
DataGeneral

basic BASIC

069-000003-00

basic BASIC

(An Introduction to BASIC)

069-000003-00

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (OBS-series) supplied with the software.

Ordering No. 069-000003
© Data General Corporation, 1976, 1978
All Rights Reserved
Printed in the United States of America
Revision 00, December 1978

NOTICE

The information contained in this manual is the property of Data General Corporation (DGC) and
shall not be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

basic BASIC
(An Introduction to BASIC)

069-000003

Revision History:

093-000088

Original Release - June 1973
First Revision - February 1976

069-000003

Original Release - December 1978

This reVISIOn changes only the part number; the text is identical to
manual 093-000088 revision 01.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks

CONTOUR I INFOS NOV ALITE
DATAPREP NOVA SUPERNOVA
ECLIPSE NOV ADISC

Trademarks

DASHER
DG/L
microNOVA

DataGeneral
SOFTWARE OOCUMENTATION

TO THE READER

Computers have been cloaked in mystery since their invention.
This manual is aimed at clearing away some of the mystery and
proving that you can use a computer. Remember. a computer is
just an electronic machine which can perform complex calcula
tions at high speeds. However. a computer can only do what it is
told to do and you will be learning how to command one. Do not
worry about mistakes. they cannot hurt the computer.

This manual introduces the BASIC computer language and covers
its elementary commands and statements. When you become
familiar with basic BASIC and would like to write more complex
programs. please read Data General's Extended BASIC User's
Manual.

We have designed this handbook for use at a computer terminal.
so you can try the exercises which follow the concepts as we
present them. Each section of the manual introduces a new idea.
and ends with a simple exercise or two. which you should try
before proceeding; you can thus progress at your own pace. (If
you really get stuck. Appendix A includes one set of answers; use
these only after you have tried the exercise.)

This handbook uses the following symbols:

Symbols II Meaning

* Asterisk

) Carriage Return

L:::. Space

() Parentheses

[] Brackets

Handbook Symbol Table.

iii

DataGeneral
SOFTWARE DOCUMENTATION

1. Parentheses and brackets are always interchangeable.

2. In the program ~xamples, underlined words have been typed
by a person. BASIC's responses are not underlined.

*LI ST)
1211211121 REMARK -
1211212121 INPUT A
1211213121 PRINT A
1211214121 END

*RUN)
? 5432)
5432

END AT 1211214121

*

INTRO PROGRAM

You type LIST, a car
riage return, then RUN,
a carriage return, then
5432 and a carriage
return. The computer
prints everything else.

3. BASIC language keywords appear in CAPITAL letters.

4. Any words in boldface type in this handbook have meanings
unique to the computer field. The index/glossary defines
these words.

iv

DataGeneral
SOFTWARE DOCUMENTATION

CONTENTS

CHAPTER 1 - COMPUTER CONCEPTS

What is a Computer? ••••••••••••• 1-1
What is BASIC? ••••••••••••••••• 1-2
Talking to BASIC • • • . • • • • . • • • . • • • 1-2
Sharing a Computer • • • • • • • . • • • • • • 1- 5

CHAPTER 2 - AT THE TERMINAL

Logging On •••••••••••••••••••• 2-1
Logging Off. • • • • . • • • • . • • • • • • • • • 2 - 2
The PRINT Command ••••••.••.••• 2-3

Printing Numbers •..•••••..•••• 2-4
Using PRINT as a Calculator ••..•• 2-5

CHAPTER 3 - PROGRAMMING

Programs •••••••••.••...•••••• 3-1
Flow Charts • . • • . • • . • • . • . . • • • . • 3-2
Working Storage •••••••••.•••••• 3-4
Some Commands for Programming • • • • 3- 5
Our First Program. • • • • . . • • • • • • • • 3- 6
Variable s • • • • • . . • . • . . • • • • . • • • • 3- 8
Editing. . . • • • . • • • • . . . • . • • • • . • • 3-10
Functions. • • . . • • • • . . • • • • • • • • • • 3-13

Integer Function •• • • . • . • • • • • • • 3-13
Sign Function ••••.•••...•••.• 3-15
Absolute Value Function ••••••••• 3-16

CHAPTER 4. - WORKING WITH DATA

What' s Data? ••••••••••.•.••••• 4-1
Prompting Messages ••••.•.•..•••• 4-4
If You Know Your DATA •••.••••••• 4-6
Remember Trig? • • • • • • • • • • • • . ••• 4- 8
Nice. Neat Output •••.••••••••••• 4-11

v

DataGeneral
SOFTWARE OOCUMENTATION

CHAPTER 5 - DECISIONS & LOOPS

Non- Nmneric Order ••••••••.••••• 5-1
STOP or END? • • • • • • • • • • . • • • • . • 5-4
What IF •..•.•..•...........•• 5-6

Nmneric Expression •••.•••••••• 5-10
Getting Complicated. • . • • • • . • • • • 5-12
Flagging the End • • • • . • • . . • • • • • 5-15

RANDOMIZE ••••.••••••••••••• 5-17
U sing a Subroutine • • • • • • • . . • • • • • • 5- 20

CHAPTER 6 - FOR/NEXT LOOPS

Loop Using IF ••••..••••••.••••• 6-1
The FOR and NEXT Statements •••..• 6-3
Advanced Functions • • • • . ••••••••• 6-7
Nested FOR/NEXT Loops ••.••.•••• 6- 9

CHAPTER 7 - NUMERIC SUBSCRIPTING

Arrays •••••••••••••••••••••• 7-1
Another Array •.•••••.•..•••.••• 7-6
Two Dimensional Arrays •••••••••• 7-8

CHAPTER 8 - STRINGS

String Literals ••••••••••••••••• 8-1
String Variables •••••••••••••••• 8-1
String Subscripting ••••••••••••••• 8-3

APPENDIX A - PROBLEM ANSWERS

APPENDIX B - ERROR MESSAGES

APPENDIX C - PROGRAMMING
ON MARK-SENSE CARDS

INDEX/GLOSSARY

vi

DataGeneral
SOFTWARE DOCUMENTATION

Welcome to the fascinating world of computers. Do not be afraid
to tryout your ideas - experiment. This computer business
should be fun!

vii

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 1

COMPUTER CONCEPTS

WHAT IS A COMPUTER?

A computer is a machine used to solve problems. The machine
accepts information, processes it, and prints the answer. Three
main units within a computer control these three tasks.

The three main units of a computer are the Input/Output Unit, the
Central Processing Unit and the Main Memory Unit. Each unit
performs specific functions, and information moves between them
(Figure 1-1).

Input/Output Central Main

Unit Processing Memory
(I/O) Unit Unit

(CPU)

Figure 1-1. Information passes between the Three Main Units
of a computer.

The computer's heart is the Central Processing Unit (CPU). The
CPU deciphers your instructions to the computer, performs
calculations, and directs the other units to complete your
requests.

The Input/Output (I/O) unit controls the devices which feed
(input) information to the computer and print (output) information
back to you. Some I/O devices are teletypewriters, high -speed
line printers, paper tape readers, and magnetiC tape drives.

The Main Memory unit is a set of addressable locations which
store instructions and information (called data) from the user.
These locations resemble the mailboxes in a post office. Each
mail box has a label and the mailman places letters in the proper

1-1

DataGeneral
SOFTWARE DOCUMENTATION

box. The CPU stores your information in a memory mailbox.
keeps track of the mailbox label (called a memory address). and
retrieves the data when necessary (Figure 1-2).

BOX
A

425

BOX
B

3.227

BOX
C

BOX
D

s
Box A contains numt1f'ic data - the number 425, Box B contains
3.227, Box C is empty and Box D contains the character '5'.

SO-00305

Figure 1-2. Data in a memory mailbox.

Through the I/O unit. the CPU obtains data. from the user. The
CPU stores this information in the Main Memory unit. Whenever
the CPU does calculations. it stores the results in the Main
Memory unit.

WHAT IS BASIC?

BASIC is a computer language. You can converse with a computer
in BASIC and instruct the computer to perform some task. BASIC
stands for ~ginner's ~l-purpose ~mbolic !!tstruction Code and
was first developed at Dartmouth College. BASIC uses familiar
words and symbols so you can learn it quickly and easily.

To use BASIC. your computer must have a BASIC language inter
preter. This interpreter is a set of instructions which interprets
the familiar words and symbols of the BASIC language into com
mands which the computer executes. Data General supplied a
BASIC language interpreter with your computer.

TALKING TO BASIC

You can type instructions in BASIC on a communications (I/O)
device: either a teletypewriter (Figure 1-3). or a cathode ray tube
(CRT) display (Figure 1-4).

1-2

DataGeneral
SOFTWARE OOCUMENTATION

Figure 1-3. You can talk to a computer using a teletypewriter.

Figure 1-4. BASIC also understands instructions typed on a
CRT display.

We will refer to your communications device as a terminal. It
connects to the computer either directly or by telephone lines.
Figure 1-5 contains a diagram of a terminal connected to a
computer.

1-3

DataGenerai
SOFTWARE DOCUMENTATION

I/O

CPU

I Terminal I Main Memory

80-00306

Figure 1-5. Your terminal connects to the I/O Unit of the
Computer.

A terminal keyboard resembles a typewriter keyboard. but has
several special keys. These special keys include:

the ESCape Key

the RUBOur Key
the SHIFT Key

interrupts the execution of the currell:
calculation or task.
erases characters typed by mistake.
works with other keys to create special
characters which we will explain later.

Do not confuse alphabetic and numeric keys. Your terminal
includes keys for the 10 numeric digits and you should use these
keys for typing numbers. i. e •• numeric 1 instead of lower case
alpha L and numeric 0 instead of alpha O. Although these
characters may appear similar on a printed sheet. BASIC inter
prets them differently.

"'''~ '" otj LINE

Figure 1-6. Special Keys on a DGC Model 6012 display keyboard.

1-4

DataGeneral
SOFTWARE DOCUMENTATION

Figure 1-6 illustrates a Model 6012 Keyboard. Other terminal
keyboards are similar. though some of the special keys may be
in different places.

You can also communicate with BASIC using mark-sense cards
and a card reader. You mark these cards with a special code and
stack them in the card reader. which reads them one at a time and
sends their instructions to the computer. These cards can be used
repeatedly; you may add or change cards to revise your program.
Appendix C explains the code for these cards.

SHARING A COMPUTER

In a time-sharing system. many terminals share the same com
puter. and each terminal takes a turn using micro -seconds of
computer time. The computer can process information so rapidly
that each terminal user appears to have sole access to the system.
You may have contact with only one terminal. but that terminal is
part of a much larger system you never see (Figure 1-7).

1-5

DataGenerai
SOFTWARE DOCUMENTATION

t.=====

... ..

o

o

I[--oJ~

50-00400

Figure 1-7. Many users share this NOVA IL

END OF CHAPTER

1-6

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 2

AT THE TERMINAL

A computer will not do anything unless you ask it to. It will sit
idle and be perfectly happy for minutes, or hours, or years.
Therefore, you must learn the commands which you can type to
tell BASIC what to do.

But, before we start listing commands, let's get you onto a
terminal.

LOGGING ON

To start using BASIC, turn the terminal switch to LINE, then
press the ESCape key on the keyboard. BASIC will print a log on
message. If your message includes an asterisk prompt (*). you
are logged on and may start typing instructions. Whenever you
want a program to stop running. for whatever reason, hit the
ESCape key. BASIC will reserve your program without loss. and
print the asterisk prompt.

Some systems need account identification information to prevent
unauthorized people from using the computer. If so. when you
press the ESCape key. BASIC will print:

ACCOUNT m:

and wait until you type a valid m and a carriage return.

Suppose your system manager assigns you an account m of HASK.
Directly after BASIC prints "ACCOUNT m:" type "HASK" and
carriage return. Your account 10 will not appear on your paper
(or CRT screen) for security reasons.

If you type the wrong account m, BASIC will indicate an unrecog
nizable 10 and ask for a correct one. After you have typed a
correct account 10 the system will print log on, or sign on,
information. then an asterisk indicating that it is ready for
instructions. See Figure 2 -1 for a sample log on procedure.

2-1

DataGeneral
SOFTWARE DOCUMENTATION

DGC READY
(~) ESCape Key)

ACCOUNT-l 0: HASK)
08/2617515:43

(id not echoed)
51 GN ON" 04

*
Figure 2-1. Hello. BASIC.

LOGGING OFF

When you wish to stop using the system or log off. type the
command:

On some systems after you type the command BYE. BASIC will
print log off. or sign off. information which looks something like
Figure 2 -2.

*SYE)
----08/26/75 15:43 SIGN OFF .. 04

08/26/75 15:43 CPU USED .. 0
08/26/75 15:43 1/0 USED .. 0

DGC READY

Figure 2-2. Goodbye. BASIC.

BASIC will then sit idle until you or someone else presses the
ESC key on the terminal.

Exercise 2 -1. See if you can log onto your system. then log off.

2-2

DataGeneral
SOFTWARE DOCUMENTATION

THE PRINT COMMAND

Since BASIC is an interactive language. you and the computer
carry on a dialog. The first BASIC command is PRINT. which
means the same in BASIC as it does in English. After an asterisk
prompt. which means it's your turn to talk. type PRINT. a number
to be printed. and a carriage return. BASIC will print the number:

*PRINT 7)

*

7 (Remember. underlined sections of
listings are those you type and the
symbol) indicates the carriage return
key which always ends a command.)

To tell BASIC to print letters and spaces rather than numbers.
enclose these characters in quotation marks. BASIC will print
exactly what you type within the quotes:

*PRINT "I AM A COMPUTER") I AM A COMPUTER

*PRINT "I CAN'T SPEL") I CAN'T SPEL

*
You may include both numbers and characters inside quotation
marks:

*PRINT "REVOLUTION - 1776") REVOLUTION - 1776

*
Do you see the difference? Numbers do not have to be in quotes
but if you want BASIC to PRINT letters. punctuation or other
characters. you must enclose the whole string in quctation
marks.

BASIC carries out. or executes the PRINT command immediately.
Notice that the carriage return signals BASIC to print the result.
The command is not stored for re-use. Later. you will learn
how the PRINT keyword can be stored in a BASIC program.

Exercise 2-2. Try PRINTing some values and messages.

2-3

DataGeneral
SOFTWARE DOCUMENTATION

Printing Numbers

BASIC converts very large or very small numbers to exponential
form. Let's look at some numbers and then we will explain the
conversion.

*PRINT 2000000000000000) 2E+15

*PRINT 1256E+7) 1 .256E+ 10

*PRINT 145.745) 145.745

*PRINT .00000000432) 4.32E-09

*PRINT -324.56743) -324.567

*PRINT -17.43985762527) -17.4398

*PRINT 50000000000112) 5E+13

*
The letter E means "times 10 to the power of". BASIC converts
all numbers of more than 6 digits to exponential form. BASIC
accepts numbers from approximately 5.4 x 10-79 to 7.2 x 1075 •
Notice that the letter E may be used in a number but a comma, to
separate thousands, may not be used. Table 2 -1 illustrates the
relationship between standard notation, scientific notation and
exponential form.

Table 2-1. Number Relationships

Standard 1L Scientific II Exponential

1,000,000 1 x 106 lE-t06

10,000,000 1 x 107 lE-t07

100,000,000 1 x lOB lE-tOB

.0000001 1 x 10-7 lE-07

.00000000001 1 x 10 -11 lE-ll

Exercise 2 -3. Experiment with exponential notation on your
terminal.

2-4

DataGeneral
SOFTWARE DOCUMENTATION

Using PRINT as a Calculator

Y OJ can use BASIC as a calculator with the PRINT command.

*PRINT 2+3) 5

*PRI NT 4-1) 3

*PRINT 5-2+10-17) -4

*

Exercise 2-4. Locate the plus (+) and minus (-) keys on your
terminal and try some addition and subtraction.

While the arithmetic cross (x) means multiplication. BASIC would
get confused if x were used for both an alphabetic character and
a multiplication command. Therefore. BASIC uses an asterisk
(*) for multiplication. and reserves x for alphabetic use. Most
terminals do not contain a divide key so a slash (I) is reserved
for division.

*PRINT 7*8) 56

*PRINT 9/3) 3

*PRINT 8*2/4) 4

*

Exercise 2 -5. Try some multiplication and division at your
terminal.

You can combine multiplication. division. subtraction and addition
in the same PRINT command. and use parentheses as in algebraic
statements. BASIC and arithmetic evaluate terms in the following
order:

1. Any expression within parentheses - if nested. i. e. (3+(4*6».
the innermost parentheses are evaluated first.

2. Multiplication and division - from left to right. equal
priority.

3. Addition and subtraction - from left to right. equal priority.

2-5

DataGeneral
SOFTWARE DOCUMENTATION

*PRINT (2+3)/5-7*2) -13

*PRINT 4/7+8*2-4.35) 12.2214

*
BASIC evaluates the first example in this order:

1. parentheses: (2+3)

2. leftmost division: 5/5

3. rightmost multiplication: 7*2

4. subtraction: 1-14

Exercise 2-6. Try some examples combining addition, subtrac
tion, multiplication and division.

You can print both messages and the results of calculations with
a single PRINT command. Separate the items in the PRINT
command with either commas or semicolons.

*PRINT "2 PLUS 3 IS»'2+3) 2 PLUS 3 IS 5

PRI NT 4 5~ "I S THE AREA") 20 I S THE AREA

*
Exercise 2-7. Try some problems combining calculations and

messages. Experiment with commas and
semicolons to see how they affect the format of
your output.

END OF CHAPTER

2-6

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 3

PROGRAMMING

PROGRAMS

A program is an ordered set of instructions. called statements.
which define tasks for a computer. You will learn to create pro
grams with BASIC statements.

Each BASIC statement begins with a line number. When the com
puter executes a BASIC program it performs the statement with
the lowest line number first and proceeds to the next higher num
ber. While any integer between I and 9999 may be used for a line
number. programs in this manual will generally count line
numbers by lOs.

Figure 3 -1 contains a PRINT statement which looks very similar
to a PRINT command. We will look more closely at the PRINT
statement later.

001", P~INT 2+3

~ ! ~
line number

50-00398

BASIC Keyword expression

Figure 3 -1. The PRINT statement contains a line number.

3-1

DataGenerai
SOFTWARE DOCUMENTATION

flOW CHARTS

Before a programmer writes a program. he will often draw a
symbolized diagram of its steps. This diagram. called a flow
chart. maps the logic steps in a program. With simple programs.
you may not need a flow chart; you will find more complex pro
grams easier to write if you flow chart them first. In this hand
book. we have provided a flowchart to clarify each BASIC
program.

Certain geometrical shapes have evolved which represent
specific computer actions. We have described some of these
shapes below. and will explain others when you need them.

C_)
START OR STOP BOX

An elongated oval shows the beginning
or ending point in a program.

PROCEDURE BOX

A rectangular box indicates an event or
procedure. Arithmetic calculations
are shown in a procedure box.

INPUT /OUTPUT BOX

The parallelogram indicates input typed
from your terminal and output the
computer will print back to you.

ARROW

The arrow shows the direction logic will
move through your program. Direction
within a flow chart usually moves from
top to bottom and from left to right.

DECISION BOX

A decision box contains a question which
has a "yes" or "no" answer. such as
"is A> O?" If the answer is "yes" the
computer will follow the "yes" arrow;
if "no" the computer will follow the
"no" arrow.

3-2

DataGeneral
SOFTWARE DOCUMENT AllON

A good flow chart will keep track of the logic within your program
and locate decision points and tests. If the logic has been planned,
your program will be easier to write; your only worry will be
translating a flowchart into BASIC. Also, if your program does
not work, you can often find an error more easily in a flow chart
than in the program itself. Just remember to keep your flow
charts simple; put in the major steps and leave the details for the
program.

3-3

DataGenerai
SOFTWARE OOCUMENTATION

WORKING STORAGE

When you sign onto BASIC. the system assigns you an area of
memory called working storage. You use this part of memory like
a giant chalkboard. to write. read and erase programs and data.

BASIC looks at every line you type as soon as you hit the carriage
return. If you have entered a statement (a line number. BASIC
keyword and any expressions or arguments). BASIC will store it
in working storage. If you have entered a command (BASIC key
word. no line number) BASIC will execute it immediately without
storing it. If you type something which is neither a valid state
ment or command. BASIC will ignore that line and print an
error message.

Therefore. you can store all your BASIC statements in working
storage. BASIC will leave them there until you expliCitly erase
or change them. When you have entered a complete set of state
ments. you have a program. You can type the command RUN
(explained below). and BASIC will perform the program steps in
sequence.

3-4

DataGeneral
SOFTWARE DOCUMENTATION

SOME COMMANDS FOR PROGRAMMING

Some commands which you will need for BASIC programs are:

LIST

When you have completely typed or coded a program. the LIST
command will print the contents of working storage - all the
program statements. This printing of a program is called a
listing.

RUN

To execute your program. type the command RUN. The computer
will RUN your BASIC statements in order. from the lowest line
number.

NEW

After your program has been run and you want to work on another.
the NEW command will erase your working storage blackboard.
It is good practice to type the NEW command before starting a
program.

But enough explanation - this information will make more sense
as you use it. Let's start programming!

3-5

DataGenerai
SOFTWARE OOCUMENTATION

OUR FIRST PROGRAM

We will start with a very simple program. in Figure 3-2. which
multiplies 2 by 3. This program demonstrates PRINT in a BASIC
statement instead of as a command.

*10 l1EM - PRINT 2 TIMES 3)
*20 Pl1INT 2*3)
*lliJ10)
*LIST

Type in the program and tell
the computer to list it.

0010 ~EM - "'!'lINT 2 TIMES 3}
0020 PRINT 2*3 The computer prints a listing.
0030 END

*tlUN)
6

END AT 0030

* SU-00262

You type the command to
execute the program. The
computer prints the result and
an END message.

Figure 3-2. A long way to print "6".

Now let's look at the statements in our program.

Line 10 is a REMarks line. The BASIC statement REM stands for
REMarks; with it you can write notes to yourself within a program.
BASIC ignores all comments in a REM statement but prints them
on every listing.

Line 20 uses the PRINT keyword in a statement. The line number
makes a PRINT statement instead of a PRINT command; BASIC
won't execute statements until you type RUN. A single program
may include many PRINT statements.

3-6

DataGeneral
SOFTWARE DOCUMENTATION

Line 30 is an END statement which tells the computer that your
program is finished and to return control to your terminal.

Exercise 3-1. Demonstrate that more than one PRINT statement
can be used in a program. Write a program to
divide 7 by 3 and multiply 6 times 4 and PRINT the
results. If you make a typing mistake re-type the
entire line including the line number.

3-7

DataGeneral
SOFTWARE DOCUMENTATION

VARIABLES

In BASIC, as in algebra, letters can represent numeric values.
For a rectangle, you might choose W and L to stand for width and
length in both BASIC and algebra; you would call W and L numeric
variables in BASIC. Any letter which represents a number is a
numeric variable.

In BASIC, the LET statement assigns values to variables. You can
think of the variable name as a memory location, which holds the
value of your variable. The LET statement can also change the
value within this memory mailbox.

A
RfJ':21"}\ LfT A=' [i]
('0' 3:~ LET A=4 []
~(J!4',~ LET A=2+5 [l]

Line 20 assigns the value 2 to memory address A.
Line 30 changes the value in memory address A to 4.
Line 40 changes the value in memory address A to 7.
The value in A changes with each LET statement.

You can name a numeric variable either a letter (A or F) or a letter
followed by a digit (Q2 or R9). An arithmetic expression (J + Z)
is not a valid variable name.

*10 LET A=7)
*2e LET A=9l
*30 L!'.:T A=A+ 1)
*40 LET G9=A*4/3)
*50 LET G/2 =G9J
ERROR 02 - SYNTAX
*

Examine the program in Figure 3-3 which assigns values to A
and B, adds the values, moves the sum to memory address C,
and prints A, B, and C.

3-8

A .. 2
B-3
C-2+3

50-00263

DataGeneral
SOFTWARE DOCUMENTATION

*LIST)
0010 REM - ADDS
0020 LET A=2
0030 LET B=3
0040 LET C=2+3
0050 PRINT A
0060
0070
0080

*RTJN)
2
3
5

PRINT
PRINT
END

END AT 0080

*

B
C

2 & 3

Figure 3-3. A Program Using Variables.

Exercise 3-2. Is 40 LET A + B = C a valid BASIC statement?
Why or why not?

Exercise 3-3. Write and run a program which uses variables to
print D if A = 2. B = 3. C = 4. and D = A *B-C.

3-9

DataGeneral
SOFTWARE DOCUMENTATION

EDITING

Everyone makes typing mistakes, so here's how to correct them.
The easiest way to delete a character is with the RUBOUT key.
The RUBOur key prints a back arrow (-) on your terminal and
erases the last character you have typed. You can continue
pressing RUBOUT, and BASIC will erase characters right to left,
one by one.

To erase the line you are typing use the SHIFT jL combination
(hold down the SHIFT key and press L). BASIC will print a
backalaah (\) on your terminal and execute a carriage return.
You can now retype the line.

Figure 3-4 contains examples of editing with both the RUBOUT
key and the backslash.

*NE~,.r)
*20 PRNT~~INT 2*3)
*LI ST)
121020 P'1INT 2*3

*10 ~EM - PRNI\
10 REM - P~INTS 2 TIMES 3)

*

Pressing the RUBOUT key
2 times erased the ''T'',
then the ''N''

Typing a backslash
(SHIFT /L) erased line 10,
and the carriage return
moved down a line. Retype
line 10.

Figure 3-4. Editing Mistakes.

After you write a program, you may need to debug it (remove the
programming errors). You can delete, add or change a program
statement by its line number.

To erase a line within a program, just type its line number. To
change a statement, retype its line number and the new statement.
To add a statement, give it a line number between two existing
line numbers. It will be easy to add line numbers if you have
stepped them by lOs, as we have done in the examples. Program
mers step their line numbers for just this reason - to add state
ments as they debug their programs (Figure 3-5.)

3-10

*L1ST)
8818 REM - ADDS 2 & 3
0020 LET A=2
0030 LET B=3
0040 LET C=A+B
0050 PRINT C
0060 END

*20)
*35 LET D=2)
*40 LET C=B+D)
*LI ST)
0010 REM - ADDS 2 & 3
0030 LET B=3
0035 LET D=2
0040 LET C=B+D
0050 ORINT C
0060 END

*

DataGeneral
SOFTWARE OOCUMENTATION

Erase line 20
Add new line between 30 and 40
Change line 40

Figure 3-5. Editing What You've Got.

Another command to help you edit is RENUMBER. RENUMBER
assigns line number 10 to the first statement in your program and
renumbers the remaining lines in increments of 10.

The program in Figure 3-6 renumbers the program in Figure 3-5.

*LIST)
0010 REM - ADDS 2 & 3
0030 LET B=3
0035 LST D=2
0040 LET C=B+D
0050 P"lINT C
006(11 END

*RENllMBER)
*LI S~
0010 t?SM - ADDS 2 & 3
121020 LST B=3
0030 LET D=2
121040 LET C=B+D
005121 °PINT C
0060 SND

*
Figure 3-6. Remember to RENUMBER.

3-11

DataGeneral
SOFTWARE OOCUMENTATION

The RENUMBER command is very handy after you have added or
deleted statements in your programs.

Exercise 3-4. Type in the renumbered program in Figure 3-6 and
edit it to let A = 5. B = 3. C = A. and D = A + B.
Have it print A. B. C and D. Renumber. list and
run your revised program.

3-12

DataGeneral
SOFTWARE DOCUMENTATION

FUNCTIONS

The BASIC language includes many different functions. Each
function tells BASIC to perform an operation which would other
wise take several statements in your program. We generally use
functions as expressions in BASIC statements; properly applied.
they will save you many steps.

We will introduce three functions now. Other functions are ex
plained later in this handbook.

Integer Function

The INTeger function. INT(X). generates, or returns. a value
equal to the greatest integer not larger than X.

If X is 3
If X is 1. 7
If X is -2.2

INT(X) is 3
INT(X) is I
INT(X) is -3

You can use INT(X) to see whether or not a number is an integer.
If your number is an integer. INT(X) will equal X. To round
numbers. add. 5 and take the INTeger of the sum.

The INTeger function is used in programs where only integer
data makes sense. In a population study for example. you would
take the integer value of the number of people living in a certain
area rather than publish the fact that 17.043279 people live within
walking distance of bus terminals. Examine Figure 3-7 for a
demonstration of the integer function.

3-13

DataGeneral
SOFTWARE OOCUMENTATION

*LIST)

A=2.8
8-A+.5

0~EM***DEMO OF I NT FTTNCTION***
0020 LET A=2.8
1313313 LET B=A+.5
1313413 LET C=-A
01350 LET D=C+.5
13060 PRINT A~B~C8D
00713 PRINT INT(A)~INT(B)~INT(C)~INT(D)
130813 END

*RT1N)
2.8
2

END AT Pl080

*
SO-'00264

3.3
3

-2.8
-3

Figure 3-7. The Integer FWlction.

3-14

-2.3
-3

DataGeneral
SOFTWARE DOCUMENTATION

Sign Function

The Sign fw.,ction SGN(X), will tell you whether a number is
positive, negative, or neither (0).

If X is positive
If X is zero
If X is negative

SGN(X) = +1
SGN(X) = 0
SGN(X) = -1

The program in Figure 3-8 prints the value, then the sign of A,
Band C.

x = 42
Y = 10
Z ·-5

A=X-(Y*Z)
B=(Y+Z)* 0
C=X/Y * Z

50-00265

*LIST)
0010 REM %% SGN DEMO %%
0020 LET X=42
0030 LET Y=10
0040 LET ;>'=-5
0050 LET A=X-(Y*~)
0060 LET B=(Y+l)*0
0070 LET C=X/Y*7.
0080 PPINT A;SGN(A)
0090 P~IN~ 9;SGN(B)
0100 PRINT C;SGN(C)
0110 END

*RTJN)
92 1
o 0

-21 -1

END AT 0110

*

Figure 3-8. Finding the Sign.

Use the Sign function when you don't care about the value of a
number but want to know whether it is positive or negative. A
credit checking program might take the Sign of someone's monthly
totals and print "CREDIT" or "DEBIT" depending on the result.

3-15

DataGenerai
SOFTWARE DOCUMENTATION

Absolute Value Function

You might sometimes want the value of a number without regard
to its sign. The absolute value function. ABS(X), returns the
positive value of X.

ABS(l) = 1
ABS(-1) = 1

Figure 3-9 contains a program using the absolute value function.

A=400
B = -75

SO-00266

*LI ST)
0010 REM NNN ABS DEMO HNH
0020 LET A=400
003(1) LET B=-75
0040 PRINT A. B
0050 P~INT ABS(A).ABS(B)
0060 END

*RUN)
400
400

END AT 0060

*

-75
75

Figure 3-9. The Absolute Value Function.

You use the absolute value function when you want the difference
between two numbers regardless of their sign. Sometimes road
races are won on a target time basis. where the winner may be a
few seconds early or late, but is closest to the target time. You
calculate finalists by taking the absolute value of the finishing time
minus the target time.

3-16

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 3-5. Figure 3-10 is a flowchart for a program that will
return a value of 1. See if you can write the pro
gram. Are all three flUlctions necessary in this
program? Do they have to be written in this order?
There are some values for A which will not print

50-00267

1. Can you tell what they are? Can you alter the
program so A is always negative I?

Give A
some value

A .. INT(A)
A.ABS(A)
A=SGN(A)

Figure 3-10. Flowchart for Exercise 3-5.

END OF CHAPTER

3-17

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 4

WORKING WITH DATA

WHAT'S DATA?

Some BASIC programs will need specific information from you to
run. This information is data. If a program calculates
salaries, the hours worked and wage per hour would be the data;
the program requires these numbers to run.

The LET statement assigns values to variables before you run
a program. The INPUT statement allows you to assign values
while the program is running. To use INPUT, type the keyword
INPUT after a line number, and the variables for which you will
supply values. Always separate INPlIT variables with commas.

When BASIC encounters an INPlIT statement while executing your
program, it prints a question mark and waits for you to supply
a data value. Therefore, with INPUT you can run the same
program repeatedly using different data for each run (Figure 4 -1).

4-1

DataGeneral
SOFTWARE OOCUMENTATION

SO-00268

C .. A-B

*LI ST)
e0112' REM - INPUT COMMAND
012!20 INPUT A.B
00312! LET C=A-B
0040 PRINT A.n.c
0050 END

END AT 0050
*QUN

? 5.2)
5

END AT 0050

*

2

Figure 4-1. INPUTing Values.

4-2

5

3

DataGeneral
SOFTWARE DOCUMENTATION

When you enter data. after an INPUf question mark. you may
separate values by either a carriage return or a comma. If you
type improper data (alphabetic when BASIC is looking for numeric)
BASIC will print a backslash-question mark (\ ?) and wait for
valid information. If you type more data than your program
needs. BASIC will print an error message.

Exercise 4-1. Write and run a program that will calculate and
print the area of a rectangle if values for length
and width are input by the user. Use the formula:
area = length * width.

4-3

DataGeneral
SOFTWARE DOCUMENTATION

PROMPTING MESSAGES

Sometimes a question mark from an INPUT statement is not
enough information. If you are not familiar with the program
that is running and BASIC prints a question mark. you may not
know what data the program needs. To clarify your own pro
grams. you can insert a prompting message in quotation marks
after an INPUT statement. BASIC will print this message instead
of the question mark. After the closing quotes of the prompt.
type a comma. then the variable. or variables. for which you
want data.

You may want to clarify output as well. To do this. type your
message in quotes after a PRINT statement. Type commas or
semicolons between this PRINT message and each of your pro
gram's variables. (You'll find more on PRINT punctuation at the
end of this chapter.) The program in Figure 4-2 uses prompts
with both INPUT and PRINT statements.

~xercise 4-2. Write and run a program that will figure simple
interest, and add it to principal. Your prompting
messages should ask for principal. interest rate
and number of years. then describe the interest
accumulated and the new principal. Use the
formula:

interest = principal * interest rate * number
of years

4-4

50-00269

C=A/B

Print
A is A
B is B

A/B= C

*!:·.l.?_T)
0010 nE~l - INPTJT 'nTH
0(1120 IN::'UT "TYPE THO:
0030 INPTTT "TYPE THE
0040 LET C=A/B
(li(Z' 50 PPINT "A IS ";A
0e6(11 pnINT "5 15 ";9
0070 PFlINT "A/B= " .C
008(11 END

*.tHJN)
TYPE: THE VALUE: OF A:
TYPE THE VALlIE OF B:
A IS 99
B 15 17

DataGeneral
SOFTWARE OOCUMENTATION

PPOKPTS
VAL1'E OF A: " .A
UALI]E OF B: " .B

99)
17)

A/E= 5.82353

END AT (11080
*.

Figure 4-2. INPUT With Prompts.

4-5

DataGeneral
SOFTWARE OOCUMENTATION

IF YOU KNOW YOUR DATA

With INPUT, you must interact with your program. The READ
and DATA statements tell your program to read its own data,
and run without asking questions. Use READ and DATA when
you know the data before you run the program.

You can list variables in the READ statement, and list values
for these variables in the DATA statement. The order of vari
abIes in READ is the order of retrieval from DATA. If the
number of variables in the READ list exceeds the number of
values in the DATA list BASIC returns an error message.
Examine Figure 4 -3 for a demonstration of the READ and DATA
statements.

Neither READ nor DATA will work alone in a program; you must
use both. The DATA statement often ends a program, although
you can put it anywhere. BASIC keeps track of the DATA state
ments and always knows which data value is the next to be read.

Exercise 4 -3. Write a program to figure salary using three data
values - one for the employee number. one for
hours worked. and one for wage per hour. Figure
total salary by multiplying hours by wage. Print
all four variables using prompts to make the
output understandable. Change the values in
the DATA statement and run the program again.

4-6

50-00270

Read
A,B,C

DataGeneral
SOFTWARE OOCUMENTATION

*LIST)
001Ql REM - READ A.B.C
0020 READ A.B.C
0030 PRINT "A = nlA
0040 PRINT "B = ";s
0050 PPINT "C = ";c
0060 LET A=A/B*C
0070 LET 9=B*3
0080 PRINT
0090 PRINT "A/B*C EQUALS
0100 PRINT
0110 PRINT "B*3
0120 DATA 3.4.5
0130 END

*RUN)
A 3
B 4
C = 5

A/B*C EQUALS 3.75

B*3 EQUALS 12

END AT 0130

*

EQUALS

uJA

"lE

Figure 4-3. READ and DATA Statements.

4-7

DataGeneral
SOFTWARE DOCUMENTATION

REMEMBER TRIG?

If you have had trigonometry, you can use BASIC's trigonometric
functions. Skip this section if you are not familiar with
trigonometry.

BASIC trig functions use radians (180° = 7r radians) to measure
angles. The four BASIC functions to calculate trigonometric
relationships of angles are:

SO-00271

Define P
convert from

degrees to radians

x .. 300 *P

Figure 4 -4. Trigona metry.

4-8

DataGeneral
SOFTWARE OOCUMENTATION

SIN(X)
COS (X)
TAN(X)
ATN(X)

Sine of X (X is angle in radians)
Cosine of X (X is angle in radians)
Tangent of X (X is angle in radians)
Angle in radians whose tangent is X (arctangent)

These fimctions are demonstrated in the program in Figure 4-4.

*LI ST)
0010 9EM :: DEMO OF TRIG CALCULATIONS
0020 REM:: P CONVEnTS FP DEGREES TO P,ADIANS
0030 LET 1'=3.14159/180
0040 REM :: X IS 30 DEGREES IN P,ADIANS
0050 LET X=30*P
0060 PRINT SIN(X)
0070 PRINT COS (X)
0080 LET T=TAN(X)
0090 PRINT T
0100 REM :: ATN(T) IS RADIANS
0110 PRINT ATN(T)
0120 REM :: ATN(T)/P IS DEGREES
0130 PRINT ATN(T)/P
0140 END

*RlJN)
• 5
.866026
.57735
.523599
30

END AT 0140

*

4-9

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 4-4. You can use the following formula, derived from the
law of cosines, to calculate the unknown side of a
triangle given two sides and their opposits angles:

a = b*cos C + c*cos B.

Given a triangle with side b = 4, side c = 5,
angle B = 45°, and angle C = 65°, solve for
side a.

a=?

4-10

DataGeneral
SOFTWARE DOCUMENTATION

NICE, NEAT OUTPUT

So far, we've been using PRINT without a complete explanation
of how it works. We have used commas and semicolons as
separators in examples; maybe you have discovered that the for
mat of your output varies with your punctuation. At this point,
we have included the rules about PRINT punctuation, so you may
choose the format of your printed output.

1. If a PRINT statement contains more than one item you must
separate these items by a comma (,) or a semicolon (;).

2. The print line on a terminal is divided into five print zones
of 14 spaces each. If a comma (,) separates items in the
PRINT statement, BASIC will print the next item in the left
most position of the next printing zone. If no more print
zones are available on a current line BASIC moves the item
to the next line.

3. If a semicolon (;) separates items in the PRINT statement,
BASIC will print the next item at the next character position.
BASIC reserves a space before any positive number, and
prints a minus sign before any negative number. BASIC
also reserves one space after each number.

4. When BASIC prints the last item in a PRINT list, it outputs
a carriage returnfline feed combination unless a comma or
semicolon follows the last item in the list. This carriage
return/line feed will take you to the next line. If you
punctuate the last item BASIC will not output the carriage
returnfline feed - it will print the next PRINT item on the
same line according to the comma or semicolon punctuation.

5. A PRINT statement without print items or punctuation causes
BASIC to output a carriage returnfline feed combination.
This PRINT statement will either complete a previous PRINT
statement ending with a comma or semicolon, or will generate
a blank line.

4-11

DataGeneral
SOFTWARE DOCUMENTATION

Examine the program in Figure 4 -5 and decide how the PRINT
statement affects its output.

SO-00272

START

READ
A,B,C,D,E

END

Figure 4 -5. The PRINT Statement.

4-12

DataGeneral
SOFTWARE DOCUMENTATION

*LI ST)
~~l~ REM ** DEMO OF PRINT STATEMENT **
~~2~ READ A~B~C~D~E
~~3~ PRINT A~B~C
~~4~ PRINT DlElAlB
~~5~ PRINT
~1216~ PRINT A~B~
~~7~ PRINT C
~~8~ PRINT AlBl
(1J~9e1 PRINT C
~l~~ PRINT
~ 1 1 ~ PR I NT A~ B~

"'12~ PRINT C;D;
~13(i! PRINT

The comma at the end of line
60 tells BASI C not to output a
carriage return and to print
the C from line 70 on the same
output line as the A & B from
line 60.

~14~ PRINT "A AND B FOLLO';: "~A~B

~15~ PRINT "C; D AND E AtlE NEXT: "lC;D;E
~160 PRINT
~170 PRINT A+B/C*D
~180 PRINT "D+E EQUALS "~D+E

~19~ PRINT "A+B EQUALS ";A+B
021210 DATA 1~2~3~4>5

*RUN)
1 2
4 5 2

2
2 3

2

3

3

3 4
A AND B FOLLOW: 1
C; D AND E AtlE NEXT: 3 4 5

3.66667
D+E EQUALS 9
A+B EQ'JALS 3

END AT 02120

*

4-13

2

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 4 -5. Study the program in Figure 4 -6 and see if you
can predict its output. Run the program and
compare the computer's output with your own.

*LIST)
~ffiREM ####1 PRINT ME
~~2~ PRINT A,B,C
~~3~ READ X,Y,e
~~4~ PRINT X;
~~50 PRINT Y;
012!612! PRINT e
0070 PRINT
0080 PRINT "PLAYING COMPUTER IS FUN"
00912! PRINT 7,
12!100 PRINT "6,5",4,
0110 PRINT
0120 PRINT "I CAN COUNT BACKt-IARDS" ,
0130 PRINT 3; 2; 1
0140 PRINT "THE END"
01512! DATA 5,7,9
12!1612! END

*
Figure 4 -6. Program for Exercise 4 -5.

END OF CHAPTER

4-14

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 5

DECISIONS AND LOOPS

Thus far. BASIC has run your program statements from top to
bottom - from the lowest statement number in step to the highest.
As you begin to write more complex programs. you will often
find this order inefficient. This chapter describes ways to
alter the flow of execution within your programs.

NON-NUMERICAL ORDER

As you write your program. you can direct BASIC to other state
ments within it. The GOTO statements alters the normal flow
of execution by explicitly directing the program to some specific
line number.

In Figure 5-1. the GOTO statement directs BASIC to skip a line.
In the flowchart. the arrows show control bypassing the procedure
box which contains "PRINT THIS IS A DUMMY STATEMENT".
The arrows represent the GOTO statement in line 40. which
directs control to line 60. BASIC never executes line 50.

5-1

DataGeneral
SOFTWARE OOCUMENTATION

SD-00273

*LIST)

A=2

Print
this is a
dummy

statement

Print
the program

skips
line 50

END

121010 REM - GOTO STATEMENT
0020 LET A=2
0030 PRINT A+3*4
0040 GOTO 0060
0050 PRINT "THIS IS A DUMMY STATEMENT"
0060 PRINT "THE PROGRAM SKIPS LINE 50"
0070 END

*RUN)
14

THS PROGRAM SKIPS LINE 50

END AT 0070

*
Figure 5 -1. The GOTO Statement.

5-2

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5-1. Show what the computer will print when it executes
the program in Figure 5-2.

*LIST)
~~I~ REM - FOLLOWING GOTO
~~20 PRINT "DEMO OF GOTO"
~~3~ GOTO ~08~
~~4~ PRINT "HAVE A GOnD DAY!"
0050 GOTO ~13~
~~60 PRINT "REALLY SKIPS AROUNDI "I
eHH0 GOTO 0110
~080 PRINT
0~90 PRINT "THIS PROGRAM "I
0100 GOTO 0060
0110 PRINT "DOESN'T IT?"
0120 GOTO 0040
0130 END

Figure 5 -2. Going Round in Circles.

5-3

DataGeneral
SOFTWARE DOCUMENTATION

STOP OR END?

Until now, we have used the END statement to show the end of our
programs; the END statement has been the last one BASIC reads.
Yet as you redirect control. your bottom statement will often lead
back into the program; the logical end will be somewhere in the
middle. To separate the logical end of a program from its physical
end. BASIC includes the STOP statement. Whenever the logical
and physical ends of your program differ, you should use STOP
for the logical end and reserve END for the physical end. Either
statement will work - the two are functionally identical in Data
General's BASIC - but both your flow charts and programs will be
clearer if you distinguish the logical end from the physical end.
We have made this distinction in Figure 5-3.

5-4

DataGenerai
SOFTWARE OOCUMENTATION

*LI ST)
0010 REM - STOP OR END?
0020 PRINT "TO STOP OR TO END~"
0030 GOTO 0050
0040 STOP
0050 PRINT "THAT IS THE QUESTION."
0060 GOTO 0040
0070 END

*RUN)
TO STOP OR TO END~

r-~~----' THAT IS THE QUESTION.

STOP AT 0040

*

(END)
50-00274

Figure 5 -3. STOP and END Statements.

These last two program examples have really been jumping
around. and while hopping and skipping may be fun. they don't
represent efficient coding. In the next section. you'il learn an
important new statement to use with GOTO - and some good
reasons for applying STOP and END properly.

5-5

DataGeneral
SOFTWARE DOCUMENTATION

WHAT IF?

Many times a programmer would like to perform some calcula
tion in one case and another calculation in another case. Maybe
you are figuring a company payroll and want to add overtime
compensation!!. an employee has worked over 40 hours. You can
use the IF statement to test this condition (is hours worked over
40?) and add compensation IF the answer is yes.

A test condition implies a choice. The IF statement tests an
expression and gives BASIC directions to follow if that expres
sion is true. These directions follow the keyword THEN. An
IF statement for the overtime program above is:

100 IF H>40 THEN GOTO 150

where H is the number of hours worked. The code at line 150
would contain the routine to figure the overtime.

Did you recognize the greater than sign (» in line 100? BASIC
includes several signs for testing relationships between numbers.
called relational operators. Table 5-1 describes these relational
operators.

Table 5-1. Relational Operators

Relational

I
Meaning

Operator

= equal to

< less than

> greater than

<= less than or equal to
-

>= greater than or equal to

<>or >< not equal to

5-6

I

DataGeneral
SOFTWARE DOCUMENTATION

Do you remember the discussion of flow charts in Chapter 3?
The diamond -shaped decision box represented a test condition
in the form of a "yes" or "no" question. A "yes" answer routed
program flow one way. a "no" answer another way. Whenever
your flow chart contains a decision box. you will use the BASIC
IF statement.

Within your program. BASIC evaluates the relational expression
following IF (H >40). and if this expression is true (if the answer
to your question is "yes") BASIC will go to the statement following
THEN (GOTO 150). If that expression is not true (if the answer
to your question is "no"). BASIC will go to the statement which
follows the IF.

Almost all BASIC statements are valid after the keyword THEN.
You can use PRINT. LET or GOTO depending on what you want
the program to do. Two exceptions we will note here are the
END statement. though you can use THEN STOP. and FOR or
NEXT statements which we'll tell you about later.

5-7

DataGenerai
SOFTWARE DOCUMENTATION

Suppose we show you an example. We will input a number N and
test the relationship of some number A to N. If A is less than N,
THEN we will print a message saying "A is less than N". add
2 to A and test the relationship again. If A is not less than N we
will stop. The question in the flow chart decision box will be
"Is A less than N?"

Figure 5-4 contains the flow chart and program for this problem.
Notice the decision box in the flow chart and the GOTO in line 40
of the program.

50-00275

Initialize
A

Increment
A by 2

Figure 5-4. IF Statement.

5-8

STOP

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5-2. Dig out the program you wrote for Exercise 4-3
to figure a simple salary. Update the program to
check for overtime. Calculate the first 40 hours
at the given wage and any hours over 40 at time
and a half (1 1/2 times the given wage). Print the
employee number. hours worked. pay for first
40 hours. overtime pay and total salary.

Exercise 5 -3. Write a program which asks you to INPUT 2
numbers. X and Y. and print their relationship
(X is less than Y. X is greater than Y. or X is
equal to Y).

*LIST)
1313113 REM - IF ••• THEN DECISION
1313213 INPUT "TYPE A NUMBER: ".N
1313313 LET A=13
13040 IF A<N THEN GOTO 131360
13050 STOP
13060 PRINT Al" IS LESS THAN ''IN
131370 LET A=A+2
13080 GOTO 0040
009113 END

*RUN)
TYPE A NUMBER: 9

13 IS LESS THAN 9
2 IS LESS THAN 9
4 IS LESS THAN 9
6 IS LESS THAN 9
8 IS LESS THAN 9

STOt:> AT 0050

*

The term initialize has several meanings in the computer world.
We use it here to define and set a counter for one program's use.

5-9

DataGeneral
SOFTWARE OOCUMENTATION

Numeric Expression

You may follow IF with a numeric variable (or numeric expression)
in place of a relational expression. Whenever BASIC encounters
a numeric expression after an IF. it checks that number against
zero. If the number equals zero. the statement is false. and
control goes to the next line in your program. If the number is
not zero. the statement is true. and BASIC will follow the
instructions after THEN.

QI'II101 LET ""a'"
002fl1 IF I\j THEN GoTo 111 III 7 III Statement false. goto 30.
tlll"301 I.ET ""a10
11114111 IF N THEN GOTD 1'11'17111 Statement true. goto 70.
The program in Figure 5-5 uses a numeric IF expression to
test whether N equals zero. The program continues around in
Circles. or loops. until N equals zero.

SO-00276

START

N-IO

Subtract
2 from N

Figure 5 -5. Numeric IF Statement.

5-10

DataGeneral
SOFTWARE DOCUMENTATION

You must be careful using the numeric test. If N had been set to
9 in line 20 of Figure 5 -5. the program would have continued
looping indefinitely because N would never equal O. If you suspect
your program is in an infinite loop. or if you want to stop it for
some other reason. press the ESCape key. An ESCape will stop
your program; BASIC will print the line number currently
executing and an asterisk prompt. You may then edit. revise.
or RUN the program again.

Exercise 5-4. The factorial of a number is that number. N.
times (N-l) times (N-l)-l down to 1 (not 0). We
denote a factorial with an exclamation point (I).
So 5! = 5*4*3*2*1. Write a program to input N
and find N!.

*LI ST)
0010 REM (IF vIITH A NUMERIC EXPRESSION)
0020 LET N=10
0030 IF N THEN GOTO 0060
0040 PRINT " N IS cERO"
0050 STOP
0060 PRINT N';" IS POSITIVE"
0070 LET N=N-2
0080 GOTO 0030
0090 END

*RUN)
10 IS POSITIVE
8 IS POSITIVE
6 IS POSITIVE
4 IS POSITIVE
2 IS POSITIVE
N IS cERO

STOP AT 0050

*

5-11

DataGeneral
SOFTWARE OOCUMENTATION

Getting Complicated

So far, we have used fairly simple examples so you could learn
the construction of BASIC programs. Figure 5-6 contains a more

Set
counter

N=IO

Subtract
2 from
counter

Increase
B

STOP

Decrease
A

Increase
A

Figure 5 -6. Number Comparison Program.

5-12

DataGeneral
SOFTWARE DOCUMENTATION

complex program using both IF relationships. The program
compares 2 numbers. changes the value of the lower and compares
again.

*LIST)
0010 REM COMPARE & CHANGE NUMBERS
0020 INPUT "TYPE VALUES FOR A AND B: "IAIB
0030 LET N=10
0040 IF N THEN GOTO 0060
0050 STOP
0060 LET N=N-2
0070 IF A>B THEN GOTO 0130
0080 IF A=B THEN GOTO 0170
0090 REM - A MUST BE LESS THAN B
0100 PRINT A;" IS LESS THAN ";B
0110 LET A=A+B/2
0120 GOTO 0040
0130 REM - A GREATER THAN B
0140 PRINT A;" IS GREATER THAN ";B
0150 LET B=B+A/2
0160 GOTO 0040
0170 REM - A EQUAL TO B
(11 1 80 P R I NT A;" I S EQ U AL TO"; B
0190 LET A=A/2
0200 GOTO 0040
0210 END

*RUN)
TYPE VALUES FOR A AND B: 714

7 IS GREATER THAN 4
7 IS LESS THAN 7.5
10.75 IS GREATER THAN 7.5
10.75 IS LESS THAN 12.875
17.1875 IS GREATER THAN 12.875

STOP AT 005121
*P.1JN)
TYPE VALUES FOR A AND B: 214

2 IS LESS THAN 4
4 IS EQUAL TO 4
2 IS LESS THAN 4
4 IS EQUAL TO 4
2 IS LESS THAN 4

STOP AT 0050

*

5-13

5D-00277

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5-5. Write a program to input 10 numbers and print the
largest. We have started a flow chart in Figure 5 -7,
though you will have to complete it.

SO-00278

Set
counter

Set test
value to

lowest

Decrease
counter

Figure 5-7. Incomplete Flow Chart for Exercise 5-5.

5-14

DataGeneral
SOFTWARE DOCUMENTATION

Flagging the End

You can also use the IF statement to tell BASIC that it has reached
the end of a DATA list. The IF statement in line 30 of Figure 5-8
tests each item in the DATA list for a value out of the normal
data range. We use this value as a flag to mark the end of the data.

On the first pass through this program the READ statement takes
the first DATA value. 2. Since A is less than 9999 in line 30.
BASIC divides 2 by 2 and prints 1. When control goes back to
line 20 BASIC reads the second OAT A value. 4. This process
continues until BASIC finds the 9999 flag and the program STOPS
at line 30.

With this technique. you can write your programs to READ dif
ferent OAT A statements each time they run. or to READ a
sequence of DATA statements for one run. You must flag the
last OAT A value; if you don't. BASIC will return an error mes
sage when it runs out of values.

Exercise 5 -6. You can also use a flag value to signal the end of
an INPUT list. Input a list of numbers and end
the program with a zero flag. For each number
use the integer function to print its fractional
part. Print negative sign if the original number
is negative. If 4. 38 is input. your program
should print. 38. If -6.24 is input. your pro
gram should print -.24. If 1000 is input. your
program should stop.

5-15

DataGeneral
SOFTWARE DOCUMENTATION

50-00279

*LI ST)_

Read next
data
value

value
value/2

0010 RE~ **9999 FLAG**
0020 READ A
0030 IF A<9999 THEN GOTO 0050
0040 STOP
0050 LET A=A/2
0060 PRINT A
0070 GOTO 0020
0080 DATA 214161819999
0090 END

*QUN)
1
2
3
4

STOP AT 0040

*

END

Figure 5-8. Program Using a Flag Value.

5-16

DataGeneral
SOFTWARE DOCUMENTATION

RANDOMIZE

Thus far, BASIC has given you nothing original for all your input;
it has simply done what you told it to do. The RANDOMIZE
functions do generate something for you - random numbers be
tween zero and one.

The RND(O) function returns a psuedo -random number between 0
and 1 each time you call it. BASIC generates the same sequence
of random numbers each time you use RND(O), unless you
add the RANDOMIZE statement. The RANDOMIZE statement
resets BASIC's random number generator to produce a different
sequence for each run. These numbers allow you to play many
games of chance with BASIC.

If you write your program using the RND(O) function, you can
debug it with the same set of random numbers. Once your pro
gram runs correctly, insert the RANDOM I ZE statement to pro
duce a unique sequence of numbers for each run.

The program in Figure 5 -9 simulates a coin game. The program
generates one thousand random numbers and counts them as heads
if greater than. 5 and tails if equal to or less than. 5. It prints
the total number of heads and tails thrown.

Exercise 5-7. Write a program to generate a random integer
between 1 and 100. Have the program ask you to
guess a number and tell you whether your guess
is higher or lower than the computer's number.
You should be able to guess the computer's number
in 7 tries.

5-17

DataGeneral
SOFTWARE OOCUMENTATION

No

SD-00280

Initialize
counter

Get
random
number

Add I
to tails

Increment
counter

Yes Add I
to heads

Figure 5-9. Heads or Tails?

5-18

*1..1 ST)
0010 REM - GOIN GAME
0020 LET G=1
f2!03f2! RANDOMli!E
0040 LET N=RND(0)
012150 IF N>.5 THEN GOTO f2!09121
121060 REM - ADD 1 TO TAILS
007f2! LET T=T+l
0080 GOTO 0110
121090 REM - ADD 1 TO HEADS
0100 LET H=H+l
0110 LET G=G+l

DataGeneral
SOFTWARE DOCUMENTATION

012f2! IF G<1000 THEN GOTO 0040
0130 PRINT "OUT OF 1000 THROWS,"
0140 PRINT" ";H;"T . .,TERE HEADS,"
el15e1 PRINT" ";T;"1.1ERE TAILS."
0160 END

*RUN)
OUT OF 1000 THROWS,

493 T./ERE HEADS,
506 WERE TAILS.

END AT 016e1

*

5-19

DataGenerai
SOFTWARE DOCUMENTATION

USING A SUBROUTINE

As you create more complex programs. maybe you've noticed
that certain sequences of statements appear more than once.
These sequences may perform calculations. or compare variables
in any case. they are identical. and you've had to write them
more than once.

You can code these sequences as subroutines. In BASIC. you
can write a subroutine once. and return to it whenever you
want. After you have written your subroutine statements. and
given them line numbers. use the GOSUB statement to direct
program control to them. and the RETURN statement to bring
control back to the statement below GOSUB. Subroutines are the
building blocks of large programs; whether they are long or short.
they save time. and help you to see complex programs as an
assembly of simple units. Remember that each GOSUB must
precede its RETURN, and that BASIC will RETURN to the state
ment after the GOSUB.

Tbe flow chart for the program in Figure 5-10 includes a new
symbol which transfers control to the beginning of a subroutine.
You can omit the lines going from the program to the subroutine
when you understand the subroutine procedure.

5-20

50-00399

DataGeneral
SOFTWARE OOCUMENTATION

START

Perform
subroutine

r------,
I

Reset A

Perform
subroutine

I
I

_...J I
I
I

(END }C--------.J
*LIST)
0010 REM - SUBROUTINE PROGRAM
0020 LET A=6
12J12J312J GOSUB 12J070
0040 LET A= ll2J
0QJ50 GOSUB 0070
12J060 STOP
0070 REM - SUBROUTINE
0081,3 PRINT A/2
0091,3 RETURN
011,3121 END

*RUN)
3
5

STOP AT 1211,361,3

*
Figure 5 -10. Subroutine.

5-21

DataGenerai
SOFTWARE DOCUMENTATION

Exercise 5-8. Write a program that READS a number A and uses
a subroutine to stop if the number is less than
zero or greater than 99. If A is within that
range the program should subtract A from 100,
print the answer, return, read the next DATA
item and test again.

Exercise 5-9. Write a program to simulate a dice game. For
each roll of the dice, use a subroutine which
generates 2 random integers between I and 6. On
the first toss you win with a total of 7 and the
computer wins with a total of 12. Any other sum
becomes your point. You may continue throwing,
trying to match this point. If you roll a 7 while
trying for a point, the computer wins.

Keep a tally of games won and lost. For a real
dice game, your first roll wins with a 7 or 11,
and the computer's first roll wins with 2, 3,or 12.
Modify the program so that 2 or more players
can compete. Have fun. Who needs Vegas?

END OF CHAPTER

5-22

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 6

FOR/NEXT LOOPS

LOOP USING IF

In the next section we introduce a loop called a FOR/NEXT loop.
The program in Figure 6-1 uses a familiar IF loop. It incre
ments a variable. A. by 2 and prints A five times. The variable
I counts the number of loops executed. and stops the program
after five have been executed. We will code a corresponding
program using a FOR/NEXT loop to show you the relationship
between the two loops.

Exercise 6 -1. The next section introduces a set of statements
and demonstrates a different way to code this
program. Can you think of other ways using the
statements you already know?

6-1

DataGenerai
SOFTWARE DOCUMENTATION

50-00282

Initialize
counter
I-I

ADD
2 to A

Increment
counter
By I

*LI ST)
00HI REM **IF LOOP
0020 INPUT A
0030 LET 1=1
0040 IF 1>5 THEN GOTO 0090

Yes
0050 LET A=A+2
0060 PRINT A
0070 LET 1=1+1
0080 GOTO 0040
0090 END

*RUN)
? 20)
22
24
26
28
3121

END AT 009121

*

Figure 6-1. IF Loop.

6-2

DataGeneral
SOFTWARE OOCUMENTATION

THE FOR AND NEXT STATEMENTS

The FOR and NEXT statements mark the beginning and end of a
program loop. FOR assigns a range to a variable and tells
BASIC how many times to execute the loop; NEXT directs control
back to FOR. The two statements allow you to loop as many
times as you want.

FOR/NEXT loops extend the usefulness of BASIC; they are
convenient, self-terminating and use fewer program statements
than any other loop.

20 FOR J= I TO 7

: } Program Statements

60 NEXT J
70 REM-Continue after 7 repetitions

SO-00397

Figure 6-2. FOR and NEXT Statements.

Assume that BASIC is reading the program in Figure 6-2 for the
first time. At line 20, BASIC will initialize J to the first value
in]'S range (1). J is then tested against the last value in the
range, 7. J is less than 7, so BASIC will execute the statements
between line 20 and line 60. At line 60, BASIC adds 1 to J, and
loops back to test the new J against 7. After six more loops, J
exceeds 7; control passes from line 20, where the test occurred,
to the line following the NEXT statement, line 70.

Figure 6-3 shows the FOR/NEXT version of the IF program in
Figure 6-1. The dotted lines in the flowchart show the logic
which the FOR/NEXT statements perform but the programmer
does not code. When you understand the logic of the FOR/NEXT
loop you can omit the dotted sections from your flowcharts.

6-3

DataGeneral
SOFTWARE DOCUMENTATION

Initialize
counter
I-I

r---
..... ./ Is < counter ~l"i;.:e:.:::s_
.......... >5?,.

No

Add
2 toA

r-- ---,
I Increment I

-, counter by I I
L _____ ..J

SO-00283

*L1ST)
0010 REM - FOR/NEXT
0020 INPUT A
0030 FOR 1=1 TO 5
0040 LET A=A+2
0050 PRINT A
0060 NEXT
007121 END

*RUN)
? 2121)
22
24
26
28
3121

END AT 121070

*

Figure 6 -3. FOR/NEXT Loop.

6-4

DataGeneral
SOFTWARE DOCUMENTATION

To distinguish FOR/NEXT loops from the rest of a program,
BASIC always indents them (lines 40 and 50). Note that the FOR/
NEXT loop uses 7 statements for this program and the IF loop
uses 9. Remember that a FOR statement must always have a
corresponding NEXT statement to end the loop.

Explanations alone may not clarify FORjNEXT loops; you must
try some examples. Therefore, we have included more exercises
than usual here and hope you will try them. The concept of
FORjNEXT loops is a little tough but once you understand it you
may never use an IF loop again.

Exercise 6-2. Write a program that squares the integers from
1 to 100 and prints the integer and its square if
the square is odd. Use a FOR/NEXT loop and
the flow chart in Figure 6-4. The integer which
you are squaring is the variable you are incre
menting in your FORjNEXT loop. Clue: the
INT(X) function can help test for odd numbers.

Exercise 6 -2A. A more complex variation of exercise 6-2
prints the number only if the integer in the tens
column of the square is odd. The logic is
tricky!

Exercise 6-3. Use a FOR/NEXT loop to write a BASIC program
that will1ist the factors of a number (N) input
from the terminal. A factor is a number which
will produce N when multiplied by another factor.
Use a FOR/NEXT loop to test the counter values
from 1 to N.

Exercise 6-4. Write a program to balance your checkbook.
Input the last balance and the number of checks
written. Use a subroutine with a FORjNEXT
loop to total the amount of the checks. Subtract
the check total and any service charge from the
balance. Input the number and amount of deposits
and add the deposit total to the balance. Print
the current balance.

6-5

DataGeneral
SOFTWARE DOCUMENTATION

START

r-- --...,
Initialize

I counter
,- __ ... __ .J

r------ A
/15'

/counter' Yes < >100) --------------,
, ? / , /

r--- ---"1

L I Increment I
- - -, counter I

L ___ Br. 1 ___ .J

C __ EN_D _r------------J
50-00284

Figure 6-4. Flow chart for Exercise 6-2.

6-6

DataGeneral
SOFTWARE DOCUMENTATION

ADVANCED FUNCTIONS

Let's take a breather from FOR/NEXT loops to introduce the
three functions in the program in Figure 6-5. If you haven't
covered these functions in your math classes yet. you may skip
them.

Square Root Function:

SQR(X) returns the value of the square root of X.

Exponential Function:

EXP(X) returns the value of e (2.71828) to the power of X.

Logarithm Function:

LOG (X) calculates the natural logarithm (base e) of X.

*LI ST)
0010 REM "'ADVANCED MATH FUNCTIONS'"
0020 PRINT "SQR(25) = ";SQR(25)
0030 PRINT "EXP(l.5)= ";EXPCl.5)
0040 PRINT "LOG(959)= ";LOG(959)
0050 END

*RUN)
SQP(2 5)
EXP(I.5)=
LOG(959)=

END AT 0050

*

5
4.48169
6.86589

Figure 6-5. Square Root. Exponential and Logarithm Functions.

6-7

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 6-5. Check the accuracy of BASIC's SQR(X) function.
Take the square root of each number from I to
25 and square it. Print the number, its square
root, and square root squared.

Exercise 6-6. Write a program that will compare the product of
2 numbers, X and Y, with the exponent of the
sum of their logarithms.

X*y = Z Xl = log(X)
YI = log (Y)
Zl=Xl+Yl
Zl = EXP(Zl)

Z and Zl should be very close.

6-8

DataGeneral
SOFTWARE DOCUMENTATION

NESTED FOR/NEXT LOOPS

Now, back to FORjNEXT loops. You can nest FORjNEXT loops
within each other. An inner FORjNEXT loop must be completely
contained within the outer FORjNEXT loop in which it is nested.
as diagrammed in Figure 6 -6.

LEGAL

[

OR X-I TO 4

[
FOR y- 8 TO 10

NEXT Y
NEXT X

50-00395

ILLEGAL

r-FOR A- 2 TO 5
r--+----FOR B -I TO 100

EXT A
L-----NEXT B

Figure 6-6. Legal and Illegal FOR/NEXT Nesting.

The program in Figure 6-7 prints the values of I and J within
a nested FOR/NEXT loop.

The next chapter introduces a method of storing data and retriev
ing it using FOR/NEXT loops, both before unnested and nested.
Get familiar with these loops before tackling Chapter 7.

Exercise 6-7. The flow chart with all its dotted lines can get
very complicated. Use the flow chart without
the dotted sections in Figure 6-8 to write a pro
gram which will print the multiplication tables
up to 5 * 10.

Exercise 6-8. Revise the program you wrote for exercise 6-3
to list the factors of all the integers between 20
and 30. Use nested FORjNEXT loops.

6-9

DataGenerai
SOFTWARE DOCUMENTATION

r - ~itializ;- -1
I counter J to 12..J

r--- L=:q __
-- -I - - Is -- -- - Yes

I <.J. counter> 14 Z. ~--, - -I No I
I I
I I
I I
I Get next I

I I
I 1--- --I I L Increment I

- - --I J counter JI I
L_____ I

Get next _...1

L r -IOcr ment-j
---- -"1.._~~u~t~

SD-00285
(,-~E:.;.;N~D _). - - - __ ...1

Figure 6-7. Nested FORjNEXT loop.

6-10

DataGeneral
SOFTWARE OOCUMENTATION

*LI ST)
0010 REMARKS - NESTED FOR/NEXT LOOP
0020
"'030
"'040
0050
0060
0070
0080

*RUN)
I =
I
I
I
I
I =
I =
I
I

FOR 1=3 TO 5
FOR J=12 TO 14

PRINT "I ";1.
PRINT "J = ";J

NEXT J
NEXT I
END

3 J 12
3 J 13
3 J 14
4 J 12
4 J 13
4 J 14
5 J 12
5 J 13
5 J = 14

END AT 1313813
*

6-11

DataGeneral
SOFTWARE DOCUMENTATION

50-00286

Get next
multiplier

END

End

End

Figure 6-8. Flow Chart for Exercise 6-7.

END OF CHAPTER

6-12

DataGeneral
SOFTWARE DOCUMENTATION

CHAPTER 7

NUMERIC SUBSCRIPTING

ARRAYS

Thus far, you have stored single numbers in memory locations
(mailboxes). BASIC also allows you to store tables of numbers in
memory. These tables are called arrays; the numbers which
they include are called array elements.

10101010101010 10 10 10 10 I
A(I) A(2) A(3) A(4) A(5) A(6)A(7) A(B) A(9) A(/O) ACID

50-00287

Figure 7-1. An Array.

Array A's box ranges from A(l) to A(U). (Some BASIC systems
start numbering elements at 0.) You can place any number (or
expression) you like in the boxes with the LET statement. You
could LET A(I) equal 1399, -6. SQR(5). or 2/3.

To create an array. tell BASIC how many elements you want to
use with the DIMension statement; DIM A(ll) would create array
A (Figure 7-1). Whenever you create an array. BASIC sets the
value of each element to zero.

7-1

DataGeneral
SOFTWARE DOCUMENTATION

Figure 7 -2 shows Array B. after program statement 10 created it.
through line 50. after elements 2. 20. 23. 30 have received
values.

ARRAY, B
10 DIM B(30)--....,.~1 0 I 0 I 0 I· ·1 0 I 0 I
20 LET B(2)=47 8(J) 8(2)8(3) 8(29)8(30)

30 LET 8(30)=72
40 LET 8(23)s(5+3)14
50 LET 8(20)=B(3O)-8(2~ 0 14710 I· ... ·1251 0 I 0 12 I· ... ·1721

50-00394
8(J) 8(2)8(3) B(20lBC21)8(22lBC23) 8(30)

Figure 7 -2. Program Statements and Array B.

As an example. the program in Figure 7 -3 creates an array with
an element for each of 6 employees. The program reads the
employee's number (1 to 6) and hours worked. It then multiplies
each number of hours by a fixed wage of $2.60 and places the
resulting earnings in the employee's element of Array T. After
it calculates all 6 wages it prints the elements in Array T.
Notice how the variable J (the employee's number) in the FORI
NEXT loop becomes the subSCript for Array T.

7-2

DataGeneral
SOFTWARE DOCUMENTATION

FOR/NEXT variables and array subscripts each start at an
initial value. get incremented and end at some final value; they
really work well together. and we will use them often.

Exercise 7 -1. Input an array. T. with 15 elements. Fill a
second array. 5. with the square roots of those
elements. so 5(1) = SQR(T(I». Print array T and
array 5.

Exercise 7 -2. Write a program that inputs an array of 10
elements. Find the highest and lowest element.
Print the array and messages designating the
highest and lowest elements.

7-3

DataGeneral
SOFTWARE DOCUMENTATION

50-00288

(START)

t
Dimension T

holds employee wages

End

Multiply hrs. worked by
wage per hour

END

Figure 7-3. Array T Contains Employee Wages.

7-4

DataGeneral
SOFTWARE DOCUMENTATION

13131121
0020
130313
121134121
13121 50
0060
0070
008121
121090
0100
011121
1312121
0130
0140

"tEM ** FI GURES EMPLOYEE ~\IAGES

REM ** USES ARRAY
DIM T[6J
FOR J=1 TO 6

PRINT "FOR EMPLOYEE"; J; "? "
INPUT "TYPE HOURS WORKED: ",A
PRINT
LET T[JJ=A*2.6

NEXT J
"tEM ** PRINT ARRAY
FOP 1=1 TO 6

PRI NT "EMPLOYEE ,"; I;" EARNED $"; T[I J
NEXT I
END

*RUN
FOR EMPLOYEE I?
TYPE HOURS lCORKED: 4121)

FOR EMPLOYEE 2?
TYPE HOURS VORKED: 35)

FOR EMPLOYEE 3?
TYPE HOURS 1,JORKED: 42)

FOR EMPLOYEE 4?
TYPE HOURS 1.IORKED: 1121)

FOR EMPLOYEE 5?
TYPE HOURS "IORKED: 38)

FOP EMPLOYEE 6?
TYPE HOTJRS vraRKED: 20)

EMPLOYEE #
Et1PLOYEE #
EMPLOYEE #
EMPLOYEE #
EMPLOYEE #
EMPLOYEE #

END AT 121140

*

1 EAPNED $

2 EARNED $

3 EARNED $

4 EARNED $

5 EARNED $

6 EARNED $

1 Ql4
91
11219.2
26
98.8
52

7-5

DataGeneral
SOFTWARE DOCUMENTATION

ANOTHER ARRAY

The program in Figure 7 -3 demonstrates the manipulation of
array elements. The program totals the values of the array
elements and stores the running total in the last array element.

SO-00289

Dimension T
holds one

extra element

array
element

FOR /NEXT

End

Figure 7-4. Program to Total Array T.

7-6

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 7 -3. Input array size and array elements from the
terminal. sort the array in ascending order and
print it. As you input each element. test it
against those ahead of it. and move it to the
proper position.

ARRAY T

I I
T(I) T(2) T(3) T(A) T(A+I)

*LI STY
121010 REM - TOTALS ARRAY T
1211212121 INPUT "NUMBER OF VALUES TO BE ADDED: "~A

1211213121 DIM TCA+l]
1211214121 PRINT "TYPE NUMBERS TO BE ADDED:"
1211215121 FOR 1=1 TO A
1211216121 INPUT TCI]
1211217121 LET TCA+l]=TCA+IJ+TCI]
1211218121 NEXT I
009121 PRINT
121100 REM - FOR/NEXT PRINTS ARRAY
1211 1121 FO R 1=1 TO (A - 1)
12112121 PRINT TCIJ;"+";
12113121 NEXT I
12114121 PRINT TCA];" = ";TCA+l]
12115121 END

*RUN)
NUt1BER OF VALUES TO BE ADDED: .21
TYPE NUl1BERS TO BE ADDED:

? 1121)
?ill
? m30
? 45
? 72

1121 + 15 + 30 + 45 + 72 = 172

END AT 12115121

*

7-7

DataGeneral
SOFTWARE DOCUMENTATION

TWO DIMENSIONAL ARRAYS

Hang on. arrays are getting more complicated. A numeric array
may have a second dimension! You've made arrays with rows;
now we'll show you arrays with rows and columns.

For two-dimensional arrays. use two subscripts within parentheses
in the DIM statement. The first number designates rows. the
second columns. Therefore DIM D(4. 3) in Figure 7 -5 defines a
two dimensional storage area in memory with 4 rows and 3
columns. all initialized to O.

ARRAY 0

to DIM 0(4,3) 2 3

0 0 0
0 0 0

0 0 0

0 0 0

50-00392

Figure 7 -5. Two Dimensional Array.

To change the values of the elements within an array or to
reference elements. always use the first subscript for the row
number and second for the column number. Figure 7-6 contains
the individual names for all the elements in Array D.

0(1,1)=10 00,2)=20 0(1,3)=30

0(2,1)=40 0(2,2)=50 0(2,3)=60

0(3,1)=70 0(3,2)=80 0(3,3)=90

0(4,1)=100 0(4,2)=110 0(4,3)=120

50-00393

ARRAY 0

2

10 20

40 50

70 80

100 110

Figure 7 -6. Referencing Array Elements.

7-8

3

30

60

90

120

DataGeneral
SOFTWARE DOCUMENTATION

Now you are going to want to know why you'd ever need two
dimensional arrays. Use these arrays for storing any data which
you want to reach easily. Any table - tax tables, work rate
tables. even multiplication tables - fits neatly into two dimensional
arrays. You can hold the number of votes for the president and
your senator in a two dimensional array. We will show you
two examples and you can try some exercises.

The program in Figure 7-7 fills a 2 dimensional array with the
sum of the subscripts of each element, so T(l, 2) = 1 + 2 = 3.
Notice how we used the' nested FOR/NEXT loop to manage the
subscripts.

7-9

DataGeneral
SOFTWARE DOCUMENTATION

SO-00290

Dimension
T

Add subscript

Get next
first subscript

END

End

End

Figure 7-7. Program with Two Dimensional Array T

7-10

DataGeneral
SOFTWARE DOCUMENTATION

*LIST)

~I ~
I

2

3

2

2 3

3 4

4 5

0010 REM ** 2-DIMENSIONAL ARRAY
1211212121 DIM T[3~2J

0030 FOR 1=1 TO 3
12104121 FOR J=1 TO 2
12112150 LET T[I~JJ=I+J
1211216121 PRINT "T(";I;"~";J;") ";T(I~J]~

01217121 NEXT J
01218121 PRINT
12109121 NEXT I
1211121121 END

*RUN)
T(1 ~

T(2 ~

T(3 ~

) 2
) = 3
) = 4

END AT (1111210

*

7-11

T(1 2)
T(2 ~ 2)
T(3 ~ 2)

3
4
5

DataGeneral
SOFTWARE DOCUMENTATION

As another example the program in Figure 7-8 fills a 2 dimen
sional array with 4 rows and 3 columns. We input Variables A.
Band C and the program multiplies them by the row subscripts.

I~I

~
2

I xA IxB
2 X A 2 X B
3xA 3xB
4xA 4xB

Dimension
T

holds final
table

3

IXC
2 xC
3 xC
4 XC

Figure 7-8. Two Dimensional Array Holds Multiplication Tables

7-12

DataGeneral
SOFTWARE DOCUMENTATION

*LI ST)
0010 REM - MULTIPLICATION TABLE
0020 DIM T[4~3]
0030 REM - DIMENSION AND FILL ARRAY S
0040 DIM S[3]
0050 PRINT "TYPE A~B~C:"
0060 FOR 1=1 TO 3
0070 INPUT SCI]
0080 NEXT I
0090 REM - NESTED LOOP FILLS ARRAY T
0100 FOR 1=1 TO 4
0110 FOR J=1 TO 3
0120 LET T[I~J]=I*S[J]
0130 NEXT J
0140 NEXT I
0150 PRINT
0160 REM - PRINT ARRAY T
0170 PRINT "TABLE"~"A = "JS[IJ~
0180 PRINT "B = ";S[2J~"C = ";S[3]
0190 PRINT
0200 FOR 1=1 TO 4
0210 PRINT I~

0220 FOR J=1 TO 3
0230 PRINT T[I~J]~
0240 NEXT J
0250 PRINT
0260 NEXT I
0270 END

*RUN)
TYPE A~ B~ C:

1 3)
1 15) 1m

TABLE

2
3
4

END AT 0270

*

A = 3

3
6
9
12

B = 15

15
30
45
60

7-13

C = 25

25
50
75
100

DataGenerai
SOFTWARE DOCUMENTATION

Exercise 7-4. Write a program that will input a two-dimensional
array M, with R rows and C columns (Input
values for R and C). Print Array M. Find and
print the smallest element in each row and the
largest element in each column.

Exercise 7- S. Write a program to input a 4 x 4 array and print
out its transpose. The transpose of Array A is
Array B in Figure 7-9.

ARRAY A ARRAY B

a b c a d

d e f b e

c f

50-00391

Figure 7-9. Array Transpose

END OF CHAPTER

7-14

DataGenerai
SOFTWARE OOCUMENTATION

CHAPTER 8

STRINGS

So far in BASIC you have been working only with numeric variables.
Numbers are fine, but the alphabet is important too; eventually you
will want to store both in memory. BASIC allows you to store any
alphanumeric data as a string. A string is a sequence of char
acters enclosed in quotes which may include letters, digits, spaces
and special characters.

STRING LITERALS

Whenever you've enclosed a message to BASIC in quotes (using the
PRINT or INPUT statements), you've used a string literal.
String literals have constant values; you can't change or rearrange
them.

,,"'/;OI PRT~T "THlt.; rs A STRJ'-Jr:: l tTF.RAIIi

STRING VARIABLES

A string variable is a letter or a letter and a digit followed by a
dollar sign (A$, B3$). It's value is a string. A string variable is
the name of a memory location which will contain a string rather
than a number. You may use string variables within a program in
the same manner as numeric variables. (See Figure 8-1.)

8-1

DataGeneral
SOFTWARE DOCUMENTATION

*LIST)
1211211121 INPUT "TYPE YOUR NAME: "~N$

11H112121 PRINT N$;"~ YOU TYPE WELL."
1211213121 END

*RUN)
TYPE YOUR NAME: JOAN)
JOAN~ YOU TYPE WELL.

END AT 1211213121

*

Figure 8 -1. A Short String",

Lines 10 and 20 use string literals. $N defines the string
variable. The input, JOAN, assigned a value to the string var
iable N$.

You can use string variables in place of numeric variables in any
BASIC statement. Remember to enclose each string in
quotation marks.

You may intermix string data and numeric data in a DATA list.
However, the variables in the READ statement must match
(numeric or string) the elements of the DATA list or BASIC will
print an error message (Figure 8-2).

*LI ST)
1211211121 DIM A$(25J
1211212121 READ A$
1211213121 PRINT A$
01214121 DATA "THIS IS A STRING VARIABLE"
12105121 END

*RUN)
THIS IS A STRING VARIABLE

END AT 012150

*

Figure 8-2. READ gets the String from the DATA List.

8-2

DataGeneral
SOFTWARE OOCUMENTATION

STRING SUBSCRIPTING

You may follow a string variable by a subscript but the concept
is different from numberic subscripting. A string variable is
stored with each character in a separate consecutively num
bered memory location starting with 1. The DIM statement sets
aside a row of locations in memory with as many locations as
the maximum number of characters in the variable.

QJQJ2QJ DIM B4$[tSJ

strr 841 I I
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

QJQJ3QJ LET B4$="STRING VARIABLE"

IsiTIRIIINIGIIVlAIRIIIAI81LIEI
50-00390

Figure 8- 3. Programming Statements and Resulting Memory Locations

In Figure 8-3, line 20 assigns space for 15 characters to B4$.
Line 30 fills the locations with the characters "STRING
VARIABLE".

The DIM statement allows you to create string variables of any
length, limited only by available memory. But BASIC will never
print more characters than you specified in DIM; it will truncate
your string if you haven't DIMensioned enough space (Figure 8-4).
If you omit the DIM statement, your string variable will be
truncated if it contains more than 10 characters.

*LI ST)
13010 REM - STRING VARIABLE
0020 DIM A2$[15J
0030 LET A2$="PRINT A2$ IS THIRTY CHARACTERS"
0040 PRINT A2$
0050 END

*RUN)
PRINT A2$ IS TH

END AT 0050

*
Figure 8-4. A2$ is too long.

8-3

DataGeneral
SOFTWARE DOCUMENTATION

To reference the complete string, use just the name of the string
variable. To reference part of a string (a substring), you can
specify starting and stopping locations within the string. If you
wish a substring to end with the last character in the string,
specify the starting location. To reference one character of the
string, give its character position as both start and stop locations.
The program in Figure 8-5 demonstrates string subscripting.

*LI ST)
0010 REM - STRING SUBSCRIPTING
0020 DIM B4$(15)
0030 LET B4$="STRING VARIABLE"
0040 PRINT "B4$
0050 PRINT "B4$(1~6)
0060 PRINT "B4$(8)
0070 PRINT "B4$(515)
0080 END

= ";B4$
";B4$(116J

*RUN)
B4$
B4$(116)
B4$(8)
B4$(5~5)

STRING VARIABLE
STRING

END AT 0080

*

VARIABLE
N

Figure 8 -5. String Subscripting:.

The program in Figure 8- 6 demonstrates the use of numeric
variables in place of digits in string subscripts.

*LI STY
0010 REt-! - STRING SUBSCRIPTING
0020 DIM Al$(20)
0030 LET Al$(2*1/215-2J="SUB"
0040 LET A=4
0050 LET B=10
0060 LET Al$(AIBJ="GARBAGE"
0070 LET Al$[11117J="EXAMPLE"
0080 LET Al$(AIBJ="STRING "
rtl090 PRINT Al$
0100 END

*
Figure 8-6, Numeric Variables in String Subscripts.

8-4

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 8-1. In Figure 8-6 what will BASIC print?

Exercise 8-2. Write a program to self-test the person running
it. Print a vocabulary list with 10 words, and
scramble definitions. Have the user match the
definition to the word. Include instructions for
taking the test, error and encouragement mes
sages and a score at the end. Code a second try
if the correct word is missed on the first one.

Exercise 8-3. Use strings to write a program to play an animal
game. Read the name of an animal and have the
player try to guess it. If his first guess is wrong,
give him the first letter for a clue. If he still
guesses wrong. give him the second letter. Con
tinue until he guesses the animal.

END OF CHAPTER

8-5

DataGeneral
SOFTWARE OOCUMENTATION

APPENDIX A

PROBLEM ANSWERS

Exercise 3-1.

*LI ST)
0010 REM - DIVIDE AND MULTIPLY
0020 PRINT 7/3
0030 PRINT 6*4
0040 END

*RUN)
2.33333
24

END AT 0040

*
Exercise 3-2.

(11 CII 4'" 1_ F T A + f.l = C is not a valid BASIC statement because AtB is
not a valid variable name

,
*LI ST)
0010 REM ** USES
0020 LST A=2
0030 LET B=3
0040 LET C=4
0050 LET D=A*B-C
0060
0070

*RUN)
2

PRINT
END

END AT 0070

*

D

Exercise 3-3.

VARIABLES

A-I

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 3-4.

*LI STY
~~I~ REM - ADD 2 AND 3
~~3~ LET B=3
~~35 LET 0=2
~~4~ LET C=B+D
~~52 PRINT C
006~ END

*35 LET A=5)
*40 LET C=A)
*45 LET C=A+B
*5~ ;"PRINT A
*51 PRINT B)
*RENUMBER}
*LI STY
0010 REM - ADD 2 AND 3
0020 LET B=3
0030 LET A=5
0040 LET C=A
~050 LET C=A+B
0060 PRINT A
0070 PRINT B
008~ PRINT C
0090 END

*RUN)
5
3
8

END AT 009~

*

A-2

Exercise 3- 5.

*LIST)
0010 REM - RETURNS +1
0020 LET A=-201.567
0030 LET A=INTCA)
0040 PRINT A
0050 LET A=ABSCA)
0060 PRINT A
0070 LET A=SGNCA)
0080 PRINT A
0090 END

*RUN)
-202

202
1

END AT 11)(1190
*20 LET A=. 321)
*RUN)
0--

o
o

END AT 0090
*20 LET A=42)
*70 LET A=-SGNCA»)
*RUN)

42
42

-1

END AT 0090

*

DataGeneral
SOFTWARE OOCUMENTATION

INT(A) is not necessary in this program. ABS(A) and SGN(A) may
be in either order. To return A=l insert

A = 0 will not return a value of 1

A-3

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 4-1.

*LI5T)
0010 REM - CALCULATE RECTANGLE AREA
0020 REM - I NPUT LENGTH AND iH DTH
01213121 INPUT X
12112140 INPUT Y
elel5el LET X=X*Y
elel6el PRINT X
l2Iel7el END

*RUN)

~i±
32

END AT elel7f21
*RUN)

? 75)
? 3412
25575

END AT elel712!

*
Exercise 4-2.

*LI ST)
0010 [.in SIMPLE IrT(REST
0020 I~PUT "TyPE pPJ~CIPAL: ",P
0030 INPUT "TYPE I\TEREST PAlE (DECIMAL): ",~

0040 INPUl "TYPE ~U~8FR GF ~E~RS: ~,Y

005~ LET I=P*fHY
~H?60 LET fII=P+I
0070 LET R=R* 1 '10
0080 PRINT "snip;" AT ";P;
0090 PRINT "X I~TE~EST FOR ";Y;" ~EARS"

0100 PRIfliT "YIEL0S '";1;" I~Tf~fST."

0110 PRlfliT ~~Eh P~I~CIPAL = 1";\
012 0 E.f~ D

*RUN)
TYPEPRINCIPAL: 3S\iiv)
T Y P E PH E R S T R A TE (0 E C Pi ;l L): • it" (\)
lYPE NUt>'tlER OF YC: ARS: II
$ 3500 AT 8 X I~TEREsr FOR 7 YE.P~

YIELDS i lq60 lNTEREST.
NEw PRINCIPAL ~ f SGD~

END AT 012J

*
A-4

Exercise 4- 3.

*LI ST)
~~1~ REMARKS. WAGEISALARY
~~20 READ N
~~30 PRINT N;

0~4fZJ READ HI W
0~50 LET A=H*'"

DataGeneral
SOFTWARE DOCUMENTATION

0060 PRINT H; "HRS "; W;" IHR" I AP'SALARY"
0~70 DATA 123,40,3.75
0080 END

*RUN)
123 40 HRS 3.75 IHR

END AT 0080

*

150 SALARY

Exercise 4-4 .

• LY ST)
~~1~ REM - EXfRCtsf 4.4
~~2~ RFM - A,R,C ARE SInES
~~3~ RE~ - A1,Bl,Ct ARE ANGLES
~~4~ Rf~ - ~ CONVERTS FRO~ ~E~RFF5 TO RAnTANS
~CII5~ LET B84
\>.\"6~ LET C.!5
0~7~ LfT P83.1415q/lA~
0f}1/H'1 LET R 1845*1'
fllOIQO! LFT r.1865.P
M1~~ LET A.~.C05CC1)+r..cn5(Rl1

~11M PRINT "SIDE A .",A
(4'.2f}1 EN"

.RIJN)
SIDE A • 5.?2R~128

E~I() AT i1112~

•

A-5

DataGeneral
SOFTWARE OOCUMENT A nON

Exercise 4- 5.

*LIST)
e010 REM IIIII PRINT ME
0020 PRINT AlBIC
e030 READ XIYll
0040 PRINT X;
0050 PRINT Y;
0060 PRINT l
0e7e PRINT
0080 PRINT "PLAYING COMPUTER IS FUN"
0e90 PRINT 71
0100 PRINT "615"141
0110 PRINT
012e PRINT "I CAN COUNT BACKWARDS"I
0130 PRINT 3;2;1
e140 PRINT "THE END"
0150 DATA 51719
0160 END

*RUN)
o 0
579

PLAYING COMPUTER IS FUN
7 615 4

I CAN COUNT BACKWARDS 3 2
THE END

END AT 0160

*

A-6

Exercise 5-1.

*LIST)
2121121 REM - FOLLOWING GOTO
2121221 PRINT "DEMO OF GOTO"
212130 GOTO 0080
212140 PRINT "HAVE A GOOD DAYI"
2121521 GOTO 211321
00621 PRINT "REALLY SKIPS AROUND .. Of;
2121721 GOTO 0110
212180 PRINT
013921 PRINT "THIS PROGRAM "l
211210 GOTO 0061!1
21110 PRINT "DOESN'T IT?"
01213 GOTO 212140
21130 END

*RUN)
DEMO OF GOTO

DataGeneral
SOFTWARE DOCUMENTATION

THIS PROGRAM REALLY SKIPS AROUND .. DOESN'T IT?
HAVE A GOOD DAY!

END AT 1!1131!1

*

A-7

DataGenerai
SOFTWARE OOCUMENTATION

Exercise 5-2.

*LI ST)
121010 REMARKS. v7AGE .. SALARY
1211320 PRINT "l::MP #" HOURS" REGULAR PAY"
0030 READ N .. H .. T,J

12112140 IF H>40 THEN GOTO 0120
13050 LET S=H*~v

0060 LET 51=5
0070 PRINT N .. H .. Sl
131380 PRINT
01390 PRINT" " OVERTIME PAY" .. "TOTAL SALARY"
011210 PRINT" S2 .. S
01113 STOP
0120 LET SI=40*W
01313 LET O=H-413
13140 LET T,7=W*I.5
13150 LET S2=O*W
01613 LET S=SI+S2
01713 GO TO 1313713
0180 DATA 2 .. 40 .. 2

*RUN)
EMP #

2
HOURS

40
REGULAR PAY

80

OVERTIME PAY TOTAL SALARY
o 80

STOP AT 131113
*180 DATA 3 .. 48 .. 3.25)
*RUN)
EMP H HOURS REGULAR PAY

3 48 130

STOP AT 13110

*

OVERTIME PAY TOTAL SALARY
39 169

A-8

Exercise 5- 3.

I2II21U!I REM NUMBER RELATIONS
1211212121 INPUT X~Y
1211213121 IF X<Y THEN GOTO 121070
012140 IF X>Y THEN GOTO 0090
121050 PRINT X;" IS EQUAL TO ";y
0060 GOTO 011210
007121 PRINT X;" IS LESS THAN ";Y
0080 GOTO 011210
0090 PRINT Xl" IS GREATER THAN ";Y
121100 END

*RUN)
1 5~·3)
5 IS GREATER THAN 3

END AT 0100

*
Exercise 5-4.

*L.I ST)
12112110 REM - FIND N FACTORIAL
1211212121 INPUT N
12103121 PRINT N;
1211'14121 LET X=l
0050 LET X=X*N
121060 LET N=N-l
0070 IF N THEN GOTO 12!112!0
12!08121 PRINT" = ";X
009121 STOP
0100 PRINT "*";NJ
0110 GOTO 12105121

*RtTN)
1 67
6 * 5 * 4 * 3 * 2 * 1 = 720

STOP AT 12!09121

*

A-9

DataGenerai
SOFTWARE OOCUMENTATION

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5- 5.

*LI ST)
~~10 REM - PRINT HIGHEST NUMBER INPUT
~~20 INPUT "TYPE NUMBER IN LI ST: •• .. N
0030 PRINT "TYPE NUMBERS (FOLL01·1ED BY cm:"
0040 LET L=5.4E-79
0~50 IF N THEN GOTO 0~8~
~~60 PRINT "THE HIGHEST NUMBER IS "JL
~07r.3 STOP
~0Sr.3 INPUT X
13090 IF X>L THEN LET L=X
0100 LET N=N-l
IH10 GOTO 0~5r.3

*RUN)
TYPE NUMBER IN LIST: !!l
TYPE NUMBERS (FOLLO\oTED BY CR):

~jf
? -IS)
? 534)

THE HIGHEST NUMBER IS 534

STOP AT 1313713

*

A-lO

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5- 6.

*LIST)
0010 REM - PRINT FRACTIONAL PART OF NUMBER
0020 REM - WI TH PROPER SI GN
0030 REM - ENO ON 1000
"040 INPUT A
0050 IF A<>1000 THEN GOTO 0070
0060 STOP
0070 LET O=A-INTCA)
"080 IF A<0 THEN IF 0<>0 THEN LET 0=0-1
0090 PRINT 0
0100 GOTO 0040
0110 ENO

*RUN)
? 4.32)
.32--
? -5.64)

-.64
? 0)
0-

'J 1000)

STOP AT 0060

*

A-ll

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 5-7.

*LIST)
~~EM - GUESS RANDOM NUMBER
~~2~ RANDOMIlE
~~3~ PRINT "I WILL PICK A NUMBER"
~~4~ PRINT "BETWEEN 1 AND 1~~"
~~5~ PRINT "AND YOU TRY TO GUESS IT."
~~60 PRINT "YOU SHOULD BE ABLE TO GUESS IT"
0070 PRINT "IN SEVEN TRIES"
0080 PRINT
0090 REM - GET NUMBERS
~10~ LET N=INT(RND(0>*100>
0110 INPUT "WHAT IS YOUR GUESS? "~A
0.120 REM - C=COUNT OF TRIES
0130 LET C=C+l
0140 REM - IF HIGH OR LOW~ PRINT MESSAGE
0150 IF A<N THEN GOTO 0330
0160 IF A>N THEN GOTO 0350
0170 PRINT
0180 REM - CORRECT GUESS
0190 PRINT "YOU GUESSED ITI!"
0200 IF C<2 THEN GOTO 0230
12121121 PRINT "YOU TOOK ";C;" TRIES."
0220 GOTO 0260
0230 PRINT "AND ON THE FI RST TRY!!!"
0240 PRINT "SUPER FANTASTIC!! I"
0250 REM - PLAY AGAIN ROUTINE
0260 PRINT "DO YOU t']ANT TO PLAY AGAIN?"
0270 INPUT ,. (TYPE 0=NO~ I=YES>:"~l

0280 PRINT
0290 LET C=0
0300 IF l THEN GOTO 0100
0310 STOP
0320 REM - HIGH AND LOW MESSAGES
0330 PRINT AJ" IS LO~]ER THAN MY NUMBER."
0340 GOTO 0370
0350 PRINT AJ" IS HIGHER THAN MY NUMBER."
0360 REM - CHECK NUMBER OF TRIES
0370 IF C<7 THEN GOTO 0110
0380 PRINT
0390 PRINT "I WIN - YOU HAVE HAD 7 GUESSES."
0400 REM - GUESS AFTER 7 TRIES?
0410 PRINT "DO YOU 1,TANT TO KEEP GUESSING? "
0420 INPUT" (TYPE 0=NO~ I=YES): ,,~=

0430 PRINT
0440 IF = THEN GOTO 0110
0450 PRINT "MY NUMBER IS ";N
0460 GOTO 0260

A-12

Exercise 5-7 (Cont.).

*RUN)
I WILL PICK A NUMBER
BETWEEN 1 AND 1~~

AND YOU TRY TO GUESS IT.
YOU SHOULD BE ABLE TO GUESS IT
IN SEVEN TRIES

WHAT IS YOUR GUESS? 45)
45 IS HIGHER THAN MY NUMBER.

WHAT IS YOUR GUESS? W
2~ IS LOv1ER THAN MY NUMBER.

\.JHAT IS YOUR GUESS? 32)
32 IS LOWER THAN MY NUMBER.

WHAT IS YOUR GUESS? ill
41 IS HIGHER THAN MY NUMBER.

WHAT IS YOUR GUESS? 47)
47 IS HI GHER THAN MY N1Jr1BER.

WHAT IS YOUR GUESS? 37)
37 IS LOWER THAN MY N1Jr1BER.

m-lAT IS YOUR GUESS? _39)
39 IS LOWER THAN MY NUMBER.

I WIN - YOU HAVE HAD 7 GUESSES.
DO YOU ,.,ANT TO KEEP GUESSING?

(TYPE ~=NO~ I=YES): 11
lJHAT IS YOUR GUESS? 41211

YOU GUESSED
YOU TOOK 8
DO YOU '·TANT

(TYPE

STO? AT 12131121

*

I T I !
TRI ES.

TO PLAY AGAIN?
I2I=NO~ 1 =YEs):li

A-13

DataGeneral
SOFTWARE OOCUMENTATION

DataGenerai
SOFTWARE DOCUMENTATION

Exercise 5-8.

*LIST)
0010 REM - SUBROUTINE ENDS IF NUMBER
0020 REM - NOT BETWEEN 0 AND 100
0030 REM ** PRINTS 100-A
0040 READ A
0050 GOSUB IZl070
006!21 GOTO 0!214!21
!2107!21 REM ** SUBROUTINE STARTS HERE
!21!2I80 IF A<!2I THEN STOP
!21090 IF A>10!21 THEN STOP
!2Ii.!2I!2I PRINT "101Zl-";AP'EQUALS"; l1ZllZl-A
011!21 RETURN
0120 DATA 36,4,12,145,72,-1
013!21 END

*RUN)
100- 36 EQUALS 64
100- 4 EQUALS 96
1!210- 12 EQUALS 88

STOP AT !21!2I90

*

A-14

DataGenerai
SOFTWARE DOCUMENTATION

Exercise 5- 9.

*LI ST)
eel121 REM - PAIR 0' DICEI THE DIVINE GAME
12102121 REM - INSTRUCTIONS
012130 PRINT "DO YOU WANT INSTRUCTIONS?"
ee4121 INPUT" (TYPE I=NOI 0=YES>: "IT
012150 IF T THEN GOTO 12121210
006121 PRINT
12112170 PRINT "THE COMPUTER WILL THROW THE DICE"
0089 PRINT "AND TELL YOU THE THROW AND"
121990 PRINT "YOUR POINTI THE TOTAL OF THE DI CE"
0100 PRINT "THROWN. ON THE FIRST THROWI YOU"
121110 PRINT "WIN WITH A POINT OF 7 AND THE"
121120 PRINT "COMPUTER WINS WITH A POINT OF 12."
e130 PRINT "YOU MAY CONTINUE TO THROW TO TRY"
0140 PRINT "TO MATCH YOUR POINT BUT A 7 WHILE"
0150 PRINT "TRYING FOR A POINT IS A WIN FOR"
0160 PRINT "THE COMPUTER."
0170 PRINT
0180 REM - MAIN GAME
0190 RANDOMIlE
0200 PRINT
0210 GOSUB 0470
0220 IF P=7 THEN GOTO 0330
0230 IF P=12 THEN GOTO 0380
0240 LET PI =P
0250 PRINT "TRY FOR POINT?"
12126121 INPUT" (TYPE I=NOI e!=YES):"IT
0270 IF T THEN GOTO 121380
12128121 PRINT "YOU ARE TRYING FOR POINT ";Pl
121290 GOSUB 0470
121300 IF P=PI THEN GOTO 0330
0310 IF P=7 THEN GOTO 121380
0320 GOTO 0280
0330 REM - YOU WIN ROUTINE
0340 PRINT "YOU 'olIN!!"
0350 LET SI=SI+1
0360 PRINT "YOU: ";Sll"COMPUTER: ";S2
0370 GOTO 0420
0380 REM - COMPUTER WINS ROUTINE
0390 PRINT "COMPUTER WINS!!"
0400 LET S2=S2+1
0410 PRINT "YOU: "; SII"COMPUTER: "; S2
0420 REM - PLAY AGAIN ROUTINE
0430 PRINT "DO YOU WANT TO PLAY AGAIN?"
0440 INPUT " (TYPE 1 =NOI 0 =YES) :" IT
0450 IF T THEN GOTO 0660
0460 GOTO e200

A-IS

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 5-9 (Cant.).

0470 REM - GET THROW AND POINT - SUBROUTINE
0480 REM - DUMMY NUMBER
0490 PRINT "ROLL THE DICE"
0500 INPUT "CTYPE A NUMBER BETt,lEEN 1 AND 100)"IX
0510 IF X>=1 THEN IF X<=100 THEN GOTO 0540
0520 PRINT "I SAID BETWEEN 1 AND 100!!"
0530 GOTO 0490
0540 GOSUB 0630
0550 LET Dl=N
0560 GOSUB 0630
0570 LET D2=N
0580 LET P=Dl+D2
0590 PRINT "YOU THREW "JDI1" AND "JD2
0600 PRINT "YOUR POINT IS "JP
0610 PRINT
0620 RETURN
0630 REM - THROW DICE - SUBROUTINE
0640 LET N=INTCRND(0)*6)+1
0650 RETURN
0660 END

*RUN)
DO YOU WANT INSTRUCTIONS?

(TYPE I=NOI 0=YES): ~

'!liE COMPUTER WI LL THRO'o1 THE 01 CE
AND TELL YOU THE THROW AND
YOUR POINTI THE TOTAL OF THE DICE
'!liR01,.lN. ON THE FI RST THROWI YOU
WIN WITH A POINT OF 7 AND THE
COMPUTER WINS WITH A POINT OF 12.
YOU MAY CONTINUE TO THROW TO TRY
TO MATCH YOUR POINT BUT A 7 WHILE
TRYING FOR A POINT IS A WIN FOR
1liE COMPUTER.

A-16

DataGeneral

Exercise 5- 9 (cont.).

ROLL THE DI CE
(TYPE A NUMBER BETWEEN 1 AND 100)33)
YOU THREW 3 AND 2
YOUR POINT IS 5

TRY FOR POINT?
(TYPE I=NOI 0=YES):!L

YOU ARE TRYING FOR POINT 5
ROLL THE DICE
(TYPE A NUMBER BETWEEN 1 AND 100)~
YOU THREW 5 AND 5
YOUR POINT IS 10

YOU ARE TRYING FOR POINT 5
ROLL THE DI CE

SOFTWARE OOCUMENTATION

(TYPE A NUMBER BETWEEN 1 AND 100)~
I SAID BETWEEN 1 AND 10011
ROLL THE DI CE
(TYPE A NUMBER BETWEEN 1 AND 100)78~
YOU THREW 1 AND 6
YOUR POINT IS 7

COMPUTER WI NS ! !
YOU: 0 COMPUTER:
DO YOU WANT TO PLAY AGAIN?

(TYPE I=NOI 0=YES):11

END AT 0660

*

A-I7

DataGenerai
SOFTWARE OOCUMENTATION

Exercise 6-1.

I does not have to be incremented by 1. You can add 2 each time
and test for I >10. You can start I at 5 and subtract I testing for
If: O.

Another method of testing would be to add 10 (2*5) to A and test
for that value.

J: - A+IO

END

A-A+2

50-00292

A-IS

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 6-2.

*LI ST)
001~ REM - PRINTS THE INTEGERS AND THEIR SQUARES
002~ REM - IF THE SQUARES ARE OnD
003~ PRINT "INTEGER"I"INTEGER SQUARED"
~~40 FOR I-I TO 25
0050 LET A=I*I
0060 LET Al=A/2
0070 LET A2=INT(Al)
0080 IF Al=A2 THEN GOTO 01~0
0090 PRINT IIA
0100 NEXT I
0110 END

*RUN)
INTEGER

1
3
5
7
9
11
13
15
17
19
21
23
25

ENDAT011~

*

INTEGER SQUARED
1
9
25
49
81
121
169
225
289
361
441
529
625

A-19

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 6-2A.

*LI ST)
e~l~ REM - PRINTS THE INTEGE~S AND THEIR SQUARES
~~2~ REM - IF THE INTEGER IN TENS PLACE IS ODD
11J11J311J PRINT "NUMBER"#"SQUARED"#"TENS PLACE"
~~4e FOR 1=1 TO 50
l1Je50 LET A=I*I
e06e LET Al=INT(A/le)
0~7~ LET A2=INT(A/le~)
0~811J LET N=Al-(A2*111J)
11J090 LET NI=N/2
11J100 LET N2=INT(Nl)
0110 IF Nl=N2 THEN GOTO 0130
012~ PRINT I#A#N
0130 NEXT I
014e END

*RUN)
NUMBER SQUA~ED TENS

4 16 1
6 36 3
14 196 9
16 256 5
24 576 7
26 676 7
34 1156 5
36 1296 9
44 1936 3
46 2116 1

END AT 014r2!
*

A-20

PLACE

Exercise 6-3.

*~
0010 REM - LIST THE FACTORS OF N
0020 INPUT N
0030 PRINT" N"~"FACTORS OF N"
0040 PRINT N~
0050 FOR 1=1 TO N
0060 LET NI=N/I
0070 IF INT(Nl)<>Nl THEN GOTO 0090
0080 PRINT U
0090 NEXT I
0100 END

*RUN)
? 125)

N
125

END AT 0100

*

FACTORS OF N
1 5 25 125

A-21

DataGeneral
SOFTWARE DOCUMENTATION

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 6-4.

*LI ST)
~~1~ REM - BALANCE CHECKBOOK
~~21/l INPUT "TYPE LAST BALANCE: "~A

~1/l31/l PRINT
1/l1/l41/l INPUT "TYPE NUMBER OF CHECKS WRITTEN: "~B

1/l1/l51/l GOSUB 1/l181/l
1/l1/l61/l LET A=A-X
~1/l65 LET X=I/l
1/l1/l71/l PRINT
1/l081/l INPUT "TYPE AMOUNT OF SERVICE CHARGE: $"~ C
01/l90 LET A=A-C
I/ll1/l0 PRINT
~11~ INPUT "TYPE NUMBER OF DEPOSITS: "~B

012~ GOSUB 1/l180
0130 LET A=A+X
~140 PRINT
~150 IF SGNCA)=-1 THEN PRINT "CHECKBOOK OVERDRA~"N"
0160 PRINT "CURRENT BALANCE IS "JA
0170 STOP
0180 REM - SUBROUTINE
0190 FOR 1=1 TO B
0201'1
1/l21~

121221'1
12123121
12124121

INPUT "
LET X=X+Y

NEXT I
RETURN

AMOUNT?

END

*RUN)
TYPE LAST BALANCE: 21210)

TYPE NUMBER OF CHECKS WRITTEN: 2L
AMOUNT? $25.66)
AMOUNT? $ 32§)-·-
AMOUNT? $42.80~

TYPE AMOUNT OF SERVICE CHARGE: $.15)

TYPE NUMBER OF DEPOSITS: £1
AMOUNT? $1001
AMOUNT? $125

CURRENT BALANCE IS 28.39

STOP AT 0170

*

A-22

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 6- 5.

"'LIST)
0010 REM 1!!I!1 SQUARE ROOT SQUARED !I!!II
1111112111 PRINT "NUMBER"~"SQUARE ROOT"~
003111 PRINT "SQUARE ROOT SQUARED"
004111 FOR 1=1 TO 1111
005111 LET A=SQRCI)
011160 LET B=A*A
011170 PRINT I~A~B
1111118111 NEXT I
11109111 END

*RUN)
NUMBER

1
2
3
4
5
6
7
8
9
10

END AT 011190

*

SQUARE ROOT
1
1.41421
1.73205
2
2.23607
2.44949
2.64575
2.82843
3
3.16228

SQUARE ROOT SQUARED
1
2
3
4
5
6
7
8
9
10

Exercise 6-6.

*LI ST)
001111 REM ** COMPAR.ES PRODUCT OF NUMBERS
0020 REM ** WITH EXPONENT OF SUM OF THEIR LOGARITHM
0030 INPUT "TYPE 2 NUMBERS: "IX~Y

0040 LET t;=X*Y
01115111 LET Xl=LOG(X)
006111 LET Yl=LOGCY)
11111170 LET ~1=EXPCXl+YI)
011180 PRINT X;"=X"~Y;"=Y"Ir.:;"=X*Y"
0100 PRINT 2:1 ;"=EXPCLOGCX)+LOGCY»"
ell10 END

*RUN)
TYPE 2 NUMBERS: 62121)

62 =X 21 =Y
1302 =EXPCLOGCX)+LOGCY»

END AT 0110

*
A-23

1302 =x*y

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 6-7.

*LIST)
~~1~ REM - MULTIPLICATION TABLES UP TO 5 TIMES 10
~~2~ FOR 1=1 TO 5
~~30 PRINT
~~4~ PRINT "MULTIPLICATION TABLE FOR ";U":"
~~5~ FOR J=l TO 10
~~6~ PRINT I*J;
~~7~ NEXT J
~~80 PRINT
~~90 NEXT I
0100 END

*RUN)

MULTIPLICATION TABLE FOR 1
1 2 3 4 5 6 7 8 9 10

MULTIPLICATION TABLE FOR 2
2 4 6 8 10 12 14 16 18 20

MULTIPLICATION TABLE FOR 3
3 6 9 12 15 18 21 24 27 30

MULTIPLI CATI ON TABLE FOR 4 :
4 8 12 16 20 24 28 32 36 40

MULT.IPLICATION TABLE FOR 5
5 10 1 S 20 25 30 3S 40 4S 50

END AT 0100

*

A-24

Exercise 6-8.

*LI ST)
1313113 REM - LIST THE FACTORS OF N
1313213 PRINT" N", "FACTORS OF N"
1313313 FOR N=213 TO 313
1313413 PRINT N,
1313513 FOR 1=1 TO N
1313613 LET Nl=N/I

DataGeneral
SOFTWARE DOCUMENTATION

1313713 IF INT(Nl)<>Nl THEN GOTO 1313913
1313813 PRINT Il
1313ge NEXT I
1311313 PRINT
131113 NEXT N
131213 END

*RUN)
N FACTORS OF N

213 1 2 4 5
21 1 3 7 21
22 1 2 1 1 22
23 1 23
24 1 2 3 4
25 1 5 25
26 1 2 13 26
27 1 3 9 27
28 1 2 4 7
29 1 29
313 1 2 3 5

END AT 13120
*

A-25

113 213

6 8 12 24

14 28

6 III' 15 313

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 7-1.

*!...llIl
0010 REM - FIND SQUARE ROOT OF ELEMENTS IN ARRAY
0020 REM - PRINT ARRAY ELEMENT THEN SQUARE ROOT
0030 PRINT "TYPE ARRAY ELEMENTS (FOLLOWED BY CR):"
0040 01 M T(15]
0050 DIM SOS]
0060 FOR 1=1 TO 15
0070 INPUT T(I]
0080 LET S(I]=SQR(T(I])
0090 NEXT I
0100 PRINT
0110 PRINT "ELEMENT","SQUARE ROOT"
0120 FOR 1=1 TO 15
0130 PRINT T(I],S(I]
0140 NEXT I
0150 END

*RUN)
1YPE ARRAY ELEI1ENTS (FOLLOWED BY CR):

?

m
?
? 28
? 35
? 43
?

ffi ? 61
? 74
? ffi ? 90
? 105)
? fill ? 234
?

3561 ? ~70

A-26

ELEMENT
5
16
28
35
43
59
61
74
82
90
105
117
234
356
471i!

END AT 0150

*

Exercise 7-1 (Cont.).

SQUARE ROOT
2.2361i!7
4
5.2915
5.9161i!8
6.55744
7.68115
7.81025
8.60233
9.05539
9.48683
10.247
10.8167
15.2971
18.868
21.6795

A-27

DataGeneral
SOFTWARE DOCUMENTATION

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 7-2.

*Ll ST)_
0010 REM - PRINTS ARRAY WITH 10 ELEMENTS
0020 REM - FINDS HIGHEST AND LOWEST VALUES
0030 LET H=5.7E-79
0040 LET L=7.2E+75
0050 PRINT "TYPE 10 NUHBERS (FOLLO'.JED BY CR):"
0060 FOR 1=1 TO 10
0070 INPUT TCIl
0080 IF TCIJ<H THEN GOTO 0110
0090 LET H=TCIJ
0100 LET HI =1
0110 IF TCIJ>L THEN GOTO 0140
0120 LET L=TCIl
0130 LET LI=I
0140 NEXT I
0150 REM - PRINT ARRAY
0160 PRINT
0170 PRINT "ARRAY"
0180 PRINT
0190 FOR 1=1 TO 10

PRINT TCI1; 020eJ
0210
0220
0230
0240
0250

IF I=Hl THEN PRINT"
I F I =L I THEN PRI NT "
PRINT

NEXT I
END

A-28

HIGHEST ELEMENT"~
LOWEST ELEI'1ENT".

Exercise 7 -2 (Cont.).

*RUN)
1YPE 10 NUMBERS (FOLLOINED BY CR):

? 46)
? -321)
?~
?~ ?ru
? 738)
? 4E+l0)
? 3)
? 72)
? 987654321)

46
-32.1 LOtNEST ELEI1ENT

621
o
55
738
4E+10
3
72
9.87654E+eJ8

END AT 0250

*

HIGHEST ELEMENT

A-29

DataGeneral
SOFTWARE DOCUMENTATION

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 7-3.

*LI ST)
0010 REM - PRINTS ARRAY IN ASCENDING ORDER
0020 INPUT "ARRAY SIlE? ",A
0030 IF A<=100 THEN GOTO 0060
0040 PRINT "ARRAY SIlE TOO BI G"
0050 GOTO 0020
0060 DIM TCA]
0070 PRINT "TYPE NUMBERS IN ARRAY:"
0080 FOR 1=1 TO A
0090 INPUT TCI]
0100 FOR J=1 TO I
0110 IF TCI]>TCJ] THEN GOTO 0150
0120 LET S=TCJl
0130 LET TCJ]=TCI]
0140 LET TCIl=S
0150 NEXT J
0160 NEXT I
0170 PRINT
0180 PRINT
0190 FOR 1=1 TO A
0200 PRINT TCIl
0210 NEXT I
0220 END

*RUN)
A.~RAY SIlE? 212)
A~RAY SIlE TOO BIG
ARRAY SIcE? 11
TYPE NUMBERS IN ARRAY:

? 5)
?U
? 345)
? -76 'j
? 5E+7)
? 13E=4\ ? 13E-4)
? 5432)

-76
o
.0013
5
345
5 /432
5E+07

END AT 0220

*

A-30

DataGenerai
SOFTWARE OOCUMENTATION

Exercise 7 -4.

*LIST)
0010 REM ** READS TABLE WITH R ROWS AND C COLUMNS
0020 REM ** FINDS LOWEST ELEMENT IN EACH ROW
0e30 REM ** HIGHEST ELEMENT IN EACH COLUMN
0040 INPUT "NUMBER OF ROWS? " .. R
0050 INPUT "NUMBER OF COLUMNS? C
0060 DIM MCR .. CJ
0070 REM - FILL TABLE
121080 FOR 1=1 TO C
0090 PRINT "TYPE IN COLUMN "; I
0100 FOR J=1 TO R
12111121 INPUT X
0120 LET MCJ .. IJ=X
0130 NEXT J
0140 NEXT I
0150 REM - PRINT M
016~ PRINT
0170 FOR 1=1 TO R
0180 FOR J=1 TO C
019121 PRINT MCI .. JJ"
0200 NEXT J
0210 PRINT
0220 NEXT I
0230 PRINT
0240 REM ** FIND LOWEST
0250 PRINT "LOt·TEST ROtJ ELEMENTS ARE:"
026f21 FOR 1=1 TO R
0270 LET H=7.2E+75
0280 FOR J=1 TO C
0290 IF H>MCI .. JJ THEN LET H=t1CI"Jl
0300 NEXT J
0310 PRINT H
0320 NEXT I
0330 REM ** FIND HIGHEST
121340 PRINT
0350 PRINT "HIGHEST COLUMN ELEMENTS ARE:"
0360 FOR 1=1 TO C
0370 LET H=5.4E-79
0380 FOR J=1 TO R
0390 IF H<MCJ"IJ THEN LET H=M[J"Il
04f210 NEXT J
0410 PRINT H;
0420 NEXT I
0430 PRINT
0440 END

A-31

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 7 -4 (Cont.).

*RUN)
NUMBER OF ROWS? 4)
NUMBER OF COLUMNS? .ll.
TYPE IN COLUMN 1

? 7)

~R
? 18)

TYPE IN
? 6) ?m
? 0T
? 14)

COLUMN 2

TYPE IN COLUMN 3
? 2)
? IT
? 10)
? B)

7
4
1
18

6
12
o
14

L01·JEST ROV ELEMENTS ARE:
2
4
o
8

HIGHEST COLUMN ELEMENTS ARE:
18 14 10

END AT 0440

*

A-32

2
7
10
8

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 7 -5.

* Ll'ST)
0010 RE~ ** INPUT MATRIX A~D PRINT ITS TRbNSPOSE
0020 DIM T[4,4J
0030 FOR 1=1 TO 4
0040 PRINT "TYPE IN COLUM~ ";1
0050 FOR J=l TO 4
0060 INPUT T[I,JJ
00713 I\jEXT j

0080 NEXT I
0[(190 PRINT
0100 PRINT "ORIGINAL MATRIX"
0110 FOR 1=1 TO 4
0120 FOR J=l TO 4
0130 PRHJT T[J.Il;
121140 NEXT J
015121 PRHJT
0160 ~!EXT I
0170 PRINT
0180 PRINT "TRANSPOSED MATRIX"
019[(1 FOR 1=1 TO 4
0200 FOR J=l TO 4
0210 PRPH T [I,Jl;
0220 t,EX T J
121230 PRINT
0240 NEXT I
10250 END

A-33

DataGeneral
SOFTWARE DOCUMENTATION

*.rum2
TYPE IN COLUMN

1M 1 2

?~
~ 4

TYPE IN COLUMN

'i 1 6
? 7
1 8

TYPE IN COLUMN
1:U
1m 1 1 1
1 12

TYPE IN COLUMN
1 13)

1ffi 1 15
1 f"§)

ORIGINAL MATRIX
1 5 9
2 6 10

13
14
15
16

3 7 11
4 8 12

2

3

4

TRANSPOSED MAT~Ik

1 234
5 6 7 8
q H1 11 12
13 14 15 16

END C, T ~~25~i

*

Exercise 7 -5 (Cont.).

A-34

Exercise 8-1.

*LIST)
0010 REM - STRING SUBSCRIPTING
0020 01 M Al $[20]
0030 LET Al$[2*1/215-2]="SUB"
0040 LET A=4
0050 LET B=10
0060 LET Al$[AIB]="GARBAGE"
0070 LET Al$[11117]="EXAMPLE"'
0080 LET Al$[AIB]="STRING "
0090 PRINT Al$
0100 END

*RUN)
SUBSTRING EXAMPLE

END AT 0100

*

A-35

DataGenerai
SOFTWARE DOCUMENTATION

DataGeneral
SOFTWARE OOCUMENTATION

Exercise 8-2.

*LI ST)
"'U1J10 RANDOMIeE
0020 REM - VOCABULARY SELF-TEST
1'J1'J30 INPUT "DO YOU WANT INSTRUCTIONS? "~i!:$
1'J1'J41'J IF e$<>"YES" THEN GOTO 0230
0050 PRINT
01'J60 PRINT "THIS IS A VOCABULARY TEST INCLUDING"
1'J070 PRINT "INTRODUCTORY COMPUTER WORDS."
008(11 PRINT "THE COMPUTER WILL PRINT A LIST OF"
0090 PRINT "'WORDS FOLLOWED BY THEIR DEFINITIONS."
I'JII'JI'J PRINT "YOU MUST MATCH THE PROPER ~oTORD ~,rI TH"
0110 PRINT "ITS DEFINITION."
0120 PRINT
0130 PRINT "I F YOU TYPE THE ~"RONG WORD~ YOU"
011:0 PRINT "WILL HAVE ANOTHER CHANCE TO PICK"
0150 PRINT "THE CORRECT ONE."
0160 PRINT
0170 PRINT "YOU ~.rILL BE SCORED AS FOLLOWS:"
0180 PRINT" CORRECT 'WORD FIRST TRY 10"
0190 PRINT" CORRECT IWHD SECOND TRY 5"
0200 PRINT" PERFECT SCORE ••• 100"
0~U(1l PRINT
0220 PRINT "GOOD LUCK!"
0230 PRINT
0240 PRINT "HERE ARE YOUR VOCABULARY I<1ORDS:"
0250 READ A$,B$,C$~D$,E$,F$,G$,H$,I$,J$
026(11 GOSUB 0860
0270 PRINT
0280 PRINT "HERE ARE YOUR DEFINITIONS. TYPE THE"
0290 PRINT "CORRECT ~.VORD AFTER EACH DEFINITION."
0300 PRINT

A-36

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 8-2 (Cont.).

133113 LET X$=E$
133213 PRINT "BEGINNER'S ALL-PURPOSE SYMBOLIC"
133313 PRINT "INSTRUCTION CODE."
0340 GOSUB 0990
0350 LET X$=B$
0360 PRINT "A SYMBOLIC DIAGRAM OF THE LOGIC"
0370 PRINT "FLOW THROUGH A PROGRAM."
133813 GOSUB 0990
0390 LET X$=H$
0400 PRINT "CENTRAL PROCESSING UNIT --"
13410 PRINT "THE HEART OF THE COMPUTE~."
0420 GOSUB 09913
0430 LET X$=G$
0440 PRINT "A BASIC HORD USED TO ASSIGN A VALUE"
0450 PRINT "TO A VARIABLE."
04613 GOSUB 0990
l'I470 LET X$=A$
0480 PRINT "A COMPUTEFl PRINTOUT OF A PROGRAM."
0490 GOSUB 0990
135013 PRINT
13510 PRINT "DO YOU l,TANT TO SEE THE LI S'T' AGAI:-n"
0520 INPUT 20$
0530 IF e$="YES" THEN GOSUB 0860
13540 PRINT
13550 LET X$=I$
13560 P~INT "INFORMATION AND VALUES A PROGRAM"
0570 PRINT "USES TO PERFORM CALCULATIONS."
05813 GOSUB C1!9911l
13590 LET X$=F$
0600 PRINT "A DATA NAME "H-!lCH CAN CONTAIN"
13610 PRINT "DIFFERE~JT VALUES AT DIFFERENT"
0620 PFlINT "TIMES IN A oPOGPAM."
0630 GOSTJB 0990
0640 LET X$=J$
0650 PRINT "A BASI C STATE1"ENT USED FOp"
06613 PRINT "INTEt:)NAL DOCUMENTATION."
0670 GOSUB 09911l
1Il680 LET X$=D$
13690 PRINT "A BASIC l·rooD ",THICH I S EXECUTED"
0700 PRINT "AS SOON AS A CP.RRIAGE tzETURN"
0710 P'PINT "IS TYPED."
0720 GOSUB 0990
0730 LET X$=C$
0740 PRINT "A COMPUTEP.I20ED TYPE1,TRITER USED"
07511l P1'liNT "TO INPUT DATA AND PPOGRAM"
0760 P1'liNT "STATEMENTS TO A COMPt'TER."
13770 GOSUB 0990

A-37

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 8-2 (Cont.).

0780 PRINT
0790 PRINT" YOUR SCORE: to; S;
0800 IF S=100 THEN PRINT" - SUPER! !";
081C!J IF S>=80 THEN PRINT" YOU DID REALLY l,yELL'"
0820 DATA "LISTING"I"FLOW CHART"I"TERMINAL"
0830 DATA "COMMAND"I"8ASIC"I"VARIABLE"I"LET"
0840 DATA "CPU"I"DATA"I"REM"
0850 STOP
0860
0870
0880
08912l
0900
0910
0920
0930
0940
0950
0960
0970
0980

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
RETURN

A$
B$
C$
D$
E$
F$
G$
H$
1$

J$

0990 ANS'JER AND FI GURE SCORE REM - CHECK
1000 INPUT Y$
1010 LET B=10
1020 LET A=INTCRND(0)*10)
1030 IF Y$<>X$ THEN GOTO 1080
Hf40 IF A<3 THEN PRINT "****GPEAT****"
1050 IF A=5 THEN PRINT "!! FANTAS1'lC !!"
1060 IF A>5 THEN PRINT" GOOD!"
1070 GOTO 1160
1080 LET 8=8-5
1090 IF 8 THEN GOTO 1130
1100 PRINT "THE CORRECT ANSWER IS ";X$
1110 PRINT "GO ON TO THE NEXT ONE ...
1120 GOTO 1160
1130 PRINT TRONG ANS~JERI PICK ANOTHER."
1140INPUTY$
1150 GOTO 1030
1160 LET S=S+B
1170 PRINT
1180 RETURN
1190 END

A-38

Exercise 8-2 (Cont.).

*RUN)
DO YOU WANT INSTRUCTIONS? NO

HERE ARE YOUR VOCABULARY WORDS:

LI STING
FLOW CHART
TERMINAL
COMMAND
BASIC
VARIABLE
LET
CPU
DATA
REM

HERE ARE YOUR DEFINITIONS. TYPE THE
CORRECT VORD AFTER EACH DEFINITION.

BEGINNER'S ALL-PURPOSE SYMBOLIC
INSTRUCTION CODE.

? BASIC)
GOOD!

A SYMBOLIC DIAGRAM OF THE LOGIC
FLOiv THROUGH A PROGRAM.

? FLOC" CHART)
GOOD!

CENTRAL PROCESSING UNIT -
THE HEART OF THE COMPUTER.

? CPU)
GOOD!

A BASIC VORD USED TO ASSIGN A VALUE
TO A VARIABLE.

? PRINT)
~rnONG ANSVER, PICK ANOTHER.

? LET)
GOOD!

A COMPUTER PRINTOUT OF A PROGRAM.
? LISTING)

A-39

DataGeneral
SOFTWARE DOCUMENTATION

DataGenerai
SOFTWARE DOCUMENTATION

Exercise 8-2 (Cant.).

DO YOU WANT TO SEE THE LIST AGAIN?
? NO)

INFORMATION AND VALUES A PROGRAM
USES TO PERFORM CALCULATIONS.

? NUMBERS)
~mONG ANS\>7ER, PICK ANOTHER.

? VARIABLE)
THE CORRECT ANSWER IS DATA
GO ON TO THE NEXT ONE.

A DATA NAME '.rHICH CAN CONTAIN
DIFFERENT VALUES AT DIFFERENT
TIMES IN A PROGRAM.

? VARIABLE)
II FANTASTIC I!

A BASIC STATEMENT USED FOR
INTERNAL DOCUMENTATION.

? REM)
****GREAT****

A BASIC WORD WHICH IS EXECUTED
AS SOON AS A CARRIAGE RETURN
IS TYPED.

? COMMAND)

A COMPUTERIlED TYPE~mITER USED
TO INPUT DATA AND PROGRAM
STATEMENTS TO A COMPUTER.

? JERMINAL)

YOUR SCORE: 85 YOU DID REALLY WELL!

STOP AT "85"

*

A-40

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 8-3.

*LI ST)
0010 REM ** GUESS THE ANIMAL GAME
131320 REM ** CHANGE DATA FOR DIFFERENT ANIMALS
1313313 GOSUB 132513
1313413 PRINT
1313513 PRINT "1 AM THINKING OF AN ANIMAL."
1313613 INPUT "SEE IF YOU CAN GUESS IT: "I!$
130713 GOSUB 131813
1313813 PRINT "NOI THAT ISN'T IT."
1313913 PRINT "IT STARTS WITH ";A$(111J
1311313 LET A=1
131113 PRINT
13120 INPUT "GUESS AGAIN: "I!$
131313 GOSUB 131813
131413 PRINT "STILL NOT RIGHT."
131513 LET A=A+l
13160 PRINT "THE NEXT LETTER IS ";A$(AIAJ
13170 GOTO 131113
131813 REM - GUESS RIGHT?
131913 IF A$<>~$ THEN RETURN
02130 PRINT
132113 PRINT "HEY - YOU GUESSED IT!!"
132213 GO SlJB 132513
132.30 INPUT "DO YOU WANT TO PLAY AGAIN? "IY$
02413 IF Y$(111J="Y" THEN GOTO 0040
132513 REM - AT END?
0260 ~EAD A$
0270 IF A$<>"END" THEN RETURN
0280 PRINT "I AM OUT OF ANIMALS"
0290 DATA "ELEPHANT"I"TURTLE"I"END"
133130 END

A-41

DataGeneral
SOFTWARE DOCUMENTATION

Exercise 8-3 (Cont.).

I AM THINKING OF AN ANIMAL.
SEE IF YOU CAN GUESS IT: DOG)
NO~ THAT ISN'T IT.
IT STARTS WITH E

GUESS AGAIN: ELEPHANT)

HEY - YOU GUESSED IT!!
DO YOU WANT TO PLAY AGAIN? YES)

I AM THINKING OF AN ANIMAL.
SEE IF YOU CAN GUESS IT: CAT)
NO~ THAT ISN'T IT.
IT STA~TS WITH T

GUESS AGAIN: TURKEY)
STILL NOT RIGHT.
THE NEXT LETTER IS U

GUESS AGAIN: TURTLE)

HEY - YOU GUESSED IT!I
I AM OUT OF ANIMALS

END AT ~3f21l/J

*
END OF APPENDIX

A-42

DataGeneral
SOFTWARE OOCUMENTATION

APPENDIX B

ERROR MESSAGES

Errors are inevitable; everyone makes them. This appendix lists
BASIC's error messages and describes possible causes.

Extended BASIC prints error messages as 2 digit codes, usually
followed by a brief explanatory message. BASIC prints error
messages when it cannot understand or is unable to perform some
command or statement, often because you typed it improperly.

BASIC recognizes some errors during program input. Whenever
you enter an incorrect statement or misuse a keyword, it will
return an error message. If you are at a terminal, this message
will refer to your last statement. If a card deck, paper tape
reader, or magnetic tape drive entered the incorrect statement.
BASIC will print the statement that caused the error message.

If the error occurs while your program is running, the error
message will include the line number of the statement which
caused it.

The following chart lists BASIC error messages, explains their
meaning and shows the kind of error that caused them. Use this
chart when you get an error message and need more information
than the error text provides. This list doesn't include advanced
BASIC error messages associated with BASIC features we haven't
explained. For a complete error message list please see Data
General's Extended BASIC User's Manual.

B-1

DataGeneral
SOFTWARE DOCUMENTATION

BASIC Error Messages

I Codell Text Meaning I Example(s)

00 FORMAT unrecognizable LET A==2)
statement format

01 CHARACTER illegal or unexpected PRINT #HI)
character

NEW%%)

lO&&REM)

02 SYNTAX invalid argument 10 DIM A(2)
type

20 IF SIN(A$)=O)

LET lO=A)

03 READ/DATA READ specifies 20 READ A,B)
TYPES different data type 30 DATA 12, "HI")

than DATA state- RUN)
ment

04 SYSTEM hardware or soft-
ware malfunction

05 STATEMENT statement number 10 GOTO 12345)
NUMBER greater than 9999

11 PAREN- parentheses in an LET A = ((B-C »)
THESES expression are not

paired

12 COMMAND keyword unrecogniz- FOR J = 1 to 5)
able, statement

LETTA=lO) instead of command

PRNIT "HELLO")

13 LINE attempt to delete or 100)
NUMBER list an unknown line; 10 GOTO 100)

attempt to transfer RUN)
to an unknown line

B-2

DataGeneral
SOFTWARE DOCUMENTATION

BASIC Error Messages (Continued)

I Code II Text I Meaning I Example(s)

15 END OF not enough OAT A 10 READ A,B,C)
DATA arguments to satisfy 20 DATA 91,21)

READ RUN)

16 ARITHMETIC value too large or LET A = l234E+76)
too small to evalu-
ate; or a division PRINT 5/0)
by 0

-
18 GOSUB too many nested 10 GOSUB 20 ;,

NESTING GOSUB'S 20 GOTO 10)
RUN)

19 RETURN - RETURN statement NEW)
NO GOSUB encountered without 10 RETURN)

a corresponding RUN)
GOSUB

20 FOR too many nested 10 FOR A=l to 3)
NESTING FOR/NEXT loops 20 FOR B=1O to 15)

30 FOR C=5 to 7)
. .

100· FOR J=2 to 8)
RUN)

21 FOR - unexecutable 10 FOR A = 1 TO 3)
NO NEXT FOR - NEXT loop; 20 PRINT A)

FOR without a NEXT 30 RUN)

22 NEXT - NEXT statement NEW)

NO FOR without a corre- 10 NEXT I)
sponding FOR RUN)

23 DATA not enough storage 10 DIM A(30000))
OVERFLOW left for variables RUN)

28 DIM an array or string 10 DIM A(2»)
OVERFLOW exceeds its initial 20 DIM A(5»)

dimensions RUN)

B-3

DataGeneral
SOFTWARE DOCUMENTATION

BASIC Error Messages (Continued)

~I Text Meaning Examples

31 SUBSCRIPT subscript exceeds 10 DIM A(2»)
DIMension of array 20 PRINT A(3»)
or string RUN)

46 INPUT too many responses 10 INPUT A)
to INPUT RUN)

? 1,2)

53 RENUMBER After a RENUMBER NEW)
command, BASIC 10 GOTO 100)
encountered a non- RENUMBER)
existant statement

END OF APPENDIX

B-4

DataGeneral
SOFTWARE DOCUMENTATION

APPENDIX C

PROGRAMMING

ON MARK-SENSE CARDS

You may write BASIC programs on Data General's Extended BASIC
mark -sense programming cards for input to the mark sense card
reader.

Figure C-l. Data General Extended BASIC Mark-sense Program-
ming Card

You may mark a stack of cards to include an entire BASIC pro
gram, and input your stack to the card reader as a batch job.
Your system manager will know about any special cards your
system may require.

The mark-sense reader has an option which permits either mark
ings or punches. With this option, you may punch mark-sense
cards. Marked and punched cards may be intermixed in a deck;
a single card may be both marked and punched. You must use a
a No. 2 pencil to mark cards.

A Data General Extended BASIC mark-sense card has 37 columns,
as shown in figure C-l. The first four columns assign statement
numbers; the next three assign the BASIC statement keyword. A
single BASIC statement or part of a statement may be written on
each card.

C-l

DataGeneral
SOFTWARE DOCUMENTATION

The BASIC statement field of the mark -sense card is three
columns which allow all possible combinations of statement
keywords. Cards are marked in the appropriate column, for
example; we have marked the statement 450 GOTO 200 in
Figure C-2.

_"MULA

1---*=*::,:71010 0 I() IQ IQIQ 'II 'IIIQ IQ ~ 0 0 to .0 i1I1Jt1J IQ 0 0 0 0 0 0 0 0 0 0
t-+;;-;;-;-I----*-ft-710-lJ 0 -iJaD I/lIQ IQ 'Il!fJ I\J 1(1 0 0 l\l1lJ Ij) U to 0 0 0 0 0 0 0 0 0 0-

~o~-~~ ~1111111111 ~ U~TI11j U U H ~l· i
~""""*"""~O 0 '0 0 0 010 0 0 0 0 0, 0 0 0 DID 0 0 0 0 0'iJ 0 0 0 0 0 0 '0
~-*I--*l0 0'0 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 OeD 0 0 0 0 0'0 ! II

o 0 aD 0 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0 '!I 0 0 0 0 I{J II z
~-*I--*lO'O 00 0 0'0 010 0 dODO 0 0 0 010 0 0 0 0 0·0 0 0 0'0 °1 oC

o 01{l 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0"11 0 01{l i
1--*iliErr--*lO 0 IQ 0 0 0 0 0 0 0 010 0 0 0101010101010101010101010 0 0 aD •

0'000 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0-0 ..,

Figure C-2. 450 GaI'O 200

The formula section of the card is 29 columns long, and 12 rows
deep. You proceed from the left-most column to the right, for
up to 29 characters; the CONT box on the far right allows you
to continue your statement to the next card.

You must fill out the formula section of each card in Hollerith
code. Each Data General mark -sense card contains a Hollerith
code key (the black squares in the formula section), which
indicates the lines that you must mark for each character. On
all mark -sense cards numbers are marked directly in the
appropriate row, without the key. Letters require two marks
in a row, and special characters either two or three marks.

C-2

DataGeneral
SOFTWARE DOCUMENTATION

.. O ULA

t--;t-;t--;;.l 10 OlQlQcOlQlQl(JlQlQ~ 0 0111-0<0 ~iij 100000000000
iO~~~IQIQIQI(JIQIQOD~~~~~~OOOOOOOOOO-

H-:--::-:;+~~1 ~ln1m~1~ ~ ~l~11t~ ~ ~ ~ ~ ~ ~ ~ ~~. ~
o - 020 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0 -0 0 0 0 0 0 0 0 20 I

I----*-',;-F~O 0 10 0 0 DID 0 0 0 0 0 0 B 0 010 0 0 0 0 0 ~ 0 DOn 0 0 '0
i---*c:::rr-7-I0 040 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0-0 0 0 0 0 040 ! =

o 0 aD 0 0 0 0 010 0 0 0 0 0 0 00 010 0 0 0 0 0 'IJ 0 0 0 0 aD z !
1---*--*+--7-10 010 0 0 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0 -0 0 0 010 DI' c

o 0 l\l 0 00 0 0 0 010 0 0 0 8 0 0 0 0 010 0 0 0 0 O"ll 0 0 l\l ~
~~f--iH0 0 10 0 0 0 0 0 0 0 010 0 0 0101010101010101010101010 0 0 10 •

o IQ 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 IQ -

Figure C-3. Let's mark V.

On mark-sense cards, find the character column and the char
acter you want to mark. We've indicated the first column
with an arrow and the letter V as the character we will mark.
Mark the rectangle at the intersection of the two arrows.
(Figure C-3).

Figure C-4.

Find any boxes directly under your character. We have
circled the box under the V. Some characters have more
than one box below them. Again, mark the rectangle at
the intersection of the arrows (Figure C-4).

C-3

DataGeneral
SOFTWARE DOCUMENTATION

Do not draw tne arrows on the mark-sense cards as BASIC
will try to interpret them. The first column contains the
completed markings for the character V. (Figure C-S).

Figure C-S.

Move one column over and find your next character. Begin again.

You may be using cards without a key. If so, fill them out
according to the Hollerith character set at the end of this appen
dix. The mark-sense card key and the Hollerith character set
work exactly the same way; you may use whichever you find
easier. If you use the Hollerith code set, the top horizontal line
is number 12, the second from the top is number 11, and the
other lines are numbered from 0 through 9. To indicate 4, put a
mark on line 4; to indicate an asterisk (*), put marks on lines
11, 4 and 8; to indicate a number sign (#), put marks on lines 3
and 8.

On any card, you can continue a statement to the next card by
marking the CONT box in the upper righthand corner of the first
card. Continue the statement on the following card in the
FORMULA section.

To write an IF statement, mark IF in the statement section, mark
the test expression in the formula section, and mark the THEN box
in the upper right-hand corner of the card. On the next card, begin
continue in the formula section.

C-4

DataGeneral
SOFTWARE OOCUMENTATION

To further illustrate the use of mark-sense cards, we have
coded 10 IF V$ = "CAT" THEN in Figure C-6.

~=¥+=~O'O O I{]If)'III\lIf)~HI 0 OEJ].o~ I() I{) 100000000000
OiO~EJJ~If)If)If)I\l~If)OO~~If)~~~OOOOOOOOOI-

~~~~ ~11~'111~1~ ~ ~l~'~1~'~ ~ ~ ~ ~ ~ ~ ~ ~:~. ! 
r-:::-¥-I=~0!..l!!!-~ a 10 a DID a a a a a ODD 010 a a 0 a O..Q a 0 a a 0 a 010 i 
i=-!i+=l!-I=~O 0 II a 101. a a a 0 0 0 0 0 DID Don 0 O"il 0 0 0 0 0 0 30 
~~~o 040 0 0 0 DID 0 0 0 0 0 0 0 0 DID 0 0 0 0 0-1] 0 0 0 0 040 , ~I 

o IsO 0 0 0 0 010 0 0 0 0 0 0 0 0 010 0 0 0 0 0 1] 0 0 0 0 sO a !
~~~o 010 I 0 0 a 0 010 0 a 0 0 0 0 a 0 DID 0 0 0 0 0·0 0 0 0108,: 

J=...¥.Il~~O OJfJ 0 0 0 a a a DID 0 000 a 0 0 0 010 0000 0"0 0 OJfJ ~ 
~~~O 0 .. I 0 0 0 a 0 0 010 a 0 0101010101010101010101010 0 010 

o ~ 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010 .,

Figure C-6. 10 IF V$ = "CAT" THEN

C-s

DataGeneral
SOFTWARE DOCUMENTATION

HOLLERITH CHARACTER SET

Use this table on the formula section of mark -sense cards
(see page C-2).

I Character II Lines II Character II Lines

0 0 - - J 11 1

1 1 - - K 11 2

2 2 - - L 11 3

3 3 - - M 11 4

4 4 - - N 11 5

5 5 - - 0 11 6

6 6 - - P 11 7

7 7 - - Q 11 8

8 8 - - R 11 9

9 9 - - S 0 2

A 12 1 - T 0 3

B 12 2 - U 0 4

C 12 3 - .
V 0 5

0 12 4 - W 0 6

E 12 5 - X 0 7

F 12 6 - Y 0 8

G 12 7 - Z 0 9

H 12 8 - [12 2

I 12 9 - 12 3

C-6.

-
-
-
-
-
-
-

-

-
-

-
-

-
-
-

-

-
8

8

DataGeneral
SOFTWARE DOCUMENTATION

Character II Lines I Character " Lines

< 12 4 8
,

5 8 -

(12 5 8 = 6 8 -

+ 12 6 8 " 7 8 -

! 12 7 8 & 12 - -

] 11 2 8 - (minus) 11 - -

$ 11 3 8

* 11 -! 8

) 11 5 8

; 11 6 8

t 11 7 8

, 0 2 8

, (comma) 0 3 8

% 0 4 8

- 0 5 8

> 0 6 8

? 0 7 8

: 2 8 -

3 8 -

@ 4 8 -

END OF APPENDIX

C-7

DataGeneral
SOFTWARE DOCUMENTATION

INDEX/GLOSSARY

ABS(X)
see absolute value function

absolute value function 3-16
Account-ill 2-1

identification information necessary for signing onto some
BASIC systems.

addition 2-5, 2-6
addressable locations 1-1
algebra

see arithmetic
alphanumeric 8-1

a character set which includes letters, digits, and sp~cial
characters.

arctangent function 4- 9
argument 3-4

a data element you supply to a function. command, or
statement.

arithmetic 2 - 5, 2 -6
array 7-1

a series of elements in one or two dimensions.
numeric array 7-1 to 7-7
one dimension 7-1, 7-2
two dimension 7-8 to 7-14

reference elements of 7-6
transpose 7-14

array element 7-1
an element within an array, referenced by a subscript.
element of two dimension array 7- 8

array variable 7-1
a variable which names an array.

arrow 3-2, 5-1
asterisk

multiplication 2- 5
prompt iii, 2-1, 2-3

ATN(X)
see arctangent function

back arrow
see RUBOUT key

Index-l

DataGeneral
SOFTWARE DOCUMENTATION

backs lash 3-10
SHIFT/L on the terminal keyboard, erases the current line.

backslash-question mark 4-3
BASIC 1-2
BASIC comrmnds 2-1

BYE 2-2
LET 3-8
LIST 3-5
NEW 3-5
PRINT 2-3
RENUMBER 3-11
RUN 3-5, 3-6

BASI C functions 3 -13
Absolute value function ABS(X) 3-16
Arctangent function ATN(X) 4-9
Cosine function COS(X) 4- 9
Exponential function EXP(X) 6-7
Integer function INT(X) 3-13
Logarithm function LOG(X) 6-7
Randomize function w/RND(O) 5-17
Sign function SGN(X) 3-15
Sine function SIN(X) 4- 9
Square root function SQR(X) 6-7
Tangent function T AN(X) 4- 9

BASIC statements 3-1
DATA 4-6, 5-15
DIMension 7-1, 7-7, 7-8, 7-9, 7-11, 7-13, 8-3
END 3-6, 3-7, 5-4
FOR 6-3, 6-5, 6-9, 7-2, 7-3, 7-9, 7-10
GOSUB 5-20
GOTO 5-1
IF 5-4,5-5,5-6,5-7,5-15,6-1
INPUT 4-1, 4- 3, 5-15
LET 3-8, 4-1
NEXT 6-3, 6-5, 6-9, 7-2, 7-3, 7-9, 7-10
PRINT 3-1, 3-6, 4-4
RANDOMIZE 5-17
READ 4-6, 5-15
REM 3-6
RE1URN 5-20
RND(O) 5-17
STOP 5-4

Index-2

DataGeneral
SOFTWARE DOCUMENTATION

batch processing C-l
the technique of executing a set of computer programs
sequentially; each is completed before the next program
in the set is run.

brackets
interchangeable iii

BYE 2-2

card reader 1- 5
a machine which interprets codes marked on cards, and
transmits data and instructions from the cards to the computer.

carriage return
symbol for iii, 2- 3
to generate in program 4-11

Cathode Ray Tube display 1-2
a type of terminal which includes a Cathode Ray Tube. Infor
mation is displayed on a screen rather than being printed on
paper.

Central Processing Unit 1-1
the unit of the computer that controls the interpretation and
execution of instructions.

code 3-5
to represent data or a computer program in a special language
that a computer can understand and use.

column
in two dimension array
see array

command 2-1
an instruction the computer executes immediately.
see BASIC commands

comma
with PRINT 4-11

computer
a machine which accepts information, applies prescribed pro
cesses, including arithmetic and logic operations, to the
information and supplies the results.

computer cards
see mark- sense cards

condition, test for
see IF statement

cosine function 4- 9
cosines, law of 4-9

COS(X)
see cosine function

Index-3

DataGeneral
SOFTWARE DOCUMENTATION

CPU
see Central Processing Unit

CRT
see Cathode Ray Tube display

CRT keyboard 1- 3

data I-I, 1-2
a tenn used for all facts, numbers, letters, or symbols which
can be processed or produced by a computer.

DATA 4-6
with flag 5-15

debug
to detect, locate and correct mistakes or errors in a program.

decision box 3- 2
with IF 5-8

DIMension
numeric subscripts 7-1, 7-7
string subscripts 8- 3, 8- 4
two dimension array 7-7

division 2-6, 2-7

edit
to modify or re-arrange data or program statements. Editing
often involves deleting undesired infonnation and inserting
desired information.
by line number 3-10, 3-11
see RUBOUT, backslash, RENUMBER

END 3-6, 3-7
or STOP 5-4

error message 3-4
an indication that BASIC has detected an error. Errors often
result from typing mistakes.
see Appendix B

ESCapekey 1-4,2-1,2-2
a special tenninal key, which calls the computer's attention or
interrupts a progxam.
interrupt program 5-11

evaluation of tenns 2-5
execute 2-3

to perfonn instructions or run a computer program.
EXP(X)

see exponential function
exponential fonn 2-4

a numeric representation which uses the letter E to mean
"times 10 to the power of". 1000 = 1Et3.

Index-4

exponential function 6-7
expression

numeric relation see IF

factorial 5-11
flag value 5-15

DataGeneral
SOF TWAHE LJOCUMENTA TlON

a value out of the normal data range which signals some
condition, as the end of a data list.

flow chart
a graphical representation of a computer program, which
uses symbols to show all logical steps toward the solution of
a problem.
symbols 3-2, 3- 3
see GOTO, IF, GOSUB, FOR/NEXT

FOR 6-3, 6-5, 7-2, 7-3
nested FOR/NEXT 6- 9, 7- 9, 7-10
flow charts 6-4, 6-6

nested 6- 10, 6-12
fonnatting output

see PRINT rules
FOR/NEXT loop

see FOR
functions

see BASIC functions

GOSUB 5-20
GOTO 5-1

high-speed line printer 1-6
a device which prints listings and data from the computer
at high speed.

Hollerith card code Appendix C
character set C-6

IF 5- 5, 5-15, 6-1, 6-2
relation expression 5- 6, 5-7
numeric expression 5-10

IF ••• THEN
see IF

initialize 5- 9
to set a counter for your program's use.

INPUT 4-1
with prompts 4-4
with flag 5-15

Index-5

DataGeneral
SOFTWARE OOCUMENTATION

input 1-1
the data to be processed (noun); the process of transferring
data from an external storage area to a computer's working
storage (verb).
inputting data see LET, INPUT, READ, DATA

Input/ Output Unit 1-1
the section of the computer which communicates with the user.

Integer function 3-13, 3-14
INT(X)

see Integer function
VO unit

see Input/Output Unit
VOdevices 1-1

the devices which handle Input/Output procedures. These
include terminals, card punchers and readers, high speed
line printers, and magnetic tape drives.

Keywords
see BASIC commands, BASIC functions, BASIC statements

language interpreter 1-2
a program which translates a computer language such as
BASIC into instructions the computer can perform.

LET 3-8, 4-1
line number 3-1

an integer between 1 and 9999 used to number the statements
in a BASIC program.

LIST 3-5
listing

all the statements of a computer program - usually a copy
printed on paper rather than displayed on a CRT.

logarithm function 6-7
LOG(X)

see logarithm function
log off 2-2

to release your terminal from a computer system.
log on 2-1

to enable your terminal to interact with a computer system.
looping

see loop
loop 5-10, 5-11

a sequence of instructions which a system executes, either a
specified number of times (FOR/NEXT loop) or until some
terminal condition is satisfied (IF ••• THEN loop).
see IF, FOR

Index-6

magnetic tape drive 1- 6
Main Memory Unit

DataGeneral
SOFTWARE DOCUMENTATION

the portion of the computer that stores information and data.
main units (of computer)

see Central Processing Unit, Main Memory Unit:, Input/Output
Unit

mark- sense cards 1- 5, Appendix C
paper cards (about 3 1/2 x 7 1/2) which you mark or punch with
a specific code. This code represents programs and data; a
card reader interprets it for a computer.
reader C-l

Memory
see Main Memory

memory address 1-2
the label for a location where data is stored in memory.

messages
PRINT 2-3
prompting 4-4

mUltiplication 2- 5, 2-6

nested FOR/NEXT
see FOR

NEW 3-5
NEXT

see FOR
numbers (PRINTing) 2- 5
numeric arrays

one dimension 7-1
two dimension 7- 8

numeric expression 5-10
numeric variable 3- 8

subscripting 7-1

output 1-1
data that has been processed by a program (noun); or to trans
fer data from internal storage to an external device (verb).
formatting output see PRINT rules

paper tape reader 1- 6
parentheses

interchangeable iii
evaluation of terms 2-6

PRINT 2-3 to 2-6
PRINT Rules 4-11 to 4-14

Index-7

DataGenerai
SOFTWARE DOCUMENTATION

program 3-1
a sequence of instructions and statements used to solve a
problem.
control 3-1, 5-1, 5- 5

flow chart 3-2
prompts 4-4

messages printed at the terminal by a program to request
input.
asterisk prompt iii, 2-1, 2- 3

question mark
with INPUT 4- 3

quotation marks
with PRINT 2- 3
strings 8-1

radians 4-9
1800 = 7r radians

RANDOMIZE 5-17
READ 4-6

with flag 5-15
relational expression 5-7

see IF
relational operators 5- 6

see IF
REM 3-6
RENUMBER 3-11
RETURN 5-20
reverse oblique

see backs lash
RND(O)

see RANDOMIZE
rows

in two dimension array, see array
RUBOUT key 1-4

a special key on a terminal which erases characters you
have typed.
editing 3-10

RUN 3-5, 3-6
run

a single, continuous performance of a program by a computer.

scientific notation 2-4
semicolon

with PRINT 4-11

Index-8

SGN(X)
see sign function

SHIFT key 1-1
editing 3-10
see backs lash

SHIFT/L 3-10

DataGeneral
SOFTWARE DOCUMENTATION

a terminal key combination (press the shift key and type L)
which erases the current line.

Sign function 3-15
sign off 2-2
sign on 2-1
simulation

see RANDOMIZE
Sine function 4- 9
SIN(X)

see Sine function
special keys

see ESCape key, RUBOUT key, SHIFT key
square root function 6-7
SQR(X)

see square root function
standard notation 2-4
start box 3-2
statement

a meaningful expression or instruction in a programming
language.
see BASIC statements

STOP 5-4
stop box 3-2
stop a program 5-11
Strings 2-3

a sequence of characters which may contain letters, digits,
special characters or spaces.
String literal 8-1
String variable 8-1
String subscripts 8- 3

subroutine 5-20
a programming routine within a program which is executed
only when referenced by another statement in the program.
In BASIC, the GOSUB statement specifies a subroutine.

subscript
a number in parentheses following an array variable or
string name.
numeric subscripting 7-1
string subscripts 8- 3

Index-9

DataGeneral
SOFTWARE DOCUMENTATION

substring 8-4
subtraction 2 - 5, 2 - 6
system manager 2-1

the person in charge of a computer system, who assigns
account- ID' s and keeps the system running.

tangent function 4 - 9
TAN(X)

see tangent function
teletypewriter 1- 2

a computer terminal similar to an electric typewriter with
special keys to communicate with a computer.

terminal 1- 3
a device through which programs and data enter or leave a
computer, contains a typewriter-like keyboard.
time sharing 1- 5

test
relational expression 5-6
numeric expression 5-10, 5-11

time sharing system 1- 5
a method of using a computer system for two or more
programs (or users) simultaneously. Control alternates
rapidly between the programs.

transpose
of an array 7-14

trigonometry 4- 8
see BASIC functions

truncation
numbers 2-4
strings 8-3

under line ii, 2 - 3

variable 3- 8, 8-1
a symbol for an arithmetic or character data value that can
change during the execution of a program.
see numeric variable, string variable
inputting variables

see LET. INPUT. READ, DATA

working storage 3-4
the temporary storage area of computer memory where
programs are stored and executed.

WS
see working storage

Index-lO

