@» DataGeneral

o~ Customer Documentation

. Interactive COBOL
- Utilities (AOS, AOS/VS)

Interactive COBOL
Utilities (AOS, AOS/VS)

069-705021-01

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 069-705021

Copyright© Data General Corporation, 1983, 1984, 1987
All Rights Reserved

Printed in the United States of America

Revision 01, April 1987

NOTICE

-

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE
BY DGC PERSONNEL, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE
INFORMATION CONTAINED HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN
PART WITHOUT DGC’S PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC
WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE
INFORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR
SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,

ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, MANAP, microNOVA,

NOVA, PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of

Data General Corporation, and AEC/STAGE, AI/STAGE, AOSMAGIC, AOS/VSMAGIC,

ArrayPlus, AWE/4000, AWE/8000, AWE/10000, BusiGEN, BusiPEN, BusiTEXT, COMPUCALC,

CEO Connection, CEO Drawing Board, CEO DXA, CEO Wordview, CEOwrite, CSMAGIC,
DASHER/One, DASHER/286, DATA GENERAL/One, DESKTOP/UX, DGConnect, DG/GATE,

DG/Fontstyles, DG/L, DG/STAGE, DG/UX, DG/XAP, ECLIPSE MV/2000, ECLIPSE MV/7800, ~
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/20000, Electronics/STAGE,

FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, GW/4000, GW/8000, GW/10000,

Mechanical/STAGE, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP,

Software Engineering/STAGE, SPARE MAIL, TEO, TEO 3/D, TURBO/4, UNITE, and XODIAC

are trademarks of Data General Corporation.

Interactive COBOL Ultilities (AOS, AOS/VS)
069-705021-01

Revision History: Effective with:

Original Release — June 1983

Addendum 086-000072-00 — August 1984

First Revision — April 1987 (Interactive COBOL, Rev. 1.30)

The content and change indicators in this revision are unchanged from 069-
705021-00. This revision incorporates addendum pages only.

Changes to Interactive COBOL

For AOS and AOS/VS users, Revision 1.10 of Interactive COBOL contains the
following changes in utilities from Revision 1.00:

An ISAM reliability package has been added, which helps insure the logical structure
of ISAM files. It prevents the utilities ANALYZE, COLLAPSE, CSSORT, ICEDIT,
certain REORG functions, and the runtime system from accessing ISAM files that
are flagged as corrupt. The utility ISAMVERIFY diagnoses where the corruption
occurs. The utility REBUILD or REORG can fix the file.

A new utility, REBUILD, fixes an ISAM file if one of its portions is bad. It also
allows the user to correct the file size so that it is on a 2KB boundary, which is
required under AOS and AOS/VS.

REORG has increased functionality in two main areas. First, it enables the user to
declare the .XD header information as invalid (/X switch) and to supply the correct
information in the command line. Second, the /Q switch enables the user to operate
the utility on a relative file without renumbering the records.

A new utility, SETFORMS, allows users with Data Royal printers to set variable
forms lengths and vertical tabbing for special forms.

™ Contents

N
N
</

<ol

Preface
| Chapter 1
An Overview of the 1-1 Designing and Processing Files
Interactive COBOL -1 ANALYZE
oge e 1-1 COLLAPSE
Utilities 1-1 CSSORT
1-1 FILESTATS
1-2 ISAMVERIFY
1-2 REBUILD
1-2 REORG
1-2 Performing Calculations: CALC
1-2 Displaying Revision Levels: CREV
1-2 Editing Files: ICEDIT
(“\ 1-3 Processing Data Files: ICINQUIRE
1-3 Formatting Screens: SCREEN
1-3 Setting Vertical Forms: SETFORMS
1-3 Executing the Ultilities
1-3 CLI Utilities
1-3 Invoking Runtime Ultilities
1-4 ISAM Reliability Package
1-5 Accessing Files
1-5 Comparison of Ultilities for AOS and
AOS/VS
Chapter 2
Utility Reference 2-1 ANALYZE
2-2 Reliability Checking
2-3 Example
2-5 Error Messages
2-6 CALC
2-7 Arithmetic Operators
2-9 Functions
; 2-10 CALCLIB
l 2-11 Error Messages
M 2-13 COLLAPSE
' 2-13 Removing Logically Deleted Records

2-14
2-14
2-14
2-14
2-15
2-17
2-19
2-19
2-22
2-24
2-26
2-27
2-30
2-33
2-34
2-34

2-34

2-36
2-37
2-38
2-41
2-42
2-44
2-45
2-46
2-47
2-54
2-55

2-55
2-56
2-56
2-56
2-57
2-61
2-61
2-64
2-65
2-65
2-67
2-69
2-70
2-70
2-70
2-74
2-75

Packing the Index Structure
The Command Line
CLI Macro Command Files
Log File
Error Messages
CREV
CSSORT
Sort Procedure
Alternate Collating Sequences
Using More Than One Key-Specifier
Sorting Indexed Files with Alternate Keys
Merge Procedure
Error Messages
FILESTATS
Sequential Files
Relative Files
Indexed Files
Warning Messages
ICINQUIRE
Executing the Inquiry Program
Preparing a Record Descriptor
Error Messages
Runtime Error Messages
ISAMVERIFY
Abnormal Termination
Error Messages
REBUILD
Rebuilding the .XD Portion of an ISAM
File
Rebuilding the .NX Portion
Correcting Boundary Alignment
Using REBUILD Interactively
Example
Messages
REORG
Reliability Checking
Processing Indexed Files
Processing Relative Files
Recovering ISAM Files
Converting File Types and Deleting Records
Changing Access Keys
Rearranging Data Fields
Inserting Editing Characters
Error Messages
SETFORMS
Error Messages

A

Appendix A

~ Switch Combinations for REORG

Related Documents

Preface

<D

Document Set

Interactive COBOL is documented by a set of manuals that describe the language, its
utilities, and the system-dependent features that affect its use. The Interactive COBOL
Programmer’s Reference defines the Interactive COBOL programming language. It
is the programmer’s primary reference regardless of the operating system.

Three system-dependent User’s Guides explain the features of the user’s particular
operating system — MP/OS, RDOS, AOS, or AOS/VS — as they relate to Interactive
COBOL. Each manual describes such factors as the file system and gives specific
instructions for invoking the runtime system, compiler, and debugger.

The set of Interactive COBOL utilities is essentially the same for each system and
provides similar functions on each system. However, variations do exist for invoking
and using the general utilities on each of the operating systems. A separate Utilities
manual for each system provides instructions for using the utilities.

In addition to the general utilities, Interactive COBOL also includes two special
COBOL source editors. IC/EDIT: Interactive COBOL Editor describes an editor
specifically designed for writing programs. SCREEN: Screen Format Editor describes
the special-purpose editor for designing and automatically coding screen display
formats.

The titles and order numbers of the Interactive COBOL documents are listed in
“Related Documents” at the end of this manual.

Scope

This manual is a companion to the Interactive COBOL Programmer’s Reference and
User’s Guide (AOS, AOS/VS). It describes the operations of the general Interactive
COBOL utilities. The manual is written for the experienced COBOL programmer
who is familiar with the operating system being used. The programmer who is not
familiar with Data General’s Advanced Operating System (AOS) or Advanced
Operating System/ Virtual Storage (AOS/VS) should first consult the documentation

related to those systems (see “Related Documents™). .

Organization

The manual is divided into two chapters: an introduction and an alphabetized reference.
The introduction provides a summary of the Interactive COBOL utilities and explains
the contexts in which they are used. The reference chapter provides detailed operating
instructions for the programs ANALYZE, CALC, COLLAPSE, CREV, CSSORT,
FILESTATS, ICINQUIRE, ISAMVERIFY, REBUILD, REORG, and
SETFORMS. Numerous examples supplement this material. An index provides
convenient access to topics.

Preface

Notational Conventions

The following conventions are used in indicating the syntax of commands and user

entries:

UPPERCASE
lowercase

(]

t
!

NL
CR

Commands and switches appear in uppercase.
User-supplied arguments, such as filenames, appear in lowercase.

Optional arguments are set in brackets; do not enter the brackets
themselves.

One of the arguments in braces must be selected; do not enter the
braces.

Vertical bars in the margin highlight technical changes made since
the last revision of this document.

Press the NEW LINE key.

Press the carriage return key, CR.

In general, NL and CR may be used interchangeably to terminate commands and
enter responses to prompts. However, under AOS and AOS/VS, CR deletes all
characters from the point you enter it to the end of the line.

Preface

Chapter 1

An Overview of the
Interactive COBOL Ultilities

This chapter describes each utility briefly. The utilities are grouped by function.
General instructions for executing the utilities appear after the summary descriptions.
Comparisons of Commercial Systems (CS) utilities, AOS utilities, and Interactive
COBOL utilities on AOS and AOS/VS appear at the end of this chapter. Complete
descriptions of the utilities appear in chapter 2.

Designing and Processing Files

Interactive COBOL provides seven utilities to aid in designing and maintaining
system files that meet data storage requirements. These utilities are ANALYZE,
COLLAPSE, CSSORT, FILESTATS, ISAMVERIFY, REBUILD, and REORG.

ANALYZE

ANALYZE helps you monitor the growth of existing indexed and relative files.
ANALYZE outputs current statistics for a given file, such as record length, the
number of data records, and the number of index blocks. On the basis of these and
other statistics, you may decide to streamline the file by repacking its index structure
and/or physically removing logically deleted records, using the COLLAPSE or
REORG utility. ANALYZE checks file integrity before operating on the file.

COLLAPSE

COLLAPSE enables you to improve indexed file access and the use of disk space,
based upon FILESTATS and/or ANALYZE statistics. COLLAPSE physically
removes logically deleted records from the data portion of the file and repacks the
index portion to a specified density, or repacks the index only. No temporary disk
space is required to perform these functions. COLLAPSE provides statistics for any
changes made to a file.

CSSORT

CSSORT performs off-line sorting and merging of files. CSSORT accepts-any file
created by Interactive COBOL and produces a sequential file as output. CSSORT
cansort by ascending values, descending values, or by a user-defined collating sequence.
A sort operation can include reformatting of records. For a merge operation, CSSORT
can accept up to six sequential files as input.

FILESTATS

FILESTATS calculates the size of any sequential, indexed, or relative file on disk. It
calculates the total number of blocks a file would occupy on disk based on the input of

An Overview of the Interactive COBOL Utilities

1-1

such file variables as number of records, record length, and key length. Use
FILESTATS statistics to determine the optimal key or record length for an indexed
file, or to ensure that file sizes can be maintained within the limits of a disk’s storage
capacity. Based upon FILESTATS output, you may decide to use COLLAPSE to
adjust the density of the index structure of a file.

ISAMVERIFY

ISAMVERIFY tests the integrity of ISAM files. If a structural error occurs in a file,
the utility notifies you via a screen display or, if specified, an audit file. ISAMVERIFY
does not attempt to fix any errors, nor does it change the files, except for setting and
clearing the reliability flags. If an error is found in either the .NX or the .XD portion
of the file, run REBUILD on the file or substitute a backup file. If both portions of the
file are corrupt, run REORG on the file or use a backup file.

REBUILD

REBUILD is used on corrupted ISAM files. It can rebuild either the .NX or .XD
portion if the other portion is intact. REBUILD completely restores the integrity of
the logical file structure of indexed and relative files, assuming that the AOS or
AOS/VS file structure is intact.

REORG

REORG converts files from one type to another. REORG accepts as input any file
created by an Interactive COBOL program and outputs files in formats you specify.
For example, it can convert a file from indexed to sequential format or rearrange data
in records to produce a different print format. It may also be used to physically delete
records that have been logically deleted.

REORG is also used to reconstruct an ISAM file when both the .NX and the . XD
portions of the file are corrupt.

Performing Calculations: CALC

CALC is a general purpose calculating aid that performs the arithmetic functions,
including exponentiation and derivation of roots. It enables you to define variables.
CALC automatically displays the five most recent results of your calculations.

Displaying Revision Levels: CREV

CREYV displays the revision level of the compiler used on an Interactive COBOL
source program, the operating system on which it was compiled, and the code revision.

Editing Files: ICEDIT

ICEDIT is a line-oriented source program editor designed for COBOL program
development in the Interactive COBOL runtime environment. It allows developers to
write, edit, and run Interactive COBOL programs. ICEDIT is documented in ICEDIT:
Interactive COBOL Editor.

1-2

An Overview of the Interactive COBOL Utilities

Processing Data Files: ICINQUIRE

ICINQUIRE is used to review, update, or create data files. It accepts a record
descriptor as input and produces a tailored COBOL program (to be executed under
the runtime system) that processes any ISAM file matching the record description.
ICINQUIRE operations include forward and backward sequential reading, data
record display, and updating and deleting records.

Formatting Screens: SCREEN

SCREEN is a tool for designing, coding, and documenting Interactive COBOL
display screen formats. With SCREEN, you compose the literal and data fields
exactly 4s you want them to appear to the program operator. Then you instruct
SCREEN to write source code for the image. SCREEN-written source files may be
used in any Interactive COBOL program. SCREEN is documented in SCREEN:
Screen Format Editor.

Setting Vertical Forms: SETFORMS

This utility is for those who have the Data Royal printer, model IPS-5000-A, with
option 190168. It allows the user to set variable forms length and vertical tabbing
positions for special printing forms.

Executing the Utilities

An Interactive COBOL utility executes either under the runtime system or under the
command line interpreter (CLI). Runtime utilities are ANALYZE, CALC, and
FILESTATS. CLI utilities are COLLAPSE, CREV, CSSORT, ICINQUIRE,
ISAMVERIFY, REBUILD, and REORG.

CLI Utilities

The CLI utilities are executed directly from the CLI. Enter the complete command
line at the CLI prompt, as described in chapter 2. When the utility finishes executing,
you are returned to the CLI.

Invoking Runtime Ultilities
The runtime system is called from the CLI by the following command:
ICX [program-name[/switch]]

If a runtime utility is given as the program name in the command, the utility is
executed directly from the CLI, without going through the Logon Menu. When
execution stops, control returns to the CLI.

If you do not specify a program name in the command, the runtime system executes
the Interactive COBOL Logon program, and the menu in Figure 1-1 is displayed.

An Overview of the Interactive COBOL Utilities

1-3

Interactive COBOL - Monitor Revision 1.10
COBOL Development Logon

DATE: 4/11/83
TIME: 12:34:56
Terminal Number: 02

Option(?)

(R)un a Program
(D)ebug a Program
(S)top

. J
Figure 1-1 AOS and AOS/VS Logon

The runtime system displays an appropriate message if you run a program through
Logon and it is interrupted by one of the following: a STOP RUN statement, a STOP
command from the debugger, a console interrupt, or a program error. When you press
NL or CR, the runtime system again executes the Logon program. You can stop the
runtime system by issuing a CALL PROGRAM “#S”, thus issuing the STOP
command to Logon, or by using the CTRL-C CTRL-A sequence.

ISAM Reliability Package

Interactive COBOL’s file reliability system helps insure the logical structure of ISAM
files. The purpose of this reliability system is to detect possible file corruption and to
prevent access of files that may be corrupt.

The data portion (.XD) of each ISAM file contains two reliability flags — one for the
index portion (.NX) of the file, and one for the data portion. These flags can be set by
the runtime system, COLLAPSE, ISAMVERIFY, and ANALYZE. When the flags
in a file are set, only the diagnostic utility ISAMVERIFY, the restructuring utility

REBUILD, and portions of the reorganization utility REORG can be run on the file.

If a power failure occurs while a file is open, the reliability flags remain set. Since the
flags are set, the utilities ANALYZE, COLLAPSE, CSSORT, ICEDIT, certain
functions of REORG, and the runtime system cannot access the file. If you attempt to
access a file flagged as corrupt, a message appears warning that the logical file
structure may be corrupt.

If this happens, first run ISAMVERIFY to determine what is wrong with the file. If
it is corrupt, ISAMVERIFY reports the information necessary to run REBUILD or
REORG. If the file is sound, ISAMVERIFY clears the reliability flags, which allows
the file to be accessed.

1-4

An Overview of the Interactive COBOL Utilities

Accessing Files

AOS and AOS/VS use a searchlist for file access. A searchlist is a list of directories
that the system automatically searches when it cannot find a file in the current
working directory and a pathname is not specified. Display or change your searchlist
with the SEARCHLIST command.

The searchlist can contain up to eight directories. Since the Interactive COBOL
utilities, compiler, and runtime system all add “:UTIL:ICOBOL” to the searchlist,
you should specify no more than seven directories in the searchlist.

The link is a file access facility under AOS and AOS/VS. A link is a file that contains
a pathname or a pathname segment. When a link name appears in a pathname, the
system replaces the link name with the contents of the link file. You can create links
with the command

CREATE/LINK linkname pathname

AOS and AOS/VS provide file security by means of an access control list (ACL). An
ACL contains a list of users who have access to a given file and the type of access each
user is permitted. There are five types of access: owner, write, append, read, and
execute. The ACL command displays or resets a file’s access control list. To execute a
utility that accesses files, the file’s ACLs must permit appropriate access.

For example, the utility ISAMVERIFY reads files and clears the reliability flags if
the file is not corrupt. Therefore, to run ISAMVERIFY on a file, you need read
access to the file so that ISAMVERIFY can read its contents, and write access so that
ISAMVERIFY can set the reliability flags. However, you cannot change a file’s ACL
unless you have owner access or write access to the directory. For further information
about file access concepts and procedures, see the Command Line Interpreter User’s
Manual (AOS and AOS/VS).

Comparison of Ultilities for AOS and AOS/VS

For the new user of AOS or AOS/VS who is familiar with CS utilities, Table 1-1 lists
the CS utilities and identifies the comparable Interactive COBOL utilities and
comparable AOS and AOS/VS utilities or CLI commands.

An Overview of the Interactive COBOL Utilities

1-5

Interactive
CS COBOL AOS, AOS/VS
ABORT —_ TERMINATE
ANALYZE ANALYZE —
BOOT — —
BURST — —
CALC CALC —
COLLAPSE COLLAPSE —
COPY — PCOPY
CREV CREV —
CSINIT — —
CSGEN — AOSGEN, VSGEN
DDUMP /DLOAD — —
DKINIT — DFMTR
DO — —
ENPAT/PATCH — PATCH
FDUMP/FLOAD — DUMP/LOAD
FILESTATS FILESTATS —
HASP I — HASP Il
ICEDIT ICEDIT AOS editors
ICRJES8O — RJE8O
ICSCREEN — SCREEN
ISAMVERIFY —_
INQUIRE ICINQUIRE —
JOB — —
LJE — QBATCH
LOGON LOGON —
MESSAGE — SEND
MESSAGES — —
NOTES —_ —
PASS — AOS batch utilities
REBUILD —
REORG REORG —
SCREEN SCREEN —
SORT/MERGE CSSORT —
STOP STOP —
TERMINAL STATUS — CLI macro
TYPE — TYPE
VINIT — LABEL
VSTAT — LOAD

Table 1-1 Utility Equivalency Guide

1-6

An Overview of the Interactive COBOL Utilities

Chapter 2
Utility Reference

This chapter describes the functions of the Interactive COBOL utilities on AOS and
AOS/VS, and gives instructions for their execution. The utilities are listed in
alphabetical order.

ANALYZE Analyzing Files

ANALYZE is an Interactive COBOL program that measures the parameters of
existing ISAM files. ANALYZE accepts as input any Interactive COBOL ISAM
files, including files with alternate keys. It generates file statistics that help the
programmer evaluate file structures in order to achieve optimum storage and retrieval.
ANALYZE checks certain aspects of file integrity before it begins operating on the
file. .

ANALYZE runs under the control of the Interactive COBOL runtime system. The
program is compatible with all other runtime system uses and program testing.
Therefore, it can be executed at any terminal in an Interactive COBOL system and at
several terminals at the same time. It allows several files to be analyzed simultaneously.

ANALYZE enables you to monitor file growth and structure. It gives feedback on file
design, such as record and key sizes and the number of index levels for each record
key. ANALYZE can indicate the need to run the COLLAPSE utility on a file.
(COLLAPSE physically removes logically deleted records and/or packs the index
structure up to 99% full. Each logically deleted record removed by COLLAPSE may
be replaced by a new record.) ANALY ZE reports the number of records removed by
a previous COLLAPSE as FREE-SLOTS.

Output from ANALYZE, which can be sent to the display screen or the system
printer, includes the following:

» The filename and the revision of ISAM under which the file was created
¢ Record length in bytes

¢ Number of data records, including those logically deleted

¢ Number of index blocks

¢ Percentage of index size to total file size

¢ Number of record slots freed by the most recent run of COLLAPSE

e Number of logically deleted data records (optional)

* An analysis of each primary key and alternate key including: key length in bytes,
starting position of the key within the data record, number of keys per index block,
number of index blocks, and structure tables (optional)

The index structure tables show for each record key (1) the number of used blocks in
the index file; (2) the minimum, maximum, and average number of keys per block;
and (3) the percentage of the index level that is full.

Utility Reference

2-1

Procedure

To invoke ANALYZE at the CLI, enter ANALYZE. To invoke ANALYZE at the Logon
menu, enter ANALYZE in response to the RUN PROGRAM prompt.

ANALYZE begins by displaying a series of prompts, one at a time, for which you
specify options and filenames. Terminate each response with CR, which transmits the
response and displays the next prompt. Pressing ESC in response to any of the
prompts stops the program.

You are first prompted:
OUTPUT TO PRINTER (P) OR DISPLAY (D)?

Enter P to send the output to the system printer; in this case the results are not
displayed. Output is queued to the printer. Enter D to display the results on the
screen. If you select D, you are given the option of printing the results. ANALYZE
then prompts:

INDEX TABLES - (Y) OR (N)?

The Y response creates a table for each key, reflecting the distribution of record keys
through the index structure. The number of deleted keys is tallied. The next prompt
appears:

RECORD DELETIONS - (Y) OR (N)?

The Y response produces a tally of deleted records. If ANALYZE is run on a file
after a large number of records are deleted, it may report a number for deleted keys
that is greater than the total number of records (including deletions) currently in the
file. This is because when a REWRITE statement changes an alternate key, the old
index entry is flagged for deletion and a new index entry is written (the data portion
is updated in place).

Finally ANALYZE prompts for a file to be analyzed. Enter the name of a file,
without the .NX or .XD extension. The name may be a simple filename or a pathname
up to 28 characters. It may not include underscores. ANALY ZE follows your searchlist
if it does not find the file in the current directory. ANALY ZE continues to accept
filenames until you have entered 15 filenames or pressed CR alone at the prompt. The
utility then checks the integrity of the files.

Reliability Checking

Before ANALYZE begins to operate on a file, it checks that the reliability flags are
not set. It then checks the following boundary conditions in the data file:

e The number of alternate keys, which must be between 0 and 4
e The record length, which cannot exceed 4096 bytes

¢ The key length, which cannot exceed 100 bytes

» The key position, which must be 1 or greater

e The index depth, which must be 6 or less

If any of the above parameters is out of bounds, ANALYZE sets the reliability flags
and displays the following message:

ERROR DETECTED DURING ANALYSIS:
BOUNDARY LIMIT EXCEEDED (NX): filename

2-2

Utility Reference

A

When the reliability flags are set, ANALYZE displays only the following information
on the file:

¢ Record length

e Number of keys (including alternates)

* Key length of each key

» Relative position of each key within the record

If the file is corrupt, the above information may be incorrect. Run ISAMVERIFY on
the file, which will give you further information. ISAMVERIFY clears the reliability
flag if it determines that the file is not corrupt. If the file is corrupt, ISAMVERIFY
supplies the information necessary to determine whether you should run REBUILD

or REORG, or use a backup file.

Example

In the following example, ANALY ZE reports statistics for the indexed file
PARTFILE. Assume that PARTFILE is not corrupt, that is, it meets ANALYZE’s
boundary condition checking and the reliability flags are clear. This example is
continued in the FILESTATS and COLLAPSE sections to show the interrelationships
of these utilities in data file maintenance and planning.

Assume that PARTFILE was initially planned to include 6000 records and occupy
1.5 MB of disk storage. However, it has grown larger than its initial size and contains
many logically deleted records. The CLI command FILESTATUS shows that
PARTFILE now occupies about 2 MB of disk space. To monitor the growth and
current file structure of PARTFILE, invoke ANALYZE and enter PARTFILE at
the FILENAME prompt. ANALY ZE provides the information shown in Figure 2-1.

Utility Reference

2-3

ANALYSIS OF PARTFILE

CREATED BY ISAM REV 5.09

RECORD LENGTH IN BYTES 100
NUMBER OF DATA RECORDS (INCLUDING DELETIONS) 9747
TOTAL NO. OF INDEX BLOCKS 1892
% OF INDEX TO TOTAL FILE SIZE 47
FREE-SLOTS 0
NO. OF DELETED RECORDS 2319

- Strike Any Key to Continue -

ANALYSIS OF PARTFILE

PRIMARY KEY

KEY LENGTH IN BYTES 15

RELATIVE POSITION OF KEY WITHIN RECORD 1

NO. OF KEYS PER INDEX BLOCK 25

INDEX DEPTH 4

LEVEL BLOCKS MIN MAX AVE % FULL
1 749 B 24 B 8

2 57 B2 13 53

3 4 13 8 U 57

4 1 4 4 4 16

NO. OF INDEX BLOCKS 811

- Strike Any Key to Continue

ANALYSIS OF PARTFILE

ALT KEY 1

KEY LENGTH IN BYTES 15
RELATIVE POSITION OF KEY WITHIN RECORD 16

NO. OF KEYS PER INDEX BLOCK 21

INDEX DEPTH 4

LEVEL BLOCKS MIN MAX AVE % FULL
1 974 10 18 10 48
2 97 10 14 10 48
3 9 10 17 10 51
4 1 9 9 9 43
NO. OF INDEX BLOCKS 1081
NO. OF DELETED KEYS 0

Print - (Y) or (N)? _

&

Figure 2-1 ANALYZE Display

2-4 Utility Reference’

ANALYZE reveals that PARTFILE now requires four index levels for each key, that
the file index structure requires 1892 blocks of disk, and that no logically deleted
records have been physically removed from the file. Because the file has grown
without apparent maintenance, assume the index packing density is about 50% for
each level.

COLLAPSE may be used to remove logically deleted records. The size of the data
portion of the file will not decrease; however, the space freed by deleted records may
be reused to add new records to the file. The index portion of the file may be smaller
because unused keys have been removed and because fewer index levels may be
required.

Error Messages
Under exceptional conditions ANALYZE may display the following error messages:

ERROR DETECTED DURING ANALYSIS:
BOUNDARY LIMIT EXCEEDED (NX): filename

ANALYZE has determined that the file is possibly corrupt and has set the reliability
flags. Run ISAMVERIFY, which will provide information for reconstructing the file
with REBUILD or REORG, or will reset the reliability flags to enable you to access
the file.

FILE NOT FOUND, ALREADY OPEN OR READ PROTECTED: filename

The specified file does not exist, is already opened, or your ACL for the file does not
include permission to read the file. ANALYZE returns you to the FILENAME prompt,
where you can enter another filename.

WARNING: LOGICAL FILE STRUCTURE MAY BE CORRUPT filename
RUN "ISAMVERIFY' TO CHECK FILE INTEGRITY

ANALYZE has checked file integrity and has determined that one or both reliability
flags are set. Run the utility ISAMVERIFY on the file.

Utility Reference

2-5

CALC Performing Calculations

The program CALC is a general purpose calculating aid. It provides ten variables that
may be assigned values, both built-in and user-defined functions, and displays the five
most recent results of calculations.

Procedure
To invoke CALC from the CLI, enter CALC. The following information appears:

E -- Electronic Desk Calculator....CALC
L -- Library Maintenance........ CALCLIB

Please enter your selection:

Enter E to invoke CALC. To invoke CALC from the Logon Menu, enter CALC in
response to the RUN PROGRAM prompt. The CALC screen appears, which is shown in

Figure 2-2.
4 N\
Date: 4/11/84 CALC Revision 1.30 “F8 to exit
Time: 12:34:56 Library:
0.0000 = A ()
0.0000 =B ()
Results: 0.0000 = C ()
0.0000 =D ()
0.0000 = K 0.0000 =E ()
0.0000 = L 0.0000 =F ()
0.0000 =M 0.0000 =6 ()
0.0000 =N 0.0000 = H ()
0.0000 =0 0.0000 =1 ()
0.0000 = J ()
Enter Expression:
ORDER OF (1) ! 4 */\1 SAVE: 6 LABEL: f8
OPERATIONS: (2) 4Q -Q FUN (5) + - %<> SEE: F6 LIB: {7
3" (6) = KILL: "F6
g J

Figure 2-2 CALC Screen

Function keys f6, f7, and f8 alone or combined with the SHIFT and CTRL keys may
be used with CALC. In Figure 2-2 F6 is SHIFT-f6, “F6 is CTRL-SHIFT-f6, and
~F8 is CTRL-SHIFT-f8. The definitions of the function keys appear in Table 2-1.

Key Function

f6 SAVE key. Define or modify a function.

F6 SEE key (SHIFT-f6). Examine the definition of a function in the scratch or
personal libraries.

~F6 KILL key (CTRL-SHIFT-f6). Remove a function from the scratch library.

f7 LIB key. Enter or change your personal library or enter the master library.

f8 LABEL key. Assign a variable name.

~F8 CTRL-SHIFT-f8. Exit from CALC.

Table 2-1 CALC Function Keys

2-6 Utility Reference

CALC provides ten variable names, A through J. The value of each variable is
displayed on the screen and updated whenever it is changed. You may assign names to
these variables by using the LABEL key (f8). Press LABEL before entering an
expression, or end an expression by pressing LABEL. In either case, CALC prompts
for a new name. The name you have assigned to the variable appears in the parentheses
to the right of the variable name. However, you must use the one-letter name in the
actual expressions.

To facilitate entering large numbers, commas and leading dollar signs are accepted
and ignored as part of a numeric string.

The equal sign operator assigns a value to a variable. For example,
F = (B-1)/25
subtracts 1 from B, divides the result by 25, and stores that answer in F.

The five most recent results are automatically displayed on the screen and are named
K through O, with K being the most recent result. These values may be used in
expressions, but may not be the object of an assignment (i.e., K=3 is illegal).

Arithmetic Operators

CALC recognizes the arithmetic operators listed in Table 2-2.

Operator Definition

= Value assignment

+ Addition

- Subtraction

* Multiplication

/ Division

% Percent difference. A%B gives the percent change from A to B.
\ Quotient. A\B gives the whole number part of A/B.

| Remainder. AB gives the remainder of A/B.
Minimum. A<B gives the lesser of A and B.
Maximum. A>B gives the greater of A and B.
Exponentiation. A"B is A raised to the power B.

>V A

! Factorial. Alis A * (A-1) * (A-2) * ... * 2 * 1.

Table 2-2 Arithmetic Operators in CALC

If an expression includes several operations, CALC executes them in their order of
precedence. Operations at the same level of precedence are executed from left to right,
except that multiple exponentiation operators are executed from right to left.
Parentheses may alter the normal order of execution; elements in parentheses are
executed first. Table 2-3 shows the levels of precedence from the highest level (1) to
the lowest level (6).

Utility Reference

2-7

Precedence Operator

Level 1 !

Level 2 Functions, leading + and —
Level 3 ~

Level 4 * /N

Level 5 + — % < >

Level 6 =

Table 2-3 Levels of Precedence of Operators

CALC displays results truncated to four decimal places. Table 2-4 lists examples of
expressions and their results.

Expression Result Remarks

1* 2/3 0.6666 / and * are of equal priority; they are executed from
left to right.)

5* 273 40.0000 ~ is executed first.

150% 100 —33.3333 150 to 100 is a 33.3% decrease.

SQT 2* 2 2.8284 SQT is resolved before multiplication.

SQT (2* 2) 2.0000 Parentheses force * to be executed first.

27273 255.0000 The rightmost ~ is resolved first.

A=1+B=1 2.0000 B=1is executed first, then A=1+B.

Table 2-4 Examples of Calculations

The order of operations may differ in expressions containing more than one equal sign.
In general, CALC resolves expressions containing more than one equal sign according
to the following procedure:

1. Evaluate the expression following the rightmost equal sign and assign the value
to the letter preceding that equal sign.

2. Substitute that variable’s value in the expression.
Repeat step 1 if there are other variable assignments. Otherwise, evaluate the
rest of the expression as usual.

The following example shows the right-to-left-processing order:

IS+A=4%3-2*B=22/C=4+ D=1+2*3
N ———

D=7
C=4+7
N
C =1l
B=22/11
N

A=4%3.2%2
A =8
15+ 8
23

The value of the expression is 23, which is not assigned to a variable.

Utility Reference

Q

Functions

CALC function names consist of three letters. Invoke a function by entering its name
and a single trailing argument, e.g., ZAH 3. CALC recognizes two kinds of functions:
built-in and user-defined. The built-in functions are:

¢ SQT: square root
¢ LOG: common logarithm (log to base 10)
* EXP: e to the given power (e is approximately 2.718282)

Names of user-defined functions are three letters long and are stored in scratch or
personal libraries. A scratch library is created each time you enter CALC and is
destroyed each time you leave CALC. A new function is stored in the scratch library
and in the personal library if specified. Whenever you reference a user-defined
function, CALC gets a copy of it from the scratch library.

A personal library is saved from session to session. To open a personal library after
entering CALC, press the LIB key (f7). CALC prompts you for the name of the
library. If the library does not exist, CALC asks if it should be created. To clear the
connection without opening or creating a library, enter a blank name. To destroy a
personal library, issue the following commands from the CLI:

DELETE[/V] CALCS$library-name.(NX,XD)

The master library may not be modified. This library contains the following functions,
which are supplied automatically with CALC:

* ABS: absolute value of the argument

¢ COS: cosine of the argument, which is in radians

¢ DEG: converts the argument from degrees to radians
¢ LGE: natural logarithm (base e) of the argument

¢ SIN: sine of the argument, which is in radians

CALC searches for functions in the following order: the built-in functions, the scratch
library, all personal libraries that have been opened during that session, and the
master library. Thus if you give a personal library function the same name as a
built-in function, the built-in function is used. When CALC finds a function, it copies
it into the scratch library. CALC displays a message if it fails to find a function.
Although you cannot alter master library functions, you can override them by giving
a personal or scratch library function the same name as a master library function.

To define or change a function in the scratch or personal library, type an expression
that includes the simple variable X. Instead of pressing CR to enter the expression,
press the SAVE key (f6), which displays a prompt asking for the name of the function.
For example, to define a function TAX, which computes the 5% sales tax on an item,
type .05 * X at the entry line and press SAVE (f6). When CALC asks for the function
name, enter TAX. Assuming no function with that name exists in the scratch library,
CALC stores it and returns the normal calculator line. To test the new function, type
TAX $100. CALC shows a result of 5.0000.

CALC next attempts to place the function definition in the scratch library. If the
name is in use, CALC asks if the old definition should be deleted in favor of the new
one. If you respond N, the definition process is cancelled. If you respond Y, the
definition is put into the scratch library. If a personal library is open, CALC then asks
if it should enter the function into the personal library.

To examine the definition of a function in the scratch or personal library, press SEE
(SHIFT-f6). CALC prompts for the name of the function and searches for it, first in
the scratch library, and then, if necessary, in the currently open personal library. With
a successful search, CALC displays the definition.

Utility Reference

2-9

Ve

Expressions can be used with functions. For example, entering TAX (17+3) gives a
result of 1.0000, which is 5% of 20. Note that the parentheses are important; without
them, CALC evaluates the expression as (TAX 17) + 3 and returns the result 3.8500.

To remove a function from the scratch library, press KILL (CTRL-SHIFT-f6).
CALC asks for the function name to be deleted.

CALCLIB

CALCLIB is a program for maintaining the function libraries. CALCLIB has four
options:

* Display the definition of a function.

e Display a list of all the functions in the library.

¢ Remove the definition of a function.

¢ Copy the contents of the library to the printer.
To run CALCLIB, do one of the following:

e Enter ICX CALCLIB at the CLI
e Enter CALCLIB in response to the RUN PROGRAM prompt on the Logon Menu.
¢ Enter CALC at the CLI, then select L (Library Maintenance).

CALCLIB asks for a CALC library name. Enter the name or blanks for the master
library. The screen that CALCLIB displays is shown in Figure 2-3.

4 N

Library xxxxxx

What do you want to do?

Inspect a function

See list of functions
Remove a function

Copy library to printer

s w M

(ESC to exit)

Figure 2-3 CALCIB Screen

Inspect a function. CALC prompts for the function name. If the function exists in the
specified library, CALCLIB displays its definition. If the function does not exist,
CALCLIB displays a message to that effect.

See list of functions. CALCLIB displays an alphabetical list of all the functions in the
library, 64 names to a page. If there are too many to fit on a page, CALCLIB pauses;
press CR to continue.

Remove a function. CALCLIB prompts for the name of the function, deletes it, and
displays a confirmation message. To delete another function, enter its name.

Copy library to printer. CALCLIB copies the contents of the library to a printfile.

If no functions are in the library, CALCLIB displays a message that the library is
empty. Otherwise, the program confirms that it is copying the definitions to the
printer or the print file. The name of the print file is CALC followed by the time, a
period, and the three-digit line number of the user’s terminal. Print the print file using
the CLI command QPRINT.

2-10

Utility Reference

Error Messages

Under exceptional conditions CALC or CALCLIB may display the following error
messages:

EXPRESSION T0O COMPLICATED

While interpreting an expression, CALC ran out of temporary storage. This is typically
caused by too many levels of parentheses or too many assignments in conjunction with
other operations. A standard remedy is to break the expression into two or more
expressions.

EXPRESSION TOO LONG

While evaluating an expression, CALC ran out of room to store intermediate values.
Split the expression into smaller segments.

ERROR IN EXPRESSION SYNTAX

While scanning an expression, CALC identified an illegal sequence, such as A//B or

3(6/7).
FACTORIAL NEEDS A POSITIVE INTEGER

The factorial operator only works for numbers that are 0 or greater and do not have
any fractional part.

FRACTIONAL EXPONENT NEEDS POSITIVE BASE
In A"B, if B has a fractional part, A must not be less than zero.
ILLEGAL VALUE SUPPLIED TO FUNCTION xxx

The value given to the named function was not in the acceptable range of values for
that function. For SQT, the number must be no less than 0. For LOG, the number
must be greater than 0.

INVALID CHARACTER IN EXPRESSION

A character was encountered that was not a capital letter, a numeric character (digit,
period, comma, or dollar sign), or an operator. The illegal character is shown after the
message.

INVALID NUMBER ENTERED

An invalid number may be a § at the end of the line, a number with more than one
decimal point, or a number with commas after the decimal point.

INVALID USE OF =

The assignment operator may only assign to variables A through J. Examples of
invalid use are 3=1/5 and N=3.

INVALID VARIABLE IN EXPRESSION

An invalid variable name was found. Only A through J are valid. The invalid variable
is shown after the message.

MASTER LIBRARY NOT FOUND

CALCSSLIB.NX or CALCS$SLIB.XD are not in :UTIL:ICOBOL, your current
directory, or your searchlist.

NAME NOT AVAILABLE

You tried to create a new library with an invalid name.

Utility Reference

2-11

NO SUCH FUNCTION

You asked to see the definition of a function that does not exist in the current
directory, is not in your searchlist, or is not linked to the current directory.

NO SUCH LIBRARY

You tried to access a library that does not exist, that was not in your searchlist, or that
you were not linked to.

NUMBER HAS TOO MANY DIGITS
The number entered is too large for CALC to handle.
RESULT TOO BIG TO HANDLE

While performing an operation, CALC encountered a number too big to process
without generating an incorrect result.

THIS LIBRARY IS EMPTY; NO PRINT WILL BE DONE
THIS LIBRARY IS EMPTY, SO THERE IS NOTHING TO LIST

You tried to print or list a library that contains no functions.
UNKNOWN FUNCTION

Two or more letters in a row were found that do not make up a valid function name.
This illegal name is displayed after the message.

UNRECOVERABLE DISK ERROR IN PERSONAL LIBRARY
UNRECOVERABLE DISK ERROR IN SCRATCH LIBRARY

An error occurred while altering the scratch or personal library. Run ISAMVERIFY
to check the integrity of the library file, following the procedures under
ISAMVERIFY. If ISAMVERIFY does not detect an error, you may have a disk or
system problem.

YOU MAY NOT ALTER THE MASTER LIBRARY

You cannot alter the functions in the master library. However, you may overlay a
master library function by giving a personal or scratch library function the same name
as a master library function.

2-12

Utility Reference

COLLAPSE Streamlining Indexed Files

COLLAPSE tailors the structure of indexed files to optimize storage and access time.
The utility physically removes logically deleted records from the data portion of an
indexed file and repacks the index portion of the file from 50% to 99% full, or repacks
the index only.

COLLAPSE requires no temporary work files to streamline indexed files. All disk
space freed by streamlining is returned to the collapsed file or to the operating system.
Streamlining statistics on collapsed files are reported in a log file.

To restore file space to a disk that is nearly full, use the utility’s record deletion
facility. This physically deletes records that are logically deleted.

To improve access time for frequently read files, repack the index at a high density.
High-density packing results in a smaller index file, which uses less disk space.

If the main operations on indexed files are writing and rewriting, it may be desirable
to maintain a low packing density because high-density index packing increases write
time. However, a low packing density also results in a larger index file, which uses
more disk space.

If indexed files are to be archived on tape or disk, COLLAPSE may be run on these
files to physically delete logically deleted records and to pack indexes up to 99% full.
When the files are retrieved for rewriting, COLLAPSE may be rerun on them to
repack indexes less tightly for maximum writing facility.

COLLAPSE does not work on relative files. Use REORG to remove logically deleted
records from a relative file (see “Relative to Relative” under the REORG section). To
repack the index portion of a relative file, use the REBUILD utility.

COLLAPSE does not operate on a file if the reliability flags are set. COLLAPSE sets
the reliability flags while it is working on a file and clears them when it has finished.
Therefore, if COLLAPSE is interrupted in any way, the reliability flags remain set.
Further, because COLLAPSE changes the file while operating on it, the file should be
considered corrupt.

Removing Logically Deleted Records

A record deleted by ISAM is marked as logically deleted, but it is not physically
removed from the file. COLLAPSE can physically remove these records, thus freeing
disk space, which may be reused by the file. COLLAPSE does not make the data
portion of a file smaller. Rather, it increases the data portion’s capacity within the
current file size by collecting the “free slots” at the end of the data portion, where new
records can be written.

The index portion of the file, however, probably will be smaller. For each deleted
record that is removed, the corresponding key entry in the index portion is also
removed. This space is returned to the operating system.

Use ANALYZE to determine the number of new records that can be added to a
collapsed file without increasing overall file size. ANALY ZE reports the number of
records removed by the last COLLAPSE as FREE-SLOTS. Run ANALY ZE on a file
before and after a COLLAPSE session to confirm the results of removing logically
deleted records.

Utility Reference

2-13

Packing the Index Structure

COLLAPSE packs index structures from 50% to 99% full by deleting the old index
file and building a new packed index file. To build a packed index file, COLLAPSE
reads the data file in keyed sequential order, starting with the primary key and
rereading for each alternate key in the file.

The utility FILESTATS helps in determining optimum packing density for an index
structure before running COLLAPSE on the file. FILESTATS accepts index packing
density as a parameter to its predictions of file storage requirements.

The Command Line .

The command line tells COLLAPSE (1) whether to physically delete logically deleted
records from a file and (2) the extent to which each level of the index structure is to be
packed. The command line has the following format:

COLLAPSE[/D] filename[xx xx xx xx xx]

/D Physically delete records that are logically deleted. If the /D switch is omitted,
logically deleted records are not physically deleted.

XX Pack the index to xx% full. The default value is 99; each entry may range from
50 t0 99. A value for each index key may be specified, starting with the primary
key and ending with the last alternate key.

CLI Macro Command Files

You can submit commands to COLLAPSE via a CLI macro command file, which can
contain any number of COLLAPSE command lines. Any number of files on the disk
can be collapsed with a single macro command file.

CLI macro command files can be prepared with a system editor or by the CLI
command CREATE. For example, the contents of a macro command file STREAM-
LINE.CLI may be:

COLLAPSE/D ACME 80 50
COLLAPSE ABC 75 50 50
COLLAPSE/D REGIONAL 99 75

To execute the commands in the macro command file, enter STREAMLINE at the CLI.

Log File

After a session, COLLAPSE appends file streamlining statistics to a file called
COLLAPSE.LG. This file is created if it does not exist. It may be displayed using a
type or print command from the CLI. Any errors encountered during the pass are
entered into this log file.

Example

In the following example, COLLAPSE is run on the file PARTFILE, using information
from the ANALYZE and FILESTATS utilities. The example shows the
interrelationships of these utilities in data file maintenance and planning.

2-14

Utility Reference

f‘*ﬂ,

PARTFILE has outgrown its planned size. FILESTATS reveals that the file could be
returned to its proper size by packing the file’s primary key index 95% full, packing
the alternate key indexes 70% full, and physically removing logically deleted records.
Refer to the PARTFILE statistics reported by ANALYZE and FILESTATS to
compare PARTFILE storage requirements and index structure before and after the
COLLAPSE session. The COLLAPSE.LG statistics for PARTFILE appear in Figure
2-4.

COLLAPSE ISAM FILE: PARTFILE

COMMAND : PARTFILE/D/95/70 4/11/83 12:30:3

STARTING NUMBER OF DATA RECORDS: 9751
NUMBER OF DATA RECORDS FREED: 2319
CURRENT NUMBER OF DATA RECORDS: 7432
DATA FILE SIZE: 1072682

INDEX FILE: PARTFILE.NX

STARTING NUMBER OF INDEX BLOCKS: 1893
NUMBER OF INDEX BLOCKS FREED: 980
CURRENT NUMBER OF INDEX BLOCKS: 913

INDEX LEVELS

PRIMARY KEY

BEFORE : 4

AFTER: 3
ALTERNATE KEY 1

BEFORE : 4

AFTER: 4

Figure 2-4 COLLAPSE Log File Statistics

The statistics in Figure 2-4 show that COLLAPSE physically removed 2319 logically
deleted data records from the data file and freed 980 index blocks from the index file.
If ANALYZE were run, it would show 2319 free slots. '

Error Messages

COLLAPSE error messages indicate either a problem in the command line or a
problem in the file being collapsed. Error messages that are caused by problems in the
command line have explanations listed below. Error messages that indicate a problem
in the file itself are simply listed. These errors are fatal. If you get a fatal error, run
ISAMVERIFY on the backup file — not the collapsed one. Then run REBUILD or
REORG if necessary.

CAN NOT GET PATH

CAN NOT RELINK RECORD
CAN NOT REMOVE RECORD
ILLEGAL .NX REVISION

Fatal error. The ISAM revision number is less than 5.00. The current COLLAPSE
cannot process the file.

Utility Reference

2-15

INDEX DEPTH EXCEEDED
LOGICAL FILE STRUCTURE MAY BE CORRUPT

The ISAM reliability flags are set. Run ISAMVERIFY, which will determine whether
your file is corrupt. If it is not corrupt, ISAMVERIFY will clear the flags. If the file
is corrupt, follow ISAMVERIFY with REBUILD or REORG or use a backup file.

NO FILE NAME

You have entered the utility name with no arguments. You must supply the name of
a file to be collapsed.

.NX FILE ERROR
.NX FILE INACCESSABLE

The .NX portion may not be in your directory or searchlist; it may not exist; or
someone else has opened the file. :

UNABLE TO DELETE RECORD
.XD FILE ERROR

.XD FILE INACCESSABLE

The .XD portion may not be in your directory or searchlist; it may not exist; or
someone else has opened the file.

2-16

Utility Reference

O

CREVY Displaying the Revision Levels

CREYV checks the compatibility of a program’s object code with the runtime system.
CREY displays the name of the operating system under which the Interactive COBOL
source program was compiled, the revision levels of the compiler, and the code
revision; it also indicates whether extended features were used.

Revision levels are displayed as a major level number, followed by a period and a
minor level number. The major and minor levels can range from 0 to 99. The compiler
produces as output two object files: source-filename.DD and source-filename .PD.
The revision level of the compiler is written in the .PD file.

For example, if PAYROLL is the source-filename, CREV might supply the
information displayed in Figure 2-5.

e - ™
PAYROLL
Compiled Under AOS/VS ~ Rev. 1.30
Code Rev. 6 Using Extended Features

Figure 2-5 Sample CREV Screen
Figure 2-5 indicates that the program was compiled under AOS/VS. The compiler
that produced the object code for the source file PAYROLL had a major revision level

of 1 and a minor revision level of 3. The code revision was 6.00, and extended features
were used.

The code revision is keyed to the runtime system. The runtime system runs any
program with a code revision of 4 or greater, regardless of the major or minor revision.

Extended features include use of a second system printer, alternate keyed search, and
CALL PROGRAM USING.
Procedure
Execute the utility from the CLI with the following command:
CREV [source-filename]

Source-filename cannot include underscores. You can enter or omit the .PD extension;
that is, CREV treats source-filename.PD and source-filename the same.

If you enter the source-filename at the command line, CREYV displays the information,
then returns you to the CLI.

If you do not enter the source-filename, you are prompted for it. CREV displays the
information and prompts you for another program name. Enter it, or press ESC to
terminate CREV.

Utility Reference

2-17

e

CREY can also be run under-the runtime system through Logon or with a CALL

PROGRAM statement. CREV prompts you for a COBOL program name. It displays

the program’s revision level information and prompts you for another program name. ,

To continue, enter another program name; to terminate CREV, press ESC. /)
AN

2-18 Utility Reference

CSSORT Sorting and Merging Files

CSSORT is a general sort and merge package. The sort operation accepts as input
any Interactive COBOL file type and sorts on keys containing any data type. It
produces a sequential file as output. The merge operation accepts as input up to six
sorted sequential files of the same type and merges them into a single sequential file.

CSSORT can produce a variety of different output files from a given input file. By
selecting only certain portions of the input file, CSSORT can reformat the records for
the output file. This provides a tool for developing tailored reports from a master file.
Records can be sorted on any data type in ascending or descending order or according
to a user-defined collating sequence.

You can define a collating sequence by creating a file that contains an alternate
sequence and specifying this sequence’s filename in the command line.

CSSORT sorts an input file as specified by the user and outputs a new sorted file.
Files that have been sorted on the same key can be merged in a separate operation into
one file. However, CSSORT does not run on a file if a file’s reliability flags are set.

A statistical report file can be produced for either the sort or merge options by
specifying an audit filename in the command line. Since this file is a line sequential
file, it can be printed.

CSSORT uses program-generated work files for the sort operation. Normally, these

files are named by the CSSORT program. The command line accepts as optional
arguments user-specified work filenames.

Sort Procedure
The minimal command line for the sort operations includes an input file (with the

input record size if the file is fixed sequential), an output file, and one key specifier.
The basic command line is:

CSSORTI[/N] !n-ffle[/S‘] m-rec-'snze/N out-f!Ie/O/t .
in-file/t [in-rec-size/N] out-file/O[/S] [sequence-file/C]

{key-specifier}... [field-specifier]... [workfile/W]... [auditfile/ A]

Global Switch

/N Suppresses terminal display of audit information. This switch must be used l
with batch jobs or the system returns the error LINE T0OO LONG.

Local Switches

/t Defines the file type for in-file and our-file. The default is a fixed sequential file.
t may have the following values:

Utility Reference

2-19

Input-file Type Output-file Type

/S Fixed sequential /S Fixed sequential

/L Line sequential /L Line sequential

/v Variable sequential /V Variable sequential

/V/A AOS-format variable /V/A AOS-format variable
sequential sequential

/I Indexed

/R Relative

Variable sequential files store the size of the record in the record. With a variable
sequential file created under AOS or AOS/VS COBOL, use the /V/A switches.
With a variable sequential file created under Interactive COBOL on AOS or AOS/ VS,
use the /V switch. This difference arises because AOS and AOS/VS COBOL use a
4-byte header to store record length, while Interactive COBOL uses a 2-byte header.
Use CSSORT to convert variable sequential files created under AOS or AOS/VS
COBOL to a form compatible with Interactive COBOL.

Required Arguments

in-file /t
The name of the input file. For an indexed or relative file, the filename
should not include the extensions .NX and .XD. The maximum filename
length is 31 characters. If a value for the /t switch is omitted, the input file
is assumed to be fixed sequential, and the input record size is required.

in-rec-size/N
The number of bytes in the input record. The input record size is required
only if the input file is fixed sequential. The record length in a line
sequential file is limited to 132 bytes plus the terminator. Specify the
maximum size for variable sequential input whenever it is known. Otherwise
the default, 4096 bytes, may diminish CSSORT’s efficiency.

out-file/O/t
The name of the output file. The name cannot currently exist. If a value for
the /t switch is omitted, fixed sequential is assumed.

key-specifier

The position and length of a key in bytes followed by /K. From one to eight
key specifiers can be given; their order is important. A key specifier does
not have to correspond to a primary or alternate record key in an indexed
file; rather, it is the portion of a record to be used for sorting. The first key
specifier is the major key used for sorting. The other keys are the minor
keys, weighted with decreasing 51gn1f1cance according to their order in the
command line.

Key specifiers have the following form:
key-pos { } key-length/K[/D][/d]

Key-pos is the position of the first byte of the key in the input record. (The
position of the first byte of the record is byte number 1.) Key-length is the
byte length of the key in the input record. The byte length cannot exceed
the record size nor run past the end of the record from the key position
specified.

/K indicates a key specifier. Keys can be specified for overlapping areas of
the record.

/D indicates descending order. If omitted, the sort is ascending. Ascending

2-20

Utility Reference

®

and descending keys can be intermixed among the specified keys.

/d indicates data type. ASCII characters are the default. The data type is
one of the following:

Switch Data Type

/A ASCII characters

/N Numeric display, unsigned

/N/L/S Numeric display, leading separate
sign

/N/T/S Numeric display, trailing separate
sign

/N/L Numeric display, leading sign

/N/T Numeric display, trailing sign

/C Computational, unsigned

/C/S Computational, signed

See the “USAGE clause” and “SIGN clause” sections in the Interactive
COBOL Programmer’s Reference for further information on data types.

Optional Arguments

field-specifier
The position and length of an input field to be moved to the output record.
Field specifiers tailor the output file to include only selected portions of the
input file. There is a limit of eight field specifiers, each with the following
form:

field-pos {} field-length /F

Field-pos is the position of the first byte of a field in the input record to be
moved to the output record. (The position of the first byte of the record is
byte 1.) When field specifiers are present, the fields appear in the output
record in the order specified in the command line. Fields may be overlapping
or duplicated. Field-length is the byte length of a field.

work-filename /W
The name of a temporary sorting file. CSSORT uses up to six work files. If
you do not explicitly name them, the program creates work files named
SORTWI1.TP through SORTW6.TP. If these files exist when the SORT is
executed, they are deleted and re-created. The most active work files are
SORTWI1.TP and SORTWA4.TP. If there is insufficient disk space or a
large number of records to sort, you can specify work files located on
different physical devices to increase the efficiency of the program. For
example, :DPZ1:DIR1:WORKI1.TP/W indicates that WORKI1.TP in
directory DIR1 on DPZ1 is a work file. The work files’ names are assigned
to the user-specified names in the order that they appear in the command
line. Thus, to specify work file 4 in the command line, the first three must
be included.

auditfile/A
The name of the file to which processing information is written. The
auditfile contains information such as the operation, input and output
filenames, file types, record size, key specifiers, output field specifiers,
listing filename, sequence filename, work filenames, time elapsed, and

number of records input and output. Do not specify @LPT as both the
audit and the output files.

Utility Reference

2-21

sequence-file/C
The name of the file containing a user-specified collating sequence. The
alternate collating sequence applies only to keys having the ASCII data
type. The alternate collating sequence has no effect on keys having numeric
or computational data types. -

The position of the arguments in the command line is not fixed. However, the order of
the key specifiers, field specifiers, and work files is important. For example, the input,
output, and audit filenames can appear anywhere in the command line, but
key-specifier-1 must precede key-specifier-2, field-specifier-1 must precede field-
specifier-2, and work-filename-1 must precede work-filename-2.

Alternate Collating Sequences

The order in a sort is usually determined by the straight ASCII sequence. The ASCII
characters are represented by internal codes consisting of decimal integers from 0
through 127 in the following sequence: digits (0-9), uppercase letters (A-Z), and
lowercase letters (a-z). This integer representation permits the characters to be
compared for precedence. By temporarily reassigning the integer corresponding to any
character, the precedence of the character with respect to the rest of the characters
can be altered. This is done using an alternate collating sequence file. The characters
in the file are assigned the first (lowest) precedence. This means that new integer
codes are assigned to them, starting with 0. The remaining ASCII characters, which
are not in the file, are assigned the remaining codes in their usual order with respect
to each other.

Be careful when creating alternate collating sequences, or the results may be
unexpected. For example, one might want simply to switch uppercase A and B in the
alphabetic sequence by creating the collating sequence file SWITCHAB:

CREATE/I SWITCHAB<CNL>
BA <NL>> O

) <NL>

However, the resulting alternate collating sequence would be incorrect: B, A, digits,
remaining uppercase letters, and lowercase letters. Instead of merely switching
positions, B and A now precede the digits. The correct sequence is created by specifying
the collating sequence as 0123456789BA. The resulting sequence is: digits, B, A,
remaining uppercase letters, and lowercase letters in their normal order.

Observe these rules when creating alternate collating sequences:

The file can contain only ASCII characters.

No character can be repeated.

The file cannot be longer than 128 characters.

8-bit characters cannot be used to define an alternate collating sequence.

o

Using an Alternate Collating Sequence File

In this example, the user wants to generate a report that indicates by salesperson the
products being sold. The following information is needed to develop the command line:

Input Filename: SALESREC
File Type: Indexed

2-22 Utility Reference

Record Position Contents Byte Pos : Byte Length

1-6 Item stock number 1:6

7-10 Salesperson code 7:4

11-16 Transaction date 11:6

17-22 Customer number 17 : 6

23-36 Item description 23:14

37-40 ltem class 37:4

41-43 Units sold 41:3

44-45 Discount code 44 : 2

Output Filename: SALESITEM
File Type: Fixed sequential

The output file is to be formatted to include the salesperson code, the item sold,
number of units sold, and the transaction date:

Record Position Contents Byte Pos : Byte Length
1-4 Salesperson code 1:4
5-10 Iltem stock number 5:6
11-13 Units sold 11:3
14-19 Transaction date 14:6

The salesperson codes are numeric. Several years ago the stock number formats were
changed. The old stock item numbers are six characters long. The first two characters
are upper-case alphabetic and the last four are numeric. New stock item numbers are
six digits. When sorting the file, the user wants the old stock items first, then the new
ones.

This sort requires an alternate collating sequence in which uppercase must precede
digits. The alternate collating sequence would be created as follows:

CREATE/T UPPERCASE <<NL>
ABCDEFGHIJKLMNOPQRSTUVNXYZ <<NL>>
) <NL>

Since the upper-case letters are in the alternate collating sequence, they are assigned
first precedence. The remaining characters follow in their usual order.

The command line to generate the sales report is:

CSSORT SALESREC/I SALESITEM/0 7:4/K/N 1:6/K 11:6/K/N 7:4/F 1:6/F 41:3/F 11:6/F @LPT/A UPPERCASE/C

The following is an analysis of the command line:

CSSORT With /N omitted, audit information is displayed at the console.
SALESREC/I Input filename. The /I switch indicates an indexed file.

SALESITEM/0 Output filename. The output file type switch is omitted; therefore, the
file is to be fixed sequential.

7:4/K/N Major key specifier: salesperson. Data type is unsigned numeric. This
key is not affected by the alternate collating file.

Utility Reference

2-23

1:6/K

11:6/K/N

7:4/F

1:6/F
41:3/F
11:6/F
@LPT/A
UPPERCASE/C

The following table illustrates the reformatting done by the field specifiers. The order
of the field specifiers in the command line determines the order of fields in the output

Minor key specifier: item stock number. With the data type switch
omitted, the default is ASCII. This key is sorted by an alternate
collating sequence.

Minor key specifier: transaction date. Data type is unsigned numeric.

This key is not
Field specifier:
Field specifier:
Field specifier:
Field specifier:

affected by an alternate collating file.
salesperson code

item stock number

units sold

transaction date

The audit information is to be printed at the system printer.

The alternate collating sequence filename

file. The input file format is listed in the first column, the output file format in the

last.

Byte Pos : Byte Length Contents Byte Pos : Byte Length
7:4 Salesperson code 1:4
1:6 Item stock number 5:6
41:3 Units sold 11:3
11:6 Transaction date 14:6

The following audit information is displayed on the screen and printed at the system

printer:
~
CSSORT/MERGE PROGRAM REV 1.10 4/11/83 ***SORT OPERATION***
FILENAME FILE TYPE MAXIMUM RECORD SIZE
INPUT: SALESREC INDEXED 45
QUTPUT: SALESITEM FIXED-RECORD SEQUENTIAL 19
KEYS: START BYTE * LENGTH * ASC-DEC * DATA TYPE
7 4 A NUMERIC, UNSIGNED
1 6 A ASCII CHARACTERS
7 6 A NUMERIC, UNSIGNED
QUTPUT FIELD SPECIFIERS : (START BYTE , LENGTH)
7, 1. 6 4. 3 1. 6
LISTING FILENAME : @LPT SEQUENCE FILENAME: UPPERCASE
WORK FILENAMES
NONE SPECIFIED
PRESORT 11:49:28 11:50:08 NO. RECORDS IN : 673
LAST PASS ~ 11:50:09 DONE 11:50:58 NO. RECORDS OUT: 673
FIXED SEQUENTIAL OUTPUT RECORD SIZE IS 19 BYTES.
N J

Using More Than One Key-Specifier

In this example, a user wants to create a mailing list from the employee record file

EMPREC. Because this list is to be used for bulk mailing, the sort is by zip code. For

internal use, the user wants the sort refined by street, then by employee name.

The following information is needed to develop the command line:

2-24 Utility Reference

~

Input Filename: EMPREC
File Type: Fixed sequential

Record Position Contents Byte Pos : Byte Length
1-5 Employee number 1:5
6-35 Employee name 6:30
36-55 Street 36: 20
56-75 City 56 : 20
76-77 State 76:2
78-82 Zip 78:5
86-89 Extension 86: 4
90-95 Date hired 90:6

Output Filename: MAILIST
File Type: Fixed sequential

The format of the output file is determined by the field specifiers in the command line.
For this example, the employee name, street, city, state, and zip from the input file are
to be included in the output file. These items are included in record positions 6-82
(i.e., byte position 6, byte length 77). The output record format is:

Record Position Contents Byte Pos : Byte Length
1-30 Employee name 1:30
31-50 Street 31:20
51-70 City 51:20
71-72 State 71:2
73-77 Zip 73:5

The command line to create the mailing list is:

CSSORT EMPREC/S 95/N MAILIST/0 78:5/K/N 36:20/K 6:30/K 6:77/F @LPT/A

The following is an analysis of the command line:

CSSORT
EMPREC/S
95/N
MAILIST/0

78:5/K/N

36:20/K

6:30/K

6:77/F

GLPT/A

With /N omitted, audit information is displayed at the console.
Input filename. The /S indicates that file is fixed sequential.
The input record size. This is required because the file is fixed sequential.

Output filename. The output file type switch is omitted; therefore, the
file is to be fixed sequential.

Major key specifier. Data type is unsigned numeric. An ascending sort
on zip code is specified.

Minor key specifier 1. Duplicate zip codes are to be sorted by street
address.

Minor key specifier 2. Duplicate street addresses are to be sorted by
employee name.

Minor key specifier 3. The output file is to contain employee name,
street, city, state, and zip.

The audit information is to be printed on the system printer.

Utility Reference

2-25

The following audit information is displayed on the screen and printed at the system

printer:
e N
CSSORT/MERGE PROGRAM REV 1.10 4/11/83 ***SORT OPERATION***
FILENAME FILE TYPE MAXIMUM RECORD SIZE
INPUT: EMPREC FIXED-RECORD SEQUENTIAL 95
OUTPUT: MAILIST FIXED-RECORD SEQUENTIAL 77
KEYS: START BYTE * LENGTH * ASC-DEC * DATA TYPE
78 5 A NUMERIC, UNSIGNED
36 20 A ASCII CHARACTERS
6 30 A ASCII CHARACTERS

OUTPUT FIELD SPECIFIERS : (START BYTE , LENGTH)
6, 77
LISTING FILENAME : @LPT SEQUENCE FILENAME: NONE SPECIFIED
WORK FILENAMES :
NONE SPECIFIED

PRESORT 08:09:45 08:10:05 NO. RECORDS IN : 345

LAST PASS 08:10:05 DONE 08:10:35 NO. RECORDS OUT: 345
FIXED SEQUENTIAL OUTPUT RECORD SIZE IS 77 BYTES.

N J

Sorting Indexed Files with Alternate Keys

In this example, the user wants to prepare a file that lists account balance, customer
name, address, and account number in descending order by balance. If there are
duplicate balances, the sort will be on account number in ascending order. The input
file is ACCT_REC. It is indexed by account number as the primary key and customer
name as the alternate key. The following information is necessary to develop the
command line:

Input Filename: ACCT_REC
File Type: Indexed, with alternate keys

Record Position Contents Byte Pos : Byte Length
1-10 Account number 1:10
11-35 Customer name 11:25
36-55 Street 36 : 20
56-75 City 56 : 20
76-77 State 76 :2
78-82 Zip 78:5
83-91 Account balance 82:9

Output Filename: ACCT_BAL
File Type: Line sequential

The output file is to be formatted to include the account balance, customer name,
address, and account number. The output record format is:

2-26

Utility Reference

Record Position Contents Byte Pos : Byte Length
1-9 Account balance 1:9
10-34 Customer name 9:25
35-54 Street 35:20
55-74 City 65 : 20
75-76 State 75:2
77-81 Zip 77 .5
82-91 Account number 82:10

The command line to create the file in account balance sequence is:
CSSORT ACCT—REC/I ACCT_BAL/0/L 82:9/K/D/N/L 1:10/K/N 82:9/F 11:72/F 1:10/F
The following is an analysis of the command line:

CSSORT With /N omitted, audit information is displayed at the console.

ACCT—REC/I Input filename. The /I indicates that the file is indexed. No special
accommodations need to be made for indexed files with alternate keys.

ACCT—BAL/0/L Output filename. The /O indicates that the file is an output file. The
/L indicates that the file type is line sequential.

82:9/K/D/N/L The field position and length of the account balance field, the major
key specifier. The /K indicates that the argument is a key specifier.
The /D indicates that the final order is descending. The /N/L indicate
that the data type is numeric with a leading sign.

1:10/K/N Minor key specifier. The /N indicates that the data is unsigned numeric.
Duplicate balances are to be sorted on account number, in ascending
order. No other minor key specifiers are included since the account
number is unique.

82:9/F Field specifier: account balance. This is to appear at the beginning of
each record in the output file.
11:72/F Field specifier. This is the order in which the fields are to appear on the

output file. The fields are customer name, street, city, state, and zip.
Since the order of these fields will stay the same, they can be listed
under one field specifier.

1:10/F Field specifier: account number. This is to appear at the end of each
record in the output file.

Merge Procedure

The merge procedure accepts up to six sequential files and merges them into a single
sequential file. The sort procedure produces sequential files, the only file type the
merge operation accepts. However, if the files to be merged are sequential and sorted
on the field you wish to merge on, the sort procedure can be omitted.

The command line to merge variable or line sequential files is:
CSSORT/M/i[/N] in-file-1 in-file-2 [...in-file-6] out-file/ O/t key-specifier-1
[...key-specifier-8] [field-specifier-1...field-specifier-8] [auditfile / A]

The input record size must be included if the input file type is fixed sequential. The
command line to merge fixed sequential files is:

CSSORT/M/[/S][/N] in-file-1 in-file-2 [...in-file-6] out-file/O/t
key-specifier-1 [...key-specifier-8] in-rec-size-1/N in-rec-size-2/N [...in-rec-size- 6 /N]
[field-specifier-1...field-specifier-8] [auditfile / A]

Utility Reference

2-27

Global Switches

/M Indicates the merge operation

/i Indicates the file type for the input files. Since the file type is indicated by a
global switch, the input files must be the same type. The switches permitted are
/S for fixed sequential files, /V for variable sequential files, and /L for line
sequential files. The default is /S.

/N Suppresses console display of the audit information

Local Switches

The local switches are the same as in the sort operation.

Command Line Arguments

in-file
The name of a sorted input file. The maximum filename length is 31 characters.
At least two input files are required; a maximum of six can be specified. The
files must be the same type and already sorted on the keys to be used by the
merge.

in-rec-size/N
The input record size in decimal. If the input files are fixed sequential, the
record size is required. If the files are variable sequential, indicate the maximum
record size.

out-file/0/t
The name of the output file. The output file type (/t) switches are /S for fixed
sequential, /V for variable sequential, /L for line sequential files, and /V/A
for AOS-format variable sequential files. If no type is specified, the default is
fixed sequential.

key-specifier
At least one key specifier must be given; up to eight can be specified. Order is
important. When sorting and merging on more than one key, the keys must be
specified in the same order for both operations. Otherwise, the merged file is
unsorted.

Key specifiers have the same form as in the sort operation. The switches have
the same functions as in the sort operation. The form is:

key-pos {} key-length/K[/D][/d]

Optional Arguments

Work files cannot be specified for the merge option. Therefore the /W switch is not
needed. The other optional arguments are the same as those used in the sort operation
and can be included as needed:

field-specifier
To reformat the output file, up to eight field specifiers can be used. Their order
in the command line is important. The switches have the same functions and

form as in the sort operation.
field-pos { } field-length/F

auditfile /A
The name of the file to which processing information is written. The auditfile

2-28

Utility Reference

h

contains audit information, including the operation, input and output filenames,
file types, record size, key specifiers, output field specifiers, audit filename,
sequence filename, time elapsed, number of records input for each file, total
number of records input, and total number of records output. Do not name
@LPT as both the audit and output file.

sequence-file/C
The name of the file containing the alternate collating sequence used in the sort
operation. If the input files used in the merge were sorted using an alternate
collating sequence, this collating sequence filename must be used.

Using the Merge Operation

In the following example, a company does a heavy volume of business. Each quarter,
the new customer list is combined with the existing customer list to produce the
quarterly update list. The new customer list is an indexed file named NEWCUST.
The existing customer list is also an indexed file named OLDCUST. The customer
number is the index key. Both files have the following record format:

Record Position Contents Byte Pos : Byte Length
1-6 Customer number 1:6
7-36 Customer name 7:30
37-81 Address 37 : 45
82-91 Phone number 82:10
92-116 Buyer 92:25
117-120 Credit limit 117 : 4

The updated customer list is a fixed sequential file named UPDATE. It is sorted
alphabetically by customer name and retains the same record format.

Since input files in the merge command line must be sequential and sorted on the key
to be used by the merge operation, NEWCUST and OLDCUST must be sorted on

key position 7:30. Duplicates will be sorted on customer number, key position 1:6. The
command lines for the sort are:

CSSORT NEWCUST/I ALPHANEW/0 7:30/K 1:6/K/N @LPT/A
CSSORT OLDCUST/I ALPHAOLD/0 7:30/K 1:6/K/N @LPT/A

The record size of these two new files can be obtained from the auditfile. This number
is needed in the command line for the merge operation.

The two fixed sequential files, ALPHANEW and ALPHAOLD, can be merged
alphabetically into the new UPDATE file. The command line is:

CSSORT/M ALPHANEW ALPHAOLD 120/N UPDATE/0 7:30/K 82:10/K/N @LPT/A
The following is an analysis of the command line:

CSSORT/M The /M indicates the merge operation. With /N omitted, audit
information is displayed at the console. With the global file type switch
omitted, the input files are fixed sequential.

ALPHANEW Input filename. File type is fixed sequential.
ALPHAOLD Input filename. File type is fixed sequential.
120/N Input record size. Because the input files are fixed sequential, they

must all have the same record length.

UPDATE/O Output filename. The output file type switch is omitted; therefore, the
file is fixed sequential by default.

Utility Reference

2-29

—~—

7:30/K Major key specifier: customer name. With the data type switch omitted,
the default is ASCII.

1:6/K/N Minor key specifier: phone number. /N indicates unsigned numeric
data.

@LPT/A Audit information is to be printed on the system printer.

Since no field specifiers are given in the command line, the output file has the same
record format as the input files.

The following audit information is displayed on the screen and printed on the system
printer:

(’ I

CSSORT/MERGE PROGRAM REV 1.10 4/11/83 ***MERGE OPERATION***

INPUT FILES: TYPE--FIXED-RECORD SEQUENTIAL ~ MAX RECORD SIZE: 120
NAMES : 1 - ALPHANEW 2 - ALPHAOLD
OUTPUT FILE: TYPE--FIXED-RECORD SEQUENTIAL ~ MAX RECORD SIZE: 120
NAME: UPDATE
KEYS: START BYTE * LENGTH * ASC-DESC * DATA TYPE
7 30 A ASCII CHARACTERS
82 10 A NUMERIC, UNSIGNED

OUTPUT FIELD SPECIFIERS : (START BYTE , LENGTH)
NONE SPECIFIED
AUDIT FILENAME : @LPT SEQUENCE FILENAME: NONE SPECIFIED

MERGE 16:35:51 DONE 16:39:05
INPUT RECORD COUNTS :
1- 59 2 - 948
TOTAL RECORDS INPUT 1,007 TOTAL RECORDS QUTPUT : 1,007
FIXED SEQUENTIAL OUTPUT RECORD SIZE : 120 BYTES

Error Messages

The full text of each CSSORT error message indicates whether the error is a user
error or a program error. User errors are errors in the command line. Program errors
are deficiencies uncovered by the operating system. They include such errors as
uninitialized directories, unlocated files, and exhausted file space.

If you encounter a user error, correct the command line. If you encounter a program
error, respond as with a CLI error message.

ALL INPUT FILES ARE EMPTY

You cannot merge empty files.

COLLATING SEQUENCE FILE IS TOO LARGE

The collating sequence file cannot be longer than 128 characters.
DUPLICATE KEY FIELDS

Key fields cannot be repeated.

DUP CHARACTERS WERE FOUND IN SEQUENCE FILE

No character can be repeated in an alternate collating sequence file.
FALSE EOF

ILLEGAL COMMAND SWITCH COMBINATION

You may have specified, for example, an indexed output file in a sort.

2-30

Utility Reference

ILLEGAL GLOBAL SWITCH COMBINATION

You have specified more than one file type for the merge operation, for example,

JL/S.
ILLEGAL RECORD SIZE

The record size is limited to 133 bytes for line sequential files and 4096 bytes for fixed
or variable sequential files.

IMPROPER DATA FOUND IN KEY

IMPROPER DATA WAS FOUND IN SEQUENCE FILE

Only ASCII characters are allowed in the sequence file.
INPUT RECORD SIZE TOO SMALL FOR KEYS OR FIELDS

The record size must be able to accommodate the position and length of the key and
field specifiers.

INSUFFICIENT MEMORY FOR PRESORT
INVALID OUTPUT FIELD SPECIFIER

The field specifiers must be in the form field-pos.field-length/F or field-pos:field-
length/F.

INVALID KEY SPECIFIER

Key specifiers must be in the form key-pos.key-length/K or key-pos:key-length /K.
KEY RANGE ERROR

KEY SIZE EXCEEDS ITS DATA TYPE LIMIT

MORE THAN ONE SEQUENCE FILE

Only one alternate collating sequence file is permitted in a sort. You most likely
specified more than one filename with the /C switch.

NO KEY SPECIFIERS

" You must include at least one key specifier; indicate the specifier with the /K switch.

NO INPUT FILE SPECIFIED

You must specify at least one input file when sorting, or two input files when merging.
NO KEY OR OUTPUT FILE FOR SORT

One output file and one key specifier is required for each sort and merge operation.
NO OUTPUT FILE SPECIFIED

An output file is required and must be specified with the /O switch.

NO RECORD SIZE SPECIFIER FOR FIXED SEQUENTIAL

The number of bytes in the input record is required when the input file is fixed
sequential. It is specified with the /N switch.

OUTPUT SPECIFIER RANGE ERROR
OUTPUT FILE MUST BE LINE SEQUENTIAL

When sorting files, the output file must be line sequential. No switch indicating file
type is allowed.

OUTPUT RECORD IS TOO LONG FOR LINE SEQUENTIAL

The maximum record size for line sequential files is 133 bytes, including the terminator.

Utility Reference

2-31

PROGRAM ERROR IN GTYPE
PROGRAM ERROR # 1
RECORD TOO SMALL FOR KEY OR FIELD

The specified record size must be able to accommodate the position and length of the
key and field specifiers.

REVISION ERROR

TOO FEW INPUT FILES

You must specify at least two input files with the merge operation.
TOO MANY AUDIT FILES SPECIFIED

Only one audit file can be specified.

TOO MANY INPUT FILES SPECIFIED

Only one input file is permitted when sorting. Up to six files may be specified in the
merge procedure. You may have forgotten to specify the output file with the /O
switch.

TOO MANY KEY SPECIFIERS

Up to eight key specifiers may be included in the command line.
TOO MANY OUTPUT FIELD SPECIFIERS

Up to eight field specifiers may be included in the command line.
TOO MANY OUTPUT FILES SPECIFIED

Only one output file can be specified. You may have specified the /O switch for more
than one file.

TOO MANY RECORD SIZE SPECIFIERS

Each input record size must be preceded by the corresponding input filename.
TOO MANY WORK FILES SPECIFIED

Up to six work files can be specified. Specify each work file with /W.
UNIDENTIFIED ERROR CODE

UNIDENTIFIED LOCAL SWITCH

An illegal local switch was specified.

UNRECOGNIZABLE ITEM IN COMMAND LINE

2-32

Utility Reference

FILESTATS Calculating File Size

FILESTATS is an Interactive COBOL program that calculates file storage require-
ments based on record and key specifications. It can provide a comparison of alternative
record formats, showing maximum disk space requirements for any given file.

FILESTATS accepts a COBOL file type (indexed, relative, or sequential) and
appropriate parameters: record size, number of records, and, for indexed files, index
packing density, number of keys, and their lengths.

FILESTATS accepts index packing density as a parameter to its calculations of
ISAM file storage requirements; therefore, it can be used to determine the desired
packing density for an index structure. The density of an indexed file can be changed
by running the COLLAPSE utility.

FILESTATS displays as output the size of the data file in bytes and blocks (sectors).
For relative and indexed files, the size of the index file is given for random file
allocation. Storage requirements for a contiguous index are also displayed, which is
useful if the file is to be used under RDOS or DG/RDOS. For indexed files,
FILESTATS also calculates the number of keys per block, the number of index levels,
and the number of nodes (occupied blocks) per index level for each alternate key.

Procedure

To invoke FILESTATS at the command line, enter FILESTATS. To invoke FILESTATS
at the Logon Menu, enter FILESTATS in response to the RUN PROGRAM prompt.

The program begins by displaying:

FILESTATS OUTPUT TO PRINTER (P) OR DISPLAY (D)?
FILE TYPE--SEQUENTIAL (S), RELATIVE (R), OR INDEXED (I)?

At the first prompt, enter P to output the results on the line printer, or D to display
them on the console. At the second prompt, enter the file type to be examined.
Pressing ESC in response to either of these questions stops the program.

FILESTATS asks for record specifications, and key specifications if required. If you
do not know the precise packing density of an index file, type 50% packing for all
index structures to get worst-case statistics. Input limits appear in the prompts.

The file data is requested with the limits stated in the prompts. Pressing ESC when
entering the data restarts the program. When the appropriate data has been entered,
the program outputs the results of its calculations and displays the message STRIKE ANY
KEY TO PROCEED.

Pressing any key resumes the display of output or returns the initial display. The
program can be repeated any number of times to test as many file specifications as
desired.

While FILESTATS computes file sizes in bytes, AOS and AOS/VS round relative
and indexed files up to the next 2-KB multiple. For example, in the relative file
example, FILESTATS shows the data file size as 837,512 bytes and the index file size
as 56,832 bytes—a total of 894,344 bytes. However, the FILESTATUS/LENGTH
command will show a total length of 894,976 bytes for the file. This is because
rounding up to a 2-KB multiple yields 837,632 KB for the .XD portion and 57,344 KB
for the .NX portion.

Utility Reference

2-33

Sequential Files

Enter S at the FILE TYPE prompt to calculate storage results for a sequential file.
FILESTATS requests the following information (sample responses are in angle

brackets):
RECORD SIZE IN BYTES (1 - 32768): <<100>
NUMBER OF RECORDS: <<1500>

FILESTATS then displays the information in Figure 2-6.

~N
(FILESTATS FOR SEQUENTIAL FILES:
1500 RECORDS: 100 BYTES

DATA FILE SIZE: 150,000 BYTES 293 DISK SECTORS

Figure 2-6 FILESTATS Statistics for a Sequential File

Relative Files

Enter R at the FILE TYPE prompt to calculate storage requirements for a relative file.
The following information is requested (sample responses are in angle brackets):

RECORD SIZE IN BYTES (1 - 4096): <180>
NUMBER OF RECORDS : <<4500>

FILESTATS then displays the information in Figure 2-7.

(FILESTATS FOR RELATIVE FILES:
4500 RECORDS: 180 BYTES

DATA FILE SIZE: 837,512 BYTES 1,636 DISK SECTORS
RANDOM INDEX FILE SIZE: 56,832 BYTES 111 DISK SECTORS
CONTIGUOUS INDEX FILE SIZE: 69,904 BYTES 117 DISK SECTORS

Figure 2-7 FILESTATS Statistics for a Relative File

Indexed Files

In this example, FILESTATS helps determine the extent to which the file PARTFILE
should be streamlined. (In the ANALY ZE section, this file had outgrown its planned
size of 1.5 MB.) '

2-34

Utility Reference

To calculate the storage requirements for PARTFILE, enter 1 in response to the FILE
TYPE prompt. The following information is requested; sample responses are listed in
angle brackets:

RECORD SIZE IN BYTES (1 - 4096): <100 >
NUMBER OF RECORDS: <7500 >
NUMBER OF ALTERNATE KEYS (1 - 4): <1>
PRIMARY KEY LENGTH IN BYTES (1 - 100): <15 >
PACKING-DENSITY (50% - 99%): <95 >
ALTERNATE KEY 1 LENGTH, IN BYTES (1 - 100): < 15>
PACKING-DENSITY (50% - 99%): <70 >

After you enter the requested information, FILESTATS displays the calculations that
indicate the requirements for both the data and the index portions of PARTFILE (see
Figure 2-8).

4 N
FILESTATS FOR INDEXED FILES:
7500 RECORDS: 100 BYTES
2 KEYS: 15 BYTES, ROUNDED TO: 16 BYTES
15 BYTES, ROUNDED TO: 16 BYTES

DATA FILE SIZE: 825,512 BYTES 1,613 DISK SECTORS
RANDOM INDEX FILE SIZE: 472,064 BYTES 922 DISK SECTORS
CONTIGUOUS' INDEX FILE SIZE: 477,696 BYTES 933 DISK SECTORS

FOR PRIMARY KEY, 16 BYTES:

25 KEYS PER SECTOR
95% PACKING-DENSITY
3 INDEX LEVELS

AT INDEX LEVEL: 3 2 1
NUMBER OF BLOCKS: 1 15 327

FOR ALTERNATE KEY 1, 16 BYTES:

21 KEYS PER SECTOR
70% PACKING-DENSITY
4 INDEX LEVELS

AT INDEX LEVEL: 4 3 2 1
NUMBER OF BLOCKS: 1 3 38 536

- J
Figure 2-8 FILESTATS Statistics for an Indexed File

Note: In Figure 2-8 ANALYZE reports that the data file size for PARTFILE is
975,212 bytes (record length of 100 bytes * 9747 data records + header block of 512
bytes). This discrepancy is due to the fact that the logically deleted space in PARTFILE
is not returned to the operating system by COLLAPSE.

Using packing densities of 95% for the primary key and 70% for the alternate key,
FILESTATS confirms that the index structure of PARTFILE can be streamlined to
only three index levels for the primary key and that the number of disk sectors
(blocks) required by the file’s index structure can be significantly reduced at these
packing densities. To reduce the size of PARTFILE below 1.5 MB, FILESTATS
indicates that COLLAPSE should be run on the file with the packing densities
indicated above. See the COLLAPSE description for the results of this procedure.

Utility Reference

2-35

Warning Messages

The following warning messages appear when you define a file that is larger than the
system can support.

WARNING: DATA FILE EXCEEDS MAXIMUM FILE SIZE OF 33,554,432
WARNING: INDEX FILE EXCEEDS MAXIMUM FILE SIZE OF 33,554,432
WARNING: INDEX DEPTH WILL EXCEED 6 LEVELS

2-36

Utility Reference

ICINQUIRE Processing Data Files

ICINQUIRE enables you to review and update data files. It generates an Interactive
COBOL inquiry program, eliminating the need to design different COBOL programs
for each data file inquiry. Updated transactions can be saved in a disk file for printing
and listing. File and record-locking options make this a safe multiuser data-access
facility.

The utility generates an Interactive COBOL inquiry program by inserting a COBOL
record description into a skeletal COBOL program (MODEL is the smaller version,
XMODEL the extended version) and then compiling the COBOL inquiry program.
The inquiry program is created via the CLI. However, it runs either from the CLI or
from Logon, and can process or create any ISAM file with records and key structures
matching its own.

Procedure
To create the inquiry program, type the following at the CLI:
ICINQUIRE[/X] [descriptor-filename /1] inquiry-program-name/ O [listfile/L]

/X Calls the extended utility, which supports full ISAM capability, including
alternate keyed search, CALL PROGRAM USING, and use of a second
system printer.

descriptor-filename/|
The optional input filename. The descriptor file contains a user-created FD
section (see Figure 2-9), which ICINQUIRE accepts as a COBOL file
descriptor.

inquiry-program-name /0O
The name of the COBOL Inquiry program that you want ICINQUIRE to
create.

listfile /L
The optional name of a file to receive the compilation listing. If you do not
specify a listing file, compilation statistics are displayed on the screen.

After you enter the command line, ICINQUIRE asks if the data file is indexed or
relative and then prompts for the record or relative key. If you are running the
extended version for an indexed file, you are asked to specify alternate keys. If no
descriptor file is specified, ICINQUIRE prompts you to enter the FD section. The FD
section must be in line file format with no source line numbers. Type a record
descriptor directly, starting at the first Ol level. After a line is entered, it cannot be
modified. No REDEFINES clauses should be used, although implicit REDEFINES
are acceptable. Special care should be given to insure that the key names are not
ambiguous (see Figure 2-9). '

Utility Reference

2-37

Complete File Descriptor
FD CUSTOMER-FILE
LABEL RECORDS OMITTED
DATA RECORD IS CUST-RECORD.

0

pucy

CUST-RECORD.

03 CUST-AREA PIC XX.
03 CUST-KEY PIC X99.
03 NAME PIC X(30).

0

=

SALES-RECORD.

03 ORDERS PIC 9(5)v99.
03 PAYMENTS PIC 9(5)V9S.
03 FILLER PIC X(21).

Record Descriptor

01 CUST-RECORD.
03 CUST-AREA PIC XX.
03 CUST-KEY PIC X99.
03 NAME PIC X(30).

01 SALES-RECORD.
03 ORDERS PIC 9(5)V99.

03 PAYMENTS PIC 9(5)Vv99.

03 FILLER PIC X(21).

Figure 2-9 Sample INCINQUIRE File and Record Descriptors

When all keys have been specified, ICINQUIRE inserts the file or record descriptor
into the skeletal COBOL program. It then compiles the COBOL inquiry program and
displays compilation statistics, or writes them to the listfile if one is specified.

Executing the Inquiry Program

Invoke the COBOL inquiry program from the CLI. You are asked for the name of the
data file to be processed. When the command list is displayed, the data file can be
processed. Figure 2-10 shows the command list for the extended utility; the smaller
version does not include the Read Previous (RP) and Read Previous with Lock (PL)
commands. The inquiry program created by ICINQUIRE cannot access an ISAM
file if the reliability flags are set on that file. Instead, the message LOGICAL FILE STRUCTURE

MAY BE CORRUPT is displayed.

-

.

COMMAND LIST

DISPLAY

DI Display record field (FN3)
#R Repeat record

Read multiple keys

Repeat keys w/lock

<FN3> Display current record

UPDATE RECORD

RW Rewrite existing record
WR Write new record

RI Reinstate record

KD Keyed delete record

uL Unlock records

Command:___

POSITIONING

RE Read exact key

<CR> Read next (FN1)

RP Read previous (FN2)
RA Read approximate

RL Read next w/lock

PL Read previous w/lock
BI Beginning of file

INPUT/O0UTPUT

0P Open file

0U Change log file
CL Close file w/lock
CU Close file

SR Stop run

Figure 2-10 ICINQUIRE Command List Screen

2'38 Utility Reference

Two-letter codes control all record and file processing functions. Several data files can
be processed during an Inquiry program pass, provided their record length and key
positions match those of your COBOL inquiry program.

Issue the OU command (see Figure 2-10) at the start of an inquiry pass to store
updated records in a disk log file. Log information can also be written directly to a
system printer.

When the inquiry program is ready to accept a command, it displays the Command
prompt. Type a two-character command code, or press function key 3 (F3) to view the
entire current record. The current record can also be viewed by issuing the DI
command and typing the record name at the Enter Field Name prompt. To display all
data field names, press F4 at the Enter Field Name prompt.

Display Commands

This section defines the various display commands. Multiple display commands #L, #,
and #R use a Repeat Count Menu to display a specified number of records sequentially,
forward or backward. Type in the number of records to be reviewed and the number
of seconds to pass between each record display.

Display record field: DI

Type a field name that is not a key at the Enter Field Name prompt. If you enter a group
name, all subordinate record fields are displayed. Press CR to display the same field
of the next record. ESC terminates the command.

Display current record: <<F3>
Press F3 at the command prompt to display the entire current record.
Repeat record: #R

Displays the Repeat Count Menu. Type in the number of records to review and the
number of seconds to pass between each record display. The program sequentially
reads forward or backward the specified number of records. To indicate a backward
display, type a minus sign before the number of records.

Read multiple keys: #

Similar to #R, except that keys are displayed instead of whole records.
Read keys w/lock: #L

Similar to #R, except that each record read is locked.

Display field names: <<F4>

When pressed at the Enter Field Name prompt, F4 displays all field names.

4)

(0) primary-key
(1) alt-key-1

(2) alt-key-2

(3) alt-key-3
(4) alt-key-4
Key option: _
Enter Search Key:

Figure 2-11 Key Option Menu

Utility Reference

2-39

Positioning Commands

Positioning commands RE and RA use a Key Option Menu to determine which record
key and key value to use in locating a record (see Figure 2-11). Key names are
displayed. Choose a key option and type in a value for the key. The inquiry program
locates the record and displays the values of all its keys.

Positioning command RL displays all key values, while RE and RA display the Key
Option Menu, followed by the record contents. If no alternate keys exist, the entire
record contents are displayed in every case.

Read exact key: RE

Displays the Key Option Menu. Choose a key and enter a value. If no alternate key
exists, all record contents are displayed. If alternate keys exist, only the key values are
displayed.

Read next: <<CR>, <F1>

Reads the succeeding record, based on the key last accessed. CR displays all fields in
the succeeding record if it follows a record level DI command.

Read next w/lock: RL

Reads the next sequential key, based on the key last processed, and locks the record
for exclusive use.

Read previous: RP, <F2>

Reads the preceding record, based on the last key accessed, and displays the record
fields. Pressing CR resumes processing forward.

Read previous w/lock: PL

Reads the preceding record, based on the last key accessed, and locks the record for O
exclusive use.

Read approximate: RA

Displays the Key Option Menu. Enter the option number and a key value; the first key
that is equal to or greater than the key is displayed. Pressing the F1 or CR keys
displays the succeeding key. Pressing F2 displays the preceding key. The RA command
is useful for locating a record when its precise key value is unknown.

Beginning of file: BI

Positions pointers to the beginning of the data file by primary key. There is no display
associated with this command.

Update Commands

Update commands RI, KD, RW, and WR display the record key names. Type in the
key contents to process a record.

Rewrite existing record: RW

Updates field values, with the exception of the primary key. The system responds as in
the WR command, except that instead of merely requesting values for alternate keys,
it enables you to alter their values. Blanks denote empty fields.

Write new record: WR

Updates record fields, including key values. The inquiry program requests values for

the primary key and each alternate key specified in the record descriptor. After you
type in key values, the prompt Enter Field Name appears at the bottom of the screen with Q
three choices provided:

2'40 Utility Reference

« Enter a field name from the data record and type in field contents.
 Press ESC to abort the WR attempt.
 Press CR to terminate the pass and update the record.

Duplicate keys and invalid keys are intercepted by the program.
Reinstate record: RI

Reinstates a logically deleted record. Enter the primary record key. ESC aborts the
command.

Keyed delete record: KD
Logically deletes a record. Enter the primary record key.
Unlock records: UL

Unlocks all previously locked records. The inquiry program asks you to verify
unlocking.

Input/Output Commands

If no ISAM file is currently open, only the ESC key and the input/output commands
OP and SR can be executed; all other program commands are disabled.

Open file: OP

Opens an ISAM file to be processed. Type the ISAM filename to be opened. A locked
file cannot be opened.

Change 1log file: OU

Changes the inquiry program logging device. The four logging devices are the first
and second line printers, a disk file, and the display screen. If a disk file is specified,

updated records are appended to the file. The log file is created if one does not already
exist.

Close file with lock: CL

Closes and locks the current ISAM file.

Close file: CU

Closes but does not lock the current ISAM file.
Stop run: SR

Terminates the COBOL inquiry program. Press CR to return to Logon.

Preparing a Record Descriptor

When preparing a record descriptor as input to ICINQUIRE, some size considerations

should be observed. The skeletal program contains an entire COBOL Procedure
Division with directions for processing and creating ISAM files. The program record
descriptor and all associated procedure statements are installed by ICINQUIRE, and
then the program is compiled. This process produces a tailored ISAM inquiry program,
but it also generates excessive code. To reduce the amount of code generated by the
program, the record descriptor should be kept as compact and simple as possible. A
descriptor with a large number of fields causes the compiler to generate correspondingly
greater amounts of code for the Screen Section.

For example, an improperly organized descriptor with 23 fields can generate a program
too large to run on smaller systems, whereas the same properly organized record
descriptor would generate an executable program.

Utility Reference

2-41

Some space saving steps are:

* Assign FILLER to fields that will not be modified. ICINQUIRE keeps FILLER
fields in the record descriptor to retain record layout compatibility, but these
FILLER fields are not displayed during program execution.

* Reduce groups to as few levels as possible to avoid duplicate coding generated by
overlapping field names at each level. For example, a group that looks like this:

01 FIELD-1.
02 FIELD-2.
03 FIELD-3.
04 FIELD-4 PIC XXXX.

can be replaced by this:

01 FIELD-1.
04 FIELD-4 PIC XXXX.

The following restrictions govern record descriptors:

¢ To avoid screen overflow, no more than 23 elementary fields, including keys, are
allowed in the record descriptor. The screen contains only 24 lines for data display.

e The COBOL REDEFINES and OCCURS clauses cannot be used in the record
descriptor. However, an implicit REDEFINES at the 01 level is acceptable as long
as the combined number of fields does not exceed 23.

¢ No elementary field, except FILLER, can exceed 80 characters in length. Characters
that exceed the limit are truncated on the screen.

« If duplicate field names are used in the record descriptor, only the first occurrence of

the field name is retrieved by the inquiry program.

¢ Numeric and alphanumeric edited fields should not be included in the record
descriptor. These are not reproduced correctly on the display screen. For example:

Input Field Display Field
PIC XX/X PIC XX/ /

e The scaling character P can be used in the record descriptor but is not displayed.
Only the displayed characters can be modified. For example:

Input Field Display Field
PIC 99PPP PIC 99
PIC PPP99 PIC 99

¢ Do not assign a PICTURE that contains characters other than X to subfields of a
primary or alternate record key. This might cause the COBOL inquiry program to
produce misleading displays of the key fields’ contents.

Error Messages

ICINQUIRE provides error checking routines related to the preparation and online
indexing of the XMODEL record descriptor. The error messages included in the
program, with brief explanations, follow.

ALTERNATE KEY MISSING IN FD FILE
An alternate key was not specified during the ICINQUIRE dialog.
FIELD EXCEEDS 80 CHARACTERS

A COBOL picture clause coding restriction has been violated.

2-42

Utility Reference

ILLEGAL FILE TYPE

The file type specified must be indexed or relative.
LEVEL NUMBER IS MISSING OR INADEQUATE

A COBOL syntax rule has been violated.

MODEL FILE CANNOT BE OPENED

No skeletal program exists in the current directory at the time ICINQUIRE is
invoked from the CLI.

MORE THAN 23 ELEMENTARY FIELDS

An XMODEL coding restriction has been violated.

NO OCCURS IS ALLOWED IN FD FILE

An XMODEL coding restriction has been violated.

OUTPUT FILE MISSING

The /O switch is missing from the ICINQUIRE command line.
PARENTHESES MISSING

Syntax error exists in the record descriptor.

PERIOD MISSING IN FD FILE

A COBOL syntax rule has been violated.

PRIMARY KEY MISSING IN FD FILE

The primary key was not specified during the ICINQUIRE dialog.
RECORD NAME MAY NOT BE KEY-NAME ITSELF

A level 01 item cannot share the name of a field designated as the primary key.

RECORD KEY MUST BE ALPHANUMERIC: data-name

The PICTURE must be alphanumeric (X).
REDEFINES IS NOT ALLOWED IN FD FILE

An XMODEL coding restriction has been violated.

Utility Reference

2-43

Runtime Error Messages

Each time the runtime system performs an 1/O operation, it generates a 2-byte File

Status code indicating the outcome of the operation. The inquiry program that m
ICINQUIRE creates provides appropriate messages for the runtime system’s File .
Status codes. Therefore, if an I/O error occurs, the inquiry program’s message, rather

than the File Status code, is displayed. A list of the inquiry program error messages

and the corresponding runtime system File Status codes appears in Table 2-5. For

further information on File Status codes, see the Interactive COBOL User’s Guide

(AOS, AOS/VS).

Runtime Inquiry Program Error Message
Code
24 BOUNDARY ERROR, INDEX DEPTH EX-
CEEDED
9B CORRUPT INDEX STRUCTURE
10 END OF FIlLLE
9A FILE DESCRIPTOR INCONSISTENCY
94 FILE IN USE OR RECORD LOCKED ON READ
92 FILE NOT OPEN OR OPEN ON FILE WITH
LOCK
9F LOGICAL FILE STRUCTURE MAY BE COR-
RUPT
91 FILE OPEN ERROR
9C INDEX (.NX) FILE IS FULL
22 INVALID KEY (DUPLICATE KEY)
21 INVALID KEY, OUT OF SEQUENCE ‘
23 INVALID KEY, RECORD NOT FOUND Q
96 OPEN ERROR (DIRECTORY NOT INITIAL- :
IZED)
30 PERMANENT HARDWARE ERROR
9E RECORD LOCK LIMIT EXCEEDED
97 SIMULTANEOUS ISAM OPENS EXCEEDED
34 SYSTEM ERROR (DISK SPACE EX-
HAUSTED)
98 NOT ENOUGH DISK SPACE TO CREATE
FILE
Table 2-5 Inquiry Error Messages with Runtime File Status Codes

2-44 Utility Reference

ISAMVERIFY - Testing File Integrity

ISAMVERIFY tests the integrity of ISAM files. It checks the validity of the system
information that actually defines the logical structure of a file.

ISAMVERIFY does not alter the file except for setting and clearing the ISAM file
reliability flags. It sets the flags when the file’s logical structure is bad and clears them
if the logical structure is sound. Note that if a file’s logical structure is good and the
reliability flags are set, ISAMVERIFY clears them. It does not attempt to fix any
errors it may find; you must do this by running REBUILD, REORG, or using a
backup copy of the file.

ISAMVERIFY opens a file exclusively. Therefore, if ISAMVERIFY is running on a
file, the file cannot be accessed; and the utility cannot access an ISAM file while it is
being used by another program.

ISAMVERIFY tests four areas: (1) data and index file system information, (2) data
records, (3) key access path descriptors, and (4) key entries in B-trees, which are
logical storage structures in the .NX portion of the file. ISAMVERIFY reports that
the logical structure of a file is corrupt if:

 The values of system words in the file are not within their specified ranges. System
words, which are in block 0 of the index (.NX) and data (.XD) portions of a file,
describe the file contents.

e The same system words contained in the .NX and .XD portions of the file are not
equal.

« The values of system words in the file do not agree with computed values.

» Key strings in the .NX portion and in the associated record are not identical.
« Pointers to records do not address record-aligned boundaries.

e Errors are detected in the link fields of records.

 Errors are detected in the B-trees, the logical structures in the .NX portion that
store keys.

« Counts of records, keys, and index blocks reveal inconsistencies with values of
system words in the file.

Use ISAMVERIFY regularly to evaluate the structural integrity of files. Run it
immediately after any hardware problems or power failures.

Procedure
Invoke ISAMVERIFY at the CLI by the following command:
ISAMVERIFY filename-1[/R] [...filename-n[/R]] [auditfile/A]

where /R designates a relative file and /A designates an audit file. If no switch
appears with the input filename, the program assumes it is indexed. The filename
arguments are position-independent. Only one audit file can be specified; if it already
exists, it is deleted and a new one is created. Output is displayed on the screen whether
or not an audit file is specified. ISAMVERIFY does not accept templates in the
filename.

Utility Reference

2-45

ISAMVERIFY attempts to process both portions of a file before it begins to read the
next file. If the utility detects an error in a file, it sends a message to the screen and,
if specified, to the audit file. Each message specifies which portion of the file is
corrupt. The error message information is needed to determine (1) whether REBUILD
or REORG should be used and (2) what information must be supplied in the REORG
or REBUILD command line.

When ISAMVERIFY begins testing a file, it displays the message
filename IS BEING VERIFIED

It checks that the .NX and .XD portions of the file are present. If either portion is
missing, ISAMVERIFY stops processing the file. If the .NX portion is missing, the
REBUILD utility can reconstruct it. However, if the data portion is gone, you must
substitute a backup copy of the file. Run ISAMVERIFY on the backup to be sure it
is correct before you use it.

If both portions of the file exist, ISAMVERIFY begins checking block 0 of the .NX
and .XD portions and displays the message:

Checking .NX and .XD Block 0

If no discrepancies are found in checking the headers, it begins checking the data
portion of the .XD file. It confirms processing of the data records in the .XD portion,
displays the key path, and displays the number of records that have been read (the
Record Number Update) at periodic intervals.

If ISAMVERIFY detects an error, it stops processing the .XD portion and begins
processing the .NX portion. If these is a problem in the .XD link structure,
ISAMVERIFY displays the message XD PORTION IS CORRUPT, followed by the specific
error message. If no errors are found in the .XD portion, ISAMVERIFY displays X0
PORTION IS VALID, and writes this message to the auditfile, if one is specifed.

The utility then confirms that it is checking the .NX portion and examines the
remaining .NX blocks and the B-tree structure. If it detects a problem in the B-tree
structure, it displays the message NX PORTION IS CORRUPT, followed by the specific error
message. If no errors are found in the .NX portion, ISAMVERIFY displays NX PORTION
IS VALID and writes the message to the audit file, if one is specifed.

After ISAMVERIFY has finished processing all the specified files, it displays a
summary message indicating the number of files processed and the number of files

~with errors. If it detects errors in a file’s logical structure, follow one of these

procedures:

¢ Run the REBUILD utility on the file. Use REBUILD if either the .NX or the .XD
portion of the file is corrupt. As an extra precaution, run ISAMVERIFY after

rebuilding the file.

¢ Run the REORG utility on the file. REORG should be used if both the .NX and
.XD portions of the file are corrupt. After REORG has run on the file, run
ISAMVERIFY again.

 Substitute a backup file for the corrupted file. Run ISAMVERIFY on the backup
file before substituting it for the corrupted file.

Abnormal Termination

The next-record-to-append pointer tells the system where the next logical record of
the file is to be located. The value for this pointer is stored both in the header of the
.NX portion and that of the .XD portion of the file. When ISAMVERIFY begins
operating on a file, it checks whether both pointer values in the headers agree, and, if
they do, continues checking other values.

2-46

Utility Reference

o

It is possible for the pointer values in the headers to be incorrect, even though they
agree. The runtime system copies the value for the next-record-to-append pointer into
memory. Whenever a program writes a new record, the value in memory is updated.
However, the values in the NX and .XD headers on disk are updated only periodically.
Therefore, if your system goes down or is abnormally terminated, the values in the
headers may agree, but they are probably out of date.

ISAMVERIFY does not discover this discrepancy until it examines the .XD portion.
If the link points beyond the next record to append, but it is within the end of file,
ISAMVERIFY follows the link and displays this message:

INVALID NEXT RECORD TO APPEND POSITION

To recover the file with REORG, assume that both portions of the file are invalid and
supply the header information, using REORG’s /X switch. See “Invalid .XD Header”
in the REORG section.

When you supply the header information to REORG, include the total number of
records in the form num-recs/R. To get this total, add the total number of records and
the number of records beyond the next record to append, which ISAMVERIFY
displays and writes to the audit file, if specified. If you do not specify num-recs/R, the
recovered file will most likely include one record that is all nulls.

Error Messages

The following list explains ISAMVERIFY error messages and how to correct the
error. For all file errors, ISAMVERIFY specifies whether the .NX or the .XD portion
of the file is corrupt. This information is necessary to determine whether to use
REBUILD or REORG on the corrupt file. If ISAMVERIFY’s error messages indicate
that only one portion is corrupt, use REBUILD on the file. If both portions of the file
are corrupt, use REORG.

In certain cases, only one portion of the file may be corrupt, but you must assume that
both portions are corrupt. These instances involve information stored in block 0 of the
.XD and .NX portions. This information includes the number of alternate keys, the
record length, the next-record-to-append pointer, and tables of information describing
each key. ISAMVERIFY compares the versions in the .NX and the .XD, but it
cannot determine which version is correct if they do not agree. In these cases, which
are noted below, you must assume that both portions of the file are corrupt and use
REORG. Of course, you can always substitute a backup file.

AUDIT FILE CANNOT BE DELETED

A delete-protected file was specified as the audit file. Either change the file’s attributes
or select a different audit file.

BAD TOP BLOCK NUMBER

The .NX portion is corrupt. The top-level index block must be less than the next block
to append. ISAMVERIFY stops processing the file.

BLOCK NUMBER OR BLOCK POINTER INCONSISTENCY

The .NX portion is corrupt. The relative block number in the block header must be
the same as the block number pointer used to logically find the block. ISAMVERIFY
stops processing the file.

BLOCK ZERO OF .NX FILE COULD NOT BE READ
BLOCK ZERO OF .XD FILE COULD NOT BE READ

The .NX or .XD file contains fewer than 512 bytes. Since ISAM files must be greater
than 512 bytes, this file was not created by MINISAM. Delete the file.

Utility Reference

2-47

BLOCK O SYSTEM INFORMATION HAS NON-FATAL ERROR
ISAMVERIFY continues processing and displays the non-fatal error.
B-TREE SEARCH LEVEL NOT BETWEEN 1 AND 6

The .NX portion is corrupt. The most likely possibility is that a loop was detected
when searching the B-tree. ISAMVERIFY stops processing the file.

DEPTH OF B-TREE DISCREPANCY

The .NX portion is corrupt. The examined depth of the B-tree must equal the depth of
the B-tree listed in block 0 of the .NX portion. ISAMVERIFY stops processing the
file.

DUPLICATE ALTERNATE KEYS INCORRECTLY LINKED

An error exists in the .XD portion. Records with duplicate alternate keys must be in
strictly ascending order. This message indicates that the record position of the previous
record is greater than the record position of the current record. Most likely, revision
1.00 of Interactive COBOL’s COLLAPSE or revision 4.40 or less of CS COLLAPSE
has been run on the file. ISAMVERIFY stops processing the .XD portion and
attempts to process the .NX portion. If you use a backup file, make sure that it has not
been collapsed using the above revisions.

EXTRA INDEX BLOCKS ALLOCATED

To detect whether index blocks are being duplicated, ISAMVERIFY maintains a
count of all the blocks examined. This count must be one less than the next available
block number, which is kept in block 0 of the index portion. This message indicates an
error in the .NX portion. ISAMVERIFY stops, but it has finished processing all
B-trees in the .NX portion.

FILE DOES NOT EXIST

ISAMVERIFY was unable to find the .NX and .XD portions of the specified file.
You may have spelled the filename incorrectly, your searchlist may be incorrect, or
you may be in the wrong directory.

ILLEGAL SWITCH SPECIFIED
The command line contains an illegal switch. Enter the correct command line.
INCORRECT B-TREE NEXT BLOCK VALUE

The .NX portion is corrupt. In the .NX, the value of the next block to append must be
less than or equal to the file size divided by 512. ISAMVERIFY stops processing the
file.

INCORRECT NUMBER OF ALTERNATES

The number of alternate keys is not between 0 and 4, or the values in the .NX and
.XD portions of the file do not agree. Either or both portions of the file may be
corrupt. ISAMVERIFY stops processing the file. When invoking REORG, assume
that both portions of the file are corrupt, and supply the header information in the
command line. See “Invalid .XD Header” in the REORG section.

INDEX DEPTH NOT BETWEEN O AND 5

The .NX portion is corrupt. The index level depth for each key path must be between
0 and 5. ISAMVERIFY stops processing the file.

2-48

Utility Reference

INVALID FIRST RECORD POINTER

The .XD portion is corrupt. If the first record pointer in the .XD header block is
greater than 0, this message indicates that the pointer is not less than the
next-record-to-append field or is not record-boundary aligned. If the first record
pointer is 0, this message indicates that the .XD portion contains records.
ISAMVERIFY stops processing the .XD portion and attempts to process the .NX.

INVALID INDEX BLOCK KEY COUNT

The .NX portion is corrupt. The number of entries in the key block header of the
B-tree index block must be less than or equal to the maximum number of entries
allowed in a block. ISAMVERIFY stops processing the file.

INVALID INDEX BLOCK NUMBER

The NX poi'tion is corrupt. The prefix of each key in a nonterminal node must have
a valid index block number in the first word. ISAMVERIFY stops processing the file.

INVALID KEY LENGTH

The key length must be between 1 and 100 bytes and must be less than the record
length. The .NX portion is corrupt. The .XD portion may also be corrupt;
ISAMVERIFY stops processing the file before it gets to the .XD. If you run REORG,
describe the record length and the key position and length for each key.

INVALID KEY OFFSET IN RECORD

The key offset must be less than or equal to the record length minus the key length.
ISAMVERIFY reports the key offset as one less than defined in your COBOL
program. The .NX portion is corrupt. The .XD portion may be corrupt; ISAMVERIFY
stops processing the file before it gets to the .XD. If you run REORG, describe the
record length and the key position and length for each key.

INVALID KEY PATH NUMBER IN INDEX BLOCK

The .NX portion is corrupt. The key path number must be the same for all the blocks
in a key path B-tree. ISAMVERIFY stops processing the file.

INVALID KEY STRING SEQUENCE

The .XD portion is corrupt. The primary key string value must be greater than, and

the alternate key string value must be equal to or greater than, the key string value of
the previously examined record. ISAMVERIFY stops processing the .XD portion and
attempts to process the .NX.

INVALID NEXT-RECORD-TO-APPEND POSITION

The next available record position is not greater than 512 bytes, or the values in the
.NX and the .XD portions do not agree. ISAMVERIFY stops processing the file.
Either portion of the file may be corrupt. However, since it cannot be determined
which is corrupt, assume that both are. Use REORG, and supply the header
information in the command line. See “Invalid .XD Header” in the REORG section. -

If this message appears after ISAMVERIFY begins processing the .XD portion,
follow the same procedure. However, if you invoke REORG without specifying the
number of records, you are likely to get one record that contains all nulls.

INVALID RECORD COUNT

The .XD portion is corrupt. The number of records examined must not exceed the
total number of records, which ISAMVERIFY derives from the values contained in
the header block. ISAMVERIFY stops processing the .XD portion and attempts to
process the .NX.

Utility Reference

2-49

INVALID RECORD LENGTH

The logical record size (excluding record header bytes) is not between 1 and 4096, or

the .NX and .XD values in block 0 do not agree. ISAMVERIFY stops processing the
file. When invoking REORG, assume that both portions of the file are corrupt, and Q
supply the header information in the command line. See “Invalid .XD Header” in the

REORG section.

INVALID RELATIVE WORD STRING SEQUENCE

In a relative file, the present record’s relative word must be greater than the previous
record’s relative word. ISAMVERIFY stops processing the .XD portion and begins
processing the .NX.

KEY LENGTH-HALF BLOCK POINTER INCONSISTENCY

The offset of the half block pointer, calculated by using the key length, must agree
with the value in the key path descriptor table. Both portions of the file may be
corrupt; ISAMVERIFY does not process either portion.

KEY LENGTH-KEYS PER BLOCK INCONSISTENCY

The maximum number of keys in an index block, computed by using the key length
value, must agree with the value in the key path descriptor table. Both portions of the
file may be corrupt; ISAMVERIFY does not process either portion.

KEY LENGTH-KEYS PER HALF BLOCK INCONSISTENCY

The maximum number of keys in half of an index block, computed by using the key
length value, must agree with the value in the key path descriptor table. Both portions
of the file may be corrupt; ISAMVERIFY does not process either portion.

KEY LENGTH-WORDS PER HALF BLOCK INCONSISTENCY O

The number of words required by the maximum number of keys in half an index block
must agree with the value in the key path descriptor table. Both portions of the file
may be corrupt; ISAMVERIFY does not process either portion.

KEY LENGTH-WORDS PER KEY INCONSISTENCY

The key entry, as computed by the key length, and the key entry in block 0 must be
the same. Both portions of the file may be corrupt; ISAMVERIFY does not process
either portion.

KEY STRINGS IN .NX FILE AND ASSOCIATED RECORD DO NOT MATCH

The .NX portion is corrupt. The key string in the record must be identical with the
key string in the B-tree that addressed the record. With a relative file, the key string
in the index block must be identical to the relative word in the record header.
ISAMVERIFY stops processing the file.

KEYS IN B-TREE NOT IN ASCENDING ORDER

The .NX portion is corrupt. Keys in B-trees must be in strict ascending order. In the
case of alternate keys, the feedback, which is appended to each alternate key to ensure
that no duplicates exist, must be in ascending order as well. ISAMVERIFY stops
processing the file. A likely cause of this error is that revision 1.00 of Interactive
COBOL’s COLLAPSE or revision 4.40 or less of CS COLLAPSE was used on the
file. If you use a backup file, be sure that it has not been collapsed by these versions.

LINK BOUNDARY ERROR

The .XD portion is corrupt. Values for link fields are invalid. These invalid values are '
1 to 511 and anything beyond the next record to append. ISAMVERIFY stops _
processing the .XD portion and attempts to process the .NX.

2-50

Utility Reference

LINK NOT RECORD ALIGNED

The .XD portion is corrupt. The link field must be record-boundary aligned.
ISAMVERIFY stops processing the .XD portion and attempts to process the .NX.

LINK POINTER BEYOND NEXT RECORD TO APPEND

The .XD portion is corrupt. The link field is equal to or greater than the next record
to append; it should be less than the next record to append. ISAMVERIFY stops
processing the .XD portion and attempts to process the .NX.

MAJOR REVISION NUMBER IS NOT CURRENT

The major revision numbers of the .NX and .XD portions must be current. Two
possibilities are: (1) the revision levels were current but a system problem caused them
to be changed, or (2) the file is out of date. In either case, ISAMVERIFY does not set
the reliability flags and continues to process the file.

NEXT-RECORD-TO-APPEND POINTER IS INVALID

The next-record-to-append pointer is greater than the actual file size, or the values in
the .NX and .XD portions for the next-record-to-append pointer do not agree.
ISAMVERIFY stops processing the file. Assume that both portions of the file are
corrupt. Run REORG, and supply the header information in the command line. See
“Invalid . XD Header” in the REORG section.

NO FILENAME ARGUMENTS
Reenter the command line, specifying filename arguments.

NO RECORDS IN FILE

The . XD portion of the file does not contain any records. ISAMVERIFY continues to
process the .NX portion of the file. If the .NX portion has a correct logical structure,
ISAMVERIFY does not count this file as one with errors when it displays its
summary message.

NUMBER OF KEYS NOT EQUAL TO NUMBER OF RECORDS

ISAMVERIFY maintains a count of all the keys examined. For each key path, the
count must equal the number of physical records. This message indicates that the . NX
portion is corrupt. ISAMVERIFY stops processing the file.

.NX PORTION COULD NOT BE OPENED

Most likely, someone has already opened the .NX portion of the file.

.NX PORTION OF FILE IS MISSING

The index portion of the specified file could not be located. ISAMVERIFY stops
processing the file. Check the location of the file before running a restructuring utility
or using a backup file.

PREMATURE END OF FILE

The .XD portion is corrupt. Links have indicated a logical end of file before the
appropriate number of records (based on the next-record-to-append pointer) have
been examined. ISAMVERIFY stops processing the .XD portion and attempts to
process the .NX.

Utility Reference

2-51

PRIMARY KEY HAS REWRITE BIT SET

The primary key cannot be rewritten. If this bit is set, the .NX portion is corrupt.
ISAMVERIFY stops processing the file.

RECORD POINTER FROM KEY PREFIX BEYOND LAST RECORD

The record pointer in the key header is pointing beyond the end of the data file,
indicating that the .NX portion is corrupt. ISAMVERIFY stops processing the file.

RECORD POINTER IS NOT RECORD BOUNDARY ALIGNED

The .NX portion is corrupt. The record pointer must address a boundary where a
record entry, including links and relative word, begins. ISAMVERIFY stops processing
the file.

RELATIVE WORD NOT SUBSTRING OF PRIMARY KEY

If you are running ISAMVERIFY on a relative file, check that the /R switch was
specified in the command line. Otherwise, the .XD portion is corrupt, because the
relative word must be the same as the first two bytes of the primary key.
ISAMVERIFY stops processing the .XD portion and attempts to process the .NX.

SYSTEM BLOCK NUMBER OF .NX PORTION NOT ZERO

The .NX portion has a non-fatal error. The system block number of the .NX portion
of the file must be zero. If ISAMVERIFY finds no other errors in the .NX file,
assume that all key access paths in the .NX portion are logically correct.
ISAMVERIFY continues processing.

WARNING: ONE OR MORE B-TREES ARE FULL

ISAMVERIFY continues to operate. You can read the file but you cannot write or
rewrite records without repacking the index structure or purging logically deleted
records.

WARNING: XD PORTION FILE ELEMENT SIZE IS NOT A MULTIPLE OF 4
WARNING: .NX PORTION FILE ELEMENT SIZE IS NOT A MULTIPLE OF 4

All ISAM files under AOS and AOS/VS must have an element size that is a multiple
of 4. If these are the only messages that ISAMVERIFY displays, the reliability flags
are not set and you do not have to run REBUILD or REORG. Instead, create a
temporary file with an element size of 4, copy the .XD portion into this file, delete the
original .XD portion, and rename the temporary file. MINISAM_CONVERT.CLI
is a macro that performs this procedure. ISAMVERIFY continues operating.

2-52

Utility Reference

WARNING: .NX PORTION FILE SIZE IS NOT ON A 2KB BOUNDARY
WARNING: .XD PORTION FILE SIZE IS NOT ON A 2KB BOUNDARY

If an ISAM file is to be open for INPUT by an Interactive COBOL program, the NX
and .XD portions must each be on a 2-KB boundary. The REBUILD utility and the
MINISAM_CONVERT macro change the file size to a 2-KB boundary. If a file is to
be used only for OUTPUT or I-O, however, you may ignore this message.
ISAMVERIFY does not set the reliability flags upon detecting this condition.

.XD PORTION COULD NOT BE OPENED?
Most likely, someone has already opened the .XD portion.
.XD PORTION OF FILE IS MISSING

ISAMVERIFY could not locate the data portion of the file. Check the location of the
.XD portion. If it cannot be located, use a backup file. ISAMVERIFY stops processing
the file after this error is encountered.

Utility Reference 2'53

REBUILD Reconstructing ISAM Files

REBUILD is a utility that reconstructs corrupted indexed and relative files. It is able
to restore the integrity of the logical file structure of the index (.NX) or the data
(.XD) portion of the file if the other portion is intact.

REBUILD is able to:

» Reconstruct a corrupted .NX file from an .XD file
« Reconstruct a corrupted .XD file from an .NX file
e Round the .NX and .XD portions to the next 2 KB boundary

If the .XD portion of the file is sound, REBUILD attempts to restore corrupted links
by using the .NX file. REBUILD can reconstruct an ISAM file, but it cannot fix data
within a file if the data itself is corrupt.

REBUILD cannot restructure the key or record format of the file or reorganize a file
from one type to another. REBUILD cannot be used on a file if both portions of the
file are corrupt; if this occurs, use REORG.

REBUILD should be run to align the boundaries of a valid ISAM file or to reconstruct
an ISAM file in which either portion is corrupt. ISAMVERIFY reports how the file
has been corrupted; you must supply the information necessary for REBUILD to
recover the corrupted files.

Procedure O

REBUILD is invoked at the CLI. Its general form is as follows:

/L =listfil
REBUILD {//;} 0] { o ' 'e}ﬁlename [key-pos:key-length:key-pack /KI...

filename
The name of the file to be rebuilt.

key-pos
The starting byte position of the key in the record. If no key position is
specified, it is assumed to be 1.

key-length
The length of the key in bytes.

key-pack
The packing limit percentage for the key specified. The packing density can
be between 50% and 99%. If no packing density is specified, it is assumed to
be 75%.

The packing density is an arbitrary number. For example, if the file had a

packing density of 60% before it was corrupted, you can specify the same or a _
different density. The only considerations should be the packing limitations Q
(50% to 99%) and the access method for the file. Note that REBUILD packs “
the .NX portion only.

2-54

Utility Reference

Global Switches

/X Rebuild the index (.NX) portion of the file. This switch indicates that the .NX
does not exist or is corrupt if it does exist. If this switch is used, the .XD portion
must have passed all of ISAMVERIFY’s tests for file integrity. REBUILD
follows the links of the .XD file to rebuild the .NX file. The new .NX has the
user-specified packing limit for each key.

/D Rebuild the data (.XD) portion of the file. If this switch is used, the .NX
portion of the file must have passed all of ISAMVERIFY’s tests for file
integrity. REBUILD reconstructs the .XD file and its links using the .NX file.

Note: The /X and the /D switches are mutually exclusive; both cannot be used
in one command line. If neither /X nor /D is used, REBUILD assumes that the
index or data portion is not on a 2KB boundary.

/L Audit information is appended to the listing file. If a filename argument is used
after the /L switch, audit information is appended to filename.

/1 Invoke REBUILD interactively. However, REBUILD cannot be run via
QBATCH if it is used interactively.

Local Switches

/0 Indicates an indexed file. If neither /I nor /R is specified, an indexed file is
assumed.

/R Indicates a relative file.

/K Identifies the key information: position in record, length, and packing density.
REBUILD interprets the number of alternate keys as the number of times the
/K switch is specified minus 1. The utility checks the number of alternate keys
specified in the command line against the number of alternate keys stored in
block 0 in the .XD portion of the file. If this information is not identical,
REBUILD displays an error message.

Rebuilding the .XD Portion of an ISAM File

To rebuild the .XD portion of an indexed or relative file, enter:

/L=listfile /1
REBUILD/D[/1] | ¢ filename
(/L /R

Because you are using the good .NX to rebuild the .XD, no key information is needed.
If you enter any key information, REBUILD displays an error message.

Rebuilding the .NX Portion

To rebuild the .NX portion of a relative file, enter:

/L=listfile
REBUILD /X[/1] filename/R [key-pack/K]

/L

The key in a relative file is always in the same position of the record and is always two
bytes long. Therefore, the key position and the key length are not needed; REBUILD
displays an error message if you enter them. The packing density, key-pack/K, is the
only key information to supply.

To rebuild the .NX portion of an indexed file, you must supply the key position, key
length, and key packing density for each key.

Utility Reference

2-55

Correcting Boundary Alignment

To correct the file sizes so that they are on a 2KB boundary, enter

/L=listfile /1
REBUILDI /1] filename
/L /R

Both the index and data portions must be present and must not be corrupt.

Using REBUILD Interactively

REBUILD can be used in batch or interactive mode. The global /I switch invokes
REBUILD interactively.

The differences between batch and interactive mode are as follows:

e Interactive mode allows you to exit from REBUILD before it begins to operate on a
file. In batch mode, you cannot exit from REBUILD after entering the command
line, except by entering the CTRL-C CTRL-B sequence. If you enter this interrupt
sequence after REBUILD begins processing a file, you may have further corrupted
your file.

« In interactive mode, audit information is displayed on the screen. There is no screen
display if the global /I switch is not used.

» The batch mode allows REBUILD to be run via QBATCH when the system is not
being used heavily.

Example

ISAMVERIFY has been run on the file DATA and has specified that the index
portion is corrupt. The user enters the following command line:

REBUILD/X/I DATA :15:/K 16:10:/K 20:17:85/K 40:5:70/K 46:12:95/K

The following is an analysis of the command line:

/X Tells REBUILD to follow the links of the .XD portion of the file to
rebuild the .NX portion. The .XD portion has passed all ISAMVERIFY
tests for structural integrity.

/1 Indicates REBUILD’s interactive mode.

DATA The file that REBUILD is to process. The local /I switch is omitted, so
an indexed file is assumed.

:15: /K The primary key specifier. No key position is specified, so it is assumed 1.
The key length is 15 bytes. The packing density is not specified, so it is
assumed to be 75%. The /K switch indicates that the information pertains
to the keys.

16:16: /K The first alternate key specifier. The key position is 16, the key length 10
bytes, and the packing density 75%.

20:17:85/X The second alternate key specifier. The key position is 20, the key length
17 bytes, and the packing density 85%.

40:5:70/k The third alternate key specifier. The key position is 40, the key length 5,
and the packing density 70%.

46:12:95/K The fourth alternate key specifier. The key position is 46, the key length
12, and the packing density 95%.

2-56 Utility Reference

After the command line is entered, REBUILD displays the starting time and date.
This information, and all other information displayed on the screen, is entered in the
audit file.

REBUILD next displays a screen similar to the one shown in Figure 2-12. If you are
running the utility in interactive mode, it prompts:

READY TO REBUILD .NX FILE
CONTINUE? ([YES] OR NO)

The default is yes; enter Y, YES, CR, or NL. If you enter NO or N, REBUILD
terminates without accessing the corrupted file. This is the last point that you can exit
from REBUILD and be sure that the file is not touched. The batch mode version of
REBUILD has no such option.

If you respond Y to the CONTINUE prompt, REBUILD begins to fix the .NX portion. The
utility displays the number of indexed blocks written to the .NX file, and the elapsed
time, which is updated periodically. All information displayed on the screen is entered
in the audit file, if one is specified. When REBUILD has fixed the corrupted portion,
it displays the total elapsed time and returns you to the CLI.

4 R
FILENAME is DATA
Number of records in .XD file is: 6
Maximum # of records in .XD file is: 6
From From From
0l1d .XD 0ld .NX User
Number of ALTERNATE keys is: 4 4
Record size is: 342 342
PRIMARY KEY - Position in record is: 1 1
Length is: 15 15
ALT KEY # 1 - Position in record is: 16 16
Length is: 10 10
ALT KEY # 2 - Position in record is: 20 20
Length is: 17 17
ALT KEY # 3 - Position in record is: 40 40
Length is: 5 5
ALT KEY # 4 - Position in record is: 46 46
Length is: 12 12
N\ J

Figure 2-12 REBUILD Screen

Messages
REBUILD messages generally fall into four types:

¢ Syntax messages, which denote an error in the command line syntax. Reenter the
command line correctly if a syntax message is displayed.

 Status messages, which are informative.

¢ Internal consistency errors, which denote an error in REBUILD’s internal checks or
a hardware problem. These errors are fatal. Try running REBUILD again. If the
same error message occurs, contact your Data General representative. As a stopgap
measure, run REORG on the same file or substitute a backup file.

e File errors, which indicate that REBUILD has found an error in the portion that
was not declared corrupt. REBUILD stops operating and sets the ISAM reliability
flag in that portion. Run ISAMVERIFY on the file, and proceed according to the
information that ISAMVERIFY produces.

Utility Reference

2-57

ARITHMETIC ERROR
Internal consistency error.

ATTEMPT TO REBUILD THE DATA (.XD) FILE HAS FAILED
ATTEMPT TO REBUILD THE INDEX (.NX) FILE AS FAILED

Use REORG on the file instead.

BLOCK 0 OF THE .NX FILE IS CORRUPT
BLOCK 0 OF THE .XD FILE IS CORRUPT

File error. You probably have declared one portion of the file corrupt, and REBUILD
has found a possible instance of corruption in block 0 of the other portion. Use
REORG on the file instead. See “Invalid .XD Header” in the REORG section.

CORRUPT LINKS WERE FOUND IN THE .XD FILE
UNABLE TO RESOLVE BAD LINKS WITH THE .NX FILE

The key in the .XD portion cannot be found in the .NX portion, therefore, the link
cannot be restored. You may use REORG. The key may still be incorrect after using
REORG, but your system will be able to use the records.

GLOBAL /X AND /D SWITCHES ARE MUTUALLY EXCLUSIVE
Syntax error.

INDEX DEPTH OVERFLOW WHILE REBUILDING THE .NX FILE

The .XD file may contain too many records; you may have specified too low a packing
density.

INVALID FILE REVISION IN .NX FILE
INVALID FILE REVISION IN .XD FILE

File error. The file revision in the portion you have declared valid is not current.
INVALID GLOBAL SWITCH SPECIFIED

Syntax error. Permissible global switches are /X, /D, /1, /L, and /L=filename.
INVALID KEY ARGUMENT SPECIFIED

Syntax error.

INVALID KEY LENGTH ARGUMENT SPECIFIED

Syntax error. You may have specified a nonnumeric key length or one that is greater
than 4096, the maximum record size.

INVALID KEY POSITION ARGUMENT SPECIFIED

Syntax error. You may have specified a nonnumeric key position or one that is greater
than 4096, the maximum record size.

INVALID LOCAL SWITCH SPECIFIED
Syntax error.
INVALID NEXT RECORD TG APPEND POINTER IN THE .NX FILE

One or more of the following conditions is not met: the pointer must be record-boundary
aligned, must be greater than 512 bytes, and must be less than or equal to the file size.

2-58

Utility Reference

INVALID NEXT RECORD TO APPEND POINTER IN THE .XD FILE

One or more of the following conditions is not met: the pointer must be record
boundary aligned, must be greater than 512 bytes, and must be less than or equal to
the file size.

INVALiD NUMBER OF ALTERNATE KEYS FOUND IN THE .NX FILE

The number of alternate keys must be between 0 and 4.
INVALID NUMBER OF ALTERNATE KEYS FOUND IN THE .XD FILE

The number of alternate keys must be between 0 and 4.
INVALID PACKING LIMIT ARGUMENT SPECIFIED

Syntax error. A number between 50 and 99 must be entered.
INVALID RECORD ADDRESS ENCOUNTERED

The record address is not record-boundary aligned. You may have entered the /X
global switch, which indicates that the .NX is bad, and REBUILD has found an
invalid link, which means that the .XD file is bad. Run ISAMVERIFY and take the
appropriate action.

INVALID RECORD LENGTH FOUND IN THE .NX FILE
INVALID RECORD LENGTH FOUND IN THE .XD FILE

The record length must be between 1 and 4096. Either of these messages indicates
that ISAMVERIFY has not been run before REBUILD. Run ISAMVERIFY to
determine where the file is corrupt, then run the appropriate utility.

KEY COLLATING SEQUENCE ERROR

REBUILD has detected a collating error in the file. You can recover the file with
REORG.

KEY IS BEYOND END OF RECORD
Syntax error.
LOCAL /K SWITCH IS VALID ONLY WITH THE GLOBAL /X SWITCH

Syntax error. You have tried to specify key information with the global /D switch.
This is illegal.

MULTIPLE FILE NAMES SPECIFIED

Syntax error.

NAME OF FILE TO BE REBUILT IS NOT THE FIRST ARGUMENT
Syntax error.

NO FILE NAME SPECIFIED

Syntax error.

NO KEY ARGUMENTS SPECIFIED

Syntax error. If you use the /X switch, you must include the key position, length, and
packing density for each key.

RECORD ADDRESS AND FEEDBACK IN KEY ENTRY DO NOT MATCH

The probable cause is that the .NX is corrupt, but you declared it correct.

Utility Reference

2-59

THE DATA (.XD) FILE MAY BE CORRUPT

File error.

THE INDEX (.NX) FILE WAS FOUND TO BE CORRUPT - m
File error. ﬁ
THE LAST KEY ENTRY IN THE .NX FILE IS INCORRECT

File error.

THE .XD FILE IS A NULL FILE.

Your file does not contain any records.

TIME CONVERSION OVERFLOW

Internal consistency error.

TOO MANY ARGUMENTS IN COMMAND LINE

Syntax error.

TOO MANY BLOCKS WRITTEN TO .NX FILE

Internal consistency error. More than 64K blocks were written to the .NX file.

TOO MANY KEY ARGUMENTS SPECIFIED

Syntax error.

WRONG NUMBER OF KEY ARGUMENTS SPECIFIED

Syntax error. The number of keys specified in the command line and the number of
keys that exist as determined from the .XD header do not agree.

YOU MAY NOT SPECIFY THE GLOBAL /D SWITCH WHEN THE .NX FILE IS CORRUPT f)
YOU MAY NOT SPECIFY THE GLOBAL /X SWITCH WHEN THE .XD FILE IS CORRUPT >

Syntax error.
YOU MAY NOT USE REBUILD WHEN BOTH FILES (.NX AND .XD) ARE CORRUPT

Both reliability flags are set, indicating that both portions of the file are corrupt. Run
ISAMVERIFY and take the appropriate action.

2-60

Utility Reference

REORG Converting File Structure

REORG is a file conversion utility that enables you to change the structure of a file to
improve processing speed and flexibility. REORG’s capabilities include:
» Recovering ISAM files

¢ Converting among indexed, relative, fixed-length sequenﬁal, variable-length sequen-
tial, and line sequential file types

» Changing the key access of indexed files and sorting by different keys
¢ Purging logically deleted records from ISAM data files
e Selecting and rearranging fields in data records and inserting editing characters

Reliability Checking

If an ISAM file’s reliability flags are set and you attempt to use it as an input ISAM
file without the /D or /E switch, REORG displays the following error message:

LOGICAL FILE STRUCTURE MAY BE CORRUPT

However, if a file’s reliability flags are set and you are using the .XD portion to
recover, REORG does operate. It uses the data portion to read the file sequentially
and to recover the index portion.

Procedure

REORG is called through the CLI and runs under operating system control. The
original (input) file is preserved, and a converted (output) file is created under a
different name. Audit data on REORG’s processing can be directed to the display
terminal or stored in disk files.

The basic command line is:

/A

in-file[/t] out-file[/t] [optional-args]
/ A=auditfile

REORG {

The following arguments are required in the command line, and must appear in the
order shown above.

in-file
The name of the input file, which must be the first parameter after the
optional audit file. If a value for the /t switch is omitted, an indexed file is
assumed (see “Local Switches” below). Do not specify the .NX or .XD
extension.

out-file

The name of the output file, which must follow the input filename. The same
filename should not be used for the input and output files if both are sequential.
If the output file does not exist, REORG creates it; the packing density is
50%. If the output file is an existing indexed or relative file, REORG inserts
the additional records, overwriting duplicates. Do not specify the .NX or .XD
extension. If the output file is an existing sequential or line file, REORG
appends new records, retaining all original records. If a value for the /t switch
is omitted, an indexed file is assumed (see Local Switches below).

Utility Reference

2-61

Global Switches

/A

Directs audit information concerning REORG’s processing to the display
screen. Audit information consists of the date and time of execution, input and
output filenames and types, record and key sizes and formats, and input and
output record counts.

/ A=auditfile

Local

Stores audit information in the specified file. If the file does not exist, it is
created. If the file exists, information is appended to it. This switch cannot be
used with the /A switch above. The auditfile contains the date and time of
execution, the input and output filenames and types, the record and key sizes
and formats, and the input and output record counts.

Note: Do not give the audit and output files the same name.

Switches

/t Input or output file type. If no switch is used, REORG assumes an indexed file.
The switches for input and output files are the same, except for the /Q switch,
which can only be used with an output file.

Switch

File Type

/S
/V
/L
/R
/1

/Q

Fixed sequential file (fixed-length records)

Variable sequential file (variable-length records)

Line sequential file (variable-length records terminated with CR or NL)
Relative file

Indexed file

Relative output file. Records are not renumbered.

When a line sequential file is output from REORG, the record description must not

contain

any data fields described as computational. The results are unpredictable and

can cause a system error. If a line sequential file is used as input, blank lines and form
feeds are not written to the output file.

Appendix A contains a matrix that shows the legal combinations of local switches.

Optional Arguments

The syntax of the optional arguments and a brief description of their uses appear in
Table 2-6. The optional arguments can occur in any order in the command line.
However, all alternate key specifiers, field specifiers, and insertion specifiers must
appear in the sequence desired in the output file. Optional arguments are required in

certain

types of file conversions. Table 2-7 shows which optional arguments are

required for the specified conversion.

2-62

Utility Reference

Argument Form When Used

Relative key start-rel-key/K Number of first record key when the

specifier output file is relative

Record size in-rec-size/l Size of input record in bytes when

specifier input file is fixed sequential

out-rec-size/O Size of output record in bytes. Re-

quired when the input record is vari-
able length and no output field
specifiers define output record length

Access key access-key/S Input file is indexed and will be ac-

specifier cessed by an alternate key

Key key-pos:key-length/K Specifies key when output file is

specifier indexed. Specifies primary key if out-
put file is to include alternates

alt-key-pos:alt-key-length/A Specifies alternate key when output

file is indexed. Up to 4 can be speci-
fied.

Field field-pos:field-length/F Field specifiers for rearrangement of

specifier data fields within record. Up to 33
field specifiers can be used.

Insertion character:count/P Inserts the character count times in

specifier the output record

Table 2-6 REORG Optional Arguments

Output File

Input File Indexed Line Variable Fixed

Sequential Sequential Sequential
Line key-specifier out-rec-size
Sequential out-rec-size
Variable key-specifier out-rec-size
Sequential out-rec-size
Fixed key-specifier in-rec-size in-rec-size in-rec-size
Sequential in-rec-size

Table 2-7 When Optional Arguments Are Required

The optional command line arguments are described in more detail below.

start-rel-key/K
The first record number in a relative output file. Subsequent records have key
numbers in ascending sequence with an increment of one. When this parameter
is not specified, the first record has a relative key of 1. See “Processing Relative
Files” below.

in-rec-size/|
Input record size in bytes. This argument must appear only if the input file is
fixed sequential.

out-rec-size/0
Output record size in bytes. This argument must be included if no field
specifiers are present and the input record size is variable. Field specifiers
determine the output record size. If the input record size is fixed and field
specifiers are omitted, the output record size is the same as the input record
size.

access-key/S
The alternate key by which the input file is to be accessed. The key is identified
by its position within the record, i.e., by whether it is the first, second, third, or
fourth alternate key. The form of the argument is n/S, where nis 1, 2, 3, or 4.

Utility Reference

2-63

key specifier

The key position and key length arguments when the output file is indexed. If
the indexed file includes alternate keys, the argument identifies the primary
key. Key specifiers can be omitted when both the input and output files are
indexed and data fields in the record are not rearranged.

Key specifiers have the following form:

key-pos { } key-length/K

Key-pos is the position of the first byte of the key in the output record. The
position of the first byte of the record is byte number 1. Key-length is the length
of the key in the output record (1 to 100 bytes). The /K switch identifies the
argument as a key specifier.

Alternate keys are specified in the same form, but they are followed by the /A
switch, which specifies them as alternate keys.

field specifier

The field position and field length arguments. The order and number of field
specifiers and insertion characters define the output record. When field
specifiers are present, the output record is built by successive moves of data
fields from the input file to the output file. Up to 33 field specifiers can be
included in a command. Field specifiers have the form:

field-pos { } field-length/F

Field-pos is the position of the first byte of a field in the input record to be
moved to the output record. The position of the first byte of the record is byte
1. The destination of each move is the position following that of the field from
the previous move.

Field-length is the byte length of a field defined by the preceding field position
argument. The /F switch identifies the argument as a fields specifier.

insertion specifier

Insertion specifiers enable you to insert specified character strings into the
output record. They have the following form:

character { } count/P

Character is any ASCII character (except CR, NL, space, parentheses,
brackets, angle brackets, slash, and back slash) to be inserted one or more
times into the output record. Lowercase characters are converted to uppercase
characters. Count is the number of times that the specified character is to be
inserted at this point in the output record.

The /P switch identifies the argument as an insertion specifier. The position of
the insertion is determined by the argument’s position in relation to other
insertion (/P) and field (/F) specifiers in the command line.

Processing Indexed Files

With an indexed input file, REORG reads the file sequentially, based on ascending
order values of the access key. The primary key is the default access key; an alternate
key can be specified by including the access-key/S argument in the command line.

When

REORG creates an indexed output file from a sequential input file or from an

indexed file using an alternate key as the access key, it may encounter two or more

2-64

Utility Reference

records with the same primary key value: Since no two output records can have the
same primary key value, REORG resolves the problem by overwriting the previous
record with the subsequent record having a duplicate primary key. Thus, only the final
record with a duplicate primary key is retained in the output file—all others are lost.
In its audit file, REORG counts the subsequent record both as a “duplicate” record
and as an output record.

Alternate key values can always be duplicated in Interactive COBOL. Thus, REORG
writes a new record when it encounters a duplicate alternate key value—no record is
overwritten and lost.

REORG can be used to merge the records of two indexed files by specifying one of the
files as the input file and the other as the output file. The record size and key lengths
of the two files must agree. If REORG encounters duplicate primary key values, it
overwrites records in the output file as described above.

Processing Relative Files

Relative files are like indexed files with one essential difference: the key is not part of
the actual data record. Instead, the key indicates the relative record position within
the file. If the /Q switch is not specified in the output file, REORG changes the keys.
Therefore, if it is important to associate a given key with a record, the /Q switch
should be used after the output file argument. ‘

Recovering ISAM Files

REORG can recover ISAM files if the NX and .XD portions are corrupt. If only one
portion of the file is corrupt, you can use REORG, but first attempt recovery with
REBUILD. If REBUILD is unsuccessful, use REORG to recover. Only ISAM files
created under ISAM revision 5.00 or later can be recovered in this way.

REORG reads the .XD portion of the file sequentially; it does not operate on the .NX
portion. If the .NX portion of the file is bad, REORG can recover from the .XD
portion. If the .NX portion and the .XD header are corrupt, REORG can still recover
the file from the .XD portion and additional information that you insert in the
command line. However, if the data itself is corrupt, you should consider substituting
a backup file.

Invalid .NX Portion

To recover a file when the .NX portion is bad, first rename filename.XD to a name
without an extension. Then issue a REORG command line for the renamed file:
1. Specify the renamed data portion with the /D or /E switch:

renamed-file/D (purge logically deleted records)
renamed-file/E (retain logically deleted records)

2. Specify the position and length of the file’s primary key field with the key
specifier (/K) arguments.

3. Torecover one or more of the file’s alternate key structures, specify alternate key
(/A) specifiers.

For example, to recover the indexed file CUSTFILE from its data portion, rename
CUSTFILE.XD to a name without an extension, e.g., CUST$DATA. Then issue the
following REORG command:

REORG/A CUST$DATA/D NEWCUSTFL/T 46:3/K -

This command produces the indexed file NEWCUSTFL with the primary key in its
original position (bytes 46-48); logically deleted records are purged.

Utility Reference

2-65

\/

REORG displays the audit information listed in Figure 2-13. Any discrepancy between
the input and output record sizes is due to system overhead that is discarded when the

file is built. T~
(\ o

DATE: 04/11/83

START TIME: 09:29:34

INPUT FILENAME: CUST$DATA
TYPE: XD FILE

OUTPUT FILENAME: NEWCUSTFL
TYPE: INDEXED
INPUT RECORD SIZE: 459
OUTPUT RECORD SIZE: 453
OUTPUT RECORD FORMAT:
1:453 FROM 7:453
INPUT RECORD COUNT: 600
OUTPUT RECORD COUNT: 600
END TIME: 09:38:08 ELAPSED TIME: 00:01:44

- J
Figure 2-13 REORG Audit Information Screen)

Invalid .XD Header

When recovering an ISAM file, REORG takes the following information from the
.XD file header: the number of alternate keys, the record length, and the next record
to append. However, if the .XD header is invalid, you can supply this information in
the command line instead.

To recover an ISAM file when the .XD header or both portions are invalid, rename O
filename. XD to a name without an extension. This renamed file is used as the input ~
file.

The form of the command line is as follows:

/ A=auditfile /D /1
REORG in-file /X out-file /Q
/A /E /R

key-specifiers num-alt-keys/N rec-length/L [num-recs/R]

/A A global switch that directs REORG’s audit information to the screen or to the
specified file.

in-file
The name of the renamed .XD portion. Both the /D and the /E switches
indicate that the input file is a renamed .XD file. Use the /D switch to purge
logically deleted records and the /E switch to retain logically deleted records.

/X A switch that tells REORG that the .XD header information is to be taken
from the command line instead of the .XD header.

out-file
The name of the output file. It may be indexed (/I), relative (/R), or relative
without renumbering the records (/Q). The default is indexed.

key specifier
The position and length of a key, in the form key-pos:key-length/K. Specify
alternate keys in the same form but with the /A switch.

num-alt-keys/N O
The number of alternate keys in the file. Follow this number with the /N -
switch. If the file has no alternate keys, enter 0/N.

2'66 Utility Reference

rec-length/L
The length of the data portion of the .XD record, in bytes. This number should
not include the .XD record header. The record length is the total number of
characters in the PICs for that record, as defined in the original COBOL
program. The record length is followed by the /L switch.

num-recs/R

The number of records in the uncorrupt version of the file. The . XD header
contains a pointer to the next record to append. REORG ordinarily calculates
the number of records to read from this pointer; however, REORG cannot do
this because the .XD header is invalid. Enter the number of records if possible.
If you enter the number of records and REORG reaches the logical end of file
first, REORG stops at the logical end of file. If you do not enter this argument,
REORG proceeds until it reaches the logical end of file.

Note: When recovering a file with an invalid .XD header, be sure to specify the record
length and the number of alternate keys that are in the corrupted file. If you change
the record length or number of keys, REORG may operate, but it is not able to
determine the correct record boundaries. Therefore, the data you recover will be
corrupt.

Relative File Recovery

Assume you have determined that the index to a relative file is bad. You want to
recover the file, but you do not want the relative keys to be renumbered. Rename the
data portion (as explained in “Recovering ISAM Files” above) in this case,
CUSTOMERSI. Then enter the following command line:

REORG/A=@LPT CUSTOMERS1/D CUSTOMER0O/Q

Audit information is printed at the system printer. The /D switch indicates that
logically deleted records should not be included as the new index is built. The /Q
switch preserves the original relative key number.

Converting File Types and Deleting Records

REORG allows you to convert among any of the Interactive COBOL file types. When
you convert from an ISAM file to an ISAM file, or from an ISAM file to a sequential
file, logically deleted records are not written to the output file.

Indexed to Indexed

The following command copies the indexed file 198 1ITEMS to the indexed file
CLEANUP, retaining the same record size and key:

REORG/A=@LPT 1981ITEMS CLEANUP

All logically deleted records of 1981 ITEMS are physically deleted in CLEANUP.
Audit information is output to the printer.

Indexed to Sequential

Assume you want to transmit the indexed transaction file SALESLOG from a remote
site to a central computer system that cannot read Interactive COBOL indexed files.
The file must be converted from indexed organization to fixed sequential. To convert
the file, issue this command:

REORG/A = SALESAUDIT SALESLOG SENDSALES/S

Utility Reference

2-67

The indexed file SALESLOG is copied to the fixed sequential file SENDSALES. At
the same time, logically deleted records are physically deleted; this prevents
unprocessable records from being transmitted. Audit information is written to the file
SALESAUDIT. The file SENDSALES may now be transmitted.

Printing an ISAM Flle

An ISAM file can be printed by using REORG to create a line sequential version of
the file. The following command lists the indexed file 198 1ITEMS to the system

printer:

REORG/A 1981ITEMS @LPT/L 11:20/F 38:6/F

Output file @LPT is specified as line sequential (/L). The fields printed, specified by
the /F switch, are bytes 11-30 and 38-43 from each record. Audit information is

displayed on the terminal.

To obtain a permanent copy of 1981ITEMS to print, simply specify an output
filename rather than @LPT with the /L switch.

Relative to Relative

You can eliminate logically deleted records from a relative file by REORGing it from
relative to relative. This conserves disk storage space and increases the number of
available records in the file. To REORG the relative file CUSTOMERSI, enter:

REORG/A=@LPT CUSTOMERS1/R CUSTOMER0OO/R

The audit file is printed on the system printer.

In the above command line, the logical (or key) order of the file is maintained, but the
first record now has the relative key 1. For example, CUSTGMERSI contains three
records. If the record referred to by key 9 is logically deleted, CUSTOMERO00
contains two records after REORG has processed it.

Before REORG
Key Data
8 C
9 B
10 A

After REORG
Key Data
1 C
2 A

If you do not want to renumber the records in this way, use the start-rel-key /K
argument. This argument allows you to specify the starting number of the first
relative record. However, the rest of the key numbers are still incremented by 1.

To preserve the relative record numbers, follow the output filename with the /Q

switch rather than /R.

REORG/A=@LPT CUSTOMERS1/R CUSTOMER00/Q

After using REORG on the file, you should delete the old version of the file and
rename the new version. The following CLI command removes the old version of the

file from the system:

DELETE CUSTOMERS1. (NX XD)

This command gives the new version of the file the proper name:

RENAME CUSTOMEROO. (NX XD) CUSTOMERS1. (NX XD)

2-68

Utility Reference

Sequential to Indexed with Alternate Keys

A data base includes the sequential file ORDERS, with records of the following
format:

Field Position
Order number Bytes 1-6
Customer name Bytes 7-26
Customer number Bytes 27-30
Customer region Bytes 31-35
Customer address Bytes 36-75

To create an indexed file CUSTOMERS that contains the same data fields, has the
customer number as the primary key, and the order number and customer region as
alternate keys, enter:

REORG/A=@LPT ORDERS/S CUSTOMERS 75/1 27:4/K 1:6/A 31:5/A |

The input record size is required because the input file is fixed sequential. The
argument 27:4/K specifies customer number as the primary key; 1:6/A and 31:5/A
specify order number and customer region, respectively, as alternate keys.

Changing Access Keys

REORG allows you to change or to add keys to an ISAM file. For example, the
indexed file INVENTORY has stock number as the primary key, and the record
layout is as follows:

Field Function Position
Stock number Primary key Bytes 1-5
Stock item Data field Bytes 10-29
N Unit cost Data field Bytes 30-39
Unit price Data field Bytes 40-49
Number on hand Data field Bytes 50-60

Assume you want to add stock item as an alternate key and to print the file ordered by
the number-on-hand field so you can determine which items to reorder. To do this,
enter the following command line:

REORG/A INVENTORY INVENTORY_—OUT 1:5/K 10:20/A 50:11/A

This creates the file INVENTORY_OUT, which has two alternate keys (specified by
the local /A switches) in addition to the primary key. Audit information is displayed.

To print the file ordered by the second alternate key, enter the following command:
REORG/A INVENTORY_—_OUT INVENTORY_—PRINT/L 2/S

This command creates the line sequential file INVENTORY_OUT, which can be
printed on the system printer. The access key is the second alternate key, as specified
by the argument 2/S. Audit information is displayed.

Utility Reference

2-69

Rearranging Data Fields
A data base includes the indexed file PERSONNEL, with records of the following

format: O

Field Function Position
Social Security number Primary key Bytes 1-9
Employee name Alternate key Bytes 10-29
Employee address Data field Bytes 30-69
Department number Alternate key Bytes 70-75

REORG is to create the fixed-length sequential file EMPNAMES with records
containing employee names and addresses, and ordered by department number. The
command line is:.

REORG/A PERSONNEL EMPNAMES/S 2/S 10:20/F 30:40/F

The access key argument 2/S specifies the access key to be the second alternate key,
which is the department number. Note that the access key does not have to be
included in the output file.

Inserting Editing Characters
The following command copies the indexed file 198 1ITEMS to the sequential file

DESC:
REORG/A=@LPT 1981ITEMS DESC/S 11:20/F *:3/P 1:5/F m
The 20-byte field at position 11 of the input record becomes bytes 1 to 20 of the output N

record. An asterisk is inserted in bytes 21, 22, and 23 of the output record. The 5-byte
field at position 1 of the input record becomes bytes 24 to 28 of the output record. The
output record size is therefore 28 bytes. Audit information is output to the line printer.

Error Messages
ALTERNATE KEY FALLS OUTSIDE OF OUTPUT RECORD

The byte position specified for the alternate key cannot exceed the output record size,
and the byte length cannot run past the end of the record.

BAD REVISION

The major revision number of the input file, which is stored in block 0 of the .NX and
.XD portions, is less than 5.00.

CHARACTER INSERTION OVERFLOW (> 33)

You can specify insertion characters up to 33 times in one command line.
CONSOLE INTERRUPT .
You have entered the control interrupt characters CTRL-C CTRL-A.
DIR. ANNEX BLOCK ERROR

ISAM error.

DUPLICATE SPECIFICATION O

You have specified more than one access key (/S). Only one is permitted.

2-70

Utility Reference

END OF FILE ERROR

A premature end of file was reached. Run ISAMVERIFY or use a backup file. You
may have a hardware problem.

FIELD FALLS OUTSIDE OF INPUT RECORD

The field position or length (/F) cannot exceed the record size and cannot run past the
end of the input record.

FIELD FALLS OUTSIDE OF OUTPUT RECORD

The field position or length (/F) cannot exceed the record size and cannot run past the
end of the output record.

FIELD SPECIFIER OVERFLOW (= 33)

You cannot specify more than 33 field specifiers.
INDEX DEPTH EXCEEDED

ISAM error.

KEY NOT FOUND

ISAM error.

KEY SIZE ERROR

ISAM error.

IF /X, MUST GIVE /L AND /N

If you use the /X switch, indicating that the .XD header is bad, you must supply the
number of alternate keys and the record length, using the /L and /N switches,
respectively.

ILLEGAL ACCESS KEY

You have specified an access key that is greater than 4 (4/S).
ILLEGAL ACCESS KEY FOR RELATIVE FILE

You cannot specify an access key for a relative file.

ILLEGAL FILE TYPE

You specified a file type switch that is not permitted. Legal file type switches are /I,
/L, /R, /S, /V, /Q (output only), and /D and /E (input only).

ILLEGAL INTEGER

You may have specified nonnumeric character where a numeric character is required.
ILLEGAL LOCAL SWITCH

You have specified an incorrect local switch.

INPUT FILE DOES NOT EXIST

The input file may be sequential and you have specified it as indexed. If this is the
case, reenter the command line, using the /V, /L, or /S switch after the file type.
Other possibilities are that the file is not in your directory or searchlist, or you are
attempting to REORG a directory.

INPUT FILE NOT FOUND

You have tried to REORG an indexed file and have specified it as sequential.
INPUT FILE NOT INDEXED

You may have specified a key for a sequential input file.

Utility Reference

2-71

INPUT FILE TYPE MUST BE /D, /E, OR /R
If the /Q switch is specified with an output file, the input file must have the /D, /E,

or /R switch.
INPUT RECORD SIZE NOT SPECIFIED O

If your input file type is fixed sequential (/S) you must specify the input record size.
INPUT RECORD SIZE SPECIFIED AS 0

You cannot specify a record size as 0.

KEY LENGTH INCOMPATIBLE WITH EXISTING FILE

The output key length for a relative file must equal 2.

KEY SPECIFIED FOR NON-INDEXED OUTPUT FILE

You cannot specify a key when the output file is sequential.

MLS IS NOT ACTIVE

The ISAM server process is not active.

MOVES SPECIFIED

You cannot move the data in a file when recovering an ISAM file.
NO INPUT FILE SPECIFIED

You have not specified any files.

NO KEY SPECIFIED

You must specify a key when producing an indexed output file. Either you have not
specified the key or you have an incorrect switch for the output file type. O

NO OUTPUT FILE SPECIFIED
You have specified only one file; you must specify an input and an output file.
OUTPUT FILE IS NOT RELATIVE

You have attempted to use an existing output file for REORG and have specified it as
relative when it is not.

OUTPUT FILE MUST BE ISAM

When you are recovering an ISAM file, your output file must be ISAM and must be
followed by the /I or /R switches.

OUTPUT LENGTH AND MOVE FIELDS SPECIFIED

You cannot specify output fields (/F switch) and output length (/O switch) on the
same command line.

OUTPUT RECORD SIZE NOT SPECIFIED

You must specify the output record size when the input file is line sequential, when
converting from variable sequential to fixed sequential, and when converting from
variable to indexed.

OUTPUT RECORD SIZE SPECIFIED AS 0
You cannot specify an output record size as 0.
PRIMARY KEY FALLS OUTSIDE OF OUTPUT RECORD

The primary key specified is beyond the length of the output record. For example, you O
may have a record length of 50 bytes and specified 51:2/K as the key specifier. o

2-72

Utility. Reference

RECORD ALREADY EXISTS
ISAM error.
RECORD SIZE >> 132 CHARACTERS

The maximum record size in a line sequential file may not exceed 132 characters (plus
the terminator).

RECORD SIZE > 4096 CHARACTERS

The maximum record size in a fixed or variable sequential file is 4096 characters.
RECORD SIZE ERROR

ISAM error.

RECORD SIZE INCOMPATIBLE WITH EXISTING FILE

REORG has determined that the record length in the existing file is not the same as
the specified record size.

RECORD SIZE INCOMPATIBLE WITH FIELD SPECIFIERS
The field specifiers are too large to be accommodated by the record size.
RELATIVE KEY OVERFLOW

The relative key is larger than 65,534. You may have attempted to REORG a very
large sequential file to relative format.

TOO MANY ALTERNATE KEYS SPECIFIED

Up to four alternate keys can be specified.

Utility Reference

2-73

SETFORMS Setting Vertical Forms

SETFORMS is a menu-oriented utility for those who use the Data Royal printer,
model IPS-5000-A, with option 190168. It allows you to set variable forms length and
vertical tabbing positions for special forms. SETFORMS programs the printer for
vertical form length and tabbing. You do not have to add code to your Interactive
COBOL program.

Procedure

Before invoking SETFORMS, set the serial interface switches on the printer (back
panel) as follows:

SWi1 * 9600 baud
Sw2 * 4800 baud
SW3 * 2400 baud
SW4 * 1200 baud
SW5 * 300 baud
SWe6 * 110 baud
Sw7 OFF 2 stop bits
sws ON 7 data bits
Sw9 ON parity present
SWi10 OFF Even parity
“The first six switches control baud rate.
Only one of the six can be turned ON.

Set the system configuration switches (front panel) as follows:

SWi1 OFF 80 character/line

SwW2 OFF not used

Sw3 ON no LF after CR code
SW4 ON serial interface

SW5 OFF ignore CR code

SW6 OFF no perforation skipover
SW7 OFF not used

Sws8 OFF not used

To invoke SETFORMS through Logon, select (C) and enter SETFORMS at the RUN PROGRAM
prompt. To invoke SETFORMS through the CLI, enter SETFORMS at the CLIL.

SETFORMS displays a screen with the procedure for preparing the printer for
programming. The procedure is as follows:

1. Set the printer off-line.

2. Remove the standard paper and load the forms to be used.

3. Align the paper to the first line on the form.

4. Press the top-of-form switch.

5. Set the printer on-line.

2-74

Utility Reference

The printer is now ready to be programmed. Press ESC to exit SETFORMS; press
any other letter or number key to display the next screen.

The next screen prompts you for programming information. Enter the printer device
name. This is the filename in your Interactive COBOL program that denotes the
printer, i.e., @LPT or a filename that is linked to @LPT. SETFORMS also prompts
for the number of lines per inch (6 or 8), the number of inches per form (1 to 24), and
whether or not vertical tabbing is required. You may exit from the program by
pressing ESC after the PRINTER DEVICE FILENAME prompt.

If you require vertical tabbing, SETFORMS asks for the number of vertical tabs.
SETFORMS also displays the maximum number of tabs that you can enter. For
example, a two-inch form with six lines per inch cannot have more than 12 tabs. The
maximum number of tabs is 16, regardless of the lines per inch and size of the form.

After you enter the number of tabs, SETFORMS prompts for the starting line
number for each vertical tab. For example, to tab to line 4, then to line 10, enter 2 for
the number of vertical tabs. The prompts TAB 1 and TAB 2 are displayed. Enter 4 and 10,
respectively. Press ESC to exit from SETFORMS.

After you have entered the required information, SETFORMS displays the prompt
ANY CHANGE. This enables you to change any of the answers you have given.

e If you enter Y, SETFORMS prompts you for the response to be changed. If you
change the number of lines per inch or inches per form, SETFORMS recalculates
and redisplays the maximum number of vertical tabs. You must then enter the
number of vertical tabs and the line number for each tab. You may change your
responses by entering Y in response to the the ANY CHANGE prompt.

¢ If you enter N, the utility begins to program the printer.

e If you press the ESC key, you exit from SETFORMS and return to the CLI.

SETFORMS displays a message that tells you the printer is being programmed. This
programming takes a few minutes; SETFORMS informs you when it has finished.
You may now print the special forms via your COBOL program. Figure 2-14 is an
example of a COBOL program that you would invoke after running SETFORMS.

SELECT PRINTFILE.
ASSIGN TO PRINTER, PRINTFILE-NAME.
FILE STATUS IS...

FD PRINTFILE
01 PRINT-RECORD PIC X(80).

01 TAB-RECORD.
05 TAB-CODE PIC 99 USAGE COMP.
05 FILLER PIC 9(18) USAGE COMP.

WORKING-STORAGE SECTION.
01 VERTICAL-TAB PIC 99 VALUE 11 USAGE COMP.

PROCEDURE DIVISION.
OPEN EXCLUSIVE OUTPUT PRINTFILE.
WRITE-LINES.

MOVE LOW-VALUES TO TAB-RECORD.
MOVE VERTICAL-TAB TO TAB-RECORD.
WRITE TAB-RECORD AFTER ADVANCING O LINES.

Figure 2-14 Sample Program for Printing to a Special Form

Utility Reference

2-75

Once the forms have been printed, you may reload standard paper or run SETFORMS
again to print other special forms. In either case, follow this procedure:

Press the RESET switch.

Reload the printer with the new forms or standard paper.

Align the paper to the first line on the form.

Press the top-of-form switch twice. (The second time lets you check paper
position.)

. Set the printer on-line.

6. Enter the command line to run SETFORMS again.

RN -

Error Messages
EXCEEDS MINIMUM/MAXIMUM TABS

Your response to NUMBER OF TABS is less than 1 or greater than the maximum: 6, 8, 12, or
16, depending on the length of the form and the number of lines per inch.

MUST BE 6 OR 8

Your response to the LINES/INCH prompt must be 6 or 8.

MUST BE BETHEEN 1 AND 24

You entered a value for INCHES/FORM that was out of range.

MUST BE 'Y’ OR 'N’

Your response to the TABBING REQUIRED prompt must be Y or N.
PRINTER ACCESS FILE ERROR: nn

An error has occurred on printer access. The runtime system displays a two-digit File
Status code after the message. See the Interactive COBOL User’s Guide (AOS,
AOS/VS) for an explanation of the File Status codes.

TAB POSITION QUT OF RANGE

You entered a tab position that was 0, greater than the number of lines on the form,
or less than or equal to the previously entered tab position.

2-76

Utility Reference

Appendix A
Switch Combinations for

REORG

INPUT FILES

The matrix below indicates the legal combinations of local switches that may be
specified in a REORG command line. The input and output file requirements are
designated by their respective switches:

/S
/V
/R
/1

/L
/Q
/D
/E
/X

Fixed sequential file type

Variable sequential file type

Relative file type

Indexed file type

Line sequential file type

Relative output file, without renumbering records
Delete logically deleted records

Retain logically deleted records

File header information in the command line

All switches shown are local switches. The switches in the boxes within brackets are
optional. Switches outside brackets are required to create the output file from the
given input file. If a box is empty or there are no switches outside brackets, no
switches are required. X means the input file cannot be reorganized to the given
output file type.

For definitions of switches and a complete discussion of reorganizing files, see REORG
in chapter 2.

OUTPUT FILES
/S /v /R /1 /L /Q
/S / /1 / /1 /K /1 X
[/O/F/P] [/O/F/P] [/K/O/F] [/A/O/F] [/O/F/P]
/V /0 /0 /0 /K X
[/F/P] [/O/F/P] [/K/F] [/A/F] [/O/F/P]
/R /K
[O/F/P] [/O/F/P] [/K/O/F] [/A/O/F] [/O/F/P]
/1 X
[/S/O/F/P] |[/S/O/F/P] [[/S/K/O/F] |[/A/S/O] [/S/O/F/P]
/L /0 /0 /0 /K X
[/F/P] [/O/F/P] [/K] [/A] [/O/F/P]
/D X X /K X
[/K] [/A]
/D/X X X /N /L /N /L /K X /N /L
[/K/R] [/A/R]
/E X X /K X
[/K] [/A]
JE/X X X /N /L /N /L /K X /N /L
[/K/R] [/A/R]

Switch Combinations for REORG

Related Documents

NP

Interactive COBOL Documents

Interactive COBOL Programmer’s Reference 093-705013
Provides the experienced programmer with information required to write Interactive
COBOL programs. The Identification, Environment, Data, and Procedure divisions
are explained in detail, and a set of COBOL program examples is provided. A syntax
summary section provides a quick reference.

Interactive COBOL User’s Guide (AOS and AOS/VS) 069-705015
Supplies the programmer with information relating specifically to Interactive COBOL
on the AOS and AOS/ VS operating systems. The document describes the file system,
system calls, the runtime system, the compiler, and the debugger. Lists of error
messages and their meanings are provided.

IC/EDIT: Interactive COBOL Editor 055-004
Explains the Interactive COBOL text editor used to write Interactive COBOL source
code and documentation. It describes how to enter and execute IC/EDIT commands
that create, modify, and delete source code. An alphabetized command reference and
command summary table are provided.

SCREEN: Screen Format Editor 055-006
Explains the IC/SCREEN and CLI/SCREEN programs, which are special purpose
editors for designing, coding, and displaying screen formats. The manual describes
how the programmer can compose a screen image by typing in literal and data fields
as they will appear to the program user. The Interactive COBOL source code for this
image is generated automatically.

AOS Documents

Learning to Use Your Advanced Operating System (AOS) 069-000018
Summarizes AOS system utilities and leads the reader through practice sessions. It
explains the steps required to run FORTRAN, COBOL, and assembly language
programs.

Introduction to the Advanced Operating System (AOS) 069-000016
Serves as a technical introduction to AOS, highlighting the features and facilities of
this powerful operating system.

Command Line Interpreter User’s Manual 093-000122
(AOS and AOS/VS)

Describes the command line interpreter (CLI), which is the primary interface to the
system for the system manager, operator, and most users. The manual explains how
users can run utilities, execute programs, maintain files, and build command “macros”
by means of the CLI.

AOS Operator’s Guide 093-000194
Describes how to start up, run, and shut down an AOS system; how to operate the
EXEC, batch, spooler, and other useful utilities; and what to do in the event of
hardware and software errors or a system failure.

Related Documents

Managing AOS 093-000217
Explains how to create an AOS system tailored to the requirements of a specific
installation and how to manage the system. It describes techniques for creating
optimal performance and security. It presents the salient features of system utilities
and parameters, the AOS file access protection scheme, and process management
considerations. It also explains the PREDITOR program, which creates user profiles.

AOS Programmer’s Manual 093-000120
Serves as a primary reference for assembly language programmers. It describes in
detail the external features of AOS, including the AOS system calls and information
required for an in-depth understanding of the operating system. Other topics included
are process concepts, memory management, file I/O, and multitasking.

AOS Console User’s Handbook 093-000150
Contains a digest of useful information that is presented in more detail in other AOS
manuals. Its compact size and concise format make it a convenient reference document.

AOS Link User’s Manual 093-000254
Describes in detail the LINK utility, which binds assembled or compiled modules into
a memory context, resulting in a file of binary information the computer can execute.
The manual describes the AOS memory scheme, command line syntax, and object
block structure. Appendices explain symbol types, the Resource Handler Table, linking
AOS object modules for execution under RDOS, and LINK error messages.

AOS/VS Documents

Learning to Use Your AOS/VS System 069-000031
Serves as a basic introduction to the Advanced Operating System/ Virtual Storage for
programmers and nonprogrammers. It summarizes the system utilities and gives an
overview of AOS/VS products. It also leads the reader through practice sessions with
editors and illustrates the creation and execution of programs written in FORTRAN,
COBOL, BASIC, and assembly language.

Command Line Interpreter User’s Manual 093-000122
(AOS and AOS/VS)

Describes the command line interpreter (CLI), which is the primary interface to
AOS/VS for the system manager, operator, and most users. The manual explains how
users can run utilities, execute programs, maintain files, and build command “macros”
by means of the CLI.

AOS/VS Operator’s Guide 093-000244
Describes how to start up, run, and shut down an AOS/VS system. It contains
instructions for formating disks, installing and maintaining a system, and installing
new systems. The manual is a reference tool, not a step-by-step guide for performing
all related procedures.

Managing AOS/VS 093-000243
Explains how to build an AOS/VS system tailored to a user’s hardware and software
and how to manage the system. It provides information for managing memory and
CPU resources for optimal efficiency and secure software.

AOS/VS Programmer’s Manual 093-000241
Serves as a primary reference for assembly language programmers. It describes the
external features of AOS/VS, including system calls and information required for
understanding the operating system. Other topics included are virtual memory
concepts, interprocess communication, file structure and maintenance, file I/0,
multitasking, and binary synchronous communication.

Related Documents

AOS/VS Link and File Editor User’s Manual 093-000245
Describes Link and Library File Editor (LFE), which play related roles in program
development. It serves users who want to link or relink programs assembled and
compiled under AOS/VS, and users who want to assemble and compile programs

under their own language processors. It describes how to use LFE to create, edit, and
analyze library files.

Related Documents

Index

A organization of 1-2, 2-61
reconstruction of 2-54
Access control list (ACL) 1-5 reliability of 1-2, 1-4
ANALYZE 1-1, 2-1 restructuring of 1-1, 2-13
Arithmetic calculations 1-2, 2-6 structure of 1-2
FILESTATS 1-1,2-33
C Formatting of screens 1-3
CALC 1-2,2-6 Forms control 1-3
CALCLIB 2-10 Function library 2-10
Calculating file size 1-1, 2-33 I
Calculation utility 1-2, 2-6
CLI utilities 1-3 ICEDIT 1-2
Code revision level 1-2, 2-17 ICINQUIRE 1-3, 2-37
COLLAPSE 1-1, 2-13 Index
Collating sequence 2-19, 2-22, 2-22 density of 1-1, 1-1
Compiler revision level 1-2, 2-17 packing 1-1, 2-13
Converting files 1-2, 2-61 Inquiry program 2-37
Corrupt files 1-2, 1-2, 2-45 ‘ Integrity of files 1-2, 2-45
reconstruction of 2-54 ISAM files
CREV 1-2,2-17 integrity of 2-45
CS utilities 1-5 reconstruction of 1-2, 2-54
CSSORT 1-1, 2-19 reliability of 1-4, 2-2
D ISAMVERIFY 1-2, 2-45
K
Data file inquiry 2-37
Data files, processing of 1-3 Key option menu 2-40
Key specifier
E merging 2-27, 2-29
Editor 1-2 sorting 2-19, 2-20, 2-22, 2-24, 2-26
F L
. o Libraries in CALC
Field specnfle;r . master 2-9
merging 2- i
sorting 2-19, 2-22, 2-26 persoral 2
F{lc access 1-5 Link 1-S
File inquiry 1-3
File size calculation 2-33 M
File structure 1-1, 2-1, 2-13, 2-61 . .
Files Merging of files 1-1, 2-19, 2-27
analysis of 1-1, 2-1 MODEL 2-37
calculating size of 1-1 o)
conversion of 1-2, 2-61 v
corruption of 1-2, 1-2, 1-2 Operators 2-7
design of 1-1 precedence of 2-7

inquiry 2-37
integrity of 1-1, 1-2, 2-45, 2-54
measurement of 1-1

P
Packing the index 1-1, 2-13

) ®

REBUILD 1-2, 2-54

interactive use of 2-56
Reconstructing files 2-54
Record descriptor 2-37, 2-41
Records

physical deletion of 1-1, 2-13

reformatting of 1-1
Reliability flags 2-2, 2-13, 2-19, 2-45, 2-61
Reliability of files 1-2, 2-45, 2-54
REORG 1-2, 2-61
Repeat count menu 2-39
Restructuring of files 1-1
Revision level utility 1-2, 2-17
Runtime utilities 1-3

S

SCREEN 1-3

Searchlist 1-5
SETFORMS 2-74
Setting vertical forms 2-74
Sorting of files 1-1, 2-19

\%
Vertical forms 1-3 m
X L
XMODEL 2-37

CUT ALONG DOTTED LINE

ececcocccrcceccccsan —e—meo - -
cocccccces ccccccns e e el D i e g g g g g g S U S S

¢ Data General TP

TIPS ORDER FORM
Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE ZIp STATE ZIP
ATTN: ATTN:
QTY | MODEL # DESCRIPTION gg& ;‘,’gﬁ f,gfég'
(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL
Tax Exempt # Sales Tax
or Sales Tax (if applicable) —
Shipping
TOTAL

METHOD OF PAYMENT SHIP VIA

O Check or money order enclosed 0O DGC will select best way (U.P.S or Postal)
For orders less than $100.00

O Other:
O Chargemy [Visa [MasterCard 0 U.P.S. Blue Label
Acc’t No. Expiration Date O Air Freight
O Other

O Purchase Order Number:
NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Person to contact about this order Phone Extension

Data Qeneral quporauon Buyer’s Authorized Signature Date
Educational Services/ TIPS (agrees to terms & conditions on reverse side)

MS G214

2400 Computer Drive

Westboro, MA 01580 Title

(617) 366-8911, Extension 1610

DGC Sales Representative (If Known) Badge #

iongl
012-1780 W

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer’s order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

¢y DataGeneral
(M

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service’s Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked “subtotal”
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
(A orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

Data General Corporation
Educational Services/ TIPS

MS G214

2400 Computer Drive
Westboro, MA 01580

(617) 366-8911, Extension 1610

8. We’'ll take care of the rest!

)

i
i

T

Data General Corporation, Westboro, MA 01580 BB8-785821-A1

