AOS,
AOS/VS USER

y w.?

edygliR

GR3-000032-00

e

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE-
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE-
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
MANAP, microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE
MV /4000, ECLIPSE MV /6000, and ECLIPSE MV /8000 are U.S. registered
trademarks of Data General Corporation. AZ-TEXT, COMPUCALC, DG/L,
DESKTOP GENERATION, ECLIPSE MV/10000, GW /4000, GDC/1000,
GENAP, PRESENT, REV-UP, SWAT, TRENDVIEW, DEFINE, SLATE,
microECLIPSE, BusiPEN, BusiGEN, BusiTEXT, and XODIAC are U.S.
trademarks of Data General Corporation.

Copyright © Data General Corporation, 1982, 1984
All Rights Reserved

¢pDataGeneral

AOS,
AOS/VS USER

self-study course

Licensed Material — Pmbertv of Data General

Table of Contents

Student Orientation

Module 1 AOS, AOS/VS Principles
Module 2 Gaining Access to the System
Module 3 CLI Commands
Module 4 Directories and Pathnames
Module 5 File Security
Module 6 Queues

- Module 7 The CLI Environment
Module 8 The Process Tree
Module 9 Advanced CLI Concepts
Module 10 The SPEED Editor
Module 11 Program Development
Appendix A Module Tests Answers
Appendix B AOS, AOS/VS Reference Manuals

Addendum The SED Editor

Student Orientation

Course Description

This course teaches you to use your AOS or AOS/VS system. You will learn to develop
and execute programs. You will also learn to build and maintain files on the system.

Prerequisites

This course is designed for students who are familiar with data processing concepts and
who have some programming experience. Students can become familiar with data
processing concepts by attending the Introduction to Small Computers lecture course, or
by taking the Introduction to Small Computers Self-Study Course. Programming
experience can be gained by attending the Introduction to Assembly Language lecture
course. Students do not need a familiarity with Data General computers.

Course Goals

Upon successful completion of this course, you should be able to:

1. Describe the function of AOS or AOS/VS.

Describe the steps involved in signing on to an AOS or AOS/VS system.
Given a command, write an instruction in the proper format.

Describe the function of a directory.

Describe the operation of file security.

Describe the operation of queues in AOS or AOS/VS.

Write the commands needed to change the CLI environment.

® N kR W

Write the commands needed to create a subordinate process.

2 Student Orientation

9. Write commands to edit with the SPEED editor.
10. Develop and execute a program using AOS or AOS /VS.

11. Write commands using macros and pseudo-macros.

Resources

To complete this course, you will need:

* AOS, AOS/VS User Student Guide.

* Audiotapes for 11 modules.

* Audiotape playback unit.

* Optional resource: Access to a functioning AOS or AOS /VS system.

Related Publications

Appendix B of this Student Guide lists the Data General reference manuals that contain
additional information about AOS and AOS/VS.

Course Organization

This course is completely self-contained and is arranged in a modular, self-paced format.
You can progress through the course at your own pace and in your own setting. The
course contains 11 modules, each of which covers a specific topic or theme. Most
modules consist of two parts:

1. An audiocassette tape.
2. A section of text, figures, and exercises contained in this Student Guide.

When you are instructed, listen to the audiotape as you follow along in the Student
Guide. The Student Guide highlights the audiotaped lectures.

At the beginning of each module of the Student Guide, there is a list of Module
Objectives that tell you exactly what you should learn in the module. You can evaluate
your performance of these Module Objectives by completing the exercises and Module
Test contained in each module. Answers are provided in Appendix A of this StudentGuide
so0 that you can score your own test to see how well you do. If you successfully complete
the material, then you may continue with the next module; otherwise, you should restudy
the module material before proceeding. '

In addition, most modules contain Lab Activities that allow you to practice the module’s
Module Objectives. If you have a computer running AOS or AOS /VS available for your
own use, then it is recommended that you do the Lab Activities using the computer.
However, this is not required; the Lab Activities are designed so that you can do them
without a computer.

On the next page is a Course Map. It illustrates the order in which you should progress
through the course. As you can see, the modules should be studied consecutively as they
appear in the Student Guide.

Student Orientation

3

Course Map

CS-01693

STUDENT ORIENTATION

MODULE 1

AOS, AOS/VS PRINCIPLES

Y

MODULE 2

GAINING ACCESS
TO THE SYSTEM

MODULE 3

CLI COMMANDS

MODULE 4

DIRECTORIES AND PATHNAMES

MODULE &

FILE SECURITY

MODULE 6

QUEUES

y

MODULE 7

THE CLI ENVIRONMENT

y

MODULE 8

THE PROCESS TREE

MODULE 9

ADVANCED CLI CONCEPTS

A

MODULE 10

THE SPEED EDITOR

MODULE 11

PROGRAM DEVELOPMENT

Figure 1 Course Map

4 Student Orientation

Course Duration

This is a self-paced instruction course. Work at your own pace; there is no specific
completion time for this course. However, with diligent attention to the instructional
materials, an average completion time is three to five working days.

Typesetting Conventions

This course uses the following typesetting format to illustrate the various AOS and
AOS/VS system procedures:

THIS TYPEFACE TO SHOW YOUR ENTRY
THIS TYPEFACE TO SHOW SYSTEM RESPONSES

This concludes the Student Orientation. Continue to Module 1.

Module 1
AOS, AOS/VS Principles

Introduction

This module introduces you to the AOS and AOS/VS operating systems. It teaches the
purpose and function of these operating systems. In addition, it introduces the Command

Line Interpreter (CLI).

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify the function of the AOS and AOS/VS operating systems.
2. Define the Command Line Interpreter (CLI).

Resources

To complete this module, you will need:

e Module 1 audiotape.
e Module 1 of your Student Guide.
» Audiotape playback unit.

1-2 AOS, AOS/VS Principles

Module Outline

Module 1 discusses the following topics:
1. Purpose of AOS and AOS/VS
2. Function and features of AOS and AOS/VS
3. The CLI and its purpose’ |

Now start the Module 1 audiotape. As you listen, follow along in Module 1 of your
Student Guide.

.

AQOS, AOS/VS Principles 1-3

AOS and AOS/VS

Both AOS (Advanced Operating System) and AOS/VS (Advanced Operating System/
Virtual Storage) are general-purpose, disc-based operating systems. These systems can
be used as time-sharing, batch, or real-time control systems.

AOS and AOS/VS control and monitor processing on the computer system. They are
multiprogramming systems, running more than one program at a time. Each program
shares the resources of the computer with other users.

A user of the system’s resources is called a process. AOS can have up to 64 processes
running simultaneously; AOS/VS can have up to 255 simultaneous processes.

AOS and AOS/VS manage the resources of the computer system. The operating
system:

e Controls input and output requests.

 Controls file processing.

e Acts as a program controller.

The resources managed by the operating system are the:

e Processor. Users share the Central Processing Unit (CPU).

e Memory. Memory is shared by swapping processes to disc.

« Files of information. The operating system supports four types of files.
e Devices. The operating system keeps track of device characteristics.

CS-01694

FIXED paTal| pata ||paTa || DATA || DATA
VARIABLE | SIZE DATA size |DATA
(NUMBER OF
DYNAMIC DATA DATA | gy TES SPECIFIED
WITH EACH
TRANSFER)
DATA STRING | DELIMITER | | STRING | DELIMITER
SENSITIVE

Figure 1.1 The Four Types of Data Records

1-4 AOS, AOS/VS Principles

MOVING-HEAD
DISCSs

DIGITAL
PLOTTERS

CONSOLE
TELETYPEWRITERS
OR DISPLAYS

CARD
READERS

LINE
PRINTERS

CS-01695

DISKETTES

FIXED-HEAD

DISCs

MAGNETIC TAPE

ECLIPSE®
FAMILY
COMPUTER

TRANSPORTS
MULTIPLE
SYNCHRONOUS
LINES
DCU/50
DATA
CONTROL
UNIT®
\ DCU/50
DATA
CONTROL
UNIT®
MULTIPLE
ASYNCHRONOUS
LINES
PAPER TAPE
READERS/PUNCHES

MULTIPROCESSOR
COMMUNICATIONS
ADAPTERS

*DCU/60 IS OPTIONAL WITH
COMMUNICATION LINES.

Figure 1.2 Types of Peripheral Devices

AQOS, AOS/VS Principles 1-5

- The Command Line Interpreter (CLI)
The Command Line Interpreter, or CLI, is the user’s primary interface with the operating
system. Through the CLI, you can execute programs, control peripheral devices, and set
and display system variables. There are over 90 commands available through the CLL

To ensure system security, each user has distinct privileges that are established by the
system manager. In addition, users can protect their own files from unauthorized use by
determining who can have access to their files.

Now take the Module 1 Test on the next page.

1-6 AOS, AOS/VS Principles

Module 1
Test

Directions: Answer the following questions by completing the sentence.
1. One function of the operating system is:
a. Managing the resources of the computer system.
b. Controlling the writing of computer programs.
c. Limiting the control of the computer user.
2. The Command Line Interpreter (CLI) is:
a. An operating system.
b. A user process.
c. An interface between the operating system and the user.
d. Dedicated to a specific user.
3. A process is:
a. Just another name for a program.
b. A set of procedures.
c. A user of system resources.
d. A Data General buzzword.
Now check your answers to the Module 1 Test in Appendix A. If you have answered all

the questions correctly, continue to Module 2. Otherwise, go back and review the
material in Module 1 and take the Module 1 Test again.

This concludes Module 1.

Module 2
Gaining Access to the System

Introduction

This module introduces the procedure for gaining access to your AOS or AOS/VS
system. It explains the procedures for logging on and methods for controlling your
console. Finally, it teaches some basic CLI commands and the correct way to log off the
system.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify the functions of console control characters.
2. State the procedures for logging on and off the system.
3. Write the CLI commands to display the date, time, and your process ID.

4. Identify the correct procedure for changing your password.

Resources

To complete this module, you will need:

e Module 2 audiotape.
e Module 2 of your Student Guide.
¢ Audiotape playback unit.

2-2 Gaining Access to the System

Module Outline

Module 2 discusses the following topics:

1. Logging on
a. Username
b. Password

2. Console control
a. Control characters
b. Control sequence

3. CLI commands
a. DATE
b. TIME
¢. WHO
d. BYE

Now start the Module 2 audiotape. As you listen, follow along in Module 2 of your
Student Guide.

Gaining Access to the System 2-3

Logging On

To communicate with the system, you must first tell the system who you are. You are
identified by a user profile. This profile is established by your system manager. Your
user profile includes:

Username
Password

e Privileges
Access to disc space
Priority of execution
Ability to create additional processes

Initial program
CLI
Basic Interpreter
A text editor

Figures 2.1 through 2.6 illustrate the steps of the log-on procedure. The position of the
cursor is indicated by the white box on the screen.

xkkTYPE NEW-LINE TO BEGIN LOGGING ONxkxx

Figure 2.1 Initial Log-on Message

2-4 Gaining Access to the System

§

A0S EXEC REV 00.08 18-SEP-81 12:39:33
SERNAME -

Figure 2.2 EXEC Requests Your Username.

" ROS EXEC REV 00.08 10-SEP-81 12:39:33
 USERNAME :MYNAME
PRSSHORD i

Figure 2.3 EXEC Requests Your Password.

€CON1e

€CON1D

Gaining Access to the System 2-5

A0S EXEC REV 0@ .88 10-SEP-81 12:39:33 @CON1O
USERNAME : MYNAME 1

PASSHORD -

INVALID USERNAME-PASSWORD PAIR

USERNAME - MYNAME 1

PASSWORD -

INVALID USERNAME-PASSHORD PAIR

USERNAME - MYNAME 1

PASSORD -

INVALID USERNAME-PASSWORD PAIR

USERNAME - MYNAME 1

PASSWORD -

INVALID USERNAME-PASSWORD PAIR

USERNAME - MYNAME 1

PASSWORD -

INVALID USERNAME-PASSWORD PAIR

T00 MANY ATTEMPTS, CONSOLE LOCKING FOR 18 SECONDS

Figure 2.4 Invalid Username-Password Pair

305 EXEC REV 00.80 10-SEP-81 12:39:33 @CON1@
ISERNAME : MYNAME 1

DASSHORD

ENTER ¥OUR NEW PASSWORD :NEWWORD

“_NEW PASSWORD IN EFFECT--

Figure 2.5 Enter CTRL-L at the End of Your Old Password.

2-6 Gaining Access to the System

Valid password characters are:

A-Z

0-9

— (underscore)

. (period)

? (question mark)
$ (dollar sign)

Also, upper-case characters and lower-case characters are equivalent.

A0S EXEC REV 00.08 1-JAN-B2 12:39:33 6CONID
USERNAME : MYNAME | C
PASGWORD: -

LAST MESSAGE CHANGE 1-JAN-82 @8:23:31
SYSTEM NEWS
NEW COBOL COMPILER INSTALLED
PICK UP YOUR NEW MANUAL

SYSTEM WILL BE UP ALL WEEKEND
LAST PREVIOUS LOGON 31-DEC-81 14:45:21 |
nﬁs CLI REV 12.34 1-JAN-82 17:12:19
W »» ‘

Figure 2.6 A Sample System Message

Review of the log-on procedure:

1. Press NEW LINE.

2. Enter your username; press NEW LINE.
3. Enter your password; press NEW LINE.

Now do Exercise 2-1 on the next page.

Gaining Access to the System 2-7

Exercise 2-1

Directions: Answer the following questions by completing the sentences.
1. The steps in the log-on procedure are:
a.

b.

C.

2. The program that starts to run when you log on is the

3. The name that identifies you to the system is your

4. You havea(n)._____ to prevent unauthorized use of your log-on privileges.

Now check your answers on the next page.

2-8 Gaining Access to the System

Exercise 2-1
Answers

1. a. Press NEW LINE.
b. Enter your username; press NEW LINE.
c. Enter your password; press NEW LINE.

2. Initial program
3. Username
4. Password

If you answered all the questions correctly, continue with Module 2 by restarting the
Module 2 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Gaining Access to the System 2-9

Console Control

Control Characters

The delete key, or DEL, removes characters that precede the cursor. (This key may also
be labeled RUBOUT.)

To enter control characters, hold down the CTRL key and press the appropriate character.
Control characters work only on video terminals, not on printer terminals.

Control Result

Character
CTRL-L Clears the display screen.
CTRL-S Stops the scrolling display of information.
CTRL-Q Restarts the scrolling display of information.
CTRL-O Cancels the display of information.
CTRL-A Recalls previous command line.
CTRL-E Inserts characters into command line.
CTRL-U Deletes command line.

Table 2.A Control Characters

The CTRL-A character recalls the last CLI command line, allowing you to modify only
those characters that you wish to change.

Example

QPRINT FILE1
(CTRL-A)

QPRINT FILE2A
(CTRL-A)

QPRINT FILE2B

Control Sequences

Control sequences consist of two control characters that are entered as a pair, one after

the other.
Control Sequence Resuit
CTRL-C, CTRL-A Cancels current CLI command.
CTRL-C, CTRL-B Cancels current process and returns to creating process.

Table 2.B Control Sequences

Use control characters and control sequences as you do the Lab Activities in this course.

2-10 Gaining Access to the System

Gaining Access to the System

2-11

Exercise 2-2

Directions: Name the control character that performs the stated function.

1.

AN O

Stops display upon the terminal.
Clears the display.

Repeats the previous CLI command.
Restarts the display of information.
Erases the current command line.
Cancels the display of information.

Inserts a character.

Directions: Name the control sequence or key that performs the stated function.

8.
9.

Cancels only the effects of the current CLI command.

Cancels the current process.

10. Removes the character that precedes the cursor.

Now check your answers on the following page.

2-12 Gaining Access to the System

Exercise 2-2
Answers
1. CTRL-S
2. CTRL-L
3. CTRL-A
4. CTRL-Q
5. CTRL-U
6. CTRL-O
7. CTRL-E
8. CTRL-C, CTRL-A
9. CTRL-C, CTRL-B
10. The delete key (DEL or RUBOUT)

If you answered all the questions correctly, continue with Module 2 by restarting the
Module 2 audiotape. Otherwise, review the material and do this exercise again before
continuing.

Gaining Access to the System

2

13

CLI Commands

Command

Result

DATE
TIME
WHO
BYE

Returns the system date (DAY:MONTH:YEAR).

Returns the system time (HOURS:MINUTES:SECONDS).

Returns the process identification.
Logs you off the system correctly.

Table 2.C Four Basic CLI Commands

)DATE

12-DEC-B1

)TIME

12:13:45

JWHO

PﬂD 27 USER1 CONZZ :CLI.PR
)

Figure 2.7 The DATE, TIME, and WHO Commands

2-14 Gaining Access to the System

3 |
_"ﬁos CLI TERMINATING ~25-DEC-81 15:29:@2

Figure 2.8 The BYE Command for Logging Off

Gaining Access to the System 2-15

Lab Activity 2-1

Complete this Lab Activity if you do not have access to a computer system, or if you
want some practice before logging on to a working system.

Directions: After viewing the screen, correctly complete the sentence.

1. When you see the screen in Figure 2.9, you

*00kTYPE NEW-LINE TO BEGIN LOGGING ONxxxx

Figure 2.9

2. When you see the screen in Figure 2.10, you

AOS EXEC REV 00.6@ 1@-SEP-81 12:39:33 €CON10
USERNAME -

Figure 2.10

2-16 Gaining Access to the System

3. When you see the screen in Figure 2.11, you

A0S EXEC REV 80.00 18-SEP-81 12:39:33 eCONI@
USERNANE - HYNAME B iy
. PASSHORD-l

Figure 2.11

4. The screen in Figure 2.12 is displayed if you

A0S EXEC REV 0@.08 1B-SEP-81 12:39:33 €CON1B
~USERNAME : MYNRMEI '
"PRSSWORD :
INVALID USERNQME-PQSSNORD PRIR
USERNAME :MYNAME1 :
~ PASSHORD _
INVALID USERNAME- PQSSNORD PQIR<
. [SERNAME :MYNAMEL :
~PASSHORD: -
* INVALID USERNAME- PQSSNORD PRIR
~ USERNAME :MYNAME1
"PASSHORD :
INVALID USERNAME- PRSSNORD PAIR
- USERNAME :MYNAMEL A
~ PRSSWORD :
INVALID USERNAME- PQSSNORD PAIR ‘
‘ EOO MANY QTTEMPTS CONSOLE LOCKING FOR 18 SECONDS

Figure 2.12

Gaining Access to the System 2-17

5. You would enter CTRL-L at the end of the old password (as shown in Figure 2.13) if
you wanted to .

A0S EXEC REV #@.88 1B-SEP-81 12:39:33 €CON10

USERNAME :MYNAME 1

PASSWORD :
ENTER YOUR NEW PASSWORD :NEWWORD

“-NEW PASSWORD IN EFFECT--
|

Figure 2.13

6. Does the message in Figure 2.14 appear on every screen?

AOS EXEC REV 0.8 1-JAN-82 12:39:33 €CON1@
USERNAME : MYNAME
PASSWORD :

LAST MESSAGE CHANGE 1-JAN-82 88:23:31
SYSTEM NEWS
NEW COBOL COMPILER INSTALLED
PICK UP YOUR NEW MANUAL

SYSTEM WILL BE UP ALL WEEKEND
LAST PREVIOUS LOGON 31-DEC-81 14:45:21
Q%S CLI REV 12.34 1-JAN-82 17:12:19
)

Figure 2.14

2-18 Gaining Access to the System

7. Name the CLI command to:

a. Determine today’s date.

b. Determine your process ID.

c. Determine the time of day.

d. Terminate your terminal session.

Now check your answers on the next page.

Gaining Access to the System 2-19

"""" Lab Activity 2-1
Answers
1. Press NEW LINE.
. Enter your username.
. Enter your password (you will not see it displayed).
. Incorrectly enter your username or password.
. Change your password.

. No. This is a local message generated by the operator.

~N N A WN

. a. DATE
b. WHO
c. TIME
d. BYE

If you answered all the questions correctly, continue to Lab Activity 2-2. Otherwise,
review the material and do Lab Activity 2-1 again before you continue.

2-20 Gaining Access to the System

Gaining Access to the System 2-21

Lab Activity 2-2

Directions: To receive the maximum benefit from this activity, you should complete it at
a functioning AOS or AOS/VS system. If one is not available, write the appropriate
responses. When you finish, check your answers on the following page. Before beginning
this Lab Activity, obtain a username and profile from your system manager. Be sure
that your initial program is the CLI. As you do this and subsequent Lab Activities, you
may wish to use some of the control characters listed in Table 2.A.

1. Find a terminal displaying the appropriate message to begin logging on, or turn on a
terminal.

. Press the correct key to begin logging on.
. Enter your username and password.

. Determine if you have successfully logged on. (You should see the CLI prompt.)

. Determine your process ID.

2
3
4
5. Display today’s date.
6
7. Determine the time of day. (Do not use your watch!)
8

. Log off the system.

Now check your answers on the next page.

2-22 Gaining Access to the System

Lab Activity 2-2

Answers

~ 1. The terminal displays this message if it is on:

** TYPE NEW LINE TO BEGIN LOGGING ON **
2. Press NEW LINE or the return key to begin logging on.

3. Enter the username and password assigned by your system manager. Press the new-line
key after entering each one. For example:
USERNAME : JONES
PASSWORD: (Here enter your password. It does not show on the screen.)

4. If you have successfully logged on, you will see a message that tells you the AOS CLI
revision, date, and time. For example:
AOS CLI REY 12.34 1-JAN-82 10:11:12

5. Enter the CLI command DATE. A sample response is:
1-JAN-82

6. Enter the CLI command WHO. A sample response is:
PID 27 USER1 CON22 :CLI.PR

7. Enter the CLI command TIME. A sample response is:
10:11:12

8. Enter the CLI command BYE. A sample response is:
AQS CLI TERMINATING 1-JAN-82 10:11:12

If you successfully completed Lab Activity 2-2, go on to the Module 2 Test. If you had
difficulty, review the material and do this Lab Activity again before you continue.

Gaining Access to the System

2-23

Module 2
Test

1. Select the correct procedure to change your password.

a. Enter username, followed by NEW LINE.
Enter old password, followed by CTRL-G.
Enter new password, followed by NEW LINE.

b. Enter username, followed by NEW LINE.
Enter old password, followed by CTRL-L.
Enter new password, followed by NEW LINE.

c. Enter username, followed by NEW LINE.
Enter new password, followed by CTRL-L.

d. Enter username, followed by NEW LINE.
Enter old password, followed by NEW LINE.
Enter new password, followed by CTRL-L.

Directions: Match the control characters with the appropriate result.

2. CTRL-L a. Restarts the display of information.

3. - CTRL-E b. Erases the current command line.

4. CTRL-S c. Clears the display.

5. CTRL-Q d. Stops the display of additional information.
6. CTRL-U e. Cancels the display of additional information.
7. CTRL-A f. Inserts characters.

8. CTRL-O g. Repeats previous command.

Directions: Complete the following sentences:

9. The control sequence to cancel a CLI command is:

10. The control sequence to cancel a process and return to the creating process is:

a. CTRL-C, CTRL-B

b. CTRL-C, CTRL-F
¢. CTRL-C, CTRL-A

a. CTRL-C, CTRL-B
b. CTRL-C, CTRL-F
¢. CTRL-C, CTRL-A

2-24 Gaining Access to the System

11. The CLI command that displays the system date is

12. The CLI command that displays the system time is

13. The CLI command that displays your process ID is
14. The CLI command that logs you off the system is

15. The steps of the log-on procedure are:

a.

b.

C.

Now check your answers to the Module 2 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 3. Otherwise, go back and review the
material in Module 2 and take the Module 2 Test again.

This concludes Module 2.

Module 3
CLI Commands

Introduction

This module introduces the CLI command format. In Module 2, you learned to use
simple CLI commands. In this module you will learn to use some more complex
commands and see the general structure of CLI commands.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify the elements of a CLI command line.
2. Determine if a CLI comma{nd line is correctly coded.
3. Determine if a filename is correct or incorrect.
4. Use coding aids to combine several command lines into one.

5. Write the following CLI commands:
HELP
CREATE
TYPE
DELETE
COPY
RENAME

Resources

To complete this module, you will need:

* Module 3 audiotape.
* Module 3 of your Student Guide.
* Audiotape playback unit.

3-2 CLI Commands

Module QOutline

Module 3 discusses the following topics:

1. Coding a CLI command line
a. Switches
b. Arguments

2. Files and filenames

3. CLI commands
a. HELP
b. CREATE

4. More CLI commands
a. COPY
b. DELETE
¢. RENAME
d. TYPE

5. Coding aids
a. Multiple-command line
b. Multiple-line commands
c. Parentheses
d. Brackets

Now start the Module 3 audiotape. As you listen, follow along in Module 3 of your
Student Guide.

CLI Commands 3-3

Coding a CLI Command Line

The format of a CLI command line is:
COMMAND|/SWITCHL.../SWITCHX,JARGUMENT1...,ARGUMENTX]

The command identifies the operation that you want to perform.
The switch modifies the function of the command.
The argument is the filename, pathname, or device that the command affects.

Commands and switches can be abbreviated. Use any number of characters that uniquely
identifies the command or switch.

For the TIME command:

T Not unique
TI Acceptable
TIM Acceptable
TIME Acceptable

For the TYPE command:

T Not unique
TY Acceptable
TYP Acceptable
TYPE Acceptable

The rules for command abbreviations also apply to switches.
Possible variations of the /SORT switch:

/S
/SO
/SOR
/SORT

If you use a command abbreviation that is too short, you receive the message
COMMAND ABBREVIATION NOT UNIQUE. If you use a switch abbreviation that is too short, you
receive the message ARGUMENT IS NOT A UNIQUE ABBREVIATION.

A switch is a slash (/), followed by a word, number, or expression. Switches modify the
default action of a CLI command. The order of switches is not important.

3-4 CLI Commands

Command Switch © ' Effect

TIME/L /L Sends output to the current listfile. (1)
Simple switch .

TIME/L=FILENAME JL=FILENAME | Sends output to the file specified by filename. (2)
Keyword switch .

TIME None Sends output to your console. (3)

Table 3.A The TIME Command

TERMINAL

KEYBOARD =
DISC FILE
CS-01696

Figure 3.1 TIME Going to the Printer, Disc File, and Console

o~

CLI Commands 3-5

Command Switches

There are five common switches that can be used with most CLI commands. These are:

. /1=
. /2=

. /L

/L=PATHNAME

/Q

The switches /1= and /2= pertain to error handling. Invalid commands cause errors

(exceptional conditions). There are two classes of errors. Class 1 errors are severe; class
2 errors are less serious.

The system can take four possible actions in response to an error. These actions are
described in Table 3.B.

Setting Resuit
IGNORE No effect. The exception is ignored and processing
continues.
WARNING (Default class 2) | A warning message is displayed and processing
continues.
ERROR (Default class 1) Execution of the current command stops. A message

is displayed and CL! prompts for a new command.

ABORT Return to creating process. If you are in CLI, you will
be logged off the system.

Table 3.B Four Error Actions

* /L Writes the CLI output of the current command to the listfile, which is usually
the line printer.

» /L= Writes the CLI output of the current command to the file specified by the
pathname.

* /Q Compresses the output of the CLI command by reducing spaces and tabs to
single spaces by turning SQUEEZE on.

3-6 CLI Commands

Example: Output without SQUEEZE
DIRECTORY :UDD:FLUFF:MORT

~FLUFF.THP XT 11-FEB-82 13:39:58 0
—FLUFF.TUBE T 11-FeB-82 13:40:02 6
MORT.FR UDF 20-MAR-81 11:15:50 1096
TEMP T 11-FEB-82 13:41:06 0
MoutT T 10-FEB-82 16:24:06 3579
TEMP.BU T 11-FEB-82 13:39:46 185
MORTIN UDF 10-FEB-82 16:26:10 1
MORT.PR ~ PRG 25-SEP-80 11:11:50 65536
PRCMORT. UDF 10-FEB-82 16:21:38 61

Example: Same output with SQUEEZE
DIRECTORY :UDD:FLUFF:MORT

—FLUFF.TMP TXT 11-FEB-82 13:39:58 0
—FLUFF.TUBE TXT 11-FEB-82 13:40:02 6
MORT.FR UDF 20-MAR-81 11:15:50 1096
TEMP TXT 11-FEB-82 13:41:06 0

MOUT TXT 10-FEB-82 16:24:06 3579
TEMP.BU TXT 11-FEB-82 13:39:46 195
MORTIN UDF 10-FEB-82 16:26:10 18
MORT.PR PRG 25-SEP-80 11:11:50 65536
PRCMORT UDF 10-FEB-82 16:21:38 61

Delimiters
A command and each of its arguments must be separated by a delimiter. Delimiters are:
» Space or spaces

e Tabs
e Commas

Example
These commands are equivalent:

TYPE FILE1 (single space)
TYPE,FILE1 (comma)
TYPE FILE1 (tab)

CLI Commands 3-7

Terminators
A correctly coded CLI command line must be terminated. Valid terminators are:

e NEW LINE

e Carriage return

e Form-feed (CTRL-L)
* End of file (CTRL-D)

Example
These commands are equivalent:

TIME (NEW LINE)
TIME (carriage return)
TIME (form-feed)
TIME (end of file)

Now do Exercise 3-1 on the next page.

3-8

CLI Commands

CLI Commands 3-9

Exercise 3-1

Directions: In items 1 through 4, match the terms with the elements of the command line.

TYPE/L,FILE1
b
1. Delimiter
2. Command
3. Argument
4. Switch

Directions: Indicate by writing a C for correct and an I for incorrect which of the
following command lines are coded correctly.

S. ___ TYPE /L FILEI

6. ____ TYPE/L,FILE1

7. ___ TYPE/L FILE1

8. ___TYPE/L FILEl
9. ___ TYPE L,FILE1

Now check your answers on the next page.

3-10 CLI Commands

Exercise 3-1
Answers

—
w

© N o v A W N
- 000 = 8 & =

9.

If you answered all the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

CLI Commands 3-11

Files and Filenames

Filenames

e Maximum of 31 characters

* Valid characters are:
A through Z (upper-case and lower-case)
0 through 9
? (question mark)
. (period)
— (underscore)
$ (dollar sign)

Invalid Reason Valid
FILE 1 Invalid space FILE.1
FILE#2 # not allowed FILE_2
FILE/NUMBER/THREE |/ not allowed FILE_NUMBER_THREE
WHAT*IS*THIS? * not allowed WHAT_IS_THIS?
MONEY$__STUFF! ! not allowed MONEY$_STUFF

Table 3.C Examples of Valid and Invalid Filenames

Now do Exercise 3-2 on the next page.

3-12 CLI Commands

CLI Commands 3-13

Exercise 3-2

Directions: Mark the following filenames V for valid or I for invalid.
1. ____ more_information
here_is_my__favorite_file_in_the_whole_world

. — THIS.IS.A.good.file

.— DATA#FILE

important_stuff

___ I_don’t_know?

.—— PAYROLL!

.— 9to5

Now check your answers on the next page.

3-14 .CLI Commands

Exercise 3-2

Answers

1.V
. I (This filename contains more than 31 characters, and therefore is too long.)

.V

2
3
4.1 (# is an invalid character.)
5.V

6. I (Single quote is an invalid character.)
7.1 (! is an invalid character.)

8.V

If you answered all of the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

p——

e

CLI Commands

3-15

CLI Commands
HELP Command

The HELP command provides you with information about CLI commands.

JHELP
TOPICS ARE

x1_SWITCH *2_SWITCH *AFTER_SWITCH *CLI_INPUT
xCONDITIONALS *CONTROL _CHARS *CURSOR_CONTROL *DBMS
*ENROLL _DOC XENVIRONMENT xEXCEPTIONS *EXEC

xF ILENAMES

*GENERIC_FILES *HISTO x]_SWITCH L INK
*OGSCALL *L_SWITCH *MACROS *MAIL
*NEWL INE *QVTRAC *PATCH *PATHNAMES
*PSEUDO-MACROS *P_SWITCH *QUEUES *Q_SWITCH
*SED *SNAP *SWITCHES *TEMPLATES
*TOPICS *XR0O

FOR MORE HELP ABOUT ANY ITEM ABOVE, TYPE 'HELP xITEM’
|

Figure 3.2 Result of the HELP Command

Using the /V switch invokes the verbose option, which provides more detailed information.

Example
Enter HELP/V,HELP

PROVIDE HELPFUL INFORMATION
HELP ITEMY ...

TIMMANL SWITCHES: /1= /2= /L(=) /Q
i PROVIDE MORE INFORMATION IF AVAILABLE

5wl TYPE HELP WITH NO ARGUMENTS, YOU WILL BE SHOWN A LIST OF TOPICS
ABOUT WHICH YOU MAY ASK FOR HELP. EACH TOPIC BEGINS WITH AN ASTERISK.
“OU MAY GIVE ONE OR MORE OF THESE TOPICS RS ARGUMENTS TO A HELP COMMAND .
“0U MUST INCLUDE THE ASTERISK. ALL A0S SYSTEMS PROVIDE THE TOPICS
«COMMANDS AND *PSEUDO-MACROS. YOUR SYSTEM WILL PROBABLY HAVE OTHER

TOPICS
AS WELL

HELP *COMMANDS

WILL GIVE YOU A LIST OF ALL CLI COMMANDS. YOU CAN FIND OUT THE
ARGUMENT REQUIREMENTS OF A COMMAND AND ITS COMMAND SWITCHES BY TYPING
THE COMMAND NAME AS AN ARGUMENT TO A HELP COMMAND. IF THERE IS
ADDITIONAL
INFORMATION AVAILABLE ON YOUR SYSTEM FOR THAT COMMAND, YOU WILL BE
REMINDED
THAT YOU CAN RE-ISSUE THAT HELP COMMAND WITH THE /v COMMAND SWITCH TO SEE
THE ADDITIONAL INFORMATION.J

Figure 3.3 Result of the HELP/V, HELP Command

3-16 CLI Commands

HELP Command Summary:

Provides information about more than the CLI.

Contains topics of information for system users.
Some information is provided by Data General.
Some information is provided by users of the system.

CREATE Command
The CREATE command creates a data file.

)HELP/v- CREATE
CREATE CREATE A FILE

FORMAT : CREATE PATHNAME (RESOLUTION- PRTHNRME)
WHERE RESOLUTION-PATHNAME IS THE PATHNAME
" - TO-WHICH .THE LINK WILL® RESOLVE
(IF /LINK SWITCH IS USED) ~ =

]

.COMMAND SWITCHES: /1= /2= /L(=) /Q
/DRTASENSITIVE ‘RECORD TYPE OF CRERTED FILE
/DIRECTORY CREATE ‘A DIRECTORY OR CONTROL POINT DIRECTORY

- /DYNAMIC RECORD TYPE OF THE CREATED FILE
7ELEMENTSIZE=N NUMBER OF DISK BLOCKS FILE WILL GROW BY
/FIXED=N RECORD TYPE OF THE CREATED FILE
. HQSHFRQMESIZE N SIZE OF HASH FRAME (DEFAULT 7)
‘. (DIRECTORIES ONLY)
CONTENTS OF FILE TAKEN FROM €INPUT
/ INDEXLEVELS N MAXIMUM NUMBER OF INDEX LEVELS (DEFAULT=3)
| ; “/LINK CRERTE A LINK :
oM , FILE TAKEN FROM REMAINDER OF MACRO FILE
/MAXSTZE=N CREATE R CONTROL POINT DIRECTORY OF THE SPECIFIED
- MAXIMUM SIZE (IN DISK BLOCKS) -- VALID ONLY
T WITH THE. /DIRECTORY SWITCH
/TYPE=sN CREATE A FILE OF THE SPECIFIED TYPE (63 < N < 25608

Figure 3.4 HELP Output for the CREATE Command

FIXED DATA || DATA | |DATA || DATA || DATA
| VARIABLE SIZE DATA SIZE | DATA
|
| (NUMBER OF
DYNAMIC DATA DATA | BYTES SPECIFIED
WITH EACH
TRANSFER)
DATA
T
SENSITIVE STRING | DELIMITER | | STRING | DELIMITER

CS-01694

Figure 3.5 Four Types of Data Records

CL! Commands 3-17

CREATE Command

Example 1
CREATE/DATASENSITIVE,FIRST_FILE

Example 2
CREATE/VARIABLE,VAR_FILE

Example 3
CREATE/DYNAMIC,DYN_FILE

Example 4
CREATE/FIXED=10,FIXED_FILE

Example 5
CREATE,FILE1

Example 6
CREATE/ILLNEWFILE
) THIS IS THE TEXT.

))

Now do Exercise 3-3 on the next page.

3-18 CLI Commands

CLI Commands 3-19

Exercise 3-3

Directions: Write the CLI command that will:

1. Supply you with information about the DATE command.

2. Create a file called DYNAM_FILE using the dynamic record format.

3. Create a file CALLED FIX__FILE using the fixed record format. Records should be
15 characters in length.

4. Create a text file that allows you to enter data from your console. Call the file
DATA_FILE.

5. Supply you with a list of CLI commands.

Check your answers on the next page.

3-20 CLI Commands

Exercise 3-3
Answers

1. HELP DATE

2. CREATE/DYNAMIC,DYNAM_FILE
3. CREATE/FIXED=15,FIX_FILE

4. CREATE/L,LDATA_FILE

5. HELP *COMMANDS

If you answered all the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

CLI Commands 3-21

More CLI Commands
COPY Command

The COPY command creates an additional copy of one or more files.
Format: COPY,DESTINATION_FILE,SOURCE_FILE
These switches are used when the destination file already exists:

/A Appends the contents of the source file to the destination file.

/D Deletes the old contents of the destination file and replaces them with the
contents of the source file.

Example 1
COPY,FILEA,FILEB

Copy FILEB into FILEA. Create FILEA. Before this command was issued, FILEA did
not exist, and FILEB contained data B. After the COPY command is issued, both
FILEA and FILEB contain data B.

Example 2
COPY/A,FILEA,FILEB

Append FILEB to FILEA. Before this command was issued, FILEA contained data A,
and FILEB contained data B. After the COPY command is issued, FILEA contains
both data A and data B, and FILEB contains its original data B.

Example 3
COPY/D,FILEA,FILEB

Replace the contents of FILEA with FILEB. Before this command was issued, FILEA
contained data A, and FILEB contained data B. After the COPY command is issued,
FILEA contains data B and FILEB also contains data B. Data A, the original contents
of FILEA, has been deleted as a result of the /D switch.

3-22 CLI Commands

DELETE Command

The DELETE command deletes one or more files.
Format: DELETE,FILENAME
These switches help prevent you from accidentally deleting files:

«/C Confirm before deleting files.
o /V Verify after deleting files.

Example 1
DELETE/C,FILE_ONE
FILE_ONE? Y

Example 2
DELETE/C/V,FILEA,FILEB
FILEA? N

FILE NOT DELETED

FILEB? Y

FILEB DELETED

You always should use the /C and /V switches to protect your files from accidental
deletion.

Now do Exercise 3-4 on the next page.

CLI Commands 3-23

Exercise 3-4

Directions: Write the CLI command that will:

1. Append the contents of FILEX to the contents of FILEY.

2. Replace the contents of FILEX with the contents of FILEZ,

3. Delete FILE!1 and FILE2, ask for confirmation before deletion, and verify the results.

4. Create FILEV and put the contents of FILEK into FILEV in one command.

Check your answers on the next page.

3-24 CLI Commands

Exercise 3-4
Answers
1. COPY/A FILEY,FILEX
2. COPY/D FILEX,FILEZ
3. DELETE/C/V FILELFILE2
4. COPY FILEV,FILEK

If you answered all questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do this exercise again before
you continue.

CLI Commands 3-25

o—

More CLI Commands (Continued)

RENAME Command
The RENAME command changes the name of a file.

Format: RENAME,OLD_NAME,NEW_FILE

Example
RENAME,OLD_DATA,NEW_DATA

The file originally called OLD_DATA is now called NEW_DATA. There is no file
named OLD_DATA after execution of this command.

TYPE Command
The TYPE command displays a file at your console.

Format: TYPE,FILENAME

Example
CREATE/LTESTFILE
) TEST LINE 1

) TEST LINE 2

)
TYPE,TESTFILE

TEST LINE 1
TEST LINE 2

Now do Exercise 3-5 on the next page.

3-26 CLI Commands -

CLI Commands 3-27

Exercise 3-5

Directions: Write the CLI command that will:
1. Change the name of a file called JUNK to GOOD_STUFF.

2. Display the contents of a file called GOOD_STUFF.

Check your answers on the next page.

3-28 CLI Commands

Exercise 3-5
Answers

1. RENAME,JUNK,GOOD_STUFF
2. TYPE,GOOD_STUFF

If you answered the questions correctly, continue with Module 3 by restarting the
Module 3 audiotape. Otherwise, review the material and do the exercise again before

you continue.

CLI Commands 3-29

Coding Aids

Multiple-Command Line

A multiple-command line allows you to enter more than one command on a line, by
using a semicolon to separate the commands.

Example
TYPE,FILE_ONE;RENAME,FILE_ONE,NEW_FILE;TYPE,NEW_FILE

Multiple-Line Command

A multiple-line command is one command that requires more than one line. Use an
ampersand (&) to continue to the next line.

Example 1
TYPE,FILE_ONE,FILE_TWO,SPECIAL_FILE_DATA,FILE_THREE &
&) FILE_FOUR

Example 2
TYPE,FILE.F,FILE.V &
&) FILEX &

&) FILE.B

WRITE Command

The WRITE command displays its arguments on your terminal.

Example P
WRITE This is an aardvark.
This is an aardvark.

Parentheses

Parentheses allow command repetition. Commands are executed as if each argument
were entered on a separate line.

Example 1

TYPE (A B C) expands to:
TYPE A

TYPE B

TYPE C

Example 2

WRITE A(B C)D expands to:
WRITEABD
WRITEACD

At your terminal, you see:

ABD
ACD

3-30 CLI Commands

Example 3
(TYPE DELETE) FILE_ONE expands to:

TYPE FILE_ONE
DELETE FILE_ONE

Example 4
WRITE (A B C)X Y) expands to:

WRITE AX
WRITE BY
WRITE C

At your terminal, you see:

AX

BY

c
Angle Brackets

Angle brackets allow argument expansion. In the same command line, you can have one
command with several arguments. The argument expands across the line.

Example 1
TYPE FILE<1 2 3> expands to:

TYPE FILE1 FILE2 FILE3

Example 2

WRITE <A B C> <1 2> expands to:
WRITE A1 A2 B1 B2C1 C2

At your terminal, you see:

A1 A2 B1 B2 C1C2

Now do Exercise 3-6 on the next page.

st

CLI Commands 3-31

Exercise 3-6

Directions: Answer the following questions:

1. Correctly write the following CLI commands on a single line:
TYPE FILE1
RENAME FILE3 OLD_FILE

2. Name the character used to extend a command line to a second line.

3. Write a single CLI command using parentheses and/or angle brackets to accomplish
the following tasks.

a. TYPE FILE1 FILE2 FILE3

b. TYPE FILE1 FILE2 TEST1 TEST2

c. TYPE FILE12
TYPE FILE22
TYPE FILE32

Check your answers on the next page.

3-32 CLI Commands

Exercise 3-6
Answers

1. TYPE,FILEI;RENAME,FILE3,0LD_FILE

2. Ampersand (&)

3. a.TYPE,FILE<1,2,3>
b.TYPE,<FILE,TEST> <1,2>
¢.TYPE,FILE(1,2,3)2

If you answered all the questions correctly, continue to Lab Activity 3-1. Otherwise,
review the material and do this exercise again before you continue.

CLI Commands 3-33

Lab Activity 3-1

Directions: Write the commands that will do each of the following. You can write the
answers before entering the command at your terminal. Check your answers on the
following page if you are unsure of your response.

1.

Write a command to provide information about the CREATE command. (Use the
option that provides the most information.)

Write commands to provide information about the other commands covered in this
module (COPY, DELETE, RENAME, and TYPE).

Write the command to create a file named MODULE_3_PART_1. When you
create the file, include the following text:

THIS IS THE FIRST PART
OF THE INFORMATION TO BE
ENTERED INTO A FILE IN

THE AOS, AOS/VS USER COURSE

Write the command to create another file. Call it MODULE_3_PART_2. Include
this text in the file:

THIS IS THE SECOND PART
OF THE TEXT.
THIS IS THE END OF THE TEXT.

Write a single command line to display the contents of MODULE_3_PART_1 and
MODULE_3_PART_2.

Build a file called PART_1_DUPLICATE that contains the exact information that
MODULE_3_PART_1 contains. (Do not enter the data again.)

Use the TYPE command to verify the success of Step 6.
Add the contents of MODULE_3_PART_2 to the file created in Step 6.

Since PART_1_DUPLICATE now contains the contents of both files, change its
name to MODULE_3_WHOLE_FILE.

10. Type the contents of MODULE_3_WHOLE_FILE to see if it is all there.
11. Delete MODULE_3_PART_1 and MODULE_3_PART_2. Be sure to use the

confirm and verify switches.

Now check your answers on the next page.

3-34 CLI Commands

Lab Activity 3-1

Answers

1. HELP/V CREATE

2. HELP/V COPY
HELP/V DELETE
HELP/V RENAME
HELP/V TYPE

3. CREATE/I MODULE_3_PART_1
THIS IS THE FIRST PART
OF THE INFORMATION TO BE
ENTERED INTO A FILE IN
THE AOS, AOS/VS USER COURSE

4. CREATE/I MODULE_3_PART_2
THIS IS THE SECOND PART
OF THE TEXT.
THIS IS THE END OF THE TEXT.

5. TYPE MODULE_3_PART_<1,2> or TYPE MODULE_3_PART(1,2)
6. COPY PART_1_DUPLICATE,MODULE_3_PART_1
7. Use the TYPE command verify the success of Step 6.
TYPE PART__1_DUPLICATE
8. COPY/A PART..1_DUPLICATE,MODULE_3_PART_2
9. RENAME PART_1_DUPLICATE,MODULE_3_WHOLE
10. TYPE MODULE_3_WHOLE

11. DELETE/V/C MODULE_3_PART-_1
DELETE/V/C MODULE_3_PART_2

If you answered all the questions correctly, continue to the Module 3 Test. Otherwise,
review Module 3 and do the Lab Activity again before you continue.

CLI Commands 3-35

Module 3
Test

1. Identify the elements of the following command line:

CREATE/DYNAMIC,NEWFILE
: A S
A B C D
A 1. CLI prompt
B. 2. Argument
Co 3. Delimiter
D 4. Command
5. Switch

Directions: Which of the following command lines are correctly coded? Mark C for
correct and I for incorrect.

2. ____ HELP/V HELP

3. — RENAMEFILEI1 FILE3
4. ____TYPE FILE4

5. DELETE/C/V FILE9
6. WRITE X

Directions: Which of the following are valid filenames? Mark a V for valid and an I for
invalid.

7. — FILE-ONE

8. _—_ MASTER_FILE

9. — BACK_UP_OF_TAPE_FILE_CREATED_LAST_FRIDAY
10. _—__ BACK_UP&SAVE

11. new_file

12. ____ FILEl

13. — __ FILE?

14. DOLLARS_AMOUNT

15. IST-DETAIL

16. — MY_DOCUMENT

3-36

CLI Commands

Directions: Write the CLI command that will:
17. Delete a file named XYZ.
18. Display the contents of a file called NEWS_FILE.
19. Change the name of a file called GOOD_STUFF to OLD_JUNK.

20. Create a file and allow data to be entered from the terminal. Call the file
TERMINAL_DATA.

21. Copy the contents from a file called PAYROLL into a file called PERSONNEL.
PERSONNEL does not yet exist.

22. Display at your terminal information about the DELETE command.

Directions: Expand the commands as shown in the example:

Example
DELETE FILE(A B) Expands to:

DELETE FILEA
DELETE FILEB

23. COPY/A,MASTER_FILE,FILE<1 2> <A B>
24. (TYPE DELETE),USELESS_FILE
25. TYPE,<FILE TEST><1 2>

26. DELETE FILE<1 2 3>.0LD.

27. TYPEFILE TEST)1 2) (Note: Compare this to Item 25.)

Now check your answers to the Module 3 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 4. Otherwise, go back and review the
material in Module 3 and take the Module 3 Test again.

This concludes Module 3.

Module 4

Directories and Pathnames

Introduction

This module introduces the concept of the directory and the directory structure. It also
teaches how to select a particular file from within the structure. Finally, directory
creation is also discussed.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify the major components of the AOS or AOS/VS directory structure.
2. Write the pathname of a file given a directory structure.

3. Write CLI command lines using the following commands:
CREATE
FILESTATUS
DIRECTORY
SEARCHLIST
PATHNAME

4. Use templates to access multiple files with one command.

Resources

To complete this module, you will need:

e Module 4 audiotape.
¢ Module 4 of your Student Guide.
¢ Audiotape playback unit.

.

4-2 Directories and Pathnames

Module Outline

Module 4 discusses the following topics:

1. Directories
a. Definition
b. Working directory
c. AOS or AOS/VS directory structure
d. Directory creation
e. DIRECTORY command

2. Pathnames
a. Definition
b. Prefixes

3. Searchlists and templates
a. Definition of searchlist
b. File templates

4. FILESTATUS command

Now start the Module 4 audiotape. As you listen, follow along in Module 4 of your
Student Guide.

Directories and Pathnames 4-3

Directories

A directory is a file containing a catalog of bookkeeping information, and pointers to
files and other directories. There are two types of directories. A Control Point Directory,
or CPD, has fixed maximum disc space. A directory has no space limit.

FILE_E FILE_B FILE_C FILE_D

C5-01697

Figure 4.1 Sample Directory Structure

Inferior or subordinate directories are lower in the directory structure. Superior
directories are higher in the directory structure.

4-4

Directories and Pathnames

CS-01698

PERIPHERAL

DPDO —1 MAsm —{ cLaAss1
MTAO — BIND L] PROJECT3
LPT — SPEED — xm
CONO 1 CONVERT —— BETH

PERIPHERAL
DEVICES

USER
DIRECTORY

- FORTRAN
1 BASIC
UTILITY
PROGRAMS

USER
PROFILES

OOO®

Figure 4.2 Typical Directory Structure

Directories and Pathnames 4-5

ROOT
DIRECTORY

INITIAL
<+—— DIRECTORY

BETH_.DIR BETH__FILE

(S5-01699

Figure 4.3 Partial Directory Structure

Use the DIRECTORY switch on the CREATE command to build a directory. Also, use
the MAXSIZE switch to create a Control Point Directory (1 block = 512 characters).

Example 1
CREATE/DIRECTORY,BETH_DIR

Example 2
CREATE/DIRECTORY/MAXSIZE=100,BETH_DIR

Now do Exercise 4-1 on the next page.

4-6

Directories and Pathnames

Directories and Pathnames 4-7

Exercise 4-1

1. Use the following labels to fill in the blanks in the directory structure shown
in Figure 4.4.

UPD

UDD

User directory
User file
UTIL

@ or PER

L] | | ForTRAN

MTA COMPILER]

—] conia — BinD L
erd LINK

FILE..B FILE C

CS-01700

Figure 4.4

2. Write the command to add the directory file named REPORTDIR to UTIL.

Check your answers on the next page.

4-8 Directories and Pathnames

Exercise 4-1
Answers

1.
FORTRAN
MTA 1 compiLer [—] USER-1
L1 conis T L1 user_2 USERFILE
USER
L LINK DIRECTORY,
FILE_B FILE_C
CS-01701
Figure 4.5

2. CREATE/DIR,REPORTDIR

If you answered all the questions correctly, continue with Module 4 by restarting the

Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

Directories and Pathnames 4-9

Pathnames

A pathname is a route through the directory structure used to locate a particular file.

FILE__1 FILE_.2 FILE_1 FILE_2

A l
:UDD:JOHN:FILE_1 — :UDD:MARY:FILE_1 —

C5-01702

Figure 4.6 Directory Tree with Two Pathnames

The working directory is a reference point in the directory structure.

These CLI commands help you to move through the directory structure shown in
Figure 4.7.

DIRECTORY Returns name of your working directory.
:UDD:DIR—A

DIRECTORY DIR_C Makes DIR_C your current working directory.
DIRECTORY/I Returns to initial working directory.

4-10

Directories and Pathnames

s
WORKING
DIRECTORY =\
P
FILE_1 FILE_2
CS-01703

Figure 4.7 Working Directory

A pathname is a path through the directory structure to a particular file. A pathname
consists of an optional prefix, and/or a series of filenames separated by colons.

In a pathname, each filename, except the last, must be a directory, and each must be
inferior to the previous. A fully qualified pathname starts with a colon. Valid prefixes for
pathnames are shown in Table 4.A.

Prefix Result

Start with root directory. (Also used to separate
files in a pathname.)

1 Move up to superior directory.
= Start with working directory.
@ Start with peripheral directory.

Table 4.A Pathname Prefixes —

Directories and Pathnames

4-11

N ~
D > :.\\
°e ’: I e
Rz
L) Py -
SO
5
'S ;”
'S/ ;"
L) M ."'
. o :’/'
’¢
DIR_B DIR_C
WORKING Lo]
DIRECTORY > !
. 1
DIR_AB FILE_1 FILE_1 FILE_1
FILE_1 FILE_2
CS-01704

Figure 4.8 Hypothetical Directory Structure

Example 1

Assume DIR_AB in Figure 4.8 is your working directory. To access FILE_1, which is

subordinate to DIR_AB, enter the pathname FILE_1, or =FILE_1, or
:UDD:DIR_A:DIR_AB:FILE_1.

Example 2

To access FILE_1, which is subordinate to DIR_A, enter the pathname JFILE_1, or

:UDD:DIR_A:FILE 1.

Example 3

The PATHNAME command displays the fully qualified pathname. Assume DIR_AB

is your working directory.

PATHNAME FILE_ 1
:UDD:DIR—A:DIR—AB:FILE_1

Now do Exercise 4-2 on the next page.

4-12

Directories and Pathnames

v,

Directories and Pathnames

4-13

Exercise 4-2

Directions: Refer to Figure 4.9 to answer the following questions.

FILE__1

FILE_2

FILE_3

CS-01705

Figure 4.

9

Assuming USER__1 is your working directory in Figure 4.9, write the pathnames for

each of the following files:
1. FILE_1
2. FILE_A
3. FILE_B

4-14 Directories and Pathnames

Assuming USER_2 is your working directory in Figure 4.9, write the pathnames for
each of the following files:

4. FILE_2
5. FILE_A
6. FILE_B

Check your answers on the next page.

Directories and Pathnames 4-15

Exercise 4-2
Answers
1. DIR_1:FILE_1 or :UDD:USER_1:DIR_1:FILE 1
2. FILE_A or :UDD:USER_I1:FILE_A
3. TUSER__2:FILE_B or :UDD:USER_2:FILE_B
4. TUSER_1:DIR_1:FILE_2 or :UDD:USER_1:DIR_1:FILE_2
5. TUSER_I:FILE_A or :UDD:USER_1:FILE_A
6. FILE_B or :UDD:USER_2:FILE_B

If you answered all of the questions correctly, continue with Module 4 by restarting the
Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

4-16 Directories and Pathnames

Searchlists and Templates

Searchlists

A searchlist is a list of directories to be searched in sequence when a file is not found in
the working directory. The searchlist is only searched when the entry specified has no
prefix.

Example 1
SEARCHLIST
:UDD, :UTIL

Example 2
SEARCHLIST :UDD,:UTIL,;UDD:MYNAME:MYDIR

SEARCHLIST
:UDD, :UTIL, :UDD:MYNAME :MYDIR -

Templates

Charac- Matches
ter

* Matches any one character, except a period or a
space.

- Matches any string of characters, except those
including a period.

+ Matches any series of characters, including those
with a period.

Table 4.B Template Characters

Directories and Pathnames

4-17

FILE1

CS-01706

FILE34

PROG.TEST

PROG.SR

PROG999

MY_FILE

Figure 4.10 The Use of Templates

Template

Filenames Matched

FILE1
FILE*
FILE-~
PROG.-
PROG+
+

FILE1

FILE1, FILE2

FILE1, FILE2,FILE34

PROG.SR, PROG.TEST

PROG.SR, PROG999, PROG.TEST
All filenames

PROG.SR, PROG.TEST

Table 4.C Templates

Now do Exercise 4-3 on the next page.

4-18

Directories and Pathnames

Directories and Pathnames

4-19

Exercise 4-3

Directions: Use Figure 4.11 to answer the following questions.

CS-01707

FILE1

FILE.1

FILE2

FILE12

FILE.12

FILE3

Figure 4.11

In Figure 4.11, which files are selected by the following templates? Note that MYDIR

is the working directory.
1. FILE*
2. FILE-
3. FILE+
4. FILE1*
5. FILE1+
6. FILEL-

Check your answers on the following page.

4-20 Directories and Pathnames

Exercise 4-3
Answers

1. FILE1, FILE2, FILE3

2. FILEL, FILE2, FILE12, FILE3
3. All files.

4. FILE12

5. FILE1, FILE12

6. FILE1, FILE12

If you answered all the questions correctly, continue with Module 4 by restarting the
Module 4 audiotape. Otherwise, review the material and do this exercise again before
you continue.

o —
’

Directories and Pathnames 4-21

Filestatus

The FILESTATUS command displays the names of the files in your working directory.

Switch Result

/ASSORTMENT Display type, date and time created, and length of file.

/DCR Display date created.
JLENGTH Display length of file.

/TCR Display time and date created.
/TYPE Display type of file.

Table 4.0 Switches on the FILESTATUS Command

FILE1 FILE2 FILEC FILEAB

CS-01708

Figure 4.12 Directory Structure of DIR_ONE

Example 1

FILESTATUS

FILE1

FILE2

FILEC

FILEAB

Example 2

FILESTATUS/ASSORTMENT

FILE1 UDF 25-SEP-79 10:54:50 1090
FILE2 UDF 25-0CT-80 10:50:50 80
FILEC PRG 10-NOV-80 09:20:15 70
FILEAB UDF 11-0CT-80 10:20:19 100
Exampie 3

FILESTATUS/TYPE FILE*

FILEY UDF

FILE2 UDF

FILEC PRG

Now do Exercise 4-4 on the next page.

4-22 Directories and Pathnames

Directories and Pathnames 4-23

Exercise 4-4

Directions: Given the directory structure in Figure 4.13, which file(s) will be selected by
the following commands?

WORKING
DIRECTORY
AFILE BFILE CFILE ABFILE 9TEST
CS-01709
Figure 4.13

1. FILESTATUS

2. FILESTATUS -FILE

3. FILESTATUS *FILE

4. FILESTATUS *TEST

Check your answers on the next page.

4-24 Directories and Pathnames

Exercise 4-4
Answers
" 1. AFILE BFILE CFILE ABFILE 9TEST
2. AFILE BFILE CFILE ABFILE
3. AFILE BFILE CFILE
4. 9TEST

If you answered all of the questions correctly, continue to Lab Activity 4-1 and the
Module 4 Test. Otherwise, review the material and do the exercise again before you
continue.

Directories and Pathnames 4-25

Lab Activity 4-1

Directions: Enter the command or commands necessary to accomplish each of the following
tasks. There may be more than one way to perform each operation. If you have any
problems, remember to use the HELP command for assistance. If that does not provide
enough assistance, turn to the solution on the following page.

1.
2.

9.

10.
11.
12.

13.

14.
15.

Determine what your working directory is.

Display the name and some information about all files that are inferior to the
working directory. (These should be the files created in the Module 3 Lab Activity.)

Create a directory inferior to your working directory. Call it MYDIR and allow an
unlimited amount of space for it.

Make MYDIR your working directory. Verify the sucess of this operation by
repeating Step 1.

Determine if MYDIR has any inferior files. (There should be none.)
Change the working directory back to what it was when you signed on to the system.

Create a Control Point Directory inferior to your working directory. Allow for 10
blocks of space in the CPD and all associated files. Call it MYCPD.

Repeat Step 2. Be sure to notice the file type associated with MYDIR and MYCPD.
(Use the assortment switch.)

Determine your current searchlist.
Determine the pathname of MYCPD.
Add MYCPD to your searchlist. (You saw the pathname for MYCPD in Step 10.)

Determine the pathname of the SPEED editor (SPEED.PR). Note the directory in
which it is located.

Move from your current working directory to the directory immediately superior to
it.

Display the new working directory. (Notice your current location in Figure 4.2.)

Log off.

Check your answers on the next page.

4-26 Directories and Pathnames

Lab Activity 4-1

Answers

Listed below are solutions to each question. Each solution listed is not the only one, but
only one of the methods that work. If your answer is not the same, it still may be correct.

1.

2
3.
4

© ® N

12.
- 13.
14.
15.

DIRECTORY
FILESTATUS/ASSORTMENT
CREATE/DIRECTORY MYDIR

DIRECTORY MYDIR
DIRECTORY

FILESTATUS/ASSORTMENT
DIRECTORY/I
CREATE/DIRECTORY/MAXSIZE=10 MYCPD

.. FILESTATUS/ASSORTMENT

SEARCHLIST

. PATHNAME MYDIR
11.

SEARCHLIST (include your searchlist from Step 9), (include the pathname from
Step 10.)

PATHNAME SPEED.PR
DIRECTORY |
DIRECTORY

BYE

If you completed Lab Activity 4-1 successfully, go on to the Module 4 Test. If not,
review this module before continuing to the Test.

~

Jr—

Directories and Pathnames

Module 4

Test
Directions: Fill in the blanks numbered 1 through 5 in the directory structure in Figure
4.14.
2
FORTRAN
— CoN14 — BIND USER_2
—1 LINK FILE_A
FILE_ 2
CS5-01710

Figure 4.14

4-28 Directories and Pathnames

Directions: Given this partial directory structure in Figure 4.15, write the fully qualified
pathname for the files labeled 6 through 10.

FILE_.R

IMPORTS EXPORTS

FILE_C FILE_D

CS-01711

Figure 4.15

A S

Directories and Pathnames

4-29

CS-01712

WORKING
DIRECTORY

1040.A.FORMS

PAYROLLS82

PAYROLL1 W_2FORMS

PAYROLL2 PAYROLL3

Figure 4.16

Directions: Write the template to make the following selections from the directory

structure in Figure 4.16.

11. All of the files with PAYROLL in the name.

12. PAYROLLI, PAYROLL2, PAYROLLS3.

13. All of the files with FORMS in the name.

14. All of the files except those with a period (.).

15. All of the files with a 2 in the name.

Directions: Write the CLI command to;

16. Create a directory with the name SUPER_DIR.

17. Create a Control Point Directory with 10 blocks of space called LITTLE__C.P.D.

18. List all of the files in your working directory.

19. Display your working directory.
20. Change your working directory to :UTIL.

4-30

Directories and Pathnames

21. Display your searchlist.
22. Change your searchlist to include only :UTIL.
23. Determine the pathname of FORTRAN.PR.

Now check your answers to the Module 4 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 5. Otherwise, go back and review the
material in Module 4 and take the Module 4 Test again.

This concludes Module 4.

Module 5
File Security

Introduction

This module discusses the need for and the implementation of file security. It explains
various types of protection against unauthorized use of files and directories.

Module Objectives

Upon successful completion of this module, you should be able to:

1. Identify the access permitted by each of the access types for directory and
nondirectory files.

2. Change the Access Control List (ACL) for a file after determining the ACL of the
file.

3. Change the default Access Control List (DEFACL) for a file after determining the
DEFACL of the file.

4. Describe the superuser privilege.

Resources

To complete this module, you will need:

¢ Module 5 audiotape.
* Module 5 of your Student Guide.
¢ Audiotape playback unit.

5-2 File Security

Module Outline

Module 5 discusses the following topics:

1. File security
a. Need for security
b. Solution to the need
Access Control List
Types of access
The ACL command
The DEFACL command

2. Superuser privilege

Now start the Module 5 audiotape. As you listen, follow along in Module 5 of your
Student Guide.

-

File Security 5-3

File Security

ACL

File security protects your files and allows access only to authorized users. The Access
Control List (ACL) is a list of usernames and the types of access that these users are
permitted. There are five types of access:

e Owner
e Write
e Append
¢ Read
* Execute
Access | Abbre- Nondirectory File Directory File
viation
Execute E User can execute the file. User can use the directory in a path-
name.
Read R User can read (examine) data | User can examine the list of files.
in the file.
Append A N/A User can insert new files in directory.
Write w User can modify the contents | User can insert and delete files and
of the file. change ACLs of files in the directory.
Owner (0] User can change file's ACL | User can change directory’s ACL or
or delete files. delete the directory.

Table 5.A Five Types of File Access

The ACL command displays or resets the Access Control List for a file. The access given
is that indicated by the first match in the ACL list.

To display an ACL:

Example 1
ACL MYFILE
JOHN OWARE

Indicates that John has all access privileges. All other users have no access.

Example 2

ACL OTHERFILE
JOHN E

SUE1 RE

SUE* WRE

Indicates that John has only execute access, SUE1 has read and execute accesses, and
SUE followed by any character except a 1 or a period has write, read, and execute
access. All other users have no privileges.

5-4

File Security

Default ACL

Example 3

ACL OTHERFILE
JOHN E

SUE* WRE

SUE1 RE

Indicates that SUE1 has write, read, and execute access. All other accesses are the same
as in Example 2.

To reset an ACL:

Example 4
ACL MYFILE,JOE,RE

Change the ACL for MYFILE to allow only JOE to have read and execute access. All
others have no access.

Example §
ACL OTHERFILE,JOHN,OWARE,SUE,WARE,+,RE

Change the ACL for OTHERFILE to allow JOHN all five types of access. SUE has
write, append, read, and execute access, but not owner access. All other users have read
and execute access only.

The default ACL is the ACL assigned at the time of creation of a file. The DEFACL
command sets or displays the default ACL of a file. The new default ACL remains in
effect only for the current session.

Example 1
To determine the current default ACL:

DEFACL
GARY OWARE

Example 2
To change the default ACL:

DEFACL JOHN,OWARE,SUE,RE, +,E

File Security 5-5

Superuser

The superuser privilege is assigned by the system manager. This privilege:

* Allows all accesses to all files.
» Allows access to any file.
e Causes the prompt character to change from) to *).

Example
SUPERUSER

OFF

SUPERUSER ON
*)SUPERUSER

ON

*JSUPERUSER OFF

Now do Exercise 5-1 on the next page.

5-6 File Security

File Security 5-7

Exercise 5-1

Directions: Fill in the blanks in the table below:

Access Abbre- Nondirectory File Directory File
viation
Vool E User can execute the file.
2. R User can examine list of files.
30— A N/A
4. 0000 wW User can insert and delete files and change ACLs
of files in the directory.
5 (0] User can change file’'s ACL or delete files.

Table 5.B Exercise: ACLs

Directions: Write the command that:

6. Changes the access to the file OURFILE to permit all users to read and execute the
file.

7. Makes all files that will be created have access by John only and John has all accesses.

8. Determines the setting of the superuser privilege.

Now check your answers on the next page.

5-8 File Security

Exercise 5-1

Answers

1. EXECUTE. User can use the directory in a pathname.

2. READ. User can read (examine) data in the file.

3. APPEND. User can insert new files in the directory.

4. WRITE. User can modify the contents of the file.

5. OWNER. User can change the directory’s ACL or delete the directory.
6. ACL,OUTFILE,+RE

7. DEFACL,JOHN,OWARE

8. SUPERUSER

If you answered all of the questions correctly, go on to Lab Activity 5-1 and the Module
5 Test. Otherwise, review the material in Module S and do the exercise again before you
continue.

—

File Security 5-9

Lab Activity 5-1

Directions: After logging on to an AOS or AOS/VS system, try the following activities.
If you have any problems, refer to the answers on the following pages.

1.
2.
3.

10.

Determine your default Access Control List.
Create a file called D_FILE_1.

Change your default Access Control List to give yourself owner, write, read, and
execute access to any files that you create. Verify the success of this action.

Create a file called D_FILE_2.

Examine the Access Control Lists of D_FILE_1 and D_FILE_ 2. Note the
differences.

Return your default Access Control List to what it was in Step 1. Verify that you
have been successful.

Determine the ACL of MYDIR. (You created this file in the Module 4 Lab
Activity.) Is it the same as your default ACL?

Change the Access Control List of MYDIR to allow yourself all privileges except
execute access, and user John execute access. Verify the result.

Try to make MYDIR your working directory. What happened? Why?

Now change the ACL of MYDIR to give yourself all privileges and make it the
working directory.

Check your answers on the next page.

5-10 File Security

Lab Activity S-1

Answers

1. DEFACL
2. CREATE D_FILE_1

3. DEFACL MYID,OWARE,+E
DEFACL

4. CREATE D_FILE_2

5. ACL D_FILE_1
ACL D_FILE_2

The ACL for D_FILE_.1 should be your old default ACL. D_FILE_2 should have
the new default ACL.

6. DEFACL (Include the results returned in Step 1.)
7. ACL MYDIR (It should be the same as your original default ACL.)

8. ACL MYDIR,MYID,OWAR,JOHN,E
ACL MYDIR

9. DIR MYDIR (You should have received a message, indicating that you did not have
the proper access to perform this action.)

10. ACL MYDIR,MYID,OWARE
DIR MYDIR

L~

If you answered all of the questions correctly, continue to the Module 5 Test. Otherwise,
review the material in Module 5 and do Lab Activity 5-1 again before you continue.

File Security 5-11

Module 5
Test

Directions: Answer the following question:

1. Describe the superuser privilege.

Directions: Write the command to:

2. Determine the ACL of FILE_1.

3. Change the ACL of FILE_ to allow John all accesses and Mary only read access.

4. Determine your current default ACL.

5. Change your default ACL to allow all access to all users.

6. Turn on the superuser privilege.

7. Turn off the superuser privilege.

Directions: Complete the following table by filling in the blanks with a description of the
access permitted for each access type.

Access | Abbre- Nondirectory File Directory File
viation

Execute E

Read R

Append A

Write w

Owner 0}

Table 5.C Module 5 Test: ACLs

Now check your answers to the Module 5 Test in Appendix A. If you answered all the
questions correctly, go on to Module 6. Otherwise, review the material in Module 5 and
take the test again before continuing.

This concludes Module 5.

Module 6

Queues

Introduction

This module introduces the concept of a queue. It teaches you to use queues to print and
process your data.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Describe the operations of a queue.
2. Describe the batch processing operations.

3. Write CLI command lines using the following commands:
QPRINT
QBATCH
QCANCEL
QUNHOLD
QHOLD
QPLOT
QPUNCH

Resources

To complete this module, you will need:

* Module 6 audiotape.
e Module 6 of your Student Guide.
e Audiotape playback unit.

6-2 Queues

Module Outline

Module 6 discusses the following topics:
1. Queue concepts
2. Batch concepts
3. Using batch and queues
4. Queue manipulation
5. Printing

Now start the Module 6 audiotape. As you listen, follow along in Module 6 of your
Student Guide.

Queues

6-3

TELLER 1
ALL TRANSACTIONS

TELLER 2
ALL TRANSACTIONS

TELLER 3
BUSINESS CUSTOMERS

CS-01713

Figure 6.1 A Queue in a Bank

A queue is an ordered list of elements. AOS and AOS/VS have queues for:

Batch processing

¢ Printing

* Plotting

* Punching (AOS only)

QDISPLAY Command
The QDISPLAY command displays the queue status.

Format: QDISPLAY
Switches:

* /QUEUE= Display only a specific queue
(BATCH_INPUT,BATCH,OUTPUT...).

« /TYPE= Display only a specific type of queue
(BATCH,PRINT,PUNCH,PLOT).

6-4 Queues

Example 1

QDISPLAY

Display all queues.

BATCH.INPUT BATCH OPEN

BATCH_.QUTPUT PRINT OPEN

* 3620 NANETTE :QUEUE:NANETTE.OQUTPUT. 362

BATCHLIST PRINT OPEN

LPT PRINT OPEN
367 N GEORGE :UDD: GEORGE : AMOD6 : QSIXBI
368 N GEORGE :UDD:GEORGE : AMOD6: QSIX
369 N GEORGE :UDD:GEORGE : AMOD6: QSIX1
370 N GEORGE :UDD:GEORGE : AMODE : QSIXI

Lap PRINT OPEN

* 366 MENARD :UDD:MENARD:0EM

FLAGS EXPLANATION:

0 = /DELETE

N = /NOTIFY

* = ACTIVE

Example 2

QDISPLAY/QUEUE=BATCH_INPUT
Display only the BATCH_INPUT queue.

BATCH_INPUT BATCH OPEN
* 360 DN CAROL :UDD:CAROL: TRAINING—CREDIT..SYSTEM:?020.CLI.003.J0B
362 NANETTE :LD1:REGISTRATION._SYSTEM:MACROS : GENERATE_REPORTS
FLAGS EXPLANATION:
D = /DELETE
N = /NOTIFY

* = ACTIVE

Queues 6-5

Example 3
QDISPLAY/TYPE=PRINT

Display all PRINT queues.

BATCH_OUTPUT PRINT OPEN
BATCHLIST PRINT OPEN
LPT PRINT OPEN
ID_LPT PRINT OPEN
Lop PRINT OPEN

* 97N GARYS :UDD:GARYS:N3:1ST:M1:SCR3.LP
98 N GARYS :UDD:GARYS:N3:INFO:CONTENTS

FLAGS EXPLANATION:
N = /NOTIFY
* = ACTIVE

QBATCH Command

The QBATCH command creates a batch job and places it in the batch queue. Your job
executes independently of your terminal. You don’t need to be logged on for your job to
run.

Format: QBATCH ARGUMENT

Switches:

« /HOLD Do not execute the job until released by owner.

* /NOTIFY Inform the user when job is complete.

o /1 Create job from subsequent lines from terminal.

« /AFTER= Do not execute job until time specified.

» /JJOBNAME= Assign the name that follows the = to the batch job.
Example 1

QBATCH XEQ NET

Example 2
QBATCH/NOTIFY XEQ NET

Example 3
QBATCH/HOLD/JOBNAME=PAYROLL XEQ COBOL FILE1

Compiles FILE1 when released.

6-6 Queues

Example 4
QBATCH/I
)XEQ PROG1
)DIR DIR4
JXEQ PROG4

)

Execute PROG]1 from current directory, then change to DIR4 and execute PROG4.
While this is happening, you can be doing something else.

QHOLD Command
The QHOLD command holds a queue entry by putting the job in a waiting status.
Format: QHOLD JOBNAME or SEQ NUMBER

Example 1
QHOLD PAYROLL

Holds entry called PAYROLL. (You must have specified /JOBNAME switch when the
entry was created.)

Example 2
QHOLD 36

Holds queue entry number 36.

QUNHOLD Command

The QUNHOLD command releases a held queue entry and puts the job back into
active status.

Format: QUNHOLD JOBNAME or SEQ NUMBER

Example 1 ‘
QUNHOLD PAYROLL

Releases an entry called PAYROLL. (You must have specified /JJOBNAME switch.)

Example 2
QUNHOLD 36

Releases queue entry number 36.

Queues 6-7

QCANCEL Command
The QCANCEL command deletes a queue entry.

Format: QCANCEL SEQ NUMBER or JOBNAME

Example 1
QCANCEL JOB1

Cancels the entry named JOBI.

Example 2
QCANCEL 36

Cancels the entry with sequence number 36.

QPRINT Command
The QPRINT command places an entry in the printer queue.

Format: QPRINT PATHNAME

Switch Result
/NOTIFY Informs the user when printing is fin-
ished.
/COPIES=n | Creates n copies of the output.
JTITLES Includes titles on printed document.
/FORMS = Uses special forms for printing.
/QUEUE= Places in a specified queue.

Table 6.A QPRINT Command Switches
Example 1

QPRINT DATAI1

Prints file DATAL.

Example 2
QPRINT/NOTIFY/TITLES DATAI

This notify message is displayed when the file printing is complete:
FROM PID3: (EXEC) @LPB COMPLETED :UDD:USER1:DATA1

The title looks like this:
UDD: USER1:DATA1 10-MARCH-82 14:35:21 PAGE 1

Example 3
QPRINT/FORMS=FORM2 DATA1

6-8

Queues

QPLOT Command

The QPLOT command places an entry in the plotter queue.
Format: QPLOT PATHNAME

Switches:

» /COPIES=n Plot n copies of the file.

* /[NOTIFY Inform user when plotting is finished.
Example

QPLOT/COPIES=3/NOTIFY DATA_PLOT

QPUNCH Command

The QPUNCH command places an entry in the punch queue (AOS only).
Format: QPUNCH PATHNAME

Switches:

» /COPIES=n Punch n copies of the file.

« /NOTIFY Inform user when punching is complete.
Example

QPUNCH/COPIES=2/NOTIFY DATA_PUNCH

Now do Exercise 6-1 on the next page.

Queues 6-9

Exercise 6-1

Directions: Match the following commands with their results.

1. QPRINT a. Prevent an entry from being processed until later.
2. QPLOT b. Delete an entry from a queue.

3. QPUNCH C. Submit an entry for CPU processing.

4. QDISPLAY d. Place an entry in the printer queue.

5. QBATCH e. List the queues and their contents.

6. QCANCEL f. Place an entry in the paper-tape punch queue.

7. — QHOLD g. Place an entry into the plotter queue.

Directions: Mark the following statements true or false.

8. The QPRINT command actually causes the file to be printed.

9. The QDISPLAY command can be used to print a file on the line printer.

10. You can use the /FORMS switch to have your file printed on special
paper.

1. You can check the contents of the queues by using the QDISPLAY
command.

12. The QPUNCH command is used to have output punched on a paper-tape
punch.

13. If a queue entry is placed on hold, it must be released by the QRELEASE
command.

14. An entry can be put on hold either by the QHOLD command or by the
/HOLD switch.

15. To cancel an entry in the batch queue, use the QUNBATCH command.

Check your answers on the following page.

6-10 Queues

Exercise 6-1
Answers

._.
e

®

© P NS L oA W
(o o o]

._.
e

._.
g

= =
H M 3 = Ao P

._.
>

15. F

If you answered all of the questions correctly, continue to Lab Activity 6-1 and the
Module 6 Test. Otherwise, review the material and do this exercise again before you
continue.

Queues 6-11

Lab Activity 6-1

Directions: Enter the commands to perform the following functions. If you have any
problems, you can check the answers on the following page.

1.

Create a batch entry that will execute a program named JOB_ONE and put the job
on hold when you create it.

. Determine the sequence number of the job created in Step 1 and release it.
. Display all of the queues.

. Create a job that will execute the following series of steps:

* Change the working directory to :UDD:MYDIR:SPECIAL.
* Execute MYJOB.

e Return to the initial directory.

* Execute MYJOB_ONES.

(Note: This job should be put on hold when created.)

. Find the sequence number of the job in Step 4.
. Cancel this job.
. Print out the file MODULE_3_WHOLE_FILE (from the Module 3 Lab Activity).

Include the title at the top of each page. Have the system notify you when the file is
printed.

. Create a job that will issue a series of HELP commands to inform you about some of

the commands that you learned in this module. Name this job HELPER. Be sure to
examine the printed output of this job.

Now check your answers on the next page.

6-12 Queues

Lab Activity 6-1
Answers

1. QBATCH/HOLD XEQ JOB_ONE

2. QDISPLAY
QUNHOLD 3

3. QDISPLAY

4. QBATCH/HOLD/I
)DIRECTORY :UDD:MYDIR:SPECIAL
)XEQ MYJOB
)DIRECTORY/I
)XEQ MYJOB_ONE

. QDISPLAY/TYPE=BATCH
. QCANCEL 99
. QPRINT/NOTIFY/TITLES MODULE_3_WHOLE_FILE

. QBATCH/I/JOBNAME =HELPER
JHELP/V QBATCH
JHELP/V QCANCEL
JHELP/V QPRINT
YHELP/V QHOLD
JHELP/V QUNHOLD
)

If you successfully completed Lab Activity 6-1, continue to the Module 6 Test. Otherwise,
review the material and do the Lab Activity again before you continue.

0 N N W

Queues 6-13

Module 6
Test

Directions: Complete the following sentences.

1. When you submit a job to the batch queue:
a. Your terminal is locked until the job terminates.
b. You are free to continue working at your terminal.
¢. Your CLI process is blocked.
d. Your CLI process is automatically swapped.

2. You can cancel a queue entry by using eitherthe ___ number or the
name.

Directions: Write the CLI command to do the following:

3. Place a file named PRINT_1 in the print queue and notify you when finished.

4. Place a file named PLOT_FILE in the plotter queue and notify you when finished
plotting five copies.

. Display the contents of the plotter queue only.

. Cancel entry 453.
. Hold entry 29.

. Release entry 90.
. Place a file named INDEPENDENT__1 in the batch queue.

O 00 a9 O W

Now check your answers to the Module 6 Test in Appendix A. If you answered all the
questions correctly, go on to Module 7. Otherwise, review the material in Module 6 and
take the Test again before continuing.

This concludes Module 6.

Module 7
The CLI Environment

Introduction

This module introduces you to the CLI environment. The CLI environment consists of
several parameters that you can control. This module shows you these parameters and
the commands necessary to display and change these parameters.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Write commands to change the CLI environment.

2. Write commands to display and change the components of the CLI environment.

Resources

To complete this module, you will need:

* Module 7 audiotape.
* Module 7 of your Student Guide.
e Audiotape playback unit.

Module QOutline

Module 7 discusses the following topics:

1. The CLI environment
a. Overview
b. Levels of the CLI environment
¢. PUSH and POP commands

2. CLI commands to change the environment
a. SUPERUSER
b. SUPERPROCESS

7-2

The CLI Environment

c. SCREENEDIT
d. SQUEEZE

e. CLASSI1

f. CLASS2

g. Variables

h. LISTFILE

i. DATAFILE

3. More environmental CLI commands
a. DIRECTORY
b. SEARCHLIST
c. DEFACL
d. STRING
e¢. PROMPT
f. CHARACTERISTICS

Now start the Module 7 audiotape. As you listen, follow along in Module 7 of your
Student Guide.

The CLI Environment 7-3

The CLI Environment
Your CLI environment is composed of several parameters. These parameters are:
LEVEL LISTFILE
SUPERUSER . DATAFILE
SUPERPROCESS LOGFILE
SCREENEDIT DIRECTORY
SQUEEZE SEARCHLIST
CLASSI1 DEFACL
CLASS2 STRING
TRACE PROMPT
VARIABLES CHARACTERISTICS

These parameters are initialized to default values when you log on. You can use the
CURRENT command to list the settings.

ICURRENT

LEVEL B

SUPERUSER ON

SUPERPROCESS OFF

SCREENEDIT ON

SQUEEZE OFF

TLRSS! ERROR

“LASSE WARNING

TRACE

VARIABLES S

_ISTFILE @LIST

DATAFILE ®DATA

LOGFILE

DIRECTORY UDD BUBBIE MODULE?

SEARCHLIST UTIL, UTIL.INFOS, :UDD:BUBBIE

DEFACL BUBBIE ,OWARE + RE

STRING TIME

PROMPT TIME DIRECTORY

CHARACTERISTICS /6@85X/LPP=24/CPL=80
/ON/ST/EBB/ULC/PM/WRP

/OFF /SFF /EP1/8BT/SPO/RAF /RAT/RAC/NAS/OTT/EOL/UCO/LT/FF /EB1 /NRM/MOD/TO/ TSP
/PBN/ESC/FKT/NNL])

Figure 7.1 Sample Output of the CURRENT Command

LEVEL Command

The level is your location within the CLI environment. Zero is the highest level.

The LEVEL command displays your current level. Each level contains all environment
parameters.

Example
LEVEL
LEVEL O

7-4 The CL| Environment

PUSH and POP Commands

Use the PUSH command to move one level down.

Use the POP command to move one level up.

. LEVEL O

P
p LEVEL 1 0
O] LEVEL2 s
P H

CS-01714

Figure 7.2 The PUSH and POP Commands

The PREVIOUS command is similar to the CURRENT command. It displays the same
information as the CURRENT command, but for the next higher level of the
environment.

Example
If you are at level 2:

CURRENT
Displays level 2.

PREVIOUS
Displays level 1.

2 5)DIRECTORY :UDD:USER1 :SPECIAL ,
)SEARCHLIST :UDD, :UTIL, :UDD:USERY :PROGRAMS
)DEFACL USER1 ,OWARE ,+RE
")PROMPT TIME
12:30:03
3 ——»)PUSH
12:30:06
———»)LEVEL
LEVEL 1
12:38-18
JPROMPT/K
)DIRECTORY/1 :
:)SEARCHLIST -UDD :USER1 :NORMA
5 —»! <)DEFACL USER1 ; OWARE
*)CREATE FILE1
)COPY FILE1 FILE2
)QPRINT FILE1

12:32:13
) |

\

Figure 7.3 Changing Your Environment Level

Now do Exercise 7-1 on the next page.

The CLI Environment

Exercise 7-1

Directions: Write the command to:

1. Move down one level.

2. Move up one level.

3. Display the current setting of the environment’s variables.

4. Display your location in the environment.

5. Display the setting of the next higher level of your environment’s variables.

Now check your answers on the next page.

7-6 The CLI Environment

Exercise 7-1
Answers

1. PUSH

2. POP

3. CURRENT
4. LEVEL

5. PREVIOUS

If you answered all of the questions correctly, continue with Module 7 by restarting the
Module 7 audiotape. Otherwise, review the material and do this exercise again before
you continue.

—

The CLI Environment 7-7

e,

/P Switch

CLI Commands to Change the Environment

The /P switch sets a variable to setting in previous level of the environment.

Example

DIRECTORY :UTIL
PUSH

DIRECTORY :UDD:ME

DIRECTORY/P
DIRECTORY
:UTIL

Superuser Privilege

SUPERUSER |{ON }
{ OFF)

Example 1

To display the status:
SUPERUSER

Example 2

To turn SUPERUSER on:

SUPERUSER ON

Example 3

To turn SUPERUSER off:

SUPERUSER OFF

Superprocess Privilege

SUPERPROCESS {ON |
{OFF}

Example 1
To display the status:

SUPERPROCESS

Example 2

When SUPERUSER is on, you can access any file. Enter
the SUPERUSER command without an argument to
display SUPERUSER status.

When SUPERPROCESS is on, you can control any
process. Enter the SUPERPROCESS command without
an argument to display SUPERPROCESS status.

To turn SUPERPROCESS on:

SUPERPROCESS ON

7-8 The CLI Environment

Example 3
To turn SUPERPROCESS off:
SUPERPROCESS OFF
SCREENEDIT
SCREENEDIT {ON } When SCREENEDIT:is on, you can use the cursor
{OFF} control characters listed in Table 7.A.
Control Effect on the Cursor
Character

CTRL-A Move to the end of the character string.
CTRL-B Move to the end of the previous word.
CTRL-E Enter/exit the insert character mode.

CTRL-F Move to the beginning of the next word.
CTRL-H Move to the beginning of the character string.
CTRL-I Insert a tab.

CTRL-K Erase everything to the right of the cursor.

CTRL-X Move to the right one character. (The — key on the function
keypad has the same effect.)

CTRL-Y Move to the left one character. (The « key on the function
keypad has the same effect.)

RUBOUT | Delete the previous character.

Table 7.A SCREENEDIT Cursor Contro! Characters

Example 1
To display the status:

SCREENEDIT

ON

Example 2

To turn SCREENEDIT on:
SCREENEDIT ON

Example 3

To turn SCREENEDIT off:

SCREENEDIT OFF

SQUEEZE

SQUEEZE {ON } When SQUEEZE is on, output is compressed by removing
{OFF} spaces.

Example 1
To display the status:

SQUEEZE OFF

The CLI Environment 7-9

Example 2
To turn SQUEEZE on:

SQUEEZE ON

Example 3
To turn SQUEEZE off:

SQUEEZE OFF

Class 1 and Class 2 Errors

Variables

CLASSI1 {ABORT |
{ ERROR |
| WARNING }
{IGNORE |

Sets or displays reaction level to class 1 errors (errors that affect the environment).
CLASS2 {ABORT}

{ERROR}

{ WARNING }

{IGNORE}

Sets or displays reaction level to class 2 errors (errors that do not affect the environment).

Assume XY Z does not exist in Examples 1 and 2.

Example 1
DIRECTORY XYZ
ERROR: FILE DOES NOT EXIST, FILE XYZ

TYPE XYZ
WARNING: FILE DOES NOT EXIST, FILE XYZ

Example 2
CLASS1 IGNORE
CLASS2 ABORT

There are 10 variables you can use to pass data between programs.
CLI Commands

VARO
VAR1

VAR9

Example 1
VAR7,25

Sets variable 7 to 25.

7-10 The CLI Environment

Example 2

VAR4
37

Displays value of variable 4.

LISTFILE Command

The LISTFILE command sets or displays the filename used for output in conjunction
with the /L switch.

Example 1
LISTFILE,HOLD_DATA_ONE

To use the listfile HOLD_DATA_ONE:

TYPE/L FILEA
FILESTATUS/L
QPRINT,HOLD_DATA_ONE

The displayed output of the TYPE and FILESTATUS commands are stored in
HOLD_DATA_ONE. It is printed with the QPRINT command.

DATAFILE Command |
The DATAFILE command sets or displays the filename used for input.

Example
DATAFILE,DATA_IN_ONE

LOGFILE Command
The LOGFILE command sets or displays the filename used as the logfile.

EXAMPLE
LOGFILE,LOGGER

The logfile can be used in conjunction with the TRACE command.

TRACE Command

The TRACE command keeps a record of the activity at your console. When TRACE is
on, all CLI transactions at your terminal are recorded in the logfile.

Example
To turn TRACE on:
TRACE/ON/LOG

To turn TRACE off:
TRACE/OFF/LOG

.
< \

Now do Exercise 7-2 on the next page.

The CLI Environment

7-11

Exercise 7-2

Directions: Write the CLI command that will:

l.
. Set the listfile to be a file called GARBAGE_QOUT.
. Set the datafile to be a file called GARBAGE_IN.
. Turn off SCREENEDIT.

2
3
4
5. Set the action for severe errors to ABORT.
6.

7. Display variable 6.
8. Set the logfile to LOG7.
9. Turn on TRACE.

Turn on the superuser privilege.

Turn SQUEEZE on.

Now check your answers on the next page.

7-12 The CLI Environment

Exercise 7-2
Answers

1. SUPERUSER,ON
. LISTFILE,GARBAGE_OUT

. DATAFILE,GARBAGE_IN
. SCREENEDIT,OFF

2

3

4

5. CLASS1,ABORT
6. SQUEEZE,ON
7. VARG

8. LOGFILE,LOG7
9. TRACE/ON/LOG

If you answered all of the questions correctly, continue with Module 7 by restarting the
Module 7 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The CLI Environment 7-13

More Environmental CLI Commands

Command Result
DIRECTORY Sets or displays your working directory.
SEARCHLIST Sets or displays your searchlist.
DEFACL Sets or displays your default Access Control List.

Table 7.B Review of Three CLI Commands.

STRING Command

The STRING command sets or displays the contents of the string (used to return
information from programs).

Example

STRING THIS IS THE NEW STRING
STRING

THIS IS THE NEW STRING

PROMPT Command

The PROMPT command sets or displays the prompt (information that appears before
the right parenthesis).

Example

PROMPT TIME
08:30:01
PROMPT,TIME,DATE
08:31:05

10-MAR-82

PROMPT/K

CHARACTERISTICS Command

The CHARACTERISTICS command sets or displays the characteristics of your
terminal. (Use one of the first five switches to identify your console.)

7-14

The CLI Environment

Switch Result

/HARDCOPY | Hard-copy terminals.

/40101 DGC Mode! 40101.

/6012 DGC Model 6012.

/605x DGC Model 6052 or 6053.

/CRT4 Other CRTs.

/LPP=n Lines-per-page, in decimal.

/CPL=n Characters-per-line, in decimal.

/ON Set the bit in the device characteristics words for each of the command switches that
follow. This bit remains set until you issue a /OFF switch or a delimiter. {Note: This bit
is automatically set unless you include the /OFF switch. Therefore, this switch is
optional.)

/EBO If you want echoing to occur on your console, you must set /EBO or /EB 1. This causes
the system to echo control characters such as ™A, and "B, and to echo ESC as $. For
more information see ?GCHR in the A0S Programmer’s Manual.

/EPI Accept only even parity on input; if this switch is off, accept any parity on input.

JEOL Do not output a NEW LINE if CPL length is exceeded on output.

JESC ESC character produces “C™A interrupt.

/FF Output a form-feed on open.

T Output 60 (decimal) nulls on open and close.

/MOD Device is on a modem interface.

/NAS Set non-ANSII standard bit.

/NRM Do not allow this console to receive SEND messages.

JOTT On input, convert octal 175 and 176 to octal 33.

/PBN (Packed Binary Notation. Card readers only.)

Packed format on binary read, 4 columns are put in 3 words. If you don’t include this
switch, columns are right-justified in memory.

/PM Page mode. On output, write LPP lines per page, then suspend output until you type
CTRL-Q.

/RAC {Rubout After Carriage return.) Send two rubouts after each NEW LINE and carriage
return.

/RAF Send 21 (decimal rubouts after each form-feed.)

/RAT Send two rubouts after each tab (CTRL-I).

/SFF Simulate form-feed.

/SPO Output characters in even parity; if this switch is off, output characters as sent by
program.

/ST Simulate tab stop every eight columns.

/TO Enable time-outs.

/TSP (Card readers only.)

Include trailing spaces; if this switch is off, trailing blanks are surpressed.

JUCO On output, convert lower-case to upper-case.

JULC On input, accept both upper-case and lower-case; if this switch is off, lower-case input
is converted to upper-case.

/WRP Hardware generates NEW LINE on line-too-long (Wrap).

Table 7.C Setting and Displaying the Characteristics of Your Terminal

Example 1

To turn on page mode:

CHARACTERISTICS/ON/PM

The CLI Environment 7-15

Example 2
To turn off page mode:

CHARACTERISTICS/OFF/PM

Example 3
To set characters-per-line to 132:

CHARACTERISTICS/CPL=132

Example 4
To convert output to upper-case:

CHARACTERISTICS/ON/UCO
This command only changes those characteristics listed in the CLI command. All those

not specified remain at their previous setting.

Now do Exercise 7-3 on the next page.

7-16 The CLI Environment

The CLI Environment 7-17

Exercise 7-3

Directions: Write the command to:

1. Set your prompt to date and directory.

2. Set the string variable to “PROGRAM 7 FAILED TO
EXECUTE.”

3. Change your terminal’s characteristics to turn off the switch to accept lower-case
input.

4. Set lines-per-page to 60, using the CHARACTERISTICS command.

Now check your answers on the next page.

7-18 The CL! Environment

Exercise 7-3
Answers

1. PROMPT,DATE,DIRECTORY
2. STRING PROGRAM 7 FAILED TO EXECUTE
3. CHARACTERISTICS/OFF/ULC

4. CHARACTERISTICS/LPP=60

If you answered all the questions correctly, continue with Module 7 by doing Lab
Activity 7-1. Otherwise, review the material and do this exercise again before
you continue.

The CL! Environment 7-19

- Lab Activity 7-1

Directions: Log onto your system. Then enter the command or commands to:

1.

© P N e s W

—
(=]

11.
- 12.
13.
14.

15.
16.
17.

Display the current level and the present setting of all of the parameters associated
with this level.

Try to move up one level. Note what happens.

Change your prompt to display the current level.

Move down one level.

Change your prompt to display the date, time, and directory.
Display the characteristics of your terminal.

Display the environment of level zero.

Change your prompt to what it was at level zero.

Set your listfile to a file called HOLD_OUTPUT.

. Use the appropriate switch to cause the FILESTATUS command to list your files in

the listfile.

Display the contents of the listfile.

Change the prompt to display your working directory.
Place the value 25 into variable 7.

Try to delete a file called DOES_NOT_EXIST. (Your should see a warning
message.)

Set the reaction level for class 2 errors to IGNORE.
Repeat Step 14.
Log off.

Now check your answers on the next page.

7-20 The CLI Environment

Lab Activity 7-1

Answers

A S AT R o o

O e T
AN W A W N = O

If you successfully completed Lab Activity 7-1, go on to the Module 7 Test. If you had
any difficulty with the lab, review the material and do the Lab Activity again before

CURRENT

POP (The screen displays ERROR: CAN'T POP FROM LEVEL ZERD.)
PROMPT LEVEL

PUSH

PROMPT DATE TIME DIRECTORY
CHARACFERISTICS

PREVIOUS

PROMPT/P

LISTFILE,HOLD_OUTPUT

. FILESTATUS/L

. TYPE,HOLD_OUTPUT

. PROMPT,DIRECTORY

. VAR7,28

. DELETE/C/V,DOES_NOT_EXIST
. CLASS2,IGNORE

. DELETE/C/V,DOES_NOT_EXIST (You should not see any warning message.)
17.

BYE

continuing.

The CLI Environment

7-21

Module 7
Test

Directions: In each of the following questions, select the best answers.

1.

Select the command that moves you down one level.

a. POP

b. DOWN

c. PUSH

d. LEVEL +1

Select the command that moves you up one level.

a. POP

b. UP

c. PUSH

d. LEVEL -1

Select the command that displays only the present level of the environment.
a. POP

b. LEVEL

c. PREVIOUS

d. CURRENT

Select the command that displays the present settings of the environment.
a. POP

b. LEVEL

c. PREVIOUS

d. CURRENT

Select the command that displays the settings of the next higher level of the
environment.

a. OLD

b. LEVEL

c. PREVIOUS
d. CURRENT

7-22 The CLI Environment

6.

10.

Which of the following commands can you use to gain access to any file in the
system?

a. SUPERPROCESS

b. SEARCHLIST

c. SUPERUSER

d. SQUEEZE

Which file can you use to hold output data?

a. SEARCHLIST

b. LISTFILE

c. DATAFILE

d. PROMPT

Which of the following commands can you use to change your working directory?
a. SEARCHLIST

b. DATAFILE

¢. CHARACTERISTICS

d. DIRECTORY

Which of the following commands can you use to hold a message from a program?
a. STRING

b. PROMPT

¢. DEFACL

d. SQUEEZE

Which of the following commands can you use to change the system’s reaction to an
error condition?

a. ERROR
b. SQUEEZE
c. CLASS2
d. LISTFILE

The CLI Environment

7-23

Directions: Write the command to:

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.

Move down to a new environment level.

Move up to the previous level.

Display the current level.

Display the settings of the environment.

Set your prompt to display the time of day.

Set your listfile to be the file called TEMPORARY_OUTPUT.

Display the setting of SUPERUSER.
Set SUPERPROCESS to on.
Turn SQUEEZE on.

Set the action for less severe errors to IGNORE.

Now check your answers to the Module 7 Test in Appendix A. If you answered all the
questions correctly, go on to Module 8. Otherwise, review the material in Module 7 and
take the Test again before continuing.

This concludes Module 7.

Module 8

The Process Tree

Introduction

This module discusses the process tree, which is the relationship of one process to
another. You will learn to create a process and to terminate a process. This module also
discusses the processes that control your use of the system.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify a process and the components of a process.
2. List the types and states of a process.
3. Identify the major components of the process tree.

4. Write CLI command lines using the TREE, PROCESS, TERMINATE,
SUPERPROCESS, and WHO commands.

Resources

To complete this module, you will need:

e Module 8 audiotape.
e Module 8 of your Student Guide.
» Audiotape playback unit.

Module Outline

Module 8 discusses the following topics:

1. Process concepts
a. Elements of a process
b. Process functions
c. Process tree

8-2

The Process Tree

2. Creating processes with EXECUTE
3. Creating processes with PROCESS

4. Process control
a. TERMINATE command
b. SUPERPROCESS command

Now start the Module 8 audiotape. As you listen, follow along in Module 8 of your
Student Guide.

The Process Tree

8-3

The Process Concept

A process is a set of system resources. A process is more than just a program, however.
It is composed of a program plus:

Unique ID
Username
Memory
Priority
Privileges
State
Type

Component

Explanation

Program
Unique ID
Username
Memory
Priority
Privileges

Type

State

Set of instructions supplied by the user or the system.
PID, or process D (1-255).

Your unique username, assigned by the system manager.
Active storage space.

1-3 or 1-255. Determines use of main storage.

Create a new process.

Change priority.

Change type.

The way a process uses memory. There are three types.
Resident: Always in main memory.
Preemptible: Can be moved to disc, but usually in memory.

Swappable: Can be moved to disc to allow other processes to execute.

Eligible
Ineligible
Blocked

Table 8.A

Process States

Components of a Process

State refers to the ability of a process to access the central processor. A process may be
in one of three states:

e An eligible process is allocated main memory. (To gain CPU control, a process must
be allocated main memory.)

e An ineligible process is not allocated main memory. An ineligible process becomes
eligible when memory is allocated.

» A blocked process is waiting for an external event to occur. A process can become
blocked by creating another process.

8-4 The Process Tree

SD-00200

PROCESS

TYPE PRIORITIES

RESIDENT
(ALWAYS IN
MEMORY)

PREEMPTIBLE

SWAPPABLE

PROCESS

HIGH

LOW

HIGH

LOow

HIGH

Low

INCREASING
OPPORTUNITIES
TO ACQUIRE
MEMORY

Figure 8.1 Process Types and Priorities

The Process Tree

8-5

ELIGIBLE STATE

PROCESS
IS
SWAPPED
ouUT 70

DisC 4

PROCESS
IS
CREATED

YES BLOCKING
8 ACTIONS
2 OCCUR
5
M;:c';v IS PROCESS
AVAILABLE IN MAIN
) MEMORY ?
MAIN
MEMORY IS | NO UNBLOCKING
ALLOCATED EVENTS
OCCUR 7
PROCESS
Y IS SWAPPED Y
@ 0UT TODISC 6
INELIGIBLE STATE 3 o] PROCESS IS BLOCKED
BLOCKED BY

CS-01715

SUPERIOR PROCESS

Figure 8.2 State Transitions of a Process

CS-01716

<«—ROOT PROCESS—>

Figure 8.3 A Basic

Process Tree

PMGR is the peripheral manager that manages input and output operations. OP is a
highly privileged process that can create other processes.

The process hierarchy is similar to the data file and directory hierarchy.

8-6 The Process Tree

CS-01717

SUPERIOR

INFERIOR

!

FATHER

SONS

GRANDSONS

Figure 8.4 Process Tree

Example 1
WHO 3
PID: 3 OP EX :UTIL:EXEC.PR

Example 2
TREE 14
PID:14, FATHER: 5 SONS: 17 18 25

Note: The TREE and WHO commands will not work for PID 0.

Follow the steps below to construct the process hierarchy on your system.

1.

TREE 1

PID: 1 FATHER: O SONS:
.WHO 1

PID:1 PMGR PMGR :PMGR.PR
. TREE 2

PID: 2 FATHER: 0 SONS: 3 4 17
. WHO 2

PID:2 OP OP :CLI.PR
. WHO 3

PID:3 EXEC EXEC :UTIL:EXEC.PR
. WHO 4

PID:4 OP INFOS :INFOS.PR
. WHO 17

PID:17 OP FORMQ :UTIL:AZTEXT:FORMQ.PR
. TREE 3

PID: 3 FATHER: 2 SONS: 56 9 10 11

TN

The Process Tree

8-7

9. WHO 5

These steps result in the process hierarchy illustrated in Figure 8.5.

CS-01718

EXEC

Figure 8.5 The Complete Process Hierarchy

CS-01719

Figure 8.6 Creating Sons

8-8 The Process Tree

Processes B, C, D, E, F, and G are all subordinate to A. Process F is subordinate to B. E
and G are subordinate to D.

Any privilege that a father has can be passed on to a son. No father can pass a privilege
that he lacks to a son.

PRIVILEGES

CS-01720

Figure 8.7 Passing Privileges

Now do Exercise 8-1 on the next page.

The Process Tree

8-9

Exercise 8-1

Directions: Fill in the blanks in the process tree in Figure 8.8.

AOS
or
AOS/VS

INFOS

CS-01721
Figure 8.8
Directions: Using the process tree in Figure 8.9, answer the following questions.
A
c
CS-01722
Figure 8.9

3. D is subordinate to

4. D is superior to

5. A is superior to
6. The father of F is
7. The sons of D are

Now check your answers on the next page.

8-10 The Process Tree

Exercise 8-1
Answers

1. PMGR
2.0P

3.A

4.E,F
5.B,C,D,E, F
6.D

7. EF

If you answered all of the questions correctly, continue with Module 8 by restarting the
Module 8 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The Process Tree 8-11

Creating Subordinate Processes

EXECUTE Command

» The EXECUTE command creates a subordinate swappable process with the same
priority and privileges as your process.

e The program comes from the file that you specify as the argument.

» The new process blocks your process.

Example 1
EXECUTE PROG1

The command invokes a program called PROG1. That is, it creates a subordinate
process whose program is PROG1. Figure 8.10 illustrates a portion of the process tree
before and after the command takes effect. PROGI1 has the same priority and privileges
as YOU.

BEFORE AFTER

CS-01723

Figure 8.10 Before and After EXECUTE

Now do Exercise 8-2 on the next page.

8-12

The Process Tree

The Process Tree

8-13

Exercise 8-2

Directions: Given the process tree in Figure 8.11, draw the process tree if process USER

issued the following command:

EXECUTE,USER_PROG_TEN

CS-01724

LITTLE_JOE

Figure 8.11 Process Tree Before EXECUTE Command

Now check your answer on the next page.

8-14 The Process Tree

Exercise 8-2
Answers

oP

LITTLE_JOE USER_PROG_TEN

CS-01725
Figure 8.12 Process Tree After EXECUTE Command

If your answer is correct, continue with Module 8 by restarting the Module 8 audiotape.
Otherwise, review the material and do this exercise again before you continue.

The Process Tree 8-15

PROCESS Command

The PROCESS command creates a son process. It differs from the EXECUTE commard
in two ways. Using the PROCESS command:

* You can determine privileges, priority, and type.
* Does not always block your process.

If you specify no switches, the new process has no privileges.

Switch Result

Some Switches:

/DEFAULT Pass same privileges as creating process.

/BLOCK The new process will block the old process, if you use /BLOCK, you must also)
use /10C.

/PREEMPTIBLE Make the type of the new process preemptible.

/RESIDENT Make the type of the new process resident.

/PRIORITY=n Set the priority of the new process to n.

Privilege Passing:

/CHPRIORITY Allow new process to change its priority.

/CHTYPE Allow new process to change its type.

/SUPERUSER Allow new process to use the superuser privilege.

/SUPERPROCESS Allow new process to use the superprocess privilege.

Parameter Setting and Passing:

/CONSOLE Make the new process’s console the same as the parent’s.

/CONSOLE =name1 Make the new process’s console the file referred to by name1.

/INPUT Make the new process’s input the same as the parent's.

/INPUT =name2 Make the new process’s input the file referred to by name2.

/OUTPUT Make the new process’s output the same as the parent'’s.

/OUTPUT =name3 Make the new process’s output the file referred to by name3.

/10C Make the new process’s input, output and console the same as the parent’s.
(You must also use /BLOCK if you use /IOC).

/10C=name4d Make the new process’s input, output, and console th file referred to by name4 |

/DATA Make the new process’s datafile the same as the parent’s.

/DATA=nameb Make the new process’s datafile the file referred to by name5.

JLIST Make the new process’s listfile the same as the parent’s.

/LIST=name6 Make the new process’s listfile the file referred to by name6.

/SONS Make the new process’s number of sons one less than the parent’s number off
sons.

/SONS=n Make the new process’s number of sons equal to n.

/DIRECTORY Make the new process's directory the same as the parent's.

/DIRECTORY =name7 Make the new process’s directory the file referred to by name7.

Table 8.B Switches on the PROCESS Command

If you try to pass a privilege that you do not have, you will see the following message:

ERROR: CALLER NOT PRIVILEGED FOR THIS ACTION

8-16 The Process Tree

Example 1
PROCESS PROGRAM1

BEFORE AFTER

PROGRAM1

CS-01726
Figure 8.13 Process Tree Before and After PROCESS Command

PROGRAM1 has only the privileges that you give it. Since you passed no privileges,
PROCESS_SON has no privileges.

Example 2
PROCESS/IOC/BLOCK:CLLPR -

Your process becomes blocked, and a new CLI is created using the same console for
input and output operations. If you use the /IOC switch, you must also use /BLOCK.

Example 3
PROCESS/RESIDENT/PRIORITY-1/SONS/SUPERUSER PAYROLL _3

Now do Exercise 8-3 on the next page.

The Process Tree 8-17

Exercise 8-3

Directions: Answer the following questions.
1. If you pass no privilege to a process that you create, it will have:
a. All privileges.
b. No privileges.
2. Can you pass a privilege that you do not have?
a. Yes
b. No

3. Write the command to create a process to run PROG_1, block your process, and use
your terminal for input, output, and console files.

4. Write the command to create a process to run PGM__10 that has the same privilege as
your process.

Now check your answers on the next page.

8-18 The Process Tree

Exercise 8-3
Answers
1. b.
2.b.
3. PROCESS/IOC/BLOCK PROG_1
4. PROCESS/DEFAULT PGM_10

If you answered all of the questions correctly, continue with Module 8 by restarting the
Module 8 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The Process Tree

8-i¢

Process Control

TERMINATE Command
Format: TERMINATE PID

Example 1
TERMINATE 14

BEFORE AFTER

YOUR_SON (14)

CS-01727

Figure 8.14 Process Tree Before and After TERMINATE Command

Example 2
TERMINATE 14

8-20 The Process Tree

BEFORE AFTER

YOUR_SON (14)

YOUR_GRANDSON (31)

CS-01728

Figure 8.15 Process 'free Before and After TERMINATE Command

PID 14 and PID 31 are both terminated by the TERMINATE 14 command.

SUPERPROCESS Command

The SUPERPROCESS command sets or displays the superprocess setting. When
SUPERPROCESS is on, you can control any process.

Format: SUPERPROCESS {ON}
OFF}

The Process Tree

8-21

Example 1

1. SUPERPROCESS

OFF

2. SUPERPROCESS ON

3. +)SUPERPROCESS

ON

4. +)SUPERUSER

OFF

5. +)SUPERUSER ON

6. #)SUPERPROCESS OFF

7. *)SUPERUSER OFF

Prompt Superprocess Superuser
) OFF OFF
*) OFF ON
+) ON OFF
#) ON ON
Table 8.C Superuser and Superprocess Prompts

Now do Exercise 8-4 on the next page.

8-22

The Process Tree

The Process Tree 8-23

Exercise 8-4

Directions: Using the process tree in Figure 8.16, write the command to:

1. Terminate process XY Z.

2. Terminate USER2 and ABC in one command.

3. Turn on the superprocess privilege.

USER_1 (10) USER_2 (13}

XYZ (15) ABC (14)

CS-01729
Figure 8.16

Now check your answers on the next page.

8-24 The Process Tree

Exercise 8-4
Answers
1. TERMINATE 15
2. TERMINATE 13
3. SUPERPROCESS ON

If you answered all of the questions correctly, go on to Lab Activity 8-1. Otherwise,
review the material and do the exercise again before continuing.

The Process Tree 8-25

Lab Activity 8-1
1. Try to determine the process hierarchy on your system. Keep in mind that the
hierarchy may be changing as you are doing this exercise.
a. Use the TREE command on Process 1
b. Use the WHO command to determine the name of each process listed
c. Repeat a and b for Process 2
d. Repeat c for the sons of Process 2.
e. Continue with the grandsons of Process 2.
Note: (Some of the processes in Steps d and ¢ may terminate as you are working.)

2. Create a process. Make this process execute another copy of the CLI (:CLI.PR).
Determine the process ID of the new process. Terminate the new process, but do not
affect the creating process.

3. Determine the setting of the superprocess switch. Try to turn on superprocess. (You
may not have the privilege.) If you turned it on, turn it off.

Now check your answers on the next page.

8-26 The Process Tree

Lab Activity 8-1

Answers

1. The process hierarchy differs from system to system. Refer to the example before
Figure 8.5 if you have difficulty.

2. PROCESS/BLOCK/IOC :CLL.PR
WHO
TERMINATE nn

3. SUPERPROCESS
SUPERPROCESS ON
SUPERPROCESS OFF

If you successfully completed this Lab Activity, continue to the Module 8 Test. If you
had any difficulty, review the module and do the Lab Activity again before taking the
Test.

The Process Tree

8-27

Module 8
Test

Directions: Answer the following questions by completing the sentence.
1. The three process types are:
a.

b.

C.

2. The three possible states that a process can attain are:

a.

b.

C.

3. The state in which all processes begin is:
a. Ineligible.
b. Eligible.
c. Blocked.
d. Resident.
4. A process consists of:
a.

b.

o

8-28 The Process Tree

5. Identify the processes in the process tree shown in Figure 8.17.

oP

INFOS

CS-01730
Figure 8.17

6. Select the command that you can use to determine the father process of a process:
a. TREE
b. PARENT
c. PROCESS
d. SON
7. Select the command that you can use to determine the son of a process:
a. TREE
b. PARENT
c. PROCESS
d. SON

8. Select the command that cancels a subordinate process, but keeps your process
intact:

a. BYE

b. TERMINATE
¢. CANCEL

d. OFF

The Process Tree

8-29

10.

Select the command that creates a new subordinate process:
a. START

b. CREATE

¢. PROCESS

d. SON

Select the command that allows you to control any process:
a. SUPERUSER

b. BOSS

c. MASTER

d. SUPERPROCESS

Directions: Write the command to:

11.
12.

13.
14.
15.

16.

Find the father and any sons of process 14.

Terminate process 17.

Turn on the superprocess privilege.

Determine the process name of process 13.

Create a process that blocks your process, uses your console for input and output,

and runs a program called GOOD_STUFF.

Create a process that has no privileges and executes a program called
MODULE_EIGHT__CONCLUSION.

Now check your answers to the Module 8 Test in Appendix A. If you answered all the
questions correctly, go on to Module 9. Otherwise, review the material in Module 8 and
take the Test again before continuing.

This concludes Module 8.

Module 9
Advanced CLI Concepts

Introduction

In this module we will discuss the use of macros and pseudo-macros. We will see how to
use them to ease the performance of repetitive tasks. In addition, we will look at some
commands that you can use in conjunction with magnetic tape processing.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Write a CLI macro.
2. Use pseudo-macros in command lines.

3. Use the CLI commands LOAD and DUMP to perform magnetic tape operations.

Resources
To complete this module, you will need:
¢ Module 9 audiotape.
* Module 9 of your Student Guide.
e Audiotape playback unit.
Module Outline

Module 9 discusses the following topics:

1. Tape processing
a. DUMP command
b. LOAD command

9-2 Advanced CLI Concepts

2. Macros
a. Creating macros
b. Using macros
c. Passing arguments

3. Pseudo-macros
a. Environmental
b. Conversion
c. Conditional

Now start the Module 9 audiotape. As you listen, follow along in Module 9 of your
Student Guide.

Advanced CLI Concepts 9-3

Tape Processing

Tape backup:

¢ Adds data security.

* Protects against disasters.

¢ Protects against mistaken deletions.
* Protects against hardware problems.

DUMP Command

The DUMP command copies one or more files into a specified destination file.
Format: DUMP,DESTINATION_FILENAME,SOURCE_PATHNAME

Switches on the DUMP command:

/V Verifies or lists the names of the files dumped.
* /NACL Eliminates ACLs when files are dumped.
Example 1

DUMP @MTAO0:0,SPECIAL +

Dump all files that are named SPECIAL followed by any other characters onto the tape
mounted on the tape drive referred to as MTAO.

Example 2
DUMP/V,:UTIL:DUMP_AREA_8

Dump all files in the working directory and in all subordinate directories into a disc file
called :UTIL:DUMP_AREA_8. Whenever you do not specify a source file, all files in
or subordinate to the working directory are dumped. Use extreme caution to ensure that
the dump file is not in or subordinate to the working directory. The /V switch causes all
files dumped to be listed at your console.

To back up your files without the help of a macro, use this procedure:

Monday Tuesday

DUMP,@MTA1:0,FILE_1 DUMP,@MTA1:0,FILE_1
DUMP,@MTA1:1,DATA_FILE DUMP,@MTAIL:1,DATA_FILE
DUMP,@MTAL1:2,SPECIAL_DATA DUMP,@MTA1:2,SPECIAL_DATA
DUMP,@MTA1:3,PERSONNEL_FILE DUMP,@MTA1:3,PERSONNEL_FILE
DUMP,@MTA1:4,PAYROLL_FILE DUMP,@MTA1:4,PAYROLL_FILE

DUMP,@MTA1:5,ACCOUNT_DATA DUMP,@MTA1:5,ACCOUNT_DATA

9-4

Advanced CLI Concepts

Wednesday

DUMP...
DUMP...
DUMP...
DUMP...
DUMP...
DUMP...

LOAD Command

The LOAD command copies one or more files from FILENAME to a specified
source file.

Format: LOAD,FILENAME,SOURCE_FILENAME
Switches on the LOAD command:

« /DELETE Deletes any existing file that has the same name as file on the dump file
and replaces it with file from the dump file.

* /N Do not load files; only list file names and dates.
o /V Verify each loaded file.
Example 1

LOAD @MTA0:0 +.BU

Load all files that end in the characters .BU from the first file on tape drive MTAO into
the working directory.

Example 2
LOAD/N @MTA1:1

List the filenames and dates of all the files in the second file that is mounted on tape
drive MTAL.

Example 3
LOAD/V/DELETE DUMP_FILE_A

Load all of the files that are in the disc file DUMP_FILE_A into the working directory.
If a file of the same name exists, delete thé existing file and replace it with the one from
the dump file. Provide a list of all files that are loaded.

Advanced CLI Concepts 9-5

Macros

A macro is a file that contains a list of commands. To create a macro, you can use the
CREATE command.

Example 1

1. CREATE/I DUMPER.CLI

2.)DUMP,@MTA1:0,FILE_1

3.)DUMP,@MTA1:1,DATA_FILE
JDUMP,@MTA1:2,SPECIAL_DATA
JDUMP,@MTA1:3,PERSONNEL_FILE
JDUMP,@MTA1:4,PAYROLL_FILE
JDUMP,@MTA1:5,ACCOUNT_DATA

4.))

To invoke this macro, only a single command is required. Note that it is not necessary to
add the .CLI extension to the macro name.

DUMPER

To back up your files after you have written this macro, all that you must do is:

Monday DUMPER
Tuesday DUMPER
Wednesday = DUMPER
Thursday DUMPER

Example 2 .
If you wanted to also have a file TRANSACTION_01_22_82 (01_22_82 is the
transaction date.) in your dump file, you would write DUMPER this way:

CREATE/I DUMPER.CLI

JDUMP,@MTA1:0,FILE_1

JDUMP,@MTA1:1,DATA_FILE

JDUMP,@MTA1:2,SPECIAL_DATA

)DUMP,@MTA1:3,PERSONNEL_FILE

JDUMP,@MTA1:4,PAYROLL_FILE

JDUMP,@MTA1:5,ACCOUNT_DATA

JDUMP,@MTA1:6,TRANSACTION_% 1% (Add this line to include transaction file.)
)

You would run DUMPER this way: DUMPER 06_01_82

9-6 Advanced CLI Concepts

Argument Passing
%1% - First argument
%2% Second argument
%3% Third argument

%n% nth argument
%0% Macro name

Example 1
CREATE/I EASY_MACRO
JWRITE THIS IS A TEST WRITTEN FOR %1%.

)

To execute and see the results:

EASY_MACRO GARY
THIS IS A TEST WRITTEN FOR GARY.

EASY_MACRO,GARY
%0% %1%

JEASY_MACRO,|GARY
THIS IS A TEST WRITTEN FOR|GARY

A
EASY_MACRO,] GARY
% 0 % % 1 % :

CS-01732
Figure 9.1 Results of EASY._.MACRO

Example 2
CREATE/I TEST_MACRO

1.)WRITE THIS IS A MESSAGE FROM THE %0% MACRO

2. YWRITE THIS LINE DISPLAYS THE FIRST ARGUMENT: % 1%

3. JWRITE HERE IS THE SECOND ARGUMENT: %2%

4.)WRITE YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE: %1%

5.)WRITE THE THIRD ARGUMENT IS HERE AT % 3%. I HOPE YOU ARE IMPRESSED!

Advanced CLI Concepts 9-7

To execute and see the results:

TEST_MACRO TEST1 2ND_ARG THE_END

THIS IS A MESSAGE FROM THE TEST_MACRO MACRO

THIS LINE DISPLAYS THE FIRST ARGUMENT: TEST1

HERE IS THE SECOND ARGUMENT: 2ND__ARG

YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE: TEST

THE THIRD ARGUMENT IS HERE AT THE_END. I HOPE YOU ARE IMPRESSED!
TEST_MACRO TEST1 2ND_ARG THE_END

—

%0% %1% %2% 3%

)JTEST_MACRO TEST1 2ND_ARG THE_END ¥
THIS IS A MESSAGE FROM THE|TEST_MACRO]|MACRO
THIS LINE DISPLAYS THE FIRST ARGUMENT:[TEST 1}
HERE IS THE SECOND ARGUMENT:[2ND_ARG}=

YOU CAN DISPLAY THE FIRST ARGUMENT AGAIN HERE:{TEST1

THE THIRD ARGUMENT IS HERE AT THE_END. | HOPE YOU ARE IMPRESSED!

TEST_MACRO| | TEST1 || 2ND__ARG THE_END

f P! T

% 0 % %1% % 2 % % 3 %

L

CS-01733
Figure 9.2 Results of TEST_MACRO

Now do Exercise 9-1 on the next page.

9-8 Advanced CLI Concepts

Advanced CLI Concepts 9-9

Exercise 9-1

Directions: Select the correct answer.
1. Select the command to copy all of the files in your working directory to a tape.
a. LOAD @MTAO0:0
b. COPY TAPE DIRECTORY
c. DUMP @MTA0:0
d. DUMP @MTA1:3,MYFILES
2. Select the command that loads the contents of a tape into your working directory.
a. LOAD @MTA0:0
b. COPY TAPE DIRECTORY
c. DUMP @MTA0:0
d. DUMP @MTA1:3,MYFILES
3. The primary purpose of using a macro is:
a. To save storage space.
b. To save work for the computer user.
c. To reduce computer usage.
d. To create back-up tapes.
4. You can pass arguments to a macro.
a. True
b. False
5. The LOAD and DUMP commands only work with magnetic tape.
a. True
b. False
Directions: Construct macros for the following.

6. Write a macro called SEE_FILES that displays the names of all of the files in your
working directory and writes a message ALL FINISHED after the display.

9-10

Advanced CLI Concepts

7. Write a macro called SPECIAL that accepts a name as an argument and returns
THIS IS ESPECIALLY FOR, and then the name that was entered.

Now check your answers on the next page.

Advanced CLI Concepts 9-11

Exercise 9-1
Answers

Ll
o

a.

5. b.

6. CREATE/I SEE_FILES.CLI
JFILESTATUS
JWRITE ALL FINISHED
)

7. CREATE/I SPECIAL.CLI
YTHIS IS ESPECIALLY FOR %1%

)

If you answered all of the questions correctly, continue with Module 9 by restarting the
Module 9 audiotape. Otherwise, review the material and do this exercise again before
you continue.

9-12 Advanced CLI Concepts

Pseudo-macros

Pseudo-macros return values that you can use in your processing. They are always
enclosed in square brackets and preceded by an exclamation point (i.e., ['pseudo-macro]).
The three types of pseudo-macros are:

 Environmental settings (i.e., SEARCHLIST, ACL, TIME, DATE).
¢ Conditional execution (i.e., EQUAL, ELSE, END).

¢ Conversions (i.e., OCTAL, DECIMAL).

Pseudo-macro Expands to:
1ACL ACL of a file.
1ASCIl Character cofresponding to value.
IDATE System date.
IDECIMAL Decimal value of octal number.
IDEFACL Current default ACL.
IDIRECTORY Working directory.
IELSE Conditional.
IEND Conditional.
IEQUAL Conditional.
IEXPLODE Expands argument with spaces.
INEQUAL Conditional.
10CTAL Converts decimal to octal.
IPID Process ID.
IREAD Displays text and accepts argument.
ISEARCHLIST Your searchlist.
ITIME System time.
IUSERNAME Your username.

Table 9.A° Commonly Used Pseudo-macros

Example 1
WRITE [!DATE]
16-MAY-82

Example 2

WRITE [[SEARCHLIST]
:UTIL, :UTIL: INFOS, :UDD:RYAN

Example 3

WRITE ['OCTAL 999]

1747

Example 4

WRITE [!DECIMAL 777]

N1

Advanced CL| Concepts

9-13

Example 5
WRITE [!ASCII 207]
(You will hear a beep tone <CTRL-G>)

Example 6
WRITE [[USERNAME] IS P.L.D. [!PID]
RYANISP.I.D. 14

Example 7

SEARCHLIST

:UTIL, :UTIL:INFOS
SEARCHLIST,[!SEARCHLIST],:UDD:PROJECT_X
SEARCHLIST

:UTIL, :UTIL:INFOS, :UDD:PROJECT X

Example 8

DIRECTORY

-UDD

DIRECTORY [!DIRECTORY]:MODULE_9
DIRECTORY

-UDD :MODULE—S

Example 9
The !ACL pseudo-macro always requires an argument.

ACL OLDFILE
RYAN, OWARE, + . JOE, RE
ACL,OLDFILE,['ACL,OLDFILE], +,E
ACL OLDFILE

RYAN, OWARE, JOE .RE, + ,E

Example 10

CREATE/I DELMAC.CLI

JDELETE/V/C ['READ DELETE WHAT FILE?]

JWRITE DELETIONS COMPLETED AT ['TIME] ON [!DATE]

)
DELMAC

DELETE WHAT FILE? +.BU

=SCRIPT.BU? Y

DELETED =SCRIPT.BU

=GUIDE.BU? Y

DELETED ==GUIDE.BU

DELETIONS COMPLETED AT 16:16:13 ON 22-JAN-82

9-14

Advanced CLI Concepts

Example 11

The following macros illustrate how to use the time of day as input to a program that
requires a random number as input.

CREATE/I RANDO.CLI
JRANDOM [[EXPLODE ['TIME]] <—
)WRITE DONE

i

)

Time

Argument

.
.

il

B — N

|

JXEQ MYPROG %8% %5 %

)

CREATE/I RANDOM.CLI
D —

This line creates a CLI command that
looks like this:
RANDOM15:23:05

This will call a macro named RANDOM.CLI
and pass eight arguments to it. Each of

the numbers is an argument, and each colon
is also an argument.

This will execute a program named MYPROG
and pass a random number in the range of

00 to 99 to it. The number is composed

of the digit portion of the seconds from

the time of day and the digit portion

from the minutes.

CS-01734

To execute:

RANDO
FROM CLI RANDO.CLI RANDOM.CLI
JRANDO »| RANDOM [IEXPLODE [ITIME]] >

WRITE DONE {=

EXECUTE MYPROG %8% %5% —‘

DONE =

Figure 9.3 Flow of Control of RANDO Macro

Advanced CLI Concepts 9-15

Conditional pseudo-macros allow selected execution of commands.

Example 1

CREATE/I AM_PM.CLI
J!EQUAL %1% 0]
JWRITE MORNING
)I'ELSE]

JWRITE AFTERNOON
JI'END]

)

AM_PM 0

MORNING

AM_PM 1

AFTERNOON

Example 2

CREATE/I SAFETY.CLI

)I'EQUAL ['USERNAME] MANAGER]

JXEQ ACCOUNTS

)'ELSE]

JWRITE *** EXECUTION ABORTED INVALID USER ***
)'END]

))

For any user not logged on as username MANAGER, the program accounts will not
execute. This method can be used to add a level of security beyond simply using ACLs.

Now do Exercise 9-2 on the next page.

9-16 Advanced CLI Concepts

Advanced CLI Concepts 9-17

Exercise 9-2

Directions: Fill in the appropriate returned value, given the following conditions:

USERNAME: TRICIA

TIME: 10:45 PM

DATE: 10-24-82

WORKING DIRECTORY: :UDD:MACRO_DIR
PID: 21

Example
WRITE [!TIME] 22:45:00 (Remember the proper format.)

1. WRITE [!DATE]

2. WRITE YOUR WORKING DIRECTORY IS [IDIRECTORY]

3. WRITE [!USERNAME] IS PROCESS L.D. [!PID]

4. WRITE [lEXPLODE ['USERNAME]]

5. WRITE THIS IS THE END

6. In the space below, write a macro to write the time of day if you enter a T and write
the date otherwise. Call the macro TIDA.CLI.

Check your answers on the next page.

9-18 Advanced CL) Concepts

Exercise 9-2
Answers

1. 24-0CT-82

2. YOUR WORKING DIRECTORY IS :UDD:MACRO...DIR
3. TRICIA IS PROCESS I.D. 21

4. TRICIA

5. THIS IS THE END

6. CREATE/I TIDA.CLI
)'EQUAL %1%.T]
)WRITE [!TIME]
)I!ELSE]

JWRITE [!DATE]
)'END]
)

or.

CREATE/I TIDA.CLI
J!EQUAL %1%T]
)TIME

)I'ELSE]

)DATE

)J'END]

)

If you answered all of the questions correctly, continue to Lab Activity 9-1. Otherwise,
review the material and do this exercise again before you continue.

Advanced CLI Concepts 9-19

Lab Activity 9-1

Directions: Enter the commands necessary to accomplish each of the following tasks.

1.

Write and execute a macro that displays the time, date, and working directory.
Call the macro WHEN_WHERE.

Write and execute a CLI command line that displays the time with a space
between each character.

. Enter and execute a macro that prints OPTION 1 if you enter a 1 as an argument,

and prints INVALID if you enter any other character.

. Back up all of the files in your directory on magnetic tape.
. Get a list of the files on the tape, but do not replace them in your directory.

. Create a macro to do Steps 4 and 5. Include in the macro steps that tell you what

is happening as it happens.

. Examine some macros on your system. Make :UTIL your working directory. List

the files in :UTIL that have the .CLI extension. Type some of the files that are of
interest to you and to which you have read access.

Now check your answers on the next page.

9-20 Advanced CLI Concepts

Lab Activity 9-1
Answers

1. CREATE/I WHEN_WHERE.CLI
JTIME
JDATE
JDIRECTORY

)]
2. WRITE ['EXPLODE [ITIME]]

3. CREATE/I OPTION.CLI
['EQUAL %1%,1]
WRITE OPTION 1
['ELSE]

WRITE INVALID
['END]

4. DUMP @ MTAO0:0 (See your system manager for correct magnetic tape drive).
5. LOAD/N @MTA0:0

6. CREATE/I SUPERDUMP.CLI
DUMP @MTA0:0
WRITE FILES ARE DUMPED
LOAD/N @MTA0:0
WRITE MACRO COMPLETE

7. DIRECTORY :UTIL
FILESTATUS +.CLI
TYPE ...CLI

If you completed this Lab Activity successfully, continue to the Module 9 Test. If you
had any difficulty, review the material and try again before continuing.

Advanced CLI Concepts 9-21

Module 9
Test

Directions: Answer the following questions.
1. Which of the following is in the correct format?
a. {IDATE}
b. ['DATE]
c. {DATE}
d. [DATE]
2. Which of the following can be used to create a back-up file?
a. LOAD
b. DUMP
c. WRITE
d. SAVE
3. Which of the following can be used to copy a back-up file into your directory?
a. LOAD
b. DUMP
c. WRITE
d. SAVE
4. Which of the following commands converts an octal 111 to decimal?
a. WRITE [!DECIMAL 111]
b. WRITE [!DECIMAL 73]
¢c. WRITE [!OCTAL 111]
d. WRITE ['OCTAL 73]
5. To access the macro name within a macro, which would you use?
a. %0%
b. %1%
C. %2%
d. %3%

9-22 Advanced CLI Concepts

6. Write a macro called QUIZ6_6.CL1 that executes a program called PROG1 and
prints a message when completed.

7. Write a macro that executes PROG?2 if you enter a 1 as an argument, and executes
PROG?2 otherwise.

8. Using pseudo-macros, write a command line that adds the directory :UTIL to your
searchlist.

9. Write a series of macros called MAC1, MAC2, that prints out the seconds portion
of the time of day.

Now check your answers to the Module 9 Test in Appendix A. If you answered all the
questions correctly, continue to Module 10. Otherwise, go back and review the
material in Module 9 and take the Module 9 Test again.

This concludes Module 9.

Module 10
The SPEED Editor

Introduction

This module explains the elementary features of the SPEED text editor (AOS, AOS/VS).
Although not all of the features of SPEED are discussed, this module allows you to use
enough of the features to develop and edit files for use in program development. For a

more detailed discussion of all of the features, refer to SPEED Text Editor (AOS and

AOS/VS) User’s Manual.

Module Objectives

Upon successful completion of this module, you should be able to:
1. List the steps involved in a typical editing session.

2. Identify and use the SPEED commands that perform the following functions:
a. Open a file for input.
b. Create and open a file for output.
¢. Change the location of the Character Pointer.
d. Insert text into the edit buffer.
e. Search for text in the edit buffer.
f. Display text in the edit buffer.
g. Change text in the edit buffer.
h. Delete text from the edit buffer.
i. Read text into the edit buffer.
j. Move text to the output file.
k. Create temporary output files.
1. Create back-up files.
m. Close files.
n. Return to the CLIL

10-2 The SPEED Editor

Resources

To complete this module, you will need:

* Module 10 audiotape.
e Module 10 of your Student Guide.
* Audiotape playback unit.

Module Outline

Module 10 discusses the following topics:

1. SPEED concepts
a. Units of text
b. Files and the edit buffer
c. Editing steps
d. Command structure
e. Character Pointer

2. Sample editing session
a. Opening an output file
b. Inserting text
c. Character Pointer commands
d. Editing text
e. Moving text to the output file
f. Returning to the CLI
g. Opening and reading from an input file

3. Advanced commands
a. Page and window mode
b. Commands that perform several functions
c. Creating a temporary output file
d. Creating a back-up file

The SPEED Editor

10-3

SPEED Concepts

Units of Text

Text is a sequence of one or more ASCII characters.

Edit Buffer

Unit of Text Definition Example
Character A single ASCII alphanumeric character. SPEED uses the full A
upper-case and lower-case ASCI| character set.
String A sequence of ASCIl characters. A string can contain any | THIS IS A STRING
ASCII character, except delimiters such as carriage returns.
Line A sequence of characters up to and including a carriage THIS IS A LINE }
return.
Page A sequence of characters ending in a new page character: | (See Figure 10.1.)
CTRL-L. A page has no size limit.
Window A sequence of characters divided into a specific number of | (See Figure 10.1.)
lines.

Table 10.A Units of Text that SPEED Recognizes

Special-purpose characters:

e Command terminators: CTRL-D = §$%
e String delimiter: ESCape = $
¢ Command separator: ESCape = §

¢ Area of memory where SPEED manipulates your text.

¢ Limited by memory size.
¢ 36 buffers available.

10-4 The SPEED Editor

CS-00989

PAGE

PAGE

PAGE

THIS IS LINE 1)
THIS IS LINE 2}
THIS IS LINE 3}
THIS IS LINE 4)
THIS IS LINE 5!
THIS IS LINE 6)
tL ,
THIS IS LINE 7}
THIS IS LINE 8}
THIS IS LINE 9}
L

THIS IS LINE 10}
THIS IS LINE 11}
THIS IS LINE 12}
THIS IS LINE 13}
THIS IS LINE 14)
THIS IS LINE 15}
THIS IS LINE 16}
THIS IS LINE 17}
}'HIS IS LINE 18}

L

WINDOW

WINDOW

WINDOW

WINDOW

WINDOW

WINDOW

P\ S e~ — N

Figure 10.1 Pages and Windows

The SPEED Editor 10-5

Editing Steps

!

INVOKE SPEED
1 EXECUTION MODE: CARRYING OUT COMMANDS

!

IF AN INPUT FILE
EXISTS, OPEN IT

!

OPEN OUTPUT
FILE

!

READ (YANK) A PORTION PAGE MODE: YANK ONE PAGE
™ OF THE INPUT FILE INTO

THE BUFFER WINDOW MODE: YANK ONE WINDOW

INSERT/MODIFY TEXT
IN EDIT BUFFER

!

WRITE (PUT) CONTENTS
OF BUFFER TO OUTPUT
FILE

INPUT MODE: READY TO ACCEPT COMMANDS (!)

CLOSE FILES

EXIT FROM SPEED

CS-00991

Figure 10.2 Editing Steps

More than one of the steps shown in Figure 10.2 may be performed with a single
command.

10-6 The SPEED Editor

Step 1: When you issue the command to execute SPEED, two things happen:

e The program is called in from the disc.
* An edit buffer is created.

SPEED.PR
PROG.1
. DIsC
SPEED.PR
EDIT BUFFER
MAIN MEMORY

CS-01735

Figure 10.3 SPEED is Invoked

pr—

The SPEED Editor

10-7

Steps 2 and 3: Open files on the disc. Files remain unchanged.

SPEED.PR

EDIT BUFFER

MAIN MEMORY

CS-01736

DISC

NEWPROG

OPENED,
BUT EMPTY

Figure 10.4 Open Files for Output and input

10-8 _ The SPEED Editor
Step 4: Data is moved into the edit buffer when a READ command is issued.
Step 5: Add, change, or delete data in the edit buffer.
SPEED.PR /
EDIT BUFFER ORIGINAL
PAGE 1 OF
PROG.1
J
_‘ EDITED
VERSION
MAIN MEMORY
CS-01737

Figure 10.5 Read a Page of PROG.1 for Editing

The SPEED Editor

10-9

Step 6: WRITE commands move data to output file.

Step 7: Close the files.

SPEED.PR

EDIT BUFFER

PROG.1

MAIN MEMORY

CS-01738

EDITED
VERSION

Figure 10.6 WRITE the Edited Version Out to Disc

10-10

The SPEED Editor

Step 8: Return to CLIL.

CS-01739

DISC
LD
[sPeeD.PR] [NEwFRog]
CLI.PR
MAIN MEMORY

Figure 10.7 Terminate SPEED; Reinvoke CLI|
Console Control Procedures

CTRL-U deletes an entire SPEED command line.

Example 1

$$

I THIS IS AN EXAMPLE OF CTRL-U
(CTRL-U)

Example 2

$$

I HELLO, THIS IS A TEST
(CTRL-U)

CTRL-C, CTRL-A deletes a multiple-line SPEED command.

Example 1

$$

I THIS IS AN EXAMPLE OF THE
CTRL-C, CTRL-A COMBINATION
(CTRL-C, CTRL-A)

The SPEED Editor

10-11

Example 2

$$

I THIS IS AN EXAMPLE OF THE

CTRL-C, CTRL-A COMBINATION

THIS IS AN EXAMPLE

OF WHAT IS REQUIRED

TO DELETE A SEGMENT

OF TEXT, WHICH SPANS SEVEN LINES

THE TEXT WILL NOW BE DELETED
(CTRL-C,CTRL-A)

Now do Exercise 10-1 on the next page.

10-12 The SPEED Editor

Exercise 10-1

Part 1
Directions: Match the letter of the correct definition with the term on the right.
1. — Character a. A group of pages.
2. String b. Ends with NEW LINE.
3. Line ¢. Occupies one position.
4. Page d. Sequence of ASCII characters.
5. — Window e. Ends with CTRL-L (NEW LINE).
Directions: Mark the following statements true or false.
6. A string is a sequence of characters up to and including a carriage return.
7 — A page is a sequence of characters ending in a CTRL-L.
8. You can only edit text if it resides in the edit buffer.
9. A SPEED command line is terminated by entering CTRL-D.
Part 2
Directions: Given the following steps in an edit cycle, list them in in their usual order:
a. Edit text in the edit buffer.
b. Open files for input and output.
c. Close the input and output files.
d. Invoke SPEED.
e. Exit from SPEED.
f. Write text from the edit buffer to the output file.
g. Read text from the input file to the edit buffer.
1. 2. 3. 4, 5. 6. 7.
Part 3

Directions: Choose the letter of the response that best completes the statement.
1. To delete only the last character typed, press:

a. RUBOUT or DELETE

b. CTRL-U

c¢. CTRL-D

d. ESCAPE

e. CTRL-C, CTRL-A

The SPEED Editor 10-13

2. To delete one command line (that does not contain any new-line characters), press:
a. RUBOUT or DELETE
b. CTRL-U
c. CTRL-D
d. ESCAPE
3. To terminate a command line and allow SPEED to execute it, you press:
a. RUBOUT or DELETE
b. CTRL-U
c. CTRL-D
d. ESCAPE
e. Repeated rubouts or deletes
4. SPEED command termination (CTRL-D) is echoed as:
a. $%
b. $
c.!

d.?

Now check your answers on the next page.

10-14 The SPEED Editor

Exercise 10-1
Answers

Part 1

—h
o a o

o

¥ X NN RhwN
o I I B T

Part 2

A o
™ P R o A

Part 3

1. a.
2.b.
3.c
4. a.

If you answered all the questions correctly, continue with Module 10 by restarting the
Module 10 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The SPEED Editor 10-15

Manipulating Files with SPEED

There are two ways that you can enter SPEED.

Example 1
Specify no file.

XEQ,SPEED
SPEED REV 3.00
|

(! is the SPEED prompt.)

Example 2

Specify file to be edited.

XEQ,SPEED,MYFILE

There are two possible responses.
If the file exists:

SPEED REV 3.00
|

If the file does not exist:

SPEED REV 3.00

CREATE NEW FILE? (Respond Y or N)
!

File Management

Opening Input Files

The FR command opens an existing file for input.

Example 1
FRFILEASS

Opens FILEA for input.

Example 2

FRFILEBSS

ERROR: FILE DOES NOT EXIST
FRFILEB

Opening Output Files

The FW command opens and creates a file for output.

10-16 The SPEED Editor

Example 1

FWFILEASS

Example 2

FWFILEBSS
ERROR: FILE ALREADY EXISTS

FWFILEB

Opening Input and Output Files

The FO command opens a file for updating and reads in first page.

Example 1
FOFILEASS
Example 2
FOFILEBSS
ERROR: FILE DOES NOT EXIST
FOFILEB
Command Type Example Error Message Features
FR Input FR FILE1 NO FILE
W Output FWFILE1 | FILE PRESENT
FO Input/Output FO FILE1 NO FILE Reads first page.
Table 10.B File Opening Summary
Closing Files
The FC command closes all files.
Example
FCS$$
The FU command updates and closes files, clears the buffer area, and copies the input
file to output file.
Example
FUS$

The FB command closes and backs up files. This command performs the same function

as the command FU and creates a back-up file.

Example
FB$$
Before SPEED editing:
FILE1 Input to SPEED
After SPEED editing:
FILEl Updated file
FILE1.BU Back-up file

The SPEED Editor

10-17

i Command | Arguments | Effect on Buffers | Effect on Input | Special Features
File
FC None None None None
FU None Copies to output | Copies to output | None
file. file.
FB None Copies to output | Copies to output | Creates back-up
file. file. file.
Table 10.C File Closing Summary

Read Commands

The Y command reads one page from input file into the buffer and destroys the current
contents of the buffer.

Example
Y$$

The A command appends a page to the current buffer and does not affect the current
contents of the buffer.

Example
ASS

Write Commands

The P, or put, command writes the current buffer to output file, appends a form-feed

character at the end of output data, and does not destroy contents of the buffer.

Example
P$$

The nP command writes 7 lines of the buffer to the output file, appends a form-feed

character at the end of output data, and does not destroy contents of the buffer.

Example
2P$$

BEFORE

Buffer contains:

THIS IS THE FILE
THIS IS THE FILE
TO BE EDITED

IT CONTAINS LOTS AND LOTS
OF IMPORTANT
INFORMATION.

Output:
AFTER

Buffer contains:

10-18

The SPEED Editor

THIS IS THE FILE

TO BE EDITED

IT CONTAINS LOTS AND LOTS
OF IMPORTANT
INFORMATION.

Output:

THIS IS THE FILE
TO BE EDITED (Form-feed)

The PW command writes the current buffer to output files, does not append a form-feed
character at the end of data, and does not destroy the contents of the buffer.

The E, or eject, command writes buffer and remainder of input file to output file.

The R, or roll, command writes the current buffer to the output file and reads next page
of input file.

Example
R$$

BEFORE
Input file contains:

THIS IS A FILE THAT CONTAINS
MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1. (Form-feed)

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

PAGE THREE IS THE LAST PAGE OF
THIS FILE. (Form-feed)

Buffer contains:

THIS IS A FILE THAT CONTAINS

MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1

THIS IS THE END OF PAGE 1. (Form-feed)

Output file is empty.

AFTER
Input file contains:

THIS IS A FILE THAT CONTAINS

MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1

THIS IS THE END OF PAGE 1. (Form-feed)

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

PAGE THREE IS THE LAST PAGE OF
THIS FILE. (Form-feed)

The SPEED Editor

10-19

Buffer contains:

THIS IS THE BEGINNING OF PAGE TWO
PAGE TWO HAS ONLY TWO LINES. (Form-feed)

Outut file contains:

THIS IS A FILE THAT CONTAINS

MORE THAN ONE PAGE OF INFORMATION
YOU ARE NOW LOOKING AT PAGE 1

THIS IS THE END OF PAGE 1. (Form-feed)

Status Command

The F? command lists all files currently open.

Example

XEQ SPEED
SPEED REV 3.00
F?

GLOBAL :

INPUT FILE-NONE
OUTPUT FILE-NONE
LOCAL:

INPUT FILE-NONE
OUTPUT FILE-NONE
FRFILE1
FWFILE2

F?

GLOBAL :

INPUT FILE-FILE1
OUTPUT FILE-FILE2
LOCAL :

INPUT FILE-NONE
OUTPUT FILE-NONE
FC

F?

GLOBAL :

INPUT FILE-NONE
OUTPUT FILE-NONE
LOCAL:

INPUT FILE-NONE
OUTPUT FILE-NONE

Terminating the Editing Session
The H command allows you to exit from SPEED.

Example 1
If the buffer is empty:

IHS
)

The SPEED Editor

Example 2

If the buffer is not empty:

IH$S
CONFIRM?Y

)

or

IH$$
CONFIRM?N
|

Summary of SPEED Commands

Invoke and exit

XEQ SPEED Invoke SPEED.
XEQ SPEED,FILE1 Invoke and open file.
HS$$ Exit SPEED.
Open and close files

FR File read

FW File write

FC Files close

FO File open

FU File update

FB File backup

F? File status

Read and write files

Y Yank

P Put

A Append

E Eject

R Put and yank

Now do Exercise 10-2 on the next page.

The SPEED Editor 10-21

Exercise 10-2

Directions: Match the commands in the right column with the correct result in the left
column. (Note that there are two sections to this matching exercise. Each section is
exclusive of the other section.)

1. — Open input. a. FU
2. Open output. b. FR
3. Open input and output. c. FC
4 File write and back up. d. FW
5. Close files. e. FO
6. — Close and write. f. FB
7. Write then read. a. H
8. Read from input. b. P
9. Halt and return to CLI. c.A
10. Write buffer to output.

(Do not affect the rest of the file.) d.Y
11.
12.

Append. e.E

Write rest of file to output. f.R

Check your answers on the next page.

10-22 The SPEED Editor

Exercise 10-2

Answers

e o

o

~n

d.

© 9 N N Rk b=
(2]

a.
10. b.
1l.c.
12. e.

If you answered all the questions correctly, continue with Module 10 by restarting the
Module 10 audiotape. Otherwise, review the material and do this exercise again before
you continue.

The SPEED Editor 10-23

The Character Pointer (CP)

Example 1
CP on DASHER® CRT

#T$$

*THIS IS THE SAMPLE TEXT.
LINE TWO*OF SAMPLE.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.*!

Example 2
CP on DASHER® hard-copy terminal

(7)THIS IS A SAMPLE TEXT
LINE TWO OF SAMPLE

THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

The L. Command
nL$$ Move the CP 7 lines from current position.

Current buffer:

THIS IS A SAMPLE TEXT

LINE TWO OF SAMPLE

THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

(* is the Character Pointer.)

Example 1

L$$ Move CP to beginning of the current line.
TS$ } Display the current line.

*THIS IS THE SAMPLE TEXT.

Example 2

3LS$$ Move CP three lines forward.
T33 } Display the current line.
*FOURTH AND LAST LINE.

Example 3

-2L$$ Move CP two lines backwards.
T3S } Display the current line.

*LINE TWO OF SAMPLE.

10-24 The SPEED Editor

The J Command
nJ$$ Move the CP to the nth line in the edit buffer.
Current buffer:
THIS IS THE SAMPLE TEXT
LINE TWO OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

(* is the Character Pointer.)

Example 1
2J88 Move the CP to line two.
T$$. .
*LINE THO OF S AMPLE.} Display the current line.
Example 2
J$$ ~ Move the CP to the beginning of the buffer.
TS . .
h .
*THIS IS THE SAMPLE TEXT.} Display the current line
Example 3
yA L3 Move the CP to the end of the buffer.
' '}‘ISS} Display the current line.
The M Command
nM$$ Move the CP n character positions from the current location.

Current buffer:

THIS IS A SAMPLE TEXT

LINE TWO OF SAMPLE

THE THIRD LINE OF THE SAMPLE
FOURTH AND LAST LINE

Example 1
5M$$ Move the CP five characters tothe right.
T$$ }

LINE *THO OF SAMPLE. Display the current line.

Example 2)
-3MS$$ Move the CP three characters to the left.
T$$

LINE *TWO OF SAMPLE }

Display the current line.

The SPEED Editor 10-25

The T Command

Command Resuit
T$$ Display the line with the character pointer.
nT$$ Display n lines, starting from the CP line.
H#TS Display all lines.

Table 10.D The T Command

Current buffer:

THIS IS THE SAMPLE TEXT

LINE TWO OF SAMPLE.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1

TS$$ }
*LINE TWO OF SAMPLE.

Display the current line.

Example 2

2T$$
LINE TWO OF SAMPLE. } Display two lines starting from current line.

THE THIRD LINE OF THE SAMPLE.

Example 3

#T$$

THIS IS THE SAMPLE TEXT.
LINE TWO OF SAMPLE.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Display entire buffer.

10-26 The SPEED Editor

The I Command
ITEXT-STRINGS$S Insert text-string at current location of the CP.

Current buffer:

THIS IS THE SAMPLE TEXT.

LINE TWO OF SAMPLE.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1

ITHIS IS THE SAMPLE TEXT. Insert the text.
LINE TWO OF SAMPLE.

THE THIRD LINE OF SAMPLE.
FOURTH AND LAST LINE.$$
T$$. .
FOURTH AND LAST LINE. *1 Display the current line and the CP.

Example 2

I Insert a character at the current location of CP.
$$

#T$$

THIS IS THE SAMPLE TEXT.

LINE TNO OF SAMPLE.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Display CP and line.

P

Example 3

3J$% Move the CP to line 3.! Insert a line.
ITHIS FITS BETWEEN 3 AND 2

$$

#T8$

THIS IS THE SAMPLE TEXT.
LINE TWO OF SAMPLE.

THIS FITS BETWEEN 3 AND 2
THE THIRD LINE OF THE SAMPLE.

Display the whole buffer.

The SPEED Editor

10-27

The S Command

STEXT-STRING$$S Search for text-string.

Current buffer:

THIS IS THE SAMPLE TEXT.

LINE TWO OF SAMPLE.

THIS FITS BETWEEN 3 AND 2

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1
STHIRDSS$
T$$

THE THIRD* LINE OF THE SAMPLE.

Example 2

STEXTS$$

ERROR: UNSUCCESSFUL SEARCH}
STEXT$$

Example 3

3JTSS

(™)THIS FITS BETWEEN 3 AND 2
-3SSAMPLE TEXTS$$

T$S

THIS IS THE SAMPLE TEXT(A).}

Example 4

$$

OSTHISSS

T$$ }
THIS(™) IS THE SAMPLE TEXT.

Example 5

T$$ \
THIS(™) IS A SAMPLE TEXT.)
1,100SFITS$$

T$$

THIS FITS(”™) BETWEEN 3 AND 2

Search for “THIRD”.

Display the current line.

Search for “TEXT”.

Error message.

Move to line 3.
Display the CP.
Search backwards three lines.

——— Display the new CP.

Search backward.

— Display the CP.

Display the CP.
Search for “FITS”.

! — Display the new CP.
f p

Command

Result

nSTEXT-STRING$$

OTEXT-STRING$$

n,zSTEXT-STRING$$

Search for text-string starting from CP and going 7 lines
back toward the beginning of the buffer.

Search for text-string, starting from CP and going back to
the beginning of the current line.

Search for text-string, starting from character position n
+ 1 and continuing to character position z.

Table 10.E The S Command

10-28 The SPEED Editor

The N Command
NTEXT-STRINGSS Search for text-string throughout the entire input file.

Current buffer:

. THIS IS THE SAMPLE TEXT.
LINE TWO OF SAMPLE.
THIS FITS BETWEEN 3 AND 2.
THE THIRD LINE OF THE SAMPLE.

FOURTH AND LAST LINE.
Example 1
J$$ Move CP to beginning of buffer.
NTHIRD LINESS Search for “THIRD LINE”.
TS } ———— Displ tlhi
THE THIRD LINE* OF THE SAMPLE. ispiay current fne.
Example 2
$$ Search for “TEXT™.
NLINE TWOS$$
ERROR: NO OPEN FILE B .
NLINE TWO ITOr message.
The C Command _ —

COLD-TEXTSNEW-TEXT$$ Search for old-text.
Delete old-text.
Insert new-text.
Leave CP after new-text.

Current buffer:

THIS IS THE SAMPLE TEXT.

LINE TWO OF SAMPLE.

THIS FITS BETWEEN 3 AND 2.

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1

J$$ Move CP to beginning of buffer.
CSAMPLESPRACTICESS Change “SAMPLE” to “PRACTICE”.
TSS

THIS IS THE PRACTICE* TEXT.} Display current line.

Example 2

CTHIS ISSLINE ONE OF $$ Change “THIS IS” to “LINE ONE OF ”.

ERROR: UNSUCCESSFUL SEARCH }

CTHIS IS$ Error message.

The SPEED Editor

10-29

Example 3

J$S Move CP to line one.

CTHIS IS SLINE ONE OF $$

T$$. .

LINE ONE OF*THE PRACTICE TEXT} Display the current line.

Example 4

CTEXT-STRINGSS Search for text-string.
Delete text-string.
Leave CP after text-string.

C3 AND 28$$

T$$

THIS FITS BETWEEN ()

The D Command

nD$§$ Delete n characters to the right of the CP.
-nD$$ Delete n characters to the left of the CP.
Current buffer:

LINE ONE OF THE PRACTICE TEXT.
LINE TWO OF SAMPLE.

THIS FITS BETWEEN

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1
4DS$$ Delete four characters following CP.
$$

TS$ }

ispl nt line.
*ONE OF THE PRACTICE TEXT. Display current line

Example 2

STWOS$$ Move the CP to “TWO” in line.

T$$

LINE TWO* OF SAMPLE.

-3D$$ Delete three characters preceding CP.

T$$.
LINE* OF SAMPLE} Display results.

10-30 The SPEED Editor

The K Command
nK$$ Delete n lines following CP.
-nK$$ Delete n lines preceding CP.

Current buffer:

LINE ONE OF THE PRACTICE TEXT.
LINE TWO OF SAMPLE.

THIS FITS BETWEEN

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Example 1
2J$$ Move CP to line 2.

1KS$ Delete (kill) one line following CP.
#T9%%

ONE OF THE PRACTICE TEXT.
THIS FITS BETWEEN

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Display entire buffer.

Example 2

2)$$ Move CP to line 2.

-1K$$ Delete one line preceding CP.
#1358

THIS FITS BETWEEN

THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE.

Display buffer.

Example 3

STHIRDSS Move CP to the middle of a line.

T$S

THE THIRD* LINE OF THE SAMPLE

K$$ Delete the characters in the front of the line.
TSS

* LINE OF THE SAMPLE.

The SPEED Editor

10-31

Summary of Text Commands

CP Movers
L

J
M

Searchers
S

C
N

Insert

Line move
Jump to a line

Move character positions

Search
Change

Nonstop search

Insert

Change

Change
Delete characters
Kill lines

Now do Exercise 10-3 on the next page.

10-32 The SPEED Editor

The SPEED Editor 10-33

Exercise 10-3

Directions: Match the commands on the left with the functional descriptions on the right.

. C a. Delete lines of text.

2.) b. Search for string, delete it, insert another string.

3. D c. Insert string at CP location.

4. L d. Delete characters.

5. S e. Search for string in buffer, put, yank (if there are open files).
6. K f. Search for string in buffer.

7. T g. Move CP character positions.

8. M h. Move CP to beginning of specified line, relative to start of buffer.
9, N i. Move CP to beginning of a line, relative to current line.

10. ____ #T j. Display contents of entire buffer.

1. 1 k. Display contents of current line with CP.

Check your answers on the next page.

10-34 The SPEED Editor

Exercise 10-3
Answers

I

—
.

v ® N kWMo
-

o ® x B

ot
e

J
11. c.

If you answered all the questions correctly, continue to Lab Activity 10-1 and the
Module 10 Test. Otherwise, review the material and do the exercise again before
continuing.

The SPEED Editor

10-35

Lab Activity 10-1

10.

11

17.
18.

Invoke SPEED and create a file called SPEED.LAB.
Display the status of your files.
Input the following text:

SPEED IS A TEXT EDITOR THAT YOU CAN
USE WITH WITH AOS OR AOS/VS.
YOU CAN USE IT TO CREATE AND MODIFY FILES.

Write this data to the output file, appending an end of page character.
Insert this text:

MODULE 10 OF THE AOS, AOS/VS USERS COURSE IS
DEVOTED TO TEACHING YOU TO USE THE SPEED
EDITOR. THIS LAB ACTIVITY WILL INDICATE
YOUR ABILITY TO USE THE EDITOR.

Repeat Step 4.
Insert this text:

SUCCESSFUL COMPLETION OF THIS EXERCISE
INDICATES YOU HAVE MASTERED THE BASICS OF SPEED.

Write this text to the output file.
Close the files.
Exit from SPEED and return to the CLI.

. Invoke SPEED once again. This time do not specify a file to edit.
12.
13.
14.
15.
16.

Check filestatus.

Open SPEED.LAB for both input and output.

Display the contents of the buffer.

Change “CREATE?” on the first page to “BUILD.”

Insert the following line after the second line:

YOU CAN RUN IT ON A DATA GENERAL COMPUTER.
Delete the fourth line.

Display the buffer.

10-36 The SPEED Editor

19. Write out the buffer to the output file.

20. Read forward to the third page.

21. Display the buffer to verify the success of the previous step.
22. Return to the CLI.

Check your answers on the next page.

The SPEED Editor

10-37

Lab Activity
Answers

10.
11.
12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.

10-1

X SPEED SPEED.LAB
F?

ISPEED IS A TEXT EDITOR THAT YOU CAN

USE WITH AOS OR AOS/VS.

YOU CAN USE IT TO CREATE AND MODIFY FILES.
$$

P

IMODULE 10 OF THE AOS, AOS/VS USERS COURSE IS
DEVOTED TO TEACHING YOU TO USE THE SPEED
EDITOR. THIS LAB ACTIVITY WILL INDICATE

YOUR ABILITY TO USE THE EDITOR.

$$

P

ISUCCESSFUL COMPLETION OF THIS EXERCISE
INDICATES YOU HAVE MASTERED THE BASICS OF SPEED.
$$

P

FC

HS$$

X SPEED

F?

FO SPEED.LAB

#T
CCREATES$BUILDSS$

3J
IYOU CAN RUN IT ON A DATA GENERAL COMPUTER.

4)
1K

#T

P

PY OR R
#T

FU
H

If you completed this Lab Activity successfully, continue to the Module 10 Test. If you
had any difficulty, review the material and try again before continuing.

10-38

The SPEED Editor

Module 10

Test

Directions: List in order the eight steps involved in editing with SPEED.

1.

2
3
4
5.
6
7
8

Directions: Fill in the blanks.

8.

9.

10.

11.
12.
13.

14.

15.

16.

17.

The FR command is used to a file for
The S command will for a particular string of text.
To move the Character Pointer to the beginning of the buffer, use the
command.
A form of the command is used to display text.
The I command is used to text.
To open a file for both input and output, the command

can be used. .

To close a file that was opened for both input and output, the
command must be used.

The two commands that can be used to read from the input file into the buffer are
and

To write text from the buffer into a file, the or
command can be used.

The command used to substitute one string of text for another is

Now check your answers to the Module 10 Test in Appendix A. If you have answered all
the questions correctly, continue to Module 11. Otherwise, go back and review the
material in Module 10 and take the Module 10 Test again.

This concludes Module 10.

Module 11

Program Development Cycle

Introduction

This module is concerned with the steps involved in the development of your application
programs. First, you will look at the program development cycle in a general way, and
then you will see how to develop Assembly Language, FORTRAN, COBOL, and
BASIC programs.

Module Objectives

Upon successful completion of this module, you should be able to:
1. Identify the steps involved in program development.

2. Identify the meaning of the following terms:
Translator
Compiler
Assembler
Interpreter

3. Write the CLI command line that assembles (or compiles) an Assembly Language
(or FORTRAN or COBOL) program.

4. Write the CLI command line that creates an executable file from an object file.
5. Write the CLI command line that executes an application program.

6. If you are a BASIC programmer, show the commands to execute the BASIC
interpreter, save an application program on disc, read it back into main memory,
and execute it.

11-2 Program Development Cycle

Resources

To complete this module, you will need:

e Module 11 audiotape.
e Module 11 of your Student Guide.
¢ Audiotape playback unit.

Module Outline

Module 11 discusses the following topics:

1. Program development cycle
a. Development steps
b. Translation phase
c. Loading phase

2. Development examples
a. BASIC programming
b. Assembly Language programming
c. FORTRAN programming
d. COBOL programming

Now start the Module 11 audiotape. As you listen, follow along in Module 11 of your
Student Guide.

Program Development Cycle

11-3

\

DEFINE THE PROBLEM

Y

DETERMINE THE SOLUTION

!

USE A PROGRAMMING LANGUAGE
TO CODE THE SOLUTION

8

3

CONVERSATIONAL
LANGUAGES

Y

ENTER THE SOURCE CODE
INTO THE COMPUTER SYSTEM

!

CORRECT
ERRORS

USE A TRANSLATOR TO
CONVERT THE CODE
INTO MACHINE LANGUAGE

SYNTAX ERRORS

Y

LINK SUPPORT MODULES
AND ASSIGN MEMORY
LOCATIONS

Y

EXECUTE, TEST, AND VALIDATE
THE PROGRAM (DEBUG)

LOGICAL ERRORS

(RUN-TIME ERRORS)

/

MAINTAIN AND
UPDATE

4

—

USE AN
INTERPRETER]

CS-01740

DOCUMENTATION

Figure 11.1 The Program Development Cycle

At Step 4 in Figure 11.1, use a text editor.
At Step S, use a compiler or an assembler.
At Step 6, use the LINK or BIND utilities.

11-4 Program Development Cycle

CONVERSATIONAL

. MOST LANGUAGES | LANGUAGE
4
ENTER CODE 4 EDITOR I
|
SED IR [P — I
|
HIGH LEVEL ASSEMBLY |
LANGUAGE LANGUAGE |
SOURCE CODE SOURCE CODE :
| |
|
COMPILER |
l |
5 : ;5_
TRANSLATE LISTING OBJECT EQUIVALENT HY
CODE w CODE ASSEMBLY i c
LANGUAGE e
CODE | =
| Z
{ y
|
ASSEMBLER |
|
|
OBJECT LisTing |
CODE |
“ 1 l
[] I
6 |
LINK CODE < LINK OR BIND o
I
7 l
EXECUTE + EXECUTABLE

CODE

CS-01741

Figure 11.2 Types of Translators

Program Development Cycle

11-5

CS-01742

Y

MAKE
CORRECTIONS

|

SOURCE CODE

(TEXT FILE)
]
SYNTAX TRANSLATOR
ERROR {SYNTAX CHECK)
NO
SYNTAX
ERRORS
Y y
LIST FILE OBJECT CODE

(ERROR REPORT)

(FILENAME.OB)

Figure 11.3 Syntax Errors and Corrections

11-6

Program Development Cycle

\

DEFINE THE PROBLEM

/

DETERMINE THE SOLUTION

!

USE A PROGRAMMING LANGUAGE
TO CODE THE SOLUTION

1

3

CONVERSATIONAL
LANGUAGES

Y

ENTER THE SOURCE CODE
INTO THE COMPUTER SYSTEM

\

CORRECT
ERRORS

USE A TRANSLATOR TO
CONVERT THE CODE
INTO MACHINE LANGUAGE

SYNTAX ERRORS

\

LINK SUPPORT MODULES
AND ASSIGN MEMORY
LOCATIONS

A\

EXECUTE, TEST, AND VALIDATE
THE PROGRAM

(DEBUG)

LOGICAL ERRORS

(RUN-TIME ERRORS)

/

MAINTAIN AND
UPDATE

 —

USE AN
INTERPRETER

CS-01740

DOCUMENTATION

Figure 11.4 The Program Development Cycle

Program Development Cycle 11-7

Where Do I Go from Here?

1. Stop the Module 11 audiotape, and do Exercise 11-1 in this Student Guide. If you
have difficulty with any of the questions, go back and review the material and do the
exercise again before continuing.

2. a. If you are a BASIC programmer, read the section titled “BASIC Programming.”

b. If you are an Assembly language programmer (or if you want to be able to
complete the Lab Activity in this module), read the section titled “Assembly
Language Programming.”

c. If you are a COBOL programmer, read the section titled “COBOL Programming.”

d. If you are a FORTRAN programmer, read the section titled “FORTRAN
Programming.”

e. If you program in another language, such as PL/1 or ALGOL, read either
“COBOL Programming” or “FORTRAN Programming.”

3. Do Lab Activity 11-1.
4. Take the Module 11 Test.

Now do Exercise 11-1 on the next page.

11-8 Program Development Cycle

Program Development Cycle 11-9

Exercise 11-1

Directions: Mark the following statements true or false.

1.

A translator accepts source code as input and produces relocatable object
code for output.

The LINK or BIND combines several object modules into a single
executable file.

A library file is a collection of executable, or save, files.

An interpreter, used with BASIC, combines several program development
steps into one.

. Fill in the boxes in Figure 11.5 on the next page, using the choices below.

DEFINE THE PROBLEM

CORRECT ERRORS

USE A PROGRAMMING LANGUAGE TO CODE THE SOLUTION
USE AN INTERPRETER

EXECUTE, TEST, AND VALIDATE THE PROGRAM

USE A TRANSLATOR TO CONVERT THE CODE INTO MACHINE
LANGUAGE

11-10 Program Development Cycle

o

Y

2
DETERMINE THE SOLUTION :
3
CONVERSATIONAL
. LANGUAGES
y
ENTER THE CODE INTO 4
THE COMPUTER SYSTEM
. y i
SYNTAX ERRORS
Y
LINK SUPPORT MODULES 6
AND ASSIGN MEMORY
LOCATIONS
« !
7
LOGICAL ERRORS
(RUN-TIME ERRORS) ,
MAINTAIN AND 8
UPDATE

CS-01743

,,
DOCUMENTATION

Figure 11.5
Check your answers on the next page.

Program Development Cycle

11-11

Exercise 11-1

Answers

1. True
2. True
3. False
4. True

5. See Figure 11.6.

11-12 Program Development Cycle

v h

DEFINE THE PROBLEM

¥

/

DETERMINE THE SOLUTION

!

USE A PROGRAMMING LANGUAGE 3

TO CODE THE SOLUTION CONVERSATIONAL
. LANGUAGES

' +
ENTER THE SOURCE CODE 14
INTO THE COMPUTER SYSTEM

\
USE A TRANSLATOR TO

CONVERT THE CODE y
INTO MACHINE LANGUAGE

SYNTAX ERRORS USE AN
1 INTERPRETER
LINK SUPPORT MODULES

AND ASSIGN MEMORY
LOCATIONS

CORRECT |
ERRORS

DOCUMENTATION

\
EXECUTE, TEST, AND VALIDATE
THE PROGRAM (DEBUG)

LOGICAL ERRORS
(RUN-TIME ERRORS) Y

MAINTAIN AND
UPDATE

l] J

CS-01740

Figure 11.6

If you answered all the questions correctly, continue to the appropriate section of this
module. Otherwise, review the material and do this exercise again before you continue.

Program Development Cycle 11-13

BASIC Programming

This section leads you through a sample session in BASIC. It assumes that you have
some experience with the BASIC language.

To create a BASIC program:
1. Invoke the BASIC interpreter and get into BASIC by typing the CLI command:
XEQ BASIC

2. Write a series of BASIC program statements. BASIC has its own editor and an
interactive compiler that rejects bad syntax as you type each statement.

3. Run the program with the BASIC command:
RUN

4. If the program runs correctly, you’re done! Save the program on disc with the LIST
command. Type BYE to get back to the CLIL

5. If your program contains runtime errors, fix it using erroneous output or BASIC
runtime error messages. Go to Step 3.

Writing BASIC Programs

You write a BASIC program as a series of statements, which you must begin with a
number between 1 and 9999. Each statement includes a BASIC command.

At various points, you can examine the statements in your program with the LIST
command, or tell BASIC to execute the statements with the RUN command. BASIC’s
error messages will help you correct errors; you can correct offending statements by
typing their line numbers, then the new text. When you’re satisfied with a program, save

it on disc with the command LIST “FILENAME”; later, you can read it back into memory
with the command ENTER “FILENAME”. To print it on the line printer, type

LIST “@LPT”. To start work on another program, type NEW, then proceed. To

sign off BASIC and return to the CLI, type BYE.

You can execute a BASIC program only from BASIC; you cannot do it from the CLI.
The BASIC interpreter accepts both upper-case and lower-case characters, and translates
lower-case letters to upper-case.

Example: BASIC Program

The BASIC example in this section is a simple program to calculate home mortgage
payments, taxes, and deductions in a general way, and write its computations to the
console. Figure 11.7 shows a flowchart of the program, and Figure 11.8 shows the
program itself.

You can enter the program using the BASIC interpreter. The BASIC interpreter checks
the syntax of each line as you type it in.

You can examine the lines you've typed by typing LIST. To list a portion of the lines,
type LIST number comma number, where each number is a line number (e.g., LIST
10,100).

11-14 Program Development Cycle

Periodically as you type the program in, and when you’re done, type LIST
“MORTGAGE.BA” to write the program to disc; you can also get a hard-copy listing
by typing LIST, or LIST “@LPT” if you have a line printer.

Examine the flowchart (Figure 11.7) and program (Figure 11.8) before proceeding to
the next section.

Program Development Cycle

11-16

CS-00999

< START ’

V

GET AMOUNT, RATE,
TIME, LOCAL TAXES

!

FIGURE MONTHLY PAYMENT
amount x i x (1 +iM)
1+ jyn-1
FIGURE TAXES

!

PRINT MONTHLY
PAYMENT, TAXES

FIGURE

NO

DEDUCTIONS?

GET TAX
BRACKET

PRINT FULL
SCHEDULE?

FIGURE AND PRINT AVERAGE
MO TOTAL WITH DEDUCTIONS
FOR 2 YEARS

FIGURE AVERAGE MO TOTAL
WITH DEDUCTIONS FOR 2 YEARS.

PRINT SUMMARY

REPEAT?

Figure 11.7 MORTGAGE Program Flowchart

11-16 Program Development Cycle

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

CS-01744

REM PROGRAM MORTGAGE.BA, COMPUTES MORTGAGE PAYMENTS, HAS TAX SUBROUTINE.
PRINT "<12> I CALCULATE MORTGAGE PAYMENTS, INTEREST, AND TAXES."

PRINT "TYPE AMOUNT OF PRINCIPAL, INTEREST RATE IN WHOLE NUMBERS,"

PRINT "MORTGAGE LIFE IN YEARS, AND ANNUAL PROPERTY TAX BILL FOR HOUSE."
PRINT "SEPARATE ENTRIES WITH A COMMA; FOR EXAMPLE 40000,10.5,25,2000."
PRINT

PRINT " AMOUNT? RATE? YEARS? TAXES?"

INPUT " 2 ",A,R1,

REM GET MONTHLY RATE R (41/12), MAKE INTO FRACTION AS R1 WAS HHOLE NUMBER
LET R=R1/1200

REM GET NUMBER OF MONTHS M FOR LOAN,

LET M=12%Y

REM COMPUTE MONTHLY PAYMENT.

LET P=A¥*R¥(14R)"M/((1+R)"M=1)

REM sDEFINE FORMAT F$ THAT ROUNDS NUMBERS TO NEAREST WHOLE CENT.

LET F$="mcuuaa i

REM PRINT TOTALS AND GIVE OPTION FOR TAX SUBROUTINE.

PRINT "MONTHLY PAYMENT: . TAXES: HIDEOUS TOTAL:"

PRINT USING F$,P," ",T," ",P+T

PRINT

PRINT "WANT TO COMPUTE THE TRUE COST AFTER U.S. TAX DEDUCTIONS ON THE"

PRINT "INTEREST AND TAXES? YOU MUST ITEMIZE TO QUALIFY."
INPUT "ANSWER Y (YES) OR N (NO). ",
REM ¢ SPECIFIES STRING INPUT (E, G."Y") INSTEAD OF NUMERIC.
IF Q$z="Y" THEN GOSUB 1000
PRINT
INPUT "TYPE Y (YES) TO RUN PROGRAM AGAIN, ANYTHING ELSE TO STOP, ",Q$
IF Q$z"Y" THEN GOTO 0060
STOP
REM TAX DEDUCTION COMPUTATION SUBROUTINE.
INPUT "WHAT IS YOUR TAX BRACKET, IN WHOLE NUMBERS? ", B1
LET B=B1/100
PRINT
PRINT "SHOULD I LIST PAYMENTS FOR THE FIRST TWO YEARS? I HAVE"
INPUT "TO FIGURE THE INTEREST ANYWAY. ANSWER Y (YES) OR N (NO). ",Q$
REM SET UP VARIABLES A1 (PRINCIPAL PD PER MONTH) AND I1 (FOR TOTAL INTEREST)."
LET A1=A
LET I1=0
IF Q$<>"Y" THEN GOTO 1110
PRINT ¥ MONTH PRIN. INT. INT. TOTAL"
REM FOR-NEXT LOOP COMPUTES (OPTIONALLY LISTS) FIGURES BY MONTH AND TOTALS.
FOR J=1 TO 24
LET P1=A1*R/((Re1)"M=1)
LET I1=I1+(P-P1)
LET A1zA1-P1
IF Q$<>"Y" THEN GOTO 1180
PRINT USING F$,J,P1,P-P1,I1
NEXT J
PRINT
REM GET DEDUCTIONS D FOR 1 YEAR, T(AXES) + I1/2 (HALF OF 2 YRS. INTEREST)
LET D=T+I1/2
PRINT "ANNUAL MORTGAGE-RELATED DEDUCTIONS ARE:"
PRINT USING F$,D
PRINT "BUT I MUST SUBTRACT THE $3200 STANDARD (0 BRACKET) DEDUCTION®
PRINT "BUILT INTO THE TAX TABLES. THE TRUE MONTHLY COST IS:"
LET D1:=D-3200
REM GET REAL MO. COST. (TOTAL MO. PAY = P+T12) - ((BRKT * ADJ. DEDS)/12)
LET C=(P+T/12)-(B¥D1/12)
PRINT USING F$,C

PRINT " #EEESUMMARY EESn
PRINT " LIFE: AMOUNT: RATE: CASH PAY: BRKT: TRUE COST:"
PRINT USING F$,Y,A,R1,P+T/12,B1,C

RETURN

Figure 11.8 MORTGAGE Program with Errors

Program Development Cycle

11-17

Running the BASIC Program

To run the program, get into BASIC (if you’re not already there), and type:

NEW

ENTER “MORTGAGE.BA” (or whatever name you gave it.)

RUN

I CALCULATE MORTGAGE PAYMENTS,
INTEREST, AND TAXES.

TYPE AMOUNT OF PRINCIPAL, INTEREST RATE
IN WHOLE NUMBERS.

MORTGAGE LIFE IN YEARS, AND ANNUAL
PROPERTY TAX BILL FOR HOUSE.

SEPARATE ENTRIES WITH A COMMA; FOR
EXAMPLE 400000, 10.5,25,2000.

AMOUNT? RATE? YEARS? TAXES?
)

Respond with some plausible figures:
40000,10.5,25,2000
The program responds:

MONTHLY PAYMENT : TAXES: HIDEOUS TOTAL:
377.67 2000.00 2377.67

WANT TO COMPUTE THE TRUE COST...

...ITEMIZE TO QUALIFY

ANSWER Y (YES) OR N (NO).

This seems a little high - over $2,000 per month. We forgot to convert the yearly tax
figure to months. (Depending on the precision generated on your BASIC system, your
answers may differ slightly.) It would be meaningless to proceed, so type:

N

TYPE Y (YES) TO RUN PROGRAM AGAIN.
ANYTHING ELSE TO STOP.
STOP AT 300

The problem is in line 200, and you can fix it by dividing the tax variable, T, by 12.

Replace the existing line 200 by typing:

200 PRINT USING F$,P,[] [["n,T/12m“{]”,P+T/12

and run it again:

RUN
T CALCULATE...I

AMOUNT? RATE? YEARS? TAXES?
40000,10.5,25,2000

MONTHLY PAYMENT: TAXES: HIDEOUS TOTAL:

377.67 166.67 544.34
WANT TO COMPUTE. ..
ANSMER Y (YES) OR N (NO).

11-18

Program Development Cycle

These figures are more reasonable, so you can proceed with the program:
Y
WHAT IS YOUR TAX BRACKET, IN WHOLE NUMBER?

The tax bracket issue is explained later in this section. For now, try 25, a typical bracket:
25

SHOULD I LIST PAYMENTS FOR ...
...ANSWER Y (YES) OR N (N0).Y

MONTH PRIN. INT. INT. TOTAL
1.00 27.67 350.00 350.00
2.00 27.65 350.02 700.02
3.00 27.64 350.04 1050.06
4.00 27.62 350.06 1400. 11

MORTGAGE-RELATED DEDUCTIONS ARE:
6202.63

BUT I MUST SUBTRACT THE $3200...
... TRUE MONTHLY COST IS:

481.79

****sumARY kkkkk
LIFE: AMOUNT: RATE: CASH PAY: BRKT: TRUE
COST:
25.00 40000.00 10.50 544.34 25.00 81.79
TYPE Y (YES) TO RUN PROGRAM AGAIN. ..

It works! At least it appears to work. (Clearly, if the TRUE PAY figure exceeds the
CASH PAY figure, it may not pay you to itemize.) Let’s examine the interest schedule
again though, because the progam bases its deductible figure on the last value of
variable I1 in this schedule.

Unfortunately, there is a problem in this schedule - the amount of interest paid each
month increases while it should decrease. This must be wrong, and being wrong, it voids
the entire deduction figure. Looking over the FOR-NEXT loop that computes the
monthly interest, note that we forgot to decrement the month indicator, N, for each
circuit through the FOR-NEXT loop. You can fix this easily. First, stop the program:

STOP AT 300

Having incremented line numbers by 10, you can easily insert a new statement:

11SS LET M = M-1

Program Development Cycle 11-19

Now RUN it again, giving the same figures (40000, 10.5, 25, 20, and 2000) and tax
bracket (25), to compare the results. The monthly schedule now says:

MONTH PRIN. INT. INT. TOTAL
1.00 27.67 350.00 350.00
2.00 27.92 349.76 699.76

3.00 28.16 349.561 1049.27
4.00 28.41 349.27 1398.54

MORTGAGE-RELATED DEDUCTIONS ARE:
6164.34

BUT I MUST SUBTRACT. ..

... TRUE MONTHLY COST IS:

482.58

*****SMARY*****
LIFE: AMOUNT: RATE: CASH PAY: BRKT: TRUE
COST:
25.00 40000.00 10.50 544.34 25.00 482.58
TYPE Y (YES) TO RUN PROGRAM AGAIN. ..

Eureka! The interest is now declining, and the program works correctly. (The difference
may not seem significant here, but if the FOR-NEXT loop covered 60 months instead of
24 (i.e., J = 1 to 60), it would be immense.)

You've fixed the program, so you can write it to disc under its original name; this
overwrites the old, erroneous version:

LIST “MORTGAGE.BA”

You can also print it (LIST “@LPT”) if you have a line printer, or type it (LIST). To learn
BASIC and return to the CLI, type:

BYE

All programs you write via the BASIC interpreter reside in the BASIC directory; the
interpreter automatically goes to this directory when you invoke it.

Itemized Deductions and Tax Bracket

For simplicity, this sample BASIC program assumes you are married, and, when you
acquire this mortgage, you will start itemizing deductions instead of taking the standard
deduction. When you itemize, the IRS allows you to deduct only the itemized amount
over the standard deduction ($3200 if married and filing jointly, $2200 if single). The
standard deduction is already figured into the tax tables. This is why line 420 of the
program subtracts the standard deduction from the mortgage-related deductions. If you
are, in fact, moving to itemized deductions, you can deduct much more than mortgage-
related expenses (e.g., medical expenses, casualty losses), but the program doesn’t deal
with these. It figures the TRUE COST amount as if you were deducting only the
mortgage-related amounts.

11-20 Program Development Cycle

Thus, if the mortgage moves you from the standard deduction to itemized deductions,
your real cost per month will be less than the TRUE COST figure. If this is true for you,
you can modify the program to compute the TRUE figure more accurately. The critical
figure is the “3200” in line 1260. Your program statements should get all mortgage-
unrelated deductions (medical, contributions, casualty losses, etc.) and put them in a
variable; let’s say Q. Then it should add Q to D in line 1260; e.g., LET D1 =D + Q =
3200.

In any case, if you are single, change the 3200 in line 1260 to 2200; e.g.,
LET D1 = D - 2200.

Program Development Cycle 11-21

FORTRAN Programming

This section leads you through a sample session in FORTRAN. It assumes that you have
some experience with the FORTRAN programming language.

Follow these steps to run a FORTRAN program:

1. Create and edit the source code using a text editor, for example the SPEED text
editor used in Module 10.

2. Compile the source file with the CLI command:
FORT4 FILENAME (AOS only)
or
FORTS5 (depending on your compiler.)
3. Correct any compilation errors by returning to Step 1, if necessary.
4. Link or bind the object file:
For AOS (FORTRAN IV): XEQ BIND FILENAME,[SUBROUTINE NAME...,FORT.LB
For FORTRAN 5 (AOS or AOS/VS): FSLD FILENAME
5. Test the program:
XEQ FILENAME

6. If the program is correct, you are finished. If not, find the errors and go to Step 1 to
make corrections.

7. Pat yourself on the back, you are finished!

Writing the FORTRAN Source Program

The example in this section is a FORTRAN program to calculate mortgage payments.
It produces a month by month schedule of principal and interest. It does this using only
simple arithmetic operations and calls no subroutines. The program uses two formulas

that you do not need to understand mathematically.

The program reads input from the console and writes the results back to your console.

Review the flowchart (Figure 11.9) and program (Figures 11.10 and 11.11) before
proceeding to the next section.

11-22 Program Development Cycle

‘ START ’

READ PRINCIPAL
RATE, YEARS,
SUMMARY
INDICATOR

CALCULATE PAYMENT:

i(1+i)")

prin v +am -1

WRITE MONTHLY
PAYMENT

FULL
SCHEDULE
?

NO

YES

CS-01745

CALCULATE
PRIN PAYMENT:

b (=)

WRITE NUMBER, INT,
PRIN, AND INT PAID

TO DATE
NO
YES
40
YES
NO

Figure 11.9 MORTGAGE.FR Program Flowchart

Program Development Cycle

11-23

[¢]

o o O

REAL I, INT, ITD, LB

5 WRITE (10) " ENTER PRINCIPAL, RATE, YEARS,"

WRITE (10) " AND O FOR SUMMARY OR 1 FOR"

WRITE (10) " FULL SCHEDULE. SEPARATE EACH"

WRITE (10) " PARAMETER WITH A COMMA."

WRITE (10) " TERMINATE INPUT WITH A NEW LINE."

READ (11) P, R, L, IFULL

CHANGE YEARLY RATE (R) TO MONTHLY RATE (I)

I = R/12.
CHANGE YEARS (L) TO MONTHS (N)
N = L¥*12

CALCULATE MONTHLY PAYMENT (PAY)
PAY = P®I¥(14+I)%¥N/((1+1)%*N-1)
WRITE (12,110) P, R, L

110 FORMAT (1H1,"PRINCIPAL = $",F9.2,/," INTEREST RATE =",

-F7.4,/," LOAN LIFE IS",I4," YEARS",/,/)
WRITE (12,120) PAY
120 FORMAT (1HO,"MONTHLY PAYMENT = $",F10.2)
IF (IFULL .LE.0) GO TO 40

INITIAL LOAN BALANCE (LB) EQUALS PRINCIPAL

LB = P

CREATE COUNT (NN) FOR USE IN OUTPUTTING SCHEDULE

NN = N
ITD = O.
WRITE (12,130)

130 FORMAT (1HO," NUM",7X,"INTEREST",S5X,"PRIN.PAY PRIN."

- BAL",6X,"INTEREST PAID TO DATE",/)
DO 30 NP=1,NN
CALCULATE PRINCIPAL PORTION (PN)
PN = LB®I/((I+1)%*N-1)
N = N-1
CALCULATE INTEREST PORTION (INT)
INT = PAY-PN
UPDATE LOAD BALANCE
LB = LB-PN
UPDATE INTEREST PAID TO DATE
ITD = ITD+INT
WRITE (12,140) NP, INT, PN, LB, ITD
140 FORMAT (1HO,I3,7X,"$",F9.2," §$",F9.2,"
-8X,"$",F9.2)
30 CONTINUE
40 WRITE (10) " TYPE 1 TO REPEAT, 0 TO STOP
READ (11) IR
IF (IR .GT. 0) GO TO 5
END

$",F9.2,

CS5-01746

Figure 11.10 MORTGAGE Program (Initial Version with Errors)

Compiling the Program

Now that you have written and entered the program into a file, it is time to compile the
program. The command to compile the program is:

FORT4 MORTGAGE (For FORTRAN 1V)
F5 MORTGAGE (For FORTRAN 5)

When you look at the output of the compilation, you will see that there were a few

errors. You will see the error code and an associated line number where the error

occurred. The error may have actually occurred one or two lines before the point where
the compiler detected it. Also, one error may generate more than one error message.

11-24 Program Development Cycle

Refer to the appropriate reference manual, AOS or AOS/VS, for more information
about compilation errors.

Figure 11.11 lists the corrected version of the program.

When these errors are corrected, you can compile the program again and then proceed to
the next step.

INTIS A

REAL IZ II;ITEREST, ITD, LB PREDEFINED
5 WRITE (10) " ENTER PRINCIPAL, RATE, YEARS,"

WRITE (10) ™ AND O FOR SUMMARY OR 1 FOR" FUNCTION

WRITE (10) " FULL SCHEDULE. SEPARATE EACH"

WRITE (10) " PARAMETER WITH A COMMA."

WRITE (10) " TERMINATE INPUT WITH A NEW LINE."

READ (11) P, R, L, IFULL

C CHANGE YEARLY RATE (R) TO MONTHLY RATE (I)
I = R/12.

o CHANGE YEARS (L) TO MONTHS (N)
N=L#12

C CALCULATE MONTHLY PAYMENT (PAY)

PAY = P¥I%¥(14+I)%¥N/((141)%%N=1)
WRITE (12,110),P, R, L
110 FORMAT (1H1,"PRINCIPAL = $",F9.2,/," INTEREST RATE =",
-F7.4,/," LOAN LIFE IS",I4," YEARS",/,/)
"WRITE (12,120) PAY
120 FORMAT (1HO,"MONTHLY PAYMENT =$",F10.2)
IF (IFULL .LE. 0) GO TO 40

c INITIAL LOAN BALANCE (LB) EQUALS PRINCIPAL
LB = P

C CREATE COUNT (NN) FOR USE IN OUTPUTTING SCHEDULE
NN = N
ITD = 0.

WRITE (12,130)

130 FORMAT (1HO,"™ NUM",7X,"INTEREST",5X,"PRIN,.PAY PRIN.™
~" BAL",6X,"INTEREST PAID TO DATE",/S
DO 30 NP-1,NN

c CALCULATE PRINCIPAL PORTION (PN)
PN = LB¥*I/((I+1)¥%N-1)
N = N-1
C CALCULATE INTEREST PORTION (INTEREST)=——
INTEREST = PAY-PN €——r
C UPDATE LOAD BALANCE
LB = LB-PN
c UPDATE INTEREST PAID TO DATE

ITD = ITD+INTEREST <€—
WRITE (12,140) NP, INTEREST, PN, LB, ITD
140 FORMAT (1H0,I3,7X,"$",F9.2," $",6F9.2," §$",F9.2,
-8X,"$",F9.2)
30 CONTINUE
40 WRITE (10) " TYPE 1 TO REPEAT, 0 TO STOP "<&

READ (11) IR ADD CLOSING
IF (IR .GT. 0) GO TO 5 QUOTES
END

CS-01747
Figure 11.11 MORTGAGE Program (Corrected Version) (Arrows Point to Correct Lines.)

Binding or Linking the Program

Before you can execute the program, we must bind or link the object program. You can
do that with the following CLI commands:

For AOS (FORTRAN 1V): XEQ BIND MORTGAGE,FORT.LB

Program Development Cycle 11-25

For FORTRAN 5 (AOS or AOS/VS): FSLD MORTGAGE

F5LD MORTGAGE is a macro that invokes the LINK or BIND utilities and includes
the appropriate libraries.

Executing the Program

We now proceed to the next step, executing MORTGAGE.PR. To execute this or any
other program, simply type the XEQ command with the name of the program and follow
it with a new-line character. Typing XEQ MORTGAGE gives us the following message on
the console:

ENTER PRINCIPAL,RATE, YEARS,

AND O FOR SUMMARY OR 1 FOR

FULL SCHEDULE.SEPARATE EACH
PARAMETER WITH A COMMA.
TERMINATE INPUT WITH A NEW LINE.

We then respond with a request for the summary information (monthly payment only),
given a mortgage of $20,000 at 9% for 25 years.

20000,.09,25,0

Since MORTGAGE writes the summary on the line printer, we won’t see the output
until we terminate the program.

MORTGAGE prompts:

TYPE 1 TO REPEAT, 0 T0 STOP
1

Since we responded with 1, the same initial instructions appear on the console.

This time we repeat the same arguments but ask for a detailed schedule:
20000,.09,25,1

And get the following results.

11-26 Program Development Cycle
PRINCIPAL = $ 20000.00
INTEREST RATE = 0.0900
LOAN LIFE IS 25 YEARS
MONTHLY 'PAYMENT = §$ 167.84
NUM INTEREST PRIN. PAY PRIN. BAL INTEREST PAID TO DATE
1 $ 150.00 $ 17.84 $ 19982.16 $ 150.00
2 $ 149.87 $ 17.98 $ 19964.18 $ 299.87
3 $ 149.73 $ 18.11 $ 19946.07 $ 449.60
4 $ 149.60 $ 18.25 $ 19927.82 $ 599.19
5 $ 149.%6 $ 18.38 $ 19909.43 $ T48.65
6 $ 149.32 $ 18.52 $ 19890.91 $ 897.97
7 $ 149.18 $ 18.66 $ 19872.24 $ 1047.15
8 $ 149,04 $ 18.80 $ 19853.44 $ 1196.20
9 $ 148.90 $ 18.94 $ 19834.50 $ 1345.10
10 $ 148.76 $ 19.08 $ 19815.41 $ 1493.86
1 $ 148.62 $ 19.23 $ 19796.19 $ 1642.47
12 $ 148.47 $ 19.37 $ 19776.82 $ 1790.94
CS-01748

Figure 11.12 Sample of Extended Schedule from MORTGAGE

Program Development Cycle 11-27

COBOL Programming

This section leads you through a sample session in COBOL. It assumes that you have
some experience with the COBOL programming language.

Follow these steps to run a COBOL program:

1.

Create and edit the source code using a text editor, for example the SPEED text
editor used in Module 10.

. Compile the source file with the CLI command:

COBOL FILENAME

. Correct any compilation errors by returning to Step 1, if necessary.

. Link or bind the object file:

For AOS: CBIND FILENAME,[SUBROUTINE NAME...]
For AOS/VS: CLINK FILENAME,[SUBROUTINE NAME...]

. Test the program:

XEQ FILENAME

. If the program is correct, you are finished. If not, find the errors and go to Step 1 to

make corrections.

. Pat yourself on the back; you are finished!

Writing the COBOL Source Program

The example in this section is a COBOL program to calculate mortgage payments. It
produces a month by month schedule of principal and interest. It does this using only
simple arithmetic operations and calls no subroutines. The program uses two formulas
that you do not need to understand mathematically.

The program reads input from the console and writes the results back to your console.

Review the flowchart (Figure 11.13) and program (Figure 11.14) before proceeding to
the next section.

11-28

Program Development Cycle

CS-01745

‘ START ’

READ PRINCIPAL

RATE, YEARS,
SUMMARY
INDICATOR

CALCULATE PAYMENT:

i(1+i)“>
(1 +am-1

prin

WRITE MONTHLY
PAYMENT

FULL
SCHEDULE
?

YES

NO

CALCULATE
PRIN PAYMENT:

i
bal ((1 =j)n-1

WRITE NUMBER, INT,
PRIN, AND INT PAID
TO DATE

g

NO
YES
40
YES R
NO

Figure 11.13 MORTGAGE Program Flowchart

Program Development Cycle

11-29

IDENTIFICATION DIVISION.
PROGRAM-ID. MORTPROG.
AUTHOR. JOE SCHMOE.
DATE-WRITTEN.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTFILE,
DATA DIVISION.
FILE SECTION.
FD OUTFILE, BLOCK C
01 OUTREC.

02 OUT-PAYMT-NUM

02 FILLER

02 OUT-MON-INT

02 FILLER

02 OUT-MON-PRIN

02 FILLER

02 OUT-BALANCE

02 FILLER

02 OUT-INT-TO-DA

02 FILLER

WORKING-STORAGE SECTION.
01 CRT-INPUTS.

02 PRINCIPAL

02 PERCENT

02 YEARS

02 FUNCTION

02 REPEAT-FLAG

01 TEMPS.
02 MONTHLY-INT-R
02 MONTHS
02 MONTHS-LEFT
02 MONTHLY-PAYMT
02 LOAN-BAL
02 INT-TO-DATE
02 PAYMT-NUM
02 INT-PAYMT
02 PRIN-PAYMT

01 SUMMARY-LINE1.
02 FILLER
02 SUMMARY-PRIN,
02 FILLER

01 SUMMARY-LINEZ.
02 FILLER
02 SUMMARY-RATE,
02 FILLER

01 SUMMARY-LINE3.
02 FILLER
02 SUMMARY-YEARS
02 FILLER
02 FILLER

01 SUMMARY-LINEY4,
02 FILLER
02 SUMMARY-PAYMT

CS-01749

6 MARCH 1982

ECLIPSE.
ECLIPSE.

ASSIGN TO PRINTER.

ONTAINS 512 CHARCTERS.

PIC Z7Z9.
PIC X(6).
PIC $(4)9.99.
PIC X(3).
PIC $(6)9.99.
PIC X(3).
PIC $(6)9.99.
PIC X(8).

TE PIC $(6)9.99.
PIC X(10).

PIC 9(6)V99.
PIC 99V99.
PIC 99.

PIC 9.

PIC 9.

ATE USAGE COMP-1.
PIC 9(4).
PIC 9(4).
PIC 9(4)V99.
PIC 9¢
PIC 9¢(
PIC 9¢(
PIC 9¢(
PIC 9¢(

)V99.

PIC X(16), VALUE "PRINCIPAL = "
PIC $(6)9.99.
PIC X(50), VALUE SPACES.

PIC X(20), VALUE "INTEREST RATE = "
PIC 9.9(4).
PIC X(50), VALUE SPACES.

PIC X(18), VALUE "LOAN LIFE = "
, PIC Z9.

PIC X(6), VALUE ™ YEARS".

PIC X(50), VALUE SPACES.

PIC X(18), VALUE "MONTHLY PAYMENT = "
, PIC $(4)9.99.

Figure 11.14 MORTGAGE Program

11-30

Program Development Cycle

CS-01750

02 FILLER PIC X(50), VALUE SPACES.

01 HEADLINE PIC X(80),

VALUE " NUM INTEREST PRIN. PAY PRIN.
- " BAL INTEREST PAID TO DATE".
PROCEDURE DIVISION.
INIT. OPEN OUTPUT OUTFILE.
OPERATOR. :
DISPLAY "ENTER PRINCIPAL: $" WITH NO ADVANCING.
ACCEPT PRINCIPAL. -
DISPLAY "INTEREST RATE (%): " WITH NO ADVANCING.
ACCEPT PERCENT.)
COMPUTE MONTHLY-INT-RATE = PERCENT / 100 / 12,
DISPLAY "YEARS TO PAY: " WITH NO ADVANCING.
ACCEPT YEARS. '
COMPUTE MONTHS = YEARS ¥ 12,
DISPLAY "FUNCTION (0=SUMMARY, 1-FULL SCHEDULE): "

WITH NO ADVANCING.
ACCEPT FUNCTION.
COMPUTE MONTHLY-PAYMT ROUNDED =
PRINCIPAL * MONTHLY-INT-RATE ¥
(1 + MONTLY-INT-RATE) ¥#¥ MONTHS /

((1 + MONTHLY-INT-RATE) ¥#¥ MONTHS - 1).
PERFORM SUMMARY-OUTPUT.
IF FUNCTION NOT = O,
PERFORM DETAIL-OUTPUT,
DISPLAY "TYPE 1 TO REPEAT, O TO STOP: "™ WITH NO ADVANCING.
ACCEPT REPEAT-FLAG.
IF REPEAT-FLAG NOT = 0, GO TO OPERATOR.
CLOSE OUTFILE.
STOP RUN.
SUMMARY-OUTPUT.
MOVE PRINCIPAL TO SUMMARY-PRIN.
WRITE OUTREC FROM SUMMARY-LINE1 BEFORE ADVANCING 1.
COMPUTE SUMMARY-RATE = PERCENT / 100.
WRITE OUTREC FROM SUMMARY-LINE2 BEFORE ADVANCING 1.
MOVE YEARS TO SUMMARY-YEARS, .
WRITE OUTREC FROM SUMMARY-LINE3 BEFORE ADVANCING 2.
MOVE MONTHLY-PAYMT TO SUMMARY-PAYMT.
WRITE OUTREC FROM SUMMARY-LINE4 BEFORE ADVANCING 2.
DETAIL-OUTPUT.
MOVE PRINCIPAL TO LOAN-BAL.
MOVE MONTHS TO MONTHS-LEFT.
MOVE 0 TO INT-TO-DATE.
WRITE OUTREC FROM HEADLINE BEFORE ADVANCING 2.
MOVE SPACES TO OUTREC.
PERFORM DO-DETAIL-LINE
VARYING PAYMT-NUM FROM 1 BY 1
UNTIL PAYMT-NUM > MONTHS.
DO-DETAIL-LINE,
COMPUTE PRIN-PAYMT ROUNDED =
LOAN-BAL * MONTHLY-INT-RATE /

* ((7 + MONTHLY-INT-RATE) ¥¥% MONTHS-LEFT - 1).

SUBTRACT 1 FROM MONTHS-LEFT.

COMPUTE INT-PAYMT = MONTHLY-PAYMT - PRIN-PAYMT,
SUBTRACT PRIN-PAYMT FROM LOAN-BAL.

ADD INT-PAYMT TO INT-TO-DATE.

MOVE PAYMT-NUM TO OUT-PAYMT-NUM.

MOVE INT-PAYMT TO OUT-MON-INT.

MOVE PRIN-PAYMT TO OUT-MON-PRIN.

Figure 11.156 MORTGAGE Program (Continued)

Program Development Cycle 11-31

Compiling the Program

Now that you have written and entered the program into a file, it is time to compile the
program. The command to compile the program is:

COBOL MORTGAGE

When you look at the output of the compilation, you will see that there were no errors. If
there were, you would have seen an error code and an associated line number where the
error occurred. The error may have actually occurred one or two lines before the point
where the compiler detected it. Also, one error may generate more than one error
message. Refer to the appropriate reference manual, AOS or AOS/VS, for more
information about compilation errors.

When the errors have been corrected, you can compile the program again and then
proceed to the next step.

Binding or Linking the Program

Before you can execute the program, you must link or bind the object program. You can
do that with the following CLI commands:

For AOS: CBIND MORTGAGE
For AOS/VS: CLINK MORTGAGE

Executing the Program

To execute our COBOL. program, or any other program, simply type the XEQ command
followed by the program name and a new-line character. For our COBOL program,
then, type:

XEQ MORTPROG
This produces the following dialog on the console:

ENTER PRINCIPAL: $25000.00
INTEREST RATE (%): 8.75
YEARS TO PAY: 20

FUNCTION (0= SUMMARY, 1=FULL SCHEDULE):
1

For each of these above three queries, we respond with an appropriate answer. In this
example, we want the raonthly payment table for a $25,000 mortgage at 8.75% for 20
years. We also want the full payment schedule.

Since the MORTPROG program writes the payment table out to the line printer, we
won’t see the output until we terminate the program.

After the MORTPROG program completes its calculations for the principal, rate, and
term that we selected, it outputs the message:

TYPE 1 TO REPEAT, 0 TO STOP

If we type 1, the program will repeat the queries for principal, rate, and years to pay and
function. Then, once again, the program will calculate the table of monthly payments,
but not print it.

11-32 Program Development Cycle
If we type 0, the output file is closed and the program is terminated. Then, any monthly
payment tables which we requested from the MORTPROG program will be output to
the line printer, which we assigned as the output file. We have included a partial listing
of the monthly payment schedule for a $25,000 mortgage at 8.75% for 20 years in Figure
11.16.
e
LOAD LIFE = 20 YEARS
MONTHLY PAYMENT = $220.93
NUM INTEREST PRIN,PAY PRIN. BAL INTEREST PAID TO DATE
1 $182.29 $38.64 $24961.36 $182.29
2 $182.01 $38.92 $24922 44 $364.30
3 $181.73 $39.20 $24883.24 $546.03
4 $181.44 $39.49 $24843.75 $727 .47
5 $181.15 $39.78 $24803.97 $908.62
6 $180.86 $40.07 $24763.90 $1089.48
7 $180.57 $40.36 $2u723.54 $1270.05
8 $180.28 $40.65 $24682.89 $1450.33
9 $179.98 $40.95 $24641.94 $1630.31
10 $179.68 $41.25 $24600.69 $1809.99
11 $179.38 $41.55 $24559.14 $1989.37
12 $179.08 $41.85 $24517.29 $2168.45
CS-01751

Figure 11.16 Sample Payment Schedule

Program Development Cycle 11-33

Assembly Language Programming

This section leads you through a sample session in Assembly Language. It does not
attempt to teach you how to program using the Data General Assembly Language.

Follow these steps to run an Assembly Language program:

1.

Create and edit the source code using a text editor, for example, the SPEED text
editor used in Module 10.

. Assemble the source file with the CLI command:

XEQ MASM FILENAME

. Correct any compilation errors by returning to Step 1, if necessary.

. Link or bind the object file:

For AOS: XEQ BIND FILENAME,[SUBROUTINE NAME...]
For AOS/VS: XEQ LINK FILENAME,[SUBROUTINE NAME ...]

. Test the program:

XEQ FILENAME

. If the program is correct, you are finished. If not, find the errors and go to Step 1 to

make corrections.

. Pat yourself on the back; you are finished!

Writing the Assembly Language Source Program

The example program, entitled WRITE, is a short Assembly Language program that
goes through the standard I/O cycle and uses two devices: the console and the line
printer. This program lets you type one or more lines on your console; then it writes these
on the line printer. When you type a special terminating line (#), the program returns to
the CLI. Figure 11.17 shows you a flowchart of this program’s activity.

Upon any exceptional condition, the program reports the condition by using 7RETURN.
The system displays on the console all lines typed on the console. (The system always
performs this service.) Lines output to the printer are not printed until it is closed,
whereupon the system prints them with a standard header prefix.

Study the flowchart and source listing in Figure 11.17 before continuing to the next
section.

11-34 Program Development Cycle

(START
Y

GET CONSOLE NAME

1/86

;

OPEN CONSOLE, OPEN

LINE PRINTER

1/7-1/10

>

EAD LINE FROM,

CONSOLE

OUTPUT THE
LINE TO THE
PRINTER

CS-01752

1/12

1/14 -1/17

CLOSE THE CONSOLE
AND LINE PRINTER

1/23-1/28

Y

C RETURN

)

1/31

Figure 11.17 WRITE Flowchart

Program Development Cycle

11-36

0001 WRITE AOS ASSEMBLER REV 01.07

09:40:44 01/13/78

.TITL WRITE
02 LENT START
03 .NREL
o4
05 START: ?GTMES GTMFK ;sGET ORIGINAL CLI COMMAND
06 00004'000447 JMP ERTN ;EXCEPTION RETURN
07 ?0PEN CONSOLE ;OPEN CONSOLE FOR READING
08 000111000442 JMP ERTN ; REPORT ERROR
09 ?0PEN LINPT ;OPEN LINE PRINTER FOR WRITING
10 00016'000435 JMP ERTN ;REPORT ERROR
11
12 CONT: ?READ CONSOLE ;READ A RECORD
13 00023'000430 JMP ERTN ;REPORT ERROR
14 000241020434 LDA 0,TERM ;CHECK FOR "{#" TERMINATOR
15 00025'024545 LDA 1,CONSOLE+3 ;GT BYTEPTR FROM CONSOLE PKT
16 000261126710 LDB 1,1 ;GET 13T CHARACTER
17 00027'106415 SUB # 0,1,SNR ;SKIP IF 1ST CHAR. NOT #
18 00030'000407 JMP CLOSE ;TERMINATOR, CLOSE DEVICES.
19 ?WRITE LINPT ;WRITE THE RECORD TO THE PRINTER
20 00035'000416 JMP ERTN ;REPORT ERROR
21 00036'000761 JMP CONT sREAD ANOTHER CONSOLE RECORD
22
23 CLOSE: ?CLOSE CONSOLE ;CLOSE THE CONSOLE
24 000431000410 JMP ERTN ;REPORT THE ERROR
25 ?CLOSE LINPT ;CLOSE THE LINE PRINTER
26 000501000403 JMP ERTN ;REPORT ERROR
27 000511152620 SUBZR 2,2 ;sSET "GOOD RETURN™ FLAG
28 0;0052'000402 JMP .42 ;AND SKIP OVER ERROR FLAG SETTINGS
29
30 000531030404 ERTN: LDA 2,FLAGS ;GET ERROR FLAGS
31 ?RETURN ;sRETURN TO CLI
32 000561000775 JMP ERTN ;TRY TO REPORT ?RETURN ERROR
33
34 00057'150000 FLAGS: 7?RFEC+?RFCF+7RFER ; PRETURN FLAGS
35 00060'000043 TERM: o043 ;ASCII CODE FOR m"#"
36 00061'000074 IBUF: .BLK 60. ;120 CHARS MAXIMUM PER LINE
3; ;s PARAMETER PACKETS
3
39 ; 2GTMES PACKET
40
41 00155'000003 GTMPK: ?GARG
42 001561000001 1 ;sGET THE CONSOLE NAME
43 001571000000 0
4y 00160'000342" CON¥2 ;yBYTE POINTER TO ADRS OF CONSOLE NAME
45
46 ;END OF ?GTMES PACKET
47
48 001611000006 CON: .BLK 6 ;AREA TO RECEIVE CONSOLE NAME
49
50 ;READ PACKET
51
52 001671000000 CONSOLE:O ; PACKET TO OPEN AND READ CONSOLE
53 00170'000022 ?RTDS+7?0FIN ;DATA SENSITIVE READS
54 0;0171'000000 0
55 00172'000142" IBUF*2 ;BYTE POINTER TO READ BUFFER
56 00173'00000 0
57 001741000170 120. ;120 CHAS. MAX IN EACH RECORD
58 00175'000000 0
59 001761000000 0
60 001771000000 0
CS-01753

Figure 11.18 WRITE

11-36 Program Development Cycle

10002 WRITE

01 00200'000342" CON¥*2 ;BYTE POINTER TO CONSOLE NAME
02 00201'177777 -1

03 00202*177777 =1

ok ;END OF ?READ PACKET

05

06 ;START OF 7WRITE PACKET

07

08 00203'000000 LINPT: ©

09 002041000012 ?RTDS+7?0FOT

10 00205'000000 0

11 002061000142 IBUF¥2 ;BYTE POINTER TO RECORD BUFFER
12 00207 '000000 0

}3 385:?:888338 320. ;WRITE 120 RECORDS MAXIMUM
15 00212'000000 0

16 002131000000 0

17 00214'000436" LINP%2

18 00215177777 -1

19 00216177777 -1

20 ;END OF ?WRITE PACKET

21

22 00217'040114 LINP .TXT "@LPT"

23 050124

24 000000

25

26

27 .END START ;START AT THE BEGINNING

#%¥00000 TOTAL ERRORS, 00000 PASS 1 ERRORS

0003 WRITE

CLOSE 000037 1/18 1/23

CON 000161! 1744 1/48 2/01

CONSO 000167" 1/08 1713 1/15 1/24 1/52

CONT 000017 1712 1721

ERTN 000053' 1/06 1/08 1/10 1713 1/20 1/24 1/26
1/30 1/32

FLAGS 000057* 1/30 1/34

GTMPK 000155" 1706 171

IBUF 000061 1/36 1/55 2/11

LINP 00021T7° 2/17 2/22

LINPT 000203! 1710 1/20 1/26 2/08

START 000000' EN 1/02 1705 2/21

TERM 000060 1714 1/35

?CLOS 002277 MC 1/23 1/25

?7GTME 002424 MC 1/05

?0PEN 002254 MC 1/07 1/09

?READ 002322 MC 1/12

?RETU 002447 MC 1/31

?WRIT 002345 MC 1719

?XCAL 000001 1/06 1/08 1710 1/13 1720 1724 1726
1/32

CS-01754
Figure 11.18 WRITE (Continued)
Assembling the Program

Now that you have written and entered the program into a file, it is time to compile the
program. The command to compile the program is:

XEQ MASM WRITE

Program Development Cycle 11-37

When you look at the output of the compilation, there should be no errors. If there are
errors, you will see them flagged with an error indicator following the line number of the
line where the error occurred. For more information on errors and Assembly Language
programming in general, refer to the reference manuals.

Binding or Linking the Program

Before you can execute the program, you must link or bind the object program. You can
do that with the following CLI commands:

For AOS: XEQ BIND WRITE
For AOS/VS: XEQ LINK WRITE

Executing the Program
To try out our program, we type the following:
XEQ WRITE @CON13
After waiting briefly for our process to be created, we then type in a test line:
WRITE RUNS RIGHT,Q.E.D.
and follow this with a terminating line: #

These lines echo on the console, and our program ends and reinvokes the CLI. Our test
line is printed on the line printer.

11-38 Program Development Cycle

Lab Activity 11-1

The Lab Activity for this module is to execute the program in the programming section
that you read. You should complete the steps necessary to enter, compile, correct, link or
bind, and execute the program. Of course, if you are a BASIC programmer, you will not
do all of these steps.

There is no solution listed for this Lab Activity. You will know that you completed it
successfully if the program gives you the correct results. Then, continue to the Module
11 Test on the next page.

—

Program Development Cycle 11-39

Module 11
Test

Directions: Cornplete the following sentences:

1.

10.

11

The utility program that converts a high-level language into machine code is called

a(n)

The utility program that converts Assembly Language into machine code is called

a(n)

The general term for the program that converts a source language into machine
language is

The file that is input to the program in Question 3 is in
format.

A(n) , used with conversational languages, combines several
program development steps into one.

The program that combines several separately translated sections of code, links
them, and produces an executable file is called

The files that are input to the program in Question 6 are in
code.

The CLI command used to test a program called TEST]1 that has been compiled and
linked is

The next command that you must issue after you have successfully compiled a
program called TEST1 is

What command would you use to (choose one unless you program BASIC, then skip
this question) assemble a program, compile a FORTRAN program, compile a
COBOL program named TEST1?

. Fill in the boxes in Figure 11.20 using the information below.

CORRECT ERRORS
EXECUTE, TEST, AND VALIDATE THE PROGRAM

USE A TRANSLATOR TO CONVERT THE CODE INTO MACHINE
LANGUAGE

USE A PROGRAMMING LANGUAGE TO CODE THE SOLUTION
ENTER THE CODE INTO THE COMPUTER SYSTEM

LINK SUPPORT MODULES AND ASSIGN MEMORY LOCATIONS
USE AN INTERPRETER

DEFINE THE PROBLEM

11-40 Program Development Cycle

/

CONVERSATIONAL
LANGUAGES

2
DETERMINE THE SOLUTION
3
L
Y
4
)
9 5
SYNTAX ERRORS
A
6
- |
7
LOGICAL ERRORS
(RUN-TIME ERRORS) Y
8
MAINTAIN AND
UPDATE

—

CS-01755

DOCUMENTATION

Figure 11.20

Now check your answers in Appendix A of your Student Guide. If you did not answer all

the questions correctly, review the material and do the Test again.

This concludes the A0S, AOS/VS User Self-Study Course.

Appendix A

Module Tests Answers

Module 1

2. cC.
3. ¢

Module 2

._.
o

e - oo

© ° N o v s WD
©w o

C.

—
o

. a.

[am—
fam—y

. DATE

—
[\

. TIME

[N
W

. WHO

—
H

. BYE

. Press NEW LINE.
Enter your username, followed by NEW LINE.
Enter your password, followed by NEW LINE.
Wait for the system prompt.

—
wn

A-2 Module Tests Answers

Module 3

 ® Nk wN

NN NN N = e e e ek e et el e e
A W N =~ ©O v 0 N L A W N = O

25.
26.
27.

A4
B5
C3
D2

I (No space after the command.)
\%

\Y%

I (No spaces between switches.)
\'

I

\'

o

< < < <

J

'

. DELETE/V/CXYZ

. TYPE,NEWS_FILE

. RENAME,GOOD_STUFF,OLD_JUNK

. CREATE/L,TERMINAL_DATA

. COPY,PERSONNEL,PAYROLL

. HELP/V DELETE

. COPY/A,MASTER_FILE,FILE1A,FILE1B,FILE2A,FILE2B
. TYPE,USELESS_FILE

DELETE,USELESS_FILE
TYPE,FILELFILE2,TEST1,TEST2
DELETE FILE1.OLD,FILE2.OLD,FILE3.0LD

TYPE,FILE1
TEST, TEST2

Module Tests Answers A-3

Module 4

—

@ or PER

UTIL

UPD

UDD
:UDD:USER1:DIRA:DIRA2:FILEC
:UDD:USER1:DIRB:FILEI
:UDD:USER2:FILED
:UDD:USER3
:UDD:USER3:STUFF:IMPORTS
. PAYROLL+ OR PAYROLL-

. PAYROLL*

. + FORMS

o ® =N 0 kW N

P et ek e e
) W o= O

—
wn

.2+

—
=)

. CREATE/DIRECTORY,SUPER_DIR

—
~J

. CREATE/DIRECTORY/MAXSIZE=10,LITTLE_C.P.D.

—_—
o]

. FILESTATUS

O

. DIRECTORY

N
o

. DIRECTORY,:UTIL

N
—_—

. SEARCHLIST

N
[\

. SEARCHLIST,:UTIL

[\
w

. PATHNAME,FORTRAN.PR
Module 5

1. The superuser privilege allows the user access to any file. It overrides checking of any
file’s ACL. When superuser is in effect, the user’s prompt changes from) to *).

. ACL,FILE_1
. ACL,FILE _1,JOHN,OWARE,MARY,R
. DEFACL

wm B W N

. DEFACL,+,0WARE

A-4

Module Tests Answers "

6. SUPERUSER,ON
7. SUPERUSER,OFF

8.

Module 6

Module 7

Access | Abbre- Nondirectory File Directory File
viation
Execute E User can execute the file. User can use the directory in a path-
name.
Read R User can read (examine) data | User can examine the list of files.
in the file.
Append A N/A User can insert new files in directory.
Write w User can modify the contents | User can insert and delete files and
of the file. change ACLs of files in the directory.
Owner (o] User can change file’'s ACL | User can change directory’s ACL or
or delete files. delete the directory.

Table 5.0 Module 5 Test Answers: ACLs

1. b.

2. Sequence

job

3. QPRINT/NOTIFY,PRINT_1
4. QPLOT/COPIES=5/NOTIFY,PLOT_FILE
5. QDISPLAY/TYPE=PLOT
6. QCANCEL,453

7. QHOLD,29
8. QUNHOLD,90

9. QBATCH,INDEPENDENT_1

e o P

® NSV AW
o o

Module Tests Answers A-5

Module 8

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

a.

c.

PUSH

POP

LEVEL

CURRENT
PROMPT, TIME
LISTFILE,TEMPORARY_OUTPUT
SUPERUSER
SUPERPROCESS,ON
SQUEEZE,ON
CLASS2,IGNORE

. Resident
. Preemptible
. Swappable

. Eligible
. Ineligible
. Blocked

O o o o ®

a.

(In any order:)
Unique ID
Username
Memory
Priority
Privileges
State

Type

Program

A-6 Module Tests Answers

CS-01731

AOS/VS

Figure 8.18

o ® =2

C.

.d.
11.
12.
13.
14.
15.
16.

TREE,14

TERMINATE, 14

SUPERPROCESS,ON

WHO,13
PROCESS/BLOCK/IOC,GOOD_STUFF
PROCESS MODULE_EIGHT_CONCLUSION

Module Tests Answers

A-7

Module 9

Module 10

—

o s W

A S

a.

a.

. CREATE/I QUIZ6_6

JEXECUTE PROG1
JWRITE ALL FINISHED

)

. CREATE/I QUIZ6_7

J!EQUAL %1%,1]
JEXECUTE PROGI1
)!ELSE]
)EXECUTE PROG?2
)IEND]

. SEARCHLIST [!'SEARCHLIST]:UTIL
. CREATE/I MAC1.CLI

)MAC2 [[EXPLODE['TIME]]
)

CREATE/I MAC2.CLI
JWRITE % 7% %8%

)

Invoke SPEED.
Open files for input.

Open files for output.

Read a portion of the file into the buffer.

Insert or modify text.
Write buffer to output.
Close files.

Exit SPEED.

Open, input

10. Search

11. L

12.T

A-8 Module Tests Answers

Module 11

13.
14.
15.
16.
17.
18.

o

$ ®° N kWD

10.

Insert
FO
FU

Y, A
P,E
C

Compiler
Assembler
Translator

Text or source code
Interpreter

Link or bind
Object code

XEQ TESTI

For AOS: XEQ BIND TEST1
For AOS/VS: XEQ LINK TEST1 or FS5LD TEST1 (FORTRANS)

For COBOL.:

For AOS: CBIND TEST1
For AOS/VS: CLINK TEST1

For COBOL: COBOL TEST1
For FORTRAN: FORT4 TEST1 or F5 TEST1
For ASSEMBLER: XEQ MASM TEST1

Module Tests Answers

A-9

11.

Y

DEFINE THE PROBLEM

y

DETERMINE THE SOLUTION

!

USE A PROGRAMMING LANGUAGE
TO CODE THE SOLUTION

L

3

CONVERSATIONAL
LANGUAGES

Y

ENTER THE SOURCE CODE
INTO THE COMPUTER SYSTEM

!

CORRECT
ERRORS

USE A TRANSLATOR TO
CONVERT THE CODE
INTO MACHINE LANGUAGE

SYNTAX ERRORS

\

LINK SUPPORT MODULES
AND ASSIGN MEMORY
LOCATIONS

A

\

EXECUTE, TEST, AND VALIDATE
THE PROGRAM (DEBUG)

LOGICAL ERRORS

(RUN-TIME ERRORS)]

MAINTAIN AND
UPDATE

Remmmm—

USE AN
INTERPRETER

]

CS-01740

DOCUMENTATION

Figure 11.21

Appendix B
AQOS, AOS/VS Reference Manuals

Advanced Operating System (AOS)

069-000016 Introduction to the Advanced Operating System

069-000018 Learning to Use Your Advanced Operating System

069-000020 AOS Software Documentation Guide

069-000030 ECLIPSE ® Data Systems: Software for Commercial Applications
093-000120 AOS Programmer’s Manual

093-000122 Command Line Interpreter User’s Manual (A0S, AOS/VS)
093-000150 AOS Console User’s Handbook

093-000190 AOS Binder User’s Manual

093-000191 AOS Shared Library Builder User’s Manual

093-000192 AOS Macroasssembler Reference Manual

093-000193 AOS System Manager’s Guide

093-000194 AOS Operator’s Guide

093-000195 AOS Debugger and File Editor User’s Manual

093-000197 SPEED Text Editor User’s Manual (A0S, AOS/VS)

093-000198 AOS Library File Editor User’s Manual

093-000217 How to Load and Generate Your AOS System

093-000218 AOS LINEDIT Text Editor User’s Manual

093-000230 Plastic ring binder for A0S Console User’s Handbook

093-000254 AOS Link User’s Manual

093-000259 Running AOS on Your ECLIPSE® MV/8000 Computer (MV/8000)

Advanced Operating System/Virtual Storage (AOS/VS)

093-000122 Command Line Interpreter User’s Manual (A0S,AOS/VS)
093-000197 SPEED Text Editor User’'s Manual (AOS,AOS/VS)
093-000241 AOS/VS Programmer’s Manual

093-000242 AOS/VS Macroassembler Manual

093-000243 Managing AOS/VS

093-000244 AOS/VS Operator’s Guide

093-000245 AOS/VS Link and File Editor User’s Manual

093-000246 AOS/VS Debugger User’s Manual

093-000247 AOS/VS System Management binder for 93-122, -243, -244
093-000248 AOS/VS SED Text Editor (6053) template for DASHER®D2

B-2 AOS, AOS/VS Reference Manuals

093-000249 AOS/VS SED Text Editor User’s Manual
093-000256 AOS/VS SED Text Editor (6108/6109) template for
DASHER® D200

093-000276 AOS/VS Debug/FED (6052/6053) template for DASHER® D2
093-000278 AOS/VS Debug/FED (6108/6109) template for DASHER® D200
FORTRAN IV (AOS, RDOS, DOS, RTOS, SOS, *CB)

069-000029 Data General’s FORTRANs: A Technical Comparison
093-000053 FORTRAN 1V User’s Manual

093-000068 FORTRAN IV Runtime Library User’s Manual (NOVA®)
093-000142 FORTRAN IV Runtime Library User’s Manual (ECLIPSE®)
093-000239 . FORTRAN QCALLs Reference Manual (A0S)

FORTRAN IV (AOS, MP/0S)
093-400004 MP/FORTRAN 1V Programmer’s Reference

FORTRAN 5 (AOS, AOS/VS, RDOS)

069-000029 Data General’s FORTRANSs: A Technical Comparison
093-000085 FORTRAN 5 Reference Manual

093-000154 FORTRAN 5 Programmer’s Guide (AOS,AOS/VS)
093-000227 FORTRAN 5 Programmer’s Guide (RDOS)

BASIC (AOS, MP/0S)
093-400005 MP/BASIC Programmer’s Reference

Business BASIC (AOS, AOS/VS, RDOS, DOS)

069-000028 A Guide to Using Business BASIC

093-000226 Business BASIC Directory

093-000228 Business BASIC System Management

093-000212 File/Screen Maintenance 8-key template for DASHER® D2
093-000213 File/Screen Maintenance 3-key template for DASHER® D2
093-000265 Business BASIC 15-key template for DASHER® D200

Commercial BASIC (CB)
Model 3896 includes DOS and Business BASIC manuals.

Model 3897 includes RDOS, RDOS Sort/Merge, and Business BASIC manuals.

Extended BASIC (A0S, AOS/VS, RDOS, DOS, SOS*)

069-000003 basic BASIC (A0S, AOS/VS, RDOS, DOS)
093-000065 Extended BASIC User’s Manual
093-000119 Extended BASIC System Manager’s Guide

ars—

AOS, AOS/VS Reference Manuals

B-3

COBOL (AOS, AOS/VS, RDOS)
093-000180 COBOL Reference Manual (RDOS)
093-000200 COBOL Pocket Reference (RDOS)
093-000223 COBOL Reference Manual (A0S, AOS/VS)

Addendum
The SED Editor

Introduction

The SED Editor Addendum is a self-paced text only module that explains the elementary
features of the SED text editor. Although not all the features of SED are discussed, this
addendum allows you to use enough of the features to develop and edit files for use in
program development. For a more detailed discussion of all the features, refer to your
SED Text Editor User’s Manual.

— Module Objectives

Resources

Upon successful completion of this addendum, you should be able to:
1. List the steps involved in a typical editing session.
2. Use arguments to SED commands in a SED editing session.
3. Use the SED commands that perform the following functions:

a. Add text to a file

b. Modify text in a file

c. Change the line position
d. Locate text in a file

e. Move and duplicate text
f. Delete text

g. Update files

h. Access the CLI

i. Terminate SED.

You only need this addendum; there is no accompanying audiotape.

2 The SED Editor

Module Qutline

The SED Editor Addendum discusses the following topics:

1. SED Overview

Introduction tec SED
Aids for using SED

2. Arguments to SED Commands

Address
Range
Source
Destination
Searchstring

3. SED Commands

Adding Text
APPEND
INSERT

Modifying Text
MODIFY
REPLACE
SUBSTITUTE
CUT
PASTE
SPLIT
JOIN

. Displaying Information
HELP
DISPLAY_STATUS
LIST
VIEW

Locating Text
POSITION
FIND
BACKFIND

Moving and Duplicating Text
MOVE
DUPLICATE

Deleting Text
DELETE
UNDO

Accessing the CLI
DO
CLI

Updating Files
SAVE
BYE

The SED Editor 3

SED Overview

Introduction to SED

SED is a screen-oriented text editor, which allows you to create and modify text files
from your terminal. SED is known as a screen-oriented text editor because it deals with
lines, pages, and screens of text.

SED can be used with most Data General Corporation terminals. On a DASHER®DI
terminal, however, it can be used only with certain limitations. The DASHER D1
terminal is uppercase only and does not have all the special function keys that SED
allows.

Figure 1 illustrates an overview of a typical SED editing session. The first step is to
execute the SED utility from your working directory. The second step is to create a new
file or bring in an old file for modifications. The third step is to make the modifications
using SED features. These SED features are explained later in this addendum. The last
step is to update the file and terminate the SED session and return to the CLI.

EXECUTE
SED

!
Y |

CREATE BRING IN
NEW FiLE OLD FILE

| |

l

ADD OR MODIFY FILE
USING SED COMMANDS,
SCREEN EDITING FEATURES,
OR POSITIONING FEATURES

i

TERMINATE THE
SED SESSION

CS-02312

Figure 1 SED Editing Overview

Now let us look at an actual editing session. There are two ways to execute SED. You
can give the CLI command, xeq sed, with or without specifying a file to be edited.

4

The SED Editor

If you give the command, xeq sed, without specifying a file, SED asks for the file. You
must respond with a file pathname. The pathname may specify an existing file or a new
one to be created by the SED utility. The file pathname must follow the CLI naming
conventions. Example 1 shows how to execute SED to edit a file called samplefile
without specifying the file. '

Example 1
) xeq sed
Name of the file to edit: samplefile

If you give the command xeq sed with a filename, SED will search for the file. If the file
exists, the editing session begins. If the file does not exist, then SED will ask if you wish
to create the file. If you answer y or yes, then the file will be created and the SED editing
session begins. If you answer n or no, then you can enter another pathname. Example 2
shows how to execute SED with a filename of a newly created file called samplefile.

Example 2
)xeq sed samplefile
Do you want SAMPLEFILE to be created? y

. When SED is ready to begin the editing session, it displays its prompt, an asterisk (*), at

the top of your screen above a line. You can now use SED commands, screen editing
features, and screen positioning features to add to or modify your file.

There are two modes you may use during a SED editing session: the keyboard input
mode and the command mode. In the keyboard input mode you enter text into the file.
SED displays a cursor to mark where text entries start; this is called the current position.
In the command mode you can issue the SED commands that modify files. The last
command given is displayed next to the SED asterisk prompt and is called the current
command. You start a SED session in the command mode, but will ordinarily move back
and forth between modes several times in a session.

Figure 2 shows the CRT display from a short SED editing session. SED displays two
commands: the current command and the command given prior to the current command.
The current SED command is displayed next to the asterisk above the line. The command
given immediately prior to the current command is shown above the current command.
In Figure 2 the current command is APPEND. The APPEND command allows you to
input text into the file. The command given immediately prior to the APPEND command
is the VIEW command. The VIEW command is explained later. The current position
line and page is shown above the line to the right. Text is entered below the line. SED
will automatically number lines as the text is entered.

To conclude an appending session press the ESCAPE key, <ESC>. Press the ESCAPE
key only after entering a NEW-LINE, <NL>>, at the end of the text; otherwise, the
last line of text will be lost. The SED prompt will return. To terminate the SED session
and return to the CLI type the command, BYE, after the SED prompt.

The SED Editor 5

4)

view

*append page 1 line 1
1 this is the text.

2

Figure 2 Short Editing Session

Example 3 demonstrates how to use SED to create a new file called text with the
message This is the text. in it.

Example 3 }

)xeq sed text Starts SED naming the file text to be edited.

Do you want TEXT to be created? y Creates a new file called text.

*append Allows you to enter text into the file.

This is the text. <NL> Entered text is placed at the current line.

<ESC> Ends APPEND session and returns you to command mode.
*bye Terminates SED session and returns you to the CLI.

)

This section has introduced the SED editor and described a simple editing session.
Answer the questions in Exercise 1 and do Lab Activity 1 before continuing with the rest
of the addendum.

6

The SED Editor

The SED Editor

7

Exercise 1

1.

List the four steps in a typical SED editing session.

a.
b.
C.
d.
2. Match each command with its effect.
a. XEQ SED
b. APPEND
c. BYE
1. Ends SED session.
2. Initiates SED session.
3. Used to enter text.
Directions

Now check your answers with those on the next page.

8 The SED Editor

Exercise 1
Answers
1. a. Execute SED.
b. Create a new file or bring in an old file for editing.

c. Add or modify a file.
d. Terminate the session.

2. l.c

2.a

3.b
Directions :

If you answered all the questions correctly, continue to the next page. Otherwise, review
the material and do this exercise again before you continue.

i

The SED Editor 9

Lab Activity 1

Directions
Follow the instructions below to create a new file called text with the message this is the
text. in it.

1.

Execute SED from your working directory.
Jxeq sed text

Create a new file called text by answering y for yes to SED’s request.
Do you want TEXT to be created? y

The SED screen will appear. The asterisk indicates the location where commands
are displayed. Issue the APPEND command to enter text.
*append

The number 1 will brighten indicating the position of the current line. Text entered
at the keyboard will be placed in the current line. Enter the text, this is the text.,
followed by <NL>. After pressing <<NL>> a bright 2 will appear on the left to
indicate that line 2 is now the current line.

1 this is the text. <NL>

2

Press <ESC> to end APPEND mode. Do not press <<ESC> at the end of a line
of text. Always enter the text first by pressing <<NL>; otherwise, the last line of

text will be lost.
<ESC>

Terminate the SED session by entering the BY E command. You will return to your
working directory and the CLI prompt will appear.

*bye

)

Directions
After you have successfully completed Lab Activity 1, continue to the next page.

10

The SED Editor

Aids for using SED

The SED program contains several features that help you edit text. SED aids include:
special function keys, the SED template, the display function command, cursor and line
control characters, format settings, the HELP command, the SPELL command, and
command abbreviations.

Special Function Keys

Special function keys are found across the top of your keyboard. Each function key can
store one or more commands. You can invoke these commands merely by pressing the
key. Thus, the extra keystrokes used to spell the command are eliminated.

The SED Template

The SED template is a cutout card that fits over the special function keys on the
keyboard. Figure 3 shows the card for the DASHER D200. Predefined functions are
shown in the labeled boxes. The blank boxes can be used for user-defined functions.

w oOWN
LiNES LINES

DASHER™ D200 (6108,610%) ©Daia Lenersl Corporaton, 1981 SED Text Editor 093-000286-01

CS-02311

Figure 3 D200 SED Template

The Display Function Command
You can obtain a listing of all the predefined special function keys and their locations by
issuing the command DISPLAY FUNCTION from the command mode.

Cursor and Line Control Characters

Cursor and line control characters are used to issue screen editing commands that
modify the current line. You execute some screen editing commands by using control
characters. To generate a control character, press and hold the CTRL key and then
press another key. A list of control characters is presented in Table A.

—

The SED Editor 11

Table A Cursor and Line Control Characters

Control What It Does
Character
CTRL-A Moves the cursor to the end of the line. In command mode, repeats the last command issued.
CTRL-B Moves cursor backward to the last letter in each word.
CTRL-E Lets you insert one or more characters before the cursor. Pressing <<NL>> or CTRL-E terminates the
insert mode and displays the edited line.
CTRL-F Moves the cursor forward to the first letter of each word.
CTRL-H Moves the cursor to the beginning of the line.
CTRL-K Erases all characters to the right of the cursor.
CTRL-X — Moves the cursor to the right one character.
CTRL-Y « Moves the cursor to the left one character.
CTRL-U Deletes all the characters in the line.
CTRL] Moves the cursor to the next tab stop; tab stops are in columns 9, 17, 25, 33, 41, 49, 57, 65,
TAB key and 73.
DEL Erases the character to the left of the cursor and closes up the line.
ESC Terminates APPEND, INSERT, MODIFY, or REPLACE modes. If you press <{ESC>> before you

press <<NL>>, you will enter the line with no changes.

Figure 2 shows the usual or default format settings for a SED editing session. Unless
otherwise formatted SED will:

Make the current line bright and all others dim.

Display line numbers before each line of text.

Move the cursor up or down one line in the same column when you press the up arrow
or down arrow keys.

Show 21 lines of text on the screen, 10 lines before and 10 lines after the current line.

Remove any blanks at the end of a line after you press <NL>.

You can find out the present settings for your system by issuing the DISPLAY command
from the command mode. Your SED manual describes how you can change the format
settings using the SET and CLEAR commands.

The HELP command gives you information about all SED commands and vocabulary.
If you type HELP while in the command mode, SED will display a table of commands
and keywords. If you type HELP followed by a command or keyword, SED will display
information about that word. The use of the HELP command is shown in Figure 4.

12 The SED Editor

help
. ; page 1 line 1

L2152] cou“‘"nsi‘*##

ESCAPES ADD TEXT CHANGE TEXT DELETE TEXT LISTINGS POSITIONING

EXECUTE APPEND MODIFY DELETE LIST POSITION
HELP INSERT REPLACE MOVE VIEW FIND
SAVE DUPLICATE SUBSTITUTE JOIN PRINT
UNDO SPLIT

cur

PASTE
EXITING MISC HELP WORDS
ABANDON CLEAR CURSOR.CONTROL ADDRESS
BYE DIRECTORY RANGE SOURCE
CLI DISPLAY SEARCH_STRING ~ DESTINATION
Do SET KEYS SYNTAX

SPELL SNITCHES

Type HELP followed by a command or keyword you want to know about.
\ J

Figure 4 The HELP Command

The SPELL command provides spelling assistance during an editing session. SED lists
words that begin with a string of letters you specify. Figure 5 shows the use of the
SPELL command to determine the spelling of /iaison when only the first three letters
are known.

a ™)

spell 1lia .
* page 1 line 1
1iabilities

11ability

liable

liaise

1iaison

liaisons

liana

liane

liang

liangs

lianoid

liar

liars

l1ias

- No More -

\. J

Figure 5 The SPELL Command

The SED Editor 13

—

Command Abbreviations

SED allows you to abbreviate any command if your abbreviation is unique. For example,
SED will recognize any of the following abbreviations as the APPEND command:

AP
APP
APPE
APPEN

APPEND cannot be abbreviated to “A” however, since there is another SED command,
ABANDON, which begins with A.

Lab Activity 2

Directions
Follow the instructions below to practice using the HELP and SPELL commands and
command abbreviations.

1. Execute SED from your working directory.
)xeq sed text

2. The SED screen will appear with the text you have previously entered in Lab
Activity 1. Figure 6 shows the screen.

r A

view

*append page 1 line 1
1 this is the text.

2

Figure 6 SED Screen

14 The SED Editor

3. Enter the HELP command. SED displays a table of commands and keywords about
which you can get more information. Figure 7 shows the display.

(™\
help
* page 1 line 1

L2i 23] COMMA"DS“*"

ESCAPES ADD TEXT CHANGE TEXT DELETE TEXT LISTINGS POSITIONING

EXECUTE APPEND MODIFY DELETE LIST POSITION
HELP INSERT REPLACE MOVE VIEN FIND
SAVE DUPLICATE SUBSTITUTE JOIN PRINT
UNDO SPLIT

T

PASTE
EXITING MISC HELP WORDS
ABANDON CLEAR CURSOR__CONTROL ADDRESS
BYE DIRECTORY RANGE SOURCE
CLI DISPLAY SEARCH_.STRING DESTINATION
DO SET KEYS SYNTAX

SPELL SWITCHES

Type HELP followed by a command or keyword you want to know about.
(. J

Figure 7 The HELP Display

4. Type help spell. SED displays information on the use of the SPELL command.
Figure 8 shows the use of the HELP command to get information on the command,
SPELL.

()
help spell

* page 1 line 1
SPELL <STRING> .

THE SPELL COMMAND WILL TRY TO OPEN SED.DICTIONARY.
THIS MUST BE A LIST OF WORDS, EACH WORD IN LOWER CASE
FOLLOWED BY A NEW LINE. THIS LIST SHOULD BE SORTED
IN ALPHABETICAL ORDER. SED.DICTIONARY COULD BE A
LINK TO A FILE CONTAINING THE WORD LIST.

GIVEN THIS LIST, THE SPELL COMMAND WILL SEARCH THE
NORD LIST FOR WORDS BEGINNING WITH 'STRING'. 'STRING’
MAY BE UPPER OR LOWER CASE.

\ J

Figure 8 HELP SPELL

The SED Editor 15

5. Determine the spelling of the word abbreviation using only the first three letters of
the word by typing spell abb. Figure 9 shows SED’s response.

-)

spell abb

* page 1 line 1
abbacy
abbasid
abbatial
abbe
abberations
abbess
abbevillian
abbey

abbot

abbott
abbreviate
abbreviated
abbreviates
abbreviating
abbreviation
abbreviations
abbreviator
abby

- No More -

N y

Figure 9 SPELL Abb

6. Demonstrate that SED will allow the use of command abbreviations by typing he
instead of help. SED will recognize he as help and display the HELP screen as in
Figure 7.

7. Try to type in the abbreviation sp for spell. SED will respond with the message:
Command not unique, correct the command:

SED will not accept sp, because it is not a unique abbreviation. There are two
commands SPLIT and SPELL that begin with SP.

8. Terminate the SED session by typing bye. You will return to the CLI.

Directions
After you have successfully completed Lab Activity 2, continue to the next page.

16 The SED Editor

Arguments to SED Commands

Address

Range

SED commands tell the computer what actions to take. Arguments to SED commands
tell the computer what to act on. You can specify page numbers, line numbers,
searchstrings, or pathnames as arguments to certain SED commands. Five categories of
arguments: address, range, source, destination, and searchstring are described below.

Address specifies a particular line or page. It consists of an optional word, PAGE or
LINE, followed by a modifier. If you omit the word PAGE, SED searches for the LINE
within the current page. The modifier can be a number without a plus or minus sign, or
one of the following keywords: CURRENT, PREVIOUS, NEXT, or LAST. If you omit
the number or keyword modifier, SED assumes the current line (or page). Example 4
shows several uses of the address argument with the SED command, POSITION, which
sets the current line according to the specified address.

Example 4

POSITION PAGE 3 Set current line to line 1 of page 3.

POS LINE 47 Set current line to line 47 of current page.
POS PAGE LAST Set current line to line 1 of last page.
POS PAGE NEXT Set current line to line 1 of next page.
POS 2 Set current line to two lines previous.

POS 5 Set current line to line 5 on current page.

Range specifies a contiguous group of lines or pages. You can enter a range in numbers
or with the keywords ALL, REMAINING, TO or FOR. The range argument may be
formatted in the following ways:

ALL [pages]
REMAINING [pages]
address

address [TO] address
address [FOR] address

Example 5 shows several uses of the range argument with the SED command, DELETE,
which removes text from the file.

Example 5
DELETE ALL Delete all lines on the current page.

DELETE REMAINING Delete all lines from the current line to the last line on the
current page.

DELETE 3 Delete line 3.

The SED Editor 17

Source

Destination

DELETE 3 7 Delete lines 3 through 7 in current page.
DELETE 4 FOR 3 Delete lines 4, 5, and 6.

Source specifies a particular place from which to get text. If you specify a pathname, it
must already exist and you must precede it with FROM. If you omit a pathname, SED
uses your keyboard as a default source for text. Example 6 shows uses of the source
argument with the APPEND command.

Example 6

APPEND FROM OTHERFILE Append the entire contents of file OTHERFILE to
the end of the current page.

APPEND Append text typed from the keyboard source to the
end of the current page.

Destination specifies a new location for a block of text. It has two forms:
1. Command range ONTO pathname

Places a block of text onto the file specified by the pathname. If the file does not
exist, SED will create it.

2. Command range (BEFORE or AFTER) address
Places a block of text before or after the specified address.

Example 7 shows the use of the destination argument with the command MOVE, which
moves text within or between files.

Example 7

MOVE 3 10 ONTO FILEA Move lines 3 through 10 into the file, FILEA, creating
the file if it does not exist.

- MOVE 9 BEFORE 5 Move line 9 before line 5 in the current page.

18 The SED Editor

Searchstring

Searchstring specifies a particular word or phrase in the text. You must enclose the
searchstring in quotations marks if it contains blank spaces, symbols other than a dollar
sign or underscore, or if you want to distinguish between uppercase and lowercase in
your search. You can enclose the searchstring in either quotation marks or apostrophes.
Use apostrophes if the searchstring contains quotations marks, and vice versa. Example
8 shows the use of the searchstring argument with the commands FIND and BACKFIND,
which find a text string after and before the current line, respectively.

Example 8
FIND EDITOR Locate the searchstring EDITOR after the current page.
BACKFIND *“this is it” Locate the searchstring “this is it” before the current line.

The SED Editor 19

Exercise 2

1. Match each argument with its use.

1. Address a. Specifies a new location for a block of text.

2. Range b. Specifies a particular line or page.

3. Source c. Specifies a particular word or phrase.

4. Destination d. Specifies a particular place to get text from.
5. Searchstring e. Specifies a contiguous group of lines or pages.

2. What SED command do you issue to get information on the SPELL command
displayed on your terminal?

3. Write the SED command to find the correct spelling of aardvark if you only know
that it begins with AA.

Directions
Check your answers with those on the next page.

20 The SED Editor

Exercise 2
Answers

AW
[I~ T ¢ B«

5.
2. help spell
3. spell aa

Directions
If you answered all the questions correctly, continue to the next page. Otherwise, review

the material and do this exercise again before you continue.

—

The SED Editor 21

SED Commands

SED contains many commands that allow you to easily create and edit text. Table B lists
several SED commands by category. Lab Activity 3 will then take you step-by-step
through an example illustrating the use of each command. Review the table and then try
the lab. Do not try to understand all the commands in the table your first time through.
The lab will give you practice with each command. For further information on SED
commands use the HELP utility or the SED manual.

Table B SED Commands

Command

Description

Adding Text
APPEND [FROM pathname] [range]
INSERT [address] [FROM pathname] [range]

Modifying text
MODIFY [range]
REPLACE [range]

SUBSTITUTE “searchstring” [FOR]
“searchstring” [[IN] range]

CUT address column
PASTE range [OR] address
SPLIT [address]
JOIN [address]
Displaying information
HELP [word]
DISPLAY_STATUS
LIST {range]
VIEW [number]
Locating text
POSITION address
FIND “searchstring” [[IN] range]

BACKFIND “searchstring”

Moving and duplicating text

MOVE [BEFORE address]
[AFTER address])
[ONTO pathname]

DUPLICATE [BEFORE address]
[AFTER address]
[ONTO pathname]

Deleting and restoring text
DELETE [range]
UNDO
Using CLI commands
DO Ci.l-command
CLI

Closing or updating files

Opens a file for editing.

Inserts text before a location in the page. Text comes from the terminal or
another file.

Revises a line or range of text that you retype.
Deletes text and replaces it with new text that you type at the terminal.

Substitutes a word or phrase for another word or phrase throughout a range of
text.

Splits a line into two lines.

Merges a range of lines into a single line.
Sets a page break in the file.

Removes a page break in the file.

Displays information about commands and keywords on the terminal screen.
Displays file status information.

Lists a range of text on the terminal screen.

Lists a range of text surrounding the current line of the terminal screen.

Moves the current line position to an address in the file.

Finds a word or phrase in a range of text beginning at any line on the page and
working forwards.

Finds a word or phrase in a page of text beginning at the line before the current
line and working backwards.

Moves text from one location in the page to another, or onto another file.

Copies text from one location in the page to another, or onto another file.

Removes a range of text from the file.
Restores the most recently deleted text to the file.

Executes a CLI command and then returns to the editing session.

Temporarily suspends editing session, creates a new process, SON OF SED,
and allows you to execute CLI commands.

SAVE Updates a copy of the file, including changes, without concluding the session.
BYE Concludes the editing session and updates the file with the new changes.
Directions

This concludes the text of this addendum. Now try Lab Activity 3 on the next page.

22 The SED Editor

Lab Activity 3

Follow the directions below to create and modify a text file using SED commands. The
figures show the effect of the instructions.

1. Invoke SED from the CLI and create a file called samplefile.
)xeq sed samplefile
and then respond y to the SED prompt.

r T\
SED Rev 1.65.00.00;Input file - SAMPLEFILE
Do you want SAMPLEFILE to be created? Y

Figure 10 Create Samplefile

2. Use the APPEND command to open the file for adding text.
*append

3. SED will display the line number 1. Enter the text as shown in Figure 11.

r’ ™\

view »

*append page 1 line 1

1 this is line 1.

2 this is line 2.

3 this is line 3.

4 this is line 4.

5 this is line §.

Figure 11 Enter Text

4. Press <NL> following the last line of text.

5. End the APPEND session by pressing <ESC>. Do not press <<ESC> however,
until you have pressed <NL> following the last line of text; otherwise, you will
lose the last line of text. If you make a typing mistake before you press <ESC>
you may use the cursor, line control characters and the arrow keys to move the
cursor to the mistake. Then you may type over the mistake, use the DEL key, or
insert text using CTRL-E. If you see a mistake after pressing <ESC>>, reenter the
keyboard input mode by using the APPEND command and then exit again using
the <ESC> key.
<ESC>

The SED Editor 23

6. Add a new line between lines 2 and 3 by using the INSERT command. You must
specify the address where the new text is to be placed. SED will displace the text
from that line until you have finished the insert. Insert the text this is the new line 3.
and then end the insert session by pressing <<ESC>. (Do not forget the <NL>
following the text.)

(I

insert 3

page 1 line 4

this is line 1.
this is line 2.
this is the new line 3.
this is line 3.
this is line 4.
this is line 5.

(=23, RPN S N \C RN i

- J
Figure 12 INSERT Command

7. The INSERT command can also be used to add a specified range of text from
another file. Between lines 3 and 4 add the text from the file, text, which you
created earlier.

4 I

insert 4 from text
page 1 line 5

this is line 1.

this is line 2.

this is the new line 3.
this is the text.

this is line 3.

this is line 4.

this is line §.

N O N e W Ao

(N J

Figure 13 INSERT Text

24

The SED Editor

8. If you want to change text, you may use the MODIFY command followed by the
address of the line to be modified. Use the MODIFY command to change the “4”
in line 6 to a “6.” Note that the MODIFY command places the cursor at the
beginning of the line. To change the 4 you must move the cursor to it and type 6. To

move to the 4 you may use the arrow key or press CTRL-F three times.

(

insert 4 from text
*modify 6

page 1 line 5

this is 1line 1.

this is line 2.

this is the new line 3.
this is the text.

this 1is line 3.

this is line 6.

this is line S.

N A WD

\

N

Figure 14 MODIFY Command

9. Delete line 5 and replace it with the line, this is replacement line 5. using the

REPLACE command.

s

replace 5

page 1 line 6

this is line 1.

this is 1line 2.

this is the new line 3.
this is the text.

this is replacement line 5.
this is line 6.

this 1is line 5.

N W W N e

.

Figure 15 REPLACE Command

The SED Editor 25

10. Capitalize the first letter of each instance of the word, “this,” using the SUBSTI-
TUTE command. The first argument, the replacement searchstring, must be in
quotation marks, since you want to distinguish between uppercase and lowercase.
The second argument, the searchstring, which is searched for does not have to be in
quotation marks, since you are not concerned with which case it is in before
replacement.

4 A

substitute 'This' for this all

* page 1 line 7
This is line 1.

This is line 2.

This is the new line 3.

This is the text.

This is replacement line S.

This is line 6.

This is line §.

NG AW A

. J
Figure 16 REPLACE Command

26

The SED Editor

11.

Line 4 may be cut into two lines using the CUT command. You may cut the line

using the CUT command followed by the line number and column number as an

argument or, in the keyboard input mode, move the cursor to the point where you
want to cut the line and press the CUT function key. To cut line 4 into two lines

between “this” and “is” requires the arguments 4 and 5. The argument “4” refers

to line 4. The argument “5” refers to the location of the cut, column 5.

(M

(2]
[=1
Cad
o
W

page 1 line 4

This is line 1.

This is line 2.

This 1s the new line 3.
This

is the text.

This is replacement line 5.
This is line 6.

This is line 5.

0 N O oW | e

\. </

Figure 17 CUT Command

The SED Editor 27

12. Lines 4 and 5 can be merged into one line using the PASTE command. You can
paste lines in two ways: you can type PASTE followed by the number of the first of
two lines you want to paste or the range of lines you want to paste; or you can make
the first of two lines to be pasted the current line and press the PASTE function
key.

4 N

paste 4 §

* page 1 line 4
This is line 1.

This is line 2.

This is the new line 3.

This is the text.

This is replacement line 5.

This is line 6.

This is line 5.

N O s W A

N J

Figure 18 PASTE Command

13. Page breaks can be created using the SPLIT command. To cause a page break
between lines 3 and 4 use the SPLIT command with an address argument. The
page break occurs at the line before the address. The address then becomes the first
line of the new page.

(" N
split 4
* page 2 line 1
1 This is the text.
2 This is replacement line 5.
3 This is line 6.
4 This is line 5.

Figure 19 SPLIT Command

28 The SED Editor

14, Create a third page beginning with line 3.

4 N
split 3
* page 3 line 1
1 This is 1line 6.
2 This is 1line 5.

Figure 20 Third Page

15. Page breaks may be removed by the JOIN command. JOIN requires that the
current line position be at line 1 of the page you wish to join to the preceding page.
You can set this position by moving to it with cursor control characters or by using
“1” as an argument to JOIN. Merge pages 2 and 3 by issuing the JOIN command
from line 1 of page 3.

()

page 2 line 3

J
*
1 This is the text.

2 This is replacement line 5.
3 This is 1line 6.

4 This is line 5.

Figure 21 JOIN Command

16. You can change the current line to any line or page in the file using the POSITION
command. If you give a line location as an argument, that line becomes the current
line. If you give a page location, the first line of that page becomes the current line.
Move to page 1 by issuing the POSITION command with page 1 as the argument.

4)

position page 1
. page 1 line 1

1 This 1s 1line 1.
2 This is 1ine 2.
3 This is the new line 3.

Figure 22 POSITION Command

The SED Editor

29

17. Move to page 2 with the POSITION command.

s
po page 2
* page 2 line 1
1 This is the text.
2 This is replacement line 5.
3 This is line 6.
4 This is line 5.

Figure 23 Move to Page 2

30 The SED Editor

18. Merge pages 1 and 2 with the JOIN command.

4 |)

oin
page 1 line 4

This is 1line 1.

This is 1line 2.

This is the new line 3.
This is the text.

This is replacement line 5.
This is 1line 6.

This is 1ine §.

NN AW N s

. J

Figure 24 Merge Pages 1 and 2

19. SED file status information can be shown using the DISPLAY_STATUS
command. For details on the displayed items consult the SED manual.

()\
display—.status
* page 1 line 4
Edit File Name - :UDD: SARAH. $209: SAMPLEFILE
Current Page: 1 Last Page: 1
Current Line: 4 Last Line: 7
View range: 10
Display mode: 0
Typer mode: ON
Blank mode: OFF

Preload old line: ON
Skip white space: ON

Upper mode: OFF
Escape mode: OFF

New..line 1s view: ON
Escape 1s view: ON

Line numbers being displayed

- y

Figure 25 DISPLAY_STATUS Command

The SED Editor 31

e

20. Portions of a file may be displayed on the screen using either the LIST or VIEW
commands. The LIST command displays a range of text on your terminal screen.
The range must be within a page. Issue the LIST command to display lines 3, 4,

and 5.
4 N
list 35
* page 1 line 4
3 This is the new line 3.
4 This is the text.
5 This is replacement line 5.

Figure 26 LIST Command

21. The VIEW command displays a screen of lines around the current line. Issue the
VIEW command to display the entire text.

4)

view

* page 1 line 4
This is line 1.

This is line 2.

This is the new line 3.

This is the text.

This is replacement line 5.

This is line 6.

This is line 5.

NOO O A W

N J
Figure 27 VIEW Command

32 The SED Editor

22. A given word or phrase in text may be located by the FIND or BACKFIND
commands. Text after the current line may be located using the FIND command.
Text before the current line may be located using the BACKFIND command. Use
the FIND command to locate the word replacement.

()

find replacement
page 1 1ine 5

This 1s line 1.

This is line 2.

This is the new line 3.
This is the text.

This is replacement line §S.
This is line 6.

This 1s line 5.

N OO AWM A

N\ J
Figure 28 FIND Command

23. Use BACKFIND to locate the phrase new line. Remember that a phrase
searchstring must be enclosed in quotation marks.

[)

backfind “new line”
page 1 line 3

This is line 1.

This is line 2.

This is the new line 3.
This is the text.

This is replacement line 5.
This is line 6.

This is line §.

NG A W Al

\. J
Figure 29 BACKFIND Command

The SED Editor 33

24. The MOVE command lets you move blocks of text. The lines specified are deleted
from their original location and inserted at the destination. The destination can be
within the current page or another file altogether. To move the text from one page
to another, you must move the text onto a new file and then insert that text into the
new destination using the INSERT command. Move lines 6 and 7 before line 4.

s ‘W
move 6 7 before 4

*

page 1 line 6

This is line 1.

This is line 2.

This is the new line 3.
This is line 6.

This is line §.

This is the text.

This is replacement line 5.

N O D e W

_ J
Figure 30 MOVE Command

25. To copy text to the same page or to the end of another file without deleting the
original text use the DUPLICATE command. Duplicate lines 2 and 3 following
line 6.

4 A

duplicate 2 3 after 6

*

page 1 line 3

This is line 1.

This is line 2.

This is the new line 3.
This is line 6.

This is line 5.

This is the text.

This is line 2.

This is the new line 3.
This is replacement line 5.

W 00 N OO U & W

- J
Figure 31 DUPLICATE Command

34 The SED Editor

26. Text may be removed with the DELETE command. Delete lines 7 through 9.

4 - N

delete 7 9

page 1 line 6

This 1s line 1.

This is line 2.

This is the new line 3.
This is line 6.

This is line §.

This is the text.

(- I 2 TP N PUN CRRNEY B

Figure 32 DELETE Command

27. Delete line 5.

4 N\
delete §
* page 1 line 5
1 This is 1line 1.
2 This is line 2.
3 This is the new line 3.
4 This is 1line 6.
5 This is the text.

Figure 33 Delete Line 6

28. The last block of text deleted may be restored with the UNDO command. Undo the
last DELETE command.

()

page 1 line 5

This is line 1.

This is line 2.

This is the new line 3.
This is 1line 6.

This is 1line 5.

This is the text.

NN B W A

Figure 34 UNDO Command

The SED Editor 35

- 29. UNDO restores only the last DELETE command. Entering UNDO twice in a row
results in an error message.

(’ N
No deleted text to 'UNDO', correct the command:

*undo page 1 line

This is 1line 1.

This is line 2.

This is the new line 3.

This is line 6.

This is 1line §.

This is the text.

(-2 20K 7, B S % T (U

Figure 35 UNDO Error

30. The DO and CLI commands allow you to execute CLI commands leaving SED.
The DO command invokes a subordinate CLI process to execute the command,
then terminates this CLI process and returns the SED prompt. Use the DO
command to execute the CLI FILESTATUS command.

4 ™

do filestatus
* page 1 line §

DIRECTORY :UDD:SARAH.S209

SAMPLEFILE.S2 TEXT SAMPLEFILE SAMPLEFILE.SC
TEXT.ED SAMPLEFILE.ED

Figure 36 DO Command

31. The CLI command temporarily suspends the editing session and creates a CLI
process called SON OF SED. Issue the CLI command.

4)

cli
* page 1 line 5

A0S/VS CLI REY 01.64.255.255 11-APR-83 15:25:28
Son of Sed)

Figure 37 CLI Command

36

The SED Editor

32. From SON OF SED issue the FILESTATUS command. . -,

-

cli
* , page 1 lne 5

\.

A0S/VS CLI REV 01.64.255.255 11-APR-83 15:25:28
Son of Sed) filestatus

DIRECTORY :UDD:SARAH.S209

SAMPLEFILE.S2 TEXT SAMPLEFILE SAMPLEFILE.SC
TEXT.ED SAMPLEFILE.ED
Son of Sed)

Figure 38 Filestatus

33. To leave SON OF SED and return to SED, enter bye.

g

cli
* page 1 line 5

\.

A0S/VS CLI REV 01.64.255.255 11-APR-83 15:25:28
Son of Sed) filestatus

DIRECTORY :UDD:SARAH.S209

SAMPLEFILE.S2 TEXT SAMPLEFILE SAMPLEFILE.SC
TEXT.ED SAMPLEFILE.ED

Son of Sed) bye

A0OS/VS CLI TERMINATING 11-APR-83 15:27:22

Figure 39 Terminating SON OF SED

The SED Editor 37

34. Changes to files may be lost if the system fails during an editing session. To prevent
loss it is good practice to update your files from time to time. The SAVE command
makes a copy of the file, including all changes in the current editing session. The
copy is saved with the same filename and the extension .SV. Issue the SAVE
command.

(R

save
page 1 line 5

This 1s line 1.

This 1is line 2.

This is the new line 3.
This 1s line 6.

This is line 5.

This is the text.

D AW e

Figure 40 The SAVE Command

35. Use the DO command to do a filestatus. Note the file, samplefile.sv. This is the file
created by the SAVE command. The file samplefile.ed is created by SED and stores
display settings. Since you did not specify any display settings, the settings are
default values. The files with the extensions .S2 and .SC are deleted when SED is
terminated.

s A

do filestatus
* page 1 line 5

DIRECTORY :UDD:SARAH.S209

SAMPLEFILE.S2 SAMPLEFILE.SV TEXT SAMPLEFILE
SAMPLEFILE.SC TEXT.ED SAMPLEFILE.ED

Figure 41 DO Command

36. Terminate SED with the bye command.

(- N

bye
* page 1 line 5
Output file - :UDD:SARAH.S209:SAMPLEFILE

)

Figure 42 BYE Command

38 The SED Editor

37. Use the CLI filestatus command to determine the filestatus. The temporary files
with the .S2 and .SC extensions are gone. The file created by the SAVE command
is still present. It does not contain any editing changes made since the last SAVE

command.

4 A
) filestatus
DIRECTORY :UDD:SARAH.S209

SAMPLEFILE.SV TEXT SAMPLEFILE TEXT.ED
SAMPLEFILE.ED
)

Figure 43 Filestatus

Directions
After you have successfully completed Lab Activity 3 turn to the Addendum Quiz.

The SED Editor 39

SED Addendum
Quiz

1. List the four steps in a typical SED editing session.

a.

b.

C.

d.

2. Use SED to create a file called practice. Input the text in Figure 44 exactly as
shown.
r~ N\
append
* page 1 line 11
1 Data General's SED is a screen-oriented test editor that allows
2 you to modify existing test files or to create new ones. The
3 test may be as varied as reports, computer programs, business
4 correspondence, and novels. With SED commands you can: display
N existing test, add new test, change existing test, delete old
6 test, move pieces of test, copy pieces of test.
7 SED allows you to choose among several ways of displaying your test.
8 Congratulations!
9 You can define function keys to execute commands that meet your
10 editing needs and copy test in your current file onto other files.
1"
g J

Figure 44 PRACTICE Text

3. Use SED to create a second file called finis. Input the text in Figure 45 exactly as

shown.
4 N
view
*append page 1 line 1
1 You have completed the SED addendum.
2

Figure 45 FINIS Text

40 The SED Editor

4. Use SED to make the following changes to the file practice. Refer to Figure 46 as
you make your changes. '

4 N

append

page 1 line 11
Data General's SED is a screen-oriented test editor that allows
you to modify existing test files or to create new ones. The A
test may be as varied as reports, computer programs, busines
correspondence, and novels. f With SED commands you can:1display
existing test Zadd new test53change existing test #delete old
st Smove pleces of testfscopy pieces of test.
SED allows you to choose among several ways of displaying your test.
Congratulations!
You can define function keys to execute commands that meet your
editing needs and copy test in your current file onto other files.

\

W 00 N O h B W Al

-
o

-
-

\ /|
Figure 46 Changes to Text

a. Use SED commands or function keys to split the sentence labeled A at points 1,
2,3,4,5,and 6 in Figure 46. Continue only after your screen matches Figure 47.

4 N\
view
* page 1 line 6
1 Data General's SED is a screen-oriented test editor that allows
2 you to modify existing test files or to create new ones. The
3 test may be as varied as reports, computer programs, business
4 correspondence, and novels. With SED commands you can:
5 display existing test,
6 add new test,
7 change existing test,
8 delete old test,
9 move pleces of test,
10 copy pieces of test.
1 SED allows you to choose among several ways of displaying your test.
2 Congratulations!
3 You can define function keys to execute commands that meet your
L] editing needs and copy test in your current file onto other files.
15
. J

Figure 47 PRACTICE Screen

The SED Editor 41

b. Delete the last sentence (labeled B).

c. Use the SUBSTITUTE command to locate each instance of the word test and
change it to the correct word text.

d. Add the text from the file finis to the end of the file practice.

Directions
Check your answers with those on the next page.

42 The SED Editor

SED Addendum

Quiz Answers

1.

Congratulations! If you have answered all the questions correctly, you have completed

a. Invoke SED

b. Create a new file or bring in an old file for editing
c. Add or modify the file
d. Terminate the session

b. One method is to use the command, delete 13 14.
c. One method is to enter substitute ““text’ for test all.

d. One method is to enter insert 12 from finis. Your screen should now be similar to

Figure 48.

e

insert 12 from finis

page 1 line 14

\.

W 00 N M L bW e

- wd h =
WY Ao

Data General's SED is a screen-oriented text editor that allows
you to modify existing text files or to create new ones. The
text may be as varied as reports, computer programs, business
correspondence, and novels. With SED commands you can:

display existing text,
add new text,

change existing text,
delete old text,

move pieces of text,
copy pieces of text,
SED allows you to choose among several ways of displaying your text.
Congratulations!

You have completed the SED addendum.

Figure 48 The End

this addendum. Otherwise, review the material and try the questions again.

Please complete this questionnaire and return it to us after finishing the course. We will then send you an Official Certificate of
Course Completion! Fill in the charts below to rate the course on the items listed. (Check one box for each item.)

23.

24.

25.

26.

27.

Items

Excel-
lent

Good

Fair

Poor

. Organization and Style

. Technical Content: Level of Detail
. Ease of Listening to the Audio

. Pace of the Audio

. Quality of the Audio

. Pace of the Student Guide

. Usefulness of Quizzes

. Effectiveness of Exercises

. Effectiveness of lllustrations

O W 0O N O G b WN =

. Technical Reference Materials

Items

Too
Little
Detail

Too
Much
Detail

Unclear

Other

11. If you said that technical content was fair or poor, what did you mean?
12. If you said the pace of the audio was fair or poor, what did you mean?

13. If you said the pace of the Student Guide was fair or poor, what did
you mean?

items

Always

Almost
Always

Rarely

Never

14. Was the information in the course interesting?

15. Was the manner of presenting the information interesting?
16. Did you understand what you were supposed to learn?

17. Were the materials directly related to the objectives?

18. Were there enough practice exercises?

19. Were the practice exercises appropriate?

20. Was there enough information explaining the answers to the practice
exercises?

21. Did the module quizzes really measure your performance of the objectives?

22. Was the information in the audio consistent with the information in the
Student Guide?

Have you any comments on specific modules?

What did you like best about the course?

What did you like least about the course?

Would you use another self study on other Data General products?
Yes No If No, why?

Suggestions for improvement: (Write your comments here and on the back of this page.)

Name Address

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MASS. 01772

Postage will be paid by addressee:

~ @vDataGeneral

Educational Services Department
Mail Stop FO19

4400 Computer Drive

Westboro, Massachusetts 01581-9973

ATTENTION: Quality Assurance

- - - - - - o . - e - - - - .- - - - - - - - s n =5 o» == - .- .- . . - - - e .- - - - - e - . . en - - - - - - - - - . e . . . -

