
RELEASE NOTICE: SP/Pascal Rev 2.20 SEPT. 1986 085-000234-07 Page 1

MODEL #'s: 30063, 30064, 30165

1. Summary
-- -------

The purpose of the product release notice is to provide the user with
specific information about the product which is not available in the
product manuals (information may be repeated in subsequent release
notices if the appropriate manual is not yet available).

Between revisions of the product, periodic updates to the product may be
issued. The purpose of an update is to reduce the time required to
respond to problems by providing a level of corrections which does not
require a release of the complete product. Each update of a product
release supercedes the previous update.

A release of the product consists of two parts, as defined below:

 Part Description Part Number
 ________________ ___________

1. SP/Pascal Rev 2.20 Release Notice 085-000234-07

2. SP/Pascal Rev 2.20 Release Media Defined by this release
 notice in section 6A.

Included in this release notice are:

 1. Summary
 2. Environment
 3. Fixes
 4. Enhancements
 5. Notes/Warnings
 6. Product Organization
 A. Software
 B. Documentation
 7. Documentation Changes
 8. New Documentation
 9. STR Reporting
 10. Installation Instructions

Copyright (C) Data General Corporation, 1982, 1983, 1984, 1985, 1986.
All rights reserved.
Licensed material - Property of Data General Corporation

 Page 2

2. Environment
__ ___________

 A. Prerequisites

 MP/AOS SP/Pascal Model: 30063

 MP/AOS-SU Operating System Rev 1.00.
 MP/AOS Operating System Rev 1.30 or later.

 AOS SP/Pascal Model: 30064

 AOS Rev 3.20 or later.

 AOS/VS SP/Pascal Model: 30165

 AOS/VS Rev 1.50 (with all patches installed) or later.

 AOS/VS SP/PASCAL Model: 30165/G on 96TPI mini diskette

 Require AOS/VS Rev 5.00 or later.

 B. Dependent Products

 None

 Page 3
3. Fixes
-- -----

 1. A compiler bug in preserving the contents of FPAC's across the
 evaluation of conditional expressions when the expressions
 contained pointer checks has been fixed.

 2. A compiler bug in the generation of temporary file names used
 by the compiler has been fixed. This problem prevented more
 than one concurrent compilation in the same working directory.

 3. The word_count argument to the predefined procedures SET_BLOCK and
 BLOCK_MOVE and the byte_count argument to procedure BYTE_MOVE will
 now be range checked for values in 1..32767. This check will only
 be generated when the rangecheck option "R" is enabled.

 4. A compiler bug in adjusting the order in which parameters were
 passed to parametric procedures and functions has been fixed.
 In previous revisions, the parameters were passed in reverse
 order from what the procedures and functions expected.

 5. A runtime bug in converting from long_whole to integer has
 been fixed. This bug could generate an incorrect error:
 "CONVERSION ERROR: LONG_INTEGER OR LONG_WHOLE TO INTEGER OR WHOLE".

 6. A compiler bug in sharing references to the first word of a record
 (either explicitly through a pointer or implicitly through a with
 variable) when the reference to the structure occurred just before
 a loop and inside the loop has been fixed. The compiler
 incorrectly preserved the first value and used it after the loop
 was finished.

 7. A compiler bug when optimizing incrementation of a long_whole
 variable for variables that contained pointer dereferences or
 array subscripts has been fixed.

 8. A compiler bug in handling indirect references in real expressions
 has been fixed. The bug occurred in expressions whose left operand
 contained the indirection and whose right operand required
 all the FPAC's.

 9. A compiler bug in initializing string variables inside variant
 records has been fixed. The compiler generates code to reset the
 current length to zero and the maxlength to the declared size.

 10. A compiler bug in generating assignments to long_whole variables
 of the form: X := X + small_constant, when the small_constant
 was not equal to 1 has been fixed.

 11. A compiler bug in generating short-circuit evaluation of the
 conditional expression in a while statement has been fixed.

 12. A compiler bug in folding frame relative array addresses has
 been fixed. Previously, references to arrays containing large
 elements from a stack frame in low memory could incorrectly
 address the base of the array.

 13. A compiler bug in generating real constants from integer
 operands, e.g. const r = 10 / 2, has been fixed. Previously,
 using these expressions inside a structured constant or in
 a redefined declaration could cause the compiler to abort.

 Page 4

4. Enhancements
__ ____________

 None

 Page 5

5. Notes and Warnings
-- ------------------

 1. Revisions 1.20 and later of SP/Pascal place storage for overlay
 module names (.ENTO values passed as arguments to OV?LD and
 OV?RL) in the pure data area of the program instead of page
 zero. Allocation of the overlay module names in the pure area
 allows more space for user data in page zero, and a greater
 number of overlay modules to be used in the program. To
 support this feature, all programs created by the MP/AOS binder
 must use revision 1.30 or later of the MP/AOS binder. Programs
 created by LINK under AOS or AOS/VS will function correctly.

 2. The files CODEMERGE.PAS, CODEMERGE.PR, CODEMERGE.DOC, and
 CODEMERGE.CLI are provided as a working example of a SP/Pascal
 program. The CODEMERGE utility can be used to interleave the
 assembly language code listing and the source listing files
 produced by the compiler into one listing file that shows each
 source line followed by the code generated for it. An
 interleaved listing file provides a useful debugging aid. The
 file CODEMERGE.DOC contains additional information about the
 operating procedures and arguments for the CODEMERGE utility.

 3. The O option for integer overflow checking is not implemented.

 4. For cross development under AOS/VS, the SPCLINK macro must be
 used to bind programs for execution under AOS/VS. The MP/AOS
 binder cannot be used to bind AOS/VS programs. To bind
 programs under AOS/VS for MP/AOS use the MPAOS_BIND macro. For
 revision 1.60 of AOS/VS, patch number 42 must be applied to
 AGENT.PR. The assembly language file MERMES.TXT is supplied
 with the AOS/VS release to allow users to integrate MP/AOS and
 AOS/VS error messages.

 5. The EXTERNAL ASSEMBLY designator is included in SP/Pascal for
 compatiblity with MP/Pascal. It generates the same calling
 sequence as the MP/Pascal ASSEMBLY designator. When calling an
 assembly language program from SP/Pascal programs only, the
 standard SP/Pascal calling sequence is preferred. It is more
 efficient than the ASSEMBLY interface and is generated like a
 Pascal routine simply by declaring the routine as EXTERNAL.
 See Appendix C in the manual.

 6. For AOS Rev 4.28 on S/120's, patch #4 must be installed.

 7. For AOS/VS Rev 2.00, patch #8, patch #25, and patch #36 must be
 applied to the agent. For AOS/VS Rev 3.00, patch #7 and patch
 #25 must be applied to the agent.

 8. Using the /STANDARD switch may impact the efficiency and amount
 of runtime storage required for existing programs. Large
 structures are copied when passed as value parameters, and
 unpacked arrays of char are word instead of byte aligned.

 9. A non-local GOTO cannot be used to transfer control from one
 task to another.

 Page 6

6. Product Organization
__ ____________________

 A. Software

 MP/AOS SP/Pascal on 1.25MB diskette

 Model: 30063Q

 Status Part Number Description
 ______ ___________ ___________

 R 062-000264-05 MP/AOS SP/Pascal

 MP/AOS SP/Pascal on mag tape and cartridge tape

 Model: 30063M/H/C

 Status Part Number Description
 ______ ___________ ___________

 R 071-000637-05 MP/AOS SP/Pascal

 AOS SP/Pascal on 1.25MB diskette

 Model: 30064Q

 Status Part Number Description
 ______ ___________ ___________

 R 062-000265-05 AOS SP/Pascal

 AOS SP/Pascal on mag tape and cartridge tape

 Model: 30064M/H/C

 Status Part Number Description
 ______ ___________ ___________

 R 071-000638-05 AOS SP/Pascal

 AOS/VS SP/Pascal on mag tape and cartridge tape and 120 mb
 cartridge tape

 Model: 30165H/C/J

 Status Part Number Description
 ______ ___________ ___________

 R 071-000704-04 AOS/VS SP/Pascal

 Page 7

 AOS/VS SP/PASCAL ON 96TPI MINI DISKETTE

 Model: 30165/G

 STATUS PART NUMBER DESCRIPTION
 ------ ----------- -----------

 R 081-000315-02 AOS/VS SP/PASCAL
 R 081-000316-02 AOS/VS SP/PASCAL

 AOS/VS SP/PASCAL ON 20 MB CARTRIDGE

 Model: 30165B

 STATUS PART NUMBER DESCRIPTION
 ------ ----------- -----------

 R 061-000287-01 AOS/VS SP/PASCAL

 B. Documentation

 Status Part Number Description
 ______ ___________ ___________

 R 069-400203-01 SP/Pascal Programmer's Reference

 Page 8

7. Documentation Changes
-- ---------------------

 1. On page 201 in the discussion of calling sequences, remove the
 sentence: All other accumulators are undefined. Substitute the
 following: SP/Pascal assumes that the accumulators, AC0, AC1, and
 AC2, are preserved across a call to an assembly language routine.
 Thus, all assembly routines should be coded with a save and rtn or
 should save and restore any of these registers that it changes.

 2. On page 56, add the following to the discussion of the CASE
 statement: The OTHERWISE keyword in a CASE statement may be
 followed by a list of statements not just one statement.

 3. On page 58, add the following paragraph to the discussion of
 the FOR statement:

 The initial and final expressions are treated as signed values when
 making tests for loop entry and termination. Thus FOR statements
 with whole-type control variables must be programmed carefully
 since whole values in the range +32768 to +65536 are treated as
 signed initial or final expressions. For example:

 FOR W:= 0 TO whole-exp DO S;

 Statement S will not be executed if the value of whole-exp is
 greater than 32767.

 4. On page 101, add the following sentences to the discussion of
 the INCLUDE facility:

 The SP/Pascal compiler ignores all text appearing after the
 semicolon on the same line as an INCLUDE statement. Therefore, all
 INCLUDE statements must appear on a separate line from other source
 text in the program.

 5. On page 140, the description of REAL2STR.PAS has been changed
 to provide conversion of double precision real values. The
 argument data type for parameter INPUT is now DOUBLE_REAL. Delete
 the note on the bottom of the page and change the last paragraph
 to:

 The FSIZE parameter determines the type of the numeric
 represention. If FSIZE is greater than 0, a fixed-point notation
 is generated with FSIZE digits after the decimal point. Otherwise,
 scientific (E) notation is used. At most, fourteen non-zero digits
 are printed. When less than 14 digits are requested, the remainder
 are used for rounding. If WIDTH is not positive an error is
 generated. The minimum number of characters printed for scientific
 notation is eight. If the requested numeric representation does
 not fit into the output string, an error is generated. In this
 case, the output string contains the first MAXLENGTH characters.

 6. On page 142, the name of the constant for conversion errors
 should be S2IN_CNVRT_ERR instead of S2IN_CONVRT_ERR for consistency

 Page 9

 with the definition in include file STR2DINT.PAS. The same change
 should be made again on page 144 for consistency with the
 definition in the include file STR2SINT.PAS.

 7. On page 145 and 146, the definitions of the functions contained
 in BOOLEAN.PAS should be changed to use WHOLE parameter and result
 type definitions, instead of INTEGER types.

 8. On page 162, under the discussion of task stack size, add the
 following paragraph before the example program in the section:

 The /STACK switch gives the static stack requirements for each user
 routine. In addition to this space, each task also has extra stack
 storage allocated as part of a default (hidden) stack frame, and
 references to SP/Pascal runtime routines may consume additional
 stack space not included as part of the static requirements. The
 stack requirements for the runtime routines may dynamically depend
 on the application program and its data. For this reason, fixed
 upper bounds on the stack usage cannot be provided for all the
 runtimes. The stack space needed for each task must carefully
 balance all of these factors. The /STACK switch may be used as an
 initial estimate of the minimum stack requirements. In most
 programs, the addition of 50 words to the minimum stack value
 should be sufficient.

 9. On page 147, the description of the function DDDIV should be
 changed to:

 The division function DDDIV returns the quotient and remainder of
 its arguments. The remainder is defined as r:= x MOD y.

 EXTERNAL FUNCTION DDDIV (X,Y:DOUBLE; VAR R:DOUBLE):DOUBLE;

 Z:= DDDIV(X,Y,R);

 Page 10

8. New Documentation
-- -----------------

 A. New documentation for revision 1.20

 A.1 Long_whole and long_integer types
 Add to chapter 3, Data declarations

 A.1.1 Definition
 Add to the section Predefined Simple Data Types

 A long_whole is a 32 bit unsigned integer (32 significant digits).

 A long_integer is a 32 bit signed integer (31 significant digits
 and a sign bit).

 Long_wholes and long_integers are included in the set of ordinal
 types. Thus they can be used in the same places as the other
 arithmetic ordinals, integer and whole, except where noted. This
 includes 32-bit expressions using standard infix notation,
 constants, parameters, I/O, and other useful features.

 A.1.2 Constants
 Add to the section Numeric Constants

 Long_whole and Long_integer constants are supported.

 By default, unsigned ordinal constants are whole or long_whole; but
 if they are signed as in unary operations, then they are integers
 or long_integers.

 Range for ordinal constants
 --
 | Constant | Lower bound | Upper bound |
 |---------------|-------------|--------------|
 |1) whole | 0 | 65535 |
 | | | |
 |2) integer | -32768 | +32767 |
 | | | |
 |3) long_whole | 65536 | 4294967295 |
 | | | |
 |4) long_integer| -2147483648 | -32769 |
 | | +32768 | +2147483647 |
 --

 In most instances, arithmetic operations on constants follow the
 rules of implicit coercion (see section 3.4). But, the value of a
 constant does not in all cases denote the type of the constant.
 There is an overlap in the values of whole and long_integer
 constants (i.e. 32768 to 65535). These unsigned constants with bit
 0 as a significant digit are treated specially. By default, these
 constants are wholes. But in an expression, the precision of these
 constants depends on the precision of the other operand.

 A.1.2.1 Binary operations on unsigned constants (32678 to 65535)

 Page 11

 Constant Operator x (e.g. 40000 + x)

 For binary operations, if one operand is an unsigned constant in
 the range 32768 to 65535 (bit 0 is on), then its value depends upon
 the type of the other operand (x).

 The constant is

 1) a whole constant.

 If x is an integer or a whole, then the constant is a whole and the
 operation is single precision. This is consistent with revision
 1.10 of SP/Pascal.

 2) a long_integer constant.

 If x is a long_integer, then the constant is a long_integer and a
 32-bit signed operation is used.

 3) a long_whole constant.

 If x is a long_whole, then the constant is a long_whole and a
 32-bit unsigned the operation is used.

 4) coerced to real.

 If x is a real or double_real, then the constant is coerced to a
 real or double_real and the operation is real or double_real.

 For coercions of whole constants to real or double_real, the whole
 constant is treated as an unsigned quantity as expected. However,
 for coercions of long_whole constants to real or double_real, the
 long_whole constants are treated as signed quantities because of
 hardware restrictions.

 If both operands are constants in this range (e.g. 40000 + 50000),
 then by default they are wholes, and the result may cause an
 overflow. Note that explicit coercions can be used to prevent
 overflow.

 A.1.2.2 Unary operations on constants (32768 to 65535)

 Operator Constant (e.g. x := + 40000)

 If the constant is signed and if it is in the range 32768 to 65535,
 then the constant is represented as a long_integer.

 A.1.2.3 Long_whole constants
 in the range 2147483648 to 4294967295 (bit 0 on)

 Unary operations on long_wholes in this range are errors.
 Exception: Unary - 2147483648 is acceptable. This is represented
 as as a long_integer word, 1b0.

 A.2 Structured data types
 Add to the section Structured Data types

 Page 12

 Long_whole and long_integer types can be the element type of an
 array, a field type of a record, and the resolution type of a
 pointer.

 Exclusions

 1) No subrange types of long_whole or long_integer.

 2) No set base-types of long_whole or long_integer. The set's
 base-type must be in the range 0..255.

 3) No variant tag-types of long_whole or long_integer.
 Variant tag fields must be in a subrange of 0..127.

 4) No array index-types of long_whole or long_integer.

 A.3 Expressions
 Add to chapter 4, Expressions

 A.3.1 Arithmetic operations
 Add to the section Arithmetic Operators

 * Addition
 * Subtraction
 * Multiplication
 * Division
 * Modulus

 A.3.2 Relational Operators
 Add to the section Relational Operators

 All relational operators are implemented for long_wholes and
 long_integers. In rev 1.10, comparisons of whole constants were
 signed. As of rev 1.20, comparisons of whole or of long_whole
 constants are unsigned.

 A.3.3 Overflow
 Add to the section Compatibility Rules

 Operations on wholes or integers (variables or constants) is
 treated the same as in revision 1.10. When there is an overflow,
 significant digits will be lost. However, overflow and underflow
 checking is always performed for long_wholes and long_integers.

 Example 1. (no overflow)

 whole1 := 30000;
 whole2 := whole1 + whole1;

 In this case, the result's accuracy is retained.

 Example 2. (overflow)

 whole1 := 30000;

 Page 13

 whole2 := 40000;
 whole2 := whole1 + whole2;

 The result of this operation will not be 70000. Significant digits
 are lost.
 30000 + 40000 = 4464 (in decimal)

 Example 3. (explicit coercion to override the default and
 force the operands to long_wholes)

 whole1 := 30000;
 whole2 := 40000;

 1) long_whole1 := whole1 + whole2 or

 2) x := long_whole(whole1 + whole2);

 The result of this operation will be 70000; but, it will be
 represented in two words. In the second case, the result of the
 operation will also be coerced to the result type of x.

 A.3.4 Compatibility and implicit coercion
 Add to the section Compatibility Rules

 There are compatibility checks for expressions with long_whole
 and/or long_integer operands, which are coerced when necessary. If
 possible, expressions with a long_whole or long_integer operand and
 a whole or integer operand are evaluated using more efficient
 operations than an expression with two long_whole or long_integer
 operands.

 A.3.4.1 Operand compatibility

 A long_whole and long_integer operand is compatible with all
 arithmetic types. By default, in an expression, x + y, if x and y
 are different types, then either x or y or both may be coerced.
 Below are the rules for compatibility and the default coercions for
 an expression with a long_whole and/or long_integer operand. If
 one of the operands in signed, then the other operand will be
 coerced to a signed operand. If one of the operands is long, then
 the other will coerced to a long operand.

 O P E R A N D
 integer whole long_integer long_whole real double_real
==========|=============|========|=========|==========|============|===========
 |Convert |Convert | |Convert |Convert |Convert
 long_ |integer to |whole to| OK |long_whole|long_integer|long_
O integer |long_integer |long_ | |to long_ |& real to |integer to
P | |integer | |integer |double_real |double_real
E --------|-------------|--------|---------|----------|---------- -|-----------
R |Convert |Convert |Convert | |Convert *|Convert *
A long_ |integer to |whole to|long_whole OK |long_whole |long_whole
N whole |long_integer |long_ |to long_ | |& real to |to
D |& long_whole |whole |integer | |double_real |double_real
 |to long_integer | | | |
===

 Page 14

* Because of hardware restrictions, conversions from long_whole to real or
 to double_real are the same as long_integer to real or to double_real.

 A.3.4.2 Arithmetic assignment compatibility

 For assignments, operand1 := operand2, if the types are different,
 operand2 may be coerced to the same type as operand1 or there may
 be an error. All arithmetic types except real and double_real may
 be assigned to long_whole and long_integer. Below are the
 compatibility rules and default coercions for arithmetic
 assignments.

 O P E R A N D 2
 integer whole long_integer long_whole real double_real
 ==========|==========|==========|============|============|=======|==========
 integer | |Convert 1|Convert 2 |Convert 2 |error |error
 | OK |whole to |long_integer|long_whole | |
 | |integer |to integer |to integer | |
 ----------|----------|----------|---------- |------------|-------|----------
 whole |Convert 1| |Convert 2 |Convert 2 |error |error
 |integer to| OK |long_integer|long_whole | |
 |whole | |to whole |to whole | |
 ----------|----------|----------|---------- |------------|-------|----------
 |Convert |Convert | |Convert 1|error |error
 O long_ |integer to|whole to | OK |long_whole | |
 P integer |long_ |long_ | |to | |
 E |integer |integer | |long_integer| |
 R---------|----------|----------|---------- |----------- |-------|----------
 A |Convert |Convert |Convert 1 | |error |error
 N long_ |integer to|whole to |long_integer| OK | |
 D whole |long_whole|long_whole|to | | |
 1 | | |long_whole | | |
 ----------|----------|----------|---------- |------------|-------|----------
 real |Convert |Convert |Convert |Convert 3 | |Convert
 |integer to|whole to |long_integer|long_whole | OK |double_real
 |real |real |to real |to real | |to real
 ----------|----------|----------|---------- |------------|-------|----------
 |Convert |Convert |Convert |Convert 3|Convert|
 double_ |integer to|whole to |long_integer|long_whole |real to| OK
 real |double_ |double_ |to double_ |to |double_|
 |real |real |real |double_real |real |
 ===
 1
 If the whole option is on, perform a range check.
 2
 If conversion from a long_integer precision to a 16-bit ordinal is
 impossible without loss in accuracy, flag as an error.
 3
 Because of hardware restrictions, conversions from long_whole to real or
 to double_real are the same as long_integer to real or to double_real.

 A.4 Program statements
 Add to chapter 5, Program Statements

 Exclusions

 Page 15

 1) FOR loops can not have a long_whole or long_integer as the
 control variable. An alternative must be used. One possibility is
 a REPEAT or WHILE loop with a statement that increments the
 long_whole or long_integer value.

 2) No case selectors or case constants of long_whole or
 long_integer.

 A.5 Functions and parameters
 Add to chapter 6, SP/Pascal Routines

 Function result types and parameters may be long_wholes or
 long_integers. Constants that are passed as parameters are coerced
 to the appropriate precision automatically.

 A.6 I/O
 Add to chapter 7, Input/Output

 Reading and Writing of long_wholes and long_integers to files of
 long_whole and long_integer and to text files are now supported.

 A.7 Predefined routines
 Add to chapter 9, Predefined routines

 A.7.1 New predefined routines

 * Procedure Block_move(source, destination, word_count)
 * Procedure Byte_move(bp_source, bp_destination, byte_count)
 * Function Get_byte(byte_pointer) : char
 * Procedure Intds
 * Procedure Inten
 * Procedure Set_block(array, word_count, value)
 * Procedure Store_byte(byte_pointer, char)

 Routine name | Operation |Number | Type of | Result Type
 | |of args| args | if function
 --------------|----------------------|-------|----------------|------------
 1) Block_move | moves a block of | 3 |array or record |
 | contiguous words from| |array or record |
 | source to destination| |integer or whole|
 | | | |
 2) Byte_move | moves a block of | 3 |byte_pointer |
 | contiguous bytes from| |byte_pointer |
 | source to destination| |integer or whole|
 | | | |
 3) Get_byte | Get the character | 1 |byte_pointer | character
 | that is pointed to * | | |
 | | | |
 4) Intds | Interrupt disable | 0 | |
 | | | |
 5) Inten | Interrupt enable | 0 | |
 | | | |

 Page 16

 6) Set_block | sets an array of | 3 |array |
 | specified length in | |integer or whole|
 | words to a value | |integer or whole|
 | | | |
 7) Store_byte | stores the character | 2 |byte_pointer |
 | in the location | |character |
 | pointed to | | |

 *There is no check that the byte pointer is to a character.

 Example 1.

 Var buffer1, buffer2 : array[1..1024] Of Char;

 Block_move and Byte_move can be used to move a part of buffer1 to
 buffer2.

 Begin

 { Move the first 100 bytes from buffer1 to buffer2 }
 Byte_move(Byteaddr(buffer1), Byteaddr(buffer2), 100);

 or

 { Move the first 50 words from buffer1 to buffer2 }
 Block_move(buffer1, buffer2, 50);

 End;

 Example 2.

 Set_block can be used to initialize buffer1.

 { Initialize buffer 1 to nul }
 Set_block(buffer1, 512, 0);

 Example 3.

 Get_byte and Store_byte are useful when manipulating byte
 addresses.

 Var bp_ch : Whole;

 Begin

 bp_ch := Byteaddr(buffer1[0]);

 ...

 { Get the character that bp_ch points to
 (i.e. buffer1[0]) and put it in buffer2[0] }
 buffer2[0] := Get_byte(bp_ch);
 ...
 { Store buffer2[0] at the location

 Page 17

 pointed to by bp_ch (i.e. buffer1[0]) }
 Store_byte(bp_ch, buffer2[0]);

 End;

 A.7.2 Modified routines
 now allow long_whole and long_integer arguments.

 Routine | Argument type | Result type
 --------|---------------------------|--------------------
 Mathematical functions
 ========|===========================|=================
 Abs | any arithmetic type | same as argument
 --------|---------------------------|-----------------
 Whole and long_whole arguments are treated as
 integer and long_integer arguments respectively. This
 is because the result of an Abs is considered to be a
 signed quantity.

 --------|---------------------------|--------------------
 Arctan | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 Cos | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 Exp | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 Ln | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 Sin | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 Sqrt | any arithmetic type | Real or double_real
 --------|---------------------------|--------------------
 If the argument is a long_whole or a long_integer then by
 default, double_real functions will be used, and the
 result will be double_real.

 --------|---------------------------|------------------
 Max | any ordinal or arithmetic | same as arguments
 | type |
 --------|---------------------------|------------------
 Min | any ordinal or arithmetic | same as arguments
 | type |
 --------|---------------------------|------------------
 Min and Max formerly only allowed ordinal arguments.

 Coercion function

 ========|===========================|=================
 Float | whole, integer | real
 | long_integer, long_whole | double_real
 --------|---------------------------|-----------------
 If the argument is a long_whole, it is treated as a
 long_integer because of hardware restrictions.

 Page 18

 Ordinal functions
 ========|===========================|=================
 Chr | whole, integer, | Character
 | long_whole, and |
 | long_integer |
 --------|---------------------------|-----------------
 Ord | any ordinal type | integer
 --------|---------------------------|-----------------
 Pred | any ordinal type | same as argument
 --------|---------------------------|-----------------
 Succ | any ordinal type | same as argument

 Routines to return addresses
 ========|===========================|======
 Byteaddr| any variable | whole
 --------|---------------------------|------
 Wordaddr| any variable | whole

 Routines to return field size
 ========|===========================|======
 Bitsize | type name | whole
 --------|---------------------------|------
 Bytesize| type name | whole

 Miscellaneous routines
 ========|===========================|=================
 Odd | any ordinal type | boolean
 --------|---------------------------|-----------------
 Sqr | any arithmetic type | same as argument
 --------|---------------------------|-----------------

 The functions Trunc and Round will always return an integer result.
 This is because there is no way of determining the result type
 based on the argument. To truncate to a long_integer, use the
 Longint function.

 A.7.3 Functions for explicit coercions
 Add to the section Type-handling Routines

 Explicit coercions were implemented to give the user a full range
 of options to override default coercions. This gives the user the
 privilege of determining the cost of arithmetic operations (the
 more precision, the more costly the operation).

 1) New functions

 * Long_whole(expression)

 evaluates the expression as a long_whole. The expression must be a
 non-real arithmetic type. If the argument is a real, it is an
 error.

 * Long_integer(expression)

 evaluates the expression as a long_integer. The expression must be
 an arithmetic type.

 Page 19

 2) Long_whole and long_integer arguments

 * Whole, Integer, Real, and Double_real(expression)

 also accept long_whole and long_integer arguments.

 3) Real arguments

 * Integer, Whole, Long_whole (real expression)

 Integer accepts a real argument, but Whole and Long_whole with a
 real argument is an error.

 Example 1. x := Integer(whole1 * double_real1)

 Whole1 will be coerced to a double_real by implicit coercion, the
 operands will be multiplied using double real arithmetic, and then
 the result will be coerced to an integer.

 4) Expressions as arguments

 * Real, Double_real (expression)

 Previously, only the functions, Real and Double_real, would
 evaluate expressions according to the precision of the coercion
 function. Now, all the arithmetic type coercion functions will
 evaluate the expression according to the function type and
 precision.

 * Whole, Integer, Long_whole, and Long_integer(expression)

 a) If the expression is ordinal, then it will be evaluated
 according to the type and precision of the function.

 b) If the expression has one or more real operands, then it is
 considered real. It will first be evaluated, and then the result
 will be coerced to the ordinal result type.

 5) Assignments

 An assignment to a long_whole or long_integer acts like an explicit
 coercion for the expression on the right side of the assignment.
 In this case, all ordinal expressions will be evaluated using
 long_whole or long_integer operations. Real expressions will be
 evaluated using real operations and then coerced to long_integer.
 An assignment of a real to a long_whole or to a long_integer is an
 error. For an assignment to long_integer (or integer), this can
 be circumvented by using explicit coercions.

 For an assignment,
 x := y + z, if x is long_integer or long_whole, then any ordinal
 operation, y + z, would be long_integer or long_whole respectively.
 If x is any other type, then the precision of y + z is not affected

 Page 20

 by x.

 Example 2. long_integer1 := integer1 * integer2

 This assignment is equivalent to

 long_integer1 := Long_integer(Integer1 * Integer2)

 Integer1 and integer2 will first be coerced to long_integers, and
 then multiplied. No precision would be lost.

 6) Nested coercions

 When nesting coercion functions, the ordinal function closest to
 the expression takes precedence over ordinal operations, and the
 closest real function takes precedence over real operations.

 Example 3. Real1 := Real(Integer(whole1 * double_real1))

 Double_real1 is coerced to real because of the explicit
 coercion. Whole1 is coerced to real because of the implicit
 coercion. The multiplication uses single precision real
 operations. The result is coerced to an Integer and then to a
 Real.

 This is not the same as
 Real1 := Integer(whole1 * double_real1).
 Since Real1 is a single precision real, the precision of the
 expression is not affected by it.

 These coercions whether functions or assignments to variables of
 long_integer precision are particularly useful for operations that
 may overflow. By using them, one is assured that the operation
 will always be performed using 32-bit arithmetic.

 Example 4.

 a) long_integer1 := Whole(whole1 + long_whole2) +
 integer1 * integer2

 (which is equivalent to)

 b) long_integer1 := Long_integer(Whole(whole1 + long_whole2) +
 integer1 * integer2)

 Long_whole2 is coerced to whole and added to whole1 using
 unsigned single precision arithmetic. Integer1 and integer2
 are multiplied using signed 32-bit arithmetic. The results are
 then added using long_integer arithmetic.

 6) Functions

 Explicit coercions must be used directly in the actual
 parameter list to coerce the arguments. If the coercion
 surrounds the function call, then only the result will be
 coerced. Also, for the trigonometric functions, the function's

 Page 21

 precision is based on the argument's precision.

 Example 5.

 a) Double_real(Sin(real1))

 This will compute the single precision sine of real1 and then
 force the result to double_real.

 b) Sin(Double_real(real1))

 This will compute the double precision sine of real1, and the
 result will be double_real.

 A.7.4 Explicit coercions for compatibility with AOS/VS Pascal

 * Function Longint(expression) : long_integer

 is equivalent to Long_integer(expression).
 It evaluates the expression as a long_integer. The expression
 must be arithmetic.

 * Function Shortint(x) : Integer

 is equivalent to Integer(expression) except that it will only
 accept arithmetic types. (Integer will accept all scalar types
 which includes booleans, characters, etc.)
 Shortint evaluates the expression as an integer.

 A.8 Compile-time evaluable predefined routines

 The following predefined routines are now compile-time
 evaluable (if their arguments are constants):

 * Arctan, Cos, Exp, Float, Ln, Longint, Round, Sin,
 Shortint, Sqrt, Trunc

 in addition to the previous list:

 * Abs, Bitsize, Bytesize, Chr, Length, Maxlength, Odd,
 Ord, Pred, Sqr, Succ.

 The following type coercions functions are now compile-time
 evaluable:

 * Long_whole, Long_integer, Real, Double_real

 in addition to the previous list:

 * Boolean, Char, Integer, Whole, enumerated types,
 and subranges.

 A.9 Range checks

 For all the compile-time predefined routines with constant
 arguments, there are range checks on the arguments.

 Page 22

 A.10 Routines now predefined and generated in line

 These boolean routines that were external assembly routines are
 now predefined and are generated in line. They can have any
 one-word ordinal as arguments.

 * Xand, Xior, Xnot, Xshft, Xxor

 A.11 DGC runtimes Add to chapter 10, External Routines
 Supplied by DGC

 * DI2ST, ST2DI

 The conversion functions for double to string and string to
 double allow long_whole and long_integer arguments. However,
 by default the argument will be unsigned. To specify a signed
 quantity, the option i2st_signd must be used.

 A.12 Compiler option Add to chapter 13, Operating Procedures
 to the section Compiler Options

 The whole compiler option has been extended to long_wholes for
 checking an assignment between integers and wholes.

 A.13 Miscellaneous

 1) All rules are the same for constant expressions in the
 declaration block and in executable code.

 2) Variables of type long_whole and long_integer are
 word-aligned.

 3) Three new error codes were added.

 * epdsc
 Conversion error: Long_integer or Long_whole to Integer or
 Whole

 * eplou
 Long_integer or Long_whole overflow/underflow

 * ep1b0
 Whole <-> Integer conversion error

 Page 23

 B. New documentation for revision 2.00

 B.1 Label declaration
 Add to chapter 5, Program Statements

 A label declaration introduces integer constants, which must be
 in the range 0 to 9999, as statement labels. The form of a
 label declaration is:

 LABEL
 integer-const [... ,integer-const] ;

 Every label declared in a label declaration must have a unique
 integral value and appear on exactly one of the statements in
 the routine that contains the label declaration. The SP/Pascal
 compiler will signal an error if a label is declared and not
 used on a statement. Labels follow the same scope rules as
 identifiers for constants, types, and variables. That is, a
 nested routine may declare a label with the same integral value
 as another label declared in its parent. Unlike other
 declarations that require integer constants, the labels in a
 label declaration must be a simple digit sequence. They may
 not be constant expressions or use an alternate radix
 specification. As with other declarations, SP/Pascal permits
 more than one label declaration to be specified in the
 declaration-part, and allows label declarations to be placed in
 any order with other declarations. However, labels are not
 permitted to be repeated in any label declarations appearing in
 the same block. (This feature, called benign redefinition is
 described in chapter 3 of the SP/Pascal manual.)

 To define a label on a statement, use the form:

 label : statement

 where label is one of the integer constants in the label
 declaration.

 B.2 GOTO statement

 A GOTO statement unconditionally transfers control to the
 statement identified by the label in the GOTO statement. For
 the transfer to be valid, the label must be on a statement
 satisfying one of the following conditions:

 1) The statement contains the GOTO statement.
 2) The statement is one of the statements in a compound
 statement containing the GOTO statement.
 3) The statement is one of the statements at the outermost
 level of a routine containing the GOTO statement.

 The above restrictions prohibit transfer of control into any
 conditional, iteration, exception, or compound statement.
 However, transferring to the beginning of one of these
 statements is possible. The last rule allows a transfer from a

 Page 24

 nested procedure to an enclosing procedure, provided the
 labelled statement is at the outermost level (i.e. not
 contained by any other statement) in the procedure. The syntax
 of the goto statement is:

 GOTO label

 For example:

 procedure p;
 label 1,2,3,4;

 procedure nested;
 label 4,5,6;

 begin
 x := z;
 4: if x > y then
 begin
 x:= x - y;
 goto 4; { legal by rule 1 }
 end;
 for i:= lower to upper do
 if a[i] = x then
 goto 6; { legal by rule 3 }
 goto 2; { legal by rule 3 }
 5: y:= f(y);
 goto 4; { legal by rule 2 }
 6: if i < max then
 goto 5; { legal by rule 3 }
 end; { nested }

 begin { p }
 1: nested;
 goto 3; { legal by rule 2 }
 2: write('Fail');
 goto 4; { legal by rule 2 }
 3: write('Ok');
 4: { label on empty statement }
 end;

 B.3 File buffers and procedures GET and PUT
 Add to chapter 7, Input/Output

 File buffers are special variables associated with each
 SP/Pascal file. The file buffer is implicitly defined as part
 of the declaration of a file variable and provides a low-level
 interface to a single component of the file. The file buffer is
 referenced like a pointer variable by specifying the name of
 the file variable followed by an up-arrow (^) or at-sign (@)
 character. For example:

 var
 f:text;
 g:file of integer;

 Page 25

 f^ is a file buffer variable of CHAR type, and
 g^ is a file buffer variable of INTEGER type.

 In general, using file buffers is much less efficient than
 using a corresponding READ or WRITE operation. The READ and
 WRITE operations can be defined in terms of file buffer
 operations. For example:

 read(f,ch); { is equivalent to } ch:= f^; get(f);
 write(g,i); { is equivalent to } g^:= i; put(g);

 When a file is opened for reading, the file buffer variable is
 defined to be the next component to be transferred from the
 file. Thus, the file buffer provides a one component lookahead
 in the file. Referencing the file buffer does not change the
 current file position. To advance the file buffer to the next
 component, the predefined procedure GET is used. The procedure
 GET takes a file variable as its only argument. If EOF is
 true, then the value of the file buffer is undefined; and if
 GET is called, SP/Pascal will signal an end-of-file error. For
 example:

 rewrite(f);
 writeln(f,'abc');

 reset(f); { f^ is now 'a' }
 ch:= f^; { f^ is still 'a' }
 get(f); { f^ is now 'b' }
 read(f,ch); { ch is now 'b' and f^ is now 'c' }
 readln(f,ch); { ch is now 'c' and f^ is undefined }

 When a file is opened for writing, the file buffer is used to
 hold the next component to be transferred to the file. An
 assignment to the file buffer does not change the contents of
 the file. To write the file buffer to the file, the predefined
 procedure PUT is used. After a PUT or WRITE operation, the
 value of the file buffer is undefined. The procedure PUT takes
 a file variable as its only argument. For example:

 rewrite(g); { g is the empty file }
 g^:= 2;
 i:= g^ * j;
 put(g); { g has one component, g^ is undefined }
 g^:= i;
 write(g,i); { g has two components, g^ is undefined }

 File buffers and the procedures GET and PUT can be used in
 place of the procedures READ and WRITE. However, for text
 files, READ and WRITE convert the file elements to the type of
 the argument. GET and PUT do not perform any conversion. For
 example:

 rewrite(f);
 writeln(f,'1');
 reset(f);

 Page 26

 i:= ord(f^); { assigns i the value 49 }
 read(f,i); { assigns i the value 1 }

 B.4 PACK and UNPACK procedures
 Add to chapter 9, Predefined Routines

 The predefined procedure PACK initializes an entire packed
 array from an unpacked array having the same component type.
 The predefined procedure UNPACK assigns a slice of an unpacked
 array from an entire packed array having the same component
 type. In both of these procedures, the entire packed array is
 used, but not necessarily the entire unpacked array. The
 syntax for PACK and UNPACK is:

 PACK(unpacked-array-var, starting-index, packed-array-var)
 UNPACK(packed-array-var, unpacked-array-var, starting-index)

 The starting-index always applies to the unpacked-array-var and
 specifies the starting position in the unpacked array for
 values to be taken (PACK) or assigned (UNPACK). The value of
 the starting-index must be assignment-compatible with the
 index-type of the unpacked array. For example:

 var
 x,y,z:packed array[1..10] of char;
 a:array[1..20] of char;
 i:1..20;

 begin
 pack(a,i,z);
 pack(a,1,x);
 unpack(z,a,10);
 end;

 In SP/Pascal, only packed arrays of char have storage compacted
 for their representation (see the discussion of the /STANDARD
 switch). For all other structures, the packed attribute does
 not affect the storage allocation. Therefore, the PACK and
 UNPACK procedures should only be used on arrays of char. Note
 that, BIT qualified structures, defined on page 32 of the
 SP/Pascal programmer's reference manual, may not be passed as
 arguments to PACK and UNPACK. Instead, the programmer must
 write a simple loop to accomplish the same function. For
 example:

 var x:array[1..16] of boolean bit 1;
 a:array[1..16] of boolean;

 for j := 1 to 16 do
 a[j]:= x[j]; { is equivalent to unpack(x,a,1) }

 B.5 Parametric procedures and functions
 Add to chapter 6, SP/Pascal Routines

 Revision 2.00 of SP/Pascal allows the programmer to declare
 formal parameters that are procedures or functions. The

 Page 27

 declaration of the parameters looks the same as a procedure or
 function heading. The form of the syntax is:

 formal-parmlist -> formal-parameter [;formal-parameter]
 formal-parameter -> [VAR] id-list : parm-type | pfhead
 pfhead -> PROCEDURE id [(formal-parmlist)] |
 FUNCTION id [(formal-parmlist)] : result-type

 For example:

 procedure p(procedure q(var i:integer);
 function f(x:real):real);

 function g(a,b:char;
 procedure print(procedure x)):char;

 Procedure p has two parameters. The first is a procedure that
 has a single VAR integer parameter, and the second is a
 function that returns a real value and has one real value
 parameter. Function g has three parameters. The first two are
 char expressions, and the third is a procedure that has another
 parameterless procedure as its only parameter. Calls to p and
 g might look like:

 p(aproc, afunc);
 ch:= g('a', 'z', someproc);

 When a procedure or function is passed as an argument, the
 number and type of its formal parameters must match exactly
 with the number and type of the parameters for the argument it
 is being passed to. Only the names of the formal parameters
 are allowed to be different. For example, the following
 procedures could be passed as the first argument to procedure p
 in the above example:

 procedure level(var j:integer);
 procedure next(var index:integer);

 Within a procedure or function, references to the procedure or
 function parameters are made exactly like references to any
 other routines. For example, inside function g, a call to
 procedure print would be:

 print(y); { y is another procedure }

 Only user-defined procedures or functions can be passed as
 parameters. To use a predefined procedure or function as a
 parameter, encapsulate it in another procedure or function.
 For example:

 function mysin(arg: real): real;
 begin
 mysin:= sin(arg);
 end;

 function mycos(arg: real): real;

 Page 28

 begin
 mycos:= cos(arg);
 end;

 { plot successive values for trigonometric functions }

 procedure graph(function trig(arg: real): real);
 var xvalue: real;

 begin
 read(f, xvalue);
 repeat
 plot(xvalue, trig(xvalue));
 xvalue:= xvalue + 0.1;
 until xvalue >= 10.0;
 end;

 begin
 graph(mycos);
 graph(mysin);
 end.

 When a procedure or function is used as an argument, two pieces
 of information are passed. The first is the address of the
 procedure or function, and the second is an environment pointer
 that is needed to access non-local variables. Because it is
 necessary to pass the environment pointer, whether or not the
 routine contains references to non-local variables, the CLRE
 calling convention is used.

 This rule means that any procedures or functions that are
 declared with the EXTERNAL or ENTRY qualifiers must also be
 declared with the CLRE qualifier. The SP/Pascal compiler will
 signal an error if the CLRE qualifier is not given. For
 routines that are local to a module or nested inside another
 procedure or function, the SP/Pascal compiler will
 automatically generate the CLRE calling convention. In the
 declaration of a procedure or function formal parameter, no
 qualifiers (EXTERNAL, ENTRY, ASSEMBLY, or CLRE) are allowed.
 For example, the following declaration is illegal:

 Procedure burrito(ch: char; external procedure taco);

 B.6 New and Dispose with variant tags
 Add to chapter 9, Predefined Routines

 Revision 2.00 of SP/Pascal allows the form of NEW and DISPOSE
 with variant tags. Compile-time checks on the variant tags are
 made, but no storage economization on the size of the record
 object is performed. That is, according to the standard, only
 enough storage to fit the specified record variant could be
 allocated. SP/Pascal always allocates enough storage for the
 entire record.

 The form of the calls to NEW and DISPOSE is:

 Page 29

 NEW(p,c1,c2,...,cn);
 DISPOSE(q,k1,k2,...,km);

 where p and q are pointers to objects of a record-type; and
 c1...cn, k1...km are constants that give the value of
 successively nested variant tags of the record. The values of
 the variant tags are specified in order from the outermost
 variant to the variants nested within it. If a nested variant
 is specified, all enclosing variants must also have been
 listed. Variants at a deeper nesting level than the last
 variant specified are not required. Note that both tagged and
 untagged variant values are specified in calls to NEW and
 DISPOSE. For example:

 type tags = (a,b,c);
 rec = record
 case t:tags of
 a,b:(case boolean of
 true:(f:integer);
 false:(g:real));
 c:(h:boolean);
 end;

 var p:^rec;

 { no variants specified }
 new(p);
 { one variant specified, no others defined }
 new(p,c);
 { one variant specified, nested variant undefined }
 new(p,a);
 { both variants specified }
 new(p,b,false);

 B.7 The /STANDARD compiler switch
 Add to chapter 13, Operating Procedures

 The /STANDARD switch is used on the command line to the
 SP/Pascal compiler to control the treatment of existing
 SP/Pascal language features that must be changed for
 conformance with the Pascal standard. The three features
 affected by the /STANDARD switch are nested comments, unpacked
 arrays of char, and value parameters.

 B.7.1 Nested comments
 Add to chapter 2, Lexical Structure

 SP/Pascal allows nested comments by requiring that comments
 beginning with one form of bracketing symbol be terminated with
 the corresponding bracketing symbol. For example, comments
 that begin with a left-brace "{" must terminate with a
 right-brace "}", and comments that begin with a
 left-paren-asterisk "(*" must terminate with an
 asterisk-right-paren "*)". To conform with the Pascal
 standard, revision 2.00 of SP/Pascal treats the lexical

 Page 30

 alternatives for comments identically if the /STANDARD switch
 is used.

 B.7.2 Unpacked arrays of char
 Add to chapter 3, Data Declarations

 SP/Pascal automatically packs (byte aligns) unpacked arrays of
 char for compatibility with MP/Pascal. The Pascal standard
 allows elements of unpacked arrays of char to be passed as VAR
 parameters. Because these elements may fall on odd byte
 addresses, SP/Pascal forbids passing them as VAR parameters.
 To rectify this problem, revision 2.00 of SP/Pascal word aligns
 unpacked arrays of char if the /STANDARD switch is used. Note:
 This change in allocation means that unpacked arrays of char
 will now occupy twice as much storage as in previous revisions.

 B.7.3 Value parameters
 Add to chapter 6, SP/Pascal Routines

 Prior to rev 2.00, SP/Pascal passed references to the actual
 argument for records, arrays, and strings passed as value
 parameters, and prohibited assignment inside the procedure or
 function to all value parameters. Values of scalar-type
 (integer, whole, char, boolean, enumeration, real, double-real,
 long-integer, and long-whole), pointer-type, and set-type had
 copies made and passed either the actual value for single word
 types, or the address of a stack temporarily containing the
 copied value. Revision 2.00 makes copies of all arguments,
 including structured-type arguments, and allows assignment to
 value parameters if the /STANDARD switch is used. Existing
 programs that pass large structures as value parameters may
 need to be changed by passing the structures as VAR parameters
 if the /STANDARD switch is used. SP/Pascal makes a copy of the
 value argument in the stack of the routine doing the procedure
 or function call.

 B.8 Other enhancements for standard Pascal conformance

 B.8.1 Recursive pointer types
 Add to chapter 3, Data Declarations

 Prior to revision 2.00, SP/Pascal did not permit pointer type
 definitions of the form:

 p = ^p;

 Such definitions are typically used as placeholders in top down
 design. Revision 2.00 of SP/Pascal allows these recursive
 pointer declarations.

 B.8.2 Files of pointer-type
 Add to chapter 3, Data Declarations

 Prior to revision 2.00, SP/Pascal did not permit a file to be
 declared with a pointer-type as part of its element type. For
 example:

 Page 31

 type
 p = ^r;
 r = record link:p; data:integer end;
 f1 = file of p;
 f2 = file of r;

 The declarations of f1 and f2 are permitted in revision 2.00.
 Note, however, that writing pointers out to a file does not
 guarantee that the pointer values will be valid when they are
 read back in. If, for example, some operations deallocating
 the storage are performed on the heap, then the pointer values
 in the file will be invalid.

 B.8.3 Changing record variant tags
 Add to chapter 3, Data Declarations

 Prior to rev 2.00, on an assignment to a variant tag, the
 storage for the variant was cleared if it contained a pointer,
 string, or structure with bit or byte fields. For conformance
 with the Pascal standard, the storage for tagged record
 variants will no longer be initialized. For example:

 var
 rec : record
 case t:tags of
 tag1:(f:integer);
 tag2,tag3:(p:ptr);
 end;

 begin
 rec.t:= tag2;
 new(rec.p);
 rec.t:= tag3; { rec.p should still be valid }
 end;

 Prior to rev 2.00, the value of rec.p would be cleared during
 the assignment of tag3 to the tag field. Because tag2 and tag3
 identify the same variant, assigning tag3 does not change the
 active variant. The variant storage could only be cleared if
 the active variant is changed by assigning tag1 instead of
 tag3. However, detecting this condition is prohibitively
 expensive. Any programs that relied on the initial values of
 tagged variant fields will have to be changed.

 B.8.4 Set compatibility checking
 Add to chapter 13, Operating Procedures

 The compatibility rules for assignment to a set variable
 require an extra checking operation to be performed at runtime.
 For example:

 var
 x: set of 0..20;
 y: set of 0..40;

 x:= y; { check that the members of y are in 0..20 }

 Page 32

 Revision 2.00 of SP/Pascal has implemented a compiler option
 (the T option) to control the insertion of this runtime
 checking. The handling of compiler options is described in
 chapter 13 of the SP/Pascal programmer's reference manual. By
 default, the set checking option is disabled.

 B.8.5 For-statement checking
 Add to chapter 5, Program Statements

 The Pascal standard requires that the initial and final value
 of a for-statement be assignment-compatible with the type of
 the control-variable, but only if the body of the for-statement
 is executed. For example:

 var
 i: 1..20;
 j,k: integer;

 for i:= j to k do loop-body;

 If the above loop-body is to be executed (j <= k), then the
 values of j and k must be in the range 1..20. Revision 2.00 of
 SP/Pascal inserts these runtime checks if the R option for
 subrange checking is specified. (See chapter 13 for a
 discussion of compiler options.)

 B.8.6 Text files not terminated by an end-of-line
 Add to chapter 6, Input/Output

 The Pascal standard requires that when a non-empty textfile is
 opened for reading (RESET) and the last character in the file
 is not an end-of-line character, then one is inserted.
 Revision 2.00 of SP/Pascal diagnoses this condition and inserts
 a null delimiter in the input stream.

 B.9 Number of routines in a module
 Add to appendix H, SP/Pascal Implementation Limits

 Revision 2.00 raises the limit of procedures and functions that
 can be compiled in a single module from 64 to 256. This limit
 is used for allocating an internal table in the SP/Pascal
 compiler.

 B.10 Nesting of Control Flow Constructs
 Add to appendix H, SP/Pascal Implementation Limits

 The maximum depth for the nesting of any combination of control
 flow statements is 20. In counting the level of a control
 construct, include the nesting level of the routine body
 containing the statement. Control flow statements are
 if-statements, while-statements, repeat-statements,
 for-statements, case-statements, and exception-blocks.

 B.11 Floating point underflow handling
 Add to chapter 13, Operating Procedures

 Page 33

 Revision 2.00 permits the programmer to specify that floating
 point underflow errors are to be ignored by the program. To
 enable this feature, specify the /NO_UNDERFLOW switch on the
 SPCLINK or SPCBIND macro. When this switch is used, all
 floating point underflow errors cause the value of the floating
 point accumulator that generated the underflow to be set to
 true zero; the execution of the program resumes at the point
 the error occurred. If this switch is not used, then floating
 point underflow errors will raise an exception.

 B.12 Standards compliance issues
 Add a new appendix after appendix H

 The Pascal standard requires that a conforming processor
 document the treatment of error conditions,
 implementation-defined and implementation-dependent features,
 and exceptions to the requirements of the standard. To obtain
 a copy of the Pascal standard, designated
 ANSI/IEEE770X3.97-1983, write to ANSI or IEEE in New York City.

 B.12.1 Implementation-defined features

 The standard requires that a compliant processor provide
 documentation on the definition of all implementation-defined
 features. There are currently eleven such features:

 1) The correspondence between the set of alternatives for
 string-elements in character string constants and the values of
 the predefined char-type.

 SP/Pascal allows any printable ASCII character to appear in a
 string constant. String constants may not span more than one
 line.

 2) The set of representations for the predefined real-type and
 the subset of values of the real numbers.

 SP/Pascal uses the standard Data General hardware
 representation for single and double precision real values.

 3) The set of values for the predefined char-type and the
 ordinal values of these characters.

 SP/Pascal uses the ASCII character set.

 4) The actions that are performed and the points in the
 program that they occur to satisfy the post-assertions of the
 file-operations. (RESET, REWRITE, GET, PUT, READ, WRITE,
 READLN, WRITELN, EOF, EOLN).

 SP/Pascal uses an implementation technique called lazy I/O.
 This technique allows some of the post-assertions for the
 file-operations to be delayed until the next I/O operation in
 the program. For example, RESET(f) opens f, but does not
 actually read the first element from the file until it is

 Page 34

 needed by the program. The advantage of lazy I/O is that on
 interactive devices, conversational prompting can occur.
 However, programs that rely on lazy I/O may not be portable.

 5) The value of MAXINT is 32767.

 6) The default value of totalwidth for integer, real, and
 boolean values.

 TYPE DEFAULT WIDTH
 ---- -------------
 integer 1
 long_integer 1
 boolean 5
 real 12
 double_real 20

 7) The number of digit-characters in the exponent of the
 floating point representation of a value of real-type is 2.

 8) The default case of each letter in writing boolean values.

 SP/Pascal writes the first letter in upper case and the rest in
 lower case, i.e. 'True' and 'False'.

 9) The effect of PAGE(f).

 SP/Pascal writes a form feed character to the textfile f.

 10) The effect of a RESET or REWRITE on the predefined file
 variables INPUT or OUTPUT.

 SP/Pascal permits these operations with the effects defined in
 the standard for other file variables.

 11) The binding of program parameters of file-types.

 SP/Pascal defines the binding of INPUT and OUTPUT to external
 devices or files that are environment dependent. For example
 the generic files @INPUT and @OUTPUT under AOS and the default
 channels ?INCH and ?OUCH under MP/AOS. Program file parameters
 other than INPUT and OUTPUT are not bound to external entities.
 For example, file parameters could be bound with additional
 arguments in the cli command line.

 B.12.2 Standard error detection and handling

 The standard defines 58 error conditions that a conforming
 processor must cover. A conforming processor is allowed to
 treat each error in one of four ways:

 1) Document that the error is not reported.
 2) Report the error during program compilation.
 3) Report the error during program binding.
 4) Report the error during program execution.

 Page 35

 Many of the error conditions in the Pascal standard are
 detected at the option of the programmer by inserting runtime
 checks into the program. These checks include:

 1) Array subscript checking
 2) Record variant checking
 3) NIL pointer checking
 4) Subrange checking for ordinal-types
 5) Subrange checking for set-types
 6) Integer division by 0

 The following errors are either automatically detected at
 runtime or are detected at runtime if the /STD switch on the
 SPCBIND or SPCLINK macro is used:

 1) File mode for PUT, WRITE, WRITELN, PAGE. (/STD)
 2) EOF true for PUT, WRITE, WRITELN, PAGE. (/STD)
 3) File mode for GET, READ, READLN. (/STD)
 4) EOF false for GET, READ, READLN.
 5) NIL pointer argument to DISPOSE.
 6) EOF true on call to EOLN.
 7) Invalid case statement selector.
 8) Real divide by 0.0.
 9) Real overflow and underflow.
 10) SQR(x) and x does not exist.
 11) LN(x) and x <= 0.
 12) SQRT(x) and x < 0.
 13) Definition of TRUNC(x):
 (x >= 0) -> 0 <= x - trunc(x) < 1
 (x < 0) -> -1 < x - trunc(x) <= 0.
 14) Definition of ROUND(x) in terms of TRUNC(x) as:
 (x >= 0) -> ROUND(x) = TRUNC(x + 0.5)
 (x < 0) -> ROUND(x) = TRUNC(x - 0.5).
 15) Reading an invalid integer representation.
 16) Reading an invalid real representation.
 17) Total width or field width < 1.

 The following general classes of errors are not detected by
 SP/Pascal:

 1) Use of uninitialized or undefined variables.
 2) Assigning or referencing an identified record
 variable created by NEW(p,c1,...,cn).
 3) Errors in DISPOSE when the pointer object
 was created by NEW(p,c1,...,cn).
 4) CHR(x) and x not in 0..255 (for non-constant x).
 5) SUCC(x) and x > max value of the type of x
 (for non-constant x).
 6) PRED(x) and x < min value of the type of x
 (for non-constant x).
 7) Detection of integer overflow or underflow.
 8) Unassigned function results.

 Page 36

 B.12.3 Implementation-dependent features.

 The standard defines nine implementation-dependent conditions
 that a conforming processor must recognize. A conforming
 processor is required to detect, in a manner similar to that
 specified for error conditions, any use of an
 implementation-dependent feature. That is, a processor must
 determine if a program relies on a particular definition of an
 implementation-dependent feature. (Note that, even for the
 same conforming processor, the definition of an
 implementation-dependent feature may be indeterminate. For
 example, the evaluation order of the operands of a dyadic
 operator may be done one way for some expressions and a
 different way for other expressions.) Because SP/Pascal
 performs common subexpression optimizations, detecting the
 following implementation-dependent features is not possible:

 1) The order of evaluation of index-expressions of an
 indexed-variable.
 2) The order of evaluation of the member expressions of
 a member-designator, e.g. [x..y], and the order
 of evaluation of the member-designators in a set
 constructor, e.g. [a..b,x..y].
 3) The order of evaluation of the operands of a
 dyadic operator.
 4) The order of evaluation and binding of the
 actual-parameters of a function-designator.
 5) The order of accessing the variable and evaluating
 the expression in an assignment-statement.
 6) The order of evaluation and binding of the
 actual-parameters of a procedure-statement.

 The following implementation-dependent features are not
 detected by SP/Pascal:

 7) The effect of inspecting a textfile to which the
 predefined procedure PAGE has been applied.

 8) The binding of variables other than file type that
 appear in the program parameter list. The SP/Pascal
 compiler issues a warning message for any identifiers
 other than INPUT or OUTPUT that appear in the program
 parameter list. SP/Pascal does not define any binding
 for these identifiers.

 9) The relationship between end-of-line characters and
 values of the predefined char-type. SP/Pascal uses
 the default delimiters null, newline, form feed, and
 carriage return as end-of-line terminators.

 Page 37

 B.12.4 Exceptions to the standard

 SP/Pascal complies with the requirements of the
 ANSI/IEEE770X3.97-1983 with the following exceptions:

 1) The following additional reserved words may not be used
 for program identifiers:

 ASSEMBLY, BIT, CLRE, ENTRY, ERETURN, EXCEPTION,
 EXITLOOP, EXTERNAL, INCLUDE, MODULE, OTHERWISE,
 OVERLAY, RECAST, RETURN, and ZREL.

 2) Enumeration types must have more than 1 and less than
 256 enumeration constants.

 3) Record variant tag types must be non-negative and in
 the range 0..127.

 4) Set base types must be non-negative and in the
 range 0..255.

 5) Threatening references to control-variables that occur
 in nested routines are not detected.

 6) The lexical structure of a program is broken into text
 lines. The maximum length of a line is 136 characters,
 including the end-of-line delimiter. This convention
 places limits on the maximum length of certain language
 lexemes, such as the number of characters in an
 identifier and a string literal.

 7) Files or structures containing files may not be defined
 in the variant part of a record.

 8) Other restrictions and implementation limits defined in
 the SP/Pascal Programmer's Reference Manual.

 The following SP/Pascal language extensions provide additional
 features that are defined as errors in standard Pascal
 programs:

 1) Lexical extensions

 SP/Pascal permits the use of the question mark, underscore, and
 dollar characters in identifiers. SP/Pascal has an angle
 bracket extension for specifying non-printing character
 constants. SP/Pascal has an extension for specifying
 non-decimal radix integer constants and allows underscore to be
 used in numeric constants. SP/Pascal uses the percent
 character to implement and ignore the rest of the line form of
 comment. SP/Pascal allows the relational operators >= and <=
 to be written as => and =<. As part of the built-in string
 data type, SP/Pascal allows a null string constant to be
 specified by juxtaposing two apostrophe characters, e.g. ''.

 2) Use of NIL

 Page 38

 SP/Pascal permits the reserved word NIL to be used in a
 constant definition part. The standard only permits NIL to be
 used in an expression contained in the statement part of the
 routine.

 3) MOD operator

 SP/Pascal allows any non-zero modulus and defines the MOD
 operator as:

 a MOD b = a - (b * trunc(floor(a/b)))

 4) Constant expressions

 SP/Pascal allows the use of constant expressions in data
 declarations.

 5) Ordinal coercion functions

 SP/Pascal allows an ordinal type identifier to be used as a
 function reference to coerce an expression from one ordinal
 type to another.

 6) Relaxed declaration ordering and benign redefinition

 SP/Pascal allows declarations to be repeated and appear in any
 order in a block provided the standard Pascal rules on
 declaration before use are followed. In addition, as a part of
 the separate compilation and include file facilities, SP/Pascal
 permits constant, type, and certain forms of variable and
 routine declarations to be duplicated in the same block.
 SP/Pascal also allows the parameter list to be repeated on
 forward declared procedures and functions.

 Page 39

9. STR Reporting
-- -------------

 When a problem is discovered with the SP/Pascal compiler or the
 SP/Pascal runtime environment, the following information should be
 provided to your Data General representative:

 A. A complete description of the environment, including:

 a. The revision number of the SP/Pascal compiler.
 b. The name and revision number of the operating system.
 c. The hardware configuration. (if appropriate)

 B. A detailed description of the problem, including:

 a. The characteristics identifying the problem.
 b. Any dependent system activities.
 c. The suspected cause of the problem.
 d. The results that the user expected.

 C. Sufficient information to reproduce the problem, including:

 a. Any source files, programs, libraries, or macros.
 b. A description of the actions necessary to cause the problem.
 c. Any other information that the user feels will be beneficial.

 If possible, every attempt should be made to reduce the problem to
 the smallest number of source lines or sequence of actions necessary
 to reproduce it.

 When the problem is determined to be in the SP/Pascal compiler, be
 sure to supply all the source files and user-defined include files
 necessary to perform the compilation. When the problem is determined
 to be in a program, be sure to include the program and symbol table
 files, and any data files required to execute the program. If the
 problem is in a program that uses multi-tasking, a breakfile of the
 program should also be submitted.

 Page 40

10. INSTALLATION INSTRUCTIONS

 The following procedure should be used to bring up a SP/PASCAL
 system from the 96TPI mini diskette:

 Load the appropriate files from the supplied diskette
 in the desired directory using the following commands:

 OP ON
 LOAD/V @LFD:VOL1:SP_PASCAL
 OP OFF

 To LOAD model # 30165B (061-000287-00) 20 mb cartridge tape,
 use the following CLI command:

 LOAD_II/V/DEL/BUFF=16384 @MTJn:0

 Where "n" is the unit number on which you mounted the tape.

 END OF RELEASE NOTICE
