
04.TA GENERAL
CORPORATION

Southboro.
Massachusetts 01772

(617) 465-9100

PROGRAM

ALGOL User's Manuals:

1. HOW TO PROGRAM IN ALGOL

2. NOVA ALGOL REFERENCE MANUAL

3. REVISED REPORT ON THE ALGORITHMIC
LANGUAGE ALGOL 60

ABSTRACT

Data General's ALGOL is a superset of ALGOL 60 with extensions that
allow simplified free-form I/O or formatted output, bit manipulation,
easy manipulation of character string data, recursive and reentrant
procedures, dynamic storage allocation, n-dimensional arrays, multi­
precision arithmetic, dynamic type conversion for full mixed-mode
capability, and explicit diagnostics.

Copyright (C) Data General Corp., 1970 093-000052-00

INTRODUCTION

ALGOL is a language in which complex mathematical algorithms
can be concisely written. The features which differentiate
ALGOL from other commonly used languages include recursive
procedures, dynamic storage allocation, a modular "block"
organization, long variable names, integer or character la­
bels, and a very flexible, generalized arithmetic.

Data General's extended ALGOL compiler for the Nova and Supernova
is suitable for business applications and for complex systems
programming, as well as research and engineering applications.
Extensions provide for the manipulation of character strings,
pointer and based variables, and subscripted labels. Data
General's ALGOL provides unlimited precision arithmetic, al­
lowing the user to achieve, for example, up to 30 digits of
precision.

For business applications, the most attractive features of Data
General ALGOL are its character string manipulation, multi­
precision arithmetic, file Inanipulation, and simplified I/O
procedures, which provide free-form or formatted output.

Data General ALGOL is a full implementation of ALGOL 60.
cursive procedures are allowed. An array declaration may
arithmetic expression, including function calls. Integer
and conditional expressions can be used.

Re-
be any
labels

No other mini computers (and few large computer systems) offer a
language with the programming features and general applicability
of Data General's ALGOL.

CHA.RACTER STRINGS, implemented as an extended data type to allow
easy manipulation of character data. The program may, for example,
read in character strings, search for substrings, replace char­
acters, and maintain character string tables efficiently.

HULTI-PRECISION ARITHMETIC, allowing up to 30 decimal digits of
precision in integer or floating point calculations.

SIMPLIFIED I/O, using one call for all data types and providing
free-form read and write or formatted output according to a "picture"
of the output line.

DYNAMIC CONVERSION of parameter type (integer, real, string,
Boolean), allowing one program to process data of several types.
Expressions of mixed type are allowed.

RECURSIVE AND REENTRANT PROCEDURES, which are particularly important
in real-time applications for fast context-switching among programs.

DYNM~IC STORAGE ALLOCATION, freeing the programmer from many details
of data layout and storage assignment.

N-DIMENSIONAL ARRAYS, which may be allocated dynamically at r~n time.
Subscripts and array bounds in the array declaration may be any ex­
pression including function references, negative numbers, and sub­
scripted variables.

EXTENDED ADDRESSING CAPABILITY, providing more efficient code and
more easily understood source language notation. Data General ALGOL
draws upon some of the powerful addressing features of PLII, including
based and pointer variables, to permit optional use of the addressing
characteristics of the Nova and Supernova computers.

BIT I~IPULATION using logical operators and octal or binary literals.
Built-in functions are provided to allow efficient access to data
at the bit level.

GENERATION OF EFFICIENT OBJECT CODE and commented assembly language
output. Code is optimized for register usage, generation of literals,
optimal use of machine instructions, and efficient storage allocation.

OBJECT CODE and RUNTIME COMPATIBILITY with FORTRAN and assembly language
to permit referencing not only of external programs and data compiled
by the ALGOL compiler, but any object program, whether the source pro­
gram was written in FORTRAN or assembly language.

EXPLICIT DIAGNOSTICS to aid debugging at the source level, and compat­
ibility with the Data General symbolic debugger to aid runtime debug­
ging.

HOVJ TO USE THE ALGOL MANUAL

The ALGOL manual is divided into three separate parts. Part 1
is a tutorial called "HOW TO PROGRAH IN ALGOL". The tutorial
presents the basic concepts of ALGOL for programmers unfamiliar
with ALGOL or with compiler languages.

Part 2 is a complete description of NOVA ALGOL called the
"NOVA ALGOL REFERENCE MANUAL". A combined index to Parts 1
and 2 follows the Appendices to Part 2.

Part 3 is the ALGOL 60 specification, "REVISED REPORT ON THE
ALGORITHMIC LANGUAGE ALGOL 60". Programmers familiar with
ALGOL need only refer to the specification and those sections
of the reference manual dealing with extensions to ALGOL 60.

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~
~~

HOW TO PROGRAM IN ALGOL

CONTENTS

GENERAL PROGRAM ORGANIZATION. .. 1

DECLARATIONS. .. 3
Why Declarations Are Needed in ALGOL 3
Size of Storage for Identifiers•...................... 3
Allocation and Release of Storage for Identifiers 4
Da ta Types.. 4
Arrays. .. 5
Lists of Identifiers in Declarations 7
Local and Global Identifiers 7

STATEMENTS ... 11
Statement Termination ... 12
Assignment Statement .. 13
go to Statement ... 16
if S ta temen t .. 18
for Statement ... 20

PROCEDURES•.....•....•••.••....••.......•..••......•. 22
Declaring a Procedure•..... 22
Calling a Procedure ... 23
Returning from a Procedure 23
Identifiers Used in Procedures 24
External Procedures ... 24
Parameters of Procedures 25
Func tions ... 26
Recursive Procedures .. 27
I/O Procedures Supplied to the User 27
Functions Supplied to the User 31

STRING VARIABLES AND ARRAyS 32

BIT MANIPULATION ... 33

CHANGE OF RADIX .. 34

WRI TING AN ALGOL PROGRAM ... 35

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

GENERAL PROGRAM ORGANIZATION

A basic ALGOL program starts with the word begin and ends with
the word end.

begin

+basic program

end

begin and end are written in italics because they are reserved
words (called keywords). ALGOL recognizes keywords as having a
special meaning; the user cannot change the meaning of keywords
or use them for his own program names. The user writes a key­
word at the teletypewriter either in all upper case letters or
all lower case letters.

A basic program is called a block.

Inside a block are declarations and statements. Declarations
list user program names and their characteristics. User program
names are called identifiers. Statements show the action the
program will take.

Declarations of identifiers must precede their use in statements.

begin declarations;
declarations;
statements;
statements;
end

+declarations precede statements

An example of a block, containing declarations and statement is:

begin
real pi;
integer k; +declarations
real array R(300], AREA [300];

pi := 3.1416;
for k :=1 step 1 until 150 do +statements
AREA [k] := pixR[k] t2;
end

-1-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~
~~

GENERAL PROGRN~ ORGANIZATION (continued)

An ALGOL program can be written in free form. This means that
a declaration or a statement can be continued from one line to
the next and that more than one statement or declaration can be
written on a line. For example, the previous program could be
written:

begin real pi; integer k; real
array R [300
], AREA [300]; pi: = 3. 1416 ; for

k := 1 step 1 until 150 do
AREA[k] := pixR [k H2; end

Separators and Delimiters

+but the program is harder to
read if it does not have some
format.

Since the end of a line is not a delimiter in ALGOL as it is in
the NOVA assembler, other delimiters must be used. A few common
ALGOL delimiters are the keywords themselves and the symbols:

-usually ends a declaration, statement, or comment.

-separates items in a list.

-terminates a label definition.
separates lower and upper bound of array dimensions.

() -enclose parameters of procedures and built-in functions,
precision of arrays, maximum length of strings, and string
subscripts.

[] -enclose dimensions of an array and enclose subscripts.

space -separates identifiers that are not otherwise separated
such as two keywords together or a keyword followed by
an identifier.

Examples of required blank spaces are shown below as triangles.
Other blanks are not significant.

begin ~ real 6 pi; integer 6 k;
real 6 array 6 R[300], AREA[300];

Other delimiters will be introduced later in this manual. The
Reference Manual contains a complete list.

-2-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS

Why Declarations Are Needed in ALGOL

When a programmer writes a program for compilation in a high­
level language such as ALGOL, he uses several, sometimes a very
large number of program variables that are assigned different
values during execution.

A declaration tells the ALGOL compiler the name of a program
variable, called an identifier. In addition, a declaration shows:

How much storage space the identifier needs.
How and when storage is allocated and released.
What kind of identifier is involved.

Much of this information does not actually appear in most dec­
larations but is given by default. For example:

linteger k; +declaration of k;

tells the compiler:

The identifier is k.
k can have integer values.
Default storage for integers should be used for k.

Size of Storage for Identifiers

The basic NOVA storage unit is a l6-bit word. A word is the
default storage unit for an integer value in ALGOL. Other kinds
of identifiers that are stored in a single word are:

boolean values (true or false)
pointers (not described in this manual; see

Reference Manual)

The other kinds of identifiers are those for real (decimal)
and complex values, and those for strings of characters. Real
values are stored by default in two l6-bit words. Each part of
a complex value (real and imaginary) is stored as a real value.
There is no default storage unit for a string of characters.
The user must tell the compiler how many characters his string
can have.

Default storage allocations can be overridden by the programmer
for real numbers and integers. If he wants integers greater than

-3-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS (continued)

Size of Storage for Identifiers (continued)

4 digits, he can specify the number of words of storage to be used.
He can also specify a larger storage unit or a one-word storage
unit for real numbers.

integer
reaZ
string

(2) k i
(1) Xi

(8) z i

+k is stored in 2"words
+x is stored in 1 word
+z has a maximum of 8 characters

To approximate the number of decimal digits of precision that can
be stored in a given number of l6-bit words, use the following
formulas. n represents the declared precision in words.

integer digits =5(n-l)+4

real digits =5(n-l)+2

l6n
-1 integer range =±2

-75 78
< real range < 10 10

Allocation and Release of Storage for Identifiers

By default, an identifier is allocated storage when the block in
which it is declared is entered (begin keyword) and the storage is
released when the block is terminated (end keyword).

A large ALGOL program can be made up of many basic blocks. Some
blocks are entered and exited many times. Allocating and releasing
storage by block makes more storage available for other identifiers.

However, suppose a programmer wants to enter and exit a block many
times during program execution. The block contains a real identi­
fier, R. The programmer wants to enter the block each time, with
R having the same value it had when the block was last terminated.

If the prograrmner declares R with the keyword own, R will be stored
in a separate area from the other identifiers. In the own area,
space allocated to identifiers is never released until the entire
program terminates.

lown reaZ R;

Data Types

The declaration of a data type tells the compiler the kind of values
an identifier can have. The programmer must declare a data type for

-4-

DECLARATIONS (continued)

Data Types (continued)

almost all identifiers. He does not declare a data type for labels.

integer Xi +has values like +15,3,-25
real Yi +has values like 3.1416 and -.22266
boolean Zi +has value true or false
string (5) ri +has values like $5.25 or abcde
pointer Pi +has an integer value. See Reference
complex j i +has values like 3.2+2.761

Labels are 'declared' by being used as labels. (However, formal
parameters that are replaced by labels are declared label. See
section on procedures.)

1100: X :=3i

Arrays

+100 is a label on the statement
x :=3;

Manual.

So far, only identifiers that can have one value at a time have been
used. It is possible to declare an array. An array is an identi­
fier of an ordered set of values. Each member of the set is called
an array element.

Arrays, like simple identifiers, are declared with a data type and
storage characteristics. These apply to each element in the array.

!integer (2) array Matrix; +declaration of array, Matrix. Each
element in Matrix can have an integer
value up to 9 digits long.

If you look at the declaration of Matrix, you see that the compiler
has no way of knowing how many elements Matrix is supposed to have.
While this kind of array declaration is used under circumstances
described later, the programmer will usually declare:

How many elements are in the array.

How each element is to be numbered. (This
also will determine the order in which values
are stored into identifiers.)

-5-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS (continued)

Arrays (continued)

This part of the array declaration is called dimensioning the
array. For example:

linteger array Matrix[25];

The single number 25 tells the compiler that Matrix is an array
containing 26 elements, numbered:

Matrix[O], Matrix [1] , •.• , Matrix[25]

and values are assigned in that order.

An array can have more than one dimension. In fact, it can have up
to 128 dimensions. For example, an array containing real values for
the lengths and diameters of pipe might be written with two dimensions
as follows:

,real array pipe[5,5];

The declaration tells the compiler that the array, pipe, has 6x6
or 36 elements. The elements are

pipe[O,O], pipe[l,O], pipe[2,O], ... ,pipe[6,O], pipe[O,l], pipe[l,l],
... ,pipe [6,1], •.. ,pipe [5,6], pipe [6,6]

The identifying numbers of each element in the array are called the
subscripts of the array. If you look at the elements of array pipe,
you will see that the first subscript varies most rapidly. In an
array of several dimensions, values are assigned in this way: the

~first subscript varies most rapidly, then the second subscript, then
'the third subscript, etc.

If the programmer wishes, he can give an array a different starting
number from zero. For example, array pipe could have been written:

Ireal array pipe[-5:0,1:6]

Pipe still has 36 array elements but now they are numbered:

pipe[-5,1], pipe[-4,1], ... , pipe[-1,6]' pipe[O,6]

-6-

DECLARATIONS (continued)

Arrays (continued)

The first number of each dimension gives the lower bound of the
dimension; the second number gives the upper bound. The lower
bound must be a smaller integer than the upper bound. Besides
integer and real arrays, arrays of strings can be declared. The
maximum length of each element of a string array must be declared,
as there is no default number of characters. For example:

Ibegin str1-ng(8} array ID[9,9];

ID is declared as a two dimensional IOxlO array of strings. The
maximum length of each string is eight characters.

Variable strings are an extension to ALGOL. Some of the ways in
which they can be used are discussed later.

Lists of Identifiers in Declarations

The programmer does not have to write a separate declaration for
each and every program variable. Quite often a number of program
variables have the same data types and storage characteristics. In
this case, the programmer can write one declaration, listing all the
identifiers.

begin integer i,il,i2,i3;
reaZ x,y,z;
reaZ array M[5, 5], z [8,8] ;

Local and Global Identifiers

The block structure of ALGOL permits blocks within other blocks.
In the following diagram, three blocks are shown. The blocks
labeled B2 and B3 are inside the block labeled BI.

-7-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS (continued)

Local and Global Identifiers (continued)

BI: begin real a;

B2:[be gin boolean bi

end B2

B3: L- begin real Ci

end B3

-end BI

+a is declared in block BI

+b is declared in block B2

+B2 ends. Note that end can
be followed by a string of
characters, in this case the
block identifier.

+c is declared in block B3

+B3 ends.

+BI ends.

Since B2 and B3 are bobl within block BI, any identifier declared
in BI, such as real a, is defined for blocks B2 and B3.

Identifier a is said to be local to block BI (the block In which it
is declared) and global to blocks B2 and B3 (the blocks in which it
is defined).

Identifier b is local to block B2 and identifier c is local to block
B3. Elsewhere, both these identifiers are undefined. Why this is
so can be seen in the following diagram of the three blocks.

I~
+storage is allocated for real a BI:

B2: +storage lS allocated for boolean b

+storage is released for b

B3: I

q
+storage is allocated for real c

+storage lS released for c

i - ~---- .---- +storage is released for a

-8-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS (continued)

Local and Global Identifiers (continued)

Labels are declared by their appearance as labels within a given
block. For example, the blocks BI, B2, and B3 might each contain
labeled statements.

BI: begin peal ai

B2:[be gin boolean

la:- - -i

end B2

ttg:- - -i

B3:-begin peal Ci

22:- - -i

end B3

end BI

bi

+la is a label local to
block B2.

+ttg is a label local to
BI and global to B2 and
B3.

+22 is a label local to
B3.

Like declared identifiers band c, -labels la and 22 are undefined
except in their own blocks. Note, however, that the labels of the
blocks B2 and B3 are outside of the blocks they label and are local
to block BI and global to blocks B2 and B3, as shown in the fol­
lowing diagram:

BI:

B2:

la:

ttg:

B3:

22:

Even though a label does not appear in a declaration, it is a data
type and is stored in one wordi if an identifier is used as a label,
it cannot be used as any other type of datum.

-9-

W~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

DECLARATIONS (continued)

Local and Global Identifiers (continued)

Arrays can be declared with variable dimension bounds such as

ireaz array z[i,j];

B:

where the bounds of array z and 0 to i and 0 to j. However, the ap­
pearance of variable dimensions in an array declaration constitutes
a use of identifiers i and identifiers must be declared and defined
before the block containing the array declaration is entered. Thus,
i and j must be global to the block containing the declaration of z.
For example, the following is legal:

begin in teger i, j;

i :=50;
j :=100;

.
c: [egin re.al array A[i,j],

end C

.
end B

However, the following is illegal:

[
Bl: begin in teger i, j ;

reaZ array A[i,j];

end Bl

+i and j are declared and their
values defined in block B.

+statements that assign
values to i and j.

+i and j can then be used as
dimensions of array A in block C.

+i and j are used before their
values are defined.

A later section describes procedures and the formal parameters of
procedures. Formal parameters are not allocated storage as are actual
program variables and labels; therefore, the rules of declaration and
definition before use do not apply to formal parameters.

-10-

W~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS

Statements are programming instructions. They indicate how oper­
ations are to be performed using the declared identifiers.

ALGOL statements are very flexible so that programmers unfamiliar
with ALGOL can use short, simple statements. Experienced ALGOL
programmers, however, can nest statements within other statements.
In fact, an entire block may be treated as a single statement.

Some examples of simple statements are:

~:= b+l.O;

19O to Lb 13;

if bool then go to B;
c :=c/d;

+Assignment. b+l.O is evaluated
and placed in location a.

+Unconditional transfer to the
statement labeled Lb 13.

+Conditional transfer.

bool is a Boolean variable. If bool has the value tpue, a transfer
is made to the statement labeled B. If bool is false, the assign­
ment statement is executed.

Itag2 : ;

fop i :=0,2,25 do
xli] := y[i]+i;

+Dummy statement providing a
label to which to transfer.

+fop statement.

The fop statement causes a loop. The variable i is assigned the
first value (0) of the list 0,2,25, and the assignment statement
is executed. Then i is assigned the second value (2) and the as­
signment statement is executed, etc.

IProc23 (x,y, z) ; +procedure call

A call to a procedure named proc23 is made from the current block.

-11-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

Icomment: Comments contain explanatory informationi

ALGOL comments are written as statements, beginning with the
keyword comment and ending at the first semicolon.

Often, a programmer wants a group of statements to be treated as
a single statement. A common example is a group of statements
following a for statement, where the programmer wants the loop to
include the group of statements. He can use the keywords begin and
end to "block" his statements.

for p :=5,10,15,20
do begin

end

A [p] :=pt2i
B[pJ :=A[p] -Xi
C[p] :=B[p] +A[P]i

The three assignment statements will be executed for each value of p.

Statement Termination

Statements shown previously have generally been terminated by a
semicolon. However, statements may be terminated in some instances
by the keyword end or the keyword else. For example, the previous
compound statement could be written:

for p :=5,10,15,20
do begin

A[p] :=pt2i
B [p] :=A [p] -Xi
C [p] :=B [p] +A[p]

end
+end terminates this statement

The keyword else can terminate a statement in a conditional clause.

if x=O then go to LABLAA else
if x>O then y :=x
else
x :=x + Ii

+else terminates go to LABLAA

+else terminates y :=x

-12-

~ ~ HOW TO PROGRAM ~
~ INALGOL ~

~~

STATEMENTS (continued)

Statement Termination (continued)

The keyword end can be followed by a string of characters, for
example:

E of block 25

Because statenents are terminated by keywords end or else or by
semicolon (;) delimiters, the string of characters after an end
cannot include these characters.

Assignment Statement

The basic statement is the assignment statement that permits the
value of an expression to be stored in location represented by an
identifier.

[variable :~expression; J
assignment

symbol

jbegin real b,c; integer a; boolean 000;

a :=0;
b :=c :=2.5;

:boo :=true;

ra :=~+2;
b :=ct3;
boo :=rbOOi

+assignment of constants to variable
locations. Note that 2.5 is assigned
both to location b and location c.

+simple expressions.
t shows exponentiation.
r means logical not.

-13-

W~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~
~~

STATEMENTS (continued)

Assignment Statement (continued)

ALGOL expressions can be relatively simple as shown above or can
represent highly complex processes. A few more simple expressions
might be

v
z+4
(-b+sqrt (d) }/2/a
d+abs (w[O] -yxw[l] -sin (x/2)
w[k[i]]

/shows division.
xshows multiplication.
subscripts can be nested to
any depth.

Note the terms abs, sin, and sqrt in the expressions.
These are references to functions, and the parenthesized expres­
sions following the function reference are the actual parameters
passed to the function when it is referenced. Functions and how
they are referenced are described later in a section on procedures.

The variable on the lefthand side of the assignment and the expres­
sion on the right must have compatible data types. Each variable
type can be assigned an expression of the same data type as in:

begin reaZ x,y;
integer i,j; pointer Pi
booZean b,c; string (8)

i :=j-4;

x :=x/yx3.5;

b :=rc;

"$, char :=' 25. 10 i

p :=address (y) ;

chari

+integer to integer

+real to real

+boolean to boolean

+string to string

+address is a pointer function

-14-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

Assignment Statement (continued)

In addition, certain conversions are possible.

Ibegin integer i,ji boolean b,Ci

i :=bAci +boolean to integer

!lis logical and

C :.=ji +integer to boolean

If bAC evaluates to true (1), integer i will contain 1 in every
bit position and if the expression is false, i will be a word of all
zeroes.

In integer to boolean conversion, the integer expression (j in this
case) is evaluated. c will be assigned the value false if j contains
all zeroes and will be true in every other case.

Ibegin integer i,j; pointer Pi

j :=p+5 i +pointer to integer

p :=i; +integer to pointer

A pointer is one word long and contains a memory location (integer).
Therefore, integer to pointer and pointer to integer conversion is
permissible with the limitation that the integer must be one word
long (default precision).

-15-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

Assignment Statement (continued)

begin integer i,ji real Xi

X :=it2i +-integer to real

j :=xj3; +-real to integer

An integer expression is converted to real by evaluating it and
placing the decimal point after the last digit. A real expression
is converted to integer by evaluating it and using a function cal­
led the entier function. The entier function selects the highest
integer value not greater than the real value.

begin string (5) chari integer ii

i :=25i

char :=i-4; +-integer to string

The integer is evaluated and then assigned to the string variable
as a character string, in this case 21.

All the expressions described in this section are simple expressions.
There are also conditional expressions which may be used in assign­
ment statements. Conditional expressions are described in the Ref­
erence Manual.

go to Statement

A go to statement transfers control to another statement in the.pro­
gram. The keywords go to are followed by a label or an expression
that evaluates to a label. The expression can be a subscripted label
variable or a switch ide~tifier.

-16-

~ ~ HOW TO PROGRAM~
~ IN ALGOL ~

~~

STATEMENTS (continued)

go to Statement (continued)

Labels are either identifiers (alphnumeric characters beginning
with a letter) or unsigned integers.

tagl: x :=x+l.O +identifier label

go to tagl;

go to 10i

10: y 6 : =yxx ; +integer label

A subscripted label variable in a go to statement evaluates to a
subscripted label. Labels can have a single subscript.
.------_._----

tage[l] :x :=x+pi/4i

tage[2] :x :=+pi/2i subscripted labels

tage[3] :x :=X+pii

go to tage[I]i +1 evaluates to 1,2,or3

Switch designators are described in the Reference Manual. They also
appear as subscripted expressions to be evaluated in the go to state­
ment. In general, switches are less efficient than subscripted labels.

-17-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

go to Statement (continued)

Because of the way identifier storage is allocated and de­
allocated by block, a statement must transfer control within
the block or to an identifier global to the block.

A: begin integer j;

tag: ---; :J
B: begin reaZ Z;

go to tag;
go to Lab;

Lab: ---;
end B;
end A;

if Statement

~< -)

global transfer

local transfer

if statements use a truth value as a switch to determine transfer
of control. There are two formats.

if boolean_expression then unconditional statement;

if boolean_expression then unconditional statement else statement;

If the boolean expression evaluates to true the then statement is
executed; otherwise, the then statement is skipped. The arrows in
the example below show how control is passed.

I '¥ ~
if true then statement; next_logical_statement;

I l
if false then statement; next statement;

I \lI I 'V
if true then statement else statement; next_logical_statement;

I -it ~
if false then statement else statement; next_logical statement;

-18-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

if Statement (continued)

Boolean expressions and the logical and relational operators used
in forming them are described in the Reference Manual, which should
be consulted if you are not familiar with Boolean logic. Briefly,
a boolean expression consists of

a+b=c simple arithmetic expressions (a+b and c)
are used with relational operators (= < ~ = ~ >~)

boo Moob boolean expressions (boo and loob must be
declared boolean) used with logical operators
r(not}V(ol'} .f\(and):>(imp} =(eqv}$(xOl')

a+b=c'V' boo Aloob a combination of the above two boolean expressions

The then statement can be any statement or set of statements as
long as it doesn't contain another if statement.

if a~b then a :=b;

}
if c>d then go to 25;

if e<5 then begin x :=y :=xt2; }
y :=y+25.26;
go to 30 end

simple then statements

blocked then statements

The else clause can be an if statement. This means that a series
of switches can be set up. For example, the previous statements
could be rewritten

if a~b then a :=b else
if c>d then go to 25 else
if e<5 then begin

x :=y :=xt2;
y :=y+25.26;
go to 30 end

-19-

~~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

if Statement (continued)

Simple expressions were discussed in the section on the as­
signment statement. The sequence

I if boolean_expression then ...

is a conditional expression and can appear anywhere a simple
expression can be used, except the following the keyword then.
Conditional expressions follow the rules for data typing.
See the Reference Manual for information on conditional ex­
pressions.

[or Statement

The for statement allows a given statement or statements to be
executed repetitively with a controlled variable set to dif­
ferent values. The statement or statements are executed as
many times as there are values for the controlled variable.
The statement format is:

for controlled_variable := list of arithmetic values
do statement(s)

At its simplest, the list can contain only values as in:

If 0 r j : ~ 1 , 2 5 , 3 50, 4, - 6 do A [i , j 1 : ~ B [j 1 ,

However, the list can contain variables and expressions.

-20-

o_W~
~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

STATEMENTS (continued)

for Statement (continued)

/for j :=1, a+3 1 x/y, if xfy then 25 else -6 do A[i,j] :=B[j] i

In addition, a list item can contain either the keyword while
or the keywords step and until. A while clause would be:

Ifor x :=y/2 whiZe ytz do .•.

The keyword while is followed by a boolean expression. The
statement following do executes as long as the boolean expres­
sion is true.

A step-until clause would be

for a :=1 step
t

initial
value

2 unti l
t

incre­
ment

101 do ..•
t

final
value

The list item is equivalent to the simple list: 1,3,5, ..• ,101.
The initial, incremental and final values can be any expression
or value. Some examples of for statements are:

, __________ • ___ .0 ______________ 0

for i :=0.1 step -0.01 until .005
do x :=ixln(x}i +In(x} is the natural logarithm

for j :=1 step 1 until 100 do
A[i] :=B[i]-C[i]i

Ifor
I
I
l

! ..

k :-0, x-y while x>y,-5 do
beginA[k,2] :=B[k],

C[k] :=A[k,2] +B[k]/Xi
end

-21-

function

+compound statement following begin
+both assignment statements are

executed as part of the loop

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~
PROCEDURES

Procedures are basic ALGOL programs that are called for execution.
Begin blocks can be entered by sequential execution of statements.
Procedures are only entered when they are called.

Declaring a Procedure

The format of a procedure declaration consists of a heading and the
text or body of the procedure. The body of a procedure can be a
single statement, a group of statements delimited by begin and end
as described on page 12, or a block containing declarations and state­
ments.

At a minimum, the heading of a procedure must contain the word procedure,
followed by the procedure identifier. In addition, the heading may
contain additional information about the procedure, described later
in this section.

The procedure identifier follows the word procedure in the declaration.
Then the text of the ALGOL procedure is written.

Z: begin

procedure ZERODIVi +procedure ZERODIV is declared in block Z.

+statement containing procedure body

Rules that apply to other identifiers apply to procedures as well.
A procedure must be declared before it is used (called). It must
be declared in the block in which it is called unless, like some
identifiers, it is an external procedure.

Assume that ZERODIV is a program that is used to prevent errors
resulting from division by zero. ZERODIV sets up the following
algorithm:

given:

a value

any
>0
=0
-<;;0

c :=a/b

b value

"I 0
o
o
o

the following results are produced:

-22-

resulting c value

alb
999999
o
-999999

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

The full declaration of ZERODIV could then be:

Z: begin

I •
ZERODIVi iprocedure
if blO then c :=a/b else
if a=O then c :=0 else
if a<O then c :=-999999 else

c := +999999 i

Calling a Procedure

A procedure is called by writing its name as a statement.

Z: begin real array R[IO,IO], z[IO,IO,IO], Y[IO,IO,IO];

procedure ZERODIVi
if blO then c :=a/b else
if a=O then c :=0 else
if a<O then c :=-999999 else

c : = +999 9 9 9 i

a :=R[i,j] i
b :=z[i,j,k]i
ZERODIVi
Y[i,j,k] :=Ci

Returning from a Procedure

+Assign array elements to dividend and divisor.

+Call ZERODIV.
+Put result in proper location.

When a procedure is called, it executes until the end of the procedure
is reached. The procedure then returns control to the statement im­
mediately following the calling statement. In the ZERODIV example
above, control returns to the assignment statement.

-23-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

Returning from a Procedure (continued)

Iy [i , j , k] : = c i

Identifiers Used In Procedures

ZERODIV is a block inside the block named Z. Both Z and ZERODIV
use the identifiers a,b, and c. If a,b, and c are declared within
ZERODIV, they will be undefined in block Z by the rules of block
structure. Therefore, a,b, and c are declared in block Z.

Z: begin real a,b,ci
procedure ZERODIVi

There are identifiers that are used only in a given procedure and
they can be declared in the procedure.

External Procedures

An ALGOL procedure declaration can be compiled separately from any
enclosing block. It can then be used as an external procedure by
many programs. Assume that the procedure ZERODIV was compiled
separately from any other block. Now, any block can call ZERODIV
if the block has a declaration of ZERODIV as external.

begin
external procedure ZERODIVi

ZERODIVi +-call to ZERODIV

-24-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

Parameters of Procedures

The previous example showing ZERODIV as an external procedure raises
the problem of identifiers a,b, and c once more. Must they be declared
in each and every progra~ that wants to call ZERODIV? ALGOL solves this
problem by allowing the user to put dummy identifiers, called formal
parameters into a procedure declaration. Then, the procedure can be
called with real identifiers, called actual parameters.

With formal parameters, the declaration of ZERODIV could be:

,
Iprocedure ZERODIV(a,b,c);
jreal a,b,c;
if b~O then c :=ajb else
if a=O then c :=0 else
if a<O then c :=-999999 else

c :=999999;

~a,b, and c are formal parameters
~a,b, and c are declared.

A parenthesized list of formal parameters follows the procedure
identifier. These formal parameters will be replaced when the
procedure is called.

The formal parameters must have data types specified. In the
example, a,b, and c are specified as real.

If the body of the procedure is a block, formal parameters must be
specified in the procedure heading, not in the block. If parameters
are declared inside the block that is the procedure body, they will
be undefined in the procedure heading.

Assume the same block used previously to call ZERODIV now wishes to
call it to obtain a value for Y[i,j,k].

begin real array R[lO,lO], z[lO,IO,lO], Y[lO,lO,IO];

ZERODIV (R[i,j], z[i,j,k], Y[i,j,k])i ~Call to ZERODIV

~Vhen ZERODIV is called, array element R[i,j] replaces a, z[i,j,k] re­
places band Y[i,j,k] replaces c. There is no need to assign the
values in the calling block. The assignment is made when the actual
parameters are passed in the call.

The rules governing formal and actual parameters are given in the
Reference Manual.

-25-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

Parameters of Procedures (continued)

cannot replace a simple variable and an array cannot replace a simple
variable. Some legal substitutions are:

begin real x,y,Zj external procedure
procedure XX(a,b,c,d,e,f)i

real a,b/ci boolean d;
label ei real procedure fi

begin: I procedure body . J (statement
end or block)

sumi

Procedure
Declaration

XX(x,y,z, true, Exit, sum)i +call

Exit:--­
end

Calling
Block

Because formal parameters are only dummy identifiers, their declara­
tions are not as restrictive as that of real identifiers. Note in
the example that a label can be declared. Also, it is often useful
to leave a parameter declaration somewhat vague to allow a larger
number of possible replacements. For example an array formal para­
meter could be declared without dimensions.

I

Functions

A function is a procedure which, upon execution, results in a value.
In fact, at some point in the function, an assignment statement as­
signs a value to the function identifier.

Since a function represents a value, it must have a data type. A
data type is included in the declaration of a function.

Ireal procedure arctanh (x);
Ireal Xi

larctanh :~ 0.5 In«l+x)/(l-x)), +value is assigned to arctanh

-26-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

Functions (cohtinued)

Since a function represents some value, a function call is part of
an assignment statement or other statement:

jrea l ;rocedure arctanh (x) i.

I
i
I IZ :=zxarctanh(y); +function call to arctanh with actual parameter y

I L-___ _

When execution of arctanh is complete, the value of arctanh replaces
the call in the assignment statement.

A function has one of the ALGOL data types: integer~ real~ string~
complex~ boolean~ pointer~ or label. (A label can be specified as
a function type.)

Recursive Procedures

ALGOL permits recursive procedures. A procedure is recursive if it
calls itself. An example is factorial computation.

integer procedure factorial(I);
integer I;

}
DeClaration of
integer function,

+factorial calls itself factorial.
lfactorial :~ if 1=0 then I
lels~_fac:orlal (I-I)x:I;

I/O Procedures Supplied to the User

ALGOL does not provide for I/O operations. Five externally compiled
procedures are supplied with NOVA ALGOL to handle user I/O.

Before proceeding with I/O operations, the user must open a file for
input or output. The "file" can be a data file in secondary storage
or an I/O device.

To open the file the user writes the call:

open (number, string) ;J
-27-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~
PROCEDURES (continued)

I/O Procedures Supplied to the User (continued)

The number is one of 8 channels (0 to 7) that can be associated with
a given file and the string is the name of the file.

lop~~ (2, "myfile") ;

lopen (3, II $TTO") ; +-$TTO is the teletypewriter on output

Once a file has been opened, data can be read or written from it.
The read and write calls are:

'-;ea~(n~~~,~-i~ ~)'-1
wri te (number, list); I

---.--.-.---~---.-.-~.---~----------

The number is again the channel number associated with the file.
The list is a list of variables, expressions, and string constants
to be reaa or written from the file.

open (2, "myfile");

rrite (2, a,b,c,d, "timings follow:", ArraY);

In the example, the user opens myfile and associates channel 2 with
it. He then requests that certain variables a,b,c,d be written to
the file. They will be written out according to the way they are
formatted in the file and their data type; the user does not have
to format therrr. The user then inserts a string constant 'timings
follow:'. After this, ArraY, which is presumed to be an array of
timing information, will be written to the file.

When I/O operation for a given file is completed, the file must be
closed. This insures proper updating of the file and releases the
association between the file and the channel number. The format for
the call is:

-28-

W~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~
~~

PROCEDURES (continued)

I/O Procedures Supplied to the User (continued)

A fifth I/O routine allows the user to generate data output in a
large number of possible formats. The call is:

1---"--------- -
'I output (number, format, variable list); i
-----------.----.--.----~------=---.--.---~

The nurmer is the channel number. The variable list is a list of
variables, expressions, and string constants to be output. The
list can also include carriage control functions tab and page.

Tab and page are functions supplied to the user. The page function
causes a form feed. The tab function has a parameter that is the
number of the character position to which the teletypewriter will
tabulate. Function page should always be enclosed in parentheses
in the output list.

How the user writes his format parameter determines the format of
the output values. The ~ormat parameter is enclosed in either ac­
cent marks or double quotation marks. If the user puts text in the
format parameter, the text will be output exactly as written.

r-----------
butput (2, "
!

RESULTS OBTAINED ARE:");

RESULTS OBTAINED ARE: +output

The user can also set up a field format for his data, using a # for
each character position.

####",a);

+datum in location a is written in
the given format

If the output number is smaller than the field format, it is right
justified with leading blanks.

-29-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

I/O Procedures Supplied to the User (continued)

A decimal point can be used in a field format. Assume variables
have the following values: x=-456.78, y=999.123, z=.08

output (2, "#####.# ",x,y,z);

-456.8 999.1 . 1

Signs + or - can be used in a field format. Without the sign,
as previously shown, only negative values are output with a sign,
and the minus sign requires a field format position.

If a plus sign is given, both positive and negative values are
output with signs. If a minus sign is given, only negative values
are output with signs. However, in both cases, the sign does not
require a field format position.

output (2, "-####.# "b,c);

-4567.2 5858.0 +both positive and negative numbers can
have four digits before the decimal point

Character strings are output in the same format as decimal numbers,
using # for each character position. The character string output
can be from a variable in a file or can appear as a literal in the
list of variables of the output statement.

~:~p-~~ (2, "##########", i,j, "Price");

Item No. Stock No. Price

+i and j are variables and
Price is a literal

+possible output

Character strings are left justified in the field format with follow­
ing blanks.

If the character string is longer than the field format, the entire
string will be written .

" # # # ", " AD D RE S S ") ;

. ~u-tPut (2,

ADDRESS

-30-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

PROCEDURES (continued)

I/O Procedures Supplied to the User (continued)

In I/O procedure calls -
identifier in the output
be transferred in order.
of ten integer elements.

output (2, n####n, A);

read, write, and output - an array
list causes all elements of the array to

In the next example, assume A is an array

345 7777 567 23 4567 890 230 46 9012 7564 +possible output

Carriage control functions, tab and page, can be inserted in the
variable list to set up special formats.

output (2, n#####n, nSTOCK ITEM", tab (5), A) ;

STOCK ITEM
345

7777
567

23
4567

890
230

46
9012
7564

In the example above, the string constant STOCK ITEM extends beyond
tab position 5. The tab function will cause a line feed before tabulat­
ing to character position 5. Each element of array A is then right
justified in the field beginning at tab position 5.

The Reference Manual contains additional examples of how a user can
format output. It includes examples of how a user can prepare a table
of values using for loops and output calls.

Functions Supplied to the User

ALGOL has certain standard arithmetic functions that are supplied
to the user such as those for taking a sine, cosine or square root
(sin, cos, sqrt). In aQuition NOVA ALGOL has a number of additional
functions to permit the user to manipulate character strings, bit
strings, and for using pointer variables. Some of these special

-31-

PROCEDURES (continued)

Functions Supplied to the User (continued)

functions will be discussed in the sections following and others
are described in the Reference Manual.

STRING VARIABLES AND ARRAYS

String variables and arrays are an extension to the ALGOL lan­
guage that allows manipulation of character strings. A complete
string or part of a string may be referenced:

string (9) a,b;

a := ".xxxyyyzzz~;

a : =a (3,6)
. -----------

+b :='xYYY'; or character positions
3 through 6 .

In a similar way, strings and string arrays can be manipulated.
for example:

string (9) a;
string (2) array c[1:8];

a :='xxxyyyzzz/;

for i :=1 step 1 until 8 do
c[i] := a (i,i+l) +note use of subscript brackets

and substring brackets
When the for
array c will

statement is executed, the contents of the elements of
be:

c [1] :="xx"; C [2] :="xx"; C [3] :="xy"; C [4] :="yy"; c [5] :="yy";
c[6] :="yz"; c[7] :="zz"; c[8] :="zz";

Concatenation of strings can be handled by the length built-in func­
tion, which returns the integer length of a string as its value.

string(lO} a,b;
a :='xxx~;

b :='yyy";
a (length (a)+l) :=b; +string variable b is concatenated

with a to form 'xxxyyy'.

The lefthand side of the final assignment evaluates to a(4) :=bi
which means "start putting the contents of b into a, beginning ut
the fourth character."

- 32-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~
~~

STRING VARIABLES AND ARRAYS (continued)

The index built-in function returns a value that represents the
character position of a character of the string.

f-----·----
string (10) ai integer bi
a :='XYZZZ'i
b :=index (a,'y/); +statement is equivalent to b :=2;

Coding of the index function shows how string variables and the
length built-in function can be used in programming .

. -----._-----
integer procedure index (a,b); string a,b;
begin integer i;

i :=0;
for i :=1 step 1 until length (a) do
if a(i,length (b)+i-l)=b then go to done;

done: index:=i;
end

BIT MANIPULATION

An extension to ALGOL allows the programmer to perform bit man­
ipulation in the higher-level language, comparable to assembly
language coding. This is possible by use of the built-in shift
and rotate functions and by use of binary and octal literals that
have been added to the syntax. Bit manipulation cannot be per­
formed upon real variables, which are represented in floating point.

A simple example of the shift function is

The rotate function is similar

Ix '~rotate (y,+2),

-33-

+left shift variable y four bits and
assign the value to x.

+right rotate variable y two bits
and assign the value to x.

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

BIT HANIPULATION (continued)

If the programmer wants to select bits from an integer, he can use
logical operations and binary or octal literals to mask unwanted
bits. For example, suppose x is an integer containing a 3-bit
index into an array in bits 5,6,7.

o 5 6 7

I I I I I I
~

index

1'" . ····[1

The variable i can be set to contain the index as follows:

1 :=shift(x,-8) and lllr2;

or

i :=shift(x,-8) and 7r8;

where: shift(x,-8)

and either lllr2' or 7r8

index
causes reXXXXXXXXXXXXXXX!

causes IOOOOOOOOOOOOOxxxl

index

New settings for bits of a given variable can also be made using
logical operations and/or the built-in functions.

CHANGING A RADIX

NOVA ALGOL permits the user to set any radix up to and including
10, as shown for base 2 and base 8 in the section on bit manipula­
tion. Simply follow the literal with the letter r and the radix:

.lr3 - base 3
9

1. 3E9r4 - base 4. The exponent is 4
-10

101E-10R2 - base 2. The exponent is 2

- 34-

~ ~ HOW TO PROGRAM ~
~ IN ALGOL ~

~~

WRITING AN ALGOL PROGRAM

The steps to follow in \vri ting an ALGOL program are:

1. Study the problem. Can it be broken into several
algorithms? Can you further generalize the algorithms
for repetitive use? The first decisions are how to
structure the problem - nested blocks, separately compiled
procedures, etc.

2. When you decide upon the structure of your program you
should decide what identifiers - variables, arrays,
parameters, etc. - need to be declared in each block.
Declaration of identifiers may be new to some program­
mers. It is essential to ALGOL programming.

Be sure the data types you select are suitable not only
for data storage but also as to compatibility of formal
and actual parameters and variables that will be used
together in expressions.

Decide on the precision of integer and real data that
you will need.

3. When ~he declarations have been written, the statements
that implement the program can be written. Be sure to
label statements you will transfer to and to write com­
ments. Comments will help both you and other programmers.

4. Before attempting compilation, make a source-program de­
bugging check. Have you put in the proper delimiters,
blank spaces, and spelled the identifiers correctly?

5. When you attempt compilation, check the error messages
carefully against your source program and make the neces­
sary changes.

6. When you get your first ALGOL programs to compile, chances
are they will not be very efficient. Check the compiled
code carefully. Have you made full use of supplied func­
tions, nesting of procedures, and external procedures?
Have you used bit manipulation facilities? Experiment with
your source program and see if you can improve the coding.

7. As you become more proficient in writing ALGOL programs,
try to use the additional facilities described in the
Reference Manual such as pointers and based variables.
These facilities for sophisticated programmers such as
systems programmers will also improve your coding efficiency.

- 35-

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

NOVA ALGOL REFERENCE MANUAL

CONTENTS

IDENTIFIERS AND KEYWORDS ..
Keywords
Function Keywords ..

SCOPE OF IDENTIFIERS

.1- 1
. .. 1- 1

. .1- 1

. .••... 2-
Variables,
Labels

Arrays, Switches and Procedures.•... 2-
1
1
1
2
2
3

Parameters ..
Storage and Scope ..
Scope and Blocks

. • 2-
.......................• 2-

.. 2-
..................... . 2-

BLOCKS .. 3- 1

DELIMITERS
Separators
Brackets
Arithmetic Operators and Numbers.
Boolean Operators and Values •.......•.....
Rules of Arithmetic and Boolean Expression
Bit Operations.

.4-
..4-
.4-

. 4-
................... . 4-
Evaluation. . .•. 4-

. .4-

1
2
3
4
7
8
9

EXPRESSIONS. S- 1
1
4
5
6

Ari thmetic Expressions. • . . • .5-
Boolean Expressions..... 5-
Pointer Expressions ... 5-
Designational Expressions.......... 5-

STATEMENTS•.
Assignment Statement ..
for Statement ...

to Statement .. go
if Statement•....

IDENTIFIER DECLARATION AND MANIPULATION ••
Data Type s
Arrays
Character String
Pointers and the
Labels •...
Switches

Variables ..
based Declarator ..

own Declarator ..
external Declarator ..
Literals ...•.....•...

..................... 6-
. 6-

1
3

..6- 7
. ... 6-11

....... 6-12

.7-
......... . 7-

· 7-
.. . 7-

1
2
3
6

.7- 9
· 7-13
· 7-15

. .. 7-16
• .. 7-16

.7-17

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL _.~
~~

Procedures ... 8-1
Procedure Declarations ••••••••.••..•.••••.•..••••••••••••.••••• 8-1
External Procedures.. 8- 3
Procedure Calls.. 8- 3
Calling a Procedure by Name and by Value •.••.•••••••••.••••••.• 8-5
Formal and Actual Parameters ••.•.••••.•••.••••••••••••••••••••• 8-6
Specificators of Formal Parameters............................. 8- 8
Procedure Coding Exaraple....................................... 8- 8

BUILT-IN FUNCTIONS .. 9-1
l"lathematical Functions... 9-1
Transfer Function •.•••...••..••••.••••••••••••••.•••••••••••••• 9-2
Address Function ••••••••••••••••••.•.•.••••..•••••••••••••.•.•• 9-2
Length Function.. 9 - 3
Index Function... 9- 3
Snift Function ... 9-4
Rotate FUI1Ctioll.. 9-4
Tab Function ... 9-5
P age Function.. 9 - 5

I/O RUN-TIFlE PROCEDURES •••••••••••••.•••••••••••••••••••••••••••• 10-1
Open a File .. 10-1
Read a File .. 10-2
~~rite a File ... 10-2
Close a File ... 10- 3
Formatted Output ... 10-4

ALGOL ERROR 14ESSAGES .••••••••..•••••••••••••••••••••••••••••••••• 11-1

EXTENSIONS TO AND LIMITATIONS OF STANDARD ALGOL •••••••••••••••••• 12-l

APPENDIX A - CALLS k"JD RETURNS

APPENDIX B - RUN-TIME ROUTINES

APPENDIX C - LOADING THE ALGOL COMPILER

APPENDIX D - EXAMPLE OF ALGOL GENERATED CODE

IDENTIFIERS AND KEY1;vORDS

An identifier is a string of one to 32 letters, digits, and
underscore symbols () that must begin with a letter. Identi­
fiers are names assigned by the programmer to variables and
other program entities. Upper or lower case letters may be
used. No blank spaces are permitted.

Examples:

a
A25

get symbol
Aa -

Routine 2
omega

Identifiers serve to identify simple variables, arrays, labels,
switches, procedures, and pointers.

Keywords

Certain keY'irwrds are completely reserved in ALGOL. They are:

and do go to own switch
array else if poin ter then
based end 1.-mp procedure true
beg'irL eqv integer real unti l
boolean external label step value
comment false not string while
complex for or xor

Keywords must be written In all upper case or all lower case letters

Function Keywords

Certain functions are provided with the ALGOL compiler. Names of
these functions can be redefined by the programmer provided no
ambiguity results from an attempt to use the identifier both as
an ALGOL function and as a programmer variable.

The function keywords are:

abs
address
arctan

cos
entier
exp

1-1

index
length
ln
page

rotate
shift
sign

sin
sqrt
tab

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
SCOPE OF IDENTIFIERS

Simple variables, arrays, labels, switches, and procedures are
quantities which have a given scope. Scope is defined as the
set of statements and expressions in which the declaration of the
identifier associated with the quantity is valid.

Variables, Arrays, Switches, and Procedures

Variables, arrays, switches, and procedures must be declared,
and their scope is the block in which they are declared. By
extension, their scope includes inner blocks. An identifier
is considered local to the block in which it is declared and
global to any inner blocks, unless the identifier is re­
declared in an inner block to represent a different quantity
as shown in the example.

1: begin

Labels

real a,b;

2: [begin

end 2
3: - begin

integer a,b;

end 3
end

+a and b are real quantities, local
to block 1
a and b are not redeclared in 2 and
are real quantities global to block 2

+a and bare redeclared as integer
quantities local to block 3. (a
and b as real quanti ties are not valid.)

+When block 3 ends, a and bare
again real quantities local to block 1

Labels are not defined by a declaration; a label is declared by its
use as a label. It is important to note that the label of a block
is declared in the block immediately outside the one it serves to
label. A label is thus global to the block it labels.

A: r--- begin

B:rbegin

l_ end B

end A

+B is declared in block A.

2-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL _ .. ~
~~

SCOPE OF IDENTIFIERS (continued)

Parameters

Formal parameters that are replaced by name follow the scope
conventions of variables. Note that no conflict arises when
a formal parameter list is replaced by an actual parameter
list containing one or more of the same identifiers but as·­
sociated with different quantities. The actual parameters
simply replace the formal parameters, which have no scope in
the real sense of the term.
For example:

begin integer a,Ci real bi
procedure sample (a,b,c) i
real ai integer b,Ci
egt-n

end

procedure

declaration

s amp 1 e (b , a , c) ; +-procedure call

1
calling
block

Actual parameters a and c replace formal parameters band Ci
actual parameter b replaces formal parameter a.

An actual parameter that replaces a formal parameter by value
is not altered in the calling procedure because of the call.
The called procedure uses a copy of the parameter during
procedure execution.

Storage and Scope

Storage for identifiers is allocated when the identifier is
declared and freed when control passes from the block in which
the identifier is declared. If an identifier is declared with the
own declarator, however, storage is allocated when the block is
first entered and is not released thereafter.

2-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .~

-~
SCOPE OF IDENTIFIERS (continued)

Scope and Blocks

In the diagram below, presume that each rectangle represents
a block and that the labels of the blocks are B, I,A, and 2.
Identifiers declared in block B are defined in all blocks
unless a given identifier is redeclared in another block.
Identifiers declared in block I are defined for blocks I and
A unless redeclared in A.

Identifiers declared in block A are undefined in any other
blocki the same is true of the identifiers of block 2. Note
that the labels of the blocks are clearly defined in the block
outside the block for which they act as labels.

B:

A:

2:.-------

2-3

Identifiers declared in darker
shaded blocks are undefined in
lighter shaded blocks

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL __ ~
~~

BLOCKS

In structure, a block is a set of declarations and statements
that starts with the keyword begin and terminates with the key­
word end. Semantically, a single block is the smallest set of
statements within which a given declaration of an identifier of
a quantity is valid for that quantity.

Procedures are also blocks. Procedures usually contain one or
more identifier declarations, and every procedure is treated as
a block whether or not it contains the keywords begin and end.

Storage is allocated and deallocated to identifiers dynamically.
When a block is entered, storage is allocated to those identi­
fiers declared in the block. Storage for those identifiers is
released when exit is made from the block.

Storage is not deallocated when a block inside a block is entered.
For such a block, identifiers declared in the outside block
remain valid, global quantities. However, the identifiers may
be redeclared in an inner block to represent different quantities.
If so, the block cannot reference the same identifier outside the
block. For example:

A:_
real

begin
Xi integer i,j;

Tag: x :=x+sin(x)i

B: -- begin
real array Tag[i,j]i

real Z;

end B

go to Tag;

I-end A

3-1

+-x is declared as a real quantity

and Tag is declared a label in block A.

+-Tag is redec1ared an array in block B.
Z is declared a real quantity in B.

+-When block B terminates, Tag is again
valid as a label.

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

BLOCKS (continued)

In the example, x is valid and can be referenced in block A and in
block Bi z is valid and can be referenced only in block Bi and Tag
is valid only in A as a label and is valid only in B as an array.
Note that the variable dimensions of Tag are valid as integer
quantities in both blocks. It is good practice to declare fully
every quantity used in a block.

3-2

DELIMITERS

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ .~
~~

The ALGOL delimiters are operators, separators, specificators,
declarators, and brackets as shown.

OPERATOR DELIMITER

I SEPARATOR

SPECIFICATOR I

I :=

1 (space) 10

I step unti l
declarators

r whi l~.--I -4--1 comment

Arithmetic
Operator

R. elational I
~perator

Logical
o era tor

Transliteration of Delimiters

DECLARATOR

real

I BRACKET string

'{2ointer

literal

complex

array'

based

Sequential
switch

o
external

then I
own

Certain ALGOL delimiters are not found on sume teletypewriters.
Equivalent symbols are:

ALGOL TTY ALGOL TTY ALGOL TTY

I 1\ I bnd I ~ * Ii I 1,,= or <>1
I vi GJ GJLJ E or e I~ -2
[2J §EJ 1 ~ I >=Q;[=> I~I tt "
r -I ~qv 1 IlJ <=or=<

I r- I ~I
L~I ~I

4-1

]

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
Separators

SYMBOL

10

:=

(space)

step

unti l

while

comment

PURPOSE

Separate items of lists.

Decimal point in real numeric
values

Separate base of a number from
its power, indicating a power of
10.

Terminate a label definition.
Separate upper and lower bounds
of an array dimension.

Terminate a statement, declara­
tion or conunent.

Separate variables from the ex­
pression to be assigned the
variable or variables.

Separate a pointer from. the
based variable to which it
points.

Separate identifiers and key­
word identifiers not otherwise
separated by operators and other
separators.

EXAMPLE

procedure rt(a,b,c);
real array A[i,j,k,l];

0.011
25.2

25.2 -3
10

0.01 +6
10

a:b: I :=I+2;
real array A[1:10,-7:0];

integer array D[1:20];
go to 101; comment
Transfer to test results.;

c :=c+l;
a :=b :=a-pi/2;

ptr+ a

if a=3 then go to 20
else a :=b;

used in a for statement to separate
an initial value from an incremen­
tal value.

i :=1 step 2 ••.

used in a for statement to sepa- i:= 1 step 2 until n ••.
rate an incremental value from a
terminal value.

used in a for statement to sepa- i :=x+2 whi le a>O ••.
rate a value from a conditional
expression.

begin a comment.

4-2

procedure TCON(a,b,c);
comment: Test for
congruence;

Brackets

SYMBOL

()

[]

begin
end

\

II II

PURPOSE

Parentheses enclose formal
and actual parameters; en-
close the precision of arrays
and length of character strings,
and enclose expressions to be
evaluated.

Square brackets enclose the .
dimensions of arrays, sub­
scripts of array elements, and
subscripts of switches.

Keywords begin and end enclose
blocks and compound statements.

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ... ~
~~

EXAMPLE

procedure main (a,b,c);
string (8) B;
integer (12) array B [i, j] ;
((A+B)/C)t2.5

integer array M[i,j];
c : =A [1,2] ;
go to B[i] i

begin reaZ array act[O:20);

beg in ac t [m) : = j; k : = i
end

end

Grave and acute accents enclose 'This is a 'string'
string values. Note that strings
may be nested.

Double quotation marks may also
enclose a string value. Use of a
single accent mark is possible in
a double quote string. IIDON/T GO!II

4-3

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

~~

Arithmetic Operators and Numbers

Operator

+

x

/

t

Base
integer
real

integer
real

ARITill~ETIC OPERATIONS

Operation

Addition
Subtraction
Multiplication
Division

Exponentiation

Exponent

Resulting Value Type

If both operands are integer
the result is integer. If one
operand is complex the result
is complex. Otherwise, the re­
suI t is real.

Permitted combinations and re­
sults are described in the
table below for real and integer
values. Complex base values
may be raised to integer values
only. Results are defined for
complex exponentiation only in
those cases in which a real value
may be raised to an integer with
a defined result.

Result

integer>O Same as base.

1
integer=O

l.0

integer=O
real=O integer~O undefined

integer
real

real>O
real=O
real=O
real<O

integer~O

real>O
real>O
real=O
real

4-4

real

real
0.0
undefined
undefined

41-

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~
~

NUMBERS

Numbers are real, integer, or complex. Integers are signed or un­
Real numbers may be signed or unsigned, have an optional decimal
point and have an optional exponent part.

Integers

o

1776

-25

Examples of Real Numbers

o -200.84

1776 0.01

-25 +.083

-9.3 +02
10

25 -4
10

7
-10

Numbers having an integral power of 10 can be represented on the
teletypewriter with either an upper case E or lower case e replac­
ing the lowered 10.

Real Number

-976.33 +2
10

25 -4
10

7
-10

+02
10

TTY Transliteration

-976.33E+2

25e-4

-le7

lE+02

Note that in the last two examples, a 1 must appear before E or e
to prevent interpretation of this number as an identifier.

To approximate the number of decimal digits of precision that can
be stored in a given number of 16-bit words, use the following
formulas. n represents the declared precision in words.

- 16n-l
integer digits = 5(n-l)+4

real digits = 5(n-l)+2

integer range = ± 2

-75
10

78
< real range ~ 10

Complex numbers have a real and an imaginary part and are repre­
sented as shown below:

-3.5+67.61 2.4E8-2.3I 3.0E-7+7.9E+6I
~ ,---------.J
real imaginary

,

-------------------- ------~--~~~------

4-5

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~

Numbers (continued)

A numeric literal with any radix up to and including 10 can be
written. The literal is written, followed by the letter R fol­
lowed by a number giving the radix, for example:

1001R2 Base 2.

.12l22R3 Base 3.
-6

77E-6R8 The exponent represents 8
+5

.3E+5R4 The exponent represents 4

4-6

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL ~
~~

Boolean Operators and Values

-~-----------

RELATIONAL OPERATORS LOGICAL OPERATORS

Symbol Operation TTY Symbol Symbol Operation TTY Symbol

< less than same logical
negation not

~ less than logical
equal <= or =<

l\ and and or

V inclusive
or or

= equal same = equivalence eqv -

> greater than same ::) implication 1.-mp

greater than >= or => 9 exclusive or xor
~ or equal

~ not equal <> or A=

--------------_._---------- -------------------

------------------=-::=-==-==-=----==;=-.:::-=-::=-=--==-==:--==-=-==--::::-------------, LOGICAL OPERATOR TRUTH TABLE

Operands Operations

Y Z not Y Y and Z Y or Z Y imp Z Y eqv Z Y xor Z

false false true false false true true false

false true , true false true true false true

true false false false true false false true

true true false true true true true false

-----_ .. _- _.- .- .. -.-.,,-~--.----. .--------------------- --------

4--7

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL_~

-~

Rules of Arithmetic and Boolean Expression Evaluation

The sequence of operations within an expression is generally
from left to right, with the following additional rules:

1. Precedence of operator evaluation

OPERATOR

I" t

x /

+ -

v

+Highest precedence (evaluated
first)

:= +Lowest precedence (evaluated
last)

2. rand t operations are evaluated from right to left.

3. Parentheses are used to alter the order of operator
precedence.
A parenthesized expression is evaluated as an entity
before further evaluation'proceeds.

4-8

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Bit Operations

Bit operations use binary and octal literals combined
logical operators to manipulate bits of integer data.

with

AAB
(and)

rA
(not)

A®B
(xor)

A:=B
(eqv)

A::>B
(imp)

Result is 1 if and only if A is 1 and B is
1 in that bit position.

Result is the bit complement of A.

Result is 1 if either A or B is 1 in
that bit position.

Result is 1 if and only if A and
B are complements in that bit
position.

Result is 1 if and only if A and B
have identical bits in that bit position.

A :=11OOlR2;
B :=lOlOOR2;

AI\B :=lOOOOR2;

A :=11OOllR2;
rA :=OOllOOR2;

A :=lOOlllR2i
B :=110000R2;

AvB :=110111R2;

A :=lOOlOOR2;
B :=001101R2;

AEBB :=101001R2;

A :=100100R2;
B :=001101R2;

A= B :=010110R2;

Result is 1 if A is 0 in that bit posi.tion A :=100100R2;
or if both A and Bare 1 in that bit position. B :=110001R2;

A -.::> B : =111011R2;

For example, assume x is some integer.

X :=x and llllllR2; First 10 bits of x set to zeroes,
x :=x and not 777R8; Last 7 bits of x set to zeroes,
x :=x and not 52525R8; Alternate bits, beginning at bit 1,

are set to zeroes,
x :=x and 52525R8; Alternate bits, beginning at bit 0,

are set to zeroes.

4-9

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~ Bit Operations (continued)

The coding generated by a bit operation is shown below. Note that
the operands are integer not Boolean type.

,; F.-1EG IN INTEGER
,; A . - 8*2 AND . -

LOA
MOVt':L
LOA
LOA
AND
COM
AND
ADC
LOA
LOA
STA

,; END
,; END

JSR
FSl= 16

SP= 100000
LP: 000012

177773
000005
000001
000002
000035

• END

A~ 8~ C,;
11101R2 OR

0~ S+6~ 3
0~0

3,. LP
1 ~ 5, 3
1,0
0,0
0,2
0~ 2
3,. SP
(i)~ S+ 1 5, 3
0, S+5, 3

@RETllRN

C';

,;LI TERAL

J TF:MPO RARY
JA

+Frame size. See Appendixes A
and B.

+Stack pointer.
+Literal table.

4-10

EXPRESSIONS

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .~
~~

The primary constituents of an ALGOL program - which represents
algorithmic processes - are expressions. Expressions are arithmetic,
Boolean, designational, or pointer.

Each type of expression may be either a simple expression or a
conditional expression. Simple expressions are similar to expres­
sions in other programming languages; conditional expressions are
a unique ALGOL feature. In a conditional expression, one out of
several expressions (arithmetic, Boolean, designational, or pointer)
is selected for evaluation on the basis of the truth value of a
Boolean expression in an if clause. An if clause has the form

fif Boolean - expression ~h:~·~·.-~'i

Constituents of expressions (except for certain delimiters such as
() and [] and :=) are logical values, numbers, variables, function
designators, and elementary arithmetic, relational, logical, sequential
and pointer operators. Expressions may be nested to any depth.

Arithmetic Expressions

An arithmetic expression is a rule for computing a numerical value.

A simple arithmetic expression is a collection of one or more numbers,
arithmetic variables and function designators combined with arithmetic
operators to form a meaningful mathematical expression which always
defines a single numerical value. Each variable of the expression
must already have a defined value.

Examples:

A+B/f

c-dxgti

xt(k-4)x(y-z)

(-b+sqrt (d))/2/a

sumtcos (y+zx3)/7.394 -8
10

Real numbers are stored in floating-point and integers are stored in
fixed point. An arithmetic expression consisting of a real value and
an integer value will require conversion of the integer to floating­
point. For example:

begin reaZ Xi
y :=X+li

y:=X+l.i

~conversion required

~no conversion required

5-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL _.~

-~ EXPRESSIONS (continued)

Some examples of coding generated by arithmetic expressions are
shown below.

I A:

L t :

SII.,ZL
FETR
j;:l'FL ~,}\

Fpqr; ~

FI~rn

!:"5TA
FSTA
F,~ T A

FFl'T
LnA
lNC
FETR
Fl'FL
FSTA

.sp
A,C;+11,3
~,S+7,3
:~,C;+5,3

;(1)

;nENOMl
,TERM
;SUM

IN

:f)ENOM2

TER~:=-TERM*(X/2)A?ICDENOMt+OENOM2)'

FFXT
F~TR

FLI'l3
FL i) A
FNEG
FtXT
LI"')A
L"LA
FETR
FXFl.
FLI)3
FLnA
FDTV
FMlJL
F-1UL

F'LOA
FLnA
FM'JL
Ft")IV
FSTA

FLI)A
FAr')r)

FSTA

.Sp
iI,~+7,3
~,i'!

3,.LP
~,2,3

~, 1
.SF'
2,c;+2,3
~ , 1
1. , 1
1 , ~

1,5+1t,3
2,~+13,3

1 ,2
2,'1
ii!,~ ... 7,3

'-,5+5,3

"'~ '.'I,S+5,3

,TERM

rLITERAL

pc

,DENOM1
;OENOM2

,TERM

'SUM

:SUM

5-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
EXPRESSIONS (continued)

A conditional arithmetic expression contains at least one if clause
with a Boolean expression, two or more arithmetic expressions, and
may contain other sequential operators besides if and then.

Examples:

if g>O then S+3xQ/A else 2xS+3xq

if a<O then U+V else ifaxb>17 then U/V else if kty then v/U else 0

A[i] :=if i<j then B[j]+i
else B[j+l] i

The subscripts of an array element may be given as simple or condition­
al arithmetic expressions whose value is an integer. The length of a
string or the dimensions of an array can be declared as simple or con­
ditional arithmetic expressions evaluating to integers if the values
of variables of the expression are defined when the block is entered.

Examples

A [n] :=A [if y<O then n else n+5]i

real array A [i,j,k]i

5-3

Boolean Expressions

A Boolean expression is a rule for computing a logical value
(true or false).

Simple Boolean expressions are collections of logical values, Boolean
variables and functions, and logical and relational operations. Re­
lational operations consist of simple arithmetic expressions and re­
lational operators.

Example: Assume that A :=true; B :=true; W :=2; X :=4; Y :=6;

STATEMENT LOGIC VALUE

D :=not A;
E :=W>X;
F :=W<X and W<Y;
G :=W~X and not A;
H :=not A or W=X;
J :=not (A and W>X);
1---

(true and true)
(true and false)
(false or false)
(not ((true and false)

false
false
true
false
false

i.e., false»true

A conditional Boolean expression contains at least one if clause and
two or more Boolean expressions, and may contain certain other se­
quential operators besides if and then.

Examples:

lif k<l then s>w else h<c

if if if a then b else c then d else f then g else h<k

5-4

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

EXPRESSIONS (continued)

Pointer Expressions

A pointer expression is a rule for obtaining a pointer to an address.

A simple pointer expression is a pointer identifier or a subscripted
pointer identifier, which may be combined with integer numbers or
arithmetic expressions that evaluate to an integer using the arith­
metic operators + and -

A conditional pointer expression contains at least one if clause, two
or more pointer expressions and may contain other sequential operators
besides if and then.

A pointer expression is often followed by the pointer operator + and
a based variable to which the expression points.

Examples:

P+ a

(p + 2) +n

if k<l then (p + i)+a eZse (p + l)+a

p [i]+a

5-5

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

EXPRESSIONS (continued)

'Designational Expressions

A designational expression is a rule for obtaining the label of a
statement.

A simple designational expression is a label identifier, an unsigned
integer used as a label, a subscripted label identifier or a sub­
scripted switch designator. The subscript of a label identifier or
switch designator evaluates to an integer value.

A conditional designational expression contains at least one if
clause, two or more designational expressions and may contain other
sequential operators besides then and if.

Examples:

17

p9

Choose [n -1]

TOWN [if y<O then N else N+l]

if Ab<c then 17 else q [if w~O then 2 else n]

go to if aVb then tag;

5-6

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ._~
~~

STATEMENTS

The statement is the basic operating unit of ALGOL. There are six
kinds of statements:

NAME EXAMPLE

assignment i :=i+l;

condi tiona 1 (i f) if i=O then go to 25;

transfer (go to) go to labelxx;

loop (for) for i :=1 step 1 until n do ...

procedure call somefunction (x);

dummy tag: i

Statements are executed consecutively unless the sequence is broken
by an unconditional transfer (go to statement) or by some condition
that causes a statement sequence to be skipped (if statement). State­
ments may have one or more labels.

Basic statements are often combined to form more complex units of
operation, for example, the following combination of assignment, con­
dition, transfer and looping statements:

Ef i >0 then for 1 :=1 step 1 until n do A[i] :=B[i]+i else go to 25;

Each statement within the combination of statements may be labeled:

.----------
Tl:if i>O then T2: for i :=1 step 1 until n do
T3: A[i] :=B[i]+i eZse T4: go to 25;

A further level of freedom in statement sequencing is available. A
group of statements can be delimited by begin and end keywords form­
ing a compound statement. A compound statement is a block in which
there are no declarations.

6-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL _. ~
~~

STATEMENTS (continued)

'r,­
I

begin integer i,ki real Wi
for i :=1 step 1 until m do
for k :=i+l step 1 until m do

begin w :=A[i,k] i A[i,k] :=A[k,i];} Compound
A[k,i] :=w Statement

end
end Z

l
Block

Note that a compound statement can contain other compound state­
ments.

Conditional expressions, which may be used wherever a simple ex­
pression can be used, provide another degree of freedom. Such
constructions as:

I go to if·· ·1

and ~! if~.~ t~ • • e La e ••• then • ••

are permitted in ALGOL.

6-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Assignment Statement

Format:

where: v is a variable or list of variables.

e is an expression.

Purpose: To assign the value of the expression on the righthand side
of the statement to the variable or list of variables on the
lefthand side.

Notes: 1. v may be a subscripted variable.

2. v may be a procedure identifier if the assignment state­
ment appears in the body of the function that defines
the procedure identifier.

3. A list of variables on the lefthand side has the format:

1:-e1 :=:-e2 := •.. :-en :=~; I
Variables in the list need not have the same data type.
The expression is converted to match the data type of
each variable, starting at the rightmost. Conversion
is made according to the rules given below.

4. The data type of the expression e must be identical to
the data type of the variable v except for the follow­
ing possible conversions:

tnteger :y := boolean ~; I
The boolean expression is evaluated to 0 or 1. A full
word of either O's of lis is assigned to v.

jinteger v := real ~; I

The real expression is evaluated. The value assigned
the variable is entier (~+0.5). See built-in function
entier.

6-3

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
Assignment Statement (continued)

integer v :~ pointer :,1
A pointer expression evaluates an integer that is one
word long and points to some location. The pointer
value can be assigned to an integer variable if the
variable has the default precision of one word.

lbOOlean v :~ integer e,

The integer expression is evaluated.
has a value of 0, the value faZse is
variable; otherwise, the variable is
true.

!POinter ~ :~ integer ~'I

If the .expression
assigned to the
assigned the value

The value of the integer expression is assigned to the
pointer variable. The integer must be of default pre­
cision (one word).

f~al ~ :~ integer e;

The integer expression is evaluated and the decimal
point is placed after the last digit when assigning a
reaZ value to v.

rstl'ing ~ :~ integer ~;J

The integer expression is evaluated and assigned to
string v as a string of characters, all of which are
digits.-

Examples:

[S[a,k+21 :~3-arctan (Sxzeta),

6-4

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL _.~
~~

Assignment Statement (continued)

The lefthand subscript is first evaluated; the arithmetic
expression is evaluated and assigned to S[a,k+2].

''-1 B-O-O--: =-b->-c-a-n-d-d-;

I
A truth value is assigned to Boo when the Boolean expression
b>c and d is evaluated.

-r-Ip--: =-a-d-d-r-e-s-s- (f) ;

The pointer p is assigned the address of f.

[t-F-o-r-m-u-l-a-:-=-d-i-f-f-/-(x - 2) i

Formula is a function procedure and the assignment state­
ment appears in the body of the function.

An example of coding generated by a real arithmetic assignment state­
ment is:

REGTN
D:=(,.(Tl·~~EGA'A')·(1+(T2.0~EGA)A2'7

FETR
FI.03
FLOA
FLf'lA
FMUL
FMIJL
FE'~T

~11~ZI..

FtTR
FlCFL
FAOO
FLOA
FLnA
FMUL
FMIJL
FET~
FlCFL
FAI)O
FMUL
FSTA

.sp
'~,!;'2,3

1,$.. '6,3
~ , 1
1 , 1

'~, 2
1,2
1,5. 4 ,3
~,~+16,~

1,~
~,t')

~, 1
VI,!
1,2
~,S.2~,3

: T 1
:OMr:GA

,T:2
,OMEGA

6-5

An example of coding generated by a boolean assignment statement
is:

Lr)A

LOA
FETR
FVFI_
FpqC
FI~. f)j

FLnA
Ft.JI:G
FA!)!)
FA~S

FLOA
F«;I.lRli
FF.VT
'\1.1 ac: L
Fr:T~

I=' v Fl.
FLOA
FNFG
FA 1)1)

FA~C;

F ~IJB,*
FEn
5U~CL.

A"'''
FETR
F lCFL,
FL.')A
FNEG
FAI)l)
FARS
FSII~li

FEltT
t;!lRCL.
ANt)

FETR
F)(FI~

FV'lA
F"JEG
FA')r'l
FA~C;

FSIl~!:t

FEleT
sll~CL

'1\111
STA

:3, • LP
,~,~,3

~,~

2
.51'
1 , S ... 1 ~ , ;i
~,~

1 "'J
[~, ~

'-,S+2(~,3

'-,fJI

t , t

~,~

1,'H1'-,3

~,~

1,S.14,3
JI,'"
1 , ~
~,~

2,'"

11,~

1,5+1 6 ,3
~,~

1 , '"
~,:?I

(,~

'-,2
2. 1
',S+:24,~

1LITERAL

,A8C

,ANGTOLER

,seD

,ADC

,ANGLES

6-6

for Statement

Format:

where:

Purpose:

Notes: 1.

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

f

J for cv :=list do ~;

cv is a controlled variable, 'i.lThich may be subscripted.

list is a list of values the controlled variable can
assume.

~ is a simple or compound statement.

To permit repetitive execution of statement s with the
controlled variable set to values specified by list.

list may be a simple list of values or expressions to
be evaluated. In addition, list can include for
clauses. A for clause contains either keywords step
and until, or the keyword while.

for i :=1 step 1 until 10 do A[i] :=iti;

t t t
initial increment final
value value limit"

I
----'

The example above is equivalent to the simple list:

.!,O

for i :=1,2,3,4,5,6,7,8,9,10 do A[i] :=iti;

Values of the list are assigned to i beginning with the
leftmost value and terminating with the rightmost value.
When the list is exhausted, the next statement in logi­
cal sequence will be executed.

A while construction is shown in the statement:

~op j :=0, 1, vx2 whiLe v<n do m:=j/5,

Note that the while construction is included as part of
a simple list. A list may include any of the clause
constructs. For example:

~op j :=i+k,2,i+2,1 step 1 untiL n, x whiLe xto do ••.
..

6-7

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL 0
~~

for Statement (continued)

2. The statement following do may be a for statement or a
compound statement that includes a for statement, i.e.,
for statements may be nested.

3. Parts of a for statement may be labeled, but an at­
tempt to transfer to a label within a for statement
from outside the statement will cause an undefined
result.

Examples:

for I :=1 step 2 until n do
XlI] := X[I]t2+I;

for k :=0, n do u[k] :=u[k]/2;

for a [bottom] :=min (a [bottom] , a[top]) while top>bottom do
begin top :=top-l;

bottom :=bottom+li
end:

6-8

for Statement (continued)

An example of coding generated by a for statement

, FOR M:=t STEP t U~TIL ~ no NFACT:.M.~FACT'

G41

G51

G31

FEltT
,I.IIHL
FETR
Fl(FL.
FL03
FSTA
FE'l(T
1..1)'
L.OA
,"ETR
.... XFL
,e-XT
!4U"7.L.
FETR
FxFL
FLO'
FSUS
FEltT
"'1 !'I v
JMP
F£TR
"DO
frST'
FEXT
.JS~

G3
J!;R
G~
J~R

G2
MOV
FETR
FL03
Ft. nA
FLOA
FMUL
FSTA
FEltT
,JSR

0,0
.5P1
0,5+17,3

1. t
2.5+17,3
~,QI

'~.0.SlC
G5

(tJUMPI

.sp
0,s+11,3
1,S+15,3
0.1
1,5.15,3

'JUMPlt

IN

r (1)

1M

. , S 4 VE

,M
,NFACT

,NFACT

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

is:

An example of coding generated by a for statement using strings
is shown on the following page.

6-9

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
[or Statement (continued)

J EXTERNAL STRING SJ
J EXTERNAL PROCEDURE PRINT;
; fOR S

G3:

G4:

G5:

G2:

I PRINT

J END

Gl:
FS1=

SP=
LP:

ST:

: = "YOU" .. "M E" .. "THEM " DO

JSR
S
LP+0
JSR
G2
JSR
S
LP+2
JSR
G2
JSR
S
LP+4
JSR
G2
JSR
Gl
MOV

(S)J

LOA
STA
JSR
PRINT
2
S
002602
LOA
JSR

JSR
o

100000
ST+0*2
001403
ST+2*2
001002
ST+4*2
002004

.TXT
• TXT
• TXT

.END

@MOVSTR
J S
;LITERAL

@.+ 1

@MOVSTR
IS
;LI TERAL

@.+1

@MOVSTR
JS
ILITERAL

@.+1

@JUMP

3 .. 1 J SAVE

3 ... SP
1 .. S+0 .. 3 ; TEMPORAr.1Y
@CALL

IS
I STRING EXTERNAL

1 .. S+0 .. 3 J RETURN
@JUMPI

@RETURN

+Byte pointer to string
+String specifier' giving current and

maximum lengths. See Appendixes A
and B.

"YOU'·
"ME"
"THEM"

6-10

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

go to Statement

Format:

where:

Purpose:

Notes:

Examples:

,go to 10;

d is a label or designational expression.

To transfer to the statement having the label d.

1. Transfer cannot be made from outside a block into the
block. Transfer can only be made to labels defined
locally or globally in the block containing the go to.

2. Designational expressions may be:

a. Labels with a variable subscript.
b. Switches.
c. Conditional expressions.

3. If the value of a switch or a label subscript expres­
sion is undefined, no transfer occurs and the statement
following the go to is executed. (A switch is undefined
if the value is greater than the number of labels de­
clared for the switch. A label subscript expression
is undefined if it evaluates to a subscript for which
there is no matching label.)

Transfer is made to the statement labeled 10.

[gO to a [iJ

i is evaluated and transfer is made to the subscripted label, a[l]
a [2] ••

Igo to if sin(x)<O.25 then 25 else MLABEL,

Transfer is made to the statement labeled 25 if the sine of x is
less than .25. Otherwise, transfer is made to the statement labeled
MLABEL.

6-11

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~

-~
go to Statement (continued)

switah F :=labl, xl, lab2, x2;

go to F[j];

If j evaluates to 1, transfer is made to the statement labeled labl;
if j evaluates to 2, transfer is made to the statement labeled xl,etc.

if Statement

Format: if be then UCi

if be then uc else C;
if be then uc else.~.

where: be is a Boolean expression

Purpose:

Notes:

uc is an unconditional clause, which may be a statement,
a-compound statement or a block, but cannot contain an­
other if statement.

c is any clause, which may be a statement, a compound
statement or a block.

To provide conditional transfer of program control. If
Boolean expression be is true, the unconditional then
clause is executed.--If Boolean expression be is false,
the next statement or block after the then clause is ex­
ecuted. This may be either the next statement or block
in the program or an else clause.

1. Blocks and statements contained in then or else clauses
may be labeled.

2. Since else clauses may contain conditional statements,
it is possible to set up a series of conditions for
transfer of program control. The series terminates when
a Boolean expression is true, causing a then clause to
execute.

6-12

if Statement (continued)

Examples:

~f i=O then go to END PROG;

kf j <kt then
begin
k :=factor [j]+i; j :=j+i;

1 ab 7: i : = i + 1; S [i] : = j; got 0 5;

1
end else go to 15;

lif g<OAh<O then isign:= -1 else
lif g>OAh<_O __ t_h_e_n __ iSign:= +1 else 0;

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL .~
~~

An example of coding of an if statement, containing a go to state­
ment is:

~ '\j r') t , ,~

~('1v~ .~.}I

r~G"JUMPC

r; t

P Q PH (" C; 1lJ A ~ t '1 J: r. 0 T 0 f\I F. It TeA SEE N n J

JSR :lC4LL
P~PJT ,
I.P+4
~~'~:P2

JSR 'JUMP
L~

,LITERAL
ISTG'TNG

6-} 3

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
IDENTIFIER DECLARATION AND HANIPULATION

Programmers must declare the characteristics of identifiers to be
used. Keyword declarators and certain bracketed information are
used to define identifier characteristics.

The major characteristics that can be declared for identifiers are
their shape, storage class, and data type. It is also possible to
declare precision for certain identifiers.

There are three possible identifier shapes -- scalar, array, or
procedure. Arrays and procedures must be declared with the array
declarator or the procedure declarator. Scalars are declared by
default.

There are seven possible identifier data types -- integer, real,
complex, boolean, string, pointer, or label. An identifier must
be declared with the declarators real~ integer~ complex~ boolean~
pointer or string. A label declarator is only required for identi­
fiers that are formal parameters.

There are five possible identifier storage classes -- local, own,
based, value, and external. Identifiers must be declared with the
own, based, or external declarator. Local storage is assigned by
default. Value is assigned to constants. A value declarator is
only used for formal parameters.

Maximum length of strings must be declared, and integer or real
identifiers can be declared with the number of words of precision.
By default, integers are stored in one word and real data in two
words. A complex datum is stored as two real data.

Appendix A contains a chart showing the relationships of the identi­
fier characteristics.

7-1

Data Types

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

There are five data type declarators, which are mutually exclusive.
Data type declarators are applied to simple variables that return a
value of the type declared; to arrays whose elements return values
of the type declared; and to function procedures that return a value
of the type declared.

DATA TYPE
DECLARATOR PURPOSE

real Declare a variable, array or
procedure that returns a nu­
meric value that is not an
integer and does not have an
imaginary part.

integer Declare a variable, array, or
procedure that returns an in­
teger numeric value.

complex Declare a variable, array, or
procedure that returns a com­
plex value.

boolean Declare a variable, array, or
procedure that returns a truth
value of true or false.

string Declare a simple variable,ar­
ray, or procedure that returns
a character string value.

pointer Declare a variable, array, or
procedure that returns a pointer
as its value.

EXAMPLE

real n, pi, mi
real array a, b, C[i,j]i
real procedure Xi

integer array A[i,J]i
integer i,Ji

complex Xi
complex array C[5,5];

boolean zero, nosolutioni

string (20) char;
string procedure sym (X,y)i

pointer array LOCUS [i];
pointer pI, p2, p3i

Each boolean or pointer identifier is stored in a single word. By
default, each integer identifier is stored in one word and each real
identifier is stored in two words. The real and imaginary parts of a
complex variable are each stored as a real variable, i.e., each part
requires two storage words.

The programmer can specify a different number of words of storage
for integer or real identifiers.

real (1) Xi
integer (2) Yi
real (3) Zi

14
Single-word precision integers must have values in the range ±2
they are not checked for overflow. Multi-word integers and real
numbers are checked for overflow, and an error message is issued.

7-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .~

-~
Arrays

An array is declared with the following characteristics:

DATA TYPE

SHAPE

DIMENSIONS

BOUNDS

PRECISION

peal, integep, boolean, stping, complex, or pointep.
If type is omitted, peal is understood.

appay

Enclosed in brackets and separated by commas.

Up to 128 dimensions are permitted.

Upper and lower bounds for each dimension may be
specified by arithmetic expressions. The lower bound
must be less than the upper bound. Examples:

A[2:n] lower bound is constant;
upper bound is a variable.

B[-2:l5] constant upper and lower bounds.

C[i,j+2] only upper bounds are specified.

D[25,50] Lower bound is 0 by default.

If an expression containing a variable is
used in array dimensioning, that variable
must be global to the block in which the
array declaration appears. The outermost
block of a program must have constant ar­
ray dimensions, unless it is a procedure
with array formal parameters.

Subscripts are checked against array bounds
and an error message occurs if the subscript
exceeds the possible bounds.

An integer enclosed in parentheses may optionally
follow an integep, peal 3 or complex data type.
The integer specifies the number of l6-bit words
in which each element of the array is to be stored.
The default values are one word for integep and two
words for peal data.

Single-word precision integer arrays must have
values in the range ±2 l4 ; they are not checked for
overflow. Multi-word precision integer arrays and
real arrays are checked for overflow.

An integer enclosed in parentheses must follow a
stping data type. The integer specifies the maximum
number of characters that each element of the array
may contain.

7-3

Example:

real, (3)

t t

data 3-word
type precision

of each
array
element

array

t

array

a, b, c, d

t

identifiers
of arrays

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

[i, J, k];

t

3-dimensional
arrays of
variable
bounds

The dimension declaration applies to the entire preceding list of
arrays in the example above.

tnteger array ORG [-10;10, 0:20];

ORG is a 21x21 two-dimensional array. Note that negative values
may be used in determining upper and lower array bounds.

Each element of an array is a subscripted variable of the form:

I array_name [subl, sub2, ••• subnl I
where: array name is the name of the array

subl.~.subn is a list of subscripts identifying the array
element.

For example:

jA[251 B[i,jl C[x+lOl
.
could all be array elements.

An array element has the effect of a simple variable. The sub­
scripts are evaluated and if necessary converted to type integer
by the formula: en tier (subscript_value +0.5).

The address of each array element may, if desired, be accessed by
pointer manipulation.

The most common use of arrays is in loop manipulation. See for
statement.

7-4

~ ~ NR~~~~L;~L ~
~ MANUAL __ ~
~~

Arrays (continued)

An example of coding generated by bit string manipulation of integer
arrays is:

; INTEGER ARRAY 1[10]; INTEGER R;

SlIBO
JSR
3
SP+0
010021
SP+10
LP+0

; INTEGER ARRAY

JSR
3
SP+3
010021
LP+l
LP+2

. I[RJ . - I [R+ 1 J " .-
JSR
2
SP+ 11
SP+0
SP+2
LOA
LOA
INC
JSR
2
SP+12
SP+0
SP+13
JSR
2
SP+14
SP+3
SP+2
JSR
2
SP+15
SP+Ci.)
SP+14
LOA
carl]
LOA
ANO
STA

0,,0
@ARRAY

J[-5:+5];

@ARRAY

; I
;INTEGER LOCAL ARRAY
; TEMPORARY
JLI TERAL

JJ
JINTEGER LOCAL ARRAY
JL I TERAL
;LITERAL

ANO NOT ![J[RJ J.;

@SUBSCRIPT

; TEMPORARY
,; I
;R

3". SP
0, S+2, 3 JR
eh 0
@SllBSCRIPT

,; TEMPORARY
J I
J TEMPORARY

@SllBSCRIPT

J TEMPORARY
JJ
J R

@SUBSCRIPT

; TEMPORARY
J I
J TEMPORARY

0" @S+ 1 5" 3 J TEMPORARY
'h0
1" @S+ 12" 3 ; TEMPORARY

0" 1
1, @S+ 11,3 ; TEMPORARY

7-5

Character String Variables and Arrays

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL .~

-~
A character string variable must be declared with the string data
type. All string variables (except formal parameters) must include
the maximum length of the string in the declaration.

Example:

I string (10) ai

where: a is a string variable whose value starts at character 1
and can be up to 10 characters in length.

The first character position of a string must be 1.

The maximum length applies to all string variables in the declaration.

string (20) g,h,ii

g,h, and i all have a maximum of 20 characters.

The value of a string variable is a character string. In input,
string values are delimited by accent marks as shown:

!'$25.00 FOR EACH.'

String values may be nested to any depth.

I 'This 'string~ is nested.~

Accent marks may be transliterated as quotation marks ("string").

When a string is referenced, one or more of the characters of the
value may be manipulated. Example:

string (8) Xi ~declaration of x

Assume the current value of x is ABCDEFGH.

x(l,8)
x(l,3)
x(S,8)
x(4,4)

~references the entire string ABCDEFGH
~references ABC
~references EFGH
~references D

7-6

~ ~ .. NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~

-~
Character String Variables and Arrays (continued)

Thus, the first number gives the starting character within the string
and the second gives the number of characters desired.

An array of character strings can be declared. Each element of the
array must have the same maximum length. For example:

!string (2) symb[l:lOO]; +each element of symb has a maximum
of two characters.

Each element of a string array can be referenced; however substrings
of array elements cannot be referenced. For example:

string (5) char;
string (5) CHAR[6,lO];

y :=char (1,3);

x : =CHAR [1 , 3] ;

+simple string variable
+string array

+[1,3] represents a substring of
characters 1 through 3 of
char.

+[1,3] represents element CHAR[1,3]
of the array CHAR.

Two built-in functions are commonly used in string manipulation.
These are the length function and the index function. The length
function has a string variable as an argument and returns the number
of characters in the string as a value. The index function searches
a specified string variable (argument 1) for a given character con­
figuration (argument 2) and returns as a value the starting location
in the string of the first character of the configuration.

Examples:

Istring (4) v;
iv :='abcd ~;
I

i : =length (v);
j :=index (v, 'cd');

+i :=4;
+j :=3;

7-7

Character String Variables (continued)

Some examples of how strings may be used are:

Pattern Match and Replacement

i :=index (a, .. ,);
j :=index (a (i+l), 'i);

comment search string a for some character
delimited by blanks;

for k :=i+l step 1 until j-l do
a(k,k) := -"*' i

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

comment replace the character with an asterisk character;

Editor Command Table Lookup

string (10) commands;
switch S :=Top, Search, Append, Insert;
ommand3 ~= 'TSAI' ;

loop: i :=index(commands, (Readchar»;
comment : Readchar is a function" that reads

a character;
if i=O then fail else Sri];

error (... illegal command~);
go to loop;

7-8

~ ~-- NOVA ALGOL 0:
~ REFERENCE ~
~ MANUAL __ ~

-~
Pointers and the based Declarator

Pointers, based declarators, and the built-in address function
represent three extensions to the ALGOL language that provide close
programmer control over manipulation of addresses of variables.

These extensions allow the programmer to indirectly reference a pro­
gram variable by a pointer.

The programmer must declare at least one pointer variable and one
based variable of the data type of the variable whose address is
to be manipulated. Using the address function, the pointer is then
set to point to the address of some program variable.

The based variable has all the declared characteristics of the pro­
gram variable but it is not stored in core when storage is allocated
for the block. Once the pointer is set to an address, the identifier
of the based variable can be substituted in statements manipulating
the address. The pointer must appear in these statements as shown:

begin reaZ X,Zi
based reaZ Yi

pointer Pi

p :=address (X)i

p+y : =p+y+ 2 i +statement is equivalent to x :=X+2i

The based variable can be considered a template of the program var­
iable. As long as the pointer is set to x, the pointer and based
variable can be used to modify the address. In this way the program­
mer can perform address modification and manipulation at very little
cost in code generation.

The pointer can be reset to z, and the based variable can then be
used in a similar way, representing program variable .z.

7-9

-~-- NOVA ALGOL 0.
~ REFERENCE ~
~ MANUAL .. ~
~~

Pointers and the based Declarator (continued)

Example:

begin real
pointer Pi

X,Zi real based Yi +x,y, and Z are all real. y
is declared based. p is de­
clared a pointer

11: p :=address (x) i

22: p~ :=p~+2i

33: p :=address (z) i

44: p+y :=p~+3i

+pointer p is assigned the
address of x.

+based variable y is superimposed
upon x. Statement 22 is the
equivalent of x :=X+2i

+p is reassigned the address of z.

+based variable y is superimposed
upon z. Statement 44 is equiv­
alent to z :=z+ 3i

The program variable referenced by the pointer can be a simple var­
iable, an array, or an element of an array. For example:

~egin pointer ai integer array bi integer ii
based integer Xi

a :=address (b[i])i

b [i+l] :=a+xi

end

7-10

+pointer a is assigned the address
of array element b [i];

+x is effectively superimposed up­
on b[i] in the expression, which
is equivalent to: b[i+l] :=b[i]i

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL_~

-~
Pointers and the based Declarator (continued)

Pointer arrays may be declared and pointer expressions may be used
in address manipulation. For example:

begin pointer Ai real Ci based real bi

A :=address (C)i

(A+l)-+b :=OJ +location c+l is set to 0

It is possible to assign an address to a pointer and then sub­
stitute a based variable without using the address function.

'b . i eg~n pointer array A[n]i
pain ter array B [n]i
integer ii

lbased
i based
I
I

p : =A [5]-+B [4];

y :=p-+ii

+pointer array element A[5] points to a
based pointer array element B[4]. The
pointer value assigned to p can later point
to some other based variable, such as i.

Note: When using a based array, it is assumed that the pointer
always points to the first word of data in the array, e.g.:

based array x[-1,5] if p -+ i[O]

7-11

p -+ I i [-1]

i i [0]
i----i

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL ... ~

-~
Pointers and the based Declarator (continued)

The diagram of the arrays of pointers indicates the assignment
of p:

A

--~~~~
B [-------------1 some locatio~ o --,0---

1 _._---
2

----3--

4
5

n

n ---,."-

Use of the pointer feature can be shown in list processing.
Suppose the programmer wishes to search a singly threaded list,
list_x, for a location, key.

begin pointer list_x;
based integer i;

p :=address (list x) ;

+pointer and integer are interchangeable

LOOP: go to if«p:=p-+i)=O) then EXIT +if key does not exist
else if (p+l}+i =key then EXIT +if key is found
else LOOP;

EXIT: ... ;
--_ .. _----

7-12

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~
~~

Pointers and the based Declarator (continued)

A threaded list containing backward, and forward pointers can be set
up using pointer referencing. Assume in the following example that
allocate is a function that allocates a new element consisting of
one or more words.

p :=allocatej
p-ri :=list_lj

(p+l}-ri :=OJ

if list 1 ~ 0 then

comment: allocate a new word elementj
comment: thread forward pointer (word O)

of new elementj
comment: set backward pointer (word I)

of new elementj

begin (list l+l}-ri :=pj comment: backward pointerj
list-l :=pj

end comment: list 1 may be OJ if not, pointers
thread the listj

Use of pointers may seem awkward in source language but is recom­
mended for programs where efficient code is desired.

Labels

A label is an unsigned integer or an identifier. Blocks and state­
ments, including statements within compound statements, may have
labels. The label is delimited from the block or statement by a
terminating colon. A block or statement may have more than one
label.

A: b,egin

15: al: x :=x+l;

go to 15;

L--
~end

Unlike other identifiers, a label does not require a special
declaration; its appearance before a biock or statement constitutes
a declaration. A label is declared in its smallest enclosing block.

7-13

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

~~

Labels (continued)

B: ,--- begin real Si

A: begin real Z; +-A (like s) is declared in Block B
and is valid in both blocks A and
B.

x: Z :=z/s;
.
•

end A

end B

x(like z) is declared in block A
and is valid only in block A.

A dummy statement may be written in ALGOL. A dummy statement
provides only a label to which a transfer can be made. For ex­
ample, a transfer can be made to a labeled end delimiter terminat­
ing a compound statement or block.

begin

if j ~ 0 then go to Z;

Z: end +-labeled end

A label may be subscripted with a simple integer subscript. If a
block contains ten labels, a[l[, a[2], ••. a[lO],execution of the state­
ment:

[go to a [j 1,

causes j to be evaluated and transfer to be made to the correspond­
ing statement label. If j evaluates to a value outside the range of
statement labels, e.g., 25, then the next consecutive statement after

7-14

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~

-~
Labels (continued)

the go to is executed.

Any unsigned integer may be used as a label subscript. However, the
amount of storage reserved for subscripted labels will be large enough
to contain all subscripts smaller than the largest subscript. For ex­
ample, a block having two labels named b[l] and b[lOO] requires 50 times
as much storage area for labels as a block having two labels b[l] and
b [2] •

Switches

Switches are variables that identify a number of alternate labels to
which program control may transfer. A switch is declared with a list
of labels and designational expressions. The position occupied by a
label or designational expression in the list determines whether that
label is the one to which transfer is made.

Examples:

I.switch TESTPROG :=a,b,if x>O then i else d,10,5,c,8,op,3,y3i

Switch TESTPROG is defined with 10 alternate labels or expressions
evaluating to a label, where a has a position value of 1 and y3 has
a position value of 10. If the following statement is encountered
during execution:

Igo to TE~TPROG [j I,

j is evaluated. If j=2, transfer is made to label bi if j=3, trans­
fer is made to either label i or d, based upon the evaluation of the
designational expression.

switch SF :=a,bl,bw,c,d,7i +declaration of switch SF
, . .

go to SF [i]i +transfer to one of the labels

In this example i will be evaluated. If i=l, transfer is made to the
statement labeled a, if i=2, transfer is made to the statement labeled
bl, etc.

If a switch variable evaluates to a value that is outside the range
of the switch, the next statement after the go to is executed. For

7-15

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

Switches (continued)

example, in the second example, on the previous page, there are
6 possible values for i--l,2,3,4,5, or 6. If i evaluates to a
larger integer, the next statement after the go to is executed.

own Declarator

Storage for a block is dynamic. Identifie~s declared within a block
are allocated storage when the block is entered, and storage is re­
leased at the time of exit from the block. If a block is entered
more than once during execution of a program, variables will be un­
defined each time the block is entered.

The own declarator allows the programmer to specify a variable or
variables whose value at the time of exit from the block will be
retained. When the block is subsequently reentered, own variables
are defined.

Example:

a: begin integer i, j; own real Hs., s;

end

Each time block a is entered, variables i, and j are undefined.
However, after the first execution of a, variables Hs and shave
a specified value each time a is entered, the values being that
of Hs and s at the time the block was last exited.

external Declarator

Variables may be external to a given program. Such variables must
be stored in an external area by assembly. They can be used in a
given program if the external variable is declared external in the
program in which it is used.

Example:

al: begin external integer k;
in teger i, j;

end al;

7-16

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

Literals

Literals are identifiers that are declared with a given value. They
provide a means of generating constants with names, so code will be
efficient and all occurrences of a constant may be modified in one
place. For example:

begin
literal MAX(lOO)i
literal size(MAX)i
integer array X [0 :MAX]i

+100 will replace all occurrences of MAX
in the block. If the parenthesized val­
ue is changed, all occurrences of MAX
will be changed.

Literals adhere to block structure. A literal declared in an outer
block will be local to that block and global to all inner blocks in
which the literal declaration is unchanged.

An identifier declared with a literal value in an outer block can be
redeclared with another value in an inner block.

begin literal R(O)i

begin literal Z(O), R(l)i

Any legal value may appear in a literal declaration.

begin literal y(true), s("A-l023")i

7-17

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Literals (continued)

An example of coding and use of literals is:

J LITERAL PIC3.t4159) .. F'REQCl) .. F'LAG13C100R2) .. F'LAGIo4C10R2H
J LITERAL PHASECPI);
J INTEGER I; REAL (4) XJ
J I:=I+F'REQ;

LOA
LOA
INC
STA

,; X:=Xt5+It2J

; END

F'ETR
FPRC
FLOA
FALG
FEXT
LOA
LOA
FETR
FXFL
FMPY
FEXP
FEXT
MOV
MOV
SLJBO
MPY
FETR
FXFL
F'ADO
FSTA

3 ... SP
0 .. S+0 .. 3

0 .. S+12J.. 3

4
0 .. S+ 1 .. 3
0 .. 1

; I

J I +literal is "remembered"

JX

;LI TERAL

;X

7-18

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~
~~

PROCEDURES

A procedure is a block of code that is executed only when it is
called from another block and which returns to the other block
when procedure execution is complete. There are two kinds of pro­
cedures and procedure calls.

A procedure can be called by a procedure statement in the calling
block. The procedure executes and returns to the statement fol­
lowing the procedure statement. Such an ALGOL procedure is similar
to subroutines of FORTRAN and other compiler languages.

A procedure can be called by a function reference contained in a
statement in the calling block, for example in an assignment state­
ment. Such a procedure returns a value of a given data type to the
point at which it was referenced. Such an ALGOL procedure is similar
to functions of other compiler languages such as FORTRAN.

Procedure Declarations

The declaration of a procedure consists of defining:

1. The procedure identifier.

2. A procedure data type (if the procedure identifier represents
value, i.e., a function procedure.)

3. A list of formal parameters (if actual parameters are to be
passed to the procedure when it is called.)

4. Specification of characteristics of the formal parameters.

5. The body of the procedure, which consists of a simple state­
ment, a compound statement, or a block.

Items 1 to 4 constitute the heading of the procedure.

The usual rules of local and global identifiers apply to procedures,
i.e., procedures can contain other blocks. An example of a pro­
cedure declaration is:

r rea Z pro oe dure

_____ reaZ

arcsin(x)i
Xi
arcsin :=arctan (x/sqrt (l-xt2))i

8-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Procedure Declarations (continued)

The procedure identifier is arcsin. Arcsin is a function that
returns a real value. There is a single formal parameter x,
which is specified real. The statement body consists of the
single assignment statement.

Below is an example of a declaration of a procedure that is not
called as a function.

procedure innerproduct (a,b,n, sigma);
comment: compute innerproduct of vectors a and b with
n components each. Store result as sigma;

array a,bi integer n; real sigma;
begin integer k;
sigma :=0; block within innerproduct
for k :=1 step 1 until n do

sigma :=sigma +a[k]Xb[k] end
end innerproduct

Note that in the example above the procedure innerproduct contains
a begin block. Whether a block is a begin block or a procedure
block, the rules for local and global identifiers are the same.
In the example, integer k is local to the begin block and is un­
defined in the outer procedure block. Arrays a and b, integer n,
and real variable sigma are global to the begin block.

Many procedure declarations include formal parameters that are re­
placed by actual parameters when the procedure is called. However,
procedures need not have parameters; for example, a procedure that
generates a random number would not require that parameters be pas­
sed.

A procedure, like a variable, must be declared in the block in which
it is used (that is, called). This means that the calling block must
include the procedure declaration, including the full text of the
procedure body, as part of the declarations at the beginning of the
block, except under the conditions noted in the next section.

All ALGOL procedures are recursive and reentrant.

8-2

~ ~-- NOVAALGOL ~
~ REFERENCE ~
~ MANUAL. ~

~~

External Procedures

The declaration of a procedure can be compiled as a separate entity.
Such a procedure is called an externaZ procedure since it is not
declared in some other block.

To be called from some other block, the name of the procedure and its
externaZ characteristic must be declared in the calling block. For
example:

CALLING BLOCK

begin reaZ Xi

integer Yi
externaZ reaZ procedure arcsini

z :=X X arcsin (x) i

PROCEDURE

reaZ procedure arcsin (x) i
reaZ Xi

arcsin :=arctan (x/sqrt (l-xt2)i

Like externaZ variables, externaZ procedures can be called (used by)
a number of blocks to which they are declared to be externaZ.

Procedure Calls

Calls to procedures are of two forms: procedure statements and
function references.

A procedure statement has the form:

where: procedure_name is the identifier of the procedure

is a list of actual parameters
that replace the formal parameters
given in the procedure declaration.
The list may be empty.

A procedure statement causes transfer of control to the named procedure
and execution of the procedure body using the actual parameters of the
calling statement. When the procedure body has been executed, control
returns to the calling block at the statement following the procedure
statement.

8- 3

Procedure Calls (continued)

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL __ ~
~~

An example of a procedure call is:

begin real a,bi real array A[l:lOOJi

procedure
real

X:

sub one (a ,b ,A) i
a,bi real array Ai

begin

end

sub_one (a,b ,A)

-j PROCEDURE
DECLARATION

+PROCEDURE CALL

CALLING
BLOCK

When sub one has been executed, control returns to the statement
labeled X.

A function reference has the form:

where: procedure_name
121 ,12.2 , •• ·En

is the identifier of the procedure.
is a list of actual parameters that
replace the formal parameters given
in the procedure declaration. This
list may be empty.
indicate that the function ref­
erence is part of a statement.

A function reference causes transfer of control to the named pro­
cedure and execution of the procedure body using actual parameters.
When the procedure body has been executed, a value for the procedure
is returned to the calling statement. An example of a function ref­
erence is:

begin real , Yi
•

reat procedure a:ctan (xl; reat X}

z :=0.215 X arctan (y);

8-4

PROCEDURE
DECLARATION

+PROCEDURE
CALL

CALLING
BLOCK

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ._~
~~

Calling a Procedure by Name and by Value

When an actual parameter is substituted for a formal parameter, the
actual parameter may be some variable whose value when passed will
be altered one or more times in the course of execution of the called
procedure. If so, this is a call by name. The values of certain in­
put variables to the procedures, however, will not be altered in the
course of executing the called procedure. When such a parameter is
passed, it constitutes a call by value.

Formal parameters that are consistently called by value are given
the value specificator in the procedure declaration.

Example:

real procedure tan (X)i value Xi real Xi
tan :=sin (x)/cos (X)i

The actual parameter to be substituted for X in the example is an
input value that is unaltered in computing the tangent function.

Sometimes it is desirable to pass a parameter by value to a procedure
that does not include a value specificator. In that case the actual
parameter in the calling procedure is enclosed in double parentheses
to indicate' a by value assignment. Example:

1---------
Ibegin integer inputi
I

Routine((input»i

When a function identifier is passed as a parameter, the distinc­
tion between by name and by value call is as shown below:

Ibegin external integer procedure inputi

'Routinel (input)i +call to Routinel. The address of

Routine2 ((input» i

input is passed.

+call to Routine2. Function input
is called as the parameter of
Routine2.

8-5

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Formal and Actual Parameters

The formal parameters that appear in a procedure declaration are re­
placed by actual parameters when the procedure is called. Actual
parameters may be values or variables, but they must match the for­
mal parameters of the declaration as shown in the following rules:

1. Data types of actual parameters must be compatible with those of
formal parameters, i.e., the data types must either match or fol­
low the permitted rules of conversion described on pages 6-3 and
6-4.

begin real alpha, beta; integer gamma;

• procedure xx(a,b,c);
real a; integer b, boolean Ci
begin

end

xx (alpha, beta, gamma);

} PROCEDURE
DECLARATION

+call to xx

CALLING
BLOCK

2. The number of actual parameters in a parameter list must match the
number of formal parameters.

DECLARATION

real procedure yy(i,j)i
integer i,ji

CALLING BLOCK

m :=m/yy(l,k); +two actual parameters
replace two formal
parameters.

3. If a formal parameter is an array, it must be replaced by an
actual parameter that is an array having the same or fewer array
elements.

DECLARATION

procedure gnp (fyl,fy5,SET);
integer fyl,fy5;
array SET[15,15]

CALLING BLOCK

begin integer i,j; array 1[1:200];
• .

gnp (i,j,I);

In the example, 1[1] replaces SET[O,Ol, 1[2] replaces SET[l,O],
••• ,1[199] replaces SET[6,10],and 1[200] replaces SET[7,10].

8-6

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .~

-~
Formal and Actual Parameters (continued)

4. A formal parameter that is called by value cannot be a switch
identifier or a procedure identifier. An exception is a pro­
cedure identifier that has no formal parameters and that defines
the value of a function designator. For example, if part of the
declaration of procedure x is:

Iprocedure x (-;~)~ value dd;

and if x is called by:

integer dd; begin

+where FD is a procedure, then FD must have
the form:

rnte~ep ppoaedupe FD; +no parameters

FD := ••• ; +FD is assigned some value.

5. A formal parameter that occurs on the lefthand side of an assign­
ment statement and is not called by value must be replaced by an
actual parameter that is a variable. This rule is a logical ex­
tension of the rules of assignment statements.

6. Specification of formal parameters may place further restrictions
upon the actual parameters associated with them. Such restrictions
must also be observed in the body of the procedure.

7. Any comma in a parameter list can be replaced by the sequence:

) string:(

where: string is any string that does not contain de­
limiters; or : or keywords end or else.

The following declarations are equivalent:

procedure absmax (a,n,m,y,i,k);
procedure absmax (a) size: (n,m) result: (y) subscripts: (i ,k) ;

8. The value of a function is parameter~. The following are equiv­
alent, where x is a function:

x (A) ; or A :=x;

8-7

W#//#.m"////////////~
~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

Specificators of Formal Parameters

Characteristics of formal parameters are specified in the procedure
declaration as shown in preceding examples of procedure declaration.
The parameter rules indicate that there must be a match between data
types of formal and actual parameters and a match on the shape, i.e.,
a simple variable cannot replace a formal parameter that is used as
an array.

The keyword declarators are also used as specificators. In addition
there are the previously described value specificator and the label
specificator, which allows the programmer to pass a label identifier
as an actual parameter.

Procedure Coding Example

An example of coding generated for a procedure is shown below .

.; HEAL (4) PEOCEDlIRE TAN(X); VALUE x; f~EAL (4) X.;

TAN:

• EXTU
• ENT TAN

.NRFL
JSR
FSI
2
SP+0
001044
SP+4
00204it

@SAVE

.; TAN:=SIN(X)/COS(X);

FETR
FPRC it
FLD3 • SP
FLDA 0, S+4, 3
FSIN 0, 1
FCOS 0,2
FD\lO 2, 1
FSTA 2, S+0, 3
FEXT
JSR @RETURN

FS1= 10

SP= 100000

• EN 0

,; TAN
,; REAL PARAMETER
,;X
,; REAL VALUE

';X

,; TAN

8-8

Certain functions are supplied with the ALGOL compiler.

Mathematical Functions

Arguments to the mathematical functions may be real, complex or
integer; each function yields a real or complex value, with the
exception of the sign function which yields an integer value.

FORMAT MEANING AND EXAMPLES
------------·------·fi---. _. -- -._-------. __ .--._---._- .-------.----........ __
abs (exp) Absolute value of expression,

I expo

arctan (exp) I
I

cos

I
I
!
I
I

-1
Principal value of tan (exp) ,
where expression ~ is in
radians.

Cosine of expression exp, where
exp is in radians.

abs (g)t(i/m)

arctan (y-x)

cos (n-pi/2)

I exp (exp) Exponential function of the val-- exp (a[lO])
ue of ~, which is the value of

I
~

i
I
! In (exp)
~

i
! .
jSl.gn (exp)
j

sin (exp)

the Eulerian constant e raised
to exp: exp

e

Natural logarithm of expres- In (a/2)
sion expo

Sign of expression exp, which
is: sign (a/b)

+1 for exp>O
o for exp=O

-1 for exp<O

Sine of expression exp where
exp is in radians.

sin (omega x t)

Isqrt (exp) Square root of expression expo sqrt (abs (x-y»
I.. ___ --L _______________ ---t

9-1

~ ~-- NOVAALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~ BUILT-IN FUNCTIONS (continued)

Transfer Function

The entier function "transfers" a real expression to an integer ex­
pression.

FORMAT

---1
MEAN ING AND EXAMPLES !,

---------- - ---------------------------------- -- --------------------- ----- - ----- - ----------- -----1
entier (exp) The largest integer value not entier (abs(a/b»)

greater than the value of real
expression expo

Address Function

The address function permits assignment of the location of a variable
as the value of a pointer. The function has the form:

[address (~) I
where: v is some subscripted or unsubscripted program

variable.

As described in the section, Pointers and the based Declarator, the
address function is an extension to ALGOL that permits variable ad­
dressing on a level comparable to assembly language programming.
Refer to that section for further information on use of pointers and
based variables with the address function.

Example:

begin pointer Pi

integer ii
• · · p :=address ·

integer array

based integer

(b [i]) i

bi

Xi

+pointer p is assigned the ad­
dress of array element b[i].

The address function permits parameter substitution by name and by
value as do other function references:

begin pointer ai integer array bi integer ii based integer Xi

,
a :=address «b[i]» i

9-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
Length Function

The length function returns as a value the length of its character
string argument. The function has the form:

I length (v) "j
l . __ -=-__

where: v is a string variable

Examples:

I string (10) xyz; I xyz : = 'abcd' ;
Ii :=length (xyz);

I string (20) a,b;
a := 'abcdefg' ;
b :='xxx';
a (length(a)+l) :=b;

Index Function

+The assignment is the same as i :=4;

+The subscript is evaluated and b concate­
nated with a. The assignment is the same
as a := ·'abcdefgxxx';

The index function searches a specified character string for a
specified character configuration. The function returns the start­
ing location of the character configuration as its value. The
function has the form:

I index (~, £) I
where: v is a string variable

c is one or more characters of v

Examples:

string (10) Vi

v:="abcdefg/;
i :=index (v,'bc'); +The assignment is the same as i :=2;

v :='abcdefg";
i :=index (v,'b J

); +The assignment is the same as i :=2;

9-3

Index Function (continued)

string. (100) a, bi

a : = ' ab cde f g" i
b : = ., xxx" i

~ ~-- NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL __ ~

-~

a (index (a, 'c l » :=bi +The assignment replaces cde by xxx. It is
the same as a :='abxxxfg' i

Shift Function

The shift function permits contents of a location to be shifted left
or right. The function has the form:

I shift (~, !::)

where: v is an integer variable or octal literal.

n is a signed or unsigned integer.

The integer n indicates the number of bits to be displaced. A neg­
ative integer indicates left shift, and a positive or unsigned in­
teger indicates right shift. Example:

rx :~~~~!~ (x~:4)i +right shift by 4 bits the contents of x.

Rotate Function

The rotate function permits contents of a location to be rotated
left or right. The function has the form:

l rotate (~, !::)

where: v is an integer variable or octal literal.

n is an integer.

The integer!:: indicates the number of bits to be displaced. A neg­
ative integer indicates left rotate, and a positive or unsigned in­
teger indicates right rotate. Example:

Ii :=rotate (X,-4)i +value stored in i is contents of x left
rotated by four bits.

9-4

Tab Function

The tab function causes horizontal tabulation of the teletypewriter
carriage. The function has the form:

I tab (!!) I
where: n is an integer variable or unsigned integer

The integer n indicates the number of the column to which the car­
riage will move. If n is smaller than the current carriage column,
line feed will occur before shifting to the indicated column.

Example:

output (1, "###", a, tab (10), b, tab (20»;

Page Function

The page function causes a teletypewriter form feed. The function
has the form:

Paging is usually made by value with the function name enclosed in
parentheses.

output (1, "#####.##", a[i,j]);
wri te (1, (page»;

9-5

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

I/O RUNTIME PROCEDURES

Since standard ALGOL was designed to be a language independent of
specific processors or devices, no I/O statements or conventions are
included in the ALGOL specification.

For user convenience, five external procedures are available with
NOVA ALGOL to handle I/O operations. The procedures are simply run­
time routines that can be called by a user program using a procedure
statement.

If the user wishes, he can implement additional I/O features by writ­
ing his own external procedures to handle input and output.

Open a File

Call Format:

Purpose:

Example:

where: fileno is one of the channels (0-7) that
can be associated with a given file.

string is the character string giving the
file name.

The procedure is called to open a file for input
or output.

begin procedure xyz;

open (2,\infilel');

open (3,'testproc');

10-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

Read a File

Call Format:

Purpose:

Input Data:

Examples:

1_ read (fileno, ~); :
where: fileno is the number of a channel (0-7) as­

sociated with the file.

list is a list of input data.

The procedure is called to input data from a file.

Input data may be numbers (1, 2, SElO, etc.), or
strings. Strings may have the formats:

" r

I" " d I . xxx ... xxx or yyy .•. yyy

where: each x is any character.
d is one of the delimiters: space, comma,

semicolon, CR, or TAB.

each ~ is any character except one of the
delimiters.

F~~~---(2-~--:~~~-;:-:- name 2 , socsecl, socsec2, socsec3);

The file contains: John Jones 117 33 9666

I;~·~~--c~~·~~~-~;ones'" socsecl, socsec2, socsec3);

Write a File

Call Format:

Purpose:

The file is the same as shown before.

r write (fileno, ~); I
where: fileno is the channel number (0-7) as­

sociated with the file.

list is a list of variables and constants
to be written out.

The procedure is called to write data from a file to
an output device.

10-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Write a File (continued)

Data List: Variable data format depends upon the type of datum
and does not need to be specified.

Example:

An unsubscripted array name in the list causes output
of all array elements.

Jwr i te (1, x [5 , 3], y, sub) i

Data represented by variables x[S,3], y, and sub are written to file
number 1.

Close a File

Call Format: IClose (fileno)i I
where: fileno is the channel number (0-7)

currently associated with a file
through an open procedure.

Purpose: The procedure is called to close a file after
I/O is completed.

Example:

(close (1) i

The file previously associated with channel number 1 is closed.

Formatted Output

Call Format: ,-o-u-t-p-u-t--(-f-i-l-e-n-o-,-f-o-r-m-a-t-,·-v-a-r-i_~bl~- ii;st> 1
where: fileno is the channel number associated with the

file (0-7).

format is a specification of output format.

variable list is a list of variables to be written out
according to the given format. Carriage
control functions can be included in the
variable list.

10-3

-~-- NOVAALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Formatted Output (continued)

The specification of format is enclosed in either accent marks or
quotation marks. The specification may be a string that is output
precisely as given in the specification.

output (1, "Data Reduction"); +procedure call

Data Reduction +resultant output

A decimal point can be part of a field format. Assume values for the
variables as follows: w=1.234, x=-99, y=.09, z=99999.9.

output (2, "#####.# ",w,x,y,z); +procedure call

1.2 -99.0 . 1 99999.9 +output. Note rounding •

If a number of values are to be written on a given line, the output
procedure will put one blank character between the values even if the
field format does not include extra character positions.

The field format can be unsigned or signed (+ or -).

If the field is unsigned, the sign is typed only for negative numbers
and occupies a field position. For example the range of field ###.##
would be -99.99 to 999.99.

If the field is signed, the sign does not require a field position.
For example the range of field +###.## or -###.## would be -999.99
to +999.999.

A negative field sign causes printout only of negative signs. A
positive field sign causes printout of both negative and positive
signs.

Results of outputting values with or without signs are compared on the
next page for the following values: g=-222.22, h=45.45, i=-3333.44.
Blank field positions are shown by a triangle.

10- 4

Formatted Output (continued)

output (2, "#####.## ",g,h,i);
output (2, "-#####.##" ,g,h,i);
output (2, "+#####.##" ,g,h,i);

6-222.226666645.4566-3333.44
66-222.226666645.45666-3333.44
6~-222.2266666+45.45666-3333.44

+-unsigr;,s :::
+-negative
+-positive

~ ~-- NOVAALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

A 3-position exponent field is allowed as part of a decimal field,
using the symbol t.
----_._----

output (2, "-#####.##ttt" w,x,y,z);+-values shown on the previous page

12340.00-04 -99.00+00 90000.00-06 99999.90+00

Strings are represented by the symbol # for each character. Output is
left justified in the field with trailing blanks if necessary.

The length of the string in characters should not exceed the number
of field format positions. If it does, the extra characters will be
written over the next field.

output (2, "######## ",g,h); +-procedure call

TITLE NUl,mER +-possible output

A field format can be used for a ~tring value given in the output call.
The string is left justified in the field with trailing blanks if neces­
sary.

output (2, "########", g,h, "YEAR"); +-procedure call

TITLE NUMBER YEAR +-possible output

Any field format may be used for a string value given in an output call.

output (3, "####.##ttt", "YEAR"); +-procedure call

YEAR +-output

10-5

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

Formatted Output (continued)

The carriage control functions, page and tab, can be incorporated in­
to the variable list following the specification. The page function
should be enclosed in parentheses to insure a by value call.

output (2, n#####.##n, a, tab (15), b, tab (30), c, tab (45»;

4678.23 -234.40 678.49 -233.43

output (2, n####n a, tab (15), b, tab (O), c, tab (15), d) i

4678
678

-234
-233

An array identifier in a variable list causes all elements of the ar­
ray to be written out in normal array sequence.

output (2, n####n, A)i +A is an array identifier

34 5781 777 1234 354 9 100 4555 9000 888 +possible output

LoOps can be set up using output procedure calls, making it possible
to produce output data in a number of formats.

for j :=1 step 5 until 100 do
output (2, n#### n ,a[j], a[j+l], a[j+2], a[j+3], a[j+4]);

o
1003
3334

1020
2354
9654

4545
765

3030

6123
9034
7077

9081
7777
8451

Part of possible output

jbegin literal
,based integer

s(n A[###] = #### #### ####
array ba[0:4]; pointer Pi

lfor j :=1 step 5 until 100 do
ibegin p :=address (a[j]);

output (2,s,j,p+ba);
end;

Part of the possible output might be:

A[1] = 1005 1195 3142 5222 1110
A[6] = 2019 3001 4100 1955 5111

jA [11] = 2211 3521 4321 1236 6000

10-6

####n)i

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

ALGOL ERROR MESSAGES

ER nn" +compiler error - notify Data General Corporation.
identifier is not a label" +label required.
illegal type declaration"
illegal syntax" +message commonly resulting from programming errors.
illegal declaration"
missing variable in expression"

"missing operator in expression"
illegal operator in expression"
illegal use of reserved word"
illegal symbol in expression ll

illegal operator ll

undefined variable"
boolean in real expression"

"illegal pointer"
"illegal use of a string"
IIno subscripts for array reference"
"wring number of subscripts"
"expression does not end properly"
"parentheses do not balance ll

e.g., (a + b) :=0
e.g., a := a for bi

"illegal subscript end ll e.g., a[b + (CC**]
"function reference does not end properly"
"illegal parameter separator"
"wrong type for operator"
illegal variable ll

illegal type conversion ll

illegal character"
illegal character in comment ll

illegal string literal"
illegal number ll

illegal function reference"
duplicate symbol definition"
illegal use of an operator"
illegal character in number ll

precision must be an integer number"
II rea l number is out of range ll

lIassigned local storage full ll

IImore than one decimal point ll

IIcompiler table overflow ll

e.g., reaZ Xi x and 0

All error messages are printed out as in the example:

a :=b/*Ci
t

***missing variable in expression ***

The arrow indicates where the error was discovered, not necessarily
the location of the error. There are also several other I/O de­
pendent messages, e.g., in the monitor version:

!lIinput file does not exist ll

11-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
EXTENSIONS TO STANDARD ALGOL

external procedures and external variables.

Character string variables and arrays. String manipulation using
built-in index and length functions and substring capability.

Bit manipulation using octal and binary literals and the built-in
shift and rotate functions.

xor (exclusive or) Boolean operator.

I/O routines providing free form read and write or formatted output.

based and pointer variables and built-in address function for efficient
addressing.

Subscripted labels.

Built-in carriage control functions, tab and page.

Data type conversions:

integer to boo lean and boolean to integer
integer to pointer and pointer to integer
integer to string

Complex data declared with the complex data type.

Conversion to any radix up to and including 10.

Inclusion of strings as list items of the for statement.

Declaration of an identifier as literal with a given value to be sub­
stituted in statements of the program.

LIMITATIONS OF NOVA ALGOL

NOVA ALGOL implements the complete standard ALGOL with the following
minor exceptions:

No blanks within identifiers are permitted. An underscore () may be
used to separate logical parts of identifiers.

Data types must be declared for all parameters.

The separator)string: (is allowed only in the headings of procedures.

Identifiers may not contain more than 32 characters.

ALGOL keywords (see page 1-1) may not be redefined as program identi­
fiers.

12-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL_~
~~

APPENDIX A

CALLS AND RETURNS

When actual parameters replace formal parameters, certain in­
formation about the actual parameter must be passed with the
identifier. A single l6-bit word, called a specifier contains
this information as shown:

o 4 8 12 15
shape storage

class
data type precision

The following key indicates the specifier contents:

Shape Storage Class Data Type

0 scalar 0 local 0 undefined
1 array 1 own 1 integer
2 procedure 2 parameter 2 real

3 based 3 boolean
4 value 4 label
5 external 5 complex

6 pointer
7 multi-precision

integer
8 string

A stack frame is set up to provide return information. It has the
following format:

. SP (stack pointer) -+[: ~grrn address

fixed-length !r---~A=C~2------------------~

information old stack pointer
end of stack pointer
carry and level info

assigned (compile-time) !
local

I

area I

I

i
allocated (run-time) I

local area

A-l

--
.-

-E--

to previous
stack frame

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

CALLS AND RETURNS (continued)

Within the allocated area, backward and forward threaded block
pointers are used. This assures that a proper return can be made
through any number of block levels. A series of views of changes
in the allocated local area will show how the threaded block pointers
work.

1. Nothing in Allocated area

,->--------
I L--_CL----=.I
~ end of~~

end of
stack ptr

3. Array of Block B Added

L
0

array
block

~ A

array
block

!- B

storage
A

storage
B

end-of­
~stack ptr

2. Array of Block

r 0
array storage
block A

L A ------_.- ;:-

The complete stack frame would than appear as:

.SP (stack pointer)~
;- ret'lrn address I-----..-.:=-=...=.

ACO

A added

end-of-stack
.... pointer

fixed-length
information

AC2 to previous L ACI J
~----~--~~----r-~----------~ stack frame old stack pointer

~ ~------------~----~---------4
~ end-of-stack pointer

carry and level info
~-assrgned (compile-time)

local area

'---.----------0------------------1

1--- -.-------
I array storage
I block A

ll-----a-rray st~rage
block B

---- ----------- -------------------_.-
~ L .. ______________ ._B __________ ----:

A-2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

CALLS AND RETURNS (continued)

The following table shows stack frame allocation according to shape,
storage class, and data type.

SCALARS local

STORAGE CLASS
para-

own meter based value
exter­
nal

r 1 I ,
I PROCE- II
i DURES 11

I=====#============~=- - ---. - --- ~-~~~~--~~-'-----=-' ~~---~* -~. =~ - - ~ II
DATA TYPE ; II

Integer

Real

Boolean

Label

Complex

Pointer

Multi-Prec
Integer

String

Real

Boolean

Label

~omplex

AL
1
AL
2 or P
AL
1
illegal
1
AL
4 or P
AL
2
AL
1 or P

AL,SL
2

AL,SL
1
AL,SL
2
AL,SL
2
illegal

AL,SL
4

Pointer AL,SL
2

Multi-Pre~ AL,SL
Integer 2

AO
1
AO
2 or P
AO
1
illegal
1
AO
4 or P
AO
2
AO
1 or P

AO,SO
2

AO,SO
2
AO,SO
2
AO,SO
2
illegal

AO,SO
4
AO,SO
2
AO,SO
2

illegal

2

illegal

AL,SL*
2
AL,SL*
2
AL,SL*
2
illegal

AL,SL*
4
AL,SL*
2
AL,SL*
2

AL ---
1
AL ---
2 or P 2 or
AL ---
I
illegal---
1
AL ---
4 or P
AL ---
2
AL ---
I or P

AL,SL ---
2

AL,SL ---
2
AL,SL ---
2
AL,SL ---
2
illegal---

AL,SL ---
4
AL,SL
2
AL,SL
2

P

! III AL !
i 1 II
i AL II ; Fr p i

AL Ii
1 II
AL,SL II

~ 'I
~L 'I
1 or pi

'J

AL,SL
2

'I
!

·i

String

Ii
:1
'i

~,SL ~O,SO --- --- ~,SL --,- il
~~===~=~= ___ = ___ ==_=_~L= ___ =_= __ = ___ = __ = ___ = __ =_.= __ === ___ =_= __ =_= ___ =_=_= ___ ===_=====_,==========~======================~I

Key: AL = assigned local
SL = allocated local
AO = assigned own
SO = allocated own

P = defined prec1s10n
* = note that specifier is allocated

= no storage allocated

A-3

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

~~

APPENDIX B

RUN-TIME ROUTINES

Run-time routines, used to maintain stacks described in APPENDIX A,
are compatible with NOVA assembly language. The coding and use of
the routines are described below.

ROUTINE CODING

CALL

SAVE

JSR @CALL
SUBR

JSR @SAVE
N

RETURN JSR @RETURN

JUMP

JUMP 1

JUMPC

JSR @JUMP
LOC

JSR @JUMPI

JSR @JUMPC
LOC

NOTE: The short
JSR

SUBR: STA
JMP

form of
SUBR
3,@.SP
@.SP

MEANING

SUBR is the label of the program to
called. CALL stores JSR+2 in the
stack frame return location for
RETURN, sets AC3=.SP (stack pointer),
and jumps to SUBR.
See NOTE at bottom of page.

N has the form: Llevel I words I .
SAVE builds a new stack frame.
SAVE sets the end of stack and
stack level, checks for stack over­
flow, and sets the old stack pointer.
SAVE saves ACl+AC3, and Carry, sets
AC3=.SP, and jumps to JSR+2.

RETURN destroys the current stack
frame, restoring ACl+AC3, and Carry.
The previous stack is restored, and
RETURN checks for top of stack.
RETURN sets AC3=.SP and jumps to the
stack return of the new stack. See
NOTE at bottom of page.

LOC is the address of the word to
transfer to. JUMP sets AC3=.SP and
jumps to LOC.

ACl=address of the word to transfer
to. JUMPI sets AC3=.SP and jumps to
ACI location.

JUMPC sets AC3=.SP and jumps to LOC
if the Carry bit is set.

a program call and return is:
iCALL
i SAVE RETURN
iRETURN

B-1

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ .~
~~

Run-Time Routines (continued)

ROUTINE

ARRAY

CODING

JSR @ARRAY
N
ARRAY ADDRESS
ARRAY SPECIFIER
DIMENSION 1 ADDR.
DIMENSION 2 ADDR.

MEANING

ARRAY ADDRESS is a one-word pointer to
a two-word array specifier. See the il­
lustration below for the meaning of the
various fields.

ARRAY sets up the two-word specifier,
builds the control table, calculates

DIMENSION N-l ADDR. the data area needed, and adjusts the
end of stack. While doing so, ARRAY
performs a series of checks on dimen­
sions, specifier, and the stack. All
registers are destroyed, and AC3=.SP.

array specifier arrav d ope

I ARRAY ADDRESS
I

--;> ~

DOPE ADDRESS

DATA ADDRESS I- r
N

DATA SPECIFIER
I
I
I

I
t
If bit 0 is set,
bits 8-15 of
ARRAY ADDRESS
may contain a
displacement to
be added to.SP

I

[DATA AREA

B-2

DIMENSION 1

DIMENSION 2

·
· ·

DIMENSION N-l

Contents of

[STORAGE
CLASS [

\.

P
n
P-
~
II-

Data

TYPE

v

imensions do
ot need spec­
fiers as they
re assumed
nteger.

Specifier

[PRECIS.

./

See Appendix A for Codes

~ ~-- NOVAALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~
Run-Time Routines (continued)

ROUTINE CODING

SUBSCRIPT JSR @SUBSCRIPT
N
COMPUTED ADDRESS
ARRAY ADDRESS
SUBSCRIPT 1
SUBSCRIPT 2

SUBSCRIPT N-l

Subscript Algorithm

MEANING

The COMPUTED ADDRESS is an address of
a word containing the address of data.

SUBSCRIPT computes the address of the
data, using the algorithm given below.

(subl-l)x(dim2xdim3x •.. xdim)+(sub2-l)x(dim3xdim4x ... xdim
last last

+ ... + (subI-l)x(dim(I-l)xdim(I-2}x ... xdim)+ •.. +sub

where: dim (I) = dimB-dimA+l

ROUTINE

GETSP

BLKSTART

BLKEND

STRING

CODING

JSR
L

JSR

JSR

@GETSP

@BLKSTART

@BLKEND

JSR @STRING
STRING ADDRESS
N

last last

MEANING

L is the level desired. GETSP searches
for the desired level until it is found
or until level 0 is found. GETSP places
the level .SP in AC3. A check is made
for:

next level - last level =0 or 1

BLKSTART places an indirect bit at the
end of stack (-1).

BLKEND searches through the threads at
the stack end for the indirect bit and
sets it as the current end of stack,
which destroys the current block.

N is the maximum number of characters
of string. STRING builds a pointer at
STRING ADDRESS as shown:

string address
BYTE POINTER

N(max. length) current length

STRING then adjusts the end of stack
adding N/2 to stack length.

B-3

Run-Time Routines (continued)

ROUTINE

ALLOC

LENGTH

SUBSTR

MOVESTR

STREQ

STRCMP

CODING

JSR @ALLOC
N
LOC

JSR @ LENGTH
LOCI
LOC2

JSR @SUBSTR
LOCI
LOC2
LOC3
LOC4

JSR @MOVESTR
LOCI
LOC2

JSR @STREQ
LOCI
LOC2

JSR @STRCMP
LOCI
LOC2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

MEANING

ALLOC allocates N words in the own
stack and stores the stack address in
LOC.

LOCI is the string specifier address.
LOC2 is the address containing the
length of the string. LENGTH stores in
LOC2 the current length of the string
at LOCI and sets AC3=.SP.

LOCI is the string specifier address.
LOC2 contains the number of the starting

character.
LOC3 contains the number of the termi-

nal character.
LOC4 is a temporary for new string data.
SUBSTR makes a new string by subsetting
an existing string from the character
whose position is LOC2 to the charac­
ter whose position is LOC3. Pointers
are set in LOC4 as follows:

STARTING ADDRESS POINTER

Maximum Length
L2-LI+I

Current Length
Lcur-LI+I

I~

LOCI and LOC2 are string specifier
pointers. MOVESTR copies a string.
The routine moves the smallest maximum
length selected from LOCI and LOC2 to
LOC2.

LOCI and LOC2 are string specifier
pointers.
STREQ sets ACO=O if LOCI=LOC2.

LOCI and LOC2 are string specifier
pointers. STRCMP compares LOCI and LOC2
and sets ACO as follows:

B-4

ACO=O if LOCI=LOC2
ACO=1 if LOCI>LOC2
ACO=2 if LOCI<LOC2

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
APPENDIX C

LOADING THE ALGOL COMPILER

Stand-alone ALGOL compilers are available in 8K and 12K versions.
NOVA ALGOL is a two-pass compiler, having the following tapes:

12K Version

Pass 1 - 091-000030-00
Pass 2 - 091-000031-00

8K Version

Pass 1 - 091-000034-00
Pass 2 - 091-000035-00

There are three device modes for loading ALGOL. All are possible
alternatives for users having the 12K version of the compiler. Only
modes 2 and 3 can be used with the 8K version.

The user should exercise care in loading the ALGOL compiler. Loading
will take some time and, if interrupted, loading must be restarted
from the beginning.

The device mode is established at the start of Pass 1 and cannot
be altered during the compilation. The device modes are:

1 TTI*
TTO
PTR
PTP

2 TTR
TTP
TTR
TTP

3 PTR
PTP
PTR
PTP

(Pass 1 input)
(Symbolic output)
(Intermediate input)
(Intermediate output)

In mode 3, as well as the other modes, the teletypewriter is required
for system prompts and user responses.

At the start of loading the following prompt is issued:

MODE:

The user responds 1, 2 or 3, as appropriate. The number
by a carriage return. The ALGOL source is read from the
input device, and the intermediate tape is punched out.
ing message is then typed:

LOAD ALGOL PHASE 2
HIT 'RETURN' WHEN READY

is followed
Pass 1
The follow-

* Note that in Mode
the standard NOVA
+- (RUBOUT key)
, (SHIFT L keys)

1, the user can edit and correct
erase and kill characters:

input using

- erase previous character
- delete the entire line

C-l

LOADING THE ALGOL COMPILER
(continued)

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

The user loads Pass 2 into the reader and hits carriage return to load.
When the tape is read ~n, the following prompt is given:

LOAD INTERMEDIATE TAPE
HIT 'RETURN' WHEN READY

The user loads the intermediate tape into the appropriate device and
then gives a carriage return. When the tape is loaded, results of
compilation of the source code are output.

C-2

w/////////////////////~

~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

~~

APPENDIX D

EXAMPLE OF ALGOL GENERATED CODE

Following are two versions of Algorithm 347 by Richard C. Singleton,
which was published in the "Communications of the ACM", Volume 12,
Number 3, March 1969.

The first example shows the source code for the algorithm as it was
originally written.

In the second example source code and coding generated by Data
General's ALGOL Compiler are shown for the same program when optimized
with use of pointers and based variables.

D-l

PROC~DUR~ SOqTC4, I, J)'
V ~ L') E 1, J,
If\JTFGER I, .If
RF:Al UHlAV 4'

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

COM"1E"IT: THIS P~OCEDURE SO~TS THF: ELEMF.NTS OF 4R~AV A
INTO ASCE~nING OROE~, SO THAT

BEGIN

A rIo =e4 [1<+11 ,

f~IS ALGORITHM PRnvIDfS AN FFFICI~NT METHOD FOR srRTtNG
~ITH ~I~t~4L STO~4GE9 IT IS THE FAST!ST nF $~VER.L
ALGn~ITHMS PUALlSHEry TN COMM. AeM I~CLUotNG StOWEN'S
I, r.J t JI C i(E R 5 0 IH " AN 0 H t) ARE '$ " QUI C K 5 I) R T " • ,

REAL r, 1'T:
INTEGE~ It, IJ, K, L, M1
INTEGER A~RAY XL, IUr~:L~CJ-I+t)l'

IT.:=I:
r;t') TO .,

11 rJ~=(I+J)/2'
f:aAtIJl ,
i(~=IJ

L:=J;
IF ACt]>T T~EN AEGI~

A[tJll-A[I]J
4tJ11=T,
TI=A[IJ1J
E"'O'

IF A[J]<T THE~ BEGIN
AtIJla-A[JJ:
AU1:aT,
l's="tIJ1'
IF AtI]>T T~EN 8EGIN

A[IJ):=A[1],
"[11:=0
1:_" [IJl,
E~f)

21 L.:=\,,-1I
IF AtL»T THEN GO TO 2'
TT:=AU.l,

D-2

~ ~ .. NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

3: 1<.::1<+11
IF Aell>T THE~ GO TO 3'
IF K=<~ THEN REGIN

A [Ll:=A (K] J
A[K] :=TTI
GO TO 21
ENO:

IF L-t>J-K THEN BEGIN
ILtMl:=I1
IIJ[MJ :=LJ
1:=K'
ENI)

ELSE "EGIN
H.{Ml:=KJ
IIJ[Ml:=J'
J:I:LI
EN'"

4: IF J-I>1~ THE~ GO TO l'
IF 1=11 THEN BEGIN

5:

IF I<J T~EN GO TO l'
fiND'

Fnq U:q+t STEP t UNTIL J 00 BEGIN
T::A[I],
K:=I-l1
IF A(~l>T T~EN HEGIN

A [1<+13 : =4 [K] ,

IF At~»T THEN GO TO 5:
A[K+ll:=U
END

r-i: = M_ t :
IF M,>~ THf.~ 8EGIN

I:=ILCM];
J:=IUCM1,
GO TO 4,
ENO

END SORT

D-3

PROCEDURE SORTel, I, J)J
VALUE I, J,
tNTEr.ER I, J,
POPJTER A,

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ... ~
~~

COMMENT~ THIS PROCEDURE SD~TS T~E ELEMENTS OF ARRAY A
INTO ASCENDING ORDEQ, SO THAT

BEGIN

A tKJ :lcA {1(+1l ,

~lGn~ITHM 347, COM~. AeM, MARCH 1059.

T~IS ALGORITHM PROVIOES AN EFFICIENT METHOD FOR SORTING
~rTH MINIMAL STORAGE. IT IS THE FASTEST OF SEVERAL
ALGnRITHMS PUBLISHED IN COMMa AeM INCLUDING SCOWEN'S
"~UICKERSORT" ALGORITHM AND HOARE'S "QU!CKSORT".,

PJTEGER II, IJ, K. L, M, TT, T,
E~TERNAl POINTER 1L. lUI
P(lINTERAt, AJ, AIJ. 1K,AI.., AK1, tl..M, tUM,
AASEO INTEGER N,

M :== ,~,

II :. If
GO TO 4'

11 tJ := Cl+J'/2,
AIJ :=- A+IJ;
T := AIJ~>"'r
AI(:= AI := A+U
AL :. AJ := A+JI
K : == II
I.. ! = J 1
IF AI->N>T THEN 8EGIN

AIJ~>'" := AI->N,
AI->N := TJ
T =. AIJ->""
ENO,

IF AJ->N<T THEN 6EGIN
AIJ->N := AJ->N,
AJ ... >N 1= TJ
r := AIJ->N,
IF AI->N>T THEN BEGIN

AIJ->N := AI->N,
At.>N I: T,
T III AIJ->N,

ENO:

2: L := 1.,-\7
AL := A+LJ

E"lD

IF AL->~>T THEN GO TO 2,
T T 21: AL->N ~

D-4

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

3: ~ := K+l1
AI< := A+i(,
IL"1 ;~ IL.+M,
lUM := IU+i'1'
IF AL~>N>T T~EN GO TO 3,
IF K=cL fHEN BEGIN

AL->N III AK ... >N,

4K ... >N III T1r
GO TO 2'
EIIIO:

IF L-I>J-K T~EN BEGIN
ILM.>N 1= XI
IUM .. >", Z= Lr
I u K,
EIIJD

ELSF dEGIIII
ILM~>"I 1= 1(1
IUi'1 ... >'~ := J:
J := Ll
E"IrH

M := '~+tJ

4: IF J-I>10 T~EN GO TO 1;
IF 1=11 THEN REGI~

5:

IF I<J T~EN GO TO l'
ENO,

FnR I := 1+1 STEP 1 UNTIL J no aEGIN
r := (A+11->N,
I(:= 1 ... 1:
AK 1= A+I<,
1\1<1 :. AI(+lI
IF AK->N>T THEN BEGIN

Al<l->N := AK->NI
IF 41<->N>T THEN GO TO 5,
41(1->N := Tr
E .\j f)

ENO,
i~ := '~-t'
IF M>~ THEN BEGIN

1 := CIL+"'1)·>~J'
J U CIU+"I) ... >N,
GO TO 4,
END

D-5

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

PQOCF,D 1f.<lF. Sn~T (4, I. J):

.p;llTU

.E~T SORT

.l~EL
.L.P: LP

SQRT:

, , ,
1

.~!~Fl.

.U;q
FSI
4
SP+"
iI?lU41
SPlt,t'
~?I'-\"21
SP+,
~!;A202t

VALUE I, JJ
INTF,GER I, JJ
POINTER A,

, A

;POINTER PARA~ET~R

n
;INTEGER VALUE
;J
;INTEGER VALUE

, COM~e~T~ T~IS PROCEDURE SORTS T~E ELEMENTS OF ARRAY A
, INTO ASCENDING ORDER, SO THAT , , , , , , , , , , , , ,
J , , ,

BEGIN

A (;(1 =<A (1'(+1],

ALGORITHM 347, COMM. AtM, MARCH lQ69.

THIS ~LGORITH.M PR0VIDES AN EFFICIENT ~ETHOO FOR S~RTrNG

~tTH ~INIMAL STnRAGE, IT 15 THE FASTEST OF SEVERAL
ALGORIT~~S PURLISHEO IN COMM. AeM INCLUDING SCOWEN'S
.t r:l U 1 C I(E ~ S 0 R T " A L G () R I T H MA NOH 0 ARE IS" QUI C I< S 0 R Til. ,

INTfGER II, IJ, K, L, M, TT, T,
EWTE~~AL POINTER IL., IU'
POPJTER 41, A.I f AIJ, AI<, AL, AK1, II.. M, tUM,
BASEO t~TEGER N'

M := ()!I

SUH
L.r'l A

STA

t!',9J
3,.SP
!?I,S+7,3

, II := 1,

LOA
STA

1,5+0.3
1,5+3,3

D-6

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~
~~

, r,,., 1'14:

J~;'(~JUto1P

l4

,
; 1: IJ:= (T+J)/2:

Lt:

,

,

,

,

,

LOA
Ani)

VH
LI)~

-;1)80
J~~

LOA
; T 4

3,.5P
~,S ... 0,3

1,5·1,3
~, 1
$,,,LP
~ r1, 3
0,~

"SOIV
_i,.SP
1,5.4,3

AIJ : :: l\+IJI

L i!\ ''',$+2.3
A il') ~ , 1
STA 1,5+14,3

T . ~ . ~ 4lJ->NJ

"10V 1 , 2
VH 1,';1,2
ST" 1,S ... 11,3

A~ · -· - At %= A+1,

L:)I\ 1,$+0,3
4 i);j i~ , t
~T6 1,S ... 12,3
S T A 1,5+15,3

Al · - AJ : :; A+JJ · -
LnA I,S+1,3
Ani) ~, 1
c;lA 1,S.l,~,3
~TA !,S ... P;,J

K ~ = y:

LI)A ;~, s ... 0,3
STA il,S+5,3

:J

rLITER4L

,SIGNEn DIVIDE

rIJ

, A

,AJJ

,T

II

, A I
,AK

;J

:AJ
,AL

JI
:K

D-7

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

l. = • H ~~

LO. 0,S ... 1,3 ,J
STA 0,S+6.3 ,L

, IF .H->N>T TIo4!N BEGIN

LOA ~"5+12,3 , Al
LOA 1,5 ... 11,3 ,T
AOCL 1,0
SURl ~,0

MI"lVR QI,0
JSR .JUMPC
Gl

, ArJ .. ~N J;; AI-JoN,

LI'A ~,.S"'12,3 ,AI
ST~ ~"S+14,3 ,AIJ

, ~t.>N I. T'

LOA 1,5+11.3 IT

STA 1,'S+12,3 ,AI

r T :. AIJ·JoN, , END,

STI\ :'.1,5+1\,3 ,T

, IF AJ->NcT THEN BEGIN

Gil LDA 3,.SP
va '~, s+ 11,3 :T
i..r) A 1dl S"'13,3 ,AJ
AOCL 1,~
5UBL 0,0
I"IOVR 2),~

J~R 'JUMPC
G'

, AIJ"">"I :11 AJ->N,

LOA ?I,'S+13,3 ,AJ
STA (.1),'5+14,3 ,AIJ

, AJ-,.N : . T,

Lr')A 1,$+11,3 :T
STA \"S+13,3 'AJ

D-8

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAl_~
~~ , ,

,

,

, , ,
G31

G21
L21

,

Sf A
LDA
AOCL
~U~1..

NlnVR
.JSR
G3

LOA
STA

LOA
STA

STA

L,",A
LOA
SIJ8Zl.

"E'r;
40n
STA

AL : :I

LI")4
ALi!)

~TA

r •• AIJ->N,
IF AI->N>T THEN BEGIN

'~.S+tl,3
2,'5+12,3
0,2
2,2
2,2
'JlJMPC!

0.I,.S+12,3
11,.5+14,3

t,5+11,3
1",tS+12,3

:T
'AI

'AI
,AIJ

,T
'AI

T := AIJ.>N,
END

END,

3,.SP
i3,S+6,3
1,1

1.1
i~d
1,5+6,3

A+L,

,~,S+2,3
~, 1
,-,5+1'5,3

:T

,L
ret)

,L

,A

,AL

D-9

~ ~ NOVA ALGOL 0 , IF Al,,">N~T THEN GO TO 2' ~ REFERENCE ~
~ MANUAL ~

"10V 1,2 -~
LOA 1,~,2
LDA ~,S.11,3 .T
AOCL 0,1
SU8L 1 , 1
MOV~ 1.1
J5iol ,JUMPC
(;4

JSR 'JUMP
1.2

, 1T : . AL-·N'

G4: LD~ 3,.SP
LOA '~"S+',6,:~ 'AI.
ST4 ~,S.1Q1,3 ;TT

, , 31 t(:- K+tJ

l.31 I.!) A 3,.SP
LOA ~,S+5,3 ,1<
INC 0,1'1
ST. ~,S+5,3 II<

, AK :: •• 10

l.OA 1,$+2,3 fA
A r'l f) l,(JI
STA ~,S+t5,3 ,AI(

, tLM . - IL.+h1, . -
L.OA 2.IL rlL.
L.nA -1,$+7,3 JM
A Df) 2,"1
STA '~,S+201,3 lIL.M

, I U 1'1 : :I rd+M,

LDA ~,IU :IU
LDA 1,5+7,3 ,M
Aon ,~ ,t
STA 1,5+21,3 J!UM

, IF AL"'>N>T THEN GO TO 3,

LOA ~,~S+16,3 ,AL
LilA 1,$+11,3 rT
AliCL 1 , ~
SU~L. :~, 0
r-lnVR \01,01
J5R .-JUMPC
G.,
JSR 'JUMP
L:' D-1O

~ ~ NOVA ALGOL 0
~ REFERENCE ~
~ MANUAL ~
~~ , TF i<.,=<L t~E~ BEGl\l

G5: I. l) t\ 3,.sP
L fl6 '~,S+5,3 ;I(

L'''' 4 \,5+6,3 Il
S'irlL ,~ "
S'I '3L 1 , t
;'1 ,., 'V ;.;; 1 , 1
J'S;"; '. J IJr.1PC
GF.

• AL·,.N : = Ai(->~I: ,

Lr)4 1,~S+15,3 :AI(
Sf!. ~,·S.16,3 :AL

, Ai(->N III Trr
LilA 1,5+1 1 ,3 7TT
STA 1,'S+15,j IAK

, GO TO 2:

IS IJ !~JUMP

L~

, EN!" , TF L .. I >J-I< THEN BEGIN

G6& V'l4 J,.Sp
LnA :~,S+6,3 JL
Lr)A 1,5+0,3 Jl
"J(:G 1.1
ADO ;~, 1
Lr'lA 2,5+1,3 JJ
L'H i~,S+!5,3 :1(
~~ f l; 2!,~
AOI) 2,~

c.; II., L 1 , ~
SII!:1CL ~,11J

M(WR ~, .~

J5~ 'JUMPC
G7

, I LM->;" III lJ

LOA 1',$+0,3 , l
ST~ ~,fS+20,3 rILM

, 1IJM->I\I : . L'

Lf"H 1,5+6,3 ,L
5T4 1,f5+21,3 rIUM

D-ll

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~ , I ~. K1

L04 2.5+5,3 ,I<

S T A 2.S+0,3 'I , ENO , ELSE. ~EGIN

,TSR 'JU~P
G, fA

, tLM •• ~ :- K,
G1: LI"I4 3 •• Sp

LOA ~,S+5,3 ,K
STA 0,'S+2r11,3 JIt..M

, tUM •• '" I- J,

LOA 1.S+1,3 rJ
STA 1,'5+21,3 rIUM

, J I. L'

LI)A 2~S+6,3 'L
Sf A 2,5+1,3 rJ

, END' , 1'1 : = M+\J

G10: LnA 3,.SP
LOA ~,S+7,3 ,M
INC ;~ , QI
STA !1I,$+7,3 rM

, , 4: IF' J.I"l~ THEN GO TO U

L.4I Lf')A 3, • SP
LOA)1,$+1.3 ,J
Ln4 1,5.0,3 ;I
NEG 1" A rj f) ~ , 1
VIA 3,.1..1'
LDA 2,3,3 'LITERAL
A nel. 2, 1
S'JRL 1,1
M'iVR 1 , 1
JSR 'JUMPC
G 1 1
J~R 'JJMP
L'

D-12

~ ~-- NOVA ALGOL 0.
~ REFERENCE ~
~ MANUAL __ .~

-~
, IF raIl THEN BEGIN

G11a

,

J

LOA
LOA
LIJA
SUB
5U~

I ~.j c:
P.1(WR

JSR
!;p

I~n A

LIlA
AnCL
S I) f3 L
MOV~

JSR
G 1.3
J5R

Ll

.5, • SF'
0,5+0,3
1,$+3,3
i~,1,$ZR
l,t,$KF'
1 , 1
1.1
tlJUMPC

IF IcJ

~,S+1,3

1,$+O,3
1,0
~,0

~,0

'JUMPC

'JUMP

END,

THEN GO

rI
III

Tn 11

,J
rI

, FOR I :. 1.1 STEP 1 UNTIL J DO 8EGI~

G12:
GHH LDA 3,.SP

LOA ilJ,S+0,3
I"'C .lI,Q)
STA ;~,8+0,3

G17: LnA 3,.8P
L!)A ~,S+f.lt,3
LflA 1,$+1,3
SIJ8L ,~, 1
t..., 0 \I ,~,0,SZC
Ji'AP r.;2i3
SIJA1L 1.1 , Cll
AOO 1,0
STA :",5.0,3
JSR •• +1
G1"5
JS~ ·JUMP
1';11

G20: JS~ ,JU"'tP
Gl.1
MI1V 3,1 ,SAVE

D-13

~ ~ NOVA ALGOL ~
~ REFERENCE ~ , r : . CA+J)->NJ ~ MANUAL ~
~~

LD4 ,~ •• SF'
LrH ~,S+2,3 ,A
LiH 2,5+0,3 II
ADO (>1,2
LOA 2,O,2
STtl 2,$+11,3 ,T

, ~ :- 1-\1

LDA :/,),S+0,3 n
StJB7L :2,2 , (1)
NEG 2,2
A i) I) i~, 2
STA 2.S+5,3 ,I<

, AI(.- A+I(,

LOA VI,S+2,3 ,A
lOt) [J],2

STA 2,S+U5,3 , AI<

, AI(t :- At<+U

INC 2,2
Sf A 2.S+17,3 ,A1(1

, IF AI<.>N>T THEN aEGIN

LDA 0,'5+15,3 'AI<
LOA 2,5+11,3 ,T
AneL 2,O
su8L ~,0
Sf A 1,S+23,3 ,TEMPORARY
MQvR ~,0

JSR 'JlJMPC
G21

, 51 AI(1->N •• AK.>N,

L.51 LDA 3,.SP
LOA 0,,5+15,3 'AI<
STA ~.'S.1,,3 ,A1<1

, IF AI< ... >N>T THEN GO TO 5'

LOA 1,'S+15,3 IAK
L."H 2,5+11,3 ,T
lOCI.. 2,1
SUoL 1,1
r-l0VR 1.1
JSR ,JUMPC
G?2
JSR ,JUMP
L5

D-14

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

,
G221

, ,
G21: LOA

lOA
JSR

3,.SP
e,'+lt,3
~,'S+17,3

END,

3,.5P
1,S+23,3
'JUMP!

, M :. ~-t'

G141 LOA
LI)4
SU~ZI.
NEG
ADD
STA

3,.SP
0,5+7,3
1, 1
1,1
0,1
1,5.7,3

, IF M>~ THEN BEGIN

,

,

SUH
ADCI.
SUliL
MO.Jr.t
JS~
G,,,

l.DA
LD4
400
MaY
LDA
STA

LOA
LDA
ADI)
MOY
LOA
ST'

12',0
0,t
1,1
1 , t
'JUMPe

ia, IL.
1,5+7,3
0,t
1,2
1,0,2
1,9+O,3

2,IU
0,$+7,3
2,0
0,2
0,0,2
0,5+1,3

:RETURN

H0)

'II. ,M

, I

,lU ,M

,J

D-15

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
?}, MANUAL __ ~
~~

, GO TO 4,

.]SR -JUMP
L4

, ENO , , e: t-II') SORT

G231 J~R "RETURN
FS1- ~3

SP. 19!i~~rJ\"

LPI 0I~!!~0Q\

~'''Q\CI''''2
:JI"'~:;'~l

[ilCh1012

.E'\ID

D-16

~~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

COMBINED INDEX

Subject

+

I

;

10 (E,e) .­.-
(space)
()
[]
" , " "
-+ ->

*
>= =>
<= =<
1\= <>
+ (RUBOUT)
" (SHIFT L)

abs built-in function
accent marks
actual parameters
addition
address built-in function
addressing by pointer
ALGOL

calls and returns
error messages
extensions
limitations
loading of
run-time routines
versions

a110c run-time routine
allocation of storage
and

Page

4-1,4-4,4-8
4-1,4-4,4-8
4-1,4-4,4-8
4-1,4-4,4-8
4-1,4-4,4-8
19,4-1,4-7,4-8
2,4-1,4-2
2,4-1,4-2
2,4-1,4-2
4-1,4-2
19,4-1,4-7,4-8,4-9
1-1,12-1

4-1,4-2,4-5
13,4-1,4-2,4-8,6-3
2,4-1,4-2
2,4-1,4-3
2,4-1,4-3
32,4-1,4-3,7-6
4-1,4-2,7-9ff
4-1
4-1,4-7
4-1,4-7
4-1,4-7
App. C
App. C

9-1
32,4-1,4-3,7-6
25,8-2,8-5,8-6, App. A
4-1,4-4,4-8
7-9 to 7-11,9-2
7-9 to 7-13

App. A
11-1
12-1
12-1
App. C
App. B
App. C
App. B
4,8 to 10, Chapter 2, Chapter 3, App. A
19,4-1,4-7,4-8,4-9

I-I

Subject

arctan built-in function
arithmetic

assignment
built-in functions
evaluation
expressions
numbers
operators
operator precedence

array declarator
array

bounds
declaration
definition
dimensions
element
of pointers
of strings
precision
storage when passed as

parameter
subscripts
variable bounds

arrow exponent indicator
arrow separator
assignment statement
base of number
based declarator
based variables
begin

bracket
use in block
use in compound statement

binary literal
bit operation

blank space
blkend run-time routine
blkstart run-time routine
block

begin
definition
inner
nesting of
procedure
scope of

Page

9-1

6-3
9-1
4-4,4-8
5-1 to 5-3
4-5,4-6
4-1,4-4
4-8

5,4-1,7-1,7-3

7,7-3
5,7-3
5,7-3
6,7-3
5,7-4
7-11
7,7-7
7-3,App. A

App. A
7-3,7-4
10,7-3

4-1,4-4,4-8
4-1,4-2,7-9ff

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ... ~
~~

11,13 to 16,6-1,6-3ff
34,4-4,4-6
4-1,7-1,7-9ff
7-9 to 7-13

4-1,4-3
1,3-1
12,6-1
33,34,4-6,4-9
33,34,4-9

2,4-1,4-2
App. B
App. B

1,3-1
1,3-1
8 to 10,2-1
8 to 10,2-1
22,3-1,8-1,8-2
2-3

I-2

~ ~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~ Subject

booZean declarator
boolean

expression
operator
operator precedence
value

bounds of arrays
bracket

built-in function
abs
address
arctan
cos
entier
exp
index
length
In
page
rotate
shift
sign
sin
sqrt
tab

call
by name
by value
run-time routine
specification of

parameters for
to function
to procedure

channel, I/O
character string
close run-time I/O procedure

coding examples
arithmetic expression
array
assignment statement
bit operation
boolean expression
foY' statement
go to statement
if statement
pointer expressions
procedure
program, sort
string manipulation

Page

5,4-1,7-1,7-2

19,5-4,6-11
19,4-7
4-8
5,4-7
7,10,7-3
4-1,4-3

9-1
7-9 to 7-11,9-2
9-1
9-1
9-2
9-1
33,7-7,9-3
32,7-7,9-3
9-1
29,9-5,10-6
33,9-4
33,9-4
9-1
9-1
9-1
29,31,.9-5,10-6

8-5
8-5,8-7
App. B

App. A
27,8-1,8-4
23,8-1,8-3
10-1
32,7-6,9-3
28,10-3

5-2,6-5
7-5
6-5,6-6
4-10,7-5
6-6
6-9,6-10
6-13
6-13
App. D
8-8
App. D
6-10

1-3

Subject

colon
comma
comment
complex declarator
complex numbers
compount statement
concatenation of string
condi tiona1

expression
statement

controlled variable
conversion of data types
cos built-in function
data types

boolean
complex
conversion of
definition of
integer
label
of function
pointer
real
string

decimal point
declaration

array
based variable or array
data type
definition of
external procedure
external variable
label
literal
own variable
pointer
procedure
string variable or array
switch

Page

2,4-1,4-2,7-13
2,4-1,4-2
12,4-1,4-2
5,4-1,7-1,7-2
4-4,4-5
12,6-1
32,

-~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~

~~

20, Chapter 5,6-12
6-1,6-12

20,6-7
15,16,5-1,6-3,6-4,12-1
9-1
7-1,7-2
5,7-1,7-2
5,7-1,7-2
6-3,6-4
4,7-2
5,7-1,7-2
27,7-1,8-8
26,27
5,7-2,7-9,7-1
5,7-1,7-2
5,7-1,7-2,7-6
4-1,4-2,10-4

5,10,7-3
7-9
7-2
1,7-1
24,8-3
7-16
9,8-8,7-13
7-17
4,7-16
7-2,7-9ff
22, Chapter 8
5,32,7-8
7-14

1-4

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
Subject

dec1arators, list of
delimiter

bracket
declarator
operator

arithmetic
logical
relational
sequential

specificator
transliteration of

designational expression

diagnostics
dimensions of arrays
division
do
dope and specifiers
dummy statement
e,E
else
end

bracket
of block
of compound statement

entier built-in function
equal
eqv
error messages
evaluation of expressions
exp built-in function
exponent
exponentiation
expression

arithmetic
boolean
conditional
designationa1
pointer
simple

4-1
2,4-1
4-1,4-3
4-1,Chapter 7,Chapter 8
4-1
4-4
4-7
4-7
Chapter 6
4-1,8-8
4-1
5-6

11-1
6,7-3
4-1,4-4,4-8
4-1,6-7
App. A
11,6-1,7-14
4-1,4-2,4-5
12,18,19,4-1,4-3,6-12

12,13,4-1,4-3
1,3-1,8-1
12,6-1

6-3,7-4,9-2
4-7
4-1,4-7,4-8,4-9
11-1
4-4,4-8
9-1
4-2,4-4,4-5,10-5
4-4,4-5,4-8
Chapter 5
5-1 to 5-3
19,5-4
20,5-1,5-3,6-2,6-12
5-6
5-5
14,5-1

1-5

Subject

extensions to ALGOL
external declarator
false
for statement
formal parameter
formatted output
function

built-in
keywords
procedure
referencing

getsp run-time routine
global identifier
go to statement
greater than
greater than or equal to

identifier
declaration of
definition
global

if

imp

keyword
length
local
scope of
storage of

clause
statement

index built-in function
input procedures
integer declarator
integer

multi-precision
values

I/O run-time routines
jump run-time routines
jumpc run-time routine
jumpl run-time routine
keyword
label specificator

~//~
~ NOVA ALGOL ~

12-1
24,7-16,8-3
1-1,4-1,4-7,4-9
11,20,21,6-1,6-7
25,8-1,8-2,8-5,8-6
28 to 31, 10-4 ff

31, Chapter 9
1-1
26,8-1,8-4
27,8-4,8-1
App. B
7 to 10, 2-1,3-1

~ REFERENCE ~
~ MANUAL .~

-~

11 , 16 to 18, 4 -1 , 6 - 11
4-1,4-7,4-8
4-1,4-7,4-8

3 to 10, Chapter 7
1,3,1-1
7 to 10, 2-1,3-1
1,1-1
1-1,12-1
7 to 10, 2-1,3-1
Chapter 2, Chapter 3
3,4,2-2, Chapter 7, App. A

Chapter 5
11,18 to 20,6-12

4-1,4-7,4-8,4-9
33,7-7,9-3
28, Chapter 10
5,4-1,7-1,7-2

7-1,7-2
4-5
27 to 31, Chapter 10
App. B
App. B
App. B
1,1-1,12-1
4-1,8-8

1-6

w/////////////////////~

~ NOVA ALGOL ~
~ REFERENCE ~
~ - MANUAL ... ~
~~

Subject

label
declaration of
definition
designational expression
in go to
scope of
subscripting

length built-in function
less than
less than or equal
limitations to ALGOL 60
line of ALGOL source code

list
of expressions in fop
of identifiers in declaration
of output call
of parameters
of read call
of write call
threaded by pointers

ZiteraZ declarator
literal

declarations
number of different bases

In built-in function
loading ALGOL
local identifier
logical

expression
operator
value

loop
movestr run-time routine
multiplication
multi-precision integers
name, call by
nesting·

of block
of subscripts

not
not equal
number
octal literal
open I/O routine
operand

arithmetic
bit
boolean
designational
pointer
relational

1-7

9,2-1,7-13,8-8
17,7-13
5-6
6-11
9,2-1
17,6-10,7-14,12-1
32,7-7,9-3
4-1,4-7,4-8
4-1,4-7,4-8
12-1
2

20,6-7
7
10-3
8-6
10-2
10-2
7-13
4-1,7-17

4-1,7-17
33,34,4-6,4-9
9-1
App. C
7 to 10,2-1,3-1

5-4
4-7,4-9
4-7
6-1,6-7,12
App. B
4-1,4-4,4-8
7-2 ,App. A
8-5

7 to 10,3-1
14
4-1,4-7,4-8,4-9
4-1,4-7,4-8
4-5,4-6
33,34,4-6,4-9
27,10-1

4-4,6-3,5-1
4-9
19,5-4,6-3
5-6
5-5
19,5-4

Subject

operator
arithmetic
bit
logical
precedence of
relational
sequential

01'

output
formatted using output call
using write call

overflow checking
own declarator
page built-in function

pa~ameter
actual
formal

parentheses
pointer declarator
pointers
power of 10

in number
transliteration

precedence of operators
precision

array
scalar
string
in passing parameters

procedure declarator
procedure

block
body
call
call by name
call by value
data type of
declaration
definition of
external
function
identifier
parameters
recursive (reentrant)
return from
specificators
statement

1-8

4-1,4-4
4-9
4-1,4-7,4-9
4-8
4-1,4-7

W/////////////////////0..

~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ... ~
~~

4-1, Chapter 6
4-1,4-7,4-8

29 to 31,10-4ff
28,10-2

7-2,7-3
4,2-2,4-1,7-16
29,9-5,10-6

25,8-6,8-7,App. A
25,2-2,8-6,8-7
2,4-1,4-3,4-8,8-5,8-7
4-1,7-1,7-2,7-9
5-5,7-9 to 7-13

4-5
4-1,4-5
4-8

7-3
3,4,4-5,7-1,7-2
3,7-6
App. A

22,4-1,7.;...1,8-1

22,8-1
8-1
11,23,6-1,8-3,8-4
8-5
8-5
8-1
22,7-1,8-1
22,8-1
24,8-3
26,8-1,8-2,8-4
8-2
25,8-1,8-6,8-7, App. A
27,8-2
23,8-3,8-4
4-1,8-8
11,23,6-1,8-3

~'/////////////////////~

~ NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL ~

-~
Subject

program
basic ALGOL
writing a

quotation marks
radix, changing the
read I/O routine
real declarator
real data
recursive (reentrant) procedure
referencing a function
relational

expression
operator
value

return
from function
from procedure
run-time routine

rotate built-in function

run-time routines
a110c
array
b1kend
b1kstart
call
close
getsp
I/O
jump
jumpc
jump1
movestr
open
output
read
return
save
strcmp
streq
string
subscript
substr
write

1-9

1,2
35
4-1,4-3,7-6
34,4-6
10-2
4,5,4-1,7-1,7-2
4,4-5,7-2
28,8-2
27,8-1,8-4

19,5-4
4-1,4-7
4-7

8-4
23,8-3
App. B
33,9-4

B-4
B-2
B-3
B-3
B-1
28,10-3
B-3
Chapter 10
B-1
B-1
B-1
B-4
27,10-1
29 to 31,10-4ff
28,10-2
B-1
B-1
B-4
B-4
B-3
B-3
B-4
28,10-2

Subject

save run-time routine
scope of identifiers
semicolon
separator
sequential operator
shape of variables
shift built-in function
sign built-in function
sin built-in function
specification of parameters
specificator
.SP
sqrt built-in function
stack frame
stack pointer

statement
assignment
comment
compound
conditional
consecutive execution of
definition of
dummy
for
go to
if
looping
procedure
termination
transfer

step

storage
allocated (run-time)
allocation and release
array
assigned (compile-time)
based
boolean
classes of
complex
external
integers
local
multi-precision integers
own
pointers
procedure
real
scalars
strings

1-10

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL .. ~
~~

App. B
7-10, Chapter 2
2,1,4-1,4-2
2,4-1,4-2
4-1, Chapter 6
7-1, App. A
9-4
9-1
9-1
8-1,8-8
4-1,8-8
App. A
9-1
App. A
App. A

11,13 to 16,6-1,6-3ff
12,4-2
12,6-1
-6-1,6-12
6-1
1,11,6-1
11,6-1,7-14
20,21,6-1,6-7
16 to 18,6-1,6-11
18 to 20,6-1,6-12
12,6-1,6-7
11,6-1,8-3
12
6-1,6-10
21,4-1,4-2,6-7

App. A
4,8 to 10,2-2,3-1
5,7-3, App. A
App. A
7-1, App. A
3,6-3,7-2, App. A
7-1, App. A
3,7-1, App. A
7-16, App. A
3,7-1,7-2, App. A
7-1, App. A
7-2, App. A
4,2-2,7-16, App. A
3,6-4,7-2, App. A
App. A
3,4,7-2, App. A
3,4,7-2, App. A
3,7-6, App. A

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

-~
Subject

strcmp run-time routine
streq run-time routine
string declarator
string

arrays and variables
concatenation
nesting of constant -s
referencing
run-time routine
substrings

subroutine
subscript

in assignment variable
nesting of
of array element
of controlled variable
of label or switch
run-time routine

substr run-time routine
subtraction
switch declarator
switches

symbols
list of
transliteration of

tab built-in function
teletypewriter transliterations
then
transfer of control

conditional
to procedure
to calling block
unconditional

transfer function
true
truth table
types of data
unconditional transfer
undefined label or switch
underscore
unti Z
vaZue specificator

I-II

App. B
App. B
4,5,32,4-1,7-1,7-2,7-6

32,7-6
32,9-3
7-6
7-6
App. B
7-7

see procedure

6-3
14
6,7-3,7-4
6-7
5-6,7-14
App. B
App. B
4-1,4-4,4-8
4-1,7-15
5-6,6-10,6-12,7-15

4-1
4-1
9-5,10-6
4-1,4-4,4-5,4-7
18,19,4-1,6-12

6-12
8-3,8-4
8-3,8-4
6-1,6-11

9-2
4-1,4-7
4-7
7-2, App. A
6-1,6-11
6-11
1-1,12-1
21,4-1 A-2, 6-7
4-1,8-5,8-8

Subject

value
arithmetic
boolean
call by
complex
designationa1
pointer
procedure
string
use of own to retain -

variable
controlled
identifier
in array dimensions

whiZe
word

machine
reserved

write I/O routine
XOl'

1-12

~ ~-- NOVA ALGOL ~
~ REFERENCE ~
~ MANUAL __ ~

~~

4-5,5-1,7-2
4-7,5-4,7-2
8-5,8-7
4-5,7-2
5-6
5-5,7-2
8-1,8-4
7-2,7-6
7-17

6-7
3,1-1
10,7-3
21,4-1,4-2,6-7

3
1-1,12-1
28,10-2
4-1,4-7,4-9,12-1

l."rifI"" by the

ASSOCIATION FOR COMPUTING MACHINERY
From Communico'iOlll of 'he ACM 6 (Jan. 19631. 1-17.

Revised Report on the Algorithmic Language
ALGOL 60

J. W. BACKUS

F. L. BAUER

J. GREEN

PETER NAUR (Editor)
C. KATZ

J. MCCARTHY

A. J. PERLIS

H. RUTISHA USER

K. SAMELSON

B. VAUQUOIS

J. H. WEGSTEIN

A. VAN WUNGAARDEN

M. WOODGER

Dedicated to the Memory of WILLIAM TURANSKI

Reprints distributed by the Association for Computing Machinery, 211 East 43 St., New York 17, N. Y.
Single copies to individuals, no charge; Single copies to companies, 50t each;
Multiple copies: first 10, 50t each; next 100, 25t each; all over 100, lOt each.

Revised report on the algorithmic language ALGOL 60
Dedicated to the memory of William Turanski

by

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,
P. Naur, A. J. Pedis, H. Rutishauser, K. Samelson, B. Vauquois,

J. H. Wegstein, A. van Wijngaarden, M. Woodger

Edited by

Peter Naur

The report gives a complete defining description of the international algorithmic language
ALGOL 60. This is a language suitable for expressing a large class of numerical processes in
a form sufficiently concise for direct automatic translation into the language of programmed
automatic computers.

The introduction contains an account of the preparatory work leading up to the final conference,
where the language was defined. In addition the notions reference language, publication language,
and hardware representations are explained.

In the first chapter a survey of the basic constituents and features of the language is given, and
the formal notation, by which the syntactic structure is defined, is explained.

The second chapter lists all the basic symbols, and the syntactic units known as identifiers,
numbers, and strings are defined. Further, some important notions such as quantity and value
are defined.

The third chapter explains the rules for forming expressions, and the meaning of these expressions.
Three different types of expressions exist: arithmetic, Boolean (logical), and designational.

The fourth chapter describes the operational units of the language, known as statements. The
basic statements are: assignment statements (evaluation of a formula), go to statements (explicit
break of the sequence of execution of statements), dummy statements, and procedure statements
(call for execution of a closed process, defined by a procedure declaration). The formation of
more complex structures, having statement character, is explained. These include: conditional
statements, for statements, compound statements, and blocks.

In the fifth chapter the units known as declarations, serving for defining permanent properties
of the units entering into a process described in the language, are defined.

The report ends with two detailed examples of the use of the language, and an alphabetic index
of definitions.

Contents

Page Page

Introduction 2

3
4

4. Statements 9
4. 1 Compound statements and blocks. 9

1. Structure of the language
1. 1 Formalism for syntactic description.

2. Basic symbols, identifiers, numbers,
and strings. Basic concepts
2.1 Letters
2.2 Digits. Logical values
2. 3 Delimiters
2.4 Identifiers
2.5 Numbers
2.6 Strings
2.7 Quantities, kinds and scopes
2.8 Values and types

3. Expressions
3.1 Variables
3.2 Function designators ..
3.3 Arithmetic expressions
3.4 Boolean expressions ..
3.5 Designational expressions

4
4
4
4
5
5
5
5
6

6
6
6
7
8
9

-1-

4.2 ASSignment statements 10
4.3 Go to statements . . . 11
4.4 Dummy statements . . 11
4. 5 Conditional statements 11
4.6 For statements 12
4.7 Procedure statements 12

5. Declarations 14
5. 1 Type declarations 14
5.2 Array declarations 14
5.3 Switch declarations . . 15
5.4 Procedure declarations 15

Examples of procedure declarations . . . 16

Alphabetic index of definitions of
concepts and syntactic units 18

Revised report on ALGOL 60

Introduction

Background

After the publication *t of a preliminary report on the
algorithmic language ALGOL, as prepared at a con­
ference in ZUrich in 1958, much interest in the ALGOL
language developed.

As a result of an informal meeting held at Mainz in
November 1958, about forty interested persons from
several European countries held an ALGOL imple­
mentation conference in Copenhagen in February 1959.
A "hardware group" was formed for working co­
operatively right down to the level of the paper-tape
code. This conference also led to the publication by
Regnecentralen, Copenhagen, of an ALGOL Bulletin,
edited by Peter Naur, which served as a forum for
further discussion. During the June 1959 ICIP Con­
ference in Paris several meetings, both formal and
informal ones, were held. These meetings revealed some
misunderstandings as to the intent of the group which
was primarily responsible for the formulation of the
language, but at the same time made it clear that there
exists a wide appreciation of the effort involved. As a
result of the discussions it was decided to hold an inter­
national meeting in January 1960 for improving the
ALGOL language and preparing a final report. At a
European ALGOL Conference in Paris in November
1959, which was attended by about fifty people, seven
European representatives were selected to attend the
January 1960 Conference, and they represented the
following organizations: Association Fran9aise de
Calcul, British Computer Society, Gesellschaft fUr
Angewandte Mathematik und Mechanik, and Nederlands
Rekenmachine Genootschap. The seven representatives
held a final preparatory meeting at Mainz in December
1959.

Meanwhile, in the United States, anyone who wished
to suggest changes or corrections to ALGOL was
requested to send his comments to the ACM Com­
munications where they were published. These com­
ments then became the basis of consideration for
changes in the ALGOL language. Both the SHARE
and USE organizations established ALGOL working
groups, and both organizations were represented on the
ACM Committee on Programming Languages. The
ACM Committee met in Washington in November 1959
and considered all comments on ALGOL that had been
sent to the ACM Communications. Also, seven repre­
sentatives were selected to attend the January 1960
international conference. These seven representatives
held a final preparatory meeting in Boston in December
1959.

• Preliminary report-International Algebraic Language, Comm.
Assoc. Compo Mach., Vol. 1, No. 12 (1958), p. 8.

t Report on the Algorithmic Language ALGOL by the ACM
Committee on Programming Languages and the GAMM Com­
mittee on Programming, edited by A. J. Perlis and K. Samelson,
Numerische Mathematik Bd. I, S. 41-60 (1959).

-2-

January 1960 Conference

The thirteen representatives, * from Denmark, England,
France, Germany, Holland, Switzerland, and the United
States, conferred in Paris from 11 to 16 January 1960.

Prior to this meeting a completely new draft report
was worked out from the preliminary report and the
recommendations of the preparatory meetings by
Peter Naur, and the conference adopted this new form
as the basis for its report. The Conference then pro­
ceeded to work for agreement on each item of the report.
The present report represents the union of the Com­
mittee's concepts and the intersection of its agreements.

April 1962 Conference (Edited by M. Woodger)

A meeting of some of the authors of ALGOL 60 was
held on 2-3 April 1962, in Rome, Italy, through
the facilities and courtesy of the International Com­
putation Centre. The following were present:

Authors

F. L. Bauer
J. Green
C. Katz
R. Kogon

(representing
J. W. Backus)

P. Naur
K. Samelson
J. H. Wegstein
A. van Wijngaarden
M. Woodger

Advisers

M. Paul
R. Franciotti
P. Z. Ingerman

G. Seegmiiller
R. E. Utman

P. Landin

Observer

W. L. van der Poe I
(Chairman,
IFIP TC 2.1
Working Group
ALGOL)

The purpose of the meeting was to correct known errors
in, attempt to eliminate apparent ambiguities in, and
otherwise clarify the ALGOL 60 Report. Extensions to
the language were not considered at the meeting.
Various proposals for correction and clarification, that
were submitted by interested parties in response to the
Questionaire in ALGOL Bulletin No. 14, were used as a
guide.

This report constitutes a supplement to the ALGOL 60
Report (Incorporated with it to form the present revision
-Ed.) which should resolve a number of difficulties
therein. Not all of the questions raised concerning the
original report could be resolved. Rather than risk
hastily drawn conclusions on a number of subtle points,
which might create new ambiguities, the committee
decided to report only those points which they unani­
mously felt could be stated in clear and unambiguous
fashion.

Questions concerned with the following areas are 18ft
for further consideration by Working Group 2.1 of
IFIP, in the expectation that current work on advanced
programming languages will lead to better resolution:

I. Side effects of functions.
2. The call by name concept.

• William Turanski of the American group was killed by an
automobile just prior to the January 1960 Conference.

Revised report on ALGOL 60

3. Own: static or dynamic.
4. For statement: static or dynamic.
5. Conflict between specification and declaration.

The authors of the ALGOL 60 Report present at the
Rome Conference, being aware of the formation of a
Working Group on ALGOL by IFIP, accepted that any
collective responsibility which they might have with
respect to the development, specification and refinement
of the ALGOL language will from now on be transferred
to that body.

This report has been reviewed by IFIP TC 2 on Pro­
gramming Languages in August 1962, and has been
approved by the Council of the International Federation
for Information Processing.

As with the preliminary ALGOL report, three different
levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations.

Reference Language

1. It is the working language of the committee.
2. It is the defining language.
3. The characters are determined by ease of mutual

understanding and not by any computer limitations,
coder's notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication

language to any locally appropriate hardware
representations.

7. The main pUblications of the ALGOL language itself
will use the reference representation.

Publication Language

1. The publication language admits variations of the
reference language according to usage of printing
and handwriting (e.g. subscripts, spaces, exponents,
Greek letters).

2. It is used for stating and communicating processes.
3. The characters to be used may be different in different

countries, but univocal correspondence with reference
representation must be secured.

Hardware Representations
1. Each one of these is a condensation of the reference

language enforced by the limited number of characters
on standard input equipment.

2. Each one of these uses the character set of a partic­
ular computer, and is the language accepted by a
translator for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or
Reference language.

For transliteration between the reference language
and a language suitable for publications, among others,
the following rules are recommended.

Reference language

Subscript brackets []

Exponentiation t
Par~ntheses ()

Basis of ten 10

Publication language

Lowering of the line between the
brackets and removal of the
brackets.
Raising of the exponent.
Any form of parentheses,
brackets, braces.
Raising of the ten and of the
following integral number, in­
serting of the intended multi­
plication sign.

Description of the Reference Language

Was sich tiberhaupt sagen iasst, iasst
sich kiar sagen; und wovon man nicht
reden kann, darliber muss man schweigen.

1. Structure of the language

As stated in the Introduction, the algorithmic language
has three different kinds of representations-reference,
hardware, and publication-and the development
descri0ed in the sequel is in terms of the reference
representation. This means that all objects defined
within the language are represented by a given set of
symbols-and it is only in the choice of symbols that the
other two representations may differ. Structure and
content must be the same for all representations.

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for
the description of calculating rules is the well-known
arithmetic expression containing as constituents numbers,

-3 -

Ludwig Wittgenstein.

variables, and functions. From such expressions are
compounded, by applying rules of arithmetic composi­
tion, self-contained units of the language-explicit
formulae---called assignment statements.

To show the flow of computational processes, certain
non-arithmetic statements and statement clauses are
added which may describe, e.g. alternatives, or iterative
repetitions of computing statements. Since it is neces­
sary for the function of these statements that one state­
ment refers to another, statements may be provided with
labels. A sequence of statements may be enclosed
between the statement brackets begin and end to form a
compound statement.

Revised report on ALGOL 60

Statements are supported by declarations which are refer to the corresponding syntactic definition. In
not themselves computing instructions, but inform the addition some formulae have been given in more than
translator of the existence and certain properties of one place.
objects appearing in statements, such as the class of
numbers taken on as values by a variable, the dimension
of an array of numbers, or even the set of rules defining
a function. A sequence of declarations followed by a
sequence of statements and enclosed between begin and
end constitutes a block. Every declaration appears in a
block in this way and is valid only for that block.

A program is a block or compound statement which is
not contained within another statement and which
makes no use of other statements not contained within it.

In the sequel the syntax and semantics of the language
will be given. *

1.1 Formalism for syntactic description
The syntax will be described with the aid of metal in­

guistic formulae.t Their interpretation is best explained
by an example:

<ab) :: = (1 [1 <ab) (I <ab) <d)
Sequences of characters enclosed in the brackets <)
represent metalinguistic variables whose values are
sequences of symbols. The marks :: = and I (the latter
with the meaning of or) are metalinguistic connectives.
Any mark in a formula, which is not a variable or a
connective, denotes itself (or the class of marks which are
similar to it). Juxtaposition of marks andlor variables
in a formula signifies juxtaposition of the sequences
denoted. Thus the formula above gives a recursive rule
for the formation of values of the variable <ab). It
indicates that <ab) may have the value (or [or that
given some legitimate value of <ab), another may be
formed by following it with the character (or by
following it with some value of the variable <d). If the
values of <d) are the decimal digits, some values of <ab)
are:

[«(1(37(
(12345(
«(
[86

In order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the
sequences of characters appearing within the brackets
<) as ab in the above example) have been chosen to be
words describing approximately the nature of the corre­
sponding variable. Where words which have appeared
in this manner are used elsewhere in the text they will

* Whenever the precision of arithmetic is stated as being in
general not specified, or the outcome of a certain process is left
undefined or said to be undefined, this is to be interpreted in the
sense that a program only fully defines a computational process if
the accompanying information specifies the precision assumed,
the kind of arithmetic assumed, and the course of action to be
taken in all such cases as may occur during the execution of the
computation.

t Cf. J. W. Backus, "The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
conference," ICIP, Paris, June 1959.

-4-

Definition:

<empty) :: =
(i.e. the null string of symbols).

2. Basic symbols, identifiers, numbers, and strings
Basic concepts

The reference language is built up from the following
basic symbols:
<basic symbol) ::= <letter) I <digit) I <logical value) 1

<delimiter)

2.1 Letters

<letter) :: = alblcidielflglhliljlkillminiolplqlrlsitiul
vlwlxlylzl

AIBICIDIEIFIGIHIIIJIKILIMINIOIPI
QIRISITIUIVIWIXI YIZ

This alphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not
coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning. They are
used for forming identifiers and strings * (cf. sections 2.4
Identifiers, 2.6 Strings).

2.2.1 Digits

<digit) :: = 0111213141516171819
Digits are used for forming numbers, identifiers, and

strings.

2.2.2 Logical values

<logical value) :: = true I false
The logic"al values have a fixed obvious meaning.

2.3 Delimiters

<delimiter) :: = <operator) I <separator) I <bracket) I
<declarator) I <specificator)

<operator) :: = <arithmetic operator) I <relational
operator) I <logical operator) I <sequential operator)

<arithmetic operator) :: = + I - I x III -:- I t
<relational operator) :: = < I .;;; I = I ;;;. I > I *'
<logical operator) :: = = I) I V I 1\ I ..,
<sequential operator) :: = go to I if I then I else I for I dot
<separator) :: = , I . 110 I : I ; I := I LJ I step I until I

while I comment
<bracket) :: = (I) I [I] I 'T' I begin I end

* It should be particularly noted that throughout the reference
language underlining (for typographical reasons bold type is used
synonymously-Ed.) is used for defining independent basic symbols
(see sections 2.2.2 and 2.3). These are understood to have no
relation to the individual letters of which they are composed. With­
in the present report underlining will be used for no other purpose.

t do is used in for statements. It has no relation whatsoever to the
do of the preliminary report, which is not included in ALGOL 60.

Revised report on ALGOL 60

(declarator) :: = olVn I Boolean I integer I real I array I
switch I procedure

(specificator) :: = string I label I value

Delimiters have a fixed meaning which for the most
part is obvious, or else will be given at the appropriate
place in the sequel.

Typographical features such as blank space or change
to a new line have no significance in the reference lan­
guage. They may, however, be used freely for facilitating
reading.

For the purpose of including text among the symbols
of a program the following "comment" conventions
hold:

The sequence of basic symbols: is equivalent to

; comment (any sequence not containing;) ;
begin comment (any sequence not containing;); begin
end <any sequence not containing end or ; or else) end.

By equivalence is here meant that any of the three
structures shown in the left-hand column may, in any
occurrence outside of strings, be replaced by the symbol
shown on the same line in the right-hand column without
any effect on the action of the program. It is further
understood that the comment structure encountered first
in the text when reading from left to right has precedence
in being replaced over later structures contained in the
sequence.

2.4 Identifiers

2.4.1 Syntax

(identifier) :: = (letter) I (identifier) (letter) I
(identifier) (digit)

2.4.2 Examples

2.4.3 Semantics

q
Soup
V17a
a34kTMNs
MARILYN

Identifiers have no inherent meaning, but serve for
the identification of simple variables, arrays, labels,
switches, and procedures. They may be chosen freely
(cf., howevei, section 3.2.4 Standard functions).

The same identifier cannot be used to denote two
different quantities except when these quantities have
disjoint scopes as defined by the declarations of the
program (cf. section 2.7 Quantities, kinds and scopes,
and section 5 Declarations).

2.5 Numbers

2.5.1 Syntax

<unsigned integer) :: = (digit) I (unsigned integer)
(digit)

<integer) :: = (unsigned integer) I
+ (unsigned integer) I - (unsigned integer)

(decimal fraction) :: = . <unsigned integer)

(exponent part) :: = 10 (integer)
(decimal number) :: = <unsigned integer) I (decimal

fraction) I (unsigned integer) (decimal fraction)
(unsigned number) :: = (decimal number) I

(exponent part) I (decimal number) (exponent part)
(number) :: = (unsigned number) I

+ (unsigned number) I - (unsigned number)

2.5.2 Examples

o
177

.5384
+0.7300

2.5.3 Semantics

-200.084
+07.43 108

9.3410+10
210-4

-.08310-02
-107

10-4
+10+ 5

Decimal numbers have their conventional meaning.
The exponent part is a scale factor expressed as an
integral power of 10.

2.5.4 Types

Integers are of type integer. All other numbers are of
type real (cf. section 5.1 Type declarations).

2.6 Strings

2.6.1 Syntax

(proper string) :: = (any sequence of basic symbols not
containing r or') I (empty)

-5-

(open string) :: = (proper string) I r (open string)' I
(open string) (open string)

(string) :: = r (open string) ,

2.6.2 Examples

r 5k, , _ r [[[r 1\ = I : ' Tt' ,
r •• This LJ is LJ a LJ r string ~ ~

2.6.3 Semantics

In order to enable the language to handle arbitrary
sequences of basic symbols the string quotes rand ' are
introduced. The symbol L-.J denotes a space. It has
no significance outside strings.

Strings are used as actual parameters of procedures
(c.f. sections 3.2 Function designators and 4.7 Pro­
cedure statements).

2.7 Quantities, kinds and scopes

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and
expressions in which the declaration of the identifier
associated with that quantity is valid. For labels see
section 4.1.3.

2.8 Values and types

Revised report on ALGOL 60

3.1.4 Subscripts

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a single logical value), or a label.

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their
constituents are defined in section 3. The value of an
array identifier is the ordered set of values of the corre­
sponding array of sUbscripted variables (cf. section
3.1.4.1).

The various types (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactic units refer to the values of these units.

3. Expressions
In the language the primary constituents of the

programs describing algorithmic processes are arithmetic,
Boolean, and designational, expressions. Constituents of
these expressions, except for certain delimiters, are
logical values, numbers, variables, function designators,
and elementary arithmetic, relational, logical, and
sequential, operators. Since the syntactic definition of
both variables and function designators contains expres­
sions, the definition of expressions, and their con­
stituents, is necessarily recursive.

(expression) :: = (arithmetic expression) I (Boolean
expression) I (designational expression)

3.1 Variables

3.1.1 Syntax

(variable identifier) :: = (identifier)
(simple variable) :: = (variable identifier)
(subscript expression) :: = (arithmetic expression)
(subscript list) :: = <subscript expression) I

<subscript list), (subscript expression)
<array identifier) :: = <identifier)
(subscripted variable) :: =

(array identifier) [(subscript list)]
(variable) :: = (simple variable) I

<subscripted variable)
3.1.2 Exampfes

3.1.3 Semantics

epsilon
detA
al7
Q[7,2]
x[sin(n xpi/2), Q[3, n, 4]]

A variable is a designation given to a single value.
This value may be used in expressions for forming other
values and may be changed at will by means of assign­
ment statements (section 4.2). The type of the value of
a particular variable is defined in the declaration for the
variable itself (cf. section 5.1 Type declarations) or for
the corresponding array identifier (cf. section 5.2 Array
declarations).

-6 -

3.1.4.1 Subscripted variables designate values which
are components of multidimensional arrays (cf. section
5.2 Array declarations). Each arithmetic expression of
the subscript list occupies one subscript position of the
subscripted variable, and is called a subscript. The
complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a
sUbscripted variable is specified by the actual numerical
value of its subscripts (cf. section 3.3 Arithmetic
expressions).

3.1.4.2 Each subscript position acts like a variable of
type integer and the evaluation of the subscript is under­
stood to be equivalent to an assignment to this fictitious
variable (cf. section 4.2.4). The value of the subscripted
variable is defined only if the value of the subscript
expression is within the subscript bounds of the array
(cf. section 5.2 Array declarations).

3.2 Function designators

3.2.1 Syntax

<procedure identifier) :: = <identifier)
<actual parameter) :: = <string) I <expression) I

<array identifier) I <switch identifier) I
(procedure identifier)

<letter string) :: = (letter) I <letter string) (letter)
(parameter delimiter) :: = , I) (letter string) : (
<actual parameter list) :: = (actual parameter) I

(actual parameter list) (parameter delimiter)
(actual parameter)

(actual parameter part) :: = (empty) I
«actual parameter list))

(function designator) :: = <procedure identifier)
(actual parameter part)

3.2.2 Examples

sin (a - b)
l(v + s, n)
R
S(s - 5) Temperature: (T) Pressure: (P)
Compile (r := ') Stack: (Q)

3.2.3 Semantics

Function designators define single numerical or logical
values, which result through the application of given
sets of rules defined by a procedure declaration (cf.
section 5.4 Procedure declarations) to fixed sets of
actual parameters. The rules governing specification of
actual parameters are given in section 4.7 Procedure
statements. Not every procedure declaration defines
the value of a function designator.

3.2.4 Standard functions

Certain identifiers should be reserved for the standard
functions of analysis, which will be expressed as pro­
cedures. It is recommended that this reserved list should
contain:

Revised report on ALGOL 60

abs(E)

signee)

sqrt(E)
sin (E)
cos(E)
arctan(E)

In(E)
exp(E)

for the modulus (absolute value) of the
value of the expression E
for the sign of the value of E(+ I for E > 0,
o for E = 0, -I for E < 0)
for the square root of the value of E
for the sine of the value of E
for the cosine of the value of E
for the principal value of the arctangent of
the value of E
for the natural logarithm of the value of E
for the exponential function of the value of
E (eE).

These functions are all understood to operate indifferently
on arguments both of type real and integer. They will
all yield values of type real, except for signee) which will
have values of type integer. In a particular repre­
sentation these functions may be available without
explicit declarations (cf. section 5 Declarations).

3.2.5 Transfer functions

It is understood that transfer functions between any
pair of quantities and expressions may be defined.
Among the standard functions it is recommended that
there be one, namely

entier(E) ,

which "transfers" an expression of real type to one of
integer type, and assigns to it the value which is the
largest integer not greater than the value of E.

3.3 Arithmetic expressions

3.3.1 Syntax

<adding operator) :: = + I -
<multiplying operator) :: = X 1/1--;-.
(primary) :: = <unsigned number) I <variable) I

<function designator) I «arithmetic expression»
(factor) :: = (primary) I <factor) t <primary)
<term) :: = <factor) I <term) <multiplying operator)

<factor)
<simple arithmetic expression):: = <term) I <adding

operator) <term) I <simple arithmetic expression)
(adding operator) (term)

<if clause) :: = if (Boolean expression) then
<arithmetic expression) :: = <simple arithmetic expres­

sion) I <if clause) <simple arithmetic expression)
else (arithmetic expression)

3.3.2 Examples

Primaries:
7.39410-8
sum
wei + 2,8]
cos(y + z X 3)
(a - 31y + vu t 8)

Factors:
omega
sum t cos (y + z X 3)
7.39410 - 8 t wei + 2, 8] t (a - 31y + vu t 8)

-7 -

Terms:
U
omega X sum t cos (y + z X 3)/7.39410 - 8

t w[i + 2, 8lt (a - 31y + vu t 8)

Simple arithmetic expression:
U - Yu + omega X sum t cos (y + z X 3)/7.39410_8

t w[i + 2, 8] t (a - 31y + vu t 8)

Arithmetic expressions:
w X u - Q(S + Cu)t 2
if q > 0 then S + 3 X QIA else 2 X S + 3 X q
if a <0 then U + V else if a X b> 17 then UI V else if k '*' Y

then VIU else 0
a X sin (omega X t)
0.5710 12 X a [N X (N - 1)/2,0]
(A X arctan(y) + Z) t (7 + Q)
if q then n - I else n
if a < 0 then AlB else if b = 0 then BIA else z

3.3.3 Semantics

An arithmetic expression is a rule for computing a
numerical value. In case of simple arithmetic expres­
sions this value is obtained by executing the indicated
arithmetic operations on the actual numerical values of
the primaries of the expression, as explained in detail
in section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic
sense), and for function designators it is the value
arising from the computing rules defining the procedure
(cf. section 5.4.4 Values of function designators) when
applied to the current values of the procedure parameters
given in the expression. Finally, for arithmetic expres­
sions enclosed in parentheses the value must through a
recursive analysis be expressed in terms of the values of
primaries of the other three kinds.

In the more general arithmetic expressions, which
include if clauses, one out of several simple arithmetic
expressions is selected on the basis of the actual values
of the Boolean expressions (cf. section 3.4 Boolean
expressions). This selection is made as follows: The
Boolean expressions of the if clauses are evaluated one
by one in sequence from left to right until one having the
value true is found. The value of the arithmetic expres­
sion is then the value of the first arithmetic expression
following this Boolean (the largest arithmetic expression
found in this position is understood). The construction:

else <simple arithmetic expression)
is equivalent to the construction:

else if true then <simple arithmetic expression)

3.3.4 Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetic expressions must be
oftypes real or integer (cf. section 5.1 Type declarations).
The meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

Revised report on ALGOL 60

3.3.4.1 The operators +, -, and x have the conven­
tional meaning(addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2 The operations (term) I (factor) and (term) --:­
(factor) both denote division, to be understood as a
multiplication of the term by the reciprocal of the
factor with due regard to the rules of precedence (cf.
section 3.3.5). Thus, for example

alb X 7/(p - q) X vis
means

((((a X (b- I» X 7) X ((p - q)- I» X v) X (S-l)

The operator I is defined for all four combinations of
types real and integer and will yield results of real type
in any case. The operator --:-- is defined only for two
operands both of type integer and will yield a result of
type integer, mathematically defined as follows:

a --:- b = sign (alb) X entier (abs(alb»

(cf. sections 3.2.4 and 3.2.5).

3.3.4.3 The operation (factor) t (primary'> denotes
exponentiation, where the factor is the base and the
primary is the exponent. Thus, for example

2 tnt k means (2n)k
while

2 t (n t m) means 2(nnl)

Writing i for a number of integer type, r for a number of
real type, and a for a number of either integer or real
type, the result is given by the following rules:

at i If i > 0, a X a X ... X a (i times), of the
same type as a.

If i = 0, if a =1= 0, 1, of the same type as a,
if a = 0, undefined.

If i < 0, if a =1= 0, I/(a X a X ... X a)
(the denominator has -i factors),
of type real,
if a = 0, undefined.

at r If a > 0, exp (r X In (a)) , of type real.
I fa = 0, if r > 0, ° . 0, of type real,

if r < 0, undefined.
If a < 0, always undefined.

3.3.5 Precedence of operators
The sequence of operations within one expression is

generally from left to right, with the following additional
rules:

3.3.5.1 According to the syntax given in section 3.3.1
the following rules of precedence hold:

first: t
second: X I --:­
third: + -

3.3.5.2 The expression between a left parenthesis and
the matching right parenthesis is evaluated by itself and
this value is used in subsequent calculations. Conse­
quently the desired order of execution of operations
within an expression can always be arranged by appro­
priate positioning of parentheses.

-8 -

3.3.6 Arithmetics of real quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finite deviation from
the mathematically defined result in any arithmetic
expression is explicitly understood. No exact arithmetic
will be specified, however, and it is indeed understood
that different hardware representations may evaluate
arithmetic expressions differently. The control of the
possible consequences of such differences must be
carried out by the methods of numerical analysis. This
control must be considered a part of the process to be
described, and will therefore be expressed in t ;rms of the
language itself.

3.4 Boolean expressions

3.4.1 Syntax

(relational operator) :: = < I < I = I :> I > I =1=

(relation) :: =

(simple arithmetic expression) (relational
operator) (simple arithmetic expression)

(Boolean primary) :: = (logical value) I (variable) I
(function designator) I (relation) I
(Boolean expression»

(Boolean secondary) :: = (Boolean primary) I
.., (Boolean primary)

(Boolean factor) :: = (Boolean secondary) I
(Boolean factor) /\ (Boolean secondary)

(Boolean term) :: = (Boolean factor) I
(Boolean term) V (Boolean factor)

(implication) :: = (Boolean term) I
(implication)) (Boolean term)

(simple Boolean) :: = (implication) I
(simple Boolean) == (implication)

(Boolean expression) :: = (simple Boolean) I (if clause)
(simple Boolean) else (Boolean expression)

3.4.2 Examples

x= - 2
Y>VVz<q
a + b > -5 /\ z - d > q t 2
p/\qVx=l=y
g== ,a /\ b /\ .., cVd V e) 'f
if k < 1 then s > weise h < c
if if if a then b else c then delse f then g else h < k

3.4.3 Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4 Types

Variables and function designators entered as Boolean
primaries must be declared Boolean (cf. section 5.1 Type
declarations and section 5.4.4 Values of function
designators).

Revised report on ALGOL 60

3.4.5 The operators

Relations take on the value true whenever the corre­
sponding relation is satisfied for the expressions involved;
otherwise false.

The meaning of the logical operators ., (not), 1\ (and),
V (or),) (implies), and = (equivalent), is given by the
following function table.

b I false false true true
b2 false true false true
.-.----.--_._._----------_._. .., bI true true false false
bI 1\ b2 false false false true
bI V b2 false true true true
bI) b2 true true false true
bI = b2 true false false true

3.4.6 Precedence of operators

The sequence of operations within one expression is
generally from left to right, with the following additional
rules:

3.4.6.1 According to the syntax given in section 3.4.1
the following rules of precedence hold:

first: arithmetic expressions according to section 3.3.5.
second: < <: ;> > *
third: .,
fourth: 1\
fifth: V
sixth:)
seventh:

3.4.6.2 The use of parentheses will be interpreted in the
sense given in section 3.3.5.2.

3.5 Designational expressions

3.5.1 Syntax

<label) ,:: = <identifier) I <unsigned integer)
<switch identifier) :: = <identifier)
<switch designator) :: =

<switch identifier) [<subscript expression)]
<simple designational expression) :: = <label) I

<switch designator) I (<designational expression))
<designational expression):: = <simple designational

expression) I <if clause) <simple designational
expression) else < designational expression)

3.5.2 Examples

17
p9
Choose [n - 1]
Town [if y < 0 then N else N + 1]
if Ab < c then 17 else q [if w <: 0 then 2 else n]

3.5.3 Semantics

A designational expression is a rule for obtaining a
label of a statement (cf. section 4 Statements). Again,
the principle of the evaluation is entirely analogous to

-9 -

that of arithmetic expressions (section 3.3.3). In the
general case the Boolean expressions of the if clauses
will select a simple designational expression. If this is
a label the desired result is already found. A switch
designator refers to the corresponding switch declaration
(cf. section 5.3 Switch declarations) and by the actual
numerical value of its subscript expression selects one of
the designational expressions listed in the switch declara­
tion by counting these from left to right. Since the
designational expression thus selected may again be a
switch designator this evaluation is obviously a recursive
process.

3.5.4 The subscript expression

The evaluation of the subscript expression is analogous
to that of subscripted variables (cf. section 3.1.4.2). The
value of a switch designator is defined only if the sub­
script expression assumes one of the positive values
1, 2, 3, ... , n, where n is the number of entries in the
switch list.

3.5.5 Unsigned integers as labels

Unsigned integers used as labels have the property
that leading zeroes do not affect their meaning, e.g.
00217 denotes the same label as 217.

4. Statements

The units of operation within the language are called
statements. They will normally be executed conse­
cutively as written. However, this sequence of
operations may be broken by go to statements, which
define their successor explicitly, and shortened by con­
ditional statements, which may cause certain statements
to be skipped.

In order to make it possible to define a specific
dynamic succession, statements may be provided with
labels.

Since sequences of statements may be grouped together
into compound statements and blocks, the definition of
statement must necessarily be recursive. Also since
declarations, described in section 5, enter fundaml!ntally
into the syntactic structure, the syntactic definition of
statements must suppose declarations to be already
defined.

4.1 Compound statements and blocks

4.1.1 Syntax

<unlabelled basic statement) :: =

<assignment statement) I <go to statement) I
<dummy statement) I <procedure statement)

<basic statement) :: = <unlabelled basic statement) l
<label) : <basic statement)

<unconditional statement) :: = <basic statement) I
<compound statement) I <block)

<statement) :: = <unconditional statement) I
<conditional statement) I <for statement)

<compound tail):: = <statement) end I
<statement) ; <compound tail)

Revised report on ALGOL 60

<block head) :: = begin <declaration) I
<block head) ; <declaration)

<unlabelled compound) :: = begin <compound tail)
<unlabelled block) :: =

<block head) ; <compound tail)
<compound statement) :: = <unlabelled compound) I

<label) : <compound statement)
<block) :: = <unlabelled block) I <label) : <block)
<program) :: = <block) I <compound statement)

This syntax may be illustrated as follows: Denoting
arbitrary statements, declarations, and labels, by letters
S, D, and L, respectively, the basic syntactic units take
the forms:

Compound statement:
L: L: ... begin S ; S ; ... S ; Send

Block:
L: L: ... begin D ; D; ... D ; S ; S ; ... S ; Send

It should be kept in mind that each of the statements S
may again be a complete compound statement or block.

4.1.2 Examples

Basic statements:
a:= p + q
go to Naples
START: CONTINUE: W := 7.993

Compound statement:
begin x:= 0 ; for y:= 1 step 1 until n do x:= x +

A [y] ; if x > q then go to STOP else if x > w - 2
then go to S ;
Aw: St: W:= x + bob end

Block:
Q: begin integer i, k ; real w ;

for i := 1 step I until m do
for k : = i + I step I until m do
begin w := A[i, k] ; A[i, k] := A[k, i] ;

A[k, i] := w
end for i and k
end block Q

4.1.3 Semantics

Every block automatically introduces a new level of
nomenclature. This is realized as follows: Any identifier
occurring within the block may through a suitable
declaration (cf. section 5 Declarations) be specified to
be local to the block in question. This means (a) that
the entity represented by this identifier inside the block
has no existence outside it, and (b) that any entity
represented by this identifier outside the block is com­
pletely inaccessible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will
be non-local to it, i.e. will represent the same entity
inside the block and in the level immediately outside it.
A label separated by a colon from a statement, i.e.
labelling that statement, behaves as though declared in
the head of the smallest embracing block, i.e. the

smallest block whose brackets begin and end enclose
that statement. In this context a procedure body must
be considered as if it were enclosed by begin and end and
treated as a block.

Since a statement of a block may again itself be a
block the concepts local and non-local to a block must
be understood recursively. Thus an identifier, which is
non-local to a block A, mayor may not be non-local to
the block B in which A is one statement.

4.2 Assignment statements
4.2.1 Syntax

-10-

<left part) :: = <variable) := I
<procedure identifier) :=

<left part list) ::= <left part) I
<left part list) <left part)

<assignment statement) :: = <left part list) <arithmetic
expression) I <left part list) (Boolean expression)

4.2.2 Examples

s := p[O] := n := n + 1 + s
n:= n + 1
A := BIC - II - q X S
S [II, k + 2] := 3 - arctan(s X zeta)
V:= Q> Y /\ z

4.2.3 Semantics

Assignment statements serve for assigning the value
of an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may
only occur within the body of a procedure defining the
value of a function designator (cf. section 5.4.4). The
process will in the general case be understood to take
place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the
left part variables are evaluated in sequence from left
to right.

4.2.3.2 The expression of the statement is evaluated.

4.2.3.3 The value of the expression is assigned to all
the left part variables, with any subscript expressions
having values as evaluated in step 4.2.3.1.

4.2.4 Types

The type associated with all variables and procedure
identifiers of a left part list must be the same. If this
type is Boolean, the expression must likewise be BooleaJ;l.
If the type is real or integer, the expression must be
arithmetic. If the type of the arithmetic expression
differs from that associated with the variables and pro­
cedure identifiers, appropriate transfer functions are
understood to be automatically invoked. For transfer
from real to integer type the transfer function is under­
stood to yield a result equivalent to

entier (E + 0.5)

where E is the value of the expression. The type asso-

Revised report on ALGOL 60

ciated with a procedure identifier is given by the
declarator which appears as the first symbol of the
corresponding procedure declaration (cf. section 5.4.4).

4.3 Go to statements

4.3.1 Syntax

(go to statement) :: = go to (designational expression)

4.3.2 Examples

go to 8
go to exit [n + I]
go to Town [if y < 0 then N else N + I]
go to if Ab < c then 17 else q [if w < 0 then 2 else n]

4.3.3 Semantics

A go to statement interrupts the normal sequence of
operations, defined by the write-up of statements, by
defining its successor explicitly by the value of a desig­
national expression. Thus the next statement to be
executed will be the one having this value as its label.

4.3.4 Restriction

Since labels are inherently local, no go to statement
can lead from outside into a block. A go to statement
may, however, lead from outside into a compound
statement.

4.3.5 Go to an undefined switch designator

A go to statement is equivalent to a dummy statement
if the designational expression is a switch designator
whose value is undefined.

4.4 Dummy statements

4.4.1 Syntax

(dummy statement) :: = (empty)

4.4.2 Examples

L:
begin ... ; John: end

4.4.3 Semantics

A dummy statement executes no operation. It may
serve to place a label.

4.5 Conditional statements

4.5.1 Syntax

<if clause) :: = if <Boolean expression) then
(unconditional statement) :: = (basic statement) I

(compound statement) I (block)
(if statement) :: =

. (if clause) (unconditional statement)
(conditional statement) :: = (if statement) I

<if statement) else <statement) I
<if clause) (for statement) I

<label) : (conditional statement)

-11-

4.5.2 Examples

if x> 0 then n := n + I
if v > u then V: q := n + m else go to R
if s < OV P < Q thenAA: beginifq < v then a := vIs

else y := 2 X a end
else if v > s then a := v - q
else if v >s-I then go to S

4.5.3 Semantics

Conditional statements cause certain statements to be
executed or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1 If statement. The unconditional statement of
an if statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped
and the operation will be continued with the next
statement.

4.5.3.2 Conditional statement. According to the syn­
tax two different forms of conditional statements are
possible. These may be illustrated as follows:

if BI then SI else if B2 then S2 else S3; S4

and

if BI then SI else if B2 then S2 else if B3 then S3 ; S4

Here BI to B3 are Boolean expressions, while SI to S3
are" unconditional statements. S4 is the statement
following the complete conditional statement.

The execution of a conditional statement may be
described as follows: The Boolean expressions of the
if clauses are evaluated one after the other in sequence
from left to right until one yielding the value true is
found. Then the unconditional statement following
this Boolean is executed. Unless this statement defines
its successor explicitly the next statement to be executed
will be S4, the statement following the complete con­
ditional statement. Thus the effect of the delimiter else
may be described by saying that it defines the successor
of the statement it follows to be the statement following
the complete conditional statement.

The construction
else (unconditional statement)

is equivalent to
else if true then <unconditional statement)

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will
be equivalent to that of a dummy statement.

For further explanation the following picture may be
useful:

f·································f············1
if BI then SI else if B2 then S2 else S3 ; S4

Lt t J
BI false B2 false

Revised report on ALGOL 60

4.5.4 Go to into a conditional statement

The effect of a go to statement leading into a con­
ditional statement follows directly from the above
explanation of the effect of else.

4.6 For statements

4.6.1 Syntax

<for list element) :: = <arithmetic expression) I
<arithmetic expression) step (arithmetic expression)
until <arithmetic expression) I
(arithmetic expression) while <Boolean expression)

<for list) :: = <for list element) I
<for list) , <for list element)

<for clause) :: = for (variable) := <for list) do
(for statement) :: = <for clause) (statement) I

(label) : <for statement)

4.6.2 Examples

fol' q := 1 step s until n do A[q] := B[q]
for k:= 1, VI X 2 while VI < N do

for j : = I + G, L, 1 step 1 until N, C + D do
A [k,j] := B[k,j]

4.6.3 Semantics

A for clause causes the statement S which it precedes
to be repeatedly executed zero or more times. In
addition it performs a sequence of assignments to its
controlled variable. The process may be visualized by
means of the following picture:

t t
Initialize ; test; statement S ; advance ; successor

t ___ 1
for list exhausted

In this picture the word initialize means: perform the
first assignment of the for clause. Advance means:
perform the next assignment of the for clause. Test
determines if the last assignment has been done. If so
the execution continues with the successor of the for
statement. If not the statement following the for clause
is executed.

4.6.4 The for list elements

The for list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable.
This sequence of values is obtained from the for list
elements by taking these one by one in the order in
which they are written. The sequence of values generated
by each of the three species of for list elements and the
corresponding execution of the statement S are given
by the following rules:

4.6.4.1 Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre­
sponding execution of the statement S.

4.6.4.2 Step-until-element. An element of the form A
step B until C, where A, B, and C are arithmetic expres­
sions, gives rise to an execution which may be described
most concisely in terms of additional ALGOL statements
as follows:

V:=A;
Ll : if (V - C) X sign(B) > 0 then go to Element

exhausted;

Statement S;

V:= V+ B;
go to LI;

where V is the controlled variable of the for clause and
Element exhausted points to the evaluation according
to the next element in the for list, or if the step-until­
element is the last of the list, to the next statement in the
program.

4.6.4.3 While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional ALGOL statements as
follows:

L3: V:= E;
if -, F then go to Element exhausted;

Statement S;

go to L3;

where the notation is the same as in 4.6.4.2 above.

4.6.5 The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be
compound) through a go to statement the value of the
controlled variable will be the same as it was imme­
diately preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is
undefined after the exit.

4.6.6 Go to leading into a for statement

The effect of a go to statement, outside a for statement,
which refers to a label within the for statement, is
undefined.

4.7 Procedure statements

4.7.1 Syntax

<actual parameter) :: = (string) I (expression) I
(array identifier) I (switch identifier) I
<procedure identifier)

-12-

<letter string):: = (letter) I (letter string) (letter)
(parameter delimiter) :: = , I) (letter string) : (
(actual parameter list) :: = (actual parameter) I

(actual parameter list) (parameter delimiter)
(actual parameter)

(actual parameter part) :: = (empty) I
«actual parameter list))

(procedure statement) :: =
(procedure identifier) (actual parameter part)

Revised report on ALGOL 60

4.7.2 Examples

Spur (A) Order: (7) Result to: (V)
Transpose (W, v + 1)
Absmax (A, N, M, Yy, I, K)
Innerproduct (A [t, P, u], B[P}, 10, P, Y)

These examples correspond to examples given in section
5.4.2.

4.7.3 Semantics

A procedure statement serves to invoke (call for) the
execution of a procedure body (cf. section 5.4 Procedure
declarations). Where the procedure body is a statement
written in ALGOL the effect of this execution will be
equivalent to the effect of performing the following
operations on the program at the time of execution of the
procedure statement:

4.7.3.1. Value assignment (call by value). All formal
parameters quoted in the value part of the procedure
declaration heading are assigned the values (cf.
section 2.8 Values and types) of the corresponding
actual parameters, these assignments being considered
as being performed explicitly before entering the pro­
cedure body. The effect is as though an additional
block embracing the procedure body were created in
which these assignments were made to variables local to
this fictitious block with types as given in the corre­
sponding specifications (cf. section 5.4.5). As a conse­
quence, variables called by value are to be considered
as non-local to the body of the procedure, but local to
the fictitious block (cf. section 5.4.3).

4.7.3.2 Name replacement (call by name). Any formal
parameter not quoted in the value list is replaced,
throughout the procedure body, by the corresponding
actual parameter, after enclosing this latter in parentheses
wherever syntactically possible. Possible conflicts
between identifiers inserted through this process and
other identifiers already present within the procedure
body will be avoided by suitable systematic changes of
the formal or local identifiers involved.

4.7.3.3 Body replacement and execution. Finally the
procedure body, modified as above, is inserted in place
of the procedure statement, and executed. If the
procedure is called from a place outside the scope
of any non-local quantity of the procedure body,
the conflicts between the identifiers inserted through
this process of body replacement and the identifiers
whose declarations are valid at the place of the procedure
statement or function designator will be avoided through
suitable systematic changes of the latter identifiers.

4.7.4 Actua/~rormal correspondence

The correspondence between the actual parameters of
the procedure statement and the formal parameters of
the procedure heading is established as follows: The
:letual parameter list of the procedure statement must
have the same number of entries as the formal para­
meter list of the procedure declaration heading. The

-13-

correspondence is obtained by taking the entries of
these two lists in the same order.

4 .. 7.5 Restrictions

For a procedure statement to be defined it is evidently
necessary that the operations on the procedure body
defined in sections 4.7.3.1 and 4.7.3.2 lead to a correct
ALGOL statement.

This poses the restriction on any procedure statement
that the kind and type of each actual parameter be com­
patible with the kind and type of the corresponding
formal parameter. Some important particular cases of
this general rule are the following:

4.7.5.1 If a string is supplied as an actual parameter
in a procedure statement or function designator, whose
defining procedure body is an ALGOL 60 statement (as
opposed to non-ALGOL code, cf. section 4.7.8), then
this string can only be used within the procedure body
as an actual parameter in further procedure calls.
Ultimately it can only be used by a procedure body
expressed in non-ALGOL code.

4.7.5.2 A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only corre­
spond to an actual parameter which is a variable (special
case of expression).

4.7.5.3 A formal parameter which is used within the
procedure body as an array identifier can only correspond
to an actual parameter which is an array identifier of an
array of the same dimensions. In addition, if the formal
parameter is called by value, the local array created
during the call will have the same subscript bounds as
the actual array.

4.7.5.4 A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do
not possess values (the exception is the procedure
identifier of a procedure declaration which has an empty
formal parameter part (cf. section 5.4.1) and which
defines the value of a function designator (cf. section
5.4.4). This procedure identifier is in itself a complete
expression).

4.7.5.5 Any formal parameter may have restrictions on
the type of the corresponding actual parameter asso­
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
In the procedure statement such restrictions must
evidently be observed.

4.7.6 Deleted.

4.7.7 Parameter delimiters

All parameter delimiters are understood to be equiv­
alent. No correspondence between the parameter
delimiters used in a procedure statement and those used
in the procedure heading is expected beyond their
number being the same. Thus the information conveyed
by using the elaborate ones is entirely optional.

4.7.8 Procedure body expressed in code

Revised report on ALGOL 60

5.1.3 Semantics

The restrictions imposed on a procedure statement
calling a procedure having its body expressed in non­
ALGOL code evidently can only be derived from the
characteristics of the code used and the intent of the
user, and thus fall outside the scope of the reference
language.

5. Declarations

Declarations serve to define certain properties of the
quantities used in the program, and to associate them
with identifiers. A declaration of an identifier is valid
for one block. Outside this block the particular identifier
may be used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time
of an entry into a block (through the begin, since the
labels inside are local and therefore inaccessible from
outside) all identifiers declared for the block assume the
significance implied by the nature of the declarations
given. If these identifiers had already been defined by
other declarations outside they are for the time being
given a new significance. Identifiers which are not
declared for the block, on the other hand, retain their
old meaning.

At the time of an exit from a block (through end, or
by a go to statement) all identifiers which are declared
for the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a
re-entry into the block, the values of own quantities will
be unchanged from their values at the last exit, while
the values of declared variables which are not marked
as own are undefined. Apart from labels and formal
parameters of procedure declarations and with the
possible exception of those for standard functions (cf.
sections 3.2.4 and 3.2.5) all identifiers of a program
must be declared. No identifier may be declared more
than once in anyone block head.

Syntax

<declaration) :: = <type declaration) I
<array declaration) I
<switch declaration) I
<procedure declaration)

5.1 Type declarations

5.1.1 Syntax

<type list):: = <simple variable) I
<simple variable), <type list)

<type) :: = real I integer I Boolean
<local or own type) :: = <type) I own <type)
<type declaration) :: = <local or own type) <type list)

5.1.2 Examples

integer p, q, s
own Boolean Acryl, n

-14-

Type declarations serve to declare certain identifiers
to represent simple variables of a given type. Real
declared variables may only assume positive or negative
values including zero. Integer declared variables may
only assume positive and negative integral values,
including zero. Boolean declared variables may only
assume the values true and false.

In arithmetic expressions any position which can be
occupied by a real declared variable may be occupied
by an integer declared variable.

For the semantics of own, see the fourth paragraph of
section 5 above.

5.2 Array declarations

5.2.1 Syntax

<lower bound) :: = <arithmetic expression)
<upper bound) :: = <arithmetic expression)
<bound pair) :: = <lower bound) : <upper bound)
<bound pair list) :: = <bound pair) I

<bound pair list) , <bound pair)
< array segment):: =

<array identifier) [<bound pair list)] I
<array identifier), <array segment)

<array list) :: = <array segment) I <array list) , <array
segment)

<array declaration) :: = array <array list) I
<local or own type) array <array list)

5.2.2 Examples

array a, b, c[7 : n, 2 : m], s [-2 : 10]
own integer array A [if c < 0 then 2 else 1 : 20]
real array q[-7 : -1]

5.2.3 Semantics

An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subscripts and the types of the variables.

5.2.3.1 Subscript bounds. The subscript bounds for
any array are given in the first subscript bracket following
the identifier of this array in the form of a bound pair
list. Each item of this list gives the lower and upper
bound of a subscript in the form of two arithmetic
expressions separated by the delimiter : . The bound
pair list gives the bounds of all subscripts taken in order
from left to right.

5.2.3.2 Dimensions. The dimensions are given as
the number of entries in the bound pair lists.

5.2.3.3 Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.

Revised report on ALGOL 60

5.2.4 Lower upper bound expressions

5.2.4.1 The expressions will be evaluated in the same
way as subscript expressions (cf. section 3.1.4.2).

5.2.4.2 The expressions can only depend on variables
and procedures which are non-local to the block for
which the array declaration is valid. Consequently in
the outermost block of a program only array declarations
with constant bounds may be declared.

5.2.4.3 An array is defined only when the values of all
upper subscript bounds are not smaller than those of
the corresponding lower bounds.

5.2.4.4 The expressions will be evaluated once at each
entrance into the block.

5.2.5 The identity of subscripted variables

The identity of a SUbscripted variable is not related to
the subscript bounds given in the array declaration.
However, even if an array is declared own the values of
the corresponding subscripted variables will, at any time,
be defined only for those of these variables which have
subscripts within the most recently calculated subscript
bounds.

5.3 Switch declarations
5.3.1 Syntax

<switch list) :: = <designational expression) I
<switch list), <designational expression)

<switch declaration) :: =

switch <switch identifier) : = <switch list)

5.3.2 Examples

switch S := SI, S2, Q[m], if v > - 5 then S3 else S4
switch Q := pI, w

5.3.3 Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are
given one by one as the values of the designational
expressions entered in the switch list. With each of
these designational expressions there is associated a
positive integer, 1, 2, ... , obtained by counting the
items in the list from left to right. The value of the
switch designator corresponding to a given value of the
subscript expression (cf. section 3.5 Designational
expressions) is the value of the designational expression
in the switch list having this given value as its associated
integer.

5.3.4 Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every
time the item of the list in which the expression occurs is
referred to, using the current values of all variables
involved.

-15-

5.3.5 Influence of scopes

If a switch designator occurs outside the scope of a
quantity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
between the identifiers for the quantities in this expression
and the identifiers whose declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4 Procedure declarations
5.4.1 Syntax

<formal parameter) :: = <identifier)
<formal parameter list) :: = <formal parameter) I

<formal parameter list) <parameter delimiter)
<formal parameter)

<formal parameter part) :: = <empty) I
«formal parameter list»)

<identifier list) :: = <identifier) I
<identifier list) , (identifier)

<value part) :: = value <identifier list) ; I (empty)
(specifier) :: = string I (type) I array I (type) array I

label I switch I procedure I (type) procedure
(specification part) :: = (empty) I

(specifier) <identifier list) ; I
<specification part) <specifier) <identifier list) :

<procedure heading) :: = <procedure identifier)
(formal parameter part);
(value part) (specification part)

<procedure body) :: = (statement) I <code)
<procedure declaration) :: =

procedure <procedure heading) <procedure body) I
(type) procedure (procedure heading) (procedure
body)

5.4.2 Examples (see also the examples at the end of the
report)

procedure Spur (a) Order: (n) Result: (s) ; value n ;
array a ; integer n ; real s ;
begin integer k ;
s:= 0;
for k: = I step I until n do s: = s + a[k, k]
end

procedure Transpose (a) Order: (n) ; value n ;
array a ; integer n ;
begin real w ; integer i, k ;
for i := I step I until n do

for k : = I + i step I until n do
begin w := a[i, k] ;

end

a[i, k] := a[k, i] ;
a[k, i] := w

end Transpose

integer procedure Step(u) ; real u ;
Step : = if 0 .;;;; u 1\ u.;;;; I then I else 0

Revised report on ALGOL 60

procedure Absmax (a) size: (n, m) Result: (y) Subscripts:
(i, k) ;

comment The absolute greatest element of the matrix a, of
size n by m is transferred to y, and the subscripts of this
element to i and k ;

array a ; integer n, m, i, k ; real y;
begin integer p, q ;
y:= 0;
for p : = 1 step 1 until n do for q : = 1 step 1 until m do
if abs(a[p, qD > y then begin y := abs(a[p, qD ;

i := p; k := q end end Absmax

procedure Innerproduct (a, b) Order: (k, p) Result: (y) ;
value k ;

integer k, p ; real y, a, b ;
begin real s ; s : = 0 ;
for p : = 1 step 1 until k do s : = s -I- a X b ;
y:= s
end Innerproduct

5.4.3 Semantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal
constituent of a procedure declaration is a statement or
a piece of code, the procedure body, which through the
use of procedure statements and/or function designators
may be activated from other parts of the block in the
head of which the procedure declaration appears.
Associated with the body is a heading, which specifies
certain identifiers occurring within the body to represent
formal parameters. Formal parameters in the procedure
body will, whenever the procedure is activated (cf.
section 3.2 Function designators and section 4.7
Procedure statements) be assigned the values of or
replaced by actual parameters. Identifiers in the pro­
cedure body which are not formal will be either local or
non-local to the body depending on whether they are
declared within the body or not. Those of them which
are non-local to the body may well be local to the block
in the head of which the procedure declaration appears.
The procedure body always acts like a block, whether
it has the form of one or not. Consequently the scope
of any label labelling a statement within the body or the
body itself can never extend beyond the procedure body.
In addition, if the identifier of a formal parameter is
declared anew within the procedure body (including
the case of its use as a label as in section 4.1.3), it is
thereby given a local significance and actual parameters
which correspond to it are inaccessible throughout the
scope of this inner local quantity.

5.4.4 Values of function designators

For a procedure declaration to define the value of a
function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left part; at least one
of these must be executed, and the type associated with
the procedure identifier must be declared through the

-16-

appearance of a type declarator as the very first symbol
of the procedure declaration. The last value so assigned
is used to continue the evaluation of the expression in
which the function designator occurs. Any occurrence
of the procedure identifier within the body of the
procedure other· than in a left part in an assignment
statement denotes activation of the procedure.

5.4.5 Specifications

In the heading a specification part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In
this part no formal parameter may occur more than once.
Specifications of formal parameters called by value
(cf. section 4.7.3.1) must be supplied and specifications
of formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6 Code as procedure body

It is understood that the procedure body may be
expressed in non-ALGOL language. Since it is intended
that the use of this feature should be entirely a question
of hardware representation, no further rules concerning
this code language can be given within the reference
language.

Examples of procedure declarations

Example 1

procedure euler (Jct, sum, eps, tim) ; value eps, tim;
integer tim ;

real procedure fct ; real sum, eps ;
comment euler computes the sum of fct(i) for i from zero
up to infinity by means of a suitably refined euler trans­
formation. The summation is stopped as soon as tim
times in succession the absolute value of the terms of the
transformed series are found to be less than eps. Hence,
one should provide afunctionfct with one integer argument,
an upper bound eps, and an integer tim. The output is the
sum sum. euler is particularly efficient in the case of a
slowly convergent or divergent alternating series ;
begin integer i, k, n, t ; array m[O : 15] ; real mn, mp, ds ;

i := n := t := 0 ; m[O] := fct(O) ; sum '- m[0)j2 ;
nextferm: i := i -I- 1 ; mn := fct(i) ;

end euler

for k := 0 step I until n do
begin mp := (mn -I- m[kD/2; m[k] := mn ;

mn : = mp end means ;
if (abs(mn) < abs(m[n))) 1\ (n < 15) then

begin ds := mn/2 ; n := n -I- 1
m[n] := mn end accept

else ds := mn ;
sum := sum -I- ds ;
if abs(ds) < eps then t := t -I- 1 else t := 0 ;
if t < tim then go to nextterm

Revised report on ALGOL 60

Example 2*

procedure RK(x, y, n, FKT, eps, eta, xE, yE,fi) ;
value x, y ; integer n ;

Booleanfi ; real x, eps, eta, xE ; array y, yE ;
procedure FKT ;

comment : RK integrates the system

Yk = fk(x, Yl> Y2, ... , Yn) (k = 1,2, ... n)

of differential equations with the method of Runge-Kutta
with automatic search for appropriate length of inte­
gration step. Parameters are: The initial values x and
y[k] for x and the unknown functions Yk(X). The order n
of the system. The procedure FKT(x, y, n, z) which
represents the system to be integrated, i.e. the set of
functions fk. The tolerance values eps and eta which
govern the accuracy of the numerical integr(}tion. The
end of the integration interval xE. The output parameter
yE which represents the solution at x = xE. The Boolean
variable fi, which must always be given the value true
for an isolated or first entry into RK. If, however, the
functions y must be available at several meshpoints
xc, XI> ... , Xm then the procedure must be called repeatedly
(with x = Xh xE = Xk+1> for k = 0, I, ... , n - I) and
then the later calls may occur with fi = false which saves
computing time. The input parameters of FKT must be
x, y, n, the output parameter z represents the set of
derivatives z[k] = fk(x, y[I], y[2], ... , y[n]) for x and the
actual y's. A procedure comp enters as a non-local
identifier ;

begin

array z, y], y2, y3[1 : n] ; real xl, x2, x3, H ;
Boolean out ;

integer k, j ; own real s, Hs ;
procedure RKIST(x, y, h, xe, ye) ; real x, h, xe ;

array y, ye ;
comment: RKIST integrates one single RUNGE­
KUTT A step with initial values x,y[k] which yields
the output parameters xe = x + hand ye[k], the

* This RK-program contains some new ideas which are related
to ideas of S. Gill, "A process for the step by step integration of
differential equations in an automatic computing machine," Proc.
Camb. Phil. Soc., Vol. 47 (1951), p. 96, and C. E Froberg, "On the
solution of ordinary differential equations with digital computing
machines," Fysiograf Siillsk. Lund, Forhd 20, Nr. 11 (1950),
pp. 136-52. It must be clear, however, that with respect to com­
puting time and round-off errors it may not be optimal, nor has it
actually been tested on a computer.

latter being the solution at xe. IMPORTANT: the
parameters n, FKT, z enter RKIST as non-local
entities;
begin

array w[1 : n], a[1 : 5] ; integer k, j ;
a[l] := a[2] := a[5] := hj2 ; a[3]:= a[4] := h;
xe:= x;
for k := I step I untilndoye[k] := w[k] := y[k]:
for j := I step I until 4 do
begin

FKT(xe, w, n, z) ;
xe := x + a[j] j-

for k := I step I until n do
begin

w[k] := y[k] + aU] x z[k] ;
ye[k] := ye[k] + a[j + I] x z[k]J3

end k
endj

end RKIST;

BEGIN OF PROGRAM:

if fi then begin H:= xE- x; s:= 0 end
else H := Hs ; out := false;

AA: if (x + 2.01 x H - xE > 0) == (H > 0) then
begin Hs := H ; out := true; H := (xE - x)/2
end if:
RKIST(x, y, 2 x H, xl, yl) ;

BB: RKIST(x,Y, H, x2,y2) ; RKIST(x2,y2, H, x3,y3);
for k :=] step 1 until n do

if comp(yl[k], y3[k], eta) > eps then go to CC ;
comment: comp(a, b, c) is afunction designator, the
value of which is the absolute value of the difference
of the mantissae of a and b, after the exponents of
these quantities have been made equal to the largest
of the exponents of the originally given parameters
a, b, c;
x := x3 ; if out then go to DD ;
for k := 1 step 1 until n do y[k] := y3[k] ;
if s = 5 then begin s := 0 : H := 2 X H end if;
s := s + 1 ; go to AA ;

CC: H:= 0.5 X H; out := false; xl := x2 ;
for k := 1 step I until n do yl[k] := y2[k] ;
go to BB;

DD: for k := 1 step I.until n do yE[k] := y3[k]
end RK

For alphabetic index. see next page

-17 -

Alphabetic index of definitions of concepts and syntactic
units

All references are given through section numbers. The
references are given in three groups:

def Following the abbreviation "def" reference to the syn­
tactic definition (if any) is given.

synt Following the abbreviation "synt" references to the
occurrences in metalinguistic formulae are given.
References already quoted in the def-group are not
repeated.

+. see: plus
-. see: minus
x. see: multiply
/. -;-. see: divide
t . see: exponentiation
<. <:. =. >. >. 9=. see: (relational operator)
=,), V, 1\, " see: (logical operator)
" see: comma
.• see: decimal point
10. see: ten
:. see: colon
;. see: semicolon
:=. see: colon equal
U. see: space
(). see: parentheses
[]. see: subscript bracket
(I. see: string quote
(actual parameter). def 3.2.1.4.7.1
(actual parameter list). def 3.2.1.4.7.1
(actual parameter part). def 3.2.1.4.7.1
(adding operator). def 3.3.1
alphabet. text 2.1
arithmetic. text 3.3.6

(arithmetic expression). def 3.3.1 synt 3. 3.1.1. 3.3.1. 3.4.1.
4.2.1.4.6.1. 5.2.1 text 3.3.3

(arithmetic operator). def 2.3 text 3.3.4
array, synt 2.3. 5.2.1. 5.4.1
array. text 3.1.4.1

(array declaration). def 5.2.1 synt 5 text 5.2.3
(array identifier). def 3.1.1 synt 3.2.1. 4.7.1. 5.2.1 text 2.8
(array list). def 5.2.1
(array segment). def 5.2.1
(assignment statement). def 4.2.1 synt 4.1.1 text 1,4.2.3
(basic statement). def 4.1.1 synt 4.5.1
(basic symbol). def 2
begin, synt 2.3. 4.1.1

(block). def 4.1.1 synt 4.5.1 text 1,4.1.3. 5
(block head). def 4.1.1
Boolean, synt 2.3. 5.1.1 text 5.1.3

<Boolean expression). def 3.4.1 synt 3. 3.3.1. 4.2.1. 4.5.1.
4.6.1 text 3.4.3

<Boolean factor). def 3.4.1
<Boolean primary). def 3.4.1
<Boolean secondary). def 3.4.1
<Boolean term). def 3.4.1
<bound pair). def 5.2.1
<bound pair list). def 5.2.1
<bracket). def 2.3
(code). synt 5.4.1 text 4.7.8. 5.4.6
colon :. synt 2.3.3.2.1.4.1.1.4.5.1.4.6.1.4.7.1.5.2.1
colon equal :=. synt 2.3. 4.2.1. 4.6.1. 5.3.1

-18 -

text Following the word "text" the references to definitions
given in the text are given.

The basic symbols represented by signs other than under­
lined * words have been collected at the beginning. The
examples have been ignored in compiling the index.

* Bold faced.-Ed.

comma •• synt 2.3. 3.1.1. 3.2.1, 4.6.1, 4.7.1. 5.1.1, 5.2.1,
5.3.1. 5.4.1

cOlnment, synt 2.3
comment convention. text 2.3

<compound statement), def 4.1.1 synt 4.5.1 text 1
<compound tail). def 4.1.1
<conditional statement), dcf 4.5.1 synt 4.1.1 text 4.5.3
<decimal fraction). def 2.5.1
(decimal number). def 2.5.1 text 2.5.3
decimal point .• synt 2.3, 2.5.1

< declaration), def 5 synt 4.1.1 text 1. 5 (complete section)
<declarator). def 2.3
<delimiter), def 2.3 synt 2
<designational expression), def 3.5.1 synt 3, 4.3.1. 5.3.1

text 3.5.3
<digit), def 2.2.1 synt 2,2.4.1,2.5.1
dimension. text 5.2.3.2
divide / -:-. synt 2.3. 3.3.1 text 3.3.4.2
do, synt 2.3. 4.6.1

<dummy statement). def 4.4.1 synt 4.1.1 text 4.4.3
else, synt 2.3.3.3.1.3.4.1.3.5.1.4.5.1. text 4.5.3.2

<empty). def 1.1 synt 2.6.1.3.2.1.4.4.1,4.7.1.5.4.1
end. synt 2.3. 4.1.1
entier. text 3.2.5
exponentiation t. synt 2.3. 3.3.1 text 3.3.4.3

(exponent part), def 2.5.1 text 2.5.3
(expression). def 3 synt 3.2.1. 4.7.1 text 3 (complete section)
<factor). def 3.3.1
false, synt 2.2.2
for, synt 2.3. 4.6.1

<for clause). def 4.6.1 text 4.6.3
<for list). def 4.6.1 text 4.6.4
<for list element). def 4.6.1 text 4.6.4.1. 4.6.4.2. 4.6.4.3
<formal parameter). def 5.4.1 text 5.4.3
<formal parameter list). def5.4.1
<formal parameter part). def 5.4.1
<for statement). def 4.6.1 synt 4.1.1. 4.5.1 text 4.6 (complete

section)
<function designator). def 3.2.1 synt 3.3.1. 3.4.1 text 3.2.3.

5.4.4
go to, synt 2.3. 4.3.1

<go to statement). def 4.3.1 synt 4.1.1 text 4.3.3
<identifier). def 2.4.1 synt 3.1.1. 3.2.1. 3.5.1. 5.4.1 text 2.4.3
<identifier list). def 5.4.1
if, synt 2.3. 3.3.1. 4.5.1

(if clause). def 3.3.1.4.5.1 synt 3.4.1. 3.5.1 text 3.3.3. 4.5.3.2
<if statement). def 4.5.1 text 4.5.3.1
<implication). def 3.4.1
integer, synt 2.3. 5.1.1 text 5.1.3

<integer), def 2.5.1 text 2.5.4
label, synt 2.3. 5.4.1

Revised report on ALGOL 60

<label), def ?5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1,4.1.3
<left part), def 4.2.1
<left part list), def 4.2.1
<letter), def 2.1 synt 2, 2.4.1, 3.il, 4.7.1
<letter string), def 3.2.1,4.7.1
local, text 4.1.3

<local or own type), def 5.1.1 synt 5.2.1
<logical operator), def 2.3 synt 3.4.1 text 3.4.5
<logical value), def 2.2.2 synt 2, 3.4.1
<lower bound), def 5.2.1 text 5.2.4

non-local, text 4.1.3
minus -, synt 2.3,2.5.1,3.3.1 text 3.3.4.1
multiply x, synt 2.3, 3.3.1 text 3.3.4.1

<multiplying operator), def 3.3.1
<number), def 2.5.1 text 2.5.3, 2.5.4
<open string), def 2.6.1
<operator), def 2.3

own, synt 2.3, 5.1.1 text 5, 5.2.5
<parameter delimiter), def 3.2.1,4.7.1 synt 5.4.1 text 4.7.7

parenth:::ses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1
text 3.3.5.2

plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
(primary), def 3.3.1

procedure, synt 2.3, 5.4.1
<procedure body), def 5.4.1
<procedure declaration), def 5.4.1 synt 5 text 5.4.3
<procedure heading), def 5.4.1 text 5.4.3
<procedure identifier), def 3.2.1 synt 3.2.1,4.7.1,5.4.1 text

4.7.5.4
<procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
<program), def 4.1.1 text 1
<proper string), def 2.6.1

quantity, text 2.7
real, synt 2.3, 5.1.1 text 5.1.3

<relation), def 3.4.1 text 3.4.5
<relational operator), def 2.3, 3.4.1

scope, text 2.7
semicqlon ;, synt 2.3, 4.1.1, 5.4.1

<separator), def 2.3
<sequential operator), def 2.3
<simple arithmetic expression), def 3.3.1 text 3.3.3
<simple Boolean), def 3.4.1
<simple designational expression), def 3.5.1
<simple variable), def 3.1.1 synt 5.1.1 text 2.4.3
space U, synt 2.3 text 2.3, 2.6.3

<specification part), def 5.4.1 text 5.4.5
<specificator), def 2.3
<specifier), def 5.4.1
standard function, text 3.2.4, 3.2.5

<statement), def 4.1.1, synt 4.5.1, 4.6.1,5.4.1 text 4 (complete
section)

statement bracket, see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1

<string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes f " synt 2.3, 2.6.1 text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [], synt 2.3,3.1.1,3.5.1,5.2.1

<subscript expression), def 3.1.1 synt 3.5.1
<subscript list), def 3.1.1
<subscripted variable), def 3.1.1 text 3.1.4.1
successor, text 4
switch, synt 2.3,5.3.1,5.4.1

<switch declaration), def 5.3.1 synt 5 text 5.3.3
<switch designator), def 3.5.1 text 3.5.3
<switch identifier), def 3.5.1 synt 3.2.1, 4.7.1.5.3.1
<switch list), def 5.3.1
<term), def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2

<type), def 5.1.1 synt 5.4.1 text 2.8
<type declaration), def 5.1.1 synt 5 text 5.1.3
< type list), def 5.1.1
<unconditional statement), def 4.1.1, 4.5.1
(unlabelled basic statement), def. 4.1.1
<unlabelled block), def 4.1.1
<unlabelled compound), def 4.1.1
<unsigned integer), def 2.5.1, 3.5.1
<unsigned number), def 2.5.1 synt 3.3.1

until, synt 2.3, 4.6.1 text 4.6.4.2
<upper bound), def 5.2.1 text 5.2.4
value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3

<value part), def 5.4.1 text 4.7.3.1
<variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
<variable identifier), def 3.1.1
while, synt 2.3, 4.6.1 text 4.6.4.3

This revised report is reprinted by permission of the Inter­
national Federation for Information Processing, who ask us
to state that reproduction of the whole text only is permitted
without formality.

-19-

