G DataGeneral

| ﬁ\ Software Documentation

Advanced Operating System
- (AOS)

Binder User’'s Manual

Advanced Operating
System
(AOS)

Binder
User’s Manual

093-000190-03

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000190

©Data General Corporation, 1976, 1977, 1978, 1984

All Rights Reserved

Printed in the United States of America

Revision 03, October 1984

Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE-
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.)

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOYA, NOVYA, PROXI,

SUPERNOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, SWAT,
GENAP, and-MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L,
DG/GATE, DG/XAP, ECLIPSE MV/10000, GW/4000, GDC/1000, REV-UP, XODIAC, DEFINE, SLATE,
microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Advanced Operating System (AOS)
Binder User’s Manual
093-000190

Revision History:

Original Release - April 1976
First Revision - April 1977
Second Revision - June 1978
Third Revision - October 1984

CONTENT UNCHANGED

The content and change indicators in this revision are unchanged from 093-000190-02. This
revision changes only printing and binding details. '

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Contents

Chapter 1 - Introduction to the Binder

Termsand Conventions 1-1
Partitions I-1
Overlays 1-2
Shared Libraries 1-4
Non-Shared Libraries 1-4
LimitSymbols 1-4
Undefined Symbols 1-4
Program References to NMAX and ZMAX 1-4

Size and Location of Unlabeled Common 1-4
Stacks . . . 1-5
Accumulating Symbol 1-5
(ﬁ\ Debugger Symbol File. 1-5
Debugger Lines File 1-6

Chapter 2 - How to Operate the Binder
Operating Procedures 2-1
Command Files 2-3
Error Messages 2-3
Example of Binder Operation 2-5
Appendix A - Obiject File Formats

General Block Format A-1
DataBlock S A-2
Title Block. A-4
EndBlock P A-5
Unlabeled Common Block A-5S
External Symbols Block A-S
Entry Symbols Block A-6
Local Symbols Block A-6
Library Startand End Blocks A-7
Address Information Block A-7
Shared Library Block Header A-7
Task Block A-7
LimitBlock A-8
Named Common Block. A-8
Accumulating Symbol Block A-8
h Debugger SymbolsBlock. I A-9
’ Debugger Lines Block and Lines Title Block A-9
Object File Illustrations A-9

093-000190 iii Contents

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

illustrations

Figure Caption

1-1 PageZeroMap e 1-1
1-2 Context Partition Map 1-2
1-3 Overlay Area Built for a Single Partition 1-3
1-4 Overlay Areas with Two Partition Directives e 1-3
1-5 Overlay Areas with One Partition Directive 1-3
2-1 Sample Source LiStings 2-5
2-2 Sample Assembler Listing 2-5
2-3 Sample Binder Output Listing 2-6
A-1 General Block Format e A-1
A-2 Data Block Structure e e A-2
A-3 Title Block Structure e e e A-4
A-4 End Block Structure e e A-5S
A-5 Unlabeled Common Structure e e e e A-5
A-6 External Symbols Block Structure o o A-S
A-T Symbol Entry in External SymbolsBlock 0. A-S
A-8 Entry Symbols Block Structure. e A-6
A-9 Symbol Entry in Entry SymbolsBlock A-6
A-10 Local Symbols Block Structure A-6
A-11 Address Information Block Structure L e A-7
A-12 Task Block Structure e e e e e A-7
A-13 Limit Block Structure e e e e e e A-8
A-14 Named Common Block Structure e A-8
A-15 Accumulating SymbolBlock A-8
A-16 DebuggerSymbolsBlock A-9
A-17 DebuggerLinesBlock A-9
A-18 EXMPL Assembler Listing e A-10
A-19 Contentsof EXMPL.OB e A-10

iv 093-000190

\

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1
Introduction to the Binder

Terms and Conventions

The Binder utility links together object modules,
produced by a language processor, to build a program
file. The Binder also optionally produces an overlay file.
A program file is an executable core-image; it is built
and resides on disk until it is brought into a main
memory context for execution. In the course of
constructing a program file, the Binder builds a symbol
table file. This file contains all names defined as global
symbols within modules used in building the program
and overlay files, and lists their values. Its name is the
same as the name of the program file, with an
extension *.ST".

Unless noted otherwise, all numbers used in this
publication are decimal except core memory addresses,
which are octal values.

The operating system allocates memory in pages of
2048 bytes each; the first page is page zero, the second
page is page one, etc. Memory locations used by each
program file can be considered in two categories: lower
page zero, and all other memory. Lower page zero
extends from location O through 377 inclusive.
Locations 0-47 are reserved for absolute references
such as “JSR @17"”, the call to the system call
processor. Code or data which can be relocated
anywhere from locations 50-377 is ‘‘lower page zero
relocatable” or ZREL; the highest used ZREL address
is “?ZMAX-1"". Information that can be relocated
above 377 is ‘“‘normal relocatable’ or NREL. The
actual start of NREL program code or data will follow
the last of a series of system tables such as the UST and
task control block (s).

The area labeled ‘‘system tables’” in Figure 1-1 will
always contain a User Status Table (UST), one or more
task control blocks (TCBs), and--if an overlay file has
been defined--an overlay directory. You don’t need to
understand these tables to understand the Binder.
However, since these tables are of considerable
programming interest and appear in user space, they
are described in the 4OS Programmer’s Manual.

093-000190

J. ;L1777
z i NREL
b ?2USTART
system tables
377 l
ZREL
50 ’
call processor 17
unique
storage position 16
reserved 0
SD-00366
Figure 1-1. Page Zero Map

Partitions

A partition is an area of memory where a specific kind
of code resides. The Binder groups code and data from
object files (OBs) into separate memory partitions
according to information contained either within the
objects or in the Binder command line. By default, the
Binder defines six partitions, one of each of the
following six types:

® absolute

ZREL

NREL non-shared code (overlays permitted)
NREL shared code (overlays permitted)
NREL non-shared data

NREL shared data

All partitions except the absolute partition consist of a
sequence of contiguous memory locations. The
absolute partition, by contrast, is merely a set of
locations reserved by specific numeric addresses, which
need not be in sequence. One or more OBs can specify
additional NREL partitions to the Binder. Any OB may
contain data destined for any one or for all of the
partitions.

Partitions

SOFTWARE DOCUMENTATION

Strictly speaking, each of the six partition types can
contain either code or data. The essential difference
between code and data partitions is that code partitions
may contain overlay areas, while data partitions may
not. Shared and unshared partitions, on the other
hand, are distinguished by their size and location within
a context. Shared partitions always start at the
beginning of a page boundary and by default are
allocated in multiples of 2048 bytes at the top of the
context (they can be forced elswhere). Unshared
partitions have no such size or page boundary
constraint, and immediately follow the system tables
area.

Starting at the beginning of user NREL, the Binder
allocates partitions in the following sequence:
Non-shared partitions. are first; they follow immediately
the last system table or unlabeled common. Default
non-shared partitions will reside at lower memory
locations than any additional non-shared partitions you
create. Specifically, from low to high addresses, the
Binder creates non-shared partitions in the following
order: Default non-shared code, default non-shared
data, and non-shared code and data partitions in the
order you create them. The location following the last
address used in the highest non-shared partition is
called ?ZNMAX.

Between ?NMAX-1 and the next partition there may
exist an area of memory which you can use for
scratchpad or other use; you can determine and allocate
the size and location of this area with system calls
?MEM and ?MEMI respectively.

At the upper end-of the context is the shared area,
consisting of both shared code and shared data partitions.
During the first pass of its execution, the Binder
determines the necessary size of this area, so it can
begin each shared partition of a page boundary and
allocate each as a multiple of 2048 bytes.

The order of shared partitions, from low to high
addresses, is as follows: default shared data partition,
default shared code partition, and other shared data
and code partitions in the order you create them.

Figure 1-2 shows the relative positioning of partitions
within a context.

1-2

Licensed Material - Property of Data General Corporation

last user-created shared

Y
A\
[

shared

default shared code

default shared code

free area NREL

last user-created
non-shared

¢¢
BAJ
{4

non-
shared

default non-shared data

default non-shared code

SD-00367

Figure 1-2. Context Partition Map

Overlays

Overlays allow you effectively to increase your address
space. Your program can load one of many different
code modules, called overlays, from disk into the same
main memory area at different times.

Overlays reside in a disk overlay file and are read, upon
command, into overlay areas within a root, the root is
equivalent to the contents of the program file
(identified by its ‘“.PR> extension). The binder
produces the overlay file and names it
programname.OL. Associated with each overlay area are
one or more overlays, where each overlay area is as
large as the largest overlay associated with it. Overlay
areas are allocated and built as multiples of 512 bytes in
unshared areas, and as multiples of 2048 bytes in
shared areas.

093-000190

®

| ————

Licensed Material - Property of Data General Corporation

There may be up to 63 overlay areas within memory.
Each overlay area can have up to 511 separate overlays
associated with it. The largest overlay to be read into
each overlay area determines the basic size of the
overlay area. You can define a rotal overlay area whose
size is some multiple of the basic overlay size. This
permits several different overlays to be read
side-by-side into basic overlay areas within the same
total overlay area. Since the system may place these
overlays into any of the basic areas within a total area,
you must write these overlays relocatably (i.e., with
code that is position-independent). Having stated that a
total overlay area can be allocated as a multiple of its
basic size, for simplicity this manual presents
illustrations of overlays with total overlay areas which
equal the basic overlay area size.

The Binder command line, described in the next
chapter, defines overlays. Compilers can specify
overlays in object files by including an address
information block in one or more of the OB files which
will be presented to the Binder. If a language supports
this feature, its reference manual describes the way you
can generate the required address information blocks.

The Binder command line reserves an overlay area for
every series of objects within square brackets:

[a,b c,d]

A left bracket directs the Binder to build the beginning
of an overlay area at the current base of the appropriate
code partition. The current base of a partition is the
address in that partition where the Binder will begin
loading the current object. (Data partitions, the ZREL
partition, and absolute partitions never receive
overlays.) A comma in the command line terminates
an overlay in the disk file. A right bracket terminates
the area itself. Thus, in the above illustration, object a
would form the first overlay to be read into the area,
objects b and ¢ would form the second overlay, and
object d would form the third overlay. These overlays
would then “‘belong’’ to a single overlay area.

If none of the objects for an overlay area contain code
for any partition, that overlay is ignored in that
partition; there can be no zero-length overlays. If one
of the objects between square brackets contains a
directive to the Binder to create a new partition, the
Binder starts an overlay area immediately in that new
partition. Each start of an overlay area in a non-shared
partition begins at the current base; each overlay area is
page-aligned to the next 2048-byte boundary in a
shared partition.

Figure 1-3 shows how the Binder would construct an

overlay file and an overlay area if all of the code in
objects a, b, ¢, and dwere destined for a single partition.

093-000190

DataGeneral

SOFTWARE DOCUMENTATION

Figure 1-4 shows how it would build the overlay file if
objects a and d contained code destined only for
partition x, but band ¢ contained code destined only for
partition y. Finally, Figure 1-5 indicates how the overlay
file would look if objects a, ¢, and d were to form
overlays for partition x, but overlay b were to go to
partition y.

The examples in these figures show how you can use
command line specification to define overlays and to place
code destined for different. partitions into multiple
overlay areas. It is also possible for an OB to specify
complete overlay areas by using an address information
block. This facility is not currently available with either
the Macroassembler or DGC high-level languages;
however, you can use OB specification if you write your
own language processor. OB specification of overlays is
described in Appendix A.

overlay file

partition overlay area a bandc d

[a,bc,d] SD-00407

—— Figure 1-3. Overlay Area Built for a Single Partition —

overlay file
——~ca—
artiti
partition y overlay areajb and c
*bandc -
each contain
a partition y = r
directive
fa,bc.dl partition x / |overlay area| a I d I
SD-00406

— Figure 1-4. Overlay Areas with Two Partition Directives —

overlay file
artiti

partition y overlay area b
‘b contains
a partition > o
y directive

partition x / | overlay area a c d
fa. b%c. d] SD-00404

— Figure 1-5. Overlay Areas with One Partition Directive —

Overlays

General

SOFTWARE DOCUMENTATION

Shared Libraries

A shared library is a collection of program modules.
When you request the system to load a module from a
shared library, it first checks to see if the module is
already in memory. If the module is in memory, the
system does not read another copy into core but maps
its area into your context. If the module is not in
memory, the system reads it in from disk.

Shared routines are dynamically relocatable modules,
built by the Shared Library Builder utility into a shared
library. When a shared library is built it is assigned a
numeric identifier from 0 to 63. Shared routines, by
definition, are always read into shared memory areas.
Shared routines are also always built in multiples of
2048 bytes.

Shared routines are always written to be reentrant, and
usually they are position-independent. A shared
routine can be written which is position-dependent only
if it will be bound into a specific area in the program file
(Binder switch /B) and if you take care to ensure that
all absolute addresses are maintained consistently.
Designing shared routines to be position-independent,
and allowing the system to relocate them wherever
required during the execution of the program, does
away with these restrictions. Discussions of shared
routines in the remainder of this manual presume
position-independence. Binder function switch /M
specifies the number of 2K-byte blocks which will be
reserved as a single shared area for use by all shared
routines.

Shared routines are loaded using one of three
generalized procedure calls: 7RCALL, ?KCALL, and
?7RCHAIN. Since generalized procedures can be
written independently of the medium where they will
ultimately reside, the Binder may change certain
procedure calls into EJSR instructions. This would
occur, for example, when a procedure call is made to a
shared routine bound into the permanent root context.
For more information on general procedure
management and shared routines, consult Chapter 3 of
the AOS Programmer’s Manual.

Non-Shared Libraries

A non-shared library file (simply called a ‘‘library’’) is a
collection of object files. You build libraries with the
Library File Editor utility. Later, you can bind modules
from a library into either the shared or unshared
partition of the root.

Licensed Material - Property of Data General Corporation

Normally, the Binder will bind only those modules
from a library that satisify an unsatisfied external
reference. If two modules with the same entry point
exist in one or more libraries which you supplied in the
Bind command line, only the first one will be bound
into the program.

If you insert the .FORC pseudo-op in a module, the
module will be unconditionally bound into the
program, whether or not it satisfies an external
reference from a previous module. You can also specify
that a module should be force-bound when you build
the library with the Library File Editor (See the 40S
Library File Editor for details).

Limit Symbols

One binary can declare a symbol as a limit symbol. If a
later binary declares the symbol as an entry, the Binder
will not load code or data in the second binary that
would be loaded at an address greater than or equal to
the relocated value of the symbol. Only code and data
in the same partition as the entry symbol will be
affected. For more information about limit symbols,
please see the discussion of .LMIT in the
Macroassembler Reference Manual.

Undefined Symbols

By default, the Binder will resolve undefined symbols
to be ‘“-1”°. You can change this value by loading a
user-defined symbol, “UNDEF’, to which you have
assigned a value other than -1.

Program References to NMAX and
ZMAX

The Binder builds symbols named ?ZMAX and
?NMAX which contain the values of ZMAX and
NMAX respectively. These symbols, containing the
values of ZMAX and NMAX at bind time, will appear
in the symbol map output by the Binder and you can
reference them from within your code to get their
initial values.

Size and Location of Unlabeled
Common

The values of symbols ?CSZE and ?CLOC indicate the
size and location respectively of unlabeled common.
These symbols are displayed in the symbol map
produced by the Binder, and you can reference them
from within a program like any other symbols.

1-4 093-000190

~

R

~

Licensed Material - Property of Data General Corporation

Stacks

If you do not specify a stack size when you bind your
program (via BIND switch /Z), the Binder will allocate
a stack for you. It does this by

® initializing the stack pointer (location 403) to an
address in the scratch-pad area at the top of the
unshared partition.

adjusting ?NMAX to include the stack size. The
default stack size is the fewest number of words that
enable your program to execute all system calls.

initializing the stack limit (location 423) to the size
of the stack.

If you place any non-zero quantity in the stack pointer
or the stack limit, the Binder assumes this value is an
address and does not alter it.

In addition to allocating the stack, the Binder will
provide you with a default stack-overflow handler
(entry SFALT) from URT.LB. You can optionally
write your own stack-overflow handler named SFALT
and bind it into the program.

Accumulating Symbol

The accumulating symbol is used to maintain a count.
Consult the description of ‘“.ASYM" in the AOS
Macroassembler Reference Manual or the appropriate
language manual for information regarding its use. In
essence, this symbol is given an initial value, either in
the Binder command line or in a module. The next
time that the symbol is referenced (in an accumulating
symbol block), the Binder updates it, using the
relocation base and operation specified in that block.
The following steps are performed to use this symbol as
a counter.

First, the symbol is given an initial value (e.g., zero).
Subsequent modules declare it first as an external, and
then as an accumulating symbol. In the accumulating
symbol block, the relocation base indicates the external
declaration of the symbol itself, specifying word
relocation. The Binder will add the previous value of
the symbol to the current value, and this sum becomes
the new symbol value.

093-000190

1-5

DataGeneral

SOFTWARE DOCUMENTATION

The symbol’s value can be manipulated in other ways
using other relocation bases and other operations. The
Macroassembler automatically generates the external
reference and sets the relocation of the accumulating
symbol to reference the symbol itself using word
relocation. Thus Macroassembler users can utilize an
accumulating symbol only as a counter. The essential
difference between an accumulating symbol and an
entry symbol is that an accumulator symbol does not
receive multiple definition errors (the Binder gives
these to other symbols).

Debugger Symbol File

The Binder can create two optional output files to help
implement high-level language debuggers: the debugger
symbols file, and the debugger lines file. Neither the
Macroassembler nor Debug supports or uses this
facility. The debugger symbols file has the name
“programfile. DB’’, and the Binder creates it on the
first occurrence of a debugger symbols block in an
object file, if the function switch /D is used in the
Binder command line. The format of the debugger
symbols block is described in Appendix A.

The Binder copies data from the debugger symbols
block (s) to the debugger symbols file. The symbols
block contains a provision for performing relocation
operations on the data. One of these relocation
operations, ‘“‘link’’, uses this data for scoping variables.
Scoping of variables is a technique which permits
distinct, modular procedures in the same program to
use the same variable name. High-level language
debuggers need this feature to find each of the
variables bearing the same name.

In link relocation, the following operations occur. On
the first use of the link operation, the Binder copies a 0
to the debugger symbols file. On subsequent uses of
the link operation, it copies to the debugger symbols
file the file position (in words) where the link operation
was last used in the debugger symbols block. After it
has processed the last object file it writes the file
position of the last use of the link operation in word 0 of
the debugger symbols file. (The data it has copied from
the debugger symbols block commenced originally at
word 1.)

Debugger Symbol File

DataGeneral

SOFTWARE DOCUMENTATION

Debugger Lines File

The second optional debugger file which the Binder can
create is the debugger lines file. This file is also copied
from object-file input; the Binder creates it upon the
first occurrence of a debugger lines block, if the /D
function switch is used. The format of this block is
specified in Appendix A. (A second block type, the
lines title block, must appear immediately before the
end block in any OB file using the lines file feature.)
The debugger lines file will have the name OB
“‘programfile. DL’ and the following format:

word 0 Addressn+1
word 1 Copied data.
ﬁ Copied data.
n+1 Number of objects.
n+2 Directory.

Licensed Material - Property of Data General Corporation

Each object file copied to the debugger lines file has an
entry in the lines file directory, with the following
format:

Word offset into the lines file where this
object starts.

Word offset where this object ends.
Current base in the default NREL
non-shared code partition. Current base
plus the number of words of data in this
object, i.e., the current base of the next
object.

Current base in the default NREL shared
code partition. Current base of the next
object.

Current base in the default NREL
non-shared data partition. Current base of
the next object.

Current base in the default NREL shared
data partition. Current base of the next
object.

word 10 Count of words of lines title data.

words 11-n Lines title data.

word 0

word 17

words 2-3
words 4-5
words 6-7

words 8-9

End of Chapter

1-6

093-000190

m Licensed Material - Property of Data General Corporation

Chapter 2
How to Operate the Binder

Operating Procedures

Use the CLI to issue Binder commands. Each Binder
command names input object modules and directs the
Binder to build an executable program file, with an
optional overlay file. By default the Binder selects
named input files with an extension ‘“.OB’’, and
produces a program file whose filename ends with the
extension ‘“.PR’’. Also by default, the Binder scans the
user runtime library, URT.LB. This library contains
code modules that are bound into the user context to
execute certain types of system calls (such as task
management calls).

You can modify the operation of the Binder by applying
one or more switches in the command line. A switchis a
right slash character followed immediately by a switch
character or character sequence. Switch characters may
be alphabetic or numeric; switch character sequences
consist of one or more alphabetic characters followed
by ““="", then by either a numeric or alpabetic value.
Switches applied directly to the “‘BIND’’ command
name are finction switches; other switches are argument
switches, and their effect extends only to the arguments
they modify.

The format of the Binder command is:

object module }

XEQ BIND
[object modules...] command file/C

You must use a command file to bind overlays. (See
Command Files, below). Function switches that you
can use in the Binder command line are as follows; all
numeric switch values and arguments are decimal.

093-000190

2-1

Switch
/B

/D

/E

/H

DataGeneral

SOFTWARE DOCUMENTATION

Action
Produce a listing of the symbol file
with symbols ordered both

alphabetically and numerically.
Produce a Debugger Symbol File,
used in implementing high-level
language debuggers. See the
Debugger Symbol File description
in Chapter 1 of this manual.

Output the load map to the output
file, even if a listing file has been
specified.

List all numbers in hexadecimal.
Build a non-executable program
file, lacking a UST, TCBs, and all
other system databases; URT.LB is
not scanned. This switch allows you
to build a file larger than 32K.
Allocate n TCBs for multitask use,
regardless how many (if any) are
specified in a .TSK statement.
Produce a listing file, using the
currently-specified CLI @LIST file.
Produce a listing file, using the file
name.

Reserve n 2K-byte blocks of
memory for shared library routines.
Do not scan the user runtime

library, URT.LB.
Suppress error flags whenever
bind-overwrites occur. A

bind-overwrite occurs when one
module places code in one or more
locations and a succeeding module
overwrites these locations.

Operating Procedures

DataGeneral

SOFTWARE DOCUMENTATION

Switch Action

/P=name Assign name to a program file. If
you don’t use this switch, the
program file will be given the name
of the first module in the Binder
command line (with the extension
“.PR).

/S Produce a shared routine for a
shared library.
Specify the highest address in the
shared partition. If n is not a
multiple of 2048 bytes, the Binder
rounds it down to the next lower
2048-byte multiple. If you don’t use
this switch, your shared code
partition will be placed at the top of
the 64K-byte context.

Specify the size of the stack for the

default task. If you omit this switch,

a 30-word stack is allocated.

/T

I
=)

/Z

I
=)

Argument switches you can use are:

Switch Action
/AM=n Set a total overlay area equal to n
i basic areas. Apply this switch only to

a right bracket in an overlay
specification.

name/B Bind the externally referenced
routines from name shared library
into the root context.

/C Specify the name of a command file
(required when defining overlays
using square brackets).

/D Load non-shared code in this
module as non-shared data. This is
currently the only way that you can
create a non-shared data partition, if
you are using the Macroassembler.

/F Use the starting execution address
contained in the last block of this
object file. (See Appendix A.) If you
use this switch, the BINDER will
ignore all valid starting addresses in
later object files.

/H Load non-shared code in this
module as shared code. If you apply
this switch to a non-shared library,
modules extracted from the library
will be bound into the shared code
partition. Note that the standard
way you place code into the shared
code partition when using the
Macroassembler, is to use the
“NREL 1 pseudo-op in your
code.

Licensed Material - Property of Data General Corporation

2-2

Switch
/0

/R

/S

/U

Action

Allows overwrites in this module
(see /0O function switch).

Issue a warning if any code in this
module is not
position-independent.

Convert shared code modules to
unshared code modules. For
example, FORTRAN currently
produces shared code only; this
switch lets a FORTRAN program
be unshared. ‘

Load local symbols from this
module into the symbol file. This
switch will work only if you applied
/U to this same module in the
earlier Macroassembler command.

name/V=number Create an accumulating symbol,

name/X

n/Z

name, with absolute relocation, and
initialize it to the value number.
You can create more than one
accumulating symbol by using this
switch repetitively. If you name an
accumulating symbol that is also
defined, within a module, as an
accumulating symbol, there is no
conflict; any value the .ASYM
pseudo-op specifies will simply be
added to the current sum of the
accumulating symbol.

Exclude the shared library routine,
name, from being bound into the
root context. This switch must
immediately follow the /B switch.
For example, this command

..LIB/B A/X B/X...

is wvalid. This expression would
exclude routines A and B from
being bound into the root. This
command

..LIB/B A/XC/RB/X...

does not use the /X switch
correctly; routine B would not be
excluded in this case.

Set the current ZREL base to n. If
the current ZREL base exceeds n,
then the current base remains as is
and n is ignored.

093-000190

®

~

Licensed Material - Property of Data General Corporation

Command Files

If you want to produce one or more overlay files, you
must supply a command filename as the last argument
in the command line. If you are binding only overlay
files and no program files, the command filename may
be the only argument in the Bind command line.

The command file must contain all command line
information including object filenames, switches, and
brackets, starting at or before the first left bracket. No
command line information can follow commandfile/C.

You can use the CLI command CREATE to build
command files; for example:

)JCREATE/I CFILE)
){OVLY1,OVLY2, OVLY3] [OVLY4, OVLY5])
M) ‘

This creates command file CFILE, which contains five
object file names; the two sets of brackets will define
two overlay areas for these overlays. (Brackets reserve
overlay areas, as described in Chapter 1.) Now, the
Bind command

XEQ BIND MYPROG CFILE/C)

creates MYPROG.PR and overlay-file MYPROG.OL.
When MYPROG executes, it will have two overlay
areas in memory -- area 0, which will receive overlays
OVLY1, OVLY2, or OVLY3, and area 1, which will
receive OVLY4 or OVLYS5. MYPROG will load and
use the overlays one-by-one into each area as it needs
them.

Error Messages

If the Binder encounters any error conditions during its
execution, it will output one or more error messages to
the output file (by default, you will receive error
messages on the console printer or screen). The
following alphabetical list names these messages and
explains their meanings. Error messages that refer to a
symbol will display the name of that symbol.

ATTEMPT TO MAP OVERLAY TO DATA PARTITION

One or more overlays were declared within an OB, and
you attempted to place one or more of them into a
partition declared as a data partition. This error can
occur only when an Address Information Block is used
(see Appendix A).

093-000190

2-3

DataGeneral

SOFTWARE DOCUMENTATION

ATTEMPT TO OVERWRITE DATA

You attempted to place two data words in the same
location. No error is flagged if the two data words are
equal, or if the first word is zero.

ATTEMPT TO RELOCATE DATA FROM UNDEFINED
SYMBOL

.The Binder attempted to relocate data from an

undefined symbol. It needs the value of the named
symbol to relocate the data word at the named location,
but the symbol is still undefined after the Binder’s first
pass.

COMMAND FILE SYNTAX ERROR

You have an illegal sequence in a command file.

DISPLACEMENT OVERFLOW

Overflow occurred into the left byte while the Binder
performed a displacement location operation (see
Appendix A, Data Blocks). This occurs typically when
the code references an NREL value as though it were
ZREL. Alternatively, the code may have attempted to
do a PC-relative access in a single-word memory
reference instruction, but the effective address was too
far away.

DUPLICATE SEARCH OF URT.LB
You explicitly listed URT.LB in your command line
and did not use the /N command switch to suppress the

automatic search of URT.LB. This condition is a
warning, and does not affect the program file produced.

ENTO RESOLVED TO SYMBOL

The named symbol is an .ENTO symbol, but the code
defined it in terms of another symbol.

EXTERNAL SYMBOL REFERENCE OUT OF RANGE
A relocation dictionary entry in a DATA BLOCK is too

large. Re-assemble or re-compile the source to produce
anew object.

INSUFFICIENT CONT|GUOUS BLOCKS
The Binder cannot create the overlay file because there

is an insufficient amount of available contiguous disk
space.

Error Messages

DataGeneral

SOFTWARE DOCUMENTATION
INSUFFICIENT MEMORY FOR BINDER

You did not allocate enough memory to run the Binder.

LIBRARY START BLOCK ERROR

There are two or more START BLOCKS in the library.
You must rebuild it with LFE.

LIMIT FOLLOWS LIMITED SYMBOL

The OB declaring a symbol as a limit came after the OB
defining the symbol as an entry symbol.

MISUSE OF ACCUMULATING SYMBOL

You’re using an accumulating symbol in an invalid way.

MULTIPLY DEFINED SYMBOL

The named symbol was defined with different values in
two or more OBs.

NO CURRENT LIST

You used the /L command switch and no LIST file is
currently assigned. See the CLI manual for a
description of LIST file assignment.

NON-POSITION INDEPENDENT CODE

- You used an argument /R switch, and the data for the
named location is not position-independent.

NO OBJECT FILE SPECIFIED

No object files were specified in the Bind command
line. There must be at least one object filename in the
command line or command file.

OB ERROR BLOCK NUMBER

INCORRECT

IN LIBRARY -

A block sequence number error occurred in a library.
You will get this error if you attempt to treat as a library
a file which is not in the prescribed library format.

OB ERROR - BLOCK NUMBER INCORRECT

A sequence number in an OB block is incorrect. This
error is usually triggered if you attempt to bind a
non-OB file.

Licensed Material - Property of Data General Corporation
OB FILE ERROR - DATA RELOCATION OUT OF RANGE

An erroneous entry appears in the relocation dictionary
of a data block.

OVERLAY COMMON REF IN ROOT OR DIFF. OVERLAY

A common area that resides in an overlay was
referenced from the root or from a different overlay.

PAGE ZERO OVERFLOW

The Binder has placed more than 330 data words into
the ZREL partition. '

PARTITION TYPE MISMATCH

Two or more OBs defined the same new memory
partition, but the types differed.

PROGRAM FILE LARGER THAN 32K

Your program file will not fit in memory. Put part of it
in overlays.

PROGRAM START ADDRESS UNSPECIFIED
None of the objectfiles given to the Binder specified

the program start address. See the .END pseudo-op in
the Macroassembler manual.

STACK FAULT HANDLER MISSING
You haven’t provided a stack fault handler and you
used the /N switch which inhibits the Binder from

searching URT.LB, hence preventing it from binding
SFALT from URT.LB.

SYMBOL FILE OVERFLOW

The maximum size of the symbol file has been
exceeded.

SYMBOL UNDEFINED AT END OF PASS 1

The named symbol was not defined.

TOO MANY TASKS
You’ve exceeded the maximum number of tasks (32).

UNDEFINED COMMON

)

You defined a common symbol in terms of an q

undefined symbol.

2-4 093-000190

Licensed Material - Property of Data General Corporation

UNDEFINED EXTERNAL DATA LOCATION

You attempted to locate one or more data words
relative to a symbol, but the symbol was still undefined
after pass 1.

WARNING: FILE EXCEEDS 32K

You are using the /I switch and your file is bigger than
32K words. This is just a warning since you cannot
execute a file built with the /I switch; the bind will
continue.

Example of Binder Operation

Figures 2-1 and 2-2 illustrate sample assembler and
source listings of modules input to the Binder; Figure
2-3 shows the listing output by the Binder. There are
three modules in these illustrations: ROOT, OVRI1,
and EXMPL. OVR1 and EXMPL will build an overlay
file. A detailed discussion of the internal structure of
EXMPL is given at the end of Appendix A.

Meanings attached to certain symbols in the assembler
listing below are as follows:

Symbol Meaning

- ZREL partition, word relocation.
? unshared code, word relocation.

! shared code, word relocation.

= ZREL partition, byte relocation.

The Binder command line employs a command file
since an overlay definition is made:

XEQ BIND/L=@LPT CMD/C)

DataGeneral

SOFTWARE DOCUMENTATION

The command file,, CMD, contains the following
string:

ROOT [OVR1 EXMPLI])

The listing output by the Binder on the line printer is
shown in Figure 2-3.

ROOT.PR contains 1003 words of unshared code.
Entry point RT1 is at relative offset 0. OVR1 contains
20 words of unshared code; entry OVR1 is at relative
offset 0. EXMPL contains 2 words of ZREL, 4 words of
unshared code and 2 words of shared code. Entry
EXMP1 is at offset 0 in the shared partition and
EXMP2 is at relative offset 0 in the shared partition.
Note that ESYM, declared external in EXMPL, is
undefined.

?CSZE is the size of unlabeled common (there isn’t
any), and ?CLOC is its starting address (none).

TITLE ROOT \
ENT RT1
NREL O
RT1: BLK 100
.END
source
listings
.TITLE OVR1
ENT OVR1
.NREL O
OVR1: BLK 20
END ,
SD-00402 . ..
—— — Figure 2-1. Sample Source Listings

«TITLE
0ve JENT
03 JEXTN
a4
25 «ZREL
06
V7 YI0U0=-00B0VYY’ EXMP}
¥8 AY¥001-000000! EXMP2
v
10 009V 00 +NREL

11 dY0uv'vvo12l EXMPLl: 123

12 0001 '000000! EXMP2
13 090Y2'00BVRA’ EXMP]
14 ¥V003'000000% ESYM

15

16 (11151 D «NREL
17 0V0VYIVVROUVA'EXMP2: EXMP]
18 002v110000901 EXMP2
19 <END

*%xQ00J08 TOTAL ERRURS,

093-000190 2-5

0001 EXMPL AOS ASSEMBLER REV 00.05

EXMPL
EXMP1,EXMP2
ESYM

EXMP]
0A0V9 PASS 1| ERRORS

Figure 2-2. Sample Assembler Listing

09:43:32 02/01/77

Example of Binder Operation

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

ROOT.PR. CREATED BY A0S BINDER REV Q0,83 ON 1/28/77 AT 16:25:16
SYMBOL UNDEFINED AT END OF PASS 1 ESYM

ROOT

OVR1

EXMPL

ATTEMPT TO RELOCATE DATA FROM UNDEFINED SYMBOL ©r0O615 ESYM
SCALL

0000081 WORDS OF ABSOLUTE DATA
IMAX: 0000S3

NMAX: 001223

START OF SHARED: ©748490
LENGTH UF SHARED: 00¢V00

PARTITION TYPE START END #0F OVERLAY AREAS
PVBYIVY NSHR Cv @0uW472 p01171 010001
P000oA7 SHR CD ©87400v 076130 wV0OYV!L

AREA. START LENGTH PARTITION #OF OVERLAYS
NVO00D BVOS72 VLBO4YVO 000004 600V0o1
PvOVYl VT740VD 002000 ov0o0o7 pevou1

2CSZE 8d0Qve
?SLS¢Z ©vovewvo
2URTb 039352
7IMAX 000053

RT1 ¥anuie
2USTA Qo472
OvVR1 830572
EXMPL goos61e
TNMAX ©vd1223
EXMP2 URET 1T
7XSAY 876060
2XL0 376111
2XSV B76111

SFALT A76121
?2CLoC 177777
u ESYM 177777

Figure 2-3. Sample Binder Output Listing

End of Chapter

2-6 093-000190

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

- Appendix A
Object File Formats

Each object file processed by the Binder must consist of
a series of blocks of information in a well-specified
form. Ordinarily, as a user of Data General software
you need not be aware of the various object file
formats; the Macroassembler and all compilers produce
objects with the required formats. Programmers writing
language processors that will use the Binder, however,
must adhere to the formats the Binder expects.

Each language processor outputs an object (OB) as a
series of OB blocks. The first and last of these are
invariably a title block and an end block respectively. In
between these two blocks there may appear any
combination of the available block types, there may be
any number of each type of block, and they may appear
in nearly any order. OB files have the following
characteristics:

® no limit to the size of any file block;

® any block type may be present or absent (except the
title and end blocks);

® block order is not generally fixed, with exceptions
described below. J

The Binder sets the following five block order rules.
First, external symbol blocks must precede the data
blocks or entry blocks that contain data or values
relocated from the symbols. The title block must be the
first block in the OB file, and if there is an address

~ 093-000190

information block, it must be the second block in the
file. If there is a lines title block, it must be the
next-to-last block in the file; the last block must always
be the end block.

General Block Format

Each of the different types of blocks conforms to the
general structure shown in Figure A-1.

\\\ block type

block-number

I block
‘ header

length

data

SD-00405

Figure A-1. General Block Format

Block number is a sequence number. These numbers
must be sequential, starting at 1 (this is a validity
check). Length is the length in words of the entire
block, including the header. Block type is an integer

General Block Format

DataGeneral

SOFTWARE DOCUMENTATION

value denoting the specific kind of block. There are 17
types of blocks, and the octal values associated with
each type are as follows:

0 data 11 shared library

1 title 12 task statement

2 end 13 limit

3 unlabeled common 14 named common

4 external symbols 15 accumulating symbol
S entry symbols 16 debugger symbols

6 local symbols 17 debuggerlines

7 library start 20 lines title

10 address information 21 library end

The remainder of this appendix defines and describes
the block formats of each of the block types. All byte
pointers described in block formats are pointers relative
to the beginning of the block (i.e., the first byte in the
block has byte pointer ‘‘0”’). An example-abstract from
an object file is shown at the end of this appendix to
illustrate some of the more common block types.

Data Block

The data block groups program code or data. Figure
A-2 illustrates a map of the data block.

8 bits
/%/\@\ word
&\\ 0 1
sequence number 2
length 3
number of words of data 4
start address 5
data relocation type 1 6
Se—
12 bits 4 bits

7

DATA

relocation dictionary
for data

SD-00372

Figure A-2. Data Block Structure

A-2

Licensed Material - Property of Data General Corporation

The type, 0, is in the right byte of the first word in this
structure. Following the length word is a 16-bit value
describing the number of data words in the block; these
start at word 7. The start address indicates where the
beginning of this block of data will be placed; the start
‘address value is relative to the current base for this
partition. The address relocation base can indicate
either one of eight default data partitions, an external
symbol relocation value, or a partition created by an
Address Information Block (described below). Default
partition numbers and their associated types are as
follows:

Number Type

absolute

ZREL

reserved for system use
non-shared NREL code

shared NREL data

non-shared NREL data

shared NREL code

external symbol relocation value

A single data block can specify only one partition.

Following the last data word is a series of two-word
entries in the data relocation dictionary. Entries in this
dictionary describe the relocation operation, if any, to
be applied to the data words. Each word of data may
have any number of entries in the relocation
dictionary, since more than one relocation operation
may be applied to the data. Absolute data has no entry
in the relocation dictionary.

Each entry in the dictionary is a two word group with
the following structure:

offset

reloc. base reloc. op.

"4 bits

SD-00388 12 bits
The offset indicates the data word (in the current data
type within this module) to which this dictionary entry
applies. Offsets are expressed in terms of the current
base of the data type, not in terms of the relative order
of the data words in the block. For example, if the block
start address is 132, the offset for the first data word is
132, notOor 1.

The relocation base indicates either a partition or an
external symbol used as a base. Relocation bases 0-7
always indicate memory partitions (and are defined in
the same manner as the address relocation base shown
above). Relocation bases greater than the highest

093-000190

®

Licensed Material - Property of Data General Corporation

partition number referenced within this OB refer to
external symbols. Relocation bases higher than 7 may
be declared to be memory partitions by an address
information block (described later in this appendix).
External symbols are numbered in the order that they
appear in the OB. Thus if an OB uses nine partitions,
the first external symbol used as a relocation base
would have relocation base 10.

The maximum number of externally defined symbols
that a given object file can reference.is 4050 minus the
number of partitions. The default number of partitions
is seven.

Finally, the relocation operation field describes the type
of relocation the Binder will perform on the data word.
The following lists the numeric values and types of
these operations (‘‘base’’ is the value of the symbol or
the start of the OB in the specified partition).

Value Type

0 absolute (no operation).

1 word, base + data.

2 byte, 2 * base + data.

3 displacement, base + right byte of data, error

on overflow into left byte.

PC relative, base - data.

overlay, data replaced by area number/overlay
number (ENTO).

4
5

6 multiply, data * base.

7 link (see Debugger Symbols Block).

10 call relocation.

11 GREF, same as word relocation, but a carry
from the low-order 15 bits never alters bit 0.

12 word PC relative relocation (base + data)- the
real address where data will be placed.

13 target relocation.

You can understand call and target relocation only after
familiarizing yourself with general resource calls,
described in Chapter 3 of the AOS Programmer’s
Reference Manual. Call (10) and target (13) relocation
refer to the operations performed upon general
resource calls ?7RCALL, 2RCHAIN and ?KCALL and
their procedure entry arguments. These relocation
types are employed by the system to implement the
resource calls.

093-000190

A-3

DataGeneral

SOFTWARE DOCUMENTATION

Language processors (Macroassembler, etc.) apply call
relocation to the system call itself to change it to either
an EJSR instruction or to a JSR to the appropriate
resource call manager. They apply target relocation to
each in-line argument of each resource call, to
transform it into an appropriate procedure entry
descriptor. Table A-1 illustrates the results of call and
target relocation applied to every possible resource call
and its argument, when the argument is passed in-line
(i.e., not at the top of the stack).

As described in the AOS Programmer’s Reference
Manual, the resolution of each general resource call
depends upon the the type of call, the type of medium
from which the call is made, and the type of medium to
which the call is made.

Entry descriptors referred to in Table A-1 are identical
to those described in Chapter 3 of the AOS
Programmer’s Reference Manual. Thus if “?RCALL
FRED” is issued from the root, with procedure entry
“FRED” also found in the root, the Binder would
create two data words: EJSR (with absolute indexing)
followed by the absolute address of entry FRED.

If instead of passing the resource call argument in-line,
it is passed on the top of the stack, then ?RCALL,
?RCHAIN, and ?KCALL are changed to JSR @14,
JSR @12, and JSR @13 respectively, with no
relocation operation. Following this data word is a zero
word, indicating to the resource manager at run time
that the resource call argument is found on the top of
the stack.

Word PC relative relocation is not currently supported by
the Macroassembler. This relocation adds together the
base and the data, and then subtracts the relocated
value of the offset, i.e., the actual address at which the
relocated data will be placed. .

Note that absolute relocation need not generally be
used. If you do not wish to relocate a piece of data,
don’t put an entry for the data in the relocation
dictionary.

Data Block

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table A-1. Call and Target Relocation

From To Root or Bound Overlay Shared Routine
Shared Routine
2KCALL JSR @ 13 JSR @ 13
EJSRO w g
Root ?RCALL @ JSR@14 | JSR@ 14
w o
2RCHAIN JSR @ 15 JSR @ 15 JSR @ 15
o w g
2KCALL JSR @13 JSR @13 JSR @ 13
a w o
Over- 2RCALL JSR @ 14 JSR @ 14 JSR @ 14
lay o w o
2RCHAIN JSR @ 15 JSR @ 15 JSR @ 15
a w g
?KCALL JSR @13
€
Shared 2RCALL JSR @ 14
Routine €
2RCHAIN gSR @ 15

entry descriptors

«a_ absolute address

w address of overlay descriptor
o 1B0 + address of shared library descriptor
€ 1B0O + 1B1 + library # + external #

N e

Title Block

The .TITLE pseudo-op in your Macroassembler code
generates the title block. (See the appropriate higher
level language manual for the corresponding feature.)
This must be the first block in OB file, and has the
structure shown in Figure A-3. Bit 4 of word one is the
force-bind bit. If it is set, the module is unconditionally
bound.

The third word, length, describes the total number of
words in the block. The left byte of word 4 contains the
major revision number, and the right byte contains the
minor revision number of the OB. Word 5 counts the
number of bytes in the title; word 6 is a byte pointer to
the start of the title string (in word 7).

left byte right byte
word
AN | 1
sequence number (1) 2
length 3
rev no. (major/minor) 4
byte length 5
title byte pointer 6
title 7
SD-00373
Figure A-3. Title Block Structure
093-000190

A

Licensed Material - Property of Data General Corporation

End Block

This block is the last block in the OB file, and has the
structure shown in Figure A-4.

The start address specifies the starting execution address
of the program. The Binder computes the -actual
execution address from the start address and the
relocation base, generally using word relocation. In
general, only one OB file in a Binder command
sequence will carry a real start address; other OBs place
a -1 in word 4. However, if more than one OB contains
a valid start address, the Binder will use the last address
specified, unless you used the /F switch in the
command sequence (see Chapter 4).

word
W\
sequence number 2
5 3
start address 4
reloc. base reloc. op. 5
SD-00374 ‘
Figure A-4. End Block Structure

Unlabeled Common Block

_ This block has the structure shown in Figure A-5.

Word 4 contains the size of unlabeled common. The
relocation base (word 5) and relocation operation (also
word 5) are the same as for the relocation dictionary
entries in the data block.

word

\ 3 4
sequence number 2
5 3
length of 4

unlabeled common
reloc. base relce. op. 5

SD-00375

Figure A-5. Unlabeled Common Structure

093-000190

DataGeneral

SOFTWARE DOCUMENTATION

External Symbols Block

The external symbols block groups those symbols
which are declared external. The structure of this block
appears in Figure A-6.

word

\ \\\ 4 1
sequence number 2
length 3
number of symbols 4
2 symbol entries = 5

st symbol name space [A

SD-00377

Figure A-6. External Symbols Block Structure

Word 3 contains the number of words in this block.
Word 4 contains the number of symbols grouped in this
block. The maximum number of external symbols is
limited to 4096, because the size of the relocation base
field in each entry of the relocation dictionary in data
blocks is only 12 bits. For each symbol there is a
corresponding entry in the symbol entries section of
this block, commencing at word 5. Each symbol entry is
two words long, as shown in Figure A-7.

8 bits
word
0 length of name 1
byte pointer to name 2

SD-00376

\— Figure A-7. Symbol Entry in External Symbols Block —

The name length (8 bits) permits symbols to be up to
255 characters long (even though the Macroassembler
currently truncates symbols to five characters). The
byte pointer points to the position of the name string in
symbol name space (the last section of the external
symbols block), relative to the start of the block. The
length of the name is given in characters. Thus a single
string, such as ‘““ABCD”’, can be pointed to by distinct
symbol entries for symbols ‘““ABC’’ and ‘“‘CD”’.

The order of symbols in this block must correspond to
the order that they are described in the relocation

External Symbols Block

DataGeneral

SOFTWARE DOCUMENTATION

dictionary entries in the data block. The Binder assigns
a unique numeric ID (starting at a number one greater
than the highest relocation base assigned to partitions
or overlays) to each external symbol based on its
position in the external symbols block (or blocks). It is
this ID which appears in the relocation base of each
dictionary entry for external symbols in the data block.

Entry Symbols Block

The entry symbols block groups those symbols which
are declared as entries. The structure of this block
appears in Figure A-8.

word
NWNN\WEEE
sequence number 2
length 3
number of symbols 4
‘,?‘.L symbol entries gr’ 5
?..{3 symbol name space %
SD-00379
Figure A-8. Entry Symbols Block Structure

For each symbol there is a corresponding entry in the
symbol entries section of this block, beginning at word
5. Each symbol entry is four words long, as shown in
Figure A-9.

Licensed Material - Property of Data General Corporation

8 bits
A~ word
type length 1
byte pointer to symbol 2
symbol value 3
reloc. base reloc. op. 4
SD-00380

—— Figure A-9. Symbol Entry in Entry Symbols Block

Word 1 indicates the number of characters in the
symbol, and its type: .ENT(0), .ENTO(4), or
.PENT(6). Word 2 contains a byte pointer to the
symbol name string in symbol name space, which
follows the last symbol entry. Word 3 contains the
value of the symbol, i.e., its relative position in the
partition specified by the relocation base (word 4) and
relocation operation.

Local Symbols Block

These structures are exactly like the entry symbols
structures (Figures A-8 and A-9). The Binder ignores
local symbol blocks unless you apply argument switch
/U to the module.

The local symbols block groups those symbols which
will not be referenced by other modules. The structure
of this block, and the symbol entry which is used in the
block, are shown in Figure A-10. See /U argument
switch.

word
Y= |-
sequence number 2
length 3
word
number of symbols
y 4/7 0 length !
éF symbol entries & 5 byte pointer to symbol 2
‘T . symbol value 3
“T symbol name space J]: reloc. base reloc. op. 4
$D-00403)

Figure A-10. Local Symbols Block Structure

A-6 093-000190

—~

Licensed Material - Property of Data General Corporation

Library Start and End Blocks

Each non-shared library the Binder uses to produce a
program file is essentially a series of object files
grouped together into a single library file. Each of the
formerly separate object files becomes a separate
module in the new library file. At the beginning of this
new file there is a library start block and at the end
there is a library end block. Each block consists of two
major sections: an initial 4-word header, and a series of
module descriptors (one per module) followed by a
record name space area. A detailed description of
library start and end block structure is provided in the
Library File Editor Reference Manual.

Address Information Block

Current versions of the Macroassembler and DGC
high-level languages supported by the AOS system,
except for COBOL, do not generate address
information blocks (AIBs) even though the Binder can
recognize these blocks. Thus this block is of interest to
you only if you write a language processor capable of
generating AIBs.

There can be only one AIB per OB. Code for each
partition appears in the data blocks that follow the AIB.
As shown in Figure A-11, there are up to three separate
parts in each AIB: the basic portion (words 1-4), new

partition descriptors, and partition-sectioning
descriptors.
word
1 \ \ 10
2 sequence number (2)
3 length
4 number of non-default
partitions
new
5 global ID type } partition
descriptor

number of partitions
with overlays

local ID

overlay
descriptor

global ID } internal

overlay number

SD-00382

L Figure A-11. Address Information Block Structure —

093-000190

DataGeneral

SOFTWARE DOCUMENTATION

AlIBs perform two distinct functions: they can define
partitions, and they can define overlays. Word 4
specifies the number of new partitions being created.
Each new partition descriptor has two eight-bit fields;
the left field is the partition number that you are
assigning to a new partition, and the right field is the
type of this partition. In order to use the partition in a
subsequent OB, you must recreate it. Be sure to give it
the same partition type; otherwise you will get an error.

If you use the AIB to reserve an overlay area in any
partitions (default or non-default types), then
following the last new partition descriptor (if any) you
must have a single word describing the number of
partitions with overlays. Remember: you can use the
AIB to define overlay areas only if you do not use the
square brackets convention in a Binder command line.
Using the AIB to define overlay areas permits you to
allocate only one such area per partition.

Fartition-sectioning descriptors let you define overlays
within an OB. You can direct data from this OB into
many different overlays in any code partition. All of the
overlays destined for any partition will go to the same
overlay area in that partition.

The size of any overlay area will equal the size of the
largest overlay that you define. Recall that unshared
overlays will always be multiples of 512 bytes, and
shared overlays will be multiples of 2048 bytes.

Shared Library Block Header

Each shared library constructed by the Shared Library
Builder will consist of a series of reentrant shared
routines, preceded by a shared library block header.
The structure of this header is described in the Shared
Library Builder Reference Manual.

Task Block

All AOS assemblers and compilers generate a task
block for each program to indicate how many task
control blocks the program requested. If there is no
task block and no /K switch in the command line, the
Binder presumes the program needs only one task (the
default task). This block has the structure shown in
Figure A-12. The number of tasks must be less than
256.

N 12

sequence number
4
number of tasks

SD-00383

Figure A-12. Task Block Structure

Task Block

DataGeneral

SOFTWARE DOCUMENTATION

Limit Block

Each limit symbol will form a limit block. This block
has the structure shown in Figure A-13.

word
\\\\\\§ 13 1
sequence number 2
length 3
\ \\\\ name length 4
byte pointer to symbol name 5
reserved 6
reloc. base reloc. op. 7
name 8
SD-00384
Figure A-13. Limit Block Structuré ——

The right byte of word 4 contains the size of the limit
symbol in bytes. See the Macroassembler Reference
Manualfor a discussion of limit symbols.

Named Common Block

The named common block is generated when the
program references a named common symbol. This
block has the structure shown in Figure A-14.

Words 5 and 9 have the same meaning as relocation
dictionary entries in the data block. Words 4 and 5 apply
to the size of named common, and word 9 describes the
partition into which the common area will be placed.
The relocation operation field of word 9 is always set to
one, since word relocation is always used.

Accumulating Symbol Block

Each accumulating symbol used builds an accumulating
symbol block. This block has the structure shown in
Figure A-15.

Licensed Material - Property of Data General Corporation

word
14 1
sequence number 2
length 3
common size 4
reloc. base reloc. op. 5
name length 6
byte pointer to name 7
reserved 8
reloc. base 1 9
name 10
SD-00385
L Figure A-14. Named Common Block Structure

word
\\ \\\ 15 1
sequence number 2
length 3
0 name length 4
byte pointer to name 5
symbol value 6
reloc. base reloc. op. 7
name 8
SD-00386

A-8 093-000190

Figure A-15. Accumulating Symbol Block ———

~

[

~

Licensed Material - Property of Data General Corporation

Debugger Symbols Block

The Binder copies data from the debugger symbols
block into the debugger symbols file program-file.DB
when function Binder switch /D appears in the
command line, and the Binder detects a debugger
symbols block. The format of the debugger symbols
block is shown in Figure A-16.

Following the last data word is a series of two-word
entries in the data relocation dictionary. Each word of
data may have any number of entries in the relocation
dictionary, since more than one relocation operation
may be applied to the data. Absolute data has no entry
in the relocation dictionary.

word
AN 6 !
block number 2
length 3
number of data words 4
data 5
relocation dictionary
SD-00387
—— Figure A-16. Debugger Symbols Block

Each entry in the dictionary is a two-word group with
the following structure:

offset

reloc. base reloc. op.

— ——

4 bits

SD-00378 12 bits

The entry structure is defined and used exactly like
dictionary entries for data in data blocks. On the first
use of the link operation, the Binder copies a 0 to the
debugger symbols file. On subsequent uses of the link
operation, it copies to the debugger symbols file the file
position (in words) where the link operation was last
used in the debugger symbols block. After it has
processed the last object file it writes the file position of
the last use of the link operation in word 0 of the
debugger symbols file. (The data it has copied from the
debugger symbols block commenced originally at word

1)

093-000190

DataGeneral

SOFTWARE DOCUMENTATION

Debugger Lines Block and Lines Title
Block

The Binder copies from object file input into the
debugger lines file, named program-file.DL. It creates
this file when it sees a debugger lines block in an OB.
The next to last block in this OB must be a lines title
block. The debugger lines block and lines title block are
structured as shown in Figure A-17.

word
<

\\ 17 or 20 1
block number 2
length 3
number of data words 4
data 5

relocation dictionary

SD-00389

Figure A-17. Debugger Lines Block

Entries in the relocation dictionary are two words each,
defined and used as entries in relocation dictionaries as
described previously. Link relocation may not be used
in the debugger lines file.

The lines title block is block type 20;. Except for this
difference, the lines title block is structured exactly like
the debugger lines block, which has block type 175.

Object File Illlustrations

Having discussed each of the possible object block
structures separately, we can now examine an entire
object file and see the structures of some actual blocks.
For this illustration, let’s use the source program
entitled EXMPL. This program was shown in Figure
2-2; but we repeat it here, in Figure A-18.

I'he object file constructed by the Macroassembler
from source file EXMPL is shown in Figure A-19.
Words in this illustration are numbered from zero
through 116 octal, we’ve drawn square brackets to
delimit each block in the OB.

Object File llustrations

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

o TITLE
e JENT
03 JEXTN
vd
05 . ZREL
06
07 V0P0V-0000VA’ EXMP1
08 00001-000000! t XMP2
u9
1¥ 8000wy o NREL
11 0oowR'0bdv123 EXMPL: 123
12 ©¥ovd1'vovdvdl EXMP2
13 v00v2'vBvdYY’ EXMP1
14 00003'000000% ESYM
15
16 0800021 -NREL
17 Q0UV001020IVD'EXMP2: EXMPL
18 00001.000000! EXMP2
19 - END

xxQ0Yd0B TOTAL ERRURS,

Words 0 through 11 comprise the title block: sequence
number 1, length 9 words, no major or minor revision
number, and title string ‘““EXMPL”’ is preceded by a
byte length of 5 and a byte pointer to the start of the
string. Words 12 through 31 comprise the entry block.
There are two symbols, EXMP1 and EXMP2, and thus
there are two symbol entries (preceding symbol name
space). The first of these four-word entries specifies
that the symbol is 5 characters long, symbol value is
““0” (first entry defined for this partition), relocation
base is 7 (shared code), and relocation operation is 1
(word). This is EXMP2. The second symbol entry
describes EXMP1: # 5 characters long, symbol value 0,
relocation base 7, and relocation operation 1.

Words 32 through 41 comprise the external block. There
is one symbol, it is 4 characters in length, and its name
isESYM.

Words 42 through 55 comprise a data block. There are
two words of data, they start at relative offset 0 in
ZREL; word-relocation is specified. Both data words
are zero. The first dictionary entry specifies offset 0,
relocation base is unshared code, and relocation
operation is word. The second dictionary entry specifies

©w@0@1 EXMPL AOS ASSEMBLER REV 00.05

EXMPL
EXMP1,EXMP2
ESYM

EXMP1

YOvdb PASS 1 ERRORS
Figure A-18. EXMPL Assembler Listing

P9:43:32 wa/v1/77

offset 1, relocation base is shared code, and relocation
operation is word.

Words 56-75 comprise a data block for the unshared
code partition shown in Figure A-18. There are four
words of data starting at offset 0, the type is unshared
code with word relocation. The first data word is
000123; others are zero. There is no dictionary entry
for offset 0 since it is absolute. At offset 3, the
relocation base is 10 (first external symbol in the
module), and the relocation operation is displacement.

Words 76-111 comprise a data block for the shared code
partition. There are two words of data, and the first is
placed at offset zero in this partition. The data type
(word 103) is shared NREL code. There are two entries
in the relocation dictionary, the first specifies that word
zero uses word relocation applied using the non-shared
NREL code base, and the second specifies word
relocation and the shared NREL code base.

Finally, words 112-116 comprise the end block. The
starting address (word 115) is zero, the relocation base
(word 116, bits 12-15) is unshared code, and the
relocation operation (bits 0-11) is word.

WORD # DATA

4u 042523 05451

00 [bevvel 200001 V0VV11 177777 0VYDVS VVVV14 V42530 V46520
10 04600J)[00000S BV0002 000L21 BVBRLV2 000005 VBRV3E 00VEYY
20 000161 0@POVS VVQV3S VOPOBD VVR1Q1 V42530 PU6S20 @311C5
38 854115 250061) [00000U ©REOV3 BVRV1V @BVVR] PPBVOUY BVRUVLL

0000UQ POLRUL VVBV1U DOVPB2 VVVLRY BVQL21
S0 000000 VVEVVY VYVVED 000101 CVBVAl VV0161) [WOVLRY VOLLLS
60 000V2V VOOBYY 000000 VVV1d1 bVB123 VOVVRY CRVVVD 0V0VLL
76 0Y0WYl DUB161 VYBVL2 VBRIVl BYLKRe3 ¢Ww2v3][uvvuul BuYYLe
100 000014 VYVYUZ JUVDBL Vob16]1 LOVVVY VYVWIL VILLLVY CUL1E]
110 200001 000lo1l) (129002 VOLAYT VORRYS BUVLRR WoK1V1]

Figure A-19. Contents of EXMPL.OB

End of Appendix

A-10

093-000190

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

~

Index

Within this index an “‘f*’ following a page number .

means ‘‘and the following page’’, “‘ff”” means ‘‘and the
following pages’’.

accumulating symbol 1-5, 2-2, A-10
accumulating symbol block 1-5, A-8
address information block A-1, A-7
argument switches 2-2

ASYM 1-5,2-2

call relocation A-3f
7CLOC 1-4
command file 2-1, 2-3
7CSZE 1-4

data block A-2, A-10
debugger lines block A-1, A-11
debugger lines file 1-6

debugger symbols block A-1, A-9 .

debugger symbols file 1-5, A-9

end block A-1, A-5, A-10

entry symbols block A-1, A-5f, A-12
error messages 2-3f

external symbols block A-1, A-6, A-10

.FORC 1-4
function switches 2-1

?7KCALL 1-4, A-3f

library
shared 1-4, 2-2
start and end block A-7
unshared 1-4, 2-2
limit block A-2, A-8
limit symbols 1-4, 2-3
.LMIT 1-4
lines title block A-1, A-9
link relocation 1-6
local symbols block A-2, A-6

?MEM 1-2
IMEMI 1-2

093-000190

Index-1

named common block A-2, A-8
NMAX 1-4,1-5

INMAX 1-2,1-5

NREL 2-2

NREL 1-1f, 2-3, A-2, A-10

object files 1-1, 2-1, A-1, A-9f
operating procedures 2-1ff
overlay
area 1-2ff, 2-2, A-3, A-10
command file 2-1, 2-3
directory 1-1
file 1-2f

partition 1-1f, 2-1, 2-3
types 1-1f
program file 1-1

?RCALL 1-4, A-3f

7RCHAIN 1-4, A-3f

relocation dictionary A-2f, A-10
root 1-2ff, 2-2

SFALT 1-5

shared routines 1-4, A-4
shared library block A-1, A-8
Shared Library Builder 1-4
stacks 1-5

symbol table file 1-1, 2-1, 2-4
switches 2-1f

target relocation A-3f

task block A-1, A-7, A-9
.TITLE A-5

title block A-1, A-4, A-7
.TSK 2-1

UNDEF 1-4

undefined symbols 1-4, 2-3
unlabeled common A-5
unlabeled common block 1-5, A-5
URT.LB 1-5, 2-1

User Status Table (UST) 1-1, 2-1
2USTART 1-1

ZMAX 1-4

7ZMAX 1-2,1-5
ZREL 1-1ff, 2-2ff, A-2

INDEX

CUT ALONG DOTTED LINE . ‘ -)

¢»DataGeneral

Installation Membership Form

Name Position Date
Company. Organization or School
Address City State Zip
Telephone: Area Code No. Ext.
O OEM Batch (Central)
0 End User Batch (Via RJE)

O System House
J Government

Ooogog

On-Line Interactive

Qty. Installed | Qty. On Order

0 HASP 0 X.25
0O HASPII 0O SAM
0O RJE8O 0 caM
0O RCX 70 [XODIAC™
O RSTCP [0 DG/SNA
J 4025 0 3270
[J Other
Specify
O

DG/L Assembler
COBOL FORTRAN 77

)

g

0

Interactive (O FORTRAN 5
COBOL [RPG I
PASCAL O pL/1
Business [APL
BASIC J Other
Specify

100 AOS 0O RDOS
O AOS/VS 0O DOS
0O AOS/RT32 [RTOS .) A
0 MP/OS O Other rom whom was your machine(s)
purchased?
0O MP/AOS
Specity {J Data General Corp.
O Other
Specify
ALGOL BASIC

Are you interested in joining a
special interest or regional
Data General Users Group?

O

€»DataGeneral

Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual No.

Who are you? OEDP Manager OAnalyst/Programmer OOther
OSenior Systems Analyst OOperator

What programming language(s) do you use?

How do you use this manual? (List in order: | = Primary Use)

___ Introduction to the product __ Tutorial Text ___ Other
—— Reference — Operating Guide

Yes Somewhat
About the manual: Is it easy to read?
Is it easy to understand? O
Are the topics logically organized? [m]
Is the technical information accurate? O
O
O

a

Can you easily find what you want?
Does it tell you everything you need to know
Do the illustrations help you?

ooooooo
ooooooo#

O

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

S31VLIS A3lINN
JHLNI
a3V 4I
AHVSS303N
3OVISOd ON

134-664

18S LO S}3snydessey ‘Y8ncioqisapy
AuQ J3ndwor) 0opy
LLL=J °S° WA ‘Uonejudwndoeq I3sn)

[eISUSTYER(] 4D

33SS3HAAV A8 AIVd 38 11IM 3DV1SOd

CLL10 VW 'OHO8HLNOS 9¢ 'ON linY3d SSY10 1SHid

TV Ad3d SS3ANISNg

e
)

User Documentation Remarks Form

Your Name Your Title

Company

Street

City State _ Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title Manual No.

Who are you? COEDP Manager OAnalyst/Programmer OOther
OSenior Systems Analyst OOperator

What programming language(s) do you use?

How do you use this manual? (List in order: 1 = Primary Use)

___ Introduction to the product ___ Tutorial Text ___ Other
—— Reference ___ Operating Guide

Yes Somewhat

]

About the manual: Is it easy to read?
Is it easy to understand? O
Are the topics logically organized? O
Is the technical information accurate?]
Can you easily find what you want? a
Does it tell you everything you need to know [
Do the illustrations help you?

ooooooo
oooooooZ

0

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

S31V1IS A3lINN
3HLNI
a3V 4I
AHVSS303N
39OVLSOd ON

134-664

L8S LO Sh3snydesseyy ‘Y3noioqisam
3AuQ 3indwo) gopy
LLL=J °S W ‘uonejuawn3oq I13sn)

[eIoUT)eTe(] 4)

33SS3HAAV A8 Aivd 38 11IM 39V1SOd

2..10 VN 'OHO8HLNOS 9¢ 'ON 1INY3d SSY10 1SHid

TVIN Ald3d SS3NISNg

il

D,

Data General Corporation, Westboro, MA 01580

»

B

I

093-000150-03

