¢»DataGeneral

— Software Documentation

Advanced Operating System (AQOS)
~ Macroassembler (MASM)

Reterence Manual

Advanced Operating
System (AOS)
Macroassembler
(MASM)
Reference Manual

093-000192-04

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000192 :
©Data General Corporation, 1976, 1977, 1978, 1982, 1984
All Rights Reserved

Printed in the United States of America

Revision 04, March, 1984

Licensed Material - Property of Data General Corporation

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS
THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC
LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUIT-
ABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY
OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW,
SWAT, GENAP, and MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT,
DG/L, DG/GATE, DG/XAP, ECLIPSE MV/10000, GW/4000, GDC/1000, REV-UP, XODIAC, DEFINE,
SLATE, microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks
of Data General Corporation.

Advanced Operating
System (AOS)
Macroassembler
(MASM)
Reference Manual
093-000192-04

Revision History:

Original Release - June 1976
First Revision - April 1977
Second Revision - June 1978
Third Revision - October 1982
Fourth Revision - March 1984

CONTENT UNCHANGED

The content and change indicators in this revision are unchanged from 093-000192-03.
This revision changes only printing and binding details.

Preface

Data General provides two 16-bit macroassembler utilities for
ECLIPSE® computers. They are the:

* Advanced Operating System (AOS) Macroassembler (MASM)
utility, and the

* Advanced Operating System/Virtual Storage (AOS/VS) 1lé-bit
Macroassembler (MASM16) utility.

This manual describes the use and operation of these
utilities. The only difference between the macroassemblers is that
AOS MASM runs on 16-bit ECLIPSE computers, while AOS/VS MASM16 runs
on 32-bit ECLIPSE computers. Unless we state otherwise in the
manual, references to MASM apply to both AOS MASM and AOS/VS
MASMl6.

The manual assumes you have assembly language programming
experience. It also assumes that you are familiar with the assem-
bly language instructions for the 16-bit ECLIPSE computers.

This manual is a reference tool. The following list outlines
the contents of each chapter and appendix.

Chapter 1 Introduces the AOS Macroassembler, explains its
purpose, and highlights its special capabilities. It
also explains the simplest use of MASM.

Chapter 2 Describes the input you pass to the Macroassembler.
This chapter is broken into three distinct parts:
statement components (e.g., numbers, symbols,
expressions), statement format (e.g., labels,
comments), and statement types (e.g., instructions,
pseudo-ops, assignments).

Chapter 3 Explains how MASM assembles your program. You need
not read all of this chapter to use MASM correctly.
You should, however, review the sections on memory
partitions and relocatability.

Chapter 4 Describes the various forms of output that MASM can
produce during an assembly; i.e., object file, assem—
bly listing, cross—reference listing, and error
listing.

093-000192 iii
Licensed Material - Property of Data General Corporation

Chapter

Chapter

5 Describes the macro facility. It also explains how to

use generated numbers and symbols.

6 Describes the various types of pseudo-ops you may use

in your program.

Chapter 7 Provides detailed descriptions of the AOS MASM

Chapter

Appendix
Appendix

Appendix

Appendix

pseudo-ops, in alphabetical order.

8 Explains the command line that invokes the

Macroassembler. This chapter also describes how to
link and execute your prodgram, and how to use a
permanent symbol table.

A Contains the ASCII character set.
B Lists the AOS Macroassembler pseudo-ops.

C Lists and describes all AOS Macroassembler error
codes.

D Describes the conventions that you should use if you
want to assemble AOS assembly-language programs with
the AOS/VS Macroassembler.

Suggested Manuals

Many concepts we mention in this manual are documented in
greater depth in other Data General publications. 1In certain
instances, you may need to refer to one of the following documents
for further information:

*

*

iv

t i (069-000013) lists the
names and order numbers for Data General's software
documentation.

The Programmer's Reference, ECLIPSE®-Line Computerg manual
(015-000024) describes the 16-bit assembly language in-
struction set for ECLIPSE computers.

The AOS Link User's Manual (093-000254) describes the AOS
Link utility. After assembling your program, you must
further process it with Link to produce an executable

program file.

The i i i i !
(093-000245) describes the A0S/VS Link and LFE utilities.

093-000192

Licensed Material - Property of Data General Corporation

We

COMMAND

The AQS Debugger and Disk File Editor User's Manual
(093-000195) describes the Debugger utility. The Debugger
allows you to examine portions of your program during
execution. Use this utility to locate errors in your
program.

The AQS Library File Editor User's Manual (093-000198)
tells you how to use the Library File Editor utility. This
utility lets you inspect and change executable program
files.

The AOS Programmer's Manual (093-000120) documents the AOS
system calls and system parameters. System calls are
predefined macros that perform commonly used operations.
The Command Line Interpreter (CLI) User's Manual (AOS and

AQS/VS) (093-000122) tells you how to invoke the Macroas-
sembler utilities.

(069-000018)
leads you through sample sessions with A0S, including one
with the Macroassembler.

Reader, Please Note:
use these conventions for command formats in this manual:
COMMANDOrequired<doptional> ...
Means

You must enter the command as shown.

required You must enter some argument. Sometimes, we

use
{required1}
requiredy

which means you must enter one of the
arguments. Don't enter the braces; they
only set off the choice.

Loptional> You have the option of entering this argument.

Don't enter the angle brackets; they only set
off what's optional.

You may repeat the preceding entry or entries.
The explanation will tell you exactly what you
may repeat.

093-000192 \
Licensed Material - Property of Data General Corporation

Additionally, we use certain symbols in special ways:
Symbol Means
O The box represents any combination of spaces,

horizontal tabs, and one comma. We generally
use the box to separate a command and its argument.

<nl> We use the symbol <nl> to represent a
statement terminator character. Carriage return
form feed, and NEW LINE are all statement
terminators.

We use the following format to present bit fields:

0 15

Bit 0 is the first bit; we call this the most significant bit. Bit
16 is the least significant bit in a 16-bit sequence. Each 16-bit
segment is called a word.

Contacting Data General

* If you have comments on this manual, please use the prepaid
Remarks Form that appears after the Index. We want to know
what you like and dislike about this manual.

* If you need additional manuals, please use the enclosed
TIPS order form (USA only) or contact your Data General
sales representative.

* TIf you experience hardware problems, please notify Data
General Systems Engineering.

* Experience software problems -- Please notify your local
Data General systems engineer.

End of Preface

vi 093-000192
Licensed Material - Property of Data General Corporation

Contents

Chapter 1 -- Introduction to the Macroassembler

Developing an Assembly Language Program . .« =« =« =+ o+ o 1=2
Overview of MASM ¢« ¢ « ¢ o o o o e o o o o o «1-3
Macroassembler Input e e e o o o o e e e e« o 1-3
Assembly . ° . . . o 1—3
Macroassembler Output e e e e s e e e o e o o 1-4
The AOS and AOS/VS Macroassemblers . . . =« « « « o« o 1-4
Special Features of MASM . . . « =« « o =+ o « o« «1-5
Simplest Use of MASM e e e e s e s e e e e e 1-7
Minimum Necessary Pseudo-Ops e e e e e e e e e e 1-7
Simple MASM Command Line e e s & e« e e e e e «1-9
Chapter 2 -- Input to the Macroassembler
Character Set « « « o« o o o o o o o o o o o o 2-1
Source Statements e e & e s e a s e e e e o o 2-4
Statement Components e e e & e s & e e e e o o 2-6
Terminators and Delimiters « .« « « o« o o o o o o 2=7
Numbers . - ° . . 0 . . . 2"'9
Single-Precision Integers e e e e« s e e e e e 2-9
Double-Precision Integers e e e+ e s e o e e o 2-12
Special Integer-Generating Formats e s e e« e+ e o+ 2-14
Single-Precision Floating-Point Constants 2-17
SymbOlS 3 . 3 . . . - 2-19
Symbol NamesS « « « « o o o ¢ o o o o o o o 2720
Symbol Types « « « =« & e e e e e e e e e 221
Permanent Symbols (Pseudo-Ops) e o e s s e e e e 2=22
Instruction Symbols e ¢ e o e e e s e e e . 2=24
Redefining Instruction Symbols . . . « « =« =« =+ o 2-25
Macro Symbols o o e e e e e s e e e e e 2-26
Redefining Macro Symbols e e e+ & s e e e e e e 2-26
User Symbols « « =« « ¢« « o o o o o o o o o 2=27
Reserved Symbols e e o e e e e e e s e e e 2=27
Redefining User Symbols . . « =« =« « ¢ o o o o 2=27
EXpressionsS « =« =« o o o o o o o o e e o o o 2-28
Operators . ° - 2—29
Unary Operators « « « o o o o o o o o o « « 2=30
Logical Operators .« « « o o o o o o o o o o 2=31
Relational Operators . .« « « « o o o o o « o 231
The Bit Alignment Operator (B) . .« .« =« + « o« =« o 2=32
Priority of Operators . . e e s e s e e o o 2-34
Absolute Versus Relocatable Expressions e s o« o e o« 2-35
SpeCJ-al AtomS - 2-36
At Sign (@) 2_36
Number Sign (#) =+« « ¢ o o« o o o o o o o o 2-37
ASteriSkS (**) . o . . - . O . . Y . . . 2—37
093-000192 vii

Licensed Material - Property of Data General Corporation

Statement Format

Labels ¢« e o ¢ o o o o e e e e e s e
Statement Body . « ¢ ¢ ¢ ¢ ¢ e o e e e
comments .« « ¢ ¢ o e o o e e e e o .
Statement Types . e s+ e e e e e e
Assembly Language Instructlons e e o e e e e
Macros and System Calls . .« ¢« « ¢« ¢ o o o
Pseudo-0ps e e e e e e e e e e e e e
AssignmentsS « « ¢ ¢ o e e e e o s e s

Da ta . L] L] * . - L] L] L] L] L] L]
Defining Assembly Language Instructions e e

Chapter 3 -- The Assembly Process

Symbol Interpretation . . .+ .« .
Symbol Tables . .« =« =« =« « o
Syntax Checking . .. « +« « =« .
Processing Macros and System Calls .
Processing Macro Definitions . .
Expanding Macros and System Calls
Assigning Locations . . .
Memory o e s .
Location Counter .
Partitions . .
Absolute Partltlon
ZREL Partition .
NREL Partitions .
Relocatability . .
Relocation Bases .
Relocation Bases and Symbols .
Absolute Addresses Versus Absolute Value
Relocation Bases and Expressions .
Absolute Expressions . .« .+ « .
Relocatable Expressions . . .« .
Resolving Relocatable Expressions .
Resolving Locations in Memory Reference Instructi
Supplying Both a Displacement and an Index .
Supplying Only a Displacement Value . . .
Using Literals in Memory Reference Instructions

.

L] L[] L] L] L] L) L]
L] L] L] [] [L] L] *
[] . [) . . L] L[] . L]
e e 8 o o o o ¢ e

L] L] . . [2 . . L]

[
*
L]
[
L]
-
]
.
.
.
[
.
.
.
L
L

[. L] L] . * L] () *) . L) L[] L[] .] L] . [] .

e o ¢ U e ¢ o ¢ ¢ o & ¢ o o © o o o o o

1

on

'.Q'—"......‘....0.‘......
...m.".......‘.....‘...l

Chapter 4 -- Output from the Macroassembler

Object File e e e o e e
Assembly Listing . . .
Assembly Listing Control .
Listing Control Pseudo-Ops
Asterisks (**)
Cross—Reference Listing . .
Error Listing . « « =« « .
Output Function Switches . .

L] L] L] . L d L] L] .
. L] * L[] * . L] L[]
L * L L] L] L] L] L]
L] . L] L] * L] L] L]
L] L] . [] L) * . L)
* L] * * L L] L] L]
L] L] L] . . L] L] L]
* L] L L] * . e .

viii

[L] [] [] [L] [L] L] . . . [] [] . . . [3

L] L[] L] L] L]] L] .

L] L] L] L] L] L] . * L] L] L] L] L] L L] L] L] L] . . [] L] L . L]

2-38

2-39
2-41
2-4]1
2-4]1
2-42
2-43
2-45
2-46
2-47
2-48

11 U U
H OO 0000 00 N

WWwwwwwwwwww
|

I
HHERONNON -

shrbsh;blihsh-hsh
- O

093-000192

Licensed Material - Property of Data General Corporation

A

Chapter 5 -- Macros and Generated Numbers and Symbols

Macros .+ « « o o o o o .

Macro Definition . . o« e . .
Arguments in Macro Deflnltlons .

Macro Calls e s & e e e .
Calling Macros without Arguments .
Calling Macros with Arguments . .
Passing Special Characters and Null Arg

. * * L] L] .

Special Characters . . .« .« .

Null Arguments e o e . .
Macro Expansions in Assembly Llstlngs
Macro-Related Pseudo-Ops
Loops and Conditionals in Macros
Macro Examples o e e e e .
System Calls
Generated Labels
Generated Numbers and Symbols .

[] [] . . o
] * . o ¢]
. L] L] . o .

Chapter 6 -- Types of Pseudo-Ops

Location Counter and Memory Management
File Termination« .+ .+ .
Repetitive and Conditional Assembly
Macros .« « ¢ o o .
Intermodule Communication
Listing Control . . .
Stack Control .

Radix Control . .
Text Strings . .
Symbol Table . .
Symbol Deletion .
‘Miscellaneous . .

L] L) . * L] L] L * L]

* . . [] L] L] . L]

. [] . * () L) L] .

L] . L] . . . L] L L]

L] . . L] L] L[] L] . L[] L] L]

L] L] L] * L] L] L] L] . L] L] L]
* L L L * L] L] . L] . . .
. L[] L[] L] L] L L] * L] L] . L[]

-
L]
L]
[
L3
[

Chapter 7 -- Pseudo-Op Descriptions

Coding Aids . .

General References
(.) e e
+ARGCT
«ASYM
«BLK
.COMM
.CSIZ
.DALC
.DCMR
«DEMR
«DERA
.DEUR
.DFLM
.DFLS
.DIAC
.DICD

. L] . L] L[] L] . L[] * . . . [] L[]

. L] . L] [] L] L] L] L] . . . L] L[]

. L] L] L L L] * L] L] L] L] . L] L]

. L] L] L] L] . L] L] . L] L L] . L] L] . .
L] . . L] . . L) . [] * L[] L] . L] L] . L]
L[] . L] L] [] * [[] L] . [] [L] L] L] . L]
. * L] L] L] L] . . L] L . L] . L[] . L] []
L . * L] L] L[] L] . L] L] L] L] L] L] L] . L]
* L] * L] L] L * . L] . L] L] L L] L] * .
L] L] * L] L] * L] L[] . L] L] L) L] L] L] . L
L] L] * L] * L] . L] L * L] . L] L] L] * .
L] . L] L] L] . L] L[] L] L] L] . L] . . L .
L] .] L] L] L] . L] L . . . L] . L) L] L

[* [L] L[] * . L] L * . . Ld

093-000192
Licensed Material - Property of Data General

e o o (S e o o o o o
=
]
e ¢ ¢ T e e ¢ e o o
(0
0
ctr
(]
=
[+)]
¢ ¢ ¢ N e o o o o o
a]
o}
e ¢ o N e ¢ ¢ ¢ o o

'} * o L]] L] e o . *
1 1111111
P

1t I
NHHMFHE Yoo O WO

T ot Ui U’!LlﬂU‘lU'lU'!kﬂU'lU'lU'lU'l

L] [] L] o o L
i

L] L] L] e o *
. * L] L I) [}

O\O\O\O\?O\O\O‘\O\
HHOULULLWWND

-11

. . L] L] . L] . . . L L] .
[. L] L] L] . . L] L[] . . .
L] . L] . [] L] L] * L * L] L]

L] L] . L] L] * L] L[] L] [] L L]

|
= O~NN D WH -

I
"

NNNNNNNNNNNY
1
o

1
=
N oW

7-19
7-21
7-23
7-25
7-26

* L * * L d L] L]] L L] . . L] * L] L] L]
. . [3 L[] L] . L] L] . . L] . L] L] L] L L]
L] L[] L] L] * L] L] L] L] * L[] .
L] L] L L] * L] L[] * L] . L] L] . * . L] []

ix
Corporation

OCMUNPVAOMU O
VONFOVVONNNEAANTOOONIIN ORRNOAMINEN NN FOOONINNEOANANOCOOCOOCOO rrdrd
NN IIIIIONDNNOOOOOOONNISINISNS DDA NNNNNN A A~ A~
U L L s e A Tt e T T T T T A T Ty ey e e T A e e T R R I D Y Y Y Y Y N Y MY A
e N N Nl Tl l l N A T B Bl il T o o S S S ol S N SN Y
® 06 0 o & 6 6 0 & ® e o 6 ° O O o 6 O & & 6 5 O 9 &6 B S B 6 & & O & O & © O & 6 & S O 6 8 0 6 6 & 9 e 0@

-
[
L]
[
L]
L]
[
.
L
.
3
L]
.
[
[
.
°
L]
.
.
L]
3
[
L]
L]
L2
®
L]
L]
L]
.
[
]
*
L
L]
L]
.
L]
[
*
L
.
.
*
L]
.
L
L3
L]
.
[

L] L] L] . L] L] L] . L L] L] [] L] L] L] L] . L] * * e o @ L] L] e o L L L] * o o . L] L] L] * L L] L] L] L .OO. L L
E4
=
oooo.oo.cooo-ooooooooo-oN.oooo-ooooovoo-coaoooTc-oo
=9 .
g]
* * L L] L] L] L L L] L] L] * L] * L] L] * L] L N 1 L ¢ o e o L] L e o L] . L] *® o * * L] * . L] L] . L] L] L] ¢ u ® L L I 1
By
~ B
[L4 . . L] L] L [] . L] L] L] . o o L] L] L] e o L] * 0 .L [] L[] * o L] L L] * o o L] L[] L] L] ® L] L] L) L] L] L] .x L . L] L
[B
(= .
~ <]
¢ & & o 0 s 0 0 s s s e s s s s s s 0 s s e (D s e e s s 4 o2 0 s s s o o s s o o s o 0 s eF4 s 0+ o 0
1<)]
- B
S0 3 200 &)
S <A 4 MMD D0 AZDLUAVOM SBH ORLTOOML nEe MH o 4 SEZO
MOOSSMW NMOHMAAHBHMHEHEHMAOHEMEMHOOU 4 HY J=& MNP SXXWTPKTTTNE
HHH - ODXNZAZZ2Z0XN XN XOL A0 OAU J000MMCRHOBHDAABHOWMX XX AN
DDDDDDDDDDEEEEEEEEEFGGGGILLLMM.NN.NNNOPPPPPRRRTTTTTTXZ

093-000192

Licensed Material - Property of Data General Corporation

P

Chapter 8 -- Macroassembler Operating Procedures

MASM Command Line e e
Command Line Switches

Linking and Executing Your Program

Filenames =« « « ¢ o
Generic Filenames . .

Macroassembler Symbol Tables

Symbol Resolution . .
Permanent Symbol Table

Building a Permanent Symbol
Specifying a Permanent Symbol Tabl

L]

°

Table

Permanent Symbol Table Size .

Symbol Length « e

Appendix A -- ASCIl Character Set

Appendix B -- Pseudo-Op Summary

Appendix C-- Assembly Error Codes

Addressing Error (A) .
Bad Character (B) e .
Macro Error (C)
Radlx (D) L] - * *
Equivalence Error (E) .
Format Error (F) . .

External/Internal Symbol Error

Input (Parity) Error (I)

Conditional Assembly Error (K)

Location Error (L) . .
Multiple Definition Error
Number Error (N) . . .
Field Overflow Error (0)
Phase Error (P) . . .
Questionable Line (Q) .
Relocation Error (R) .
Undefined Symbol Error (U)
Variable Label Error (V)
Text Error (X) e e e

093-000192

o~
e 8 o o s o o 0o 0o o o o (N o
N

L[] L] L] [] * ® L] ']

.
e

* . . L] L] L L] ¢ L]

+H

e o O e o ¢ o o ¢ o o o

L] . L] e o L]

)] L) [] [] L] L] e 0 L]

e o o o o o o o o

=S

e o Phe o s o s o s o

L] L]

L] L] L] L[] L] L] L] * o L]

L] L] * o L]

0
[2]

o o (D e ¢ ¢ o o o o o o

L]

] L] * * o L]

* L[] L] L] [] . . L . L

8
(o)
=

o o (e o o o o o o o o

. L [] L] . L] [] . @ L

L] L) * L] L L] . L[] L] L] L] L]

. L] L] L] . o L] L[] L] . L] (]

OOOOOOOOO? QOO0 000
WEOOONNAAAAATTU U b W NN

. . * e o .

[] L] L L] . L] o L N .

HWO WO N
o

xi

Licensed Material - Property of Data General Corporation

Appendix D -- Assembling 16-Bit Programs with AOS/VS MASM .

AOS-Only Pseudo-0psS « « =« +
Pseudo-Op Interpretation . . .
Macros .« .« o « o« o e o
Double-Precision Indicator (D) .
Literal Values in Memory Reference
Index Mode Default Conditions .
CLI Command-Line Switches . . .

Table

=
1
—

111 [I T T N U Y O O Y I |
= o

!

(84} [Wwwww NDNONDDNDDNODDNDNODNDNDN
I
[l NG b WN - kWM HEOWONAOAUTEREWN -

xii

nstructions

o o |~{e o o o

Tables

Caption
The ECLIPSE® Macroassemblers . .« .« <«

Special Characters . .
Statement Terminators .
Delimiters
Digit Representations . .
Sample Integer-Generating Expr

essions
The Four Classes of Symbols .
Operators . .« =« « « & .
Operator Priority Levels . . .
Statement Field Delimiters o« .
Instructions in Assignment Statements
Instruction Definition Pseudo-ops

) L L] L] L . [] L] ° L] L]
L] L L] L] L] . [] L] L] L] []

n
t

Assigning Addresses Within Partitions . .

Separately Assembled Modules With Similar Partitions

Relocatable Expressions e o e e e
MRI Index Values « .+ =+« « o o o o &
MRI Displacement Values e e e o e

Object Filename . . « « « =« . .
AOS MASM Assembly Listing Fields . .
Location Counter Relocation Symbols .
Data Field Relocation Symbols o e .
Assembly Listing Control Pseudo-Ops .
Cross—-Reference Assignment Mnemonics . .
AOS Macroassembler Output Function Switches

Generated Symbols in Source and Listings .

Licensed Material - Property of Data General

e o o o o o o
e ¢ o o o o o
e o o o o o o
UUU?UUU
WWWPON

* L] . [] L] L] L] L] L] L] L]
* . L] [} L] L] L]] . . L]
.) [. . L) o o . [L]

e o o o o o o o o o o
N
1
N
N

e o o o o
w
I
[\
(o]

e o o ¢ o o o
e o o o o o
e o ¢ o o o o
l—'\D\IOl\U'InhN

093-000192
Corporation

6-1
6-2 File Termination Pseudo-0Ops . .« .« .«
6-3 Repetitive Assembly and Conditional Pseudo-Ops
6-4 Macro-Related Pseudo-0Ops . .« « « «
6-5 Intermodule Communication Pseudo-Ops . .
6-6 Listing Control Pseudo-Ops e e e e
6-7 Stack Control Pseudo-0psS . « « o o o
6-8 Radix Control Pseudo-0Ops . =« =« o «
6-9 Text String Pseudo-0ps . .+ =« + o o o
6-10 Symbol Table Pseudo-Ops o e e e o e
6-11 Symbol Deletion Pseudo-0p « « =« o o+
6-12 Miscellaneous Pseudo-0ps . =+ « « o
7"1 AbbreViationS -
7-2 DUSR Assignments Versus Simple Assignments
7-3 Numeric Representations in Various Bases .
8-1 AOS MASM Function Switches e e e e
8—2 MASM Argument SWitCh
8-3 AOS Filename Extensions e ¢ e e e e
8-4 Object Filename . « « « o o o o
B—l PSGUdO-Op Summary
lllustrations
Figure Caption
2~-1 The Source Statement e o » o+ e o s
3"'1 ReSOlVing SymbOlS . °
3-2 Processing Source Statements
3-3 Sorting Code into Memory Partitions o« .
3-4 Linking Modules with Similar Partitions .
4-1 Sample Assembly Listing e e e e e e
4-2 Sample Cross-Reference Listing
5-1 MaCI‘O Listing O . 3 . .

093-000192

.

L] L] L] L] L * L] L]

Location Counter and Memory Management Pseudo-Ops

L] L L] L L] L] L * L] *

L] L] ® * L] L] L] * L] L * *

. * . L]

L L] L] . L] L] . []] [] .]

* L] [L]

! !
HEOOMUOIS WN

!
=

o

|
ot
N

O\O'\O\O\O\O\O\O\O\O\m
|
=
w

I
=
N

6

!
b
~

RN
[

PN}

=)

7-101

8-3
8-5

8-8
B-1

!
o w =YW (=)}
~N =

(8] g wWwww N
|

I
[
o

xiii

Licensed Material - Property of Data General Corporation

Chapter 1
Introduction to the Macroassembler

A language is a set of representations, conventions, and rules
that convey information in a well-defined way. At the lowest
level, a computer language consists of numeric codes that represent
computer hardware operations. The computer can readily understand

this numeric language, called machine language.

As an example, the following machine language code represents
a jump instruction to address 377g:

000377

000000 is the base value of the jump instruction and 377 is the
location.

Coding a program that uses the many ECLIPSE® 16-bit machine
language instruction numbers would be a time~consuming, cumbersome
process. Thus, for programming convenience, we assign each machine
language instruction a symbolic name that has significance to us.

For example, the machine language instruction 000000 receives
the name JMP and our jump statement is now

JMP 377

This instruction is much simpler to read because the mnemonic
JMP is similar to the English word, jump. The mnemonic implies the
operation that the corresponding machine-level instruction
performs.

We may further simplify machine language by using symbols to
represent locations as well as instructions. 1In the last example,
we could assign location 377 the symbolic name LOCl. Our instruc-
tion would now be

JMP LOC1

This is relatively easy to read and understand; i.e., "Jump to
location LOCl1l."

The programming language that consists of symbols instead of

numbers is called assembly languade. In general, each assembly-
language instruction corresponds to one machine-language

instruction. Thus, assembly language provides the same set of
operations as machine language but is much simpler to use.

Unlike machine language, assembly language is not understood
by the computer. Thus, you must translate your symbolic assembly

093~000192 : 1-1
Licensed Material - Property of Data General Corporation

language program into its machine language equivalent. The -
, or MASM, is the program that performs this transla-
tion operation.

Developing an Assembly Language Program

Before discussing the operation of the Macroassembler, we
should briefly review the five steps necessary to produce, execute,
and debug an assembly languade program.

1. Writing and entering your program -- The first step in
producing your program is, of course, writing its assembly
language instructions. Next, you must enter the program
into the computer. Normally, you will enter your program
from a console using one of Data General's text editors.
Your assembly language program is called a source module
and, if stored on disk, it resides in a source file. (By
convention, source filenames end with the .SR extension.)

2. Assembling your program -- After you enter your program,
invoke the Macroassembler to translate your symbolic
assembly language source module into its numeric machine
language equivalent. The Macroassembler places this
machine language program, called the object module, into a
new file, called the object file. (The Macroassembler
always ends object filenames with the .0OB extension.) If
the Macroassembler detects an error in your source module,
you must edit and reassemble your source file before
continuing the program development process.

3. Linking vour program -- After a successful assembly, you
must use the Link utility to produce an executable program.
Link pulls your object modules apart and rearranges them
into an image of your program as it will appear in memory
during execution. Link stores this image in a program
file. (Link always ends program filenames with the .PR
extension.) As with the Macroassembler, the Link utility
may detect errors in your program. If so, you must edit,
reassemble, and relink your program to correct those
errors.

4. Executing vour prodram -- After you successfully link your
program, you may execute it by typing

XEQ program—filename<nl>

at your console. If your program runs smoothly and per-
forms the appropriate actions, the program development
process is complete.

5. Debugging your program -- Often, your program does not run -
correctly the first time. It may cause a runtime error, or

not perform the desired operations.

1-2 093-000192
Licensed Material - Property of Data General Corporation

JeT——

In either case, you must debug your program (i.e., remove
the errors or "bugs"). Sometimes you can readily detect
the problem. In these cases, simply correct the source
module. Then, reassemble and relink your program. If you
cannot locate the error in your source module, you may use
the AOS Debugger wutility to examine portions of your
program during execution. Again, after locating the error,
you must edit, reassemble, and relink your program.

The above outline is meant as a brief overview of assembly
language programming. The rest of this manual focuses on step 2,

the assembly process. Refer to the Preface for a list of manuals
that describe the other programming steps.

Overview of MASM

The following sections of this manual briefly discuss the
input you pass to the Macroassembler, the assembly process, and the
output that MASM produces. Chapters 2, 3, and 4 will discuss these
topics in much greater detail.

Macroassembler Input

The source module you pass to the Macroassembler consists of
characters grouped into a series of source statements. In general,
your source statements may

* perform operations at execution time,

* contain data, or

* direct the operation of the Macroassembler.

Assembly

The Macroassembler reads the statements in your source module
twice. During these two passes through your program, MASM

* interprets symbols,
* checks the syntax of your source statements,
* resolves memory locations, and

* expands macros and system calls (we describe these later in
this chapter).

093-000192 1-3
Licensed Material - Property of Data General Corporation

Macroassembler Output
The Macroassembler can produce five types of output:
* Object file
* Assembly listing
* Cross-reference listing
* Error listing
* Permanent symbol table

The object file holds the machine language version of your
source module,

The assembly listing allows you to compare your input with the
Macroassembler's output. This listing contains your original
source statements plus the numeric machine language values produced
by MASM.

The cross-reference listing provides an alphabetic list of the
symbols you use in your progdram and their values.

The error listing contains information about all statements in
your source module that cause assembly errors.

The permanent symbol table holds symbol definitions for use in

future assemblies. 1If you use a permanent symbol table, you need
not redefine frequently used symbols for each assembly. The Ad-
vanced Operating System (AOS) software package provides a standard
permanent symbol table for your use. By default, MASM uses the
standard table for each assembly.

The AOS and AOS/VS Macroassemblers

Data General provides three Macroassembler (MASM) programs for
the ECLIPSE computers: AOS MASM, AOS/VS MASM16, and AOS/VS MASM.

AOS MASM runs on 1l6-bit ECLIPSE computers. It assembles
l16-bit (AOS) assembly language source files to produce object files
for 16-bit or 32-bit ECLIPSE computers. AOS/VS MASM16 provides the
same functions as AOS MASM. However, AOS/VS MASM16 runs on 32-bit
ECLIPSE computers only. This manual describes the AOS and A0S/VS
MASM16 Macroassemblers.

The A0S/VS MASM utility assembles 32-bit (A0S/VS) source files
to produce object files that run only on the 32-bit series ECLIPSE
computers. The A0S/VS Macroassembler is described in the AQS/VS
Macroassembler Reference Manual.

1-4 093-000192
Licensed Material - Property of Data General Corporation

Table 1-1 summarizes the Macroassembler utilities.

Table 1-1. The ECLIPSE Macroassemblers

Macroassembler

Source Programs

Description

AOS MASM

AOS/VS MASM16

AOS/VS MASM

l16-bit ECLIPSE
assembly language
instructions

16-bit ECLIPSE
assembly language
instructions

32-bit ECLIPSE
assembly language
instructions

Runs on l6-bit
ECLIPSE computers.
Produces object code
that can be linked
and run under either
AOS or AOS/VS

Runs on 32-bit
ECLIPSE computers.
Produces object code
that can be linked
and run under either
AOS or AO0OS/VS

Runs on 32-bit
ECLIPSE computers.
Produces object code
that must be linked
and run under AOS/VS
only

To take full advantage of the 32-bit ECLIPSE computer's
performance, you must assemble your programs with the AO0S/VS
Macroassembler. Appendix D describes the program-visible differen-
ces between the AOS and AOS/VS Macroassemblers.

Special Features of MASM

The Macroassembler's primary function is to translate your
symbolic assembly languade program into its numeric machine lan-

guage equivalent.

During this process, the Macroassembler can

perform a variety of operations that increase your programming
power and, at the same time, simplify your source code.

The following is a partial list of these special Macroassem-
bler features. Detailed descriptions appear elsewhere in this

manual.

093-000192

1-5

Licensed Material - Property of Data General Corporation

Symbolic location names

Number representations

Expression evaluation

Memory management

Repetitive assembly

Conditional assembly

Text string storage

Radix control

Assembler stack

1-6

As mentioned earlier, the Macroas-
sembler allows you to assign sym-
bolic names, called labels, to
memory locations

You have three different internal
number representations at your
disposal (single-precision integer,
double-precision integer, and
floating-point)

The Macroassembler provides
arithmetic, logical, and relational
operators that you may use for
number manipulation

The Macroassembler can either assign
absolute addresses to your object
code or assign relocatable addresses
that are resolved at link time

You may direct MASM to assemble a
series of source statements a
specified number of times; that is,
you may implement a DO loop at
assembly time

The Macroassembler allows you to
conditionally assemble or bypass a
section of source code based on the
evaluation of an expression; in
other words, you may implement an
IF-THEN-ELSE structure at assembly
time

You may direct MASM to store in
memory the ASCII codes for any
string of characters

You may alter the radix (base) for
numeric input to and output from the
Macroassembler

The Macroassembler provides a

pushdown stack that operates at
assembly time

093-000192

Licensed Material - Property of Data General Corporation

| r—

Intermodule communication You may assemble source modules
separately and then link them
together into a single program file.
These separately assembled modules
can share data and symbol defini-
tions

Macros The macro facility allows you to
assign a symbolic name to a series
of source statements. Then, each
time you want to insert that source
code, simply enter the assigned
name. At assembly time, the Ma-
croassembler correctly expands the
macro name to the original source
statements

Instruction definition The Macroassembler lets you define
your owhn instructions, using the
formats of the standard 16-bit
ECLIPSE instructions. The Macroas-
sembler is supplied with files that
define the standard ECLIPSE
instructions. You can add to the
instruction definitions in these
files, or replace the standard
definitions with your own.

The Macroassembler supplies these and other programming tools
to help you develop programs. Note that the Link utility and the
AOS system calls (predefined macros) provide further assembly
language programming control. These two subjects are, however,
outside the realm of this manual. (See the Preface for a list of
relevant manuals.)

Simplest Use of MASM

In certain situations, you may not wish to use the many
advanced operations performed by the Macroassembler. In the
following two sections of this manual, we ignore these special
features and describe the simplest way for you to assemble your
program.

Minimum Necessary Pseudo-Ops

Pseudo-op directives are source statements that direct the
assembly process. Your program nhever executes them; rather, MASM
evaluates them and performs the appropriate operations at assembly
time.

093-000192 1-7
Licensed Material - Property of Data General Corporation

Chapters 6 and 7 describe the various pseudo-ops in detail.
Refer to those chapters for clarification of any points we mention
in the following discussion.

Generally, you should use at least three pseudo-ops in each
source module:

* JTITLE
* a location directive
* LEND

.TITLE places a name in the object module for later use by the Link
utility. MASM repeats this name at the top of each page in your
assembly listing.

The syntax for using .TITLE in your source module is
.TITLE name
where:
name is the name you wish to assign to the object module

If you do not include a .TITLE pseudo-op in your source, MASM
supplies the title .MAIN, by default.

The second pseudo-op statement in your source module should
tell the Macroassembler where in memory your program will reside at
execution time. In most cases, your program will be relocatable
and can reside anywhere in unshared memory. The pseudo-op state-
ment that conveys this to the Macroassembler is

- NREL

If your program is relocatable but must reside in lower page
zero (i.e., below location 400g), use the .ZREL pseudo-op. Use
.LOC if you want your program to reside at a specific memory
address.

If you do not include a location directive in your source
module, the Macroassembler begins assigning addresses at absolute
location 0. Normally, you do not want to place code below address
50g. These locations are used by the operating system and
hardware.

The third pseudo-op you should include in your source module
is .END. The Macroassembler does not process any source code that
follows .END, so this should be the last statement in your program.

When you issue the .END pseudo-op, you must supply a symbol
that specifies a starting address for execution of your program.

1-8 093-000192
Licensed Material - Property of Data General Corporation

Thus, the syntax for using .END is
- END label

where:

label is a symbolic name for the address where program execution
will begin

In sum, the general format for your source module should be

. TITLE name
« NREL
label: R

(your assembly
language program)

« END label
Again, Chapters 6 and 7 describe all pseudo-ops in detail.

We should point out that your source module should not contain
assembly language I/0 (Input/Output) instructions if you intend to
run your program under an operating system (e.g., AOS). Instead,
you must use I/O system calls (predefined macros that handle input
and output for you). However, you can use 1I/0 instructions with

the operating system's IDEF facility. The AQS Programmer's Manual
describes the I/0 system calls and IDEF facility.

Simple MASM Command Line

To assemble your source module, enter the following CLI
command:

MASM
XEQ sourcefile<nl>

MASM16
where:
XEQ is a CLI command that executes a program
MASM is the name of the Macroassembler program
(without the .PR extension). Use MASM16 if you
are assembling 16-bit programs under AOS/VS.
093-000192 1-9

Licensed Material - Property of Data General Corporation

sourcefile is the name of the file that contains your
source module (the .SR extension is optional)

During assembly, MASM creates a file to hold your object
module. MASM assigns this file the name of the source file (i.e.,
sourcefile), without the .SR extension (if any) and with the .0B
extension,

If the Macroassembler detects any errors in your source
module, it reports them to the generic file @OUTPUT. When you are
using MASM interactively, @OUTPUT is your console.

As an example, suppose your source module resides in file
PROG1l.SR. The command that assembles this file is

MASM
XEQ PROG1<nl>
MASM16

Note that you need not include the .SR extension on the name of the
source file,

When you issue this command, the Macroassembler creates file
PROG1.0B. At the end of the assembly, this file contains your
object module.

The above discussion summarizes the simplest way for you to
assemble a program. However, the Macroassembler provides you with
many options at assembly time. For example, you may

* produce an assembly listing,

* gend errors to a specific file (i.e., besides @OUTPUT),

* gpecify the name for your object file, and

* suppress production of the object file.

Chapter 8 describes these and other features of the MASM command

line in detail. That chapter also provides information on linking
and executing your program.

End of Chapter

1-10 093-000192
Licensed Material - Property of Data General Corporation

Chapter 2
Input to the Macroassembler

The input you pass to the Macroassembler is in the form of one
or more assembly language source modules. In this chapter, we
discuss the different elements that make up a source module.

In most cases, you enter your source module with one of Data
General's text editors. When you name a source file (i.e., a file
that contains a source module), add the .SR extension to the end of
the filename (e.g., source file PROG.SR). Chapter 8 describes the
Macroassembler's naming conventions for files. Chapter 8 also
explains the Macroassembler operating procedures.

Character Set
Each source module consists of a string of ASCII characters.
The AOS Macroassembler allows you to use the following characters
in a source module:

* Uppercase and lowercase alphabetic characters: A through 2
and a through z. By default, the Macroassembler is not
case sensitive (e.g., the symbols 'START' and 'start' are
the same).

* Numerals: 0 through 9

* Dollar sign and question mark: §$ 2

* Format control and end-of-line characters: carriage return,
form feed, NEW LINE, space, horizontal tab.

* Special characters:

" 1] & + *

/ - < > = @ #
% ’ — . H H ~
\ E B *x QO [l D

These characters have special meanings to the Macroassembler.
Table 2-1 lists the meaning of each special character and provides
references for more information.

The Macroassembler unconditionally ignores null characters
(ASCII 000g). Do not use the following characters in your source
module: delete (ASCII 177g), control characters, or characters
with the parity bit set to 1. If the Macroassembler encounters one
of these, it returns a bad character (B) error and ignores the
illegal character.

093-000192 2-1
Licensed Material - Property of Data General Corporation

Appendix A lists the octal codes for each ASCII character.

Table 2-1. Special Characters

Character

Meaning

Reference

: (colon)

: (semicolon)

. (period)

y (comma)

+(plus sign)

= (minus sign)

* (asterisk)

/ (slash)

B(capital B)

Follows all labels

Precedes all comments

A permanent symbol
with the value and
relocation property
of the current
location counter

Indicates a decimal
integer or a
floating-point
constant

May appear in symbol
names

Delimits arguments

Addition operator

Unary operator
indicating a positive
value

Subtraction operator
Unary operator
indicating a negative
value

Multiplication
operator

Division operator
Single-precision bit

alignment operator
(16 bits)

"Labels" - Chapter 2

"Comments" -
Chapter 2

(.) pseudo-op des-
cription - Chapter 7

"Numbers" - Chapter 2

"Symbol Names" -
Chapter 2

"Delimiters" -
Chapter 2

"Operators" -
Chapter 2

"Unary Operators" -
Chapter 2
"Operators" -

Chapter 2

"Unary Operators" -
Chapter 2

"Operators" -
Chapter 2

"Operators" -
Chapter 2

"Bit Alignment
Operator" - Chapter 2

2-2

(continues)

093-000192

Licensed Material - Property of Data General Corporation

Table 2-1. Special Characters

Character

Meaning

Reference

& (ampersand)

! (exclamation point)

>(greater than)

<(less than)

=(equals sign)

' (apostrophe)

" (quotation mark)

“(uparrow)

% (percent)

Logical AND operator

Logical OR operator

Relational operator

Relational operator

Assigns a value to a
symbol

Combines with other
characters to form
relational operators

Converts two ASCII
characters to their
octal values

Converts an ASCII
character to its
octal value

Identifies formal
arguments in a macro
definition string

Terminates a macro
definition string

"Logical Operators" -
Chapter 2

"Logical Operators" -
Chapter 2

"Relational
Operators" -
Chapter 2

"Relational
Operators" -
Chapter 2

"Assignments" -
Chapter 2

"Relational
Operators" -
Chapter 2

"Special Integer-
Generating Formats" -
Chapter 2

"Special Integer-
Generating Formats" -
Chapter 2

"Arguments in Macro
Definitions" -
Chapter 5

"Macro Definition" -
Chapter 5

—(underscore) Directs the assembler | "Macro Definition"-
to ignore the special | Chapter 5
meaning of a charac-
ter that appears in a
macro definition
string
May appear in symbol "Symbol Names" -
names Chapter 2
\ (backslash) Generates numbers and | "Generated Numbers
symbols and Symbols" -
: Chapter 5
(continued)
093-000192 2-3

Licensed Material - Property of Data General Corporation

Table 2-1. Special Characters

Character

Meaning

Reference

D(capital D)

E(capital E)

() (parentheses)

[1(square brackets)

** (double asterisks)

@(at sign)

(number sign)

Double-precision
integer indicator

Exponential notation
indicator

May surround a
number, symbol, or
expression to alter
operator priority

May enclose arguments
in a macro call

Suppress listing of
the source line

Indirect addressing
indicator; directs
the assembler to
place a 1 in the
indirect addressing
bit

No~load indicator;
directs the assembler
to place a 1 in the
no-load bit

"Double Precision
Integers"- Chapter 2

"single-Precision
Floating-Point
Constants" -
Chapter 2

"Priority of
Operators" -
Chapter 2

"Macro Calls" -
Chapter 5

"Asterisks (**)" -
Chapter 4

"At Sign (@)" -
Chapter 2

"Number Sign (#)" -
Chapter 2

Source Statements

(concluded)

An assembly language source module consists of a series of
source lines or statements. A source statement is a sequence of
ASCII characters terminated by an end-of-line character (also

called a statement terminator). Carriage return,
LINE characters all act as statement terminators.
<nl> to represent statement terminators.

we use the symbol

Examples of three source statements are

325 <nl>

LDA
«ZREL

BEGIN:

5,LOCX <nl>

form feed, and NEW
In this manual,

;LOWER PAGE ZERO RELOCATABLE<nl>

A source statement may not be more than 132 characters in

length.

If a statement is more than 132 characters long,

the

Macroassembler truncates the line and returns an error.

2-4

093-000192

Licensed Material - Property of Data General Corporation

There are five different types of source statements. All
consist of the same basic components and all must conform to the
same general format. Thus, we focus on three distinct topics in the
remainder of this chapter:

* statement components

* statement format

* statement types

Figure 2-1 outlines the major subjects under each of these
three topics. The organization of the following presentation
closely conforms to that figure. Please note that the same infor-

mation may appear in several sections of this chapter, if
appropriate.

093-000192 2-5
Licensed Material - Property of Data General Corporation

Source

Statement
Components Format Types
Terminators Special Assembly
and Apt o Language Data
Delimiters o Instructions
Numbers Expressions S%Zfé?ns(?:l?s Assignments
Single
Precision §—— L Symbols - Labels [Pseudo-ops
Intergers
Double Permanent |—| — Comments
Precision |
Intergers
Single
Precision Instruction J— Statement-Body
Floating-
Point
Constants
Macro
User ——

SD-02007

Figure 2-1. The Source Statement

Statement Components

A source statement consists of one or more syntactic units,
called atoms. Each atom is a string of one or more ASCII characters
that the Macroassembler views as a single entity.

2-6 093-000192
Licensed Material - Property of Data General Corporation

There are four types of atoms:

* Terminals and delimiters

* Numbers

* Symbols

* Special atoms
In many cases, you combine these atoms to form expressions. An
expression is a series of symbols and/or numbers separated by
operators. (As we shall see, an operator is a delimiter atom.) For
example, X+2 is an expression that consists of a symbol atom and a
number atom joined by the operator +.

Though an expression is not an atom, the Macroassembler often
views an expression as a single entity. For example, you may supply
an expression as a single argument to an instruction, pseudo-op, or
macro call. In the instruction

LDA 0,X+2

the Macroassembler treats X+2 as a single entity, distinct from the
symbol LDA and the number 0.

Thus, when discussing the major components of source
statements, we include expressions along with the four types of
atoms. Our list of basic statement components is now

* terminals and delimiters,

* numbers,

* symbols,

* expressions, and

* special atoms.
In the following sections of this manual, we describe each of these
statement components in detail.
Terminators and Delimiters

Terminators are characters that separate the source statements

in_your module. Table 2-2 lists the terminators, also called

end-of-line characters.

093-000192 2-7
Licensed Material - Property of Data General Corporation

Table 2-2,

Statement Terminators

Character

ASCII Code (octal)

Carriage return
Form feed

NEW LINE

015
014
012

In this manual, we represent all terminators with <nl>.

Delimiters are characters that separate numbers, symbols, and
expressions from each other within a single source statement.
Table 2~3 lists and describes the various delimiters.

Table 2-3. Delimiters

Symbol Description

} (box) Any combination of spaces, horizontal tabs,
and one comma.

= Assigns a value to the symbol preceding this
sign,

: The symbol preceding this character is a
label.

; Indicates the beginning of a comment string.

+-*/B Arithmetic operators.

== > < Relational operators.

<= >= <>

& Logical operators.

) May enclose a number, symbol, or expression.

[1 May enclose the arguments in a macro call.

% Terminates a macro definition string.

- Directs the Macroassembler to ignore the
special meaning of a character that appears
in a macro definition string.

2-8 093-000192

Licensed Material - Property of Data General Corporation

Numbers

The following discussion explains the various number represen-
tations you may use in a source module. Number is a general term
that refers to integers (whole numbers) and floating-point con-
stants (fractions and exponential values).

The Macroassembler lets you use three different types of
number representations:

* single-precision integer, stored in one word (16 bits)
* double-precision integer, stored in two words (32 bits)

* sgsingle-precision floating-point constant, stored in two
words (32 bits)

Single-precision integers may appear in expressions and data
statements. Double-precision integers and floating—-point numbers
may appear only in data statements.

Single-Precision Integers

The Macroassembler represents single-precision integers as
single 16-bit words in the range 0 to 65,5359 (0 to 177,777g).
You can use twos-complement notation to represent any signed
integer in the range -32,768;g9 to +32,7671.

The first bit (bit 0) is the sign bit. If that bit equals 0,
the integer is positive; if it equals 1, the integer is negative.
0 1 15
Single-Precision
S Integer Representation

The format of a single-precision integer in your source module

is
<sign>d<d...><.>break

where:

sian is the integer's sign; use - for negative numbers and + for
positive numbers. If you do not supply a sign, the Macroas-
sembler assumes that the integer is positive.

d is a digit in the range of the current input radix; the
first digit must be in the range 0 through 9.

093-000192 2-9

Licensed Material - Property of Data General Corporation

. is an optional decimal point. The Macroassembler interprets
the integer as decimal (base 10) if you supply the decimal
point.

break terminates the integer. The break character may be any
delimiter or terminator (see "Terminators and Delimiters"
earlier in this chapter).

If a decimal point precedes the break character, the Macroas-
sembler evaluates the integer as decimal. If you omit the decimal
point, the Macroassembler evaluates the integer in the current
input radix. You may set the input radix to any base from 2 to 20
(see the .RDX pseudo-op in Chapter 7). Table 2-4 shows the digit
representations for the various bases.

2-10 093-000192
Licensed Material - Property of Data General Corporation

Table 2-4. Digit Representations

Radix (base) Highest Digit Highest Digit's
Decimal Value
2 1 1
3 2 2
4 3 3
5 4 4
6 5 5
7 6 6
8 7 7
9 8 8
10 9 9
11 A 10
12 B 11
13 C 12
14 D 13
15 E 14
16 F 15
17 G 16
18 H 17
19 I 18
20 J 19

When you select a radix of 11 or greater, your integers may
contain letters that represent digits. For example, in base 16, the
number 2F represents the value 47;5.

If the first digit of an integer starts with a letter, you
must precede that integer with the digit 0. Otherwise, the Macroas-
sembler cannot distinguish the integer from a symbol.

093-000192 2-11
Licensed Material - Property of Data General Corporation

The following examples of legal hexadecimal (base 16) integers help
clarify this rule:

OF
OA45
6A9
333
45B
OB2F

You may end a single-precision integer with any operator,
delimiter, or terminator. All operators are delimiters (we discuss
operators later in this chapter).

Note that the bit alignment operator B is an exception to the
above rule. If you are using an input radix of 12 or greater, the
Macroassembler interprets B as a digit. If you want the Macroassem-
bler to interpret B as the bit alignment operator, place the
preceding operand inside parentheses. For example,

. RDX 16 ;Input radix equals 16.

49B3 ;The Macroassembler interprets B as
;a hexadecimal digit.

(49)B3 :The Macroassembler interprets B as

;the bit alignment operator.

Refer to "Expressions" in this chapter for a description of
the bit alignment operator B.

Double-Precision Integers

The Macroassembler represents double—-precision integers in two

consecutive words of memory (32 bits). Using twos—complement
notation, you can represent any signed integer from -2,147,483,648;
to +2,147,483,6471p9. Unsigned double-precision integers may

range from 0 to 4,294,967,295;.

The first bit of the first word (bit 0) is the sign bit. If
that bit equals 0, the integer is positive; if it equals 1, then
the integer is negative.

0 1 15
S
Double-Precision
16 31 Integer Representation
2-12 | 093-000192

Licensed Material - Property of Data General Corporation

The general format for a double-precision integer in a source
module is

<sign>d<d, ..><.>Dobreak

where:

sign is the integer's sign; use - for negative numbers and + for
positive numbers. If you do not supply a sign, the Macroas-
sembler assumes that the integer is positive.

d is a digit in the range of the current input radix; the
first digit must be in the range 0 through 9.

. is an optional decimal point. The Macroassembler interprets
the integer in base 10 if you supply the decimal point.

D tells the Macroassembler to store the integer in double-

precision format

break terminates the integer. The break character may be any
delimiter or terminator (see "Terminators and Delimiters"
earlier in this chapter).

According to this definition, all of the following are legal
double-precision integers:

25D 1320.D -1D +241D =177777D

The following conventions apply to the use of double-precision
integers:

* If a decimal point precedes the D character, the Macroas-
sembler interprets that integer as decimal.

* The radix of a double-precision integer can be in the range
2-20. If the radix is greater than or equal to 14, the
letter D will be interpreted as a digit. However, you can
force the Macroassembler to interpret D as the double-
precision indicator by placing an underscore character (_)
ahead of the D.

* The first digit in each integer must be in the range 0
through 9. If the input radix is 11 or greater, your
integer may contain letters (e.g., 3Fj¢). If the first
digit of a number is a letter, precede that letter with a
zero (i.e., use OF5 instead of F5).

* If the input radix is 12 or greater, an operand that
precedes the bit alignment operator B must be within
parentheses (e.g., (29)B5_D).

093-000192 2-13
Licensed Material - Property of Data General Corporation

The following listing shows how the Macroassembler assembles
double-precision integers.

Input Assembled Radix
Value

200000D 000001 8
000000

2000000.D 000036 10
102200

-12767D 177777 8
165011

12D 000455 8

12D 000000 16
000022

OF31_D 000000 16
007461

Special Integer-Generating Formats

Two special input formats convert ASCII characters to
integers.

The first format converts a single ASCII character to its
8-bit octal value. The input format is

"a

where:

. is a quotation mark that directs the Macroassembler to
store the ASCII code for the following character.

a represents any legal ASCII character, except rubout (1778)

or null (000). See "Character Set" at the beginning of
this chapter for a list of the legal characters.

The Macroassembler interprets only the character immediately
following the quotation mark. If you include extra characters,
MASM assembles the first one correctly and returns an error for the
subsequent characters.

2-14 093-000192
Licensed Material - Property of Data General Corporation

A few examples follow to illustrate the use of the quotation mark.

Input Octal Value

"5 65

"A 101

"% 45

"&T 45 (the character T generates an error)

You may also use the quotation mark format as part of an
expression. The following examples illustrate this:

Input Octal Value
"A+4 101+4
"C*5 103*5
"§-"3 43-45

In every case, <nl> assembles the octal value for the termina-
tor character and also terminates that source line. Thus, if you
place a quotation mark before a NEW LINE character, the Macroassem-
bler assembles the octal value for NEW LINE (i.e., 0l2g). The
Macroassembler also interprets that same NEW LINE character as a
terminator for that source statement.

The Macroassembler packs the value generated by this format in

the rightmost byte of a word in memory (i.e., in the word's least
significant 8 bits). Bit eight will be set to zero. For example,
the Macroassembler stores "A as follows:

0 7 8 15

0 A

The second special integer-generating format converts up to
two ASCII characters into an integer. The format is

'string'
where:

' is an apostrophe; MASM requires you to enclose the ASCII
characters in apostrophes

string consists of any number of ASCII characters; the Macroassem-
bler uses only the first two characters of the string

093-000192 2-15
Licensed Material - Property of Data General Corporation

The Macroassembler packs the octal values of string's first
two characters from left to right in a 16-bit word. For example,
the Macroassembler stores 'A' as follows

0 7 8 15

A 0

The Macroassembler stores both 'AB' and 'ABCD' as

0 7 8 15

A B

Two apostrophes without an intervening character string
generate an integer containing all zeros (i.e., absolute zero). A
newline entered before the second apostrophe terminates the string
format.

You may use the two special integer-generating formats where-
ver the Macroassembler allows you to use integers. Table 2-5 shows
some simple expressions that use the special formats.

Table 2-5. Sample Integer—Generating Expressions

Source Octal
Value
"A 101
'AB' 40502
"BA! 41101
vt 0
+5-2 3
'B'+5 41005
‘A’ 20101
"A+'A" 40501
'AA" 40501
'AABCD' 40501
2-16 093-000192

Licensed Material - Property of Data General Corporation

Single-Precision Floating-Point Constants

Floating-point constants represent fractional and exponential
values. We refer to these numbers as constants because they cannot
appear in expressions or assignments. They may appear only in data
statements.

The Macroassembler uses two contiguous words of memory (32
bits) to represent a single-precision floating-point number.

0 1 7 8 15

Single-Precision
Floating-Point
Constant

Bit 0 is the sign bit. If that bit equals 0, the number is
positive; if it equals 1, the number is negative.

Exponent is the integer exponent of 16, expressed in excess-647¢
(100g) notation. The Macroassembler represents exponents from
-6410 to +637(¢ with their binary equivalents from 0 to 127345 (0
to 177g) . The Macroassembler represents a zero exponent as 100g.

The Macroassembler represents the mantissa as a 24-bit binary
fraction. You may view the mantissa as six 4-bit hexadecimal
digits. The range of the mantissa's magnitude is

1671 <= mantissa<= (1-16%)

You may obtain the negative form of a floating-point number by
complementing bit 0 (i.e., from 0 to 1, or from 1 to 0). The
exponent and mantissa remain the same.

The magnitude of a floating-point constant is

(16~1)*(16764) <=floating-point constant <= (1-16%)*(16%3)

which is approximately
5.4%10779 ¢= floating-point constant <= 7.2%107°

The Macroassembler normalizes all nonzero floating-point
numbers. A floating-point number is normglized if the fraction
(mantissa) is greater than or equal to 1/16 and less than 1. 1In
other words, the binary representation of a normalized number has a
1 in one of the first four bits (8-11l) of the mantissa. For
example, if you specifyzthe number 65.32, the Macroassembler
converts it to .6532*%10°.

093-000192 2-17
Licensed Material - Property of Data General Corporation

Much of the floating-point number source format is optional.
The minimum format is one digit, followed by either a decimal point
or the letter E, followed by another digit. Thus, the minimum
floating-point number format is

d { E } dobr eak

where:
d is a single digit in the range 0 through 9.
For example, 3.5 and 6E2 are both floating-point constants.

The complete source format for a single-precision floating-
point number is

SS.LQQ.ZGS_Q.'.J_;)_- dME<§i g;;Zd(dzzbr eak

or

Lsign>d<d...>E<sign>d<d>break

where:

sian indicates the sign of a value (positive or negative) and is
one of the following characters: + or -. If the sign
appears before the number, then it defines the sign of that
number. If a sign character appears after the letter E,
then it defines the exponent's sign. If you do not supply
a sign, the Macroassembler assumes that the value is
positive.

d is a digit in the range 0 through 9. The Macroassembler
always interprets the mantissa and exponent as decimal
(e.g., 26.5 equals .265%102 regardless of the current input
radix).

. is an optional decimal point. If you include a decimal
point but do not follow that point with either a digit or
the letter E, the Macroassembler stores the value as an
integer, not a floating-point number.

E indicates floating-point number representation. You must
follow the E with one or two digits representing the value
of the exponent.

break terminates the floating-point number. The break character
may be any delimiter or terminal (typically } ; or <nl>).

2-18 093-000192
Licensed Material - Property of Data General Corporation

You may format the same floating-point number with the letter
E, a decimal point, or both. For example,

Floating-Point Constant Assembled Value
254,33 041376 052173
254, 33E0 041376 052173
25433E-02 041376 052173
25433E-2 ' 041376 052173
2543, 3E-1 041376 052173
0.25433E03 041376 052173

The two octal numbers under the heading "Assembled Value"
depict the two 16-bit words that represent the floating-point
constant's value,

If the current input radix is 15 or greater, the Macroassem-
bler may interpret the letter E as a digit rather than the
floating-point number indicator. To avoid ambiguity, precede the
exponential E with a period (.) when representing a floating-point
constant. For example,

«RDX 16 ;Input radix is 16.

-5E3 :E is a hexadecimal digit and -5E3 represents
;an integer.

-5.E3 +E indicates floating-point number

;representation (i.e., -5%107).

The following examples show floating-point numbers and the
corresponding values that the Macroassembler stores.

Floating—-Point Constant Assembled Value
1.0 040420 000000
3.1415926 040462 041767
-1E0 140420 000000
+5.0E-1 040200 000000
+273.0E0 041421 010000
0.33E2 041041 000000

Symbols

Each assembly language source program you write will contain
ASCII character strings called symbols. Each symbol represents a
binary number. One function of the Macroassembler is to translate
the symbols in your source program into their binary machine
language equivalents. Assembly language instructions (e.g., LDA),
pseudo-ops (e.g., .NREL), system calls (e.g., ?READ), and labels
are all symbols).

093-000192 2-19
Licensed Material - Property of Data General Corporation

Symbol Names

Every symbol in your source program must conform to the
following syntax:

a...break
where:

a is the first character of the symbol and may be any upper-
or lowercase letter (A - Z%Z,a - z), period (.), dollar sign
($), or question mark (?)

b represents succeeding characters in the symbol and can
include upper- and lowercase letters (A - Z, a - z),
numbers (0 - 9), period (.), dollar sign ($), question mark
(?), and underscore (_)

break terminates the symbol; a break character may be any delimi-
ter or terminator (see "Terminators and Delimiters" earlier
in this chapter)

According to these rules, the following character strings are all
legal symbols:

« START Bl2 EXIT_1 $Z

The following strings are all illegal symbols; the first two
strings do not begin with a letter, period, question mark, or
dollar sign, and the third string contains an illegal character
(ioe.' %)o

123 4BIT SIZE%50

By default, the Macroassembler does not distinguish between
uppercase and lowercase letters. For example, the Macroassembler
interprets the symbol 'START' the same as the symbol 'start'.

Also by default, MASM recognizes the first five characters of
a symbol. If you use longer symbols, MASM ignores the excess
characters but does not return an error. Thus, the Macroassembler
does not differentiate among the following three symbols (for
symbol length equal to five):

FILES1 FILES2 FILES_TO_TAPE

The /8 switch lets you use the first eight characters of a
symbol instead of the first five. Note that macro names must still
be unique in the first five characters. Also, any symbol that is
not a macro name must not have its first five characters the same
as those of a macro name. MASM will not return a warning or error
if this restriction is violated.

2-20 093-000192
Licensed Material - Property of Data General Corporation

If you include the underscore character in a symbol that
appears in a macro definition, precede that underscore character
with another underscore (i.e., inside a macro, use A__B to repre-

sent the symbol A_B). "Macro Definition" in Chapter 5 provides more
information on this subject.

Symbol Types

The Macroassembler recognizes three classes of symbols:

* Permanent symbols (pseudo-ops)

* Semipermanent symbols (instructions, macros, and system

calls)
* User symbols

These symbol types vary according to the following criteria:

* Where the symbol definitions reside

* Whether you may redefine the symbols and, if so, how you

redefine them

Symbol definitions may reside in one of three places: within
the Macroassembler program, your source code, or the permanent
symbol table (file MASM.PS or MASM16.PS (AOS/VS MASM16)).

The permanent symbol table is an external file that the
Macroassembler uses to resolve symbols that are not defined in
either the Macroassembler or your source code. For the purpose of
the present discussion, symbols defined in the permanent symbol
table are equivalent to those defined in your source code.

Table 2-6 summarizes the various symbol types. Refer to the

following discussions for more information on the different
symbols.

093-000192 2-21
Licensed Material - Property of Data General Corporation

Table 2-6. The Four Classes of Symbols

Class Symbols in Class Where Defined How to
Redefine
Permanent Pseudo-ops Internally in Cannot be
Macroassembler removed or
software redefined

Semipermanent | ECLIPSE assembly | In source code or | Can be

language permanent symbol removed (via
instruction table .XPNG) and
mnemonics, macro redefined
names, or system
calls

User Labels In source code or | Can be
User variables permanent symbol redefined at
System Parame- table any time
ters (without

using .XPNG)

"Symbol Interpretation” in Chapter 3 describes how the Ma-
croassembler translates the symbols in your source code. "Permanent
Symbol Table" in Chapter 8 describes how to save symbol definitions
for future use.

Permanent Symbols (Pseudo-Ops)

Permanent symbol definitions reside within the Macroassembler.
You can neither delete nor redefine permanent symbols, as their
name implies. Thus, the Macroassembler always recognizes them in
your source code.

The permanent symbol set consists solely of pseudo-ops.
Conversely, all pseudo-ops are permanent symbols. Pseudo-ops serve
two purposes:

* They direct the assembly process.

* They represent numeric values of internal assembler
variables.

Pseudo-ops that direct the assembly process are called assem—
bler directives. Assembler directives set the location counter,
reserve memory blocks, store ASCII text strings, control the
program listing, and define macros, as well as perform other
functions. When using an assembler directive in your program, you
must adhere to the particular syntax for that symbol.

2-22 093-000192
Licensed Material - Property of Data General Corporation

For example, the pseudo-op .TXT stores an ASCII text string in
memory. When using .TXT, you must supply a single argument (i,.e.,
the text string). If you do not supply an argument or you supply
more than one argument, MASM returns an error. Chapter 7 specifies
the syntax for each assembler directive pseudo-op.

In addition to directing the assembly process, pseudo-ops may
represent internal assembler variables. When serving this purpose,

the pseudo-op is called a value symbol.

For example, the symbol .PASS has the value of the current
assembler pass number. During the first assembler pass, it has a
value of 0; on the second pass, its value is 1. Another value
symbol is the period (.). This single-character symbol has the
value of the current location counter.

Depending on how you use them in your source program, certain
pseudo—-ops can either direct the assembly process or represent
internal assembler variables. The Macroassembler uses the symbol's
context in the source line to determine its intended use.

If the source line begins with the pseudo-op, the Macroassem-
bler interprets that symbol as an assembler directive. If you pass
the pseudo-op as an argument or use it as an operand in an
expression, the Macroassembler interprets it as an internal vari-
able (i.e., as a value symbol). MASM does not consider the label
field when inspecting the pseudo-ops in a source line. To clarify
these rules, consider the following examples.

You may use the pseudo-op .RDX either to specify a new radix
for numeric input (as an assembler directive) or to represent the
value of the current input radix (as a value symbol). In the line

.RDX 10 <nl>

the symbol .RDX begins the source line. Therefore, the Macroassem-
bler interprets it as an assembler directive and sets the current
input radix to 10 (decimal). However, in the source line

(.RDX) <nl>

the character "(" signifies the beginning of an expression. Thus,
the Macroassembler interprets .RDX as a value symbol and generates
a storage word with the numeric value of the current input radix
(in this case, 10).

In the source line
SET_BASE: «RDXO +.RDX <nl>
the Macroassembler interprets the first pseudo-op, .RDXO, as an
assembler directive. The second pseudo-op, .RDX, is a value symbol

because it appears as an argument., Pseudo-op .RDXO specifies a
radix for numeric output from the assembler. Thus, the above source

093-000192 2-23
‘ Licensed Material - Property of Data General Corporation

line sets the output radix equal to the current input radix. Note
that the label SET_BASE does not affect the interpretation of the
pseudo-ops. All pseudo-ops, both assembler directives and value
symbols, begin with a period (.). Appendix B lists all pseudo-ops.
Chapter 7 describes each symbol in detail.

Instruction Symbols

Instruction symbols are all the symbols in your ECLIPSE

computer's assembly-language instruction set. The Macroassembler
is supplied with files that have definitions for the standard
ECLIPSE instructions. These files are not part of the Macroassem-
bler program. Therefore, instruction symbols are semipermanent;
they can be redefined within an assembly language program.

Each instruction symbol has a specific syntax associated with
its use. As an example, consider the assembly language instruction
LDA which loads a value from memory into an accumulator. When
using LDA, you must supply an accumulator, a displacement value of
8 bits or less, and, optionally, an addressing index. In addition,
LDA lets you specify indirect addressing by including the character
@ in the source line's address field. The general syntax for LDA is

LDADACO<@>displacement <O0index><nl>

When the Macroassembler encounters an instruction symbol, it
scans the line to make sure the syntax is correct. If your source
line does not conform to the syntax required by the instruction
symbol, the Macroassembler returns an error, If your source line
is syntactically correct, the Macroassembler sets bits in the
appropriate fields of the instruction according to the values of
the symbol and its arguments.

For example, when the Macroassembler encounters the instruc-
tion symbol LDA, it produces a one-word instruction as follows:

111111
0123456789012345

0 0 1|A C|@|Idx| Displacement

LDA
Opcode

When specifying an argument to an instruction symbol, be sure
the value of that argument fits in the corresponding field of the
instruction. If the field cannot contain the value, MASM returns
an error. For example:

2-24 093-000192
Licensed Material - Property of Data General Corporation

LDA 0,BUFF,1 :Legal instruction.

LDA 4,BUFF,1 sIllegal instruction--the first
;argument (4) will not fit in the

sinstruction's 2-bit accumulator
;field.

As a general rule, be sure that your argument values conform
to the following equation:

argument—valuen<=n(2(field_Width)-l)

where:
argument-value is a value that you pass to an instruction symbol

field-width is the number of bits in the field corresponding to
argument-value

To summarize the above discussion, the Macroassembler associ-
ates two formats with every instruction symbol:

A source format that describes the correct use of the symbol in
a source line. This format specifies the
number of required and optional arguments you
may pass to the instruction.

An assembly that describes the fields which receive the

format values of the instruction symbol and its
arguments., Be sure the argument values you
pass to an instruction symbol fit into the
corresponding fields.

The Programmer's Reference, ECLIPSE®-Line Computers manual
describes these formats for each 16-bit assembly language
instruction.

Redefining Instruction Symbols

Instruction symbols, such as LDA, ESTA, and JMP, are
semipermanent. Therefore, the Macroassembler lets you redefine
their symbols. To do so, you can use the .XPNG pseudo-op or begin
the assembly without a permanent symbol table. The .XPNG pseudo-op
removes all of the Macroassembler's semipermanent (instruction,
macro, and system call) symbol definitions. Then, you may assign a
new value to any instruction symbol. For example:

« XPNG :Deletes all semipermanent symbol definitions
LDA=5 ;Defines LDA as a user symbol

The .XPNG statement removes LDA's definition; the Macroassembler

093-000192 2-25
Licensed Material - Property of Data General Corporation

will no longer interpret LDA as an instruction that loads a value
into an accumulator. The second statement redefines LDA as a user
symbol with the value 5 (we explain user symbols later in the
chapter).

You can achieve the same effect if you assemble your program
without a permanent symbol table. In this case, the Macroassembler
will not recognize any instruction, macro name, or system call
symbols. We describe this technique in Chapter 8.

You can also use a symbol table pseudo-op to define a new
load-accumulator instruction with a different symbol (e.g., LOAD).
We introduce these pseudo-ops in the "Defining Assembly Language
Instructions" section of this chapter.

Macro Symbols

Every macro symbol represents a series of assembly language
source statements. Whenever you wish to use those source state-
ments in your program, simply place the macro symbol on a source
line. The Macroassembler automatically substitutes the correct
source statements for that symbol.

Use the .MACRO pseudo-op to associate a series of source
statements with a symbol. You may choose any unique symbol name to
represent those source statements. Be sure that your macro symbol
conforms to the rules for symbol names presented earlier in the
section "Symbol Names."

Macro symbols are semipermanent; you can redefine them within
an assembly language program. We provide a complete discussion of
macros in Chapter 5. Also, refer to the .MACRO pseudo-op descrip-
tion in Chapter 7 for more information.

In addition to your own macro symbols (those you define in
your source), you may use the predefined macro symbols provided in
the AOS software package. We call these predefined macros system
calls; they perform frequently used operations and may greatly
simplify assembly language programming. All system call names
begin with a question mark (?). Their definitions reside in the
permanent symbol table MASM.PS or MASM16.PS (see "Permanent Symbol
Table" in Chapter 8). The AOS Programmer's Manual documents all

system calls.

Redefining Macro Symbols

You can use the .XPNG pseudo-op to remove all macro symbol
definitions (including system call definitions). After deleting a
macro symbol's definition, you may assign that symbol a new value.

There is no way to reinstate a system call's definition during
an assembly after you remove it. To reinstate other macros, you

2-26 093-000192
Licensed Material - Property of Data General Corporation

must list the appropriate source statements in a .MACRO
declaration.

Refer to the .XPNG pseudo-op description in Chapter 7 for more
information on redefining macro symbols.

User Symbols

User symbols are all the symbols that you define in your
source program, except for macro symbols. Among their other
functions, user symbols allow you to name locations symbolically,
represent numeric values, and name external values. For example:

START: A=3 <nl>

This statement defines both START and A as user symbols. START is a
label whose value is the current address; A is a variable with the
value 3.

User symbols do not have formats associated with their use.
You can use them any place you can use integers.

User symbols may be either local or global. A local symbol has
a value only for the duration of the single assembly in which it is
defined. The value of a global symbol is known at link time; thus,
you may use it in separately assembled modules. "Intermodule
Communication™ in Chapter 6 provides more information on this
subject.

Reserved Symbols

When choosing user symbols for your program, be sure they
conform to the general rules for symbol names presented earlier in
this section. In addition, make sure that your user symbols do not
conflict with any permanent, instruction, or macro symbols. Though
MASM permits it, we recommend that you not use the question mark
(?) as the first character in your user symbols; the system calls
provided by the operating system all begin with a guestion mark.

Do not use the .CALL, .KCALL, .RCALL, .RCHAIN, or .TARG symbols in
your source code, These five symbols are reserved for the opera-
ting system's use.

Redefining User Symbols
Generally. you may change the value of a user symbol at any

point in your program (without using .XPNG). The following se-
quence of source statements is perfectly legal:

START: A=3
A=A+A
A=0
093-000192 2-27

Licensed Material - Property of Data General Corporation

At the end of the above sequence, user symbol A has the value 0.
You can use the .DUSR pseudo-op to define a user symbol that will
not appear in the cross reference listing. For example, if you use
the simple assignment statement A=3, the symbol A will appear in
your program's cross reference listing. If you coded the statement
.DUSR A=3, A would still equal 3, but A would not appear in the
cross reference listing. You can assign a different value to a
user symbol after it is defined with the .DUSR pseudo-op. However,
this will produce a multiple definition (M) error if you have the
/M switch in your command line (see "Command Line Switches" in
Chapter 8).

Remember that, contrary to the general rule, you may not

modify the value of a label. For example, the following code
generates an error at assembly time:

« NREL 0
LOCl: .

LOC1=LOC1+100 sERROR - DO NOT REDEFINE LABELS.

Expressions
An expression is
* a single user symbol, value symbol, or integer; or

* a series of user symbols, value symbols, and/or integers
separated by operators.

The general format for an expression is

<sign>operand<operatorOoperand>..,break
where:
sign is one of the unary operators: (+ or -)
operand may be a user symbol, a value symbol, an integer,
or another expression
operator is a Macroassembler operator (described in the
next section); operands must both precede and
follow every operator in your expression, except
the unary operators
break terminates the expression; the break character may
be any delimiter or terminator (see "Terminators
and Delimiters" earlier in this chapter)
2-28 093-000192

Licensed Material - Property of Data General Corporation

According to this definition, the following strings are all
legal expressions:

START-1 6*3-5 A+3*B/C

You may not include any spaces within an expression, but you
may use a space to terminate an expression. Thus, the Macroassem-
bler does not view the string '3 + 5' as an expression because it
contains spaces.

You may not use a symbol that has been defined with the .EXTN,
«EXTD, or .COMM pseudo-op as part of an expression. For example,
the following source code contains an illegal expression.

.TITLE MOD1
<EXTN C

C+l sIllegal expression.
+ END

Operators

Table 2-7 lists all the operators that the Macroassembler
recognizes.

Table 2-7. Operators

Operator Meaning
+ Addition (2+3) or unary plus (+3)
- Subtraction (5-4) or unary minus
Arithmetic (-4)
Operators * Multiplication
/ Division
B | Single-precision bit alignment (16
bits)
Logical & Logical AND
Operators ! Logical OR
== Equal to
Relational <> Not equal to
Operators < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
093-000192 2-29

Licensed Material - Property of Data General Corporation

There are two different classes of operators:
* Binary operators
* Unary operators

require two operands; one before and one
after the operator. All the operators in Table 2-~7 may function as
binary operators. For example, the following expressions contain
binary operators:

3+2 6*5 A<B C!D

You may not place two binary operators in a row. The follow-
ing are illegal expressions:

3*/4 8-*3 5%%2 A*&B

The binary operators +, -, *, and / perform common mathemati-
cal operations; so, we do not describe their use in detail.
However, the following sections of this manual provide information
about the logical operators, the relational operators, and the bit
alignment operators.

Unary operators require only one operand., The + and - charac-
ters can also function as unary operators., We provide more infor-
mation in the next section.

Unary Operators

The Macroassembler can interpret the + and - characters as
unary operators. The unary + and - operators simply indicate the
sign of the following expression (positive or negative,
respectively).

Unary operators require only one operand, which must appear
immediately after the operator. Thus, a unary operator may either
begin an expression or follow a binary operator within an
expression. The following examples show the legal use of unary
operators:

-5 +4 7%-3 6/+2

You may not place two unary operators together. For example,
the following expressions are illegal:

--5 -+7 4%4+-3

2-30 093-000192
Licensed Material - Property of Data General Corporation

A N

To legally apply two unary operators in a row, use parentheses
to separate the operators. The following expressions illustrate
this rule:

-(-5) -(+7) 4%+ (-3)

Logical Operators

The Macroassembler provides two logical binary operators: &
and !. The operator & directs the Macroassembler to perform a

logical AND operation; the operator | represents the logical OR
(inclusive) operation. To perform a logical operation, the Ma-
croassembler must compare the bit patterns of both operands.

For a logical AND (&), the result in a given bit position is 1
only if both operands contain a 1 in that bit position. The follow-
ing example shows how the Macroassembler evaluates the logical
expression 6&4:

Bit representation of 6: 110
Bit representation of 4: 100
100

Result of logical AND (&):
Thus, the resulting value of the expression 6&4 is 4 (100 2).

For a logical OR operation (!), the result in a given bit
position is 1 if either or both operands contain a 1 in that bit
position. The following example shows the logical OR operation for
the expression 6!4:

Bit representation of 6: 110
Bit representation of 4: 100
Result of logical OR (!): 110

The value of the expression 6{4 is 6 (110 2).

You must remember that you may not use relocatable operands in
a logical expression; i.e., you may use only absolute operands.
"Relocatability" in Chapter 3 provides more information about this
subject.

Relational Operators

An expression containing a relational operator is a relational
expression; that is, a relational expression contains one of the
following:

< <= > >= <> ==
093-000192 2-31

Licensed Material - Property of Data General Corporation

A relational expression evaluates to either absolute zero
(false) or absolute one (true). Absolute zero has a zero in every
bit; absolute one has a one in the least significant bit (bit 15),
and zeros in the rest of the bits. We refer to these values as
"absolute" because they are not relocatable (Chapter 3 describes
relocation).

The following examples show how the Macroassembler evaluates
relational expressions (radix equals 8):

Assembled Expression Comment
Value

000000 5==6 False
000001 3==3 True
000001 7>1 True
000000 55<=41 False
000001 7<>6 True

The octal numbers under the heading "Assembled Value" depict the
16-bit word that represents the expression's value. Remember, each
data statement generates a single-precision integer (one word) by
default.

The Bit Alignment Operator (B)
The Macroassembler recognizes B as a bit alignment operator.

The B operator lets you right justify an integer on a bit boundary.
The general format for using the B bit alignment operator is

operandobit—-opoposition

where:
operand is an integer, symbol, or expression whose value
you wish to align
bit-op is the bit alignment operator (B)
position is an integer, symbol, or expression whose value

indicates the bit position for aligning operand;
MASM always interprets this value in decimal

When you use a bit alignment expression, the Macroassembler
aligns the rightmost bit of operand at the bit position specified
in position.

2-32 093~000192
Licensed Material - Property of Data General Corporation

The bit alignment expression must not contain any spaces.

. Use the B operator to generate single-precision (16-bit)
integers. When using B, the value of position must be in the range

Oo<=0positionn<=0157¢

The result of a B bit alignment expression equals

operan
where:
operand is‘the integer, symbol, or expression you want to
align
r is the current input radix
position indicates the bit position for aligning operand;

the Macroassembler evaluates position in decimal

The following examples illustrate the use of B (radix equals

8):
Assembled Expression Comment
Value
000004 1B13 Aligns the value 1 in bit
position 135
i.e.y 0-000-800-000—000—1002).
000012 5Bl4 Aligns the rightmost bit of 5g
(1012) in bit position
1419
(i.e., 0-000~-000-000-001-0105) .
000000 3B17 ERROR: the value 17 is outside the legal
range for the B operator (there is
no bit 1744 in a single-precision
integer).
070000 27B3 Aligns the rightmost bit of 27g
(010 1l112) in bit position 3.
MASM truncates the portion of 27 that does
not fit into the word.
093-000192 2-33

Licensed Material - Property of Data General Corporation

If you use an input radix of 12 or greater, the Macroassembler
interprets the character B as a digit instead of an operator. To
avoid ambiguity, place the operand value inside parentheses; for
example:

« RDX 16 ;Input radix equals 16.

31B4 ;The Macroassembler interprets
;B as a hexadecimal digit.

(31)B4 :The Macroassembler recognizes

;B as the bit alignment operator.

Priority of Operators

You may use more than one operator in an expression. The
Macroassembler evaluates operators according to their priority
levels. It resolves high priority operators first and low priority
operators last. Table 2-8 lists the priority levels of all
operators.,

Table 2-8. Operator Priority Levels

Operators Priority Level
B 3 (highest priority)
+-* /&l 2
< K= > >= == <> 1 (lowest priority)

If an expression contains operators of equal priority, the
assembler evaluates them from left to right.

The following examples show how MASM uses operator priority to
evaluate expressions; the radix equals 8:

Assembled Expression Comment
Value
000001 3*2== MASM evaluates * first,

then ==, The relationship is true.

000000 4<6-3 MASM evaluates - first,
then <. The relationship is false.

000005 4/2+3 / and + are equal in priority so
the assembler evaluates them from left
to right (first /, then +).

000011 3*2-1+4 All operators are of equal priority
so MASM evaluates them from left to
right (first *, then -, then +).

2-34 093-000192
Licensed Material - Property of Data General Corporation

000006 311%2 Both operators are of equal priority
so MASM evaluates them from left
to right (3!1=3, then 3*2=6).

000001 452<>311 MASM evaluates & first, followed
by !, and lastly, <>. The resulting
relationship is true.

030000 2% 3B4 B has higher priority than ¥, so
the assembler evaluates 3B4 first.
It then multiplies the result by 2.

You may change the order in which the Macroassembler evaluates
operators by including parentheses in your expression. The Macroas-
sembler always evaluates an expression in parentheses first.

Within a set of parentheses, MASM evaluates operators according to
the priority sequence presented above. If you nest one set of
parentheses inside another set, MASM evaluates the innermost
expression first.

The following examples show the use of parentheses in
expressions; the radix equals 8:

Assembled Expression Comment
Value
000006 2% (4-1) MASM performs operations

in the following order:
(4-1)=3. 2*(3)=6,

000002 1+(6/2)/2 Order of operations: (6/2)=3.
1+(3)=4. (4)/2=2.

000004 (3*%2)-(4/2) Order of operations: (3%2)=6.
(4/2)=2. (6)-(2)=4,

000001 (5<=5)+(6==2) Order of operations: (5<=5)=l.
(6==2)=0., (1)+(0)=1.

000006 3% ((3+1)/2) Order of operations: (3+1)=4.
((4)/2)=2., 3*%((2))=6.
Absolute Versus Relocatable Expressions

In the previous discussion, all the expressions contain
integers or symbols defined by integers. We refer to these operands

as absolute because their values are explicitly stated in the
source module. Cther operands are relocatable; that is, their

values relate to and are dependent upon other words in your module.

093-000192 2-35
Licensed Material - Property of Data General Corporation

If you use relocatable operands in your expressions, you must
follow certain rules, or the assembler will return an error. In
Chapter 3, we discuss relocatable values and how to use them in
your expressions,

Special Atoms

Three atoms do not fall into any of the previously discussed
categories. They are @, #, and **%,

At Sign (@)

You may include the at sign (@) in certain memory reference
instructions (MRIs) or in any data statement.

When the Macroassembler encounters the @ character, it sets
the assembled instruction's indirect addressing bit to 1. 1In
one-word MRI instructions, bit 5 is the indirect addressing bit.
In extended MRI instructions, an @ sign sets bit 0 of the

instruction's second word. Refer to the Programmer's Reference,
®—Li manual to determine which MRI instructions

allow indirect addressing. The @ sign can appear anywhere in
memory reference instructions. However, it is good practice to
place it at the beginning of an instruction's displacement field.

In data statements, the first bit (bit 0) is the indirect

addressing bit. You should place the @ sign immediately before the
data in your source code.

The following examples show the use of the indirect addressing
sign (@):

Assembled Source Statement
Value

024020 LDA 1,20
026020 LDA 1,20
142070 ESTA 0,20,0
000020

142070 ESTA 0,@20,0
100020

000025 25

100025 @25

2-36 093~000192

Licensed Material - Property of Data General Corporation

Number Sign (#)

You may place the number sign (#) in any one-word ALC
instruction. You may not use the number sign with multiword ALC
instructions. When the Macroassembler encounters the # character,
it places a 1 in that instruction's no-load bit (bit 12). At
execution time, the arithmetic and logic unit (ALU) does not load
the results of the operation into the destination accumulator
(ACD) .

The following examples illustrate the use of the no-load sign
(#): :

Assembled Source Statement
Value

112405 SuUB 0,2,SNR
112415 SUB# 0,2,SNR
133102 ADDL 1,2,82C
133112 ADDL# 1,2,5zC

If you use the # character in a source line, you must also
have a skip mnemonic in the line. If you do not, MASM returns an
error, because those bit combinations represent other instructions
in the ECLIPSE instruction set.

Refer to the Programmer's Reference, ECLIPSE®-Line Computers
manual for a list of the skip mnemonics and for information about
one-word ALC instructions.

Asterisks (**)

Two consecutive asterisks (**) in a source line direct the
Macroassembler not to list that line. We suggest that you put the
asterisks at the beginning of a source line. The asterisks do not
affect the object module, only the assembly listing.

Refer to "Assembly Listing" in Chapter 4 for more information
on the two asterisks (**) atom.

093-000192 2-37
Licensed Material - Property of Data General Corporation

Statement Format

In general, all source statements in your module should use
the following format:

label: statement-body scomment <nl>

Each nonblank line in your source module must contain a value
for at least one of these three fields.

The Macroassembler is a free-~form assembler. That is, the
assembler is not column sensitive., 1Instead, it distinguishes
between fields by searching for delimiters. For example, the label
field delimiter is the colon (:). Table 2-9 lists the characters
that delimit each field in your source line.

Table 2-9. Statement Field Delimiters

Field Delimiter

label Colon (:)

statement-body Semicolon (;) or statement terminator (i.e.,
carriage return, form feed, or NEW LINE).

comment Begins with a semicolon (;) and ends with a
statement terminator.

You may include extra spaces and tabs between the statement
fields in your source line without affecting the assembler's
interpretation of that line. Thus, all of the following lines are
equivalent: ;

label:statement-body;comment<nl>
label: statement-body scomment <nl>

label: statement-body scomment <nl>

A common programming practice is to divide each source line
into columns using the tab settings. Thus, label starts in the
leftmost column; statement-body starts at the first tab stop, etc.

The maximum allowable length for a source statement is 132
characters. The Macroassembler truncates lines that are too long,
and returns an error.

*% label: statement-body ;comment <nl>

2-38 093-000192
Licensed Material - Property of Data General Corporation

~~

Refer to "Assembly Listing™ in Chapter 4 for a discussion of
the no-listing indicator (#*%),

The following sections of the manual discuss the three source
statement fields: label, statement-body, and comment.
Labels

A label symbolically names a memory location. By using labels,
you can refer to locations without regard for numeric addresses.

Any source statement can have a label. It must appear at the
beginning of the source line and must be followed by a colon (:).
All labels must conform to the rules for symbol names (see "Symbol
Names" earlier in this chapter).

The following source lines have examples of how to use labels.

BEGIN: ELDA 0,SEVEN
JUMP: JMP @17
SEVEN: 7

Like other symbols, a label has a value. The value of a label
equals the value of the current location counter. MASM computes the
label value prior to processing the rest of the source line. Thus,
a label usually equals the address of the next storage location
that the assembler creates, (Be sure to read about the exception
case at the end of this section.) You may not alter the value of a
label at any point in your program.

According to these rules, the label BEGIN in the first line of
the previous example receives the address of the assembled ELDA
instruction as its value. Location SEVEN contains the value 7.

Since some source lines do not generate storage words, a label
is not necessarily associated with the source statement it appears
in. For example,

START: .TITLE MOD1
LDA 0,1

Here, the first statement assigns the title MOD1l to the source
module, and does not generate a storage word. Therefore, the label
START receives as a value the address of the next location
assembled; in this case, the address of the LDA instruction.

Similarly, a label may appear alone on a line. In this case,
its value equals the address of the next storage location
assembled.

LABELl:
LDA 0,1

093-000192 2-39
Licensed Material - Property of Data General Corporation

In this example, the value of LABELl equals the address of the
assembled LLDA instruction.

LABEL1:
LABEL2: LDA 0,1

Here, both LABELl1l and LABEL2 equal the address of the LDA
instruction.

You may place more than one label on a source line; all labels
will receive the same value. For example:

LOOP1l: LOOP2: LOOP3: : ADD 0,1

LOOP1l, LOOP2, and LOOP3 all equal the memory address of the assem-
bled ADD instruction.

In the previous examples, all labels receive the address of
the next location MASM created. However, this is not the case if
your label appears on a source statement that alters the value of
the location counter. Since it computes a label's value before
evaluating the source line, MASM may never actually create the
location it assigns to the label. Consider the following example:

.LOC 100 ;Set the location counter to 100.
A: .LOC .+50 ;Increase the location counter by 50.
B: ELDA 0,1

The first statement directs MASM to start assigning addresses
at absolute location 100. When MASM encounters label A on the next
statement, it immediately assigns that label the value 100. Before
MASM actually creates location 100, however, the second .LOC
statement changes the value of the location counter to 150. Thus,
label B's value (150) is the address of the ELDA instruction, but
label A's value (100) does not identify an allocated location.
References to address A produce unpredictable results.

Any of the following pseudo-ops may change the value of the
location counter:

. GLOC
. LOC

« NREL
« ZREL

In general, you should not place labels on these pseudo-op
statements. In fact, except for .BLK and .TXT, you need not place
a label on any pseudo-op statement.,

2-40 093-000192
Licensed Material - Property of Data General Corporation

Statement Body

The statement-body field of a source line may contain one of
the following:

* Assembly language instruction

* Macro or system call

* Pseudo-op directive

* Assignment

* Data
We discuss these five types of source statements later in this
chapter (see "Statement Types").

Comments

You should include comments in your programs. This will help
you develop, test, and document your programs. The assembler does
not interpret comments. Therefore, comments do not affect the
generation of the object module.

Precede all comments with a semicolon (;). When the assembler
encounters a semicolon, it ignores all subsequent characters up to

the statement terminator.

The following source statements show the use of comments:

LDA 0,A :Get counter's initial wvalue
LDA 1,B ;Get the value that increments the counter
ADD 0,1 ;Produce the counter's new value

A: 63 ;Counter's initial value

B: 44 :Initial value of counter's increment

;Also note that comments can appear alone on a line.

Statement Types

As we mentioned previously, there are five different types of
source statements:

* Assembly language instructions

* Macros and system calls

093-000192 2-41
Licensed Material - Property of Data General Corporation

* Pseudo-op directives
* Assignments
* Data

Each statement type must conform to the general statement format
that we presented in the previous section. Thus, the general
statement format is now

assembly language instruction
macro or system call
label: pseudo—op directive scomment <nl>
assignment
data

In addition to the general statement format, each of the five
statement types also has a syntax specific to that type.

The next sections describe the five statement types and the
syntax for each.

Assembly Language Instructions

Assembly language instructions perform specific operations at
execution time. There are three categories of assembly language
instructions:

* Arithmetic and logic (ALC)

* Memory reference (MRI)

* Input/output (I/0)
Arithmetic and logic (ALC) instructions let you manipulate

data in the CPU. That is, the ALC instructions perform operations
on data residing in the accumulators (e.g., add, subtract,
complement, logical AND).

Memory reference instructions (MRIs) let you perform the

following operations:
* Modify the program counter (PC)
* Modify an operand in memory
* Transfer data from memory to an accumulator

* Transfer data from an accumulator to memory

2-42 093-000192
Licensed Material - Property of Data General Corporation

—

I/0 instructions let you communicate with peripheral devices.
In particular, these instructions

* gstart and stop peripheral devices,

* transfer data from a device to an accumulator in the
central processing unit (CPU),

* transfer data from an accumulator to a device, or

* test the status of a device.

Note that you may not use I/0 instructions in your module if
that program will run under an operating system. Instead, you must
use I/0 system calls (see "Macros and System Calls" below).

The syntax for using an assembly language instruction in your
source module is

instr S—D—mzﬁ o e

where:

instr is an assembly language instruction mnemonic; all such
mnemonics are instruction symbols. Refer to "Instruction
Symbols" earlier in this chapter for more information about
the properties of this symbol type.

arg is an argument to the assembly language instruction. Not

all instructions require arguments; some require many.

The Programmer's Reference, ECLIPSE®-Line Computers manual
describes the 16-bit ECLIPSE computers' assembly language
instructions. It also specifies what arguments you must supply to
each instruction. Examples of four typical ECLIPSE assembly
language instructions are

LDA 0,-2,1 sLoads accumulator 0

ADD 2,3 ;Adds two values

JMP START ;Jumps to the location named by START
HALT ;Halts the CPU

The Macroassembler lets you define your own assembly language
instructions. We introduce the pseudo-ops that let you redefine
instructions at the end of this chapter.

Macros and System Calls

A macro is a series of assembly language source statements
that you assign a name. Whenever you wish to place that section of
source code in your source module, you simply enter the macro name;
the assembler substitutes the corresponding code.

093-000192 2-43
Licensed Material - Property of Data General Corporation

The syntax of a macro call is
macro—name<arg>...

where:

macro-name is the name you assign to a series of assembly
language source statements

arg is an argument to the macro

In Chapter 5, we explain how to create and use macros. Chapter
3 describes how the Macroassembler processes macros.

Included in the AOS software package is a set of predefined
macros. Some of these system-defined macros perform frequently
used operations. We refer to these macros as system calls. The
advantage to using system calls is that you do not have to code the
macros yourself; simply issue the system call.

The syntax for issuing a system call is

?system—call<dard>...

exception-return
normal-return
where:

?system—-call is the name of a system call. All system
calls begin with a question mark. Every
system call mnemonic is a macro symbol
(see "Macro Symbols" in this chapter).

arg is an argument to the system call.

exception-return is a one-word source statement that gains
control if the system call causes an error
or exceptional return.

normal-return is a source statement that gains control
if the system call does not cause an error
or exceptional return.

The following are examples of system call statements:

?20PEN TEST ;Open file defined by parameter packet TEST
?WRITE TEST ;Write record to file defined by packet TEST
?CLOSE TEST ;Close file defined by parameter packet TEST
?RETURN

2-44 093-000192
Licensed Material - Property of Data General Corporation

Note that each of these examples shows only the system call
itself, not the exceptional and normal-return statements.

The AQOS Programmer's Manual describes all system calls in

detail. Chapter 3 in this manual explains how the Macroassembler
processes them.,

Pseudo-Ops

A pseudo-op, also called an assembler directive, directs the
operation of the Macroassembler. It is called a "pseudo-op" because
your program never executes it; rather, the assembler executes it.

In addition to performing other functions, pseudo-ops

* tell the assembler where in memory your source code is to
reside,

* allow separately assembled source modules to communicate
with each other, and

* define macros

* define instructions

* control the listing output format

* allow for conditional assembly of selected statements

The syntax for a pseudo-op source statement is

.pseudo—opSQiLg_Z. .e

where:
«pseudo-op is the name of a pseudo-op. All pseudo-ops begin
with a period (.) and every pseudo-op mnemonic is
a permanent symbol. Refer to "Permanent Symbols"
earlier in this chapter for more information about
this class of symbols.
arg is an argument to the pseudo-op.

The following are examples of pseudo-op source statements:

« ZREL
« NREL 1
+TITLE MOD1
« ENT GLOBE
« RDX 8
093-000192 2-45

Licensed Material - Property of Data General Corporation

Note that you may use certain pseudo-op symbols as values in
other source statements. For example,

X=,RDX

assigns the value of the current input radix to the variable X.
This statement is not a pseudo—-op directive but rather an assign-
ment (see "Assignments" below).

When using a pseudo-op symbol in this fashion, we refer to it
as a value symbol. We discuss value symbols under "Permanent
Symbols" earlier in this chapter.

Chapter 6 discusses the different types of pseudo-ops. Chapter
7 describes the pseudo-ops individually and specifies what argu-
ments you must supply to each.

Assignments

An assignment statement assigns a single-precision (16-bit)
integer value to a symbolic name, After associating a value with a
symbol, you may use the symbol any time you wish to indicate the
value.

The syntax of an assignment statement is

integer
user-symbol= symbol
expression
instruction
where:
user—symbol is a user symbol conforming to the rules for
symbols (given earlier in this chapter); the
Macroassembler assigns user-symbol the value on
the right side of the = character
integer is any integer value; you may not place a
floating-point number on the right side of an
assignment statement
symbol is any user symbol or value symbol
expression is any legal expression '
instruction is any legal ECLIPSE 16-bit assembly language
instruction
2-46 093-000192

Licensed Material - Property of Data General Corporation

Examples of assignment statements are

A=322

B=10%*3

C=(A/2)+B

D=C

E=.RDX
F=(.PASS+10)
G=ADD 0 r 1
H=LDA 0,1

If you place an instruction on the right side of an assignment
statement, MASM computes the assembled value of that instruction
and assigns it to the variable on the left side of the statement.
The Macroassembler issues an error if an instruction's assembled
value is greater than 16 bits. Table 2-10 shows how MASM assigns
instruction values to user symbols.

Table 2-10. Instructions in Assignment Statements

Assignment 16-Bit Value Assigned by MASM
M=STA 1,0 044000
N=LDA 0,1 020001
O=JMP €100 002100

You may not include instructions within expressions. That is,
the following assignments are jillegal and generate errors:

P=(ADD 0,0)+5

You may pnot include the .EXTD, .EXTN, or .COMM pseudo-ops in
expressions., Nor can an expression include a symbol that has been
defined by one of these pseudo-ops.

Data

A data statement is one of the simplest assembly language
statements you will use in your program. It consists of a single
number, symbol, or expression. When the assembler encounters a data
statement, it simply evaluates the number, symbol, or expression
and stores the value in memory.

Examples of data statements are

093-000192 2-47
Licensed Material - Property of Data General Corporation

0

322
10255
32*5
5.3E4
A/2
SIX

The Macroassembler generates a one-word (l6-bit) storage area
for each data statement. by default. To store data in two 1l6-bit
words, you must use the D indicator (see "Double-Precision
Integers" in this chapter for more information).

You may include the special character @ in a data statement.
The assembler then places a 1 in bit 0 (the indirect addressing
bit) of the storage word. The @ sign should immediately precede the
data on the source line; for example:

@l13
@1032

Refer to "At Sign (@)" earlier in this chapter for more
information.

Defining Assembly Language Instructions
The Macroassembler has a set of pseudo-ops that let you:
* change a standard instruction's mnemonic;

* add your own instructions to the standard instruction set;
or ‘

* create your own instruction set.

New instruction mnemonics can be saved and used for other
assemblies. For example, you could use the .DMR pseudo-op to
change the JMP instruction's mnemonic to JUMP. You could also use
the .DIAC pseudo-op to define a new instruction symbol (called
WAIT) that "requires an accumulator." When you use the WAIT symbol
in a program, the Macroassembler scans for an expression following
the symbol. If no expression is found, a format error is generated
on the source line. If an expression is present, its value deter-
mines the value of the instruction's accumulator field.

Instruction symbols are semipermanent; they can be saved and
used, without redefinition, for all subsequent assemblies., You can
add to the standard ECLIPSE instruction definitions, or you can
eliminate the standard instructions and define your own.

Table 2-11 lists the the kinds of ECLIPSE assembly language
instructions and the pseudo-ops that you can use to define new
instructions.

2-48 093-000192
Licensed Material - Property of Data General Corporation

o~

e,

Table 2-11. Instruction Definition Pseudo-Ops

Instruction Type Example Defining Pseudo—-Op
Arithmetic and logical (ALC) ADD .DALC
Extended ALC, two IOR .DISD
accumulators, no skip
Extended ALC, two SGT .DISS
accumulators, skip
Memory reference (MRI) JMP .DMR
Extended memory reference EJMP .DEMR
Memory reference with accumu- LDA .DMRA
lator
Extended memory reference with ELDA .DERA
accumulator
Commercial memory reference ELDB " «DCMR
Count and accumulator ADI .DICD
Extended immediate ADDI .DIMM
I/0 without accumulator NIO .DIO
I/0 with two required fields DIA .DIOA
Instruction requiring an XCT .DIAC
accumulator
Extended with one argument SAVE .DEUR
field
Extended operation XOP .DXOP
Floating point load/store FLDS .DFLM
Floating point load/store FLST .DFLS
status, no accumulator
Define a user symbol as | ==——- .DUSR

semipermanent without argument
fields

093-000192

2-49

Licensed Material - Property of Data General Corporation

The following sample of source code deletes all of the stan-
dard instruction symbols and defines a LOAD, STORE, and JUMP
instruction. These instructions correspond to the standard LDA,
STA, and JMP instructions.

« XPNG ;Deletes all semipermanent symbols

.DMRA LOAD=020000 ;Defines LOAD as a MRI instruction
;requiring an accumulator (same as
;standard LDA instruction)

.DMRA STORE=040000 ;Defines STORE as a MRI instruction
srequiring an accumulator (same as
:standard STA instruction)

«DMR JUMP=000000 ;Defines JUMP as a MRI
; (same as standard JMP instruction)

Refer to the symbol table pseudo-op descriptions in Chapter 7
for more information about redefining instruction symbols. The

Programmer's Reference, ECLIPSE®-Line Computers manual describes
the formats for different kinds of ECLIPSE instructions.,

End of Chapter

2-50 093-000192
Licensed Material - Property of Data General Corporation

-~

Chapter 3
The Assembly Process

As we discussed in Chapter 2, your assembly language source
module is a series of ASCII characters grouped into source
statements. The Macroassembler interprets those statements and
produces a binary representation of your source module. The resul-

ting binary module is called an object module.
MASM is a two-pass assembler; that is, it scans your source

code twice to produce an object module. During these two passes

through your source code, the Macroassembler performs four major
functions:

* Interprets symbols

* Checks source statement syntax
* Expands macros and system calls
* Resolves memory locations

In the following sections, we describe how the Macroassembler
performs these functions.

Note that the above list of assembler functions is by no means
complete. For example, the Macroassembler can produce a variety of
listings, conditionally assemble code, and generate a symbol table
for future use. Though these are important capabilities of the
Macroassembler, they are not its major functions. Thus, we describe
these additional features in other chapters of the manual.

Symbol Interpretation

Chapter 2 describes the kinds of symbols (i.e., pseudo-op,
instruction, macro, and user) that may appear in your source
module. As the Macroassembler processes your source module, it
translates all symbols into their machine-readable binary
equivalents.

The Macroassembler uses definitions from its internal database
and two external tables to resolve the symbols in your source code.
Pseudo-op definitions are contained in the Macroassembler's inter-
nal database. The two tables are the permanent symbol table, and
the temporary symbol table. They contain instruction, macro, and

user symbol definitions. The permanent symbol table stores defini-
tions that you want to use for several assemblies (e.g. instruction
or macro definitions). The Macroassembler creates a temporary
symbol table for each assembly.

093-000192 3-1
Licensed Material - Property of Data General Corporation

During the assembly process, the Macroassembler makes sure
that all symbols are defined in the database or temporary symbol
table (adding definitions from your source, if necessary). On its
second pass through your program, the assembler uses these defini-
tions to produce binary code for the symbols in your source module.
The following discussion shows how the Macroassembler interprets
symbols. Refer to Figure 3-1 as you read this section.

Symbol Tables

The Macroassembler defines all permanent symbols (pseudo-ops)
in its internal database. Thus, the Macroassembler always recogn-
izes any pseudo-ops in your source module. You cannot change the
definitions in this database.

When you issue a MASM command line, the Macroassembler automa-

tically creates a temporary symbol table. It copies the contents
of the permanent symbol table into the temporary table. In most

cases, you will use the permanent symbol table we supply with the
AOS software package. This table (MASM.PS or MASM16.PS (AOS/VS
MASM16)) contains definitions for the standard ECLIPSE assembly
language instructions and AOS system calls (e.g., ?0PEN, ?READ) and
system parameters. Chapter 8 explains how to build your own
permanent symbol table.

When the Macroassembler encounters a symbol in your program,
it first checks to make sure the symbol is valid (i.e., conforms to
the rules for legal symbols presented in Chapter 2). MASM returns
an error if a symbol is not legal.

If the symbol is valid, the Macroassembler looks for its
definition within its database. If it's there (i.e., if the symbol
is a pseudo-op), the assembler need not check the temporary symbol
table for that symbol's definition.

If the symbol is not a pseudo-op, the Macroassembler tries to
resolve it by checking the temporary symbol table. The temporary
symbol table starts as a copy of the permanent symbol table
(usually MASM.PS or MASM16.PS (AOS/VS MASM16)).

If the Macroassembler cannot f£ind the symbol's definition in
its database or temporary symbol table, it checks to see if the
current source statement defines the symbol. If so, the Macroassem-
bler copies this definition into the temporary symbol table. If
the table already contains the symbol, MASM updates its definition
according to the information in the source line. After modifying
the temporary symbol table, the Macroassembler moves to the next
symbol in your source and repeats the symbol resolution process.

3-2 093-000192
Licensed Material - Property of Data General Corporation

Copy permanent symbol table
(MASM.PS or MASM16.PS)
into temporary symbol table

-

Get symbol

Is
symbol
a pseudo-op
(e.g., is it in the
Macroassembler’s
internal
database)
?

Yes

Is
symbol in
the temporary
symbol
table

Yes

symbol

defined in Add (or update)

the current temdefmmon |nb | -
source porary symbo
table

line
?

Enter symbol into
temporary symbol table
and flag as undefined

Y

SD-03207

Figure 3-1. Resolving Symbols

093-000192 ‘ . 3-3
Licensed Material - Property of Data General Corporation

If the Macroassembler does not find a symbol's definition in
the database, temporary symbol table, or current source statement,
it enters that symbol in the temporary table and flags it as
undefined. MASM then moves on to the next symbol in your source.

Note that the Macroassembler may not find a symbol's defini-
tion the first time that symbol appears in your source. However,
subsequent source statements may define it. For example, the first
part of your source program may reference a label that is defined
towards the end of that program.

LDA 0,A
ADD 0,1

>

A: 3

In this example, the first time MASM encounters the symbol A,
it searches its database, the temporary symbol table, and the
current source statement for A's definition. Not finding it, MASM
enters A in the temporary symbol table and flags it as undefined.
Later, when it discovers that A is a label, MASM will place the
appropriate value in the table.

During pass two, the Macroassembler uses its database and the
temporary symbol table to translate the symbols in your module into
binary code. When it finds the symbol's definition, MASM substitu-
tes the corresponding code in the object file.

If, during pass two, the Macroassembler encounters a symbol
that is not defined in its database or temporary symbol table, MASM
returns an error when it tries to substitute a value for that
symbol. If you indicate that a separately assembled module defines
a symbol (i.e., with an intermodule communication pseudo-op), the
Macroassembler does not return an error. (Chapter 6 contains more
on intermodule communication.)

Syntax Checking

As we explained in Chapter 2, all source statements and their
component parts must conform to specific syntaxes. The following
discussion describes how the Macroassembler checks your source
module for syntax errors. This presentation is a general overview
and does not list all the syntax rules; we provide those rules in
appropriate places throughout the manual.

When the Macroassembler scans your source module, it must
determine whether a given string of ASCII characters is a valid
assembly language statement. Thus, the Macroassembler must first
divide your module into distinct source statements by searching for
statement terminators.

3-4 093-000192
Licensed Material - Property of Data General Corporation

The Macroassembler then divides each statement into a series
of atoms or syntactic units (see Chapter 2). During this process,
MASM rejects any character that is not in the legal Macroassembler
character set.

After isolating the atoms in each line, MASM determines
whether those atoms form a legal source statement. If they do,
MASM processes the statement according to its type (see “Statement
Types" in Chapter 2). If the atom sequence is not a legal
statement, MASM returns an error.

The remainder of this section explains how MASM evaluates
statements. Figure 3-2 provides an overview of the operations
involved and will help you understand the following discussion.

MASM starts processing each source line by evaluating the
first atom. If the atom is not a symbol, MASM assumes that the
line is a data statement. The Macroassembler knows that a data
statement consists of a single expression followed by an optional
comment string. If the atoms on the current source line do not
conform to this format, MASM returns an error. The following
statements generate errors because they do not conform to the
format for data statements:

12+3 17 20
100:
5+10%*2 LDA 0,1

If a source line conforms to the data statement format, MASM
stores the data value in memory and moves on to the next statement.

If the first atom on a source line is a symbol, MASM determi-
nes whether a colon (:) follows it. If so, MASM assumes the symbol
is a label and makes sure it is legal (see "Labels" in Chapter 2).
At this point, the following statements would cause errors because
pseudo-ops and instruction mnemonics may not appear as labels:

«RDX: 10
ADD: 77

If the symbol is an acceptable label, MASM enters it in the
temporary table along with the appropriate value.

Labels may appear on any source line and do not place any
restrictions on a statement's format and content. Thus, after MASM
processes the label, it treats the atom following the colon as if
it were the first atom on the source line.

093-000192 3-5
Licensed Material - Property of Data General Corporation

Get next source
o line and first
o atom on that
line
-~
v Get first
A > atom after
Data Statement- o .'S
Check syntax N ita
“ and process symbol
accordingly ?
lYES
Is it
a label VES Make sure the
(i.e.isit - label is legal
A followed by and process
accordingly
?
Is
the symbol
Check syntax a pseudo-op,
- and process instruction mnemonic,
accordingly system call,
or macro ?
A lNO
Assignment 's
y YES the symbol
< Statement-Check followed
syntax and by «="
process accordingly »
A
lno
Data Statement-
Check syntax and

SD-02008

process accordingly

Figure 3-2. Processing Source Statements

3-6 093-000192
Licensed Material - Property of Data General Corporation

A

If the first atom on the source line is a symbol and is not
followed by a colon, MASM checks its database and temporary symbol
table to see if it is a pseudo-op, an instruction mnemonic, a
system call, or a macro. If so, MASM makes sure the rest of the
atoms on that source line conform to the syntax implied by the
first symbol. That is, MASM ensures that the number of atoms and
their values conform to the rules associated with the first
symbol's use. At this point, MASM would return errors for the
following statements (we put the reason for the errors in the
comment fields):

LDA 0 ;Not enough arguments.
.PUSH sRequires an argument.
ELDA 15,L0C ;Illegal AC value.
.PASS=10 ;Illegal syntax format.
LDA 0,0,0,0 ;Too many arguments.

« RDX 21 ;Illegal argument value.

If the first symbol on a source line is a pseudo-op, instruction
mnemonic, system call, or macro and if the other atoms on the line
conform to that symbol's use, MASM performs one of the following
operations:

Pseudo-op Interprets and performs the appropriate action
Instruction Assembles and stores it in memory

Macro or Expands it (see "Processing Macros and System
System Call Calls" later in this chapter)

If the first atom on the source line is a symbol but is not a
label, pseudo-op, instruction, system call, or macro, MASM determi-
nes whether the equal sign (=) follows it. If so, MASM assumes
that the statement is an assignment. Again, MASM checks to make
sure the rest of the atoms in the line conform to the syntax rules
for an assignment statement. The following assignment statements
would generate syntax errors (see "Assignments" in Chapter 2):

A=10 20 30
B=
C=100=200

If the assignment statement is legal, MASM evaluates the
expression on the right side of the statement and stores its value
in the temporary symbol table with the symbol on the left side of
the statement.

If the first atom in a source statement is a symbol but is not
a label, pseudo-op, instruction, system call, or macro, and does
not precede an equals character (i.e., is not an assignment), then

093-000192 3-7
Licensed Material - Property of Data General Corporation

MASM assumes that the statement is a data entry. 1In this case,
MASM makes sure the rest of the line conforms to the data statement
syntax.

Processing Macros and System Calls

Chapter 2 describes macros and system calls. A macro is a
named section of source code. Whenever you wish to insert that
code in your module, simply specify the macro name. System calls
are predefined macros that the AOS software package provides for
your use. You must use system calls to perform I/O operations when
you run your program under AOS.

The following discussion explains how the Macroassembler
processes macros and system calls. Refer to Chapter 5 for informa-
tion about using macros in your source module. The AQS

Programmer's Manual explains system calls in detail.

Processing Macro Definitions

When you define a macro, you associate a symbol with a series
of assembly language statements: the macro definition string. When
it encounters a macro definition during pass one, MASM places the
macro name in the temporary symbol table. MASM then copies the
macro definition string into a different part of the temporary
symbol table and places a pointer to that string with the macro
name.

The Macroassembler does not check the syntax of the macro
definition string at this time. It simply copies the definition
directly into the temporary symbol table.

"Macro Definition" in Chapter 5 explains how to define a macro
in your source module.

Expanding Macros and System Calls

The Macroassembler does not distinguish between system calls
and calls to macros that you define in your source. Therefore, the
following discussion applies to both forms of macros.

You should define a macro before you call it. When MASM
encounters a macro definition, it copies the macro's name and
definition into the temporary symbol table.

When you call a macro, MASM looks for its name in the tem-
porary symbol table. If MASM finds the macro name in the table, it
expands the macro. That is, the Macroassembler processes the macro
definition string that resides in the temporary symbol table as if
it was in your source module. During this operation, MASM checks

3-8 093-000192
Licensed Material - Property of Data General Corporation

—

the macro definition string for syntax errors. It also substitutes
any arguments you supply in the macro call for formal (dummy)
arguments in the definition string.

After assembling the macro definition string, the Macroassem-
bler continues processing your source module, moving to the state-
ment immediately following the macro call.

Assigning Locations

As the Macroassembler processes your source module, it assigns
a memory location to each word of machine code it generates. The
following discussion describes how the Macroassembler assigns
memory addresses and how you may control this process.

Memory

Before explaining how MASM assigns addresses, we should review
the characteristics of memory. AOS organizes memory into pages.
Each page contains 1K 16-bit words (K equals 1,024y49). The first
page is called page zero; the second page is page one, etc.

The AOS operating system allows each process to occupy up to
32 pages or 32KW (32,768109 words) of memory. The area of memory
accessible to a process is that process's logical address space.
For the Macroassembler's purposes, your logical address space is
divided into two basic areas:

* Lower page zero (absolute and ZREL)
* NREL (shared and unshared)

Lower page zero contains locations 0 through 377g and is
unshared (i.e., it is available to your process only). Locations
0-47g in lower page zero are absolute. These locations reserved
for system- and hardware-specific data. Lower pade zero relocata-
ble (ZREL) memory extends from location 50g through 377g.

NREL, or normal relocatable, memory extends from location 400g
through 32KwW-1, the upper boundary of your logical address space.
NREL memory contains both shared and unshared memory pages. Shared
pages are available to more than one process concurrently, while
unshared pages are only accessible to your process. NREL memory
also contains your process's system tables.

The following sections of this chapter explain the various
parts of your logical address space and how to place object code in
these areas of memory.

093-000192 3-9
Licensed Material - Property of Data General Corporation

Note that the numeric memory boundaries we associate with ZREL
and NREL are default values. You may alter these and other parame-
ters at link time.

The previous discussion is a very brief overview of your

logical address space. Refer to the AOS Programmer's Manual for

further information about AOS memory organization.

Location Counter

When assigning memory locations to the words in your source,
the Macroassembler manipulates an internal variable called the
location counter. This variable holds the numeric address and
relocation base (described below) of the next memory location that
MASM will assign.

Use the value symbol period (.) to represent the location
counter; thus, the expression

«+3

equals the current value of the location counter plus 3. Chapter 7
provides more information about this value symbol.

You may alter the value and relocation base of the location
counter with pseudo-ops .GLOC, .LOC, .NREL, and .ZREL. We explain
most of these pseudo-ops later in this chapter; detailed descrip-
tions of each appear in Chapter 7.

Partitions

During pass one, the Macroassembler sorts the words in your
source module into categories or partitions according to where in
memory that code will reside. Each memory partition has certain
attributes. The Macroassembler assigns a word of object code to the
memory partition that matches its attributes. In general, the
object code in a single memory partition will be contiguous in your
executable program file. Figure 3-3 shows sections of source code
sorted into different partitions.

3-10 093-000192
Licensed Material - Property of Data General Corporation

Source Code Object Code

Partition 1

A A

B E

C |—> Macroassembler

4‘ Partition 2

D B

E D
Partition 3

C I
SD-02009

Figure 3-3. Sorting Code into Memory Partitions

Note that several sections of source code may contribute to
the same partition. In Figure 3-3, code blocks A and E both reside
in memory partition 1.

The assembly listing specifies the numeric address and memory
partition of every word in your program. (See "Assembly Listing" in
Chapter 4 for more information). The Macroassembler produces
object code that will be place of the following partitions:

* absolute

* ZREL

* NREL unshared code

* NREL shared code

We discuss these partitions in the following sections. The
BOS/VS Link and Library Pile Boicer lses o Manual arse dosribe the
various partitions.

A partition with the absolute attribute contains object code

that must reside at specific memory addresses. If you explicitly
state the memory location of a word of code (e.g., with a .LOC

093-000192 3-11
Licensed Material - Property of Data General Corporation

pseudo-op whose argument is an absolute expression), the Macroas-
sembler places that word in the absolute partition. Absolute words
of code can reside at any location in memory (i.e., locations 0
through 32KW-1).

Partitions with the ZREL (lower page zero relocatable) and
NREL (normal relocatable) attributes contain object code that is
relocatable. Relocatable words of code need not reside at specific
addresses. Instead, their addresses are relative to the addresses
of other words. That is, relocatable words relate to and are
dependent upon other words in your source code; they are not
dependent on specific memory addresses.

The ZREL attribute defines words that must reside in the
relocatable portion of lower page zero (locations 50g to 377g).
You may express any address in a ZREL partition in 8 bits. Thus,
when referencing a location in a ZREL partition, you may use any
memory reference instruction (MRI), since all have displacement
fields of 8 or more bits.

Words in an NREL partition may reside anywhere in the address
range 400g to 32Kw-1.

You may address any word in a NREL partition with extended
memory reference instructions., These instructions (i.e., ELDA and
ESTA) have 15 bits in their displacement fields.

Object code can be shared or unshared. Code that is in the
shared NREL partition can be executed by several processes at the
same time. Code in the unshared NREL partition can be executed
only by one process at a time. Code in the ZREL partition is
always unshared.

Refer to the AOQS Link User's Manual, the AQS/VS Link and
Mlﬁ.ﬁdlwml, and your operating system

programmer's reference manual for more information about shared and
unshared memory partitions.

The Macroassembler creates a partition only if you direct code
to that partition. Therefore, each object module may not contain
every partition type; it contains only the necessary ones.

The following sections describe each of the partitions in
detail.

Absolute Partition
The absolute partition contains all object code that must

reside at specific locations in memory. You can place code in the
absolute partition by issuing the .LOC pseudo-op followed by an
absolute expression. Generally, an absolute expression is one that

3-12 093-000192
Licensed Material - Property of Data General Corporation

does not contain any variables with relocatable values (we describe
absolute expressions in detail later in this chapter). The absolute
partition may reference any location in memory.

For example:

.LOC 100

L
.

The Macroassembler begins placing the code that follows the
.LOC statement at memory location 100. Similarly,

A=50
.LOC A+100

directs the assembler to start placing object code at location 150
(the value of A plus 100). Note that the variable A has an absolute
value (50).

The nature of absolute addressing is such that the words in
the absolute partition are not contiguous in memory. For example,
certain absolute code may begin at location 150 while other ab-
solute code may reside at location 1025. This is the only partition
that contains code that is not contiguous in memory.

In general, you do not store your source code in the absolute
partition. Instead, you use the relocatable partitions (described
in the following sections of this chapter).

If you must use absolute locations, be aware that relocatable
code may overwrite your absolute code (or vice versa). For example,
suppose you specify an absolute reference to location 100g. If you
include ZREL code in your program (relocatable code in locations
50g - 377g), the Macroassembler may overwrite the absolute code at
location 100.

The only way to prevent overwriting absolute locations is to
redefine the partition boundaries such that the relocatable code
cannot overlap the absolute area(s). For example, you may redefine
ZREL to extend from locations 100g to 377g instead of from 50g to
377g. Then, you may use locations 50g to 77g as absolute addresses
and ZREL code will not overwrite them. Refer to the AOS Link
User's Manual or the AOS/VS Link and Library File Editor User's
Manual for information about how to change relocatable partition
boundaries.

093-000192 3-13
Licensed Material - Property of Data General Corporation

ZREL Partition

The ZREL partition contains object code that is relocatable
but must reside in lower page zero. You may reference any location
in ZREL memory in an 8-bit field. Thus, you may reference ZREL
locations with any memory reference instruction. For this reason,
you usually place pointers and frequently used data in the ZREL
partition.

Use the .ZREL pseudo-op to indicate this partition. For
example:

« ZREL

. :These words reside
. ;in the

. ;ZREL partition.

All code following the .ZREL pseudo-op resides somewhere in
the relocatable portion of lower page zero (locations 50-377g). 1In
addition, this code is contiguous in memory.

NREL Partitions

The NREL partitions (shared and unshared) contain relocatable
object code that may reside anywhere in the address range 400g to
32KW-1l. To reference locations in the NREL partitions, you gener-
ally use memory reference instructions that have 15-bit displace-
ment fields.

Use the .NREL pseudo-op to place code into either the shared
or unshared NREL partitions. If you do not supply an argument to
.NREL (or if the argument evaluates to 0) the words following the

pseudo-op will reside in the unshared NREL code partition. For
example:

« NREL

. ;These memory words reside

. ;in the unshared

. sNREL code partition.

To place words in the shared NREL code partition, pass a

non-zero value to .NREL. For example:

« NREL 1

. sThese words reside in

. ;the shared

. ;NREL code partition.

All the words in NREL partitions are contiguous in your
program file. Thus, the assembler assigns sequential addresses to
all words in the unshared NREL partition. Similarly, all code in
the shared NREL partition receives sequential addresses. Note that
the partitions themselves need not be contiguous in memory.

3-14 093-000192
Licensed Material - Property of Data General Corporation

Relocatability

The previous sections describe memory partitions and their
attributes. To review the main points, the Macroassembler groups
words of code with similar attributes together into a partition.
MASM usually creates several partitions, since all words in a
module rarely have the same attributes.

All partitions, except the absolute partition, contain reloca-
table code., This code does not have to reside at specific addresses
but may be anywhere within broad location ranges. Relationships
between relocatable words are more important than specific
locations.

Relocation Bases

As the Macroassembler places words from your module into the
various partitions, it assigns each word a unique address within
that partition. For words in the absolute partition, the assembler
assigns the addresses you explicitly specify in your source module;
all other partitions contain relocatable words whose addresses are
not explicitly stated in the source.

The assembler assigns temporary locations (starting with zero)
to the words in each relocatable partition. Each partition has its
own address base, called a relocation base, and the locations in
each partition start at temporary address 0. For example, the words
in the ZREL partition receive contiguous addresses starting at 0;
similarly, the words in the unshared NREL code partition also
receive contiguous addresses starting with 0.

Table 3-1 illustrates how the assembler assigns addresses to
the words in your source module. By default, each data entry
occupies one word of memory. Thus, there is one address for each
data statement in Table 3-1.

093-000192 3-15
Licensed Material - Property of Data General Corporation

Table 3-1. Assigning Addresses Within Partitions

Source Code Addresses Partition
«TITL RELOC
« ZREL
20 0 ZREL
30 1
« NREL 0
40 0 Unshared NREL code
50 1
60 2
« NREL 1
70 0 Shared NREL code
100 1
.LOC 250
110 250
120 251 Absolute
« NREL 0
130 3 Unshared NREL code
140 4
« END

During your assembly, you may leave a partition and later
return to it (as in the case of the unshared NREL code partition in
Table 3-1). When you return, the Macroassembler continues assigning
addresses from the point where it left off.

From the above discussion, we can see that the assembler
assigns consecutive addresses starting at 0 within each relocatable
partition. These addresses serve as offsets from the partition's
relocation base. The assembler cannot assign an absolute value to
the relocation base because several separately assembled modules
may specify the same memory partitions.

For example, two separately assembled modules may both place
data in the ZREL memory partition. Since the assembler knows of
only one module at a time, it always assigns ZREL locations star-
ting with 0. Thus, each module will contain ZREL words with the
same relative locations. Table 3-2 shows two separately assembled
modules that both place code in the ZREL partition.

3-16 093-000192
Licensed Material - Property of Data General Corporation

Table 3-2. Separately Assembled Modules With Similar Partitions

Source Relative Source Relative
Module A Locations A Module B Locations B
+TITL A .TITL B
« ZREL « ZREL
20 0 50 0
30 1 60 1
40 2 70 2
« END « END

The Link utility can assign a value to each partition's
relocation base because it has access to all the partitions and
locations you use in the program. Since all partitions have the
normal base attribute, Link assigns values to the relocation bases
in such a way that similar partitions from different modules are
contiguous in memory. Figure 3-4 illustrates how Link assigns
addresses to similar predefined partitions from the separately
assembled modules A, B, and C.

Order of Linking Memory Image

Module A 7
0 0 '
A > Link — A
a ‘ a
at+1
B
zglfﬁve . Module B) atb1
resses
Assigned B — atb+2 c
by b
MASM atb+c+2
Module C
o]
C —
c

$D-02010

Figure 3-4. Linking Modules with Similar Partitions

The Link utility calculates each word's new location by adding
the offset assigned by the Macroassembler to the relocation base
assigned by Link. Thus, the Link utility maintains the relation-
ships between words within a partition; i.e., contiguous words in a
partition are also contiguous in the program file that Link
produces.

093-000192 3-17
Licensed Material - Property of Data General Corporation

The AOS Link User's Manual and AOS/VS Link and Library File
Editor User's Manual provide more information about how Link
assigns values to the relocation bases.

Relocation Bases and Symbols

Thus far, we have discussed relocation bases only with respect
to partitions and addresses. However, the value of each symbol you
use in your program also has a relocation base associated with it.

To review, there are four major relocation bases associated
with the four memory partitions:

* Absolute

* ZREL

* Unshared NREL code

* Shared NREL code
The Macroassembler assigns each partition a unique relocation base.
In addition, each symbol that you declare as external (i.e., with a

.EXTD or .EXTN statement) also receives a unique relocation base.

The Macroassembler defines each symbol's value relative to a
relocation base. For example,

« ZREL ;The following words reside in
sthe ZREL partition.
A: 10 ;Each entry requires one word of
B: 20 ;storage. Thus, the value 10 resides

sat relative location 0 and the value 20
sresides at relative location 1.

The Macroassembler evaluates the label B relative to the ZREL
relocation base:

B = RBz + 1

where:
RBg is the ZREL relocation base
1 is the offset from RBz that the Macroassembler

assigns to B

When you use a symbol, you associate it with a relocation base
either explicitly or implicitly.

3-18 093-000192
Licensed Material - Property of Data General Corporation

If a symbol appears in an .EXTD or .EXTN statement, the
assembler assigns it a unique relocation base. The symbol receives
its relocation base explicitly because you directly associate the
symbol with the base when you issue the pseudo-op.

Other symbols receive relocation bases implicitly through
their association with a partition or another symbol. For example,
a label always receives the relocation base of the partition in
which it appears.

The following list summarizes the ways that the assembler can
implicitly assign a relocation base to a symbol:

*

If you associate a symbol with an address in a partition
(e.g., a label), then that symbol's value receives that
partition's relocation base. For example:

« NREL :Unshared NREL partition.
X 5 +X has the same relocation base as
;sthe unshared NREL partition.
A=.+2 ;A is defined with respect to the

;location counter and, thus, has the
;same relocation base as the unshared
sNREL partition.

If you define one symbol with respect to another symbol
that has a relocation base, the first symbol gets the
second symbol's relocation base. For example:

.EXTD M M receives a unique relocation base.
« NREL ;Unshared NREL partition.

Xz 5 +X has the unshared NREL base.
A=X+3 sA has the same relocation base as X.
N=M+1 ;N has the same relocation base as M.

If you define a symbol in terms of integers alone, the

symbol receives the absolute relocation base. For example:

B=3 ;B has the same relocation base
;as 3 (i.e., absolute base).

All symbols defined by instructions have the absolute
relocation base. For example:

F=LDA 0,0 :F has the absolute relocation base.

All value symbols, except .LOC and period (.), have the
absolute relocation base.

The assembly listing indicates both the value and the reloca-
tion base for each number, symbol, and expression you use in your
program (see "Assembly Listing" in Chapter 4).

093-000192 3-19

Licensed Material - Property of Data General Corporation

Absolute Addresses Versus Absolute Values

When discussing symbol relocation, we distinguish between
absolute values and absolute addresses. A symbol with an absolute
value keeps that value through the assembly, Link, and runtime
processes. An absolute value must be an integer. It is exactly
equal to the value you assign it in your source module. For
example:

A=10 ;Symbols A, B, C, and D
B=A+4 sall have absolute values.
C=LDA 0,0

D=.RDX

MASM can completely resolve all symbols with absolute values.

Absolute addresses represent specific address values in your
logical address space. For example:
. LOC 100
A: 0

Symbol A's value represents the address of the 100th word in
your logical address space. However, MASM does not simply store
A's value as 100. Rather, A's internal representation contains
information required for address resolution at link time and
runtime.

Since MASM cannot determine where in AOS memory your logical
address space will reside, it cannot determine what A's runtime
value will be. Thus, MASM cannot assign to any address, absolute
or otherwise, a constant, integer value.

Suffice it to say that all locations have relocatable values
at link time and runtime, even addresses in the absolute partition.
Thus, all labels have relocatable values. This point is important
when we discuss the relocation properties of expressions in the
next section.

Relocation Bases and Expressions

Chapter 2 introduced expressions and explained the various
operators. The following sections examine a different aspect of
expressions: their relocation properties.

As we have seen, each symbol has a relocation base associated
with its value. Similarly, MASM assigns a relocation base to each
expression in your source.

3-20 093-000192
Licensed Material - Property of Data General Corporation

There are two types of expressions:
* Absolute expressions
* Relocatable expressions

The following sections describe the properties of these two expres-
sion types.

Absolute Expressions

An absolute expression has an absolute value; that is, MASM

can completely resolve the expression to an integer value.

The simplest absolute expressions contain operands that have
integer values. For example, the following are all absolute
expressions. (Remember that all value symbols except .LOC and
period (.) have the absolute relocation base.)

5 6*3 (.PASS) 37711717 (.RDX)<=(6/2)

Similarly, the following are also absolute expressions if A
and B have absolute values (e.g., A=10, B=.RDX):

A A+150 B*,.PASS A+B* (A-10)

All the absolute expressions we've presented thus far contain
operands that have absolute values. However, absolute expressions
can also contain relocatable operands if the resulting value has no
relocatable components. That is, if all relocatable components
cancel each other out, the expression is absolute. Consider the
following example:

« ZREL
A: 10
B: 20
(B-A) +40

Earlier in this chapter ("Relocation Bases and Symbols"), we
showed how MASM evaluates each symbol's value with respect to a
relocation base. Thus, MASM computes the values for A and B as
follows:

A = RBZ + 0
B = RBZ + 1
093-000192 3-21

Licensed Material - Property of Data General Corporation

where:

RBy is the ZREL relocation base
0 is the offset from RBz that MASM assigns to A
1 is the offset from RBy that MASM assigns to B
The values for A and B are relative to the ZREL relocation
base. Thus, A and B have relocatable values.
MASM evaluates the expression (B-A)+40 as follows:
(B-A)+40 = ((RBz + 1) - (RBz + 0)) + 40

= (RBy — RBy) + (1 - 0) + 40

(0) + (1) + 40

1]

= 41

In this expression, the two relocatable components (RBz) cancel

each

other out, leaving an absolute value (i.e., 4l1). Thus, the

expression (B-A)+40 is an absolute expression, even though it
contains relocatable operands.

Thus

As we mentioned earlier, all labels have relocatable values.
Ou S 1 u 2 e.

relocatable components cancel out.

As we have seen, MASM can completely resolve absolute

expressions. That is, absolute expressions resolve to integer
values at assembly time. Thus, you generally use absolute expres-
sions when a value is required during the assembly process (e.dg.,
index and accumulator arguments to memory reference instructions,
and certain pseudo-op arguments).

In addition, since MASM can completely resolve an absolute

expression, it verifies that the expression's value is legal for
the field it appears in. For example:

LDA 0,23571,0

The absolute expression 23571 is too large to fit in the 8-bit LDA
displacement field. Thus, MASM returns an error for this
instruction,

3-22

093-000192
Licensed Material - Property of Data General Corporation

Relocatable Expressions

Relocatable expressions resolve to relocatable values. That

is, the result of a relocatable expression is not simply an
integer; it contains a relocatable component that cannot be resol-
ved until link time.

All relocatable expressions conform to one of the following
formats:

+
L2*>rel-symbol abs—-expr { }
or
+
abs-expr{ } rel-symbol<*2>
where:
rel-symbol is a symbol whose value is relocatable (see
"Relocation Bases and Symbols" earlier in this
chapter)
abs—expr is an absolute expression

According to this definition, the following module contains
several relocatable expressions:

« ZREL
A: 10 ;A has the ZREL relocation base.
« NREL
B: 20 ;B and C have the unshared NREL
C: 30 srelocation base.
A+20 ;Relocatable symbol A plus absolute expression 20.
B-5 ;Rel-symbol B minus abs-expr 5.
A+ (B-C) ;Rel-symbol A plus abs-expr (B-C).

(10+(B-C))-A ;Abs-expr (10+(B-C)) minus rel-symbol A.

Note that you may include more than one relocatable symbol in
an expression as long as all but one of their relocation bases
cancel out. In the example module, A+(B-C) contains three reloca-
table values. However, B and C have the same relocation base
(unshared NREL); thus, (B-C) has an absolute value (see "Absolute
Expressions" for more information).

Also, remember that MASM assigns each external symbol a unique
relocation base. This is true even if you declare several symbols
in the same statement; for example:

« BXTD X, Y

093-000192 3-23
Licensed Material - Property of Data General Corporation

X and Y receive different relocation bases. Since their bases are
unique, you cannot cancel either base out, as you could with symbol
B and C in the previous example. Thus, you may never use two
external symbols in the same expression.

The relocatable expression syntax shows that you may multiply
the relocatable symbol by two. 1In the following example, both 2*%*X
and (10)+(2*Y) are legal expressions.

« ZREL
X:10
Y:20
2*%X
(10)+(2*Y)

An expression whose relocatable symbol value is multiplied by
two is called byte-relocatable. In most cases, you use byte-
relocatable expressions as byte pointers (values that specify a
byte's address). 1In the example module, the expression 2*X is a
byte pointer to the byte starting at address X. For more informa-
tion on byte pointers, refer to the Programmer's Reference,
ECLIPSE®-Line Computers manual.

MASM cannot completely resolve relocatable expressions, since
relocation bases do not receive values until link time. Thus, MASM
cannot determine whether a relocatable expression's value is legal
for the corresponding field. For example:

- NREL ;Unshared NREL.,
Xz 10 ;Symbol X is relocatable.
« NREL 1 ;Shared NREL.
LDA 0,X+50 ;Load the value starting at the 50th

;sword after address X into ACO.

The LDA instruction provides a 8-bit field for the displace-
ment value. However, since X does not have an absolute value at
assembly time, MASM cannot determine whether the expression X+50
can fit into a 8-bit field.

In summary, when using a relocatable expression, be sure that
its value can be represented in the corresponding field. If it
cannot, you will receive an error when Link resolves the
expression.

Resolving Relocatable Expressions

The previous discussion explained how to create and use
relocatable expressions in your source module., This section
describes how MASM evaluates relocatable expressions.

At assembly time, all relocatable expressions must resolve to
a relocatable component, an unresolved operator, and an integer

3-24 093-000192
Licensed Material - Property of Data General Corporation

component (i.e., an absolute value). 1In addition, the unresolved
operator must be either + or -.

An example will help clarify these rules:

« ZREL ;ZREL memory partition.

Y: 5 :1The value 5 resides at location 0
X 15 ;7in this partition; 15 resides at
X+4 slocation 1.

In this example, the value of label X equals the ZREL reloca-
tion base plus 1 word. Therefore, X's value equals the second
address in the ZREL partition. You can think of X's value as

X=RBz+l

where:
RBg4 is the ZREL relocation base
1 is the offset from RBp that MASM assigns to X

The Macroassembler cannot completely resolve the expression
X+4 because the ZREL relocation base does not have a value.
However, the Macroassembler can partially evaluate the expression
as follows:

(X+4) = ((RBgz + 1) +4)

(RBz + 5)

At this point, the Macroassembler cannot process the expres-
sion any further. Thus, it passes Link the absolute value 5
(integer component), the ZREL relocation base RBz (relocatable
component), and the unresolved operator +.

During the Link process, the ZREL relocation base receives a
value. Then, Link can fully resolve the values for the symbol X and
the expression X+4.

In most cases, you include only one relocatable operand in
each expression (as in the example). The Macroassembler does,
however, allow you to include more than one relocatable value in a
single expression. Again, the expression must resolve to a single

093-000192 3-25
Licensed Material - Property of Data General Corporation

relocation base, an operator, and an integer component or you will
receive an error. For example:

« ZREL
Y: 10
X 20
« NREL
W:e 30
2: 40
(X-Y)+Z

The expression (X-Y)+Z includes three relocatable operands. X
and Y have the ZREL relocation base; Z has the unshared NREL base.
The Macroassembler evaluates this expression as follows:

(X-Y)+Z =((RBz+1)-(RBz+9))+(RBn+l)
=(RBz-RBz) +(1-0)) +(RBp+1)
=((0)+(1))+(RBp+1)

=RBp+2

RBz is the ZREL relocation base, and RBn is the unshared NREL
base. The values 1, 0, and 1 are the offsets for X, Y, and Z from
their respective relocation bases.

Since both ZREL relocation bases cancel out, the expression is
legal. After processing the expression, MASM passes Link the
absolute value 2 (integer component), the relocatable value RBp
(relocatable component), and the unresolved operator +.

The previous section explained that you may multiply a reloca-

table symbol value by 2 to create a byte-relocatable expression;
for example:

. ZREL
Y: 10
X: 10
2*X
3-26 093-000192

Licensed Material - Property of Data General Corporation

The expression 2*X serves as a byte-pointer to the first byte
at address X. MASM evaluates this expression as follows:

2*%X

2 * (RBy + 1)

(2 * RBp) + (2 * 1)

(2 * RBy) + 2

MASM cannot process this expression any further. Thus, it
passes Link the relocatable component 2*R,, the unresolved operatcr
+, and the integer value 2. Any expression whose relocatable
component equals two times a relocation base is byte-relocatable.

Table 3-3 displays different forms of expressions and shows
how the assembler resolves each. We use the following notation in
Table 3-3:

n and m represent two different absolute values; they
may be integers, symbols, or absolute expressions

r and p represent two relocatable values with the same
relocation base; they may be symbols or expressions

] represents a relocatable value whose relocation
base is different from that of r and p

RB, is the relocation base associated with r's
value
L (off) is the offset of r's value from relocation

base RBy; i.e., r = RBy +
r (sub<(off)>)

All expressions involving the operators <, <=, >, >=, ==, or
<> result in an absolute value of either zero (false) or one
(true). When operands in these expressions have different reloca-
tion bases, all comparisons result in a value of zero (false),
except when the operator is <> (not equal to).

You cannot use relocatable operands with the logical operators
& and 1!.

093-000192 3-27
Licensed Material - Property of Data General Corporation

Table 3—-3. Relocatable Expressions

Expression Relocatable Integer Unresolved
Component Component Operator (s)

n+m absolute n+m none

n-m absolute n-m none

n*m absolute n*n none

n/m absolute n/m none

n<=m absolute n<=m none

n&m absolute n&m none

nim absolute nim non

n+r absolute n+r(off) +

n-r RBr N—I (off) -

r-n RBr I (off) =N +

r+n RBr I (off) N +

2%r 2*RBr 2%r (of£) +

r-r absolute 0 none

r-p absolute L off) P (off) none

n/r KRR KKAII KRR R IR A AR Rk A T LEGAL** *hkhhhhhhhhkhhhhh*

n*r KERKRKRRAR AR AR Ik AR5k % L LEGAL** ¥k kkhkhhkhhkhkhhkkk

r+r khkkhhhhkhhhkhkhhkhkkhhkk* TLLEGAL** % %kkkkhhhkkkkkkkkk

r*r Khkhhhkhhhkhhkkhhkkhk kA *k**[LLEGAL**k*dhkkkhkhhkhhhhrkhdikhd

r&r khkhkhhhhhhhhkhhkhkhhkkkxILLEGAL % %%kkkdhkkhkkhkhhkhkkkk

n&r hhhhkhhhhhhkhkhkhhdkxd*x 3T LLEGAL *%% % kkkkkhhhkkhkhdhk%

rlr khhkhhkhhhkhhhkkkhhkddILLEGAL %%k kkhkhdhhdhhhhhkhhkk

nlr KAhRR IR AR h R hhhhdhdddx A ILLEGAL **hkkhhhhhhkhhhhkhh®

r+p KRR KRR AR IR IR R AR A ARSI LLEGAL * %k khhhhhhhhhrhhhh k&

r*p hhkhhkkhhhhhhhkkkhkh*k ¥R ILLEGAL* X % khkkkhhhkhkrwhkhhdkk

s+r Khhh AR IARRR A AR NN AR X ILLEGAL *hkhkhhhhhhhhhhhhhhd

s~r AR RKARRR KRR AR RN A AR’k TLLEGAL ¥ %k kkkhhkkhhhhhhhkk*

S*r hhkkhkhhhhhhhhdhhhhhdd k% ILLEGAL*% %%k kkkhkkkkkhkkkkk

r/p khkhkhkhkhkhkhkhhhhxkk* ILLEGAL%%*kxkkhhhhhhkhkhkhkd

NOTE: Any expression with a relocatable component equal to 2*RB,
is byte-relocatable.

3-28 093-000192.
Licensed Material - Property of Data General Corporation

o~

Resolving Locations in Memory Reference Instructions

Chapter 2 ("Assembly Language Instructions") briefly mentioned
memory reference instructions (MRIs) and their major uses. Memory
reference instructions let you access locations in your logical
address space.

Each memory reference instruction requires you to specify a
unique location in memory. You may do this in one of two ways:

* you can explicitly supply a displacement value and an
addressing index; or

* you can supply a single address value and let MASM calcu-
late the appropriate displacement and index values

These two addressing methods provide you with considerable
programming power and flexibility. The following sections of this
chapter explain how to use these two methods.

We do not describe indirect addressing in this section. Refer
to "At Sign (@)" in Chapter 2 for a description of how MASM assem-
bles memory reference instructions containing the indirect addres-
sing indicator @, The o ! eferenc IPSE®~Lin

Computers manual has more information on indirect addressing. It
also describes each memory reference instruction in detail.

Supplying Both a Displacement and an Index

The ECLIPSE computers' memory reference instructions (MRI)
provide four ways to address locations in memory:

* absolute addressing

* program counter (PC) relative addressing

* accumulator (AC) relative addressing using AC2
* accumulator (AC) relative addressing using AC3

In gpgglu;g_gdd;ggging, the Macroassembler takes the value you
specify in the MRI's displacement field as an address in your
logical address space.

In PC relative addressing, the Macroassembler uses the displa-

cement value in the MRI as an offset from the instruction's
address. That is, the Macroassembler computes the memory address by
adding the displacement value to the address of the instruction.

In AC relative addressing, the Macroassembler computes the
memory address by adding the displacement value to the contents of
an accumulator (either AC2 or AC3). In other words, the displace-
ment value serves as an offset from the value in an accumulator.

093-000192 3-29
Licensed Material - Property of Data General Corporation

You may indicate one of these addressing modes by placing a
value from 0 through 3 in an memory reference instruction's op-
tional index argument (sometimes called the mode argument). Table
3-4 shows the four index values.,

Table 3-4. MRI Index Values

Index Value Addressing Mode
0 Absolute addressing
1 PC relative addressing
2 AC2 relative addressing
3 AC3 relative addressing

The next two examples illustrate the use of the index argument
in memory reference instructions.

Our first example specifies PC relative addressing. When MASM
calculates a PC relative address, it uses the value in the displa-
cement field as an offset from the field's address. Since the
displacement field often begins at the second word of the
instruction, choose your displacement value accordingly.

LDA 0,3,1
50
100
200

The LDA instruction loads accumulator 0 (ACO0) with the value
that begins three words after the location of the displacement
field (i.e., displacement value of 3; index value of 1). The LDA
instruction is one word. The value 200 begins three words after
the instruction. Therefore, after the LDA instruction, ACO con-
tains the value 200.

The second example shows the use of the absolute addressing
index:

.LOC 110
4 :The value 4 resides at
. ;absolute location 110.
LDA 1,110,0 ;:Load the value at absolute

s;location 110 into ACl.

The LDA index value of 0 directs MASM to use the displacement
value as an absolute address (not as an offset from the PC or an
AC). Thus, the Macroassembler loads the value at address 110 into
ACl.

3-30 093-000192
Licensed Material - Property of Data General Corporation

Thus far, all our examples have used absolute displacement
values. If you specify a relocatable value in a memory reference
instruction that has an 8-bit displacement field, you may not
supply an addressing index of 2 or 3. That is, you may not specify
AC relative addressing with 8-bit relocatable displacement values.
The following example illustrates this rule:

« ZREL
R: 3 :R's value is relocatable (ZREL).
A=3 :A's value is absolute.
LDA 0,A,1 ;Legal.
LDA 0,R,;0 ;Legal.
LDA 0,R,2 ;Illegal.
ELDA 0,R,2 sLegal (ELDA has 15-bit displacement field).

The first LDA instruction contains an absolute displacement
value, A. The second and third instructions specify relocatable
displacement values (i.e., R). The third statement is in error
because it also specifies an index value of 2 (AC2 relative
addressing). The last statement is legal, because the ELDA in-
struction has a 15-bit displacement field. Again, you may not
specify index values of 2 or 3 when using 8-bit relocatable displa-
cement values,

When specifying a displacement, be sure that value can fit
into the corresponding field of the MRI instruction. The 16-bit
ECLIPSE MRI instructions have displacement fields of either 8 or 15
bits). Table 3~5 shows the legal range of the displacement value
for different index modes.

Table 3-5. MRI Displacement Values

Length of Displacement Field
Index Value 8 bits 15 bits*
0 0 to 377g 0 to 77777g
(absolute or or
addressing) 0 to 25539 0 to 32,767,¢
1, 2, 3 -200 to +177g -40000 to +37777¢
(PC or AC or or
relative -128 to 127, -16,384 to +16,3837¢
addressing)
*Note that you may reference any location in your logical address
space with a 15-bit displacement field.

093-000192 3-31
Licensed Material - Property of Data General Corporation

Supplying Only a Displacement Value

The previous discussion showed how you may identify a location
by specifying a displacement value and an addressing index.
Alternatively, you may supply a single address argument and let
MASM compute the appropriate displacement value and addressing
index.

Memory reference (8-bit displacement) and extended memory
reference (15-bit displacement) instructions can both be coded
without an index field. The Macroassembler computes an effective
location differently, depending on which kind of instruction is
used.

Resolving Locations for Standard Memory Reference Instructions

The index mode field in memory reference instructions is
optional. When the Macroassembler encounters a memory reference
instruction with no index mode specified, it examines the
instruction's address expression., If the address is in page zero
(0 through 377g), the Macroassembler sets the instruction's index
mode bits to 00. The instruction's displacement field is set as
follows:

1. If the address is absolute, the displacement field is set
to the value of the address.

2, If the address is page zero relocatable (assembled with the
«ZREL pseudo-op), the displacement field is set to the
value of the address (with page zero relocation). The
source line's data field location flag (column 16 in the
listing) is set to - (the page zero relocation flagq).

3. If the address is an external displacement (assembled with
the .EXTD pseudo-op), the instruction's displacement field
is set to zero. The line's data field location flag is set
to $ (the external definition flag).

If the instruction's address is within 177g words of the
location counter, the instruction's index mode bits are set to 01l.
Therefore, address resolution is based on the current contents of
the location counter. The instruction's displacement field is set
to the value of the address minus the contents of the location
counter.

If the instruction's address, or the resolution of displace-
ment to an address, does not produce an effective address within
the proper range, an addressing (A) error is reported.

3-32 093-000192
Licensed Material - Property of Data General Corporation

Resolving Locations for Extended Memory Reference Instructions

Extended memory reference instructions assemble into two
l6-bit words. The first word specifies the instruction and index.
The second word specifies the displacement and whether indirect
addressing is being used. Extended memory reference instructions
can also be coded without an explicit index mode. The Macroassem-
bler proceeds as described below when it encounters this kind of
instruction.

1. The instruction's index mode bit is set to 01 if the
location counter and addressed location have the same
address type. In other words, both addresses must be ZREL,
shared NREL, or unshared NREL.

2. The instruction's index mode bit is set to 00 if the
location counter and addressed location do not have the
same address types.

3. The instruction's index mode bit is set to 01 if the
addressed location is externally defined. 1In this case,
the Macroassembler must make an assumption about the actual
location type of the destination symbol. The Macroassem—
bler assumes that the resolved address of an EDSZ, EISZ,
EJMP, EJSR, ELDA, ESTA, or ELEF will be determined by word
relocation rather than byte relocation. Only if the object
of an ELEF is byte-relocatable could the Macroassembler's
assumption be incorrect. 1In this case, you should force
absolute addressing by coding an index mode of 0 into the
ELEF instruction.

As we mentioned earlier, you must ensure that the displacement
value will fit into the field provided by the MRI instruction.
Refer to Table 3-5 for the legal displacement value ranges for
absolute and PC relative addressing.

Do not code a skip instruction immediately before an extended
instruction. If the skip occurs, the program branches to the
extended instruction's second word. The Macroassembler will
generate a questionable line (Q) error if you violate this rule.

Using Literals in Memory Reference Instructions

All memory reference instructions must specify an address
field. This address is used to:

1. Access the contents of the memory location specified in a
LDA or ELDA instruction.

093-000192 3-33
Licensed Material - Property of Data General Corporation

2., Modify the memory location specified in the STA, ISZ, or
DSZ family of instructions.

3. Transfer control when a JMP or JSR instruction is used.

Often, you only want to specify the contents of a memory
location without concern for its address. Such a specification is
called a literal reference, or simply a literal.

You can use literals with all memory reference instructions.
The Macroassembler dumps your program's literals and assigns memory
locations starting at the first .ZREL location that is available
after pass 1. Therefore, all literal references are directly
addressable. You can use the .NLIT pseudo-op to assign literals to
the NREL partition. The .NLIT pseudo-op must be used with the

.LPOOL pseudo-op. .LPOOL dumps the currently defined literals into
a data block. These pseudo-ops are described in Chapter 7.

The syntax of a literal reference is as follows:

expression
memory-referencen<AC, >=
instruction

Note that a literal may be any expression or instruction.

Literals are frequently used to load a constant into an
accumulator. For example:

LDA 1,=3
loads ACl1l with the value 3.
Expressions are also acceptable. For example:
LDA 0,=1B0+"A/2
loads ACO with the value 40040.
Instructions are also acceptable. For example:
LDA 1,=SUBZ# 2,3,SNC

loads ACl with the assembled value of the SUBZ instruction
(156433) .

The previous examples use absolute expressions as literals.
However, any relocatable expression is legal. For example:

3-34 093-000192
Licensed Material - Property of Data General Corporation

—

« NREL

LDA 2 7 =A

loads the value of A into AC2. You can also use a literal to form
a byte pointer to a text string labeled TX as shown below.

LDA 1,=2*TX

TX: .TXT "TEXT STRING"<nl>

Literal labels let you communicate with subroutines without
concern for addressing errors. The following statement calls
subroutine SUBR, regardless of whether SUBR is directly
addressable.

JSR @=SUBR

End of Chapter

093-000192 3-35
Licensed Material - Property of Data General Corporation

Chapter 4
Output from the Macroassembler

The Macroassembler can produce five different types of output
during the assembly process:

* Object file

* Assembly listing

* Cross-reference listing
* Error listing

* Permanent symbol table

All these forms of output, except the error listing, are
optional; the Macroassembler always reports assembly errors.

The permanent symbol table defines symbols for use in future
assemblies. It usually resides in disk file MASM.PS (MASM16.PS in

AOS/VS MASM16) and contains definitions for all operating system
calls and system parameters.

If you produce a permanent symbol table, you may also generate
an assembly listing, but the listing will contain only assembly
errors. Refer to Chapter 8 for information about how the Macroas-
sembler uses the permanent symbol table and how you can build one.

The following sections of this chapter describe the other four
types of Macroassembler output.

Object File

The object file is a binary translation of the code in your
source file. Each line of source code translates into a binary
number that is a multiple of 16 bits (one word) in length. The
Macroassembler assigns each one-word number an address (which may
be absolute or relocatable). Chapter 3 describes how the Macroas-
sembler assigns addresses and performs other operations necessary
to produce the object file.

The Macroassembler does not normally produce an object file if
your source contains errors. If you want the Macroassembler to
produce an object file, even if there are assembly errors, include
the /R function switch on the MASM command line.

093-000192 4-1
Licensed Material - Property of Data General Corporation

You can use the /N switch to tell the Macroassembler not to
create an object (.0B) file. You usually use the /N switch to
locate errors in your source code.

Normally. the object file receives the same name as the first
source module on the MASM command line without the .SR extension,
if any, and with the new extension .0OB. If you include either the
/B= switch on the MASM command line or the .OB pseudo-op in your
source module, the Macroassembler overrides the default-naming
convention, Table 4-1 shows the hierarchy that the Macroassembler
uses to name object files.,

Table 4-1. Object Filename

Priority | Object Filename Description
1 (highest) | /B=filename Function switch on the MASM command
line
2 .OB}filename Pseudo-op in a source module
3 (lowest) Default name Name of the first source module on
the MASM command line

The object file is not executable; you must process it with
the Link utility to produce a program file. Chapter 8 provides the
general Link command line; the AOS Link User's Manual and the
AOS/VS Link and Library File Editor User's Manual describe the Link

utilities in detail.

Assembly Listing

The information in the assembly listing shows you how the
Macroassembler interpreted your source file. The listing consists
of a series of lines., Each line is divided into various fields.

Figure 4-1 shows the fields in a sample assembly listing.
Table 4-2 lists the fields and their contents.

4-2 093-000192
Licensed Material - Property of Data General Corporation

00U] EXAMP MACKRO REV U6,00

23 00017'08617 AGAINS
24 @ne2e'eeir4eo
2S ¢on21'voedle

4 5 6 7 891011121314 151617

-

1 2

e

el - J 4

vl «NREL

V3 LY.L L3% JTXTM | iPACK
L} JENT START,ER,TASKL,
S +EXTN ,TASK,.PRI,,TOVLD
Ve

97 B00VY'BV6LIL1T START: ,SYSTM

V8 VVYp1'v21052 +GCHN

69 00Y0V2'VLBTTe JMP STAKRT

1o 40003'0VS0Vu27 STA ¢, CHNUM

11 Q0v0u'02v433 LDA &, NTTU

12 90¥B5' 126400 suB 1, 1

13 Y0006 'Vd6ULT «SYSTM

14 20007'414077 +LUPEN 77

15 0vole'v0e4’3 JMP ER

16 v4U11'028432 LLA 9, P4

17 dwe12'977777 «PRI

18 00013'0v2043y LDA ©, IDPKI

19 ¥0014'924431 LDA 1,TASK]

20 ¥Y015'077777 «TASK

21

22 0B016'0VOYULS JMP EKR

23 00V17'096017 AGAIN: ,LSYSTM

24 YvB2B'YATUVY «GCHAR

25 d0021'avedle JMP ER

1S5:11:42 27/26/77

+TITL EXAMPLE

«TXT BYTES LEFT=T0O RIGHT.
AGAIN JVEFINED HERE,
3GET MULTITASK HANDLERS,.

iSYSTEM, GET A FREE
;CHANNEL NUMBER, PUT IN AC2.
iON ERRUR, -TRY AGAIN,
iSTORE CHANNEL NUMBER IN "CHNUwW",
FPUINTER TO CONSULE OUTPUT NAME,
jUSE DEFAULT DISABLE MASK,
7SYSTEM, OPEN CUNSULE QUTe
iPUT UN CHANNEL NUMBER IN AC2.
;ON ERRUR, GET CLI TO REPORT.
JGET NUMBER "4,
;CHANGE YOUR PRIORITY TO 4,
JGET NEW TASK'S ID AND PRICRITY,
iSTART NEW TASK AT THIS ADURESS.
FCREATE NEw TASK, WHICH GAINS CONTROL
i IMMEDIATELY, SINCE ITS PRIORITY IS 3,
iGEY CLI TO REPURT ERRUR,
FTHIS IS THE MAIN KEYBOARD LISTENER TASK.
JGET A CHARACTER FKUM THE CUNSOLE.

«SYSTM iTHIS I8 Tt
GCHAK sGET A CHAL
JVP EF

|
Line
Number
123
\nn—

Error Flag

Data Field or Expression
Relocation Flag

Location Counter (LC)
SD-00468A

|
Source Line

Data Field Relocation Flag

Figure 4-1. Sample Assembly Listing

093-000192 4-3
Licensed Material - Property of Data General Corporation

Table 4-2. AOS MASM Assembly Listing Fields

Columns Information Contained

1-3 If the assembler finds no errors in your source,
columns 1-3 contain a two-digit line number
followed by a space. If there are input errors,
each error generates a single letter code. Only
three error codes can be listed on a line. The
first error generates a letter code in the third
column. The second error code is in column two,
and the third error code is in column one. Source
lines that have errors receive no line number. We
describe the AOS MASM error codes in Appendix C.

4-8 The Macroassembler displays the value of the
location counter in these five columns. The
location counter contains the address of the first
word of the assembled source statement. The
columns will be blank if the source statement does
not generate any storage words.

9 This column contains a flag character specifying
the current addresses' relocation mode (see Table
4_3) I

10-15 This is the data field of the assembled instruc-

tion or expression; or the value of an assignment
statement or pseudo-op argument. In all other
cases, these columns are blank.

16 This field contains a flag character specifying
the data field's relocation base (see Table 4-4,
shown later).

17... The source statement exactly as written (except
for macro expansions).

Column 9 contains a one-character symbol indicating the
relocation base (partition) of the address. Table 4-3 lists the
flags and their meanings.

4-4 093-000192
Licensed Material - Property of Data General Corporation

Table 4-3. Location Counter Relocation Symbols

Symbol Relocation Base

(spaces) Absolute
- Page zero relocatable (ZREL)
' Unshared NREL

! Shared NREL

Refer to Chapter 3 for a description of how the Macroassembler
assigns locations and relocation bases to the statements in your
source file.

Following the address relocation symbol is a 6-column field.
This field contains the assembled value of the first 16-bit word in
the current source statement. A two-word instruction uses two of
these fields. The following example shows how the MASM listing
represents one- and two-word instructions:

01 00034'143000 ADD 2,0 ;One-word instruction
02 00052'163770 ADDI -7,0 ;Two-word instruction
03 177771

Certain source statements do not generate storage words in
your object file. For these source lines, the listing data field
contains the value of an argument or other relevant expression.
For example:

01l 000001 . NREL 1

The data field (columns 10-15) contains the value of the argument
to .NREL (i.e., 1).

A one-character symbol indicating the relocation base of the
data value follows the data field. The data field relocation
symbols are shown in Table 4-4. Chapter 3 describes how the
Macroassembler assigns a relocation base to a value in your source.

093-000192 4-5
Licensed Material - Property of Data General Corporation

Table 4-4. Data Field Relocation Symbols

Symbol Relocation Base

space Absolute

- Page zero relocatable

= Page zero, byte-relocatable

! Unshared code

! Shared code

" Unshared code, byte-relocatable

& Shared code, byte-relocatable

$ Displacement field is externally defined

The last item on each line of the assembly listing is the
original ASCII source line. The listing gives your source line
exactly as you entered it, except that it includes macro expansions
in the appropriate places. _

When the Macroassembler outputs an assembly listing, you
usually receive a cross-reference listing of symbols in the same
file. See "Cross-Reference Listing" in this chapter for more
information.

In addition, the Macroassembler reports assembly errors at the
beginning of any source line that contains an error. Refer to
"Error Listing" later in this chapter for more information about
how the Macroassembler reports assembly errors. Appendix C lists
the AOS MASM error codes.

Assembly Listing Control

The Macroassembler does not produce an assembly listing
automatically. If you want one, you must include either the /L or
/L=filename switch on the MASM command line. The /L switch directs
the Macroassembler to send the assembly listing to the generic file
@LIST; the /L=filename switch sends the listing to the specified
file.

4-6 093-000192
Licensed Material - Property of Data General Corporation

The Macroassembler provides two tools that allow you to
manipulate the contents and format of the assembly listing:

Listing control pseudo-ops: .EJEC, .NOCON, .NOLOC, .NOMAC,
and .RDXO
Listing suppression indicator: two asterisks (*%)

These features do not alter the object file; they affect only
the assembly listing.
Listing Control Pseudo-Ops

There are five pseudo-ops that alter the assembly listing.
Table 4-5 lists these pseudo-ops and describes their functions.

Refer to the individual pseudo-op descriptions in Chapter 7
for more detailed information about these pseudo-ops.

Table 4-5. Assembly Listing Control Pseudo-Ops

Pseudo-0Op Description

«EJEC Begin a new page in the assembly listing (i.e.,
generate a form feed character)

. NOCON Enable or suppress the listing of conditional
source lines

« NOLOC Enable or suppress the listing of source lines
that lack location fields

. NOMAC Enable or suppress the listing of macro expansions

«RDXO Specify the radix (base) for numeric values in the

output listing(s)

Asterisks (**)

You may suppress the listing of a line in the source file by
placing two consecutive asterisks (**) anywhere in the line. It is

093-000192 4-7
Licensed Material - Property of Data General Corporation

good practice to put the two asterisks at the beginning of a line.
For example:

Source Code

LDA 0,0,1
** LDA 0,0,2
LDA 0,0,3

Assembly Listing

01 00000'020400 LDA 0,0,1
02 00002'021400 oA 0,0,3

Note that the location counter in the assembly listing
(columns 4 through 8) jumps from 00000 to 00002. The Macroassembler
assembled all three source lines but did not list the second
statement. The asterisks do not alter the object file, only the
assembly listing.

If you place two asterisks on a source line that generates an
error, the Macroassembler ignores the listing suppression and
reports the error.

You may override the ** listing suppression indicator at
assembly time by using the /0 switch on the MASM command line (see
Chapter 8).

Cross-Reference Listing

By default, the Macroassembler generates a cross—reference
listing of symbols with every assembly listing. The cross-reference
listing provides an alphabetic list of symbols and their values. It
also shows the page and line numbers of the assembly listing in
which the symbols appear.

For example, suppose the symbol SUB2 has the value 61 8 and
appears on the first page, fourth line of your program. The cross-
reference shows the symbol SUB2, followed by the value 000061, then
the page/line indicator, 1/04.

In addition to that information, the cross-reference listing
also identifies the page and line on which you defined (or
redefined) the symbol (if applicable). The Macroassembler signals
the defining location(s) by placing a number sign (#) after the
appropriate page/line indicator.

The cross-reference listing includes several assignment
mnemonics that provide additional information about the symbols in
your program. Table 4-6 lists the assignment mnemonics and their
meanings.

4-8 093-000192
Licensed Material - Property of Data General Corporation

Table 4-6. Cross—Reference Assignment Mnemonics

Mnemonic Meaning Defining Pseudo—-Op
EN Entry symbol « ENT

EO Overlay entry « ENTO

MC Macro symbol «MACRO

NC Named common symbol . COMM

PN Procedure entry « PENT

XD External displacement symbol « EXTD

XN External normal symbol « EXTN

(spaces) All other symbols

These mnemonics appear in the cross-reference listing immediately
after the symbol's value (where applicable). Figure 4-2 is a
sample cross-reference listing.

0003 TOFIX
AT 000042! 1/53% 1/56
BLANK 000114’ 1/28 2/22 2/ 38%
C57 000116’ 1/43 2/40%
COUNT 000113' 1/14 1/24 1/35 2/14 2/ 37%
DONE 000072° 2/06 2/18%
ERROR 000102' 1/37 1/55 2/12 2/26#
FLAG 000032 1/33 1/39%
LOOP 000037' 1/50% 2/15
MINUS 000115’ 1731 2/ 39%
NEXT 000012' 1/7234% 1/30
RADIX 000112' 1/16 2/09 2/ 364
RETUR 000103’ 2/27% 2/ 34
TEST 000054’ 1/58 2/03%
TOFIX 000000' EN 1/08 1/10#%
UPPER 000056 1/45 2/05%
ZERO 000107' 1/26 2/ 32%

Figure 4-2. Sample Cross—Reference Listing

Notice that the default cross-reference listing does not
contain references for instruction symbols. You can use the /P
switch to add instruction symbols to the listing. This switch is
described in Chapter 8.

093-000192 4-9
Licensed Material - Property of Data General Corporation

Error Listing

The error listing contains the title of your source module and
lists each source line that has an error. The Macroassembler can
report up to three errors for the same source statement. The error
listing is useful in programs that produce very long listings since
it lists only the lines with errors. However, it contains no
information that is not in the assembly listing.

The following example shows a sample of source code and the
corresponding error listing. The Macroassembler generated the
error listing while assembling source file MOD1l.SR. MOD1l.SR
contains the following source code. We have put comments on the
source lines that cause errors.

«TITL MOD1

« NREL

LDA 0,C50

LDA 4,C60

ADD 0,2

STA 0,BUFF ;VALUE OF BUFF IS NOT DEFINED

MOV 1,1,SNR
ELDA 0,SYMB ;SKIP CODED BEFORE 2-WORD INSTRUCTION

DATA: 2777717 ;VALUE IS OUT OF RANGE
SYMB: 17
C50: 50
Cé60: 60
« END

The error listing for this source code is shown below.

«TITL MOD1

000001'020411 LDA 4,C60 ; IMPROPER VALUE (4) IN AC FIELD
U00003'040000 STA 0,BUFF ;VALUE OF BUFF IS NOT DEFINED
Q00005'122470 ELDA 0,SYMB ;SKIP CODED BEFORE 2-WORD INSTRUCTION
N00007'077777 DATA: 277777 ;VALUE IS OUT OF RANGE

The error listing shows that the assembler detected four
errors. The overflow (0) error (line 1) was produced because the
instruction's accumulator field was not between 0 and 3. The
undefined (U) error was generated because BUFF is not defined in
the program (or externally). The Macroassembler produced the
questionable line (Q) error on line five because you should not
code a skip instruction ahead of a double-word instruction. The
number (N) error on line 7 was produced because 277777 does not fit
into a 16-bit word.

Appendix C lists all the assembly error codes that the Ma-
croassembler may return.

4-10 093-000192
Licensed Material - Property of Data General Corporation

Error Listing Control

The Macroassembler always produces an error listing; you
cannot suppress it. If you do not include the /E= switch on the
MASM command line, the Macroassembler reports all errors to the
generic file @OUTPUT. If vou use the /E=filename function switch,
the Macroassembler sends errors to the specified file.

When you produce an assembly listing (i.e., issue the /L or
/L=filename function switch), the Macroassembler reports all errors
to both the error listing file and the assembly listing file.

Output Function Switches

Throughout this chapter, we have discussed the MASM command
line switches that affect Macroassembler output. Table 4-7 lists
useful switch combinations, shows what output the Macroassembler
produces in each case, and also indicates where that output
resides.

The general form for using these switches in the MASM command
line is

MASM
XEQ <function switch>... sourcefile</S>...<nl>
MASM16

Refer to Chapter 8 for descriptions of the /S argument switch,
and the MASM function switches. Chapter 8 also has more informa-
tion about the Macroassembler command line.

093-000192 4-11
Licensed Material - Property of Data General Corporation

Table 4-7. AOS Macroassembler Output Function Switches

Output Cross-— Permanent
Function | Assembly|Reference| Error Object Symbol
Switches Listing| Listing | Reports File Table

NO @OUTPUT| <sourcefile>.OB
SWITCHES
/L @OUTPUT | <sourcefile>.0B
QLIST QLIST and
@LIST
/L = FILEl @OUTPUT | <sourcefile>.0B
FILEl FILEl and
FILEl
/E = FILE2|. FILE2
/B = FILE3 @OUTPUT |FILE3.0B
/N @OUTPUT
/L = FILEl | FILEl FILEl FILEl <sourcefile>.0OB
/E = FILE2 and
FILE2
/L = FILEl FILEl
/B = FILE2|FILEl FILEl and
/N FILE2
/L = FILEl FILEl FILE3.0B
/E = FILE2 FILEl FILEl and
/B = FILE3 FILE2
/S @QOUTPUT MASM.PS
End of Chapter
4-12 093-000192

Licensed Material - Property of Data General Corporation

Chapter 5
Macros and Generated Numbers and
Symbols

Macros

In many cases, you will use a series of source statements
repeatedly in one module. Rather than manually inserting the same
code at several places, you may assign the source string a name.
Then, each time you wish to insert that source code in your module,
simply use the assigned name. The Macroassembler automatically
substitutes the corresponding code.

We refer to this programming construct as a macro. By using
macros in your module, you can greatly simplify assembly language
programming. Incidentally, it is from this programming construct
that the Macroassembler derives its name.

The following sections of this chapter describe macros and
their uses in detail. Refer to Chapter 3 for a discussion about how
the Macroassembler actually processes macros.

Macro Definition

To associate a name with a source string, use the .MACRO
pseudo-op. The format for using .MACRO is

«MACROOmacro—name
macro—-definition-string
3

where:

macro-name is the name you will use to refer to this
particular macro. Macro—name must conform
to the rules for symbols presented in
Chapter 2 (see "Macro Symbols").

macro—definition-string consists of one or more source statements.
s The assembler substitutes these statements
for macro-name in your module.

% terminates the macro definition string and
is not part of the macro definition.

The following source code defines a simple macro and then uses
that macro.

093-000192 5-1
Licensed Material - Property of Data General Corporation

+MACRO FIVES sThe name of the macro is FIVES.

5 :The macro definition string consists of
5 ;two data entries.

% :End of macro definition string.
FIVES ;:When the assembler encounters the macro

sname FIVES, it substitutes the macro
;definition string in your module (in
;this case, two consecutive data entries).

Within the macro definition string, two characters have
special meanings: underscore (_) and uparrow (7). The underscore
(ASCII code 1378) directs the assembler to store the next character
without interpreting it. Thus, you usually use the underscore to
store characters that have special significance when in a macro
definition string, In other words, if you precede the characters
%, _r Or © with an underscore, MASM does not interpret them.

For example, if you want to place a percent sign in a source
line, you must precede it with an underscore. If you do not, the
assembler interprets % as the end of the macro. Thus, if you want
to place the string % MEANS PER 100 in a macro, you must enter _%
MEANS PER 100. Also, by using the underscore and percent in this
fashion, you may write one macro that creates a second macro at
expansion time.

If you place an underscore before a character that the assem-
bler would not interpret anyway (i.e., a character other than %, _,
or "), the assembler ignores it. For example, the assembler inter-
prets

«MACRO X
A B ;The assembler removes _
% ;from the symbol

as equivalent to

«MACRO X
AB

Inside a macro, to use a symbol containing an underscore,
include an extra underscore in the symbol. The first underscore
directs the assembler to store the second one as part of the
symbol. Thus, to store the symbol A_B in a macro, enter A__B.

The second character that has a special meaning inside macros
is the uparrow (") (ASCII 136g). You use this character when
defining a macro that accepts arguments. The following section,
"Arguments in Macro Definitions," provides information about macro
arguments and the uparrow character.

5-2 093-000192
Licensed Material - Property of Data General Corporation

The assembler returns all characters in the macro definition
string, except the underscore (_), uparrow ("), and percent (%),
exactly as you enter them. The assembler does not automatlcally
insert statement terminator (end-of-line) characters in macro
definitions. Thus, you must explicitly terminate each line in your
macro definition string with a statement terminator (carriage
return, form feed, or NEW LINE).

If you include an expression in your macro definition string,
be sure that it appears on one source line. You may not break up an
expression with comments or statement terminators. Each expression

must be less than or equal to 132 characters in length, the line
limit of the assembler.

The % terminator must be the last character in a macro
definition. We recommend that you make the terminator the first
character on the definition's last line., Both of the following
examples use the terminator legally.

-MACRO TEST1

LDA 0,0,3
MOV 0,0,SNR
% :last line.
.MACRO EXP ;This example shows the terminator
TEST “1+72 % ;on the same line as the last

;expression in the definition.

An MASM macro definition can be suspended and continued later.
This feature is useful if one macro is used to define another
macro. The first macro may terminate definition of the inner macro
temporarily. assign new values, and continue.

The Macroassembler appends the second and subsequent defini-
tions to macros that are already defined. For example:

«MACRO TEST2

H=2
I=0
%
J=0
K=1
%

is the same as:

«MACRO TEST2

H=2
I=0
J=0
K=1
%
093-000192 5-3

Licensed Material - Property of Data General Corporation

To delete a macro definition, use the .XPNG pseudo-op. .XPNG
removes all macro names and their definition strings. The .XPNG
pseudo-op is described in Chapter 7.

Arguments in Macro Definitions

You may include formal (dummy) arguments in the macro defini-

tion string, When you call the macro, you supply an actual value
for each formal argument. At expansion time, the assembler replaces
the formal arguments in the macro definition string with the actual
arguments in the macro call.

This section describes how to place formal arguments in the
macro definition string. "Macro Calls" explains how to pass actual
arguments to the macro.

Within the macro definition string, all formal (dummy) argu-
ments begin with an uparrow (") (ASCII 136g). There are three
formats for formal arguments:

n where n is a digit from 1 to 9
“a where a is a letter from A to %
“2a where a is a single character from the

following set: A - %2, a -2z, 0 - 9, ?

A digit following ~ represents the position of an actual
argument in the macro call's argument list. That is, when the
assembler expands the ADD macro, it replaces all occurrences of "n
with the nth actual argument in the macro call.

For example, in the following macro, the formal argument “2
appears in the macro definition string. When you call the macro,
the assembler replaces "2 with the second argument in the macro
call.

«MACRO T™WO ;Define macro TWO.
A="2 ;A equals the second argument you
spass to macro TWO.
% sMacro terminator.
TWO 3,4 ;Call macro TWO with two arguments.

;The assembler substitutes the second
;argument for 2. Therefore, A
;NOow edquals 4.

The "n format allows you to reference only the first nine
arguments to the macro ("1, "2,..., "9). Since the assembler allows

5-4 093-000192
Licensed Material - Property of Data General Corporation

P
-

you to supply up to 63;7 arguments, you must use the “a and “?a
formats to represent arguments 10 through 63;¢.

The a or ?a following " is a user symbol whose value the
assembler looks up when expanding the macro. The value of the
symbol indicates the position of the actual macro argument that
replaces it (as in "n). The value for a or ?a must be in the range
1-63;0, since no macro can have more than 63 arguments.

The following example illustrates the use of "a and "?a within
a macro definition string.

D=1 ;Initialize symbols D and ?N.
?N=3
«MACRO ADD ;Define macro ADD.
X="D+"?N :X is the sum of two arguments.
% :Macro terminator.
ADD 2,4,5 ;Call macro ADD with three arguments.

When MASM expands the ADD macro, D equals 1 and ?N equals 3.
Thus "D evaluates to "1 and "?N evaluates to "3. Consequently,
MASM converts the statement X="D+"?N to X="1+"3. After the call to
macro ADD, X has the value of the first argqgument plus the third
argument (X=2+5),

A zero or negative number following an uparrow (e.g., "0, “=5)
is unconditionally replaced by the null string (a string with no
characters). Similarly, MASM substitutes the null string for any
formal argument value that is larger than .ARGCT (.ARGCT equals the
number of actual arguments you supply to the macro call). For
example, MASM substitutes the null string for "3 if you supply only
two arguments when calling the macro. These rules apply to all
three formal argument formats (i.e., "n, "a, and "2a).

Macro Calls

After defining a macro, you can issue the macro name wherever
you want to insert the macro definition string in your module. We
refer to the source line that calls the macro as a macro call.

A macro call consists of the macro name defined in the .MACRO
statement followed by actual arguments to replace any formal
arguments in the macro definition string. You may call a macro any
number of times in your source module.

093-000192 5-5
Licensed Material - Property of Data General Corporation

Calling Macros without Arguments
If your macro definition string contains no formal arquments,
simply enter the macro name on a source line. The Macroassembler
inserts the corresponding macro definition string in your object
module.
Thus, the syntax for calling a macro without arguments is
macro—name

where:

macro-name is the name you assigned to a macro definition string
in a .MACRO statement

The following example shows this type of macro call:

«MACRO FOURS ;Define macro FOURS
4 ; (no formal arguments).
4
%
FOURS ;Call to macro FOURS (no arguments).

Calling Macros with Arguments

If your macro definition string contains formal arguments, you
must supply actual arguments in the corresponding macro call(s).
There are two formats for passing arguments to macros:

1. macro—namerarg...

2. macro—namendlarg...<nl>
arg...l

where:

macro-name is the name you assigned to a macro definition string
in a .MACRO statement

arg is an actual argument that you pass to macro macro—name

During macro expansion, the assembler replaces formal argu-
ments in the macro definition string with the actual arguments in
the macro call. If you supply more than one argument, separate
them with spaces, horizontal tabs, and/or one comma.

In most cases, you use the first macro call format. Simply
enter the macro name followed by the actual arguments on the same
line. The following example illustrates this form of macro call:

5-6 093-000192
Licensed Material - Property of Data General Corporation

+MACRO FORM1 ;Define macro FORM1.

1 ;The macro definition string
LDA 2,73 ;contains 3 formal arguments.
3
FORM1 5,2,DATA ;Call macro FORM1 with 3 arguments.

The assembler substitutes 5, 2, and DATA for "1, "2, and "3,
respectively. Thus, the FORM1 macro call generates the following
two source lines:

5
LDA 2,DATA

If the arguments in your macro call extend to a second source
line, you must enclose them in square brackets; that is, use macro
call form 2.

The following example shows this form of macro call:

+MACRO FORM2 ;Define macro FORM2.
1 ;The macro definition contains
“2: LDA 3,74 ;4 formal arguments.
%
FORM2 [5, START,
1, DATA] sMacro call to FORM2.

The assembler substitutes 5, START, 1, and DATA for "1, "2,

3, and "4, respectively. Thus, the FORM2 macro call generates two
source lines: '

5
START: LDA 1,DATA

Note that MASM processes both forms of macro calls in the same
manner. That is, the call form you use does not influence the
macro expansion.

The actual arguments you pass to a macro may be integers,
symbols, or expressions. However, you must be sure that the value
of an actual argument is legal for the corresponding field in the
macro definition string. For example:

« MACRO LOAD sMacro name is LOAD.
LDA “1,DATA ;The first argument to LOAD goes
% ;in the AC field of the LDA instruction
=6
LOAD A :Call macro LOAD with an argument.
093-000192 5-7

Licensed Material - Property of Data General Corporation

This macro call causes an error because it generates the
instruction LDA 6,DATA. The value 6 is too wide for the two-bit
accumulator (AC) field.

A=2
LOAD A ;Call macro LOAD with an argument.

This macro call is acceptable because LDA 2,DATA is a legal
instruction.

If you supply more actual arguments in the macro call than
formal arguments in the macro definition, the assembler ignores the
excess arguments. That is, the assembler ignores all arguments in
the macro call that do not have counterparts in the macro defini-
tion string.

If you do not supply enough actual arguments in your macro
call, the assembler substitutes null strings (strings with no
characters) for excess formal (dummy) arguments. For example, if
you include formal argument "3 in your macro definition string but
only supply two arguments when you call the macro, MASM replaces "3
with the null string.

No macro call can have more than 63;(arguments.

Passing Special Characters and Null Arguments to Macros

The previous discussion showed how to use square brackets to
extend a macro call onto a second source line. You need to use
square brackets in macro calls in two other situations:

* when passing special characters as arguments to a macro

* when passing null arguments to a macro

Special Characters

You must enclose certain characters in square brackets if you
intend to pass them as arguments to a macro. These characters are

e # k% = : H \
For example, suppose you want to pass the semicolon character (;)
as an argument to macro MACROl. You would issue the source state-
ment

MACRO1 [;]
You could not simply say

MACRO1

~e

5-8 093-000192
Licensed Material - Property of Data General Corporation

o~

because the Macroassembler would intérpret the semicolon as the
beginning of a comment string, not as an argqument to the macro.
That is, the second statement calls MACROl with no arguments.,

To pass a special character to a macro along with other
arguments, you may place either all the arguments or only the
special character inside square brackets, Thus, the following two
macro calls are equivalent:

MACRO2 ;1,4

MACRO2 [; , 4]

Both of these statements call macro MACRO2 with the two
arguments ; and 4.

You may never pass certain characters as arguments in a macro
call (even within square brackets). These characters are the
carriage return, form feed, and NEW LINE.

Null Arguments

In certain situations, you may wish to pass null arguments to
a macro. A null argument is a string with no characters (a string
of length zero).

To pass a null argument to a macro, simply enter square
brackets that enclose no characters, [l. The Macroassembler
substitutes the null string for the corresponding argument in the
macro definition string.

The following example defines a macro containing three formal
arguments:

«MACRO ADDR
LDA 0,7172,"3

When you call this macro, pass a displacement value and an
addressing index in the second and third arguments, respectively.
In the first argument, you may indicate indirect addressing by
supplying the character @, or you may pass a null string.

Our first call to macro ADDR passes @.
ADDR [e]l,LOC1,2
This macro call generates the source statement LDA 0,@LOCl,2.

Note that we passed the @ character inside square brackets (see the
previous discussion on special characters).

093-000192 5-9
Licensed Material - Property of Data General Corporation

If you want to call macro ADDR without indicating indirect
addressing, you must pass a null string in the first argument.
That is, the macro call

ADDR (1,n0Cl1,2

generates the source statement LDA 0,LOCl,2. Again, the Macroas-
sembler substitutes the null string for "1 in macro ADDR.

You should note that two consecutive commas in a macro call
also indicate a null argument. For example, the macro call

MACRO3 0,,2

calls macro MACRO3 with three arguments; the second argument is
null.

In general, we recommend that you use square brackets, not
consecutive commas, to indicate null arguments since they improve
your program's readability.

Macro Expansions in Assembly Listings

When you issue a macro call, MASM substitutes the assembled
macro definition string in the binary object file. However, the
assembly listing shows both the macro call and the macro expansion.
Figure 5-1 illustrates a macro in source code and the corresponding
listing. Note that the assembly listing contains both the macro
call DSP 2 and the macro's expansion,

Source Text

.«MACRO DSP ;sMACRO DEFINITION

1
%

DSP 2 ;CALL TO MACRO DSP

Assembly Listing

0l «.MACRO DSP s MACRO DEFINITION
02 1
03 3
04 DSP 2 sCALL TO MACRO DSP
04 00000'000002 2 sWITH ARGUMENT

Figure 5-1. Macro Listing

The assembly listing values for the location counter (columns 4-8)
and the data field (columns 10-15) show that the binary object file

5-10 093-000192
Licensed Material - Property of Data General Corporation

contains only the macro expansion. That is, although the listing
says

DSP 2
2

the object file contains the binary code for

2

You may suppress the listing of macro expansions by using the
+.NOMAC pseudo-op. If you suppress expansions, the assembly listing
shows only the macro call. The .NOMAC pseudo-op does not affect the
object file in any way.

The following example shows the result of suppressing macro
expansions.

0l «MACRO 1Z ;DEFINE MACRO Z.

02 5

03 LDA 71,72

04 %

05 ;MACRO EXPANSIONS ARE

06 z 0,4 sLISTED BY DEFAULT.

07 00000000005 5

08 00001'020004 LDA 0,4

09 .

10 000001 .NOMAC 1 ;DIRECT THE ASSEMBLER TO

11 ; SUPPRESS LISTING OF

12 sMACRO EXPANSIONS (I.E., PASS
13 ;A NONZERO VALUE TO .NOMAC).
14 Z 0,4

15 000000 .NOMAC 0 ;REENABLE THE LISTING OF MACRO
16 ;EXPANSIONS (I.E., PASS A ZERO
17 ;VALUE TO .NOMAC).

18 z 0,4

19 00004'000005 5

20 00005'020004 LDA 0,4

Again, the .NOMAC setting does not affect macro expansions in
the object file. The assembler expands all macro calls correctly,
although it may not list those expansions. This explains why the
location counter jumps from 1 to 4 in the above listing example;
the missing locations represent macro expansions whose listings
were suppressed.

You may override the .NOMAC pseudo-op at assembly time by
using the /0 switch in the MASM command line. Chapter 8 provides
more information about this switch.

The action performed by the two asterisks ** (the no-listing
indicator) is unique in macro calls that extend to more than one

093-000192 5-11
Licensed Material - Property of Data General Corporation

line. If the first line of the macro call starts with two
asterisks, the assembler does not print the last line of arguments.
MASM will, however, assemble the macro correctly.

Macro-Related Pseudo-Ops

In addition to .MACRO and .NOMAC (described above), the
assembler provides two other pseudo-ops you may use with macros:
+ARGCT and .MCALL.

The .ARGCT pseudo-op is a value symbol that returns the number
of actual arguments you pass to a macro., Use this symbol inside the
macro definition string. For example:

01 .MACRO X

02 “1+72

03 (.ARGCT)

04 %

05

06 X 4,5 ;PASS TWO ARGUMENTS TO X
07 00000'000011 4+5

08 00001'000002 (.ARGCT)

;AT EXPANSION TIME, THE VALUE FOR .ARGCT IS 2
;BECAUSE MACRO X WAS CALLED WITH TWO ARGUMENTS

The .MCALL pseudo-op is also a value symbol that you may use
inside a macro definition string. This symbol has the value 0 if
this is the first call to that macro on this assembler pass. The
symbol has a value of 1 if this is not the first call in the
current pass., For example:

»MACRO Y

. IFE +MCALL ;Assemble all code up to .ENDC only
JSR @FIRST sif the value of .MCALL equals zero.
. ENDC

The first time you call macro Y, .MCALL equals 0. Thus, the
.IFE condition will be true, and MASM will assemble the statement
in the conditional block (JSR @FIRST). However, on subsequent calls
to macro Y, .MCALL will equal 1 and MASM will not assemble the .IFE
block.

Chapter 7 provides more detailed descriptions of .ARGCT,
.MACRO, .MCALL, and .NOCON.
Loops and Conditionals in Macros

When you use a .DO loop or an .IF conditional inside a macro,
be sure you include a corresponding .ENDC pseudo-op in that same

5-12 093-000192
Licensed Material - Property of Data General Corporation

macro., MASM takes one of the following actions if it encounters a
macro definition terminator % before an .ENDC:

* MASM ignores a .DO statement inside a macro if there is no
corresponding .ENDC.

* If you do not terminate an .IF conditional inside a macro,
MASM ends the conditional immediately before the macro
definition terminator %.

The remainder of this section shows the correct and incorrect use
of .DO loops and .IF conditionals inside macros.

The following example shows the proper use of a .DO loop:

«MACRO LOOP
.DO "1 ;When you call this macro, the first
3 sargument indicates how many times to
4 sassemble the .DO loop.
« ENDC ;The end of the .DO loop is inside the
% ;smacro definition string.

Next is an example of an incorrect .DO loop:

«MACRO ERRDO
. DO 5 ;Incorrect use of .DO in a macro
6 ;s (no .ENDC pseudo-op).

When you call macro ERRDO, the Macroassembler ignores the .DO
statement since it is not terminated inside the macro (i.e., no
corresponding .ENDC). The Macroassembler will, however, assemble
the data entry 6 correctly, but only once.

The following code shows the correct use of an .IF pseudo-op inside
a macro:

«MACRO COND ;If the first argument you pass to this

.IFE 1 ;macro equals 0, MASM assembles the data
10 sentries 10 and 20. Note that the .ENDC
20 ;statement appears inside the macro.

« ENDC

30 ;MASM assembles data entries 30 and 40

40 sregardless of the argument value you pass

;to this macro.
%
093-000192 5-13

Licensed Material - Property of Data General Corporation

The following example shows an improper .IF conditional inside
a macro:

«MACRO ERRIF

. IFE ~1 ;Improper use of IFE in a macro.
50 : (no .ENDC pseudo-op).
60

In this case, the .IFE has no corresponding .ENDC within the
macro definition. Therefore, MASM assumes the conditional code ends
immediately before the % statement,

Macro Examples

The following examples illustrate the use of the MASM macro
facility. Refer to Chapter 7 for descriptions of any pseudo-ops
that you are not familiar with.

Example 1: Logical OR

Our first example is a macro that computes the logical OR of
two accumulators. Of course, you could use the IOR instruction to
perform this operation; we present the example only to illustrate
the macro facility.

«MACRO OR

COoM 1,1 ;Complement AC"1l.

AND 1,72 ;Clear ON bits of AC"1.
ADC 1,72 ;OR result to AC"2.

%

The call format for macro OR is similar to an ALC instruction.

OROacsnacd
where:
OR is the name of the macro
acs is the source accumulator
acd is the destination accumulator

The following macro call shows how the Macroassembler expands
macro OR. Note that MASM substitutes arguments in the comments as
well as the instructions.

06 OR 1,2

07 00000'124000 COoM 1,1 ;COMPLEMENT ACl.

08 00001'133400 AND 1,2 ;CLEAR ON BITS OF ACl.
09 00002'132000 ADC 1,2 ;OR RESULT TO AC2.
5-14 093-000192

Licensed Material - Property of Data General Corporation

——

Example 2: Factorial

Our second example illustrates the recursive property of

macros. Macro FACT computes factorials of positive integers. Its
input consists of an integer I and a variable V, and it computes
the value '

vV = 1!

using the recursive formula

Il = I*(I-1)!

The macro definition for FACT is

* &
* %
* %

* %
* %

* %
%

. NOCON 1

.MACRO FACT

.DO “1>1
FACT “1-1,"72
~2="1%"2

. ENDC

.DO ~1<=1
~2=1

. ENDC

.DO ~1<0
~2=0

.ENDC

When you issue the statement

FACTOIOV

MASM computes the factorial of integer I and stores the result in
variable V.

MASM expands macro FACT as follows:

*

If I is greater than 1, macro FACT calls itself recursively
with successively smaller values for I. As these levels
expand t6 completion, MASM computes I! and stores the
result in variable V.

If I is 0 or 1, FACT returns the value 1 in variable V.
The second .DO conditional performs this test,

If I is negative, FACT returns the value of 0 in variable
V. The last .DO conditional performs this test.

093-000192 5-15

Licensed Material - Property of Data General Corporation

The following call to FACT computes the factorial of 4 and
stores the result in variable A. The macro listing shows only the
recursive calls to FACT and the subsequent computation statements;
the ** indicators suppress the listing of all other macro
statements.

15 FACT 4,A

16 FACT 4-1,A

17 FACT 4“1"‘1 ’A
18 FACT 4-1-1-1,A
19 000001 =1

20 000002 A=4-1-1%*A

21 000006 A=4-1%*A

22 000030 A=4*A

Example 3: Packed Decimal

This example macro stores numeric values in "packed decimal"
format. In packed decimal, each decimal digit requires 4 bits for
its representation. Thus, a byte can contain two packed decimal
digits, and a 16-bit word can hold four digits.

Our macro outputs the least significant word of the packed
decimal representation first. The number's sign occupies the least
significant (rightmost) 4 bits of the first word.

The translation from decimal to 4-bit binary is

Decimal 4-Bit Binary

0011 (same bit pattern as "3")
0100 (same bit pattern as "4")
0000
0001
0010
0011
0100
0101
0l10
0111
1000
1001

voNoONUIdhwWNDHO I +

The input to macro PACK consists of a string of decimal digits
separated by delimiters and followed by an explicit sign (+ or -)
and the precision in 1l6-bit words.

PACKOA<KOdY « « « OSOW

5-16)) 093-000192
Licensed Material - Property of Data General Corporation

where:

PACK is the name of the macro.

d is a decimal digit. If you supply more than one
digit, separate them with spaces, tabs, or commas.,

s is the sign of the digit (+ or -).

w is the precision and indicates how many 16-bit
words MASM will allocate for the packed decimal
representation.

Within macro PACK, the input radix must be decimal. So, PACK
saves the initial input radix and changes it to decimal for the
macro expansion. Before returning, PACK restores the original
input radix.

To present the output in 4-bit quantities, the output radix
must be hexadecimal (base 16). Again, PACK saves the initial value
at the beginning of the macro and restores it at the end.

Though MASM assembles many statements for each macro call, the
listing shows only the assembled storage words that hold the packed
decimal value.

The macro definition for PACK follows:

«MACRO PACK
*% .PUSH . NOMAC
*% « NOMAC 1
.PUSH .RDX
.PUSH .RDXO
.RDX 10
.RDXO 16
I=.ARGCT
J=I-1
B=11
W=3+((""J)=("+)/2)
J=J-~1
OLOC .+AI-1
.DO 1
.DO B+1/4
W=W+0"JBB
B=B-4
.DO J<>0
J=J-1
. ENDC
093-000192 5-17

Licensed Material - Property of Data General Corporation

. ENDC

* «NOMAC O
W
** «NOMAC 1
=0
B=15
QLOC ."'2
« ENDC
. LOC +TI+1
«RDXO +POP
«RDX - POP
* % « NOMAC « POP
%

The following listing shows four calls to macro PACK and the
corresponding expansions:

38 000100 .LOC 100 ;START AT ADDRESS 100
39 ;OR 40 (HEXADECIMAL)
40

41 PACK 1 2 +,2

42 00041 0123 W

43 00040 0000 W

44

45 PACK'1 2 3 45 +,3
46 00044 3453 W

47 00043 0012 1]

48 00042 0000 W

49

50 PACK1 2 345 -,3
51 00047 3454 W

52 00046 0012 W

53 00045 0000 W

54

55 PACK 9 8 7 6 5 +,6
56 0004D 7653 W

57 0004C 0098 W

58 0004B 0000 W

59 0004A 0000 W

60 00049 0000 W

01 00048 0000 W

System Calls

The A0S software package includes a number of system calls.
System calls are actually assembly language macros that perform
common operations (for example, record I/0). The advantage to

5-18 093-000192
Licensed Material - Property of Data General Corporation

using system calls is that you do not have to code the macros

yourself; you simply issue the system call.

The AOS Programmer's Manual documents all system calls,

Generated Labels

The dollar sign ($) can be used to generate unique labels
within macros. In non-string mode, each occurrence of the charac-
ter $§ is replaced by three characters from the set 0-9 and A-Z.
The Macroassembler determines which three characters replace the
dollar sign by converting a count of the number of macro calls in
radix 36 to ASCII. 1In nested macros, the replacement string for $
in the outer macro is saved and restored when the inner macro has

been expanded.

When used in labels,

$ should generally not be the first

character on a line. The first replacement character could be a
digit. This would generate an error, because a symbol cannot start

with a digit.

The following example shows a macro that generates labels.
The listing shows how a new label is generated each time the macro

is called.

.MACRO BKT ;Macro to generate labels
DSZ COUNT
TR$= . ;Label entry generated by macro
%
COUNT: .
06 000005 .DO 5 ;CALL THE MACRO FIVE TIMES
07 BKT
08 00001'014777 DSZ COUNT :
09 000002'TR$001= . ;THIS LABEL GENERATED BY MACRO
10 BKT
11 00002'014776 DS2 COUNT
12 000003'TRS002= . ;THIS LABEL GENERATED BY MACRO
13 BKT
14 00003'014775 DSz COUNT
15 000004'TRS$003= . ;THIS LABEL GENERATED BY MACRO
16 BKT
17 00004'014774 DSZ COUNT
18 000005'TR$004= . ;THIS LABEL GENERATED BY MACRO
19 BKT
20 00005'014773 DSZ COUNT
21 000006 'TR$005= . ;THIS LABEL GENERATED BY MACRO

093-000192

5-19

Licensed Material - Property of Data General Corporation

Generated Numbers and Symbols

You may direct the assembler to generate numbers and symbols
by using the following format:

\symbol

At assembly time, MASM replaces \symbol with a 3-digit number
representing the value of symbol. The assembler uses the current
input radix for this substitution and truncates the value of symbol
to three characters, if necessary.

A \symbol may stand alone in code to form an integer. It may also
follow characters that, together with the value of \symbol, will
form a number or symbol. For example,

A=2 ;Initialize A and B.
B=1234
X\A: 1 :X\A evaluates to the symbol X002.
X\B: 1 :X\B evaluates to the symbol X234
; (the "1" is truncated from "1234").
C=\A+\B :\A equals 002 and \B equals 234 so
;C equals 236.
450.\A ;450.\A evaluates to 450.002

A symbol must be generated with exactly one \symbol string.
For example, the string A\I\J will cause an undefined symbol (U)
error.

The assembly listing for a generated number or symbol shows
both the replacement value and the \symbol designation. For
example, the above section of source code would appear as follows
in the assembly listing:

0l 000002 A=2

02 001234 B=1234

03 00000'000001 X\AOO2: 1

04 00001'000001 X\B234: 1

05

06 000236 C=\A002+\B234
07

08 00002'041434 450.\A002

09 020010

Table 5-1 shows the correspondence between source code, the
assembly listing, and the cross-reference listing. Notice that the
\symbol string (\ONES) is shown in the assembly listing, even
though it is suppressed in the cross reference.

5-20 093-000192
: Licensed Material - Property of Data General Corporation

Table 5-1. Generated Symbols in Source and Listings

Source Code Assembly Listing Cross—Reference
Listing
ONES=111 ONES=111 ONES
A\ONES A\ONES111 Alll

You may increment \symbol just as you would increment any
other value. For example, the following code creates labels for a
table.

«RDX 8
* % X=0 :Initialize counter X (** means
*% ;suppress listing of this line).
TABLE: .DO 64. ;Assemble this loop 64 (decimal) times.
A\X: 0 ;Create labels A000, AO0Ol,...,A077.
*% X=X+1 s Increment counter X.
*% . ENDC ;End of .DO loop.

The listing for this section of code follows:

0l 000010 +RDX 8
03 000100 TABLE: .DO 64.
04 00000'000000 AN\X000:

05 00001'000000 A\X001:

06 00002'000000 A\X002:

07 00003'000000 A\X003:

03 00073'000000 A\X073:

OOOCOO

06 00076'000000 A\X076: 0
07 00077'000000 A\X077: 0

End of Chapter

093-000192 5-21
Licensed Material - Property of Data General Corporation

Chapter 6
Types of Pseudo-Ops

Pseudo-ops direct the execution of the Macroassembler and
represent internal assembler variables. All pseudo-ops fall into
one of the following categories:

* Location counter and memory management

* PFile termination

* Repetitive and conditional assembly

* Macros

* Data placement

* Intermodule communication

* Listing control

* Stack control

* Radix control

* Text strings

* Symbol table

* Symbol deletion

* Miscellaneous

The following sections of this chapter describe each of these
categories and list the corresponding pseudo-ops. Each section has
a table that indicates whether a pseudo-op may direct the assembly

process (an assembler directive) and/or represents an internal
assembler variable (a_value symbol).

Refer to "Pseudo-Ops" and "Permanent Symbols"™ in Chapter 2 for
a general description of pseudo-ops. Chapter 7 describes the
individual pseudo-ops in alphabetical order.

093-000192 6-1
Licensed Material - Property of Data General Corporation

Location Counter and Memory Management
Generally, you use location counter and memory management
pseudo-ops to assign memory locations to the code and data in your
source module. More specifically, the pseudo-ops in this category
allow you to
* reserve a block of storage locations;
* set the location counter to a specific value; and

* place source code in predefined memory partitions.

Table 6-1 lists the location counter and memory management
pseudo-ops.

Table 6-1. Location Counter and Memory Management Pseudo-Ops

Pseudo-0ps Assembler Value Description
Directive Symbol
. (period) NO YES Return the value of the
current location counter
-BLK YES NO Reserve a block of memory B
locations
.LOC YES YES Set the current location
counter
- LPOOL YES NO Dump the currently defined

literals into a data block
(must be used with the .NLIT

pseudo-op)

+NLIT YES NO Assign literals to NREL
instead of ZREL

. NREL YES NO Specify a shared or unshared
normal relocatable memory
partition

« ZREL YES NO Specify the lower page zero

relocatable memory partition

The single character pseudo-op . (period) is a value symbol
that represents the current location counter. The location counter
is an assembler variable that holds the address and relocation base
of the next memory location the Macroassembler will assign.

The .ZREL and .NREL pseudo-ops direct the assembler to place
the source lines that follow them into predefined memory

6-2 093-000192
Licensed Material - Property of Data General Corporation

partitions. Use .ZREL for relocatable data that must reside in
lower page zero (locations 50-377 8). Use .NREL for relocatable
data that can be anywhere else in memory (locations 400 8 to
32KW-1). The .NREL pseudo-op allows you to place source code in
either shared or unshared partitions.

Use the .LOC pseudo-op to set the location counter to a
specific value within a memory partition.

Refer to Chapter 3 for a detailed discussion of how the
assembler assigns addresses to the words in your source module.
That chapter also describes the various memory partitions available
for your use.

File Termination

The assembler has two file termination pseudo-ops (see Table
6-2) .

Table 6—-2. File Termination Pseudo-Ops

Pseudo-0ps Assembler Value Description
Directive Symbol
. END YES NO End-of-program indicator
. EOF YES NO Explicit end-of-file

The .END pseudo-op terminates the source code you pass to the
assembler. Also, by passing an address to .END, you may indicate
where you want a program to begin at execution time.

Use .EOF when you include more than one source file on the
MASM command line. When you place this pseudo-op at the end of a
file, you inform the assembler that the current input file is
complete but more files may follow. All files, except the last
one, should end with the .EOF pseudo-op; the last one should end

with .END.
Repetitive and Conditional Assembly
The pseudo—-ops in this category allow you to
* assemble a series of source lines a specified number, or

* conditionally assemble or by-pass source lines based on the
evaluation of an expression (conditional assembly).

Table 6-3 lists the pseudo-ops you use to perform the above
operations.

093-000192 6-3
Licensed Material - Property of Data General Corporation

Table 6~3. Repetitive Assembly and Conditional Pseudo-Ops

Pseudo-Ops Assembler Value Description
Directive Symbol
.DO YES NO Assemble the following source
lines a specified number of
times
. ENDC YES NO Define the end of repetitive

or conditional assembly lines

. IFE YES NO Assemble the following source
lines only if the value of the
supplied expression equals
zero

. IFG YES NO Assemble the following source
lines only if the value of the
supplied expression exceeds
zZero

. IFL YES NO Assemble the following source
lines only if the value of the
supplied expression is less
than zero

. IFN YES NO Assemble the following source
lines only if the value of the
supplied expression does not
equal zero

«GOTO ’ YES NO Suppress assembly of source
lines until the specified
symbol is encountered

Use the .DO pseudo-op to implement a loop at assembly time.
This allows you to assemble a section of source code more than
once.

The .IF pseudo-ops assemble a section of code only if an
expression satisfies a certain condition. For example, the .IFE
pseudo-op directs the assembler to process a section of code only
if the argument to .IFE equals zero.

You must use .ENDC to terminate source lines that you want
assembled repetitively (with .DO) or conditionally (with .IFE,
.IFG, .IFL, or .IFN).

6-4 093-000192
Licensed Material - Property of Data General Corporation

Refer to Chapter 5 for information about how to use repetitive
assembly and conditional pseudo-ops inside macros.

Macros

The Macroassembler provides three pseudo-ops that you may use
with macros. Table 6-4 describes each of these symbols.

Table 6-4. Macro—-Related Pseudo-Ops

Pseudo-Ops | Assembler Value Description
Directive Symbol

«ARGCT NO YES Return the number of arguments
passed to a macro

«MACRO YES NO Defines the start of a macro,
and names the macro

«MCALL NO YES Indicate whether a macro has
been called on the current
assembler pass

Chapter 5 provides a complete description of macros and
discusses the use of the above pseudo-ops.

Intermodule Communication

Intermodule communication pseudo-ops allow you to define
symbols and data in one source module and to reference that infor-
mation from a separately assembled module. These pseudo-ops declare
entry points, external symbols, and both labeled and unlabeled
common areas. Table 6-5 lists the intermodule communication
pseudo—-ops.

093-000192 6-5
Licensed Material - Property of Data General Corporation

Table 6-5. Intermodule Communication Pseudo-Ops

Pseudo-Ops | Assembler Value Description
Directive Symbol

-ASYM YES NO Define an accumulating symbol

. COMM YES NO Reserve a labeled common area
for intermodule communication

.CSIZ YES NO Reserve an unlabeled common
area for intermodule communi-
cation

« ENT YES NO Define one or more external
entries

. ENTO YES NO Define an overlay entry

- EXTD YES NO Define one or more external
displacement references
(external symbol value is 8
bits or 1less)

. EXTN YES NO Define one or more external
normal references (external
symbol value is 16 bits or
less)

. EXTU YES NO Treat undefined symbols as
external displacements

«GADD YES NO Assign an expression value to
a symbol

.GLOC YES NO Initialize data fields rela-
tive to an external symbol

«GREF YES NO Assign an expression value to
a symbol without affecting the
sign bit

. PENT YES NO Define a procedure entry

. PTARG YES NO Generate a procedure descrip-

tion for ?RCALL, ?KCALL, or
?RCHAIN

.ASYM defines an accumulating symbol, which you then set to an
In subsequent modules, the symbol is
redefined as an accumulating symbol, and is set to a new value
References to the symbol in succeeding modules will be

initial value (i.e.,

(ineo’ 2).

6-6

1.

093-000192

Licensed Material - Property of Data General Corporation

resolved as the sum (accumulation) of all its previous values
(i.e., 3). The symbol retains its relocation type.

The .COMM and .CSIZ pseudo-ops reserve common areas for
intermodule communication. Using these pseudo-ops, you may create
data storage areas that are accessible to each module in your
program. Use .COMM when you want to assign a name to the common
area (labeled common area); use .CSIZ to create an unlabeled common
area.

An .ENT symbol may represent either an address or a data value
that is available for use by separately assembled modules. The
separately assembled modules that reference the .ENT symbol must
each declare it with an .EXTD or .EXTN pseudo-op; these pseudo-ops
inform the assembler that the symbol is defined externally (in a
separately assembled source module).

The symbols that the .EXTD and .EXTN pseudo-ops declare differ
in the number of bits necessary to represent their values. You may
use an .EXTD symbol (external displacement) in any field that is at
least 8 bits wide. Use an .EXTN symbol (external normal) in fields
where at least 16 contiguous bits are available.

When you declare a symbol as externally defined, the assembler
associates the declared field width with that symbol. Each time you
use the symbol in your module, MASM verifies that the number of
contiguous bits available is at least as large as the symbol's
declared width. If you use an externally defined symbol in a field
that is not wide enough, the assembler returns an error.

For example, if you issue the statement
« EXTN A

the assembler assumes that the value of A requires a field of at
least 16 bits. Each time you use A in this source module, MASM
checks that the corresponding field is at least 16 bits wide. If
you use A in a field with less than 16 contiguous bits available,
MASM returns an error.

The declared field width should correspond to the value of the
externally defined symbol. If the declared field width is smaller
than the symbol's value, you may receive an error at link time. In
the above example, we declared A as a 16-bit value (.EXTN A). If A
turns out to have a value larger than 16-bits, Link may not be able
to f£it A's value in the appropriate fields.

The following example will help clarify the use of the .ENT, .EXTD,
and .EXTN pseudo-ops.

093-000192 6-7
Licensed Material - Property of Data General Corporation

Source Module X

. TITL
. ENT
«ZREL
H: 100
. NREL
I:
J=25437
. END
Source Module Y
.TITL
.EXTD H,I
.EXTN J
. NREL
LDA O0,H
LDA 1,J
EISZ J
EJMP H
JMP H
JMP J
LDA 0,I
. END
6-8

H,I,J

X ;Source module X.
;Symbols H, I, and J are defined in
;this module and may be referenced
;by other modules.

;H is a label in lower page zero (i.e.,
;it can be represented with 8 bits).

:The values of I and J require 16 bits.

+End of source module X.

;Source module Y (assembled separately
;:from module X).
;H and I are externally defined and their
;svalues can be expressed with 8 bits.
;J is externally defined and its value
;requires a 1l6-bit field.

sNO ERROR: The value of H can fit

;into the 8-bit address field provided
;by the LDA instruction.

;ERROR: The value of J requires 16 bits
;and the LDA address field is only 8
;bits wide.

sNO ERROR: The EISZ instruction
sprovides a 15-bit displacement field,
;sufficient for .EXTN symbol J.

;NO ERROR: The instruction EJMP provides
;a 15-bit displacement field. Since the
;value of H can be represented in 8 bits,
;this statement is legal.

sNO ERROR: The value of H can fit

;into an 8-bit displacement field.

;ERROR: The .EXTN statement defines J as

;a 16-bit value. Since this value cannot

;f£it into the 8-bit field that JMP

;provides, MASM returns an error

;for this statement.

;LINK ERROR: The .EXTD statement defines I

;as an 8-bit value and the LDA instruction
;provides an 8-bit address field. Thus, MASM
;jdoes not return an error. However, the actual
;value of I, known at link time, will not fit
;into the 8-bit LDA address field so Link will
;report an error.

093-000192

Licensed Material - Property of Data General Corporation

The .PENT pseudo-op names procedure entries that will gain
control when called by one of the following operating system calls:
?RCALL, ?KCALL, or ?RCHAIN.

The .PTARG pseudo-op accepts the name of an external general
procedure entry point and generates a procedure descriptor. This
descriptor can be passed on the user stack to one of the general
procedure calls (?RCALL, ?KCALL, or ?RCHAIN).

The .ENTO pseudo-op is used when a program is to become an
overlay within an overlay segment. .ENTO identifies the number and
node of an overlay so that it can be called by the ?0VLOD operating
system call.

Listing Control
The assembler provides several pseudo-ops that allow you to
control the format and content of the assembly listing. Table 6-6

describes the listing control pseudo-ops.

Table 6-6. Listing Control Pseudo-Ops

Pseudo-Ops | Assembler Value Description
Directive Symbol

. EJEC YES NO Begin a new listing page

. NOCON v YES YES Enable or suppress the listing

of conditional source lines

« NOLOC YES YES Enable or suppress the listing
of source lines that 1lack
location fields

« NOMAC YES YES Enable or suppress the listing
of macro expansions

The .EJEC pseudo-op directs MASM to begin a new page in the
assembly listing (after listing the .EJEC source line).

Use .NOCON, .NOLOC, and .NOMAC to inhibit (and enable) por-
tions of the assembly listing. Each of these pseudo-ops also
functions as a value symbol that returns the last value you
supplied to that pseudo-op.

You may generate an assembly listing by including the /L or
/L= switch on the MASM command line. By default, the assembly
listing contains all source lines in your module and a Ccross-
reference listing of symbols. Use the /0 switch to override the
.NOCON, .NOLOC, and .NOMAC pseudo-ops at assembly time.

093-000192 , 6-9
Licensed Material - Property of Data General Corporation

Refer to Chapter 4 for a description of the assembly and
cross-reference listings. Chapter 8 explains the MASM command line
switches.

Stack Control

The Macroassembler maintains a push-down stack that you may
use to save the value and relocation property of any valid assem-
bler expression. In a push-down stack, the last expression you
place on the stack is the first you remove.

Table 6-7 lists the stack control pseudo-ops available for
your use.

Table 6-7. Stack Control Pseudo—Ops

Pseudo-0Ops Assembler Value Description
Directive Symbol

. POP YES YES Return the value and reloca-
tion property of the last
expression pushed onto the
stack. .POP removes (pops)
this information from the

stack.

. PUSH YES NO Push the value and relocation
property of an expression onto
the stack

. TOP NO YES Returns the value and reloca-

tion property of the last
expression pushed onto the
stack. .TOP does not remove
(pop) this information from
the stack.

To place a value on the stack, issue the .PUSH pseudo-op. Use
the .POP value symbol to access the information on the stack. When
you use .POP, the assembler returns the top value (the last one
pushed) and removes that entry from the stack. The .TOP pseudo-op
returns the value and relocation property of the last expression
pushed onto the stack. .TOP does not remove this information from
the stack.

Note that the stack we describe above functions at assembly
time; it is separate and distinct from the stack that the ECLIPSE
computer maintains at execution time.

6-10 093-000192
Licensed Material - Property of Data General Corporation

Radix Control

The radix control pseudo-ops allow you to specify both the
input radix and the output radix for your source module. The
assembler uses the input radix to interpret numeric expressions in
your source code and the output radix to present numeric expres-
sions in the various output listings.

Table 6-8 describes the two radix control pseudo-ops.

Table 6-8. Radix Control Pseudo—-Ops

Pseudo—-Ops Assembler Value Description
Directive Symbol
. RDX YES YES Set radix for numeric input
conversion
. RDXO YES YES Set radix for numeric output
conversion

Input and output radixes are entirely distinct, and you set
them independently. Using the .RDX and .RDXO pseudo—-ops, you may
specify input and output radixes in the range 8-16. The default
radix for both input and output is 8 (octal).

You may use .RDX and .RDXO as value symbols. They return the
current input and output radixes, respectively.

Text Strings

The text string pseudo-ops assemble character strings into
their equivalent ASCII codes. That is, using these pseudo-ops, you
may enter a character string in your source code and have the
assembler store its ASCII representation in memory.

Table 6-9 lists the text string pseudo-ops.

093-000192 6-11
Licensed Material - Property of Data General Corporation

Table 6-9. Text String Pseudo-Ops

Pseudo-Ops | Assembler Value Description
Directive Symbol

. TXT YES NO Store the ASCII value of a
text string in consecutive
words of memory

.TXTE YES NO Set the leftmost bit for even
byte parity

. TXTF YES NO Set the leftmost bit to one
unconditionally

. TXTM YES YES Specify left/right or
right/left bytepacking within
words

. TXTN YES YES Terminate an even-length byte

string with no null bytes or
two null bytes

. TXTO YES NO Set the leftmost bit for odd
byte parity

Using .TXT, you can direct MASM to store the ASCII equivalent
of a text string in memory. The assembler always packs two charac-
ters into each 16-bit word when it stores a text string (i.e., one
character per 8-bit byte).

By default, the assembler packs character bytes left to right
within memory words. You may change this convention by issuing the
. TXTM pseudo-op.

If a string has an odd number of characters, the assembler
places a null (all zero) byte in the word with the last character.
If the string has an even number of characters, the assembler
places either no null bytes or two null bytes after the last
character, depending on your directions (see .TXTN).

If you wish to store only one or two ASCII characters in
memory, you do not have to use pseudo-ops. "Special Integer-
Generating Formats" in Chapter 2 describes alternative methods for
storing characters.

Symbol Table

Symbol table pseudo-ops let you define machine instructions
and user symbols. These pseudo-ops are shown in Table 6-10.

6-12 093-000192
Licensed Material - Property of Data General Corporation

Table 6-10. Symbol Table Pseudo-Ops

Pseudo-Ops Assembler Value Description
Directive Symbol

.DALC YES NO Define an ALC instruction or
expression

- DCMR YES NO Define a commercial memory
reference instruction or
expression

.DEMR YES NO Define an extended memory

reference instruction or
expression, without accumula-
tor

.DERA YES NO Define an extended memory
reference instruction that
requires an accumulator

.DEUR YES NO Define an extended user
instruction or expression

.DFLM YES NO Define a floating-point load
or store instruction or
expression that requires an
accumulator

.DFLS YES NO Define a floating-point load
or store status instruction
that requires no accumulator

.DIAC YES NO Define an I/0 instruction
requiring an accumulator

.DICD YES NO Define an instruction requir-
ing an accumulator and a count

«DIMM YES NO Define an immediate-reference
instruction requiring an
accumulator

- «DIO YES NO Define an I/0 instruction that

does not use an accumulator

.DIOA YES NO Define an I/0 instruction that
requires two fields

(continues)

093-000192 6-13
Licensed Material - Property of Data General Corporation

Table 6-10. Symbol Table Pseudo-Ops

Pseudo—-Ops | Assembler Value Description
Directive | Symbol
.DISD YES NO Define an instruction with

source and destination accumu-
lators and no skip

.DISS YES NO Define an instruction with
source and destination accumu-
lators with skip

.DMR YES NO Define a memory reference
instruction with displacement
and index

«DMRA YES NO Define a memory reference

instruction with two or three
fields
.DUSR YES NO Define a user symbol without

implied formatting

.DXOP YES NO Define an instruction with
source, destination, and
operation fields

(concluded)
All symbol table pseudo-ops (except .DUSR) name assembler

instructions for 1l6-bit ECLIPSE computers. These instructions are
described in the Pro ®-Li
manual. A system's parameter files use the symbol table pseudo-ops
to define assembler instructions. The definitions reside in the
MASM.PS (or MASM16.PS) disk file. This file is required to assem-~
ble source programs; it is described further in Chapter 8.

Symbol table pseudo-ops have the form:

instruction
pseudo—opnuser-symbol =

expression
where:
pseudo—op is a symbol table pseudo-op
user-symbol is a symbol assigned by the programmer
instruc?ion and are as defined in Chapter 2
expression

In symbol table pseudo-ops, a user-symbol is semipermanent.
Its assembled value is the value of the instruction or expression
following the equals sign.

6-14 093-000192
Licensed Material - Property of Data General Corporation

Each symbol table pseudo-op (except .DUSR) defines a different
type of instruction for 16-bit ECLIPSE computers. User symbols
must be used with appropriate expressions. For example, the
pseudo-op .DALC defines a symbol for an arithmetic and logical
(ALC) instruction or expression. A symbol defined by the .DALC
pseudo-op must be followed by expressions that represent the source
and destination accumulators, and the ALC instruction's optional
skip field. The format for a .DALC definition of a symbol, and the
symbol as it would be used is:

instruction
-DALCruser—symbol = }

expression

user—symboloexpressionnliexpressionn2po<expressionn3>

Where expression 1, expression 2, and the optional expression 3 are
stored in the ALC instruction format as shown below.

111 1 1 1
0 1 2 3 4 56 789012 3 4 5
Expression 1| Expression 2 Expression 3

The symbol table pseudo-ops are described in Chapter 7. 1In
summary, a symbol defined as semipermanent by symbol table
pseudo-op must meet the following conditions.

* As many expressions must follow the user-—symbol as are
required by the target format. Some formats permit op-
tional expressions in addition to their required
expressions. The Macroassembler generates a format (F)
error if the number of expressions following a user-—symbol
do not meet the requirements of the target format.

* Each expression must meet the width requirements of the
target format's fields. For example, if

expressionn>n(2field Width—l)

the field is not changed and the Macroassembler generates
an overflow (0O) error.

* If the field in which the expression is to be stored does
not equal zero, the expression must equal zero. Otherwise,
the field is not changed, and an overflow (0) error is
generated.

093-000192 6-15
Licensed Material - Property of Data General Corporation

A given user symbol that is defined in one symbol table
pseudo-op can be redefined in another symbol table pseudo-op. The
last definition will be the one assigned to the user symbol. A
redefinition of a permanent symbol will result in a multiple
definition (M) error if the /M function switch was used.

Symbol Deletion
The Macroassembler allows you to delete all symbol
definitions, except pseudo-op definitions (the permanent symbols),
from the current assembly.

Table 6-11 provides information about .XPNG, the pseudo-op you
use to remove symbol definitions.

Table 6-11. Symbol Deletion Pseudo-Op

Pseudo—-Ops Assembler Value Description
Directive | Symbol

« XPNG YES NO Delete all semipermanent
symbol definitions
(instructions and macros) from
the current assembly

You can use the .XPNG pseudo-op when you want to define your
own symbol definitions in the permanent symbol table.

Miscellaneous

The pseudo-ops in this section do not fit into any of the
other categories. Table 6-12 lists the miscellaneous pseudo-ops and
provides a short description of each.

6-16 093-000192
Licensed Material - Property of Data General Corporation

Table 6-12. Miscellaneous Pseudo-Ops

Pseudo-Ops Assembler Value Description
Directive Symbol

. FORC YES NO Force Link to include this
library module in the program
file

«LMIT YES NO Specifies partial binding of an
object file

.OB YES NO Name an object file

.PASS NO YES Return a value corresponding to
the current MASM pass number

«REV YES NO Assign two revision level
numbers to a program file

. TITL YES NO Assign a name to a listing
header

.TSK YES NO Specify the number of tasks in

your program

Refer to Chapter 7 for detailed descriptions of these

pseudo-ops.

093-000192

End of Chapter

6-17

Licensed Material - Property of Data General Corporation

Chapter 7
Pseudo-Op Descriptions

This chapter describes all the A0S MASM and AOS/VS MASM16
pseudo-ops. They are in alphabetic order for easy reference.

For each pseudo-op, we include

* the mnemonic that the Macroassembler recognizes (e.g.,
.NREL) ;

* the pseudo-op's title;

* the syntax of the pseudo-op as an assembler directive, if
applicable;

* a functional description of the pseudo-op as an assembler
directive (under "Purpose"), if applicable;

* a functional description of the pseudo-op as a value symbol
(under "value"), if applicable;

* one or more examples; and

* references for further information about related topics.

Coding Aids
Throughout this chapter, we use certain conventions and
abbreviations to help you code each Macroassembler pseudo-op
statement properly.
The Preface describes the notation we use to present pseudo-op
statement syntax. Table 7-1 lists the abbreviations that we use in
this chapter.

We explain all other abbreviations in the appropriate
pseudo-op descriptions.
General References

Refer to the following sections of this manual for general
information about pseudo-ops:

* An alphabetic listing of the pseudo—-ops appears in Appendix
B

093-000192 7-1
Licensed Material - Property of Data General Corporation

* Y"Permanent Symbols" and “Pseudo-Ops" in Chapter 2 provide
general information about pseudo-ops

* Chapter 6 presents and discusses each of the various
categories of pseudo~ops

* "Symbol Interpretation" in Chapter 3 explains how the
Macroassembler interprets the pseudo-op mnemonics that
appear in your source module

Each pseudo-op description in this chapter also contains
references specific to that pseudo-op.

Table 7-1. Abbreviations

Abbreviation Meaning

a Any combination of spaces, horizontal tabs,
and/or one comma.

abs-expr Absolute expression (see Chapter 3)

AC Accunulator

ACD Destination accumulator

ACS Source accumulator

expr Any macroassembler expression (see Chapters 2
and 3)

FPAC Floating point accumulator

index Addressing index (or mode)

instruction ECLIPSE assembly language instruction

instr-symbol Instruction symbol (see Chapter 2)

K Approximately one thousand e.g., 1K words
equals 1,024;9 words

MRI Memory reference instruction

MW Megaword; i.e., 1 MW equals 1,048,5763
l6-bit words

user-symbol User symbol (see Chapter 2)

7-2 093-000192

Licensed Material - Property of Data General Corporation

()

Current location counter.

Value

The symbol . (period) has the value and relocation property of
the current location counter. The location counter is an assembler
variable that holds the address and relocation base of the next
memory location the Macroassembler will assign.

Example
08 00000'020000 LDA 0,0 s INSTRUCTION AT LOC O
09 00001'040000 sTA 0,0 ;s INSTRUCTION AT LOC 1
10 00002'000002° . ;PSEUDO-OP (VALUE = LOCATION)
11 000010’ .LOC .+5 ;CHANGE LOCATION COUNTER
12 ; (CURRENT LOCATION PLUS FIVE)
13 00010'133000 ADD 1,2 ; INSTRUCTION AT LOCATION 10 (OCTAL)
References
“Location Counter" - Chapter 3
"Relocatability" - Chapter 3
093-000192 7-3

Licensed Material - Property of Data General Corporation

ARGCT

Number of arguments passed to macro.

Value

The pseudo-op .ARGCT is a value symbol. Its value equals the

number of arguments you passed to the macro containing it.

For

example, if you pass three arguments to a macro, then the symbol
.ARGCT has the value 3 for that macro expansion.

If you use .ARGCT outside a macro, its value is -1.

Examples
08 .MACRO A ;MACRO THAT TAKES TWO ARGUMENTS
09 ~“1+72
10 .ARGCT ;:VALUE = NUMBER OF ARGUMENTS
11 %
12
13 A 4,5
14 00000'000011 445
15 00001'000002 .ARGCT ;VALUE = NUMBER OF ARGUMENTS
08 .MACRO ARG ;DEFINE MACRO 'ARG'
09 .IFE .ARGCT :IF YOU CALL 'ARG' WITH NO
10 10 ;ARGUMENTS, ASSEMBLE THE
11 . ENDC ;VALUE 10. OTHERWISE,
12 .IFN .ARGCT ;ASSEMBLE THE VALUE OF THE
13 1 ;FIRST ARGUMENT.
14 « ENDC
15 %
16
17 ARG ;CALL 'ARG' WITHOUT ARGUMENTS
18 000001 .IFE .ARGCT ;IF YOU CALL ‘ARG' WITH NO
19 00000'000010 10 ;ARGUMENTS, ASSEMBLE THE
20 . ENDC :VALUE 10. OTHERWISE,
21 000000 L.IFN .ARGCT ;ASSEMBLE THE VALUE OF THE
22 ; FIRST ARGUMENT.
23 « ENDC
24
25 ARG 2 ;CALL 'ARG' WITH ONE ARGUMENT
26 000000 .IFE .ARGCT ;IF YOU CALL 'ARG' WITH NO
27 10 ;ARGUMENTS, ASSEMBLE THE
28 . ENDC ;:VALUE 10. OTHERWISE,
29 000001 .IFN .ARGCT :ASSEMBLE THE VALUE OF THE
30 00001'000002 2 :FIRST ARGUMENT.
31 « ENDC

7-4

093-000192

Licensed Material - Property of Data General Corporation

References

"Macros" - Chapter 5
"Macro-Related Pseudo-Ops" - Chapter 5

093-000192 7-5
Licensed Material - Property of Data General Corporation

.ASYM

Define an accumulating symbol.

Syntax
+ASYMOuser—symbol

Purpose

This pseudo-op defines a user—symbol whose value will be the
sum of the values assigned to it by all modules in which it is
declared. For this summing to take place, user-symbol must be
declared by an .ASYM and assigned a value. To access its accumu-
lated value it must be identified to Link by an .EXTN pseudo-op in
that module. You cannot use both .ASYM and .EXTN with the same
user symbol in the same module. 1Its intermediate values are not
accessible. The relocation type of this symbol is preserved.

Example

.ASYM A Module 1
=1

+.ASYM A Module 2
=2

«EXTN A Module 3
A

* This value is resolved only after the modules have been linked.

Reference

"Intermodule Communication" - Chapter 6

7-6 093-000192
Licensed Material - Property of Data General Corporation

.BLK

Reserve a block of memory.

Syntax

- BLKOabs—expr

Purpose

The .BLK pseudo-op reserves a block of memory words. Abs—expr
specifies the length (in 16-bit words) of this block. Abs—expr
must be a positive absolute expression.

The assembler increments the current location counter by
abs—expr when it encounters .BLK in your source.

Example
03 00000'122250 FSTS 0,ACLOC ;STORE THE FLOATING POINT
04 000010
05 00002'126250 FSTS 1,ACLOC+2 ;ACCUMULATORS IN CONSECUTIVE
06 000010
07 00004'132250 FSTS 2,ACLOC+4 sLOCATIONS STARTING AT
08 000010
09 00006'136250 FSTS 3,ACLOC+6 ;ADDRESS ACLOC.
10 000010
11 00010'000411 JMP SKIPP ;JUMP AROUND DATA BLOCK
12 00011'000010 ACLOC: L.BLK 10 ;SAVE 10 (OCTAL) WORDS OF
13 ;MEMORY.
14 00021'020150 SKIPP: LDA 0,150 ;NOTE THAT THE LOCATION COUNTER

;JUMPS 10 WORDS.

References
"Absolute Expressions" - Chapter 3
"Assigning Locations" - Chapter 3
093-000192

7-7

Licensed Material - Property of Data General Corporation

.COMM

Reserve a labeled common area.

Syntax
«COMMMuser-symbolOabs—expr

Purpose

The .COMM pseudo-op reserves a labeled (or named) common area
for intermodule communication. A common area is a data storage area
that you may access from separately assembled modules in your
program.

The Macroassembler assigns the name user-symbol to this common
area. MASM regards user-symbol as an entry point and, therefore,
you should not redefine this symbol anywhere in your program.

Specify the size of the common area (in 16-bit words) in the
abs—expr argument. This argument must be a positive absolute
expression.

To reference this common area from another module in your
program, use .COMM, .EXTN, or .EXTU to declare user-symbol as
externally defined. If you issue the same .COMM statement in two
separately assembled modules, Link resolves them to the same area
in memory.

Example
LTITL A ;MODULE 'A'
.NREL
.COMM X,100 ;RESERVE A 100 WORD COMMON AREA
;NAMED 'X'
.COMM Y,50 ;RESERVE A 50 WORD COMMON AREA
;NAMED 'Y!
.END
.TITL B ;SEPARATELY ASSEMBLED MODULE 'B’'
. NREL
.COMM X,100 ;'X' REFERS TO THE SAME COMMON AREA
;DECLARED IN MODULE 'A.'
. END
.TITLE C ;SEPARATELY ASSEMBLED MODULE 'C'
. NREL
« EXTN X ;'X' REFERS TO THE STARTING ADDRESS
;OF THE COMMON AREA DECLARED IN 'A.'
. END
7-8 093-000192

Licensed Material - Property of Data General Corporation

References

"Absolute Expressions" - Chapter 3
AOS Link User's Manual or

in ibra i ser'
"Intermodule Communication" - Chapter 6

"User Symbols" - Chapter 2

093-000192 7-9

Licensed Material - Property of Data General Corporation

.CSIZ

Reserve an unlabeled common area.

Syntax

.CSIZOabs—-expr

Purpose

The .CSIZ pseudo-op reserves an unlabeled common area for
intermodule communication. A common area is a data storage area
that you may access from separately assembled modules in your
program.

The abs—expr argument is the size in 16-bit words of the
unlabeled common area. This argument must be a positive absolute
expression.

If you include more than one .CSIZ pseudo-op in a single
source module, MASM uses the largest value as the size of the
unlabeled common area. Similarly, if separately assembled modules
issue .CSIZ pseudo-ops, Link uses the largest value.

Example
.TITLE A
.CSIZ 20 :20 WORDS ALLOCATED
. sTO UNLABELED COMMON

« END
LTITLE X
.CSIZ 50 ;50 WORDS ALLOCATED

. ;TO UNLABELED COMMON

. ;TO BE SHARED WITH PROGRAM A.
« END
References
“"Absolute Expressions" - Chapter 3
AQS Link User's Manual or

!

"Intermodule Communication" - Chapter 6
7-10 093-000192

Licensed Material - Property of Data General Corporation

.DALC

Define ALC instruction.

Syntax

instruction
- DALCOuser—symbol=

expression

Purpose

The .DALC pseudo-op defines user-symbol as a semipermanent
symbol having the value of instruction or expression. This user-—
symbol implies the format of an ALC instruction. At least two
fields, and optionally, three, are required. These fields are
assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expression:i)-——-T

Expression2

Expressionl

The atom # (no-load indicator) may be used anywhere as a break
character. It assembles a 1 at bit position 12.

A given user-symbol defined in one .DALC pseudo-op may be
redefined in another .DALC pseudo-op. The last definition will be
the one assigned to user-symbol.

A three-character symbol defined by this pseudo-op can have
carry and shift flags. These flags are concatenated to the right
side of the symbol in the following format:

user—symbol<carry><shift>
The carry flag must be L, R, or S and the shift flag must be

Z, O, or C. The flags are optional. They set bits 8-9, 10-11 as
follows:

093-000192 7-11
Licensed Material - Property of Data General Corporation

.DALC (continued)

Mnemonic Shift Bits Carry Bits Description
(8-9) (10-11)
L 01 —— Left shift
R 10 —— Right shift
S 11 - Swap
Z ———— 01 Set carry bit to 0
0 ——— 10 Set carry bit to 1
C —— 11 Complement carry bit
Example
08 00000'103000 ADD 0,0 ;STANDARD ECLIPSE
09 ; 'ADD' INSTRUCTION
10
11 00001'157001 ADD 2,3,SKP ; 'ADD' INSTRUCTION WITH
12 ;SKIP FIELD
13
14 103000 .DALC DDA=103000 ;'DDA' DEFINED TO BE
15 ;SAME AS 'ADD'
16
17 00002'103000 DDA 0,0 : 'DDA' INSTRUCTION (NOTE ASSEMBLED WORD)
18 00003'157001 DDA 2,3,SKP ;'DDA' WITH SKIP FIELD
19
20 00004'133120 ADDZL 1,2 ; '"ADD' WITH SHIFT AND CARRY BITS SET
21 00005'133120 DDAZL 1,2 ;'DDA' WITH SHIFT AND CARRY BITS SET
References
“Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-12

093-000192

Licensed Material - Property of Data General Corporation

.DCMR

Define commercial memory reference instruction.

Syntax

instruction
.DCMROuUser—-symbol =

expression

Purpose

This pseudo-op defines user—symbol as a semipermanent extended
commercial memory reference symbol having the value of imstruction
or expression. This symbol implies the format of an instruction
that requires an accumulator and displacement. It also permits an
optional index. The fields are assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accumulator

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

l——-Displacement

The format for using this symbol is:

semipermanent-symbolraccumulatorodisplacement<Oindex>

093-000192 7-13
Licensed Material - Property of Data General Corporation

.DCMR (continued)

Example
06 00000 122170 ESTB 0,0 ;EXTENDED STORE BYTE INSTRUCTION
07 000000
08
09 122170 .DCMR BTSE=122170 ;DEFINE 'BTSE' SAME AS ‘'ESTB'
10
11 00002 122170 BTSE 0,0 ; "BTSE' INSTRUCTION
12 000000
13
14
15 00004 126170 ESTB 1,CONl1 ;'ESTB' INSTRUCTION WITH ACl AND DISPLACEMENT
16 000666
17 00006 126170 BTSE 1,CON1 ;'BTSE' INSTRUCTION WITH ACl AND DISPLACEMENT
18 000666
19
20
21 000666 CONl= 666
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-14

093-000192

Licensed Material - Property of Data General Corporation

.DEMR

Define extended memory reference instruction.

Syntax

instruction
-DEMROuser~symbol =

expression
Purpose

This pseudo-op defines user—-symbol as a semipermanent extended
memory reference symbol and gives it the value of imstruction or
expression. This symbol implies the format of an instruction that
does not require an accumulator. One field is required; an index
is optional. They are assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[——-Displacement

The formats for using this semipermanent symbol are:

semipermanent-symbolodisplacement
semipermanent-symbolpodisplacementiindex

The displacement and index fields are set according to the
format used and the set of addressing rules described in Chapter 3.

The @ atom (indirection flag) may be coded on the source line
as a break character. If present, a 1 is assembled in bit 0 of the
second word.

093-000192 7-15
Licensed Material - Property of Data General Corporation

.DEMR (continued)

Example
08 00000'106470 EJSR LBL1 ;EXTENDED JUMP TO SUBROUTINE
09 000013
10
11
12
13 106070 .DEMR RSJE=106070 ;DEFINE 'RSJE' SAME AS 'EJSR'
14
15 00002'106470 RSJE LBL1 ;sNEWLY DEFINED INSTRUCTION
16 000011
17
18 00004'106470 EJSR @GLBL1 ; 'EJSR' WITH INDIRECT BIT SET
19 100007
20 00006'106470 RSJE @ELBL1 :'RSJE' WITH INDIRECT BIT SET
21 100005
22
23 00010'107470 EJSR LBL1,3 ; 'EJSR' INDEXED WITH AC3
24 000014"
25 00012'107470 RSJE LBL1,3 ; 'RSJE' INDEXED WITH AC3
26 000014’
27
28 LBLl: ;ADDRESS OF SUBROUTINE
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-16

093-000192

Licensed Material - Property of Data General Corporation

.DERA

Define extended memory reference instruction.

Syntax

instruction
«-DERAOUser—symbol =

expression

Purpose

This pseudo-op defines user-symbol as a semipermanent extended
memory reference symbol having the value of imstruction or
expression. This symbol implies the format of an instruction that
requires an accumulator. Two fields are required and index is
optional. They are assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[——-Displacement

The formats for using this symbol are:

semipermanent—-symbolOaccumulatorodisplacement
semipermanent-symbolOaccumulatorodisplacementindex

The displacement and index fields are set according to the
format used and the set of addressing rules described in Chapter 3.

093-000192 7-17
Licensed Material - Property of Data General Corporation

.DERA (continued)

The @ atom (indirection flag) may be coded on the source line
as a break character. If present, a 1 is assembled in bit 0 of the
second word.

Example

08 00000'142070 ESTA 0,0 s EXTENDED STORE INSTRUCTION
09 000000

10

11 142070 .DERA ASTE=142070 ; '"ASTE' DEFINED AS 'ESTA'
12

13 00002'142070 ASTE 0,0 :NEWLY DEFINED INSTRUCTION
14 000000

15

16

17 00004'146070 ESTA 1,3 ; 'ESTA' AC=1, DISPLACEMENT=3
18 000003

19 00006'146070 ASTE 1,3 ; 'ASTE' AC=1, DISPLACEMENT=3
20 000003

21

22 00010'152470 ESTA 2,€02,1 ; '"ESTA' INDIRECT WITH INDEX
23 100002

24 00012'152470 ASTE 2,€2,1 ; 'ASTE' INDIRECT WITH INDEX
25 100002

References

"Assembly Language Instructions" - Chapter 2

“Symbol Table Pseudo-Ops" - Chapter 6

7-18 093-000192
Licensed Material - Property of Data General Corporation

.DEUR

Define extended user instruction.

Syntax

instruction
.DEUROuser—symbol =

expression

Purpose

This pseudo-op defines user-symbol as a semipermanent extended
symbol having the value of instruction or expression. The expres-
sion can be either an expression, an external normal, or an exter-
nal displacement. This symbol implies the format of an instruction
that does not require an accumulator. One field is required and is
assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t—— Field

The format for this symbol is:

semipermanent-symbolOexpression

093-000192 7-19
Licensed Material - Property of Data General Corporation

.DEUR (continued)

Example

08 00000'163710 SAVE 0 ; 'SAVE' INSTRUCTION

09 000000

10

11 163710 .DEUR EVAS=163710 ;'EVAS' DEFINED AS 'SAVE'
12

13 00002'163710 SAVE 3 ; 'SAVE' WITH FRAME-SIZE 3
14 000003

15 00004'163710 EVAS 3 ;s 'EVAS' WITH FRAME-SIZE 3
le . 000003

References

"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-20 093-000192
Licensed Material - Property of Data General Corporation

.DFLM

Define floating load or store instruction.

Syntax

instruction
-DFLMOuser-symbol =

expression

Purpose

This pseudo-op defines user-symbol as a semipermanent floating
load or store memory reference symbol having the value of imstruc-
tion or expression. This symbol implies the format of an instruc-
tion that requires an accumulator. Two fields are required and one
is optional. They are assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

@
[—— Displacement
The format for this semipermanent symbol is:
semipermanent-symboloaccumulatorndisplacement<Oindex>
093-000192 7-21

Licensed Material - Property of Data General Corporation

.DFLM (continued)

Example
08 00000'101150 FAMD 0,0 ;FLOATING DOUBLE-PRECISION ADD TO MEMORY
09 000000
10
11 101150 .DFLM DMAF=101150 ;DEFINE 'DMAF' AS 'FAMD'
12
13 00002'101150 DMAF 0,0
14 000000
15
16 00004'131150 FAMD 2,@5,1 ; '"FAMD' WITH INDIRECTION AND
17 100005
18 ; PC-RELATIVE ADDRESSING
19
20 00006'131150 DMAF 2,@5,1 ;'DMAF' WITH INDIRECTION AND
21 100005
22 ; PC-RELATIVE ADDRESSING
References
"Assembly Language Instructions® - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-22 093-000192
Licensed Material - Property of Data General Corporation

.DFLS

Define floating point status instruction.

Syntax

instruction
«DFLSDuser—-symbol =

expression

Purpose

This pseudo-op defines user—-symbol as a semipermanent
floating-point status register reference symbol having the value of
instruction or expression. This symbol implies the format of an
instruction that does not require an accumulator. One field is

required; an index is optional. These fields are assembled as
shown:

0 1 2 3 5 6 7 8 9 10 11 12 13 14 15

\

[—— Index

[——-Displacement

The format for using this symbol is:

semipermanent-symbolOdisplacement<dindex>

093-000192 7-23
Licensed Material - Property of Data General Corporation

.DFLS (continued)

Example

08 00000'103350 FSST 0 ;STORE FLOATING-POINT STATUS
09 000000
10
11 103350 .DFLS TSSF=103350 ;DEFINE 'TSSF' AS 'FSST'
12
13 00002'103350 TSSF 0 ;NEWLY DEFINED INSTRUCTION
14 000000
15
16 00004'113350 FSST €@100.,2 ;'FSST' WITH INDIRECTION AND INDEX
17 100100
18 00006'113350 TSSF @100,2 : 'TSSF' WITH INDIRECTION AND INDEX
19 100100
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-24

093-000192

Licensed Material - Property of Data General Corporation

.DIAC

Define an instruction requiring an accumulator.

Syntax

-DIACOuser—symbol =

instruction
expression

Purpose

This pseudo-op defines user-symbol and gives it the value of
instruction or expression. This symbol implies the format of an
instruction requiring an accumulator. One field is required. It
is assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t__ Expression

The format for using this symbol is:

user—symbolOexpression

Example

08 00000'123370 XCT 0 ;EXECUTE INSTRUCTION

09

10 123370 .DIAC TCX=123370 ;DEFINE TCX AS XCT

11

12 00001'137370 XCT 3 ;XCT WITH ACCUMULATOR 3
13 00002'137370 TCX 3 ;TCX WITH ACCUMULATOR 3
References

"Assembly Language Instructions” - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-25
Licensed Material - Property of Data General Corporation

.DICD

Define an instruction requiring an accumulator and count.

Syntax

instruction
.DICDOuUser—-symbol =

expression
Purpose

This pseudo-op defines user—symbol as a semipermanent symbol
having count and destination fields. The symbol has the value of
instruction or expression. This symbol implies the format of an
instruction that requires an accumulator and a count from 1 to 4.
Two fields are required and are assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I——-Destination (ACD)

Count

The format for using this symbol is:
semipermanent-symbolrcountOdestination—ac
The count is computed as
count = specified_value - 1

Thus, the range of permitted values is 1 - 4.

7-26 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'100110 SBI 1,0 :SUBTRACT IMMEDIATE INSTRUCTION

09

10 100110 .DICD IBS=100110 ;DEFINE 'IBS' AS 'SBI'

11

12 00001'100110 IBS 1,0 ;sNEWLY DEFINED INSTRUCTION

13

14 000027124110 SBI 2,1 ;'SBI' WITH COUNT AND ACCUMULATOR 1

15 00003'124110 IBS 2,1 :;'IBS' WITH COUNT AND ACCUMULATOR 1
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-27
Licensed Material - Property of Data General Corporation

.DIMM

Define an instruction requiring an accumulator and an immediate word.

Syntax

instruction
.DIMMOuser—symbol =

expression

Purpose

This pseudo-op defines user—-symbol as a semipermanent,
immediate-reference symbol having the value of imstruction or
expression. This symbol implies the format of an instruction that
requires an accumulator and a 16-bit immediate word. Two fields
are required and are assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—— Immediate Field

The format for using this symbol is:

semipermanent-symbolOimmediate-valuenodestination-ac

7-28 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'163770 ADDI 0,0 ;EXTENDED ADD IMMEDIATE INSTRUCTION
09 000000
10
11 163770 .DIMM IDDA=163770 ;DEFINE 'IDDA' AS 'ADDI'
12
13 00002'163770 IDDA 0,0 sNEWLY DEFINED INSTRUCTION
14 000000
15
16 00004'173770 ADDI 377,2 ;'ADDI' WITH IMMEDIATE FIELD VALUE
17 000377
18 00006'173770 IDDA 377,2 ;'IDDA' WITH IMMEDIATE FIELD VALUE
19 000377
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-29
Licensed Material - Property of Data General Corporation

.DIO

Define an I/0 instruction without an accumulator.

Syntax

instruction
-DIODuser—symbol<optional expression> =

expression
Purpose

This pseudo-op defines user—-symbol as a semipermanent symbol
having the value of instruction or expression. This symbol implies
the format of an I/0 instruction without an AC field. One field is
required; it is assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
Optional — T

Expression
Expression

The format for using this symbol is:

user—symbol<optional expression> expression
A three-character symbol defined by this pseudo-op can have a
flag (optional expression in the above format) that sets the

Busy/Done bits for a device. This flag is concatenated to the right
of the user symbol. Each letter represents a Busy/Done combination
and sets bits 8-9 of the instruction word as follows:

Mnemonic Bits 8-9 Description

S 0l Starts device (clears Done, sets Busy)

C 10 Idles device (clears Done and Busy)

P 11 Puises bus control line (sets Done and Busy)
7-30 093-000192

Licensed Material - Property of Data General Corporation

Example

08 00000'063400 SKPBN 0 :'I/0 SKIP' INSTRUCTION
09

10 063400 .DIO PKS=063400 ;'PKS' DEFINED AS 'SKP'

11

12 00001'063400 PKS 0 sNEWLY DEFINED INSTRUCTION
13

14 00002'063510 SKPBZ ,10 ;SKIP ON TTY-IN BUSY=0

15 00003'063510 PKSS,10 ;SKIP ON TTY-IN BUSY=0
References

"Assembly Language Instructions" - Chapter 2

“Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-31
Licensed Material - Property of Data General Corporation

.DIOA

Define an I/0 instruction with two required fields.

Syntax

instruction
.DIOANuser—symbol<optional expregssion> =

expression

Purpose

This pseudo-op defines user—-symbol as a semipermanent symbol
having the value of instruction or expression. This symbol implies
the format of an I/O instruction with two required fields. The
fields are assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Expression)
Optional Expression -—

Expressiony

The format for using this symbol is:

- user—-symbol<optional expression>Oexpressionj

Oexpressiony .

A three-character symbol defined by this pseudo-op can have a
flag (optional expression in the above format) that sets the
Busy/Done bits for a device. This flag is concatenated to the right
of the user symbol. Each letter represents a Busy/Done combination
and sets bits 8-9 of the instruction word as follows:

Mnemonic Bits 8-9 Description

S 01 Starts device (clears Done, sets Busy)

C 10 Idles device (clears Done and Busy)

P 11 Pulses bus control line (sets Done and Busy)
7-32 093-000192

Licensed Material - Property of Data General Corporation

Example

08 00000'062400 DIC 0,0 ;DATA IN C INSTRUCTION

09

10 062400 .DIOA CID=062400 ;'CID' DEFINED AS 'DIC'

11

12 00001'076610 DICC 3,10 ;READ TTY REG C INTO AC3
13 ;AND SET INTERRUPT-ON = 0
14

15 00002'076610 CipC 3,10 ;READ TTY REG C INTO AC3
16 ;AND SET INTERRUPT-ON = 0
References

"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-33
Licensed Material - Property of Data General Corporation

.DISD

Define an instruction with source and destination accumulators.

Syntax

instruction
.DISDOuser-symbol =

expression
Purpose

This pseudo-op defines user—symbol as a semipermanent re-
ference symbol with source and destination fields; it does not
allow the no-load flag or skip conditions. The instruction cannot
cause a skip. Tne symbol has the value of imstruction or
expression. This symbol implies the format of an instruction that
requires a source and a destination accumulator. Two fields are
required and are assembled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I—— ACD

ACS

The format for using this symbol is:

semipermanent—-symbolOsource—acOdestination-ac

7-34 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'100250 FSs 0,0 ;SINGLE PRECISION SUBTRACT
09

10 100250 .DISD SSF=100250 ;'SSF' DEFINED AS 'FsS'
11

12 00001'100250 SSF 0,0 ;NEWLY DEFINED INSTRUCTION
13

14 00002'154250 FSs 2,3 ;SUBTRACT AC2 FROM AC3

15 00003'154250 SSF 2,3 ;SUBTRACT AC2 FROM AC3
References

"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-35
Licensed Material - Property of Data General Corporation

.DISS

Define an instruction with source and destination accumulator allowing skip.

Syntax

instruction
.DISSOuser—-symbol =

expression

Purpose

This pseudo-op defines user—symbol as a semipermanent re-
ference symbol with source and destination fields. The no-load
flag cannot be used and no skip condition can be specified.
However, the instruction may cause a skip to occur. The .DISS
symbois differ from the .DISD symbols in that .DISS symbols may
cause a skip and .DISD symbols never cause a skip. The symbol has
the value instruction or expression. This symbol implies the format
of an instruction that requires a source and destination
accumulator. Two fields are required and are assembled as shown.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[—— ACD

ACS

The format for using this symbol is:

semipermanent-symbolOsource—acnodestination—ac

7-36 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'101110 SGE 0,0 ;SKIP IF SOURCE-AC GREATER
09 ;s THAN DESTINATION-AC
10
11 101110 .DISS EGS=101110 ;'EGS' DEFINED AS 'SGE'
12
13 00001'101110 EGS 0,0 +NEWLY DEFINED INSTRUCTION
14
15 00002'171110 SGE 3,2 ;SKIP IF CONTENTS OF AC3 GREATER
16 ; THAN CONTENTS OF AC2
17 00003'171110 EGS 3,2 ;SKIP IF CONTENTS OF AC3 GREATER
18 s THAN CONTENTS OF AC2
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-37
Licensed Material - Property of Data General Corporation

.DMR

Define a memory reference instruction with displacement and index.

Syntax

expression
.DMROuUser—symbol =

instruction

Purpose

This pseudo-op defines user-symbol as a semipermanent symbol
having the value of imstruction or expression. This symbol implies
the format of an MR instruction with either one or two required
fields (an address or a displacement and index). The fields are
assembled as shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Index -—J

Displacement

The formats for using this symbol are:
semipermanent—-symbolndisplacement
semipermanent-symbolOdisplacementOindex

The displacement and index fields are set according to the
format used and the MRI addressing rules described in Chapter 3.

The atom @ (indirection flag) may be coded anywhere in the
source line as a break character. This atom assembles a 1 at bit
position 5.

7-38 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'004000 JSR 0,0 ;JUMP TO A SUBROUTINE

09

10 004000 .DMR RSJ=004000 ;RSJ DEFINED AS JSR

11 :
12 00001'004000 RsJ 0,0 ;NEWLY DEFINED INSTRUCTION
13 v

14

15 00002'007077 JSR @77,2 ;JUMP TO A SUBROUTINE WITH
16 ; INDIRECTION AND INDEX

17

18 00003'007077 RSJ @77,2 ;JUMP TO A SUBROUTINE WITH
19 ; INDIRECTION AND INDEX
References

"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-39
Licensed Material - Property of Data General Corporation

.DMRA

Define a memory reference instruction with two or three fields.

Syntax

expression
.DMRAMuser—symbol =

instruction

Purpose

This pseudo-op defines user-symbol as a semipermanent symbol
having the value of instruction or expression. This symbol implies
the format of an memory reference instruction with either two or
three required fields. The first field specifies an accumulator.
Where there are two fields, the second is an implied address.
Where there are three fields, the second and third fields are

displacement and index respectively. The fields are assembled as
shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AN
T | A

Expression;

Index

Displacement
The formats for using this symbol are:
user-symbolOexpression;Dexpressiony

user—symbolOexpressionjnexpressiony
Dexpression3

The displacement and index fields are set according to the
format chosen and MRI addressing rules described in Chapter 3.

The atom @ (indirection flag) may be coded anywhere in the
source line as a break character. This atom assembles a 1 at bit
position 5.

7-40 093-000192
Licensed Material - Property of Data General Corporation

Example

08 00000'020000 LDA 0,0 ;LOAD ACCUMULATOR
09
10 020000 .DMRA ADL=020000 ;DEFINE ADL AS LDA
11
12 00001'020000 ADL 0,0 s NEWLY DEFINED INSTRUCTION
13
14 ‘
15 00002'033433 LDA 2,@33,3 ;LOAD AC2 USING AC3 AS THE INDEX
16 ;AND INDIRECTION
17
18 00003'033433 ADL 2,@33,3 ;LOAD AC2 USING AC3 AS THE INDEX
19 sAND INDIRECTION
References
"Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

093-000192 7-41
Licensed Material - Property of Data General Corporation

.DO

Assemble source lines repetitively.

Syntax
-DODabs—-expr

Purpose

The .DO pseudo-op directs MASM to assemble a portion of your
source module repetitively. MASM assembles the source lines follow-
ing .DO the number of times given in abs—expr. Abs—expr must be an
absolute expression.

You must terminate each .DO loop with the .ENDC pseudo-op.

.ENDC can take an argument (see the .ENDC description). Thus, the
.DO portion of your module has the general form:

.DOOabs-expr

. sMASM assembles these
. ;lines abs—expr times.
« ENDC :Terminates the .DO loop.

You may use .DO to perform conditional assembly of source
lines by passing a relational expression as an argument (pass an
expression that contains <, >, ==, <=, >=, or <>). If the rela-
tional expression is true, its value is 1 and MASM assembles the
.DO loop once. If the relational expression is false, its value is
0 and MASM does not assemble the loop.

You may nest .DOs to any depth. Be sure the innermost .DO
corresponds with the innermost .ENDC, etc.

You must place the .ENDC pseudo-op at the same source level as
the .DO pseudo-op or MASM will report an error and ignore the .DO

statement. See "Loops and Conditionals in Macros" (Chapter 5) for
more information.

NOTE: There is an implementation restriction that the .ENDC that
terminates a .DO must be encountered before the end of the
source file that contains the .DO. It may be part of a
macro expansion defined in a file assembled prior to the
source containing the .DO, or it may be part of a macro
expansion defined in MASM.PS (or MASM16.PS). It may not be
in the next file to be assembled. The following code
illustrates this: '

7-42 093-000192
Licensed Material - Property of Data General Corporation

File A:

.DO 5
« BLK 1
. EOF

File B:
1

2

« ENDC

« END
The command
MASM
) XEQ AOB<nl>
MASMl16
will cause an error because the .DO in file A cannot be

terminated by an .ENDC in file B.

Examples

Source code for the first example:
.DO 3 sASSEMBLE THE FOLLOWING CODE THREE TIMES.
10
20
. ENDC :END OF '.DO' LOOP

Assembly listing for this code:

08 000003 .DO 3 sASSEMBLE THE FOLLOWING CODE THREE TIMES.

09 00000'000010 10
10 00001'000020 20
11 .ENDC ;END OF .DO LOOP
12 00002'000010 10
13 00003'000020 20
14 .ENDC ;END OF .DO LOOP
15 00004'000010 10
16 00005'000020 20
17 .ENDC ;END OF .DO LOOP
093-000192 7-43

Licensed Material - Property of Data General Corporation

.DO (continued)

The second example shows how to use the .DO pseudo-op to perform
conditional assembly. The source code for this example is:

1

A=3

.DO A==3
2

« ENDC

3
« END

The assembly listing

;ASSEMBLE THE FOLLOWING CODE ONCE
;IF THE VALUE OF A=3. OTHERWISE,
;DO NOT ASSEMBLE THE CODE AT ALL.

for this code is:

08 00000'000001 1
09
10 000003 =3
11 000001 .DO A==3 sASSEMBLE THE FOLLOWING CODE ONCE
12 00001'000002 2 ;IF THE VALUE OF A=3. OTHERWISE,
13 .ENDC ;DO NOT ASSEMBLE THE CODE AT ALL.
14
15 00002'000003 3
16 «END

References

"Absolute Expressions" - Chapter 3

“Loops and Conditionals in Macros" - Chapter 5

"Repetitive and Conditional Assembly" - Chapter 6

7-44 093-000192

Licensed Material - Property of Data General Corporation

.DUSR

Define a user symbol for cross-referencing.

Syntax

instruction
-DUSROuUser—-symbol=

expression

Purpose

The .DUSR pseudo-op defines user—-symbol as having the value of
expression or instruction.

Expression may be any legal Macroassembler expression.
Instruction may be any legal 16-bit ECLIPSE assembly language
instruction. If you supply an instruction, MASM computes the
assembled value of that instruction and assigns it to user-symbol.
MASM pads or truncates the instruction's value to produce a
single-precision (16-bit) integer. Refer to "Assignments" in
Chapter 2 for more information about using instructions in
assignments.

Once defined, you may use user-—symbol anywhere you would use a
single-precision (l16-bit) operand. 1In addition, you may change the
value of user-symbol at any time by using .DUSR (assuming that you
do not use the /M function switch (see Chapter 8)).

The above description makes it clear that the .DUSR pseudo-op
performs the same function as the simple assignment statement (see
Chapter 2). For example, the statements in the two columns of
Table 7-2 assign equivalent values to the symbols A, B, C, and D.

The only difference between issuing a simple assignment
statement and using the .DUSR pseudo-op concerns the cross-
reference listing. The Macroassembler considers .DUSR symbols as
instruction symbols for the purpose of the cross-reference. Thus,
by default, the cross-reference does not contain .DUSR symbols but
does contain symbols that appear in simple assignment statements.

MASM treats the I/0 device symbols (e.g., LPT, TTO, PTR), the
ALC skip mnemonics (e.g., SKP, SNC, SNR), and the hardware stack
location mnemonics (e.g., SP, FP, SL, SFA) as if they were defined
by the .DUSR pseudo-op.

093-000192 7-45
Licensed Material - Property of Data General Corporation

.DUSR (continued)

Table 7—-2. DUSR Assignments Versus Simple Assignments

.DUSR Assignments Simple Assignments
.DUSR A=10 A=10
.DUSR B=A+20 B=A+20
.DUSR C=XWLDA 0,0 C=XWLDA 0,0
+DUSR D=,RDX D=.,RDX

Example
.TITLE ASSGN
06 .NREL
07 000002 A=2 :'A,' 'B,' AND 'C' ARE USER SYMBOLS.
08 000020 .DUSR B=20
09 000030 .DUSR C=30
10 000070 A=70 ;YOU MAY REDEFINE 'A' WITH
11 ;AN ASSIGNMENT STATEMENT.
12 000003 .DUSR B=3 :YOU MAY REDEFINE 'B' WITH '.DUSR.'
13 .END

The cross-reference for this code is:
A 000070 1/07%# 1/7/10%

By default, MASM does not include B and C in the cross-reference listing
because they are defined by .DUSR.

NOTE: Symbols defined by assignment statements cannot be redefined by
.DUSR statements and vice versa.

References

"Assignments" - Chapter 2
"Cross-Reference Listing" - Chapter 4
"Expressions" - Chapter 2

"Symbols" - Chapter 2

"User Symbols" - Chapter 2

7-46 093-000192
Licensed Material - Property of Data General Corporation

- .DXOP

Define an instruction with source, destination, and operation fields.

Syntax

instruction
.DXOPOuser—-symbol =

expression

Purpose

This pseudo-op defines user—symbol as a reference symbol with
source and destination fields and an operation number field. The
symbol has the value of instruction or expression. This symbol
implies the format of an instruction that requires a source and a
destination accumulator. Three fields are required and are assem-
bled as shown.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The format for using this symbol is:
user—-symbolOsource—acodestination—acooperation—number

NOTE: You should not use the .DXOP pseudo-op in programs that
will run on the ECLIPSE MV/Family line of computers. The
operation code number generated by the .DXOP pseudo-op is
not valid on ECLIPSE MV/Family computers. See the Princi-
ples of Operation--32-Bit ECLIPSE® Systems manual for more

information.

093-000192 7-47
Licensed Material - Property of Data General Corporation

.DXOP (continued)

Example
08 00000'100030 Xop 0,0,0 ;EXTENDED OPERATION INSTRUCTION
09
10 100030 .DXOP POX=100030 ;DEFINE POX AS XOP
11
12 00001'100030 POX 0,0,0 sNEWLY DEFINED INSTRUCTION
13
14
15 00002'155230 X0P 2,3,12 sEXECUTE EXTENDED OPERATION 12 USING
16 ; ACCUMULATORS 2 AND 3
17
18 00003'155230 POX 2,3,12 ;EXECUTE EXTENDED OPERATION 12 USING
19 ' s ACCUMULATORS 2 AND 3
References
“Assembly Language Instructions" - Chapter 2

"Symbol Table Pseudo-Ops" - Chapter 6

7-48

093-000192

Licensed Material - Property of Data General Corporation

N N

.EJEC

Begin a new listing page.

Syntax

« EJEC

Purpose

The .EJEC pseudo-op directs the assembler to begin a new page
in the assembly listing output (after listing the .EJEC source
statement).

Example

The source code for this example is:

L4

Mov 0,1

» EJEC ;START A NEW LISTING PAGE
LpA 2,0,1

MoV 2,3

The assembly listing for this code is:

0001 .MAIN AOS ASSEMBLER REV 03.40 11:37:49 07/19/81
08 00042 105000 MOV 0,1
09 «EJEC ;START A NEW LISTING PAGE

<{page break>

0002 .MAIN

01 00043 030400 Lba 2,0,1

02 00044 155000 MOV 2,3

093-000192 7-49

Licensed Material - Property of Data General Corporation

.EJEC (continued)

Reference

"Assembly Listing" - Chapter 4

7-50 093-000192
Licensed Material - Property of Data General Corporation

.END

~~
End-of-program indicator.
Syntax
« END<Oexpr>
Purpose

Use the .END pseudo-op to terminate your source program. The
assembler does not process any source code that follows the .END
pseudo-op; so, this should be the last statement in your source.

If you assemble several modules at once, only the last one
should include an .END statement (use .EOF to end the other
modules). If you do not include an .END pseudo-op at the end of
the last module on the assembly command line, MASM supplies one for
you (without an argument).

The optional expr argument specifies a starting address for
execution of your program file. You must supply a start execution
address in at least one of your source modules or Link returns an
error.

Example
.TITLE MOD1
06 « NREL

07 00000'102400 START: SUB 0,0

L

;END OF MODULE 'MODl.' BEGIN EXECUTION

13 « END START ;OF PROGRAM AT LOCATION 'START.'
References
"Expressions" - Chapter 2
AOS Link User's Manual or
: 3 L1 . i .
"File Termination" - Chapter 6
093-000192 7-51

Licensed Material - Property of Data General Corporation

.ENDC

End of conditional or repetitive assembly.

Syntax

«ENDC<Quser-symbol >

Purpose

The .ENDC pseudo-op terminates source lines whose assembly is
repetitive (lines following .DO) or conditional (lines following
.IFE, .IFG, .IFL,or .IFN).

If user-symbol is used, the .ENDC pseudo-op terminates assem-
bly of lines following the .DO or .IFx and suppresses the assembly
of lines following .ENDC until the scan encounters another user-—
symbol enclosed in square brackets.

NOTE: Assembly is suppressed only when the source lines termina-
ted by .ENDC are assembled; if the source lines are not
assembled, assembly continues immediately following .ENDC.

Example
08 000001 A=1
09 000001 .DO A== ;MASM ASSEMBLES THESE
10 00000'000010 10 ;LINES BECAUSE THE '.DO"
11 00001'000020 20 ;CONDITION IS TRUE.
12 .ENDC SKIP
13 30 ;MASM SUPPRESSES ASSEMBLY OF LINES
14 40 ;UNTIL IT FINDS 'SKIP.'
15 00002'000050 [SKIP] 50
16 00003'000060 60
17 00004'000070 70
18 000000 .DO A== ;MASM DOES NOT ASSEMBLE
19 60 ;THESE LINES BECAUSE THE '.DO'
20 70 ;CONDITION IS FALSE.
21 .ENDC PIKS
22 00005'000100 100 ;MASM ASSEMBLES THESE LINES BECAUSE THE
23 00006'000200 200 :PRECEDING '.DO' CONDITION WAS FALSE.
24 00007'000300 [PIKS] 300
25 .END
7-52 093-000192

Licensed Material - Property of Data General Corporation

References

.DO and .IF pseudo-op descriptions - Chapter 7
"Repetitive and Conditional Assembly" - Chapter 6

093-000192 7-53
Licensed Material - Property of Data General Corporation

.ENT ~

Define an external entry.

Syntax

- ENTOuser-symbol...

Purpose

The .ENT pseudo-op declares user-symbol as a symbol that you
define in this source module but that you may reference from
separately assembled modules.

You must define a user-symbol in the module containing the
.ENT declaration (see "User Symbols" in Chapter 2). This user
symbol must be unique among all external symbols you define in the
modules you intend to link together. If the symbol is not unique,
Link issues a message indicating multiply defined entries.

To reference user-symbol from a separately assembled module,
use one of the following pseudo-ops:

« EXTD « EXTN « EXTU

Example

ir odule:
.TITLE MODA ;MODULE 'MODA'
« ENT PNTR ;.'PNTR' IS DEFINED IN THIS MODULE AND
;MAY BE REFERENCED IN OTHER MODULES.

«ZREL

PNTR: TABLE
« NREL

TABLE: O
1
2
3
4
« END

7-54 093-000192

Licensed Material - Property of Data General Corporation

C (0] e

-TITLE MODB ;SEPARATELY ASSEMBLED MODULE 'MODB'
. EXTD PNTR ;'PNTR' IS DEFINED IN ANOTHER MODULE.
- NREL
LDA 0,@PNTR ;REFERENCE IS TO EXTERNALLY DEFINED

;SYMBOL 'PNTR'

. END

References

"Intermodule Communication" - Chapter 6
"User Symbols" - Chapter 2

093-000192 7-55
Licensed Material - Property of Data General Corporation

.ENTO

Define an overlay entry.

Syntax
« ENTOOuser—symbol

Purpose

.ENTO is used when a program is to become an overlay within an
overlay segment. The pseudo-op associates user-symbol with the
node number and overlay number of a particular overlay. The
overlay may then be referenced from another program by user—symbol.
User—symbol must be declared as an .EXTN in the referencing
program. Caution: user-symbol cannot appear elsewhere in the
program in which it is declared as the name of an overlay, because
its value is assigned at link time.

Both shared and unshared code can be placed in the same
assembly module. If this module is placed in an overlay, code in
the module will actually be split into two different overlays. The
shared code will go to an overlay in the shared area; unshared code
will become an overlay in the unshared area. To identify the two
overlays, two .ENTOs must be used. Each .ENTO must follow immedia-
tely its associated .NREL statement.

7-56 093-000192
Licensed Material - Property of Data General Corporation

Examples

First module:

. ENTO ENTRY

.
L

. END

.TITLE PROG
« EXTN ENTRY

.TITLE OVERLAY

;OVERLAY NAME
Overlay

;OVERLAY NAME DEFINED
;AS EXTERNAL

ENADR: ENTRY
. Referencing program
LDA 0,ENADR ;LOAD OVERLAY NAME IN ACO
?0VLOD ;SYSTEM CALL TO LOAD
;s OVERLAY
END
Second module:
. TITLE OVRLY
«NREL 0
. ENTO EOl ;: ENTRY POINT FOR
; UNSHARED CODE OVERLAY
.NREL 1
« ENTO EO2 s ENTRY POINT FOR
; SHARED CODE OVERLAY
. END
Reference
"Intermodule Communication" - Chapter 6
093-000192 7-57

Licensed Material - Property of Data General Corporation

.EOF

Explicit end-of-file.

Syntax

- EOF

Purpose

The .EOF pseudo-op provides the assembler with an explicit
end-of-file indicator. This pseudo-op indicates the end of one
source module, but implies that more source modules follow in the
current assembly. Thus, use .EOF to terminate each source module in
the MASM command line, except the last one (the last module should
end with .END).

If you do not include .EOF pseudo-ops in your source modules,
MASM automatically supplies them for you.

Example
]
First module:
. TITLE MODA ;THE FIRST PIECE OF SOURCE CODE
;RESIDES IN FILE 'MODA.'
. NREL
START: 1
2
3
4
« EOF ‘ ;END OF FILE 'MODA'
;BUT NOT OF SOURCE CODE
7-58 093-000192

Licensed Material - Property of Data General Corporation

Second module:

. TITLE MODB ;THE SECOND PART OF THE SOURCE CODE
;IS IN FILE 'MODB.'

« NREL
1
2

3
.END START ;END OF CURRENT ASSEMBLY. START
;PROGRAM EXECUTION AT LOCATION 'START.'

The MASM command line that assembles these two source modules

is:
MASM
)XEQ AOB<nl>
MASM16
Reference
"File Termination" - Chapter 6
093-000192 7-59

Licensed Material - Property of Data General Corporation

.EXTD

Define an external displacement reference: 8 bits.

Syntax

« EXTDOuser—symbol...

Purpose

This pseudo-op declares user—-symbol as a symbol that you
reference in this source module but that you define in a separately
assembled module. You must declare user—-symbol with an .ENT
pseudo-op in the module that defines it. Also, you cannot redefine
user—-symbol within the current assembly.

When you use an .EXTD symbol in your module, you must make
sure the corresponding field is at least 8 bits wide. If you use an
«.EXTD symbol in a field that is less than 8 bits wide, MASM returns
an error.

You may use an .EXTD symbol as a displacement or lower page
zero (ZREL) address in any memory reference instruction (MRI). When
used in this manner, the symbol's value must satisfy one of the
following equations:

0 <= lower page zero address <= 377g
-200g <= displacement <= 177g
Be sure the value of the ,EXTD symbol can fit into the corres-

ponding field at link time., Otherwise, you will receive a Link
error.

7-60 093-000192
Licensed Material - Property of Data General Corporation

Example

Eirst module:
.TITLE MODA :MODULE 'MODA'
«.ENT D ;'D' IS DEFINED IN THIS MODULE AND
sMAY BE REFERENCED IN OTHER MODULES
+ZREL
D: TABLE :;'D' IS A LABEL IN PAGE ZERO RELOCATABLE
s MEMORY AND THEREFORE ITS VALUE CAN BE
; EXPRESSED IN 8 BITS.
. NREL
TABLE: O
1
2
3
4
« END
Second module:
— . TITLE MODB ;s SEPARATELY ASSEMBLED MODULE 'MODB'
+EXTD D ;'D' IS DEFINED EXTERNALLY AND CAN
;sBE EXPRESSED IN AN 8-BIT FIELD.
- NREL
LDA 0,D ;LOAD THE VALUE AT LOCATION 'D'
: INTO ACO.
. END
References
"Intermodule Communication" - Chapter 6

"User Symbols" - Chapter 2

093-000192 7-61
Licensed Material - Property of Data General Corporation

.EXTN

Define an external normal reference.

Syntax
« EXTNOuser—-symbol...

Purpose

This pseudo-op declares user—-symbol as a symbol that you
reference in this source module but that you define in a separately
assembled module. You must declare user—symbol with an .ENT
pseudo-op in the module that defines it. Also you cannot redefine
user—symbol within the current assembly. ‘

When you use an .EXTN symbol in your program, make sure the
corresponding field is at least 16 bits wide. If you use an .EXTN
symbol in a field that is less than 16 bits wide, MASM returns an
error. :

An .EXTN user-symbol specifies only the contents of a 16-bit

storage word. The value at bind time must therefore be a number in
the range 0 through 216-1,

Example

First module:

+.TITLE A ;SOURCE MODULE 'A'

.ENT N

« NREL

N=3777 ;THE VALUE OF 'N' CAN BE EXPRESSED IN 16 BITS.

*
L3

. END

7-62 093-000192
Licensed Material - Property of Data General Corporation

Second module:
.TITLE B ¢SEPARATELY ASSEMBLED MODULE 'B'
+EXTN N ;'N' IS DEFINED IN ANOTHER MODULE AND
;ITS VALUE MAY BE EXPRESSED IN 16 BITS.
« NREL
ADDI N,O0 ;ADD THE IMMEDIATE VALUE 'N' (16 BITS)
;TO THE CONTENTS OF ACO.
« END
References
"Intermodule Communication" - Chapter 6

"User Symbols" - Chapter 2

093-000192 7-63
Licensed Material - Property of Data General Corporation

.EXTU

Treat undefined symbols as external displacements.

Syntax
« EXTU

Purpose

This pseudo-op causes the assembler to treat all symbols that
are undefined after pass 1 as if they had appeared in an .EXTD
statement. In other words, MASM assumes that all undefined symbols
will be defined in other modules at link time.

NOTE: In general, you should not use this pseudo-op. .EXTU puts
Ooff errors until Link time and increases assembler

overhead.
Example
LTITLE PROG

02 «EXTU
03 00000 0240005 LDA 1,SYMB ;SYMB IS NOT A DEFINED
04 ;SYMBOL. EXTU CAUSES IT
05 ;TO BE DEFINED AS AN EXTERNAL
06 ;s DISPLACEMENT
07 .END

Reference

"Intermodule Communication" - Chapter 6

7-64 093-000192

Licensed Material - Property of Data General Corporation

.FORC

Force-link a module from a library.

Syntax

«FORC

Purpose

The .FORC pseudo-op directs Link to unconditionally link this
object file from a library into your program file.

Normally, Link includes an object module from a library only
if that file satisfies an external reference appearing in another
module. However, if you use .FORC in a module that resides in a
library, that module will be linked whenever the library name
occurs in a Link command line. You might use .FORC for a module
you plan to build into a library.

Example

. TITLE SQUARE ; 'SQUARE' IS PART OF A LIBRARY. WHENEVER THE

«FORC ;LIBRARY NAME APPEARS IN A LINK COMMAND LINE,
. ENT CUBE ;MODULE 'SQUARE' WILL BE LINKED INTO THE PROGRAM
« NREL ;FILE. THUS THE PROGRAM WILL HAVE ACCESS TO

;ENTRY 'CUBE,' EVEN IF THIS VERSION OF THE
; PROGRAM DOESN'T REFERENCE 'CUBE.'
CUBE: 1
10
33
100
« END

References

AOS Link User's Manual or
- A , ¢ .
AOS/VS Link and Library File Editor User's Manual < Bdi -

093-000192 7-65
Licensed Material - Property of Data General Corporation

.GADD

Add expression value to symbol.

Syntax
«GADDOuser-symbolOexpression

Purpose

This pseudo-op generates a storage word whose contents are
resolved at link time. The Macroassembler searches for the value
of user-symbol. If found, its value is added to expression to form
the contents of the storage word. If the user—symbol is not found,
a Link error results and the storage word will contain just the
value of expression.

User—-symbol must be a symbol defined in some separately

assembled program and appearing in that program in an .ENT, .ENTO,
.PENT, or .COMM pseudo-op.

Example

.TITLE PROG1

<ENT A y PROGRAM 1
.LOC 200

Az ;VALUE OF A IS 200
« END

.TITLE PROG2

.EXTN A ;A IS EXTERNAL | DROGRAM 2
.GADD A, 3+4 ; 3+4 ADDED TO 'A'
sAT LINK TIME
« END /
Reference
"Intermodule Communication" - Chapter 6
7-66 093-000192

Licensed Material - Property of Data General Corporation

R N

.GLOC

Initialize data fields relative to an external symbol.

Syntax
» GLOCOexternal—-symbol

Purpose

The .GLOC pseudo-op defines a block of data whose starting
address will equal the value of external-symbol at link time.
Define your data immediately after the .GLOC statement. The first
occurrence of a .LOC, .NREL, J/ZREL, or .END pseudo-op terminates
the data block. Another .GLOC statement also ends the current data
block.

To reference the data block from a separately assembled
module, include external-symbol in an .ENT or .COMM statement
within that module. In the current module, you must declare
external-symbol as externally defined with an .EXTD, .EXTN, or
. EXTU pseudo-op.

You may not include external references, label definitions, or
label references within the .GLOC data block. All other expres-
sions are legal.

By using .GLOC, you may initialize your data fields at link
time instead of at runtime. This can save memory space and reduce
your program's execution time.

093-000192 7-67
Licensed Material - Property of Data General Corporation

.GLOC (continued)

Example

First module:

.TITLE A ;SOURCE MODULE 'A'

« NREL

.COMM DATA, 4 ;COMMON AREA 'DATA' CONTAINS
;FOUR WORDS OF MEMORY.

.

*

. END

Second mo e:

. TITLE B ;SEPARATELY ASSEMBLED MODULE 'B'
« EXTN DATA
« GLOC DATA ;THIS STATEMENT DIRECTS LINK TO
1 ;INITIALIZE COMMON AREA 'DATA' WITH
2 ;THE VALUES 1 THROUGH 4.
3
4
« END
Reference
"Intermodule Communication" - Chapter 6
7-68 093-000192

Licensed Material - Property of Data General Corporation

.GOTO

Suppress assembly temporarily.

Syntax

« GOTOOuser—symbol

Purpose

This pseudo-op suppresses the assembly of lines until the
Macroassembler encounters another user-symbol enclosed in square
brackets.

Example

07 « NREL

08 00000'021001 IDA 0,1,2 sASSEMBLED INSTRUCTION
09 00001'050001 sTA 2,1,0 sASSEMBLED INSTRUCTION
10

11 .GOTO LABEL ; 'GOTO' PSEUDO-OP

12

13 LpA 1,1,1 ;UNASSEMBLED INSTRUCTION
14 STA 2,2,2 ;UNASSEMBLED INSTRUCTION
15

16 00002'024401 [LABEL] LDA 1,1,1 sASSEMBLY RESUMED

17

18 « END

Reference

"Repetitive and Conditional Assembly” - Chapter 6

093-000192 7-69
Licensed Material - Property of Data General Corporation

.GREF

Add expression value to symbol.

Syntax

«GREPuser—symbolOexpression

Purpose

The .GREF pseudo-op is similar to the .GADD pseudo-op. It
denerates a storage word whose contents are resolved at link time.
The value of user-symbol is searched for and, if found, is added to
expression. However, unlike .GADD, a carry from the least-
significant 15 bits does not alter bit zero. If user—symbol is not
found, a Link error results, and the storage word will contain just
the value of expression.

Example
.TITLE PROG1
.ENT A PROGRAM 1
.LOC 200
A: ;VALUE OF A IS 200
. END
.TITLE PROG2 A
.EXTN A ;A IS EXTERNAL
. . PROGRAM 2
.GREF A, 3+4 ; 3+4 ADDED TO 'A’
;AT LINK TIME
. END J
Reference
"Intermodule Communication" - Chapter 6
7-70 093-000192

Licensed Material - Property of Data General Corporation

IFE, .IFG, .IFL, .IFN

Perform conditional assembly.

Syntax

- IFEDabs—expr
- IFGDabs—expr
« IFLOabs—expr
« IFNOabs—-expr

Purpose

These pseudo-ops direct MASM to either assemble or bypass
portions of your module on the basis of abs—expr. The Macroassem-
bler assembles the source lines following an .IF pseudo-op if the
value of abs—expr satisfies the condition defined by that
pseudo-op. If the value of abs—expr does not satisfy that
condition, MASM resumes assembly after the .ENDC pseudo-op.

Abs—expr must be an absolute expression.

The four .IF pseudo-ops define the following conditions:

- IFEnabs—expr Assemble if abs—expr equals 0

- IFGODabs—expr Assemble if abs—expr is greater than 0
- IFLOasb-expr Assemble if abs—expr is less than 0

- IFNOabs-expr Assemble if abs—expr does not egual 0

You must terminate the conditional assembly lines with the
.ENDC pseudo-op. Thus, the conditional portion of your module has
the general form:

. IFxDabs—-expr ;One of the four conditional pseudo-ops
. ; (.IFE, .IFG, .IFL, or .IFN).

- ;Assemble these source lines if abs-expr
. ssatisfies the .IFx condition.

« ENDC ;Terminate conditional assembly.

You may nest conditional pseudo-ops to any reasonable depth
(at least 3,0007p9 1levels). When nesting .IFs, be sure the inner-
most .IF corresponds to the innermost .ENDC, etc.

Note that each .IF condition is a form of a .DO statement.
For example, the statement .IFE A is equivalent to .DO A==0. Both

093-000192 7-71
Licensed Material - Property of Data General Corporation

AFE, .IFG, .IFL, .IFN (continued)

direct MASM to assemble the following code once if A equals 0.

In the value field of the assembly listing, the assembler
places a 1 if abs—expr satisfies the pseudo-op condition and 0 if

it does not satisfy the condition.

Example
08 000002 =2
09 000003 =3
10 000000 +IFE B-A sTHESE LINES DO NOT ASSEMBLE
11 100 ;BECAUSE 'B-A' IS NOT EQUAL
12 200 ;TO O.
13 .ENDC
14
15 000001 +IFG B-A sTHESE LINES ASSEMBLE
16 00000'000100 100 ;BECAUSE 'B-A' IS GREATER
17 00001'000200 200 ;THAN O,
18 +ENDC
19
20 000000 .IFL B-A ;THESE LINES DO NOT ASSEMBLE
21 100 ;BECAUSE 'B-A' IS NOT LESS
22 200 ;THAN ZERO.
23 «ENDC
24
25 000001 «IFN B-A sTHESE LINES ASSEMBLE
26 00002'000100 100 ;BECAUSE 'B-A' IS NOT
27 00003'000200 200 :EQUAL TO O.
28 «ENDC
Reference
"Absolute Expressions" - Chapter 3
"Loops and Conditionals in Macros" - Chapter 5

"Repetitive and Conditional Assembly" - Chapter 6

7-72

093-000192

Licensed Material - Property of Data General Corporation

LMIT

Bind part of an object module.

Syntax

« LMITOuser-symbol

Purpose

This pseudo-op specifies partial binding of an object file. A
.LMIT pseudo-op in one OB file will cause an OB later in the
binding process to be partially bound. User-symbol is an entry
point appearing in an OB file that stops binding when the symbol is
encountered.

Examples

Order of Binding

LTITL A
+.LMIT SYM Module A

« END

.TITL B
Module B
.« END

LTITL C
Module C
. END

.TITL D
. ENT SYM

SYM: Moduie D

« END

093-000192 7-73
Licensed Material - Property of Data General Corporation

.LMIT (continued)

In the example, Module D contains the entry point SYM that
corresponds to the user-symbol SYM appearing in the .LMIT pseudo-op
in Module A. Link will bind D up to, but not including, the line
identified by SYM.

The limiting symbol (in this case SYM) must be declared an
entry point in the module to be partially bound. If the limiting
symbol is NREL, all of Module D ZREL will be bound and Module D
NREL will be bound up to the limiting symbol. If the limiting
symbol is in ZREL, NREL will be completely bouna and ZREL will be
bound up to the limiting symbol. A module may be limited in NREL
and in ZREL by two different symbols., If two symbols limit either
NREL or ZREL, the lower symbol in value will be the limiting
symbol. There are no restrictions on the number of limiting
symbols that may be used.

If the limited module is in a library, the module will be
bound up to its limiting symbol. This is so even if the module
would otherwise not have been bound (i.e., even if there is no
undefined external to cause the library to be bound).

If there is an undefined external that references an entry
point in the unbound part of the module, the module will still be
only partially bound as indicated by the limiting symbol.

All of the entry points of a partially bound module will
appear on the load map as though the corresponding parts of the

module were actually bound. Any references to them will be
resolved, but will actually point into the succeeding module.

Reference

"Miscellaneous Pseudo-Ops" - Chapter 6

7-74 093-000192
Licensed Material -~ Property of Data General Corporation

.LOC

Set the current location counter.

Syntax
« LOC<Oexpr>

Purpose

The .LOC pseudo-op sets the current location counter to the
value and relocation base given by expr. The location counter is an
assembler variable that holds the address of the next memory
location MASM will assign.

The argument you supply to .LOC may be any legal assembler
expression. If you do not supply an argument, MASM returns an
error.

As an example, if expr resolves to an absolute value, then the
assembler sets the current location counter to that value and
subsequent addresses are not relocatable (they are absolute).

Value

You may use .LOC as a value symbol, in which case it has the
value and relocation property of the current location counter.

The exception to this is that when .LOC is placed on the
assembler stack, only the relocation property is saved. For
example, using .PUSH and .POP, you may save and restore the reloca-
tion base of the location counter as follows:

.PUSH .LOC ;Save the relocation base
o ;of the location counter on the stack.

L

. LOC .POP ;Set the relocation base of the location
;counteir equal to the entry on the top of the stack.

You can save the current relocation base within a macro and
restore it correctly without affecting the relative location
counter value, which may have been altered within the macro.

093-000192 7-75
Licensed Material -~ Property of Data General Corporation

.LOC (continued)

Example
06 .NREL sUNSHARED NREL CODE RELOCATION
07 00000'000001 N: 1
08 00001'000002 2
09 00002'000003 3
10
11 000100 .LOC 100 sSET THE LOCATION COUNTER TO
12 00100 000004 4 :ABSOLUTE LOCATION 100.
13 00101 000005 5
14 00102 000006 6
15
16 000050 .LOC N+50 sSET THE LOCATION COUNTER TO THE
17 00050'000007 7 :SAME RELOCATION BASE AS N (UNSHARED
18 00051'000010 10 ;NREL) AND START ASSIGNING LOCATIONS
19 00052'000011 11 ;AT THE 50TH ADDRESS AFTER N.
References
"Assigning Locations" - Chapter 3
"Expressions" - Chapter 2
"Location Counter" - Chapter 3
7-76 093-000192

Licensed Material - Property of Data General Corporation

.LPOOL

Dump the currently defined literals.

Syntax

« LPOOL

Purpose

This pseudo-op directs the Macroassembler to dump the curren-
tly defined literals into a data block. The block is dumped at the
value of the current partition's location counter. The .LPOOL
pseudo-op will be flagged with a literal (L) error if it is used
without the .NLIT pseudo-op.

Both shared and unshared .NREL literals may be used in the
same program. However, the literals must be dumped in their
respective partitions to avoid addressing errors.

Within a literal pool, (i.e., the data block dumped by the
.LPOOL), all literals that can be optimized will be. Literals that
cannot be optimized are forward reference expressions and external
references. The literals are dumped in the order in which they
were created.

NOTE: The programmer must ensure that the data block is not
executed.

093-000192 7-77
Licensed Material - Property of Data General Corporation

.LPOOL (continued)

Example
.TITLE MOD1
06 .ENT ENT1
07 .ENT ENT2
08 .EXTD EXIT
09 .NLIT ;ASSIGN LITERALS TO NREL
10 000001 .NREL 1 ;SHARED NREL CODE
11 000001132400 ENT1: SUB 1,2
12 000011157000 ADD 2,3
13 000021020403 QUT: LDA 0,=12 ;LITERAL '12' IN LDA INSTRUCTION.
14 000031024403 LDA 1,=34 ;LITERAL '34' IN LDA INSTRUCTION.
15 0000410000008 JMP EXIT
16 000051000012 .LPOOL ;DUMP LITERALS '12' AND '34'
17 000034
18
19 000000 .NREL 0 sUNSHARED NREL CODE
20 00000'030403 ENT2: LDA 2,=21 ;LITERAL '21' IN LDA INSTRUCTION.
21 00001'034403 LDA 3,=54 ;LITERAL '54' IN LDA INSTRUCTION.
22 00002'002403 JMP @=0UT ;JUMP INDIRECTLY TO OUT.
23 00003'000021 « LPOOL ;DUMP LITERALS '2l1,' '54,' AND 'OUT.'
24 000054
25 000002!
26
27 .END
Reference
"Using Literals in Memory Reference Instructions" - Chapter 3
7-78 093-000192

Licensed Material - Property of Data General Corporation

o

.MACRO

Define a macro.

Syntax

+MACROOUser—~symbol
macro—-definition-string

Purpose

The .MACRO pseudo-op defines user-—symbol as the name of
macro-definition-string. Macro-definition-string is one or more
source lines that you use repeatedly in your module. After defining
the macro, you simply insert user-symbol in your source module, and
the assembler substitutes macro-definition-string.

When defining a macro, you must terminate the macro definition

string with the percent character (%). We recommend that % be the
only character on the source line.

Examples

The source code for this example is:

« NREL

«MACRO TEST ;DEFINE MACRO ‘'TEST.'

"1 sMACRO DEFINITION CONSISTS OF 3

"2 ;DATA STATEMENTS THAT GET THEIR

"3 ;VALUES FROM THE FIRST 3 ARGUMENTS

% ;PASSED TO 'TEST.'

TEST 4,5,6 ;CALL 'TEST' WITH THREE ARGUMENTS

TEST 0,1,2 ;CALL 'TEST' WITH THREE MORE ARGUMENTS
093-000192 7-79

Licensed Material - Property of Data General Corporation

.MACRO (continued)

The assembly listing for this example is:

00000'000004
00001'000005
00002'000006

00003'000000
00004'000001
00005'000002

«NREL
.MACRO TEST
"1

TEST 0,1,2
0
1
2

;DEFINE MACRO 'TEST.'

;sMACRO DEFINITION CONSISTS OF 3
;DATA STATEMENTS THAT GET THEIR
;VALUES FROM THE FIRST 3 ARGUMENTS
;PASSED TO 'TEST.'

;CALL 'TEST' WITH THREE ARGUMENTS
;MACRO DEFINITION CONSISTS OF 3
;DATA STATEMENTS THAT GET THEIR
;sVALUES FROM THE FIRST 3 ARGUMENTS

;CALL 'TEST' WITH THREE MORE ARGUMENTS
;MACRO DEFINITION CONSISTS OF 3

;DATA STATEMENTS THAT GET THEIR

;VALUES FROM THE FIRST 3 ARGUMENTS

References

"Macros" - Chapter 5
"User Symbols" - Chapter 2

7-80

093-000192

Licensed Material - Property of Data General Corporation

o—

.MCALL

Indicate macro usage.

Value

The .MCALL pseudo-op is a value symbol. .MCALL has the value 1
if the macro containing it was called previously on this assembly
pass, and the value 0 if this is the first call to that macro on

the current pass.

Thus, you generally use .MCALL when you want the

assembler to use one macro expansion the first time a macro is
called and a different expansion for subsequent calls to that

macro.

If you use .MCALL outside a macro, its value is -1.

Example

06 <ZREL

07 00000-000100 TABLl: .BLK 100

08 00100-000100 TABL2: .BLK 100

09 00200-000000- LOCl: TABL1

12 00201-000100- LOC2: TABL2

1

12 .NREL

13

14 .MACRO MC ;DEFINE MACRO 'MC.'

15 .IFE .MCALL ;ON THE FIRST CALL TO MACRO 'MC'

16 LDA 0,LOC1 ;ASSEMBLE THE FIRST 'LDA' INSTRUCTION.
17 .ENDC SKIP ;END OF CONDITIONAL

18 LDA 0,LOC2 ;ON SUBSEQUENT CALLS TO 'MC'

19 [SKIP] ;ASSEMBLE THE SECOND 'LDA' INSTRUCTION.
20 $

21

22 MC ;FIRST CALL TO 'MC' ('.MCALL' EQUALS 0)
23 000001 .IFE .MCALL ;ON THE FIRST CALL TO MACRO 'MC'

24 00000'020200- LDA 0,LOCl1 ;ASSEMBLE THE FIRST 'LDA' INSTRUCTION.
25 .ENDC SKIP ;END OF CONDITIONAL

26 LDA 0,LOC2 ;ON SUBSEQUENT CALLS TO 'MC'

27 [SKIPI] ;ASSEMBLE THE SECOND 'LDA' INSTRUCTION.
28

29 MC ;SECOND CALL TO 'MC' ('.MCALL' EQUALS 1)
30 000000 .IFE .MCALL ;ON THE FIRST CALL TO MACRO 'MC'

31 LDA 0,LOC1 ;ASSEMBLE THE FIRST 'LDA' INSTRUCTION.
32 .ENDC SKIP ;END OF CONDITIONAL

33 00001'020201- LDA 0,LOC2 ;ON SUBSEQUENT CALLS TO 'MC'

34 [SKIP] ;ASSEMBLE THE SECOND 'LDA' INSTRUCTION.
093-000192 7-81

Licensed Material - Property of Data General Corporation

.MCALL (continued)

References

"Macro-Related Pseudo-Ops" - Chapter 5
"Macros" - Chapter 5

7-82 093-000192
Licensed Material - Property of Data General Corporation

NLIT

Assign literals to .NREL.

Syntax
«NLIT

Purpose

This pseudo-op tells the Macroassembler to assign literals to
NREL instead of ZREL. The .LPOOL pseudo-op must be used to dump
the literals into a data block within the relative range of the
literal references. The .NLIT pseudo-op must occur before any
literals are generated. If it does not, the .NLIT will be flagged
with a literal (L) error and will be ignored (i.e., the literals
will continue to be assigned .ZREL locations).

Example

See the .LPOOL pseudo-op description for an example.
Reference

"Using Literals in Memory Reference Instructions" - Chapter 3

093-000192 7-83
Licensed Material - Property of Data General Corporation

.NOCON

Inhibit or re-enable the listing of conditional lines.

Syntax
« NOCONDabs—expr

Purpose

The .NOCON pseudo-op either inhibits or permits the listing of
the conditional portions of the source module that do not meet the
conditions given for assembly. That is, .NOCON either inhibits or
enables the listing of false conditionals. If the value of abs-expr
does not equal zero, the assembler inhibits listing; if the value
of abs—-expr equals zero, the assembler lists all conditionals.
Abs—expr must be an absolute expression.

.NOCON does not affect the conditional portions of the source
program that MASM assembles. Again, this pseudo-op influences only
the listing of conditionals that are false (those .DOs and .IFs
that MASM will not assemble).

By default, MASM lists all conditionals.

You may override the .NOCON pseudo-op at assembly time by
using the /0 function switch in the MASM command iine. Refer to
Chapter 8 for more information.

Value

You may use .NOCON as a value symbol in your module. The value
of .NOCON equals the value of the last abs—expr you passed to
. NOCON.

The default value for .NOCON is 0.

7-84 093-000192
Licensed Material - Property of Data General Corporation

Example

The source code

A=3

for this example is:

.IFE A ;FALSE. MASM LISTS FALSE
10 ;CONDITIONALS, BY DEFAULT

20
30
« ENDC

+«NOCON 1 ;INHIBIT LISTING OF CONDITIONALS

.IFE A ;;FALSE. MASM WILL NOT LIST
40 ;THIS PORTION OF CODE.

50
60
« ENDC

+.IFN A ;TRUE. MASM LISTS THE ASSEMBLED
70 ;CODE REGARDLESS OF THE .NOCON

100 + SETTING.
110
. ENDC

The assembly listing for this portion of code is:

08 000003 A=3
09 000000 .IFE A ;FALSE. MASM LISTS FALSE
10 10 ;CONDITIONALS, BY DEFAULT
11 20
12 30
13 . ENDC
14
15 000001 .NOCON 1 sINHIBIT LISTING OF CONDITIONALS
16
17
18 000001 .IFN A ;TRUE. MASM LISTS THE ASSEMBLED
19 00000'000070 70 ;CODE REGARDLESS OF THE .NOCON
20 00001'000100 100 ;SETTING.
21 00002'000110 110
22 « ENDC
References
"Absolute Expressions" - Chapter 3

"Assembly Listing" - Chapter 4

"Command Line Switches"

(/0) - Chapter 8

"Repetitive and Conditional Assembly" - Chapter 6

093-000192

7-85

Licensed Material - Property of Data General Corporation

.NOLOC

Inhibit or re-enable the listing of source lines without location fields.

Syntax
« NOLOCOabs—-expr

Purpose

The .NOLOC pseudo-op directs the assembler to either inhibit
or enable the listing of source lines that lack a location field.
That is, .NOLOC controls the listing of source lines that would not
have a location listed in the output. If abs—expr evaluates to a
nonzero value, the assembler inhibits listing; if abs—expr equals
zero, listing occurs. Abs—expr must be an absolute expression.

By default, the assembler lists all source lines, whether they
have location fields or not.

You may override the .NOLOC pseudo-op at assembly time by

using the /0 function switch in the MASM command line. Refer to
Chapter 8 for more information.

Value

You may use .NOLOC as a value symbol, in which case it has the
value of the last abs—expr you passed to .NOLOC.

The default value for .NOLOC is 0.

7-86 093-000192
Licensed Material - Property of Data General Corporation

Example

Consider the following source code:

«TITLE DF sMASM LISTS ALL SOURCE
.NREL 1 ;LINES BY DEFAULT.
.TXT “ABCDEF"
«NOLOC 1 ;INHIBIT LISTING OF ASSEMBLY LINES
;THAT LACK LOCATION FIELDS.
+TXT "GHIJKL" sMASM ONLY LISTS THE FIRST LINE.
LDA 0,X ;LISTED
.LOC .+5 sNOT LISTED
X: 5 ;LISTED
«END sNOT LISTED

The assembly listing for this code is:

.TITLE DF ;MASM LISTS ALL SOURCE

06 000001 .NREL 1 ;LINES BY DEFAULT.
07 00000:040502 .TXT "ABCDEF"
08 041504
09 042506
10 000000
11
12 000041043510 .TXT "GHIJKL" ;MASM ONLY LISTS THE FIRST LINE.
13 000101020406 LDA 0,X ;LISTED
14 00016!000005 X: 5 ;LISTED

References

"Absolute Expressions" - Chapter 3

"Assembly Listing" - Chapter 4
"Command Line Switches" (/0) - Chapter 8

093-000192 7-87
Licensed Material - Property of Data General Corporation

.NOMAC

Inhibit or re-enable the listing of macro expansions.

Syntax
« NOMACoOabs—expr

Purpose

The .NOMAC pseudo-op either inhibits or permits the listing of
macro expansions. If abs—expr does not equal zero, the assembler
does not include macro expansions in the listing; if abs—expr
equals zero, listing occurs. Abs—expr must be an absolute
expression,

By default, the assembler includes all macro expansions in the
listing output.

You may override the .NOMAC pseudo-op at assembly time by
using the /0 function switch in the MASM command line. Refer to
Chapter 8 for more information.

Value

You may use .NOMAC as a value symbol, in which case it has the
value of the last abs—expr you passed to .NOMAC.

The default value for .NOMAC is 0.

Examples
08 .MACRO MAC ;DEFINE MACRO 'MAC'
09 5
10 6
11 %
12
13 MAC ;CALL MACRO 'MAC.' BY DEFAULT,
14 00000'000005 5
15 00001'000006 6
16 ;MASM LISTS THE EXPANSION.
17
18 000001 .NOMAC 1 ; INHIBIT MACRO EXPANSIONS.
19
20 MAC ;MASM DOES NOT LIST THE EXPANSION.
21
22 00004'000100 100 ;ASSEMBLE THE VALUE 100.
7-88 093-000192

Licensed Material - Property of Data General Corporation

Our second example shows how to use

«NOMAC inside a macro definition

093-000192

string.
08 .MACRO INSIDE ;sDEFINE MACRO ‘'INSIDE.'
09 2
10 3
11 .NOMAC 1 ;DURING EXPANSION OF MACRO
12 4 ; "INSIDE,' MASM DOES NOT LIST
13 5 ;DATA STATEMENTS 4 AND 5.
14 .NOMAC 0 sRE-ENABLE LISTING OF MACRO
15 6 ;s EXPANSIONS.
16 7
17 %
18
19 INSIDE ;CALL TO MACRO 'INSIDE'
20 00000'000002 2
21 00001'000003 3
22 000000 .NOMAC O sRE-ENABLE LISTING OF MACRO
'23 00004'000006 6 ;s EXPANSIONS.
24 00005'000007 7
References
"Absolute Expressions" - Chapter 3
"Assembly Listing” - Chapter 4
"Command Line Switches" (/0) - Chapter 8
"Listing of Macro Expansions" - Chapter 5

7-89

Licensed Material - Property of Data General Corporation

.NREL

Specify normal relocation.

Syntax

Purpose

The .NREL pseudo-op directs the Macroassembler to locate the
following code in normal relocatable (NREL) memory. NREL memory
begins immediately after lower page zero (ZREL) and extends from
location 400g to 32K-1. Address 32K-1 is the upper limit of
user—available memory under AOS.

Using .NREL, you may specify one of two predefined memory
partitions. These two partitions provide either shared or unshared
code and data.

Use a shared partition if you want more than one process to
share a single copy of your program at the same time. Unshared
partitions are accessible to your process only.

If abs—-expr is not present, the location counter is set to
unshared code relocation. If the optional expression is present, it
is evaluated. If the result is zero, the location counter is set
to unshared code relocation; if non-zero, the location counter is
set to shared code relocation.

If you leave an NREL partition and later return, the Macroas-
sembler continues assigning addresses from the point where it left
off (see the example).

At link time, all source code in a single NREL partition is
contiguous in memory. That is, all code with addresses relative to
the same zero base is contiguous.

Link may place NREL partitions anywhere in memory above
location 377g (hence the term 'relocatable'). Thus, you may use
MR instructions that provide 15-bit displacement fields to re-
ference any location in NREL memory. If you use shorter MR
instructions, be sure that the referenced address can be represen-
ted in the MRI displacement field.

Refer to "Partitions" and "Relocatability" in Chapter 3 for
more information.

7-90 093-000192
Licensed Material - Property of Data General Corporation

Example

08 000000 .NREL: 0 ;UNSHARED CODE (NOTE
09 00000'000001 1 ;THE LOCATION COUNTER AND THE
10 00001'000002 2 sRELOCATION CODE IN COLUMN 9)
11
12 000001 .NREL 1 ;SHARED CODE
13 00000:000003 3
14 000011000004 4
15
16 000000 .NREL, 0 ;UNSHARED CODE.
17 00002'000005 5 sMASM CONTINUES ASSIGNING ADDRESSES
18 00003'000006 6 sWHERE IT LEFT OFF EARLIER
19
20 000001 .NREL 1 ;SHARED CODE
21 000021000007 7
22 00003!000010 10
References
"Absolute Expressions" - Chapter 3

AQS__L.J.LI_E__II.S_QLS_M_mlor

"NREL Partitions" - Chapter 3

"Partition Attributes" - Chapter 3
"Relocatability" - Chapter 3

093-000192

7-91

Licensed Material - Property of Data General Corporation

.0B

Name an object file.

Syntax

+OBOofilename

Purpose

The .0OB pseudo-op directs the assembler to name the object
file filename., The assembler appends the object file extension .0OB
onto filename unless that name already ends in .OB.

If more than one .0OB pseudo-op appears in the source, the
assembler returns an error for those source lines. It names the
object file after the first source module on the MASM command line
(less the .SR extension, if any, and with the new extension .OB).

If you include the /N switch in the MASM command line, direc-
ting the assembler not to produce an object file, the assembler
ignores the .OB pseudo-op.

If you specify the /B= switch in the MASM command line, the
assembler overrides the .0OB pseudo-op, and the object file receives
the name following the /B= switch.

In sum, the assembler uses the following hierarchy to name
object files:

Priority Object Fiiename Description
1 (highest) /B=filename A switch on the MASM command line
2 .OBOfilename A pseudo-op in the source module
3 (lowest) Default name The name of the first source

module on the MASM command line

One of the primary uses of the .0B pseudo—-op is in conditional
code assembly. You may direct the assembler to assign a name to the
object file according to the evaluation of some expression (see the
example).

7-92 093-000192
Licensed Material - Property of Data General Corporation

Example

.IFE A ;IF THE VALUE OF 'A' EQUALS 0, MASM

.OB SYSl ;NAMES THE OBJECT FILE 'SYS1.0B.'

. ENDC

.IFN A ;IF THE VALUE OF 'A' DOES NOT EQUAL

.OB SYS2 {Z ERO, MASM NAMES THE OBJECT FILE 'SYS2.0B.
References

"Command Line Switches" (/N and /B=) - Chapter 8
"Object File" - Chapter 4

093-000192 7-93
Licensed Material - Property of Data General Corporation

.PASS

Number of assembly pass.

Value

The Macroassembler scans your source code twice during the
assembly process. Each scan is called a pass.

The .PASS pseudo-op is a value symbol that returns the current

assembly pass number. .PASS equals 0 on assembly pass one and 1 on
pass two.

Example

.The following example defines parameters A, B, and C for later use
'in the assembly. Because the values of A, B, and C remain
constant, MASM need not assemble them on pass two.

.IFE .PASS

A=0 +MASM ASSEMBLES THESE
B=1 : ;STATEMENTS ON PASS
C=2 ;ONE ONLY.

» ENDC

References

"Command Line Switches" /S - Chapter 8
"Macroassembler Symbol Tables" - Chapter 8

7-94 093-000192
Licensed Material - Property of Data General Corporation

.PENT

Define a procedure entry.

Syntax

.PENTDuser—symboL1 e o « <user-symbolp>

Purpose

This pseudo-op defines addresses within general procedures
that gain control upon one of the following system calls:

?RCALL, ?KCALL, 7?RCHAIN
User-symbol must be defined as a user symbol within the

general procedure in which it is declared. It must be unique from
entries defined in other procedures.

Example
SAVE
Procedure A ?RCALL
RTN
. PENT B
Procedure B : SAVE
RTN

Note that procedure A does not name B in an .EXTN statement.
The ?RCALL system macro generates the necessary external
references.

093-000192 7-95
Licensed Material - Property of Data General Corporation

.PENT (continued)

Reference

"Intermodule Communication® - Chapter 6

7-96 093-000192
Licensed Material - Property of Data General Corporation

.POP

Pop the value and relocation property of the last expression
pushed onto the stack.

Syntax

« POP

Purpose

The .POP pseudo-op removes the the top entry from the Macroas-
sembler stack.

Value

The permanent symbol .POP has the value and relocation
property of the last expression you placed on the assembler stack
(using .PUSH). When you use .POP, the assembler removes the top
entry from the stack.

If the assembler stack contains no values, then .POP has the
value 0 and the absolute relocation property. In addition, MASM
returns a stack error (0) for that source statement.

Example

08 000025 A=25 ;DEFINE 'A’

09 00000'000025 A ;ASSEMBLE THE PRESENT VALUE OF 'A'
10

11 000025 .PUSH A ;PUSH THE VALUE OF 'A' ONTO THE

12 000015 A=15 sASSEMBLER'S STACK. ASSIGN 'A' A
13 00001'000015 A ;sNEW VALUE AND ASSEMBLE THAT VALUE.
14

15 000025 A=,POP ;ASSIGN 'A' THE VALUE ON TOP OF THE
16 00002000025 A ;STACK (RESTORE THE ORIGINAL VALUE)

See the .PUSH description for a related example.

References

"Relocatability" - Chapter 3
"Stack Control" - Chapter 6

093-000192 7-97
Licensed Material - Property of Data General Corporation

.PTARG

Generate a procedure descriptor.

Syntax
«PTARGOexternal—-symbol

Purpose

This pseudo-op accepts an external-symbol defined in another
assembly module as a procedure entry symbol. .PTARG transforms the
external-symbol into a procedure descriptor that can be passed on
the user stack as an argument to one of the general resource calls:
?RCALL, ?KCALL, and ?RCHAIN. If the procedure descriptor is not
passed on the top of the stack, then the procedure entry must be
given as an in-line argument to the resource call (e.g., ?RCALL
procedure-entry-point).

Example

- EXTN NAME
« NAME «PTARG NAME

LDA 0, .NAME
PSH 0,0

?RCALL

If "NAME" had not been passed on the stack, then the resource call
would have been expressed as "“?RCALL NAME." 1In this case, "NAME"
would not have been given as the argument to an .EXTN pseudo-op;
each resource call system macro generates an appropriate external
reference when the procedure entry point is given as an in-line
argument.

Reference

“Intermodule Communication" - Chapter 6

7-98 093-000192
Licensed Material - Property of Data General Corporation

.PUSH

Push a value and its relocation property onto the stack.

Syntax

« PUSHOexpr

Purpose

The .PUSH pseudo-op allows you to save on the assembler stack
the value and relocation property of any valid assembler
expression. You may continue to push expressions onto the stack
until the stack space is exhausted.

The assembler stack is the push-down type. That is, the last
expression you place on the stack is the first one to be removed.
Use the .POP pseudo-op to access information on the stack.

Example
08 000010 .RDX 8 ; INPUT RADIX IS 8 (I.E.,
09 00000'000010 (.RDX) ;OCTAL) . ASSEMBLE THE CURRENT
10 ; INPUT RADIX VALUE.
11 000010 .PUSH .RDX ;SAVE THE INPUT RADIX ON THE STACK.
12 000012 .RDX 10 ;SET THE INPUT RADIX TO 10 (DECIMAL).
13 00001'000012 (,RDX) ;ASSEMBLE THE CURRENT INPUT
14 ;RADIX VALUE.
15 000010 .RDX .POP ;SET THE INPUT RADIX TO THE VALUE ON
16 ; TOP OF THE STACK (IN THIS CASE 8).
17 00002'000010 (.RDX) ;ASSEMBLE THE CURRENT INPUT
18 ;RADIX VALUE.

See the .POP description for a related example.

References

"Expressions" - Chapter 2

"Relocatability"” - Chapter 3
"Stack Control" - Chapter 6

093-000192

7-99

Licensed Material - Property of Data General Corporation

.RDX

Set radix for numeric input conversion.

Syntax
« RDXpabs—expr

Purpose

The .RDX pseudo-op defines the radix (base) that MASM uses to
interpret the numeric expressions in your source module. For
example, if you specify an input radix of 16j(g, the assembler
interprets all numeric expressions in your module in hexadecimal.

The assembler always interprets abs—expr in decimal. This
argument must be an absolute expression and its value must be in
the following range:

2] po<=Dabs-expro<=0207 g

If you do not specify an input radix in your module, the
default value is 839 (i.e., octal).

If you specify a radix greater than 10, you must use letters
to represent values greater than 10 but less than the specified
radix. For example, if you declare an input radix of 163
(hexadecimal) , use the digits 0 through 9 to represent the quanti-
ties 0 through 930, and use the letters A through F to represent
the values 10 through 15jg9. Table 7-3 shows the correspondence
between numeric representations in various bases.

If the input radix is greater than 10, your numeric expres-
sions might start with letters. In these cases, you must place a 0
before the initial letter of the numeric expression to distinguish
it from a symbol. For example, if you specify an input radix of
1630 (.RDX 16), then you should express the value for decimal 15 as
OF, not simply F.

Regardless of the input radix, the assembler interprets any
number containing a decimal point as decimal. For example, the
numeric expression 12. always equals 12379, regardless of the input
radix. This feature allows you to combine decimal numbers in
expressions with numbers of other radixes (e.g., OF+12.-3A2).

7-100 093-000192
Licensed Material - Property of Data General Corporation

Note that the input and output radixes are entirely distinct.
Setting the input radix does not affect the output radix (set with
.RDXO) .

Table 7-3. Numeric Representations in Various Bases

Octal (Base 8) Decimal (Base 10) Hexadecimal (Base 16)
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
10 8 8
11 9 9
12 10 A
13 11 B
14 12 C
15 13 D
16 14 E
17 15 F
20 16 10
Value

You may use .RDX as a value symbol. In this case, .RDX has the
value of the current input radix.

093-000192 7-101
Licensed Material - Property of Data General Corporation

.RDX (continued)

Example

In the following example,
may alter this setting with .RDXO pseudo-op.

the output radix is 8 (i.e., octal). You

08 000010 .RDX 8 ;INPUT RADIX IS 8.

09 00000'000123 123 ;MASM INTERPRETS 123 AS OCTAL. .

10

11 000012 .RDX 10 ;SET INPUT RADIX TO 10.

12 00001'000173 123 ;MASM INTERPRETS 123 AS DECIMAL.

13

14 000020 .RDX 16 ;SET INPUT RADIX TO 16

15 00002'000443 123 sMASM INTERPRETS 123 AS HEXADECIMAL.
16 00003'000017 OF ;NOTE THE LEADING ZERO.

17 00004'000173 123, sMASM INTERPRETS 123 AS DECIMAL EVEN
18 ; THOUGH THE INPUT RADIX IS 16.

19

20 00005'000020 (.RDX) ;ASSEMBLE THE CURRENT INPUT

21 sRADIX VALUE.

References

“"Absolute Expressions" - Chapter 3

"Numbers" - Chapter 2
"Radix Control" - Chapter 6

7-102

093-000192

Licensed Material - Property of Data General Corporation

.RDXO

Set the radix for numeric output conversion.

Syntax
-« RDXOnabs—-expr

Purpose

The .RDXO pseudo-op defines the radix (base) that the assem-
bler uses to represent numeric expressions in the assembly listing.
For example, if you specify an output radix of 10jg, the assembler
presents all locations and values in decimal, regardless of the
input radix.

The assembler always interprets abs—expr as decimal. This
argument must be an absolute expression, and its value must be in
the following range:

810 <= abs—expr <= 204

If you do not specify an output radix in your module, the
assembler uses 830 (i.e., octal).

Table 7-3 in the .RDX pseudo-op description shows the corres-
pondence between numeric representations in various bases.

Value
You may use .RDXO as a value symbol, in which case it‘equals

the current output radix. The assembler always expresses the
current output radix as '10'.

093-000192 7-103
Licensed Material - Property of Data General Corporation

.RDXO (continued)

Example

08 000010 .RDX 8 ;s INPUT RADIX IS 8.

09 000010 +RDXO 8 sOUTPUT RADIX IS 8.

10 00000'000077 77

11 00001'000022 22

i% 00002'000045 45

14 000012 .RDX 10 ; INPUT RADIX IS 10.

15 00010 +RDXO 10 ;OUTPUT RADIX IS 10.

16 00003' 00077 77

17 00004' 00022 22

18 00005' 00045 45

19

20 00016 .RDX 16 s INPUT RADIX IS 1l6.

21 0010 +RDXO 16 sOUTPUT RADIX IS 1l6.

22 00006' 0077 77

23 00007' 0022 22

24 00008' 0045 45

25

26 ;s INPUT RADIX IS lé6.

27 000010 .RDXO 8 ;sOUTPUT RADIX IS 8.

28 00011'000167 77

29 00012'000042 22

30 00013'000105 45

31

32 ;s INPUT RADIX IS 1l6.

33 00010 .RDXO 10 ;OUTPUT RADIX IS 10.

34 00012' 00119 77

35 00013"' 00034 22

36 00014*' 00069 45

37 00015* 00010 (.RDXO0) sASSEMBLE THE CURRENT VALUE
38 sOF THE OUTPUT RADIX. MASM
39 +ALWAYS REPRESENTS THIS AS 10,
40 s REGARDLESS OF THE CURRENT BASE.
References

"Absolute Expressions" - Chapter 3

"Assembly Listing" - Chapter 4
"Numbers" - Chapter 2

"Radix Control" - Chapter 7

7-104

093-000192

Licensed Material - Property of Data General Corporation

.REV

Set revision level.

Syntax
.REVOmajor-revision—-numberominor-revision—number

Purpose

The .REV pseudo-op specifies your program's revision level.
Generally., you use this pseudo-op when you want to keep track of
different versions of the same program.

Arguments must be absolute expressions with values in the
range 0-2557(p. The assembler uses the current input radix to
evaluate these expressions. When issuing .REV, you must supply
values for both arguments.

The revision level you indicate in your source module passes
into the object file and then into the program file. If MASM
encounters more than one .REV pseudo-op during an assembly, the
object file receives the level specified in the last .REV
statement.

Use the CLI REVISION command to obtain the revision level of
any executable program file.

Example

The source code (in the file MNTS) for this example is:

«TITLE MNTS

+REV 12,5 ;MASM INTERPRETS THE REVISION LEVEL IN THE
;CURRENT INPUT RADIX (OCTAL BY DEFAULT).

« NREL

When properly bound and linked, you can obtain the revision number
from the CLI as follows:

JREVISION MNTS.PR<nl>
10.05

093-000192 ‘ 7-105
Licensed Material - Property of Data General Corporation

.REV (continued)

References

"Absolute Expressions" - Chapter 3
' i e ! - REV command

AQS Link User's Manual - /REV switch or
AOS/ Lini Ll File Edj s M]

093-000192

7-106
Licensed Material -~ Property of Data General Corporation

Vo

TITL

Entitle an object module.

Syntax
- TITLOuser—symbol

Purpose

The .TITL pseudo op provides a name for your object module by
placing user-symbol in the module's title block (described in the
AOS Link User's Manual

or AQSZY.S_ W&
User's Manual).

The title you assign in the module appears at the top of each
page in the assembly listing. User-symbol need not be unique from
other symbols in your source module.

If you do not include .TITL in your source module, the assem-
bler supplies the name ".MAIN" as default.

Note that the name you assign in the .TITL statement has no
relation to the name of the object file (see the .0B pseudo-op).

Example

.TITLE MOD1

References

"Assembly Listing" - Chapter 4
AOS Link User's Manual or

"User Symbols" -~ Chapter 2

093-000192 7-107
Licensed Material - Property of Data General Corporation

.TOP

Value and relocation of last stack expression.

Value

.TOP has the value and relocation property of the last expres-
sion pushed to the variable stack. .TOP differs from .POP in that
it does not remove (pop) the last pushed expression from the stack.
If no expressions are pushed, zero (absolute relocation) is retur-
ned and the overflow flag (0) is given.

Example

08 000010 .PUSH 10 sPLACE 10 ON STACK
09 000020 .PUSH 20 ;PLACE 20 ON STACK
10 000030 .PUSH 30 ;PLACE 30 ON STACK
11

12 ;STACK IS NOW 30 20 10

13

14 00000'000030 . TOP ' ;TOP OF STACK

15 00001'000030 .TOP :TOP OF STACK (UNCHANGED BY
16 : PREVIOUS '.TOP')
17 00002'000030 . POP ;STACK POP

18

19 sSTACK IS NOw 20 10

20

21 00003'000020 . TOP sNEW STACK TOP
Reference

"Stack Control" - Chapter 6

7-108 093-000192
Licensed Material - Property of Data General Corporation

.TSK

Reserve a number of tasks.

Syntax
. TSKOabs—expr

Purpose

The .TSK pseudo-op specifies the maximum number of tasks that
your program can initiate at execution time. The argument you pass
to .TSK must be an absolute expression and must be less than or
equal to 32;¢.

If several object files in the same Link command line contain
.TSK declarations, Link uses the largest.

You may override the .TSK pseudo-op at link time by using the
/TASKS= switch in the Link command line.

Example

.TITLE MOD ;THIS PROGRAM MAY INITIATE

.TSK 5 ;UP TO 5 TASKS AT RUNTIME.

References

"Absolute Expressions" - Chapter 3 l

Advanced Operating System (AQS) User's Manual

AOS Programmer's Manual

093-000192 7-109

Licensed Material - Property of Data General Corporation

TXT, .TXTE, .TXTF, .TXTO

Store and specify a text string.

Syntax

« TXTO*string*

« TXTEO*string*
« TXTFO*string*
- TXTOO*string*

Purpose

These pseudo-ops direct the assembler to store the octal
equivalent of an ASCII text string in consecutive memory words. In
the above syntax descriptions, string is an ASCII text string and *
represents a character that you use to delimit the string. The
delimiter may be any character except

* a character that appears in text string string, or

* carriage return, form feed, NEW LINE, tab, space, null, or
rubout.

You may use carriage return, form feed, and NEW LINE to
continue a string from line to line, but the assembler will not
store these characters as part of the text string.

The assembler interprets the first character after the break
(O0) as string's delimiter. The assembler then stores the following
characters in pairs in consecutive memory words until it encounters
the delimiting character again. That is, the assembler generates
one l6-bit storage word for every two characters in string.

Storage of a character of a string requires seven bits of an
eight-bit byte. The leftmost (parity) bit may be set to 0, 1, even
parity, or odd parity as follows:

« TXT Sets leftmost bit to 0 unconditionally.

. TXTF Sets leftmost bit to 1 unconditionally.

. TXTE Sets leftmost bit for even parity on byte.

. TXTO Sets leftmost bit for odd parity on byte.
7-110 093-000192

Licensed Material - Property of Data General Corporation

—

The assembler allocates an 8-bit byte for each character
(i.e., two characters per 1l6-bit word). By default, the assembler
packs the characters of your string from left to right within
memory storage words. You may alter this packing mode with the
. TXTM pseudo-op.

If your string contains an odd number of characters, the
assembler pairs a null (all zero) byte with the last character of
the string. If your string contains an even number of characters,
the assembler stores a null word (2 null bytes) immediately after
the string. You may suppress this null storage word by using the
. TXTN pseudo-op.

Within the string, angle brackets(< >) can be used to delimit
an arithmetic expression. The expression will be evaluated, masked
to seven bits, and the eighth bit set as specified by the
pseudo-op. Note that no logical operators are permitted within the
expression.

By using angle brackets, you may store the ASCII codes for
characters that you could not otherwise include in your text
string. For example, you may not include a NEW LINE character in
your text string, However, you may include the ASCII code for NEW
LINE in a text string if you enclose that value in brackets.

« TXT "A<12>"

This statement directs the assembler to generate a storage
word that contains the ASCII codes for "A" (10lg) and "NEW LINE"
(12g) « By default, the Macroassembler stores a null (all zero)
word in the following location.

093-000192 7-111
Licensed Material - Property of Data General Corporation

.TXT, .TXTE, .TXTF, .TXTO (continued)

Example
08 000000 .TXTM 0 ;SET BYTE PACKING RIGHT/LEFT.
09 00000'041101 .TXT #ABC D# ;: EACH EXAMPLES STORES ASCII CODE
10 020103
11 000104
12 00003'041101 .TXTE /ABC D/ ;FOR THE TEXT STRING "ABC D" IN MEMORY.
13 120303
14 000104 v
15 00006'141301 .TXTF @ABC D@ ;:NOTE THE VARIOUS CHARACTERS WE
16 120303
17 000304
18 00011'141301 .TXTO EABC DE :USE FOR TEXT DELIMITERS.
19 020103
20 000304

See .TXTM and .TXTN for related examples.

References

"Absolute Expressions" - Chapter 3

“ASCII Character Set" - Appendix A

"Special Integer-Generating Formats" - Chapter 2

"Text Strings" - Chapter 6

7-112 093-000192
Licensed Material - Property of Data General Corporation

TXTM

Change text byte packing.

Syntax

- TXTMOabs—expr

Purpose

The .TXTM pseudo-op directs the assembler to pack bytes either
left to right or right to left within memory words when it encoun-
ters a .TXT, .TXTE, .TXTF, or .TXTO pseudo-op. If abs—expr evalua-
tes to zero, the assembler packs the bytes right to left; if
abs—expr does not equal zero, the assembler packs bytes left to
right. The argument you supply to .TXTM must be an absolute
expression.

If you do not use the .TXTM pseudo-op in your module, MASM
packs bytes from left to right, by default.

Value

You may use .TXTM as a value symbol. In this case, .TXTM
represents the value of the last abs—expr you supplied to it.

The default value for .TXTM is 1.

Example

07 0010 .RDXO 16 ;OUTPUT RADIX HEXADECIMAL

08 00000' 4142 .TXT "ABCDE" ;PACK BYTES LEFT/RIGHT

09 4344

10 4500

11 ;WITHIN WORDS, BY DEFAULT.

12 00003' 0001 (. TXTM) ;ASSEMBLE THE CURRENT VALUE OF
13 ; .TXTM (1, BY DEFAULT).

14 0000 .TXTM 0 ;PACK BYTES RIGHT/LEFT.

15 00004 4241 +TXT “"ABCDE"

16 4443

17 0045

18 00007' 0000 (.TXTM) ;ASSEMBLE THE CURRENT VALUE

19 ;OF ,TXTM.

093-000192 7-113

Licensed Material - Property of Data General Corporation

.TXTM (continued)

References

"Absolute Expressions" - Chapter 3
"ASCII Character Set" - Appendix A
"Text Strings" - Chapter 6

7-114 093-000192
Licensed Material - Property of Data General Corporation

.TXTN

Determine text string termination.

Syntax
« TXTNOabs—expr

Purpose

The .TXTN pseudo-op specifies whether or not the assembler
will place a null word at the end of a .TXT, .TXTE, .TXTF, or .TXTO
text string that contains an even number of characters.

If abs—expr evaluates to zero, all text strings containing an
even number of characters terminate with a 16-bit null word (all
zeros). If abs—expr does not equal zero, the assembler does not
place a null word after the last two characters in your string. The
argument you supply to .TXTN must be an absolute expression.

If you do not use .TXTN in your module, the assembler termina-
tes even length text strings with a null word, by default. When a

string contains an odd number of characters, the assembler stores a
null byte with the last character, in all cases.

Value

You may use .TXTN as a value symbol. In this case, .TXTN
represents the value of the last abs—expr you passed to it.

The default value for .TXTN is 0.

093-000192 | 7-115
Licensed Material - Property of Data General Corporation

.TXTN (continued)

;s TERMINATE EVEN-LENGTH STRINGS

sWITH A NULL WORD, BY DEFAULT.
sASSEMBLE THE CURRENT VALUE OF
; .TXTN (0, BY DEFAULT).

;DO NOT ADD A NULL WORD TO THE
; END OF EVEN-LENGTH STRINGS.

sASSEMBLE THE CURRENT VALUE OF
: JTXTN (1).

Example
08 00000'030462 LTXT "1234"
09 031464
10 000000
11
12 00003'000000 (.TXTN)
13
14 000001 .TXTN 1
15
16 00004'030462 LTXT "1234"
17 031464
18 00006'000001 (.TXTN)
19
References
"Absolute Expressions" - Chapter 3

"Text Strings" - Chapter 6

7-116

093-000192

Licensed Material - Property of Data General Corporation

XPNG

Delete symbol and macro definitions.

Syntax

« XPNG

Purpose

This pseudo-op removes all semipermanent symbol definitions
(macro and instruction definitions) from the assembler's symbol
table. .XPNG is used primarily as follows:

l. You write a program containing .XPNG followed by defini-
tions of any semipermanent symbols.

2. The program is assembled using the function switch /S in
the MASM command line. This causes the assembler to stop

assembly after pass 1 and save the symbols in MASM.PS (or
MASM16.PS) .

3. You can then use the modified assembler containing perman-

ent symbols and those semipermanent symbols defined in Step
2,

Example

The following source code is contained in file XP.
.TITLE XP
« XPNG ;REMOVE SEMIPERMANENT SYMBOLS
;FROM SYMBOL TABLE.
.DALC SUB=102400 ;DEFINE 'SUB' USING .DALC.
.DMRA LDA=20000 ;:DEFINE 'LDA' USING .DMRA.
.DMRA STA=40000 ;DEFINE 'STA' USING .DMRA.
« END
093-000192 7-117

Licensed Material - Property of Data General Corporation

XPNG (continued)

This code is assembled with the following CLI command:
MASM/S
)X XP
MASM16/S

After assembly., the assembler's symbol table contains definitions
for SUB, LDA, and STA, but for no other semipermanent symbols.

References

"Macroassembler Symbol Tables" - Chapter 8
"Symbol Tables" - Chapter 3
"Symbols" - Chapter 2

7-118 093-000192
Licensed Material - Property of Data General Corporation

.ZREL

Specify lower page zero relocation.

Syntax

« ZREL

Purpose

The .ZREL pseudo-op directs the assembler to assign relocata-
ble addresses in lower page zero to subsequent source lines in your
module; i.e., to assign locations in the predefined ZREL memory
partition. Lower page zero relocatable (ZREL) memory extends from
location 50g to 377g. Thus, you may express any ZREL location in
a displacement field of 8 or more bits (in any MR instruction).

The words following the ,ZREL pseudo-op receive relocatable
addresses starting with zero., If you leave the ZREL partition
during an assembly and later return, the assembler continues
assigning ZREL addresses at the point where it left off.

At link time, all code in the ZREL memory partition is conti-
guous in memory.

Example

L.TITLE Z
06 «ZREL ;PLACE THE FOLLOWING CODE IN LOWER
07 00000-000100 100 ;PAGE ZERO RELOCATABLE (ZREL) MEMORY
08 00001-000200 200 ; (NOTE THE ADDRESS RELOCATION FLAG
09 00002-000300 300 ;IN COLUMN 9).
10 000000 .NREL 0 ;UNSHARED NORMAL RELOCATABLE (NREL)
11 00000'000400 400 s MEMORY
12 00001'000500 500
13 .ZREL ;:LOWER PAGE ZERO RELOCATABLE (ZREL)
14 00003-000600 600 sMEMORY. NOTE THAT MASM CONTINUES
15 00004-000700 700 ;ASSIGNING ZREL ADDRESSES AT THE
16 ; POINT WHERE IT LEFT OFF EARLIER.
References

AQOS Link User's Manual or

- = i le BEdi .
"Relocatability" - Chapter 3
"ZREL Partition" - Chapter 3

End of Chapter

093-000192 7-119
Licensed Material - Property of Data General Corporation

Chapter 8
Macroassembler Operating Procedures

Masm Command Line

The CLI command line that invokes the Macroassembler is

MASM
XEQ { } Lfunction-gwitch...>npathname<arg-switch>
MASM16

where:

XEQ is a CLI command that executes a
program. The single character X is an
acceptable abbreviation for XEQ.

MASM is the name of the Macroassembler
program (without the .PR extension).
Use MASM16 if you are assembling 16-bit
programs under AOS/VS.

function-switch is one or more of the optional function
switches (see Table 8-1).

pathname is the pathname of a source file. You
must include at least one source file in
each MASM command line. If you include
more than one source file, make sure
that all but the last one end with the
.EOF pseudo-op; the last file should end
with .END.

arg-switch is the optional argument switch /S (see
Table 8-2).

—

093-000192 8-1
Licensed Material - Property of Data General Corporation

When you issue the MASM command, the Macroassembler assembles
one or more source files (pathnames) and produces an object file
and a variety of listings (depending on which function switches you
use). The object file is not executable; you must use the Link
utility to produce a program file (see "Linking and Executing Your
Program" in this chapter.)

By default (i.e., if you do not use any function switches),
the object file bears the name of the first filename in the command
line (see "Filenames"). Also by default, the Macroassembler does
not produce an assembly listing; it reports all assembly errors to
the generic file @OUTPUT. We describe the object file, assembly
listing, and other forms of Macroassembler output in Chapter 4.

An incorrect MASM command line generates a command line error.
Refer to Appendix C for descriptions of all command line errors.

Command Line Switches
You may use two types of switches in the MASM command line:
* Function switches
* Argument switches

A function switch appears after the word MASM and provides
information global to the current assembly. An argument switch
appears after the name of a source file and provides information
local to that particular file.

The syntax in the previous section provides information about
the placement of switches in the MASM command line. Note that all
switches appear immediately after the term they modify; do not
insert any spaces before a switch. There is no limit to the number
of switches that may appear in a single command line.

Table 8-1 describes the function switches you may use in the
MASM command line. For a complete discussion of the various forms
of Macroassembler output, refer to Chapter 4. For a description of
permanent, instruction, macro, and user symbols, see "Symbols" in
Chapter 2.

8-2 093-000192
Licensed Material - Property of Data General Corporation

Table 8-1. AOS MASM Function Switches

Function Switch

Action

/8

/B=filename

/B

/E=filename

/F

/HASH=

/K

This switch tells the Macroassembler to
examine the first eight characters when it
resolves symbols instead of the first five
characters., Note that macro names must still
be unique in their first five characters when
this switch is used. Also, any symbol that
is not a macro name must not have its first
five characters the same as those of a macro
name. The Macroassembler will not give a
warning or error if this restriction is
violated.

Name the object file filename.OB instead of
the name of the first source file in the
assembly command line. If the specified
filename already has the .0B extension, the
Macroassembler does not add a second .OB
extension.

Do not write pass 2 error messages to
@OUTPUT, unless there is no listing file.
Some pass 1 error messages are automatically
written to @OUTPUT. Error codes are descri-
bed in Appendix C.

Creates file filename and reports all assem-—
bly errors to that file.

Generate or suppress a form feed as necessary
to produce an even number of listing pages.
By default, a form feed is generated after
each listing page.

Directs the Macroassembler to set the size of
its hash table to the value specified in the
switch. The hash table's default size is 32
entries. The switch accepts values of 2 to
128 in powers of two (e.g., 2, 4, 8, 16, 32,
64, or 128).

Keep the Macroassembler's temporary symbol
file table (MASM,ST.TMP) after the assembly
is complete. By default, the symbol table is
deleted.

093-000192

(continues)

8-3

Licensed Material - Property of Data General Corporation

Table 8-1. AOS MASM Function Switches

Function Switch

Action

/L

/L=filename

/M

/MEM=

/N

/0

/P

/PS=filename

/R

Write a listing to the current list file.

The new listing will follow any listings that
are already in the file. Listings always
include a cross reference of symbols in the
program. The cross reference shows the page
and line number where each symbol is used.

If you use the /L switch, program MASMXR.PR
must be present in the same directory as the
Macroassembler itself.

Write a listing file to the file specified by
filename.

Flag redefinition of permanent symbols as
multiple-definition (M) errors.

Directs the Macroassembler to allocate the
number of buffers specified in the switch.
The Macroassembler uses 12 buffers by
default. The switch accepts values of 1 to
32.

Do not produce an object file. The Macroas-
sembler performs all operations (i.e., checks
for errors, produces listings, etc.) but does
not produce a binary object-code file. You
usually use this switch to locate errors in
your source code.

Override all listing suppression controls
(.NOCON, .NOLOC, .NOMAC, as well as double
asterisks (*%*)),

Add semipermanent symbols to the cross-
reference listing. By default, they are not
included.

Directs the Macroassembler to use filename as
the permanent symbol table for the current
assembly. The Macroassembler's default
symbol table is MASM.PS (or MASM16.PS if you
are using MASM16).

Produce a binary object (.0B) file even if
there are assembly errors in the source
files. By default, the Macroassembler
produces no .0OB file when there are assembly
errors.

8-4

(continued)

093-000192

Licensed Material - Property of Data General Corporation

Table 8-1. AOS MASM Function Switches

Function Switch

Action

/s

/0

/%

Tells the Macroassembler to skip pass 2, and
save a version of the symbol table and macro
definitions in =MASM.PS (or =MASM16.PS). No
.0OB file is produced.

Include user symbols in the binary object
(.0B) file. This lets the Debugger locate
user symbols in your program.

Prints the DGC proprietary license heading at
the top of each assembly and cross-reference
page. By default, this heading is not
printed. Note that this switch is useful to
DGC personnel only.

(concluded)

Table 8-2 describes the /S argument switch (do not confuse
this switch's description with the /S function switch described
above). The /S argument switch may appear after any source

_— filename in the MASM command For example:

MASM
XEQ

MASM16

} MOD1 MOD2/S MOD3 <nl>

Table 8-2. MASM Argument Switch

Argument Switch

Action

pathname/S

Tells MASM not to process this source
file on assembly pass two. This switch
allows you to use a source file to
define symbols but not generate object
code. /S does not hinder the assembly
of other source files in the command
line.

You typically use this switch with files
that define parameters and macros. In
these cases, the /S switch reduces
assembly time and decreases the size of
the assembly listing. "Macroassembler
Symbol Tables"™ in this chapter explains
how the Macroassembler resolves symbols.

093-000192

8-5

Licensed Material - Property of Data General Corporation

Linking and Executing Your Program

The Macroassembler output is not executable. You must first
process your object file(s) with the Link utility. The general
Link command line is

XEQ LINK file ... <nl>
where:

file is the pathname of an object file. You need not specify
the .0OB extension

This command generates an executable file named file.PR. If
you include more than one object file in the Link command line, the
program file receives the name of the first one, by default.

The Link utility offers many options that we do not present in
this manual. For example, you may include a variety of switches in
the command line, and you may also link library files along with
your object files. For a complete description of these and other

features of the Link utility, refer to the AOS L;ng User's Manual
or the AOS/VS Link and Library File Fditor User's Manual.

To execute a program file generated by Link, issue the command
XEQ file
where:

file is the pathname of a program file; you need not specify

Filenames

Table 8-3 summarizes the AOS file-naming conventions. Note
that the table lists only the filename extensions, not the complete
filename.

8-6 093-000192
Licensed Material - Property of Data General Corporation

Table 8~3. AOS Filename Extensions

Extension Contents of File
.OB Object file (generated by MASM)
.PR Program (executable) file (generated by Link)
.PS Permanent symbol table (generated by MASM)
.SR Assembly language source file

Normally., the names of your source files end with the .SR
extension; e.g., filename,SR. However, you need not spec1fy the
.SR extension in the MASM command line; e.g., filename is
sufficient. The Macroassembler always searches for filename.SR
first. If MASM does not find this file, it searches for filename.

For example, the following two command lines are functionally
equivalent:

MASM
XEQ FILEl FILE2 <nl>
MASM16

MASM
XEQ FILEl.SR FILE2.SR <nl>
MASM16

The object file normally receives the name of the first source
file in the command line, without the .SR extension (if any) and
with the .OB extension. You may specify a different name for the
object file by using the /B= function switch or the .0B pseudo-op.
Table 8-4 shows the file-naming priority employed by the
Macroassembler.

093-000192 8-7
Licensed Material - Property of Data General Corporation

Table 8-4. Object Filename

Priority Object Filename Description

1 (highest) /B=filename The object file receives the
name you specify with the /B=
function switch on the MASM
command line

2 .OB}filename The object file receives the
name you specify in an .OB
pseudo-op in a source file

3 (lowest) Default filename | The object file receives the
name of the first source file
on the MASM command line

The following examples will help clarify these naming
conventions:

MASM
XEQ FILEl FILE2 <nl>
(MASM16

MASM
XEQ FILEl1l.SR FILE2.SR <nl>

MASM16

Both of the above command lines produce an object file with
the name FILEl.OB.

MASM
XEQ /B=BOND FILEl FILE2 <nl>
MASM16

This command generates an object file named BOND.OB. The

Macroassembler adds the extension .OB to a specified filename only
if the extension is not already present. Thus,

MASM
XEQ /B=BOND.OB FILE1l FILE2 <nl>
MASM16

also produces an object file named BOND.OB.

Generic Filenames

Generic filenames simplify the use of certain common files and
devices. By using a generic name (e.g., @LIST, @OUTPUT), you need
not specify a particular file or device when developing your

8-8 093-000192
Licensed Material - Property of Data General Corporation

program. Rather., you can associate the generic filename with a
specific file or device at runtime. In this manner, the same
program can access a different file or device each time you execute
it.

For further information on generic files, refer to the AQS
mmmmer_s__Maml and the AOS and AOS/VS Command Line Interpreter

Macroassembler Symbol Tables

A primary function of the Macroassembler is to translate the
symbols in your source program into binary code. The Macroassem-
bler uses its internal database and the temporary symbol table
during this process.

The Macroassembler's database defines all permanent symbols.
Permanent symbols consist of the Macroassembler's pseudo-op
descriptions. These definitions reside inside the Macroassembler,
and are present during all assemblies. You cannot change pseudo-op
definitions.

The permanent symbol table resides in an external disk file.
This file contains definitions for all the symbols you use but do
not define in your source (except pseudo-ops). The permanent
symbol table also contains definitions for the standard assembly
language instructions and AQOS system calls and parameters. In most
cases, the permanent symbol table resides in disk file MASM.PS (or
MASM16.PS if you are using MASM16).

When you issue a MASM command line, the Macroassembler creates
a temporary symbol table. Initially. this table contains a copy of
the permanent symbol table. At the end of the assembly, the
temporary symbol table contains these original definitions, plus
the definitions of symbols defined in your source code. The
Macroassembler normally deletes this table at the end of an
assembly. However, you can save the table by using the /K function
switch.

In Chapter 3, we explained how the Macroassembler uses these
tables to resolve the symbols in your source module. The following
discussion reviews this process and then explains how to create a
permanent symbol table.

Symbol Resolution

The following outline describes how the Macroassembler resol-
ves the symbols in your program. Figure 3-1 contains a flowchart
of this process.

093-000192 ' 8-9
Licensed Material - Property of Data General Corporation

When the Macroassembler encounters a symbol in your source
code, it searches its database and the temporary symbol table for
the symbol's definition.

Remember that the Macroassembler database contains definitions
for the pseudo-op symbols. The Macroassembler places a copy of the
permanent symbol table into the temporary symbol table at the start
of the assembly process.

If a symbol is a pseudo-op, MASM does not search the temporary
symbol table. After checking the temporary symbol table, the
Macroassembler checks to see if the symbol is defined in the
current source line. If so, MASM copies that definition into the
temporary symbol table. If the temporary table already defines the
symbol, MASM updates the symbol's definition.

On pass two, the Macroassembler uses its database and the
temporary symbol table to substitute binary code for the symbols in
your source. If the Macroassembler cannot find a symbol's
definition, it returns an error (unless you used the .EXTU
pseudo-op in your source program).

The above outline summarizes a discussion that appears earlier
in this manual. For more information, see "Symbol Interpretation"
in Chapter 3.

Permanent Symbol Table

The permanent symbol table resides in a disk file. It should

contain definitions for all symbols that you use in your program
and that are not defined in either your source code.

In most cases, you use the permanent symbol table we provide
with the Macroassembler program. This file resides in disk file
MASM.PS (or MASM16.PS). The default .PS file is made from four
other files: EBID.SR, ECID.SR, SYSID.SR (SYSID.1l6.SR), and PARU.SR
(PARU.16.SR). EBID.SR and ECID.SR contain definitions for the
l6-bit ECLIPSE computers' assembly language instructions. The
SYSID and PARU files contain operating system call definitions and
user parameter definitions. System calls include ?0PEN, ?READ, and
?TASK; system parameters include ?ISTI and ?TLNK. The AQS

Programmer's Manual describes these symbols in detail.

The Macroassembler uses file MASM.PS (or MASM16.PS) as the
permanent symbol table by default. The following sections of this
chapter explain how to create a new permanent symbol table and how
to specify a table other than MASM.PS (or MASM16.PS) for an
assembly.

8-10 093-000192
Licensed Material - Property of Data General Corporation

—

Building a Permanent Symbol Table

To create a permanent symbol table, you must use the /S
function switch on the assembly command line. This switch directs
the assembler to copy all the definitions in your source module(s)
into the temporary symbol table during pass one. The assembler
then stores the temporary symbol table in disk file MASM.PS (or
MASM16.PS). It first deletes the existing .PS file from your
current directory, if one is present. Thus, at the end of pass
one, the permanent symbol table in MASM.PS (or MASM16.PS) contains
definitions for all the symbols you define in your source
module(s).

The general MASM command for creating a permanent symbol table
is

MASM
XEQ /S sourcefile ,..<nl>
MASM16

where:

sourcefile contains definitions for all the symbols you want in
the permanent symbol table. If you include more than
one source file in an assembly command line, make sure
that all but the last one end with the .EOF pseudo-op;
the last file should end with .END.

To create a permanent symbol table that contains definitions
for all AOS system calls and system parameters, issue the following
command:

MASM
XEQ /S PARU.SR SYSID.SR<nl>
MASM16

Normally, you need not issue this command line since we
provide a copy of this permanent symbol table with the Macroassem-
bler program (in file MASM.PS (or MASM16.PS)).

The Macroassembler places the permanent symbol table in file
MASM.PS (or MASM16.PS), by default. If you want to place the
permanent table in a different file, use both the /S and /PS=
switches in the MASM command line as follows:

MASM
XEQ /S/PS=filename sourcefile ...<nl>
MASM16

093-000192 8-11
Licensed Material - Property of Data General Corporation

where:

filename is the file that will contain the permanent symbol
table

sourcefile contains definitions for all the symbols you want in
the permanent symbol table

The above command line directs the Macroassembler to copy all
the symbol definitions in sourcefile into disk file filename. If
filename exists before the assembly. the Macroassembler deletes
that file before creating your permanent symbol table.

Specifying a Permanent Symbol Table for an Assembly

After you build a permanent symbol table, you may use that
table during the assembly of your source modules. Specify a parti-
cular symbol table file by using the /PS= switch in the MASM
command line. The Macroassembler then uses that permanent symbol
table to resolve the symbols in your source module. For example:

MASM
XEQ /PS=A.PS SOURCEFILE <nl>
MASM16

The Macroassembler uses file A.PS as the permanent symbol
table when resolving symbols in SOURCEFILE (as described earlier in
this chapter).

If you do not use the /PS= switch to specify a permanent
symbol table, the Macroassembler uses file MASM.PS (or MASM16.PS),
if it is available.

Permanent Symbol Table Size

The permanent symbol table may include approximately 8,00010
symbols and their definitions. This figure assumes that you do not
include any macro definition strings. The more macro text you
place in the table, the smaller the amount of space available for
symbol definitions.

Increasing symbol length does not decrease the number of
symbols you may define. The following section describes symbol
length in depth.

Symbol Length
The permanent symbol table specifies how many characters the

Macroassembler should use to resolve the symbols in your source
program. The default value for symbol length is 5 characters.

8-12 093-000192
Licensed Material - Property of Data General Corporation

During assembly. the Macroassembler ignores all excess
characters; they do not generate an error. Thus, the Macroassem—
bler views the following three symbols as identical (if the symbol
length is 5 characters):

LOCAT1 LOCAT2 LOCAT_START

To alter the symbol length for an assembly. include the /8 in
the MASM command line when building your permanent symbol table.
The /8 switch changes the symbol length that the Macroassembler
recognizes from 5 characters to 8 characters. For example:

MASM
XEQ /S/PS=MASM8.PS/8 SOURCEl <nl>
MASM16

This command directs the Macroassembler to create a permanent
symbol table and store it in file MASM8.PS. This table will
contain all the symbol definitions in file SOURCEl and will iden-
tify those symbols according to their first 8 characters. Thus,
each time you specify MASM8.PS as the permanent symbol table, MASM
will resolve symbols according to their first 8 characters. For
example:

MASM
XEQ /PS=MASM8.PS SOURCE2 <nl>
MASM16

This command directs the Macroassembler to use file MASMS8.PS
as the permanent symbol table. The Macroassembler will identify
the symbols in source file SOURCE2 according to their first 8
characters, as specified in the permanent symbol table.

Remember that macro names must still be unique in their first
five characters, even when the /8 switch is used. Also, symbols
other than macro names must not have their first five characters
the same as those of a macro name. The Macroassembler will not
give a warning or error if this restriction is violated.

End of Chapter

093-000192 8-13
Licensed Material - Property of Data General Corporation

Appendix A
ASCII Character Set

To find the octal value of a character, locate the character, and
combine the first two digits at the top of the character’s column
with the third digit in the far left column.

LEGEND:

Character code in decimal
EBCDIC equivalent hexadecimal code

o — G

093-000192

End of Appendix

OCTAL 01_ 02_ 03_ 04_
=5 -
(BACK- D‘l;:E C]’;N SPACE
SPACE)
HT DC1 EM |
(TAB) 1Q 1Y ’
NL DC2 suB B
(NEW
LINE) IR 1Z (QUOTE}
vT DC3 ESC
(ERT. 1S (ESCAPE) #
FF DC4 FS . -
FonM 1T n $ (COMMA! <
.y RT NAK GS .
i (RETURN) U 1] * =
SO SYN RS ‘ R
IN v 11 & (PERIOD) >
Sl ETB us ' ,)
10 w 1— (APOS) / :
OCTAL 11_ 12_ 13- 14_
A
H P X (GRAVE)
[Q Y a
J R z b
K S [c
L T A\ d
M 9]] e
N v l or ~ f ~
(TILDE)
1 DEL
e} W —or _ g e
07 (RusouT)
SD-00217 Character code in octal at top and left of charts. | means CONTROL
—

A-1

Licensed Material - Property of Data General Corporation

AN

Appendix B
Pseudo-Op Summary

The following table lists and describes the AOS MASM and
AOS/VS MASM16 pseudo-ops. Each entry indicates whether a pseudo-op
may function as an assembler directive and/or a value symbol. For

more information,

refer to the following sections of this manual:

* Chapter 7 contains a complete description of each pseudo-op

* Chapter 6 describes the various categories of pseudo-ops

* "Permanent Symbols" and "Pseudo-Ops" in Chapter 2 describe
the properties of pseudo-op mnemonics and also explain the
difference between assembler directives and value symbols

* "“Symbol Interpretation" in Chapter 3 explains how the
Macroassembler resolves the pseudo-ops that appear in your

program
Table B-1. Pseudo-Op Summary
Assembler Value

Pseudo-Op | Directive Symbol Most Common Use

(.) period NO YES Return the value of the current
location counter

«ARGCT NO YES Return the number of arguments
passed to a macro

.ASYM YES NO Define an accumulating symbol

. BLK YES NO Reserve a block of memory loca-
tions

. COMM YES NO Reserve a labeled common area for
intermodule communication

.CSIZ YES NO Reserve an unlabeled common area
for intermodule communication

.DALC YES NO Define an ALC instruction or
expression

(continues)
093-000192 B-1

Licensed Material - Property of Data General Corporation

Table B-1l. Pseudo-Op Summary

Pseudo—-Op

Assembler
Directive

Value

Symbol

Most Common Use

+.DCMR

. DEMR

.DERA

.DEUR

.DFLM

.DFLS

.DIAC

.DICD

-DIMM

.DIO

.DIOA

.DISD

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

Define a commercial memory
reference instruction or expres-
sion

Define an extended memory re-
ference instruction or
expression, without accumulator

Define an extended memory re-
ference instruction that requires
an accumulator

Define an extended user instruc-
tion or expression

Define a floating-point load or
store instruction or expression
that requires an accumulator

Define a floating-point load or
store status instruction or
expression that requires no
accumulator

Define an I/0 instruction requir-
ing an accumulator

Define an instruction requiring
an accumulator and a count

Define an immediate-reference
instruction requiring an accumu-
lator

Define an I/0 instruction that
does not use an accumulator

Define an I/0 instruction that
requires two fields

Define an instruction with source
and destination accumulators and
no skip

B-2

(continued)

093-000192

Licensed Material - Property of Data General Corporation

Table B-~1l. Pseudo-Op Summary

Assembler Value Most Common Use
Pseudo-Op Directive Symbol
.DISS YES NO Define an instruction with source
and destination accumulators with
skip
.DMR YES NO Define a memory reference in-
struction with displacement and
index
«DMRA YES NO Define a memory reference in-
struction with two or three
fields
.DO YES NO Assemble the following source
code a specified number of times
.DUSR YES NO Define a user symbol that will
appear with the instruction
symbols in the cross-reference
listing
.DXOP YES NO Define an instruction with
source, destination, and opera-
tion fields
«EJEC YES NO Begin a new listing page
. END YES NO End-of-program indicator
. ENDC YES NO Define the end of repetitive or
conditional assembly lines
_« ENT YES NO Define one or more program entry
points
« ENTO YES NO Define an overlay entry
.EOF YES NO Explicit end-of-file
« EXTD YES NO Define one or more external
displacement references (external
symbol value is 8 bits or less)
(continued)
093-000192 B-3

Licensed Material - Property of Data General Corporation

Table B-1. Pseudo—Op Summary

Pseudo-Op

Assembler
Directive

Value

Symbol

Most Common Use

« EXTN

«EXTU

«FORC

«GADD

«GLOC

«GOTO

« GREF

«IFE

«IFG

«IFL

«IFN

«LMIT

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

Define one or more external
normal references (external
symbol value is 16 bits or less)

Treat undefined symbols as
external displacements

Force Link to include this
library module in the program
file

Assign an expression value to a
symbol

Initialize data fields relative
to an external symbol

Suppress assembly of source lines
until the specified symbol is
found

Assign an expression value to a
symbol without affecting the sign
bit

Assemble the following source
lines only if the value of the
supplied expression equals zero

Assemble the following source
line only if the value of the
supplied expression exceeds zero

Assemble the following source
lines only if the value of the
supplied expression is less than
zZero

Assemble the following source
lines only if the wvalue of the
supplied expression does not
equal zero

Specifies partial binding of an
object file

B-4

(continued)

093-000192

Licensed Material -~ Property of Data General Corporation

Table B-1l. Pseudo—Op Summary

a—
Assembler Value Most Common Use
Pseudo-Op | Directive Symbol
.LOC YES YES Set the current location counter
. LPOOL YES NO Dump the currently defined
literals into a data block
+«MACRO YES NO Define a macro
-MCALL NO YES Indicate whether a macro has been
called on the current assembly
pass
+NLIT YES NO Assign literals to NREL instead
of ZREL
« NOCON YES YES Enable or suppress the listing of
conditional source lines
«NOLOC YES YES Enable or suppress the listing of
source lines that lack location
fields
o . NOMAC YES YES Enable or suppress the listing of
macro expansions
- NREL YES NO Specify a predefined normal
relocatable memory partition
.OB YES NO Name an object file
.PASS NO YES Return a value corresponding to
the current assembly pass number
»PENT YES NO Define a procedure entry
.POP YES YES Return the value and relocation
property of the last expression
pushed onto the assembler stack
and remove (pop) this information
from the stack
(continued)
,”’"\
093-000192 B-5

Licensed Material - Property of Data General Corporation

Table B-1l. Pseudo-Op Summary

Assembler Value Most Common Use

Pseudo-Op | Directive Symbol

. PTARG YES NO Generate a procedure description
for ?RCALL, ?KCALL, or ?RCHAIN

.PUSH YES NO Push the value and relocation
property of an expression onto
the assembler stack

« RDX YES YES Set the radix (base) for numeric
input conversion

« RDXO YES YES Set the radix (base) for numeric
output conversion

«REV YES NO Assign two revision-level numbers
to a program file

.TITL YES NO Assign a name to a listing header

.TOP NO YES Returns the value and relocation
property of the last expression
pushed onto the stack; does not
pop the information from the
stack

. TSK YES NO Specify the number of tasks in
your program

. TXT YES NO Store the octal equivalent of an
ASCII text string in consecutive
memory words

«TXTE YES NO Set the leftmost bit for even
byte parity

« TXTF YES NO Set the leftmost bit to one
unconditionally

. TXTM YES YES Specify left/right or right/left
bytepacking within words

« TXTN YES YES Terminate an even length byte
string with no null bytes or two
null bytes

(continued)
B-6 093-000192

Licensed Material - Property of Data General Corporation

Table B-1l. Pseudo-Op Summary

Assembler Value Most Common Use
Pseudo—-0p Directive Symbol
« TXTO YES NO Set the leftmost bit for odd byte
parity
« XPNG YES NO Delete symbol and macro defini-
tions from the current assembly
+ZREL YES NO Specify the predefined lower page
zero relocatable memory partition
(concluded)
End of Appendix
093-000192 B-7

Licensed Material - Property of Data General Corporation

I

Appendix C
Assembly Error Codes

Macroassembler error messages appear as single letter codes in
the first three character positions of a listing line. The first
error code appears in character position three of the line where
the error occurred. If there is a second error, the code is output
in position two. The error code for a third error appears as the
first character of the listing line.

Assembler errors are output as part of the assembly listing.
They are also sent to the output file. If the listing is
suppressed, the error listing is sent to the output file only. If
there is a listing device, output of errors to the output file can
be suppressed. Certain errors encountered on the first pass will
be output since the Macroassembler may not detect them on its
second pass.

The list of Macroassembler error codes is as follows:

Address error

Bad character

Macro error

Radix error

Equivalence error

Format error

Global error

Parity error on input
Conditional or repetitive assembly error
Location counter error
Multiply-defined symbol error
Number error,

Overflow error or stack error
Phase error

Questionable line

Relocation error

Undefined symbol error
Variable label error

Text error

X<aoawomwozZErRHOREU QW P

We describe each of these error codes in the following
sections. Each section has a sample of assembly-language source
code that would cause the error. These samples may help you find
an error in your source code. However, there is no way to pinpoint
all possible causes of assembly errors.

093-000192 Cc-1
Licensed Material - Property of Data General Corporation

Addressing Error (A)

An addressing (A) error indicates an illegal address in a
memory reference instruction (MRI). For example:

1. A page zero relocatable instruction references a normal
relocatable (NREL) address. For example:

.NREL 0
G: 10 +G has a NREL address
«ZREL
STA 0,G ;G cannot be used in a ZREL instruction

2. An NREL address references an address outside the location
counter's relative address range:

(.-200< displacement < .+177). For example:

« NREL
LDA 0,Y ;Y is outside the instruction's range
.LOC .+416

Y: 2

Bad Character (B)

Error code B indicates an illegal character in a symbol. The
line containing a symbol that has an illegal character will be
flagged with a B. A bad character error often causes other errors.
For example:

« NREL
<A%: LDA 1,23 ;% in label symbol is illegal
Macro Error (C)

The macro error (C) occurs under the following conditions:

1. If you try to continue the definition of a macro when it is
not the last macro defined. For example:

Cc-2 093-000192
Licensed Material - Property of Data General Corporation

«MACROOA
o —definition%

«MACROOA
Macro-definition$:Legal continuation

. MACROOB
macro-definition%

-MACROOA :Illegal to continue any
;except macro B

2. If a macro exhausts the Macroassembler's working space.
However, this should only occur if the macro definition
causes endless recursion.

3. If more than 6333 arguments are specified.

4., If you try to build a permanent symbol table (MASM.PS) with

an existing MASM.PS in your directory, or on your
searchlist.

Radix (D)
Error code D occurs on a .RDX or .RDXO pseudo-op:

1. when .RDX contains an expression that is not in the range
2-20;

2. or when .RDXO contains an expression that is not in the
range 8-20; ‘

3. or when you used a digit that is not within the current
input radix.

For example:

. RDX 4%6 ;Illegal expression (out-of range)

« END

«RDX 2
B: 35 ;B is outside the current radix
093-000192 c-3

Licensed Material - Property of Data General Corporation

Equivalence Error (E)

Error code E occurs when an equivalence line contains an
undefined symbol on the righthand side of the equals sign. This
error may occur on pass one, before the symbol on the righthand
side has been defined. It can occur on pass two if the symbol is
never defined. For example:

A=B ;Pass one: B is undefined

« NREL

A=B ;Pass two: B is still undefined
« END

Format Error (F)

A format (F) error results from any attempt to use a format
that is not legal for the type of line. The format error often
occurs in conjunction with other errors.

When a format error occurs in an instruction, the code genera-

ted by the instruction reflects only those fields assembled before
the error was detected. For example:

ADD 2 ;:Not enough operands

STA 0,10,3,SNC ;Too many operands and wrong
;operand for instruction type

+ZREL-1 7ZREL cannot have an argument

.DUSR C = DIAS 0,PTR ;Attempt to give an
;argument to a symbol
;defined in a .DUSR pseudo-op

External/Internal Symbol Error (G)

An external/internal symbol error occurs when there is an

error in the declaration of an external or entry symbol. For
example:

. ENT HH ;HH is not defined
- END
AA: ;AA is an entry in a program in which
- EXTN AA ;the symbol is declared as an external
« END
C-4 093-000192

Licensed Material - Property of Data General Corporation

Input (Parity) Error (1)

An input parity (I) error occurs when an input character does
not have even parity. The Macroassembler substitutes a back slash
(\) for any incorrect character. It also flags the line containing
the error with an I.

Conditional Assembly Error (K)

A conditional assembly (K) error occurs when an .ENDC
pseudo-op is not preceded by a .DO or .IFX pseudo-op. For example:

.DO 2

« ENDC
« ENDC ;This .ENDC does not have a corresponding .DO
;or IFx pseudo-op

Location Error (L)

The location (L) error code occurs when the Macroassembler
finds an error that affects the location counter. For example:

1. The expression in a .LOC evaluates to less than zero, or
cannot be evaluated on the Macroassembler's first pass. If
the expression is outside the range of locations or cannot
be evaluated, the .LOC is ignored, and the location counter
is unchanged.

. LOC -1 ;Illegal expression

; (Less than zero)

2. The expression in a .BLK statement cannot be evaluated on
the first pass of the Macroassembler, or its value, when
added to the current value of the program location counter,
is less than zero. .If an L error occurs, the .BLK state-
ment is ignored and the location counter is changed.

A 0
+BLK .+100

Multiple Definition Error (M)

The multiple definition (M) code flags a multiply-defined
symbol. For example, a symbol that appears as a label cannot be
redefined as another unique label. Any multiply-defined symbol
will be flagged with an M each time the symbol appears. For
example:

093-000192 C-5
Licensed Material - Property of Data General Corporation

« NREL
A: 1 ;A cannot be redefined
The second definition of A will also be flagged as a phase
error (P) on the second assembler pass (see Phase Error).
Number Error (N)
The number (N) code is issued when a number exceeds the proper
storage limitations for the type of number. The N error occurs

under the following conditions:

l. An integer is greater than or egual to 216,
The number is evaluated modulo 216, For example:

.RDX 10
65539 ;Integer value is out-of-range

2., A double-precision integer is greater than or equal to 232,
The number is evaluated modulo 232,

3. A floating point number is larger than 7.2%1075,

Field Overflow Error (O)

A field overflow (0) error occurs when:
1. variable stack space is exceeded;
2. a .TOP or .POP is given with no previous .PUSH; or

3. when an instruction operand is not within the required
limits (e.g., 0-3 for an accumulator, 0-7 for a skip field,
etc). When overflow occurs in an instruction field, such
as an accumulator field, the field will remain unchanged.

For example:

LDA 5,.-3 ;5 is illegal in the
sinstruction's accumulator field

.DIAC R=14000
R1

Phase Error (P)

A phase (P) error occurs when the Macroassembler finds, on
pass two, an unexpected difference from the source program scan on

pass one. For example, a symbol defined on the first pass that has

C-6 093-000192
Licensed Material - Property of Data General Corporation

a different value on the second pass will cause a phase error. If
(as in the following example) a symbol is multiply-defined, the M
error flags each statement containing the symbol. The phase error
flags the second and any subsequent attempt to redefine the symbol.
For example:

« NREL
B: 0
B: 0 sThis line will receive a P and an M

serror flag

Questionable Line (Q)
A questionable (Q) error occurs when you have:
1. used a # or @ atom improperly,
2. used a ZREL value where an absolute value is expected, or

3. used an instruction that may cause a skip immediately
before a two-word instruction.

For example:

ADD 0,%#2 ;ALC instruction with a # atom
;requires a skip mnemonic
«2REL
FLD: .BLK 10
« NREL
LDA 0,FLD,2 ;Assembler expects an absolute value
« END ;for FLD

MOV 1,1,SNR ;Instruction with a skip field
ELDA 0,SYMB ;precedes a two-word instruction

Mov# 0,1 ;The instruction's no load bit is
;set, but no skip condition is specified

Relocation Error (R)

The relocation (R) error occurs when an expression cannot be
evaluated to a legal relocation type (absolute, relocatable, or
byte-relocatable as described in Chapter 3). A relocation error
also occurs when an expression mixes ZREL and unshared NREL
symbols, or NREL and shared ZREL symbols. For example:

093-000192 c-7
Licensed Material - Property of Data General Corporation

« NREL

E: 10 ;Contents absolute.
E+E ;Contents NREL byte.
E+E+E ;Illegal--contents not absolute, relocatable,

;or byte relocatable.

Undefined Symbol Error (U)

The undefined symbol (U) error occurs on pass two, when the
assembler encounters a symbol whose value was not known on pass
one. The error also occurs on pass one when the definition of a
symbol (by equivalence) depends upon another symbol whose value is
unknown at that point. For example:

LDA 2,B ;Causes a U error if B is undefined

See also the example given for equivalence error E.

Variable Label Error (V)

A variable label (V) error occurs if anything other than a
symbol follows the .GOTO pseudo-op. For example:

.GOTO 14 ;14 is not a symbol

Text Error (X)

An error occurring in a string is flagged as a text error (X).
A text error occurs if the expression delimiters < and > within a
string do not enclose a recognizable arithmetic or logical
expression. Relational expressions cannot be used within text
strings. For example:
« TXT #<X+ Y># ;Spaces are illegal in expressions
« TXT #<+># ;Expressions must have operands

« TXT #<X=>Y># ;Relational operator (=) is illegal

End of Appendix

Cc-8 093-000192
Licensed Material - Property of Data General Corporation

Appendix D
Assembling 16-Bit Programs with
AOS/VS MASM

In Chapter 1, we described how you may assemble, link, and run
l16-bit ECLIPSE assembly language programs on 32-bit ECLIPSE
computers. The AOS/VS MASM16 utility assembles your AOS source
files to produce AOS/VS-compatible object files. However, you must
use the A0S/VS Macroassembler if you want to take full advantage of
the 32-bit ECLIPSE computer's performance. Therefore, you may want
to convert your 1l6-bit programs into a format that is compatible
with the A0S/VS Macroassembler. This appendix outlines some of the
conventions you should be aware of when you convert 16-bit
programs.

This information is provided as a programming aid. You should
refer to the AOS/VS Macroassembler Reference Manual for more
information about AOS/VS MASM conventdons. The ECLIPSE MV/8000°

Principles of Operation manual describes the ECLIPSE MV/8000

instruction set and programming environment. It also explains the
differences between the 16-bit and 32-bit instruction sets.

AOS-Only Pseudo-Ops

You should not use any of the following AOS MASM and AOS/VS
MASM16 pseudo-ops if you want to assemble your program with the
AOS/VS Macroassembler. The AOS/VS Macroassembler will generate an
error if it detects any of these pseudo-ops.

.ASYM .DIMM .GADD
.DALC .DIO .GOTO
.DCMR .DIOA .GREF
.DEMR .DISD .LMIT
.DERA .DISS .LPOOL
.DEUR .DMR .NLIT
.DFLM .DMRA .PENT
.DFLS .DXOP .PTARG
.DIAC .ENTO .TOP
.DICD .EXTU

Pseudo-Op Interpretation

The AOS and AOS/VS Macroassemblers interpret some pseudo-ops
differently. The following list outlines these differences.

* The .LOC pseudo-op is interpreted differently when it is
pushed and subsequently popped from the stack. AOS MASM
and AOS/VS MASM16 returns the location counter's relocation

093-000192 D-1
Licensed Material - Property of Data General Corporation

base when .LOC is popped from the stack. The AOS/VS
Macroassembler returns both the value and relocation base
of the location counter.

* Arguments to the .NREL pseudo-op are treated differently.
The AOS Macroassembler recognizes an .NREL expression as
either zero or non-zero. The AOS/VS Macroassembler will
generate an error if an .NREL expression does not evaluate
to 0, 1, 4, 5, 6, or 7.

Macros

The AOS and AOS/VS Macroassemblers handle macros differently
in several areas. Refer to Chapter 5 for a description of the AOS
Macroassembler's macro features.

* You cannot pass a carriage return, form feed, or NEW LINE
character as arguments to an AOS MASM or AOS/VS MASM16
macro. AOS/VS MASM adds the space, horizontal tab, comma,
left bracket ([), and right bracket (1) to this 1list of
restricted characters.

* The AOS/VS Macroassembler requires that the macro defini-
tion terminator (the % character) be the only character on
the last line of a macro definition.

* AOS MASM and AOS/VS MASM16 allows you to use the dollar
sign ($) character to generate unique labels within macros.
The AOS/VS Macroassembler does not support this feature.

* The AOS/VS Macroassembler does not allow you to stop and
restart a macro's definition. The AO0S/VS Macroassembler
generates an error if you use the following construction.

«MACRO TEST ;DEFINE MACRO CALLED TEST

10

20

% ;TERMINATE TEST'S DEFINITION

LDA 0,0

ADD 0,1

«MACRO TEST ;CONTINUE TEST'S DEFINITION

30 ; (ILLEGAL FOR AOS/VS MASM PROGRAMS)
40

%

Double-Precision Indicator (D)

AOS MASM and AOS/VS MASM16 uses D to indicate that a data item
is to be assembled into two, 16-bit words (a double-precision
integer). The AOS/VS Macroassembler assembles data into two 16-bit
words by default. It does not recognize D as a double-precision
indicator. The AOS/VS Macroassembler provides pseudo-ops that

D-2 093-000192
Licensed Material - Property of Data General Corporation

allow you to store data in single (16 bit) words or double (32 bit)
words. See the description of the .ENABLE pseudo-op in Chapter 7
of the AOS/VS Macroassembler Reference Manual for more information.

Literal Values in Memory Reference Instructions

The 32-bit instruction set has provisions for placing immedi-
ate data in instructions. Therefore, the AOS/VS Macroassembler
does not support the use of literals in memory reference
instructions.

Index Mode Default Conditions

The AOS/VS Macroassembler defaults to program counter relative
addressing (index value of 1) if an instruction has no index mode
specified. AOS/VS MASM allows you to change this default setting
with the .ENABLE pseudo-op.

CL!I Command-Line Switches

Some of the AOS and AOS/VS MASM CLI function and argument
switches are different. Therefore, you may have to modify your AOS
CLI macros before you use them with the A0S/VS Macroassembler.

End of Appendix

093-000192 D-3
Licensed Material - Property of Data General Corporation

Index

. 7-3 LIFN 7-71
+LMIT 7-73
2-37 .LOC 7-75
.LPOOL 7-77
*% 2-37, 4-7 +MACRO 7-79
+MCALL 7-81
+ARGCT 7-~4 +NLIT 7-83
+ASYM 7-6 .NOCON 7-84
.BLK 7-=7 .NOLOC 7-86
.COMM 7-8 .NOMAC 7-88
.CSIz 7-10 .NREL 7-90
.DALC 7-11 .0B 7-92
.DCMR 7-13 +PASS 7-94
.DEMR 7-15 .PENT 7-95
».DERA 7-17 .POP 7-97
.DEUR 7-19 .PTARG 7-98
.DFLM 7-21 .PUSH 7-99
.DFLS 7-23 .RDX 7-100
«.DIAC 7-25 .RDXO 7-103
.DICD 7-26 +REV 7-105
.DIMM 7-28 .TITL 7-107
.DIO 7-30 .TOP 7-108
.DIOA 7-32 .TSK 7-109
.DISD 7-34 LTXT 7-110
.DISS 7-36 LTXTE 7-110
.DMR 7-38 LTXTF 7-110
.DMRA 7-40 JTXTM 7-113
DO 7-42 LTXTN 7-115
.DUSR 7-45 .TXTO 7-110
.DXOP 7-47 +XPNG 7-117
.EJEC 7-49 .ZREL 7-119
.END 7-51
.ENDC 7-52 @ 2-36
+ENT 7-54 @oUTPUT 1-10
.EOF 7-58
.EXTN 7-62 A
+EXTU 7-64
+FORC 7-65
.GADD 7-66 ABS 7-119
.GLOC 7-67 Absolute 3-29
.GOTO 7-69 addresses 3-20
.GREF 7-70 addressing 3-29
JIFE 7-71 expression 3-20
. IFG 7-71 partition 3-12
JIFL 7-71 values 3-20
093-000192 Index-1

Licensed Material - Property of Data General Corporation

AC relative addressing 3-29
Address space, logical 3-9
Addresses

absolute 3-20

relocatable 7-119
Addressing 3-29

absolute 3-29

AC relative 3-29
AOS/VS MASMlée 1-4
Apostrophe 2-15
Argument
formal 5-4
index 3-29
mode 3-29
null 5-8
Argument switch 8-2
ASCII character set A-1
Assembler
directives 2-22, 2-45, 6-1
stack 7-97, 7-99
value symbols 6-1
Assembly
conditional 6-3, 7-52, 7-71
error codes C-1
listing 4-2
listing sample 4-3
listings, macro expansion

in 5-10
pass 7-94
process 3-1
repetitive 6-3, 7-42, 7-52
Assembly language
instructions 2-42

Assigning locations 3-9
Assignment statement 2-47
Asterisks (**) 2-37, 4-7
At sign (@) 2-36

Atom, definition of 2-6

Bases,relocation 3-15, 3-18, 3-20

Binary operators 2-30
Bit wvi

fields vi

least significant vi

most significant vi
Box wvi, 2-8
Byte-pointers 3-24
Byte-relocation 3-24

Index-2

C

Carriage Return 2-7

Character set 2-1

Coding aids 7-1

Comments 2-41

Common area 7-8, 7-10

Conditional assembly 6-3,
7-52, 7-71

Constants, single-precision

floating-point 2-16

Cross~reference listing 4-8

Cross-referencing 7-45
Current location counter

D
Data
fields 7-67
statement 2-40

Debugging 1-2
Delete symbol and macro
definitions 7-117
Delimiters 2-7
Digit representation
Displacement 3-29
external 7-60

2-10

End-0f-File 7-58

End-of-line characters 2-

End-Of-Program indicator
Error codes C-1
Error listing 4-10
Exponent 2-17
Expression 2-28
absolute 3-21
byte-relocatable
definition of 2-7
relocatable 3-23
External
displacement 7-60
entry 7-54
normal references

3-24

7-62

093-000192

Licensed Material - Property of Data General Corporation

7-3

7
7-51

o~

—

F

File termination 6-3

Filename extensions 8-6
Filenames 8-6

Floating-point constants 2-16
Force link a module 7-65

" Form feed 2-7

Formal arguments 5-4
Function switch 8-1

G

General references 7-1
Generated numbers and
symbols 5-1, 5-20

Index 3-29
Indirect addressing bit 2-36
Input, numeric 7-100
Instruction symbols 2-24
redefining 2-25
Integer—generating
formats 2-14
Integers
double-precision 2-12
single-precision 2-9
Intermodule communication 6-5

L

Labels 2-39
generated 5-19
Least significant bit vi
Library 7-65
Link utility 3-17
Linking 1-2
Listing 7-84, 7-88
assembly 4-2
control 6-9
control pseudo-ops 4-7
error 4-10
page 7-49
Literals 3-34, 7-77, 7-83
Location counter 3-10, 6-2,
7-75

093-000192

Logical address space 3-9

Loops and conditionals in
macros 5-12

Lower page zero 3-9, 7-119

Machine language 1-1
MaCl’.‘O 2"'43' 5"1' 6-5' 7—4'
7-79
calls 5-5
definition of 5-1
examples 5-14
expanding 3-8
expansion in assembly
listings 5-10
loops and conditionals
in 5-12
null arguments 5-8
number of arguments 5-5
processing 3-8
special characters 5-8
Macroassembler
command line 8-2
input to 2-1
introduction to 1-1
operating procedures 8-1
output from 4-1
simplest use of 1-7
symbol tables 8-9
Mantissa 2-17
MASM16 1-4
Memory 3-9
assigning locations 3-9
management 6-2
normal relocatable 3-9
page zero relocatable 3-9
partition 7-90, 7-119
reserve a block of 7-7
Memory reference
instruction 3-29
Mode 3-29
Most significant bit vi
MRI, see Memory reference
instruction

Index-3

Licensed Material - Property of Data General Corporation

N Pseudo-ops 2-22, 2-45, 7-1
conditional assembly 6-3

NEW LINE 2-7 descriptions 7-1
No-load bit 2-37 file termination 6-3
Normal, relocation 7-90 general references 7-1
Normalized 2-17 intermodule
NREL partition 3-14, 7-90 communication 6-5
Null listing control 4-7, 6-9
arguments 5-8 location counter 6-2
word 7-111 macro-related 5-12
Number sign (#) 2-37 macros 6-5
Numbers 2-9 memory management 6-2
Numeric radix control 6-11
input 7-100 repetitive assembly 6-3
output 7-103 stack control 6-10
symbol deletion 6-16
(0] symbol table 6-12

text strings 6-11

Object file 1-2, 4-1, 7-92 types of 6-1
Operating procedures 8-1 Q
macroassembler 8-1
Operator 2-29
B 2-33
binary 2-29
bit alignment 2-32 R
logical 2-31
priority of 2-34
relational 2-31
unary 2-30
Output, numeric 7-103

Quotation mark 2-14

Radix 7-~100, 7-103
control 6-11
Redefining instruction
symbols 2-25
Relocatability 3-15
Relocatable addresses 7-119

P Relocation
bases 3-18, 3-20
Pages 3-9 normal 7-90
Partition 3-10 symbols 3-18
absolute 3-12 Repetitive assembly 6-3, 6-9,
NREL 7-90 7-42, 7-52
NREL shared 3-14 Revision level 7-105
NREL unshared 3-14
ZREL 3-14, 7-119 S

PC relative addressing 3-29
Permanent symbol table 8-10

building 8-11 Sample assembly listing 4-3
size 8-12 Single-precision floating-point
Permanent symbols 2-22 constants 2-16
Pseudo-op Special
definition of 1-7 atoms 2-36
summary B-1 characters 5-8
Index-4 093-000192

Licensed Material - Property of Data General Corporation

Stack 7-97, 7-99
control 6-10
Statement
body 2-41
components 2-6
format 2-38

types 2-41
Strings
text 6-11, 7-110, 7-113,
7-115
Switch

argument 8-2
function 8-2

Symbol 2-19
deletion 6-16
global 2-27
instruction 2-24
interpretation 3-1
length 8-12
local 2-27
macro 2-26
names 2-20
redefining, macro 2-26
redefining, user 2-27
relocation 3-18
reserved 2-27
resolution 8-9
semipermanent 2-24
types 2-21
user 2-27

Symbol table 8-9
building a permanent 8-11
macroassembler 8-9

Symbol table pseudo-op,

format 6-15
Syntax checking 3-4

093-000192

System calls 2-43, 5-18
expanding 3-8
processing 3-8

T

Table

building a permanent
symbol 8-11

macroassembler symbol 8-9
permanent symbol 3-2
temporary symbol 3-2

Tasks 7-109

Terminators 2-7

Text strings 6-11, 7-110,

7-113, 7-115

U

Unary operators 2-30
User symbol 7-45

\'/

Value symbol 2-23
Values, absolute 3-20

w

Word, 16-bit vi

y 4

ZREL partition 3-14, 7-90

Index-5

Licensed Material - Property of Data General Corporation

——

CUT ALONG DOTTED LINE

¢vDataGeneral

Installation Membership Form

Name Position Date
Company, Organization or School

Address City State Zip
Telephone: Area Code No. Ext.

0 OEM

O End User

[0 System House
O Government

Qty. Installed | Qty. On Order

O AQS O RDOS
O AOS/VS O DOS
0O AOS/RT32 [RTOS
O MP/OS O Other
0O MP/AOS
Specify
J ALGOL O BASIC
- [0 DG/L O Assembler
J COBOL [0 FORTRAN 77
[Interactive 0 FORTRAN 5
COBOL [0 RPGII
O PASCAL (O pL/1
O Business [APL
BASIC [Other
Specify

O Batch (Central)
[J Batch (Via RJE)
[J On-Line Interactive
{3 HASP O X.25
O Haspll O sAaM
0O RJES80O 0O caMm
[0 RCX 70 [XODIAC™
0O RSTCP [0 DG/SNA
O 4025 J 3270
[J Other
Specify
O

From whom was your machine(s)

purchased?

[J Data General Corp.
O Other
Specify

Are you interested in joining a
special interest or regional
Data General Users Group?

O

€»DataGeneral

Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911

FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

CUT ALONG DOTTED LINE

ccosescescssaccnnarene -—-
csecsew bt i A el L L L L Xk h T vy iy S S U S U

¢vDataGeneral

TP

TIPS ORDER FORM
Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE Z1p STATE ZIP
ATTN: ATTN:
QTY | MODEL # DESCRIPTION ggg: Iﬁlxgg gngég‘
(Additional items can be included on second order form) [Minimum order is $50.00) TOTAL
TaxExempt#____ Sales Tax
or Sales Tax (if applicable) —
Shipping
TOTAL
METHOD OF PAYMENT SHIP VIA
O Check or money order enclosed O DGC will select best way (U.P.S or Postal)
For orders less than $100.00

O Chargemy [Visa [] MasterCard
Acc'tNo.___ Expiration Date

O Purchase Order Number:

O Other:
O U.P.S. Blue Label
O Air Freight
O Other

Person to contact about this order

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Mail Orders to:
Data General Corporation
Attn: Educational Services/TIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366-8911 ext. 4032

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

Phone Extension
Buyer’s Authorized Signature Date
(agrees to terms & conditions on reverse side)
Title
DGC Sales Representative (If Known) Badge #

012-1780

ecngiee?|

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”’) provides its Technical Information and Publications Service (TIPS} solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer’s order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY ‘
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

¢y DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service’s Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked “subtotal”
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS

Educational Services - M.S. F019
Data General Corporation

4400 Computer Drive

Westboro, MA 01580

8. We'll take care of the rest!

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual No.

Who are you? OEDP Manager OAnalyst/Programmer OOther
[ISenior Systems Analyst OOperator

What programming language(s) do you use?

How do you use this manual? (List in order: 1 = Primary Use)

— Introduction to the product —— Tutorial Text — Other
— Reference — Operating Guide

Yes Somewhat
About the manual: Is it easy to read?
Is it easy to understand? O
Are the topics logically organized? O
Is the technical information accurate? O
0O
O

O

Can you easily find what you want?
Does it tell you everything you need to know
Do the illustrations help you? O

ooooooo
oooooooZ

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

S31V.iS a3dliNn
JHLNI
QITUVYN I
AHVYSS303N
3OV.ISOd ON

134-664

L8S LO s}asnydessepy ‘YSnolsoqisam
aauq 13ndwo) ooy
LLL-T *S°W ‘uonejudwndoq 13sn

[eloURT)ETE(] “D

33SS34HAQY A8 AIVd 38 1TIM 3OVLSOd

Z.L10 VN 'OHOBHLNOS 9¢ ‘'ON 1INd3d SSVI0 LSHid

1VIN Ald3d SS3INISNE

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual Neo.

Who are you? COEDP Manager O Analyst/Programmer [JOther
OSenior Systems Analyst O Operator

What programming language(s) do you use?

How do you use this manual? (List in order: I = Primary Use)

_ Introduction to the product — Tutorial Text ___ Other
— Reference —— Operating Guide

Yes Somewhat
About the manual: Is it easy to read?
Is it easy to understand? 0
Are the topics logically organized? 0
Is the technical information accurate? O
O
O

0

Can you easily find what you want?
Does it tell you everything you need to know
Do the illustrations help you? O

ooooooo
ooooooo#

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

S31vLS a3lINn
JHL NI
a3NvIN 3l
AYVSS303N
3OVLISOd ON

134-664

1L8S L0 sHasnydessew ‘y3nosoqisam
aAuQ 43ndwo) govd
LLL-] 'S'W ‘uonejuawndo(13sM)

[eXoURTyeTe(] 4)

33SS34HAAY A8 4IVd 38 11IM 3DV1SOd

CLL10 'YW 'OHOEHLNOS 92 'ON 1iWHd3d SSV10 1SHld

1VIN Ald3d SS3INISNG

.!‘)

et (T

DDDDDDDDDDD

