¢»DataGeneral

Software Documentation

Interactive COBOL

Programmer’s
Reference

Interactive COBOL Programmer’s
Reference

093-705013-02

For the latest enhancements, cautions, documentation changes, and other information on
this product, please see the Release Notice (085-series) supplied with the software.

Notice

Data General Corporation (DGC) has prepared this document for use by DGC
personnel, customers, and prospective customers. The information contained herein
shall not be reproduced in whole or in part without DGC’s prior written approval.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all cases
consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARD-
WARE PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS BE-
TWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFOR-
MANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE
A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDI-
RECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (IN-
CLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED
IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE
KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV /4000, ECLIPSE MV /6000,
ECLIPSE MV/8000, ENTERPRISE, INFOS, microNOVA, MANAP, NOVA,
PRESENT, PROXI, SUPERNOVA, and TRENDVIEW are U.S. registered
trademarks of Data General Corporation, and A-Z TEXT, BusiGEN, BusiPEN,
BusiTEXT, COMPUCALC, DEFINE, DESKTOP, GENERATION, DG/L, ECLIPSE
MV /10000, FORMA-TEXT, GDC/1000, GENAP, GW /4000, METEOR,
microECLIPSE, REV-UP, SLATE, SWAT, and XODIAC are U.S. trademarks of
Data General Corporation.

Interactive COBOL Programmer’s Reference
Ordering Number 093-705013
Revision 02, August 1984

(Interactive COBOL, Rev. 1.30)

Original release: June 1982
First revision: April 1983
© Data General Corporation, 1982, 1983, 1984

All Rights Reserved
Printed in the United States of America

Changes to Interactive COBOL
(revision 1.30)

Language Enhancements
Level 88 is implemented

The COLUMN and LINE NUMBER clauses accept identifiers as well as literals.
This allows field positions to be specified at execution time.

The ACCEPT and DISPLAY screen-name statements allow dynamic definition of an
entire screen position.

Identifiers can be used with the FROM, TO, and USING clauses.
The display size has been enlarged to 255 lines and 255 columns.
Abbreviated combined relation conditions have been implemented.

The CALL, CANCEL, and EXIT PROGRAM statements have been added. The
CALL statement can be used to call an assembly language subroutine, and, under
AOS and AOS/VS, to call the CLI or any .PR file.

The ADVANCING clause in the WRITE statement accepts an identifier.
The AFTER clause in the PERFORM statement has been implemented.

Compiler Enhancements

The number of data, procedure, and file references has been increased from 764 to
2294.

Global /I switch allows ICOS cross-development.

Global /A switch implements ANSI 74 standard arithmetic for COMPUTATIONAL
items.

Global /O switch suppresses copy files in the listing file.

Global /R switch does not round .PD file to a 2 KB boundary (AOS and AOS/VS);
does round .PD file to a 2 KB boundary (RDOS, DG./RDOS).

The code revision of the .PD and .DD files is 6.

Runtime Enhancements
#N system call to rename a file

Display size is determined at execution time with the CHARACTERISTICS
command (AOS and AOS/VS), and the DEFINES utility (RDOS and DG/RDOS).

Internal computation registers now support 19 digits of accuracy.

In Interactive COBOL Revision 1.20, the runtime system was enhanced to handle
support of 8-bit characters.

Licensed Material - Property of Data General m

Runtime Enhancements (RDOS and DG/RDOS)
#0 system call runs a detached job.

#A system call terminates an ACCEPT statement.

Local /M switch assigns the master console to a QTY lines.

Global /C and /D switches allow CLI mode of execution.

Global /S switch enables spooling when runtime system is executing.

Global /P switch disables PASS.

Runtime Enhancéments (AOS and AOS/VS)
CTRL-C CTRL-A will terminate an ACCEPT statement.

Runtime Enhancements (AOS/VS only)

The MINISAM lock server has been implemented in 32-bit code (in ring 6) of the

runtime system process.

iv

Licensed Material - Property of Data General

Table of Contents

Preface

Chapter 1
Programming
Concepts

e e e ek b
' '))]] | 1
QUM UMEAERARPRARRARLWLWNDDNDNODND—

- ot
.l_,_.,_.;,_.
NN = — O

L} 1

h—tr—ty—-r—"—-lb-'-‘v—ib—-r—‘v—th—i
O O 00 00 00 ~J 1 11 W unWunuwn

Program Structure
Language Structure
Character Set
Separators
COBOL Words
Figurative Constants
Nonnumeric Literals
Numeric Literals
Record Concepts
Level Numbers
The PICTURE Clause
Alphabetic Data-Items
‘Numeric Data-Items
Alphanumeric Data-Items
Edited Data-Items
Alignment of Data-Items
Uniqueness of Reference
Qualifying Data Division Names
Qualifying Procedure-Names
Tables, Subscripts, Indexes
Loading a Table
Referencing a Table
Procedure Division Structure
Interactive COBOL Verbs
Sentences and Statements
Sections and Paragraphs
Arithmetic Expressions
Arithmetic Operators
Evaluation Order
Overlapping Operands
Optional Phrases
The ROUNDED Phrase
The SIZE ERROR Phrase

The CORRESPONDING Phrase

Licensed Material - Property of Data General

Table of Contents

v

Conditional Expressions
Simple Conditions
Relation Conditions
Condition-name Condition
Class Condition
Switch-Status Condition
Sign Condition
Complex Conditions
Abbreviated Combined Relation
Conditions
Evaluation Order of Conditions
File I/O Operations
Current Record Pointer
File Status Codes
Exception Conditions
The INVALID KEY Condition
The AT END Condition
The Declaratives Section

e e e T i
'

NN N NN ——

B W W N —= O OO

bt ek ek ek ek ke
'

NN NN

[o W= NV, IRV, SV RV, IV N

Chapter 2
File Organization
and Access
2-1 Sequential Files
2-2 Indexed Files
2-3 The Index Portion
2-4 The Data Portion
2-4 File Efficiency
2-4 Record Deletion
2-5 Primary and Alternate Keys
2-5 File Updating
2-6 Relative Files
Chapter 3
Interactive Screen
Management
3-1 Screen Data Description
3-1 Literal Format
3-2 Data-Item Format
3-3 Group Format
3-5 Screen Section Clauses
3-5 VALUE Clause
3-5 PICTURE Clause
3-6 FROM, TO, and USING Clauses
3-6 FROM Clause
3-6 TO Clause
3-6 USING Clause
3-7 LINE and COLUMN Clauses
3-7 Absolute Positioning Using an Integer

vi Table of Contents Licensed Material - Property of Data General

3-7 Relative Positioning

3-9 Absolute Positioning Using an Identifier

3-9 Positioning Sequence

3-9 BLANK SCREEN and BLANK LINE
Clauses

3-9 BELL Clause

3-9 Input Control Clauses

3-10 Display Clauses

3-10 Order of Execution
3-10 Data Movement with DISPLAY and ACCEPT

3-11 Example of Interactive Screen Management
Chapter 4
COBOL Source
Entry
4-1 CRT Format
4-2 Card Format
4-3 Continuation Lines
4-4 Comment Lines
4-4 Blank Lines
Chapter 5
The Identification
Division
Chapter 6
The Environment
Division
6-2 Configuration Section
6-2 Input-Output Section
6-3 The FILE-CONTROL Paragraph
6-3 The SELECT Clause
6-5 The I-O-CONTROL Paragraph
Chapter 7
The Data Division
7-2 The File Section
7-2 FD Entry
7-3 Working-Storage Section
7-3 Linkage Section
7-5 Screen Section
7-5 Screen Data Description Entry
7-5 Literal Format
7-6 Data-Item Format
7-6 Group Format
7-6 Level Number

Licensed Material - Property of Data General Table of Contents vii

7-6 Screen-Name
7-6 Screen Clauses
7-7 Data Description Entries
7-8 Level Numbers
7-8 Level 01
7-8 Levels 02-49
7-8 Level 77
7-8 Level 88
7-8 Data-name/FILLER Clause
7-9 REDEFINES Clause
7-10 PICTURE Clause
7-10 Symbols Used in the PICTURE Clause
7-11 USAGE Clause
7-12 SIGN Clause
7-13 OCCURS Clause
7-14 SYNCHRONIZED Clause
7-14 JUSTIFIED Clause
7-15 BLANK WHEN ZERO Clause
7-15 VALUE Clause
Chapter 8
The Procedure
Division
8-1 Declarative Format
8-1 Nondeclarative Format
8-1 Procedure Division Statements
8-2 ACCEPT
8-6 ADD
8-7 ADD CORRESPONDING
8-9 CALL
8-11 CALL PROGRAM
8-14 CANCEL
8-15 CLOSE
8-16 COMPUTE
8-18 COPY
8-20 DELETE
8-22 DISPLAY
8-24 DIVIDE
8-26 EXIT
8-27 EXIT PROGRAM
8-28 GO TO
8-29 IF
8-31 INSPECT
8-34 MOVE
8-36 MOVE CORRESPONDING
8-38 MULTIPLY
8-39 OPEN
8-42 PERFORM

viil

Table of Contents

Licensed Material - Property of Data General

8-46 READ

8-51 REWRITE
853 SET
8-54 START
8-56 STOP

8-57 SUBTRACT

8-58 SUBTRACT CORRESPONDING
8-60 UNDELETE

8-61 UNLOCK

8-62 USE

8-64 WRITE

Appendix A
Compiler Command
Line Summary

Appendix B
Glossary

Appendix C
ASCII Character
Sets

Appendix D
Syntax Summary

Appendix E

ANSI Standard and
Interactive COBOL
Reserved Words

Related Documents

Index

Licensed Material - Property of Data General Table of Contents

Preface

Document Set

Interactive COBOL is documented by a set of manuals that describe the language, its
utilities, and the system-dependent features that affect its use. The Interactive COBOL
Programmer’s Reference defines the Interactive COBOL programming language. It
is your primary reference regardless of the operating system.

The system-dependent User’s Guides explain the features of your particular operating
system as they relate to Interactive COBOL. Each manual describes such factors as
the file system and gives specific instructions for invoking the runtime system, compiler,
and debugger.

The set of Interactive COBOL utilities is essentially the same for each system and
provides similar functions on each system. However, variations do exist for invoking
and using the general utilities on each of the operating systems. Separate Utilities
manuals provide instructions for using the utilities.

In addition to the general utilities, Interactive COBOL also includes two special
COBOL source editors. ICEDIT: Interactive COBOL Editor describes an editor
specifically designed for writing programs. SCREEN: Screen Format Editor describes
the special-purpose editor for designing and automatically coding screen display
formats.

The titles and order numbers of the Interactive COBOL documents are listed in
“Related Documents” at the end of this manual.

Scope

Chapters 1-4 of this manual are introductory; they explain COBOL concepts and
present an overview of Interactive COBOL, file organization and access, screen
management, and source entry. Chapters 5-8 are for reference; they discuss the
Interactive COBOL syntax and list syntax formats.

Organization
This manual is divided into eight chapters and five appendixes.

Chapter 1 presents an overview of language and data concepts and Procedure Division
concepts.

Chapter 2 describes COBOL file organization and access.
Chapter 3 explains interactive screen management.

Chapter 4 discusses COBOL source entry formats: CRT and card.
Chapter S discusses the Identification Division.

Chapter 6 discusses the Environment Division.

Licensed Material - Property of Data General Preface

xi

Chapter 7 discusses the Data Division, including the Screen Section, an Interactive
COBOL extension.

Chapter 8 lists Interactive COBOL verbs in alphabetical order, with formats, examples,
and rules for use.

Appendix A gives a summary of the compiler command line.

Appendix B is a glossary of Interactive COBOL and standard terms.

Appendix C lists the 7-bit and 8-bit ASCII character sets.

Appendix D summarizes Interactive COBOL syntax.

Appendix E is a listing of ANSI Standard and Interactive COBOL reserved words.

Notational Conventions

The conventions described below are used in this manual to represent the various
elements of COBOL language syntax. The following example contains most of the
syntactical elements used:

DISPLAY {?C‘,’_’lﬁe“'-"a’"e}... [; WITH NO ADVANCING]

UPPERCASE Indicates a COBOL reserved word. Underlined uppercase words
are required. Nonunderlined uppercase words are optional and are
used to improve readability. In either case, all uppercase words
must be spelled as shown: no abbreviations are permitted.

lowercase Indicates a generic term representing words, literals, PICTURE
character strings, comment entries, or a complete syntactical entry
to be supplied by the programmer. For instance, where screen-name
appears, the screen name that you have chosen should be used.

Throughout this manual, the abbreviations id, id-lit, and lit are used
in the syntax in place of the common COBOL constructs identifier,
identifier-literal, and literal.

Hyphen A hyphen appearing between uppercase words is required, as in
PROGRAM-ID or SOURCE-COMPUTER. A hyphen between
lowercase words indicates that your entry must not contain any
spaces. In the example, the screen-name could be written as
ACCTS-PAYABLE or ACCTSPAYABLE, but not ACCTS PAY-
ABLE.

{ } Braces enclosing part of a format mean that you must select one of
~ the options enclosed within the braces. Thus, the example indicates
that either a screen-name or an id-lit must appear in the DISPLAY

statement.

[] Brackets enclose optional portions of a format. In the example, the
phrase WITH NO ADVANCING is optional.

An ellipsis indicates that the item preceding it (defined by logically
matching brackets or braces) may be repeated one or more times.
In this example, you must enter a screen-name, an identifier, or a
literal at least once; the ellipses indicate that you may repeat the
entry.

xii Preface Licensed Material - Property of Data General

Format
Punctuation

Special
Characters

The period is required when it is present in a format. The comma
and semicolon are optional and interchangeable. They may be used
only in certain positions; these positions are indicated by a semicolon.
In the example above, a comma or a semicolon may precede the
WITH NO ADVANCING phrase.

At least one space must follow a comma or semicolon used to
separate statements.

When an arithmetic or logical operator (+, -, >, <, or =) appears
in a format, it is required. These special characters are not
underlined.

Vertical bars in the margin highlight technical changes made since
the last revision of this document.

Licensed Material - Property of Data General

Preface

xiii

Chapter 1
Programming Concepts

This chapter outlines the basic structure of a COBOL program, including language
and data concepts and Procedure Division concepts.

Program Structure

A COBOL program has four divisions: Identification, Environment, Data, and
Procedure. The divisions must appear in the program in the order stated.

The Identification Division provides the program name and, optionally, the program
author, date of compilation, and other documentary information.

The Environment Division specifies the computer(s) used to compile and run the
program, describes special conditions, designates the logical organization of files, and
describes the relationships of data files with actual input/output devices.

The Data Division describes all the data that the program uses. This includes the data
used in input/output operations, the data developed for internal processing, and
screen data.

The Procedure Division contains the instructions for processing the data.

The information in a COBOL program is written in clauses (Identification, Environ-
ment, and Data divisions) and statements (Procedure Division).

A clause specifies an attribute of an entry. A series of clauses ending with a period is
an entry. A statement specifies an action to be taken by the program. A series of
statements ending with a period is a sentence.

Each clause or statement may be divided into smaller units called phrases. A phrase
contains one or more words that are considered a syntactical unit. When the
programmer must choose between two or more phrases in a format, the phrase is
called an option.

Within a division, entries and sentences can be combined into larger logical units
called paragraphs or sections. A paragraph consists of a paragraph name followed by
a period and space, and zero or more entries or sentences. In the Environment and
Data divisions, paragraph names are reserved words (e.g., FILE-CONTROL,
[-O-CONTROL), and paragraphs contain entries. In the Procedure Division, para-
graph names are programmer defined and are composed of sentences.

In the Environment and Data divisions, a section consists of a section header and zero
or more entries. The section header contains a reserved section name followed by the
word SECTION. A section header must be followed by a period and a space. In the
Procedure Division, a section consists of a programmer-defined section name, followed
by a period and space, and zero or more paragraphs.

Programming Concepts

1-1

Language Structure

COBOL is an Englishlike language using sentences composed of characters, words,
and statements. Interactive COBOL includes the language components described in
the following sections.

Character Set

There are three character sets, listed below:

» The COBOL character set. This is a set of the 51 characters that are legal in
COBOL. The characters include the uppercase letters A-Z, the digits 0-9, and
special characters used as separators, logical operators, etc.

e The 96-character ASCII set. Characters in this set are used to form data-items and
nonnumeric literals.

e The DG international character set. This set, which can be used on terminals
equipped to handle 8-bit ASCII values, includes 69 displayable characters in
addition to the 96-character ASCII set.

Separators

In a COBOL source program, words and sentences are delimited by separators. The
separators are:

« Space character. When a format indicates a space, more than one may be used.
» Comma, semicolon, and period. These characters must be followed by a space.

o Left and right parentheses. They may be used only in balanced pairs to denote
subscripts, indexes, arithmetic expressions, or conditions.

 Quotation marks. Quotation marks are used in balanced pairs to delimit nonnumeric
literals. An opening quotation mark must be preceded by a space or a left
parenthesis; a closing quotation mark must be followed by one of the following
separators: space, comma, semicolon, period, or right parenthesis.

COBOL Words

Words can be up to 30 characters long. There are two classes of COBOL words:
programmer-created words and reserved words.

Programmer-created words are supplied by the programmer to satisfy the requirements
of a specific format. A programmer-created word can consist of the characters A-Z,
0-9, and hyphen. It must not contain any spaces, and the hyphen may not be the first
or last character. All programmer-created words—except paragraph names, section
names, level numbers, and segment numbers—must contain at least one alphabetic
character.

All programmer-created words must be unique within a program. A word is unique if
no other word has the identical spelling or punctuation, or if uniqueness can be
ensured by qualification (see “Uniqueness of Reference” later in this chapter).

Reserved words are assigned a special meaning within the COBOL language; they can
be used only as indicated in the syntax formats. Appendix E contains a list of ANSI
Standard and Interactive COBOL reserved words.

1-2 Programming Concepts Licensed Material - Property of Data General

A-FIELD after MOVE

MOVE ZERO TO A-FIELD. r] l I | l J
Note that zero is a visible display or printer character (octal 60). N 0 0 0 0 0

MOVE SPACE TO A-FIELD. | I [I | [l

MOVE HIGH-VALUE TO A-FIELD.

Note that 377 octal has no visible display or printer character.
MOVE LOW-VALUE TO A-FIELD.

Note that 000 octal has no visible display or printer character.

r377 [a77 | 377|377 [a77]377]

Foo | 000 | 000 [000 | 000] ooﬂ

MOVE QUOTE TO A-FIELD. EE EE [1]
MOVE ALL “ABCD” TO A-FIELD. [A [B | c | D] A | B |
DG-25269

Figure 1-1 Use of Figurative Constants

Figurative Constants

COBOL has several reserved words that represent specific constant values. These
figurative constants are used in a program to avoid repetitive coding. The singular and
plural forms may be used interchangeably. Figurative constants must not be bounded
by quotation marks. The figurative constants and their values are:

ZERO, ZEROS, ZEROES The digit O

SPACE, SPACES The space character

HIGH-VALUE, HIGH-VALUES Octal value 377

LOW-VALUE, LOW-VALUES Octal value 000

QUOTE, QUOTES The quotation mark character

ALL literal The specified literal. The literal must be either a

nonnumeric literal or a figurative constant. However,
the ALL figurative-constant form is redundant.

Given a data-item initially defined as A-FIELD PIC X(6) VALUE “123456”, the
examples in Figure 1-1 illustrate the use of figurative constants in MOVE statements.

Nonnumeric Literals

A nonnumeric literal is a character string that may contain any elements from the
ASCII character sets. The literal must be enclosed in quotation marks and may be up
to 132 characters long, including the quotation marks. The value of the literal is the
string of characters between the bounding quotation marks. Embedded spaces are
counted as part of the literal. Quotation marks within a literal are represented by two
consecutive quotation marks; these represent only one occurrence of the character in
the literal. For example:

MOVE “THE DATE IS” TO HEAD-LINE.

DISPLAY “INPUT ERROR, PLEASE RE-ENTER THE DATA!".
DISPLAY “* * Please type your name!".

MOVE “-The current time is:” TO TIME-LINE.

DISPLAY “The title is “ “Learning to Program”™ ".".

Licensed Material - Property of Data General Programming Concepts

Numeric Literals

A numeric literal is a character string selected from the set 0-9, plus, minus, and
decimal point. It may contain up to 18 digits. An unsigned literal is positive. If a sign
is used, it must be the leftmost character. A numeric literal may not contain more
than one sign character. If a decimal point is used, it may not be the rightmost
character. A numeric literal may not contain more than one decimal point.

The following are legal numeric literals:

ADD 122 TO CATEGORY.
MULTIPLY 3.1416 BY DIAM GIVING CIRCUM.
MOVE - 167 TO TEMP.

The following are illegal numeric literals:

ADD 1543. TO CATEGORY. (The decimal is on the right.)
MULTIPLY 3.14-+ BY DIAM GIVING CIRCUM. (The sign is not on the left.)
MOVE 1234567890987654321 T0 TEMP. (The literal contains more than 18 digits.)

Record Concepts

A COBOL program deals with data grouped into files. Within a file, the data is
logically organized by records. A COBOL record consists of items that are uniquely
identifiable and are treated as a unit. A record is the most inclusive COBOL data-item;
it may be divided into logical subdivisions, which may in turn be further subdivided. A
record or record division that has no subdivisions is called an elementary item. An
item that is subdivided is called a group item, and the entire record structure with all
its subdivisions is referred to as a hierarchy. The programmer must assign a level
number and a unique name to each elementary and group item within the hierarchy.

Level Numbers

Level numbers in a data description show the organization of elementary and group

items, and identify special-purpose data-items. Because records are the most inclusive
data-items, they are assigned 01 level numbers. Subdivisions of the record are given

successively higher level numbers. The level numbers 02 through 49 identify elementary
and group items within a record.

There are two special level numbers: 77 and 88. Level 77 identifies independent items
in the Working-Storage Section. An independent item is not in a hierarchyj it is not
part of a record. Level 88 gives condition-names to a value that a data-item may
contain.

The PICTURE Clause

The PICTURE clause occurs in the Data Division of a COBOL program. It specifies
the length and data type of an elementary data-item. Every elementary data-item
except those described as USAGE IS INDEX must have a PICTURE clause.

The format of the PICTURE clause is:

PICTURE
PIC

} IS picture-string

1-4 Programming Concepts Licensed Material - Property of Data General

The words PIC and PICTURE are synonomous. The number of characters in the
picture-string determines the length of the data-item, and the specific characters in
the picture-string determine the type of data-item. A data-item can be alphabetic,
numeric, alphanumeric, alphanumeric edited, or numeric edited.

The following sections explain the types of data and how to specify them in the
PICTURE clause. Table 1-1 summarizes the symbols in the PICTURE clause and
their meanings.

<
3
g

Function

Alphanumeric character
Alphabetic character

Numeric character

Assumed decimal point
Arithmetic sign

Assumed decimal scaling position
Space insertion

Slash insertion

Zero insertion

Decimal point insertion

Comma insertion

Plus sign insertion

Minus sign (if negative value) or blank
insertion

CR CR (credit sign) insertion

DB DB (debit sign) insertion

$ Currency symbol insertion

z Zero suppression by space

* Zero suppression by asterisk

O~WIoN<KCO>P»X

'+

Table 1-1 Summary of PICTURE Clause Symbols

Alphabetic Data-Items

Alphabetic items are described using only the symbols A and B. An alphabetic
data-item may contain only uppercase letters of the alphabet or spaces.

The following examples show alphabetic data-items:
05 STATE-ABBREV PIC AA.

The data-item STATE-ABBREY is alphabetic and two characters long. Each
character may be an uppercase letter of the alphabet or a space.

05 STOCK-REF PIC A(5)BAA.

The data-item STOCK-REF is alphabetic and 8 characters long, with a space after
the first 5 characters.

Numeric Data-Items

Numeric items are described by the symbols 9, V, S, and P. A numeric data-item can
contain only the characters 0 through 9; if the S symbol is included, the item can
contain a plus or a minus sign. Data-items used in arithmetic computations must be
described as numeric.

A numeric data-item may be 1 to 18 characters long, 19 if the SIGN IS SEPARATE
clause is present.

Each numeric picture string must contain at least one 9. The 9 represents a numeric
digit position that can contain a value from 0 to 9.

Licensed Material - Property of Data General Programming Concepts

1-5

The V symbol represents an assumed decimal point. It specifies a location but not an
actual position of storage; therefore it is not counted in the length of a data-item. Only
one V is allowed in a picture-string; if it is the rightmost character, it is redundant.

The S symbol represents a signed data-item. It is not counted in determining the
length of the data-item. Only one S is allowed in a picture-string, and it must be the
leftmost character. You must include the S symbol if you specify the SIGN IS
SEPARATE clause.

The P symbol indicates an assumed decimal scaling position when there is no decimal
point in the data-item. The P specifies leading or trailing digits and scales the number
by powers of 10. Thus the data-item is assumed to contain a zero in each position held
by a P, but no zeros are actually stored.

The P is not counted in determining the size of the data-item. However, it is counted
when determining the number of digit positions in numeric and numeric-edited items.
Thus if the data-item evaluates to a number with more than 18 digits, you cannot
perform arithmetic operations with it.

P can appear only in a sequence in the rightmost or leftmost portion of the format.
The implicit decimal point is assumed to be on the right if the string of Ps is to the
right; the decimal point is assumed to be on the left if the Ps are to the left. PICTURE
999P(6) represents a number in the millions, storing only the three leftmost digits.
PICTURE PPP999 represents a decimal fraction in the millionths, storing only the
three rightmost digits.

If a data-item has P in its picture-string, any value moved to it must reflect the scaled
form. Similarly, if the data-item has a VALUE clause, the value specified must be in
the scaled form. However, if you display a scaled data-item, the unscaled version
appears on your screen.

The following examples show numeric data-items:
15 ACCT-NUM PIC 9(10).

The data-item ACCT-NUM is unsigned numeric with 10 digits.
10 COST PIC 99999V99.

The data-item COST is unsigned numeric with 5 digits to the left of the assumed
decimal point and 2 digits to the right. The total number of characters is 7; the V is
not counted in the total.

10 TOTAL-PAY PIC S9(5)v99.

The data-item TOTAL-PAY is signed numeric with 5 digits to the left of the assumed
decimal point and 2 digits to the right. The total number of characters is 7; neither the
V nor the S (unless the SIGN IS SEPARATE clause is present) is counted in the
total.

10 MEGA-VALUE ~ PIC 9999PPPPPP.

This data-item has four digits and 6 scaling positions. If the value stored were 241, the
effective, or scaled, value would be 241,000,000.

10 CENTI-VAL PIC PP99999.

This data-item has 5 digits and 2 scaling positions. If the value stored were 1000, the
effective, or scaled, value would be .0001.

1 '6 Programming Concepts Licensed Material - Property of Data General

Alphanumeric Data-Items

The symbols A, X, and 9 describe alphanumeric data-items. The picture-string of an
alphanumeric data-item must conform to one of the following rules:

o It must contain at least one A and at least one 9.

» It must contain at least one X.

An alphanumeric data-item is treated as though its picture-string contained all X’s.
The data-item can contain any character in the COBOL data character set.

The following examples describe alphanumeric data-items:
10 SS-NUM PIC X(11).

The data-item SS-NUM is alphanumeric and 11 characters long.
10 MIXED-UP-PIC PIC AA9S.

This is a four-character alphanumeric data-item. The picture-string is equivalent to
X(4).

Edited Data-Items

A COBOL program may edit numeric and alphanumeric data-items. There are five
types of editing: simple insertion, special insertion, zero suppression and replacement,
fixed insertion, and floating insertion. You may use simple insertion editing on both
numeric and alphanumeric data-items; the other types of editing are valid only on
numeric data-items.

Simple Insertion. Numeric and alphanumeric data-items can be edited with simple
insertion editing. The insertion characters are comma, B (space), 0, and /. They
represent the position in the item where the character will be inserted. Insertion
characters are counted in the size of an item. Table 1-2 gives examples of simple
insertion editing.

PICTURE Data Value Result
XXXBXXBX(4) JAN111984 JAN 11 1984
99,999 36895 36,895
A(5)BA(5) ABCDEFGHIJ ABCDE FGHIJ
XX/ XX/ XX 121584 12/15/84
99,000,000 17 17,000,000

Table 1-2 Simple Insertion Editing

Special Insertion. The decimal point is the special insertion symbol; it controls how
data-items are aligned. You cannot use an actual decimal point and the implied
decimal point (V) in the same picture-string. When you move data from an item
having an assumed decimal point to an item having an actual decimal point, the data
is placed in the receiving item with the actual decimal point aligned with the implied
decimal point (see Table 1-3). The decimal point cannot be the last character in the
character string.

Note: If you use the DECIMAL-POINT IS COMMA clause in the SPECIAL-
NAMES paragraph, the rules applying to periods and commas in the PICTURE
clause are reversed.

Licensed Material - Property of Data General Programming Concepts

Sending PIC Receiving PIC Data Value Result

9(5) 999.99 12345 345.00
999Vv99 999.99 12345 123.45
99Vv999 999.99 12345 012.34
9(4)ve 999.99 12345 234.50

Table 1-3 Special Insertion Editing

Fixed Insertion. There are five symbols used for fixed insertion editing: +, —, CR, DB,
and the currency symbol (usually a $). A picture-string can contain only one currency
symbol and only one other editing symbol (+, —, CR, or DB).

The + or — must occupy either the left or rightmost position. If you specify the plus in
the picture-string, Interactive COBOL inserts a + or — character in the data-item,
depending on whether the value being stored is positive or negative. If you specify a
minus, Interactive COBOL inserts a minus character if the value s negative and a
space if it is positive.

The symbols CR and DB count as two character positions in determining the size of
the item; they must always appear in the rightmost position. The sign-control symbols
produce the results shown in Table 1-4, depending on the value of the data-item.

Value of Data-Items
Editing Symbol Positive or Zero Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Table 1-4 Results of Sign-Control Editing

The currency symbol must be the leftmost position, except that either a plus or a
minus may precede it. The currency symbol is usually the dollar sign ($). However, if
you have specified the CURRENCY SIGN IS clause, use the symbol specified in that
clause instead of the dollar sign.

Table 1-5 shows some examples of fixed insertion editing.

Floating Insertion. In floating insertion editing, leading zeros are suppressed and the
the editing symbol is placed immediately before the first significant digit. Three of the
fixed insertion symbols also serve as floating insertion symbols: the plus (+), the
minus (=), and the currency symbol. The floating symbols are mutually exclusive,
although a fixed plus or minus may appear to the left of a floating currency symbol.

Floating insertion occurs when one of the floating insertion symbols is specified two or
more times within the picture-string. However, the symbol appears only once in the
output. The string of floating insertion characters may contain the B, zero, comma,
slash, or decimal point; they are treated as part of the floating string.

There are two ways to represent floating insertion editing in a picture-string:
1. Represent any or all of the leading numeric character positions to the left of the
decimal point by the insertion character (e.g., $389.99 or $$%$.99).

2. Represent all numeric character positions in the picture-string by the insertion
character (e.g., $$5.3%).

1'8 Programming Concepts Licensed Material - Property of Data General

PICTURE Data Value Result
$ 9999.99 +1234.50 $ 1234.50
- 1234.50 $ 1234.50
0 $ 0000.00
9999.99CR +1234.50 1234.50
- 1234.50 1234.50CR
0 0000.00
9999.99DB +1234.50 1234.50
- 1234.50 1234.50DB
0 0000.00
+9999.99 +1234.50 +1234.50
- 1234.50 - 1234.50
0 +0000.00
9999.99+ +1234.50 1234.50+
- 1234.50 1234.50-
0 0000.00+
- 9999.99 +1234.50 [J1234.50
- 1234.50 - 1234.50
0 [J0000.00
9999.99- +1234.50 1234.50
- 1234.50 1234.50-
0 0000.00

Table 1-5 Fixed Insertion Editing

For example, if the PICTURE $,$$%,999.99 is specified for a data-item and that item
has the value 12345, the edited result is DO 010 0$123.45. Note that both the first
comma, which is imbedded in the floating $ string, and the second comma, which
appears to the right of the floating $ string, are suppressed in the edited result.

The leftmost character of the floating string represents the leftmost postion of the
floating symbol in the data-item. The rightmost character of the floating string
represents the rightmost position.

The second leftmost character represents the leftmost limit at which numeric data can
appear in the data-item. Nonzero numeric data may replace all characters at or to the
right of this limit. For example, with the PICTURE $$$$5$.99, a maximum of four
digits may appear to the left of the decimal point (e.g., $1234.00).

When floating insertion characters are only to the left of the decimal point in the
picture-string, a single floating insertion character is placed either in the position
immediately to the left of the first nonfloating position, the first nonzero digit in the
data, or the decimal point. The positions to the left of the inserted character are filled
with spaces (see Table 1-6 for examples).

If all of the character positions are represented by a floating insertion symbol and the
data value is zero, the entire data-item contains spaces. If the value is not zero, the
result is the same as when the insertion character is only to the left of the decimal
point in the picture-string.

Zero Suppression. The Z and asterisk (*) control the suppression of leading zeros in a
data-item. With Z the replacement character is the space; with an asterisk the
replacement character is an asterisk. The Z and * cannot appear together in a
picture-string.

Any of the simple insertion characters (B, 0, /, and comma) may appear within or
immediately to the right of the suppression string; they are counted as part of the
suppression string.

Suppression symbols may be used to represent either all of the digit positions in the
data-item (e.g., ZZZ.ZZ), or any of the leading digit positions to the left of the
decimal point (e.g., ZZZ9.99).

Licensed Material - Property of Data General

Programming Concepts

PICTURE Data Value Result

$$9.99 .23 0Js$0.23

$$$.99 1.23 J%$1.23

$3$8$.99 .23 00s.23

$$$9.99 12 00so.12
$$$%,$$%$.99 000123 0000%123.00
——————— .00 123456 [1123456.00
3,$$%,$$%.99CR -1234567 $1,234,567.00CR
++,+++,+++ O OoO0ooOoocoo
++,+++ 123 0oa+128

Table 1-6 Floating Insertion Editing

If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data that corresponds to a suppression symbol in the string is replaced by
a space or asterisk. Suppression terminates at the first nonzero digit or at the decimal
point, whichever is encountered first.

If all numeric positions in the picture-string are represented by suppression symbols
and the value of the data is not zero, the result is the same as if the suppression
characters were only to the left of the decimal point. If the value is zero and the
suppression symbol is Z, the entire data-item is spaces. If the value is zero and the
suppression symbol is asterisk, the data-item is all asterisks, except for the actual
decimal point.

A PICTURE clause using the asterisk as the zero suppression symbol may not appear
in the same entry with the BLANK WHEN ZERO clause. Table 1-7 gives examples
of zero suppression and replacement editing.

PICTURE Data Value Result

2,2722.99 1234.56 1,234.56
2222.22 1234 1234.00
$2,22Z.99 123.45 $00123.45
2222Z2.2Z .01 ooood.on
sesee wn 0 cesas os

sesss gg 0 «sss2 00
22222.22 0 oooooood

Table 1-7 Zero Suppression and Replacement Editing

Alignment of Data-Items

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. The alignment rules for numeric receiving items are:

 If no decimal point is specified, it is assumed to be immediately to the right of the
field.

o The data is aligned on the decimal point and, if necessary, truncated or padded
with zeros at either end.

The alignment rule for numeric edited receiving items is:

» The data is aligned on the decimal point and, if necessary, truncated or padded
with zeros at either end, except where editing causes replacement of leading zeros.

1'1 O Programming Concepts Licensed Material - Property of Data General

The alignment rules for alphabetic, alphanumeric, and alphanumeric edited receiving
items are:

« The data is aligned at the leftmost character position and, if necessary, truncated
or padded with spaces at the right.

o If the JUSTIFIED clause is specified for a receiving item, the above rule is
modified as described in the JUSTIFIED clause.

Uniqueness of Reference

Programmer-created names must be unique, either through different spellings or
through qualification. Duplicate names can appear in separate hierarchies, but the
names must be made unique by references to higher-level names, or qualifiers, within
each hierarchy. Data Division names and paragraph-names may be qualified.
File-names, record-names, section-names, index-names, condition-names, and 77-level
Working-Storage data-names cannot be qualified.

Specify qualifying names in ascending order within the hierarchy until the name is
uniquely qualified. Enough qualifiers must be mentioned to make the name unique;
however, mentioning every level of the hierarchy may not be necessary. The names
must be separated by OF or IN. OF and IN are interchangeable; use the one that is
most readable. The format for a data-name qualifier is:

OF

identifier IN identifier}...

Qualifying Data Division Names

In Data Division references, all data-names used for qualification must be associated
with a file-name or level number. In the hierarchy of qualification, a file-name is the
most significant name. The names associated with level number 01 are the next most
significant, followed by the names associated with level numbers 02, 03, and so on. For
a data-item in the File Section, the highest qualification is a file-name. For a data-item
in the Working-Storage Section, the highest qualification is an 01 item. The following
example illustrates qualified references to duplicate data-names:

DATA DIVISION.

FD I-TAX-FILE... FD O-TAX-FILE...

01 SINGLE-REC... 01 TAX-REC...
03 EMPLOYEE-NAME. .. 03 EMPLOYEE-NAME. ..
05 FIRST-NAME. .. 05 FIRST-NAME. ..
05 LAST-NAME. .. 05 LAST-NAME. ..

03 ADDR... 03 ADDR...

03 GROS... 03 GROS...

03 INET... 03 INET...

03 TAXS... 03 TAXS...

PROCEDURE DIVISION.

MOVE LAST-NAME IN EMPLOYEE-NAME IN SINGLE-REC T0
LAST-NAME IN EMPLOYEE-NAME IN TAX-REC.
MULTIPLY INET OF I-TAX-FILE BY .024 GIVING TAXS IN TAX-REC.

Licensed Material - Property of Data General Programming Concepts 1-11

Qualifying Procedure-Names

Two or more paragraphs in the Procedure Division may have identical names if they
appear in different sections. A paragraph-name can be qualified only by a section
name. The keyword SECTION cannot appear in the entry. An example of paragraph-
name qualification is:

PERFORM PARAGRAPH-1 OF QUALIFYING-SEC.

Note: A paragraph-name need not be qualified when referred to within the section in
which it appears.

Tables, Subscripts, Indexes

Subscripts and indexes are used to refer to elements in a table. A subscripted data-item
has the form:

data-name (subscript-1 [, subscript-2 [, subscript-3]])

The subscript is an integer or an identifier that evaluates to an integer.
An indexed data-item has the form:

data-name (index-1 [, index-2 [, index-3]])

The index may be in any of the following forms: identifier, identifier + integer, or
identifier — integer.

Interactive COBOL treats an index in much the same manner as a subscript. For both
subscripts and indexes:

* The data-name must be the name of a table element, and it may be qualified.

» The parentheses immediately follow the data-name or its last qualifier. One or
more spaces may precede the opening parenthesis.

» The lowest possible subscript or index value is I; the highest possible value is the
maximum number of elements in the table, which is specified in the OCCURS
clause.

+ Three levels of subscripts and indexes are permitted.

Identifier subscripts are defined in the File, Working-Storage, and Linkage sections.
Change a subscript value the same way as any other data-item—move values to it,
add values to it, or subtract values from it.

Declare indexes in the Working-Storage Section with the INDEXED BY phrase. The
SET and PERFORM verbs change index values, which allows the data-name to point
to different items in the table.

Loading a Table

Your COBOL program must insert values into, or load, the table. There are two ways
to load a table: hard-coding the values into the program, and entering the table values
at execution time.

Use the VALUE clause to hard-code data-values into the table. The following example
shows a subscript and a table that includes salary grades and the corresponding hourly

pay.

1- 12 Programming Concepts Licensed Material - Property of Data General

WORKING-STORAGE SECTION.

77 PAY-SUB PIC 99.

01 PAY-VALUES.

05 FILLER PIC X(6) VALUE “020500".
05 FILLER PIC X(6) VALUE *“040550".
05 FILLER PIC X(8) VALUE “060600" .
05 FILLER PIC X(6) VALUE “080650”.
05 FILLER PIC X(6) VALUE “100700".

01 PAY-TABLE REDEFINES PAY-VALUES.
05 PAY-TABLE-ENTRY OCCURS S TIMES.

10 ITEM-PAY-CLASS PIC 99.
10 ITEM-PAY-RATE PIC 99V98.

Under COBOL rules, a data-item cannot have botha VALUE clause and an OCCURS
clause. Therefore, enter the numeric values with the VALUE clause and redefine
them with the OCCURS clause.

Use the same format for indexes, except

« Do not define a subscript (PAY-SUB, in this example)

« Include the INDEXED BY phrase of the OCCURS clause. In this example, the
coding could be

05 PAY-TABLE-ENTRY OCCURS 5 TIMES INDEXED BY ITEM-INDEX.

If a table will contain volatile data, you can enter it during program execution. There
are two ways to do this. The Interactive COBOL program can read the table items
from a data file, or you can enter the table items interactively.

To set up a program that reads table items from a data file, define the data file in your
program with the SELECT and FD statements, and process it with OPEN, READ,
and CLOSE statements. Since you will not insert the table item values with the
VALUE clause, you do not need to redefine the table.

Using the same pay scale and pay rate table as above, define and load the table as
follows:

FILE-CONTROL.
SELECT PAY-FILE ASSIGN TO DISK, “PAYSFILE".
FILE SECTION

FD PAY-FILE
RECORD CONTAINS 6 CHARACTERS
LABEL RECORDS ARE STANDARD.
01 PAY-RECORD.
05 PAY-CLASS PIC 99.
05 PAY-RATE PIC 99v9S.

WORKING-STORAGE SECTION.

Licensed Material - Property of Data General Programming Concepts 1- 1 3

77 SUB

01 PAY-

05

PIC 99.

TABLE.

PAY-TABLE-ENTRY OCCURS 5 TIMES.
10 ITEM-PAY-CLASS PIC 99.

10 ITEM-PAY-RATE PIC 99v99.

PROCEDURE DIVISION.

PERFORM LOAD-TABLE VARYING SUB FROM 1 BY 1

UNTIL SUB > 5.

LOAD-TABLE.
READ PAY-FILE.
MOVE PAY-CLASS TO ITEM-PAY-CLASS (SUB).
MOVE PAY-RATE TO ITEM-PAY-RATE (SUB).

In this example, the disk file PAYSFILE contains the data for the table.

You can also load the table interactively, using Interactive COBOL’s screen

management facility. Screen management is discussed in detail in chapter 3; however,
the following example shows how to load the pay grade and rate table by entering data
at the terminal:

WORKING-
01 PAY-

05

STORAGE SECTION.

TABLE.

PAY-TABLE-ENTRY OCCURS 5 TIMES
INDEXED BY ITEM-INDEX.

10 ITEM-PAY-CLASS PIC 99.
10 ITEM-PAY-RATE PIC 99V99.

SCREEN SECTION.

01 PAY-

05
05
05
05
05
05
05
05
05
05
05
05
05

SCREEN.

LINE 2 COL 20 VALUE “EMPLOYEE PAY GRADES AND RATES".

LINE 5 COL 10 VALUE “Pay Grades”.

LINE 5 COL +10 VALUE “Pay Rates”.

LINE PLUS 2 COL 13 PIC 99 TO ITEM-PAY-CLASS (ITEM-INDEX).
LINE 7 COL +10 PIC 99V93 TO ITEM-PAY-RATE (ITEM-INDEX).

LINE PLUS 1 COL 13 PIC 99 TO ITEM-PAY-CLASS (ITEM-INDEX + 1).

LINE 8 COL +10 PIC 99V99 TO ITEM-PAY-RATE (ITEM-INDEX + 1).

LINE PLUS 1 COL 13 PIC 99 TO ITEM-PAY-CLASS (ITEM-INDEX + 2).

LINE 9 COL +10 PIC 99V9S TO ITEM-PAY-RATE (ITEM-INDEX + 2).

LINE PLUS 1 COL 13 PIC 99 TO ITEM-PAY-CLASS (ITEM-INDEX + 3).

LINE 10 COL +10 PIC 99v99 TO ITEM-PAY-RATE (ITEM-INDEX + 3).

LINE PLUS 1 COL 13 PIC 99 TO ITEM-PAY-CLASS (ITEM-INDEX 1 4).

LINE 11 COL +10 PIC 99v99 TO ITEM-PAY-RATE (ITEM-INDEX + 4).

PROCEDURE DIVISION.

SET

ITEM-INDEX TO 1.

DISPLAY PAY-SCREEN.
ACCEPT PAY-SCREEN.

1-14

Programming Concepts

Licensed Material - Property of Data General

Referencing a Table

Tables are referenced in the Procedure Division. To refer to a specific item in a table,
specify its data-name and subscript (or index). For two- or three-dimensional tables,
specify a subscript for each dimension. The compiler associates the rightmost subscript
in a list with the innermost array. Therefore, list subscript levels in order of successively
smaller inclusion and separate them with spaces.

You reference a table in different ways, depending on whether it is subscripted with
an integer or data-item, or whether it is indexed. In the following examples, the third
value in PAY-TABLE is moved to the data-name TEMP.

MOVE ITEM-PAY-CLASS (3) TO TEMP.

MOVE 3 TO SUB.
MOVE ITEM-PAY-CLASS (SUB) TO TEMP.

SET ITEM-INDEX TO 3.
MOVE ITEM-PAY-CLASS (ITEM-INDEX) TO TEMP.

You can also change subscript and index values by putting the table-manipulation
code in a PERFORM VARYING loop, varying the subscript or index as required.

Procedure Division Structure

The Procedure Division is the last division in a COBOL program. It contains the
actual logic of the program. The program logic is written in statements that begin
with a COBOL verb. The COBOL verb expresses an action to be taken by the
program. The words and symbols that make up the rest of the statement specify what
the COBOL verb is to act upon.

Chapter 8 lists the format of the Procedure Division. The Procedure Division begins
with the header, which, like other division headers, is a required entry. Under the
header, in decreasing order, are the Procedure Division sections, paragraphs, sentences
and statements, and verbs.

Interactive COBOL Verbs

The categories of Interactive COBOL verbs are listed in Table 1-8. Each of these
verbs is discussed in detail in chapter 8.

Sentences and Statements

A sentence is simply a statement followed by a period and one or more spaces.
Although this difference may seem trivial, it has a profound effect on your program
logic.

For example, the following code is one sentence. Both COMPUTE statements are
executed if BYPASS-REC-SW has a value of N. However, if you add a period to the
end of the second line, thus making two sentences, the third line—which is now a
separate sentence—is performed unconditionally.

IF BYPASS-RES-SW = “N”
COMPUTE NET = GROSS - TOT-TAXES
COMPUTE YTD-NET = NET + OLD-NET.

Licensed Material - Property of Data General Programming Concepts 1-15

Arithmetic Operations

ADD Sums two or more operands and stores the result.

ADD Adds items from one group to items in another group that have the

CORRESPONDING same name.

COMPUTE Evaluates an arithmetic expression.

DIVIDE Divides one operand into another.

MULTIPLY Multiplies one operand by another.

SUBTRACT Subtracts the (sum of) operand(s) from another operand.

SUBTRACT Subtracts items in one group from items in another group that have

CORRESPONDING the same name.

Compiler Directing

COPY Instructs the compiler to copy source code from another file and
merge into the current source during compilation.

USE Defines procedures for 1/0 error handling.

Data Manipulation

INSPECT Counts and/or replaces specific single characters in data-items.

MOVE Transfers data, in accordance with the rules of editing, to one or
more data-items.

MOVE Moves items that have the same name from one group to another.

CORRESPONDING

SET Loads a specific value into index items associated with table
elements.

Input/QOutput

ACCEPT Transfers data from the screen (or from a system-name) to a
data-item.

CLOSE Terminates the processing of files.

DELETE Logically deletes a record from an indexed or relative file, or
deletes a file from the disk.

DISPLAY Displays a literal, data-item, or a group of these on the screen.

OPEN Initializes files for processing.

READ Makes a record available from a file.

REWRITE Replaces an existing record in a file.

START Provides logical positioning within a relative or indexed file for
subsequent retrieval of records.

UNDELETE Restores a logically deleted record in an indexed or relative file.

UNLOCK Releases records locked by previous READ statements.

WRITE Releases a logical record to an output file.

Transfer of Control

CALL Transfers control to specified subprogram.

CALL PROGRAM Chains to another program or invokes a COBOL runtime utility.

CANCEL Restores a called subprogram to its initial state.

EXIT Documents the end of a PERFORM subroutine.

EXIT PROGRAM Returns control to the calling program.

GO TO Transfers control within the Procedure Division.

IF Evaluates a condition to determine the path of execution.

PERFORM Executes one or more procedures and returns control to the next
statement.

STOP Terminates or temporarily suspends program execution.

Table 1-8 Procedure Division Verbs

On the other hand, because the code in SCREEN-PARA is performed unconditionally,
lines 2 and 3 can be sentences (periods) or statements (no periods). The only constraint
is that the last statement in the paragraph end with a period.

SCREEN-PARA.
SET ITEM-INDEX TO 1.
DISPLAY PAY-SCREEN.
ACCEPT PAY-SCREEN.

1-1 6 Programming Concepts Licensed Material - Property of Data General

When you execute a program, the computer executes each sentence, in order, until it
encounters a branching sentence; for example, a sentence instructing the system to
PERFORM another routine, CALL another program, and so on.

Sections and Paragraphs

A COBOL program is structured with sections and paragraphs or with paragraphs
only. The format for a section is:

section-name SECTION [segment-number].
[paragraph-name. [sentence]...]...

The format of a paragraph is:
paragraph-name. [sentence]...

The above examples indicate that the Procedure Division can contain, at the minimum,
one section-name and the word SECTION or one paragraph-name. Although this
would be a valid syntactical construction, it would perform nothing. Sentences and
statements perform the logic of the program. Statements must be contained in
sentences, and sentences, in turn, must be contained in paragraphs. Sections are not
required in COBOL.

Sections and paragraphs are referenced by the PERFORM and GO TO verbs.
Segment-number is used for documentation purposes only.

Arithmetic Expressions

The verbs used to form arithmetic statements are ADD, DIVIDE, MULTIPLY,
SUBTRACT, and COMPUTE. They have several common features:

e The PICTURE: of the items must be numeric (9, S, V, P). However, they need not
be identical; any necessary conversion and decimal point alignment are supplied
throughout the calculation.

e The maximum size of each expression is 18 digits.

« The composite must not exceed 18 digits. The composite is a hypothetical data-item
resulting from superimposing all expressions in a statement, aligned on their
decimal points.

Two optional phrases may appear in all of the arithmetic statements: the ROUNDED
phrase and the SIZE ERROR phrase. These phrases, which are described below,
allow more specific control over computational results.

Arithmetic Operators

The five binary arithmetic operators and two unary arithmetic operators may be used
in arithmetic expressions. These operators must be preceded and followed by a space.
Table 1-9 defines the operators.

Evaluation Order

An arithmetic expression is a combination of identifiers, literals, and arithmetic
operators that evaluates to a single numeric value. The evaluation order within an
expression is:

1. Unary plus and minus
2. Exponentiation in left-to-right order

Licensed Material - Property of Data General Programming Concepts 1 - 1 7

Binary Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

v Exponentiation

Unary

+ The effect of multiplication by +1
- The effect of multiplication by -1

Table 1-9 Arithmetic Operators

3. Multiplication and division in left-to-right order

4. Addition and subtraction in left-to-right order

Parentheses change the order of evaluation. Elements within parentheses are evaluated
first. With nested parentheses, the innermost expression is evaluated first. Each left
parenthesis must have a corresponding right parenthesis.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, or SET statement share a part of their storage areas, the result of the
execution of such a statement is undefined. The following example illustrates an
incorrect move:

01 A.
02 B.
03 C PIC X.
03 D.
04 E PIC X.
04 F PIC X.

MOVE B TO D.

Optional Phrases

Interactive COBOL provides two optional phrases: the ROUNDED phrase and the
SIZE ERROR phrase. These phrases can be used in all arithmetic statements.

The ROUNDED Phrase

When the result of an arithmetic operation has more digits to the right of the decimal
point than the result-identifier provides for, low-order truncation occurs. The number
of truncated digits is determined by the PICTURE clause of the result-identifier.
When the ROUNDED phrase is specified and the first digit of the result’s truncated
portion is greater than 4, the value of the low-order digit in the result-identifier is
increased by one. Conversely, when the first digit of the truncated portion is 4 or less,
the digits are simply dropped. In either case, only the value of the first digit of the
truncated portion is considered.

1-18 Programming Concepts Licensed Material - Property of Data General

If the low-order integer positions in a result-identifier are represented by P in its
PICTURE clause, the rightmost integer position for which storage is allocated is
affected by the rounding or truncation. For example, if the value 6853 is stored in an
item with PICTURE 99PP without rounding, the value 6800 is stored in the
result-identifier; if rounding is specified, the value stored is 6900. The examples in
Table 1-10 illustrates the logical (edited) results when using the ROUNDED phrase.
Note that the actual results do not have decimal points or zeros that correspond with

the P’s.
Picture Amount Result
9999 1234.49 1234
9999 1234.50 1235
999V99 123.995 124.00
9Vv9o 9.375 9.4
99V9 50.11 50.1
999PP 12345 2300
999PP 67891 67900

Table 1-10 Results with the ROUNDED Phrase
The SIZE ERROR Phrase

A size error condition exists when, after decimal point alignment, the absolute value
of a result is greater than the largest value that can be contained in the associated
result-identifier. The size error condition applies both to the intermediate and to the
final results of all arithmetic operations. If the ROUNDED phrase is specified,
rounding takes place before checking for size error. Division by zero always causes a
size error condition.

If a size error condition occurs during the performance of an arithmetic statement, the
data-item affected by the statement retains its original value. If you specify a SIZE
ERROR imperative-statement, the imperative statement is executed after the current
statement is completed. Without a SIZE ERROR phrase, the arithmetic statement is,
in effect, bypassed.

The CORRESPONDING Phrase

The CORRESPONDING phrase processes all the subordinate data-items having the
same names within two group items. For full details, see ADD CORRESPONDING,
SUBTRACT CORRESPONDING, and MOVE CORRESPONDING in chapter 8.

Conditional Expressions

The IF statement specifies conditional expressions. The program takes different
actions depending on whether the condition is true or false. There are two categories
of conditional expressions: simple and complex.

Simple Conditions

The simple conditions are the relation, condition-name, class, switch-status, and sign
conditions. A simple condition has a value of true or false. Examples of simple
conditions are:

Licensed Material - Property of Data General Programming Concepts 1-19

Relation PERFORM CHECK UNTIL A IS LESS THAN B
Condition-name IF END-OF-FILE

Class IF NAME IS NOT ALPHABETIC
Switch-status IF SWITCH-IS-ON
Sign IF COUNT IS NEGATIVE

Relation Conditions

A relation condition compares two items. Each item may be an identifier, a literal, or
the value of an arithmetic expression. The general format for a relation condition is:

GREATER THAN
LESS THAN
EQUAL TO

id-lit IS [NOT] id-lit

AV

AV
I

There are two types of comparisons: numeric and nonnumeric. If both items are
numeric (that is, their PICTURE:S contain only 9, S, V, P), the comparison is
numeric. If one or more items are nonnumeric, the comparison is nonnumeric.

Numeric comparisons. Numeric comparisons are made according to algebraic value.
The number of digits in an item does not affect the comparison; for example, 009 and
9 are equal. When numeric items are compared, the following rules apply:

* The items may have different lengths and USAGE designations.

* Unsigned numeric items are considered positive.

* Zero is considered a unique value regardless of sign.

Nonnumeric comparisons. If either item is a group item or is not numeric, a nonnumeric
comparison takes place. A nonnumeric comparison is made according to the character
collating sequence. Characters in corresponding positions are compared, starting from
the high-order end. When the first unequal characters are encountered, the item that
contains the character higher in the collating sequence is considered greater. Both
items are equal if all comparisons are equal. The following rules apply to nonnumeric
comparisions:

» The items being compared must be defined as USAGE IS DISPLAY.

» If the items have unequal lengths, comparison is made as if the shorter item were
extended to the right with enough spaces to make both equal in length.

e When a figurative constant (except zero) is compared to a numeric identifier, the
identifier must be defined as USAGE IS DISPLAY.

If one item is numeric;

e It must be an integer.

e Itis treated as if it were moved to an elementary or group alphanumeric data-item
of the same size as the nonnumeric data-item (depending on whether the nonnumeric
data-item is an elementary or group item), and the contents of the alphanumeric
item are used in the comparison.

Example. The following example illustrates a relation comparison:

1'20 Programming Concepts Licensed Material - Property of Data General

WORKING-STORAGE SECTION.
01 NONNUMERIC-GROUP.
02 SUBGROUP-1.
03 ITEM-1 PIC XX VALUE “aa”.
03 ITEM-2 PIC XX VALUE “aa”.
03 ITEM-3 PIC XX VALUE “aa”.
02 SUBGROUP-2 PIC XXX VALUE “aaa”.

01 NUMERIC-ITEM PIC 9(9) VALUE 111111111,
PROCEDURE DIVISION.

MAIN-PARAGRAPH.
IF NONNUMERIC-GROUP IS >= NUMERIC-ITEM PERFORM SHOW-RESULTS.
STOP RUN.

SHOW-RESULTS.
DISPLAY “The nonnumeric group is >= numeric item.”.
DISPLAY “NONNUMERIC GROUP = ", NONNUMERIC-GROUP.
DISPLAY * NUMERIC ITEM = ", NUMERIC-ITEM.

When the program is run, the following appears on the screen:

The nonnumeric group is >= numeric item.
NONNUMERIC GROUP = aaaaaaaaa

NUMERIC ITEM = MMM

Condition-name Condition

A condition-name is a special way of writing a relation condition; it is used to improve
program readability. A condition-name must have a level number of 88 and it must be
followed by a VALUE clause, which specifies the literal or literals that apply to that
condition.

The format of a level 88 entry is as follows:

. VALUE IS . THRU lit-2]
88 condition-name {VALUES ARE} lit-1 {‘—THROUGH}]

. THROUGH .. , | | ...
ut-s[THRU |.t4”

Within a range, lit-I must be less than /it-2 and /it-3 less than lit-4. If the
Working-Storage Section contains the following code:

05 HOURS-WORKED PIC 99.
88 REG-HOURS VALUES ARE 1 THRU 40.
88 OVERTIME-HOURS VALUES ARE 41 THRU 99.

Licensed Material - Property of Data General Programming Concepts 1'2 1

Then the Procedure Division could contain the following sentences:

IF REG-HOURS PERFORM REG-HOURS-ROUTINE.
IF OVERTIME-HOURS PERFORM OVERTIME-HOURS-ROUTINE.

The first sentence evaluates to true if the contents of REG-HOURS are from 1 to 40.
If the sentence is true, REG-HOURS-ROUTINE is performed. Similarly, the second
sentence evaluates to true if the the contents of OVERTIME-HOURS are from 41 to
99. If the sentence is true, OVERTIME-HOURS-ROUTINE is performed.

Class Condition

The class condition determines whether the item being tested is alphabetic or numeric.
An item is considered alphabetic if it consists entirely of the uppercase letters A-Z and
spaces.

If an item’s PICTURE does not contain an S, the item tests as numeric only if it
contains digits O through 9.

If an item’s PICTURE contains an S, the item is numeric only if the contents are
numeric (0-9) and a valid sign is present in the correct position. Valid signs for
data-items described with the SIGN IS SEPARATE clause are the plus and the
minus signs. Valid signs for data-items not described with the SIGN IS SEPARATE
clause are specified in the “SIGN Clause” section, chapter 7.

The general format for the class condition is:

id 1S [NOT) | NUMERIC
ALPHABETIC

The following rules apply to class conditions:

¢ The item being tested must be described as USAGE IS DISPLAY.
e The ALPHABETIC test cannot be used with a numeric item.

» The NUMERIC test cannot be used with an alphabetic item or a group item that
contains a signed elementary item (PIC S).

Switch-Status Condition

A switch-status condition determines the on or off status of a switch defined in the
Environment Division. The switch-name and the condition-name associated with the
switch must be named in the SPECIAL-NAMES paragraph. The general format for
the switch-status condition is:

IF condition-name imper-stmt

where condition-name is the literal defined in an ON or OFF clause in the
SPECIAL-NAMES paragraph of the Environment Division. Note that condition-
name does not have to be defined elsewhere, i.e., there is no entry in Working-Storage.
For example:

1'22 Programming Concepts Licensed Materiat - Property of Data General

CONFIGURATION SECTION.

SPECIAL -NAMES .
SWITCH “A”, ON STATUS IS SWO.

PROCEDURE DIVISION.

IF SWO GO TO NEW-FILE-RTN.
(where SWO is the condition-name being tested.)

The result of the test is true if the program is executed or chained to with the same
local switch declared in the program; in this case, /A. To set a switch, simply append
the switch to the program-name when it is called. For example, in a calling program,
the statement CALL PROGRAM “TESTPROG/A” sets the A switch on. You can
set up to 26 switches at runtime.

Sign Condition

The sign condition determines whether the algebraic value of a numeric item is less
than, greater than, or equal to zero. An item is positive if its value is greater than zero,
negative if its value is less than zero, and zero if its value is equal to zero. The general
format for a sign condition is:

POSITIVE
id IS [NOT] | NEGATIVE
zer0 |

Complex Conditions

Complex conditions result from combining conditions with the Boolean operators
NOT, AND, and OR, and using optional parentheses to indicate the order of
evaluation. Table 1-11 lists the logical operators and their meanings.

Operator Meaning

AND Logical conjunction. The value is true if both conditions are true, and false
if one or both conditions are false.

OR Logical inclusive OR. The value is true if one or both of the included
conditions are true, and false if both conditions are false.

NOT Logical negation or reversal of truth value. The value is true if the condition

is false, and false if the condition is true.

Table 1-11 Logical Operators

Complex conditions occur in two forms: the negated simple condition and the combined
condition. The general form for a negated simple condition is:

NOT simple-condition

The general format for a combined condition is:
. AND -
condition OR condition | ---

where condition may be a simple condition, negated simple condition, combined
condition, or negated combined condition.

The following example illustrates a negated simple condition:

Licensed Material - Property of Data General Programming Concepts 1'23

NOT TOT IS LESS THAN MAX
The following examples illustrate combined conditions:

TOT IS LESS THAN MAX OR PART IS LESS THAN WHOLE
TOT IS LESS THAN 0 OR GREATER THAN 100

The truth value of a complex condition is determined by first evaluating the simple
conditions and then evaluating the conditions formed by the truth values and the
logical operators. Each logical operator must be preceded and followed by a space.

Abbreviated Combined Relation Conditions

If a condition is combined, any condition except the first may be abbreviated by
omitting either the subject of the relation condition or the subject and relational
operator of the relation condition.

The format for an abbreviated combined relation condition is:

AND
relation-condition {aq_} [NQT] [relational-operator] object ...

The following conditions are equivalent:

PAYROLL IS LESS THAN O OR PAYROLL IS LESS THAN TOTAL
PAYROLL IS LESS THAN O OR LESS THAN TOTAL
PAYROLL IS LESS THAN 0 OR TOTAL

In an abbreviated combined relation condition, if the word following NOT is
GREATER, >, LESS, <, EQUAL, =, > =, or <<=, then NOT participates as part
of the relational operator. Otherwise, NOT is interpreted as a logical operator and,
therefore, the implied insertion of subject or relational operator results in a negated
relation condition. Some examples of abbreviated combined and negated combined
relation conditions follow.

Condition Expanded Equivalent

a > b AND NOT < cORd ((a > b) AND (a NOT < ¢)) OR (a NOT < d)
a NOT EQUALb ORc (a NOT EQUAL b) OR (a NOT EQUAL c)
NOTa =bORc (NOT (a = b)) OR (a = ¢)

NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < c))

Evaluation Order of Conditions

When parentheses are not used, or parentheses are not nested, conditions are evaluated
in the following order:

1. Truth values are established for arithmetic expressions

2. Truth values are established for:
Simple conditions, in the following order: relation, class, switch-status, sign
Negated simple conditions
Combined conditions with the logical operator AND
Combined conditions with the logical operator OR
Negated combined conditions

Use parentheses to change the order of evaluation; conditions within parentheses are
evaluated first. Within nested parentheses, evaluation proceeds from the innermost
pair of parentheses to the outermost pair. When the sequence of evaluation is not
completely specified by parentheses, the order of evaluation is from left to right in the
sequence given above.

1-24 Programming Concepts Licensed Material - Property of Data General

Parentheses are unnecessary when either AND or OR is used exclusively in one
combined condition. However, you may need parentheses to determine a final truth
value when the condition includes a combination of AND, OR, and NOT.

File I/O Operations

1/0 operations transfer data to and from files and devices. The following Interactive
COBOL verbs are used for I/O: ACCEPT, CLOSE, DELETE, DISPLAY, OPEN,
READ, REWRITE, START, UNDELETE, UNLOCK, and WRITE.

Current Record Pointer

The current record pointer is a conceptual item indicating a logical position in an
indexed or relative file in dynamic access mode. It is used to select the next record to
be read. The current record pointer is changed by the OPEN, START, and READ
statements. See these statements in chapter 8 for more information about the current
record pointer.

File Status Codes

After an 1/0 operation is executed, the system generates a File Status code indicating
the outcome of the operation. If you specify the FILE STATUS clause in a file control
entry, a value indicating the status of the I/O operation is placed into the specified
two-character data-item. Your program can then test this item to determine the
condition that terminated the 1/O operation.

The File Status codes can be examined anywhere within the Procedure Division.
However, special rules apply for examining File Status codes generated by an
unsuccessful OPEN or CLOSE.

If an OPEN or CLOSE statement on your file is unsuccessful, your interactive
COBOL program terminates immediately; the statement examining File Status codes
is not executed. To prevent program termination, include a Declaratives section with
a USE procedure for which this file qualifies.

Appendix A of each User’s Guide lists the File Status codes.

Exception Conditions

During I/O processing, a number of exception conditions might arise. Some examples
of these are:

e Specifying an invalid key on a random access to a file

. Reaching the end of a file during sequential processing

. Opening a file with an illegal filename

. Encountering device or data errors

Interactive COBOL provides two methods of handling these exceptions. You can
specify the AT END and INVALID KEY options in the appropriate 1/O processing

statements for a file. You can also specify the Declaratives section at the beginning of
the Procedure Division to process all exceptions for any files or sets of files.

Programming Concepts

1-25

The INVALID KEY Condition

The INVALID KEY condition occurs as the result of an unsuccessful execution of a
DELETE, READ, REWRITE, START, UNDELETE, or WRITE statement. Two
examples of invalid key errors are:

. A READ, REWRITE, or DELETE statement attempts to access a record with
a primary key that does not exist in the file.

. A WRITE statement is executed for an existing primary key.

When the INVALID KEY condition is recognized, the system takes the following
actions in the order given:

1. A non-zero value is placed into the FILE STATUS data-item, if one is specified
for this file, to indicate an INVALID KEY condition.

2. If the INVALID KEY phrase is present, control is passed to the associated
imperative statement; any USE procedure specified for the file is not executed.

3. If the INVALID KEY phrase is not present, but a USE procedure is specified
for the file, that procedure is executed.

If the INVALID KEY condition occurs, the I/0 statement that recognizes the
condition fails, and the file is not affected.

The AT END Condition

The AT END condition occurs when a sequential READ, READ NEXT, or READ
PREVIOUS statement attempts to process past the end of a file or before the
beginning of a file. When the AT END condition is recognized, the system takes the
following actions:

1. A non-zero value is placed in the FILE STATUS data-item, if specified for this
file, to indicate an AT END condition.

2. If the AT END phrase is present, control passes to the specified imperative
statement; any USE procedure designated for the file is not executed.

3. If the AT END phrase is not present, but a USE procedure is specified for the
file, that procedure is executed.

If the AT END condition occurs, the I/O statement that causes the condition fails.
The contents of the associated record area and the status of the current record pointer
are undefined.

For more information, see the READ statement in chapter 8.

The Declaratives Section

The Declaratives section contains procedures to process exceptional 1/O conditions
that arise during execution of the file handling statements READ, WRITE, UNLOCK,
OPEN, CLOSE, START, REWRITE, DELETE, and UNDELETE. The
Declaratives section is written at the beginning of the Procedure Division. Each
Declaratives section contains a USE statement identifying the conditions under which
the associated procedures are executed.

Procedures specified in the Declaratives section are executed when the AT END or
INVALID KEY condition exists and the appropriate phrase has not been specified in
the I/O statement, or when some other I/O error occurs. After execution of a USE
procedure, control returns to the statement following the statement that caused the
error.

For more information on the Declaratives section, see the “Declaratives Format” and
the USE statement in chapter 8.

1-26

Programming Concepts

Chapter 2
File Organization and Access

Interactive COBOL supports sequential, indexed, and relative file organizations. Files
are automatically created by the system when a file that does not exist is opened for
OUTPUT by a COBOL program, or when a relative or indexed file is opened for 1-O.
Table 2-1 lists file organizations and their associated record and key lengths.

File Organization Record Length Key Length

Sequential

fixed or variable limited only by n/a
(assigned to DISK) program size

line (assigned to 132-byte max. n/a

PRINTER,

KEYBOARD, or

DISPLAY)
Indexed 4096-byte max. 100-byte max. for each key
Relative 4096-byte max. 2-byte binary

Table 2-1 File Organizations, Record Lengths, and Key Lengths

The FILESTATS utility may be used to determine the amount of space in blocks
required for an indexed or relative file. The utility uses the number of records, key
length, and record length as input, and provides index size, data size, and total file size
as output. (For details of FILESTATS, see the Interactive COBOL Utilities manual
for your operating environment.)

Sequential Files

The records in a sequential file are arranged in the order in which they were written;
you can retrieve the records only in that order. You can READ a sequential file only
from the beginning of the file. If you add a record, it is appended to the end of the file.

No keys are associated with records in a sequential file. A record in a sequential file
cannot be deleted; a new file must be created to accomplish this.

There are three types of sequential files:

« Fixed sequential

» Variable sequential

« Line sequential

Sequential files are specified as ORGANIZATION IS SEQUENTIAL in the

file-control entry in the Environment Division. This entry may be omitted, as sequential
organization is the default.

Licensed Material - Property of Data General

File Organization and Access

In fixed-length sequential files, each record is the same length. This length is
determined at the time the file is created, and it cannot change. The record length is
set with the RECORD CONTAINS clause in the Data Division. The RECORDING
MODE IS FIXED clause specifies the file type as fixed sequential; however, if this
clause is omitted, fixed sequential is assumed.

In variable-length sequential files, each record contains a 2-byte header that stores the
record length. However, you must give a range of possible record sizes with the
RECORD CONTAINS clause in the Data Division. The RECORDING MODE IS
VARIABLE clause specifies the file type as variable sequential.

In fixed and variable sequential files, storage for the record is reserved in the program
file. Therefore, the only length restriction on a record is that the resulting program file
not be too large to run under the runtime system. For information on maximum
program sizes, see the Interactive COBOL User’s Guide for your operating system.

Line sequential files written by Interactive COBOL programs contain variable-length
records terminated by CR (on RDOS and DG/RDOS) or NEW LINE (on AOS and
AOS/VS). A line sequential file is required when data is output to a sequential device
such as a line printer. Line sequential files do not use the RECORDING MODE
clause. They can have a RECORD CONTAINS clause to specify maximum record
size, but this is not required. There is a system limit, however, on maximum record
size: each record cannot exceed 132 characters (plus the terminator).

You can create a line sequential file with the ASSIGN clause. Whereas fixed and
variable sequential files must be assigned to DISK, a line sequential file must be
assigned to PRINTER (for output files), KEYBOARD (for input files), or DISPLAY
(to send data directly to the screen without using the Screen Section).

The usual way of entering data through the keyboard is by using the ACCEPT verb
and the Interactive COBOL Screen Section. An alternative to this is to assign a line
sequential file to KEYBOARD with no external file-name and open that file for
input. A record “read” from the keyboard is terminated when you press CR or NEW
LINE.

Similarly, data is usually output to the terminal via DISPLAY and the Interactive
COBOL Screen Section. An alternative to this is to assign a line sequential file to
DISPLAY with no external file-name, open that file for OUTPUT, and write to it.

In a file with line sequential records, the READ statement inputs characters up to the
first CR (octal 015), null (octal 000), form feed (octal 014), or NEW LINE (octal
012). (NEW LINE is not a line terminator on RDOS or DG/RDOS.)

When a READ statement is executed, the system overwrites the contents of the record
area up to and including the terminator. Therefore, after execution of a READ
statement for a line sequential file, the contents of the associated record area contain
the record, the terminator, and any characters after the terminator that were present
before execution of the READ. To avoid processing these characters, clear the record
area before each read; for example, by moving spaces or zeros to the record area.

You can append records to the end of a sequential file with the OPEN EXTEND
statement. Records can be read, modified, and rewritten consecutively with the
OPEN I-O statement.

Open T-0 o~ Sea - File has to exss+
Oor Q| erriv
opernoudpeT - TE Rle ekyts - 4 wid
be ocveawrititn.

2-2 File Organization and Access Licensed Material - Property of Data General

Indexed Files

An indexed file consists of records identified by key values, rather than by physical or
logical position. The key allows direct access to a particular record using a single
program statement. Indexed file organization is permitted only for files assigned to
DISK.

An indexed file must have at least one key, and it may have up to one primary key and
four alternate keys. The data-item named in the RECORD KEY clause of the
SELECT clause for an indexed file is the primary record key for that file. The
ALTERNATE RECORD KEY clause specifies the optional alternate keys. Both
primary and alternate keys must be defined in a record description in the File Section
of the Data Division. The definition consists of a level number, a data name (the same
as used in the SELECT clause), and a PICTURE clause. For the purposes of
inserting, updating, deleting, and undeleting records in a file, each record is identified
solely by the value of its primary key, which must be unique for each record. The key
value of HIGH-VALUES is reserved for system use. Your program should not have
any key values equal to HIGH-VALUES.

An indexed file is implemented as two external files at the operating system level. One
is the index portion, containing keys and pointers; the other is the data portion,
containing records. An Interactive COBOL program references the file by a single
filename. The runtime system appends the extensions .NX and .XD to the filename to
identify the index portion and the data portion, respectively.

The Index Portion

The blocks in an index portion are logically organized in a tree structure, with a
maximum of six levels. The root level consists of one block, which contains key entries
in ascending collating sequence. Each key entry in the root level has the highest
ASCII value in a block at the second level. Pointers connect each key entry in the root
level to the appropriate block at the next level. Succeeding levels follow the same
pattern until a terminal level is reached. Blocks in the terminal level contain key
entries for all existing records. Associated with each key entry is a pointer to the data
record in the data portion. Figure 2-1 shows the tree structure of an indexed file.

G root
Y level

Cc P second
G Y level

terminal
level

B E N T
C G P Y

l l pointers to

data data data data data data data data data file
B c E G N P T Y

DG-00251

Figure 2-1 Indexed File Structures

Licensed Material - Property of Data General File Organization and Access 2-3

The Data Portion

The data portion of an indexed file contains the data records, including the keys, in
the order in which records are written; they are not necessarily in ascending collating
sequence. This implementation makes file expansion simpler since file space on the
disk is allocated as needed. Consequently, records need no overflow areas.

Sequential Access. The data portion of an indexed file is structured so that sequential
access is efficient. Data records are linked within the data portion; thus, sequential
access is independent of the index portion. In sequential access mode, records are
written and retrieved in ascending order of record key values.

Random Access. In random access, the search algorithm compares a given key to the
key entries in a block at one level of the structure and follows a pointer to a block at
the next level. The index structure and the algorithm make the search efficient.
Suppose the record with the key E (refer to Figure 2-1) is to be located. First E is
compared to the first entry at the root level. Since E is less than G (i.e., it precedes it
in the collating sequence), the search proceeds to the second level by following the
pointer from G. The pointer leads to the block containing C and G. Since E is greater
than C and less than G, the search continues to the third level by following the pointer
from G. In this example, the third level is the terminal level, and the pointer to the
data record is reached.

Dynamic Access. Dynamic access enables you to use one OPEN statement to access
records in a relative or indexed file sequentially and randomly. The ACCESS MODE
clause, described in chapter 6, is used to access files dynamicaly.

File Efficiency

As shown by the example of random access, the search through the index portion for
a given key requires a “read and compare” at each level of the tree structure. Thus,
one objective in designing a file is to minimize the number of levels in the index
structure. Keys may be up to 100 bytes long, but shorter keys are generally more
efficient. Longer keys mean fewer key entries per block, hence a greater number of
levels in the tree structure. The number of levels also increases as the number of
records increases.

Use the FILESTATS utility at the file design stage to predict the size of the index
portion of a file with a given key length and a given number of records. The output of
FILESTATS includes the number of key entries per index block and the number of
levels in the structure, as well as the calculated sizes of the index portion and the data
portion.

Record Deletion

The COBOL verb DELETE deletes records logically. The record in the data portion
is flagged as deleted and, for the user, no longer exists. However, the data record is not
physically removed from the file. Interactive COBOL provides the UNDELETE verb,
which restores a logically deleted record to active use. DELETE and UNDELETE
require the use of the primary key for the record.

The ANALY ZE utility reports the number of records that have been logically deleted
from a file. If this number becomes large in relation to the total number of records,
disk space is being wasted; and the index portion contains more levels than necessary.
The COLLAPSE and REORG utilities physically delete logically deleted records.
For more information on these utilities, see the Interactive COBOL Utilities manual
for your operating system.

2-4 File Organization and Access Licensed Material - Property of Data General

Primary and Alternate Keys

An indexed file may be designed so that a record can be accessed by more than one
path. In addition to a primary key, you can specify up to four alternate keys. The
primary key must uniquely identify a record. An alternate key can have duplicates;
several records may have the same value for an alternate key. For example, a file
containing sales force records might have the salesperson’s name as the primary key
and the salesperson’s employee number and sales region as alternate keys. The sales
region key can be used to retrieve the names of all the sales personnel in a given
region.

When duplicate alternate keys are created, access paths to the records are built in the
order of entry to the file. Therefore, when an alternate key with duplicates is used to
retrieve a record, the first duplicate written is the first to be read.

An alternate key can also serve as another unique record identifier. However, if an
alternate key is to be a unique reference, the applications program must check the
uniqueness of the key, because COBOL will not. The INVALID KEY phrase controls
checking for duplicates of the primary key only.

Alternate keys are named in ALTERNATE RECORD KEY clauses in the SELECT
clause and defined along with the primary key in a record description in the Data
Division. The definition consists of a level number, a data name (the same as used in
the SELECT clause), and a PICTURE clause. Each key may be up to 100 bytes long,
with a maximum total of 500 bytes for a primary key and four alternates.

At the operating system level, the index portion of an indexed file with alternate keys
contains index structures for the primary key and for each alternate key. All index
structures are the same as the structure described above (see Figure 2-1). Each index
structure points to a common data portion. At the index’s terminal level for an
alternate key, each key entry points to the first data record that contains that
alternate key value. Once the first record is located, additional records with that value
for the alternate key can be accessed sequentially.

File Updating

A READ or START statement may refer to an alternate key, but a WRITE or
REWRITE statement must refer to a primary key. When a WRITE statement is
executed, the primary key and alternate keys are added to their respective index
structures.

A REWRITE statement can change an alternate key, but not a primary key. The
record update takes longer for a file with alternate keys. When an alternate key is
changed, the old index entry is flagged for deletion and a new index entry is written.
The data portion is merely updated in place. Therefore, if ANALYZE is run on a file
after a large number of alternate keys have been deleted, ANALYZE may report a
number for deleted keys that is greater than the total number of records (including
deletions) currently in the file. (See the Interactive COBOL Utilities manual for a
description of ANALYZE.)

Licensed Material - Property of Data General File Organization and Access

Relative Files

A relative file consists of records and a 2-byte binary key that uniquely identifies the
logical ordinal position of each record in the file. The key is not a part of the data
record. The representation of relative files is similar to that for indexed files. A
relative file is also implemented as two files, an index portion and a data portion,
named with the extensions .NX and .XD. The index portion has the tree structure
described for indexed files.

The advantage of using a relative file is that the 2-byte key, described as PIC 9(4)
COMP to PIC 9(18) COMP, can identify up to 65,534 records. Five bytes per key
would be required for this many records if the key were in decimal format in an
indexed file. The reduced key length means that relative files have fewer index levels
than indexed files; hence access time is improved. Relative files also provide all the
advantages of indexed access when keys can be expressed as numbers from 0 to
65,534. The data portion is the same as that for indexed files, except that the key is
not part of the record.

The following restrictions apply to relative key descriptions:

¢ If you use the /I compiler switch, the relative key must be described as PIC 9(4)
COMP.

e If you use the /A compiler switch, PIC 9(4) COMP allows you to access relative
keys with values from 0 to 9999 only. To access keys with values from 10,000 to
65,534, define the relative key as PIC 9(5) COMP.

« If you use neither the /A nor /I compiler switches, defining the relative key as PIC
9(4) COMP allows you to access all records (keys with values from 0 to 65,534).

The FILESTATS utility helps design relative files. The ANALYZE utility outputs
statistics on existing relative files.

2-6 File Organization and Access Licensed Material - Property of Data General

Chapter 3

Interactive Screen
Management

With Interactive COBOL’s screen management facility, an Interactive COBOL
program can:

o Specify exact display locations for input, output, and update fields
« Display literal text in predefined display positions

« Accept data typed in designated positions on the display

« Update the contents of fields on the display

« Control such console features as blinking or sounding a tone

A single program may contain as many different screens as desired. Screen entries are
defined in the Screen Section of the Data Division and are referenced by the DISPLAY
and ACCEPT verbs.

In addition, Interactive COBOL provides the SCREEN utility for development
systems. SCREEN lets you compose input and output fields on the display terminal
and to produce a file with lines of source code that describe the image just created.
The source code may then be inserted directly into a program or used in a COPY file.
For more information see SCREEN: Screen Format Editor.

Screen Data Description

Each field that appears on the display must be described in the Screen Section. Each
screen entry consists of a level number, an optional screen-name, and optional clauses
that specify the positions of display fields and other display terminal functions, such as
blinking or sounding a tone.

Screen entries can be literal, data-item, or group items. Literal format is used to
display constant information, such as a heading or a menu. Data-item format is used
to pass data between File, Working-Storage, and Linkage sections and screen storage.
Literal and data-item entries can be combined to form a group entry, which allows
you to display and accept an entire screen by executing one DISPLAY and ACCEPT
sequence.

The following rules apply to the Screen Section:

o The Screen Section must follow the Working-Storage and Linkage sections.

« The level number must be the first element in each data description. Level numbers
may range from 01 to 49. Entries at the 01 level must begin in area A; other levels
may be indented as desired.

« A screen-name is required with 01 level numbers but not with other level numbers.

e The REDEFINES, OCCURS, and FILLER clauses are not permitted in the
Screen Section.

Licensed Material - Property of Data General Interactive Screen Management

3-1

Literal Format

A literal entry is typically a line of text, although it may be a single character or
simply positioning information. The syntax for a literal entry is:

level-number [screen-name]

[; BLANK SCREEN]

[; BLANK LINE]

[; BELL]

[; BLINK]

[integer-1

; LINE NUMBER 1S4 PLUS integer-2]
identifier-1

integer-1
}NUMBER ISCPLUS integer-2 [; VALUE IS literal].
identifier-1

[{COLUMN
"\CoL

A literal entry consists of a level number, an optional screen-name, and at least one
other clause. The clause can be a screen positioning clause (LINE and COLUMN) or
a literal to be displayed. If a literal is displayed, it must be a quoted string. The string
can contain any text, such as a report heading, a prompt requesting information, or an
error message. The following example shows a literal entry. Note that the VALUE IS
clause is not required when specifying a literal.

01 NAME-PROMPT LINE 5 COL 5 “ENTER CUSTOMER NAME:” .
PROCEDURE DIVISION.

DISPLAY NAME-PROMPT.

When the DISPLAY statement is executed, the prompt appears on line 5, column 5.
However, the operator cannot respond to the prompt, because literal format lets you
display constant information only. You cannot execute an ACCEPT statement on an
entry in literal format. To let the operator enter information, you must use data-item
format.

Data-Item Format
The syntax for a data-item entry is:

level-number [screen-name]
[; BLANK SCREEN]
[; BLANK LINE]
[; BELL]
[; BLINK]

[integer-1
; LINE NUMBER IS (PLUS integer-2
identifier-1

9]

- integer-1
: %’Ml 'NUMBER IS¢ PLUS integer-2 }
CoL (identifier-1

PICTURE ‘ ; FM id-lit
')PIC IS picture-string ¢; TO id
o ; USING id

Interactive Screen Management

Licensed Material - Property of Data General

[; BLANK WHEN ZERO]

_ { JUSTIFIED

JUST } RIGHT

[; AUTO]

[; SECURE]

[; REQUIRED]
[; FULL).

An entry in data-item format must contain a PICTURE clause, which describes how
the system edits the contents of the data-item when it is displayed or accepted, and a
FROM, TO, or USING clause, which specifies a corresponding File, Working-Storage,
or Linkage Section data-item.

The FROM clause specifies an output data-item. During execution of a DISPLAY
statement, the contents of the data-item are displayed.

The TO clause specifies an input data-item. During execution of a DISPLAY
statement, underscores are displayed according to the data-item’s PICTURE clause.
The underscores indicate the number of character positions in the display field.
During execution of an ACCEPT statement, the contents of the data-item can be
altered.

The USING clause specifies an update data-item. During execution of a DISPLAY
statement, the current contents of the data-item are displayed. During execution of an
ACCEPT statement, the operator can alter that information.

The other clauses define the position of the data-item on the display and any special
terminal functions; they are discussed below.

The following example illustrates the pertinent statements for a simple screen I /O
operation. In the example, NAME-PROMPT is a literal entry and SCR-NAME is a
data-item entry. Execution of the first DISPLAY statement displays the contents of
NAME-PROMPT, the execution of the second DISPLAY displays 25 underscores.
The ACCEPT statement allows the operator to enter data in the entry SCR-NAME;
when the ACCEPT is complete, the contents of screen storage are transferred to the
data-item CUST-NAME in the Working-Storage Section.

WORKING-STORAGE SECTION.

65- CUST-NAME PIC X(25).
SCREéﬁ‘SECTION.
01 NAME-PROMPT LINE 5 COL 5 “ENTER CUSTOMER NAME:™.
01 SCR-NAME LINE 5 COL 27 PIC X(25) TO CUST-NAME.
PROCEbﬁRE DIVISION.

DISPLAY NAME-PROMPT.

DISPLAY SCR-NAME.
ACCEPT SCR-NAME.

Licensed Material - Property of Data General Interactive Screen Management 3-3

Group Format

A group entry consists of one or more data-item or literal entries, or a combination of
both. The syntax for a group entry is:

level-number screen-name
[; AUTO]
[; SECURE]
[; REQUIRED]
[; FULL]
{ data-item or literal entry ...}

With a group entry, you can display or accept any number of screen entries by
executing a single DISPLAY or ACCEPT statement. Although you cannot execute
an ACCEPT on a literal entry or a data-item entry that includes a FROM clause
only, you can execute an ACCEPT on a group entry that contains these types of
entries, as long as it also contains one or more data-item entries with the TO or
USING clause.

A group entry is completed after the operator presses a terminator at the last input or
update field and the data is validated. Until that time, the operator can use the arrow
keys to move to any input or update field on the display and then modify it.

A group entry is constructed according to the usual COBOL rules. It can contain a
hierarchy of other group and elementary items, with a maximum of 49 levels. Level
numbers can range from 01 to 49. The following example illustrates group format:

DATA DIVISION.

WORKING-STORAGE SECTION.

77 CUST-NAME PIC X(25).
77 CUST-NUMBER PIC 9(8).
77 CHARGE-AMOUNT PIC 999v99.

SCREEN SECTION.

01 CUST-DATA.
02 LINES COL 5 “ENTER CUSTOMER NAME:".
02 LINE 5 COL 33 PIC X(25) USING CUST-NAME.
02 LINE 7 COL 5 “ENTER ACCOUNT NUMBER:".
02 LINE 7 COL 33 PIC 9(8) USING CUST-NUMBER.
02 LINE 9 COL 5 “ENTER AMOUNT OF CHARGE:".
02 LINE 9 COL 33 PIC $999.99 USING CHARGE-AMOUNT.

PROCEDURE DIVISION.

DISPLAY CUST-DATA.
ACCEPT CUST-DATA.

A group entry must have a name; however, it is permissible to omit names for items
within the group, as shown above. Omitting a name is equivalent to a FILLER entry
(the word FILLER is iliegal in the Screen Section). The individual entry cannot be
referenced except as part of a higher level group.

3-4 Interactive Screen Management Licensed Material - Property of Data General

Group Format

Literal Format

Data-Item Format

AUTO!
FULL'
REQUIRED
SECURE'

BELL

BLANK LINE
BLANK SCREEN
BLINK

COLUMN

LINE

VALUE IS literal

AUTO'

BELL

BLANK LINE
BLANK SCREEN

BLANK WHEN ZERO

BLINK

COLUMN
FROM?
FULL'
JUSTIFIED
LINE

PICTURE IS picture-string

REQUIRED'
SECURE!
TO!

USING

Table 3-1 Screen Clauses

TAUTO, FULL, REQUIRED, and SECURE cannot be used for an entry designated as output only (FROM clause).

2An entry may contain a FROM clause and a TO clause; however, if it includes both clauses it cannot also specify

the USING clause.

Screen Section Clauses

Interactive COBOL provides an extended set of clauses for the Screen Section. More
than one clause may be associated with each screen entry. Clauses can be in any order
within an entry; however, certain clauses may not be used together in a screen

definition. Table 3-1 lists the clauses that can be used with each format. Each clause
is described below.

VALUE Clause

The VALUE clause specifies literal information to be displayed. It can be used only in
a literal entry. The VALUE literal must be nonnumeric and must be enclosed in
quotation marks. It cannot be a figurative constant. The words VALUE IS do not
have to precede the literal.

PICTURE Clause

The PICTURE clause functions in much the same way as in the other sections of the
Data Division. It describes the category, size, and appearance of the display field’s

contents.

The picture-string may include any standard editing characters, such as those for
comma insertion, zero suppression, or floating currency sign. The picture-string
characters P, V, CR, and DB can be used only with output fields (FROM clause).

The PICTURE clause controls the appearance of data displayed. During execution of
a DISPLAY statement, data is displayed according to the PICTURE associated with
the screen data-item. All editing characters are present and any special clauses are in

effect.

The PICTURE clause also checks the category of data that is accepted in a field.
When an operator terminates an input or update field, the runtime system checks

Licensed Material - Property of Data General

Interactive Screen Management

3-5

whether the entered data conforms to the PICTURE of the screen data-item. For
example, if the operator enters an alphabetic character in a numeric field, the system
displays an error message, positions the cursor to the first incorrect character, and
waits for the operator to reenter the data.

The PICTURE of the File, Working-Storage, or Linkage data-item named in the
FROM, TO, or USING clause does not have to correspond exactly to the PICTURE
clause in the screen data-item. During execution of a DISPLAY /ACCEPT sequence,
data is transferred between the File, Working-Storage, or Linkage data-item and the
screen data-item according to the usual rules for MOVE, with one exception: data
from a numeric edited data-item in the Screen Section can be moved to a numeric
data-item in another section. In this case, all characters of the numeric edited data-item
except digits, sign, and decimal point are ignored. The decimal point is used for
alignment purposes only.

FROM, TO, and USING Clauses

Every data-item entry must include a FROM, TO, or USING clause. The identifier
following the FROM, TO, or USING clause must be defined in the File, Working-
Storage, or Linkage sections of the Data Division. The identifier may be qualified,
subscripted, or indexed.

FROM Clause

A FROM clause identifies an output field. When a DISPLAY statement is executed,
the contents of the associated File, Working-Storage, or Linkage item are moved into
the screen data-item and the contents of the screen data-item are displayed. Fields
with a FROM clause appear at half intensity.

TO Clause

A TO clause identifies an input field. The TO identifier references a data-item in the
File, Working-Storage, or Linkage sections. When a DISPLAY statement is executed
on a screen data-item with the TO clause, underscores are displayed. The number of
underscores displayed corresponds to the number of characters in the picture-string.
When the operator enters a character, the underscore acts as a terminator; characters
to the right of the first underscore are ignored. After the ACCEPT statement is
completed, the contents of the data-item in screen storage are moved to the associated
File, Working-Storage, or Linkage data-item. Fields with a TO clause appear at full
intensity.

If the operator terminates an input field without entering any data and no previous
value is retained, or the operator does not visit an input field, a default value is
transferred from the screen data-item to the associated File, Working-Storage, or
Linkage data-item. This default value is zero for numeric data-items and spaces for
other data-items.

USING Clause

A USING clause identifies an update field; that is, a field that is both input and
output. When a DISPLAY statement is executed, the current contents of the screen
data-item are displayed.

When an ACCEPT statement is executed, the operator can enter new data in the
update field. The contents of the display field are left-justified and editing characters
are removed. The remainder of the field is filled with underscores.

You cannot combine the USING clause with the FROM or TO clause in one entry.
Fields with a USING clause appear at full intensity.

3-6

Interactive Screen Management

A screen entry can specify that data is to be displayed from one identifier or literal
and accepted into another identifier. This operation requires both a FROM and TO
clause, rather than a USING clause. Also, data is transferred between the File,
Working-Storage, or Linkage data-item and the screen data-item according to the
usual rules for MOVE, with one exception: data from a numeric edited screen
data-item can be moved to a numeric data-item.

LINE and COLUMN Clauses

The LINE and COLUMN clauses specify the position of the field on the display.
When a screen item is accepted or displayed, the field position starts at the location
designated in the LINE and COLUMN clauses. Any existing characters in that
location on the display are overwritten.

Under RDOS and DG/RDOS, the DEFLINES utility sets the display size. Under
AOS and AOS/VS, the CHARACTERISTICS command sets the display size. Most
terminals have a display size of 80 columns wide and 24 lines long. System error
messages are displayed on line 24. Consequently, you should keep this line free when
designing displays.

If the COLUMN and LINE values are larger than the display size, the fields will
wrap onto the same line or column. If your display is 80 columns wide, for example, a
field that begins at column 82 will appear in column 2. A display field must start at
column 127 or less, although it can continue up to column 255.

A display position may be specified absolutely or relatively. Relative positions are
always set at compile time. Absolute positions are set at compile time, if LINE or
COLUMN are specified by an integer, or at runtime, if LINE or COLUMN are
specified by an identifier. The following sections discuss absolute positioning at
execution time, as well as relative positioning.

Absolute Positioning Using an Integer

An absolute position indicates a specific line and column number. The line or column
number can be specified with an unsigned integer or an identifier (discussed below).
The first positioning clause in a group must always be absolute, for example:

01 HEADER-SCREEN.
02 LINE 3 COL 5 VALUE “MONTHLY UPDATE REPORT".

Relative Positioning

The PLUS phrase specifies relative positioning. The positioning is relative to the last
position of the cursor. This eliminates the need to count lines or columns. An example
of relative positioning is:

01 HEADER-SCREEN.
05 LINE 3 COL 5 VALUE "MONTHLY UPDATE REPORT".
05 LINE PLUS 2 COL 3 VALUE "CUSTOMER NAME'.
05 LINE PLUS 1 COL 3 VALUE "-------- ---=

Relative display positions are translated to absolute positions by the compiler. All
relative positions are absolute at compile time. Consequently, the order in which
relatively positioned data-items are defined determines their actual display positions,
not the order in which the fields are displayed or accepted. This is illustrated by the
following example:

Interactive Screen Management

3-7

SCREEN SECTION.

01 SCREEN-PROMPTS.

05 SCR-EMP-PROMPT LINE 5 COL 5 PIC X(20) FROM EMP-PROMPT.
05 SCR-EMP-NUM LINE 5 COL 28 PIC 9(9) TO EMP-NUM.
05 SCR-PAY-PROMPT LINE PLUS 2 COL 5 PIC X(20) FROM PAY-PROMPT.

05 SCR-PAY-RATE COL 28 PIC 99.99 TO PAY-RATE.

05 SCR-HRS-PROMPT LINE PLUS 2 COL 5 PIC X(20) FROM HRS-PROMPT.

05 SCR-HRS COL 28 PIC 99.99 USING HRS.

DISPLAY SCR-PAY-PROMPT.

DISPLAY SCR-PAY-RATE.

ACCEPT SCR-PAY-RATE.

IF PAY-RATE < 50.00 PERFORM PAY-RATE-ERROR-PARA .

DISPLAY SCR-HRS-PROMPT.

DISPLAY SCR-HRS.

ACCEPT SCR-HRS.

IF HRS < 40.00 PERFORM OVERTIME-PARA.

The DISPLAY and ACCEPT sequence for the pay rate and the hours worked can
appear in any order; they do not affect the final appearance of the display. Of course,
they do affect the order in which the operator responds to the prompts.

Each clause has four possibilities:

* No LINE or COLUMN clause
* Only the LINE or COLUMN clause with no number
* The LINE or COLUMN clause with a number: LINE m or COLUMN »

* The LINE or COLUMN clause with the PLUS phrase: LINE PLUS m or
COLUMN PLUS ».

Furthermore, using one form of one clause may affect the other clause. Table 3-2
shows the resultant field position for each combination.

LINE Clause COLUMN Clause Field Position
No clause No clause No change
COL Same line, column plus 1
COL n Same line, column n
COL PLUS n Same line, column plus n
LINE No clause Line plus 1, column 1
COL Line plus 1, column plus 1
COL n Line plus 1, column n
COL PLUS n Line plus 1, column plus n
LINE m No clause Line m, column 1
COL Line m, column plus 1
COL n Line m , column n
COL PLUS n Line m, column PLUS »
LINE PLUS m No clause Line plus m, column 1
coL Line plus m, column plus 1
COL n Line plus m, column n
COL PLUS n Line plus m, column plus n

Table 3-2 COBOL Line and Column Positioning

3-8

Interactive Screen Management

Absolute Positioning Using an Identifier

Lines and columns can also be specified by an identifier, which allows positioning to
be defined at execution time. The identifier must be an elementary unsigned item and
can be subscripted or indexed. The following example shows a screen entry with
dynamic LINE and COLUMN setting:

05 LINE LINE-NUM COL COL-NUM “ENTER CUSTOMER NAME: "

If a line or column number is specified dynamically, any following lines or columns in
the screen entry cannot be specified relatively; that is, the PLUS phrase cannot occur
after an identifier is used to specify LINE or COLUMN.

Positioning Sequence
Line and column positioning is performed in the following order:

« Absolute position specified with integers (LINE n, COL n). These line numbers
are set during compile time.

« Relative position (LINE PLUS n, COL PLUS n). These line numbers are set
during compile time.

 Absolute position specified with identifiers (LINE id, COLUMN id). These line
numbers are set during runtime.
« Variable origin for an entire display (DISPLAY screen-name AT, ACCEPT

screen-name AT). The runtime system offsets all absolute and relative positions
according to this origin.

BLANK SCREEN and BLANK LINE Clauses

The BLANK SCREEN clause erases the entire display and positions the cursor to
line 1, column 1. BLANK LINE erases the current line from the cursor position to the
end of the line without changing the cursor position. Since BLANK LINE is executed
after the positioning commands LINE and COLUMN, you can use it to clear a
previously displayed item (such as an error message) before displaying a new item at
the same position.

BELL Clause

The BELL clause sounds the terminal tone. It is used to attract the operator’s
attention. Use the BELL clause with literal or data-item formats. If the BELL clause
is part of a group entry, the tone is sounded when the group is displayed.

Input Control Clauses

The input control clauses affect input fields during data entry. They restrict the way
in which data is entered, the way data is echoed on the display, and the way fields are
terminated. These clauses are AUTO, FULL, REQUIRED, and SECURE.

Input control clauses in a group entry are associated only with the input or update
items in the group (items having the TO or USING clause).

The AUTO terminates the input or update field automatically when it is full. The
operator does not have to type a terminator to position the cursor to the next field. If
only one entry is to be input, or if the entry is the last one in a group, execution of the
ACCEPT statement is completed.

The FULL clause requires that, if the operator enters data, he or she must enter a
character or space in each position before terminating the input or update field. The
operator can press a terminator to bypass the entire field.

Interactive Screen Management

3-9

The REQUIRED clause specifies that the operator cannot bypass the input or update
field. He or she must enter at least one character or space in the field.

The SECURE clause echoes asterisks on the display rather than the actual data. This
protects the privacy of such data as authorization codes. When SECURE is specified,
the JUSTIFIED and BLANK WHEN ZERO clauses have no effect.

Display Clauses

The display clauses define the way in which a literal or data-item field is displayed,
and the way in which entered data is redisplayed after a data-item field is accepted.
These clauses are BLANK WHEN ZERO, BLINK, and JUSTIFIED.

BLANK WHEN ZERO fills the field with spaces when the data-item has a zero
value. This clause can be used only with a numeric or numeric-edited screen entry. An
entry is regarded as numeric edited when this clause is specified.

The BLINK clause causes a literal or data-item field to blink on the display. BLINK
has no effect on input fields.

JUSTIFIED specifies right justification of data displayed in a field. This clause can
be used only with an unedited alphabetic or alphanumeric data-item.

Order of Execution

When a screen /0 statement is executed, terminal functions for individual entries are
performed in the following order, regardless of the order in which they appear in a
screen description:

BLANK SCREEN

LINE and COLUMN positioning

BLANK LINE

BELL

DISPLAY or ACCEPT the literal or data-item.

Data Movement with DISPLAY and ACCEPT

The data in the Screen Section is referenced by the DISPLAY and ACCEPT verbs.
The DISPLAY verb moves contents of data-items in the File, Working-Storage, or
Linkage sections to screen storage. The ACCEPT verb moves contents of data-items
in screen storage to the associated data-items in the File, Working-Storage, or Linkage
sections. An ACCEPT does not perform an implicit DISPLAY; therefore, always
execute a DISPLAY statement before you execute an ACCEPT.

Interactive COBOL performs the following steps when executing a DISPLAY
sequence.

1. Contents are moved from the File, Working-Storage, or Linkage sections to
screen storage:

a. Ifa Screen Section data-item has a FROM or USING clause, the contents
of the associated data-item are moved to screen storage.

b. If a Screen Section data-item has a TO clause, underscores are moved to
screen storage.

3-10

Interactive Screen Management

c. IfaScreen Section item is a literal, its contents are moved to screen storage.

2. After the moves to screen storage are complete, the entire screen is displayed.
Literals and data-items with a FROM clause are displayed at half intensity;
Data-items with a USING clause are displayed at full intensity. Underscores are
displayed at input fields (TO clause).

3. After a DISPLAY statement is executed, the cursor remains after the last
displayed field.

When the ACCEPT statement is executed:

1. The cursor moves to the first input or update field (described in the Screen
Section with a TO or USING clause) and remains there until the operator
completes the field by:

a. pressing NEW LINE or CR

b. filling the field (if you have specified AUTO)

c. pressing ESC or a function key

2. If the operator presses NEW LINE, CR, a function key, or fills the field
(AUTO), the system validates the entered data against the PICTURE of the
associated Screen Section data-item:

a. If the format of the data does not match the PICTURE clause, the system
displays an error message; the operator must correct the field before he or
she can move to the next input field.

b. If the data in the input or update field is valid, its contents are moved to
screen storage. The underscore acts as a terminator; the underscore and
everything to the right of it are ignored. The data is redisplayed.

3. If the operator has pressed NEW LINE or CR, the cursor moves to the next
input or update field, and the process is repeated.

4. If the operator has a pressed a function key, the cursor does not visit the
remaining input or update fields.

5. If the operator has pressed ESC, the data in the display field is not validated or
moved to screen storage. The cursor does not visit the remaining input or update
fields.

6. After the operator presses ESC, a function key, or completes the last input or
update field, contents of all data-items in the screen referenced by the ACCEPT
are moved from screen storage to the corresponding TO or USING items in the
File, Working-Storage, or Linkage sections. Note that if a field is terminated by
ESC, the data in the display field is not moved to screen storage but the contents
in screen storage are still moved to the data-item in the File, Working-Storage,
or Linkage sections.

7. If the operator has pressed ESC or a function key, ON ESCAPE imper-stmt, if
present, is executed.

Example of Interactive Screen Management

This example shows the Working-Storage and Screen sections of a program that
displays a personnel record. Figure 3-1 shows the screen as it might appear on the
terminal. The discussion following Figure 3-1 describes the action of the screen and
the steps taken by the operator.

Interactive Screen Management

3-11

WORKING-STORAGE SECTION.

01 PERSONNEL-REC.
02 EMP-NAME PIC X(30).
02 ADDRESS.
03 STREET PIC X(30).
03 APT-NO PIC X(5).

03 CITY PIC X(24) VALUE SPACES.

03 STATE PIC X(10).

03 ZIP PIC 9(5) VALUE ZEROS.
02 PHONES.

03 HOME-PH PIC X(12).
03 BUS-PH PIC X(12).
02 DEPARTMENT PIC X(30).
02 SUPER PIC X(30).
02 BADGE PIC 9(10).

77 DEFAULT-STATE PIC X(10) VALUE “N.C."
SCREEN SECTION.

01 PERSONNEL-SCREEN.
02 BLANK SCREEN LINE 1 COLUMN 25 VALUE ‘PERSONNEL RECORD".
02 LINE 3 VALUE “NAME: ".
02 PIC X(30) TO EMP-NAME REQUIRED.
02 LINE S VALUE “ADDRESS".
02 LINE 7 COLUMN S VALUE “STREET: ".

02 PIC X(30) TO STREET.

02 COLUMN PLUS 2 VALUE “APT NO.: ".
02 PIC X(5) TO APT-NO.

02 LINE 9 COLUMN 5 VALUE “CITY: .

02 PIC X(24) USING CITY.

02 COLUMN 35 VALUE “STATE: ".

02 PIC X(10) FROM DEFAULT-STATE TO STATE.
02 COLUMN PLUS 2 VALUE “ZIP: ".

02 PIC 9(5) USING ZIP.

02 LINE 11 COLUMN 5 VALUE “HOME PHONE: ".

02 PIC X(12) TO HOME-PH.

02 COLUMN 31 VALUE "BUSINESS PHONE: ".
02 PIC X(12) TO BUS-PH.

02 LINE 13 VALUE “DEPARTMENT: ".

02 PIC X(30) TO DEPARTMENT REQUIRED.
02 LINE 15 VALUE “SUPERVISOR: ".

02 PIC X(30) TO SUPER.

02 LINE 17 VALUE “BADGE NUMBER: .

02 PIC 9(10) T0 BADGE REQUIRED FULL.

The execution of the statements DISPLAY PERSONNEL-SCREEN and ACCEPT PERSONNEL-SCREEN has
the following effects:

1. The program blanks the display and displays the literal entries, the current
contents of USING and FROM data-items, and underscores, which define the
input entries. All characters, except the CITY and ZIP fields, are displayed at
half intensity.

3-12 Interactive Screen Management

PERSONNEL RECORD

NAME :

ADDRESS

STREET: APT NO.:

CITY: Research Triangle Park STATE: N.C. ZIP: 27708
HOME PHONE: ____ BUSINESS PHONE:

DEPARTMENT :

SUPERVISOR :

BADGE NUMBER:

N J

Figure 3-1 Sample Screen Definition

2. The cursor moves to the first position in the field following EMP-NAME.
Because this field is described as input (a TO clause is in the PICTURE
description), it is delimited by underscores. As data is entered, the characters are
displayed at full intensity. Since EMP-NAME includes the REQUIRED clause,
you must type at least one character before terminating the entry. When you
press a terminator (except ESC), the data is verified against the PICTURE
clause and redisplayed if valid. If you have entered invalid data, the cursor moves
to the first incorrect character. When the data is correct, press a terminator to
move to the next field.

3. The fields following STREET and APT NO. may receive data or remain blank.

4. The fields following CITY and ZIP are update fields (defined with a USING
clause in the screen description) and, as such, retain their current contents. In
Figure 3-1, the contents of CITY and ZIP are displayed. Pressing a terminator
reassigns the displayed contents to screen storage and moves the cursor to the
next field. Displayed data can be modified by typing in new data.

5. The field following STATE is described in the Screen Section with both a
FROM and a TO clause. This means that N.C., the contents of DEFAULT-
STATE, is reassigned to the field each time a DISPLAY is executed. As with
CITY and ZIP, pressing a terminator assigns the current contents of DEFAULT-
STATE to screen storage. Change the displayed data by typing in new data.

6. The fields following HOME PHONE and BUSINESS PHONE may receive
data or remain blank.

7. You must enter at least one character for DEPARTMENT. After you enter the
data and press a terminator, the field is redisplayed.

8. The field following SUPERVISOR may receive data or remain blank.

The field following BADGE NUMBER must be filled. If you enter too few
characters, an error message is displayed, and the cursor moves to the end of the
entered data and waits for it to be filled.

10. When the field is full and you press a terminator, contents of all data-items in the
Screen Section referenced by the ACCEPT statement are moved to the
corresponding TO or USING items in the File, Working Storage, and Linkage
sections.

11. Execution of the ACCEPT statement is complete. Control passes to the next
executable statement in the program.

Licensed Materia! - Property of Data General Interactive Screen Management 3- 13

Chapter 4
COBOL Source Entry

You may use any text editor for writing COBOL source text. ICEDIT, which is
provided with Interactive COBOL, automatically maintains source files in card format
with indexed organization. ICEDIT can optionally create sequentially organized
source files in card and CRT format. The /C switch in the compiler command line
indicates that the source file is in card format, and the local /I switch indicates an
indexed source file (see appendix A).

CRT Format

In CRT format, the only restrictions imposed are the contents of areas A and B and
the use of indicator characters. The compiler reads characters until it finds a line
terminator or until it has read 132 characters, whichever comes first.

A line of Interactive COBOL source code in CRT format has the following layout:

Indicator Area Area
area A B
(optional)

Indicator Column 1. Only an indicator character (*, —, or /) is permitted in this
(optional) optional 1-character field.

If the line has an indicator character (-, /, or *), enter it in column 1.
Area A then begins in column 2, and area B begins in column 6. If you do
not include an indicator character, area A begins in column 1 and area B
begins in column 5.

Area A Columns 2-5 with an indicator character, and columns 1-4 without. The
following COBOL elements must begin in area A: division headers,
section-names, paragraph-names, FD entries, data descriptions at the 01
and 77 levels, and the phrases DECLARATIVES and END
DECLARATIVES.

A tab in area A terminates the area, with area B beginning in the next
column.

Area B Columns 6-132 with an indicator, and columns 5-132 without. Continua-
tion lines, sentences, and statements must begin in area B. A tab in area
B is equivalent to a space.

Comment lines and level numbers 02-49 and 88 may begin in area A or B. Figure 4-1
gives an example of COBOL source code in CRT format.

Licensed Material - Property of Data General COBOL Source Entry

SCREEN SECTION.
COPY “SCREEN10".

01 MASTER-MENU.

02 LINE 2 BLANK SCREEN COLUMN 20 VALUE “THE FUNCTIONS
- “ AVAILABLE ARE: ".

02 LINE PLUS 2 COLUMN 20 VALUE “1) ADD RECORD".

02 LINE PLUS 1 COLUMN 20 VALUE “2) CHANGE RECORD".

02 LINE PLUS 1 COLUMN 20 VALUE “3) EXAMINE RECORD".

02 LINE PLUS 1 COLUMN 20 VALUE “4) DELETE RECORD".

02 LINE PLUS 2 COLUMN 10 BELL VALUE “FUNCTION? ™.

02 COLUMN PLUS 1 PIC 9 TO CHOICE.

COPY “SCREEN1S™.

N J
Figure 4-1 COBOL Source Code in CRT Format

Card Format

A line of Interactive COBOL source code in card format has the following layout:

Sequence number I Indicator ’ Area I Area ’ Comment
area area A B area
Sequence A six-character field (columns 1-6) that typically contains a line

number area number. This field must be present in all source lines in the main
program file and in all COPY files.

After checking for the presence of this field, the compiler does not
check it further. Therefore, it may contain letters, nonsequential
numbers, tabs, spaces, and so forth.

If you do not want numbers, letters, or spaces, in columns 1-6, enter
a tab. A tab in the line number area terminates the area.

Indicator Column 7. If the sequence number area contains a tab, the system

area inspects the next character. If it is an indicator character (/, *, -),
column 7 is considered an indicator area. If any other character is in
column 7, it is considered the beginning of area A.

If the sequence number area does not contain a tab, column 7 must
contain a space or an indicator character. Area A begins in column 8.

Area A Columns 8-11 (with indicator), or 7-10 (without indicator). The
following COBOL elements must begin in area A: division headers,
section-names, paragraph-names, FD entries, data descriptions at the
01 and 77 levels, and the key phrases DECLARATIVES and END
DECLARATIVES. A tabin area A terminates the area, with area B
beginning in the next column.

Area B Columns 13-72. Continuation lines, sentences, and statements must
begin in area B. A tab in area B is cquivalent to a space.
Comment Columns 73-80. Characters in the comment area are placed in the
Area compilation listing but are not further processed by the compiler.
4-2 COBOL Source Entry Licensed Material - Property of Data General

Comment lines and level numbers 02-49 and 88 may begin in area A or B. Figure 4-2
gives an example of COBOL source code in card format.

4 D
001000 SCREEN SECTION.
001010
001020 COPY “SCREEN10".
001030

001040 01 MASTER-MENU.

001050 02 LINE 2 BLANK SCREEN COLUMN 20 VALUE “THE
001060- “ FUNCTIONS AVAILABLE ARE: ".

001070 02 LINE PLUS 2 COLUMN 20 VALUE “1) ADD RECORD".
001080 02 LINE PLUS 1 COLUMN 20 VALUE “2) CHANGE RECORD".
001090 02 LINE PLUS 1 COLUMN 20 VALUE “3) EXAMINE RECORD™.
002000 02 LINE PLUS 1 COLUMN 20 VALUE “4) DELETE RECORD".
002010 02 LINE PLUS 2 COLUMN 10 BELL VALUE “FUNCTION? ™.
002020 02 COLUMN PLUS 1 PIC 9 TO CHOICE.

002030

002040 COPY “SCREEN15".

\ D

Figure 4-2 COBOL Source Code in Card Format

Continuation Lines

The continuation indicator (-) breaks a word or literal between successive lines. When
the continuation indicator is present, the compiler ignores the terminator of the
previous line and interprets the text on the current line as a continuation. The
following rules apply to continued lines:

o The text on the continued line must begin in area B.

o When a COBOL word is broken between two lines, the first nonblank character of
the continuation line follows the last nonterminator character of the previous line.
For example:

line 1: <<TAB>>DIVIDE GROSS-SALES BY TOT-NUM-SALES GIV-<NL>
line 2: -<CTAB>>ING AVERAGE-SALES; ON SIZE ERROR PERFORM

The compiler interprets the continued word as GIVING.

¢ When a continued statement, phrase, or entry is broken between two words, a
continuation indicator is not necessary. If a hyphen is not present in the indicator
area of a line, the compiler assumes that the last character on the previous line is
followed by a space. For example:

line 1: 004210 DIVIDE GROSS-AMT BY TOTAL-SALES<<NL>
line 2: 004220 GIVING AVERAGE-SALES.

The compiler interprets the continued line as:

DIVIDE GROSS-AMT BY TOTAL-SALES GIVING AVERAGE-SALES.

e When a nonnumeric literal is broken between two lines, the continued line must
begin with a quotation mark (*). In this case, the space following the word
REPORT appears between the words REPORT and OF when the literal is
output:

line 1: DISPLAY “THIS IS THE ANNUAL REPORT <<NL>
line 2: - “OF THE CENTRAL HARDWARE CORP.".

When the statement is executed, the runtime system displays:

THIS IS THE ANNUAL REPORT OF THE CENTRAL HARDWARE CORP.

Licensed Material - Property of Data General COBOL Source Entry

Comment Lines

You may enter comments anywhere in the source code, and a program may contain
any number of comment lines. Indicate a comment line by typing an asterisk (*) or
slash (/) in the indicator area. When the asterisk is used, the compiler advances one
line before writing to the output listing; when the slash is used, the compiler advances
to a new page. The text typed on a comment line is produced in the listing but has no
effect on compilation or execution.

Blank Lines

Blank lines may be inserted in the source code at any point, except immediately after
a line with a continuation indicator.

4-4 COBOL Source Entry Licensed Material - Property of Data General

Chapter 5
The Identification Division

The Identification Division must be the first division of a source program. It consists
of the PROGRAM-ID paragraph, which is required, and several optional paragraphs
that should be included for documentation purposes.

The general format of the Identification Division is as follows:
IDENTIFICATION DIVISION.

PROGRAM:-ID. program-pname.
[AUTHOR. [comment entry] ...].
[INSTALLATION. [comment entry]...].
[DATE-WRITTEN. [comment entry]...].
[DATE-COMPILED. [comment entry]...].
[SECURITY. [comment entry]...].

The PROGRAM-ID paragraph must be the first paragraph in the Identification
Division. The program-name is required and may be any valid COBOL data-name,
but it is used only for documentation. It is not the name by which the program is
known to the system. The external file-name of the file containing the source code is
the name used to compile and execute the program.

The optional paragraphs, if used, must be in the order shown.

A comment entry may be one or more lines long and can appear in area A or area B.
The DATE-COMPILED paragraph does not affect compilation. The system date is
placed in the compilation listing on the line following the DATE-COMPILED entry.

The following is an example of the Identification Division.

IDENTIFICATION DIVISION.

PROGRAM-1ID. INVENTORY-01.

AUTHOR. HEADQUARTERS PROGRAMMING GROUP.
INSTALLATION. CENTRAL HARDWARE DISTRIBUTORS INC.
DATE-WRITTEN. JANUARY, 1984.

DATE-COMPILED. JANUARY, 1984.

SECURITY. NOT APPLICABLE.

Licensed Material - Property of Data General The Identification Division

5-1

Chapter 6
The Environment Division

The Environment Division provides a standard way of expressing program values that
are dependent on the physical characteristics of a specific computer. It must follow
the Identification Division and consists of two sections: the Configuration Section and
the Input-Output Section.

The general format of the Environment Division is as follows:

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. computer-name.]
[OBJECT-COMPUTER. computer-name.]

WORDS l
MEMORY SIZE integer | CHARACTERS
MODULES |

[; PROGRAM COLLATING SEQUENCE IS alphabet-name].
[SPECIAL-NAMES. [SWITCH literal
[; IS mnemonic-name]}
[; ON STATUS IS condition-name]
[; OFF STATUS IS condition-namel]]...
Ealphabet-name 1§{~——STANDARD}]
NATIVE
[; CURRENCY SIGN IS lit]
[; DECIMAL-POINT IS COMMAL.J]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control-entry...
[I-O-CONTROL. i-o-control-entry...].]]

The following is an example of the Environment Division.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. CS-SERIES-200.

0BJECT-COMPUTER. CS-SERIES-200.

SPECTAL-NAMES.
SWITCH “A", ON STATUS IS SWO, OFF STATUS IS SW1
SWITCH “B”, OFF STATUS IS SW2, ON STATUS IS SW3
CURRENCY SIGN IS *M
DECIMAL-POINT IS COMMA.

INPUT-OUTPUT SECTION.

Licensed Material - Property of Data General The Environment Division

FILE-CONTROL.
SELECT AFILE ASSIGN TO DISK.
SELECT BFILE ASSIGN TO DISK.
I-0-CONTROL.
SAME RECORD AREA FOR AFILE, BFILE.

Configuration Section

The Configuration Section names the computer(s) that compile and execute the
program. It also defines switches and other special conditions.

SOURCE-COMPUTER names the computer used to compile the program, and
OBJECT-COMPUTER names the computer on which the program is run. Both

paragraphs are for documentation purposes only. The computer name may be any
valid COBOL data-name.

MEMORY SIZE may be any integer value. This clause and the PROGRAM
COLLATING SEQUENCE clause are used for documentation purposes only.

In the SPECIAL-NAMES paragraph, the SWITCH literal must be an uppercase
letter from A to Z. This literal names a logical switch that may be tested for an ON
or OFF condition under program control. The ON and OFF clauses may appear in
either order. At least one of the clauses must be present when a switch is named. A
switch value is set at runtime. For example, if NEWPROG declares switches A and B,
these switches are set to ON by executing the program using the local A and B
switches (that is, NEWPROG/A/B). The value of a switch remains unchanged while
the program is running. Note that the condition-name describing the ON or OFF
status need not be defined elsewhere; no Working-Storage entry is needed. The
SWITCH literal IS mnemonic-name clause is for documentation purposes only.

The alphabet-name IS clause is for documentation purposes only.

The literal in the CURRENCY SIGN clause represents the currency symbol in the
PICTURE clause. The literal is a single character, but it cannot be one of the
following:

Digits 0-9
Letters ABCDLPRSYV X Zspace
Special characters * + - () / =, ;

If you omit this clause, the currency sign is the dollar sign ($).

The DECIMAL-POINT IS COMMA clause exchanges the functions of the period
and comma in numeric literals and in the PICTURE clause character string. All
occurrences of commas in numeric literals are changed when this clause is used. If
subsequent source code contains an index or subscript entry-—for example, (4, 2)—the
comma in this literal is changed to a period, resulting in errors.

Input-Output Section

The Input-Output Section consists of two paragraphs that supply information needed
to control the transmission and manipulation of data between the object program and
external devices. These two paragraphs are called FILE-CONTROL and 1-O-
CONTROL.

6-2 The Environment Division Licensed Material - Property of Data Genera!

The FILE-CONTROL Paragraph

The entries in the FILE-CONTROL paragraph specify the name of each file to be
used by the program, associate the file with a particular hardware device, and
designate other file characteristics.

The SELECT Clause

The SELECT clause names internal program files and associates each one with a
given hardware device and external file-name. It may be used to specify logical file
organization, access method, a File-Status item, keys, and the size of the file.

The SELECT formats for sequential, relative, and indexed file organizations are as
follows:

Sequential SELECT

PRINTER
PRINTER-1
SELECT file-name ASSIGN TO DISPLAY [; id-lit]
KEYBOARD
DISK

[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data-name]

[; DATA SIZE IS integer].

Relative SELECT
SELECT file-name ASSIGN TO DISK [; id-lit]

; ORGANIZATION IS RELATIVE

RANDOM
; ACCESS MODE IS ; RELATIVE KEY IS data-name
DYNAMIC

SEQUENTIAL [; RELATIVE KEY IS data-name]

[; FILE STATUS IS data-name]
[; INDEX SIZE IS integer]
[; DATA SIZE IS integer].

Indexed SELECT

SELECT file-name ASSIGN TO DISK [; id-lit]

: ORGANIZATION IS INDEXED

SEQUENTIAL
: ACCESS MODE IS { RANDOM
DYNAMIC

: RECORD KEY IS data-name
[; ALTERNATE RECORD KEY IS data-name [WITH DUPLICATES]] ...
[; FILE STATUS IS data-name]
[; INDEX SIZE IS integer]
[; DATA SIZE IS integer].

Licensed Material - Property of Data General

The Environment Division

The following is an example of a SELECT clause for a single-keyed indexed file:

SELECT CFILE ASSIGN TO DISK:
ORGANIZATION IS INDEXED:
ACCESS MODE IS DYNAMIC:
RECORD KEY IS C-KEY;
FILE STATUS IS CFSTAT.

A sequential file may be assigned to PRINTER, PRINTER-I, DISPLAY,
KEYBOARD, or DISK. The records can only be accessed sequentially, or in the order
that they were written.

Relative and indexed files can be assigned only to disk. If the access mode is not
specified, sequential is assumed. In relative and indexed files, sequential access is in
ascending order of the RELATIVE KEY or RECORD KEY specified. In random
access, the value of the RELATIVE KEY or RECORD KEY determines the record
to be accessed. If the dynamic access mode is specified, access can be sequential or
random.

Table 6-1 specifies the access mode and assignment statement of the various file types.
The access mode and assignment statements are the same for fixed and variable
sequential files; the RECORDING MODE IS clause in the Data Division specifies
FIXED or VARIABLE (see “FD Entry” in chapter 7). A line sequential file assigned
to PRINTER or DISPLAY must be OPENed for OUTPUT or EXTEND; one
assigned to KEYBOARD must be OPENed for INPUT.

Access Mode Is Assign to
File Type Sequential Random Dynamic Printer Display Keyboard Disk
Fixed Seq. yes no no no no no yes
Variable yes no no no no no yes
Seq.
Line Seq. yes no no yes yes yes no
Relative yes yes yes no no no yes
Indexed yes yes yes no no no yes

Table 6-1 Interactive COBOL File Handling

Assign a line sequential file to DISPLAY to bypass Interactive COBOL’s Screen
Section and send output directly to the display terminal screen. To read a line
sequential disk file, assign to KEYBOARD. On RDOS and DG/RDOS, the READ
statement for files assigned to KEYBOARD is terminated by CR (octal 015), form
feed (octal 014), or null (octal 000). On AOS and AOS/VS, NEW LINE (octal 012)
is also a terminator.

To create a line sequential file on disk, assign to DISPLAY or PRINTER, and specify
an external file-name. For example:

SELECT CUST-RPT ASSIGN TO PRINTER, “CUST$RPT".

The id-lit following the file device type in the SELECT clauses is an Interactive
COBOL extension. It allows a program to associate an internal file-name with an
external file-name. (For details, see “External File-Names” in chapter 1 of the
Interactive COBOL User’s Guide.)

6'4 The Environment Division Licensed Material - Property of Data General

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and can be changed only by the
REORG utility. Interactive COBOL provides three types of file organizations:
sequential, indexed, and relative.

The ACCESS MODE clause designates the method to be used in obtaining records
from a file or placing records into a file. The three access modes are sequential,
random, and dynamic.

The data-item named in the RECORD KEY clause is the primary record key for the
file. This key provides an access path to records in an indexed file. The primary record
key values must be unique among records of the file.

Each data-item name in the ALTERNATE RECORD KEY clause is an alternate
record key for the file. An alternate key provides an additional access path to records
in an indexed file. Up to four ALTERNATE RECORD KEY clauses can be specified.

The RECORD KEY and ALTERNATE RECORD KEY data-names must be defined
as alphanumeric items within a record description entry associated with the file-name.
Each record key can be a maximum of 100 characters long. Record key data-names
can be qualified.

When a data description refers to an existing file, the descriptions of the RECORD
KEY and the ALTERNATE RECORD KEY data-names, as well as their relative
locations within the data record, must be the same as when the file was created.

The DUPLICATES phrase specifies that the value of the associated alternate record
key may be duplicated within any of the records in the file. This phrase is used only for
documentation; Interactive COBOL. allows duplicates even if the DUPLICATES
phrase is not specified. However, it is good programming practice to document the
presence of duplicate keys by specifying the phrase.

The RELATIVE KEY phrase specifies a key whose contents identify a logical record
in a relative file. Relative keys must be defined as PIC 9(4) to 9(18) COMPUTA-
TIONAL.

The FILE STATUS data-item holds a value that indicates the outcome of an 1/0
operation. It must be described as a two-character alphanumeric item. See appendix
A of the appropriate User’s Guide for a table of File Status codes.

The INDEX SIZE and DATA SIZE clauses are Interactive COBOL extensions used
on RDOS and DG/RDOS for contiguous files. On AOS and AOS/VS, files are
dynamically allocated as they grow; the user does not need to preallocate contiguous
file space. These clauses are compiled but are ignored by the AOS and AOS/VS
runtime systems.

The INDEX SIZE clause specifies the number of 512-byte blocks of contiguous disk
storage space to be reserved for the index portion of an indexed or relative file when
the file is created.

The DATA SIZE clause specifies the number of 512-byte blocks of contiguous disk
storage space to be reserved for the data portion of a sequential, indexed, or relative
file when the file is created.

The 1-O-CONTROL Paragraph
The format for an I-O-CONTROL entry is:

SAME [RECORD] AREA FOR file-name, {file—name}...

Licensed Material - Property of Data General

The Environment Division

6-5

The following is an example:

I-0-CONTROL.
SAME RECORD AREA FOR GOOD-CUST-FILE, CREDIT-RISK-FILE
SAME RECORD AREA FOR PARTS-1, PARTS-2, PARTS-3.

The SAME AREA and SAME RECORD AREA clauses are treated identically; in
both cases, the specified files share a common record area. More than one of the files
may be opened at any given time. Since the two clauses are treated in the same
manner, it is illegal for a file-name to appear in more than one of the clauses.

6‘6 The Environment Division Licensed Material - Property of Data General

Chapter 7
The Data Division

The Data Division describes the data that the object program creates, manipulates,
uses as input, or produces as output. It must follow the Environment Division in the
source program.

The Data Division consists of four sections: the File Section, the Working-Storage
Section, the Linkage Section, and the Screen Section, which is an Interactive COBOL
feature. At least one of these sections must be present in the Data Division.

The general format of the Data Division is as follows:

[DATA DIVISION.

[FILE SECTION. [FD-entry
[record-description-entry]...]...]

[WORKING-STORAGE SECTION.
[data-description-entry]...]

[LINKAGE SECTION.
[data-description-entry]...]

[SCREEN SECTION.
[data-description-entry]...]]

The following example shows the Data Division of an Interactive COBOL program.
Table 7-1 lists the clauses that are legal in the Data Division sections.

DATA DIVISION.

FILE SECTION.
FD F-CUSTOMER LABEL RECORD IS OMITTED
DATA RECORD IS F-CUST-REC.
01 F-CUST-REC.
03 FAREA PIC 99.

03 FADDRESS.
05 FSTREET PIC X(20).

WORKING-STORAGE SECTION.
01 FUNCTION PIC 99 VALUE 00.
77 WORDAMT PIC 9(5)V99 VALUE ZERO.
01 SECURITY-CODE.
03 W-CATEGORY PIC X VALUE * ".

Licensed Material - Property of Data General The Data Division 7-1

SCREEN SECTION.

01 ACCEPT-SECURITY.
03 LINE 1 BLANK SCREEN.
03 LINE PLUS 1 COLUMN 10 VALUE “PLEASE ENTER AUTHORIZATION'.
03 S-CATEGORY COLUMN 50 PIC X TO W-CATEGORY SECURE AUTO.

The File Section

The File Section consists of FD entries. These entries contain record descriptions that
Interactive COBOL uses to transfer data to and from files.

FD Entry

The FD entry describes the physical attributes of a file. [t continues the file declaration
that the SELECT clause began. You must specify one FD entry for each file declared
in a SELECT clause. You must follow each FD file entry with one or more 01-level
record description entries. The general format for the FD entry is:

FD file-name

CHARACTERS

RECORDS
: BLOCK CONTAINS integer

[; RECORD CONTAINS integer [TO integer] CHARACTERS]

VARIABLE
; RECORDING MODE 1S
FIXED

RECORD IS STANDARD
; LABEL _

OMITTED

RECORD IS
: DATA data-name ...
RECORDS ARE

‘ [; CODE-SET IS alphabet-namel].

The BLOCK CONTAINS clause is used for documentation purposes only.

The RECORD CONTAINS clause defines the record size or the record size limits of
the file. The maximum record length for files assigned to PRINTER, DISPLAY, or
KEYBOARD is 132 bytes. The maximum record length for indexed or relative files is
4096 bytes. The only length restriction on a sequential file assigned to DISK is that
the resulting program file must not be too large to run under the runtime system.

The RECORDING MODE clause, which is an extension to ANSII COBOL, is
permitted only for fixed and variable sequential files. It states whether the file
contains fixed or variable length records. If this clause is omitted, fixed length is
assumed.

The LABEL clause is required, even though it is used for documentation purposes
only.

The DATA RECORD and CODE-SET clauses are used for documentation purposes
only.

7-2 The Data Division Licensed Material - Property of Data General

Clause or Entry File W-S Linkage Screen

FD entry

BLOCK CONTAINS
RECORD CONTAINS
RECORDING MODE
LABEL RECORDS
DATA RECORDS
CODE-SET

FILLER
REDEFINES
PICTURE

USAGE

SIGN

OCCURS
SYNCHRONIZED
JUSTIFIED

BLANK WHEN ZERO
VALUE

Level 77

Level 88

AUTO

SECURE
REQUIRED

FULL

FROM

TO

USING

BELL

BLINK

BLANK SCREEN
LINE

COLUMN

BLANK LINE

Z2ZZZZZZZZZZZZZTZ <LK
ZZZZZZZZZZZZZ <K<K <K<K <K<K <XZ2Z22Z2Z22Z22Z
ZZZZZZZZZZZZZL<LXZ KL< <K<K <K<K <2Z2222222
(<<, <X <L L LKL ZZ LX< <KZZZZ<ZZZZ2Z22Z22Z

Table 7-1 Legal Entries in the Four Data Division Sections

Working-Storage Section

The Working-Storage Section must follow the File Section. It describes records and
elementary data-items that are not part of external files, but are developed and
processed internally. These elements function as temporary data storage items during
program execution.

Linkage Section

The Linkage Section is found only in a program that is called by another program.
The data descriptions in the Linkage Section enable a called program to reference
data from the calling program.

Data-items to be passed must be defined in either the File or Working-Storage
sections of the calling program. Corresponding data-items that receive the passed
information must be defined in the Linkage Section of the called program.

The Linkage Section must immediately follow the Working-Storage Section. Its
structure is the same as the Working-Storage Section.

Linkage Section data descriptions may use the same descriptor clauses as appear in
the Working-Storage Section with one exception: the VALUE clause may not appear
in a Linkage Section data entry.

Licensed Material - Property of Data General

The Data Division

7-3

Each sending item defined in a calling program and each receiving item defined in the
Linkage Section of a called program must have a level number of 01, 77, or 88.

Corresponding sending and receiving data-items must have the same total length, but
need not have the same identifier or the same internal structure. A list of sending
data-items must appear ina CALL USING or CALL PROGRAM USING statement
of the calling program (see CALL and CALL PROGRAM in chapter 8). A list of the
corresponding receiving items must appear, in the same order, in the Procedure
Division Using header of the called program.

An identifier may be used more than once ina CALL PROGRAM USING statement.
An identifier may not be used more than once in a Procedure Division Using header.

You may define any number of items in the Linkage Section. However, only the items
named in the receiving list, and items subordinate to them, may be referenced by the
called program.

Note: Up to 12 KB of disk space per terminal is allocated for the Linkage Section for
Interactive COBOL on RDOS or DG/RDOS. On AOS or AOS/VS, the Linkage
Section has no size restriction other than the limits of program size.

The following example shows the relevant entries in a calling program and in the
called program.

In the calling program:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SENDING-RECORD PIC X(25).
01 PHONE-NUMBER.
03 AREA-CODE PIC 999.
03 EXCHANGE PIC 999.
03 NUMBER PIC 9(4).
77 TODAYS-DATE PIC 9(6).

In the called program:

DATA DIVISION.

LINKAGE SECTION.
77 RECEIVING-RECORD PIC A(2S).
01 PHONE-NUMBER.
03 AREA-CODE PIC 999.
03 EXCHANGE PIC 999.
03 NUMBER PIC 9(4).
01 TODAYS-DATE.
03 MONTH PIC 99.
03 DAY PIC 99.
03 YEAR PIC 99.

When the calling program executes the following statement, the values of the listed
data-items are preserved:

7'4 The Data Division Licensed Material - Property of Data General

CALL PROGRAM “GET" USING SENDING-RECORD,
PHONE-NUMBER, TODAYS-DATE.

Then, when the called program (GET) begins execution, the procedure header

PROCEDURE DIVISION USING RECEIVING-RECORD,
PHONE-NUMBER, TODAYS-DATE.

causes the listed items to be initialized to the values of the preserved items from the
calling program.

Screen Section

The Screen Section defines the attributes of screens to be used in interactive screen
1/0. The Screen Section data descriptions are generally in the same form as in the
other sections of the Data Division. However, additional screen clauses allow you to
specify the position of items on the console screen and other console controlling
functions. A Screen Section entry is referenced in the Procedure Division with the
DISPLAY and ACCEPT verbs.

Screen Data Description Entry

A Screen Section may describe a literal or a data-item entry. A literal entry displays
constant information such as a title or a menu; a data-item entry is considered a
“window” through which data is transferred from the screen to program storage, from
program storage to the screen, or in both directions. Each data-item entry must
contain 2 PICTURE clause to describe it, and a FROM, TO or USING clause to
identify an associated File, Working-Storage, or Linkage Section item.

You may combine literal and data-item entries to form a group entry. A group entry
is defined with level numbers in a format similar to group items in the File and
Working-Storage sections. The syntax for describing screen entries is as follows:

Literal Format

level-number [screen-name]
[; BLANK SCREEN]
[; BLANK LINE]
[; BELL]
[; BLINK]

-

|

integer-1
: LINE NUMBER IS PLUS integer-2
L identifier-1

integer-1

P } NUMBER IS { PLUS integer-2]
identifier-1

: VALUE IS literall.

Licensed Material - Property of Data General The Data Division

7-5

Data-Item Format

level-number [screen-name]
[; BLANK SCREEN]
[; BLANK LINE]
[; BELL]
[; BLINK]

[integer-1
; LINE NUMBER IS < PLUS integer-2
identifier-1

L

[integer-1 ,
; {Q%LJMN} NUMBER IS { PLUS integer-2
L coL identifier-1
; FROM id-lit
PICTURE e
; { ;E”U“"*} IS picture-string ¢{; TO id
- ; USING id

[; BLANK WHEN ZERO}

JUSTIFIED
; } RIGHT

[; AUTO]

[; SECURE]

[; REQUIRED]
[; FULL].

Group Format

level-number screen-name
[; AUTO]
[; SECURE]
[; REQUIRED]
[; FULL].
{ data-item or literal entry ...

For examples of complete screen descriptions, see the sample program in chapter 3.

Level Number

The data description for a Screen Section entry must begin with a level number. Level
01 entries must begin in Area A; other levels may be indented as desired. Level
numbers in the Screen Section may range from 01 to 49.

Screen-Name

The screen-name must immediately follow the level number. Screen-names must
conform to the standard rules for programmer-created words. Omitting the screen-
name from an entry is equivalent to a FILLER entry. Unnamed items in a group
entry may not be referenced separately. Screen-names are required at the 01 level.

Screen Clauses

More than one clause can be specified for each entry; they can be in any order.
Regardless of their order, however, the clauses are executed in the following order:

7-6 The Data Division Licensed Material - Property of Data General

BLANK SCREEN

LINE and COLUMN positioning

BLANK LINE

BELL

DISPLAY or ACCEPT the literal or data-item

The clauses are summarized in Table 7-2 (see chapter 3 for a more detailed discussion).

Clause Meaning
AUTO Causes automatic termination when a screen data-item is full.
Used with input or update fields.
BELL Sounds the console’s tone.

BLANK SCREEN Erases the screen and positions the cursor to line 1, column 1.
BLANK LINE Erases a line from the current cursor position to the end of the line
and leaves the cursor position unchanged.

BLANK WHEN ZERO Functions in the same manner as in other sections of the Data
Division.

BLINK Causes a field to blink.

COLUMN Specifies horizontal positioning.

FROM Identifies an output field.

FULL A character or space must be entered in each position. Used with
input or update fields.

JUSTIFIED Functions in the same manner as in other sections of the Data
Division.

LINE Specifies vertical positioning. Describes the type, size, and appear-

PICTURE ance of a data-item entry and controls the way in which data is
accepted or displayed.

REQUIRED At least one character must be entered. Used with input or update
fields.

SECURE Causes asterisks to be echoed on the display during data entry.
Used with input or update fields.

TO » Identifies an input field.

USING Identifies an update field.

VALUE Specifies literal information to be displayed.

Table 7-2 Screen Section Clauses

Data Description Entries

The general format for a Data Description entry is listed below. The clauses, except
for the level number, the data-name or FILLER clause, and the REDEFINES clause,
may be written in any order.

data-name
level-number

FILLER
[; REDEFINES data-namel]

PICTURE
; PIC IS picture-string
COMPUTATIONAL
; [USAGE 18] COMP
DISPLAY
INDEX

Licensed Material - Property of Data General The Data Division 7-7

[

b

[OCCURS integer TIMES]

LEADING

; SIGN IS
[SIGN 131 {TRAILING

} [(SEPARATE CHARACTER]

[INDEXED BY {index-name}...]

[| sYNGHRONIZED| | LEFT
') SYNC RIGHT

. JoustrEn| o
')JusT

; BLANK WHEN ZERO]
; VALUE IS literal].

—

—

Level Numbers

The level number must always be the first element in an entry. Level numbers may be
01, 02-49, 77, and 88.

Level 01

The level number 01 identifies the record as a whole. Level 01 can be used in any
section in the Data Division and must begin in area A.

Levels 02-49

Level numbers 02-49 identify the hierarchy of data within the record. They must
begin in area B. Multiple 01-level entries subordinated to an FD entry implicitly
redefine the same memory area. Data description entries subordinate to an FD entry
must have level numbers 01-49 or 88.

Level 77

Level number 77 identifies elementary data-items and is assigned to certain entries
where there is no real concept of level. Level 77 items may not be subdivisions of other
items, and they may not be subdivided. Level 77 must begin in area A and can be used
only in the Working-Storage and Linkage sections.

Level 88

Level number 88 is used to define condition-names. It can begin in area A or B and
may occur only in the File, Working-Storage and Linkage sections. The condition-name
must be followed by a VALUE clause specifying the literal or literals that apply to
that condition. The condition-name can then be used in place of a relation condition.

Data-name/FILLER Clause

A data-name entry specifies the name of the data-item being described. A FILLER
entry specifies an elementary item in a logical record that cannot be referred to
explicitly. The data-name or FILLER clause must immediately follow the level
number. FILLER cannot be used in the Screen Section.

7'8 The Data Division Licensed Material - Property of Data General

REDEFINES Clause

The REDEFINES clause allows the program to describe the same memory area in
different data description entries. For example:

01 TAX-GROUPS.
03 GROUP-A.
05 A-ITEM OCCURS 6 TIMES PIC 9999.
03 GROUP-B REDEFINES GROUP-A.
05 B-ITEM OCCURS 12 TIMES PIC XX.

The REDEFINES clause, when used, must immediately follow the data-name. It
cannot be used with level O1 entries in the File Section.

The level numbers of both data-names must be identical, and no entry having a level
number numerically lower than this level number may occur between the data
description entries for the two names. The following example illustrates an illegal
description:

05 A PIC 999.
03 B PIC AAA.
05 C REDEFINES A.

The description of the data-name being redefined cannot contain a REDEFINES or
OCCURS clause; however, it may be subordinate to an entry that contains either
clause.

The data types of the original item and the redefined area do not have to be the same.
However, for items not at the record level (i.e., those that have a level number greater
than 01), the redefinition must specify the same number of character positions as the
original definition. For items at the record level, there is no such constraint.

You may redefine the same character positions more than once. The entries giving the
new descriptions of the positions must immediately follow the entries defining the area
being redefined, without intervening entries that define new positions. Multiple
redefinitions of the same positions must all use the data-name of the entry that
originally defined the area. Thus the following structure is legal:

05 A PIC 9999.
05 B REDEFINES A PIC 9v999.
05 C REDEFINES A PIC 99V99.

However, the following structure is illegal:

05 A PIC 9999.
05 B REDEFINES A PIC 9v999.
05 C REDEFINES B PIC 99v99.

Licensed Material - Property of Data General The Data Division 7'9

In an FD entry, multiple Ol-level entries implicitly redefine the same record area; a
REDEFINES clause is not permitted. For example:

FD CUSTOMER-ACCT-FILE ...

01 PARTS-CUST-REC.
03 CUST-NAME PIC X(25).
03 CUST-ADDRESS PIC X(30).

01 ASSEMBLY-CUST-REC.
03 CUST-ADDRESS PIC X(20).
03 CUST-NAME PIC X(35).

PICTURE Clause

The PICTURE clause describes the general characteristics and editing requirements
of an elementary data-item. A PICTURE clause can be specified only at the elementary
item level, and it must be specified for every elementary data-item, except for those
declared as USAGE IS INDEX. A picture-string may contain a maximum of 30
characters.

The format of the PICTURE clause is as follows:

PIC IS picture-string

PIC is an abbreviation for PICTURE. A picture-string consists of combinations of
characters from the COBOL character set. The picture-string specifies:

« Thetypeofdatainthe data-item (alphabetic, alphanumeric, numeric, alphanumeric
edited, or numeric edited)

e The size of the data-item

e The location of the decimal point (if the data-item is numeric)

e Whether a numeric data-item contains an arithmetic sign

« Any editing to be performed on the data-item.

Symbols Used in the PICTURE Clause

The function of each PICTURE clause symbol is given in the following list.

A Represents a position that may contain only an uppercase letter or a space.
B Represents a position where a space is to be inserted.

P Indicates an assumed decimal scaling position. P can appear only in a sequence in
the rightmost or leftmost portion of the format. The symbol P is not counted in
the size of the data-item; it is counted in determining the maximum number of
digit positions (18) in numeric or numeric edited items, or items that appear as
arithmetic operands.

S Indicates the presence of an operational sign; it may appear only once in the
character string and must be the leftmost character in the PICTURE. The S is
not counted in determining the length of an elementary item unless you specify
the SEPARATE CHARACTER option.

V Indicates the location of an assumed decimal point and may only appear once in
a character string. When the assumed decimal point is to the right of the
rightmost symbol in the string, the V is redundant. The V is not counted in
determining the length of the elementary item.

X Represents a position that may contain any character from the data character
set.

7-10 The Data Division Licensed Material - Property of Data General

Z Represents a leading numeric position that is replaced by a space when the
contents of that position are zero.

Represents a position that may contain a digit from O through 9.

Represents a position where a zero is to be inserted.

~ O Vv

Represents a position where a slash is to be inserted.

, Represents a position where a comma is to be inserted. A comma cannot be the
last character in the PICTURE character string.

In an input data-item, represents a decimal point used for alignment purposes. In
an output data-item, represents a postion where a period is to be inserted. The
period cannot be the last PICTURE character in an output data-item.

Note: You may exchange the functions of the period and the comma in a
PICTURE character string by specifying the DECIMAL-POINT IS COMMA
clause in the SPECIAL-NAMES paragraph.

+, -, CR, DB
These editing sign-control symbols are mutually exclusive in any one character
string. The plus and minus symbols may be used on the left or right side of the
value; the CR and DB symbols may be used only on the right side.

* Represents a leading numeric position where an asterisk is to be placed when the
content of that position is zero.

CS The currency symbol CS represents a position where a currency symbol is to be
placed. The currency symbol is cither the dollar sign ($) or the singie character
specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.

USAGE Clause

The USAGE clause specifies the way in which a data-item is stored in memory. The
USAGE clause can be written at any level. When written at the group level, the

USAGE clause applies to all items in the group. If USAGE is specified for any of the
items in that group, it must not conflict with the USAGE specified at the group level.

Its format is as follows:

DISPLAY

[USAGE IS])} COMP
COMPUTATIONAL
INDEX

DISPLAY indicates that the data is stored as ASCII characters in bytes. If a
USAGE clause is not specified for an elementary item, the USAGE is DISPLAY by

default.

The PICTURE of a COMPUTATIONAL data-item can contain only 9s, the
operational sign symbol S, the implied decimal point symbol V, and one or more Ps.
COMP is an abbreviation for COMPUTATIONAL.

When a group is described as COMPUTATIONAL, the elementary items in the
group are COMPUTATIONAL. The group item itself is treated as DISPLAY and
cannot be used in arithmetic operations.

COMPUTATIONAL items are represented internally in twos-complement binary
notation. Storage for COMPUTATIONAL items is more efficient than for DISPLAY
items. Table 7-3 lists the bytes required to store COMPUTATIONAL items.

USAGE IS INDEX indicates that the item contains a binary value that is used to
reference a particular element of a table.

Licensed Material - Property of Data General The Data Division 7-11

Items that are INDEX are represented internally as 2-byte unsigned items. The
SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE IS, and BLANK WHEN
ZERO clauses cannot be used with an item described as USAGE 1S INDEX.

No. of Decimal Digits
Unsigned Signed Bytes
Required
1-2 1-2 1
3-4 3-4 2
5-7 5-6 3
8-9 7-9 4
10-12 10-11 5
13-14 12-14 6
15-16 15-16 7
17-18 17-18 8

Table 7-3 COMPUTATIONAL Item Storage

SIGN Clause

Use the SIGN clause to explicitly state the manner of sign representation in numeric
data-items. The format of the SIGN clause is as follows:

LEADING

[SIGN 1S] {IRAILING

} [SEPARATE CHARACTER]

Specify the SIGN clause only for an elementary numeric data-item with a PICTURE
containing an S, or for a group item containing at least one such numeric data-item. A
data-item may have only one SIGN clause and must be described, implicitly or
explicitly, as USAGE IS DISPLAY.

The terms used in this clause and their meanings are:

Sign Clause Sign Type

SIGN LEADING Decimal with leading sign overpunch

SIGN TRAILING Decimal with trailing sign overpunch (default)
SIGN LEADING SEPARATE Decimal with leading separate sign

SIGN TRAILING SEPARATE Decimal with trailing separate sign

A data-item may be from 1 to 18 characters long. If you include the SEPARATE
CHARACTER phrase, the S in the PICTURE string is counted in determining the
length of the data-item. If you omit the SEPARATE CHARACTER phrase, the S is
not counted.

In decimal data-items with trailing sign overpunch, the sign is in the rightmost digit;
with leading sign overpunch, the sign is in the leftmost digit (see Table 7-4).

7-1 2 The Data Division Licensed Material - Property of Data General

Digit Positive Negative
0 | <173> } <175>
1 A <101> J <112>
2 B <102> K <113>
3 C <103> L <114>
4 D <104> M <1156>
5 E <105> N <116>
6 F <106> o <117>
7 G <107> P <120>
8 H <110> Q <121>
9 | <111> R <122>

Table 7-4 Sign Overpunch Characters

The following program illustrates how the SIGN clause affects data-item display:

PROGRAM-ID. TESTPROG

WORKING-STORAGE SECT

77 DATA-1 PIC S999 SIGN IS LEADING SEPARATE

77 DATA-2 PIC S999 SIGN IS LEADING

77 DATA-3 PIC S999 SIGN IS TRAILING SEPARATE

77 DATA-4 PIC S999 SIGN IS TRAILING

PROCEDURE DIVISION.

DISPLAY-PARA.
DISPLAY DATA-1.
DISPLAY DATA-2.
DISPLAY DATA-3.
DISPLAY DATA-4.
STOP RUN.

When TESTPROG is executed, the following appears on the screen:

+470
D70
470+
47|

ION.

VALUE +470.

VALUE +470.

VALUE +470.

VALUE +470.

OCCURS Clause

The OCCURS clause defines tables and other sets of repeated data-items. Within a
table description, the OCCURS clause specifies the number of times that the named
item is to be repeated. All data description clauses associated with an item with a
description containing an OCCURS clause apply to each occurrence of the item.

The format of an OCCURS clause is:

OCCURS integer

[; INDEXED BY {index-name}...]

TIMES

Licensed Material - Property of Data General

The Data Division

7-13

Do not use the VALUE clause in a data description entry that contains, or is
subordinate to, an OCCURS clause. Do not specify the OCCURS clause at the 01 or
77 level number.

The data-name that is the subject of an OCCURS clause must either be subscripted
or indexed when referred to in a Procedure Division statement. In addition, if the
data-name of the entry is the name of a group item, all data-names belonging to the
group must be subscripted or indexed when they are referred to, except as the object
of a REDEFINES clause (see above). When the data-name is used as the object of a
REDEFINES clause, it represents every occurrence of that name and therefore
cannot be subscripted or indexed.

The INDEXED BY phrase is required when the data-name in an OCCURS clause or
its subordinate items are to be referenced by indexing. Each index-name must be a
unique name within the program. Index-names are not explicitly defined elsewhere.
Specifying a name in the INDEXED BY phrase implicitly defines the index-name as
a two-byte unsigned binary item.

Use nested OCCURS clauses to define multidimensional tables. An OCCURS clause
is nested when an item containing an OCCURS clause is subordinated to another item
containing an OCCURS clause. Three levels of nesting are permitted. Thus, a table
may have one, two, or three dimensions.

SYNCHRONIZED Clause

The SYNCHRONIZED clause is ignored and has no effect on compilation or
execution of the object program. SYNC is an abbreviation for SYNCHRONIZED.

Its format is:
SYNCHRONIZED LEFT
SYNC RIGHT

JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving
data-item. JUST is an abbreviation for JUSTIFIED.

The format for the JUSTIFIED clause is:

JUSTIFIED
JUST RIGHT

This clause can be specified only at the elementary item level. It cannot be specified
for a numeric item or for an item whose PICTURE specifies editing.

When you describe a receiving item with the JUSTIFIED clause and the the sending
item is larger, the leftmost characters are truncated. When the receiving item is
larger, the data is aligned at the right and the leftmost positions are filled with spaces.
Figure 7-1 contrasts how data is moved with and without the JUSTIFIED clause.

7-14 The Data Division Licensed Material - Property of Data Generai

MOVEs to Standard and JUSTIFIED Fields

Move Longer Sending Field to Shorter Receiving Field

a lo[n]v]ala]i]o] | | a [o]n]r]alslifo] |]
8 [t]ow]n] 8 [v]o]w]n]
o[w]r]a] [Jof |

Standard Receiving JUSTIFIED Receiving

Move Shorter Sending Field to Longer Receiving Field

a [1]2]a]a]s]e]7] a L[2[3]4]s[e]7]
| EEEEER' | EEEEER

B [a[s[c]olefrTo[u[1Tu[x[c] B [a[e[c]o]e]r|o[n]i]J]K]t]
Llefelelsle[ZT TTTT1 [LL1T[]2[s]e]s]e]7]
Standard Receiving JUSTIFIED Receiving

Figure 7-1 Moving Data to Standard and Justified Fields

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause substitutes spaces for a numeric or numeric
edited item when its value is zero.

The format of BLANK WHEN ZERO is
BLANK WHEN ZERO

A numeric item is considered to be numeric edited when its description contains the
BLANK WHEN ZERO clause.

VALUE Clause

The VALUE clause defines the values of constants and the initial values of
Working-Storage and Screen Section data-items. It cannot be used in the File or
Linkage sections. The format is:

VALUE IS literal

If the VALUE clause occurs in Working-Storage Section, a figurative constant can be
substituted for the literal. Figurative constants cannot be used in the Screen Section.

Since the initial value of any data-item is unpredictable, you should assign it an initial
value with the VALUE clause or with a procedure statement before using it. The
initial value of an index item cannot be defined with the VALUE clause; it must be set
with the SET statement.

The VALUE clause must not be stated in a data description entry that contains, or is
subordinate to, an entry containing a REDEFINES clause or an OCCURS clause.

The VALUE clause must not conflict with other clauses in the data description of the
item. If the category of the item is numeric, the VALUE literal must be numeric. The
value of a numeric literal must be within the range of values indicated in the associated
PICTURE clause, and it must not have a value that requires truncating nonzero
digits. The literal may be signed only if the PICTURE is signed.

Licensed Material - Property of Data General The Data Division 7-15

If a data-item is alphabetic, alphanumeric, alphanumeric edited, or numeric edited,
the VALUE literal must be nonnumeric, with one exception: an item with a PICTURE
containing only Zs and 9s may have a numeric value. For example, an item could be
described as PIC ZZZ9 VALUE 1234. The value of the literal must not exceed the
size indicated by the PICTURE clause.

Editing characters in the PICTURE clause are included in determining the size of the
data-item but do not affect initialization. When a VALUE clause is specified with a
JUSTIFIED or BLANK WHEN ZERO clause, the VALUE literal is neither justified
nor blank when zero. These clauses do not take effect until a value is moved to the
data-item.

If the VALUE clause is used at the group level, the literal must be a figurative
constant or a nonnumeric literal. The group area is initialized without consideration
for the individual elementary or group items contained within this group. The VALUE
clause cannot be stated at the subordinate levels within such a group.

7-1 6 The Data Division Licensed Material - Property of Data General

Chapter 8
The Procedure Division

The Procedure Division is required in every COBOL source program. It contains the
operational statements that govern program input and output, data movement, logic
or sequence control, and arithmetic.

The Procedure Division may be in either declarative or nondeclarative format. In
declarative format, you specify procedures that are to be used in the event of /O
errors. For more information on declaratives, see the USE statement later in this
chapter.

Declarative Format

PROCEDURE DIVISION [USING {id}...].
[DECLARATIVES.
{section-name SECTION [segment-number].}

USE sentence
[paragraph-name. [sentence]...]...

END DECLARATIVES.]
{section-name SECTION [segment-number]. }

[paragraph-name. [sentence]...]...

Nondeclarative Format

PROCEDURE DIVISION [USING {id}...].
{section-name SECTION [segment-number]}

[paragraph-name. [sentence]...]...

Note: Segment-number is used for documentation purposes only.

Procedure Divisiqn Statements

This chapter describes the Interactive COBOL procedure statements, arranged
alphabetically by the verb that begins the statement. The purpose and format of each
statement is presented, along with a discussion of execution features. Whenever id or
id-lit appears, an index-name may be used.

Licensed Material - Property of Data General The Procedure Division

ACCEPT

Transfers data from the screen to the File, Working-Storage,
or Linkage sections, or transfers system data into a specified
data-item.

Screen Format

LINE id-lit
ACCEPT screen-name|AT

I{M}id'“t [; ON ESCAPE imper-stmt]

CoL

Identifier Format

ACCEPT id [;ON ESCAPE imper-stmt]

System Format

(DATE)
DAY
ACCEPT id FROM } TIME

LINE NUMBER
USER NAME ‘
ESCAPE KEY
\ EXCEPTION STATUS)

~"

Examples

ACCEPT INFO-SCREEN AT LINE LINE-NUM COL COL-NUM;
ON ESCAPE GO TO FUNCTION-ROUTINE.

ACCEPT TEMP-AMT.

ACCEPT DATE-TODAY FROM DATE.

ACCEPT FUNCTION-CODE FROM ESCAPE KEY.

ACCEPT EXCEP-CODE FROM EXCEPTION STATUS.

Rules for Screen ACCEPT

Screen names may not be subscripted.

The ACCEPT screen-name statement transfers information entered on the screen to
the data-items associated with the screen-name. The program must execute a
DISPLAY before an ACCEPT to display any associated prompts. ACCEPT
screen-name is equivalent to ACCEPT screen-name LINE 1 COLUMN 1.

The LINE and COLUMN clauses enable you to accept a screen name with a
specified origin. The LINE and COLUMN identifiers or literals must be elementary
integers. If you execute an ACCEPT with an optional LINE or COLUMN value that
is larger than your screen, the screen will wrap; that is, if a display is 24 lines X 80
columns, LINE and COLUMN values of 25 and 81 are equivalent to 1 and 1.

8-2 The Procedure Division Licensed Material - Property of Data General

If you have displayed a screen with the LINE and COLUMN options, you must
accept it using the same coordinates.

The words COLUMN and COL are interchangeable.

The section “Data Movement with DISPLAY and ACCEPT” in chapter 3 lists
details of the execution of an ACCEPT screen-name statement.

Moves from the Screen data-item to the File, Working-Storage, or Linkage data-item
are treated in the normal COBOL manner with one exception: a move from a numeric
edited to a numeric data-item is allowed. In this case, all characters of the numeric
edited data-item are ignored except digits, sign, and decimal point. The decimal point
is used for alignment purposes only.

If you press ESC at any time during an ACCEPT statement, the data in the current
field is not validated or transferred to screen storage. However, the contents of screen
storage are still moved to the associated data-items in the File, Working-Storage, or
Linkage sections. The ACCEPT terminates and the ON ESCAPE imper-stmt, if
present, is executed.

Rules for Identifier ACCEPT
Data is transferred according to the rules of the MOVE verb.

The ACCEPT identifier statement transfers information entered on the screen to the
specified data-item. It is usually preceded by a DISPLAY statement that prompts the
user for the required information. For example:

DISPLAY “Enter the purchase price:".
ACCEPT PURCHASE-PRICE.

You must input data valid for the identifier. If the data is invalid because of sign,
length, decimal point, or characters that do not agree with the item’s PICTURE, an
error message is displayed on line 24 of the display screen and the input may be
corrected.

Rules for System ACCEPT

DATE, DAY, TIME, LINE NUMBER, USER NAME, ESCAPE KEY, and
EXCEPTION STATUS are system-defined data-items treated as elementary items.
These items are not explicitly defined in COBOL programs. The identifier used with
a system ACCEPT must have a PICTURE that agrees with the content of the
system-defined item, according to the rules for MOVE.

DATE is composed of year, month, and day. Its PICTURE is 9(6). For example, July
1, 1984, is expressed as 840701.

DAY is composed of year and day of year in Julian format. Its PICTURE is 9(5). For
example, July 1, 1984, is expressed as 84183.

TIME is composed of hours, minutes, seconds, and hundredths of a second, and is
based on elapsed time after midnight on a 24-hour clock. Its PICTURE is 9(8). Thus
2:41 P.M. is expressed as 14410000. The seventh and eighth digits, representing
hundredths of a second, are always 00.

LINE NUMBER contains the three-digit number of the terminal line on which the
program is running. Its PICTURE is 9(3). On RDOS and DG/RDOS, the master
terminal is line number 000; the other terminals have line numbers 001 through nnn.
On AOS and AOS/VS the line number is the console number.

Licensed Material - Property of Data General The Procedure Division 8-3

Under AOS and AOS/VS, USER NAME allows the program to retrieve the user
name of the current process. Its PICTURE is X(15). Under RDOS and DG/RDOS,
ACCEPT id FROM USER NAME causes id to be filled with blanks.

The ESCAPE KEY item contains the two-digit code generated by a termination key
(see “Termination Codes” below). Its PICTURE is 9(2).

The EXCEPTION STATUS item contains a three-character code that identifies the
type of exception condition that has occurred during the execution of a CALL or
CALL PROGRAM statement. [ts PICTURE is 9(3). A table of Exception Status
codes appears in appendix A of each User’s Guide.

If EXCEPTION STATUS is to be examined, it should be done immediately after the
CALL or CALL PROGRAM—before execution of any other statements. File /O
operations will alter the Exception Status value, making the value undefined.

Terminating Screen Input

Depending on the operating system and the keyboard being used, input may be
terminated by the NEW LINE key, the CR key, the down-arrow, the TAB key, the
ESC key, the enter and enter-minus keys, and the function keys.

In order for the program to use the ESC or function keys for terminating input, you
must code a standard ACCEPT before coding an ACCEPT...FROM ESCAPE KEY.
Code the ACCEPT statement in the following manner:

WORKING-STORAGE SECTION.
77 DECISION-KEY PIC 99.
PROCEDURE DIVISION.

ACCEPT DECISION-KEY-ENTRY.
ACCEPT DECISION-KEY FROM ESCAPE KEY.
IF DECISION-KEY = 02 PERFORM F1-ROUTINE.

Termination Codes

When you press a terminator key, a two-digit value is moved to the ESCAPE KEY
identifier. The item can then be interrogated by the program to determine which key
was struck. The codes generated are listed in Table 8-1 (on terminals without CTRL
keys, the CMD key is equivalent).

Note: Different terminals have differing numbers of available function keys, and the
CR, NEW LINE, CTRL, and CMD keys also function differently depending on the
keyboard and the operating system. For information on the number, location, and use
of the various keys, see the appropriate terminal operating manual.

8-4 The Procedure Division Licensed Material - Property of Data General

Key Alone Key+SHIFT Key+CTRL Key+SHIFT +CTRL
CR 00 00 00 00
NEW LINE 00 00 00 00
Down-arrow 00 00 00 00
TAB 00 00 00 00
ESC 01 01 0t ’ 01
F1 02 10 18 26
F2 03 11 19 27
F3 04 12 20 28
F4 05 13 21 29
F5 06 14 22 30
Fé 07 15 23 31
F7 08 16 24 32
F8 09 17 25 33
F9 (-) 41 48 55
F10 (ENTER -) 42 49 56
F11 (ENTER) 43 50 57
F12 37 44 51 58
F13 38 45 52 59
F14 39 46 53 60
F15 40 47 54 61

Table 8-1 Termination Codes

Note: Function key F9 enters a value of minus. It is not a terminator. The F10 and
F11 keys are terminators that return the same values as the keys labeled ENTER
and ENTER -. .

Licensed Material - Property of Data General The Procedure Division 8-5

ADD

Sums two or more numeric data-items and stores the resuit.

Cumulative ADD Format
ADD {id-lit}... TO id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Totaling ADD Format
ADD id-lit {, id-lit}... GIVING id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Examples

ADD REG-HRS, OT-HRS TO TOT-HRS; ON SIZE ERROR GO TO HRS-ERR-RTN.
ADD NEW-STOCK, OLD-STOCK GIVING TOT-STOCK.

Rules

The identifiers in the cumulative or totaling ADD must refer to elementary numeric
items. However, the identifier following the word GIVING may refer to an elementary
numeric or numeric edited item.

Literals must be numeric.

A SIZE ERROR may occur during the execution of an ADD statement if any
intermediate result exceeds 18 digits. A size error also occurs if the sum overflows the
receiving item, after decimal point alignment.

With cumulative ADD, the values of the data-items before the word TO are added
together. This sum is then added to the current value of the identifier following the
word TO, and the result is stored as the new value of that identifier. For example, in
the sentence

ADD A, BTOC.
the sum of A+ B is added to the value in C, and this result is stored in C.

With totaling ADD, the values of the data-items preceding the word GIVING are
added together, and the sum is then stored as the new value of the identifier following
the word GIVING. For example, in the sentence

ADD A, B GIVING C.

the value in A is added to the value in B, and the result is stored in C.

8-6 The Procedure Division Licensed Material - Property of Data General

ADD CORRESPONDING

Adds identically named items in two groups.

Format
ADD {CORRESPONDING

CORR } id TO id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Examples

ADD CORRESPONDING LIST1 TO LIST2.
ADD CORR NEW-INVEN TO CURR-INVEN; ON SIZE ERROR GO TO ROUTINES.

Rules

Both id’s must refer to group items. The elements to be added must all be elementary
items. No subgroups are added together. None of the items may be designated as
USAGE IS INDEX.

The groups need not contain exactly the same list of id’s. ADD CORRESPONDING
compares the elements that make up each group. Those that have the same name are
added together, and the result is stored in the second operand. All others are ignored.

If a SIZE ERROR occurs on any one of the additions, all of the remaining additions
are performeu before the imperative statement is executed.

The following examples illustrate the use of ADD CORRESPONDING. Two items
are described as follows:

01 LIST1. 01 LIST2.
02 APPLES PIC 99. 02 LEMONS PIC 99.
02 ORANGES PIC 99. 02 APPLES PIC 99.
02 PEARS PIC 99. 02 ORANGES PIC 99.

The initial values are:

LIST1 LIST2
APPLES 5 LEMONS 2
ORANGES 10 APPLES 6
PEARS 8 ORANGES 3

After execution of ADD CORRESPONDING LIST1 TO LIST2 the values are:

LIST1 LIST2
APPLES S LEMONS 2
ORANGES 10 APPLES "
PEARS 8 ORANGES 13

The CORRESPONDING phrase does not require that the level numbers be identical;
however, the record structures must be the same. Given the following structure

Licensed Material - Property of Data General

The Procedure Division

8-7

01 LIST1. 01 LIST2.

02 APPLES PIC 99. 02 SUBLIST2.
02 ORANGES PIC 99. 03 LEMONS PIC 99.
02 PEARS PIC 98. 03 APPLES PIC 99.

03 ORANGES PIC 99.

The statement ADD CORRESPONDING LIST1 T0 LIST2 is illegal. The statement ADD CORRESPONDING
LIST1 TO SUBLIST2 is legal.

8-8 The Procedure Division Licensed Material - Property of Data General

CALL

Transfers control to another program.

Format
CALL id-lit [USING {data-name}...][ON OVERFLOW ¢ mper-stmt]
Examples
Calling program: Called program:
WORKING-STORAGE SECTION. PROGRAM-ID. ADSYS1.
01 DATA. .
05 DATA-1 PIC XX. DATA DIVISION.
05 DATA-2 PIC XXX. .
PROCEDURE DIVISION. LINKAGE SECTION.
MOVE “ADSYS1" TO PROG-NAME. 01 DATA-ONE PIC 99.

CALL PROG-NAME USING DATA-1, DATA-2 01 DATA-TWO PIC 999.
ON EXCEPTION PERFORM OOPS. ..
DISPLAY DATA-1, DATA-2. PROCEDURE DIVISION USING DATA-ONE, DATA-TWO.

EXIT-PARA.
EXIT PROGRAM.

Rules
The words OVERFLOW and EXCEPTION have the same meaning.

1d-lit must be an alphanumeric identifier or nonnumeric literal; its value must be a
valid external filename.

Upon encountering a CALL statement, the runtime system first determines whether
the called program is executable. If it is, the runtime system transfers control to the
new program. All programs in a run unit except the one that is running are saved in a
virtual memory (.VM) file. A run unit can contain a maximum of 16 programs (one
main program and 15 subprograms).

The USING phrase passes data to called programs; you can pass up to 32 identifiers
with this phrase. CALL...USING can be specified only if there is a Procedure
Division Using header in the called program; otherwise the CALL fails with an
Exception Status of 209. The CALL...USING and the Procedure Division Using
header must contain the same number of identifiers, as a one-to-one correspondence is
set up between them. The corresponding identifiers must be the same size, although
their PICTURE:S do not have to be exactly the same.

The CALL statement cannot pass switches to a called program. Switches are inherited
from the calling program automatically.

Licensed Material - Property of Data General The Procedure Division 8-9

In the example above, a correspondence is set up between the two sets of identifiers so
that DATA-1 and DATA-ONE refer to the same data-item, and DATA-2 and
DATA-TWO refer to the same data item. Therefore, if the called program modifies
DATA-ONE and DATA-TWO, the results are available in the calling program
through DATA-1 and DATA-2.

The Linkage Section must appear in the called program and must contain the data
descriptions of the identifiers named in the Procedure Division Using header.

If you call a program more than once, the data-items in the called program remain as
they were when the program last exited, unless the program has been cancelled.
Recursive calls are not allowed. If PROG1 calls PROG2, PROG2 cannot call PROG1.
However, PROG2 can call a third program, PROG3. PROG3 cannot, in turn, call
PROG1 or PROG?2. If you attempt to do this, the CALL fails with an Exception
Status of 207.

The EXIT PROGRAM statement returns control to the calling program. Control is
passed to the next statement in the calling program (the DISPLAY statement, in the
example above).

Note: Interactive COBOL implements its CALL statement as a call by value result,
not as a call by reference. Both methods have the same results, except in the presence
of side effects.

Calls to Programs in Other Directories

On RDOS and DG/RDOS, if the called program is not in the current directory, the
pathname to the program must be supplied or a link must be established.

On AOS and AQS/VS, if the called program or a link to it is not in the current
directory or the pathname is not supplied, the runtime system follows the searchlist to
locate the executable file. (See chapter 1 of the Interactive COBOL User’s Guide for
an explanation of searchlists.)

In addition, on AOS and AOS/VS the access control list (ACL) is examined during
a CALL statement. For the called program to execute, the user must have (1) execute
access to the current directory, (2) execute access to the directory containing the
called program, and (3) read access to both the .PD and .DD files of the called
program. Without proper access, the CALL fails with an Exception Status of 206.

CLI, .PR, and Assembly Language Calls

Under RDOS, DG/RDOS, AOS, and AOS/VS, an Interactive COBOL program can
call an assembly language subroutine. The Interactive COBOL User’s Guide for your
system gives a detailed explanation.

Under AOS and AOS/VS, an Interactive COBOL program can call the CLI or any
PR file. The format for calling the CLI or a .PR file is basically the same as calling
an Interactive COBOL subprogram. The Interactive COBOL User’s Guide (AOS,
AOS/VS) provides a detailed explanation.

8-10 The Procedure Division Licensed Material - Property of Data General

CALL PROGRAM

Chains to another COBOL program or performs a system
function.

Format

CALL PROGRAM id-lit [USING {data-name {]... [; ON EXCEPTION imper-stmt]

Examples

CALL PROGRAM “ADSYSO/A".

CALL PROGRAM PROG-NAME.

CALL PROGRAM “ADSYS1" USING PASS-DATA-1, PASS-DATA-2.
CALL PROGRAM “ADSYS1" ON EXCEPTION PERFORM CANT-FIND-IT.
CALL PROGRAM “#W".

Rules

Id-lit must be an alphanumeric identifier or nonnumeric literal; its value must be a
valid external filename. Id-lit can include from 1 to 26 switches. For example:

CALL PROGRAM “ADSYSO/A".

See “Switch-Status Condition” in chapter 1 for more information on setting and
testing the status of switches within an Interactive COBOL program.

The successful transfer of control to a called program is equivalent to the execution of
a STOP RUN statement within the calling program followed by the start of the called
program. Thus you cannot return to the original (calling) program, except when
performing system calls.

Upon encountering a CALL PROGRAM statement, the runtime system first
determines whether the called program is executable. If it is, the runtime system
closes all currently OPEN files and passes control to the new program.

Note: On RDOS and DG/RDOS, CALL PROGRAM “logically” closes files, flushes
buffers, and, if necessary, updates files; but the operating system channels that the
files use remain open. The #C system call must be used to close the channels. See
chapter 2 of the User’s Guide for full details.

If the call is unsuccessful, control is passed to the ON EXCEPTION imperative
statement, if one is specified. If an ACCEPT...FROM EXCEPTION STATUS
clause follows the CALL PROGRAM statement, a value is placed in the EXCEP-
TION STATUS data-item. (See the table of Exception Status codes in the related
User’s Guide.) 1f the ON EXCEPTION clause is omitted, control passes to the
statement following the CALL PROGRAM statement. (In certain cases, the calling
program may no longer be present, resulting in a return to Logon or the CLL) It is
good programming practice to specify an ON EXCEPTION clause.

Licensed Material - Property of Data General The Procedure Division 8-1 1

The USING Phrase

Data is passed to the called program with the USING phrase. Sending data names
must be defined as 01 or 77-level entries in the File Section or Working-Storage
Section of the calling program and listed in its CALL PROGRAM USING statement.
Corresponding receiving data-names must be defined in the Linkage Section and
listed, in the same order, in the Procedure Division Using header of the called
program. Sending-receiving pairs need not have the same names or internal structures,
but they must have the same total length. Note in the example below that
ITEM-TABLE and REVISED-TABLE both have a total length of 144.

The USING data-name may not be subscripted. The same data-name may appear
more than once in a CALL PROGRAM USING statement. The same data-name
may not appear more than once in the Procedure Division Using header.

The following example illustrates the CALL PROGRAM USING statement.

PROGRAM-ID. MAINPROG.
DATA DIVISION.

NORKING-STORAGE SECTION.
01 EMP-NAME PIC X(20).
01 ITEM-TABLE.

02 A-ITEM OCCURS 12 TIMES.

03 ALPHA PIC X(10).
03 BETA PIC 99.
01 AMOUNT PIC 9(5).

PROCEDURE DIVISION.

CALL PROGRAM CALLEDPROG USING
EMP-NAME, ITEM-TABLE, AMOUNT
ON EXCEPTION PERFORM
CANT-FIND-IT.

PROGRAM-ID. CALLEDPROG.
DATA DIVISION.

LINKAGE SECTION.
01 CUSTOMER PIC X(20).
01 REVISED-TABLE.
02 A-ITEM OCCURS 8 TIMES.
03 ALPHA PIC X(15).
03 BETA PIC 999.
01 CHARGE PIC 9(5).

PROCEDURE DIVISION USING
CUSTOMER,
REVISED-TABLE,
CHARGE . '

STOP RUN.

Calls to Programs in Other Directories

On RDOS and DG/RDOS, if the called program is not in the current directory, the
pathname to the program must be supplied or a link must be established.

On AOS and AOS/VS, if the called program or a link to it is not in the current
directory or the pathname is not supplied, the runtime system follows the searchlist to

locate the executable file.

In addition, on AOS and AOS/VS the access control list (ACL) is examined during
a CALL PROGRAM statement. For the called program to execute, the user must
have (1) execute access to the current directory, (2) execute access to the directory
containing the called program, and (3) read access to both the .PD and .DD files of
the called program. Without proper access, the CALL PROGRAM fails with an

Exception Status of 206.

8-12

The Procedure Division

Licensed Material - Property of Data General

System Calls

The USING phrase is not valid when executing system calls.

Table 8-2 lists all system calls. Unless otherwise noted, the calls are available on all
systems. However, even those that are not implemented on certain systems may be
included in any program. If a particular call is not implemented and there is an ON
EXCEPTION imper-stmt, that statement is executed. If the ON EXCEPTION
clause is missing, execution continues with the next statement. In either case,
EXCEPTION STATUS has the value of 203, “COBOL program not found.”

For an extended discussion of system calls, see chapter 2 of the Interactive COBOL

User’s Guide for your operating environment.

Call

Action

#HA
#C

#D
#F
#H
#i

#L
#M
#N
#O

#P

#R
#S
#T
HW

Abort (RDOS and DG/RDOS only)

Physically close operating system file channels (RDOS and
DG/RDOS only)

Debug

Fully initialize a device (RDOS and DG/RDOS only)

Hang up

Initialize a directory (RDOS and DG/RDOS only)

Logon

Message (RDOS and DG/RDOS only)

Rename a file

Run a program detached from a console (RDOS and DG/RDOS
only)

Call Printer Access Scheduler System (RDOS and DG/RDOS
only)

Release a directory (RDOS and DG/RDOS only)

Shut down

Report terminal status (RDOS and DG/RDOS only)

Wait

Table 8-2 System Calls

Licensed Material - Property of Data General

The Procedure Division

8-13

CANCEL

Returns a program executed with a CALL to its initial state.

Format
CANCEL {id-lit}...

Example

MOVE “PROG1" TO IDEN.
CANCEL IDEN.

CANCEL “PROGT".

Rules

If an identifier is specified, its value must be a program-name. If a literal is specified,
it must be nonnumeric.

The CANCEL statement closes any files that are open in a called program. When a
CANCEL statement is executed, a subsequent CALL to that program will find it in
its initial state.

If a CANCEL statement specifies a program that has not been called or one that has
already been called and cancelled, no action is taken and control passes to the next
statement after the CANCEL. Any program can issue the CANCEL statement.
However, a program cannot CANCEL itself or a program that calls it directly. For
example, if PROG1 calls PROG2, PROG?2 cannot CANCEL PROGI1.

8' 14 The Procedure Division Licensed Material - Property of Data General

CLOSE

Terminates the processing of files.

Format
CLOSE {filename [WITH LOCKI}...

Examples

CLOSE CUSTOMER-FILE WITH LOCK.
CLOSE CUSTOMER-FILE, PRINTING-FILE.

Rules

The files referenced in the CLOSE statement need not all have the same organization
or access.

A CLOSE statement may be executed only for a file that is open (see the OPEN
statement). Following successful execution of a CLOSE statement, the record area
associated with the filename contains no valid data. If the CLOSE is unsuccessful, a
USE procedure, if specified, is executed.

The LOCK option prevents the file from being reopened within the program that
issued the LOCK.

After a file is closed with the CLOSE statement, no statement except DELETE FILE
can access that file until it is opened with another OPEN statement.

On RDOS and DG/RDOS, the CLOSE statement “logically” closes files, but the
operating system channels that are reserved for files remain open. In this case, files
may not be accessed from the concurrent-operations console. Executing a CALL
PROGRAM “#C” statement closes the channels and makes all files available.
Executing a CALL PROGRAM “#Cfilename” statement makes available the
specified file. The system automatically closes any open files when a STOP RUN
statement is executed.

Licensed Material - Property of Data General The Procedure Division 8-15

COMPUTE

Assigns the value of an arithmetic expression to a single
data-item.

Format

COMPUTE id [ROUNDED] = arith-expr [; ON SIZE ERROR imper-stmt]

Examples

COMPUTE WAGERATE = REG * OVER + BONUS.

COMPUTE PARTS-ON-HD ROUNDED = MIN-QTY - SALES-RPT;
ON SIZE ERROR GO TO WS.

COMPUTE MAILIST = 100 ** 26 + 4.

Rules

The identifier that appears to the left of the equal sign must refer to an elementary
numeric item or an elementary numeric edited item. All other identifiers and literals
must be elementary numeric items.

The arithmetic expression can be a single identifier or literal. The COMPUTE
statement can then be used to assign the value of a single identifier or literal to a
single identifier. Use this assignment instead of MOVE when the ROUNDED or
SIZE ERROR options are desired.

The arithmetic operators and the order of evaluation are explained in the section on
arithmetic expressions in chapter 1.

COMPUTE is the only COBOL statement that can be used for exponentiation, as
shown in the third example above. The value of an exponent must be a single literal or
identifier. Exponents may not contain a sign or a fraction.

Data descriptions of operands need not be the same; any necessary conversion and
decimal point alignment are supplied throughout the calculation.

The maximum size of each operand or composite of operands is 18 digits.

Note: Interactive COBOL truncates intermediate results of a COMPUTE operation
to the precision of the final result. This could cause a problem, as in the following
example:

01 OUT-REC PIC 9(6).99.

01 A PIC $9(6)v99.

01 ¢C PIC 99v99 VALUE 0.50.
01 D PIC S9(6) VALUE 13519.

8-16

The Procedure Division Licensed Material - Property of Data General

The statement COMPUTE A ROUNDED = D * C / 100 is performed as follows:

13519 * 0.50 / 100
= 13519 * .005

However, with the truncation of the intermediate result to the precision of the final
result (S9(6)V99), the calculation performed is:

13519 * .00
=0

If such truncation poses a problem, substitute ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements for the COMPUTE statement.

ivision 8-17
Licensed Material - Property of Data General The Procedure D

COPY

Inserts a copy of another file into the source file.

Format

COPY [INDEXED] lit

Examples

COPY INDEXED “INFOSCREEN".
COPY “DP2:SECURITY.SR".
IF NUM > T00-LARGE
COPY “TOO$LARGE".
ELSE NEXT SENTENCE.

Rules

The COPY literal must be nonnumeric and a valid filename under your operating
system. It must be preceded by a separator, and it must end with a period. Any
characters in the line after the period are ignored.

The keyword INDEXED indicates that the COPY file organization is indexed. The
Interactive COBOL compiler treats each record of an indexed COPY file as one
source line. The maximum record length accepted by the compiler is 132.

COPY statements that reference sequential and indexed files may be mixed in a
source program. However, all COPY files must be in the same source entry format as
the source program (CARD format or CRT format). If the COPY files are not in the
same format as the source program, they are not compiled correctly.

The COPY statement may appear anywhere in the source program, with three
exceptions:

« It cannot begin in area A. If COPY begins in area A, ambiguous error messages
appear in the copied lines.

« It cannot appear where a comment entry is expected.

« It cannot appear where a PICTURE string is expected.

A source program may contain any number of COPY statements; however, a COPY
file cannot contain a COPY statement.

When the compiler encounters a COPY statement, it reads the entire file into the
source program. Reading is then resumed at the next line after the COPY statement
in the original source file.

If you compile your program with the global /O switch, copy files are not included in
the listing file. Otherwise, the copied text is numbered beginning with line 1, and line
numbers have a “C” suffix.

On RDOS and DG/RDOS, the file to be copied must be in the current directory, the
pathname to the file must be supplied, or a link must be established.

8-1 8 The Procedure Division Licensed Material - Property of Data General

On AOS and AOS/VS, if the file (or a link to it) is not located in the current directory
and you do not supply a pathname, the COPY statement follows your searchlist to
find the file.

To compile a program on AOS and AOS/VS, you must have write and execute access
to the current directory, execute access to directories containing source or copy files,
and read access to the files. Lack of the proper access causes an error message.

Licensed Material - Property of Data General The Procedure Division 8-19

DELETE

Logically removes a record from an indexed or relative disk
file or physically removes a file from the disk.

Record DELETE Format

DELETE filename RECORD [; INVALID KEY imper-stmt]

File DELETE Format

DELETE FILE {filename}...

Examples

DELETE CUSTOMER-FILE RECORD; INVALID KEY GO TO DEL-ERR-RTN.
DELETE FILE TEMP-TRANS-FILE, TEMP-INVENTORY-FILE.

Rules for Record DELETE

The DELETE RECORD statement can be used only for files with indexed or relative
organization.

The execution of a DELETE statement affects neither the contents of the record area
in memory associated with filename nor the current record pointer.

For sequential access, a DELETE statement must be preceded by a successfully
executed READ statement for the same file. However, the program may contain
non-1/0 statements between the READ and DELETE statements. DELETE logically
removes from the file the record retrieved by the previous READ statement. The next
sequential READ retrieves the record following the deleted record.

The INVALID KEY phrase may not be specified for a DELETE statement that
references a file in sequential access mode.

For random or dynamic access, an INVALID KEY condition exists if the file does not
contain the record specified by the key. Either the INVALID KEY phrase or a USE
procedure must be specified to handle error conditions.

When a record DELETE is executed for random or dynamic access, the system
logically removes from the file the record identified by the contents of the RELATIVE
KEY or primary RECORD KEY data-item associated with the filename.

A logically deleted record cannot be further accessed, although the record may be
restored by executing the UNDELETE statement.

Execution of a DELETE statement updates the value of the FILE STATUS item.

The key value of HIGH-VALUES is reserved for system use. Your program should
not attempt to delete a record with a key value equal to HIGH-VALUES.

8-20 The Procedure Division Licensed Material - Property of Data General

Rules for File DELETE

The DELETE FILE statement physically removes the specified files from the physical
devices on which they reside. The files must be closed when this statement is executed.

If the file specified is a link file, under AOS and AOS/VS, the link file is deleted.
Under RDOS and DG/RDOS, the resolution file is deleted.

Under AOS and AOS/VS, for the DELETE FILE statement to execute:

* You must have execute access to all directories in the file’s pathname, including the
directory containing the file. (The DELETE FILE statement does not follow the
AOS or AOS/VS searchlist.)

* You must have either write access to the directory containing the file, or owner or
write access to the file being deleted.

e The PERMANENCE attribute of the file to be deleted must be OFF. To do this,
issue the CLI command PERMANENCE filename OFF.

The Procedure Division

8-21

DISPLAY

Transfers a group or elementary item to the screen. Performs
screen positioning and special screen functions.

Screen Format

LINE id-lit
DISPLAY {screen-name}|... | AT) { coLUMN id-lit
coL

Id-Lit Format
DISPLAY {id-lit}... [WITH NO ADVANCING]

Examples

DISPLAY INFO-SCREEN AT LINE LINE-NUM COL COL-NUM.
DISPLAY DATE-TODAY, “REPORT NUMBER”, RPT-NO.
DISPLAY “INCORRECT INPUT, PLEASE RE-ENTER” WITH NO ADVANCING.

Rules for Screen DISPLAY

Screen-names may not be subscripted.

DISPLAY screen-name is equivalent to DISPLAY screen-name LINE 1 COLUMN
1. The LINE and COLUMN clauses enable you to display a screen name with a
variable origin. The LINE and COLUMN identifiers must be elementary integers;
and their values may be from 1 to 255. If you DISPLAY a LINE or COLUMN value
that is larger than your screen, the screen will wrap; that is, if a display is 24 lines X
80 columns, LINE and COLUMN values of 25 and 81 are equivalent to 1 and 1.
However, no fields in a screen can begin beyond column 127.

Inclusion of the word AT indicates LINE or COLUMN or both are specified. The
words COLUMN and COL are interchangeable.

After a DISPLAY screen-name statement is executed, the program must execute an
ACCEPT statement to permit data entry. See chapter 3, “Data Movement with
DISPLAY and ACCEPT,” for details. If you have displayed a variable origin screen,
you must accept it using the same coordinates.

When a screen DISPLAY is executed, data-items following a FROM or USING
clause are moved to screen storage. If data is to be entered (i.e., the screen data-item
has a TO clause but no FROM clause), underscores are moved to screen storage. All
moves are executed in the COBOL manner. Once the moves are made, the screen is
displayed.

Literal fields are displayed exactly as they appear in the VALUE clause in the Screen
Section. The appearance of other fields is determined by the PICTURE clause, which
may specify editing symbols and whether a data-item is for input, output, or both.
Table 8-3 lists the differences in the appearance of the displayed fields.

8'22 The Procedure Division Licensed Material - Property of Data General

After a DISPLAY statement is executed, the cursor is positioned after the last
displayed field.

Type Clause Screen Appearance
Input TO Underscores defining its width (from the size of the screen
(without FROM) data-item’s PICTURE).

Output FROM Current value of FROM literal or data-item, edited accord-
ing to the screen data-item’'s PICTURE.

Input/ USING Current value of USING data-item, edited according to the

Output screen data-item’s PICTURE. The displayed value is
available for modification when the screen data-item is
accepted.

Table 8-3 Screen Appearance after Execution of a DISPLAY Statement

Rules for Id-lit DISPLAY

With this format, the program cannot control placement of the values on the screen.
DISPLAY places the specified literals or data values on the screen in one continuous
string at the current cursor position. The cursor then moves to the next line. When NO
ADVANCING is specified, the cursor remains at the end of the displayed text.

Do not use the scaling character P in a PICTURE clause, since character positions
marked by P are truncated in the display data-item.

When a DISPLAY statement contains more than one operand, the length of the
sending item is the sum of the lengths of the operands. DISPLAY moves the operands
in the sequence in which they are encountered.

You can display any figurative constant; however you cannot use the figurative
constant ALL with a DISPLAY statement. When a figurative constant is used with
DISPLAY, a single occurrence is displayed.

Licensed Material - Property of Data General The Procedure Division 8-23

DIVIDE

Divides one numeric data-item into another and sets the value
of data-items equal to the quotient and remainder.

Overlaying DIVIDE INTO Format
DIVIDE id-lit INTO id [ROUNDED] [;ON SIZE ERROR imper-stmt]

Nonoverlaying DIVIDE INTO Format

DIVIDE id-lit INTO id-lit GIVING id [ROUNDED] {REMAINDER id]
[; ON SIZE ERROR imper-stmt]

Nonoverlaying DIVIDE BY Format

DIVIDE id-lit BY id-lit GIVING id [ROUNDED] [REMAINDER id]
[; ON SIZE ERROR imper-stmt] i

Examples

DIVIDE QUANTITY INTO TOTAL ROUNDED; ON SIZE ERROR GO TO ERR-9.

DIVIDE QUANTITY INTO TOTAL GIVING AVERAGE ROUNDED REMAINDER AVG-R;
ON SIZE ERROR GO TO ERR-6.

DIVIDE TOTAL BY QUANTITY GIVING AVERAGE ROUNDED.

Rules

Each identifier must refer to an elementary numeric item. However, an identifier
associated with the GIVING or REMAINDER phrase must refer to either an
elementary numeric or numeric edited item.

A literal must be a numeric literal.

When the overlaying DIVIDE INTO is used, the value of id-lit is divided into the
value of id. The resulting quotient replaces the value of the dividend (id). For
example, in the sentence

DIVIDE A INTO B.

the value in B is divided by the value in A, and the result is stored in B.

With the nonoverlaying DIVIDE INTO, the value of the first id-lit is divided into the
value of the second id-lit, and the resulting quotient is placed in the GIVING id. For
example, in the sentence

DIVIDE A INTO B GIVING C.

the value in B is divided by the value in A, and the result is placed in C. The values in
A and B do not change.

8'24 The Procedure Division Licensed Material - Property of Data General

With the nonoverlaying DIVIDE BY, the value of the first id-lit is divided by the
value of the second id-lit, and the resulting quotient is placed in the GIVING id. For
example, in the sentence

DIVIDE A BY B GIVING C.

the value in A is divided by the value in B, and the result is placed in C. Again, the
values in A and B do not change.

The REMAINDER is the product of the quotient and the divisor subtracted from the
dividend. If the quotient id is defined as a numeric edited item, the quotient used to
calculate the remainder is an intermediate field that contains the unedited quotient. If
ROUNDED is also specified, the remainder is calculated on an intermediate value
that contains the truncated, rather than rounded, value of the quotient.

The accuracy of the REMAINDER item is defined by the calculation described
above. Appropriate decimal alignment and truncation, but not rounding, are performed
for the content of the REMAINDER data-item as needed.

The ON SIZE ERROR phrase specifies a statement for execution in the event of a
SIZE ERROR. The SIZE ERROR conditions are described in chapter 1.

When the ON SIZE ERROR phrase is used in the formats specifying REMAINDER,
the following rules apply:

« If the size error occurs on the quotient, the remainder is not calculated. Thus, the
contents of both the quotient id and the remainder id are unchanged.

« If the size error occurs on the remainder, the contents of the remainder id are
unchanged.

See “Arithmetic Expressions” in chapter 1 for an explanation of the ROUNDED
phrase.

Licensed Material - Property of Data General The Procedure Division 8"25

EXIT

Documents the end of a series of procedures.

Format
EXIT.

Example

RTN-EXIT-PARA.
EXIT.

Rules

The EXIT statement must appear in a sentence by itself, and it must be the only
statement in the paragraph.

The EXIT statement lets you assign a procedure-name to a given point in a program.
You may then use this reference point to define the limits of a PERFORM. An EXIT
statement has no other effect on the compilation or execution of the program.

8-26 The Procedure Division Licensed Material - Property of Data General

EXIT PROGRAM

Marks the logical end of a called program.

Format
EXIT PROGRAM.

Example

PROCEDURE DIVISION.

EXIT-PARA.
EXIT PROGRAM.

Rules

EXIT PROGRAM does not close files.

The EXIT PROGRAM statement must be the only statement of a single-statement
paragraph.

The EXIT PROGRAM statement occurs at the logical end of a called program. It
causes control to be returned to the first statement after the CALL statement of the
calling program. The called program remains in the state it was in when the EXIT
PROGRAM was executed.

If the EXIT PROGRAM statement occurs in a program that is not called:

« If the paragraph was not performed, control passes to the first sentence in the
paragraph after EXIT PROGRAM.

o If the paragraph was performed, the EXIT PROGRAM statement functions the
same way as EXIT.

A called program must execute an EXIT PROGRAM statement before being
cancelled. Otherwise, results are undefined.

Licensed Material - Property of Data General The Procedure Division 8'27

GO TO

Transfers control from one part of the Procedure Division to
another.

Simple GO TO Format

GO TO procedure-name

Conditional GO TO Format
GO TO procedure-name {; procedure-name |... DEPENDING ON id

Examples

GO TO BALANCE-RTN.
GO TO CHECK-1, CHECK-2, CHECK-3 DEPENDING ON CHECK-VALUE.

Rules

Procedure-name has the format:

OF . l
paragraph-name IN section-name

section-name s

A simple GO TO statement transfers control to the specified procedure-name. When
a simple GO TO is used in a sentence containing a sequence of imperative statements,
it must be the last statement in the sequence.

In the conditional GO TO format, the identifier is the name of an elementary integer
data-item. A GO TO DEPENDING statement transfers control to the procedure-name
whose position in the procedure-name list corresponds to the current value of the
identifier. If the current value of the identifier is less than 1 or greater than the
number of procedure-names in the list, no transfer occurs and control passes to the
next statement. For example:

GO TO PARA-10, PARA-20, PARA-30 DEPENDING ON PARA-CHECK.
NEXT-PARA.

If PARA-CHECK has a value of 1, 2, or 3, control passes to procedure-name
PARA-10, PARA-20, or PARA-30, respectively. If PARA-CHECK contains any
other value, control passes to the next executable statement in paragraph NEXT-
PARA.

With either format, it is illegal to transfer control to:

* A procedure-name in a Declaratives section from a nondeclaratives section
¢ A procedure-name in a nondeclaratives section from a Declaratives section

¢ A Declaratives section from another Declaratives section

The Procedure Division Licensed Material - Property of Data General

IF

Evaluates a condition and takes an action depending on whether
the condition is true or false.

General Format

NEXT SENTENCE ; ELSE NEXT SENTENCE

statement- 1 ; ELSE statement-2
IF condition;

Condition Formats

GREATER THAN
LESS THAN
EQUAL TO

id-lit IS [NOT] id-lit

AV

> =
<=

NUMERIC
ALPHABETIC

id IS [NOT] POSITIVE
NEGATIVE
ZERO

Combined Condition Format

. AND .
condition {_OT}condmon

Abbreviated Combined Condition Format

AND
condition{OR } [NOT] [relation-operator] object ...
Examples

IF LINE-COUNT = 60 GO TO NEW-PAGE-RTN.

IF CHOICE = 1 OR CHOICE = 2 OR CHOICE = 3 NEXT SENTENCE
ELSE GO TO CHOICE-RTN.

IF CHOICE = 1 OR 2 OR 3 NEXT SENTENCE
ELSE GO TO CHOICE-RTN.

IF OP-AREA EQUAL CUST-AREA PERFORM EXAMINE-RECORD
ELSE DISPLAY “Incorrect data’.

Licensed Material - Property of Data General

The Procedure Division

8-29

Rules

If the ELSE NEXT SENTENCE phrase immediately precedes the terminal period of
the sentence, it can be omitted.

When the condition stated in an [F statement is true:

« Statement-1 is executed. If it contains a branching statement, control is explicitly
transferred in accordance with the rules of that statement; otherwise, statement-2 is
ignored and control passes to the next executable sentence.

« If the NEXT SENTENCE phrase is used in place of statement-1, statement-2 is
ignored and control passes to the next executable sentence.

When the condition stated in an IF statement is false:

« Statement-1 is ignored and statement-2 is executed. If statement-2 contains a
branching statement, control is explicitly transferred in accordance with the rules of
that statement. Otherwise, control passes to the next executable sentence. If
statement-2 is not specified, statement-1 is ignored and control passes to the next
executable sentence.

« If the ELSE clause is not specified, control passes to the next executable statement.

« If the ELSE NEXT SENTENCE phrase is specified, control passes to the next
executable sentence.

When the condition is in combined form, any condition except the first may be
abbreviated by omitting either:

o The subject of the relation condition

« The subject and relational operator of the relation condition

Nested IF Statements

Either or both statements may contain IF statements, creating a nested IF statement.
IF statements contained within IF statements are considered as paired IF and ELSE
combinations. Proceeding from left to right, each ELSE encountered applies to the
immediately preceding IF that is not already paired with an ELSE. The following is
an example of a nested 1F statement:

IF INVALID-KEY-SW = “Y"
IF TRANS-CODE = “A”
PERFORM ADD-ROUTINE
ELSE
MOVE “NONMATCHING MASTER RECORD™ TO ERROR-MESS
PERFORM ERROR-ROUTINE
ELSE
IF TRANS-CODE = “A”
MOVE “DUPLICATE MASTER RECORD" TO ERROR-MESS
PERFORM ERROR ROUTINE
ELSE
IF TRANS-CODE = “C”
PERFORM CHANGE-ROUTINE
ELSE
IF TRANS-CODE = “D”
PERFORM DELETE-RTN.

8-30 The Procedure Division Licensed Material - Property of Data General

INSPECT

Counts and/or replaces specific single characters in a

data-item.
Tally INSPECT Format
ALL]id-lit
INSPECT id TALLYING id FOR LEADING BEFORE(\\imiAL id-lit
s AFTER
CHARACTERS
Replace INSPECT Format
ALL
| LEADING S id-lit BY id-lit BEFORE
INSPECT id REPLACING FIRST ArTen (INITIAL id-it

Tally and Replace INSPECT Format

INSPECT id TALLYING tally-clause REPLACING replacing-clause

Rules

The INSPECT statement must specify either the TALLYING or REPLACING
options or both. The TALLYING identifier must be an integer.

The identifier immediately following the INSPECT verb is the item that is to be
inspected. It may be an elementary or group item. It must be described as USAGE 1S
DISPLAY.

All id-lits must be one character long and may not be signed numeric items. When a
figurative constant is used, it refers to an implicit one-character data-item.

If the CHARACTERS option is specified, an implied one-character comparison is
used; the comparison is always considered a match.

If the ALL option is specified, all characters in the comparison area of the specified
data-item are considered for the comparison. The LEADING option matches only
contiguous occurrences of the specified character string that begin in the leftmost
position of the comparison area in the data-item.

Licensed Material - Property of Data General The Procedure Division 8-31

The INSPECT comparison cycle normally begins at the leftmost character of the
INSPECT identifier and proceeds to the rightmost character. During comparison of
the INSPECT identifier, each matched occurrence of the string is tallied and/or
replaced as specified in the REPLACING clause.

The BEFORE and AFTER phrases modify the boundaries of the INSPECT
comparison. Both phrases always refer to the initial (leftmost) occurrence of the id-lit
specified in the phrase.

When the BEFORE phrase is used, comparison continues up to, but does not include,
the first occurrence of the id-lit specified in the BEFORE phrase.

When the AFTER phrase is used, comparison begins immediately after the first
occurrence of the specified id-lit.

Tally INSPECT

With the ALL phrase, the TALLYING identifier increases by one for each occurrence
of id-lit within the INSPECT identifier.

With the LEADING phrase, the TALLYING identifier increases by one for each
contiguous occurrence of id-lit within the INSPECT identifier, provided the leftmost
id-lit is at the point where comparison begins.

When the CHARACTERS phrase is used, the TALLYING identifier increases by
one for each character in the INSPECT identifier.

Replace INSPECT

The statement must specify one of the options: ALL, LEADING, FIRST, or
CHARACTERS.

* When the ALL phrase is used, each occurrence of the id-lit preceding the BY phrase
is replaced by the id-lit following the BY phrase.

e With the LEADING phrase, each contiguous occurrence of the id-lit preceding the
BY phrase is replaced by the id-lit following the BY phrase, provided the leftmost
id-lit is at the point where comparison begins.

e When the FIRST phrase is used, the leftmost id-lit preceding the BY phrase is
replaced by the id-lit following the BY phrase.

¢ When the CHARACTERS phrase is used, each character in the INSPECT identifier
is replaced by the character specified in the REPLACING id-lit.

Tally and Replace INSPECT

In this format, INSPECT functions as two separate statements, INSPECT TALLY-
ING and INSPECT REPLACING. The INSPECT TALLYING portion is executed
first.

Sample INSPECT Statements

In the following examples the count data-item has value 0 before the INSPECT
statement is executed.

INSPECT word TALLYING count FOR LEADING “L" BEFORE INITIAL “A”.

Where word = LARGE, count = 1.
Where word = ANALYST, count = 0.

INSPECT word TALLYING count FOR ALL “L” REPLACING LEADING
“A" BY “E” AFTER INITIAL “L".

8-32 The Procedure Division Licensed Material - Property of Data General

Where word = CALLAR, count = 2, word = CALLAR.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL
“J” REPLACING ALL “A” BY “B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.

INSPECT word REPLACING ALL “X" BY “Y” AFTER INITIAL “R".

Where word = REXMALL, word = REYMALL.
Where word = TEXARKANA, word = TEXARKANA.

INSPECT word REPLACING CHARACTERS BY “B” BEFORE INITIAL “A”.
Where word = 12XZABCD, word = BBBBABCD.
INSPECT word REPLACING ALL “A” BY “G" BEFORE INTITIAL “X".

Where word = ARXAS, word = GRXAS.
Where word = HANDAX, word = HGNDGX.

Licensed Material - Property of Data General The Procedure Division 8-33

MOVE

Transfers data from one data-item to one or more data-items.

Format
MOVE id-lit TO {id}...

Examples

MOVE BALANCE TO LINE-3.
MOVE “THE DATE IS” TO HEAD-2.
MOVE 0 TO SUB-1, SUB-2, SUB-3.

Rules

Id-lit represents the sending area; id represents the receiving area.
The rules for moves apply equally to all receiving areas.

Any subscripting or indexing associated with the sending item is evaluated only once,
immediately before the data is moved to the first of the receiving operands.

Any subscripting or indexing associated with a receiving item is evaluated immediately
before the data is moved to the respective item. Consider the following statement,
where B = 1 and A(1) = 2:

MOVE A(B) TO B, C(B).
This statement is equivalent to:

MOVE 2 TO B.
MOVE 2 TO C(2).

Note that A(B) is evaluated at the start only, and C(B) is evaluated immediately
before moving data into that item.

Moves Between Data Types

An elementary move occurs when both the sending and receiving items are elementary
items. Every elementary item belongs to one of the following categories: numeric,
alphabetic, alphanumeric, numeric edited, or alphanumeric edited. The editing symbols
used in the PICTURE clause specify the category for an item. The data categories for
literals and figurative constants are:

» Numeric literals are numeric.

« Nonnumeric literals are alphanumeric.

« All figurative constants except ZERO and SPACE are alphanumeric.
« The figurative constant ZERO is numeric.

« The figurative constant SPACE is alphabetic.

8-34 The Procedure Division Licensed Material Property of Data General

Category of Receiving Data-Item
Alphanumeric Numeric Integer

Sending Edited Numeric Noninteger
Data-Item Alphabetic Alphanumeric Numeric Edited
Alphabetic Yes Yes No
Alphanumeric Yes Yes Yes
Alphanumeric Yes Yes No

Edited
Numeric Integer No Yes Yes
Numeric No No Yes

Noninteger
Numeric Edited No Yes No

Table 8-4 Legal Interactive COBOL Move Combinations

All numeric receiving fields are decimal point aligned, right justified, and padded with
zeros. All numeric edited receiving fields are decimal point aligned and padded with
the appropriate editing character(s). All other receiving fields are left justified and
padded with spaces.

The following restrictions apply to elementary moves between data categories:

o The figurative constant SPACE must not be moved to a numeric or numeric edited
item.

« A numeric edited, alphanumeric edited, or alphabetic data-item must not be moved
to a numeric or numeric edited item.

« A numeric literal, the figurative constant ZERO, a numeric item, or a numeric
edited item must not be moved to an alphabetic item.

« A noninteger numeric literal or a noninteger numeric item must not be moved to an
alphanumeric or alphanumeric edited item.

All other elementary moves are legal. Any necessary conversion of data from one form
of internal representation to another occurs during the move, along with any specified
editing in the receiving item. Table 8-4 summarizes the legality of the various types of
MOVE statements.

Licensed Material - Property of Data General The Procedure Division 8-35

MOVE CORRESPONDING

Moves items with the same name from one group item to
another group item.

Format

MOVE

CORRESPONDING
CORR

} id-1TO id-2

Examples

MOVE CORRESPONDING TEMP-LIST TO PERM-LIST.
MOVE CORR CURR-SALES TO BACKUP SALES.

Rules
Id-1 and id-2 must be group items.

For two items within each group to correspond they must have the same name. One of
the corresponding items must be elementary. The other may be group or elementary.

The MOVE CORRESPONDING verb looks inside each of the group items named as
operands. The names of the items subordinate to these groups are compared. Items
within id-1 are moved to items within id-2 that have the same name.

The data is combined into one alphanumeric string when the sending item is a group.
When the receiving item is a group, the sending data is allocated on a position-by-
position basis, with truncation and space filling.

Consult the description of the verb MOVE to see how elementary moves are handled.
The following example illustrates the use of MOVE CORRESPONDING. Two items
are described as follows:

01 LIST1. 01 LIST2.
02 APPLES PIC 99. 02 LEMONS PIC 99.
02 ORANGES PIC 99. 02 APPLES PIC 99.
02 PEARS PIC 99. 02 ORANGES PIC 99.

The initial values are the following:

LISTY LIST2
APPLES 4 LEMONS &
ORANGES 9 APPLES 13
PEARS 2 ORANGES 5

After execution of MOVE CORRESPONDING LIST1 TO LIST2 the values are:

8-36

The Procedure Division

LIST1

APPLES
ORANGES
PEARS

LIST2

LEMONS
APPLES
ORANGES

The CORRESPONDING phrase does not require that the level numbers be identical;
however, the record structures must be the same. Given the following structure

01 LISTA.
02 APPLES
02 ORANGES
02 PEARS

02 SUBLIST2.
03 LEMONS
03 APPLES
03 ORANGES

The statement MOVE CORRESPONDING LIST1 T0 LIST2 is illegal. The statement MOVE CORRESPONDING

LIST1 TO SUBLIST2 is legal.

Licensed Material - Property of Data General

The Procedure Division

8-37

MULTIPLY

Multiplies two numeric data-items and sets the value of a
data-item equal to their products.

Overlaying MULTIPLY Format
MULTIPLY id-lit BY id [ROUNDED] [;ON SIZE ERROR imper-stmt]

Nonoverlaying MULTIPLY Format
MULTIPLY id-lit BY id-lit GIVING id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Examples

MULTIPLY HOURS BY RATE; ON SIZE ERROR GO TO ERR-RTN-6.
MULTIPLY 3.1416 BY DIAMETER ROUNDED;
ON SIZE ERROR GO TO CHECK-IT.
MULTIPLY HOURS BY RATE GIVING GROSS.
MULTIPLY DIAM BY 3.1416 GIVING CIRC ROUNDED.

Rules

Each id must refer to an elementary numeric item, except that in the nonoverlaying
format the id following the word GIVING must refer to either an elementary numeric
or numeric edited item.

A literal must be a numeric literal.

When the overlaying format is used, the value of id-lit is multiplied by the value of id,
and the result of the operation replaces the value of id. For example, in the statement

MULTIPLY A BY B

the value in A is multiplied by the value in B, and the result is stored in B.

When the nonoverlaying format is used, the value of the first id-lit is multiplied by the
id-lit following the word BY, and the result is stored in the id following the word
GIVING.

See “Arithmetic Expressions” in chapter 1 for details on the ROUNDED and SIZE
ERROR phrases.

8-38 The Procedure Division Licensed Material - Property of Data General

OPEN

Initiates processing of a file.

Format

INPUT {filename}...
OUTPUT {filename}...
1-O {filename}...
EXTEND {filename}...

OPEN [EXCLUSIVE]

Examples

OPEN INPUT TRANS-FILE, CUSTOMER-FILE.
OPEN EXCLUSIVE I-0O MASTER-FILE-1.
OPEN INPUT TRANS-FILE OUTPUT PRINT-RPT I-0 MASTER-FILE.

Rules

The OPEN statement makes the associated record area available to the program. It
does not obtain or release the first data record. A READ obtains a record, and a
WRITE releases a record. Before a successful OPEN statement for a given file, no
statement can be executed that refers to that file, with the exception of the DELETE
FILE statement.

The execution of an OPEN statement updates the value of the FILE STATUS item.
When the OPEN statement is unsuccessful, the program executes the USE procedure,
if specified, for the file.

Each OPEN statement must specify one of the OPEN modes: INPUT, OUTPUT,
I-O, or EXTEND. The file remains in that mode until the program executes a
CLOSE statement for it, the run unit terminates, or the program is cancelled. Table
8-5 lists permissible 1/O statements with various file organizations, access modes and
OPEN modes. Table 8-6 lists the results of an OPEN on existing and nonexisting files.:

A file can be opened with one OPEN mode and then reopened with a different OPEN
mode in the same program, provided that the file is closed (without the LOCK option)
prior to a subsequent OPEN. After successful execution of an OPEN INPUT
statement, the file’s records can be read whether they are locked or unlocked.

When a program opens an existing indexed or relative file for INPUT or I-O, the
program must describe the file exactly as it was described when it was created (i.e.,
record size, number of keys, etc.)

When any file is opened for INPUT or I-O, the OPEN statement sets the current
record pointer to the first record in the file. For an indexed file, this is the record
corresponding to the lowest primary key. If no record exists in the file, the current
record pointer is set so that the first READ statement executed for the file results in
an AT END condition.

Licensed Material - Property of Data General The Procedure Division ~ 8-39

Open Mode
File
Access
Modes Statement Input Output I-0 Extend
Sequential READ SRl SR,
WRITE S,R,l S
REWRITE SR/
START R, R,
DELETE/UNDELETE R,
Random READ R, R,
WRITE R, R,
REWRITE R,
START
DELETE/UNDELETE R,
Dynamic READ R, R,
WRITE R, R,
REWRITE R,
START R, R,
DELETE/UNDELETE R,
Table 8-5 Permissible I/O Statements with OPEN
Key
S: Statement accesses for files with sequential organization.
R: Statement accesses files with relative organization.
I: Statement accesses files with indexed organization.

The OPEN OUTPUT statement opens a file for output operations. For sequential
files, it creates a new file with the designated filename. An existing file with that
filename is automatically deleted. For indexed or relative files, the OUTPUT mode
should be used only if the file does not exist; in this case the file is created. If the file
already exists and output operations are desired, the file should be opened in I-O
mode.

The OPEN I-O statement permits the program to open a file for both input and
output operations. I-O mode can be specified only for disk files. For sequential files,
OPEN I-O may be specified only for an existing file. For relative or indexed files, the
OPEN [-O statement creates the file if it does not already exist.

The EXTEND phrase positions the record pointer immediately after the last logical
record of a sequential file, allowing a program to write additional records to that file.
It may be used only for sequential files. Subsequent WRITE statements referencing
the file add records as though the file had been opened in OUTPUT mode. If the file
does not exist, it is created.

The EXCLUSIVE Phrase

The EXCLUSIVE phrase is an Interactive COBOL feature that prevents any other
user from opening the file. An attempt to open a file already opened with EXCLUSIVE
results in an 1/O error.

EXCLUSIVE is redundant for files opened in EXTEND mode, as the system does not
allow multiple users of a file opened for EXTEND. EXCLUSIVE is not implied for
files assigned directly to PRINTER or PRINTER-1, whether they are opened for
OUTPUT or EXTEND.

8-40 The Procedure Division Licensed Material - Property of Data General

Option File Is Available File Is Unavailable

INPUT Normal open. If the file is empty, Open is unsuccessful.
the first READ causes the AT END
or INVALID KEY condition.

I-O Normal open. If the file is empty, Sequential: Open is unsuccessful.
the first READ causes the AT END Indexed or relative: Creates the
or INVALID KEY condition. file.

OUTPUT Sequential: Deletes old file and cre- Creates the file.

ates new one.
Indexed or relative: Open is unsuc-

cessful.

EXTEND Sequential: Positions to last record. Sequential: Creates the file.
Indexed or relative: Open is unsuc- Indexed or relative: Open is un-
cessful. successful.

Table 8-6 Permissible Options with OPEN

OPEN Rules for RDOS and DG/RDOS

A CLOSE or CALL PROGRAM “logically” closes a file; that is, the buffer is flushed
and, if necessary, the file is updated. However, the file remains physically open; that
is, the operating system channels used by the file remain open. These channels remain
open until one of the following occurs:

1. The runtime system is terminated.
2. All available channels are used, and a request is made for another file.
3. A #C system call is issued.

If the file to be opened is not in the current directory, a pathname must be supplied or
a link must be established.

OPEN Rules for AOS and AOS/VS

If a pathname is not supplied and the file (or a link to it) is not in the current
directory, the OPEN statement follows the user’s searchlist to find the file.

The access control list (ACL) is examined before a file is opened. The access types
required for the OPEN statement depend on the open mode, as follows:

e INPUT. Read access required

e« OUTPUT, EXTEND, I-O. Read access required. Write access required for the
directory if a file is being created.

If you do not have the proper access type(s) when executing an OPEN statement, the
OPEN fails with a File Status code of 91.

Open File Limits

Files opened by one or more COBOL programs use operating system input/output
channels. A sequential file uses a single channel for each program that opens it. An
indexed or relative file uses two channels, no matter how many programs have opened
it. Therefore, the number of simultaneously open files depends on the type of file
organization and the number of channels available on the operating system. If any
program attempts to open a file when channels are not available, the OPEN fails with
a File Status code of 91.

The number of channels varies among systems. For information about the number of
channels available on your system, see the Interactive COBOL User’s Guide for your
operating environment.

Licensed Material - Property of Data General The Procedure Division 8-41

PERFORM

Transfers control to and executes one or more procedures.

Unconditional PERFORM Format

THROUGH

PERFORM - -
P procedure-name- 1 {THRU

} procedure-name-2

Iterative PERFORM Format

THROUGH
THRU

integer

PERFORM procedure-name- 1 { } procedure-name-2 {id } TIMES

Conditional PERFORM Format

THROUGH

PERFORM procedure-name- 1
THRU

} procedure-name-2 UNTIL condition

Variable PERFORM Format

THROUGH

THRU } procedure-name-2

PERFORM procedure-name-1 {

VARYING id-1 FROM id-lit-1 BY id-lit-2 UNTIL condition-1

[AFTER id-2 FROM id-lit-3 BY id-lit-4 UNTIL condition-2]

[AFTER id-3 FROM id-lit-5 BY id-lit-6 UNTIL condition-3]

Examples

PERFORM SET-UP THROUGH CALLING-SEQUENCE-EXIT.

PERFORM INCREMENT-RTN 10 TIMES.

PERFORM INCREMENT-RTN UNTIL CHECK-VALUE = QUANTITY.

PERFORM OUTPUT-RTN VARYING SUB-1 FROM CHECK-VALUE BY 2
UNTIL SuB-1 = 60.

Rules

An active PERFORM is one that has started executing its first statement. The
PERFORM remains active until its end limit is executed. Interactive COBOL allows
30 active PERFORM statements. An attempt to activate more than 30 results in a
runtime error. A message is displayed and the program terminates.

The words THROUGH and THRU are equivalent.

When a PERFORM statement is executed, control passes to the first statement of the
procedure named in procedure-name-1. Transfer of control to the next executable
statement following the PERFORM statement is established as follows:

8"42 The Procedure Division Licensed Material - Property of Data General

o If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified,
the return is after the last statement of the paragraph.

o If procedure-name-1 is a section-name and procedure-name-2 is not specified, the
return is after the last statement of the last paragraph in the section.

* If procedure-name-2 is specified and is a paragraph-name the return is after the last
statement of the paragraph.

« If procedure-name-2 is specified and is a section-name, the return is after the last
statement of the last paragraph in the section.

« If control passes to these procedures by means other than a PERFORM statement,
control passes through the last statement of the procedure to the next executable
statement as if no PERFORM statement mentioned these procedures.

Unconditional PERFORM

The unconditional format is the basic PERFORM statement. A procedure referenced
by this type of PERFORM statement is executed once; control then passes to the next
executable statement following the PERFORM statement.

Iterative PERFORM

The iterative format uses the TIMES option. The initial value of the identifier
specifies the number of times the PERFORM is executed. If you change this value
during execution of the PERFORM, the procedure is still executed the original
number of times. After the procedure is executed the specified number of times,
control passes to the next executable statement.

The identifier or integer must be positive with a value less than 32,768. If the value is
zero or negative when execution of the PERFORM begins, control passes immediately
to the next executable statement. If the value of the identifier or integer is greater
than 32,767, an error message is displayed and the program terminates.

Conditional PERFORM

The conditional format uses the UNTIL option. The procedures are performed until
the condition specified by the UNTIL phrase is true. When the condition is true,
control passes to the next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is encountered, the PERFORM is
not executed; control passes immediately to the next executable statement.

Variable PERFORM

The variable format uses the VARYING option. A variable perform terminates only
when condition-1 is true. Condition-2 and condition-3 affect only the number of times
the PERFORM is executed. At the end of a PERFORM having two or three

conditions, id-2 and id-3 have the current values of id-lit-3 and id-lit-5, respectively.

When one item is varied, the following occurs:

Id-1 is set to the value specified by id-lit-1.

The condition of the UNTIL phrase is evaluated.

If the condition is true, control passes to the statement following the PERFORM.
If the condition is false, the specified procedures are executed once.

The value of id-1 is incremented or decremented by id-lit-2.

The condition in the UNTIL phrase is tested again; the cycle continues until the
condition is true.

RN ol

When two items are varied, the following occurs:

1. 1d-1 and id-2 are set to their initial values as specified by id-lit-1 and id-lit-3.

Licensed Material - Property of Data General The Procedure Division 8-43

Set indentifier-1
{identifier-2,
identifier-3)
to initial values

Evaluate
condition-1

Is No
condition-2

specified

Execute
procedure-
name-1 thru
procedure -
name-2

Update

» identifier-}—

Execute

name-2

procedure- No

name-1 thru
procedure -

Update

2

identifier-

1D-01240

True

Evaluate
condition-2

Set
identifier-2
to initial
value

Is
condition-3
specified

1

False

Evaluate
condition-3

Execute
procedure-
name-1 thru
procedure -
name-2

Update
identifier-
3

Set
identifier-3
to initial
value

]

nokh v

Condition-1 is evaluated.
If condition-1 is true, control passes to the statement following the PERFORM.

If condition-1 is false, condition-2 is tested.

If condition-2 is false, the PERFORM is executed once, id-2 is incremented or
decremented by id-lit-4, and condition-2 is tested again. This continues until
condition-2 is true.

6. If condition-2 is true, id-2 is set to its initial value, id-1 is incremented or
decremented by id-lit-2, and control returns to step 2.

Figure 8-1 Flowchart for a PERFORM...VARYING Statement

8-44

The Procedure Division

Licensed Material - Property of Data General

x PERFORM a THRU m

a

d PERFORM f THRU j

]

j

m

x PERFORM a THRU m

a
f

m

i
d PERFORM f THRU j

1D-02900

x PERFORM a THRU m

a

d PERFORM f THRU j
h

]

Figure 8-2 Valid PERFORM Constructions

When three items are varied, the following occurs:

1.

A T

Figure 8-1 gives the general format for PERFORM..VARYING statement.

and id-lit-5.
Condition-1 is evaluated.

becomes true.

condition-2 is true.

Id-1, id-2, and id-3 are set to their initial values as specified by id-lit-1, id-lit-3,

If condition-1 is true, control passes to the statement following the PERFORM.
If condition-1 is false, condition-2 is tested.
If condition-2 is false, condition-3 is tested.

If condition-3 is false, the PERFORM is executed, id-3 is incremented or
decremented by id-lit-6, and the condition is tested again until condition-3

If condition-3 is true, id-3 is set to its initial value, id-2 is incremented or
decremented by id-lit-4, and condition-2 is tested again. This continues until

If condition-2 is true, id-2 is set to its initial value, id-1 is incremented or

decremented by id-lit-3, and control returns to step 2.

If a sequence of statements referred to by a PERFORM statement includes another
PERFORM statement, the sequence of procedures associated with the included
PERFORM must be totally in, or totally excluded from, the logical sequence referred
to by the first PERFORM. An active PERFORM statement whose execution point
begins within the range of another active PERFORM statement may not pass to the
exit of the first PERFORM statement. Two or more such active PERFORM
statements may not have a common exit. See Figure 8-2 for examples of valid
PERFORM constructions.

Licensed Material - Property of Data General

The Procedure Division

8-45

READ

Makes available the next logical record or a specified record,
depending on file access type.

Sequential Access Format

READ filename RECORD [LOCK] [INTO id] [; AT END imper-stmt]

Random Access Format

Relative Files:

READ filename RECORD [LOCK] [INTO id] [; INVALID KEY imper-stmt]
[ndexed Files:

READ filename RECORD [LOCK] [INTO id] [; KEY IS data-name] [; INVALID KEY imper-stmt]

Dynamic Access Format
Sequential Retrieval:

NEXT

READ filename {PREVI%

} RECORD [LOCK] [INTO id] [; AT END imperstmt]

Random Retrieval:

READ filename RECORD [LOCK] [INTO id] [; KEY IS data-name]
[; INVALID KEY imper-stmt]

Examples

READ TRANS-FILE INTO REC-2.
READ MASTER-FILE INTO REC-1; INVALID KEY GO TO NO-MAST-RTN.
READ CUSTOMER-FILE NEXT AT END GO TO ENDING-RTN.
READ MASTER-FILE LOCK INTO REC-1;
INVALID KEY GO TO NO-MAST-RETURN.

General Rules

The associated file must be open in the INPUT or I-O mode at the time a READ
statement is executed. The execution of a READ statement updates the value of the
FILE STATUS item.

The INTO identifier and the record area associated with the filename must not share
the same storage area.

When the INTO phrase is specified, the current record is moved from the record area
to the identifier area according to the rules for MOVE. Thus the execution of a
READ...INTO statement is equivalent to:

8'46 The Procedure Division Licensed Material - Property of Data General

READ filename.
MOVE record-name TO identifier.

That record is then available in both the input record area and the identifier area. The
implied MOVE does not occur if the execution of the READ statement is unsuccessful.
Any subscripting or indexing associated with the identifier is evaluated after the
record has been read and immediately before it is moved to the data-item.

Specify the KEY IS clause only for an indexed file. The data-name must be a
data-item specified as one of the record keys for the file. The value of any key should
not be equal to HIGH-VALUES. This value is reserved for system use.

The LOCK Option

The LOCK option can be used only for indexed or relative files. When a record is read
with the LOCK option, it may not be accessed (read, deleted, or rewritten) by any
other user. An attempt by another user to access a record that is locked results in an
I1/0 error. A locked record may be deleted, rewritten, or unlocked only by the
program that issued the LOCK statement. Exception: after the successful execution of
an OPEN INPUT statement, records in that file may be read regardless of whether
they are locked or unlocked.

When a program attempts a sequential READ of a locked record, and that READ is
unsuccessful, the current record pointer is not reset. Thus if the read statement is
within a loop, the program continues to try to access that record until it is unlocked.
This looping condition can be avoided by executing a statement to check the File
Status code.

Under RDOS and DG/RDOS, the maximum number of locked records is two times
the number of ISAM files, as specified in the command that brings up the runtime
system. Under AOS and AOS/VS, the maximum number is 32 locked records per
file. An attempt to exceed the limit results in an I/O error with a File Status code of
9E. Therefore, a record should be unlocked as soon as it is written or rewritten.

AT END Condition

A READ statement must specify an AT END or INVALID KEY phrase (depending
on the access method) if the program does not provide a USE procedure for the file.

When a sequential READ statement is executed and no next logical record exists in
the file, the AT END condition occurs, and the READ statement is unsuccessful.
When the AT END condition is recognized, the following actions are taken in order:

1. A value is placed into the FILE STATUS item associated with this file, to
indicate an AT END condition.

2. If the AT END phrase is specified in the statement, control passes to the AT
END imperative statement. Any USE procedure specified for this file is not
executed.

3. If the AT END phrase is not specified, then a USE procedure must be specified
for this file, and that procedure is executed.

Access Modes

Interactive COBOL provides three methods for retrieving data and three types of file
organizations (see chapter 2 for a full description). The user defines the access method
and file organization with the SELECT phrase in the File-Control entry. The following
discussion of record retrieval is organized by access method and file organization.

Licensed Material - Property of Data General The Procedure Division 8-47

Rules for Sequential Access

The sequential access method may be used for files with sequential, relative, or
indexed organization. It must be used when the file organization is sequential.

Execution of a sequential READ statement makes available the next logical record
from the file. The current record pointer determines what is considered the next
record.

Note: On RDOS and DG/RDOS, the READ statement for files assigned to
KEYBOARD is terminated by CR, null, and form feed. On AOS and AOS/VS,
NEW LINE is also a terminator.

Sequential Organization. In a file with sequential organization, if an OPEN statement
positioned the current record pointer, the current record is made available. However,
if a previous READ statement positioned the current record pointer, the next existing
record in the file is made available. The next record is the succeeding record in logical
sequence.

When the AT END condition occurs, the program must not execute a sequential
READ for that file before executing a successful CLOSE statement followed by a
successful OPEN statement.

Relative Organization. In a file with relative organization, if a START or OPEN
statement positioned the current record pointer, the current record is made available.
However, if a previous READ statement positioned the current record pointer, the
next existing record (i.e., one that has not been logically deleted) in the file is made
available. The next record is the succeeding logical record in key sequence. The key
sequence is determined by the ascending values of relative record numbers for the
records in the file.

If the RELATIVE KEY clause is specified in the SELECT entry for this file, the
relative key data-item is updated to reflect the relative record number of the record
being made available.

The AT END condition occurs when no next logical record exists in the file. When
this condition is recognized (see the description above), a sequential access READ
statement must not be executed for this file until one of the following has been
executed:

¢ A successful CLOSE statement followed by a successful OPEN statement
» A successful START statement for this file
¢ A successful random access READ statement for this file

Indexed Organization. For files with indexed organization, if a START or OPEN
statement positioned the current record pointer, the current record is made available.
However, if a previous READ statement positioned the current record pointer, the
next existing record in the file is made available. The next existing record is the
succeeding logical record in key sequence. The key sequence is determined by the
ascending values of the current key of reference.

When an ALTERNATE RECORD KEY is the key of reference, file records with
duplicate key values are made available in the order in which they were written to the
file.

The AT END condition occurs when no next logical record exists in the file. When the
AT END condition is recognized, a sequential access READ statement must not be
executed for this file until one of the following has been executed:

8'48 The Procedure Division Licensed Material - Property of Data General

* A successful CLOSE statement followed by a successful OPEN statement
* A successful START statement for this file
* A successful random access READ statement for this file

Rules for Random Access

This method may be used only with disk files having indexed or relative organization.
The SELECT clause must specify random access for the file. The current record is
determined by the value in the current record pointer.

The INVALID KEY phrase must be specified if no applicable USE procedure is
designated for the filename.

Relative Organization. The execution of a random READ statement for a relative file
sets the current record pointer to the record whose relative record number is contained
in the RELATIVE KEY data-item (defined in the SELECT clause). That record is
then made available. When the record is not found, the INVALID KEY conditior
exists and execution of the READ statement is unsuccessful (see “Exception
Conditions” in chapter 1). Following an unsuccessful READ, the contents of the
associated record area and the position of the current record pointer are undefined.

Indexed Organization. The records in an indexed file are accessed by record key
values. When a random READ statement is executed for an indexed file, the following
occurs:

1. The key of reference is established. When the KEY phrase is specified, the
data-name becomes the key of reference. The KEY data-name must identify a
record key associated with filename. It may be the primary record key or any
alternate record key. The data-name may be qualified, but it cannot be subscripted
or indexed. If the KEY phrase is omitted, the primary record key is established
as the key of reference.

2. The value of the key of reference is compared with the value of the corresponding
key data-item in the file records, until the first record having an equal value is
found.

3. The current record pointer is then set to this record, and it is made available.

If a record with an equal value is not found, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful (see “Exception Conditions” in
chapter 1). Following an unsuccessful READ, the contents of the associated record
area and the position of the current record pointer are undefined.

Rules for Dynamic Access

This method combines the sequential and random access methods and allows the
program to switch from one to the other. This access mode can be used only with files
having relative or indexed organizations. The SELECT clause must specify dynamic
access for the file.

Sequential Retrieval. The NEXT or PREVIOUS phrase must be specified to retrieve
records sequentially during dynamic access. The NEXT phrase causes the program to
retrieve the next logical record. Similarly, the PREVIOUS phrase causes the program
to retrieve the previous logical record. If the preceding operation was a START or
READ, then either a READ NEXT or a READ PREVIOUS will retrieve the current
record. Otherwise, the next or previous record is read. If the end of the file is
encountered during a READ NEXT, or if the beginning of the file is encountered
during a READ PREVIOUS, the AT END condition occurs and the statement is
unsuccessful. The rules outlined above for the AT END condition apply.

All the other rules described above in “Sequential Access” apply.

Licensed Material - Property of Data General The Procedure Division 8'49

Random Retrieval. The key of reference is established as described above in “Random
Access.” Subsequent sequential reads use this key of reference until a different key is
established.

The same rules described in “Random Access” apply.

The following example shows dynamic access for an indexed file.
ENVIRONMENT DIVISION.

FILE-CONTROL .
SELECT CUSTOMER-FILE;
ASSIGN TO DISK, CUS-FILE-NAME;
ORGANIZATION IS INDEXED:
ACCESS IS DYNAMIC;
RECORD KEY IS CUST-KEY:
ALTERNATE RECORD KEY IS CUST-AREA.

PROCEDURE DIVISION.

* Random read on key value of CUST-KEY

READ CUSTOMER-FILE INTO REC-1;
INVALID KEY MOVE O TO REC-EXISTS-FLAG.

* Sequential read of NEXT record

READ CUSTOMER-FILE NEXT INTO REC-2;
AT END MOVE 1 TO END-OF-CUST-FILE.

8'50 The Procedure Division Licensed Material - Property of Data General

REWRITE

Replaces an existing record in a disk file.

Format for Sequential Files

REWRITE record-name [FROM id]

Format for Relative and Indexed Files
REWRITE record-name [FROM id] [; INVALID KEY imper-stmt]

Examples

REWRITE MAST-REC FROM REC-1 INVALID KEY GO TO REC-LOST-RTN.
REWRITE TRANS-REC.
REWRITE CUSTOMER-REC INVALID KEY GO TO ERROR-6.

Rules

The record-name is the name of a logical record associated with a file declared in the
Data Division. The record-name may be qualified. The record-name and id must not
refer to the same storage area.

The number of character positions in the record referenced by the record-name must
be equal to the number of character positions in the record being replaced.

The file associated with the record-name must be open in I-O mode (see the OPEN
statement) at the time the REWRITE statement is executed.

The execution of the REWRITE statement causes the value of the FILE STATUS
item to be updated. It does not affect the current record pointer.

After the successful execution of a REWRITE statement, the record is no longer
available in record-name unless the associated file is named in a SAME RECORD
AREA clause. In this case, the record is available to the program as a record from the
other files named in the SAME RECORD AREA clause.

The execution of a REWRITE statement with the FROM phrase is equivalent to the
execution of:

MOVE id TO record-name.
REWRITE record-name.

After the rewrite, the record information is still available in the identifier.

The key value of HIGH-VALUES is reserved for system use. Your program should
not attempt to execute REWRITE on a record with key values equal to HIGH-
VALUES.

For files in sequential access mode, a successful READ statement must be executed
before the execution of the REWRITE statement. The record specified in the
REWRITE statement replaces the record that was just read.

Licensed Material - Property of Data General The Procedure Division 8-5 1

Sequential Files

The INVALID KEY phrase may not be specified for a file with sequential
organization. A USE procedure should be specified.

Relative Files

In a relative file accessed in random or dynamic access mode, the record specified in
the REWRITE statement replaces the record designated by the RELATIVE KEY
data-item.

An INVALID KEY or a USE procedure must be specified. The INVALID KEY
condition occurs when the referenced file does not contain the record specified by the
RELATIVE KEY data-item. The updating operation does not take place, and the
data in the record is unaffected.

Indexed Files

With sequential access, the record specified in the REWRITE statement replaces the
record specified by the value of the primary record key. The value specified in the
REWRITE statement must equal the value of the primary key data-item in the record
just read from this file.

With random or dynamic access, the record specified in the REWRITE statement
replaces the record specified by the value in the primary record key.

The contents of alternate record key data-items of the record being rewritten may
differ from those in the record being replaced. If any alternate data-item has changed
in value, the record is no longer available using the old alternate value(s); it is
available using the new alternate value(s). The system ensures that later access to the
record can be based upon any of the record keys.

Aninvalid KEY or a USE procedure must be specified. The INVALID KEY condition
exists if either of the following occurs:

* The access mode is sequential, and the value in the primary RECORD KEY of the
record to be replaced does not equal the primary RECORD KEY data-item of the
last record retrieved from the file.

» The value in the primary RECORD KEY does not equal that of any record in the
file.

If either of the above conditions exists, the REWRITE statement is unsuccessful, the
updating operation does not take place, and the data is unaffected.

8-52 The Procedure Division Licensed Material - Property of Data General

SET

Loads specific values into associated index-items.

Format
TO
SET {id} -~ ¢UP BY id-lit
DOWN BY
Examples

SET SUB-1, SUB-2 TO CHECK-VALUE.
SET SUB-2 UP BY 10.
SET GRADE-1 DOWN BY DEMOTE.

Rules

An identifier in a SET statement may refer to an index data-item, an index-name, or
an elementary integer. A literal must be numeric and can be signed.

If the TO phase is used, the literal must be positive and the value of id-lit replaces the
current value of id.

Index-names are associated with a given table through the INDEXED BY option of
the OCCURS clause in a data description entry.

Data-items described as USAGE IS INDEX are not considered to be related to
particular tables.

UP BY increases id by the value of id-lit, while DOWN BY decreases id by the value
of id-lit.

Licensed Material - Property of Data General The Procedure Division 8-53

START

Positions the record pointer for sequential retrieval of records.

Format _ -
=)
EQUAL TO
> l
START filename | KEY IS { GREATER THAN > data-name {[; INVALID KEY imper-stmt]
> _
wor= |
NOT LESS THAN)
L—— ——

Examples

START TRANS-FILE KEY IS EQUAL TO FIRST-VALUE.
START INVENTORY-01 KEY IS NOT LESS THAN LAST-VALUE;
INVALID KEY PERFORM NON-REC-RTN.

Rules

START sets the current record pointer to the first record that satisfies the KEY
condition. The filename must be the name of an indexed or relative file with sequential
or dynamic access. The file must be open in INPUT or 1/0 mode.

If the KEY phase is omitted, the relational eperator IS EQUAL TO is implied. When
the KEY phase is used, the comparison specified in the KEY relational operator is
made between the key field associated with the file’s records and the corresponding
data-name. The specified data-name may be qualified, but it may not be subscripted
or indexed. The value of the key cannot be equal to HIGH-VALUES. HIGH-VALUES

is reserved for system use.

The START statement makes a comparison between a key field in the file’s records
and the current value in the corresponding key data-name. It then positions the
current record pointer to the first undeleted logical record in the file with the key
value that satisfies the condition.

If no record in the file satisfies the condition, an INVALID KEY condition exists; the
position of the current record pointer is undefined, and INVALID KEY imper-stmt,
if specified, is executed. If none is specified, the applicable USE procedure is executed.
(See chapter 1 for an explanation of the INVALID KEY condition.) The INVALID
KEY phrase must be specified if no applicable USE procedure is designated for the

file.

The execution of the START statement updates the value of the FILE STATUS
item.

8-54 The Procedure Division Licensed Material - Property of Data General

Relative Files

For relative files, the data-name must be the data-item specified in the RELATIVE
KEY phrase of the associated FILE-CONTROL entry.

If the KEY phrase is not specified, START uses the RELATIVE KEY data-item and
the IS EQUAL TO operation for the comparison. It positions the current record
pointer to the first undeleted logical record with the key that satisfies the condition.

If the START statement is unsuccessful, the current record pointer is undefined.

Indexed Files

For indexed files, data-name is an alphanumeric data-item that specifies the primary
key or an alternate record key.

When the statement executes successfully, the key of reference is established. The
data-name is the key of reference unless the KEY phrase is not specified, in which
case the primary key becomes the key of reference. Subsequent sequential READ
statements also use it.

If the operands in the comparison are of unequal length, the comparison proceeds
based on the length of the key, without regard to the length of the defined data-name.
All other nonnumeric comparison rules apply.

If the START statement specifies the EQUAL phrase, the current record pointer is
set to the first record with a key equal to the contents of the data-name. If the
GREATER phrase is used, the current record pointer is set to the first record with a
key greater than the data-name. If the NOT LESS phrase is specified, the current
record pointer is set to the first record with a key greater than or equal to the
data-name.

If START EQUAL is executed for a value in a duplicate alternate key, the current
record pointer is positioned to the first record written using the alternate key value.
Subsequent sequential reads retrieve records in the order in which they were written.

If START is unsuccessful, the current record pointer and the current key of reference
are undefined.

Licensed Material - Property of Data General The Procedure Division 8-55

STOP

Permanently or temporarily suspends program execution.

Format

STOP {—BUN }
literal

Examples

STOP RUN.
STOP “PROGRAM NON TERMINATING".

Rules

A STOP RUN statement terminates the program. When STOP RUN appears in a
consecutive sequence of imperative statements within a sentence, it must be the last
statement in that sequence.

The literal may be numeric, nonnumeric, or any figurative constant except ALL.
When STOP literal is executed, the literal is displayed on the screen and the program
halts. Information displayed on the screen is unaffected.

The program remains halted until you press NEW LINE or CR key; execution then
continues with the next statement. If the program is executed from the CLI, pressing
ESC terminates the program and returns you to the CLI. If the program is executed
from Logon, the pressing ESC terminates the program and displays a STOP RUN
message; control then returns to Logon when you press NEW LINE, CR, or ESC.

If a file is in OPEN mode when a STOP RUN is executed, the system closes all open
files in the run unit—not just those open by the current program. STOP literal does
not close open files unless you press the ESC key.

8-56 The Procedure Division Licensed Material - Property of Data General

SUBTRACT

Subtracts one or the sum of two or more numeric data-items
from an item, and sets the value of an item equal to the resulit.

Overlaying SUBTRACT Format

SUBTRACT {id-lit}... FROM id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Nonoverlaying SUBTRACT Format

SUBTRACT{MJH}”FROMithG“ﬂNGid[ROUNDED]
[; ON SIZE ERROR imper-stmt]

Examples

SUBTRACT PAYMENT FROM BALANCE;
ON SIZE ERROR PERFORM BAL-ERR-RTN.
SUBTRACT DEDUCTIONS FROM GROSS GIVING NET;
ON SIZE ERROR PERFORM NET-ERR-RTN.

Rules

Each id must refer to a elementary numeric item. However, in nonoverlaying format
the id following the word GIVING may refer to an elementary numeric or numeric
edited item.

Each literal must be a numeric literal.

In the overlaying format all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from the current value of the last id. The
result is stored in that last id. For example, in the sentence

SUBTRACT A, B FROM C.

the sum A + B is subtracted from C, and the result is stored in C.

In the nonoverlaying format all literals or identifiers preceding the word FROM are
added together, the sum is subtracted from the id-lit following the word FROM, and
the result of the subtraction is stored as the value of the id specified in the GIVING
phrase. For example, in the sentence

SUBTRACT A, B FROM C GIVING D.

the sum A + B is subtracted from C, the result is stored in D, and the values in A, B,
and C are unchanged.

Licensed Material - Property of Data General The Procedure Division 8-57

SUBTRACT CORRESPONDING

Subtracts items in one group from items in another group that
have the same name.

Format

SUBTRAGT { CORRESPONDING

CORR

} id FROM id [ROUNDED]

[; ON SIZE ERROR imper- stmt]

Examples

SUBTRACT CORRESPONDING LIST1 FROM LIST2.
SUBTRACT CORR INVEN-SOLD FROM CURR-INVEN;
ON SIZE ERROR GO TO X3.

Rules

Both id’s must refer to group items. The elements within the groups must all be
elementary items. No subgroups are subtracted. None of the items may be designated
as USAGE IS INDEX.

The groups do not need to contain exactly the same list of id’s. SUBTRACT
CORRESPONDING compares the elements which make up each group. When two
are found that have the same name, the first operand is subtracted from the second,
and the result is stored in the second operand. Those elements with different names
are ignored.

If a SIZE ERROR occurs on any one subtraction, all of the remaining subtractions

are performed before the imperative statement is executed.

The following examples illustrate the use of SUBTRACT CORRESPONDING. Two
data-items are described as follows:

01 LISTY. 01 LIST2.
02 APPLES PIC 99. 02 LEMONS PIC 99.
02 ORANGES PIC 99. 02 APPLES PIC 99.
02 PEARS PIC 99. 02 ORANGES PIC 99.

The initial values are the following:

LIST1 LIST2

APPLES 4 LEMONS 10
ORANGES 2 APPLES 8
PEARS 5 ORANGES 6

8-58 The Procedure Division Licensed Material - Property of Data General

After execution of SUBTRACT CORRESPONDING LIST1 FROM LIST2 the values are:

LIST1 LIST2

APPLES 4 LEMONS 10
ORANGES 2 APPLES 4
PEARS 5 ORANGES 4

The CORRESPONDING phrase does not require that the level numbers be identical:
however, the record structures must be the same. Given the following structure

01 LIST1. 01 LIST2.
02 APPLES PIC 99. 02 SUBLIST2.
02 ORANGES PIC 99. 03 LEMONS PIC 99.
02 PEARS PIC 99. 03 APPLES PIC 99.

03 ORANGES PIC 99.

The statement SUBTRACT CORRESPONDING LIST1 FROM LIST2 is illegal. The statement SUBTRACT
CORRESPONDING LIST1 FROM SUBLIST2 is legal.

Licensed Material - Property of Data General The Procedure Division 8-59

UNDELETE

Restores a logically deleted record to an indexed or relative
file.

Format
UNDELETE filename RECORD [; INVALID KEY imper-stmt]

Examples

UNDELETE CUSTOMER-FILE RECORD INVALID KEY GO TO NO-REC-RTN.
UNDELETE INVENTORY-01.
UNDELETE MASTER-FILE INVALID KEY GO TO ERROR-11.

Rules

The system restores to a file the logically deleted record that is identified by the
contents of the RECORD KEY or RELATIVE KEY data-item associated with the
specified filename. After the successful execution of an UNDELETE statement, the
record may be accessed as before the deletion.

The INVALID KEY phrase must be specified when no applicable USE procedure has
been defined for the file. The INVALID KEY condition exists when the file does not
contain the record specified or the record specified is not deleted.

Execution of an UNDELETE statement does not affect the contents of the record
area associated with the filename.

An UNDELETE statement updates the FILE STATUS item. The current record
pointer is not affected.

8‘60 The Procedure Division Licensed Material - Property of Data General

UNLOCK

Releases all records of a specified file that have been locked
by previous READ statements.

Release all records of a specified file that have been locked by READ statements.

Format

UNLOCK filename {RECORD }

RECORDS

Example
UNLOCK MASTER-FILE RECORDS.

Rules

The associated file must be open in INPUT or I-O mode when UNLOCK is executed.
The current record pointer is not affected by an UNLOCK statement.

UNLOCK unlocks only records locked by the program it resides in.

Licensed Material - Property of Data General The Procedure Division 8-61

USE

In the Declaratives section, specifies procedures for
input-output error handling.

Format
INPUT
OuTPUT
USE AFTER STANDARD EXCEPTION PROCEDURE ON < I-O
ERROR 0 p—
EXTEND
{filename}...

Example
PROCEDURE DIVISION.

DECLARATIVES.
PROCESS-ERR SECTION.
USE AFTER ERROR PROCEDURE ON INPUT.
FIRST-PARAG.
DISPLAY INPUT-FILE-STAT.
MOVE 1 TO INPUT-ERROR.
END DECLARATIVES.

Rules

A USE statement must immediately follow a section header in the Declaratives
section and be followed by a period and a space. The remainder of the section consists
of paragraphs that define the procedures to be used.

The USE statement itself is never executed. Instead, it defines the conditions that
cause execution of the succeeding procedure(s). The procedures are executed when an
exceptional I/O condition occurs. After a declarative procedure executes, control
passes to the statement following the one that caused the error or exceptional condition.

The words ERROR and EXCEPTION are interchangeable.

The files referenced in a USE statement need not have the same organization or
access mode.

The following errors cause USE procedures to be executed:

¢ One or more filenames are specified, and an error condition occurs during the
processing of one of the files.

» The INPUT phrase is specified, and an error condition occurs during the processing
of a file open for input.

e The OUTPUT phrase is specified, and an error condition occurs during the processing
of a file open for output.

« The I-O phrase is specified, and an error condition occurs during the processing of a
file open for 1-O.

« The EXTEND phrase is specified, and an error condition occurs during the processing
of a file open for extension.

8'62 The Procedure Division Licensed Material - Property of Data General

e An AT END or INVALID KEY condition occurs, and the AT END or INVALID
KEY phrase has not been specified.

A given filename can be specified in only one USE procedure. This means that if an
input file is named in one USE procedure, the program cannot also have a USE
procedure that refers to all input files.

A statement within a USE procedure cannot reference a nondeclarative procedure.
Likewise, a statement in a nondeclarative procedure cannot reference a procedure-
name that appears in the Declaratives section, with one exception: a PERFORM
statement in the nondeclarative portion may refer to a USE statement or to the
procedures associated with a USE statement. However, the procedures must be
contained within one USE statement.

A USE procedure cannot cause the execution of another USE procedure that has been
invoked but has not yet returned control to the invoking routine.

Licensed Material - Property of Data General The Procedure Division 8-63

WRITE

Releases a logical record to a file. In a sequential file, also
positions lines within a logical page.

Format with Sequential Organization
WRITE rec-name [FROM id- 1]

integer LINE
%&E&Fﬁ} ADVANCING {{id-z } [LINESJ}

AFTER PAGE

Format with Indexed or Relative Organization

WRITE rec-name [FROM id}] [; INVALID KEY imper-stmt]

Examples

WRITE TRANS-REC FROM REC-2.

WRITE PRINT-REC-1 BEFORE ADVANCING 2 LINES.

WRITE PRINT-RPT-LN FROM ERROR-RPT AFTER ADVANCING LINE-NUM.
WRITE INVENTORY-REC INVALID KEY GO TO DUPLICATE-REC-RTN.

Rules

Execution of the WRITE statement releases a logical record to the file associated with
the record-name.

The record-name is the name of a logical record described in the File Section of the
Data Division. The associated file must be open for OUTPUT, I-O, or EXTEND.
Rec-name and id may not reference the same storage area.

After the successful execution of a WRITE statement, the record is no longer available
in the record area unless the file is named in a SAME RECORD AREA clause. If so,
the logical record is still available in record-name.

The result of the execution of a WRITE with the FROM phrase is equivalent to the
statements:

MOVE id TO rec-name.
WRITE rec-name.

In this case, the record information is still available in id after the WRITE.

A WRITE statement updates the FILE STATUS item. The current record pointer is
unaffected by a WRITE statement.

The key value of HIGH-VALUES is reserved for system use. Your program should
not attempt to write a record with key values equal to HIGH-VALUES.

8-64 The Procedure Division Licensed Material - Property of Data General

Sequential Organization

The WRITE statement cannot be used in sequential access for a file open in I-O
mode.

The ADVANCING phrase controls the vertical positioning of each line on a logical
page. An integer must be in the range 0-79. An identifier can have a value up to
65,535. When the ADVANCING phrase is omitted, AFTER ADVANCING 1
LINE is implied.

When the ADVANCING phrase is used or implied, the following rules apply:

* BEFORE ADVANCING places the record on the logical page before advancing
the current position » lines.

* AFTER ADVANCING places the record on the logical page after advancing the
current position # lines.

* PAGE places the record on the logical page before or after advancing to the next
logical page.

» The ADVANCING phrase can be used only with files assigned to PRINTER or
DISPLAY.

When you attempt to write beyond the device limits (total available storage capacity)
of a sequential file, an exception condition exists and the contents of the record area
are unaffected. The following actions take place:

* The value of the FILE STATUS data-item, if any, of the associated file is set to a
value indicating a boundary violation.

* If a USE AFTER STANDARD EXCEPTION declarative is specified for the file,
that declarative procedure is executed.

* If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or
implicitly specified for the file, the result is a fatal 1/O error.

Relative Organization

A WRITE statement may be executed for a relative file opened in I-O or OUTPUT
mode.

When a file is opened in OUTPUT mode, the WRITE statement causes the following
actions:

« If the access mode is sequential, the first record released has relative record number
1, the second number 2, the third number 3, and so on. If the RELATIVE KEY
data-item is specified in the FILE-CONTROL entry for the associated file, the
relative record number of the record just released is placed in the RELATIVE KEY
data-item.

« If the access mode is random or dynamic, the RELATIVE KEY data-item must
contain the relative record number for this record before the WRITE statement is
issued. When the WRITE statement is executed, that record is placed at the
specified relative record number position in the file.

When a file is opened in [-O mode, the access mode must be random or dynamic. The
WRITE statement inserts new records into the file. The value of the RELATIVE
KEY data-item must be initialized by the program. Execution of a WRITE statement
then places the record at the specified record number position in the file.

The INVALID KEY condition exists when the access mode is random or dynamic,
and the RELATIVE KEY data-item specifies a record that already exists in the file.

When the INVALID KEY condition is recognized, the WRITE is unsuccessful and
the FILE STATUS item is updated.

Licensed Material - Property of Data General The Procedure Division 8-65

Indexed Organization

When the WRITE statement is executed, the system releases the record, using the
contents of the record key and any alternate keys in such a way that subsequent access
of the record can be based upon those keys.

Before execution of the WRITE statement, the program must set the data-item
specified as the primary record key (i.e., the RECORD KEY data-item defined in the
File-Control entry) to the desired value. The RECORD KEY value must be unique
within the file records. Also, values must be assigned to the entire record, including all
alternate keys and other data fields; otherwise, the data transferred by a WRITE
statement is undefined.

A WRITE statement may be executed for an indexed file opened in OUTPUT or I-O
mode.

If a file is opened in OUTPUT mode and sequential access is specified, records must
be released to the system in ascending order of primary record key values.

If a file is opened in I-O mode, or random or dynamic access is specified, records may
be released to the system in any order. Sequential access is not permitted with I-O
mode.

When the ALTERNATE KEY clause is specified in the File-Control entry, the value
of each alternate key is used to construct an alternate path to the data record. If
duplicate records exist, the system stores the records so that sequential access to the
file allows retrieval in the order the records were written.

The INVALID KEY phrase must be specified if no applicable USE procedure is
designated for this file. An INVALID KEY condition exists if:

« Sequential access is specified for a file opened in OUTPUT mode and the value of
the record key is not greater than that of the previous record

o The file is opened in OUTPUT or I-O mode and the value of the RECORD KEY
equals that of an existing record

When the INVALID KEY condition is recognized, the execution of the WRITE
statement is unsuccessful, and the FILE STATUS item is set to a value indicating the
cause of the condition.

8-66 The Procedure Division Licensed Material - Property of Data General

Appendix A

Compiler Command Line
Summary

This appendix summarizes the Interactive COBOL compiler command line. There are
slight differences among the systems in the use of global and local switches; these
differences are noted below. For complete details on the operation of the compiler, see
chapter 4 of the Interactive COBOL User’s Guide for your operating environment.
Compiler error messages are listed in appendix A of each User’s Guide.

The command line to call the compiler is:
ICOBOL[/global-sw]...source-file[/1] [[file-name]/local-sw]...

where source-file is the source file, and file-name is an RDOS or DG/RDOS listing
or error file (see below for error and listing files on AOS and AOS/VS).

Compiler statistics and any error messages are automatically sent to the screen unless
specifically prohibited by command switches (see below).

Note: The data and procedure sizes reported by RDOS and DG/RDOS are different
from those on AOS and AOS/VS. RDOS and DG/RDOS show these sizes in blocks;
AOS and AOS/VS in pages. A block is 512 bytes, a page is 2 KB; thus each page is
equal to four blocks.

Global Switches

/A Produces ANSI-compatible code.

/C The source to be compiled is in card format. Omission of the C
switch specifies CRT format. All COPY files in the program
must have the same format (CRT or card) as the program that
uses them.

/D The symbol table is added to the object data file for runtime
debugging. This switch is ignored if a global N switch is also

present.
/E=-error-file Error messages are written to error-file (AOS and AOS/VS
only).
/E Compiler statistics and error messages are not sent to the screen.
/1 Produces revision 4 .PD and .DD files. However, the only new

features that can be used with this switch are level 88,
PERFORM...AFTER, abbreviated combined relation condi-
tions, and the compiler /O and /R switches. The other new
features listed in “Changes to Interactive COBOL” in the front
of this manual cannot be used.

Licensed Material - Property of Data General

Compiler Command Line Summary

/L=listing-file The compiler listing is written to listing-file (AOS and AOS/VS
only).

/L The compiler listing is written to source-file.LS (RDOS and
DG /RDOS only). The compiler listing is written to the current
LISTFILE (AOS and AOS/VS only).

/N No object program is produced. If this switch is omitted, the
object program is produced in the files source-file.PD and
source-file.DD.

/0 Copy files are not included in the listing file.

/R Under AOS and AOS/VS, the .PD file is not rounded up to a 2
KB boundary. Under RDOS and DG/RDOS, the .PD file is
rounded up to a 2 KB boundary.

/S The symbol table, compiler statistics, and any additional data
are output to the listing file at the end of compilation.

/U The intermediate-code object program is appended to the listing.
This switch cannot be used with the /N switch. If it is, a
compiler error message is displayed.

/W Warning messages are suppressed from the listing file.

/X The cross-reference table is output to the listing file at the end
of compilation.

Local Switches

/1 The source file is indexed. The source file must be specified
without any filename extension.

/L The listing file is file-name (RDOS and DG/RDOS only).
/E The error file is file-name (RDOS and DG /RDOS only).

/P The listing file is to be purged if it already exists (RDOS and
DG/RDOS only).

A-2 Compiler Command Line Summary Licensed Material - Property of Data General

Appendix B
Glossary

Access control list
On the AOS and AOS/VS systems, restricts certain types of file usage such as the
ability to read a file, write to a file, or delete a file. The access

Access mode

The method of record retrieval and storage. The three Interactive COBOL access
modes are SEQUENTIAL, RANDOM, and DYNAMIC. Access mode is specified
in a SELECT clause in the Environment Division.

Actual decimal point
The physical representation of the decimal point position in a data-item, using either
of the decimal point characters period (.) or comma (,).

Alphabetic character
A character that belongs to the set of uppercase letters A-Z and the space character.

Alphanumeric edited item
Data-item restricted to combinations of the following symbols: A, X, 9, B, and slash
(/). The contents may be any character in the data character set except the underscore

().

Alternate record key
A key, other than the primary record key, the contents of which identifies one or more
records within an indexed file.

Assumed decimal point
An implied decimal point position that is indicated with the symbol V in the PICTURE
description.

AT END condition

A condition that occurs when a sequential READ is executed for a file after the last
existing record has already been accessed, or in READ PREVIOUS, when the first
record has already been accessed.

Block

A physical unit of data composed of one or more records. The COBOL concept of
blocking (FD, BLOCK CONTAINS clause) does not apply to the Interactive COBOL
system. System block size is fixed at 512 bytes. Records are read and written without
regard for the block boundaries.

Called program

A program that is named in a CALL or CALL PROGRAM statement in the
Procedure Division. In a program invoked by a CALL statement, an EXIT
PROGRAM statement marks the logical end of the called program, and control
returns to the calling program. With a CALL PROGRAM statement, the calling
program is terminated and control passes to the called program.

Calling program
A program that invokes the execution of another program.

Licensed Material - Property of Data General Glossary

Cathode ray tube
A terminal with a keyboard used for input and a video display monitor used for
output. CRT refers generally to this terminal and specifically to the display.

Character, alphabetic

Specified by A in a PICTURE clause, one of the 26 uppercase letters A-Z and the
space. These characters return a value of true for the ALPHABETIC class test. The
26 lowercase letters a-z return a value of false.

Character, alphanumeric
Specified by X in a PICTURE clause, its position(s) may be filled by any character in
the data character set.

Character set, COBOL

A subset of the ASCII data set (listed in appendix C). The COBOL character set
consists of the following 51 characters: the uppercase letters A-Z, the digits 0-9, +,—,
asterisk, slash, equal sign, $, comma, semicolon, period, quotation mark, open and
close parentheses, less-than sign, and greater-than sign.

Character set, data

The 96-character ASCII set (octal 40-177) and the 96-character 8-bit ASCII set
(octal 240-377), available on terminals that provide DG’s international symbols. The
DEL (decimal 127) character affects only screen input. The ASCII character set is
listed in appendix C.

Character, editing
Used to indicate a value to be inserted or replaced in a field. The 12 editing characters
are shown in the following table.

Character Meaning Character Meaning
B Space b4 Zero suppress
0 Zero * Check protect
+ Plus sign $ Currency sign
- Minus sign , Comma
CR Credit symbo . Decimal point (period)
DB Debit symbol / Slash (stroke)

Character, numeric
One of the ten digits 0-9. These digits return a value of true for the NUMERIC class

test.
Character, picture
Any of the following characters, which may be used in a PICTURE string:

A zero insertion position

A decimal digit position

An alphabetic character position

A space insertion position

An assumed decimal scaling position

The presence of an operational sign

The location of an assumed decimal point
A position that may contain any character
Editing sign controls

A leading currency sign position

A slash insertion positon

A comma insertion position

A decimal point insertion position

A leading asterisk insertion position when
the content is zero

X<WTVTO®>»OO

CR DB +

-~

.

B'2 Glossary Licensed Material - Property of Data General

Character, punctuation

The eight characters used to punctuate Interactive COBOL statements and sentences:
space, comma, semicolon, period, quotation mark, open parenthesis, close parenthesis,
and equal sign.

Character, relation
Any of the three characters: less than (<C), greater than (>), and equal to (=). They
may be used in combination, e.g., <<=, meaning “less than or equal to.”

Clause

The information in a COBOL program is written in clauses in the Identification,
Environment, and Data divisons. A clause specifies an attribute of an entry, which is
a series of clauses ending with a period.

Column
A horizontal cursor position along a line on the display. It is controlled by the
COLUMN clause.

Comment entry

An entry in the Identification Division that provides program documentation (the
purpose of the program, its functions, etc.). It may consist of any number of lines of
text made up of any of the characters in the data set.

Comment line

Provides program documentary information in the source code. An asterisk in the
indicator area marks a comment line, which can consist of any of the characters in the
data set. Comments have no effect on the compiler or runtime system. A special form
of comment using a slash in the indicator area causes page spacing of the output
listing at compile time.

Compiler directing statement
The two Interactive COBOL compiler directing verbs COPY and USE. They are not
executed in the normal sense, but cause the compiler to perform specific actions.

Condition, class
The class condition ALPHABETIC or NUMERIC. In a program, an item may be
tested to determine whether or not it is entirely alphabetic or numeric.

Condition, combined
The connecting of two or more conditions, to form one expression, by using the logical
operators AND or OR.

Condition, complex

The combining of conditions with the Boolean operators NOT, AND, and Jor OR, and
using optional parentheses to indicate the order of evaluation. Complex conditions
occur in two forms: the negated simple condition and the combined condition.

Condition, negated simple
The condition specified by using the logical operator NOT immediately before a
conditional.

Condition, relation

A condition comparing two operands. Each operand may be the data-item referenced
by an identifier, a literal, or the value of an arithmetic expression. A relation condition
has a value of true if the relation exists between the operands.

Condition, sign
The condition that determines if the algebraic value of a numeric item is less than,
greater than, or equal to zero.

Condition, simple
A relation, class, switch-status, or sign condition.

Licensed Material - Property of Data General Glossary B'3

Condition, switch-status

A condition that determines the on or off status of a switch defined in the Environment
Division. The switch-name and the condition-name associated with the switch must be
named in the SPECIAL-NAMES paragraph. See Condition-name.

Conditional expression

Specifies a condition for testing within a program. Depending on the truth value of the
condition, the program selects between alternative paths of processing. Conditional
expressions are specified in IF and PERFORM statements. See Condition, simple
and Condition, complex.

Conditional statement
Specifies that the truth value of a condition is to be determined and that the subsequent
action of the program is dependent on this truth value.

Condition-name

(1) A condition-name assigned to a program switch in the Environment Division. The
names that correspond to the switches are ON or OFF. If the switch is ON the
associated condition-name is true and the OFF condition-name is false. (2) A word
that is associated with a data-item by being assigned to one or more values that the
data-item can assume. The condition-name is used instead of the relation condition.

Connective
OF or IN used to associate a name with its qualifier. The logical operators NOT,
AND, and OR connect simple conditionals to form combined conditional expressions.

Contiguous items
Items described by successive entries in the Data Division that have a logical
relationship to each other.

Currency sign
The $ character of the COBOL character set.

Currency symbol

A character defined in the Environment Division to be used to represent the location
of a currency sign in numeric edited PICTURE strings. If no currency symbol is
defined, the dollar sign ($) is the default.

Current record
The record that is available for manipulation in the area associated with a file.

Current record pointer
A conceptual item indicating a logical position in an indexed or relative file. It is used
to select the next record to be read.

Data clause
Any of the clauses that are part of the description of an item in the Data Division
(OCCURS, PICTURE, VALUE, etc.).

Data description entry
An entry in the Data Division consisting of a level-number, a data-name, and the data
clauses necessary to define an item.

Data Division
One of the four major parts of a COBOL program. The Data Division describes the
data that the program creates, manipulates, and produces.

Data-item
A variable defined as a unit that can be operated on by the program.

B'4 Glossary Licensed Material - Property of Data General

Data-name

A programmer-defined word that names an item described in the Data Division. It
may contain up to 30 characters from the set A-Z, 0-9, and the hyphen. It cannot
begin or end with a hyphen.

Display
The visible area, divided into rows and columns of character positions, on the face of
the monitor.

Declaratives
A set of one or more sections that specify actions to be taken in the event of I/O
errors. Declaratives must appear at the beginning of the Procedure Division.

Declarative sentence
A USE statement terminated by a period. It is not executed but defines procedures to
be executed when an 1/O error occurs.

Directory

A file that is a catalog of other files, including other directories.

Division

One of four COBOL program units: Identification, Environment, Data, and Procedure.

Within the divisions must be all the necessary definitions and instructions for program
operation at run time.

Dynamic access

An access mode in which specific logical records in an indexed or relative file can be
read or written in a nonsequential manner, or read in a sequential manner. This must
occur during the scope of a single OPEN statement.

Elementary item
A data-item described in the Data Division as having no logical subdivisions. See
Group item.

Entry
Any set of consecutive clauses terminated by a period that appear in the Identification,
Environment, or Data divisions.

Environment Division
One of the four major parts of a COBOL program. It contains the Configuration and
Input-Output sections.

Extend
An option of the OPEN statement that allows records to be added to the end of an
existing sequential file.

Field
A contiguous row of character positions on the display screen. These character
positions form a logical unit that can be filled with data, moved, displayed, etc.

Figurative constant

A reserved word that represents a specific constant value. Figurative constants are
used in a program to avoid repetitive coding. Singular and plural forms are
interchangeable; they must not be enclosed in quotation marks. The figurative
constants and their values are:

ZERO, ZEROS, ZEROES The digit O

SPACE, SPACES The space character

HIGH-VALUE, HIGH-VALUES Octal value 377

LOW-VALUE, LOW-VALUES Octal value 000

QUOTE, QUOTES The quotation mark character

ALL literal The specified literal. The literal must be either a

nonnumeric literal or a figurative constant. However,
the ALL figurative-constant form is redundant.

Licensed Material - Property of Data General Glossary

File
Data that is logically organized by records. A COBOL program deals with data
grouped into files.

File control
A paragraph in the Environment Division where the names of the files for a program
are declared.

File description

A series of entries in the File Section of the Data Division that define the attributes
and organization of a file. The entries consist of an FD level indicator, followed by a
file-name and the clauses necessary to describe the file.

File, indexed
A file whose records can be accessed randomly by keys. A file with an ORGANIZA-
TION IS INDEXED clause in its FD is referred to as an indexed file.

File-name, external
The name by which a file is known to the operating system. An external file-name is
related to the internal file-name in a SELECT clause in the Environment Division.

File-name, internal

The name by which a file is know to a COBOL program. It may be up to 30
characters in length and can consist of any of the uppercase letters and the hyphen.
Within a program, file-names must be unique.

File, relative

A file with an ORGANIZATION IS RELATIVE clause in its FD. The records in
this type of file have keys in ascending sequence relative to the first record in the file.
A relative file may be accessed sequentially, randomly, or dynamically.

File Section
An optional section of the Data Division that contains the file description and associated
record description entries.

File, sequential
A file with an ORGANIZATION IS SEQUENTIAL clause in its FD. The records in
this type of file are accessed in physical sequence. Keys may not be used.

FILE STATUS

The clause of the FILE-CONTROL paragraph that allows the programmer to request
the status of 1/0 operations. Various codes are returned to a programmer-defined
name that indicate successful completion of an operation or the type of error condition
encountered. File Status codes are explained in this manual and are listed in the
User’s Guide.

Fixed-length record
A record in a file whose records are all of the same size. For example, a sequential file
where every record is 80 bytes long has fixed-length records.

Group item
A named contiguous set of elementary or group items.

Hierarchy
The entire record structure with all its subdivisions, as defined in the Data Division of

a COBOL program.
id
An abbreviation for the common COBOL term identifier.

Identifier
A data-name along with any necessary qualifiers, subscripts, or indices to make a

unique reference to a data-item.

B-6 Glossary Licensed Material - Property of Data General

Identification Division
One of the four major divisions of a COBOL program. It includes the required
PROGRAM-ID paragraph and several optional documentation paragraphs.

id-lit
An abbreviation for the common COBOL construct identifier-literal. Either an
identifier or a literal can be used.

Imperative statement
A statement that begins with a verb that specifies an unconditional action to be taken
by the program.

Index
A unit of data, the contents of which represent the identity of a particular element in
a table.

Index-name
A programmer-defined name that associates an index with a particular table.

INVALID KEY condition
The condition caused by an 1/O statement when a specified record key is not found
duplicated in a file.

ISAM
Indexed Sequential Access Method. The term ISAM file commonly refers either to an
indexed or relative file.

Key
A data-item that identifies a record, or whose values determine the ordering of
records.

Key of reference
The primary or alternate key currently being used to access records within an indexed
file.

Level number

The numbers 01 through 49, 77, and 88. Level numbers 01 through 49 show the
hierarchy of items within a group or record. Levels 77 and 88 identify a special
property of a data description.

Line numbers

In the Screen Section, line numbers specify the lines on the display screen. The LINE
clause in the Screen Section allows you to specify on which line number of the display
screen an item is to appear.

The word LINE NUMBER is a system-defined data-item that contains the three-digit
number of the terminal line on which the program is running.

Line terminator
The line terminator for AOS, AOS/VS, and DG/RDOS is NEW LINE; for RDOS
it is carriage return (CR).

Linkage Section
The section in the Data Division of a called program that describes data-items
available from the calling program.

Literal, nonnumeric

Any string of characters from the ASCII set, bounded by quotation marks. A single
occurrence of the quotation mark character within a nonnumeric literal is represented
by two contiguous quotation mark characters.

Licensed Material - Property of Data Genera! Glossary

B-7

Literal, numeric

A string of characters consisting of the digits 0-9, a decimal point, and/or an algebraic
sign. The decimal point must not be the rightmost character of a literal. An algebraic
sign must be the leftmost character if used.

Logical operator
One of the reserved words AND, OR, and NOT. In forming conditionals, AND or
OR are used as connectives and NOT is used for logical negation.

Logical record
The most inclusive data-item. A record’s level number is 01.

Next executable sentence/statement
The next sentence or statement to which control will be transferred when execution of
the current sentence or statement is complete.

Next record

The record that logically follows the current record in a file. For sequential files this is
the next record according to the order in which the records were originally written.
For other files the next record is determined by the key used.

Noncontiguous items
Elementary items in the Working-Storage, Screen and Linkage sections that have no
hierarchical relationship to other items.

Nonnumeric item
Any item whose category is not purely numeric, i.e., alphabetic, alphanumeric,
alphanumeric edited, or numeric edited.

Numeric item
An item that consists of the digits 0-9 and an optional operational sign.

Numeric edited item

A data-item restricted to combinations of the symbols B, slash (/),P,V,Z, 0,9,
comma, period, asterisk, minus, CR, DB, and CS (currency symbol). The item may be
up to 18 characters long. The PICTURE must contain at least one 9 or Z and one of
the edit symbols.

Operand
Any lowercase word or words that appear in a statement or entry format. An operand
is an implied reference to the data it indicates.

Operational sign
An algebraic sign associated with an item to indicate whether its value is positive or
negative.

Option
One of two or more phrases in a format from which a programmer may choose.

Paragraph
In the Procedure Division, a paragraph-name followed by one or more sentences. In
the other divisions, a paragraph header followed by one or more entries.

Paragraph header
A reserved word followed by a period and a space that indicates the beginning of a
paragraph in the Identification or Environment divisions. The valid paragraph headers

are:
Identification Div. Environment Div.
PROGRAM-ID SOURCE-COMPUTER
AUTHOR OBJECT-COMPUTER
DATE-WRITTEN SPECIAL-NAMES
DATE-COMPILED FILE-CONTROL
SECURITY 1-O-CONTROL

8-8 Glossary Licensed Material - Property of Data General

Paragraph-name

A programmer-defined name that identifies one or more sentences in the Procedure
Division. It may contain up to 30 characters from the set of uppercase letters and the
hyphen.

Pathname

A file-name that represents the unique path through the file system to a specific file.
The pathname consists of one or more file-names separated by colons. All file-names
except the last one must be the names of directories, and each directory must be a
subdirectory of the preceding one. The maximum number of characters permitted in a
pathname is 127.

Phrase

Two or more words that are considered a syntactical unit. It is part of a clause in the
Identification, Environment, and Data divisons and part of a statement in the Procedure
Division.

PICTURE clause

A clause that describes an elementary data-item and specifies any editing to be
performed on that item.

Primary key
A key whose contents uniquely identifies a record within an indexed file.

Procedure Division
One of the four major parts of a COBOL program. It contains the operational
sequences that govern program control.

Record

Within a COBOL file, the logical organization of data. A COBOL record consists of
items that are uniquely identifiable and are treated as a unit. A record is the most
inclusive COBOL data-item; it may be divided into logical subdivisions, which may in
turn be further subdivided.

Record area
A portion of memory allocated for processing a record described in the File Section.

Record description entry
The complete set of data description entries associated with a particular record.

Record name
A programmer-defined name that identifies a particular record described in the file
section.

Relational operator
Reserved words or relational characters used to construct conditional statements.

Relative key
A key whose contents identify the position of a record in a relative file. It must have a
PICTURE of 9(4) to 9(18) COMP.

Reserved word

A word that has a special meaning for the Interactive COBOL compiler. This includes
COBOL syntax terms, division names, and various system-maintained data-items.
Programs may not use reserved words as identifiers. Reserved words are listed in
appendix E.

Run unit
A logical set of programs that includes the main program and all subprograms that
have been called but not cancelled.

Runtime system
A program that acts as a monitor or executive for the execution of Interactive
COBOL object programs.

Licensed Material - Property of Data General Glossary

Screen-name
A data-name that identifies an item in the Screen Section of the Data Division.

Screen Section
The section of the Data Division where items to be used in interactive screen 1/0 are
described.

Searchlist

A list of directories the system searches to locate a file that does not include a
pathname and is not in the current directory (AOS and AOS/VS only). The searchlist
may include from one to eight directories. It typically names the directories that are
accessed most frequently.

Section

Within a division of a COBOL program, a logical unit combining entries and sentences.
In the Environment and Data divisions, a section consists of a section header and zero
or more entries. The section header contains a reserved section name followed by the
word SECTION. A section header must be followed by a period and a space. In the
Procedure Division, a section consists of a programmer-defined section name, followed
by a period and space, and zero or more paragraphs.

Sentence
A sequence of one or more statements, the last of which is terminated by a period and
a space.

Separator
A punctuation character used to terminate a character string.

Statement
In the Procedure Division, one or more phrases that specify an action to be taken by
the COBOL program.

Subscript
An integer value that identifies an item in a table.

Switch, compile time

A switch entered by the operator or programmer at compile time that controls the
compiler’s operation. It may specify such things as adding a symbol table for use with
the debugger (/D switch), suppressing error messages (/E switch), etc. Appendix A
summarizes the compiler command line and its switches.

Switch, runtime

A switch entered by the operator at runtime that can be tested to control some aspect
of program operation. The switches are defined in the SPECIAL-NAMES paragraph
of the Environment Division. The ON or OFF status (whether the switch is entered or
not) can be tested by the program using an associated condition-name. These switches
may also be passed to a program in a CALL PROGRAM id-lit by appending /switch
to the program-name within the identifier or literal.

Switch, logical
See Switch, runtime.

Table
A set of logically consecutive data-items with one name and one data description that

is specified by the OCCURS clause. A specific item within a table may be identified
by the use of a subscript or index.

Variable-length record
A record from a file with records of more than one length. For example, the first
record may be 80 bytes long, the second 100 bytes, and so on.

B-1O Glossary Licensed Material - Property of Data General

Variable origin screen

The ACCEPT and DISPLAY statements may contain LINE and COLUMN clauses
that specify variable origin. When these clauses are included, the entire screen is
offset by the values specified. For example, DISPLAY SCR-1 LINE 10 COL §
offsets all fields 10 lines down and 5 columns across.

Verb
A reserved word used in the Procedure Division that causes an operation to take place.

Word

A string of 30 characters or less that can be programmer-created or reserved.
Programmer-created words can consist of the characters A-Z, 0-9, and the hyphen.
Reserved words are assigned a special meaning in the COBOL language and are listed
in appendix E.

Working-Storage Section
The section of the Data Division where noncontiguous data-items and/or records that
are not described in the File or Screen sections are described.

Licensed Material - Property of Data General Glossary B-11

Appendix C

ASCII Character Sets

ASCII Character Set

Decimal <Octal> Code

0 <000>
1 <001>
2 <002>
3 <003>
4 <004>
5 <005>
6 <006>
7 <007>
8 <010>
9 <011>
10 <012>
11 <013>
12 <014>
13 <0156>
14 <016>
156 <017>
16 <020>

17 <021>
18 <022>
19 <023>
20 <024>
21 <025>
22 <026>
23 <027>
24 <030>
25 <031>
26 <032>
27 <033>
28 <034>
29 <035>
30 <036>

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
vT
FF
CR
SO
sl

(write cursor
addr.)

(print)
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC
FS
GS
RS

Decimal <QOctal> Code

31 <037>
32 <040>
33 <041>
34 <042>
35 <043>
36 <044>
37 <045>
38 <046>
39 <047>
40 <050>
41 <051>
42 <052>
43 <0563>
44 <054>
45 <055>
46 <056>
47 <057>

48 <060>
49 <061>
50 <062>
51 <063>
52 <064>
53 <065>
54 <066>
55 <067>
56 <070>
87 <071>
58 <072>
59 <073>
60 <074>
61 <075>

Character

o N o~ -

+

T O N0 SAE WN - O

A

Licensed Material - Property of Data General

ASCIl Character Sets

C-1

Decimal <Octal> Code

62 <076>
63 <077>
64 <100>
65 <101>
66 <102>
67 <103>
68 <104>
69 <105>
70 <106>
71 <107>
72 <110>
73 <111>
74 <112>
75 <113>
76<< 114>
77< 115>
78< 116>
79 <117>
80 <120>
81 <121>
82 <122>
83 <123>
84 <124>
856 <1256>
86 <126>
87 <127>
88 <130>
89 <131>
90 <132>
91 <133>
92 <134>
93 <135>
94 <136>

Character

)‘—'/'_‘N-<><§<C—'|(ﬂ:DO'UOZ§|_X‘——IQT\mUOUJ>@'\’\/

Decimal <Octal> Code

95 <137>
96 <<140>
97 <141>
98 <142>
99 < 143>
100 <144>
101 <145>
102 <146>
103 <147>
104 <150>
106 <151>
106 <152>
107 <153>
108 <154>
109 <155>
110 <156>
111 <157>
112 <160>
113 <161>
114 <162>
1156 <163>
116 <164>
117 <165>
118 <166>
119 <167>
120 <170>
121 <171>
122 <172>
123 <173>
124 <174>
126 <175>
126 <176>
127 <177>

Character

O~ —N<Xg<c~0 T0DO0O>33 X" ~"3@Q@ >0ao0om

DEL

C-2

ASCII Character Sets

Licensed Material - Property of Data General

Decimal <Octal> Code

160 <<240>
161 <<241>
162 <<242>
163 <<243>
164 <<244>
165 <<245>
166 <<246>
167 <<247>
168 <<250>
169 <<251>
170 <<252>
171 <<253>
172 <<254>
173 <<255>

185 271>
186 <<272>
187 <273>
188 <<274>
189 <<275>
190 <<276>
191 <277>
192 <<300>
193 <301>
194 <302>
195 <<303>
196 <304>
197 <305>
198 <<306>
199 <307>
200 <310>
201 <311>
202 <312>
203 <313>
204 <314>
205 <315>
206 <316>
207 <317>
208 <320>
209 <321>
210 <322>
211 <823>
212 <324>

Character

space
space
space
space
space
space
o

¢
£

space
space

space

space

- = = MMM MO By Dodr B> B P —

0: 00O Z =

DG International Symbols (8-bit ASCII character set)

Decimal <Octal> Code

213 <325>
214 <326>
215 <327>
216 <330>
217 <331>
218 <332>
219 <<333>
220 <<334>
221 <335>
222 <336>
223 <337>
224 <340>
225 <341>
226 <<342>
227 <343>
228 <344>
229 <345>
230 <346>
231 <347>
232 <350>
233 <351>
234 <352>
235 <353>
236 <<354>
237 <355>
238 <356>
239 <357>
240 <360>
241 <361>
242 <362>
243 <363>
244 <364>
245 <<365>
246 <366>
247 <367>
248 <370>
249 <371>
2560 <372>
251 <373>
252 <374>
253 <3756>
254 <376>
266 <377>

Character

cocc A0

space
space
space
space

o W W

o ®» O O O § o @ o

—> - =

8 Q O 0:0 O O I =

™ e & & e

space
space
space

Licensed Material - Property of Data General

ASCII Character Sets

C-3

Appendix D
Syntax Summary

Identification Division

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment entry] ...].
[INSTALLATION. [comment entry]...].
[DATE-WRITTEN. [comment entry]...].
[DATE-COMPILED. [comment entry]...].
[SECURITY. [comment entry]...].

Environment Division

[ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.

[SOURCE-COMPUTER. computer-name.]
[OBJECT-COMPUTER. computer-name.]

s WORDS
CHARACTERS
MODULES

[; PROGRAM COLLATING SEQUENCE IS alphabet-name].
[SPECIAL-NAMES. [SWITCH literal

[; IS mnemonic-name]

[; ON STATUS IS condition-name]

[; OFF STATUS IS condition-namel]...

STANDARD }]

; MEMORY SIZE integer

NATIVE

[; CURRENCY SIGN IS lit]
[; DECIMAL-POINT IS COMMAL.]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.. file-control-entry...
[I-O-CONTROL. i-o-control-entry...].]]

IE alphabet-name IS {

Licensed Material - Property of Data General Interactive COBOL Syntax Summary D-1

File-Control Entry

Sequential SELECT
PRINTER
s PRINTER-1
SELECT file-name ASSIGN TO DISPLAY [; id-lit]
KEYBOARD
DISK

[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data-name]

[; DATA SIZE IS integer].

Relative SELECT
SELECT file-name ASSIGN TO DISK [; id-lit]
; ORGANIZATION IS RELATIVE

RANDOM

; ACCESS MODE 'Sg zmm&

} ;RELATIVE KEY IS data-name I

SEQUENTIAL [; RELATIVE KEY IS data-name]

[; FILE STATUS IS data-name]
[; INDEX SIZE IS integer]
[; DATA SIZE IS integer].

Indexed SELECT

SELECT file-name ASSIGN TO DISK [; id-lit]
; ORGANIZATION IS INDEXED
SEQUENT@L}

; ACCESS MODE IS {RANDOM
DYNAMIC

; RECORD KEY IS data-name
[; ALTERNATE RECORD KEY IS data-name [WITH DUPLICATES]] ...
[; FILE STATUS IS data-name]
[; INDEX SIZE IS integer]
[; DATA SIZE IS integer].

Interactive COBOL Syntax Summary Licensed Material - Property of Data General

Alternate Key SELECT

SELECT file-name ASSIGN TO DISK [, id-lit]

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS {RANDOM

DYNAMIC

; RECORD KEY IS data-name
[; ALTERNATE RECORD KEY IS data-name [WITH DUPLICATES]]...
[; FILE STATUS IS data-name]
[; INDEX SIZE IS integer]
[; DATA SIZE IS integer].

I-O Control Entry
SAME [RECORD] AREA FOR file-name, | file-name}...

Data Division

[DATA DIVISION.

[FILE SECTION. [FD-entry
[record-description-entry]...]...]

[WORKING-STORAGE SECTION.
[data-description-entry]...]

[LINKAGE SECTION.
[data-description-entry]...]

[SCREEN SECTION.
[data-description-entry]...]]

FD Entry

FD file-name

—

. . RECORDS

; BLOCK CONTAINS integer {CHARACTERS}
L

[; RECORD CONTAINS integer [TO integer] CHARACTERS]

VARIABLE
; RECORDING MODE IS {m }:I

11

. LABEL { RECORD IS } {STANDARD}

RECORDS ARE OMITTED

RECORD IS

[CODE-SET IS alphabet-namel.

11

Licensed Material - Property of Data General Interactive COBOL Syntax Summary D-3

Screen Section Format

Literal Format

level-number [screen-name]
[; BLANK SCREEN]
[; BLANK LINE]
[; BELL]
[; BLINK]

integer-1
identifier-1

; LINE NUMBER IS{PLUS integer-2

integer-1

; COLUMN NUMBER IS PLUS integer-2

COL |
identifier-1

[; VALUE IS literal].

Data-Item Format

level-number [screen-name]
[; BLANK SCREEN]
[; BLANK LINE]
[; BELL]
[;_ BLINK]

integer-1
; LINE NUMBER IS {PLUS integer-2
identifier-1

integer-1
; COLUMN NUMBER IS PLUS integer-2
COoL T e
- identifier-1
B . FROM id-lit
; {E%E} IS picture-string ¢ ; TO id
T ; USING id

[; BLANK WHEN ZERO]

_ { JUSTIFIED

JUST } RIGHT

[; AUTO]

[; SECURE]

[; REQUIRED]
[; FULL].

Group Format

level-number screen-name
[; AUTO]
[; SECURE]
[; REQUIRED]
[; FULL]
{ data-item or literal entry}...

D-4

Interactive COBOL Syntax Summary

Licensed Material - Property of Data General

Data Description Entry

level-number { data-name}

FILLER
[; REDEFINES data-name]

; {%w } IS picture-string
‘ COMPUTATIONAL
COMP
; [USAGE IS] DISPLAY
INDEX

-

TRAILING

; OCCURS integer TIMES

SYNC RIGHT

[; BLANK WHEN ZERO]
[VALUEIS literall].

Procedure Division

Declarative Format
PROCEDURE DIVISION [USING {id}...].
[DECLARATIVES.

[; INDEXED BY {index-name}...]

[{SYNCHRONIZED} {LEFT }]

‘ section-name SECTION [segment-number].

USE sentence
l[paragraph-name. [sentencel...]...

END DECLARATIVES.]

section-name SECTION [segment-number].

[paragraph-name. [sentence]...]...

Nondeclarative Format
PROCEDURE DIVISION [USING {id}...].

{section-name SECTION [segment-number].

[paragraph-name. [sentence]...]...

’,

}

}

[SIGN IS] {M } [SEPARATE CHARACTER]]

Licensed Material - Property of Data General

Interactive COBOL Syntax Summary

D-5

Statements

LINE id-lit

ACCEPT screen-name | AT YCOLUMNI . . . [; ON ESCAPE imper-stmt]
coL id-lit

ACCEPT id [;ON ESCAPE imper-stmt]

(DATE

DAY

ACCEPT id FROM } TIME

< LINE NUMBER
USER NAME
ESCAPE KEY

\ EXCEPTION STATUS

ADD {id-lit}... TO id [ROUNDED] [; ON SIZE ERROR imper-stmt]

ADD id-lit {, id-lit}... GIVING id [ROUNDED] [; ON SIZE ERROR imper-stmt]

ADD {8822'53"0”0'”(5} id TO id [ROUNDED] [; ON SIZE ERROR imper-stmt]
EXCEP
CALL id-lit [USING {data-name... [ON {OV—CEIERIEILLC?TNV} imper-stmt]

CALL PROGRAM id-lit [USING { data-name]... [; ON EXCEPTION imper-stmt]
CANCEL {id-lit}...

CLOSE {filename [WITH LOCK]}...

COMPUTE id [ROUNDED] = arith-expr [; ON SIZE ERROR imper-stmt]

COPY [INDEXED] lit

DELETE filename RECORD [; INVALID KEY imper-stmt]

DELETE FILE {filename}...

(@}

(0]

LINE id-lit
DISPLAY {screen-name}... | AT { ou_UMN}id_lit

(@]
=

DISPLAY {id-lit}... WITH NO ADVANCING]

DIVIDE id-lit INTO id [ROUNDED] [;ON SIZE ERROR imper-stmt]

DIVIDE id-lit INTO id-lit GIVING id [ROUNDED] [REMAINDER id]
[; ON SIZE ERROR imper-stmt]

DIVIDE id-lit BY id-lit GIVING id [ROUNDED] [REMAINDER id]
[; ON SIZE ERROR imper-stmt]

EXIT.

D'G Interactive COBOL Syntax Summary Licensed Material - Property of Data General

EXIT PROGRAM.

GO TO procedure-name

GO TO procedure-name {; procedure-name |... DEPENDING ON id

NEXT SENTENCE ; ELSE NEXT SENTENCE

IF condition; {Statement-1 } {: ELSE statement-2 }

Condition Formats

GREATER THAN
LESS THAN
EQUAL TO

id-lit IS [NOT] id-lit

VIIEAV

< =

NUMERIC
ALPHABETIC

id IS [NOT] POSITIVE
NEGATIVE
ZERO

condition [{ %Q } condition]

ND
R

o

>

|

condition { } [NOT] [relation-operator] object ...

o

ALL id-lit
LEADING BEFORE
INSPECT id TALLYING id FOR —_— INITIAL id-lit

AFTER
CHARACTERS

ALL

LEADING} id-lit BY id-lit {BEFORE

INSPECT id REPLACING {FIRST AFTER } INITIAL id-lit

CHARACTERS BY id-lit

INSPECT id TALLYING tally-clause REPLACING replacing-clause

MOVE id-lit TO {id}...

CORRESPONDING \ . .
MOVE {COR_R_ } id-1 TO id-2

MULTIPLY id-lit BY id [ROUNDED] [;ON SIZE ERROR imper-stmt]

Licensed Material - Property of Data General Interactive COBOL Syntax Summary

MULTIPLY id-lit BY id-lit GIVING id [ROUNDED] [; ON SIZE ERROR imper-stmt]

INPUT {filename}...

OUTPUT {filename ...
OPEN [EXCLUSIVE]) I-O {filename}...

EXTEND {filename}...

PERFORM procedure-name- 1 { procedure-name-2

PERFORM procedure-name- 1 {

THROUGH

THRU procedure-name-2 UNTIL condition

PERFORM procedure-name-1 {

} procedure-name-2 { :gteger} TIMES

THROUGH

PERFORM procedure-name-1 { THRU

} procedure-name-2

VARYING id-1 FROM id-lit-1 BY id-lit-2 UNTIL condition- 1

[AFTER id-2 FROM id-lit-3 BY id-lit-4 UNTIL condition-2]

[AFTER id-3 FROM id-lit-5 BY id-lit-6 UNTIL condition-3]

Sequential Access Format

READ filename RECORD [LOCK] [INTQ id] [; AT END imper-stmt]
Random Access Format

Relative Files:

READ filename RECORD [LOCK] [INTO id] [; INVALID KEY imper-stmt]

Indexed Files:

READ filename RECORD [LOCK] [INTO id] [; KEY IS data-name]
[; INVALID KEY imper-stmt]

Dynamic Access Format
Sequential Retrieval:

NEXT

READ filename { PREVIOUS

} RECORD [LOCK] [INTO id] [; AT END imperstmt]

Random Retrieval:

READ filename RECORD [LOCK] [INTO id] [; KEY is data-name]
[; INVALID KEY imper-stmt]

Sequential Files
REWRITE record-name [FROM id]

D-8 Interactive COBOL Syntax Summary Licensed Material - Property of Data General

Relative and Indexed Files
REWRITE record-name [FROM id] [; INVALID) KEY imper-stmt]

fro |
SET {id}...1UPBY ; id-lit
DOWN BY |
p— -

EQUAL TO
>

START filename KEY IS GREATER THAN data-name [; INVALID KEY imper-stmt]}
> =
NOT <

NOT LESS THAN

stop { BUN
literal

Overlaying SUBTRACT Format
SUBTRACT {id-lit}... FROM id [ROUNDED] [; ON SIZE ERROR imper-stmt]

Nonoverlaying SUBTRACT Format
SUBTRACT {id-lit}... FROM id-lit GIVING id [ROUNDED] [; ON SIZE ERROR imper-stmt]

SUBTRACT gg:gESPOND'NG} id FROM id [ROUNDED] [; ON SIZE ERROR imper-stmt]

UNDELETE filename RECORD [; INVALID KEY imper-stmt]

RECORD
UNLOCK filename RECORDS _
INPUT
’ OUTPUT
EXCEPTION —
USE AFTER STANDARD ERROR PROCEDURE ON ¢ I-O
EXTEND
{filename}...

Sequential Organization
WRITE rec-name [FROM id- 1]
‘ integer LINE
{ M} ADVANCING id-2 LINES
AFTER | ‘pace
Indexed or Relative Organization

WRITE rec-name [FROM id] [; INVALID KEY imper-stmt}

Licensed Material - Property of Data General

Interactive COBOL Syntax Summary D-9

Appendix E

ANSI Standard and Interactive
COBOL Reserved Words

This appendix lists ANSI standard and Interactive COBOL reserved words. Interactive
COBOL reserved words are in italics.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT
AUTHOR
AUTO

BACKWARD
BEFORE
BELL
BLANK
BLINK
BLOCK
BOTTOM

BY

CALL

CANCEL

CD

CF

CH
CHARACTER
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL

CODE
CODE-SET
coL

COLLATING
COLUMN

COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS

COPY

CORR
CORRESPONDING
COUNT
CURRENCY

DATA

DATE
DATE-COMPILED
DATE-WRITTEN
DAY

DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL

DISABLE

DISK

DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

EGI

ELSE

EMI

ENABLE

END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP

EQUAL
ERROR
ESCAPE

ESI

EVERY
EXCEPTION
EXCLUSIVE
EXIT

EXTEND

FD

FILE
FILE-CONTROL
FILLER
FINAL
FIRST
FIXED
FOOTING
FOR
FROM
FULL

GENERATE
GIVING
GLOBAL
GO

GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

-0
I-O-CONTROL
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICATE
INITIAL
INITIATE

INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO

INVALID

1S

JUST
JUSTIFIED

KEY
KEYBOARD

LABEL
LAST
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE

Licensed Material - Property of Data General

ANS! Standard and Interactive COBOL Reserved Words

E-1

LINE-COUNTER
LINES

LINKAGE

LOCK

LOGICAL
LOW-VALUE
LOW-VALUES

MEMORY
MERGE
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NAME
NATIVE
NEGATIVE
NEXT

NO

NOT
NUMBER
NUMERIC

OBJECT-COMPUTER

OCCURS
OF

OFF
OMITTED
ON

OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM

PF

PH

PIC

PICTURE

PLUS
POINTER
POSITION
POSITIVE
PREVIOUS
PRINTER
PRINTER- 1
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROTECTED

QUEUE
QUOTE
QUOTES

RANDOM
RD

READ
RECEIVE
RECORD
RECORDING
RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACING
REPORT
REPORTING
REPORTS
REQUIRED
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE

RF SYNCHRONIZED
RH
RIGHT TABLE
ROUNDED TALLYING
RUN TAPE
TERMINAL
SAME TERMINATE
SCREEN TEXT
SD THAN
SEARCH THROUGH
SECTION THRU
SECURE TIME
SECURITY TIMES
SEGMENT TO
SEGMENT-LIMIT TOP
SELECT TRAILING
SEND TYPE
SENTENCE
SEPARATE UNDELETE
SEQUENCE UNIT
SEQUENTIAL UNLOCK
SET UNSTRING
SIGN UNTIL
SIZE uP
SORT UPON
SORT-MERGE USAGE
SOURCE USE
SOURCE- COMPUTER USER
SPACE USING
SPACES
SPECIAL-NAMES VALUE
STANDARD VALUES
STANDARD- 1 VARIABLE
START VARYING
STATUS
STOP WHEN
STRING WITH
SUB-QUEUE-1 WORDS
SUB-QUEUE-2 WORKING-STORAGE
SUB-QUEUE-3 WRITE
SUBTRACT
SUM ZERO
SUPPRESS ZEROES
SWITCH ZEROS
SYMBOLIC
SYNC

E-2

ANSI Standard and Interactive COBOL Reserved Words

Licensed Material - Property of Data General

Related Documents

Interactive COBOL Documents

Interactive COBOL User’s Guide (RDOS, DG/RDOS) 069-705014
Interactive COBOL User’s Guide (AOS and AOS/VS) 069-705015

Supply the programmer with information relating specifically to Interactive COBOL
on the given operating systems. Each document describes the file system, system calls,
the runtime system, the compiler, and the debugger. Lists of error messages and their
meanings are provided.

Interactive COBOL Utilities (RDOS, DG/RDOS) 069-705020

Interactive COBOL Ultilities (AOS, AOS/VS) 069-705021
Describe the Interactive COBOL utilities on your operating system. Summarizes the
uses and contexts of the utilities, and includes an alphabetical reference that provides
detailed operating instructions and examples.

ICEDIT: Interactive COBOL Editor 055-004

Explains the Interactive COBOL text editor used to write Interactive COBOL source
code and documentation. It describes how to enter and execute ICEDIT commands
that create, modify, and delete source code. An alphabetized command reference and
command summary table are provided.

SCREEN: Screen Format Editor 055-006

Explains the IC/SCREEN or CLI/SCREEN programs, which are special purpose
editors for designing, coding, and displaying screen formats. The manual describes
how the programmer can compose a screen image by typing in literal and data fields
as they will appear to the program user. The Interactive COBOL source code for this
image is generated automatically.

CRT/EDIT: Display Terminal Text Editor 055-000005

Describes the use and operations of CRT/EDIT, a string-oriented editor designed for
creating, modifying, and maintaining programs. It produces source program files that
can be submitted to the Interactive COBOL compiler. The editor may also be used to
produce prose text. The manual provides an overview of the editor and command
reference sections that describe basic and advanced commands.

JOBS User’s Guide 055-000042

Describes the Job Organization Batch Stream utility. JOBS places CLI macros and
Interactive COBOL programs on a queue to be executed at the end of the day. The
manual describes how to use JOBS and illustrates how it can be applied to typical
situations.

RDOS and DG/RDOS Documents

Introduction to RDOS 069-400011
Introduces RDOS concepts to readers who are unfamiliar with the operating system
and its capabilities.

Licensed Material - Property of Data General Related Documents

How to Load and Generate RDOS 069-400013

Guides the reader step by step through the RDOS system generation process. The
manual serves the first-time user and the user who wants to generate a system tailored
to specific requirements.

RDOS/DOS Command Line Interpreter 069-400015
Introduces the command line interpreter (CLI) and describes its operations and
advanced functions. It also highlights the features and operating procedures of the
batch monitor.

Using DG/RDOS on DESKTOP GENERATION Systems 069-000056
Explains how to install and operate DG/RDOS software on your system.

AOS and AOS/VS Documents

Learning to Use Your Advanced Operating System (AOS) 069-000018
Summarizes AOS system utilities and leads the reader through practice sessions. It
explains the steps required to run FORTRAN, COBOL, and assembly language
programs.

Command Line Interpreter User’s Manual

(AOS and AOS/VS) 093-000122

Describes the command line interpreter (CLI), which is the primary interface to the
system for the system manager, operator, and most users. The manual explains how
users can run utilities, execute programs, maintain files, and build command “macros”
by means of the CLI.

AOS Programmer’s Manual 093-000120

Serves as a primary reference for assembly language programmers. It describes in
detail the external features of AOS, including the AOS system calls and information
required for an in-depth understanding of the operating system. Other topics included
are process concepts, memory management, file 1/O, and multitasking.

Learning to Use Your AOS/VS System 069-000031

Serves as a basic introduction to the Advanced Operating System/ Virtual Storage for
programmers and nonprogrammers. It summarizes the system utilities and gives an
overview of AOS/VS products. It also leads the reader through practice sessions with
editors and illustrates the creation and execution of programs written in FORTRAN,
COBOL, BASIC, and assembly language.

How to Generate and Run AOS/VS on Your ECLIPSE (R) MV /Family Computer
093-000243

Explains how to start up, run, and shut down an AOS/VS system. Describes how to
buld an AOS/VS system tailored to a user’s hardwarre and software.

AOS/VS Programmer’s Manual

Vol 1: System Concepts 093-000355

Vol 2: System Calls 093-000241

Serves as a primary reference for assembly language programmers. It describes the
external features of AOS/VS, including system calls and information required for
understanding the operating system. Other topics included are virtual memory
concepts, interprocess communication, file structure and maintenance, file 1/0O,
multitasking, and binary synchronous communication.

Using AOS on DESKTOP GENERATION Systems 069-000058
Explains how to install and operate AOS software on your system.
SGU User’s Guide 093-000305

Explains how to operate SGU, the Screen Generator Ultility, which helps COBOL
programmers design screen menus and formats. The manual describes how SGU
creates files that contain data structures to be included in a COBOL program’s
Screen Section.

Related Documents Licensed Material - Property of Data General

Index

Alternate record key B-1

NX portion 2-3 ALTERNATE RECORD KEY clause 2-3, 2-5, 6-5

.VM file' 8-9 ANALYZE utility 2-4, 2-5, 2-6
.XD portion 2-4
Area A
0 §ymbol in card format 4-2
in PICTURE clause 1-7, 7-11 in CRT format 4-1
01 level 7-8

Area B
in card format 4-2
in CRT format 4-1

77 level 1-4,4-1,4-2,7-8
88 level 1-4, 1-21, 4-1, 4-3,7-8

9 §ymbol Arithmetic expressions 1-17
in PICTURE clause 1-5, 1-7,7-11 evaluation order in 1-17
A ' Arithmetic operations, verbs used in 1-15
Arithmetic operators, table of 1-17
A symbol ASCII character set 1-2, B-2, C-1
in PICTURE clause 1-5, 1-7, 7-10 8-bit 1-2, C-1
ACCEPT 1-15,2-2, 8-2 ASSIGN clause 2-2, 6-3
identifier 8-3 Asterisk
in Screen Section 3-1, 3-3, 3-6, 3-9, 3-10, 7-5 as comment indicator 4-4
screen 8-2, B-11 in PICTURE clause 1-9, 7-11
system 8-3 AT END, and USE procedure 8-63
termination in 3-11, 8-3, 8-4 AT END condition 1-26, B-1
Access control list B-1 AUTHOR paragraph 5-1
and CALL PROGRAM statement 8-12 AUTO clause 3-9, 7-7
and CALL statement 8-10
and COPY files 8-19 B
and OPEN statement 8-41 B symbol
Access mode B-1 in PICTURE clause 1-5, 1-7, 7-10

dynamic 2-4, B-5

BELL clause 3-9, 7-7
random 2-4

order of execution 3-10

sequential = 2-4 BLANK LINE clause in Screen Section 3-9, 7-7
ACCESS MODE clause 2-4, 6-5 order of execution 3-10
ACL B-l Blank lines in source code 4-4
and CALL PROGRAM statement 8-12 BLANK SCREEN clause 3-9, 7-7
and CALL statement 8-10 order of execution 3-10
and COPY files 8-19 BLANK WHEN ZERO clause 3-10, 7-7, 7-15, 7-16
and OPEN statment 8-41 illegal with USAGE IS INDEX 7-12
ADD 1-15,8-6 no effect with SECURE 3-10
substituting for COMPUTE 8-17 not used with * 1-10
ADD CORRESPONDING 1-15, 1-19, 8-7 BLINK clause 3-10, 7-7
Alignment rules 1-10 Block B-1
alphabet-name IS clause = 6-2 BLOCK CONTAINS clause 7-2
Alphabetic character B-1, B-2
Alphabetic item, described in PICTURE clause 1-5 C

Alphanumeric character B-2
Alphanumeric edited item B-1 CALL 1-15,8-9, B-1

Alphanumeric item, described in PICTURECcclause 1-7 EXCEPTION STATUS item in 8-4
Alternate key 2-5, B-1 implemented by value result 8-10

specification of 6-5 recursive 8-10

Licensed Material - Property of Data General Index-1

switches in calling program 8-9
toa .PR file 8-10
to an assembly language subroutine 8-10
to the CLI 8-10
virtual memory file 8-9
CALL PROGRAM 1-15, 8-11, B-1
#C statement 8-15
closes files on RDOS and DG/RDOS 8-11
EXCEPTION STATUS item in 8-4
passing switches with B-10
unsuccessful call 8-11
with USING phrase 7-4, 8-12
Called program 7-3, B-1
example of 7-4, 8-9, 8-12
level numbers of receiving items 7-4
Calling program 7-3, B-1
example of 7-4, 8-9, 8-12
level numbers of sending item 7-4
using switches 1-23
CANCEL 1-15, 8-14
Card format 4-2
with COPY files 8-18
Cathode ray tube B-2
Character
alphabetic B-2
alphanumeric B-2
editing B-2
numeric B-2
picture B-2
punctuation B-3
relation B-3
Character set 1-2
8-bit 1-2, C-1
ASCIl 1-2, B-2,C-1
COBOL 1-2, B-2
data B-2
Class condition 1-22, B-3
with incompatible data 1-22
Clause 1-1, B-3
data B-4
in Screen Section 3-5
CLOSE 1-15, 8-15
organization of files with 8-15
unsuccessful 1-25, 8-15
with DELETE FILE 8-15
with LOCK 8-15
Closing files, with STOP RUN 8-15
COBOL
character set 1-2, B-2
clause 1-1, B-3
divisions of 1-1, B-5
entry 1-1, B-5
paragraphs 1-1,1-17, B-8
punctuation characters used in B-3
reserved words, table of E-1
sections 1-1, 1-17, B-10

sentences 1-1, 1-15, B-10
separators 1-2, B-10
source text, creating 4-1
statements 1-1, 1-15, B-10
syntax summary D-1
verbs B-11
verbs, table of 1-15
words 1-2, B-11
CODE-SET clause 7-2
COLLAPSE utility 2-4
Column B-3
COLUMN clause 3-7, 7-7
order of execution 3-10
with ACCEPT 8-2
with DISPLAY 8-22
Combined condition 1-23, B-3
Comma
in PICTURE clause 1-7, 7-11
Comment entry B-3
Comment line 4-4, B-3
in card format 4-2
in CRT format 4-1
Compile-time switch 2-6, A-1, B-10
Compiler command line A-1
global switches A-1
local switches A-2
Compiler directing statement B-3
Compiler-directing verbs 1-15
Complex condition 1-23, B-3
COMPUTATIONAL items 7-11
storage of 7-12
COMPUTE 1-15, 8-16
and PICTURE characters 8-23
intermediate results with 8-16
maximum size of operands with 8-16
used for exponentiation 8-16
with ROUNDED option 8-16
with SIZE ERROR option 8-16
Condition 1-19
class 1-22, B-3
class, with incompatible data 1-22
combined 1-23, B-3
complex 1-23, B-3
condition-name 1-4, 1-21, B-4
evaluation order of 1-24
exception 1-25
INVALID KEY B-7
negated combined 1-23
negated simple 1-23, B-3
relation 1-20, B-3
sign 1-23, B-3
simple 1-19, B-3
switch-status 1-22, B-4
Condition-name condition 1-21
Conditional expression B-4
Conditional statement B-4

Index-2

Licensed Material - Property of Data General

Configuration Section 6-2
Connective B-4
Constants, figurative 1-3
Contiguous file, under RDOS and DG/RDOS 6-5
Contiguous items B-4
Continuation lines 4-3
COPY 1-15, 8-18
format of files 8-18
location in source program 8-18
rules with AOS and AOS/VS 8-19
rules with RDOS and DG/RDOS 8-18
text numbering with 8-18
with indexed files 8-18
CORRESPONDING phrase 1-19
CR symbol
in PICTURE clause 1-8, 7-11
CRT B-2
CRT format 4-1
with COPY files 8-18
CS symbol
in PICTURE clause 7-11, B-4
Currency sign B-4
CURRENCY SIGN clause 1-8, 6-2
Currency symbol B-4
in PICTURE clause 1-8, 7-11
Current record B-4
Current record pointer 1-25, B-4
and DELETE statement 8-20
and OPEN statement 8-39
and READ statement 8-47, 8-48, 8-49
and REWRITE statement 8-51
and START statement 8-54, 8-55
and UNDELETE statement 8-60
and UNLOCK statement 8-61
and WRITE statement 8-64

D

Data clause B-4

Data description entry 7-7, B-4, D-5
in Screen Section 3-1

Data Division 1-1, 7-1
duplicate names in 1-11
syntax D-3

DATA RECORD clause 7-2

DATA SIZE clause 6-5

Data-item B-4
alignment of 1-10
elementary, B-5
in Screen Section 3-2, 7-6
length of 7-12
types of 1-5

Data-name B-5
clause in Data Division 7-8
qualification of 1-11

DATE, in system ACCEPT 8-3

DATE-COMPILED paragraph 5-1
DATE-WRITTEN paragraph 5-1
DAY, in system ACCEPT 8-3
DB symbol
in PICTURE clause 1-8, 7-11
Decimal point
actual B-1
assumed B-1
DECIMAL-POINT IS COMMA clause 1-7,6-2,7-11
Declarative sentence B-5
Declaratives section 1-26, 8-1, 8-62, B-5
DELETE 1-15, 2-4, 8-20
and current record pointer 8-20
INVALID KEY error in 1-26
used with records 8-20
DELETE FILE 8-21
DELETE FILE statement, with CLOSE 8-15
Delimiter, in COBOL program -2
DG international symbols C-3
Directory B-5
DISK
in ASSIGN clause 2-2, 6-3
DISPLAY 1-15, 2-2, 8-22
in ASSIGN clause 2-2, 6-3
in Screen Section 3-1, 3-2, 3-5, 3-9, 3-10, 7-5, B-11
with P symbol 1-6
Display (screen) B-5
setting size of 3-7
DISPLAY items 7-11
DIVIDE 1-15, 8-24
substituting for COMPUTE 8-17
Divisions of COBOL program 1-1, B-5
Dollar sign
in PICTURE clause 1-8
Duplicate key 6-5
Duplicate names in Data and Procedure divisions 1-11
DUPLICATES phrase 6-5
Dynamic access 2-4, B-5

E

Editing
fixed insertion 1-8
floating insertion 1-8
in PICTURE clause 1-7, B-2
simple insertion 1-7
special insertion 1-7
zero supression 1-9
Eight-bit ASCII character set 1-2, C-1
Elementary item 1-4, B-5
Entry 1-1, B-5
Environment Division 1-1, 6-1, B-5
syntax D-1
ESCAPE KEY, in system ACCEPT 8-4
Exception condition, [/O 1-25
EXCEPTION STATUS, in system ACCEPT 8-4

Licensed Material - Property of Data General

Index-3

EXCLUSIVE phrase 8-40

EXIT 1-15, 8-26

EXIT PROGRAM 1-15, 8-10, 8-27
Exponentiation, and COMPUTE 8-16
EXTEND phrase 8-40, B-5

External file specification 6-4
External file-name 5-1

F

FD entry 7-2, D-3
multiple 01 levels 7-10

Field B-5

Figurative constant 1-3, B-5

File B-6
access mode and assignment of 6-4
closing, with STOP RUN 8-15

contiguous, under RDOS and DG/RDOS 6-5

describir~ B-6

dynamic access 2-4

in COBOL program 1-4

indexed 2-3, 6-4, B-6

link 8-10, 8-12, 8-18, 8-21, 8-41

organization, table of 2-1

organization and access 2-1

random access 2-4

relative 2-6, 6-4, B-6

sequential 2-1, 6-4, B-6

sequential access 2-4

virtual memory 8-9
File processing, termination of 8-15
File Section 7-2, 7-15, B-6
FILE STATUS clause 1-25, 6-5, B-6
File Status code 1-25
FILE-CONTROL paragraph 6-3, B-6
File-name

external 5-1, 6-4, B-6

internal B-6
FILESTATS utility 2-4, 2-6
FILLER clause 7-7,7-8

illegal in Screen Section 3-4
Fixed insertion editing 1-8
Fixed sequential file 2-1

access mode and assignment of 6-4
Fixed-length record 2-1, B-6
Floating insertion editing 1-8
FROM clause 3-6, 7-7
FULL clause 3-9, 7-7

G

GO TO 1-15,8-28
Group, entry in Screen Section 7-6
Group item 1-4, B-6

and VALUE clause 7-16

H
HIGH-VALUE(S) 1-3

illegal value for key 2-3, 8-20, 8-47, 8-51, 8-54, 8-64

Hyphen, as continuation indicator 4-3

I

I-O-CONTROL paragraph 6-5, D-3
I/0 exception condition 1-25
I/0 operations
EXCEPTION STATUS 8-4
FILE STATUS 6-5, B-6
verbs used in 1-15
ICEDIT, creating source with 4-1
Identification Division 1-1, 5-1, B-7
syntax D-1
Identifier B-6
IF 1-15, 8-29
Imperative statement B-7
Incompatible data 1-22
Index B-7
in table 1-12
INDEX items 7-11
INDEX SIZE clause 6-5
Index-name B-7
INDEXED BY phrase 1-12, 7-14
Indexed file 2-3, B-6
access mode and assignment of 6-4
alternate key 2-5
assignment of 6-4
data portion 2-4
index portion 2-3
next record in B-8
primary key 2-5
SELECT statement with 6-3
updating 2-5
Indexed Sequential Access Method B-7
Indicator area
in C RT format 4-1
in card format 4-2
Indicator character 4-1, 4-2
Input-Output Section 6-2
INSPECT 1-15, 8-31
overlapping operands in 1-18
INSTALLATION paragraph 5-1

Intermediate results, in COMPUTE statement

INVALID KEY 1-26, B-7
and DELETE statement 8-20
and primary key duplicates 2-5
and READ statement 8-49
and REWRITE statement 8-52
and START statement §-54
and UNDELETE statement 8-60
and USE procedure 1-26, 8-63
and WRITE statement 8-65, 8-66

8-16

Index-4

Licensed Material - Property of Data General

ISAM B-7
J

JUSTIFIED clause 7-7, 7-14, 7-16
illegal with USAGE IS INDEX 7-12
in Screen Section 3-10
movement of data with 7-15
no effect with SECURE 3-10

K

Key B-7
alternate 2-5
duplicate 2-5, 6-5
HIGH-VALUES illegal in 2-3, 8-20, 8-47, 8-51,
8-54, 8-64
length of 2-1, 2-5
primary 2-5, B-9
relative 2-6, 6-5, B-9
specification of 6-5
Key of reference B-7
KEYBOARD
in ASSIGN clause 2-2, 6-3

L

LABEL clause 7-2
Level number 1-4, 7-8, B-7
correct area with 4-1, 4-2, 4-3
in Screen Section 3-1, 7-6
level 77 1-4,7-8
level 88 1-4, 1-21, 7-8
of items in called and calling programs 7-4
LINE clause 3-7, 7-7, B-7
order of execution 3-10
with ACCEPT 8-2
with DISPLAY 8-22
LINE NUMBER B-7
in system ACCEPT 8-3
Line number, on display screen B-7
Line sequential file 2-1
access mode and assignment of 6-4
creating on disk 6-4
reading 6-4
sending output to screen 6-4
Line terminator B-7
Link file 8-10, 8-12, 8-18, 8-21, 8-41
Linkage Section 7-3, 7-15, 8-10, B-7
space allocated for 7-4
Literal
entry in Screen Section 3-2, 7-5
nonnumeric 1-3, B-7
numeric 1-4, B-8
LOCK option
in CLOSE statement 8-15
in READ statement 8-47
Locked records, maximum number of 8-47

Logical operator B-8
Logical record B-8
Logical switch 6-2, B-10
LOW-VALUE(S) 1-3

M

Maximum size, of operands 8-16
MEMORY SIZE clause 6-2
Minus sign
as continuation indicator 4-3
in PICTURE clause 1-8, 7-11
MOVE 1-15, 8-34
overlapping operands in 1-18
with P symbol 1-6

MOVE CORRESPONDING 1-15, 1-19, 8-36

MULTIPLY 1-15, 8-38
substituting for COMPUTE 8-17

N

Negated combined condition 1-23
Negated simple condition 1-23, B-3
Noncontiguous items B-8
Nondeclarative format 8-1
Nonnumeric item B-8
Nonnumeric literal 1-3, B-7
Numeric character B-2
NUMERIC class test B-2
Numeric edited item B-8
Numeric item B-8
alignment of 1-10
described in PICTURE clause 1-5
maximum length of 1-5
Numeric literal 1-4, B-8

0

OBJECT-COMPUTER paragraph 6-2
OCCURS clause 7-9, 7-13
examples of use 7-14

illegal with VALUE clause 1-13, 7-14, 7-16

legal level numbers with 7-14
nested 7-14
OPEN 1-15
and current record pointer 8-39
EXTEND option 2-2, B-5
I-O option 2-2
unsuccessful 1-25
Open file limits 8-41
Operand B-8
maximum size of 8-16
overlapping 1-18
Operating system channels 8-41
Operational sign B-8
Option 1-1, B-8
Order of execution, next executable
sentence/statement B-8

Licensed Material - Property of Data General

Iindex-5

ORGANIZATION clause 2-1, 6-5
Overpunched signs 7-12

P

P symbol
and COMPUTE statement 8-23
in PICTURE clause 1-6, 7-10
size of data-item with 1-6
with DISPLAY 1-6
with MOVE 1-6
with VALUE clause 1-6
Paragraph 1-1, 1-17, B-8
Paragraph header B-8
Paragraph-name B-9
qualification of 1-12
Pathname B-9
PERFORM 1-12, 1-15
Period
in PICTURE clause 1-7, 7-11
Phrase 1-1, B-9
PICTURE clause 1-4, 7-10, B-9
actual decimal point B-1
alphabetic character B-2
alphabetic data-items 1-5
alphanumeric character B-2
alphanumeric data-items 1-7
alphanumeric edited item B-1
assumed decimal point B-1
characters used in B-2
currency sign in B-4
currency symbol in B-4
editing in 1-7, B-2

illegal with USAGE IS INDEX 1-4, 7-10, 7-12

in Screen Section 3-2, 3-5, 7-7
numeric character B-2
numeric data-items 1-5
symbols used in 7-10
Plus sign
in PICTURE clause 1-8, 7-11
Primary key 2-5, B-9
specification of 6-5
PRINTER
in ASSIGN clause 2-2, 6-3
PRINTER-1], in ASSIGN clause 6-3
Procedure Division 1-1, 1-15, 8-1, B-9
duplicate names in 1-11
syntax summary D-5
Procedure Division Using header 7-4, 8-9

PROGRAM COLLATING SEQENCE clause

Program control
CALL 8-9
CALL PROGRAM 8-11
Declaratives section 1-26, 8-1
next executable sentence/statement B-8
verbs used in 1-15

with AT END 1-26

with INVALID KEY 1-26
PROGRAM-ID paragraph 5-1
Programmer-created words 1-2
Programs, creating 4-1

Punctuation, characters used in COBOL B-3

Q

Qualification of names 1-11

in Data Division 1-11

in Procedure Division 1-12
QUOTE (figurative constant) 1-3

R

Random access 2-4
READ 1-15, 2-1, 2-5, 8-46

and current record pointer 8-47, 8-48, 8-49

AT END condition with 1-26

INVALID KEY errorin 1-26

line sequential file 2-2
Record B-9

area B-9

deletion of 2-4

description entry B-9

fixed-length 2-1, B-6

in COBOL program 1-4

length of 2-1

lock limits 8-47

logical B-8

name B-9

variable-length 2-1, B-10
RECORD CONTAINS clause 2-2, 7-2
RECORD KEY clause 2-3, 6-5

RECORDING MODE clause 2-2, 6-4, 7-2

REDEFINES clause 7-7, 7-9, 7-10, 7-14
illegal with VALUE clause 7-16
implied by multiple FD O1-levels 7-10

Relation condition 1-20, B-3
characters used in B-3

Relational operator B-9

Relative file 2-6, B-6
access mode and assignment of 6-4
assignment of 6-4
key in 2-6, B-9
next record in B-8
SELECT statement with 6-3

RELATIVE KEY phrase 6-5

REORG utility 2-4, 6-5

REQUIRED clause 3-10, 7-7

Reserved words 1-2, B-9
table of E-1

REWRITE 1-15, 2-5, 8-51
and current record pointer 8-51
INVALID KEY errorin 1-26

ROUNDED phrase 1-17, 1-18

Index-6

Licensed Material - Property of Data General

with COMPUTE statement 8-16
with DIVIDE statement 8-25
Run unit B-9
Runtime switch B-10
Runtime system B-9

S

S symbol
in PICTURE clause 1-6, 7-10
SAME [RECORD] AREA clause 6-6
and REWRITE 8-51
and WRITE 8-64
Scaling character P, and COMPUTE statement 8-23
Screen Section 3-1, 7-5, B-10
ACCEPT statement 3-1, 3-3, 3-6, 3-9, 8-2
AUTO clause in 3-9, 7-7
AUTO clause in 3-9, 7-7
BELL clause in 3-9, 7-7
BLANK LINE clause in 3-9, 7-7
BLANK SCREEN clause in 3-9, 7-7
BLANK WHEN ZERO clause in 3-10, 7-7
BLINK clause in 3-10, 7-7
clauses in 3-5
COLUMN clause in 3-7, 7-7
data description entry in 3-1, D-4
data-item entry in 3-2, 7-6
DISPLAY statement 3-1, 3-2, 3-5, 3-9
example of 3-11
FILLER clause illegal in 3-4
formats for entries 7-5
FROM clause in 3-6, 7-7
FULL clause in 3-9, 7-7
group entry in 3-4, 7-6
JUSTIFIED clause in 3-10, 7-7
level number in 3-1, 7-6
LINE clause in 3-7, 7-7
literal entry in 3-2, 7-5
order of clause execution 3-10
PICTURE clause in 3-2, 3-5, 7-7
REQUIRED clause in 3-10, 7-7
SECURE clause in 3-10, 7-7
storage in 3-10
TO clause in 3-6, 7-7
USING clause in 3-6, 7-7
VALUE clause in 3-5, 7-7
variable origin screen B-11
SCREEN utility 3-1
Screen-name B-10
Searchlist B-10
and COPY files 8-19
with CALL 8-10
with CALL PROGRAM 8-12
Section 1-1,1-17, B-10
used in qualification 1-12
SECURE clause 3-10, 7-7

BLANK WHEN ZERO no effect with 3-10
JUSTIFIED no effect with 3-10
SECURITY paragraph 5-1
SELECT clause, with indexed files 2-3
SELECT statement 6-3
syntax of D-1
with external filename 6-4
with indexed files 6-3
with relative files 6-3
with sequential files 6-3
Sentence 1-1, 1-15, B-10
declarative B-5
Separator 1-2, B-10
Sequence number area, in card format 4-2
Sequential access 2-4
Sequential file 2-1, B-6
access mode and assignment of 6-4
adding records to B-5
assignment of 6-4
creating on disk 6-4
next record in B-8
reading 6-4
SELECT statement with 6-3
sending output to screen 6-4
SET 1-12,1-15
overlapping operands in 1-18
SIGN clause 1-5, 1-6, 7-12
Sign condition 1-23, B-3
Simple condition 1-19, B-3
Simple insertion editing 1-7
SIZE ERROR 1-19
with /A compiler switch 2-6
with ADD CORRESPONDING statement 8-7
with ADD statement 8-6
with COMPUTE statement 8-16
with DIVIDE statement 8-25
with MULTIPLY statement 8-38
with SUBTRACT CORRESPONDING
statement 8-58
SIZE ERROR phrase 1-17
Slash
as form feed 4-4
in PICTURE clause 1-7, 7-11
Source code
blank lines in 4-4
card format 4-2
comment lines in 4-4
continuation lines in 4-3
creating 4-1
CRT format 4-1
SOURCE-COMPUTER paragraph 6-2
SPACE (figurative constant) 1-3
Special insertion editing 1-7
SPECIAL-NAMES paragraph 6-2, B-4
START 1-15, 2-5, 8-54
and current record pointer 8-54, 8-55

Licensed Material - Property of Data General

Index-7

INVALID KEY errorin 1-26
Statement 1-1, 1-15, B-10

compiler-directing B-3

syntax, summary of D-6
STOP 1-15
STOP RUN, files closed with 8-15
Subscript 1-12, B-10
SUBTRACT 1-15, 8-57

substituting for COMPUTE 8-17
SUBTRACT CORRESPONDING 1-15, 1-19
Switch

compile-time 2-6, A-1, B-10

in calling program 8-9

logical 1-22, 6-2, B-10

passing with CALL PROGRAM B-10

runtime B-10
SWITCH literal IS clause 6-2
Switch-status condition 1-22, B-4
SYNCHRONIZED clause 7-14

illegal with USAGE IS INDEX 7-12
Syntax, summary of COBOL D-1
System calls 8-13

ON EXCEPTION clause with 8-13

table of 8-13

T

Table 1-12,7-13, B-10
multidimensional 7-14
referencing 1-15

Termination, program 1-25

Termination codes
in ACCEPT 8-4
table of 8-5

TIME, in system ACCEPT 8-3

TO clause 3-6, 7-7

U

UNDELETE 1-15, 2-4, 8-20, 8-60
and current record pointer 8-60
INVALID KEY error in 1-26
Uniqueness of reference 1-11
UNLOCK 1-15, 8-61
and current record pointer 8-61
USAGE clause 7-11
and ADD CORRESPONDING 8-7
and SUBTRACT CORRESPONDING 8-58
COMPUTATIONAL 7-11
DISPLAY 7-11
INDEX 7-11
PIC illegal with INDEX items 1-4,7-10
USE 1-15, 8-62
and DELETE 8-20
with OPEN and CLOSE 1-25
USER NAME, in system ACCEPT 8-4
USING clause 7-7

in Screen Section 3-6
USING phrase

CALL PROGRAM 8-12

with CALL 8-9

Vv

V symbol
in PICTURE clause 1-6, 7-10
VALUE clause 1-12, 1-21, 7-15
and data-item categories 7-16
at group level 7-16
illegal in File and Linkage sections 7-15
illegal with OCCURS clause 1-13, 7-14, 7-16
illegal with REDEFINES clause 7-16
illegal with USAGE IS INDEX 7-12
in Screen Section 3-5, 7-7
with P symbol 1-6
Variable sequential file 2-1
access mode and assignment of 6-4
Variable-length record 2-1, B-10
Verbs B-11
syntax summary D-6
table of 1-15

w

Words B-11
in COBOL program 1-2
programmer created 1-2
reserved 1-2, B-9, E-1
Working-Storage Section 7-3, B-11
WRITE 1-15, 2-5, 8-64
and current record pointer §-64
INVALID KEY error in 1-26

X

X symbol
in PICTURE clause 1-7, 7-10

V4

Z symbol
in PICTURE clause 1-9, 7-10
Zero
in PICTURE clause 1-7,7-11
ZERO (figurative constant) 1-3
Zero suppression editing 1-9
and BLANK WHEN ZERO clause 1-10

Index-8

Licensed Material - Property of Data General

CUT ALONG DOTTED LINE

GvDataGeneral ™

Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE Z1P STATE ZIpP
ATTN: ATTN:
UNIT LINE TOTAL
QTY | MODEL # DESCRIPTION PRICE DISC PRICE
(Additional items can be included on second order form) [Minimum order is $50.00) TOTAL
TaxExempt#__ Sales Tax
or Sales Tax (if applicable) —
Shipping
TOTAL
METHOD OF PAYMENT SHIP VIA
O Check or money order enclosed O DGC will select best way (U.P.S or Postal)
For orders less than $100.00
O Other:
(0 Chargemy O Visa ([MasterCard O U:P.S. }_31ue Label
Acc'tNo._____ ExpirationDate___ O Air Freight
O Other
[0 Purchase Order Number:
NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.
Person to contact about this order Phone Extension
Mail Orders to: Buyer’s Authorized Signature Date
Data General Corporation (agrees to terms & conditions on reverse side)
Attn: Educational Services/TIPS F019
4400 Computer Drive -
Westboro, MA 01580 Title
Tel. (617) 366-8911 ext. 4032
DGC Sales Representative (If Known) Badge #

ional
DISCOUNTS APPLY TO W

MAIL ORDERS ONLY 012-1780

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“‘DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer’s order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT

Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.0.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

¢»DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service’s Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked “subtotal”
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS

Educational Services - M.S. F019
Data General Corporation

4400 Computer Drive

Westboro, MA 01580

8. We’'ll take care of the rest!

134-784-01

fold

moisten & seal

CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a
few minutes to respond. Thank you.

Manual Title Manual No.
Who are you? OEDP/MIS Manager [Analyst/Programmer [JOther
DOSenior Systems Analyst OOperator
[DEngineer DEnd User
How do you use this manual? (List in order: 1 = Primary Use)
— Introduction to the product — Tutorial Text — Other
— Reference — Operating Guide
Yes No
About the manual: Is it easy to read? O C
Is it easy to understand? O 0
Are the topics logically organized? O O
Is the technical information accurate? O 0
Can you easily find what you want? 0 0
Does it tell you everything you need to know? O 0l
Do the illustrations help you? O 0

If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Comments:

S31V1S d3lINN
3HL NI
A3V 4l
AdVSS3IOIN
39v1SOd ON

0666-60LLZ ON “ired e[buer] yoreesey
eAu(19pURXelY “M'L 29
uotjejuswndoJ IGUIOISHD

[BRUWDER4)

@assalppe Aq pied aq ||im abejsod

2//10 VN ‘OHO8HLNOS 92 ON LIWH3d SSV10D LSHIA

TIVIN AT1d3H SS3INISNA

134-784-01

NGRS

Data General Corporation, Westboro, MA 01580 A93-785813-82

