DataGeneral

basic BASIC

069-000003-00

basic BASIC

(An Introduction to BASIC)

069-000003-00

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 069-000003

© Data General Corporation, 1976, 1978
All Rights Reserved

Printed in the United States of America
Revision 00, December 1978

NOTICE

The information contained in this manual is the property of Data General Corporation (DGC) and
shall not be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by

reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

basic BASIC
(An Introduction to BASIC)
069-000003

Revision History:
093-000088

Original Release - June 1973
First Revision - February 1976

069-000003

Original Release - December 1978

This revision changes only the part number; the text is identical to
manual 093-000088 revision 01.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOURI1 INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA DG/L

ECLIPSE NOVADISC microNOVA

DataGeneral

SOFTWARE DOCUMENTATION

TO THE READER

Computers have been cloaked in mystery since their invention.
This manual is aimed at clearing away some of the mystery and
proving that you can use a computer. Remember, a computer is
just an electronic machine which can perform complex calcula-
tions at high speeds. However, a computer can only do what it is
told to do and you will be learning how to command one. Do not
worry about mistakes, they cannot hurt the computer.

This manual introduces the BASIC computer language and covers
its elementary commands and statements. When you become
familiar with basic BASIC and would like to write more complex
programs, please read Data General's Extended BASIC User's
Manual.

We have designed this handbook for use at a computer terminal,
so you can try the exercises which follow the concepts as we
present them. Each section of the manual introduces a new idea,
and ends with a simple exercise or two, which you should try
before proceeding; you can thus progress at your own pace. (If
you really get stuck, Appendix A includes one set of answers; use
these only after you have tried the exercise.)

This handbook uses the following symbols:

Symbols Meaning
* Asterisk
) Carriage Return
A Space
) Parentheses
[1] Brackets

Handbook Symbol Table.

iii

DataGeneral

SOFTWARE DOCUMENTATION

1.

2.

Parentheses and brackets are always interchangeable.

In the program éxamples, underlined words have been typed
by a person. BASIC's responses are not underlined.

*LIST)

@01¢ REMARK - INTRO PROGRAM
@626 INPUT A

#8638 PRINT A

0040 END You type LIST, a car-
*RUN) riage 1.'eturn, then RUN,
? 5432) a carriage retuw{n, then
5432 5432 and a carriage
return. The computer
END AT 0040 prints everything else.
*

BASIC language keywords appear in CAPITAL letters.
Any words in boldface type in this handbook have meanings

unique to the computer field. The index/glossary defines
these words.

iv

DataGeneral

SOFTWARE DOCUMENTATION

CONTENTS

CHAPTER 1 - COMPUTER CONCEPTS

What is a Computer?eeeoeoeesel-1
What isBASIC? 4o e veeeoesososoas 1-2
Talking to BASIC v e o . v« & P £
Sharing a Computerce .. eeseel-d
CHAPTER 2 - AT THE TERMINAL
LoggingOn.....co0ceveve. e eees2-1
Logging Off. . . .ot vt e e e vennnas . 2-2
The PRINT Command + o e v s 00 o0 s0oe 2-3
Printing Numbers., c.o 2-4
Using PRINT as a Calculator ,.....2-5
CHAPTER 3 - PROGRAMMING
Programs...eeeeeeceeceeons oo 3-1
FlowCharts o . v v o vevveeceesennse 3-2
Working StOTage o e v eoeoeovoesn .o 3-4
Some Commands for Programming 3-5
Our First Program. eeese 3-6
Variables S cossassnne oo 3-8
Editinge « v o v o v vvonneennnenees . 3-10
FunctionS......ee0cieceoeen ..o 3-13
Integer Functionc0000e0 . 3-13
Sign Function +...... e eeseness3-15
Absolute Value Function « ¢ « o o ¢ o o o 3-16

CHAPTER 4 - WORKING WITH DATA

What's Data? o..eeeeeeococessseid-l
Prompting MessagesS. . v o v o v o v v eood-4
If You Know Your DATA0.0. 4-6
Remember Trig? .o oo eevevoveoees 4-8
Nice, Neat Output « oo e e s o s oo oo oo 4-1

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 5 - DECISIONS & LOOPS
Non-Numeric Order......ccc00000 5-1
STOPOr END?¢ 4 v v o vovocovennnns 5-4
WhatIF ¢ . i v e evovecocennnns 5-6
Numeric EXpressione e o v o o o o 0o o o 5-10
Getting Complicated e o v o e o o v o v oo 5-12
Flaggingthe End oo v v v o e v vvueee 5-15
RANDOMIZEt eeennecnnnne 5-17
Using a Subroutin€ s o« o o o o s v v 00 00ue 5-20
CHAPTER 6 - FOR/NEXT LOOPS
LoopUsing IF .. v i oot v vnveenns 6-1
The FOR and NEXT Statements 6-3
Advanced Functions « e e e c o e e o v osoe 6-7
Nested FOR/NEXT LOOPS ¢ o s 6o e voe e 6-9
CHAPTER 7 - NUMERIC SUBSCRIPTING
ATTAYS e o e e seososoeoccoccocsas 7-1
Another ATTay..eeceoeesscsnsocass 7-6
Two Dimensional ATTaysS «eeecoeesee 7-8
CHAPTER 8 - STRINGS
String Literals « ceceececeocacoons 8-1
String VariableS e« ececoeeeccocccese 8-1
String Subscriptinge ¢ e e s e e o0 o0 oo ee 8-3
APPENDIX A - PROBLEM ANSWERS
APPENDIX B - ERROR MESSAGES
APPENDIX C - PROGRAMMING
ON MARK-SENSE CARDS
INDEX/GLOSSARY

vi

DataGeneral

SOFTWARE DOCUMENTATION

Welcome to the fascinating world of computers. Do not be afraid
to try out your ideas - experiment. This computer business
should be fun!

vii

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 1
COMPUTER CONCEPTS

WHAT IS A COMPUTER?

A computer is a machine used to solve problems. The machine
accepts information, processes it, and prints the answer. Three
main units within a computer control these three tasks.

The three main units of a computer are the Input/Output Unit, the
Central Processing Unit and the Main Memory Unit. Each unit
performs specific functions, and information moves between them

(Figure 1-1).

Input /Output Central Main
Unit Processing Memory
R -
1/0) Unit Unit
(CPU)

Figure 1-1. Information passes between the Three Main Units
of a computer.
The computer's heart is the Central Processing Unit (CPU). The
CPU deciphers your instructions to the computer, performs
calculations, and directs the other units to complete your
requests.

The Input/Output (I/0O) unit controls the devices which feed

(input) information to the computer and print (output) information
back to you. Some I/O devices are teletypewriters, high-speed
line printers, paper tape readers, and magnetic tape drives.

The Main Memory unit is a set of addressable locations which
store instructions and information (called data) from the user.
These locations resemble the mailboxes in a post office. Each
mail box has a label and the mailman places letters in the proper

1-1

DataGeneral

SOFTWARE DOCUMENTATION

box. The CPU stores your information in a memory mailbox,
keeps track of the mailbox label (called a memory address), and
retrieves the data when necessary (Figure 1-2).

BOX BOX BOX BOX
A B c D

[425 | 3227 | S]

Box A contains numeric data-the number 425, Box B contains
3227, Box C is empty and Box D contains the character 'S’

SD-00305

Figure 1-2. Data in a memory mailbox.

Through the I/O unit, the CPU obtains data, from the user. The
CPU stores this information in the Main Memory unit. Whenever
the CPU does calculations, it stores the results in the Main
Memory unit.

WHAT IS BASIC?

BASIC is a computer language. You can converse with a computer
in BASIC and instruct the computer to perform some task. BASIC
stands for Beginner's All-purpose Symbolic Instruction Code and
was first developed at Dartmouth College. BASIC uses familiar
words and symbols so you can learn it quickly and easily.

To use BASIC, your computer must have a BASIC language inter-
preter. This interpreter is a set of instructions which interprets
the familiar words and symbols of the BASIC language into com-
mands which the computer executes. Data General supplied a
BASIC language interpreter with your computer.

TALKING TO BASIC

You can type instructions in BASIC on a communications (I/O)
device: either a teletypewriter (Figure 1-3), or a cathode ray tube
(CRT) display (Figure 1-4).

1-2

DataGeneral

SOFTWARE DOCUMENTATION

DG-01760

Figure 1-3. You can talk to a computer using a teletypewriter.

Figure 1-4. BASIC also understands instructions typed on a
CRT display.

We will refer to your communications device as a terminal. It
connects to the computer either directly or by telephone lines.
Figure 1-5 contains a diagram of a terminal connected to a
computer.

1-3

DataGeneral

SOFTWARE DOCUMENTATION

I/0
CPU
Terminal Main Memory
SD-00306
Figure 1-5. Your terminal connects to the I/O Unit of the
Computer.

A terminal keyboard resembles a typewriter keyboard, but has
several special keys. These special keys include:

the ESCape Key interrupts the execution of the currert
calculation or task.

the RUBOUT Key erases characters typed by mistake.

the SHIFT Key works with other keys to create special
characters which we will explain later.

Do not confuse alphabetic and numeric keys. Your terminal
includes keys for the 10 numeric digits and you should use these
keys for typing numbers, i.e., numeric 1 instead of lower case
alpha L and numeric O instead of alpha O. Although these
characters may appear similar on a printed sheet, BASIC inter-
prets them differently.

LocaL
OFF
ON LINE

LINE
Feep| RETURN
a

HEHEENNNANEE
E2EB0N0ONHNEENES

Figure 1-6. Special Keys on a DGC Model 6012 display keyboard.

1-4

DataGeneral

SOFTWARE DOCUMENTATION

Figure 1-6 illustrates a Model 6012 Keyboard. Other terminal
keyboards are similar, though some of the special keys may be
in different places.

You can also communicate with BASIC using mark-sense cards

and a card reader. You mark these cards with a special code and
stack them in the card reader, which reads them one at a time and
sends their instructions to the computer. These cards can be used
repeatedly; you may add or change cards to revise your program.
Appendix C explains the code for these cards.

SHARING A COMPUTER

In a time=-sharing system, many terminals share the same com-
puter, and each terminal takes a turn using micro-seconds of
computer time. The computer can process information so rapidly
that each terminal user appears to have sole access to the system.
You may have contact with only one terminal, but that terminal is
part of a much larger system you never see (Figure 1-7).

1-5

DataGeneral

SOFTWARE DOCUMENTATION

SD-00400

Figure 1-7. Many users share this NOVA IL

END OF CHAPTER
1-6

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 2
AT THE TERMINAL

A computer will not do anything unless you ask it to. It will sit
idle and be perfectly happy for minutes, or hours, or years.
Therefore, you must learn the commands which you can type to
tell BASIC what to do.

But, before we start listing commands, let's get you onto a
terminal.

LOGGING ON

To start using BASIC, turn the terminal switch to LINE, then
press the ESCape key on the keyboard. BASIC will print a log on
message. If your message includes an asterisk prompt (*), you
are logged on and may start typing instructions. Whenever you
want a program to stop running, for whatever reason, hit the
ESCape key. BASIC will reserve your program without loss, and
print the asterisk prompt.

Some systems need account identification information to prevent
unauthorized people from using the computer. If so, when you
press the ESCape key, BASIC will print:

ACCOUNT ID:
and wait until you type a valid ID and a carriage return.

Suppose your system manager assigns you an account ID of HASK.
Directly after BASIC prints "ACCOUNT ID:" type "HASK" and
carriage return. Your account ID will not appear on your paper
(or CRT screen) for security reasons.

If you type the wrong account ID, BASIC will indicate an unrecog-
nizable ID and ask for a correct one. After you have typed a
correct account ID the system will print log on, or sign on,
information, then an asterisk indicating that it is ready for
instructions. See Figure 2-1 for a sample log on procedure.

2-1

DataGeneral

SOFTWARE DOCUMENTATION

DGC READY
ESCape Key) (esc))
ACCOUNT-ID: HASK) (id not echoed)

28/26/75 15243 SIGN ON, 64

Figure 2-1. Hello, BASIC.

LOGGING OFF

When you wish to stop using the system or log off, type the
command:

BYE)

On some systems after you type the command BYE, BASIC will
print log off, or sign off, information which looks something like
Figure 2-2.

*BYE)

88/26/75 15:43 SIGN OFF, 24
#8/26/75 15:43 CPU USED, &
@8/26/75 15:43 1/0 USED, @

DGC READY

Figure 2-2. Goodbye, BASIC.

BASIC will then sit idle until you or someone else presses the
ESC key on the terminal.

Exercise 2-1. See if you can log onto your system, then log off.

2-2

DataGeneral

SOFTWARE DOCUMENTATION

THE PRINT COMMAND

Since BASIC is an interactive language, you and the computer
carry on a dialog. The first BASIC command is PRINT, which
means the same in BASIC as it does in English. After an asterisk
prompt, which means it's your turn to talk, type PRINT, a number
to be printed, and a carriage return. BASIC will print the number:

*PRINT 7) 7 (Remember, underlined sections of
listings are those you type and the
* symbol) indicates the carriage return

key which always ends a command.)
To tell BASIC to print letters and spaces rather than numbers,
enclose these characters in quotation marks. BASIC will print
exactly what you type within the quotes:

*PRINT "1 AM A COMPUTER") I AM A COMPUTER

*PRINT "I CAN'T SPEL") I CAN'T SPEL

*

You may include both numbers and characters inside quotation
marks:

*PRINT "REVOLUTION =~ 1776") REVOLUTION - 1776

*

Do you see the difference? Numbers do not have to be in quotes
but if you want BASIC to PRINT letters, punctuation or other
characters, you must enclose the whole string in quctation
marks.

BASIC carries out, or executes the PRINT command immediately.
Notice that the carriage return signals BASIC to print the result.
The command is not stored for re-use. Later, you will learn
how the PRINT keyword can be stored in a BASIC program.

Exercise 2-2. Try PRINTing some values and messages.

2-3

DataGeneral

SOFTWARE DOCUMENTATION
Printing Numbers

BASIC converts very large or very small numbers to exponential
form. Let's look at some numbers and then we will explain the
conversion.

*PRINT 2000000000000000) 2E+15

*PRINT 1256E+7) 1.256E+10

*PRINT 145.745) 145.745

*PRINT .0000080808432) 4.32E-89

*PRINT ~-324.56743) =324.567

*PRINT -17.43985762527) =17.4398

*PRINT 50000202800112) S5E+13

*

The letter E means "times 10 to the power of". BASIC converts
all numbers of more than 6 digits to exponential form. BASIC
accepts numbers from approximately 5.4 x 10779 to 7.2 x 1075,
Notice that the letter E may be used in a number but a comma, to
separate thousands, may not be used. Table 2-1 illustrates the
relationship between standard notation, scientific notation and
exponential form.

Table 2-1. Number Relationships

Standard Scientific Exponential
1, 000, 000 1x 100 1E+06
10, 000, 000 1x 107 1E-+07
100, 000, 000 1x 108 1E+08
. 0000001 1x 1077 1E-07
. 00000000001 1x10"11 1E-11

Exercise 2-3.

2-4

Experiment with exponential notation on your
terminal.

DataGeneral

SOFTWARE DOCUMENTATION

Using PRINT as a Calculator

Yau can use BASIC as a calculator with the PRINT command.
*PRINT 2+3) 5
*PRINT 4-1) 3

*PRINT 5-2+10-17) -4

*

Exercise 2-4. Locate the plus (+) and minus (-) keys on your
terminal and try some addition and subtraction.

While the arithmetic cross (x) means multiplication, BASIC would
get confused if x were used for both an alphabetic character and
a multiplication command. Therefore, BASIC uses an asterisk
(*) for multiplication, and reserves x for alphabetic use. Most
terminals do not contain a divide key so a slash (/) is reserved
for division.

*PRINT 7%8) 56
*PRINT 9/3) 3
*PRINT 8%2/4) 4

%k

Exercise 2-5. Try some multiplication and division at your
terminal.

You can combine multiplication, division, subtraction and addition
in the same PRINT command, and use parentheses as in algebraic
statements. BASIC and arithmetic evaluate terms in the following
order:

1. Any expression within parentheses - if nested, i.e. (3+(4*6)),
the innermost parentheses are evaluated first.

2. Multiplication and division - from left to right, equal
priority.

3. Addition and subtraction - from left to right, equal priority.

2-5

DataGeneral

SOFTWARE DOCUMENTATION

*PRINT (2+3)/5-7*2) =13

*PRINT 4/7+8%2-4.35) 12.2214

*

BASIC evaluates the first example in this order:
1. parentheses: (2+3)

2. leftmost division: 5/5

3. rightmost multiplication: 7%*2

4. subtraction: 1-14

Exercise 2-6. Try some examples combining addition, subtrac-
tion, multiplication and division.

You can print both messages and the results of calculations with
a single PRINT command. Separate the items in the PRINT

command with either commas or semicolons.

*PRINT "2 PLUS 3 IS"3;2+3) 2 PLUS 3 1S S

*PRINT 4%5, "1S THE AREA") 20 IS THE AREA

%*
Exercise 2-7. Try some problems combining calculations and
messages. Experiment with commas and

semicolons to see how they affect the format of
your output.

END OF CHAPTER

2-6

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 3
PROGRAMMING

PROGRAMS

A program is an ordered set of instructions, called statements,
which define tasks for a computer. You will learn to create pro=-
grams with BASIC statements.

Each BASIC statement begins with a line number. When the com-
puter executes a BASIC program it performs the statement with
the lowest line number first and proceeds to the next higher num-
ber. While any integer between 1 and 9999 may be used for a line
number, programs in this manual will generally count line
numbers by 10s.

Figure 3-1 contains a PRINT statement which looks very similar
to a PRINT command. We will look more closely at the PRINT
statement later.

P01 PRINT 2+3

N

line number BASIC Keyword expression
SD-00398

Figure 3-1. The PRINT statement contains a line number.

3-1

DataGeneral

SOFTWARE DOCUMENTATION

FLOW CHARTS

Before a programmer writes a program, he will often draw a
symbolized diagram of its steps. This diagram, called a flow
chart, maps the logic steps in a program. With simple programs,
you may not need a flow chart; you will find more complex pro-
grams easier to write if you flow chart them first. In this hand-
book, we have provided a flowchart to clarify each BASIC
program.

Certain geometrical shapes have evolved which represent
specific computer actions. We have described some of these
shapes below, and will explain others when you need them.

START OR STOP BOX

An elongated oval shows the beginning
or ending point in a program.

PROCEDURE BOX

A rectangular box indicates an event or
procedure. Arithmetic calculations
are shown in a procedure box.

INPUT /OUTPUT BOX

The parallelogram indicates input typed
from your terminal and output the
computer will print back to you.
ARROW

The arrow shows the direction logic will
move through your program. Direction
within a flow chart usually moves from
top to bottom and from left to right.

DECISION BOX

A decision box contains a question which
No, has a "yes" or "no" answer, such as
"is A> 0?" If the answer is "yes" the
computer will follow the "yes" arrow;
Yes if "no" the computer will follow the
"no"" arrow.

3-2

DataGeneral

SOFTWARE DOCUMENTATION

A good flow chart will keep track of the logic within your program
and locate decision points and tests. If the logic has been planned,
your program will be easier to write; your only worry will be
translating a flowchart into BASIC., Also, if your program does
not work, you can often find an error more easily in a flow chart
than in the program itself. Just remember to keep your flow
charts simple; put in the major steps and leave the details for the

program.

3-3

DataGeneral

SOFTWARE DOCUMENTATION

WORKING STORAGE

When you sign onto BASIC, the system assigns you an area of
memory called working storage. You use this part of memory like
a giant chalkboard, to write, read and erase programs and data.

BASIC looks at every line you type as soon as you hit the carriage
return. If you have entered a statement (a line number, BASIC
keyword and any expressions or arguments), BASIC will store it
in working storage. If you have entered a command (BASIC key-
word, no line number) BASIC will execute it immediately without
storing it. If you type something which is neither a valid state-
ment or command, BASIC will ignore that line and print an

error message.

Therefore, you can store all your BASIC statements in working
storage. BASIC will leave them there until you explicitly erase
or change them. When you have entered a complete set of state-
ments, you have a program. You can type the command RUN
(explained below), and BASIC will perform the program steps in
sequence.

3-4

DataGeneral

SOME COMMANDS FOR PROGRAMMING
Some commands which you will need for BASIC programs are:
LIST

When you have completely typed or coded a program, the LIST
command will print the contents of working storage - all the
program statements. This printing of a program is called a

listing.
RUN

To execute your program, type the command RUN. The computer
will RUN your BASIC statements in order, from the lowest line
number.

NEW

After your program has been run and you want to work on another,
the NEW command will erase your working storage blackboard.

It is good practice to type the NEW command before starting a
program.

But enough explanation - this information will make more sense
as you use it. Let's start programming!

3-5

DataGeneral

SOFTWARE DOCUMENTATION

OUR FIRST PROGRAM

We will start with a very simple program, in Figure 3-2, which
multiplies 2 by 3. This program demonstrates PRINT in a BASIC
statement instead of as a command.

START

*1@ REM - PRINT 2 TIMES 3)
*27 PRINT 2x%3) Type in the program and tell

* END) the computer to list it.
*LIST

221® REM =~ PRINT 2 TIMES 3
@027 PRINT 2%3 The computer prints a listing.
@238 END
*BUN) You type the command to
6 execute the program. The

computer prints the result and

END AT 02@30 an END message.

*
SL-00262

Figure 3-2. A long way to print "6".
Now let's look at the statements in our program.

Line 10 is a REMarks line. The BASIC statement REM stands for
REMarks; with it you can write notes to yourself within a program.
BASIC ignores all comments in a REM statement but prints them
on every listing.

Line 20 uses the PRINT keyword in a statement. The line number
makes a PRINT statement instead of a PRINT command; BASIC
won't execute statements until you type RUN. A single program
may include many PRINT statements.

3-6

DataGeneral

SOFTWARE DOCUMENTATION

Line 30 is an END statement which tells the computer that your
program is finished and to return control to your terminal.

Exercise 3-1.

Demonstrate that more than one PRINT statement
can be used in a program. Write a program to
divide 7 by 3 and multiply 6 times 4 and PRINT the
results. If you make a typing mistake re-type the
entire line including the line number.

3-7

DataGeneral

SOFTWARE DOCUMENTATION

VARIABLES

In BASIC, as in algebra, letters can represent numeric values.
For a rectangle, you might choose W and L to stand for width and
length in both BASIC and algebra; you would call W and L numeric
variables in BASIC, Any letter which represents a number is a
numeric variable.

In BASIC, the LET statement assigns values to variables. You can
think of the variable name as a memory location, which holds the
value of your variable. The LET statement can also change the
value within this memory mailbox.

A2 LET A=?
endm |LET As4
Pr4A LET A=245

NSk

Line 20 assigns the value 2 to memory address A.
Line 30 changes the value in memory address A to 4.
Line 40 changes the value in memory address A to 7.
The value in A changes with each LET statement.

You can name a numeric variable either a letter (A or F) or a letter
followed by a digit (Q2 or R9). An arithmetic expression (J + Z)
is not a valid variable name.

*1¢@ LET A=7

*2¢ LET A=9)

*3¢ LET A=A+1)
*40 LET C9=A%4/3)
%59 LET C/2 =C9)
ERROR @2 - SYNTAX
*

Examine the program in Figure 3-3 which assigns values to A
and B, adds the values, moves the sum to memory address C,
and prints A, B, and C.

3-8

DataGeneral

SOFTWARE DOCUMENTATION

START 0910 RE

*L1ST)

2320
2030

A=2
B=3
C=2+3

2049
2850
2060

Print
A,B,C
&=> *

SD-00263

20790
p080

[6 % I\

REM - ADDS 2 & 3
LET A=2

LET B=3

LET C=2+3

PRINT A

PRINT B

PRINT C

END

*RUN)

END AT 0080

Figure 3-3. A Program Using Variables.

Exercise 3-2.

Is 40 LET A + B = C a valid BASIC statement?

Why or why not?

Exercise 3-3. Write and run a program which uses variables to
print Dif A=2, B=3, C=4, and D= A*B-C,

DataGeneral

SOFTWARE DOCUMENTATION
EDITING

Everyone makes typing mistakes, so here's how to correct them.
The easiest way to delete a character is with the RUBOUT key.
The RUBOUT key prints a back arrow («) on your terminal and
erases the last character you have typed. You can continue
pressing RUBOUT, and BASIC will erase characters right to left,
one by one.

To erase the line you are typing use the SHIFT/L combination
(hold down the SHIFT key and press L). BASIC will print a
backslash (\) on your terminal and execute a carriage return.
You can now retype the line.

Figure 3-4 contains examples of editing with both the RUBOUT
key and the backslash.

*NEU) Pressing the RUBOUT key

*20 PRNT-~INT 2%3) 2 times erased the "T",

*LIST) then the "N"

2023 PRINT 2x%3

%10 REM - PRNIN Typing a backslash

1¢ REM - PRINTS 2 TIMES 3) (SHIFT/L) erased line 10,

* and the carriage return
moved down a line. Retype
line 10.

Figure 3-4. Editing Mistakes.

After you write a program, you may need to debug it (remove the
programming errors). You can delete, add or change a program
statement by its line number.

To erase a line within a program, just type its line number. To
change a statement, retype its line number and the new statement.
To add a statement, give it a line number between two existing
line numbers. It will be easy to add line numbers if you have
stepped them by 10s, as we have done in the examples. Program-
mers step their line numbers for just this reason - to add state-
ments as they debug their programs (Figure 3-5.)

3-10

DataGeneral

SOFTWARE DOCUMENTATION

*LIST

)

fere
2820
0032
20 40
2359
2060

*2@)
*35 L
*40 L

REM
LET A=2
LET B=3
LET C=A+B
PRINT C
END

ET D=2)
ET C=B+D)

*LIST)

REM - ADDS 2 & 3

0010
20330
2@35
2240
aesa
2069

*

LET B=3
LET D=2
LET C=B+D
PRINT C
END

- ADDS 2 & 3

Erase line 20
Add new line between 30 and 40
Change line 40

Figure 3-5. Editing What You've Got.

Another command to help you edit is RENUMBER. RENUMBER
assigns line number 10 to the first statement in your program and
renumbers the remaining lines in increments of 10.

The program in Figure 3-6 renumbers the program in Figure 3-5.

REM - ADDS 2 & 3
LET B=3

LET D=2

LET C=B+D

PRINT C

END

*RENUMBER

___7___2

*LIST

221@
2a2a
aa3a
2240
2350
raea
*

REM - ADDS 2 & 3
LET B=3

LET D=2

LET C=B+D

PRINT C

END

Figure 3-6. Remember to RENUMBER.

3-11

DataGeneral

SOFTWARE DOCUMENTATION

The RENUMBER command is very handy after you have added or
deleted statements in your programs.

Exercise 3-4. Type in the renumbered program in Figure 3-6 and
editittolet A=5, B=3, C=A, and D= A +8B.
Have it print A, B, C and D. Renumber, list and
run your revised program.

3-12

DataGeneral

SOFTWARE DOCUMENTATION

FUNCTIONS

The BASIC language includes many different functions. Each
function tells BASIC to perform an operation which would other-
wise take several statements in your program. We generally use
functions as expressions in BASIC statements; properly applied,
they will save you many steps.

We will introduce three functions now. Other functions are ex-
plained later in this handbook.

Integer Function

The INTeger function, INT(X), generates, or returns, a value
equal to the greatest integer not larger than X.

If Xis 3 INT(X) is 3
If Xis 1.7 INT(X) is 1
If Xis -2.2 INT(X) is -3

You can use INT(X) to see whether or not a number is an integer.
If your number is an integer, INT(X) will equal X. To round
numbers, add .5 and take the INTeger of the sum.

The INTeger function is used in programs where only integer
data makes sense. In a population study for example, you would
take the integer value of the number of people living in a certain
area rather than publish the fact that 17.043279 people live within
walking distance of bus terminals. Examine Figure 3-7 for a
demonstration of the integer function.

3-13

DataGeneral

SOFTWARE DOCUMENTATION

START

Y

A=2.8
B=A+.5
C=-A
D=C+5

Y

Print
A,B,C,D
INT(A),INT(B)
INT(C),INT(D)

201@ REM**%DEMO OF INT FIINCTION*x**
20820 LET A=2.8

#2300 LET B=A+.5

2043 LET C=-A

2052 LET D=C+.5

20368 PRINT A,B,CsD

AA7@ PRINT INTCA),INT(B),INT(C),INT(D)
2080 END

*WUN)
2.8 3.3 -2.8 -2.3
2 3 -3 -3
END AT @@8@
*

SD-Gu264

Figure 3-7. The Integer Function.

3-14

DataGeneral

SOFTWARE DOCUMENTATION
Sign Function

The Sign function SGN(X), will tell you whether a number is
positive, negative, or neither (0).

If X is positive SGN(X) = +1
If X is zero SGNX) =0
If X is negative SGN(X) = -1

The program in Figure 3-8 prints the value, then the sign of A,
B and C.

START
*LIST)

X = 42 @21@ REM %% SGN DEMO 2%

Y =10 @323 LET X=42

Z =-5 @232 LET Y=10

@@4@ LET Z=-5

; GBS LET A=X-(Y*Z)
@@6@ LET B=(Y+Z)*0

@@7¢ LET C=X/Y*Z

A=X-(Y*Z) A@8F PRINT A3 SGNCA)

B=(Y+Z)* O @@9@ PRINT 33 SGN(B)

C=X/Y*2Z #1203 PRINT C;3 SGN(C)

@116 END

C, SGN(C)

END AT 2110
*

SD-00265

Figure 3-8. Finding the Sign.

Use the Sign function when you don't care about the value of a
number but want to know whether it is positive or negative. A
credit checking program might take the Sign of someone's monthly
totals and print "CREDIT" or "DEBIT" depending on the result.

3-15

DataGeneral

SOFTWARE DOCUMENTATION

Absolute Value Function

You might sometimes want the value of a number without regard
to its sign. The absolute value function, ABS(X), returns the

positive value of X.

ABS(l) =1
ABS(-1) =1

Figure 3-9 contains a program using the absolute value function.

START
*xLIST)

P31 REM ### ABS DEMO ###

2020 LET A=400
A =400 #2303 LET B=-75
B=-75 P240 PRINT ALB
@358 PRINT ABS(A),ABS(B)
2068 END
*RUN)
420 -75
ABS(A),ABS(B) 4 e 75

END AT 0260
*

SD-00266

Figure 3-9. The Absolute Value Function.

You use the absolute value function when you want the difference
between two numbers regardless of their sign. Sometimes road
races are won on a target time basis, where the winner may be a
few seconds early or late, but is closest to the target time. You
calculate finalists by taking the absolute value of the finishing time
minus the target time.

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 3-5. Figure 3-10 is a flowchart for a program that will
return a value of 1. See if you can write the pro-
gram. Are all three functions necessary in this
program? Do they have to be written in this order?
There are some values for A which will not print
1. Can you tell what they are? Can you alter the
program so A is always negative 17

START

Give A
some value

Y

A=INT (A)
A=ABS(A)
A=SGN(A)

!
=

SD-00267

Figure 3-10. Flowchart for Exercise 3-5.

END OF CHAPTER

3-17

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 4
WORKING WITH DATA

WHAT'S DATA?

Some BASIC programs will need specific information from you to
run. This information is data. If a program calculates
salaries, the hours worked and wage per hour would be the data;
the program requires these numbers to run.

The LET statement assigns values to variables before you run
a program. The INPUT statement allows you to assign values
while the program is running. To use INPUT, type the keyword
INPUT after a line number, and the variables for which you will
supply values. Always separate INPUT variables with commas.

When BASIC encounters an INPUT statement while executing your
program, it prints a question mark and waits for you to supply

a data value. Therefore, with INPUT you can run the same
program repeatedly using different data for each run (Figure 4-1).

4-1

DataGeneral

SOFTWARE DOCUMENTATION

START

S

REM -

END

END AT 7050
*R1UN

? 5,2)

5

END AT 00592
*

SD-00268

INPUT CONMMAND
INPUT A,B

LET C=A-B

PRINT A,B,C

Figure 4-1.

INPUTing Values.

4-2

DataGeneral

SOFTWARE DOCUMENTATION

When you enter data, after an INPUT question mark, you may
separate values by either a carriage return or a comma. If you
type improper data (alphabetic when BASIC is looking for numeric)
BASIC will print a backslash-question mark (\ ?) and wait for
valid information. If you type more data than your program
needs, BASIC will print an error message.

Exercise 4-1. Write and run a program that will calculate and
print the area of a rectangle if values for length
and width are input by the user. Use the formula:
area = length * width.

4-3

DataGeneral

SOFTWARE DOCUMENTATION

PROMPTING MESSAGES

Sometimes a question mark from an INPUT statement is not
enough information. If you are not familiar with the program
that is running and BASIC prints a question mark, you may not
know what data the program needs. To clarify your own pro-
grams, you can insert a prompting message in quotation marks
after an INPUT statement. BASIC will print this message instead
of the question mark. After the closing quotes of the prompt,
type a comma, then the variable, or variables, for which you
want data.

You may want to clarify output as well. To do this, type your
message in quotes after a PRINT statement. Type commas or
semicolons between this PRINT message and each of your pro-
gram's variables. (You'll find more on PRINT punctuation at the
end of this chapter.) The program in Figure 4-2 uses prompts
with both INPUT and PRINT statements.

Exercise 4-2. Write and run a program that will figure simple
interest, and add it to principal. Your prompting
messages should ask for principal, interest rate
and number of years, then describe the interest
accumulated and the new principal. Use the
formula:

interest = principal * interest rate * number
of years

4-4

DataGeneral

SOFTWARE DOCUMENTATION

SD-00269

START

Input
type values
for A and B

Y

Cs=

A/B

L]

Print
AisA
BisB

A/B=C

*LIST)

@Z10 REM - INPUT VITH PRPOMPTS

A22¢ INPUT ""TYPE THE VALUE OF A: ",A
@23¢ INPUT "TYPE THE VALUE OF B: ",3
P8048 LET C=A/R

#2S® PRINT “A IS ;A

@267 PRINT "5 IS ;8

#E7¢ PRINT "A/B= ,C

@e8a END

*DUN)

TVPE THE VALUE OF A: 99)

TYPE THE UVALVUE OF B: 17)

A IS 99

B IS 17

A/B= 5.82353

END AT @a8e

*

Figure 4-2.

INPUT With Prompts.

4-5

DataGeneral

SOFTWARE DOCUMENTATION

IF YOU KNOW YOUR DATA

With INPUT, you must interact with your program. The READ
and DATA statements tell your program to read its own data,
and run without asking questions. Use READ and DATA when
you know the data before you run the program.

You can list variables in the READ statement, and list values
for these variables in the DATA statement. The order of vari-
ables in READ is the order of retrieval from DATA. If the
number of variables in the READ list exceeds the number of
values in the DATA list BASIC returns an error message.
Examine Figure 4-3 for a demonstration of the READ and DATA
statements.

Neither READ nor DATA will work alone in a program; you must
use both. The DATA statement often ends a program, although
you can put it anywhere. BASIC keeps track of the DATA state-
ments and always knows which data value is the next to be read.

Exercise 4-3. Write a program to figure salary using three data
values - one for the employee number, one for
hours worked, and one for wage per hour. Figure
total salary by multiplying hours by wage. Print
all four variables using prompts to make the
output understandable. Change the values in
the DATA statement and run the program again.

4-6

DataGeneral

SOFTWARE DOCUMENTATION

go10
2020
0230
2040
2859
2060
ee27@
0080
2090
2100
2110
2120
2130

A=A/B+C
B=B*3

wouon

B*3

E

SD-00270

*LIST)

REM -

READ A,B,C

READ A,B,C

PRINT
PRINT
PRINT

LET A=
LET B=

PRINT
PRINT
PRINT
PRINT

A
llB
"C
A/Bx*C
B*x3

nonon
\:
w

""A/Bx*C EQUALS '";3A

”"e

""B*3 EQUAL H

DATA 3,4,5

END

3
4
5

A/BxC EQUALS

EQUALS

END AT @13¢@

Figure 4-3. READ and DATA Statements.

DataGeneral

SOFTWARE DOCUMENTATION

REMEMBER TRIG?

If you have had trigonometry, you can use BASIC's trigonometric
functions. Skip this section if you are not familiar with
trigonometry.

BASIC trig functions use radians (180° = 7 radians) to measure
angles. The four BASIC functions to calculate trigonometric
relationships of angles are:

START

Define P
convert from
degrees toradians

!

X = 30°+P

Prlnt
SIN 30°
Ccos 30°
TAN 30°

Prlm

ATN in
radians and
degrees

SD-00271

Figure 4-4. Trigonometry.
4-8

SIN(X)

COS(X)
TAN(X)
ATN(X)

DataGeneral

SOFTWARE DOCUMENTATION

Sine of X (X is angle in radians)

Cosine of X (X is angle in radians)

Tangent of X (X is angle in radians)

Angle in radians whose tangent is X (arctangent)

These functions are demonstrated in the program in Figure 4-4.

*L1ST)
@P1¢ PEM :: DENMO OF TRIG CALCULATIONS
@@26 REM :: P CONVERTS FR DEGREES TO RADIANS
@733 LET P=3.14159/180

@@4@ REM :: X IS 3@ DEGREES IN RADIANS
@350 LET X=30%P
@268 PRINT SINCX)
@378 PRINT COS(X)
?228@ LET T=TAN(X)
@@9@ PRINT T
@107 REM :: ATNCT) IS RADIANS
#1128 PPINT ATNCT)
@120 REM :: ATN(T)/® IS DEGREES
@130 PRINT ATNCT) /P
@148 END
*R1IN)

.5

.866026

+57735

.523599

30

END AT 0140

E

4-9

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 4-4, You can use the following formula, derived from the
law of cosines, to calculate the unknown side of a
triangle given two sides and their opposits angles:

a = b*cos C + c*cos B,
Given a triangle with side b = 4, side c =5,

angle B = 459, and angle C = 659, solve for
side a.

4-10

DataGeneral

SOFTWARE DOCUMENTATION

NICE, NEAT OUTPUT

So far, we've been using PRINT without a complete explanation
of how it works. We have used commas and semicolons as
separators in examples; maybe you have discovered that the for-
mat of your output varies with your punctuation. At this point,
we have included the rules about PRINT punctuation, so you may
choose the format of your printed output.

1. If a PRINT statement contains more than one item you must
separate these items by a comma (,) or a semicolon ;).

2. The print line on a terminal is divided into five print zones
of 14 spaces each. If a comma (,) separates items in the
PRINT statement, BASIC will print the next item in the left-
most position of the next printing zone. If no more print
zones are available on a current line BASIC moves the item
to the next line.

3. If a semicolon (;) separates items in the PRINT statement,
BASIC will print the next item at the next character position.
BASIC reserves a space before any positive number, and
prints a minus sign before any negative number. BASIC
also reserves one space after each number.

4. When BASIC prints the last item in a PRINT list, it outputs
a carriage return/line feed combination unless a comma or
semicolon follows the last item in the list. This carriage
return/line feed will take you to the next line. If you
punctuate the last item BASIC will not output the carriage
return/line feed - it will print the next PRINT item on the
same line according to the comma or semicolon punctuation.

5. A PRINT statement without print items or punctuation causes
BASIC to output a carriage return/line feed combination.
This PRINT statement will either complete a previous PRINT
statement ending with a comma or semicolon, or will generate
a blank line.

4-11

DataGeneral

SOFTWARE DOCUMENTATION

Examine the program in Figure 4-5 and decide how the PRINT
statement affects its output.

START

READ
A,B,C,D,E

Y

Print

any and all
combinations

END

SD-00272

Figure 4-5. The PRINT Statement.

DataGeneral

SOFTWARE DOCUMENTATION

*LIST)

2316 REM **x DEMO OF PRINT STATEMENT *x*

@620 READ A,B,C,D,E
@839 PRINT A,B»,C
0040 PRINT DJE;AB

2850 PRINT

@060 PRINT A,B» The comma at the end of line
8072 PRINT C 60 tells BASIC not to output a
288@ PRINT A;Bj; carriage return and to print

@893 PRINT C
@10@ PRINT
@118 PRINT A,B» !
@128 PRINT C;D; line 60.
#13@ PRINT

@140 PRINT A AND B FOLLOW: '",A,B
2158 PRINT '""C3; D AND E ARE NEXT:

2163 PRINT

@173 PRINT A+B/Cx*D

2180 PRINT '"D+E EQUALS ", D+E
219@ PRINT "A+B EQUALS "3A+B
22238 DATA 1,253,455

*RUN)
1 2 3
4 5 1 2
1 2 3
1 2 3
1 2

A AND B FOLLOW: 1

C; D AND E ARE NEXT: 3 4 S

366667
D+E EQUALS 9
A+B EQUALS 3

END AT 02042
*

the C from line 70 on the same
output line as the A & B from

";C35D5E

4-13

SOFTWARE DOCUMENTATION

Exercise 4-5. Study the program in Figure 4-6 and see if you
can predict its output. Run the program and
compare the computer's output with your own.

@010 REM ##### PRINT ME

@820 PRINT A,B,C

2038 READ X,Y,Z

P24@8 PRINT X3

B3S@ PRINT Y3

2068 PRINT Z

2@7@ PRINT

P28@ PRINT "PLAYING COMPUTER IS FUN"
209@ PRINT 7,

2100 PRINT "6,5",4,

21160 PRINT

2120 PRINT "I CAN COUNT BACKWARDS",
@138 PRINT 335251

@140 PRINT 'THE END"

21508 DATA 5,7,9

@160 END

Figure 4-6. Program for Exercise 4-5.

END OF CHAPTER

4-14

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 5
DECISIONS AND LOOPS

Thus. far, BASIC has run your program statements from top to
bottom - from the lowest statement number in step to the highest.
As you begin to write more complex programs, you will often
find this order inefficient. This chapter describes ways to

alter the flow of execution within your programs.

NON-NUMERICAL ORDER

As you write your program, you can direct BASIC to other state-
ments within it. The GOTO statements alters the normal flow
of execution by explicitly directing the program to some specific
line number.

In Figure 5-1, the GOTO statement directs BASIC to skip a line.
In the flowchart, the arrows show control bypassing the procedure
box which contains "PRINT THIS IS A DUMMY STATEMENT".
The arrows represent the GOTO statement in line 40, which
directs control to line 60. BASIC never executes line 50.

DataGeneral

SOFTWARE DOCUMENTATION

SD-00273

START

Print
A+3x*x4

Print
this is a
dummy
statement
Print
, »/ the program
skips
line 50

*LIST)

@?1¢ REM - GOTO STATEMENT

@028 LET A=2

@@30 PRINT A+3%4

@642 GOTO 2068

@¢50 PRINT “THIS IS A DUMMY STATEMENT"
@068 PRINT "“THE PROGRAM SKIPS LINE 58"
@378 END

*RUN)
14
THE PROGRAM SKIPS LINE 50

END AT 0070
*

Figure 5-1. The GOTO Statement.
5-2

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-1. Show what the computer will print when it executes
the program in Figure 5-2.

*xL1ST)

@216 REM - FOLLOWING GOTO
@828 PRINT "DEMO OF GOTO"
@03@¢ GOTO 8080

@848 PRINT "HAVE A GOND DAY!"™
@650 GOTO @130

@368 PRINT "REALLY SKIPS AROUND, ";
@87¢ GOTO @11@

@08@ PRINT

@@9@¢ PRINT "THIS PROGRAM "
2100 GOTO 6060

@11@ PRINT "DOESN'T IT?"

@128 GOTO @40

@138 END

Figure 5-2. Going Round in Circles.

5-3

DataGeneral

SOFTWARE DOCUMENTATION

STOP OR END?

Until now, we have used the END statement to show the end of our
programs; the END statement has been the last one BASIC reads.
Yet as you redirect control, your bottom statement will often lead
back into the program; the logical end will be somewhere in the
middle. To separate the logical end of a program from its physical
end, BASIC includes the STOP statement. Whenever the logical
and physical ends of your program differ, you should use STOP
for the logical end and reserve END for the physical end. Either
statement will work - the two are functionally identical in Data
General's BASIC - but both your flow charts and programs will be
clearer if you distinguish the logical end from the physical end.
We have made this distinction in Figure 5-3.

DataGeneral

SOFTWARE DOCUMENTATION

START

2010
20820
2030
0040
2050
0060
2070

*RUN)

THAT

Print
that is

the
question

SD-00274

STOP
*

*LIST

)

REM - STOP OR END?

PRINT "TO STOP OR TO END,"
GOTO 20850

STOP

PRINT '"THAT IS THE QUESTION."
GOTO 2040

END

TO STOP OR TO END.,

IS THE QUESTION.

AT 0040

Figure 5-3. STOP and END Statements.

These last two program examples have really been jumping
around, and while hopping and skipping may be fun, they don't
represent efficient coding. In the next section, you'll learn an
important new statement to use with GOTO - and some good
reasons for applying STOP and END properly.

5-5

DataGeneral

SOFTWARE DOCUMENTATION

WHAT IF?

Many times a programmer would like to perform some calcula-
tion in one case and another calculation in another case. Maybe
you are figuring a company payroll and want to add overtime
compensation if an employee has worked over 40 hours. You can
use the IF statement to test this condition (is hours worked over
407?) and add compensation IF the answer is yes.

A test condition implies a choice. The IF statement tests an
expression and gives BASIC directions to follow if that expres-
sion is true. These directions follow the keyword THEN. An
IF statement for the overtime program above is:

100 IF H>40 THEN GOTO 150

where H is the number of hours worked. The code at line 150
would contain the routine to figure the overtime.

Did you recognize the greater than sign (>) in line 100? BASIC
includes several signs for testing relationships between numbers,
called relational operators. Table 5-1 describes these relational
operators.

Table 5-1. Relational Operators

Relational Meaning
Operator
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<>or >< not equal to

5-6

DataGeneral

SOFTWARE DOCUMENTATION

Do you remember the discussion of flow charts in Chapter 3?
The diamond -shaped decision box represented a test condition
in the form of a "yes" or "no" question. A "yes' answer routed
program flow one way, a "no' answer another way. Whenever
your flow chart contains a decision box, you will use the BASIC
IF statement.

Within your program, BASIC evaluates the relational expression
following IF (H>40), and if this expression is true (if the answer
to your question is "yes') BASIC will go to the statement following
THEN (GOTO 150). If that expression is not true (if the answer
to your question is "no"), BASIC will go to the statement which
follows the IF.

Almost all BASIC statements are valid after the keyword THEN.
You can use PRINT, LET or GOTO depending on what you want
the program to do. Two exceptions we will note here are the
END statement, though you can use THEN STOP, and FOR or
NEXT statements which we'll tell you about later.

DataGeneral

SOFTWARE DOCUMENTATION

Suppose we show you an example. We will input a number N and
test the relationship of some number A to N. If A is less than N,
THEN we will print a message saying "A is less than N", add

2 to A and test the relationship again. If A is not less than N we
will stop. The question in the flow chart decision box will be

"Is A less than N?"

Figure 5-4 contains the flow chart and program for this problem.
Notice the decision box in the flow chart and the GOTO in line 40

of the program.
START

Input
a
number, N

Y

Initialize
A

—

No STOP

Yes

Print

A is less
than N

'

Increment
A by 2

SD-00275

Figure 5-4. IF Statement.
5-8

Exercise 5-2.

Exercise 5-3.

DataGeneral

SOFTWARE DOCUMENTATION

Dig out the program you wrote for Exercise 4-3
to figure a simple salary. Update the program to
check for overtime. Calculate the first 40 hours
at the given wage and any hours over 40 at time
and a half (1 1/2 times the given wage). Print the
employee number, hours worked, pay for first
40 hours, overtime pay and total salary.

Write a program which asks you to INPUT 2
numbers, X and Y, and print their relationship
(X is less than Y, X is greater than Y, or X is
equal to Y).

*LIST)

@310 REM - IF...THEN DECISION
@620 INPUT “TYPE A NUMBER: ",N
@33@¢ LET A=0

@047 IF A<N THEN GOTO @060

@@5¢ STOP

@368 PRINT A3;" IS LESS THAN ";N
@878 LET A=A+2

038 GOTO @340

@698 END

TYPE A NUMBER: 9
@ IS LESS THAN
2 IS LESS THAN
4 1S LESS THAN
6 IS LESS THAN
8 IS LESS THAN

Ko Ve JRYo Vo JVe}

STO® AT 0@S@
*

The term initialize has several meanings in the computer world.
We use it here to define and set a counter for one program's use.

5-9

DataGeneral

SOFTWARE DOCUMENTATION
Numeric Expression

You may follow IF with a numeric variable (or numeric expression)
in place of a relational expression. Whenever BASIC encounters

a numeric expression after an IF, it checks that number against
zero. If the number equals zero, the statement is false, and
control goes to the next line in your program. If the number is

not zero, the statement is true, and BASIC will follow the
instructions after THEN.

2721a LET Ns@

ea2m IF N THEN GOTO na7a Statement false, goto 30.
232 |LET Nai@
P@42 IF N THEN GOTO 0a7nm Statement true, goto 70.

The program in Figure 5-5 uses a numeric IF expression to
test whether N equals zero. The program continues around in
circles, or loops, until N equals zero.

START

N=10

Print
N is
positive

'

Subtract
2 from N

- SD-00276

Figure 5-5. Numeric IF Statement.
5-10

DataGeneral

SOFTWARE DOCUMENTATION

You must be careful using the numeric test. If N had been set to
9 in line 20 of Figure 5-5, the program would have continued
looping indefinitely because N would never equal 0. If you suspect
your program is in an infinite loop, or if you want to stop it for
some other reason, press the ESCape key. An ESCape will stop
your program; BASIC will print the line number currently
executing and an asterisk prompt. You may then edit, revise,

or RUN the program again.

Exercise 5-4. The factorial of a number is that number, N,
times (N-1) times (N-1)-1 down to 1 (not 0). We
denote a factorial with an exclamation point (!).
So 5! = 5*4*3*2*1, Write a program to input N
and find N!.

*L1ST)

@016 REM (IF WITH A NUMERIC EXPRESSION)
@828 LET N=18

@03¢ IF N THEN GOTO @860

@@48 PRINT " N IS ZERO"

@859 STOP

@@60 PRINT N;" IS POSITIVE"

@@7¢ LET N=N-2

@@80 GOTO G030

@P9@ END

*RUN)

18 1S POSITIVE
IS POSITIVE
1S POSITIVE
IS POSITIVE
1S POSITIVE
1S ZERO

20 >0 R

STOP AT 20509
*

5-11

DataGeneral

SOFTWARE DOCUMENTATION

Getting Complicated

So far, we have used fairly simple examples so you could learn
the construction of BASIC programs. Figure 5-6 contains a more

START

Input
2 numbers
A,B

]

Set
counter
N=10

D ————

Yes STOP

No

Subtract
2 from
counter

Print
A<B
message

Print Print
A>B A=8B
message message
Increase Decrease Increase
8 A A
Y Y A

Figure 5-6. Number Comparison Program.
5-12

DataGeneral

SOFTWARE DOCUMENTATION

complex program using both IF relationships. The program
compares 2 numbers, changes the value of the lower and compares
again.

*LIST)

@010 REM COMPARE & CHANGE NUMBERS
@@2¢ INPUT "TYPE VALUES FOR A AND B: ",A,B
@638 LET N=18

@048 IF N THEN GOTO 0060

@850 STOP

@866 LET N=N-2

@676 1F A>B THEN GOTO @130

@080 1IF A=B THEN GOTO @170

¢@9¢ REM - A MUST BE LESS THAN B
@10¢ PRINT A" IS LESS THAN "'
@110 LET A=A+B/2

@126 GOTO 0040

@136 REM - A GREATER THAN B

@148 PRINT A3 1S GREATER THAN "B
@158 LET B=B+A/2

2168 GOTO @40

#17¢ REM - A EQUAL TO B

#18¢ PRINT A;" IS EQUAL TO ";B
@198 LET A=A/2

@206 GOTO G40

@218 END

*RUN)

TYPE VALUES FOR A AND B: 7,4

7 IS GREATER THAN 4

7 IS LESS THAN 7.5

12.75 IS GREATER THAN 7.5
16.75 1S LESS THAN 12875
17.1875 IS GREATER THAN 12.875

STOP AT @@s5e@

*PUN

TYPE VALUES FOR A AND B: 2,4
IS LESS THAN 4

1S EQUAL TO 4

IS LESS THAN 4

1S EQUAL TO 4

IS LESS THAN 4

N &HND SN

STOP AT 2050
*

SD-00277

5-13

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-5. Write a program to input 10 numbers and print the
largest. We have started a flow chart in Figure 5-7,
though you will have to complete it.

START

Set
counter

Y

Set test
value to
lowest

Print
highest

Y

Decrease
counter

SD-00278

Figure 5-7. Incomplete Flow Chart for Exercise 5-5.

5-14

DataGeneral

SOFTWARE DOCUMENTATION
Flagging the End

You can also use the IF statement to tell BASIC that it has reached
the end of a DATA list. The IF statement in line 30 of Figure 5-8
tests each item in the DATA list for a value out of the normal

data range. We use this value as a flag to mark the end of the data.

On the first pass through this program the READ statement takes
the first DATA value, 2. Since A is less than 9999 in line 30,
BASIC divides 2 by 2 and prints 1. When control goes back to
line 20 BASIC reads the second DATA value, 4. This process
continues until BASIC finds the 9999 flag and the program STOPS
at line 30.

With this technique, you can write your programs to READ dif-
ferent DATA statements each time they run, or to READ a
sequence of DATA statements for one run. You must flag the
last DATA value; if you don't, BASIC will return an error mes-
sage when it runs out of values.

Exercise 5-6. You can also use a flag value to signal the end of
an INPUT list. Input a list of numbers and end
the program with a zero flag. For each number
use the integer function to print its fractional
part. Print negative sign if the original number
is negative. If 4.38 is input, your program
should print .38. If -6.24 is input, your pro-
gram should print -.24. If 1000 is input, your
program should stop.

5-15

DataGeneral

SOFTWARE DOCUMENTATION

——— data

START

Read next

value

value=
value/2

!

Print
value

*LIST)
@@12 REM #%9999 FLAG¥%
@02¢ READ A
¢@30¢ IF A<9999 THEN GOTO @250
@42 STOP
@656 LET A=A/2
P#6 PRINT A
@¢7¢ GOTO @e2¢
@788 DATA 2,4,6,8,9999
@39@ END
*RUN)

]

2

3

4

STOP AT @040

*
SD-00279

Figure 5-8. Program Using a Flag Value.

5-16

DataGeneral

SOFTWARE DOCUMENTATION

RANDOMIZE

Thus far, BASIC has given you nothing original for all your input;
it has simply done what you told it to do. The RANDOMIZE
functions do generate something for you - random numbers be-
tween zero and one.

The RND(0) function returns a psuedo-random number between 0
and 1 each time you call it. BASIC generates the same sequence
of random numbers each time you use RND(0), unless you

add the RANDOMIZE statement. The RANDOMIZE statement
resets BASIC's random number generator to produce a different
sequence for each run. These numbers allow you to play many
games of chance with BASIC.

If you write your program using the RND(0) function, you can
debug it with the same set of random numbers. Once your pro-
gram runs correctly, insert the RANDOMIZE statement to pro-
duce a unique sequence of numbers for each run.

The program in Figure 5-9 simulates a coin game. The program
generates one thousand random numbers and counts them as heads
if greater than .5 and tails if equal to or less than .5. It prints
the total number of heads and tails thrown.

Exercise 5-7. Write a program to generate a random integer
between 1 and 100. Have the program ask you to
guess a number and tell you whether your guess
is higher or lower than the computer's number.
You should be able to guess the computer's number
in 7 tries.

5-17

DataGeneral

SOFTWARE DOCUMENTATION

START

Initialize
counter

Y

Get
random
number

Is It
heads ?

Yes Add |
to heads

Add |
to tails

IS

Increment
counter

s
counter >
10002

Print
totals

No

SD-00280

Figure 5-9. Heads or Tails?

5-18

DataGeneral

SOFTWARE DOCUMENTATION

*LIST

)

2010
0020
@e30
0040
0850
0060
2070
2080
2090
2100
2110
2120
213@
2140
2150
2160

*RUN)

REM - COIN GAME

LET C=1

RANDOMIZE

LET N=RND(8)

IF N>«5 THEN GOTO 0090

REM - ADD 1 TO TAILS

LET T=T+1

GOTO @110

REM - ADD 1 TO HEADS

LET H=H+1

LET C=C+!

IF C<1000¢ THEN GOTO @@40
PRINT "OUT OF 186@ THROWS,"
PRINT * ";H;'"WERE HEADS,"
PRINT " ";TS;"WERE TAILS."
END

OUT OF 10873 THROWS,

493 YWERE HEADS,
S@6 WERE TAILS.

END AT @160

*

5-19

DataGeneral

SOFTWARE DOCUMENTATION

USING A SUBROUTINE

As you create more complex programs, maybe you've noticed

that certain sequences of statements appear more than once.
These sequences may perform calculations, or compare variables-
in any case, they are identical, and you've had to write them

more than once.

You can code these sequences as subroutines. In BASIC, you
can write a subroutine once, and return to it whenever you
want. After you have written your subroutine statements, and
given them line numbers, use the GOSUB statement to direct
program control to them, and the RETURN statement to bring
control back to the statement below GOSUB. Subroutines are the
building blocks of large programs; whether they are long or short,
they save time, and help you to see complex programs as an
assembly of simple units. Remember that each GOSUB must
precede its RETURN, and that BASIC will RETURN to the state-
ment after the GOSUB.

The flow chart for the program in Figure 5-10 includes a new
symbol which transfers control to the beginning of a subroutine.
You can omit the lines going from the program to the subroutine
when you understand the subroutine procedure.

5-20

DataGeneral

SOFTWARE DOCUMENTATION

START

SET A

START
subroutine

Print A/2

STOP

*
SD-00399

REM - SUBROUTINE PROGRAM
LET A=6

GOSUB @a70@

LET A=10

GOSUB 0270

STOP

REM - SUBROUTINE

PRINT A/2

RETURN

END

AT @260

Figure 5-10. Subroutine.

5-21

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-8. Write a program that READS a number A and uses
a subroutine to stop if the number is less than
zero or greater than 99. If A is within that
range the program should subtract A from 100,
print the answer, return, read the next DATA
item and test again.

Exercise 5-9. Write a program to simulate a dice game. For
each roll of the dice, use a subroutine which
generates 2 random integers between 1 and 6. On
the first toss you win with a total of 7 and the
computer wins with a total of 12. Any other sum
becomes your point. You may continue throwing,
trying to match this point. If you roll a 7 while
trying for a point, the computer wins.

Keep a tally of games won and lost. For a real
dice game, your first roll wins with a 7 or 11,
and the computer's first roll wins with 2, 3,or 12.
Modify the program so that 2 or more players
can compete. Have fun. Who needs Vegas?

END OF CHAPTER

5-22

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 6
FOR/NEXT LOOPS

LOOP USING IF

In the next section we introduce a loop called a FOR/NEXT loop.
The program in Figure 6-1 uses a familiar IF loop. It incre-
ments a variable, A, by 2 and prints A five times. The variable
I counts the number of loops executed, and stops the program
after five have been executed. We will code a corresponding
program using a FOR/NEXT loop to show you the relationship
between the two loops.

Exercise 6-1. The next section introduces a set of statements
and demonstrates a different way to code this
program. Can you think of other ways using the
statements you already know?

6-1

DataGeneral

SOFTWARE DOCUMENTATION

START

Initialize
counter

*LIST)
@31¢ REM **IF LOOP
@22¢ INPUT A

I=
e ?2@83@ LET 1=1
02408 1F 1>5 THEN GOTO @@9¢
@858 LET A=A+2
Yes @260 PRINT A
| 0070 LET I=I+1
@08@ GOTO 0040
209@ END
No
ADD

*RUN)
? 20)
2 toA 20
24
26
28
S
END AT @@90%
*
Increment
counter
By |

SD-00282

Figure 6-1. IF Loop.

DataGeneral

SOFTWARE DOCUMENTATION

THE FOR AND NEXT STATEMENTS

The FOR and NEXT statements mark the beginning and end of a
program loop. FOR assigns a range to a variable and tells
BASIC how many times to execute the loop; NEXT directs control
back to FOR. The two statements allow you to loop as many
times as you want.

FOR/NEXT loops extend the usefulness of BASIC; they are
convenient, self-terminating and use fewer program statements
than any other loop.

20 FOR J=1TO7

. Program Statements

60 NEXT J
70 REM-Continue after 7 repetitions
SD—00397

Figure 6-2. FOR and NEXT Statements.

Assume that BASIC is reading the program in Figure 6-2 for the
first time. At line 20, BASIC will initialize] to the first value
in J's range (1).] is then tested against the last value in the
range, 7.] is less than 7, so BASIC will execute the statements
between line 20 and line 60, At line 60, BASIC adds 1 to J, and
loops back to test the new] against 7. After six more loops,]
exceeds 7; control passes from line 20, where the test occurred,
to the line following the NEXT statement, line 70.

Figure 6-3 shows the FOR/NEXT version of the IF program in
Figure 6-1. The dotted lines in the flowchart show the logic
which the FOR/NEXT statements perform but the programmer
does not code. When you understand the logic of the FOR/NEXT
loop you can omit the dotted sections from your flowcharts.

6-3

DataGeneral

SOFTWARE DOCUMENTATION

START

Start
FOR /NEXT

loop

*LIST)
Initialize @010 REM - FOR/NEXT
counter @220 INPUT A
T=1 @@3@ FOR I=1 TO 5
2040 LET A=A+2
T @058 PRINT A
| ~Is"~ PP6@ NEXT 1
' <: C‘;‘g‘-}"\,\»—rﬂ——‘ @@7¢ END
l -
I No *RUN)
?
' Add R
' 2 toA ”
' 26
! 28
| 30
|
| END AT 0670
b3
|
I Go through
| loop
I again
|
| r——4 ==
L— Increment
counter by |
————— -l
END
SD-00283

Figure 6-3. FOR/NEXT Loop.

DataGeneral

SOFTWARE DOCUMENTATION

To distinguish FOR/NEXT loops from the rest of a program,
BASIC always indents them (lines 40 and 50). Note that the FOR/
NEXT loop uses 7 statements for this program and the IF loop
uses 9. Remember that a FOR statement must always have a
corresponding NEXT statement to end the loop.

Explanations alone may not clarify FOR/NEXT loops; you must
try some examples. Therefore, we have included more exercises
than usual here and hope you will try them. The concept of
FOR/NEXT loops is a little tough but once you understand it you
may never use an IF loop again.

Exercise 6-2. Write a program that squares the integers from
1 to 100 and prints the integer and its square if
the square is odd. Use a FOR/NEXT loop and
the flow chart in Figure 6-4. The integer which
you are squaring is the variable you are incre-
menting in your FOR/NEXT loop. Clue: the
INT (X) function can help test for odd numbers.

Exercise 6-2A. A more complex variation of exercise 6-2
prints the number only if the integer in the tens
column of the square is odd. The logic is
tricky!

Exercise 6-3. Use a FOR/NEXT loop to write a BASIC program
that will list the factors of a number (N) input
from the terminal. A factor is a number which
will produce N when multiplied by another factor.
Use a FOR/NEXT loop to test the counter values
from 1 to N.

Exercise 6-4. Write a program to balance your checkbook.
Input the last balance and the number of checks
written. Use a subroutine with a FOR/NEXT
loop to total the amount of the checks. Subtract
the check total and any service charge from the
balance. Input the number and amount of deposits
and add the deposit total to the balance. Print
the current balance.

DataGeneral

SOFTWARE DOCUMENTATION

START

Start
FOR/NEXT

F———=-—-"
' Initiglize 1
i counter |
S |

/ ls\\
“counter® _ Yes
< >100

) —————————————

Print
counter, A

1
I Increment |
-7 counter

SD-00284

Figure 6-4. Flow chart for Exercise 6-2.

6-6

DataGeneral

SOFTWARE DOCUMENTATION

ADVANCED FUNCTIONS

Let's take a breather from FOR/NEXT loops to introduce the
three functions in the program in Figure 6-5. If you haven't
covered these functions in your math classes yet, you may skip
them.
Square Root Function:

SQR(X) returns the value of the square root of X.
Exponential Function:

EXP(X) returns the value of e (2.71828) to the power of X.

Logarithm Function:

LOG(X) calculates the natural logarithm (base e) of X.

*LIST)
@310 REM ''°"ADVANCED MATH FUNCTIONS®®®
@320 PRINT "SQR(25) = "3;SQR(25)

2030 PRINT “EXP(l1.5)= ";EXP(l.5)
@@4¢ PRINT "LOG(959)= '"3L0G(959)

@358 END

*RUN)

SQR(25) = 5
EXPCl.5)= 4.48169

LOG(959)= 6.86589

END AT 2¢50
*

Figure 6-5. Square Root, Exponential and Logarithm Functions.

6-7

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 6-5. Check the accuracy of BASIC's SQR(X) function.
Take the square root of each number from 1 to
25 and square it. Print the number, its square
root, and square root squared.

Exercise 6-6. Write a program that will compare the product of
2 numbers, X and Y, with the exponent of the

sum of their logarithms.

X*Y=Z XI =log(X)

Y1 = log (Y)
Z1=X1+Yl
Z1 = EXP(Z1)

Z and Z1 should be very close.

6-8

DataGeneral

SOFTWARE DOCUMENTATION

NESTED FOR/NEXT LOOPS

Now, back to FOR/NEXT loops. You can nest FOR/NEXT loops
within each other. An inner FOR/NEXT loop must be completely
contained within the outer FOR/NEXT loop in which it is nested,

as diagrammed in Figure 6-6.

LEGAL ILLEGAL
OR X=1|TO 4 '—FORA=2T05
FOR Y=8 TO 10 FOR B=| TO 100
—NEXT Y EXT A
NEXT X NEXT B

SD-00385

Figure 6-6. Legal and Illegal FOR/NEXT Nesting.

The program in Figure 6-7 prints the values of I and] within
a nested FOR/NEXT loop.

The next chapter introduces a method of storing data and retriev-
ing it using FOR/NEXT loops, both before unnested and nested.
Get familiar with these loops before tackling Chapter 7.

Exercise 6-7. The flow chart with all its dotted lines can get
very complicated. Use the flow chart without
the dotted sections in Figure 6-8 to write a pro-
gram which will print the multiplication tables
up to 5 * 10.

Exercise 6-8. Revise the program you wrote for exercise 6-3

to list the factors of all the integers between 20
and 30. Use nested FOR/NEXT loops.

6-9

DataGeneral

SOFTWARE DOCUMENTATION

Start FOR/NEXT
loop I

F_;ﬁ;‘

Lcounter Ito il

_—="Tls T~ _ ves

< counter > 5?’)"‘-'—j

Start for/next
loop J

——

Initialize |
| counter J to 12

(|
F—————

// ls‘\\
— ~ . Yes
< coumer >142 >——
<L o~

|

|

| ﬁrlnt coumer/
J counter

|

: Get next

' J value

| B
-d

L r —lgcr_ement
- J counter

Get next _
I value
= Thcrement 1

L L counter

L -

SD-00285

Figure 6-7. Nested FOR/NEXT loop.
6-10

DataGeneral

SOFTWARE DOCUMENTATION

*LIST)
@01¢ REMARKS - NESTED FOR/NEXT LOOP
@@2¢ FOR 1=3 TO 5

@838 FOR J=12 TO 14

2240 PRINT "I
2256 PRINT 'dJ
0060 NEXT J
@873 NEXT 1

7288 END

e o

I,
J

*
0
o
4
o

12
13
14
12
13
14
12
13
14

b b
wonowonowonnnun
GuUuAadsbdLOWW
[V U U R R R R P Y

oW nnnn

END AT @0@80¢
*

6-11

DataGeneral

SOFTWARE DOCUMENTATION

START

Start
outer loop
multiplier

End

Print
title

message

Y

Start

inner loop \E”d
multiplicand j

y

Print
multiplication
product

Get next
multiplicand

Get next
multiplier

SD-00286

Figure 6-8. Flow Chart for Exercise 6-7.

END OF CHAPTER

6-12

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 7
NUMERIC SUBSCRIPTING

ARRAYS

Thus far, you have stored single numbers in memory locations
(mailboxes). BASIC also allows you to store tables of numbers in
memory. These tables are called arrays; the numbers which
they include are called array elements.

o0 jo0jJO0|0fOj0O]O|0O|O
A(l) A(2) A(3) A(4) A(5) A(6)A(7) A(B) A(9) A(IO) A(II)

SD-00287

Figure 7-1. An Array.

Array A's box ranges from A(l) to A(11). (Some BASIC systems
start numbering elements at 0.) You can place any number (or
expression) you like in the boxes with the LET statement. You
could LET A(l) equal 1399, -6, SQR(5), or 2/3.

To create an array, tell BASIC how many elements you want to
use with the DIMension statement; DIM A(11) would create array
A (Figure 7-1). Whenever you create an array, BASIC sets the
value of each element to zero.

7-1

DataGeneral

SOFTWARE DOCUMENTATION

Figure 7-2 shows Array B, after program statement 10 created it,
through line 50, after elements 2, 20, 23, 30 have received
values.

ARRAY, B
10 DIM B(30)——— {0 [0 [0] eeeeeeeccccacac o] 0]
20 LET B(2)=47 B0) B(2)B(3) B(29)B(30)
30LET B(30)=72
4O LET B(23):(5+3V4
50 LET B(20)=830-B(2p= 0 [47[0 [-+ - *os]o [0 [2]+ - - r2
$D-00394 B(1) B2)8(3) BROBRDBR2)BR3) B(30

Figure 7-2. Program Statements and Array B.

As an example, the program in Figure 7-3 creates an array with
an element for each of 6 employees. The program reads the
employee's number (1 to 6) and hours worked. It then multiplies
each number of hours by a fixed wage of $2.60 and places the
resulting earnings in the employee's element of Array T. After
it calculates all 6 wages it prints the elements in Array T.
Notice how the variable] (the employee's number) in the FOR/
NEXT loop becomes the subscript for Array T.

7-2

DataGeneral

SOFTWARE DOCUMENTATION

FOR/NEXT variables and array subscripts each start at an
initial value, get incremented and end at some final value; they
really work well together, and we will use them often.

Exercise 7-1.

Exercise 7-2.

Input an array, T, with 15 elements. Fill a
second array, S, with the square roots of those
elements, so S(1) = SQR(T(1)). Print array T and
array S.

Write a program that inputs an array of 10
elements. Find the highest and lowest element.
Print the array and messages designating the
highest and lowest elements.

7-3

DataGeneral

SOFTWARE DOCUMENTATION

START

Dimension T
holds employee wages

Start FOR/NEXT\ gro
defines subscnpts

lnpuf no. of
hrs. worked

Multiply hrs. worked by
wage per hour

Y

Put total wage
in array

Get next
‘ employee number

Start
print loop

Print total wage
message
Get next

employee wage

D

SD-00288

Figure 7-3. Array T Contains Employee Wages.
7-4

DataGeneral

SOFTWARE DOCUMENTATION

*LIST) |
@010 REM
@020 REM
@230 DIM
@@4¢ FOR
2050
2060
2070
2280
2290
2100
7110
2120
@130
o140

TL6]
J=1 TO 6

INPUT
PRINT

NEXT J

FOR 1=1 TO 6
PRINT

NEXT I

END

*RUN
FOR EMPLOYEE 1 ?
TYPE HOURS WORKED:

FOR EMPLOYEE 2 ?

PRINT '"FOR EMPLOYEE
"TYPE HOURS WORKED:

LET TLJI1=A%2.6

“"EMPLOYEE #"3;1;"

*x FIGURES EMPLOYEE WAGES
%% USES ARRAY

e Teuy

2 ’ ? "

'l,A

REM %% PRINT ARRAY

EARNED $";T(I1

TYPE HOURS WORKED: 35)

FOR EMPLOYEE 3 ?

TYPE HOURS WORKED: 42)

FOR EMPLOYEE 4 ?

TYPE HOURS VORKED: 10)

FOR EMPLOYEE 5 ?

TYPE HOURS WORKED: 38)

FOP EMPLOYEE 6 ?

TYPE HOURS WORKED: 2¢)
EMPLOYEE # 1 EARNED $ 1@4
EMPLOYEE # 2 EARNED $ 91
EMPLOYEE # 3 EARNED § 129.2
EMPLOYEE # 4 EARNED § 26
EMPLOYEE # 5 EARNED $ 98.8
EMPLOYEE # 6 EARNED $ 52

END AT 0142
*

7-5

DataGeneral

SOFTWARE DOCUMENTATION

ANOTHER ARRAY

The program in Figure 7-3 demonstrate

elements and stores the running total in

s the manipulation of
array elements. The program totals the values of the array
the last array element.

START

Input
No. of values
in array

y

Dimension T
holds one
extra element

Y

START
fill array
Ioop

Input
array element
and
fill orray

Get next
array
element

FOR/NEXT

loop to
print array

o
-
(

/
)
)._

END

SD-00289

Figure 7-4. Program to Total Array T.

7-6

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-3. Input array size and array elements from the

terminal, sort the array in ascending order and
print it. As you input each element, test it
against those ahead of it, and move it to the
proper position.

ARRAY T
® 0 06000000 00 00 holds
total
T) T(2) T(3) T(A) T(A+l)
*L1ST)
@218 REM - TOTALS ARRAY T
@320 INPUT "NUMBER OF VALUES TO BE ADDED: ".,A
@23@ DIM TCLA+11
o4 PRINT "TYPE NUMBERS TO BE ADDED:"
@@s@ FOR I=1 TO A
0060 INPUT TCI]
@070 LET TCA+11=TCA+11+TCI)
P8¢ NEXT I
#69@ PRINT
@100 REM - FOR/NEXT PRINTS ARRAY
@11@ FOR I=1 TO (A-1)
@126 PRINT TCII3'+';
2130 NEXT I
@#14¢ PRINT TCLAl;™ = ";TLA+1]
158 END
*RUN)

NUMBER OF VALUES TO BE ADDED: 5)
TYPE ?UMBERS TO BE ADDED:
19

1s)

W) W) D)

30
45
72

10 + 1S5S + 30 + 45 + 72 = 172

END AT @158

*

7-7

DataGeneral

SOFTWARE DOCUMENTATION

TWO DIMENSIONAL ARRAYS

Hang on, arrays are getting more complicated. A numeric array
may have a second dimension! You've made arrays with rows;
now we'll show you arrays with rows and columns.

For two-dimensional arrays, use two subscripts within parentheses
in the DIM statement. The first number designates rows, the
second columns. Therefore DIM D(4, 3) in Figure 7-5 defines a

two dimensional storage area in memory with 4 rows and 3
columns, all initialized to O.

ARRAY D
I0 DIM D(4,3) Y IERERER
i oo o
2 o | oo
3ol oo
4 o] oo
SD-00392

Figure 7-5. Two Dimensional Array.

To change the values of the elements within an array or to
reference elements, always use the first subscript for the row
number and second for the column number. Figure 7-6 contains
the individual names for all the elements in Array D.

~ ARRAY D
<) 1 | 2 | 3]
D(1,h=10 D(1,2)=20 D(1,3)=30 I |10 [20 [30

40 | 50 | 60

70 | 80 90
100 | O | 120

D(2,1)=40 D(2,2)=50 D(2,3)=60

D(3,)=70 D(3,2)=80 D(3,3)=90

D(4,1)=100 D(4,2)=110 D(4,3)=120
SD-00393

Hlw|N

Figure 7-6. Referencing Array Elements.

7-8

DataGeneral

SOFTWARE DOCUMENTATION

Now you are going to want to know why you'd ever need two
dimensional arrays. Use these arrays for storing any data which
you want to reach easily. Any table - tax tables, work rate
tables, even multiplication tables - fits neatly into two dimensional
arrays. You can hold the number of votes for the president and
your senator in a two dimensional array. We will show you

two examples and you can try some exercises.

The program in Figure 7-7 fills a 2 dimensional array with the
sum of the subscripts of each element, so T(1,2)=1+2= 3,
Notice how we used the nested FOR/NEXT loop to manage the
subscripts.

7-9

DataGeneral

SOFTWARE DOCUMENTATION

START

Dimension
T

¥

START
———»{ first subscript £nd ‘
FOR/ NEXT
START
second subscript ‘
FOR /NEXT

Add subscrlpt
and
fill array

Print
orroy
f Get next
ﬂ second subscript
Get next
‘ first subscript
SD-00290

Figure 7-7. Program with Two Dimensional Array T

7-10

DataGeneral

SOFTWARE DOCUMENTATION

col. | >
row

| 2 3

2 3 9

3 4q 5

*LIST)

@010 REM %% 2-DIMENSIONAL ARRAY

@@2¢ DIM TL3,21]

@230 FOR I=1 TO 3

@@4@ FOR J=1 TO 2

0050 LET TLI,J1=1+J

2060 PRINT "TCU"3I3™,"3J3") = ";TCI,J1,
@@7¢ NEXT J

@08@ PRINT

@B9@ NEXT I

@180 END

*RUN)

TC 1 -, 1) = 2 TC 1 », 2) = 3
T2, 1) = 3 TC 2,2 = 4
TC 3, 1) = 4 TC 3, 2)= 5

END AT 0100
*

DataGeneral

SOFTWARE DOCUMENTATION

As another example the program in Figure 7-8 fills a 2 dimen-
sional array with 4 rows and 3 columns. We input Variables A,
B and C and the program multiplies them by the row subscripts.

row °°'~| I I 2 l 3
| | XA | XB 1 XC
2 2xXA | 2xB |2 xC
3 3XA | 3xB | 3 xC
4 4xXxA | 4xB | 4 xC

START

Dimension
T

holds final
table

Dimension
and fill S

(holds
A,B,C)

Nested
FOR/NEXT
Fill T

Print T
use nested
FOR/NEXT

Figure 7-8. Two Dimensional Array Holds Multiplication Tables
7-12

DataGeneral

SOFTWARE DOCUMENTATION

*LIST)

*RUN)

REM - MULTIPLICATION TABLE
DIM TC4,31]
REM - DIMENSION AND FILL ARRAY S
DIM SC31]
PRINT "TYPE A»B,C:"
FOR I=1 TO 3

INPUT SC11
NEXT I
REM - NESTED LOOP FILLS ARRAY T
FOR I=1 TO 4

FOR J=1 TO 3

LET TC{1,J)=I%S(J]

NEXT J
NEXT I
PRINT
REM - PRINT ARRAY T
PRINT "TABLE","A = "3S(11,
PRINT "B = "3S(21,"C = "“3S(31
PRINT
FOR I=1 TO 4

PRINT I,

FOR J=1 TO 3

PRINT T(I1,J1,

NEXT J

PRINT
NEXT I
END

TYPE A,B,C:

? 3)

2 15)

> 5]

TABLE

S W -

15 25

30 5@

45 75
2 60 100

- 0 oW

END AT 0270

*

7-13

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-4. Write a program that will input a two-dimensional
array M, with R rows and C columns (Input
values for R and C). Print Array M. Find and
print the smallest element in each row and the
largest element in each column.

Exercise 7-5. Write a program to input a 4 x 4 array and print
out its transpose. The transpose of Array A is
Array B in Figure 7-9.

ARRAY A ARRAY B
a b c a d
d e f b e

c f

SD-0039!

Figure 7-9. Array Transpose

END OF CHAPTER

7-14

DataGeneral

SOFTWARE DOCUMENTATION

CHAPTER 8
STRINGS

So far in BASIC you have been working only with numeric variables.
Numbers are fine, but the alphabet is important too; eventually you
will want to store both in memory. BASIC allows you to store any
alphanumeric data as a string. A string is a sequence of char-
acters enclosed in quotes which may include letters, digits, spaces
and special characters.

STRING LITERALS

Whenever you've enclosed a message to BASIC in quotes (using the
PRINT or INPUT statements), you've used a string literal.

String literals have constant values; you can't change or rearrange
them.

AMEm PRINT "THIS TS A STRINAR L ITERALM

STRING VARIABLES

A string variable is a letter or a letter and a digit followed by a
dollar sign (A$, B3$). It's value is a string. A string variable is
the name of a memory location which will contain a string rather
than a number. You may use string variables within a program in
the same manner as numeric variables. (See Figure 8-1.)

8-1

DataGeneral

SOFTWARE DOCUMENTATION

*LIST)

@818 INPUT "TYPE YOUR NAME: "“,N$
@¢28 PRINT N$:", YOU TYPE WELL."
@@3@ END

*RUN)
TYPE YOUR NAME: JOAN)
JOAN, YOU TYPE WELL.

END AT 0@30
*

Figure 8-1, A Short String,

Lines 10 and 20 use string literals. $N defines the string
variable. The input, JOAN, assigned a value to the string var-
iable N$.

You can use string variables in place of numeric variables in any
BASIC statement. Remember to enclose each string in
quotation marks.

You may intermix string data and numeric data in a DATA list.
However, the variables in the READ statement must match
(numeric or string) the elements of the DATA list or BASIC will
print an error message (Figure 8-2).

2210 DIM ASC25]

@228 READ AS

@230 PRINT AS

@242 DATA "THIS IS A STRING VARIABLE"
@252 END

*RUN)
THIS 1S A STRING VARIABLE

END AT 0050
*

Figure 8-2. READ gets the String from the DATA List,
8-2

DataGeneral

SOFTWARE DOCUMENTATION

STRING SUBSCRIPTING

You may follow a string variable by a subscript but the concept
is different from numberic subscripting. A string variable is
stored with each character in a separate consecutively num-
bered memory location starting with 1. The DIM statement sets
aside a row of locations in memory with as many locations as
the maximum number of characters in the variable.

2020 DIM BAS[151]
String B4

LIT I T TP PTTTT]1]

123 4567 8910112131415
@3¢ LET B43="STRING VARIABLE"

[siTIr[1[nfe]| [v]a[rfi]ale]c]e]

SD-00390

Figure 8-3, Programming Statements and Resulting Memory Locations

In Figure 8-3, line 20 assigns space for 15 characters to B4$.
Line 30 fills the locations with the characters "STRING
VARIABLE".

The DIM statement allows you to create string variables of any
length, limited only by available memory. But BASIC will never
print more characters than you specified in DIM; it will truncate
your string if you haven't DIMensioned enough space (Figure 8-4).
If you omit the DIM statement, your string variable will be
truncated if it contains more than 10 characters.

*LIST)

@710 REM - STRING VARIABLE

@92¢ DIM A23[15)

@336 LET A25="PRINT A2% IS THIRTY CHARACTERS"
PP48 PRINT A2S

@@5¢ END

*RUN)
PRINT A2% IS TH

END AT 26858
*

Figure 8-4. A2$ is too long,
8-3

DataGeneral

SOFTWARE DOCUMENTATION

To reference the complete string, use just the name of the string
variable. To reference part of a string (a substring), you can
specify starting and stopping locations within the string. If you
wish a substring to end with the last character in the string,
specify the starting location. To reference one character of the
string, give its character position as both start and stop locations.
The program in Figure 8-5 demonstrates string subscripting.

*LISTZ

0010 REM - STRING SUBSCRIPTING
@020 DIM B43$C15]
0830 LET B43%="STRING VARIABLE"

@042 PRINT "B4S = ";B4S%
8058 PRINT "B4%$(1,6) = *;B43$(1,6]
@060 PRINT "B4%(8) = "3;B45(8]

@876 PRINT '"B4%(5,5) '";B4s%[5,5]

@08¢ END
*RUN)

B4S = STRING VARIABLE
B45C1,6) = STRING

B43(8) = VARIABLE
B4%(5,5) = N

END AT @280
*

Figure 8-5. String Subscripting,

The program in Figure 8-6 demonstrates the use of numeric
variables in place of digits in string subscripts.

*LIST)

@313 REM - STRING SUBSCRIPTING
@628 DIM A13[20)

@330 LET Al$[2%1/2,5-21="SUB"
@048 LET A=4

@g5@ LET B=1¢

@268 LET AlS$S[A,B1="GARBAGE"
$B78 LET A1%L11,17]1="EXAMPLE"
3287 LET A1S[A,B1="STRING "
?39@ PRINT AlS$

7190 END

*

Figure 8-€, Numeric Variables in String Subscripts.
8-4

Exercise 8-1.

Exercise 8-2.

Exercise 8-3.

DataGeneral

SOFTWARE DOCUMENTATION
In Figure 8-6 what will BASIC print?

Write a program to self-test the person running
it. Print a vocabulary list with 10 words, and
scramble definitions. Have the user match the
definition to the word. Include instructions for
taking the test, error and encouragement mes-
sages and a score at the end. Code a second try
if the correct word is missed on the first one.

Use strings to write a program to play an animal
game. Read the name of an animal and have the
player try to guess it. If his first guess is wrong,
give him the first letter for a clue. If he still
guesses wrong, give him the second letter. Con-
tinue until he guesses the animal.

END OF CHAPTER

8-5

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX A
PROBLEM ANSWERS

Exercise 3-1.

*LIST)

@31¢ REM - DIVIDE AND MULTIPLY
@@2¢ PRINT 7/3

@030 PRINT 6%4

@@4@ END

*RUN)
2+33333
24

END AT 0040
*

Exercise 3-2.

Pn4* |_ET A+H=C is not a valid BASIC statement because A+B is
not a valid variable name

Exercise 3-3.

*LIST)

9210 REM
902¢ LET
@3¢ LET
@a4¢ LET
@050 LET
Pe60¢ PRIN
@378 END

* USES VARIABLES

nnnn
OoDLSWN

SO QWD *
*
w
1]
aQ

*RUN)
2]

END AT 0270
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 3-4.

*LIST)

@210 REM - ADD 2 AND 3
@030 LET B=3

@835 LET D=2

@048 LET C=B+D

@852 PRINT C

@368 END

%35 LET A=5)
*40 LET C=A)
*45 LET C=A+B)
*5@ 3 «PRINT A)
*51 PRINT B)
*RENUMBER
*LIST

@01¢ REM - ADD 2 AND 3
@020 LET B=3
@230 LET A=5
gd4@ LET C=A
2@5¢ LET C=A+B
@260 PRINT A
@272 PRINT B
@080 PRINT C
@098 END

*RUN)

RWwu»

END AT 0090
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 3-5.

*LIST)

@010 REM - RETURNS +1
@020 LET A=-201.567
@3¢ LET A=INT(A)
@e4¢ PRINT A

@358 LET A=ABS(A)
@360 PRINT A

@070 LET A=SGNCA)
@e8@ PRINT A

@¢9@ END

*RUN)

-2@2
202
1

END AT 0090
%2¢ LET A=.321)
*RUN)

(SIS

END AT 0090

*2¢ LET A=42)

*x78 LET A=-SGNCA))
*RUN)

42

42

-1

END AT 0090
*

INT(A) is not necessary in this program. ABS(A) and SGN(A) may
be in either order. To return A=1 insert

PA7S LET AsA=i

A = 0 will not return a value of 1

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 4-1,

*LIST}

@010 REM - CALCULATE RECTANGLE AREA
#@82@ REM - INPUT LENGTH AND WIDTH
20830 INPUT X

#0408 INPUT Y

@850 LET X=X*Y

2260 PRINT X

@376 END

*RUN)
7 4
78
38

END AT 0070
*RUN)

? 75%

? 341

25575

END AT 0070
*

Exercise 4-2.

*L1ST)

Q212 REM SIMPLE IMNTEREST

AR2@ INPUT "TYPE PRINCIPAL: ",P

Ge32 INPUT "TYPE INTEREST FRATE (DECIMAL):
2049 INPUT "TYPE NUMRFR OF YEARS: ",V
Q@2S? LET I=z=PxRxy

o262 LET N=F+1

2Q72 LET R=Rx128

P82 PRINT "§";P3" AT ";R:;

@92 PRINT "% INTEREST FOK “:Y3" YEARS"
2100 PRINT "YIELDS §"31:" INTEKEST.,"
112 PRINT "NEA PRIMCIPAL = §"pN

v12¢ END

*RUN)

TYPE PRINCIPAL: 35¢¢)

TYPE INTERST RATE (UECTMAL): .VR)
TYPE NUMBER OF YEARS: 7)
$ 3582 AT 8 % INTEREST FOR 7 YEARS
YIELDS § 1960 1NTEREST.

NEWN PRINCIPAL = % Suod

END AT 9124
*

A-4

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 4-3.

*LIST)

@B10 REMARKS. WAGE,SALARY

@020 READ N

@030 PRINT N;

@248 READ H,VW

@P5¢0 LET A=H%Y

@@6@ PRINT H3"HRS "3W;3"/HR",A;"SALARY"
@878 DATA 123,40,3.75

P28@ END
*RUN)
123 48 HRS 3.75 /HR 158 SALARY
END AT 0089
*
Exercise 4-4.
«L1ST)
AA1A REM = EXFRCISF 4,4
PM2? RFM = A,R,C ARE SIDES
2232 REM = A1,B1,C1 ARF ANGLES
2042 RFM = P CORVERTS FROM DERRFEFS TO RANTANS

ne5a |LET Rzd

Pe6@ LET Cs5

nm7a LET Ps3,14159/1R0

PARMA LET Ri3d45wP

2002 LET C1s65#P

212 LET AsRwCNOS(C1)+C#CNS(RY)
M114 PRINT "SIDFE A ="gaA

M12™ END

STDE A 3 5,2260M128

END AT 4122
-

A-5

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 4-5.

*LISTQ

0010
2020
2030
2040
2650
2060
2070
2080
2090
21009
o110
2120
8130
0140
2150
2160

REM ##### PRINT ME

PRINT A,B»C

READ X,Y,2

PRINT X3

PRINT Y;

PRINT Z

PRINT

PRINT "PLAYING COMPUTER IS FUN"
PRINT 7.,

PRINT "6.,5",4,

PRINT

PRINT "I CAN COUNT BACKWARDS",
PRINT 33251

PRINT “THE END"

DATA 5,7,9

END

*RUN)

0 R

7 9

PLAYING COMPUTER IS FUN

7

655 4

I CAN COUNT BACKWARDS 3 2 1
THE END

END AT 0160

k

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-1.

*LIST)

@010 REM - FOLLOWING GOTO
@628 PRINT "DEMO OF GOTO"
@030 GOTO 0@8E

@340 PRINT "HAVE A GOOD DAY!"™
@858 GOTO 9138

@068 PRINT "REALLY SKIPS AROUND, '3
@070 GOTO 0118

@088 PRINT

@@9¢ PRINT "THIS PROGRAM "3
2100 GOTO 0060

@11¢ PRINT "DOESN'T IT?"

@126 GOTO @048

@130 END

*RUN)
DEMO OF GOTO

THIS PROGRAM REALLY SKIPS AROUND, DOESN'T IT?
HAVE A GOOD DAY!

END AT 2130
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-2.

*LIST2

0218 REMARKS. WAGE,SALARY

#0320 PRINT "EMP #",''HOURS","REGULAR PAY"
@830 READ N,>H,W

@040 IF H>40 THEN GOTO 412@

#25@¢ LET S=H*W

@868 LET S1=S

P@97@ PRINT N,H,SI1

0289% PRINT

2098 PRINT " ","OVERTIME PAY",'TOTAL SALARY"
2188 PRINT " '"»52,S

6110 STOP

@120 LET Sl1=40%V
@133 LET O=H-40

2140 LET VU=Wk1.5
@15@¢ LET S2=0%W
@168 LET S=S1+52
@178 GOTO 0070

2180 DATA 2,40,2

*RUN2
EMP # HOURS REGULAR PAY
2 49 8a

OVERTIME PAY TOTAL SALARY
2 8a

STOP AT 0110
%180 DATA 3,48,3.25)

*RUN)
EMP # HOURS REGULAR PAY
3 48 130

OVERTIME PAY TOTAL SALARY
39 169

STOP AT @110
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-3.

*LIST)

@018 REM NUMBER RELATIONS

@828 INPUT X,Y

@@3¢ IF X<Y THEN GOTO 0870

@24¢ IF X>Y THEN GOTO 0090

P¢58 PRINT X" IS EQUAL TO ";
@860 GOTO 8100

@670 PRINT X" IS LESS THAN "3Y
@@8¢ GOTO 210¢

@P9¢ PRINT X" IS GREATER THAN ";Y
@108 END

5 IS GREATER THAN 3

END AT 01060
*

Exercise 5-4.

*LIST)

@018 REM - FIND N FACTORIAL
@228 INPUT N

@@3¢ PRINT N3

@04@ LET X=1

@256 LET X=X*N

@P6@¢ LET N=N-1

@37¢ IF N THEN GOTO ¢1@¢
@288 PRINT ™ = "3

P@9¢ STOP

@100 PRINT "%";N;

@11¢ GOTO 2@5¢

*RUN)
2 6)

6 *x 5% 4 %x 3 %x 2 %x 1 = 720

STOP AT 8¢90
*

A-9

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-5.

*LIST}

@910 REM - PRINT HIGHEST NUMBER INPUT
@820 INPUT “TYPE NUMBER IN LIST: ",N
2030 PRINT "TYPE NUMBERS (FOLLOWED BY CR):"
0048 LET L=S5.4E-T79

@950 IF N THEN GOTO 6080

@960 PRINT "THE HIGHEST NUMBER IS ";sL
2878 STOP

2083 INPUT X

#@98 IF X>L THEN LET L=X

2198 LET N=N-1

2110 GOTO @@5¢

*RUN)

TYPE NUMBER IN LIST: 4)

TYPE NUMBERS (FOLLOWED BY CR):
2 4

28

2 -18)

? 534)

THE HIGHEST NUMBER IS 534

STOP AT ©8@79@
*

A-10

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-6.

@010 REM - PRINT FRACTIONAL PART OF NUMBER
#0280 REM - WITH PROPER SIGN

#0360 REM - END ON 1000

8340 INPUT A

9050 IF A<>1900 THEN GOTO 0070

6068 STOP

#9678 LET D=A-INT(A)

Pg89 IF A<@ THEN IF D<>@ THEN LET D=D-1
2998 PRINT D

0106 GOTO @040

#4110 END

STOP AT @060
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-7.

*L1ST)

2010
0020
2030
2040
2050
2060
2078
2080
0090
2100
2110
2120
2130
2140
@150
2160
0170
2180
2190
2200
2210
7220
2230
2240
2250
2260
0278
2280
2290
0300
2316
2320
@330
B340
8350
2360
8370
2380
839@
2400
2410
2420
24302
2440
2450
2460

REM - GUESS RANDOM NUMBER

RANDOMIZE

PRINT "I WILL PICK A NUMBER"

PRINT "BETWEEN 1 AND 108"

PRINT "AND YOU TRY TO GUESS IT."
PRINT "YOU SHOULD BE ABLE TO GUESS IT"
PRINT "IN SEVEN TRIES"

PRINT

REM - GET NUMBERS

LET N=INT(RND(@)*1003)

INPUT "WHAT IS YOUR GUESS? ",A

REM = C=COUNT OF TRIES

LET C=C+1

REM - IF HIGH OR LOW, PRINT MESSAGE

IF A<N THEN GOTO @330

IF A>N THEN GOTO @359

PRINT

REM - CORRECT GUESS

PRINT "YQOU GUESSED IT!!"

IF C<2 THEN GOTO @230

PRINT "YOU TOOK *3C35* TRIES."

GOTO 6260

PRINT "AND ON THE FIRST TRY!!!"™

PRINT "SUPER FANTASTIC!!!"™

REM - PLAY AGAIN ROUTINE

PRINT "DO YOU WANT TO PLAY AGAIN?"
INPUT " (TYPE @=NO, 1=YES):",Z
PRINT

LET C=0

IF Z THEN GOTO 0100

STOP

REM - HIGH AND LOW MESSAGES

PRINT A3;'" IS LOWVER THAN MY NUMBER."
GOTO @370

PRINT As;'" 1S HIGHER THAN MY NUMBER."
REM - CHECK NUMBER OF TRIES

IF C<7 THEN GOTO 2110

PRINT

PRINT "I WIN - YOU HAVE HAD 7 GUESSES."
REM - GUESS AFTER 7 TRIES?

PRINT "DO YOU VANT TO KEEP GUESSING? "
INPUT " (TYPE @=NO, 1=YES): ",Z
PRINT

IF Z THEN GOTO @110
PRINT "MY NUMBER IS "N
GOTO 0268

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-7 (Cont.).

*RUN)

I VILL PICK A NUMBER

BETWEEN 1 AND 180

AND YOU TRY TO GUESS IT.

YOU SHOULD BE ABLE TO GUESS IT
IN SEVEN TRIES

WHAT IS YOUR GUESS? 45)

45 1S HIGHER THAN MY NUMBER.
WHAT IS YOUR GUESS? 2@)

2¢ 1S LOVER THAN MY NUMBER.
WHAT 1S YOUR GUESS? 32)

32 IS LOWER THAN MY NUMBER.
WHAT IS YOUR GUESS? 41)

41 1S HIGHER THAN MY NUMBER.
WHAT IS YOUR GUESS? 47)

47 1S HIGHER THAN MY NUMBER.
WHAT 1S YOUR GUESS? 37)

37 1S LOVER THAN MY NUMBER.
WHAT IS YOUR GUESS? 39)

39 IS LOWER THAN MY NUMBER.

I WIN - YOU HAVE HAD 7 GUESSES.
DO YOU WANT TO KEEP GUESSING?
(TYPE @=NO, 1=YES): 1)

VHAT IS YOUR GUESS? 48)

YOU GUESSED IT!!

YO TOOX & TRIES.

DO YOU WANT TO PLAY AGAIN?
C(TYPE @=NO, 1=YES)>:0)

STOP AT 2310
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-8.

*LIST)
@310 REM - SUBROUTINE ENDS IF NUMBER
@020 REM - NOT BETWEEN @ AND 100

@233 REM *% PRINTS 100-A

0340 READ A

9050 GOSUB 0270

2068 GOTO @040

0378 REM %% SUBROUTINE STARTS HERE
7980 1IF A<@ THEN STOP

999@ 1IF A>10@ THEN STOP

@103 PRINT "“100-"3A3"EQUALS";100-A
2118 RETURN

@120 DATA 36-,4,12,145,72,-1

@133 END

*RUN)

18- 36 EQUALS 64
180- 4 EQUALS 96
108- 12 EQUALS 88

STOP AT 0090
*

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-9.

REM - PAIR @°' DICE, THE DIVINE GAME

REM - INSTRUCTIONS

PRINT "DO YOU WANT INSTRUCTIONS?"

INPUT (TYPE 1=NO, @=YES): *,T

IF T THEN GOTO ©20@

PRINT

PRINT "THE COMPUTER VWILL THROW THE DiCE"
PRINT "AND TELL YOU THE THROW AND"

PRINT *"YOUR POINT, THE TOTAL OF THE DICE"
PRINT "THROWNe ON THE FIRST THROW, YOU"
PRINT "WIN WITH A POINT OF 7 AND THE"
PRINT *"COMPUTER WINS WITH A POINT OF 12."
PRINT *YOU MAY CONTINUE TO THROW TO TRY"
PRINT "TO MATCH YOUR POINT BUT A 7 WHILE"
PRINT "TRYING FOR A POINT IS A WIN FOR"
PRINT "THE COMPUTER."

PRINT

REM - MAIN GAME

RANDOMIZE

PRINT

GOSUB 0470

IF P=7 THEN GOTO @330

IF P=12 THEN GOTO ©38@

LET P1=P

PRINT "TRY FOR POINT?"

INPUT * (TYPE 1=NO, @=YES)>:", T

IF T THEN GOTO @38@

PRINT "YOU ARE TRYING FOR POINT ";Pl
GOSUB 0470

IF P=P1 THEN GOTO @330

IF P=7 THEN GOTO @380

GOTO @28@

REM - YOU VIN ROUTINE

PRINT "YOU WIN!!"

LET S1=S1+1

PRINT "YOU: ';S1,"COMPUTER: ";S2

GOTO @42¢

REM - COMPUTER WINS ROUTINE

PRINT *COMPUTER WINS!!'

LET S2=S2+1

PRINT "YOU: *;S1,'"COMPUTER: ";S2

REM - PLAY AGAIN ROUTINE

PRINT "DO YOU WANT TO PLAY AGAIN?"

INPUT * (TYPE 1=NO, @=YES):"»T

IF T THEN GOTO @660

GOTO @200

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-9 (Cont.).

8470 REM - GET THROW AND POINT - SUBROUTINE
@488 REM - DUMMY NUMBER

349¢ PRINT "ROLL THE DICE"™

@56@¢ INPUT "(TYPE A NUMBER BETWVEEN 1 AND 100)',X
@510 IF X>=1 THEN IF X<=100 THEN GOTO @540
@528 PRINT "I SAID BETWEEN ! AND 1@0'!"
#5368 GOTO 0490

#5468 GOSUB @630

#55¢ LET D1=N

#5608 GOSUB @639

@578 LET D2=N

@586 LET P=DI1+D2

#59@ PRINT "YOU THREW "3;DI1;"™ AND *;D2

@600 PRINT 'YOUR POINT IS ";P

@610 PRINT

262¢ RETURN

0630 REM - THROW DICE - SUBROUTINE

@640 LET N=INT(RND(@)*6)+1

8656 RETURN

@266@ END

*RUN)
DO YOU WANT INSTRUCTIONS?
(TYPE 1=NO, @=YES): @)

THE COMPUTER WILL THROW THE DICE
AND TELL YOU THE THROW AND

YOUR POINT, THE TOTAL OF THE DICE
THROWN. ON THE FIRST THROW, YOU
WIN WITH A POINT OF 7 AND THE
COMPUTER WINS WITH A POINT OF 12.
YOU MAY CONTINUE TO THROW TO TRY
TO MATCH YOUR POINT BUT A 7 WHILE
TRYING FOR A POINT IS A WIN FOR
THE COMPUTER.

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 5-9 (cont.).

ROLL THE DICE

(TYPE A NUMBER BETWEEN 1 AND 106)33)
YOU THREW 3 AND 2

YOUR POINT IS 5

TRY FOR POINT?
CTYPE 1=NO, @=YES):8)
YOU ARE TRYING FOR POINT 5
ROLL THE DICE
(TYPE A NUMBER BETWEEN 1 AND 100)25)
YOU THREW S5 AND 5
YOUR POINT IS 10

YOU ARE TRYING FOR POINT 5

ROLL THE DICE

(TYPE A NUMBER BETWEEN 1 AND 106)112)
I SAID BETWEEN 1 AND 100!!

ROLL THE DICE

(TYPE A NUMBER BETWEEN 1 AND 100)78)
YOU THREW | AND 6

YOUR POINT IS 7

COMPUTER WINS!!

YoU: @ COMPUTER: 1

D0 YOU WANT TO PLAY AGAIN?
(TYPE 1=NO, @=YES):1)

END AT @660
*

A-17

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 6-1.

I does not have to be incremented by 1. You can add 2 each time
and test for [>10. You can start I at 5 and subtract 1 testing for
I£ 0.

Another method of testing would be to add 10 (2*5) to A and test
for that value.

START

Y

/ Input A

Y

I=A+I0

N

SD-00292

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 6-2.

*LIST)

@010 REM - PRINTS THE INTEGERS AND THEIR SQUARES
@820 REM - IF THE SQUARES ARE 0DD
@@3¢ PRINT "INTEGER","INTEGER SQUARED"
@248 FOR I=1 TO 25

@658 LET A=1xI

@868 LET Al=A/2

@678 LET A2=INT(A1)

@887 IF Al=A2 THEN GOTO @100
@398 PRINT I.,A

@188 NEXT I

@11@ END

*RUN)

INTEGER INTEGER SQUARED

1 1

3 9

5 25

7 49

9 81

11 121

13 169

15 225

17 289

19 361

21 a41

23 529

25 625

END AT 0110

*

A-19

DataGeneral

SOFTWARE DOCUMENTATION

*LLST)
2216 REM -
9020 REM -
203@ PRINT
9348 FOR I=
2850 LET
0060 LET
2878 LET
0080 LET
2290 LET
2100 LET

Exercise 6-2A,

PRINTS THE INTEGERS AND THEIR SQUARES
IF THE INTEGER IN TENS PLACE IS ODD
""NUMBER", " SQUARED", " TENS PLACE"

1 TO 5@

A=1x%x]

A1=INTCA/1@)

A2=INT(A/1080)

N=Al-(A2%10@)

N1=N/2

N2=INT(N1)

2118 IF N1=N2 THEN GOTO 213@
2120 PRINT I,A>N

@130 NEXT I

@142 END

*RUN
NUMBER

END AT @142

*

SQUARED TENS PLACE
16 1
36
196
256
576
676
1156
1296
1936
2116

WO UNNNNNow

A-20

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 6-3.

@618 REM - LIST THE FACTORS OF N
@020 INPUT N

@338 PRINT ' N'","FACTORS OF N"

@342 PRINT N»

9050 FOR I=1 TO N

0060 LET N1=N/1

027¢ IF INT(N1)<>N1 THEN GOTO @909¢
2080 PRINT 13

00908 NEXT I

@108 END
*RUN)
7 125
N FACTORS OF N
125 1 5 25 125

END AT 0100
*

A-21

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 6-4.

*LIST)

@010 REM - BALANCE CHECKBOOK

@620 INPUT “TYPE LAST BALANCE: ",A

@036 PRINT

@048 INPUT “TYPE NUMBER OF CHECKS WRITTEN: ",B
@050 GOSUB 0180

@068 LET A=A-X

@065 LET X=0

@678 PRINT

@¢8@ INPUT “TYPE AMOUNT OF SERVICE CHARGE: $",C
@098 LET A=A-C

@188 PRINT

@11¢ INPUT “TYPE NUMBER OF DEPOSITS: ",B

@12¢ GOSUB 0180

#13¢ LET A=A+X

@148 PRINT

@158 IF SGNCA)=-1 THEN PRINT "CHECKBOOK OVERDRAWN®
@168 PRINT "CURRENT BALANCE IS ":A

@178 STOP

#18¢ REM - SUBROUTINE

@19¢ FOR I=1 TO B

2200 INPUT * AMOUNT? $',Y

@218 LET X=X+Y

@220 NEXT I

@23¢ RETURN

@248 END

*RUN)
TYPE LAST BALANCE: 208)

TYPE NUMBER OF CHECKS WRITTEN: 3)
AMOUNT? $25.66)
AMOUNT? $328)
AMOUNT? $42.8@)

TYPE AMOUNT OF SERVICE CHARGE: $.15)

TYPE NUMBER OF DEPOSITS: 2)
AMOUNT? $100
AMOUNT? $125

CURRENT BALANCE IS 28.39

STOP AT 0176
*

A-22

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 6-5.

*LIST)

@P1¢ REM 111111 SQUARE ROOT SQUARED !!1t11
@828 PRINT “NUMBER","SQUARE ROOT",

@¢3¢ PRINT “SQUARE ROOT SQUARED"

@04¢ FOR I=1 TO 1@

658 LET A=SQRCI)

@068 LET B=A%A

878 PRINT 1,A,B

PP8@ NEXT I

P@9@ END

*RUN)

NUMBER SQUARE ROOT SQUARE ROOT SQUARED
1 1
1.41421
1.732@5
2
223607
2444949
264575
2.82843
3

4 3.16228

~ 0NNV WN -
- 0RIOUIL WM

END AT 0290
*

Exercise 6-6.

*LIST)

@010 REM %% COMPARES PRODUCT OF NUMBERS

@829 REM ** WITH EXPONENT OF SUM OF THEIR LOGARI THM
@836 INPUT "TYPE 2 NUMBERS: ",X,Y

@B48 LET Z=X*Y

P@S5@ LET X1=LOG(X)

@066 LET Y1=LOGCY)

@370 LET Z1=EXP(X1+Y1)

@E8E PRINT X3"=X",Y3'"=Y",Z;"=X*Y"

@186 PRINT Z13"=EXP(LOGC(X)+LOGCY))"

@119 END
*RUN)

TYPE 2 NUMBERS: 62,21)

62 =X 21 =Y 1302 =X*Y

1302 =EXP(LOG(X)+LOG(Y))

END AT 0110
*

A-23

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 6-7.

*LIST)

@010 REM - MULTIPLICATION TABLES UP TO 5 TIMES 10
@928 FOR 1=1 TO 5

@638 PRINT

@64¢ PRINT "MULTIPLICATION TABLE FOR “3I;":"
@858 FOR J=1 TO 10

2068 PRINT I%Js$

20676 NEXT J

@08¢ PRINT

@096 NEXT 1

@10¢ END

*RUN)

MULTIPLICATION TABLE FOR 1 :
1t 2 3 4 5 6 7 8 9 180

MULTIPLICATION TABLE FOR 2 :
2 4 6 8 186 12 14 16 18 2@

MULTIPLICATION TABLE FOR 3 :
3 6 9 12 15 18 21 24 27 38

MULTIPLICATION TABLE FOR 4 :
4 8 12 16 20 24 28 32 36 40

MULTIPLICATION TABLE FOR 5 :
5 16 15 28 25 30 35 40 45 50

END AT 0100
*

A-24

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 6-8.

*L1ST)

@61¢ REM - LIST THE FACTORS OF N
@02¢ PRINT " N","FACTORS OF N*
@83¢ FOR N=2¢ TO 30

@048 PRINT N,

@d5¢ FOR I=1 TO N

2060 LET NI=N/1
2279 IF INT(N1)><>N1 THEN GOTO @890
0080 PRINT I;

2099 NEXT I
2180 PRINT
@110 NEXT N
212@ END

*RUN)
N FACTORS OF N
20 1

MDD WNDUNDNODMNDWN

1
1
1
1
1
26 1
1
1
1
1

w
[0}
o
-
(S
—
6]
w
Q

END AT @129
*

A-25

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-1.

*LIST)

2010
0620
2038
2040
2250
0060
2270
2080
2090
2100
o110
2120
2130
2140
215e

REM - FIND SQUARE ROOT OF ELEMENTS IN ARRAY
REM - PRINT ARRAY ELEMENT THEN SQUARE ROOT
PRINT "TYPE ARRAY ELEMENTS (FOLLOWED BY CR):"
DIM TC151]
DIM SC151
FOR I=1 TO 15
INPUT TC11]
LET SCI1=SQR(TCI1)
NEXT 1
PRINT
PRINT “ELEMENT","SQUARE ROOT"
FOR I=1 TO 15
PRINT TC(I1,SCI]
NEXT I
END

*RUN)
TYPE ARRAY ELEMENTS (FOLLOWED BY CR):
?

—

D 0D) s) D D) e)) e o)) e
Q

28
35
43
59
61
74
82

el
Q

18w

’—k}l—/
(e

00 [

ol=[s|

B
~—

nd (04
[

A-26

ELEMENT

END AT @150

*

470

Exercise 7-1 (Cont.).

SQUARE ROOT

2.23607
4
52915
591608
6455744
7.68115
7.81025
8.60233
9.05539
9.48683
10.247
16.8167
15.2971
18.868
21.6795

A-27

DataGeneral

SOFTWARE DOCUMENTATION

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-2.

REM - PRINTS ARRAY WITH 1@ ELEMENTS
REM - FINDS HIGHEST AND LOWEST VALUES
LET H=5.7E-79
LET L=7.2E+75
PRINT “TYPE 10 NUMBERS (FOLLOWED BY CR):"
FOR I=1 TO 18
INPUT T(11
IF TCIJ<H THEN GOTO @118
LET H=T(I1]
LET Hl=I
IF TCIJ>L THEN GOTO @140
LET L=TCI]
LET L1=1
NEXT I
REM - PRINT ARRAY
PRINT
PRINT '"ARRAY"
PRINT
FOR I=1 TO 10
PRINT TC113
IF I=H1 THEN PRINT " HIGHEST ELEMENT",
IF I=L1 THEN PRINT " LOWEST ELEMENT".
PRINT
NEXT 1
END

A-28

Exercise 7-2 (Cont.).

*
=)
g
—

@ NUMBERS (FOLLOWED BY CR):

0
tlsm
[}
(ad 1% 5 e
-
~—

5

~
(]
xR
'

19)

W[
(2]
+

Sl
g

2
87654321)

3

@.c'o'o-o-o‘o-o-o«)i
[N
W

O

ARRAY

46

=321 LOWEST ELEMENT
621

4]

55

738

4E+10 HIGHEST ELEMENT
3

72

9.87654E+28

END AT 0250
*

A-29

DataGeneral

SOFTWARE DOCUMENTATION

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-3.

*LIST)

@018 REM - PRINTS ARRAY IN ASCENDING ORDER
@020 INPUT "ARRAY SIZE? ",A

@030 IF A<=16@¢ THEN GOTO 8060

@04¢ PRINT "ARRAY SIZE TOO BIG"
@050 GOTO 0020

@060 DIM TLA)

@870 PRINT "TYPE NUMBERS IN ARRAY:"
@08¢ FOR I=1 TO A

@09¢ INPUT TCI)

@108 FOR J=1 TO I

2110 IF TCI)>TC(J] THEN GOTO @158
2120 LET S=TCJ]

2130 LET TCJI=T(I]

2140 LET T(I]=S

2159 NEXT J
@160 NEXT I

@178 PRINT

2180 PRINT

9198 FOR I=1 TO A
0200 PRINT TCI]
9210 NEXT 1

9228 END

*RUN)

ARRAY SIZE? 212)

ARRAY SIZE TOQ BIG
ARRAY SIZE? 7)

TYPE NUMBERS IN ARRAY:

SE+7)
13E=4\ 7 13E-4)
5432)

W D D D W)) e
'
3
(o))

-76
a
@013
5
345
5432
SE+87

END AT @220
*

A-30

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 7-4.

REM ** READS TABLE WITH R ROWS AND C COLUMNS
REM ** FINDS LOWEST ELEMENT IN EACH ROV
REM ** HIGHEST ELEMENT IN EACH COLUMN
INPUT "“NUMBER OF ROWS? ",R
INPUT 'NUMBER OF COLUMNS? ",C
DIM MCR,C]
REM - FILL TABLE
FOR I=1 TO C
PRINT "TYPE IN COLUMN ";I
FOR J=1 TO R
INPUT X
LET M[J,I11=X
NEXT J
NEXT 1
REM - PRINT M
PRINT
FOR I=1 TO R
FOR J=1 TO C
PRINT M[(1,J3,
NEXT J
PRINT
NEXT 1
PRINT
REM ** FIND LOWEST
PRINT "LOWEST ROW ELEMENTS ARE:"
FOR I=1 TO R
LET H=7.2E+75
FOR J=1 TO C
IF H>M[I,J] THEN LET H=M[I.,J]
NEXT J
PRINT H
NEXT I
REM *% FIND HIGHEST
PRINT
PRINT "HIGHEST COLUMN ELEMENTS ARE:"
FOR I=1 TO C
LET H=5.4E~79
FOR J=1 TO R
IF H<M[J,1] THEN LET H=MUJ,I]
NEXT J
PRINT H;
NEXT I
PRINT
END

A-31

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 7-4 (Cont.).

*RUN)

NUMBER OF ROWS? 4)
NUMBER OF COLUMNS? 3)
TYPE _IN COLUMN 1

? 7

? 4

eI

?
?

TYPE IN COLUMN 2

SO
N _

-

?

?

?

? 14

TYPE IN COLUMN 3
? 2

?

?

?

|

EERl

6

12

2
8 14

——
Q- 9N

LOWEST ROW ELEMENTS ARE:

(o S B SRV

HIGHEST COLUMN ELEMENTS ARE:
18 14 10

END AT @440
*

A-32

*LFST)

Q010 REM *x*% INPUT MATRIX AND PRINT
Q020 DIM T(4,4)

@23@ FOR I=1 TO 4

@048 PRINT "TYPE IN COLUMN ";1
Q050 FOR J=1 TO 4

2062 INPUT TI(I,J]

2078 NEXT J

PP80 NEXT I

2090 PRINT

2100 PRINT "ORIGINAL MATRIX"
211@ FOR I=1 TO 4

@128 FOR J=t TQ 4

2138 PRINT TI(J,113

0140 NEXT J

@15¢ PRINT

0160 NEXT I

2170 PRINT

2180 PRINT "TRANSPOSED MATRIX"
©19@ FOR I=1 TO &

@2¢2 FOR J=1 TO 4

n210 PRINT TII,J1:

0228 NEXT J

023¢ PRINT

Q249 NEXT 1

2250 END

Exercise 7-5.

A-33

DataGeneral

SOFTWARE DOCUMENTATION

ITS TRANSPOSE

DataGeneral

SOFTWARE DOCUMENTATION

*RUN)

2
3

IN COLUMN

D N D
|J> |w !l\)l'-

m
T
2

COLUMN

0

AR

()
b4

COLUMN

2

COLUMN

.o.g.q.q1-0-0-0«)1-0-0-0-0

0
100 ot [oes | gt [T] [0t [0t |
YNNG

IGINAL MATRIX
5 9 13
6 12 14
7 11 15
g8 12 16

Exercise 7-5 (Cont.).

TRANSPOSED MATRIX

1 2 3 4
S 6 7 &8
9 12 11 12
13 14 15 1

END &T @254
*x

A-34

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 8-1.

*LISTz

2210
0020
2230
0040
2250
2060
0870
2080
0090
2100

REM - STRING SUBSCRIPTING
DIM Al18(201

LET A18(2%1/2,5-21="SUB"
LET A=4

LET B=10

LET A1$CA,B]="GARBAGE"
LET A13%011,171="EXAMPLE"
LET A1$CA,B]="STRING "
PRINT AlS$

END

*RUN)
SUBSTRING EXAMPLE

END AT 0100

*

A-35

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 8-2,

*LIST)

@010 RANDOMIZE

@028 REM - VOCABULARY SELF-TEST

@238 INPUT "DO YOU WANT INSTRUCTIONS? ",Z$

@048 IF ZS<>"YES" THEN GOTO 8230

@050 PRINT

@060 PRINT “THIS IS A VOCABULARY TEST INCLUDING"
@270 PRINT "INTRODUCTORY COMPUTER WORDS."

@@8¢ PRINT "THE COMPUTER WILL PRINT A LIST OF"
@@9¢ PRINT "WORDS FOLLOWED BY THEIR DEFINITIONS.'
@10¢ PRINT "YOU MUST MATCH THE PROPER WORD WI TH"
@11¢ PRINT "“ITS DEFINITION."

@126 PRINT

@138 PRINT "IF YOU TYPE THE WRONG WORD, YOU *
@140 PRINT "WILL HAVE ANOTHER CHANCE TO PICK"
@150 PRINT "THE CORRECT ONE."

@168 PRINT

@170 PRINT "YOU WILL BE SCORED AS FOLLOWS:"

@188 PRINT ™ CORREGT WORD FIRST TRY «.. 18"
@198 PRINT " CORRECT WORD SECOND TRY +e. 5"
@20@ PRINT " PERFECT SCORE «..100"
@210 PRINT

@228 PRINT "GOOD LUCK!"™

$238 PRINT

@249 PRINT "HERE ARE YOUR VOCABULARY WORDS:"

@250 READ AS$,BS$,C$,D$,ES, F$,GS,HS,15,J8

@260 GOSUB 0860

@276 PRINT

@280 PRINT "HERE ARE YOUR DEFINITIONS. TYPE THE"
@290 PRINT "CORRECT WORD AFTER EACH DEFINITION."
@308 PRINT

A-36

2310
9320
2330
2340
2350
8360
2370
2380
2390
0409
2410
8420
6430
6440
3450
2460
247@
2480
24950
2500
251@
852@
2530
2540
@550
2560
2570
2588
2590
2600
2610
0620
263@
2640
2652
Be6o
267@
2680
2699
2700
2710
2720
273¢
2742
27506
8767
e77@

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 8-2 (Cont.).

LET X$=ES$

PRINT "BEGINNER'S ALL-PURPOSE SYMBOLIC"
PRINT "INSTRUCTION CODE."

GOSUB 0998

LET X$=B$

PRINT **A SYMBOLIC DIAGRAM OF THE LOGIC"
PRINT "FLOW THROUGH A PROGRAM."

GOSUB 2998

LET X$=HS

PRINT "CENTRAL PROCESSING UNIT -~
PRINT "THE HEART OF THE COMPUTER."
GOSUB @99¢

LET X$=G$

PRINT "A BASIC WORD USED TO ASSIGN A VALUE"
PRINT "TO A VARIABLE."

GOSUB @99@

LET X$=AS%

PRINT A COMPUTER PRINTOUT OF A PROGRAM."
GOSUB 02990

PRINT

PRINT "DO YOU WANT TO SEE THE LIST AGAIN?"
INPUT Z$

IF Z$="YES" THEN GOSUB 0@86@

PRINT

LET X$=1%

PRINT "INFORMATION AND VALUES A PROGRAM"
PRINT "USES TO PERFORM CALCULATIONS.'"
GOSUB 0992

LET X$=F$

PRINT '"A DATA NAME WHICH CAN CONTAIN"
PRINT "DIFFERENT VALUES AT DIFFERENT"
PRINT "TIMES IN A PPOGRAM."

GOSUB @990

LET X$=J%

PRINT '"A BASIC STATEMENT USED FOP"
PRINT "INTERNAL DOCUMENTATION."

GOSUB 299¢

LET X$=DS$

PRINT "A BASIC WORD WHICH IS EXECUTED"
PRINT "AS SOON AS A CARRIAGE RETURN"
PRINT "IS TYPED."

GOSUB @990

LET X$=C$%

PRINT "A COMPUTERIZED TYPEWRITER USED"
PRINT "TO INPUT DATA AND PROGRAM"

PRINT "STATEMENTS TO A COMPUTER."

GOSUB 099¢

A-37

DataGeneral

SOFTWARE DOCUMENTATION

@780
2790
2800
2810
2820
2830
28 40
2850
2860
2870
2880
289¢
2900
2910
2920
2930
@9 40
2950
2960
2970
2980
2990
1000
1210
1020
1030
1040
1050
1060
1070
1080
1890
1100
1119
1120
1130
114¢
1150
1160
1170
1180
1190

Exercise 8-2 (Cont.).

PRINT

PRINT " YOUR SCORE: "3 S;

IF S=100 THEN PRINT " - SUPER!!";
IF S>=8¢ THEN PRINT " YOU DID REALLY WELL!"
DATA "LISTING","FLOW CHART",'"TERMINAL"
DATA "COMMAND","BASIC'",''VARIABLE","LET"
DATA '"CPU"™,"DATA'","REM"

STOP

PRINT

PRINT AS

PRINT BS$

PRINT C$

PRINT D$

PRINT ES

PRINT F$

PRINT G$

PRINT H$

PRINT I$

PRINT J$

PRINT

RETURN

REM - CHECK ANSWER AND FIGURE SCORE
INPUT Y$

LET B=10

LET A=INT(RND(@)*1@)

IF Y$<>X$ THEN GOTO 108@

IF A<3 THEN PRINT ‘"k*%*GREAT****"
IF A=S THEN PRINT *"!! FANTASTIC !
IF A>5 THEN PRINT " GoobD!"

GOTO 1160

LET B=B-5

IF B THEN GOTO 1130

PRINT '"THE CORRECT ANSVWER IS ";3X$%
PRINT "GO ON TO THE NEXT ONE. "
GOTO 1160

PRINT "WRONG ANSWER, PICK ANOTHER."
INPUT Y$

GOTO 193¢

LET S=S+B

PRINT

RETURN

END

A-38

DataGeneral

SOFTWARE DOCUMENTATION
Exercise 8-2 (Cont.).

*RUN)
DO YOU WANT INSTRUCTIONS? NO

HERE ARE YOUR VOCABULARY WORDS:

LISTING
FLOW CHART
TERMINAL
COMMAND
BASIC
VARIABLE
LET

CPU

DATA

REM

HERE ARE YOUR DEFINITIONS. TYPE THE
CORRECT WORD AFTER EACH DEFINITION.

BEGINNER'S ALL-PURPOSE SYMBOLIC
INSTRUCTION CODE.
? BASIC)

GOOD!

A SYMBOLIC DIAGRAM OF THE LOGIC
FLOW THROUGH A PROGRAM.
? FLOW CHARTz
GOOD!

CENTRAL PROCESSING UNIT -~
THE HEART OF THE COMPUTER.

? CPU2

GOOD!

A BASIC WORD USED TO ASSIGN A VALUE
TO A VARIABLE.
? PRINT)
WRONG ANSVWER, PICK ANOTHER.
? LET)
GOOD!

A COMPUTER PRINTOUT OF A PROGRAM.
? LISTING)

A-39

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 8-2 (Cont.).

DO YOY WANT TO SEE THE LIST AGAIN?
? NO

INFORMATION AND VALUES A PROGRAM
USES TO PERFORM CALCULATIONS.

? NUMBERS)
WRONG ANSVER, PICK ANOTHER.

? VARIABLE)

THE CORRECT ANSWER IS DATA
GO ON TO THE NEXT ONE.

A DATA NAME WHICH CAN CONTAIN
DIFFERENT VALUES AT DIFFERENT
TIMES IN A PROGRAM.

? VARIABL52

11 FANTASTIC !!

A BASIC STATEMENT USED FOR
INTERNAL DOCUMENTATION.

? REMZ

*¥kk GREATH*k k%

A BASIC WORD WHICH IS EXECUTED
AS SOON AS A CARRIAGE RETURN
IS TYPED.

? COMMAND)

A COMPUTERIZED TYPEWRITER USED
TO INPUT DATA AND PROGRAM
STATEMENTS TO A COMPUTER.
? TERMINAL)
YOUR SCORE: 85 YOU DID REALLY WELL!

STOP AT @850
*

A-40

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 8-3,

*L1ST)

@010 REM ** GUESS THE ANIMAL GAME

@220 REM ** CHANGE DATA FOR DIFFERENT ANIMALS
0030 GOSUB 0250

@048 PRINT

@350 PRINT "1 AM THINKING OF AN ANIMAL."
@P6@ INPUT “SEE IF YOU CAN GUESS IT: ", 2§
@37¢ GOSUB @180

@888 PRINT "NO, THAT ISN'T IT."

@090 PRINT "IT STARTS WITH ";AS$C1,1)
@10¢ LET A=l

@118 PRINT

@12¢ INPUT “GUESS AGAIN: ",ZS$

@138 GOSUB @180

@143 PRINT “STILL NOT RIGHT."

@150 LET A=A+l

@168 PRINT "THE NEXT LETTER IS “3;AS[A,A)
@178 GOTO 0110

@183 REM - GUESS RIGHT?

@198 IF A$<>ZS THEN RETURN

#2800 PRINT

@21¢ PRINT "HEY - YOU GUESSED IT!!™

@228 GOSUB 0250

@236 INPUT “DO YOU WANT TO PLAY AGAIN? ",Y$
@248 1F YS$C1,11="Y" THEN GOTO G040

@250 REM - AT END?

@268 READ A%

@278 1F A$<>"END" THEN RETURN

@280 PRINT "I AM OUT OF ANIMALS"

@298 DATA "ELEPHANT","TURTLE","END"

@330 END

A-41

DataGeneral

SOFTWARE DOCUMENTATION

Exercise 8-3 (Cont.).

*RUN2

I AM THINKING OF AN ANIMAL.
SEE IF YOU CAN GUESS IT: DOG)
NO, THAT ISN'T IT.

IT STARTS WITH E

GUESS AGAIN: ELEPHANT)

HEY - YOU GUESSED IT!!
DO YOU WANT TO PLAY AGAIN? YES)

I AM THINKING OF AN ANIMAL.
SEE IF YOU CAN GUESS IT: CAT
NO, THAT ISN'T IT.

IT STARTS WITH T

GUESS AGAIN: TURKEY

STILL NOT RIGHT.

THE NEXT LETTER IS U

GUESS AGAIN: TURTLE)

HEY - YOU GUESSED IT!!
I AM OUT OF ANIMALS

END AT @300
*

END OF APPENDIX

A-42

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX B
ERROR MESSAGES

Errors are inevitable; everyone makes them. This appendix lists
BASIC's error messages and describes possible causes.

Extended BASIC prints error messages as 2 digit codes, usually
followed by a brief explanatory message. BASIC prints error
messages when it cannot understand or is unable to perform some
command or statement, often because you typed it improperly.

BASIC recognizes some errors during program input. Whenever
you enter an incorrect statement or misuse a keyword, it will
return an error message. If you are at a terminal, this message
will refer to your last statement. If a card deck, paper tape
reader, or magnetic tape drive entered the incorrect statement,
BASIC will print the statement that caused the error message.

If the error occurs while your program is running, the error
message will include the line number of the statement which
caused it.

The following chart lists BASIC error messages, explains their
meaning and shows the kind of error that caused them. Use this
chart when you get an error message and need more information
than the error text provides. This list doesn't include advanced
BASIC error messages associated with BASIC features we haven't
explained. For a complete error message list please see Data
General's Extended BASIC User's Manual.

DataGeneral

SOFTWARE DOCUMENTATION

BASIC Error Messages

[Code][Text Meaning Example(s) 1
00 || FORMAT unrecognizable LET A==2)
statement format
01 CHARACTER | illegal or unexpected | PRINT #HI)
character
NEW%%)
10&&REM)
02 SYNTAX invalid argument 10 DIM A(2)

type

20 IF SIN(A$)=0)

LET 10=A)

03 READ/DATA
TYPES

READ specifies
different data type
than DATA state-
ment

20 READ A,B)

30 DATA 12, "HI")

RUN)

04 SYSTEM

hardware or soft-
ware malfunction

05 STATEMENT

statement number

10 GOTO 12345)

paired

NUMBER greater than 9999
11 PAREN- parentheses in an LET A= ((B-C))
THESES expression are not

12 COMMAND

keyword unrecogniz-
able, statement
instead of command

FORJ=1to05)

LETTA=10)

PRNIT "HELLO")

13 LINE
NUMBER

attempt to delete or
list an unknown line;
attempt to transfer
to an unknown line

100)

10 GOTO 100)

RUN)

B-2

DataGeneral

SOFTWARE DOCUMENTATION

BASIC Error Messages (Continued)

Code || Text Meaning Example(s)
15 END OF not enough DATA 10 READ A,B,C)
DATA arguments to satisfy | 20 DATA 91,21
READ RUN)
16 ARITHMETIC | value too large or LET A = 1234E+76)
too small to evalu-
ate; or a division PRINT 5/0)
by O
18 GOSUB too many nested 10 GOSUB 20
NESTING GOSUB'S 20 GOTO 10)
RUN)
19 | RETURN - RETURN statement | NEW)
NO GOSUB encountered without | 10 RETURN)
a corresponding RUN)
GOSUB
20 || FOR too many nested 10 FOR A=1to 3)
NESTING FOR/NEXT loops 20 FOR B=10to 15
30 FOR C=5t0 7)
100 FOR J=2 to 8
RUN)
21 FOR - unexecutable 10 FOR A=1TO 3)
NO NEXT FOR - NEXT loop; | 20 PRINT A)
FOR without a NEXT| 30 RUN)
22 || NEXT - NEXT statement NEW)
NO FOR without a corre- 10 NEXT I)
sponding FOR RUN)
23 || DATA not enough storage | 10 DIM A(30000))
OVERFLOW | left for variables RUN)
28 DIM an array or string | 10 DIM A(2))
OVERFLOW exceeds its initial 20 DIM A(5))

dimensions

RUN)

B-3

DataGeneral

SOFTWARE DOCUMENTATION

BASIC Error Messages (Continued)

Code Text Meaning Examples
31 || SUBSCRIPT subscript exceeds | 10 DIM A(2))
DIMension of array | 20 PRINT A(3))
or string RUN)
46 || INPUT too many responses | 10 INPUT A)
to INPUT RUN)
271,2)
53 || RENUMBER | After a RENUMBER | NEW)
command, BASIC | 10 GOTO 100)
encountered a non- | RENUMBER)

existant statement

END OF APPENDIX

DataGeneral

SOFTWARE DOCUMENTATION

APPENDIX C

PROGRAMMING
ON MARK-SENSE CARDS

You may write BASIC programs on Data General's Extended BASIC
mark -sense programming cards for input to the mark sense card
reader.

STRTERNRT FORMULA
[snrewer Op=0i000 0 0
[| ea rlﬁi}l: 040 0
R =S 3
e m PHIET_DUZDU I
) 3) o0 3 per e oo) 0 8)) 0
Qa0 Qfe D] fowe)[4 0 I
sfesfsfm 00 0 0
o] 0q0 I
LILIRII wll s [} 0 9
)] 00 L]
oo o] 00 I
Figure C-1. Data General Extended BASIC Mark-sense Program-
ming Card

You may mark a stack of cards to include an entire BASIC pro-
gram, and input your stack to the card reader as a batch job.
Your system manager will know about any special cards your
system may require.

The mark-sense reader has an option which permits either mark-
ings or punches. With this option, you may punch mark-sense
cards. Marked and punched cards may be intermixed in a deck;
a single card may be both marked and punched. You must use a
a No. 2 pencil to mark cards.

A Data General Extended BASIC mark-sense card has 37 columns,
as shown in figure C-1. The first four columns assign statement
numbers; the next three assign the BASIC statement keyword. A
single BASIC statement or part of a statement may be written on
each card.

C-1

DataGeneral

SOFTWARE DOCUMENTATION

The BASIC statement field of the mark-sense card is three
columns which allow all possible combinations of statement

keywords.

Cards are marked in the appropriate column, for

example; we have marked the statement 450 GOTO 200 in

Figure C-2.

2
H
iy

—Iir

Do TPl 104 0040404 TTT 1404100000100
J-»'lf 040 09090004000 0 0000040 00000000 |onem
\ ki
”ﬂ“ﬂﬂgp LSRR R B IR
2041 |-uE%nlzuuu-uuuuuuuuuu-uuuuuu=uuuuuuumu i
000 fen e o000 0 0 00O 00000000 00000AT0000 0D
Q0 D000 0000000000000 DN 000000000000k
0ot s0fm Omef=00:0 0 00D MO 0000000000000 000000(EE
Q0D leup (0 0 000D 00 000000000000 00000 00f5S
001 1000 000000000000000000000 040 00|E 5
W00 oQpm DB Thm /00 0000000 000 0 0 DaeDaOuOuguQuuDs0uga0e) 0 0ol m
W00 o0 e Dlen Demg{0) 0 000D 00 DM 0O0DD00DODDND D pol] W
Li s iiiiiiraaaannasRRRORRROROROUORORNR DR OBPOBRBAAALPAAL
Figure C-2. 450 GOTO 200

The formula section of the card is 29 columns long, and 12 rows
deep. You proceed from the left-most column to the right, for
up to 29 characters; the CONT box on the far right allows you

to continue your statement to the next card.

You must fill out the formula section of each card in Hollerith

code.

code key (the black squares in the formula section), which

indicates the lines that you must mark for each character.

On

all mark-sense cards numbers are marked directly in the
appropriate row, without the key. Letters require two marks
in a row, and special characters either two or three marks.

Each Data General mark-sense card contains a Hollerith

DataGeneral

SOFTWARE DOCUMENTATION

! O- NS0 QL8900 O-PLYORY aeeen

B V¥INIO viva n' i A] IVHIND viva n' i
== 3281990 @ LHoRiAI0D [=X= 2281 ‘000 @) LHonurdoo -
oo oo, ! . e e 1 0 0 0 o e e
(=X =R =X —=f -t Il M i3 (=X —F—_ YRy L=
£ e O o e e R Y o o w ﬂ oo o e e o e

N I O O IR Y, o £ D oD 0 R D D D I £
il e e e e — Lo m o B O Comeopoooag o,
uunﬁnmuuuuuum-UI » O uunnn:.uunuumUI
ﬂﬂﬂnﬂuuum—umul Va 5 c.n._ ~ m ﬂﬂﬂﬁuuuumnmul
ﬂﬂﬂoﬂ-nunmuum“-l o = m ﬂﬂur«d-nn.uumuum-ul
RO o oo e Q o Q = e e A = =T L=

- - u O v © & - -

uﬂﬂﬂﬁnmuunumul o v uﬁﬂﬂun'.nu.“.m.nuuuumnuul

2 D € 00 0 £ £ 6 0 £, m H T @ gy ER = e e (—)
1IEEZCE ey iy 8 225% R E e Ea]
—”ﬂunﬂuﬂuu - o 8 ..nw. 3] ot n =
flooomoooooaaaa] . 8 O ¢ 2 oo as
FFEOCoa OO, =& m 3] S e e e el — L

>

[=X=] cooooaae] o2 > o Dlnunl

= 9 W Qo -~ (=X —F—X—}
(=X} oo, B . ﬂ 2 oo e
[=¥=) e = =YY
=X oCooooooc,] .) M) Mw. =YY
crpooooeReI o T et SRS
Setiomdie U.Uﬂuu"uuul < e |mwo nu.".ﬂl
- O o a -

-

mhh FETCIFINICIN e - 8[El-33/85/g/ss]
[=] HMM - g 2t . =] =) o G

: £E825a HERAAHATITN

] 4 183 |w
1m. HTAARANONNrs RN HICAARAOARAre
TR TFRETE T - H w =] um [0} TR R R TE T -
—.m...m:m:m:m:m.m:m.ﬂm.n @ e o H mm RPN T B
TR TR ETE T - = OO 4 b0 5 TR R T T
OOEo QPR T P [=IR i1 m o S S S
- Owzax8

We have

Figu.l‘e C'4.
circled the box under the V. Some characters have more
than one box below them. Again, mark the rectangle at
C-3

Find any boxes directly under your character.
the intersection of the arrows (Figure C-4).

DataGeneral

SOFTWARE DOCUMENTATION

Do not draw the arrows on the mark-sense cards as BASIC
will try to interpret them. The first column contains the

completed markings for the character V. (Figure C-5).
0 o [BP0 l|04] 1090909400009 39990000000000
u-lﬂulmnb-nm: Hu«utunn-u-u'uru-u-ngnnntnwg_g'umuuuuuuuuu
o) o] of] 9 aan] Jewo][] o \] ¥ 9
ettt TR R e et At A
)) Dira i) 10) OO D0000000000-000000004
0300 o pr el o000 [0 00000M00000040000000
Q00 0k D)0 0 0 000000000000 000000 0082
Q000 k=080 0 0 0000000000000000000f%%
o)) D Dfualpmn]e] 1 0 000000000000 00000 0058
010 D10 01 100000000M00000000005
o o)) o DRSO 0]040 0 0 0D 0 0 DuDaCagaDaaDaga0a8Da0ng § 04|
o]0 o) Do remq| 0] 1 1 D oM 0000000D00DDDDD 00w
Figure C-5.

Move one column over and find your next character. Begin again.
You may be using cards without a key. If so, fill them out
according to the Hollerith character set at the end of this appen-
dix. The mark-sense card key and the Hollerith character set
work exactly the same way; you may use whichever you find
easier. If you use the Hollerith code set, the top horizontal line
is number 12, the second from the top is number 11, and the
other lines are numbered from 0 through 9. To indicate 4, put a
mark on line 4; to indicate an asterisk (*), put marks on lines
11, 4 and 8; to indicate a number sign (#), put marks on lines 3
and 8.

On any card, you can continue a statement to the next card by
marking the CONT box in the upper righthand corner of the first
card. Continue the statement on the following card in the
FORMULA section.

To write an IF statement, mark IF in the statement section, mark
the test expression in the formula section, and mark the THEN box
in the upper right-hand corner of the card. On the next card, begin
continue in the formula section.

DataGeneral

SOFTWARE DOCUMENTATION

To further illustrate the use of mark-sense cards, we have
coded 10 IF V$ = "CAT" THEN in Figure C-6.

*
gzueﬁs_ '
3261990 (D 1Ho1MAI0D

e e o 0 0 o o 6 o e
[N e Y F e o N e e e Y Y —]
o oo oocooo/am e

-
w -
(= =y -1
L=SA =4 -

0
|
0
0
J
0
0
0
I
I
1111111

-
ﬂﬂﬂoﬂnuuuunuu
- -
it e —
CMED £ €0 £ 6 £ 6 OO £,
PRE - -
(== — Y=Yy =)

[=R =g =g R Y — Y —
“ﬂuﬂvuuuuuuuuml

PO ooooc e |
PR oooooacs]
PRPeToooOo oo e
bt St
oo oOooooo e,]
oo oooo o,
BUEUUUU'U'UL
b A b

COCOoOE O COCCEC e
T

10 IF V$ = "CAT" THEN

A1

b S i i i e

— T oo,

L AnRnanLs
wﬂpw»[ﬁmw_ R
/

.........

IIIIIIIII

Figure C-6.

C-5

DataGeneral

SOFTWARE DOCUMENTATION

HOLLERITH CHARACTER SET

Use this table on the formula section of mark-sense cards

(see page C-2).

Character Lines Character Lines
0 0o |-1-] 111
1 1 |- - K 112
2 2 |- |- L 113
3 3 - - M 1114
4 4 - - N 115
5 5 |-1- o) 116
6 6 - - P 1117
7 7 - |- Q 11} 8
8 8 - - R 1119
9 9 |- 1- S 0 |2
A 12 |1 - T 0 [3
B 1212 | - U 0 |4
C 123 |- v 015
D 12 {4 | - w 016
E 12 {5 | - X 0|7
F 1216 | - Y 0|8
G 12 {7 - Z 019
H 128 | - [12 2
I 1219 | - 12 3

C-6.

DataGeneral

SOFTWARE DOCUMENTATION

Character Lines Character Lines
< 1214 | 8 ' S| 81 -
(1215 | 8 = 6| 8| -
+ 1216 |8 " 718]|-
! 1217 | 8 & 12 - | -
] 11{2 |8 - (minus) 11 - | -
$ 113 |8
* 1114 |8
) 115 |8
; 116 |8
t 117 |8
\ 0|2 |8
» (comma) 0 (3]38
% 0 |4 |8
- 0|5 18
> 0 |6 |38
? 0|7 |8
2 |8 | -
3 |8 |-
@ 4 |8 | -

END OF APPENDIX

DataGeneral

SOFTWARE DOCUMENTATION

INDEX/GLOSSARY

ABS(X)
see absolute value function
absolute value function 3-16
Account-ID 2-1
identification information necessary for signing onto some
BASIC systems.
addition 2-5, 2-6
addressable locations 1-1
algebra
see arithmetic
alphanumeric 8-1
a character set which includes letters, digits, and special
characters.
arctangent function 4-9
argument 3-4
a data element you supply to a function, command, or
statement,
arithmetic 2-5, 2-6
array 7-1
a series of elements in one or two dimensions.
numeric array 7-1to 7-7
one dimension 7-1, 7-2
two dimension 7-8 to 7-14
reference elements of 7-6
transpose 7-14
array element 7-1
an element within an array, referenced by a subscript.
element of two dimension array 7-8
array variable 7-1
a variable which names an array.
arrow 3-2, 5-1
asterisk
multiplication 2-5
prompt iii, 2-1, 2-3
ATN(X)
see arctangent function

back arrow
see RUBOUT key

Index-1

DataGeneral

SOFTWARE DOCUMENTATION

backslash 3-10
SHIFT/L on the terminal keyboard, erases the current line.
backslash-question mark 4-3
BASIC 1-2
BASIC commands 2-1
BYE 2-2
LET 3-8
LIST 3-5
NEW 3-5
PRINT 2-3
RENUMBER 3-11
RUN 3-5, 3-6
BASIC functions 3-13
Absolute value function ABS(X) 3-16
Arctangent function ATN(X) 4-9
Cosine function COS(X) 4-9
Exponential function EXP(X) 6-7
Integer function INT(X) 3-13
Logarithm function LOG(X) 6-7
Randomize function w/RND(0) 5-17
Sign function SGN(X) 3-15
Sine function SIN(X) 4-9
Square root function SQR(X) 6-7
Tangent function TAN(X) 4-9
BASIC statements 3-1
DATA 4-6, 5-15
DIMension 7-1, 7-7, 7-8, 7-9, 7-11, 7-13, 8-3
END 3-6, 3-7, 5-4
FOR 6-3, 6-5, 6-9, 7-2, 7-3, 7-9, 7-10
GOSUB 5-20
GOTO 5-1
IF 5-4, 5-5, 5-6, 5-7, 5-15, 6-1
INPUT 4-1, 4-3, 5-15
LET 3-8, 4-1
NEXT 6-3, 6-5, 6-9, 7-2, 7-3, 7-9, 7-10
PRINT 3-1, 3-6, 4-4
RANDOMIZE 5-17
READ 4-6, 5-15
REM 3-6
RETURN 5-20
RND(0) 5-17
STOP 5-4

Index-2

DataGeneral

SOFTWARE DOCUMENTATION

batch processing C-1
the technique of executing a set of computer programs
sequentially; each is completed before the next program
in the set is run.

brackets
interchangeable iii

BYE 2-2

card reader 1-5
a machine which interprets codes marked on cards, and
transmits data and instructions from the cards to the computer,
carriage return
symbol for iii, 2-3
to generate in program 4-11
Cathode Ray Tube display 1-2
a type of terminal which includes a Cathode Ray Tube. Infor-
mation is displayed on a screen rather than being printed on
paper.
Central Processing Unit 1-1
the unit of the computer that controls the interpretation and
execution of instructions.
code 3-5
to represent data or a computer program in a special language
that a computer can understand and use.
column
in two dimension array
see array
command 2-1
an instruction the computer executes immediately.
see BASIC commands
comma
with PRINT 4-11
computer
a machine which accepts information, applies prescribed pro-
cesses, including arithmetic and logic operations, to the
information and supplies the results.
computer cards
see mark-sense cards
condition, test for
see IF statement
cosine function 4-9
cosines, law of 4-9
COS(X)
see cosine function

Index-3

DataGeneral

SOFTWARE DOCUMENTATION

CPU

see Central Processing Unit
CRT

see Cathode Ray Tube display
CRT keyboard 1-3

data 1-1, 1-2
a term used for all facts, numbers, letters, or symbols which
can be processed or produced by a computer.
DATA 4-6
with flag 5-15
debug
to detect, locate and correct mistakes or errors in a program.
decision box 3-2
with IF 5-8
DIMension
numeric subscripts 7-1, 7-7
string subscripts 8-3, 8-4
two dimension array 7-7
division 2-6, 2-7

edit
to modify or re-arrange data or program statements. Editing
often involves deleting undesired information and inserting
desired information,
by line number 3-10, 3-11
see RUBOUT, backslash, RENUMBER

END 3-6, 3-7
or STOP 5-4

error message 3-4
an indication that BASIC has detected an error. Errors often
result from typing mistakes.
see Appendix B

ESCape key 1-4, 2-1, 2-2
a special terminal key, which calls the computer's attention or
interrupts a program.
interrupt program 5-11

evaluation of terms 2-5

execute 2-3
to perform instructions or run a computer program.

EXP(X)
see exponential function

exponential form 2-4
a numeric representation which uses the letter E to mean
"times 10 to the power of"'. 1000 = 1E+3.

Index-4

DataGeneral

SOFTWARE DOCUMENTATION

exponential function 6-7
expression
numeric relation see IF

factorial 5-11
flag value 5-15
a value out of the normal data range which signals some
condition, as the end of a data list,
flow chart
a graphical representation of a computer program, which
uses symbols to show all logical steps toward the solution of
a problem.
symbols 3-2, 3-3
see GOTO, IF, GOSUB, FOR/NEXT
FOR 6-3, 6-5, 7-2, 7-3
nested FOR/NEXT 6-9, 7-9, 7-10
flow charts 6-4, 6-6
nested 6-10, 6-12
formatting output
see PRINT rules
FOR/NEXT loop
see FOR
functions
see BASIC functions

GOSUB 5-20
GOTO 5-1

high-speed line printer 1-6
a device which prints listings and data from the computer
at high speed.

Hollerith card code Appendix C
character set C-6

IF 5-5, 5-15, 6-1, 6-2
relation expression 5-6, 5-7
numeric expression 5-10
IF... THEN
see IF
initialize 5-9
to set a counter for your program's use.
INPUT 4-1
with prompts 4-4
with flag 5-15

Index-5

DataGeneral

SOFTWARE DOCUMENTATION

input 1-1
the data to be processed (noun); the process of transferring
data from an external storage area to a computer's working
storage (verb).
inputting data see LET, INPUT, READ, DATA
Input/ Output Unit 1-1
the section of the computer which communicates with the user.
Integer function 3-13, 3-14
INT(X)
see Integer function
I/O unmit
see Input/Output Unit
I/O devices 1-1
the devices which handle Input/Output procedures. These
include terminals, card punchers and readers, high speed
line printers, and magnetic tape drives.

Keywords
see BASIC commands, BASIC functions, BASIC statements

language interpreter 1-2
a program which translates a computer language such as
BASIC into instructions the computer can perform.
LET 3-8, 4-1
line number 3-1
an integer between 1 and 9999 used to number the statements
in a BASIC program.
LIST 3-5
listing
all the statements of a computer program - usually a copy
printed on paper rather than displayed on a CRT.
logarithm function 6-7
LOG(X)
see logarithm function
log off 2-2
to release your terminal from a computer system.
log on 2-1
to enable your terminal to interact with a computer system.
looping
see loop
loop 5-10, 5-11
a sequence of instructions which a system executes, either a
specified number of times (FOR/NEXT loop) or until some
terminal condition is satisfied (IF... THEN loop).
see IF, FOR

Index-6

DataGeneral

SOFTWARE DOCUMENTATION

magnetic tape drive 1-6
Main Memory Unit
the portion of the computer that stores information and data.
main units (of computer)
see Central Processing Unit, Main Memory Unit, Input/Output
Unit
mark-sense cards 1-5, Appendix C
paper cards (about 3 1/2 x 7 1/2) which you mark or punch with
a specific code. This code represents programs and data; a
card reader interprets it for a computer.
reader C-1
Memory
see Main Memory
memory address 1-2
the label for a location where data is stored in memory.
messages
PRINT 2-3
prompting 4-4
multiplication 2-5, 2-6

nested FOR/NEXT
see FOR
NEW 3-5
NEXT
see FOR
numbers (PRINTing) 2-5
numeric arrays
one dimension 7-1
two dimension 7-8
numeric expression 5-10
numeric variable 3-8
subscripting 7-1

output 1-1
data that has been processed by a program (noun); or to trans-
fer data from internal storage to an external device (verb).
formatting output see PRINT rules

paper tape reader 1-6
parentheses

interchangeable iii

evaluation of terms 2-6
PRINT 2-3to 2-6

PRINT Rules 4-11 to 4-14

Index-7

DataGeneral

SOFTWARE DOCUMENTATION

program 3-1
a sequence of instructions and statements used to solve a
problem.
control 3-1, 5-1, 5-5
flow chart 3-2
prompts 4-4
messages printed at the terminal by a program to request
input.
asterisk prompt iii, 2-1, 2-3

question mark
with INPUT 4-3

quotation marks
with PRINT 2-3
strings 8-1

radians 4-9
180° = 7 radians
RANDOMIZE 5-17
READ 4-6
with flag 5-15
relational expression 5-7
see IF
relational operators 5-6
see [F
REM 3-6
RENUMBER 3-11
RETURN 5-20
reverse oblique
see backslash
RND(0)
see RANDOMIZE
rows
in two dimension array, see array
RUBOUT key 1-4
a special key on a terminal which erases characters you
have typed.
editing 3-10
RUN 3-5, 3-6
run
a single, continuous performance of a program by a computer.

scientific notation 2-4
semicolon

with PRINT 4-11

Index-8

DataGeneral

SOFTWARE DOCUMENTATION

SGN(X)
see sign function
SHIFT key 1-1
editing 3-10
see backslash
SHIFT/L 3-10
a terminal key combination (press the shift key and type L)
which erases the current line.
Sign function 3-15
sign off 2-2
sign on 2-1
simulation
see RANDOMIZE
Sine function 4-9
SIN(X)
see Sine function
special keys
see ESCape key, RUBOUT key, SHIFT key
square root function 6-7
SQR(X)
see square root function
standard notation 2-4
start box 3-2
statement
a meaningful expression or instruction in a programming
language.
see BASIC statements
STOP 5-4
stop box 3-2
stop a program 5-11
Strings 2-3
a sequence of characters which may contain letters, digits,
special characters or spaces.
String literal 8-1
String variable 8-1
String subscripts 8-3
subroutine 5-20
a programming routine within a program which is executed
only when referenced by another statement in the program.
In BASIC, the GOSUB statement specifies a subroutine.,
subscript
a number in parentheses following an array variable or
string name.
numeric subscripting 7-1
string subscripts 8-3

Index-9

DataGeneral

SOFTWARE DOCUMENTATION

substring 8-4

subtraction 2-5, 2-6

system manager 2-1
the person in charge of a computer system, who assigns
account-ID's and keeps the system running.

tangent function 4-9

TAN(X)
see tangent function

teletypewriter 1-2
a computer terminal similar to an electric typewriter with
special keys to communicate with a computer.

terminal 1-3
a device through which programs and data enter or leave a
computer, contains a typewriter-like keyboard.
time sharing 1-5

test
relational expression 5-6
numeric expression 5-10, 5-11

time sharing system 1-5
a method of using a computer system for two or more
programs (or users) simultaneously. Control alternates
rapidly between the programs.

transpose
of an array 7-14

trigonometry 4-8
see BASIC functions

truncation
numbers 2-4
strings 8-3

underline ii, 2-3

variable 3-8, 8-1
a symbol for an arithmetic or character data value that can

change during the execution of a program.
see numeric variable, string variable
inputting variables

see LET, INPUT, READ, DATA

working storage 3-4
the temporary storage area of computer memory where

programs are stored and executed.

WS
see working storage

Index-10

