anything other than 0, the match is case dependent (a
matches only a, and not 4). To find the value of the
mode, issue a WS= command.

Precautions and Error Messages

If you inadvertently omit the second occurrence of the
temporary delimiter, SPEED displays the message, after
you type in CTRL-D,

Error: Unterminated string

SPEED carries out the search, and if it is successful,
replaces the string argument with everything between
the temporary delimiter and the CTRL-D, including
any material you intended as a command line, and ends
with the CTRL-D echo, $$.

If you issue an N$ command, without a search string,
and there was no previous search, or the previous string
exceeds 31 characters, SPEED sends you the message

Error: Incomplete string in search buffer

and continues the search using the incomplete search
string (the first 31 characters of the previous string.)

093-000197-03

If the search fails, SPEED reads the last page or window
of the input file into the output file, if there is one, and
sends you the message

Error: Unsuccessful search

At that point, your current buffer will be empty. Your
output file will still be open.

If you have no output file open, SPEED detects that at
the first R exection, displays the message

Error: No open file

and retains the current page or window in the buffer.

In search strings, SPEED flags any control character
other than [B (expansion to a buffer), |F (expansion to a
file), TAB (f1), NEW LINE (]J), vertical tab (1K), form
feed (JL), CR (IM), or ESC as an error unless you
precede it with the control characters |G or [W (on
models other than 6052, 6053, D100, or D200, 1Tor 1-).

Related Commands

If you wish to discard the searched pages or windows
instead of copying them to an output file, see the Q
(Quick) command. If you wish to confine your search to
the page or window currently in the buffer, see the S
command.

Example

Proust has moved, and you wish to correct his address in
your paged file ADDR.

) X SPEED addr!}
INProust, (OJM.$L5T$$

Proust, M.
99 Memory Lane
Souvenir City

You open your ADDR file, which you have organized in
pages, skim past the preceding pages directly to his
name, and get a display of the entry. You are ready to
make the correction. The pages you have flipped past
are in your output file.

093-000197-03

Licensed Material-Property of Data General Corporation

O Command

Pass command control Over to a
label.

Formats

Olabel$...!label!
llabel!...Olabel$

Function

You may select for a label any string you wish, but it
must not contain an exclamation point or a delimiter.
The string within the exclamation points and the string
following the O command name must be identical for
the command to function properly.

SPEED ignores a !label! until, during command
execution, it encounters an Olabel$ command. SPEED
then halts command execution and searches in the
command line for a preceding or following occurrence of
the same label between exclamation points. If it finds
one, it resumes command execution with the text
immediately following the first occurrence of the label.

You may combine this command in a command line
with a Conditional Execution or a Command Loop in
order to reissue automatically a sequence of commands
an appropriate number of times under appropriate
conditions, as you will see in the *“Characteristics”
section of this entry. If you have not already done so,
please consult the n’’Xcommand-string’ command
(Conditional Execution) and the <command-string>>
command (Command Loop) for further details of the
recursive application of SPEED commands.

If you wish to write comments into a command line, you
may do so by setting them off with pairs of exclamation
points, since SPEED ignores a !llabel! whose contents do
not occur in an O command.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

The O command requires a standard delimiter. You
cannot define a temporary delimiter for this command.

Failure to find a label does not affect the position of the
CP.

7-49

O (continued)

When the label precedes the O command, SPEED
executes the commands following the label until it
encounters the O command with a matching label for
the first time. SPEED then returns control to the first
command following the label.

When the label follows the O command, SPEED skips
over the commands between the O command and the

label, and passes control to the first command following
the label.

When you place more than one O command and its
associated label in a command line, the particular
configuration of labels and O commands determines
which parts of the command line SPEED skips or
repeats. Figure 7-1 shows how SPEED might insert a
string with characters in the reverse order.

If you set more than one instance of the same label for a
O command, control passes to the earliest instance of the
label; later instances are ignored.

You may issue more than one O command using the
same label. The earliest of the O commands will exccute
first, and subsequent O commands will return you to the
label.

Precautions and Error Messages

If you enter a command line containing a label, a
subsequent corresponding O command, and no
Command Loop or Conditional Execution, you run the
risk of creating an endless loop. If you issue this
command with no provisions for terminating any loop
you may create, you may have to issuc a CTRL-C,
CTRL-A sequence to restore your prompt, or wait for
SPEED to send you the message

Error: Insufficient memory available

If you issue this command with no preceding label in the
command line, SPEED displays the message

Error: Label not found
If you inadvertently issue the command without its label

argument, or include the ESC delimiter in the label,
SPEED displays the same message.

7 - 5 0 Licensed Material-Property of Data General Corporation

You must separate adjacent labels with a delimiter. If
you do not, SPEED will send you the message

Error: Label not found

If the O command is within the Command Loop, and
the !label! outside, SPEED executes the commands in
the Loop until it reads the O command, and then jumps
out to the label. It is illegal to branch into a Command
Loop. If the !llabel! is within the Command Loop, and
the O command outside, SPEED displays the message

Error: Illegal command

Figure 7-1. Command Control

093-000197-03

Related Commands

Consult the entry for Conditional Execution in this
dictionary for a description of its interaction with the O
(Over) command.

Example

You have to set up some rating sheets for a
psychological ~experiment. Rather than doing it
laboriously, one character at a time, you type

15VS18lresplV1\$4 <I-$>$VD 1"'G$Oresp$’10$$

You set Variable 1 to 5, and set the label resp. You
insert the current value of the variable, 5, insert four
hyphens, and decrement Variable 1 by 1 to 4. If the
variable is greater than 0 (and it is), the O command
will return you to the label. The second time, the value
inserted is 4. You keep returning to the label as long as
the value of Variable 1 is positive. When it reaches 0 by
your VD command, control passes to the command
following the O command, which inserts a 0. SPEED
responds, creating

Seefr3ee Do [

093-000197-03

P Command

Put buffer text into the output file and
append a form feed.

Formats

P

nP
-nP
m,nP

Function

The P (Put) command puts the material you specify in
an open output file. It does not close the file, and it does
not kill the material in the current buffer unless you use
the colon modifier (:). The P command places a form
feed after the copied material in the file.

Numerical Arguments

The P command takes positive, negative, and double
numerical arguments.

oP
copies text in the buffer to the output file from the
beginning of the line to the CP.

1P

copies text in the buffer to the output file from the
CP to the end of the line.

nP, except for OP,
copies text in the current buffer to the output file text
from the current CP position up to the n” NEW
LINE. That is, it copies the next n lines of text, but
the first line copied will contain text only from the CP
forward.

-1P
copies text in the buffer to the output file from the
previous line and the current line up to the CP.

-nP

copies text in the buffer to the output file from the
beginning of the n™ line preceding the current line
through n NEW LINEs up to the position of the CP.
That is, it copies text in the buffer to the output file
from the previous lines and, if the CP is not at the
beginning of the current line, text on the current line
up to the position of the CP.

Licensed Material-Property of Data General Corporation 7 - 5 1

P (continued)

m,nP
copies text in the buffer to the output file from the
character after the m™ character up to and including
the n'" character. Numbers in this command refer to
positions in the current buffer. You may also use
numerical expressions containing arithmetic
operators, and the values of variables and
pseudo-variables such as VO, ., and VN. For example,

23,53P copies from the 24" character in the
current buffer to the 53°.

31,40+ VOP copies from the 32™ character in the
buffer to the character whose position from the
beginning of the buffer is 40 plus the current value
of Variable 0.

0,.P copies from the beginning of the buffer up to
the position of the CP, and .,ZP copies from the
position of the CP to the end of the buffer.

#P
abbreviates 0,ZP, which copies the entire current
buffer to buffer x.

The default value
for this command (issuing the command without a
numerical argument as P) is 0,Z, which represents the
entire buffer.

Symbolic Modifier

This command takes the colon modifier (:). The :P
command deletes from the current buffer the characters
it copies to the output file.

Characteristics

The unmodified command does not change the position
of the CP.

The CP repositions at the deletion site when you modify
the command with the colon.

7-52

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

The value of m must not be greater than the value of n.
If it is, SPEED displays the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

If you try to issue this command with no open output
file, SPEED displays the message

Error: No open file

and retains the buffer contents.

Related Commands

This command automatically appends a form feed at the
end of the insertion in the output file; to append without
a form feed, see the PW command. To copy the buffer,
clear it, and read in another page or window, see the R
command. To copy the buffer and the rest of the
contents of the input file, see the E command. To discard
rather than copy material in the buffer, see the Y or K
command.

Example

You are transferring the contents of an open global
input file to various output files.

IBFWseries.3$.,Z:PBFCFU$$

You create and open a local output file, SERIES.3. You
copy to it everything in the buffer from the CP forward,
automatically appending a form feed, and close both
local and global files. Since you issued the command
with the colon modifier, the material you copied has
been deleted from the buffer. In effect, you have split
your original file in two.

093-000197-03

PW Command

Put buffer text into the output file
Without a form feed.

Formats

PW
nPW
-nPW
m,nPW

Function

This command copies the material you specify to an
open output file. It does not close the file, and it does not
kill the material in the current buffer unless you use the
colon modifier (:). The PW command does not place a
form feed after the copied material in the file.

Numerical Arguments

The PW command takes positive, negative and paired
numerical arguments.

oPW
copies text in the buffer to the output file from the
beginning of the line to the CP.

1PW
copies text in the buffer to the output file from the
CP to the end of the line.

nPW, except for OPW,
copies text in the current buffer to the output file text
from the current CP position up to the n" NEW
LINE. That is, it copies the next n lines of text, but
the first line copied will contain text only from the CP
forward.

-1PW
copies text in the buffer to the output file from the
previous line and the current line up to the CP.

-nPW

copies text in the buffer to the output file from the
beginning of the n' line preceding the current line
through n NEW LINEs up to the position of the CP.
That is, it copies text in the buffer to the output file
from the previous n lines and, if the CP is not at the
beginning of the current line, text on the current line
up to the position of the CP.

093-000197-03

Licensed Material-Property of Data General Corporation

m,nPW
copies text in the buffer to the output file from the
character after the m™ character up to and including
the n" character. Numbers in this command refer to
positions in the current buffer. You may also use
numerical expressions containing arithmetic
operators, and the values of wvariables and
pseudo-variables such as VO, ., and VN. For example,

23,53PW copies from the 24™ character in the
current buffer to the 53",

31,40+ VOPW copies from the 32™ character in
the buffer to the character whose position from the

beginning of the buffer is 40 plus the current value
of Variable 0.

0,.PW copies from the beginning of the buffer up
to the position of the CP, and .,ZPW copies from
the position of the CP to the end of the buffer.

#PW
abbreviates 0,ZPW, which copies the entire current
buffer to buffer x.

The default value
for this command (issuing the command without a
numerical argument as PW) is 0,Z, which represents
the entire buffer.

Symbolic Modifier

This command takes the colon modifier (:). The :PW
command deletes from the current buffer the characters
it copies to the output file.

Characteristics

The unmodified command does not change the position
of the CP.

The CP repositions at the deletion site when you modify
the command with the colon.

7-53

PW (continued)

Precautions and Error Messages

For the m,nPW command, the value of m must not be
greater than the value of n. If it is, SPEED displays the
message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

If you try to issue this command with no open output
file, SPEED displays the message

Error: No open file

and retains the buffer contents.

Related Commands

This command does not append a form feed at the end of
the insertion in the output file; to append a form feed,
see the P command. To copy the buffer, clear it, and
read in another page or window, see the R command. To
copy the buffer and the rest of the contents of the input
file, see the E command. To discard rather than copy
material in the buffer, see the Y or K command.

Example

You are creating new files from a globally open input
file. You do not wish to alter the input file.

IBFWsuppl.4$0,.PWBFCFU$$

You create and open a local output file, SUPPL.4. You
copy to it everything in the buffer from the beginning of
the buffer to the CP, and close both local and global
files. Since you did not issue the command with the
colon modifier, the material you copied remains in the
buffer for the subsequent update command. In effect,
you have replicated the first part of the original file in a
new file.

7-54

Licensed Material-Property of Data General Corporation

Command
Conduct a Quick search.

Format
Q /[string] $

Function

The Q (Quick) search command searches from the
current position of the CP to the end of the buffer for
string. If SPEED does not find the string in the current
buffer, it executes a Y command, clearing the buffer. It
does not copy the searched text to an output file, but
discards it instead. It then reads the next page or
window of the input file into the buffer, and continues
the search. SPEED will work through the input file in
this manner until it locates the string or reaches the end
of the file (leaving an empty buffer).

Numerical Arguments

None

Symbolic modifiers

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

This command takes both the colon (:) and commercial
at (@) modifiers. You may use both in a single
command.

@Q%string%$

allows you to define as a temporary delimiter the
character immediately following the command name,
in this case the percent sign (%). This permits you to
include the standard delimiter, ESC (which echoes on
the screen as $), as a part of the string argument,
rather than as a delimiter of it. Choose as a
temporary delimiter any convenient character which
does not itself appear in the string argument.

:Qstring$
inhibits an error message, returning a +1 if the
search succeeds and a O if the search fails. You may
use this form of the .command as a numerical
argument for the next command; see the colon entry
in this dictionary.

093-000197-03

You may define a temporary delimiter and inhibit error
messages by combining the two modifiers in either
order.

Inclusion in an iteration automatically simulates the :
colon modifier.

Characteristics

This command requires a delimiter. The standard
delimiters are ESC, which echoes as $, and CTRL-D,
which echoes as $$. For a different, temporary delimiter,
see the commercial at modifier (@) in the section above.

If you issue a Q command when global or local update
modes are on and the command is not in a command
loop, SPEED asks you

Confirm (Q-command)?

If you intended to use the Q command, type Y$$ for yes.
If you issued the command inadvertently, type another
character. SPEED will ignore the command. (If you
type another command in place of the yes response,
SPEED will ignore that too; reissue the command if you
still wish to execute it.)

If you omit the string argument, the Q$ command will
search for the string which the immediately preceding
search command (C, N, Q, or S) searched for.

This command accepts control key templates in the
search string. For the behavior of each template, see
their individual entries in this dictionary.

The value of the search case match mode determines
whether or not this command matches characters
independently of case; see the WS command. If the
mode is set at its default value, 0, the Q command is
case independent (@ matches A). If you set the value at
anything other than 0, the match is case dependent (a
matches only a, and not A4). To find the value of the
mode, issue a WS = command.

Precautions and Error Messages

If Update Mode is off, that is, you opened files with
local or global FR and FW commands, or if the Q
command is in a Command Loop, the command will
clear the buffer without the query.

093-000197-03

Licensed Material-Property of Data General Corporation

If there has been no previous search when you issue a
Q$ command without a string argument, or the previous
string exceeded 31 characters, SPEED sends you the
message

Error: Incomplete string in search buffer

and continues the search using the incomplete search
string (the first 31 characters of the previous string).

If the Quick search fails, SPEED displays the messsage
Error: Unsuccessful search

At that point, your current buffer will be empty; your
output file will be open but will contain none of the
searched text.

In search strings, SPEED flags any control character
other than B (expansion to a buffer), |F (expansion to a
file), TAB (1), NEW LINE (]J), vertical tab (1K), form
feed (JL), CR (]M), or ESC as an error unless you
precede it with the control characters |G or W (on
models other than 6052, 6053, D100, or D200, 17 or]_.)

Related Commands

To retain the searched material in the output file instead
of deleting it from the buffer, see the N command. To
confine your search to the window currently in the
buffer, see the S command.

Example

) X SPEED notes)
!Qdecisions$$

Confirm (Q-command?) y)
!

You open for updating the file NOTES. You intend to
discard from the file all pages preceding the first
occurrence of decisions. Since Update Mode is on,
SPEED gets a confirmation from you before yanking the
pages.

7-55

R Command

Roll: copy the buffer out and read the
next page or window in.

Formats

R
nR

This command copies the contents of the current buffer
to the output file, clears the buffer, and reads a page or
window from the input file into the buffer. The
command allows you to change buffer contents quickly
and easily.

Numerical Argument

This command accepts only positive integers. The nR
command performs the command » times.

Symbolic Modifier

This command accepts the colon modifier (:). The :R
command inhibits an error message, returning a +1 if it
succeeds and a 0 if it fails. You can use these values as
numerical arguments to the next command. See the
colon symbol in this dictionary.

Inclusion in an iteration automatically simulates the :
colon modifier.

Characteristics

Unless you entered SPEED with the /D switch, this
command will not automatically display the page or
window it reads in. For display, see the T command and
the entry for the /D switch in this dictionary.

Precautions and Error Messages

SPEED treats a OR command like an R command and
attempts to read in the next page.

7-56

Licensed Material-Property of Data General Corporation

If there is no open input file, SPEED displays the
message

Error: No open file

If you try the command when you have already read in
the last window or page, SPEED displays the message

Error: No more characters in input file

If you try to read in a second window or page with no
open output file SPEED will again send you the message

Error: No open file

Related Commands

To retain the contents of the current buffer but add to
them from the input file, see the A command. To read
the buffer and the rest of the input file into the output
file, see the E command. To read into the output file
from the buffer, with or without clearing the buffer, and
with or without appended form feeds, see the P and PW
commands. To discard the contents of the buffer and
read in from the input file, see the Y command.

Example

115WMS$FOintro$AHTSS
13:R*ZJ-20T$$

You set window mode at 15 lines, open the file INTRO
for updating, read the first window into the buffer and
type it out. You see that this is the file you want. You
wish to add to the contents of the fourth window, so you
issue the command again with the proper numerical
modifier. You use the colon modifier so that if the R
command succeeds, the CP will move to the end of the
buffer. You use the following T command to check your
position.

093-000197-03

S Command

Search for a string of text in the
current buffer.

Formats

S [string]$

nS [string]$
-nS [string]$
m,nS [string/$

Within the range of text you specify, this command
matches string, the string of text in the command, or the
contents of the previous search string, with the first
instance of that string in the current buffer.

Unless the search string contains a CTRL-G template,
as described in the “Characteristics” section below, the
command repositions the CP at the end of the string of
text it matches.

Numerical Arguments

This command takes positive, negative, and paired
numerical arguments.

OSstring$
searches from the beginning of the current line up to
the position of the CP.

1Sstring$
scarches from the position of the CP to the next
NEW LINE character; that is, to the end of the
current line.

nSstring$, except 0Sstring$,
searches from the current CP position forward to the
n" NEW LINE character; that is, through the next n
lines, including the current line.

-1Sstring$
searches the preceding line and the current line up to
the position of the CP.

-nSstring$
searches from the n NEW LINE preceding the CP
up to the CP; that is, it searches the preceding n lines
and the current line up to the CP.

093-000197-03

m,nSstring$

searches from the character following the m™
character up to and including the n™ character. If
you specify simple numbers, SPEED counts m and »n
from the beginning of the buffer. You may use more
complicated numerical expressions and specify m and
n using the values of variables and pseudo-variables.
For example,

Z/2, Z-V9Sclaim$ conducts a search for claim
from the character whose position from the
beginning of the buffer is nearest the middle of the
buffer to the character whose position from the end
of the buffer is the current value of Variable 9,
whatever that is, and regardless of the current
position of the CP.

--100,.+100S%$ restricts the range for a search
for instances of the percent sign (%) from the 99
character preceding the current CP position to the
100" character following the current CP position.

#Sstring$
abbreviates 0,ZSstring$ and specifies the entire
current buffer as the range of the search.

The default value
for Sstring$ specifies the range of the search from the
current CP position to the end of the buffer.

Symbolic Modifiers -

This command takes both the commercial at modifier
(@) and the colon modifier (:).

@3S%string%
allows you to set as a temporary delimiter the first
character following the command name, in this case
the percent sign. This allows you to use the standard
delimiter, ESC, which echoes as $, as part of your
search string.

:Sstring$
inhibits error messages, returning the value + 1 if the
search succeeds, and the value O if the search fails.
You may use this value as a numerical argument to
the next command; see the colon symbol.

Licensed Material-Property of Data General Corporation 7 - 5 7

S (continued)

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

You may combine the two symbolic modifiers in either
order for both effects.

Characteristics

The search string in this command must end in a
delimiter, ordinarily ESC (which echoes as $) within a
command line, or CTRL-D (which echoes as $3) at the
end of a command line. To specify a temporary delimiter
in order to include the standard delimiter ESC in your
search string, see the “Symbolic Modifiers” section in
this entry.

If you omit the search string argument, issuing the S$
forms of the command, the command will search for the
string that the previous C, N, Q, or S search command
tried to match.

If the command conducts a successful search, and your
search string contains no CTRL-G template, SPEED
will position the CP at the end of the matched string.
The position of the CP following an unsuccessful search
depends on the value assigned to position mode. (To find
out your position mode, issue a WP = command; see the
WP command for details.) If your position mode is set at
0, the default setting, the new position of the CP will be

@ n lines after the position before the search for nS
commands, and at the CP position for 0S commands

@ at the position before the search for -nS commands

@ after the n' character for m,nS commands

@ at the beginning of the buffer for default S commands
If you set the position mode to +n or -n, the new
position of the CP after an unsuccessful search will be at

the position where the search actually starts, that is,

@ at the position before the search for nS commands and
at the beginning of the line for 0S commands

® 7 lines before the previous position for -nS commands
@ after the m" character for m,nS commands

@® at the position before the search for default S
commands

7-58

Licensed Material-Property of Data General Corporation

This command accepts templates and expansions to files
and buffers, like the other search commands C, N, and
Q. See the individual entries in this dictionary for the
behavior of each template.

If you issue an S command with a CTRL-G template in
the search string, and the search is successful, the
Character Pointer will reposition at the point of the
CTRL-G insertion rather than at the end of the
matched string. That is, if you successfully search for
pass]Gword, the result will be not password* but
pass*word.

The value of search case match mode determines
whether or not the S commands will match characters
regardless of case; see the WS command. In the default
value of case match mode, 0, the command matches
independently of case (@ matches A in the search string
argument). If you set the value at anything other than 0,
the match in the search string argument will be case
independent (@ matches a but not A).

Precautions and Error Messages
If m is greater than n, SPEED displays the message

Error: First argument greater than second argument

Recalculate and reissue the command, if you still wish to
execute it.

If you issue an S$ command (without a search string)
when you have conducted no previous C, N, Q, or S
search, SPEED displays the message

Error: Incomplete string in search buffer
and does not conduct a search.

If you issue an S$ command (without a search string)
and the previous search string was longer than 31
characters, SPEED displays the same message and
continues the search, using the incomplete string (the
first 31 characters of the previous string).

If you issue a S]Gstring$ command (with CTRL-G
preceding the first search string character), and the
search succeeds, SPEED continues to match that
instance of the string on subsequent S$ commands. To
search for a further instance, you must move the CP
forward before you issue the S$ command.

093-000197-03

In search strings, SPEED flags any control character
other than [B (expansion to a buffer), |F (expansion to a
file), TAB (]I), NEW LINE (]J), vertical tab (]K), form
feed (L), CR (M), or ESC as an error unless you
precede it with the control characters |G or [W (on
models other than 6052, 6053, D100, or D200,] or]_.)

Related Commands

To search for and change text with one command, see
the C command. To make the same search a number of
times, use a Command Loop; see the <x> command.
To search not only through the buffer but through the
rest of the pages or windows of your input file, see the Q
command if you are willing to discard the searched
material or the N command if you wish to retain the
searched material in the file.

Examples
You are editing some instructions your supervisor wishes
to distribute.

the writer correct* all mistakes.

I0Ster$IOIwill$$

the writer will* correct all mistakes.

You spot an omission in your current line. Your search
command takes you to the beginning of the line and
moves forward to the position for the insertion
command.

1:Seach$* 1T$$
and every programmer must present

You suspect yourself of some flabby prose. You issue a
search command with the colon modifier, so that if it
succeeds, you will get a display of the rest of the line,
and if it fails, you will not. The search command
succeeds, and the display takes place, since | * | = 1.
You can now delete the offending phrase with a 10D
command. After doing so, you wonder if there is not a
further case of the same problem. You issue the
command

1:S$*1T$S$

without a search string, so that it will use the previous
search string. SPEED reveals

and every accountant should report

and you may delete the phrase again.

093-000197-03

T Command

Type out or display text, showing the
position of the CP.

Licensed Material-Property of Data General Corporation

Formats

T
nT

-nT

m,nT

#T
@T%string%

Function

This- command displays text on a video display terminal
or types it out at a hard-copy terminal. At the terminal
it shows the Character Pointer position with a flashing
asterisk on models 6052, 6053, D100, and D200. On
other models, it shows the CP position with a caret ™)
in parentheses.

Numerical Arguments

This command accepts positive, 0, negative, and paired
numerical arguments.

oT
displays the current line from the beginning of the
line up to the position of the CP. The ZT command
displays text from the current CP position to the end
of the buffer. If that text exceeds the display
characteristics of the screen, the text will roll to the
bottom of the buffer.

1T
displays the current line from the position of the CP
to the first NEW LINE character.

nT, except for OT,
displays the contents of the current buffer from the
CP location up to the n* NEW LINE following the
CP: that is, it shows £ lines, counting the line in which
the CP resides.

-1T
displays the immediately preceding line and the
current line up to the position of the CP.

-nT

displays the contents of the n preceding lines and the
current line up to the position of the CP.

7-59

T (continued)

m,nT

displays the contents of the current buffer from the
character following the m' character up to and
including the n" character. Simple numbers specify
positions from the beginning of the buffer. You may
specify these arguments with more complex
numerical expressions, and with the values of
variables and pseudo-variables. For example, Z/2,.T
specifies a display from the middle of the buffer to
the current CP location if the CP is in the second half
of the buffer.

H#HT
abbreviates the 0,ZT command, which specifies a
display of the contents of the entire buffer. If the
length of the contents exceeds the display
characteristics of the screen, the text will roll to the
bottom of the buffer.

The default value (T)
specifies a display of the entire current line,
regardless of the position of the CP on it. The WA
command does not affect the default value for this
command.

Symbolic Modifier

This command accepts the commercial at modifier (@).
You specify the first character following the command
name as a temporary delimiter (denoted by % in the
format above). This form of the command allows you to
type out or display a string containing the standard
delimiter ESC. This command does not insert the string
in the text or in any buffer; see instead the BG
command.

Characteristics

This command does not affect the position of the
Character Pointer. To move the CP, see the C, J, L, M,
N, Q, and S commands.

This command does not alter text. To change, delete, or
insert text, see the C, D, I, and K commands.

The WD command, which sets the display mode, does
not affect the T command. Whichever value of that
mode you select, a #T command will still display the
entire buffer.

7-60

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

To halt a rolling screen for inspection of text after
issuing a #T command, freeze the terminal with a
CTRL-S. To resume the roll and regain control of the
terminal, issue a CTRL-Q.

If you issue a T command with no result, you may have
inadvertently frozen the terminal. Issue a CTRL-Q to
release it. If the terminal is not frozen and your text
seems to have disappeared, check the contents of the
buffers with the B? command. You may have
inadvertently issued a K or Y command and lost the
contents of the buffer. (To retain your input files in such
a case, issue a CTRL-C,CTRL-B interrupt.)

If you get an unexpected display, such as misplaced text,
you may have mistaken the position of your Character
Pointer. Issue VC, VL, VM, VP, Z=, or .= commands to
locate the CP in the text; see the individual entries for
those commands in this dictionary.

Related Commands

To display command execution, use the Trace Mode
Toggle; see the ? command.

To display momentarily a closed file, issue an
XOTYPEOfilename$$ command.

To avoid issuing T commands repeatedly while carrying
out close editing tasks, enter SPEED with the display
switch by issuing an XOSPEED/DUfilename$$ or
XOSPEED/D$$ command. SPEED will automatically
display the 20 lines surrounding the CP before returning
the prompt to you. (It will not do so, however, if your
previous command was an X command or generated
output; see the /D Switch in this dictionary.)

Example
IFRmedicalA20T$$
You open the file MEDICAL, append the first page or

window to the buffer, and display the first 20 lines to
make sure you opened the correct file.

093-000197-03

\Y/ Command
Return the Value of a variable.

Format
Vn

Function

This Variable Value command returns the value of one
of the 10 SPEED variables, which you may use as
mumerical arguments to other commands, and to carry
out calculations. The only legal variable names are the
ten digits O through 9.

Numerical Arguments

None, but see the various Vx commands.

Symbolic Modifiers

None, but see the various Vx commands, the ampersand
modifier (&), and the WR command.

Characteristics

A variable may take any integral value up to 65535.
Variables functioning as arguments to SPEED
commands are restricted to the range -32768 through
+32767 for commands that take both positive and
negative numerical arguments, and to the range 0
through +65535 for commands which take double or
positive numerical arguments.

To find the value of a variable, issue a Vn= command.

093-000197-03

Licensed Material-Property of Data General Corporation

Precautions and Error Messages
If you inadvertently omit a proper variable name,
SPEED displays the message

Error: lllegal variable name

Related Commands
To insert the value of a variable in text, issue a Vn\
command; see the Backslash n\ command.

To insert a character for which the value of a variable is
the ASCII decimal equivalent, issue a Vnl command; see
the | command.

To manipulate the values of variables, see the VD, VI,
and VS commands. To use the values of variables as
conditions on the execution of commands, consult the
information under Conditional Execution and Command
Loop; see the n’’Xcommand-line’ and
<<command-line> commands.

Example

*How far will the CP move this time?
IVOM$$
How far will th*e CP move this time?

Since the current value of VO is 15, the CP moves 15
characters to the right.

7-61

VvC Command
Get the Value of a Character.

Format
vC

Function

This Character Value pseudo-variable gives the numeric
equivalent of the ASCII character following the CP.

Numerical Arguments

None

Symbolic Modifiers

None, but see the remarks on the ampersand modifier
(&) in the “Characteristics” section in this entry.

Characteristics

If the CP is at the end of the buffer, with no characters
following it, the value of VC is 0, the default value.

This command stores the decimal (base 10) equivalent
of the character. It does not take the ampersand
modifier (&).

Precautions and Error Messages

Do not confuse this command, which gives the value of
the character to the right of the CP, with the .
command, which gives the number of characters on the
left between the beginning of the buffer and the CP.

7-62

Licensed Material-Property of Data Genera! Corporation

Related Commands

You may use the value of VC as an argument to the
next command. For example, if the CP is to the left of
the character T, the command VC displays 84, the
ASCII Decimal equivalent of T. If you issue a VCI
command, SPEED inserts a T in the text, and if you
issue a VC\ command, it inserts 84 in the text. See the
=, nl, and n\ commands.

Use this command to find the value of a character
quickly rather than having to resort to a character set
table (such as Appendix A of this manual). Use this
command in conjunction with the n\ and nl command to
convert character text to numerical equivalent text and
back to character text.

Example

The text below is the total contents of the current buffer.
*THIS IS A SECRET.

You wish to convert each of the characters of the
sentence following the CP to their ASCII decimal
equivalents, perhaps as an elementary code. You type,
remembering to insert spaces to keep the numerals apart

1Z<IO$VC\1D>$3$
and SPEED replaces your text with
8472738332738332653283696782698446*

Your VC command within the brackets of the Command
Loop serves as a numerical argument to the \ command,
and consequently it inserts the value of the next
character in the text. The next command inserts a space,
and the last command in the Loop deletes the character
whose value you have just inserted.

093-000197-03

VD Command

Value Decrement: decrement the
value of a variable by 1.

Format
VDn

Function

This Variable Decrement command subtracts 1 from the
value of the n™ variable and resets the variable to the
decremented value.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics
The only legal variable names are the digits 0 through 9.

Precautions and Error Messages

If you attempt to iterate this command with a string of
Ds, or attach a numerical modifier to the command, you
will get the error message

Error: 1llegal variable name

and processing ceases.

If you try a multiple decrement with VnD, of course,
SPEED attempts Vn deletions. :

093-000197-03

Licensed Material-Property of Data General Corporation

Related Commands

You may use this command as a numerical argument to
the next command. For example, if V5 = 666, the
command VD5 = displays the new value 665.

To decrement in larger amounts, apply a VS command
to the variable (Vn-xVSn).

Use this command as a numerical argument for the
control of Command Loops and Conditional Executions;
see the O, <<command-line>, and n’’Xcommand-line’
commands.

Example

You wish to key in a line of decreasing numbers.

115VS858tlinelV5\VD5"GILI$0line$'T$$
I15141312111098765432 %

You set Variable 5 to 15 initially. Each time the
Conditional Execution applies, the VD command reduces
Variable 5 by 1. When the result of the reduction is no
longer greater than 0, the Conditional Execution halts
and control passes to the next command, T. The effect of
the commands is to type into the buffer a sequence of
numbers automatically.

7-63

Vi Command

Value Increment: increment the value
of a variable by 1.

Format
Vin

Function

This Variable Increment command adds 1 to the value
of the n variable and resets the variable to the
incremented value.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics
The only legal variable names are the ten digits O
through 9.

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type in a delimiter
when the next command takes a numerical argument
and you do not wish this command to serve as one.

Precautions and Error Messages

If you attempt to iterate this command with a string of
Is, SPEED displays

Error: lllegal variable name

If you attempt a numerical argument before the V or
after the variable name, SPEED tells you

Error: Syntax error

7-64

Licensed Material-Property of Data General Corporation

and processing ceases. If you specify a number between
the V and the |, of course, SPEED will attempt to insert
the character whose ASCII value you inadvertently
specified, and process the next symbol as a command.

Related Commands

You may use this command as a numerical argument to
the next command. For example, if V5 = 666, the
command VI5= displays the new value 667.

To decrement in larger amounts, apply a VS command
to the variable. For example, V4+10VS4 resets
Variable 4 at 10 more than its current value.

Use this command as a numerical argument for the
control of Command Loops and Conditional Executions;
see the O, <command-line>, and n”’Xcommand-line’
commands.

Example
You want to type out the alphabet.

I0VS026 <V0+65IVIO>TS
ABCDEFGHIJKLMNOPQRSTUVWXYZ*

You initially set Variable 0 to 0. Each time the
Command Loop applies, it inserts the letter whose
ASCIl value is 65 + the value of Variable 0.
(Uppercase letters begin at ASCII 65.) It then
increments the value of Variable 0 by 1, so that the next
time the Loop applies, it inserts the character with the
next higher value. Since you specified 26 executions,
character insertion stops at Z. The effect of the
commands is to list the alphabet automatically.

093-000197-03

VL Command
Get the Value of the current Line.

Format
VL

Function

This Line Number pseudo-variable stores the number of
the line on which you have placed the CP in terms of
lines from the beginning of the buffer.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type a delimiter when
the next command takes a numerical argument and you
do not wish this command to serve as one.

This command counts the beginning of the buffer as the
first line, and all subsequent NEW LINEs as beginnings
of lines. It does not count a carriage return (CR) as the
start of a line.

The VL command counts lines from the beginning of the

window or page in the buffer and not from the beginning
of your input file unless these two coincide.

083-000197-03

Licensed Material-Property of Data General Corporation

To find out the number of your current line, issue a
VL= command.

Precautions and Error Messages

Do not confuse this command with the VN command,
which stores the rotal number of lines in the buffer.
(Since the VN command does not count uncompleted
lines, the value of VL in the last line will be one greater
than the value of VN, if you don’t end the last line with
a NEW LINE))

Related Commands

You may use this command as a numerical argument to
the next command. For example, you can number the
lines in the buffer by issuing a VL\ command after each
NEW LINE you type.

Use this command to find the number of the current line
in order to jump back to it later using an nJ command.
To find the distance from the beginning of the buffer in
terms of characters rather than lines, issue a .—
command. To find the distance of the CP from the
beginning of the line, see the VM command. To find the
total number of lines in the buffer, see the VN command.

Example

IVL\L.—$$

55. *

At the beginning of the 55" line, you use the VL

command as an argument to the n\ command in order to
insert the current line number in the text.

7-65

VM Command

Value Moved: get the number of
characters between the beginning of
the line and the CP.

Format
VM

Function

This Move Number pseudo-variable gives the number of
characters between the beginning of the line and the
Character Pointer.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type in a delimiter
when the next command takes a numerical argument
and you do not wish this command to serve as one.

This command counts from the beginning of the buffer
or the last NEW LINE character, whichever is closer. It
does not count a carriage return (CR) as the beginning
of a line.

Precautions and Error Messages

Do not confuse this command with the VC command,
which returns the ASCII decimal equivalent of the next
character. Also do not confuse it with the VP command,

7-66

Licensed Material-Property of Data General Corporation

Precautions and Error Messages

Do not confuse this command with the VL command,
which gives the number of the current line.

which returns the position of the CP before the last
search, or the .= command, which returns the position
of the CP in characters from the beginning of the buffer.

Related Commands

You may use this command as a numerical argument to
the next command. See in particular the nl, =, and n\
commands. This command does not take the ampersand
modifier (&) to specify an alternate radix, but those
commands do; see the ampersand symbol and the WR
command.

Example

After entering a heading, you decide to center it,
recalling that there are 80 spaces to a line.

INTRODUCTION*

180-VM/2VS0$LVO<II$>3$$

*INTRODUCTION

You subtract the number of characters on the line that
you have already typed from 80 to learn now many
spaces remain. You divide the result by two, to get the
number of spaces you want on the left. You store that
number in Variable O because you are going to move the
CP from the current position. You go to the beginning of
the line and issue a Command Loop for inserting the
number of spaces equal to the value in Variable 0, which
is half of the length left on the line and the desired
result.

093-000197-03

VN Command

Value Number: get the total number
of lines in the current buffer.

Format
VN

Function

The Number of Lines pseudo-variable stores the total
number of lines in the current buffer, regardless of the
current position of the CP.

Numerical Arguments
None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type in a delimiter
when the next command takes a numerical argument
and you do not wish this command to serve as one.

This command counts NEW LINEs. It does not count
as a separate line anything ending with a carriage return
(CR).

Since this command does not count incomplete lines, the
value of VN will be one less than the value of VL at the
end of the buffer (if the last line does not end in a NEW
LINE).

This command gives the total number of lines for the
current page or window in the buffer and not the total
number of lines in your current input file unless those
two happen to coincide.

093-000197-03

Licensed Material-Property of Data General Corporation

Related Commands

You may use this command as a numerical argument to
the next command. For example, VN/2J will take you to
the beginning of the line nearest the middle of the
buffer. To find the number of lines in the buffer, issue a
VN= command.

Use this command to determine the length of the current
buffer in terms of the number of lines. To determine the
buffer’s length in numbers of characters, issue a Z=
command. To determine the length of the current line
from the beginning of the line to the CP, see the VM
command. To determine the distance from the beginning
of the buffer to the CP in number of characters, issue a
.= command.

Example
IVN=8%

66
1ZJI[LSS

You use the VN command as an argument to the =
command to find out that the buffer contains 66 lines,
the number of lines on a standard (8 1/2 by 11-inch)
line printer and typewriter page. You jump to the
bottom of the buffer and insert a form feed to stay
within the 66-line format.

7-67

VP Command

Value Position: get the position of the
Character Pointer before the last
search.

Format
VP

Function

This Previous Position pseudo-variable gives the position
of the CP before the last search in terms of the number
of characters between the CP and the beginning of the
buffer. Use this command to trace, and perhaps return
to, your previous CP position without resorting to close
inspection of your text.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type a delimiter when
the next command takes a numerical argument and you
do not wish this command to serve as one.

This command specifies the CP after the last
unsuccessful search when the position mode is +1 (or
nondefault); that is

@ at the position before the search for default C and S
commands

@® at the position before the search for nC and nS
commands

7-68

Licensed Material-Property of Data General Corporation

@ n lines before the previous position for -nC and -nS
commands

@ after the m™ character for m,nC and m,nS commands

For further details, see the WP command.

Precautions and Error Messages

Do not confuse this command with the WP command,
which sets the position mode. To find your previous CP
position, issue a VP= command. To find your current
position, issue instead a .= command.

Related Commands

You may use this command as a numerical argument to
the next command. See in particular the nl, =, and n\
commands. Although this command does not take the
ampersand modifier (&) for a temporary alternate
radix, those commands do; see the ampersand symbol
and the WR command.

Example
1J$VPMS$$

You realize that you have further editing to do at the
position of the last search. You jump to the beginning of
the buffer and issue a command to move forward the
number of characters equal to the current value of VP,
which is the position of the CP previous to the last
search.

093-000197-03

VS Command

Value Set: set a new value for a
variable.

Format
iVSn

Function

This Variable Set command sets the n™ variable equal
to the numerical expression i.

Numerical Arguments

This command takes positive and negative numerical
arguments.

Symbolic Modifier

This command takes the ampersand modifier (&). The
&iVSn command stores the number i to the base of the
alternate radix rather than as a decimal (base 10). If
your alternate radix is binary (base 2), and you issue a
&11VS8 command, you get the response 3 when you
issue a V8= command. See the ampersand symbol and
WR command for details.

Characteristics

This command does not require a delimiter, but it
attempts to act as a numerical argument to the next
command if you do not use one. Type in a delimiter if
the next command takes a numerical argument and you
do not wish this command to serve as one.

The only legal variable names are the ten digits 0
through 9. The numerical expression is the preceding
argument and the name of the variable is the following
argument.

SPEED variables are restricted to the range -32768
through +32767 if they apply as positive or negative
numerical arguments, and to the range 0 through
+65535 if they apply as paired or positive numerical
arguments.

You may set a variable with the value of another
variable or a pseudo-variable. For example,
Z/VN+V6VS9 sets Variable 9 equal to the sum of
Variable 6 (whatever that is) and the result of dividing
the current number of characters in the buffer by the
current number of lines in the buffer. For likely
candidates as arguments to the VS command, see all the
commands starting with V and W , and the symbols Z
and period (.).

093-000197-03

Licensed Material-Property of Data General Corporation

All variables are set to O when you enter SPEED.

To find the value of a variable to see if it needs resetting,
issue a Vn= command.

Precautions and Error Messages

If you inadvertently enter a VSn command within a
numerical expression, following an arithmetic operator,
you set the value of the variable to that portion of the
expression preceding the variable; that is, if you type in
3+5+VS0-2=, you set Variable 0 to 8, lose your
previous value, and get the response 6.

You may set a variable to numerical expressions more
complex than simple numerals, but remember that
SPEED truncates the answer. 7/2VS1, for example, sets
Variable 1 to 3.

Related Commands

Set variables to initial values when you wish to conduct a
count of certain characters or strings, when you wish to
perform a Command Loop a determinate number of
times, and when you wish to control a Conditional
Execution; see the O, <command-line> and
n’’Xcommand-line’ commands for details.

Examples
1JOVS2$ <S%$;VI2>V2=8$

55

You jump to the beginning of the buffer and set
Variable 2 to 0. Your subsequent commands search for
instances of the percent sign (%), add each instance to
the value in Variable 2, and finally display that value,
which in this instance is 55.

1156VS38lline! 16-V3\VD3"GIO $0Iine$'T$$
123456789101112131415*
You set Variable 3 to 15. Your subsequent commands

use the decreasing value of that variable to insert a
string of numerals from 1 to 15 automatically.

7-69

WA Command

Window Argument: set a new value
for the default argument of deletion
and movement commands.

Formats

WA
nWA

Function

This Default Argument Mode command sets a new
value for the default argument of the D, J, K, L, and M
commands. The new value is valid for the remainder of
the editing session, or until you choose to reset the value.
If you exit from and re-enter SPEED, the value reverts
to the default value, 0.

Numerical Arguments

Although you may issue the command with any
numerical expression you wish, the command takes only
two values, 0 and + 1. If you issue the command with a
nonzero argument, you will set the default argument
value at +1.

If you issue the deletion and movement commands listed
above without numerical arguments, they behave
differently depending on the default argument value you
select.

If you set the value at O by issuing a OWA command,

@ the D command has no effect

@ the J command moves the CP to the beginning of the
buffer

@ the K command kills characters from the beginning of
the current line up to the CP

@ the L command moves the CP to the beginning of the
current line

@ the M command leaves the CP in its current position

If you set the value at +1 by issuing an nWA command
(where #n is not 0),

® the D command deletes one character to the right of
the CP

@® the J command moves the CP to the beginning of the
buffer

7-70

Licensed Material-Property of Data General Corporation

® the K command kills characters from the the CP
through the end of the line (including the NEW
LINE character)

@ the L command moves the CP to the right of the next
NEW LINE, that is, one line forward

® the M command moves the CP one character to the
right

The default value of the WA command itself is 0 when
you enter SPEED, and is the previous value if you have
already issued NnWA commands.

Symbolic Modifiers

None

Characteristics

You may use WA itself as a numerical argument to other
commands. For example, if WA is set at 0, and you issue
a WAK command, you will kill characters from the
beginning of the line up to the CP, as if you had issued’
an OK command. A TWAL command will both move you
forward one line and reset WA at 1.

To find your current default value, issue a WA=
command.

Precautions and Error Messages

If you are wary of inadvertent movements of the CP and
deletions, leave the setting at 0. To save keystrokes when
you need to edit a line quickly and closely, set the value
at +1. When your editing style settles in, pick the mode
that suits you and don’t vary it except when pushed to it.
This discourages costly errors.

Related Commands

None

Example

*iss one of tghe
11WASMDS{$DMD$$
is one of t*he

By resctting the default value before working on the line
above, you save several typing strokes.

093-000197-03

WC Command
Window Case: create and edit
lowercase and uppercase files from an
uppercase terminal.

Formats

wC

OoOWC

nWCcharacter1$
nWCcharactericharacter?
-nWCcharacter1$
-nWCcharactericharacter2

Function

This Case Control Mode command enables you to create
and edit files containing both uppercase and lowercase
alphabetic characters from a terminal that has only
uppercase characters. To do this, you select a character,
character1, to serve as a temporary shift, and you have
the option of selecting a second character, character2,
to serve as a temporary shift lock.

Use this command when you are at a terminal that
handles only uppercase text, and you wish to prepare
text containing both uppercase and lowercase material.
Use 1WC if most of your copy is lowercase; use -1WC if
most of your copy is uppercase.

Numerical Arguments

This command takes positive and negative numerical
modifiers. It treats all nonzero numerical expressions as
+1.

owcC
turns case control off. The terminal reads characters
exactly as you type them in, with no translation from
uppercase to lowercase.

1WCcharacter1$ and 1WCcharactericharacter2
designate character1 as the shift-up character.
SPEED then treats any alphabetic character that
follows character1 as uppercase. It treats all other
characters as lowercase. If there is a character2, it
treats all characters between its first occurrence and
its second occurrence (or an ESC) as uppercase

-1WCcharacter1$ and -1WCcharactericharacter2
designate character1 as the shift-down character.
SPEED then treats any alphabetic character that
follows character1 as lowercase. It treats all other
characters as uppercase. If there is a character2, it
treats all characters between its first occurrence and
its second occurrence (or an ESC) as lowercase

093-000197-03

Licensed Material-Property of Data General Corporation

The default value
for this command is O when you enter SPEED

Symbolic Modifier

This command takes the colon modifier (:). The
unmodified command affects only those characters that
you type from the keyboard. The :WC form of the
command extends case control to the entire command
line (that is, to the next CTRL-D), including characters
that you insert in the buffer by using the control key
templates [Bbuffer-name and [Ffilename. SPEED first
converts character sequences brought in by these
templates to uppercase, and then interprets the letters as
uppercase or lowercase in the same way as the
unmodified commands.

The :WC commands return a value of +1 if you have
extended case control with the colon modifier; otherwise
they return 0. You may use this form of the command as
a numerical argument to the next command. See the
colon symbol in this dictionary.

Characteristics

If you do not wish to define a shift lock in addition to the
shift, you must type in a delimiter after you have
selected your shift key. Conversely, if you wish to define
a shift lock, you must insert it directly after the shift key
with no intervening delimiter.

The shift-lock key shifts the case of the entire string you
type in following it until you depress the lock key again
or terminate the command with a CTRL-D.

You may set and use a case control mode value in the
same command line. The case changes take effect for
the command line once you execute the command.

The command ignores a shift character in the scope of a
shift-lock character.

The WC commands, like the ALPHA LOCK key, affect
only the display of the alphabetic keys. Use numeric and
other symbol keys as you normally would, whatever
value of case control mode you select.

In order to insert the character denoted by your shift
key, type it in twice: if you make = your shift key, type
in == to insert = in text. To insert the character
denoted by your shift-lock key, precede it with the shift
key.

7-71

WC (continued)

To simulate an uppercase-only terminal at a terminal
that has both uppercase and lowercase characters,
switch ALPHA LOCK on and procede as outlined
above.

To find the value of your case control mode, issue a
WC= command.

Precautions and Error Messages

Do not type a preceding shift-character when typing a
shift lock character unless you wish to echo the
shift-lock character.

Remember to issue an | command as needed after this
command. It is easy, especially for experienced typists,
to omit it inadvertently after setting the case
characteristics.

Related Commands

You may use the value (0, +1, or 65535 = -1) of this
command as an argument to the next command. For
example, if your case control value is +1, then WCM
moves the CP one character to the right.

Example

At an uppercase-only terminal, you set case mode at + 1
and type in:

MWC= +$I=PUT ONLY
+ CAPITALS, + PLEASE.$$

=WORD 6 IN

When you reset to 0, your terminal displays

=PUT ONLY =WORD 6 IN
=C=A=P=I=T=A=L=S=, PLEASE.

If you are at a terminal that has both cases, with case
control mode set to 1, you get the same display. If you
reset case control mode to 0, and ask for a display,
SPEED shows you

Put only Word 6 in CAPITALS, please.

7-72

Licensed Material-Property of Data General Corporation

WD Command

Window Display: set the automatic
display mode value.

Formats

WD
OWD
nWD

Function

This Display Mode command sets the value of the
display mode, which determines what SPEED attempts
to display on the screen automatically before restoring
your prompt.

Use this command when you know how much text you
wish displayed before each prompt. Set a generous
number if you need display feedback. Set the display at
0 for a faster return of prompt.

Numerical Arguments

This command accepts positive numerical modifiers
from 1 to 10. If you exceed 10, SPEED sets the display
value at 10. When you set the display mode at n,
SPEED tries to display the n lines preceding and the n
lines following the CP, showing the CP as a blinking
asterisk on terminal models 6052, 6053, D100, and
D200, or as a caret within parentheses on other models.

If you are less than 7 lines from either the beginning or
end of the buffer, SPEED displays additional lines in the
other direction such as to total 2n.

OWD turns the display mode off. If you wish any display,
you will have to issue appropriate T commands one by
one.

The default argument for this command, WD, is 0 when
you enter SPEED without the D switch, and the same
value as the preceding WD command if you have issued
one.

Symbolic Modifiers

None

093-000197-03

WD (continued)

Characteristics

Even if your display mode is on, SPEED will not display
text if the previous command generates output or is an X
command.

To find your display mode, issue 2 WD= command.

Even when your display mode is set low or to 0, you may
obtain larger displays by using a T command; see that
command.

Precautions and Error Messages

Do not confuse this command with the WM command,
with which you decide how many lines of text to read
into the buffer at one time. See that command.

Related Commands

If you know before you enter SPEED that you want the
widest display, append the display switch, entering with
a XOSPEED /D) or X[(1SPEED/D[filename) command;
see the entry for the D switch in this dictionary.

To obtain a nonautomatic display of text in the current
buffer, see the T command.

To display command lines as SPEED executes them, use
the Trace Mode Toggle; see the ? command.

Example

) XCOSPEED!)
11OWD$FOIlux$$

You enter SPEED but forget to append the D switch.
You set the display to 10 lines with the WD command
and open the file LUX for update. SPEED displays the
first 20 lines of the first page.

093-000197-03

WM Command

Window Mode: choose a window of
text to read into the buffer at one
time.

Formats

WM
OWM
nWM

Function

This Window Mode command allows you to determine
how much text at a time SPEED reads into the buffer
from the current input file. You may specify a particular
number of lines, in window mode, or you may choose to
place text in the buffer from form feed to form feed, in
page mode.

You may find it convenient to remain in page mode
while composing text and decide afterward where to
place page breaks (form feeds). A convenient window
for display at the terminal is 20 lines, or you can
simulate a standard (8 1/2 by 11-inch) typewritten page
with 66 lines (at 6 lines to the inch).

Numerical Arguments

This command takes nonnegative numerical arguments.

OWM
sets SPEED to read text into the buffer in page mode,
from form feed to form feed. SPEED treats -nWN as
OWM.

nWM
sets SPEED to read text into the buffer in window
mode, 7 lines at a time.

The default value for WM
is 0 when you enter SPEED, and the previous value if
you have issued any WM commands.

Symbolic Modifiers

None

Characteristics

You may issue a WM command at any time, but the
change does not take effect until you either close the file
or issue an R command, reading more material into the
buffer. If you change from window to page mode and
read in new material, your page extends from the end of
the last window to the next form feed.

If you read in page mode into the buffer from a file
containing no form feeds, SPEED tries to read the entire
input file into the buffer.

Licensed Material-Property of Data General Corporation 7 - 7 3

WM (continued)

If you set a window mode for more lines than you have
on your pages, SPEED displays the lines and echoes the
form feed with JL.

When you are in page mode, SPEED does not place the
end form feed in the buffer. (The beginning form feed is
the last character of the previous page.) SPEED
remembers the position of the form feed and puts it back
in the text when you read the page to the output file.
Consequently, if you wish to search for or delete form
feeds, you must switch to some arbitrary window mode.
(Remember to switch back again to page mode to
confirm any deletions.)

To find the value of your window mode, issue a WM=
command.

Precautions and Error Messages
If a page is too long, SPEED displays the message

Error: Insufficient memory available

and is unable to bring the whole page into the buffer.
You must abort the session with a CTRL-C, CTRL-B
sequence. (Any other meaningful action will require
memory.)

If a line of the file exceeds 136 characters, SPEED
displays the message

Error: LINE TOO LONG

but brings the page into the buffer. In this case you may
want to adjust files and lines accordingly.

Related Commands

To insert a form feed, issue a 12I$ or [L$ command; see
the CTRL-L template in this dictionary.

Example

120WM$F Olisting$$
IRS

IR$$

IOWMSRZJS$

You set the value of window mode at 20 and open the
file LISTING, which contains no form feeds. You find
what you were looking for in the third window, reset the
value to page mode, read in the rest of the file, and jump
to the bottom of the buffer to continue composing.

7-74

Licensed Material-Property of Data General Corporation

WP Command

Window Position: set the positioning
of the CP after unsuccessful searches.

Formats

WP
OWP
nWP

Function

This Position Mode command sets the way in which
SPEED repositions the Character Pointer after an
unsuccessful C or S command.

Numerical Arguments

This command takes nonnegative numerical arguments.
It treats all nonzero arguments as 1.

If you issue a OWP command, the CP positions

@ at the beginning of the buffer for default (numerically
unmodified) C and S commands

® # lines beyond the previous position for nC and nS
commands

@ at the position before the search for -nC and -nS
commands

® after the n™ character for m,nC and m,nS commands

If you issue an nWP command where n is not zero, the
CP will reposition

@ at the position before the search for default C and S
commands

@ at the position before the search for nC and nS
commands

@ 1 lines before the previous position for -nC and -nS
commands

@® after the m" character for m,nC and m,nS commands
The default value for this command is O when you enter

SPEED and is the value of the previous WP command if
you have issued one.

Symbolic Modifiers

None

093-000197-03

WP (continued)

Characteristics

When the value of this command is not 0, the CP always
repositions before the character where the unsuccessful
search begins.

To find the current value of the position mode, issue a
WP = command.

Except for the default commands, the 0 value repositions
as far forward as the range permits, and the 1 value
repositions as far backward as the range permits.

Precautions and Error Messages

Do not confuse the WP command with the VP
command, which places the CP at its previous position
after a search.

Related Commands

Sce the WA command for resetting default values.

Example
1MTWP$S#$$

You set position mode to 1 since you want the CP to
remain in position if, as you hope, there are no further
instances of # in the buffer.

093-000197-03

Licensed Material-Property of Data General Corporation

WR Command
Window Radix: set a new alternate
radix.

Formats

WR

nWR

Function

This command allows you to select a new alternate
radix. The standard radix is always 10 (decimal). You
may choose an alternate radix from 2 (binary) to 36.

Numerical Arguments

This command takes positive numbers from 2 to 36 and
numerical expressions which evaluate within that range.
An nWR command sets the alternate radix at n.

The default value for this command is 8 (octal) when
you enter SPEED, and the value of the previous WR
command if you have issued one.

Symbolic Modifiers

None, but see the ampersand modifier (&) for its
interaction with this command.

Characteristics

Although the WR command sets the alternate radix until
you reset it or exit from SPEED, the ampersand
modifier (&) switches from decimal to the alternate
radix only for a single SPEED argument or command.
For the details of its behavior, seg the ampersand
symbol.

To find the value of your alternate radix, issue a WR=
command.

Related Commands

None

Example
I2WR$&11111111=8$
255

You switch the radix to 2 to find out that 11111111, is
255,.

7-75

WS Command

Window Shifts: set case dependency
for matching alphabetic characters in

search commands.

Formats

WS
oWSs
nWS

Function

The WS (Window Shifts) command allows the search
commands C, N, Q, and S either to ignore or be sensitive
to the case of alphabetic characters when carrying out a
match.

This command allows you to conduct efficient searches
through your text. If, for example, you wish to search for
a word regardless of whether it begins a sentence or not,
set the value of the search case match mode at 0. If you
wish to change Bill, but not bill, to William, set the
value at 1.

Numerical Arguments

This command takes single numerical modifiers. It
treats all nonzero numerical expressions as 1.

ows
permits case-independent searches: u in the command
matches U and u in the text, and L in the command
matches both L and / in the text.

nWS, n not equal to O,
forces case-dependent searches: u in the command
matches # but not U in the text, and L in the
command matches L but not / in the text.

The default setting, WS,
is 0 when you enter SPEED.

7 - 7 6 Licensed Material-Property of Data General Corporation

Symbolic Modifiers

None

Characteristics

This command does not affect searches for
non-alphabetic characters such as numbers, punctuation
marks, or other symbols.

This command affects only the first text argument of the
C command. You must specify case explicitly in the
second argument.

To find your case mode, issue a WS= command.

Precautions and Error Messages

Do not confuse this command with the WC command,
which enables you to edit lowercase files from an
uppercase terminal.

Related Commands

None

Example

You have mispelled Kurt’s name throughout a file.
11WS$ <<CCurt$Kurt$;>$$

You set the value of the search case mode to
case-dependency and issue a command to change Curt
to Kurt throughout the text. By specifying a nonzero
value, you avoid inadvertently changing curtsy and
curtain to Kurtsy and Kurtain.

093-000197-03

X Command

Execute Command Line Interpreter
commands from SPEED.

Formats

Xstring$
:X$
:Xprogram.PR$

Function

The Xstring$ command executes string as a command of
your parent process, which normally is the Command
Line Interpreter (CLI1). After the CLI executes the
command, SPEED returns its prompt and waits for your
next SPEED command.

Use the various forms of the X command when you wish
to execute CLI commands or create subordinate
processes without exiting from your current SPEED
editing session. For example, you may find it convenient
to compare some other file with the file you currently
have open by issuing an XTYPEfilename$$ command,
rather than closing the current file, opening the other
file for inspection, closing it, and reopening the previous
file.

Numerical Arguments

None

Symbolic Modifier

This command accepts the colon modifier (:) if you omit
the string argument. The :X$ form of the command
executes the CLI. You may issue any number of CLI
commands or macros before you return to SPEED. You
must terminate the CLI with a BYE) command in order
to return to SPEED.

The :Xprogram.PR$ command is equivalent to
XXOprogram$$ and is a quick way to execute a
program [rom SPEED when the program does not
require switches or arguments from the command line.
Control returns to SPEED once the command or
program has completed execution.

Characteristics

This command requires a delimiter.

You may use any command name abbreviation in
SPEED for CLI commands that you can use in the CLI.

093-000197-03

Licensed Material-Property of Data General Corporation

You may use any punctuation in SPEED for CLI
commands that you can use in the CLI.

If you have the privilege of creating more than two sons,
you may create a subordinate SPEED process by issuing
an XXOSPEED$$ command. (You may attach the
usual switches and filename arguments to this
command.) You may open new files globally and locally
in each subordinate SPEED process you create. If you
do not know how many sons you have the privilege of
creating, ask your system manager, or experiment with
creating them until you get the message

ERROR: TOO MANY SUBORDINATE PROCESSES

To see what process you have, issue an XTREE$$
command.

Precautions and Error Messages

You may omit a space between the X command name
and the CLI command or macro, but you must not omit
any spaces required in the CLI command. For example,
if you want a list of all your files whose names start with
a, you must issue the command as
XFILESTATUSOa+$$ rather than as
XFILESTATUSa+. If you omit the spacing, you receive
the message

ERROR: NOT A4 COMMAND OR MACRO,
filestatusa+

and the SPEED prompt.

If you use the CLI more frequently than you use
SPEED, you may try to issue an Xstring) or Xstring$)
command. Remember to type a CTRL-D to execute the
CLI command from SPEED.

The use of the X command does not return you to the
parent CLI process of which SPEED is a son. Instead it
executes a new CLI process as a son of your SPEED
process. You must therefore have the privilege of
creating two son processes in order to issue X commands
successfully, since the CLI process you attempt to
execute with an X command would be a grandson of the
CLI process that you entered SPEED with.

7-77

y A Symbol
Last Character: end of the current

$ (ESC) Symbol

buffer standard Delimiter
Format Format
z $
Function which echoes the ESC key

The SPEED symbol Z represents the length, in
characters, of the current buffer. Use the symbol in

commands as a numerical argument representing the
end of the buffer.

Examples

1Z1$$ Insert the ASCII character whose
decimal equivalent is Z, truncated to the
lowest eight bits.

1ZJ$$ Jump to the end of the buffer.

1ZJL$S Jump to the beginning of the last line
(= VNJ).

1ZK$$ Kill everything from the CP to the end
of the buffer.

1JZ/2M$$ Move to the middle of the buffer.

127$$ Display everything from the CP to the
end of the buffer.

1ZVS0$$ Store the number of characters in
the buffer in Variable 0.

1Z\$$ Insert the current value of Z in the text.

1Z=8$ Display the current number of
characters in the buffer.

1Z<x>%$$ Do the Command Loop x z times.

7-80

Licensed Material-Property of Data General Corporation

Function

SPEED echoes with the dollar sign symbol ($) when you
type the delimiter ESC or BREAK ESC (for escape).
Use the delimiter as the last character of a text insertion
string or search string. Use it also to prevent numerical
values from acting as numerical arguments to the next
command.

In this manual, $ is entered in formats which require a
delimiter. CTRL-D acts as a final delimiter in addition
to terminating and executing the command line, so you
need not issue an ESC before a CTRL-D.

To set a temporary delimiter in order to include $ (ESC)
in a text insertion string or search string, see the

commercial at (@) symbol and the commands C, 1, N, Q,
and S.

Examples

You are watching Smith, a neophyte user of SPEED,
make several natural errors.

Instead of
ITheJEnd.$J$$
he types in
ITheJEnd.J$$
The End.J

Smith forgets to delimit his text with ESC, and SPEED
treats J as more text rather than as a command.

093-000197-03

Line Alpha*
Line Beta

Line Gamma
Line Delta

Instead of
I3VSOSLS
he types in
I3VSOL$$
Line Alpha
Line Beta

Line Gamma
*Line Delta

By omitting the ESC before the L command, Smith ends
up at the beginning of Line Delta instead of Line Alpha,
where he wants to be. SPEED used the new value of
Variable 0 as the numerical

command.

093-000197-03

argument to the L

o

Symbol

Prompt that SPEED is ready for input
from the terminal.

Format
!

Function

The exclamation point is the SPEED prompt. You can
type in and display a command line only when you have
a prompt. SPEED restores your prompt when it finishes
executing your previous command line. Until it does $0,
it displays the cursor alone on a visual display terminal.

SPEED displays the prompt below any text display.
Remember that SPEED performs its operations at the

position of the Character Pointer, and not at the position
of the prompt.

Example
ISincerely,$$

Sincerely,*

!

SPEED places the Character Pointer at the end of the
insertion and restores your prompt below.

Licensed Material-Property of Data General Corporation 7 -8 1

abel! Symbol

Skip past this material.

n’’Xcommand-string’ Command
Conditional Execution: carry out
commands if the numerical argument
has a certain value.

Format

llabel!

Function

SPEED ignores material placed within exclamation
points, except when you use them to pass command
execution control with an O command. See the O
command entry for details.

Use a label to write descriptive or explanatory comments
into a command line, to remind yourself how the
command line works or what it does.

Example

You write a note to yourself about the purpose of a
command line, and store it with the command line.

IThis command line creates a ruled page!
160<<80<<I_$>1l
$>9%%

After SPEED carries out the command in the current
buffer, you store the command line with the attached
comment in Buffer R. Then you switch to Buffer R to
verify what you have done.

I_R$$
IBSR$#TS$$

IThis command line creates a ruled page!
60 <80 <I_$>1)
§ >

Now the label reminds you of what the commands in
Buffer R do. Later, you may reissue the command line
with a |BR command from another buffer, or you may
place the contents of Buffer R in a file. Whenever you
open or type out the file, the label will remind you of its
contents.

7 '8 2 Licensed Material-Property of Data General Corporation

Formats

n’’Gcommand-string’
n’’Lcommand-string’
n”’Ecommand-string’
n”’Ncommand-string’

Function

This command allows you to set conditions for the
execution of a sequence of commands, command-string.
SPEED executes the commands when the condition you
set holds true. When it is false, or becomes false, control
passes to the command following the apostrophe.

Numerical Arguments

This command requires a single numerical argument,
positive, zero, or negative. The effect of the argument
depends on the specific form of the command you use:

Read as

n"'Gx’y If n is greater than 0, do x;

otherwise do y.

n"Lx'y If nis less than 0, do x; otherwise
do y.

n"Ex'y If nis equal to 0, do x; otherwise,
do y.

n”’Nx'y If n is not equal to 0, do x;

otherwise do y.

For n you may use integers, numerical expressions, and
values of variables and pseudo-variables. To use the full
power of this command, however, you may set n 10 the
increment or decrement of a variable or pseudo-variable,
and use it to return to a previously set label.

To take an example, suppose that you want to number
only the lines on your page that are not already
numbered. One way to do this uses two Conditional
Executions within a Command Loop. Issue

IJVN<<48-VC'GVL\L.-8$T’

VC-58"'GVL\l. 8T’
1L>$$

093-000197-03

You jump to the beginning of the buffer and set a
Command Loop to apply as many times as there are
lines in the buffer. The ASCII digital values for the

digits O through 9 are 48 through 58, respectively.

Assume the text itself contains no numbers at the
beginning of lines. You want to insert a line number
(with accompanying period and tab) just in case the line
does not already start with a digit. This means that the
ASCII digital value of the first character of the line
must be less than 48 (which is the character 0) or more
than 58 (which is the character 9).

® The first Conditional Execution takes care of the first
case. It reads: if 48 less the ASCII digital value of the
next character is greater than zero (that is, the value
of the next character is in the range zero through 47),
then carry out the execution: insert the line number, a
period, and a tab, and display the result. The first
condition will be true only if the line begins with a
control character or certain marks of punctuation. If
the line begins with [N, for example, SPEED will
insert the line number.

@® The second Conditional Execution takes care of the
second case. It reads: if the ASCII digital value of the
next character, less 58, is greater than zero (that is,
the value of the next character is 59 or more), then
carry out the (same) execution: insert the line
number, a period, and a tab, and display the result.
The second condition will be true if the line begins
with an alphabetic character or certain other marks of
punctuation. If the line begins with an 4, for example,
SPEED will insert the line number.

® If the line begins with one of the digits, then neither
condition will be true, and SPEED will not insert a
line number.

Whichever of the three is the case, control now passes
beyond the conditions to the next command, which takes
the CP to the beginning of the next line, if there is one.
The Loop then reapplies on that line. If your buffer
contains just

1. Alpha
Beta

Gamma

4. Delta
Epsilon

093-000197-03

the Command Loop and two Conditional Executions
above convert it to

Alpha
Beta
Gamma
Delta
Epsilon

LSRN~

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter. Be careful,
however, not to omit the delimiter for the O command if
you issue one.

You must mispair punctuation marks for this command:
the quotation marks on the left accompany the
apostrophe on the right.

You may use O (Over) commmands and labels to
branch into or out of Conditional Executions.

Precautions and Error Messages

Remember to set up your variables in such a way that
the Conditional Execution eventually terminates. If, for
example, you set V9 to 5, the command string

HwritelIx$VD9'GOwrite$’$$

terminates execution after the fifth insertion, since V9 is
no longer greater than zero at that point. But the
command string

Hwrite!lIx$VI9 GOwrite$’'$$

attempts to make the insertion indefinitely, since each
increment of V9 leaves it still greater than zero.
(Execution stops when the value of V9 exceeds the
argument range for the command; to regain the console
beforehand, use a CTRL-C, CTRL-A interrupt.)

Do not try to overlap Command Loops and Conditional
Executions. If you try to issue a command line such as

1<<S[I$;VD5"N-1D>1T'$$

Licensed Material-Property of Data General Corporation 7 - 8 3

n’’Xcommand-string’ (continued)

SPEED displays the message
Error: < with no corresponding >

If you fail to provide a numerical argument for this
command, SPEED displays the message

Error: Illegal number of arguments to command

Related Commands

At your option, you may set a label in the command line,
and place an Olabel command within or following the
command string of the Conditional Execution. The
effect of this maneuver is to set conditions for returning
or not returning to a label, and executing the commands
that follow it. If you have not yet consulted the Olabel
command, please do so.

To execute a command line a given number of times
without attaching other conditions, use the Command
Loop; see the <command-string>> command.

Examples

You are writing some news copy.
1Z-’El* * *more* * *$'LTSS

If your CP is at the end of the buffer, subtraction of the
CP position from the end of the buffer will yield 0. Since
the condition is for the value to equal 0, SPEED will
make the insertion, return to the beginning of the line,
and display the line. If your CP is not at the end of the
buffer, SPEED will merely display the line the CP is on.

You wish to insert a decrementing series of numbers
from 29 to 20.

110VSO0

vig! 19+ VO\
VDO’ GICO$Ovig$’
L$$

%2028 27 262524232221 20

7-84

Licensed Material-Property of Data General Corporation

You set a variable to 10, set a label, and insert the first
value of the sum of 19 and the variable. The variable
decrements, and Command Execution keeps inserting a
space and returning you to the label until the variable
reaches 0, at which point SPEED returns you to the
beginning of the line.

You wish to convert all lowercase text in a file to
uppercase, but leave it otherwise unchanged. You issue

lup!
123-VC’GVC-96’'GVC-3211DOup$”’
VC'EOend$’
1MOup$

lend!$$

The lowercase alphabet is ASCII 97,y through 122,.
An uppercase character has the value of the
corresponding lowercase less 32. The first, outer
Conditional Execution is valid if the value of the next
character is not greater than z. The second, inner
Conditional Execution is valid if the value of the same
character is not less than a. So both Conditional
Executions are valid only if the next character is
lowercase alphabetic. If it is, the inner Conditional
Execution inserts the corresponding uppercase
character, deletes the lowercase, and returns you to the
lup! label. If either condition is false, then either the
next character has a value higher than z or lower than a
(in which case you want to skip over it), or there is no
next character and you are at the end of the buffer. If
you are at the end of the buffer, then VC = 0, and the
third Conditional Execution takes you to the tend! label.
If you are not at the end of the buffer, the third
Conditional Execution is not valid. In that case, you
move forward one character (which you want to skip
over), and return again to the lup! label to begin
checking the value of the next character. The commands
will convert

Please insert 28 characters.
to
PLEASE INSERT 28 CHARACTERS.

changing lowercase to uppercase without disturbing
numbers, uppercase, or punctuation.

093-000197-03

H Symbol
Entire contents of the buffer

& Symbol
Switch to the alternate radix.

Format

#command

Function

The number sign (#) in SPEED commands abbreviates
the paired numerical argument (0,Z) and thus
represents the entire contents, in characters, of the
current buffer. Use the symbol only with commands
which take paired arguments.

Examples

#KS Kill the entire buffer.

#Sstring$$ Search from the beginning of
the buffer.

H#T Display the entire buffer (the

CP does not move).

Formats

n&command-name
&ncommand-name
&n&command-name

Function

In addition to the standard decimal radix, SPEED
permits you to select an alternate radix from base 2
(binary) to base 36. See the WR command. If you
specify no alternate radix, your default alternate radix is
base 8 (octal).

You use the ampersand to switch from decimal to the
current alternate radix for the next command. An
ampersand before the command name interprets the
result of the command in the alternate radix.
Ampersands before numerical arguments interpret those
arguments in the alternate radix.

Remember that the digits following ampersands must be
valid expressions in the alternate radix. For example, 8
and 9 are not valid octal digits, and SPEED sends you
the error message

Error: llegal command

if your alternate radix is octal and you insert them after
the ampersand.

Example

400+20=420 400*20=8000 400/20=20
&400+&20=272 &400*&20=4096 &400/&20=16
400+ 20& =644 400%20& = 17500 400/20& =24
&400+ &20& =420 &400*&20&=10000 &400/&20& =20

093-000197-03 Licensed Material-Property of Data General Corporation 7— 85

* Symbol
Multiplication Operator

* Symbol

A blinking asterisk shows the position
of the Character Pointer.

Format

m*n

Function

SPEED uses the asterisk to represent multiplication. Do
not try to follow this operator with another, for example
a minus. If you do, SPEED displays the message

Error: Syntax error

Remember that SPEED is restricted to the range
-32768,, through +32767,, for commands that take
both positive and negative numerical arguments, and to
the range O through +65535,, for commands that take
positive or paired numerical arguments.

Examples

You do some trivial arithmetic.
113*13=8%3%$

169

You are setting up a table for later use.
I:Soutflow$*3<—-Week:$>3$$

Outflow Week:Week:Week:*

Using the colon modifier on the search command, you
tell SPEED to make an insertion three times if the
search command is successful. Since the search
command returns a 1 if it succeeds, you specify the
insertion in terms of a multiplication on the numerical
argument of the insertion. The insertion takes place
because 1*3=3. If the search had failed, SPEED would
not have made the insertion since 0*3=0.

7-86

Licensed Material-Property of Data General Corporation

Format
* (blinking)

Function

SPEED represents the Character Pointer with a blinking
asterisk on terminal models 6052, 6053, D100, and
D200. On other models, SPEED represents the
Character Pointer with a caret within parentheses (™).

The CP lies between two characters, and not on a
character. The various T commands show you the
location of the CP in the buffer. For other ways of
ascertaining its position, see the Z and . symbols, and
the commands VC, VL, VM, and VP.

You can exercise some control over the positioning

characteristics of the Character Pointer. See the WP
command and the CTRL-G template.

Example

1Sre]G-issue$ 1D$$

re*issue

You use CTRL-G to adjust the position of the CP when

the search and deletion take place. Otherwise, SPEED
would place the CP at the end of the word.

093-000197-03

+ Symbol
Addition Operator.

- Symbol
Unary minus operator.

Format
m-+n

Function

SPEED uses the usual symbol to represent addition. Do
not try to follow this operator with another one, for
example a minus. If you do, SPEED displays the
message

Error: Syntax error

Remember that SPEED is restricted to the range
-32768, through +32767,, for commands that take
both positive and negative numerical arguments, and to

the range O through +65535,, for commands that take
positive or paired numerical arguments.

Examples

You do some trivial arithmetic.
134+35=%$%

69

You tell SPEED to increment Variable 4 by 15 and
display the result.

116+V4VS4=3$
25

You tell SPEED to insert an asterisk 7 plus the value of
Variable 3 times.

V3+7<i*$>$$

3% 3k 3K 3k 5k d % >k ok %k k %k %

SPEED inserts 13 asterisks, since the current value of
the variable is 6.

093-000197-03

Licensed Material-Property of Data General Corporation

Format

-n

Function

You perform subtraction with this operator in SPEED.
Remember that SPEED expresses negative numbers in
descending order from 65536.

Remember that SPEED is restricted to the range
-32768,, through +32767,, for commands that take
both positive and negative numerical arguments, and to
the range 0 through +65535,, for commands that take
positive or paired numerical arguments.

Do not try to follow another arithmetic operator with the
minus operator. If you try, for example, the expression
5*-3=, SPEED displays the message

Error: Syntax error

Examples

You do some trivial arithmetic.

1256-16=%$%

240

You ask SPEED how far you are from the end of the
buffer (in numbers of characters).

1Z-.=$$
17325

You do more trivial arithmetic and get SPEED’s
representation of the number -132.

112-144=8%

65404

7-87

Symbol

* C ¢ . h Symbol
urrent position of the Character Division Operator
Pointer
Format Format
. m/n
Function Function

SPEED uses the period (.) to represent the position of
the Character Pointer in terms of characters from the
beginning of the current buffer. You may use this
symbol as a numerical argument to the next command.

Examples

.D$3 Delete as many characters forward as
there are between the beginning of the
buffer and the CP.

-.D$$ Delete all characters in the buffer
preceding the CP.

1% Insert the ASCII character whose
decimal equivalent is the position of the
CP, truncated to the last eight bits.

0,.K$$ Kill the buffer up to the CP.

M$$ Double the distance of the CP from the
beginning of the buffer.

0,.7$$ Display the buffer from the beginning
up to the position of the CP (= -ZT).

A\$$ Insert the value of the position of the
CP.

.=%$ Tell me the value of the CP.

Z2-.=%% Tell me how many characters following
the CP there are in the current buffer.

<x>$3% Do the Command Loop x a
number of times equal to the value of
the position of the CP.

7-88

Licensed Material-Property of Data General Corporation

SPEED uses the slash to represent division. Do not try to
follow this operator with another, for example minus. If
you do, SPEED displays the message

Error: Syntax error

Remember that SPEED is restricted to the range
-32768,, through +32767, for commands that take both
positive and negative numerical arguments, and to the
range O through +65535, for commands that take
positive or paired numerical arguments.

SPEED does only integer or whole number arithmetic.
SPEED treats proper fractions as O, and truncates
improper fractions. SPEED treats n/0 as n. SPEED does
not recognize decimal expressions and handles them as
syntax errors.

Examples

You do some trivial arithmetic.

1256/5=8%%

51

You ask SPEED what your average line length is by
telling SPEED to display the result of dividing the
number of characters in the buffer by the number of
lines in the buffer.

1Z/VN=8$

21

093-000197-03

Multipurpose Modifier

Symbol

Format

:command-name

Functions

The effect of this modifier varies with the class of the
command name you use it with.

® In the :BG (Buffer Get) command, the colon
suppresses the query or ? prompt and you may type
the line in directly.

® In the C, N, Q, R, and S search commands, the colon
returns a 1 if the command succeeds and a O if the
command fails. This value can serve to specify the
number of times the next command executes if that
command takes a numerical argument, and if you
specify an arithmetic operator such as + or *
connecting the two numbers.

The command :Sq.e.d.$*3<11$>$$, for example,
will insert three exclamation points only if it finds
g.e.d., since 3*1 =1 and 3*0=0.

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

@ In the Put commands :P and :PW, SPEED clears the
buffer after writing to the output file. If you omit the
colon, SPEED does not clear the buffer.

@® In the Case Control :WC command, the colon extends
case control to material brought into the buffer from
files and other buffers with the CTRL-F and CTRL-B
templates. SPEED first converts letters to uppercase
and then converts them as the shift and shift-lock
characters dictate. SPEED returns a 1 if you extend
case control this way, and a 0 otherwise.

093-000197-03

® In the Execute :X command, you create a son of
SPEED that is a copy of the program you used to
enter SPEED. This is usually the CLI, although it
may be another SPEED process or some other
program.

@ In the Conditional Termination ; command, the colon
reverses the conditions for terminating command
execution. In a Command Loop, :; terminates
execution if the previous command succeeds, and
passes control to the next lower level of the command
line. Outside of a Command Loop, :; terminates
execution of the command line if the previous
command succeeds or its numerical argument is
positive.

Examples

XXX
I<<Sx$;lo$>3
X0X0x0
1<Sx0$:;l0$>$$

xo0*xoxo

The first Command Loop executes until it cannot find
another x. The second one halts as soon as it finds the
first xo, and the | command never executes.

For additional examples of the uses of this modifier,
please see the individual commands that it modifies.

Licensed Material-Property of Data General Corporation 7 ‘89

; Command

Conditional Termination: terminate
execution of a command line or
Command Loop upon the failure or
success of the last command.

Formats

Function

This command prevents infinite looping in a Command
Loop when you do not wish to specify execution of the
Command Loop a definite number of times by prefixing
the brackets of the Loop with a numerical argument.

This command, when unmodified by the colon symbol
(:), terminates the execution of a Command Loop within
which it occurs if the previous command fails, and turns
control over to the next higher level of the command
line.

Outside of a Command Loop, this command terminates
execution of the command line if the previous command
fails or if its numerical argument is O or negative. If you
have not yet consulted the Command Loop in this

dictionary, please do so; see the <command-line>
command.

Numerical Arguments

This command takes single positive or negative
numerical arguments.

The n; command

@ terminates execution of a command line if outside a
Command Loop

@ passes control to the next higher level if within a
Command Loop

when
@ 1 is 0 or negative and

@ the colon symbol (:) does not precede the command

7-90

Licensed Material-Property of Data General Corporation

This command accepts as arguments integers, more
complex numerical expressions, variables and
pseudo-variables, and functions which you define on
these.

Symbolic Modifier
This command accepts the colon modifier (:). This
modifier reverses the effect of the ; command

The :; command

@ passes execution within a Command Loop to the next
lower level

@ terminates execution of the command line outside of a
Command Loop

when the previous command succeeds. The n:; command

® terminates execution of a command line if outside a
Command Loop

@ passes control to the next higher level if within a
Command Loop

when n is greater than 0.

SPEED treats an unsuccessful search outside of a
Command Loop as an error condition, regardless of
whether a semicolon follows the search command.
SPEED displays the message

Error: Unsuccessful search

Related Commands

Please consult the <command-line> Command Loop
command for its interaction with this command.

You may conditionally execute search commands and
certain other commands by modifying them with the
colon modifier (:) under certain conditions. See the colon
symbol and the entries for the A, C, N, Q, R, and S
commands.

093-000197-03

; (continued)

Examples

You decide to count periods to get a rough estimate of
the number of sentences in the buffer.

IJOVS0$ <S.8;VIO>V0=$$
93

You jump to the beginning of the buffer, set Variable 0
to 0, and issue a Command Loop. The Loop searches for
a period; each time it finds one, it increments Variable 0.
After it finds the last period in the text, it makes the
search once again. When it fails to find a period, the ;
command takes you out of the Loop and on to the next
command, which displays the number of periods found.
If you had not included the semicolon after the search
command delimiter, the Command Loop would have
begun cycling endlessly.

On another occasion, you can’t remember whether you
inserted a percent sign at a certain place in the text.

IOWPO,.S%$:;T$$

If you did, you want to see the surrounding text; if you
didn’t, you set your position mode so that you can
continue editing from the current CP position. You use
the colon modifier to reverse the usual effect of the ;
command.

093-000197-03

< X > Command
Command Loop: execute the

command line enclosed in brackets a
number of times.

Formats

<<command-line>
n<command-line>

Function

This command allows you to execute the command line
it controls, command-line, a number of times without
having to re-enter the commands.

You may specify a definite number of times for the
Command Loop to execute, or you may set a condition
in the Loop with a Conditional Termination ; command
that terminates execution of the Loop and passes control
to the next command.

If you have not yet consulted Conditional Termination,
please do so; see the ; command.

Numerical Argument

This command accepts positive numerical arguments.
The n<x> form of the command specifies that the
command line x execute n times. If n is not greater than
0, SPEED skips over the Loop to the command
following it.

If you issue the command withoutr a numerical
argument, it begins cycling endlessly unless the
command line within it contains appropriately placed

Conditional Termination commands. See the :
command.
Characteristics

This command does not require a delimiter. Be careful,
however, to include delimiters for commands requiring
them within the angled brackets. An insertion loop, for
example, should have the form

n<lstring$>$$.

Inclusion of a search command in an iteration
automatically simulates the : colon modifier.

You may embed one Command Loop within another to
a depth of ten.

You may embed a Conditional Execution within a
Command Loop, and you may use Command Loops in a
command line containing O commands and Conditional
Executions. Figure 7-3 summarizes some of the possible
interactions.

Licensed Material-Property of Data General Corporation 7 - 9 1

<x> (continued)

Precautions and Error Messages

If you omit the final delimiter of a search or insertion
command within the brackets, SPEED displays the
message

Error: < with no corresponding >

and treats the right bracket as part of the insertion.

If you have not entered a numerical argument for the
Command Loop, and

@® the Loop contains search commands (C, N, Q, R, S)
which also lack arguments, you can prevent endless
cycling by following each such search command with
a Conditional Execution (;) command.

@ the Loop contains no search commands, or only search
commands without a following Conditional
Termination command, you may have to break the
cycling with a CTRL-C, CTRL-A interrupt.

If you exceed the embedding depth of ten, SPEED
displays the message

Error: Maximum iteration level exceeded

Even within the legal limits, you may find that deeply
embedded Command Loops exhaust available memory.

Do not try to overlap Command Loops and Conditional
Executions. You get the error message

Error: < with no corresponding >

for example, if you try to issue a command line such as

1<SJ$;VD5"GT>VL="8$

7-92

Licensed Material-Property of Data General Corporation

Do not attempt to use an O command to branch into a
Command Loop. SPEED displays the message

Error: Illegal Command

Related Commands

To specify conditions for the execution of a command
line, use instead a Conditional Execution; see the
n’’Xcommand-line’ command.

To specify a command line in which you automatically
return to earlier commands or skip to later ones, see the
Olabel command.

Examples

You decide that you want every line in the buffer inset.
IUWVN<-$1L>$$

You jump to the beginning of the buffer and issue the
Command Loop with the numerical argument VN+1
(recalling that the VN command counts the first line as
0). SPEED inserts a tab and moves down one line as
many times as the argument indicates.

You wish to change the informal tone of a letter you are
writing.

1<CBob$Robert$;T>$$

With the Command Loop you change every instance of
Bob to Robert from the current CP position to the
bottom of the buffer. Since you issue no numerical
argument to the Loop, you include the semicolon of the
Conditional Termination command. When the C
command fails to find a match, control passes out of the
Loop and the Loop stops cycling.

093-000197-03

= Command

Equals: display or type out the value of
the numeric argument .

Format

n=

Function

SPEED can perform simple arithmetic and Boolean
calculations, and display the result. The = command
displays on the screen or types out at the hard-copy
terminal the value of the numeric argument n, where n
may be any numeric argument or expression, the value
of a variable or pseudo-variable or any function you can
define on it, or any Boolean expression.

Numerical Arguments

None

Symbolic Modifiers

This command takes the commercial at (@) and
ampersand (&) modifiers.

n@=
suppresses a line break between the value it displays
and the next SPEED prompt. That is, the response to

VN=8$$
is

30
'

but the response to

VN@=8$%

is

30/_

If you issue a series of = commands in a single

command line, the system response is on the same line
for the command following a @= command, and on
the next line for the command following a =
command.

n&=3%$
expresses the numerical value in the alternate radix.
If, for example, you set your alternate radix as binary
with 2 2WR command, the system responds to

10+ 10&=8$%

093-000197-03

with
10100

For details concerning numerical and Boolean
expressions and operations, see the WR command, the
ampersand symbol (&) for taking the alternate radix,
the addition (+), subtraction (-), multiplication (*),
and division (/) symbols, and the symbols for Boolean
operators ([+, -, 1*, /).

Characteristics
This command does not require a delimiter.
You may decrement, increment, or set variables and

display the result with the same command; issue VDn=,
Vin=, and VSn= commands.

The following = commands will help you keep track of
your text and editing tasks:

VC= What is the ASCII decimal equivalent
of the next character on the right?

VL= What line number am I on?

VM= How many moves is it from the

beginning of the line to the CP?

VN= How many NEW LINEs are there in
the current buffer?

VP= What was the previous position of the
Ccp?

WA= What is my default argument mode?

WC= What is my case control mode?

WD= How many lines does my terminal

display at a time?

WM= How many lines does SPEED read into
the buffer at a time?

WP= What is my mode for positioning the
CP after an unsuccesful search?

WR = What is my alternate radix?

Licensed Material-Property of Data General Corporation 7 - 9 3

= (continued)

WS= What is my mode for matching case of
letters during a search?
7= How many characters are there in the

current buffer?

= How many characters are there from
the beginning of the buffer to here?

See each of the commands or symbols used as an
argument to the = command above for details of the
value returned and displayed.

Precautions and Error Messages

Remember that SPEED is restricted to ‘the range
-32768 o through +32767 |, for commands that take
both positive and negative numerical arguments, and to
the range O through +65535 |, for commands that take
positive or paired numerical arguments.

If you inadvertently issue this command with a
nonnumerical argument, SPEED informs you that you
have made an error in syntax or have issued an illegal
command, or sends you the message

Error: Illegal number of arguments to command
Related Commands

To insert the system response in the text, use a
Backslash; see the n\ command.

Example
1Z2-.=$$%

2001

You ask SPEED how far in terms of characters you are
from the end of the buffer and SPEED tells you.

7-94

Licensed Material-Property of Data General Corporation

? Command
Turn the Trace Mode Toggle on if off,
or off if on.

Format
?
Function

This command turns Trace Mode on if it was off, and
turns it off if it was on. When you turn Trace Mode on,
SPEED displays the characters in the command line as
they execute.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter.

When the toggle is on, SPEED displays each character
in the command line, including NEW LINE, form feed,
space, arguments to the command, and the first letter of
each command. For brevity, the rest of the characters in
the command string, such as a long text insert, do not
echo. When SPEED has processed the entire command
line, it resumes echoing each character.

When you turn the toggle on, you inhibit the automatic
display mode, whether you set it with a nWD command
or enter SPEED with the D switch. When you turn the
toggle off by reissuing the ? command, SPEED will
automatically restore your display mode. While the
toggle is on, you have to issue T commands for display of
text.

The default mode of the toggle is off.

093-000197-03

Example
?<<S:$;VI0O>IcolonsO0=[1$VO\T$$

< SVI0O > S,VI0 > S VIO > S/VI0 > S IV0 \
Tcolons = 4$$
!

You turn the Trace Mode Toggle on to observe the
execution of the following commands, which search for
colons and insert the result in the text. With the toggle
on, SPEED gives you a display of the iterative execution
of the Command Loop, the two insertion commands, and
the display command. It follows that with the text
display and then restores your prompt.

093-000197-03

Symbol
Set a temporary delimiter.

Format

@command-name%

Function

Use this modifier to set a temporary delimiter when you
wish to search for or insert the standard delimiter ESC
($) in the text, and therefore do not want to use ESC as
the search string or text string delimiter. SPEED takes
the first character following the command name
(arbitrarily shown as a percent sign (%) in the format)
as the temporary delimiter. The character has the status
of a delimiter for the current command only. If a text
string or search string ends your command line,
remember to insert the temporary delimiter before you
type in CTRL-D. Otherwise SPEED displays the
message

Error: Unterminated string
and place a CTRL-D echo ($$) in the text.

The following commands take the commercial at
modifier:

OCINQST=

The @= command has the idiosyncratic effect of
suppressing the NEW LINE after the displayed value.
The next character following @T is the temporary
delimiter for the following display; if you do not select a
temporary delimiter, use ESC (@T$message$). See the
section “Symbolic Modifiers” under each separate
command for other details of the behavior of @ . See
also CTRL-I for the use of tabs as temporary delimiters
in conjunction with @ .

Example
< Canalogue$analog; >

'@C/;/$;/8$
< Canalogue$analog$; >

You have typed and stored a faulty command line. You
use the commerical at (@) modifier in order to
implement the slash as a temporary delimiter. This
enables you to change the semicolon to an ESC,
semicolon ($;) sequence. You enter the slash temporary
delimiter both at the end of the search string and at the
end of the text string.

Licensed Material-Property of Data General Corporation 7 - 9 5

\ Command

Backslash: insert a string of ASCII
digits into the text.

Format
n\

Function

This command inserts the ASCII value of the expression
n into the text, where n is a Boolean expression, a
numerical expression, the value of a variable or
pseudo-variable, or a function you define on these.

Use this command to insert available numerical values
in the text automatically rather than calculating them
by hand.

Numerical Arguments

None

Symbolic Modifier

This command takes the ampersand modifier (&). The
ampersand modifier, when preceding the command
name, inserts in the text the numerical value in the
alternate radix. If, for example, you set your alternate
radix as binary with a 2WR command, the system will
respond to

110+ 10&\$$
with
10100

For details concerning numerical and Boolean
expressions and operations, see the WR command, the
ampersand symbol (&) for taking the alternate radix,
the addition (+), subtraction (-), multiplication (*), and
division (/) symbols, and the Boolean operators (*+ ~-

A% /\/)

When you issue the command without the ampersand
modifier, SPEED inserts the decimal value of the
expression.

Characteristics
This command does not require a delimiter.
This command inserts into the text the value of a

numerical expression, not the numerical expression
itself. If, for cxample, you issuc a VDO*69\$$

7-96

Licensed Material-Property of Data General Corporation

command, where VO=22, SPEED will insert 1449 in
the text, which is the result of decrementing VO by one
and multiplying the result by 69.

Precautions and Error Messages

Remember that SPEED is restricted to the range
232768, through +32767, for commands that take both
positive and negative numerical arguments, and to the
range O through +65535, for commands that take
positive or paired numerical arguments.

Remember that SPEED truncates to the last eight bits.
If you inadvertently issue this command with a
nonnumerical argument, SPEED informs you that you
have made an error in syntax, or that you have issued an
illegal command, or displays the message

Error: Illegal number of arguments to command

Related Commands

The \ command inserts the system response into the
text. To perform calculations without inserting the result
in the text, use the = command.

To insert the character corresponding to an ASCII
numerical value, see the nl command.

Examples

You want to record the length of your file at the head of
the file.

JIThisOfileOcontains J$VN\IClines. $$
This file contains 90 lines.

You do so by delimiting the first | command, issuing the
VN\ command, and continuing with another | command.

You are taking inventory of stock on hand.

15720casesJof[1240cansdeach]=[0$572*24\I0cans.$$

572 cases of 24 cans each = 13728 cans.*

093-000197-03

By using the / command, you let SPEED perform the
needed calculation instead of doing it yourself by hand.

You wish to insert a series of numbers for use in a
measuring scale.

116VS0<VDO+ 1\.O0$>-1D$$
15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.*

You set a variable for the highest value, and apply it as a
numerical argument to the Command Loop. Since
VDO+1 = VO, the first time around, the Command
Loop inserts 15, a period, and a space. Successive
executions insert decrements from 15. The command
following the Loop removes an end space.

093-000197-03

Ak Symbol
Logical AND (Boolean Intersection)

Format

X/\ty

Function

SPEED uses the sequence of a caret and an asterisk to
represent logical AND or Boolean intersection. The
function is defined as

x M *y=lifx=1andy=1
x ™ *y=0 otherwise

This binary operator produces a full word result with
each bit representing the Boolean product of the
corresponding bits of the operands.

Example
I~ %=1
1~*0=0
0"~ *1=0
0~ *0=0

Licensed Material-Property of Data General Corporation 7 = 9 7

~ 4 Symbol
Logical Inclusive OR (Boolean Union)

~ o Symbol
Logical NOT (Boolean Complement)

Format
x"~ty

Function

SPEED uses the sequence of a caret and the plus symbol
to represent logical inclusive OR or Boolean union. The
function is defined as

x ™ +y=0if x=0and y=0
x ™ +y=1 otherwise

This binary operator produces a full word resuit with
each bit representing the Boolean sum of the
corresponding bits of the operands.

Example
I~ +1=1
1™ +0=1
0~ +1=1
0~ +0=0
7-98

Licensed Material-Property of Data General Corporation

Format

~

-X

Function

SPEED uses the sequence of a caret and a hyphen to
represent logical NOT or the Boolean complement. The
function is defined as

~x=0if x=1
~x=1ifx=0

This unary operator precedes its operand, just as the
unary minus does. The operator produces a full word
result with each bit representing the Boolean
complement of the corresponding bit in the operand.

Remember that SPEED is restricted to the range
-32768,, through +32767, for commands that take both
positive and negative numerical arguments, and to the
range O through +65535, for commands that take
positive or paired numerical arguments.

Example

~N-l&=1111111111111110
~N0&=111111T111TTTTT]

For the example the alternate radix is set to 2 and the
ampersand modifier produces a binary result. Otherwise
the result would be

~-1=65534
~-0=65535

See the WR command and the ampersand symbol.

093-000197-03

~/ Symbol
Logical Exclusive OR (Boolean
Symmetric Difference)

_X Command

Save the previous command line in a
buffer.

Format
Xy

Function

SPEED uses the sequence of a caret and a slash to
represent logical exclusive OR or Boolean symmetric
difference. The function is defined as

x" /y=0if x=y

x 7 /y=1 otherwise
This binary operator produces a full word result with

each bit representing the symmetric difference of the
corresponding bits of the operands.

Example
IN/1=01"/0=10"/1=10"J0=0

093-000197-03

Licensed Material-Property of Data General Corporation

Format

_.buffer-name

Function

The only legal buffer names are the digits 0 through 9
and single letters of the alphabet. This command places
the last command line longer than 10 characters in the
buffer denoted by buffer-name. This frees the space the
command line occupies for subsequent command strings,
but stores the command line for editing or reissue with a
IBbuffer-name command.

Numerical Arguments

None

Symbolic Modifiers

None

Characteristics

This command does not require a delimiter, but it must
be the first command after the prompt.

The command string terminator, CTRL-D, which
echoes as $$, counts as two characters for purposes of
this command.

If there is no previous command string 10 characters or
longer, or if you saved the last such string with a _x
command, SPEED places the last command line you
issued into Buffer x.

Precautions and Error Messages

You may not execute a _x command from a buffer or
from a file, that is, as part of a match to a
[Bbuffer-name or [Ffilename template, or as part of a
command file serving as a value to the /I= (Invoke)
switch. SPEED displays the message

Error: lllegal command

If memory space becomes scarce, SPEED saves the
space occupied by the command string you are trying to
store in order to avoid a memory space exhaustion error.
The effect is the same as if there were no previous
commands.

7-99

_x (continued)

Related Commands

You may reissue a command stored in Buffer x with the
_x command by issuing a |Bx command. See the
CTRL-B template in this dictionary.

If you do not wish to save a command line, but know
before you issue it that you want a display of its
execution, use the Trace Toggle. See the ? command.

Example

SPEED surprises you unpleasantly when it executes the
command line below. You had decided to get a count of
periods as a rough count of the number of sentences you
had in your text. The result can’t be right, so you must
have issued the wrong commands.

1JOVS0<S.$;VIO>Isentences [= O$VO\$$

sentences = 0*

1_1$BS1%$

You save the command line responsible for the error in
Buffer 1 in order to study it carefully, edit it, and reuse
it. When you switch to Buffer 1, you see

JOVSO < S.8;VI0 > Isentences = $v0 \ $8

and immediately realize that by omitting the delimiter,
you inadvertently set a numerical argument of zero for
the Command Loop. You correct that with

1@C/ </$<</$$

Next you return to your home buffer and re-execute the
command line by issuing a TB1 command:

BS0$|B1$$
sentences = 76

Success at last!

7-100

Licensed Material-Property of Data General Corporation

CTRL- \ character-listCTRL- \ Template
Match the first instance of any
character from the list between the
backslashes.

Format

search]\character-list]\string

Function

When you issue a search command with this template,
SPEED matches the search string af\pqr{\z with
whichever of apz, aqz, or arz it encounters first.

Do not try to place a list within a list. If you do, you will
inadvertently truncate your lists. SPEED rejects the
control characters TE, TG, TN, 1T, 1X,7Y,and | Z
within this template, and sends you the message

Error: Illegal control character in search string

To place any control character in a T\...]\ list other than
W, precede it with TW. SPEED allows buffer names
and filenames within the backslashes (for filenames,
remember to issue the command. with the commerical at
modifier (@) in order to end the filename with a
delimiter). SPEED will treat each character in the
buffer or file as one of the search alternatives.

1N 1\ pgr]\ will match any one character except those
within the backslashes.

1Y 1\ 0123456789 1 \ matches any string of digits. Y
1 \ aciou | \ matches any sequence of one or more
vowels.

Example

10VS6$<ST\.2!1\$;VI6$> V6 =$$

You make a rough count of the number of sentences in
the buffer by counting end punctuation. Using the

backslash template, you conduct a single search rather
than separate ones for each mark.

093-000197-03

CTRL-Bbuffer-name Expansion

Expand to the entire contents of a
buffer.

Formats

search|Bbuffer-namestring$
IBbuffer-name

Function

When you issue a search command with this expansion,
SPEED tries to match |Bbuffer-name with the contents
of that buffer. The buffer you name must be active, and
it must not be the current buffer. The only legal buffer
names are the digits O through 9 and individual letters of
the alphabet.

If the buffer named by buffer-name contains text, you
may insert that text into the current buffer with an
I|Bbuffer-name command. For example, if Buffer A
contains the text

Do not read this sentence.

the command

lIPleaseJremember: (1 C11BAS- 1L$$

will insert

*Please remember: Do not read this sentence.

in the current buffer.

You do not need an ESC ($) to close |BA. Unlike the
CTRL-F expansion, SPEED treats material following a
CTRL-B expansion and a single delimiter as a sequence
of commands. (In the example, SPEED positions the CP
at the beginning of the line, rather than treating L as
further text to insert.)

If the buffer contains a numerical value, you may use
CTRL-B as part of a numerical expression. For
example, if Buffer S contains the value 69, the command
IB5-21$$ inserts the letter C in the current buffer, since
the ASCII decimal equivalent of C is 69-2=67.
Similarly, the command 2*]B5\$$ inserts the value 138
in the text of the current buffer.

If the buffer contains commands, you may execute the
buffer by issuing the expansion [Bbuffer-name$$ as if it
were a command line. For example, if Buffer C contains

1JOVS0$ <ST\ (1)
N\$:VIO>V0=$$

093-000197-03

the simple command [BC$$ carries out those commands
for the current buffer, giving a rough estimate of the
number of words in the buffer by counting spaces and
NEW LINEs and displaying the value.

You can nest the commands inserted using the CTRL-B
and CTRL-F expansions up to 10 levels deep.

To mention a CTRL-B expansion when you are
constructing a command line that you wish to store and
execute at a later date, prefix CTRL-B with CTRL-F or
another CTRL-B. If you do not type [B]Bbuffer-name
or [FIBbuffer-name, SPEED attempts to insert or
execute the contents of the buffer in the usual way.

Examples

You want to append the contents of file ADDENDA to
the end of file AGENDA.

IFOagenda$BS5BFOaddenda$
BCABFUBSO0ZJI|BA$$

You open AGENDA globally for updating. You switch
to an available buffer, Buffer 5, and open ADDENDA
locally for updating. You copy the contents of
ADDENDA to another buffer, Buffer A, and close the
local file ADDENDA. You switch back to your home
buffer and take the CP to the bottom of the buffer. You
use the | command with the CTRL-B template to insert
the contents of Buffer A into the current buffer.

You want a scheme for automatically typing line
numbers and numbers of characters from time to time.

IVL\L.O$.\—$$
70. 2334 *
I_N$$

1IBNS$

80. 2375 *

You execute the command line once, and then realize
that you can use it repeatedly. You save the command
line by putting it in Buffer N with the very next
command. Later on in the session, you execute the
buffer whenever you need that command line, rather
than retyping the command line itself.

Licensed Material-Property of Data General Corporation 7 - 1 O 1

CTRL-C, CTRL-A Console Control

Cancel a current command line longer
than one line.

CTRL-C,CTRL-B Console Control
Abort this SPEED editing session.

Format
1CTA

Function

This control key sequence allows you to cancel a
command line that extends over several lines, which
contains NEW LINEs or carriage returns, before you
issue a CTRL-D.

To cancel a command on a single line, see CTRL-U.

Example

IIHeresOhtelist;)
Smiht)

jones)
Brooown]CTA

!

[t is too much trouble clearing up the errors you have
already made in this command line; you cancel it in
order to start over.

7-102

Licensed Material-Property of Data General Corporation

Format
ciB

Function

This control key sequence allows you to abort the
current editing session. You return to the parent process,
usually the CLI. You lose all editing changes you made
in the current session. If you opened the file with Update
Mode on, you retain the earlier version of the file and an
empty filename.TM. If you opened an output file with
Update Mode off (with a BFW, BFNW, FW, or FNW
command), the output file will be empty even if you
write to the file, unless you close it before you issue the
abort sequence.

If you are considering an abort because the terminal
does not seem to be functioning, you may have
inadvertently frozen the terminal with a CTRL-S. Try a
CTRL-Q before issuing the abort sequence.

Cancel command lines with CTRL-U or CTRL-C,
CTRL-A instead of using this control sequence.

To make an orderly exit from SPEED, use the H
command.

Example
c1B

You abort the SPEED editing session, losing all changes
you made.

093-000197-03

Console Control

CTRL-D

Terminate and execute the current
command line.

CTRL-E Template

Match one or more successive tabs
and spaces in this position.

Format

command-line$$

Function

When you type this control key, SPEED terminates and
attempts to execute the current command line. SPEED
restores your prompt when it has finished the execution.
CTRL-D also acts as a delimiter for a text string if the
string is the last entry in the command line; you do not
need to precede CTRL-D with ESC for a text string.

SPEED always echoes CTRL-D at the end of your
command line with a double ESC ($$), which it counts
as two characters, and never as D. (To type in 1D, issue
a 4l command.) You cannot, by definition, place a
CTRL-D within a text string.

Remember to terminate an X command with CTRL-D,
rather than with the NEW LINE terminator of the
parent process.

If you type a CTRL-D and nothing appears to happen,
you may have inadvertently tapped CTRL-S to its left,
which freezes the terminal. Try a CTRL-Q.

Example

1J$$
lIHello!$$
12J3
lIGoodbye!$$
IH#T$S

lJIHello!$ZJIGoodbye!$# T$$
The first command sequence contains five command

lines. The second, single command line is equivalent and
requires fewer strokes.

093-000197-03

Licensed Material-Property of Data General Corporation

Format
search]Estring

Function

When you issue a search command with this template,
SPEED matches pass|Eword with any string consisting
of pass, one or more tabs and spaces, and word.

This template will match any mixture of tabs and
spaces.

INTE matches one or more of anything that is not a tab
or space.

[X]E matches 0 or more tabs and spaces, and is
equivalent to |T.

IYTE matches one or more tabs and spaces, and is
equivalent to JE itself.

Example

1<<C)
1ES)
$,>9%%

You remove all white space from the beginnings of lines
with the | E template in a Command Loop.

7-103

CTRL-Ffilename Expansion
Expand to the entire contents of a file.

Formats

IFfilename$$ [command-line]
Ffilename$ [text-string$]

where the double dollar sign ($$) represents a repeated
escape << ESC,ESC > and not, as usual, CTRL-D

Function

When you issue a search command with this expansion,
SPEED tries to match |Ffilename$ with the contents of
that file. You must have access to the file. If the file you
wish to match is not in the current directory, you must
specify a complete pathname.

If the file contains text, you may insert that text into the
buffer with an I[Ffilename$ command. You must follow
the filename with a delimiter. If you follow it with a
single ESC ($), SPEED treats the material following the
filename as additional text and inserts it. If you wish
the file to conclude the insertion, but you wish to
continue the command line, you must follow the
filename with the double delimiter ESC ESC (8).
SPEED then treats any material following the filename
as a sequence of commands.

If the file contains commands, you may execute the file
by issuing the expansion [Ffilename$$ as if it werc a
command line. When you use the expansion this way,
SPEED treats the material following the filename and
single delimiter as a command line.

You can nest the commands inserted using the CTRL-F
and CTRL-B expansions in combination up to 10 levels
deep. The pathname specified in a CTRL-F command,
however, cannot contain an embedded CTRL-F
command.

To mention a CTRL-F expansion when you are
constructing a command line that you wish to store and
execute at a later date, prefix CTRL-F with CTRL-B or
another CTRL-F. If you do not type |F|Ffilename or
IB]Ffilename, SPEED will attempt to insert or execute
the contents of the file in the usual way.

7-104

Licensed Material-Property of Data General Corporation

Examples

You have stored a routine for numbering lines in the file
LINE.

*The next sentence is false.
The next sentence is false.
The next sentence is false.
The first sentence is false.

IFline$J$$

*1. The next sentence is false.
2. The next sentence is false.
3. The next sentence is false.
4. The first sentence is true.

Instead of laboriously numbering lines by hand, you tell
SPEED to execute file LINE and then jump to the
beginning of the buffer. SPEED produces the result you
want.

The file DUM contains the first sentence below, and the
file DEE contains the second.

NTFdum$iFdee$$-2L$$

*Please read the line below.
Please read the line above.

The | command first inserts the contents of file DUM.
Since a single delimiter follows DUM in the command
line, SPEED treats what follows as further text to insert.
In this case, the additional text is the contents of file
DEE. Since a double delimiter follows DEE in the text,
SPEED treats the rest of the line as a command string
and moves back two lines.

You are devising a command line which will, when you
execute it, create a new file by inserting one file,
PARADOX, into the buffer and applying the commands
in another file, LINE, to it.

1@1%IF1Fparadox$$|FFline$%$$
IFWboth$:PWSFC$$

You mention rather than use CTRL-F by repeating it
before the filename. You do not apply the commands at
this time. Instead, you open a new file, BOTH, copy the
command line to it, clear the buffer, and close the file.
Now, whenever you wish to insert file PARADOX and
execute file LINE, you will simply issue the command
[Fboth$$.

093-000197-03

CTRL-G SPEED Control

Put the CP in this position in the
matched string.

CTRL-I SPEED Control
Insert a string with an initial tab.

Format
search|Gstring

Function

When you issue a search command with this control key,
SPEED matches pass|Gword with password. But
instead of positioning the CP at the end of the matched
string, as in password*, SPEED places the CP in the
position of the control key, in this case pass*word.

On models other than 6052, 6053, D100, or D200, use 1]
instead.

Examples
I<<Sconc|Gieve$;Cie$ei$ >$$

concei*ve

You correct all occurrences of a common misspelling.
The control key positions the CP so that it will be in the
right position for the C command in the Command
Loop. The example shows the CP after one such change
has been made.

IS]G)
$$

You use the control key to position the CP at the end of

the current line rather than at the beginning of the next
line.

093-000197-03

Licensed Material-Property of Data General Corporation

Format
listring$

Function

This control key behaves like the | command, but inserts
a tab before the string you specify. The CP repositions at
the end of the inserted string.

This control key accepts the commercial at modifier (@)
The effect of this modifier is to change the delimiter
from $ (ESC) to a tab, which you may type either with a
second CTRL-I or with the TAB key. When you use the
control key with the modifer, it does not insert a tab
before the rest of the string.

Examples
You insert a tab before the title of your column.
MSeries(1AS

Series A*

< (C3.161483.1416*; >

1@TISTIS$S

< C3.161483.14168*; >

You need to correct a faulty command line. You issue
CTRL-I with the modifier in order to insert the missing

delimiter. (In the command line, SPEED echoes 11 with
a simulated tab.)

7-105

CTRL-} SPEED Control CTRL-L SPEED Control
NEW LINE Form Feed

Format Format

J L

Function Function

This control key is equivalent to the NEW LINE key.
SPEED always echoes CTRL-J with a new line, and
never with T J. In this manual we represent keying in a
NEW LINE with).

Example

1$$
11J$$
101$$

The three commands above have the same effect of
inserting a NEW LINE in the text.

7-106

Licensed Material-Property of Data General Corporation

This control key specifies a form feed within a search or
insertion command. SPEED clears the terminal screen
when you key in CTRL-L, but restores it when you
execute a C or | command, and after a second CTRL-D
following search commands.

When SPEED is in page mode (WM is set at 0), it reads
text into the buffer from form feed to form feed. The
beginning form feed is part of the previous page. (The
trailing form feed is also invisible.)

When SPEED is in page mode, it does not place form
feeds in the buffer with the rest of the text. It keeps
track of each form feed’s place and reinserts it when you
copy text to an output file. Therefore, if you need to
search for or change a form feed, you must specify some
nonzero window mode before you open the file. SPEED
then leaves form feeds in the text. See the WM
command.

When you insert a CTRL-L, SPEED echoes a T L.
When you close and reopen the file, SPEED no longer
shows the form feed if your window mode is 0.

Example
IVN=8$

60

1ZJ$6<l)
>8Il
$$

You are editing a manuscript and wish to simulate the
66 lines of a standard typewriter page. When you ask,
SPEED tells you that the buffer contains 60 lines. You
jump to the bottom, insert six blank lines and a form
feed.

093-000197-03

CTRL-M SPEED Control

Carriage Return

CTRL-N Template
Match anything in this position but
the next character.

Format
™

Function

This control key specifies a carriage return within a
search or insertion command. When you type it, SPEED
will echo a new line. After it is inserted, SPEED echoes
1 M. This key is equivalent, in a text string, to a carriage
return (CR). It is not equivalent to the NEW LINE key.
See CTRL-J.

Example
Smith thinks he has typed a vertical list.

*Hydrogen | MHelium | MLithium | MBeryllium |
MBoron

SPEED’s echo shows Smith that he typed CR instead of
NEW LINE.

1<<CIM$)
$,>8%

Hydrogen
Helium
Lithium
Beryllium
Boron

Smith corrects the mistake with a Command Loop and a
CTRL-M.

093-000197-03

Licensed Material-Property of Data General Corporation

Format

search|Nstring

Function

When you issue a search command with this template,
SPEED matches pass{Nsword with any string of the
form passxword, where x is any character but s.

One N does not negate another: pass]Nsword and
pass|NTNsword make the same match.

You may use this template in conjunction with others:

INJE matches one or more of anything that is not a tab
or space.

TNTX matches the next portion of text that is not 0 or
more occurrences of the next character.

TNTY matches text up to the next repetition of the next
character: TNTYO successively places the CP after the
decimal point on the first search and after the last 7 in
0.000770 on the second.

TNT\0 12345677\ matches any next character which is
not an octal digit. INT\!"":;?/.,7\ matches any next
character which is not one of the punctuation marks
within the paired backslashes.

Examples

!Ssep[Narate$$

You search for an instance of a misspelling by placing
the TN template before the letter you think is misspelled.
I0VS3$ <SINT\ 12345678901\08$;VI3>V3=8$$

You make a count of leading Os in your text by

incrementing Variable 3 every time SPEED finds a 0
preceded by anything other than a digit.

7-107

Console Control

CTRL-Q

Unfreeze the terminal.

Console Control

CTRL-S

Freeze the terminal.

Format
Q

Function

This control key allows you to regain control of the
terminal. Try this key when your manipulation of the
keyboard seems to have no effect. This key also restores
roll to the screen if you are displaying text longer than
the screen. To freeze the terminal, see CTRL-S.

Example

IXTYPE Oschedule$$
1S
TQ

Without leaving SPEED, you check an item in your file
SCHEDULE. You use an X command to display an
unopened file. As the file rolls by on the screen, you spot
the item you want and freeze the screen. When you are
through checking, you unfreeze the terminal with
CTRL-Q.

7-108

Licensed Material-Property of Data General Corporation

Format
B

Function

This key allows you to freeze the terminal. If the screen
is rolling, it will halt. You may continue to type in
commands blind, but as long as you maintain the freeze,
no command you issue will take effect. To restore roll to
the screen and regain control of the terminal, see
CTRL-Q.

Example

IFOphone$#T$$
s
1Q

You wish to look for an item in your file PHONE. You
open the file and issue a command to display the entire
buffer. When you spot the item, you freeze the terminal
with a CTRL-S to inspect it closely. When you are
through, you unfreeze the terminal with a CTRL-Q.

093-000197-03

CTRL-T Template
Match zero or more successive tabs
and spaces in this position.

CTRL-U Console Control
Cancel the current command line.

Format
search<<CTRL-P>>[Tstring

Function

Enter this control character from the keyboard by typing
the sequence CTRL-P, CTRL-T. Typing in CTRL-T
alone has no effect. When you issue a search command
with this template, SPEED matches pass|Tword with
password, pass word, and pass followed by any number
of tabs and spaces followed by word.

1T has the same effect as the sequence [XTE.

Example

Looking for an abbreviation, you type
ISi.]P1Te.$$

The terminal echoes

1Si.|Te.$$

And SPEED successively finds both occurrences of the
abbreviation in the text.

murdered by Jones, i. e.* Smith, i.e.* Brown.

093-000197-03

Licensed Material-Property of Data General Corporation

Format
U

Function

This control key allows you to cancel a command line
before you issue a CTRL-D. SPEED will erase the
command line from the display when CTRL-U takes
effect.

To cancel a series of commands extending over more
than one line, use the CTRL-C, CTRL-A sequence.

Example

You begin inserting text and realize that you forgot to
type the # I # command name.

IThis is the last sentence thalU
!
You avoid the display and exiting process which your

first two letters inadvertently specify by cancelling the
line with a CTRL-U.

7-109

CTRL-W SPEED Control

Interpret the next character literally
rather than as a template.

Template

CTRL-X
Match zero or more occurrences of
the next characters.

Format

search{Wstring

Function

When you issue a search command with this template,
SPEED matches pass]W{Nsword with pass [N sword;
that is, with a string containing the next template
character rather than the characters for which it is a
template. Without the CTRL-W, SPEED would maich
pass{Nsword with pass, followed by any character but
s, followed by word. With the CTRL-W, SPEED
matches the search string with pass, followed by N,
followed by sword. Use this template to carry out
searches in other SPEED command lines. To search for
TW itself, use TWIW.

On models other than 6052, 6053, D100, or D200, use |—
instead.

Example
IScontain]NJ$$

containi*ng
1_1$BS1$CTWIN$$BS0$1B18$
contain (J*

You set a search for an instance of contain followed by
any suffix such as -s, -ing, or -ed, and SPEED finds an
instance. You decide to search instead for instances of
contain without suffixes. You save the previous
command line in Buffer 1, switch to that buffer, and
enter a C command. Since the command contains
CTRL-W before CTRL-N, it takes N literally rather
than as a negation of the next character. The command
finds the template and deletes it. You switch back to
your original buffer and execute Buffer 1. SPEED then
finds an unaffixed instance of your word (that is not at
the end of a line).

7-110

Licensed Material-Property of Data General Corporation

Format

search|Xstring

Function

When you issue a search command with this template,
SPEED matches a search string of the form afXbc with
the first expression it encounters of the form ac, abc,
abbc, abbbe, ...

IX]E is equivalent to |T, and matches zero or more tabs
and spaces.

1X]Z matches everything to the end of the buffer.
Examples

1S0.1X044721$$

0.44721*

Uncertain of whether there are any Os in the decimal
expression you want to find, you type a CTRL-X into

the search string. SPEED’s first match contains no 0 in
that position.

093-000197-03

CTRL-Y Template CTRL-Z Template
Match a sequence of one or more of Match any single character in this
the next character. position.

Format Format

search]|Ystring

Function

When you issue a search command with this template,
SPEED matches the search string 0.]Y044721 with the
first expression it encounters of the form 0.044721,
0.0044721, 0.00044721, 0.000044721, ...

INTY matches text up to the next repetition of the next
character: INTYO will successively place the CP after the
decimal point and after the first 7 in 0.000770. TYIN has
the same effect as INJY.

ISIN]YO$$
0.%000770
ISIN]YO$$
0.0007*70

IYIE is equivalent to |E, and matches any number of
tabs and spaces.

[YT\character-list]\ matches any string consisting only
of characters in the list between the backslashes:
TYINO11\ matches any binary expression, and
TYINT\O 17\ matches any expression other than a binary
one.

Example
I<CIY_$%;>8$
An editor asks you to remove all underlining from a text.

You do so by including a CTRL-Y before the underline
in the C command of the Command Loop.

search]Zstring

Function

When you execute a search command with this
template, SPEED matches pass]Zword with the string
consisting of pass, any one character, and word.

Remember to count a space, tab, carriage return (CR),
NEW LINE, and form feed as single characters.

Remember that 1Z must match a single character:
pass]Zword does not match password.

[NTZ prevents a match of anything in the position.
1X]1Z matches everything to the end of the buffer.
Examples

1Sc]Zn$$

Can* maniac n*egate acne?

SPEED matches in turn the three characters preceding
each of the asterisks, but not those in the last word.

*can not, repeat can
not

!<CcanlZnot$cannot$;>3$$
%%cannot, repeat cannot%%

You delete both spaces and NEW LINEs with the
template in a Command Loop. '

End of Chapter

093-000197-03

Licensed Material-Property of Data General Corporation

7-111

Appendix A
ASCII Character Set

LEGEND:
10_-
To find the octal value of a character, locate the character, and Character code in decimal 64
combine the first two digits at the top of the character’s column EBCDIC equivalent hexadecimal code 0 @
with the third digit in the far left column Character __:—Cj—
OCTAL 00_ 01._ 02_ 03. 04_ 05_ 06_ 07_
0 8 BS 16 DLE 24 CAN 32 40 48 56
0 — NUL P~ (BACK- }=—di - — l— SPACE }—mi e 0 el
00 16 | SPACE) |10 1P 18 X 40 4D (FO F8 8
1 1 SOH 9 HT 17 DC1 25 EM 33 \ 41) 49 ; 57 9
—— e —m—— — Eam—— — — e
o1 1A 05 T8 13 1Q 19 1Y 5A i 5D F1)
2 STX 10 NL 18 DC2 26| suB |34 " a2 50 58
2 B b— (NEW }—d R Rl 2 al hin . L 2 el
02 ! 15 LINE) |12 ! 3F ! 7| uoTte) [sc F2 7A
3 3 ETX 1 NE/;T 19 DC3 27 ESC 35 M 43 + 51 3 59
— el S S el — e~ S
03 1C o8] TaB) [13 1S 27 | (ESCAPE) 7g 4E F3 SE
4 EOT 12 FF 20 DC4 28 FS 36 44) 52 60
e b—o (FORM }—] R il 3$ e | 4 Rad <
415 10 oc| FEED) |aC 1T c n 5B 68 | (COMMA) py aC
HE ENQ 13 RT 21 NAK 29 GS 37 o 45 53 5 61
- b et — — — - — — =
20 1E op| RETURN) 5 Ty D 1 6C ° 60 5 7E
6 6 ACK 14 SO 22 SYN 30 RS 38 R 46 . 54 6 62 R
2E 1F oE IN a2 v 1E 1 50 4 | (PERIOD) [gg 6E
7 12 BEL 15 St 23 ETB 31 us 39) a7 , 55 , 63 ,
2F 1G OF 10 26 W 1F [— 70| (APOS) [g3 F7 6F ’
OCTAL 10_ 11 12 13_ 14_ 15_ 16_ 17_
64 72 80 88 96 \ 104 112 120
—_— (@) —— —— TR s SSE— S— S
0 == @ s H 57 P 5 X 79| (GRAVE) [88 n 97 P A7 X
1 65 A 73 | 81 a 89 v 97 105 _ 113 121
aad ahd s] L had] | <
c co D8 €8 Y a 89 : %8 Q A8 Y
66 74 82 90 98 106 114 122
2 — — J = S —_—— b — i —n r ——
c2 B D1 Do R Eo z 82 91)) A9 z
67 75 83 91 99 107 15 123
3 —— C et K T S S [s c e k —— s — {
c3 D2 E2 8D 83 92 A2 co
68 76 a4 92 100 108 116 124
4 = D L L L T L \ l— d L | e t i '
c4 D3 E3 E0 84 93 A3 4F
9 77 85 93 101 109 17 125
5 |89 E RS VI L2 u BB] 101 PO L] N ALY S P A }
c5 D4 E4 9D 85 94 A4 DO
70 78 86 94 102 110 118 126 ~
6 — et N fermnd \Y) el or ~ |jr—— f e n - v e
cé F D5 ES 5F l 86 95 AS A1| (TILDE)
5 | 79 87 95 103 111 119) 127) pEL
AN BAa | <] Ko |] ARLd au
c7 G D6 © E6 w 6D or - a7 9 96 o A6 w 07| (RUBOUT)
SD-00217 Character code in octal at top and left of charts. 1 means CONTROL

093-000197-03 Licensed Material-Property of Data General Corporation A' 1

There are two classes of errors in SPEED: Text Editor
errors and AOS errors. This appendix lists the Text
Editor errors.

SPEED displays up to nine characters of the command
line, beginning with the command in error. When the
error is in a buffer or command file, the command line
typed will be the invocation of the file or buffer in error,
and other characters to a total of nine.

If you are a novice user of SPEED, you should realize
that on occasions you want to receive an error message.
For example, if you search for a misspelling in the hope
that you don’t find one, you receive the message

Error: Unsuccessful Search

with pleasure, not gloom.
SPEED Error Messages

Error: Access denied

The access control list for this file or directory does not
permit the access you attempted.

Error: Attempt to delete current buffer

You cannot use a BKx command for the current buffer
X.

Error: Attempt to edit permanent file

You attempted to open a file for updating but the file
has permanence on.

Error: Attempt to execute current buffer
You cannot use a [Bx command for the current buffer x.
Error: Buffer is inactive.

You attempted to issue a BKx or [Bx command to
inactive Buffer x.

093-000197-03

Appendix B
Errors in SPEED

Error: File already open

You attempted to open an input file with an FR,FW, or
FO command without first closing a previously opened
file.

Error: First argument greater than second argument

In commands that have two numerical arguments, the
first must not be greater than the second.

Error: lllegal argument to command

You gave a negative argument to a command that
accepts only 0 or a positive argument.

Error: Illegal buffer name

A through Z and 0 through 9 are the only legal buffer
names. SPEED does not distinguish lowercase from
uppercase letters in buffer names; BA and Ba name the
same buffer.

Error: lllegal command

You used a character or characters that are not defined
as a legal SPEED command.

Error: Illegal control character in search string

A character other than a legal control character
appeared in a search command argument.

Error: Illegal number of arguments to command
Commands such as m,nR are not legal.

Error: llegal variable name

Legal variable names are 0 through 9 only.
Error: Incomplete string in search buffer

You conducted no previous search or the search string
was longer than 31 characters.

Licensed Material-Property of Data General Corporation B- 1

Error: Insert file too long

File will not fit in available space.

Error: Insufficient memory available

SPEED has exhausted all available memory during
command execution or input. SPEED aborted the
current command. If you want to save the old command
line, type _x, where x is an available buffer. You can
still execute a few commands, but you should issue a file
output command very soon.

Error: Label not found

SPEED did not find the !labell you specified in the O
(Over) command.

Error: LINE TOO LONG

A line of the current window exceeds 136 characters.

** | ower case input encountered **

Informational message. The Y and A commands check
for lowercase characters in the data they transfer. The
message indicates that SPEED encountered lowercase
characters while case control was off. If you are at an
uppercase terminal and wish to know which characters
are lowercase, use a nonzero WC command and issue T
commands for display.

Error: Maximum insert depth exceeded

You exceeded the nesting levels of [Bx and [Fx
commands.

Error: Maximum iteration level exceeded
Command Loop nesting level exceeds 10.
Error: No more characters in input file

End of file reached by an A, R, or Y command.
Error: No open file

You attempted to use an A, E, FB, FU, P, PW, R, or Y
command without an open file.

Error: Pathname too long

You have specified a pathname more than 127
characters long.

Error: Renaming error

An error occurred when SPEED attempted to rename
the file in an FB or FU command. You may wish to do
an XFILESTATUS command to see what has happened.
Retry the command.

Error: Search string or << > broken over two levels

A search command or Command Loop starts at one
command insert level and ends at another level.

Error: Stack overflow

Existing SPEED may be damaged. Close all files and
re-execute SPEED to load a fresh .PR image into
memory.

Error: Syntax error

You specified an incorrect command format.

Error: String argument too long

The string in your Ostring$ command exceeds 32
characters.

Error: Unsuccessful search

A C, N, Q, or S search command failed to match the
search string.

Error: Unterminated string

You omitted the final delimiter in a @C, @I, @N, @Q,
@S or @T command.

Error: Update mode on

You tried to issue an FW, FR, FNW, or FNR opening
command while update mode is on.

Error: < with no corresponding >

You have entered only one angle bracket.

Error: " with no corresponding *

You entered a branch indicator (*) but no branch ().
Error: |\ with no corresponding T\

You entered only one]\ of the two required to enclose a
character list.

End of Appendix

B - 2 Licensed Material-Property of Data General Corporation

093-000197-03

Appendix C
SPEED Code Graph

End of Appendix

093-000197-03 Licensed Material-Property of Data General Corporation C- 1

O0_J13220a «<cO3Sacoy

uoneIodiog [e1auan eleq o A11adoid-IelIalep PasUadl

b4
o
X0 O O+

Q2 moO2

» O

[N &) c 2z

o (& I 4

< >

$9€20-as

O0_a12Za <o3Sacow

So._.)

$

$idl

-
-

$4d
qg

-—

$qE|

<

.><
o S wZ
s

{24 o

0D-a3>2

uoneiodio) [eiauey ejeq Jo ALIadoIg-|BlIBlRYy PASUSDI]

\

$

}

$1q

x»n O O+

omQODOY™T™ z

» O

" O (& B4

0o c Zz

< >

u o

§9€20-as

uoiie10di09 |e1auaN ele(Jo A11ado.id-|BIIBIBN PaSUBDIT] 59£20-0S

¢ \ ~ Yo 2u tu
s o tlv] RS Y EH
Y % . S
dim _”cu_ t 21 #
] ZM °
a bo]
l¢]
v
Tg $ _H_ _ o} o
d)
: St gl]
1Y A S S Sai L
a F e e .
o]
0
0 ;__Eﬁsa_%sﬁg._a,; 4 Z
% I o Asjua et U0y sBuiss yoseas ut R
¢ | _;,wﬁoﬁano_okcscsgwo‘mwoznwmmw“
| u e wﬁﬁ:ooxo, W v
$id] N R AN T,_ d :
s [a){%a) 1] [e o ;
92 e :
iqel i Lo ﬁuﬁwcoc&cﬁ ER _ i o
$a= 0 uuz&._.m n”w 8 3 [9]
?L X _..g , vt w.nm...m>>
| sia o a [o[]
< x> _“L
S
N q g
(o 'S
N M
3 T; (N
X 1 » A
9 $4 H
[{34] MOM ! E
2of 21 O M Tg n
AS A 9
N g
1 qg ~—
r T_ a
a 4

Appendix D
Functional Analysis of SPEED Commands

093-000197-03 Licensed Material-Property of Data General Corporation D' 1

o
oOmnw
oo}
A~ mw
+ ®AZmT
4+ ®zmw
£sTw
£€zm
£Zmw
-

[
[
1
1
1
1
1
1
1
[
0
0

Close input file - - ..
Close output file - - - -
Copy text to buffer - .-
Put in output file with L - e - - - .. B S
Put in output file without ~L
Shift buffers

+
+

'
'
v
'
'
[
1
[
1
'
'
v
'
'

+
+

0
'
'
[
'
'
'
1
1
'
'
'
'
¢
¢
'
'
1

Open input file
Clear buffer
Append to buffer
Open output file

+4++
++++
+

Move CP
Match text -
Delete characters - - e e e .. e

+

[
'
1
'
v
1
'
'
[
1
0
v
'
'
[
0
'
¥

'
'
'
'
'
"
0
'
'
1
1
t
1
'
1
'

Delete lines - e e .. oL e,
Insert text - - e - ...
Convert and insert text - - - - e L. .

Type out or display - e - e e e oo - - - ..o o
Get variable value - - - . e e L. oo. oo e L.
Get mode value - - - ..o .-o

Shift command control - - - .- L L e,
Iterate commands - - - - ..o - e e . e . L.
Conditional terminate level . - - - ..o

Update file e - - - - ..o
Backup file - - - - ... L. - e - . ..o
Apply to local file -+ - 4+ -+ -+ - + - - - - - - .

Execute CLI S e e . e Lo e o e e
Exit from SPEED - e o oo e oL e e e e

Explanation:

Read accross to see which commands have which properties.

Read down to see how the command works.

Find the intersection of a command name and a property to see whether that command has that property or not.
+ Yes, command has this property

- Noor does not apply

D - 2 Licensed Materiai-Property of Data General Corporation

++
+++

v + [
+

093-000197-03

x 0 <x> n"“x}

'+ ++ Cm

e -
S -+

— T e sl s S T - - -
+ - . - . e, - - ... - - -
+ - . .. e .. - e - .. - ..
S T A - - -
- - ... - e e ... - - 4+ . .. - ..
- .. - e e L T - ..
- e oo oL Lol - - ...+ . ..
- - - .. - e e e L. - - - . L. - -+
End of Appendix

083-000197-03 Licensed Material-Property of Data General Corporation

4+t 44+ Cmw
4+ 44+ T

4+ 44+ wTwm

'+4 O

‘+4+ OTw
"++ T

-+ -

-+ .

(concluded)

D-3

Nonalphabetic entries precede all others and follow the
ASCII sequence. Page numbers in italics indicate major
entries. The letter “f” following a page entry means
“and the following page;” “ff”” means “and the following
pages.”

—_——
o g

f, 6-3,7-104
7-105
7-105

,7-106
7-
7-
7-

N<XgCHNOTOZZr=—~Qmmounonw

see ESC (escape)
see 1D
< T\ 4-8,7-100
see |G
see |W
see Prompt
5-2,7-49,7-82
see Conditional Execution command
see Entire buffer
& 7-85
see Conditional Execution command
(D see Character Pointer
* (blinking) see Character Pointer
* see also Multiplication operator 4-1
+ see also Addition operator 4-1
- see also Unary Minus operator, Subtraction
operator 4-1

e I I PP Ay — —
| =—%

label!

see Current Position of Character
Pointer
/ see also Division operator 4-1

093-000197-03

Licensed Material-Property of Data General Corporation

Index

/D see Display switch

/1= see Invocation switch

: see Multipurpose modifier

; see Conditional Termination command

< x> see Command Loop
= see Equals command
? see Trace Mode Toggle
@ see Commercial at modifier, temporary

delimiter

see Backslash command
N see Logical AND
~+ see Logical Inclusive OR
~- see Logical NOT
~/ see Logical Exclusive OR
_X see Save command

A

A see Append command 2-1

Aborting SPEED see also [CTB 1-7

Addition operator 7-87

ALPHA LOCK 1-3, 4-5

ALT see ESC (escape)

Alternate radix see also Ampersand modifier and
Window Radix command 4-5, 7-85

Ampersand modifier 7-85

AND see Logical AND

Apostrophe 5-2, 7-83

Append command 7-5

Arguments see Numerical arguments, Symbolic
modifiers,Strings

Arithmetic in SPEED ¢4-1

ASCII character set A-1

ASCII digit insertion see Backslash command

At modifier see Commercial at modifier

B

Backslash command 4-1, 7-96

B? see Buffers? command

BC see Buffer Copy command

BFB see Buffer File Backup command

BFC see Buffer File Close command

BFNR see Buffer File New Read command
BFNW see Buffer File New Write command
BFO see Buffer File Open command

BFR see Buffer File Read command

Index-1

BFU see Buffer File Update command
BFW see Buffer File Write command
BG see Buffer Get command
BK see Buffer Kill command
Boolean Complement see Logical NOT
Boolean Functions in SPEED 4-2
Boolean Intersection see Logical AND
Boolean Symmetric Difference see Logical Exclusive

OR
Boolean Union see Logical Inclusive OR
Branch over to label 5-2
Branching see also Over command, Conditional

Execution command 5-2
BREAK ESC see ESC (escape)
BS see Buffer Set command
BT see Buffer Take command
Buffer 3-1ff

default 7-20
definition 1-1, I-5

Buffer Copy command 3-2, 7-6
Buffer File Backup command 7-8
Buffer File Close command 3-4, 7-9
Buffer File New Read command 7-10
Buffer File New Write command 7-1/
Buffer File Open command 7-12
Buffer File Read command 7-14
Buffer File Update command 7-15
Buffer File Write command 7-16
Buffer Get command 6-1, 7-17
Buffer Kill command 3-4, 7-19
Buffer name 3-2
Buffer Set command 3-3, 7-20
Buffer Take command 3-3, 7-21
Buffers? command 3-5, 7-23
Building a command line /-6

C see Change command
Capitals, convention on 7-5
Carriage return 1-3, 1-4, 7-107

Case control mode see also Window Case command 4-4f

Change command 2-3, 7-24
Changing text 2-3
Character 2-2
ASCII A-1
CTRL (control) 1-3
definition /-4
lowercase 4-4
positions 1-4
shift-down 4-4f
shift-lock 4-4f
shift-up 4-4f
uppercase 4-4
Character Pointer 1-2, 7-86
Characteristics (of commands) 7-3

| n deX' 2 Licensed Material-Property of Data General Corporation

Check
buffer status 3-5
CP position 2-4
file status 2-5

Choosing the SPEED modes 4-4

Close a file 2-5

Code graph C-1f

Colon modifier see Multipurpose modifier

Command file see also Macros 6-3

Command, inadvertent 1-7

Command line 1-1, 1-6
canceling 1-7

Command Loop 5-1, 7-50, 7-83,
Conditional control of 5-1f,
Nesting of 5-2, 7-91
Numerical control of 5-1, 7-91

Command name 1-6, 7-4

Command precedence 3-5, 7-5

Commercial at modifier 4-3f, 6-1, 7-95

Complement see Logical NOT

Conditional Execution command 5-2, 7-50, 7-82, 7-91
Execution conditions 5-2

Conditional Iteration 5-3

Conditional Termination command 5-1, 7-90, 7-91

Conditionalizing the Next Command 4-3

Confirm? 1-7, 7-39
Q command 1-7, 4-9, 7-55
Y command 1-7, 3-2, 7-79

Control characters and templates 4-6

Copy to a buffer see Buffer Copy command

Copy to a buffer and delete see Buffer Take command

Copy to a file see Write to a file

Copying to another buffer 3-2

Correcting text 2-2

Console control keys 1-2, /-3

CP see Character Pointer

CR see Carriage return

Create a file 2-1

Create new file? 7-1

Creating and using SPEED macros 6-2

Current Position of Character Pointer 2-4, 7-88

Cursor 1-2

7-91
7-90, 7-91

D

D see Delete command
Default argument mode see also Window Argument
command 4-4
Default record length 7-17
Default values see also Window Argument command,
Window Position command
DEL 1-7
Delete command 2-3, 7-27
Deleting characters 2-3
Delimiter see also |D 1-5, 2-1, 7-4
in a file expansion see |F
standard 1-5, 7-4, 7-80
temporary 4-3f, 7-95

093-000197-03

Difference see Logical Exclusive OR

Digit insertion see Backslash command

Display mode see also Window Display command 4-5
Display switch 2-4, 7-2, 7-28

Display, terminal 1-1

Display text 2-1

Division operator 7-88

E see End command
E (equal to zero) see also Conditional Execution
command 5-2, 7-82
End command 3-2, 7-19
Ending a SPEED session 2-5
Entering SPEED 1-7, 7-1
Entering with a filename 7-1
Entering without a filename 7-1
Entire buffer 7-85
Total number of characters 7-80
Total number of lines 7-65
Entry sequence (in dictionary) 7-5
Equals command 4-1, 7-93
Error messages see also Correcting errors
B-1
suppression see Multipurpose modifier
Errors 1-7, B-1
ESC (escape) 1-3, 1-6, 2-1, 7-80
Examples (of commands) 7-3
Exclusive OR see Logical Exclusive OR
Execute command 7-77
Executing a buffer 6-2
Executing commands across windows or pages 4-8f
Executing files 6-3
Executing the CLI see also Execute command 4-9
Exit Command see also Halt command 7-2
Exiting a Loop see Command Loop and Conditional
Termination command
Exiting SPEED see also Halt command 1-7, 2-5, 7-2
Expansion see B and TF
Expansions to buffers and files see also |B and |F
4-6f, 7-101, 7-104

F? see Files? command
FB see File Backup command
FC see File Close command
File 1-5
input 1-5, 3-3 (Table 3-1)
global 1-5, 3-1
handling 3-5 (Table 3-2)
local 1-5, 3-4f
commands 3-4
output 1-5,, 3-3 (Table 3-1)

093-000187-03

Licensed Material-Property of Data General Corporation

File Backup command 2-5, 6-3, 7-30

File Close command 2-5, 7-31

File expansion see TF

File New Read command 3-1, 7-32

File New Write command 3-1, 7-33

File Open command 3-1, 7-34

File Read command 2-1, 7-36

File Update command 3-2, 6-3, 7-37

File Write command 2-1, 7-38

Files? command 2-35, 7-38

Flow control see Over command, Conditional Execution
command

FNR see File New Read command

FNW see File New Write command

Form feed 1-4, 7-106

Format (of commands) see also Rules for commands
7-2

FO see File Open command

FR see File Read command

FU see File Update command

Function (of commands) 7-2

Functional analysis of SPEED commands 7-5, D-1

FW see File Write command

G

G (greater than zero) see also Conditional Execution
command 5-2, 7-82

H see Halt command
Halt command 2-5, 7-39

I see Insert command
Inadvertent command see Command, inadvertent
Inclusive OR see Logical Inclusive OR
Insert
character by ASCII value 4-2
control keys 6-2, 7-2
digits see Backslash command
from a buffer see B
from a file see [F
Insert command 2-1, 2-4, 7-40
Insert text 2-1
Interacting with SPEED see also Buffer Get command
6-1
Iteration see also Command Loop and Conditional
Execution command
Intersection see Logical AND
Invocation switch 6-3, 7-2, 7-42

Index-3

J see Jump command
Jump command 2-2, 7-43

K see Kill command
Keyboard 1-2
Keys
as characters 1-2
as command names 1-2
as control keys 1-2, 1-3
Kill command 2-3, 7-44
Killing a buffer 3-4
Killing lines 2-3

L see Line command

L (less than zero) see also Conditional Execution
command 5-2, 7-82

Label see llabel!, Over command

Last Character 2-4, 7-80

Line (of text) /-5

Line command 2-2, 7-46

Line feed see NEW LINE

Line printer listings, a note about 7-2

Logical AND 4-3 (Table 4-1), 7-97

Logical Exclusive OR 4-3 (Table 4-1), 7-99

Logical Inclusive OR 4-3 (Table 4-1), 7-98

Logical NOT 4-3 (Table 4-1), 7-98

Loop see Command Loop

lowercase see Window Case command, Window Shifts
command

Lowercase character see Character, lowercase

M

M see Move command
Macros see also Command file 1-1, 6-1, 6-3
Manipulating local and global files 3-4
Match case see also Window Shifts command 4-7f
Match text string
Modifying commands 4-3
Move
CP
from line to line 2-2
across characters 2-3
text to another buffer see Buffer Copy command,
Buffer Take command
text to an output file
Move command 2-3, 7-47
Multiplication operator 7-86

Index-4

Licensed Material-Property of Data General Corporation

N see Nonstop command

N (not equal to zero) see also Conditional Execution
command 5-2, 7-82

Nonstop command 4-8, 7-48

NOT see Logical NOT

Nulls, strip 7-35

Numerical arguments 1-6, 4-1, 7-2, 7-3

Numerical expressions as text 4-1

NEW LINE 1-3, 1-4, 7-106

o

O see Over command
Open a file 2-1
Operators
arithmetic 4-1
Boolean 4-2
OR see Logical Exclusive OR, Logical Inclusive OR
Organization of entries (in dictionary) 7-2f
Over command 5-2f, 7-49, 7-91

P see Put command

Page (of text) I-5

Parent process 7-77

Permanence 7-1, 7-12, 7-34

Position mode see also Window Position command 4-5
Precautions and error messages (for commands) 7-3
Precedence see Command precedence

Prompt 1-2, 7-81

Put command 2-5, 7-51

Put in a file 7-51

Put Without command 7-53

PW see Put Without command

Q
Q see Quick command
Quick command 4-9, 7-54
Quotation mark 5-2, 7-82

R

R see Read command

Radix see Ampersand modifier and Window Radix
command

Read command 3-2, 7-56

Read a page or window into the buffer 7-5, 7-56, 7-79

Related commands 7-3

093-000197-03

Repeat key see REPT
REPT 1-3 1-7
RUBOUT see DEL
Rules for commands 1-6

S see Search command
Save command 6-1, 7-99
Saving a command line see also Save command 6-1
Search command 2-3, 7-57
Search strings and text strings 7-4
Search templates and control characters 4-7
Searching for text 2-3
Setting a temporary delimiter 4-3f
Son process 7-77
Shift sensitive mode see also Window Shifts command
4-6
Shifting case see Window Case command, Window
Shifts command
Space (character) 1-4
Status 1-7
of buffers see also Buffers? command 2-4
of CP position see Current Position of Character
Pointer
of files see Files? command
of lines and characters 2-4
Storing numerical expressions 4-1
Strings see also !label!, Filename /-5
executable strings see also 1B, [F, Command line
C-1
search strings 1-5, 1-6, 7-4
text strings 1-5, 1-6, 7-4
Structure of SPEED commands 7-3ff
Subtraction operator 7-87
Switches see also Display switch, Invocation switch 7-2
Symbolic modifiers 1-6, 7-3, 7-4
Ampersand modifier 4-4, 7-85
Commercial at modifier 4-3f, 6-1, 7-95
Multipurpose modifier 2-5, 4-3, 4-9, 5-2, 7-89, 7-90
Symmetric Difference see Logical Exclusive OR

T see Type command

TAB see also I 1-3, 1-4, 7-105

Template 1-2

Terminating a Loop see Command Loop and
Conditional Termination command

Terminating SPEED see Exiting SPEED, Halt
command

Terminator see also |D 1-5, 1-6, 7-5

Text, units of 1-4f

Trace Mode Toggle 6-1, 7-94

Tracing a command line see also Trace Mode Toggle
6-1

093-000197-03

Licensed Materiai-Property of Data General Corporation

Type
a line see Commercial at modifier and Type
command
digits see Equals command

Type command 2-1, 2-4, 7-59

Typing out text 2-4

U

Unary minus operator 7-87

Union see Logical Inclusive OR

Update Mode 3-1, 7-12, 7-15, 7-30, 7-34, 7-37, 7-55,
7-78, 7-79

Units of text see Text, units of

Uppercase see Window Case command, Window Shifts
command

Uppercase character see Character, uppercase

User Data Area 7-13

Using decimal equivalents of characters 4-2

Using global files 3-1f

Using local files 3-4f

Using multiple buffers 3-2

Using the alternate radix 4-4

Using the /1= switch see also Invocation Switch 6-3

\Y

V.see Value command

Value command 7-61

Value Character command 7-62
Value Decrement command 4-1, 7-63
Value Increment command 4-1, 7-64
Value Line command 2-4, 7-65
Value Moved command 2-4, 7-66
Value Number command 2-4, 7-67
Value Position command 7-68

Value Set command 4-1, 7-69

VC see Value Character command
VD see Value Decrement command
VI see Value Increment command
VL see Value Line command

VM see Value Moved command

VN see Value Number command
VP see Value Position command

VS see Value Set command

w

WA see Window Argument command
WC see Window Case command

WD see Window Display command
Window (of text) /-5

Window Argument command 4-4, 7-70
Window Case command 4-4f, 7-71

Index-5

Window Display command 4-5, 7-72 Y
Window Mode command 4-5, 7-73

Window Position command 4-5, 7-74

Window Radix command 4-5, 7-75

Window Shifts command 4-6, 7-76

WM see Window Mode command z;rf]i ;ﬁ;gﬁ??ﬁn2_79
WP see Window Position command ’

Write to a file see also File, output 2-5, 3-2

Writing SPEED commands 6-1f

WR see Window Radix command

WS see Window Shifts command y 4
X
X see Execute command Z see Last Character symbol
Index-6

Licensed Material-Property of Data General Corporation 093-000197-03

CUT ALONG DOTTED LINE

Title

a
a
O
O
O
w

hat programming language(s) do you use ?

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

EDP Manager (Listinorder: | = Primary use)

Senior System Analyst — Introduction to the product
Analyst/Programmer ... Reference

Operator — Tutorial Text

Other Operating Guide

<
[¢]
7]

O
O
(I
O
O
a
]

Somewhat
Is the manual easy to read?
Is it easy to understand?
Is the topic order easy to follow?
Is the technical information accurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you everything you need to know ?

(Please note page number and paragraph where applicable.)

Company

Address Date

SD-00742

FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

ISD User Documentation, M.S. E-111
4400 Computer Drive
Westborough, Massachusetts 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

CUT ALONG DOTTED LINE

¢»DataGeneral

group Installation Membership Form

Name Position Date
Company, Organization or School

Address City State Zip
Telephone: Area Code No. Ext.

0O OEM

O End User
O System House
O Government

0O Batch (Central)
O Batch (Via RJE)

O On-Line Interactive

Qty. Installed

Qty. On Order

0O RSTCP 0O CAM
0O HASP 0 4025
O RJE80 O Other
0 SAM

Specify

0O A0S 0O RDOS

0O DOS O RTOS

O SOSs O Other

Specify
O Algol O Assembler
0O DG/L 0O Interactive
0 Cobol O Fortran
O ECLIPSE Cobol O RPG I
0O Business BASIC 0O PL/1
0O BASIC 0O Other
Specify

From whom was your machine(s)
purchased ?
O Data General Corp.

O Other
Specify

Are you interested in joining a
special interest or regional
Data General Users Group ?

¢y DataGeneral

Data General Corporation, Westboro, Massachusetts 01581, (617) 366-8911

FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Data General Corporation, Westboro, MA 01580

