Advanced Operating
System
(AOS)
Shared Library
Builder
User’s Manual

093-000191-02

Advanced Operating
System
(AOS)
Shared Library
Builder
User’s Manual

093-000191-02

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

rdering No. 093-000191
©Data General Corporation, 1976, 1977, 1978
All Rights Reserved
Printed in the United States of America
Revision 02, June 1978
Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Advanced Operating System
(AOS)
Shared Library Builder
User’s Manual
093-000191

Revision History:

Original Release - April 1976
First Revision - April 1977
Second Revision - June 1978

A vertical bar or an asterisk in the margin of a page indicates substantive
change or deletion, respectively, from revision 01.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOURI INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA microNOVA

ECLIPSE NOVADISC

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Contents

Chapter 1 - Introduction to the Shared Library Builder

Terms and Conventions

..................................... 1-1
SharedRoutines 1-1
Chapter 2 - How to Operate the Shared Library Builder
Operating Procedures 2-1
ErrorMessages 2-1
Example of SLBOperation 2-1
Appendix A - Internal Shared Library Structure
Shared Library Headers. A-1

093-000191-02 iii Contents

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1 |
Introduction to the Shared Library Builder

Terms and Conventions

The Shared Library Builder (SLB) accepts shared routine
program files and forms shared libraries from them.
The unqualified term *‘library” in this manual refers to
shared libraries only.

Shared libraries group routines so that several different
programs, running in different processes, can use
them. Because the system needs only one copy of a
shared routine in physical memory for several
processes to share it, memory space is saved.

A number from 0 through 63 is assigned to each library
in the system; library numbers 0 and 1 are reserved for
system shared libraries. Two or more libraries in the
same directory can have the same number as long as
each program uses only one of them. The system
differentiates between libraries with the same number
by their unique names; a program file using a library
name stores it in that program’s symbol file.

Each shared library consists of a series of shared
routines preceded by a single shared library block header,
which the SLB constructs when it builds a shared
library. In most cases you will never need to be aware of
the header or its structure. Header structure is
described in Appendix A.

Unless noted otherwise, all numbers used in this
publication are decimal except core addresses, which
are octal values.

Shared Routines

Shared routines are always written to be reentrant, and
usually they are position-independent. A shared
routine can be written which is position-dependent only
if it .vill be bound into a specific area in the program file
(Binder switch /B) and if care is taken to ensure that all
absolute addresses are maintained consistently.
Designing shared routines to be position-independent,

093-000191-02

1-1

and allowing the Binder to relocate them wherever
required during the execution of the program, does
away with these restrictions.

Discussions of shared routines in the remainder of this
manual presume position-independence. Binder
function switch /M specifies the number of 1K blocks
which will be reserved as a single shared area for use by
all shared routines.

Shared routines are loaded using one of three
generalized procedure calls: ?RCALL, ?KCALL, and
?RCHAIN. Since generalized procedures can be
written independently of the medium where they will
ultimately reside, the Binder may change certain
procedure calls into EJSR instructions. This would
occur, for example, when a procedure call is made to a
shared routine bound into the permanent root context.
For more information on general procedure
management and shared routines, consult Chapter 3 of
the AOS Programmer’s Manual.

In summary, the sequence of operations you must
follow to build and use a shared library is as follows:

1) Design and prepare (using SPEED) one or more
shared routines; these must be reentrant, usually are
dynamically relocatable, must be shared code and
will occupy one or more 1024-word pages. Define
entry points in these routines with the .PENT
pseudo-op (if you are using the Macroassembler).

2) Assemble the routines (using MASM).

3) Bind these routines into one or more shared routine
program files (using the Binder with the /S function
switch).

4) Use the SLB to build a shared library containing one
or more of these routines.

Shared Routines

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 2 describes SLB operation.
Having built one or more libraries, you then

1) Write a program which calls these routines (issuing
JRCALL, ?KCALL, or ?RCHAIN). The Binder
may change ?KCALL and ?RCALL calls into EJSR
instructions, speeding up access to the shared
routine.

2) Assemble the program using MASM.
3) Bind the program with the shared library. Use Binder

argument switch /M to reserve shared code area, /B
to bind some or all shared routines in a library into

Licensed Material - Property of Data General Corporation

Note that you can build a library having one or more
routines that call other routines residing in as yet
unbuilt libraries.

Shared
Library 1

Shared
Library 2

Shared
Library 3

the root (transforming ?RCALLs and ?KCALLs SD-00295
into EJSRs), and /X to exclude certain shared
routines from being bound into the root. Figure 1-1. Inter-Library References
4) Execute your program.
End of Chapter

1-2 093-000191-02

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 2
How to Operate the Shared Library Builder

Operating Procedures

Use the CLI to issue SLB commands. After each CLI
command to the Shared Library Builder, SLB will
search for argument program files bearing the
extension ‘*“.PR”’ (even if you omitted this extension in
routine names). Likewise, SLB will always produce a
shared library with the extension *“.SL"’.

The format of the SLB command is:

XEQ SLB/O=output-library-name library-number
input...

where: inputis the name of one or more shared routine
program files with the extension ‘“.PR"’,

library number is a decimal integer from 0
through 63 that you want to assign to the new
shared library. (Library numbers 0 and 1 are
reserved for two system libraries.)

output library nameis the name that will be given
to the new shared library. SLB will append the
extension ‘*.SL"’ to this name.

You must supply an output library name as part of the
/0 keyword function switch, since there is no default
output filename.

You can specify an output listing file or device to
receive input names and other SLB information. To
name a listing file or device, use either a simple or
keyword function switch:

/L

or

/L=filename

/L selects the already-specified current listing file.

/L=filename specifies the listing file filename in place
of the current listing file.

093-000191-02

Error Messages

SLB may output certain error messages during its
execution. These messages always go to the current
CLT output file. A list of SLB error messages and their
meanings follows:

ILLEGAL LIBRARY NUMBER - The library number
you specified in the SLB command line is outside the
range 0-63 inclusive.

INSUFFICIENT MEMORY - There is not enough
memory available for the SLB to run.

NO CURRENT LIST FILE - You used the current
listing file switch in the SLB command line
(“*SLB/L’’), but there is no current list file specified to
the CLI at this time.

NO OUTPUT FILE SPECIFIED - You did not specify
the name of the output library in the SLB command
line.

Example of SLB Operation

In the following example you wish to create a shared
library named ““TEST.SL>’ that contains three shared
routines entitled “T1‘, ““T2”’, and “‘T3". There are
three steps you must follow:

1) Assemble T1, T2, and T3;
2) Bind T1, T2, and T3;
3) Execute SLB.

To assemble the three shared routines, give the three
MASM commands:

XEQ MASM/L=@LPT T1)
XEQ MASM/L=@LPT T2)
XEQ MASM/L=@LPT T3)

MASM creates the three output listings shown in
Figure 2-1.

Example of SLB Operation

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

x%x@00008 TOTAL ERRORS,

*xx00000 TOTAL ERRORS,

*x%x00000 TOTAL ERRORS,

Q0@1 T1 AQS MASM REV v@,.00 14837:47 12/711/77

LTITLE T

02 000001 «NREL 1

03 «PENT T1A.T1B

] +EXTN T3A

vs

06 000V0010VVV34S T1A: 345

©v7 00001.000000% T3A

08 000021000123 T1iB: 123

29 «END

@0000 PASS 1 ERRORS

2001 T2 A0S MASM REV 80,00 14338217 12/11/77
LTITLE T2

02 000001 «NREL 1

03 +PENT TeA T28B

04

0S 000001012345 T2A: 12345

06 000011002001 .BLK 2001

@7 020021000654 T28: 654

w8 .END

000C0 PASS | ERRORS

0001 T3 A0S MASM REV 00,00 14:38346 12711777
02 000001 LTITLE T3

03 «NREL 1

e4 «PENT T3A

06 00000!000234 T3A: 234

a7 «END

000008 PASS 1 ERRORS

Figure 2-1. Assembly of Shared Routines

The shared routines in this example do not perform
any operations, but are merely presented to illustrate
the procedure for forming a shared library. Notice that
each shared routine has one or more entry points
defined by a .PENT pseudo-op, and each routine is
written for the shared code partition (NREL 1).

Shared routine T1 makes an external reference to
“T3A” in shared routine T3.

2-2

Next you bind these modules with the following three
commands:

XEQ BIND/S/L=@LPT T1)
XEQ BIND/S/L=@LPT T2)
XEQ BIND/S/L=@LPT T3)

Figure 2-2 shows the Binder output listings.

093-000191-02

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

T1.PR CREATED BY AUS BINDER ON 12/11/77 AT 14:39:21
T1

V00006 WORDS OF ABSOLUTE DATA
IMAX: 000050

NMAX: 800473

START OF SHARED: 07600
LENGTH OF SHARED: 902000

PARTITION TYPE START END #OF OVERLAY AREAS
000087 SHR CD 076000 076002 000000

?CSZE 200009
7IMAX 000059
TNMAX 200473

P T1A 076000
U T3A p76001
P TiB 076002

cLoc 177777

T2.PR CREATED BY A0S BINDER ON 12/11/77 AT 14:39:56
Te

000000 WORDS OF ABSOLUTE DATA
IMAX: 000050

NMAX: 200473

START OF SHARED: ©74000
LENGTH OF SHARED: 204000

PARTITION TYPE START END #OF OVERLAY AREAS
vooea7 SHR CD ©@74000 076002 000V00

?CSZE 000000
2ZMAX 000v50
TNMAX 200473
P T2A 074000
P T2B 875002
7cLoC 1777177

T3,PR CREATED BY AOS BINDER ON 12/11/77 AT 14:40:31
T3

000000 WORDS OF ABSOLUTE DATA
IMAX: 000859

NMAX: 000473

START OF SHARED: @76000
LENGTH OF SHARED: ©02000

PARTITION TYPE START END #OF OVERLAY AREAS
poeooo7 SHR CD ©@76000 276000 000000

?7CsZE 000000
TZMAX 200050
TNMAX 0008473
P T3A 076000
?CLOC 177777

Figure 2-2. Binding of Shared Routines

093-000191-02 2-3 Example of SLB Operation

DataGeneral

SOFTWARE DOCUMENTATION

In the output listing for T1.PR, <“T1”" is listed as being
the title of T1.PR. Zero words are defined for the
absolute data partition. ZMAX stands at 50, so there is
no unshared code in ZREL memory. NMAX stands at
473 since several databases required by the system
have been built starting at 400; these databases include
the user status table and a task control block.

Shared code always resides at the upper end of the 32K
word context, and the AOS system always allocates
memory for this code in multiples of 1024-words. Thus
the Binder listing shows the start of the shared code
partition to be octal 76000 and the length of this
partition to be octal 2000 words. The shared code
partition is type ¢‘7°’, and no overlay areas are listed,
since shared routines do not use user overlays.

92CSZE and ?CLOC indicate the size and starting
location respectively of unlabeled common. There is
none, so none is indicated. The ?ZMAX and 7NMAX
symbols show the end of ZREL and the unshared code
partition, respectively. T1A and T1B are flagged with a

Licensed Material - Property of Data General Corporation

“P* to indicate that they are .PENT symbols; T3A, an
external reference, was unresolved at the time of the
bind; you can ignore this, since that reference will be
supplied when you build the shared library. Notice that
BIND does not signal an error.

Listings output during the bind of T2 and T3 are similar
to the listing of T1.

Figure 2-3 shows the Shared Library Builder listing
produced by the following command:

XEQ SLB/L=@LPT/O=TEST 53T1T2T3)

The name of the shared library is “TEST.SL”’, and its
number is 53 decimal.

The listing gives the titles of each of the shared
routines, in the order that they were named in the SLB
command line.

LIBRARY NUMBER = 53
T1
Te
T3

TEST.SL CREATED BY AQS SHARED LIBRARY BUILDER ON 12/11/77 AT 1434131

Figure 2-3. Building the Shared Library

End of Chapter

2-4 093-000191-02

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix A
Internal Shared Library Structure

Most users will never be aware of internal shared
library structure. You need to understand this structure
only if:

1) you plan to build shared libraries without listing the
SLB, or
2) you intend to read the headers (as the Binder does).

Otherwise, you may disregard this appendix.

When you bind one or more object modules into a
shared routine (using the Binder /S switch), you build
a program file whose code (the shared routine proper)
is placed in 1024-word shared pages, starting at the top
of the 32K context:

32K 1

‘ shared routine

shared code

//:

UST, TCBs, etc.
ZREL

0
SD-00296

Figure 4-1. Shared Routine Placement

093-000191-02

When the Shared Library Builder constructs a shared
library from one or more of these program files, it
builds a shared library header, and follows this with
only the shared code portions of the shared routine
program files.

header

shared routine

b)) I
€

I

(

shared routine

SD-00297

Figure A-2. Shared Library Overview

Shared Library Headers

The first five words of the shared library header have
fixed contents; the rest of the header varies in length,
and describes items such as the different .PENT
symbols in all the shared routines. Header structure is
diagrammed in Figure A-3.

Shared Library Headers

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Word Number

0

11 (type)

—_

1

total header length

library number

S~ WM

number of .PENT symbols

first biock of this routine

.PENT symbol

number of 1024-word blocks in this routine

descriptor, l

word offset of .PENT symbol into this routine

number of shared routines

number of PENT symbols in this routine

number of characters in the routine name

routine name string

symbol number

l symbol length

.PENT symbol
descriptor,

byte pointer to .PENT symbol

Shared routine

number of EXTN symbols

ordinal .EXTN number

symbol length

byte pointer to .EXTN symbol

descriptor
.EXTN symbol
descriptor
header }*
shared
routines

symbol name space

SD-00298

Figure A-3. Shared Library Header*

As Figure A-3 shows, words O and 1 contain two
unchanging constants. Word 2 lists the total length of
the header in multiples of 1024-words. Word 3 lists the
number (0-63) assigned to this library, and word 4 lists
the total number of symbols described by the .PENT
pseudo-op in this shared library.

Every .PENT symbol has a pair of .PENT descriptors (1
and 2); each descriptor, is three words long, and each
descriptor, is two words long. All of the descriptor,
follow immediately word number 4 in the same order
that the .PENTSs occur in the shared routines.

Each descriptor; has the following structure. Word 0
lists the start of the shared routine containing the
PENT associated with this descriptor. Since each
shared routine’s size is a multiple of 1024 words, this
starting address is in units of 1024 words, commencing
with the first routine in the library. Thus the first
routine (following immediately the end of the header)
has a starting address of 0, the second has an address of
1 or more, etc. The second word in each descriptor,
lists the number of 1024-word sections in the routine,
and the third word describes the word offset
(commencing with 0) of the .PENT symbol in the
routine.

093-000191-02

Licensed Material - Property of Data General Corporation

Following the last descriptor, is a word that lists the
total number of shared routines. Following this word is
a series of shared routine descriptors, one for each
shared routine in the library.

Each shared routine descriptor has three major
sections. The first lists the number of .PENTSs in the
routine, the number of characters in the name of the
routine, and the routine name string. The second
section contains as many .PENT descriptors, as there
are .PENTs in this routine.

The first word of each descriptor, consists of two bytes:
the left byte contains the relative .PENT symbol

DataGeneral

SOFTWARE DOCUMENTATION

number in the entire library, and the right byte
contains the size in characters of the symbol. The
second word of each descriptor, contains a byte pointer
(relative to the start of the header) to the .PENT
symbol name in name space.

Following the last descriptor, is the final section of the
shared routine descriptor. The first word of this section
counts the number of external symbols in this routine.
Folowing this count are a series of two-word .EXTN
descriptors, one for each external in the routine. Each
descriptor lists the external symbol’s unique ordinal
number within the library and its length, and points to
the symbol name in name space.

End of Appendix

093-000191-02

A-3

Shared Library Headers

Licensed Material - Property of Data General Corporation

Index

Within this index, the legend *‘f following a page
number means ‘‘and the following page’’; *‘ff>’ means
‘“and the following pages”’.

Binder 1-1f
/B switch 1-1f
listing 2-3f
/M switch 1-1f
/S switch A-1
/X switch 1-2

CLI command line 2-1

errors (SLB) 2-1

headers (shared library) A-Iff

?KCALL 1-1f

MASM listing 2-2

NMAX 2-4
’NMAX 2-4

.PENT pseudo-op 1-1, 2-4, A-2f

?RCALL 1-1f
?RCHAIN 1-1f

shared code 2-4
shared library
assembling 2-1f
binding 2-2ff
block header 1-1, A-1ff
definition of 1-1
descriptors A-2f
error messages 2-1
extension (.SL) 2-1
numbers (0-63) 1-1
shared library builder (SLB)
CLIcommand line 2-1
error messages 2-1
/L switch 1-1

unshared code 2-4

ZMAX 2-4
7ZMAX 2-4

093-000191-02 Index-1

DataGeneral

SOFTWARE DOCUMENTATION

Index

Title No.

a
O
d
a
a
w

hat programming language(s) do you use?

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

EDP Manager (Listin order: 1 = Primary use)

Senior System Analyst — Introduction to the product
Analyst/Programmer —— Reference

Operator — Tutorial Text

Other Operating Guide

<
[0}
(7]

ooooooa

Somewhat
3 Is the manual easy to read?
(| Is it easy to understand?
3 Is the topic order easy to follow?
3 Is the technical information accurate ?
d Can you easily find what you want?
d Do the illustrations help you?
{d Does the manual tell you everything you need to know ?

(Please note page number and paragraph where applicable.)

Name Company

Address Date

SD-00742

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States
Postage will be paid by:
[]
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Software Documentation
TTRObup L TTTTTTTTTTT T StooND T TTTTTTTTTTTTIITTIII I, Fooup

SD-00742A STAPLE

