-2970500

100000001

PNP Quad Core Driver

PIN CONFIGURATION

100000002

16 Diode Array

LOGIC DIAGRAM

100000068

Quad 2-Input Exculsive-OR Gate

Positive logic: $\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$

100000069

Single 7-Input NOR Gate

100000094

Precision Voltage Regulator

PIN CONFIGURATION				
NC	1		14	
NC				
CURRENT LIMIT	2	13	FREQUENCY	
COMPENSATION				
CURRENT SENSE	3	12	V^{+}	
INVERTING INPUT	4	11	V_{C}	
NON	5	10	$V_{\text {OUT }}$	
-INVERTING INPUT	5	9	V_{Z}	
VREF	6	9	NC	

The 1000000094 is a precision voltage regulator consisting of a temperature compensated reference amplifier, error amplifier, power seriee pass transistor and current limit circuitry. Additional NPN or PNP pass elements may be used when output currents exceeding 150 mA are required. Provisions are made for adjustable current limiting and remote shutdown.

100000095 and 100000096

256-Bit Bipolar ROM

LOGIC DIAGRAM

32. 8 ARRA

Logic Diagram/Pin Designations

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =\operatorname{Pin} 16 \\
\mathrm{Gnd} & =\operatorname{Pin} 8
\end{aligned}
$$

These TTL 256-bit read only memories are organized as 32 words with 8 bits per word. The words are selected by five binary address lines with full word decoding incorporated on the chip. A Chip Enable input is provided for additional decoding flexibility, which will cause all eight outputs to go to the high state when the Chip Enable input is taken high.

The 100000095 and 100000096 are fully TTL or DTL compatible. The outputs are uncommitted collectors, which allows wired-AND operation with the outputs of other TTL or DTL devices.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{CC}}=\operatorname{Pin} 14 \\
& \text { Gnd }=\operatorname{Pin} 7
\end{aligned}
$$

Positive logic: $\mathrm{Y}=\overline{\mathrm{A}}$

100000134

4-Bit Data Selector/Storage Register

PIN CONFIGURATION

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{CC}}=\operatorname{Pin} 16 \\
& \text { Gnd }=\operatorname{Pin} 8
\end{aligned}
$$

Positive logic: word select low for word 1 , word select high for word 2.

This monolithic data selector/storage register is composed of four S-R master-slave flip-flops, four AND-OR-INVERT gates, one buffer and six inverter/drivers.

When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is shifted to the output terminals on the negativegoing edge of the clock pulse.

NOTE The 100000134 is a low power TTL device.

100000157

High Speed Differential Comparator

The 100000157 is a differential voltage comparator intended for applications requiring high accuracy fast response times. Constructed on a single silicon chip, the device is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier, or a high-noise immunity line receiver.

100000158

Quad 2-Input Positive-NAND Gate

NOTE The 100000158 is a Schottky device.

100000159

Hex Inverter

PIN CONFIGURATION

Positive logic: $\mathbf{Y}=\overline{\mathrm{A}}$

NOTE The 100000159 is a Schottky device.

100000160

Dual J-K Edge-Triggered Flip-Flop

TRUTH TABLE

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Q_{n}
L	H	L
H	L	H
H	H	\bar{Q}_{n}

Notes:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{n}}=\text { bit time before clock pulse. } \\
& \mathrm{t}_{\mathrm{n}+1}=\text { bit time after clock pulse. }
\end{aligned}
$$

These monolithic dual flip-flops are designed so that when the clock goes high, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the truth table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

100000164

256-Bit Bipolar RAM

PIN CONFIGURATION

Chip Selects	Write Enable	Operation	Output
$111 \cdots 0$	$\cdots{ }^{\cdot} \cdot$	Write	Lowical ${ }^{1} \cdot{ }^{\prime}$ State
$111{ }^{\circ}{ }^{\prime \prime}$	${ }^{-1} 1$	Read	Complement of data written in memory
nne or More ' 1 "	X	Hold	Losicial "1] state

e 1c 00164 integrated circuit is a high speed. lly decoded, static bipolar 256 -bit random cess memory in a 256×1 organization. This vice provides uncommitted collector output id three chip selects. peration

Read

he memory is addressed through the $A_{0}-A_{7}$ iputs which select one of the 256 words. The lip is enabled by placing all chip selects (CS) blogic " 0 '. If any or all CS inputs are logic $1^{\prime \prime}$, then the device will be disabled. If the rite enable (WE) is at logic " 1 " the stored bit - read out of DO.
Write
he memory is addressed through the $A_{0}-A_{7}$ puts which select one of the 256 words. The lip is enabled by placing all the CS inputs to ggic " 0 ". If the WE input is at logic " 0 ", the ata on terminal DI is written into the addressed ord.

Then WE returns to logic " 1 ". the information hat was written in is now read out; however. ach $\cdots \sim$ rd read out is the complement of what as ten in.

NOTE The 100000164 is a low power Schottky device.

100000165

Data Selector/Multiplexer with 3-State Outputs

FUNCTION TABLE

Inputs				Outputs	
Select		Strobe			
C	B	A	S	Y	W
X	X	X	H	Z	Z
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$H=$ high logic level, $L=$ low logic level $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off). D0. D1 D7 = the level of the respective D input.

NOTE The 100000165 is a Schottky device.

100000166

Dual 4-Line-To-1-Line Data Selector/Multiplexer

PIN CONFIGURATION

FUNCTION TABLE

Select Inputs		Data Inputs				Strobe	Output
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Select Inputs A and B are common to both sections.

H = high level; L = low level; X = irrelevant.

This monolithic, data selector-multiplexer contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates.

Separate strobe inputs are provided for each of the two four-line sections.

NOTE The 100000166 is a Sohottky device.

100000167

Quad 2-Line-To-1-Line
Data Selector/Multiplexer

$H=$ high level,$L=$ low level, $X=$ irrelevant, $\mathrm{Z}=$ high impedance (off).
These Schottky-clamped multiplexers have three. state outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

This three-state output means that n -bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

100000170

Look-Ahead Carry Generator

PN CONFIGURATION

Pin Designations

Designation	Pin Nos.	Function
G0, G1, G2, G3	$3,1,14,5$	Active-Low Carry Generate Inputs
P0, P1, P2, P3	$4,2,15,6$	Active-Low Carry Propagate Inputs
C_{n}	13	Carry Input
$\mathrm{C}_{\mathrm{n}+\mathrm{x}}, \mathrm{C}_{\mathrm{n}+\mathrm{y}}$, $\mathrm{C}_{\mathrm{n}+\mathrm{z}}$	$12,11,9$	Carry Outputs
G	10	Active-Low Carry Generate Output
P	7	Active-Low Carry Propagate Output
V_{CC}	16	Supply Voltage
Gnd	8	Ground

Positive Logic:

$$
\begin{aligned}
C_{n+x} & =\bar{G}_{0}+\overline{\mathrm{P}}_{0} C_{n} \\
C_{n+y} & =\bar{G}_{1}+\overline{\mathrm{P}}_{1} \overline{\mathrm{G}}_{0}+\overline{\mathrm{P}}_{1} \overline{\mathrm{P}}_{0} C_{n} \\
\mathrm{C}_{\mathrm{n}+\mathrm{z}} & =\overline{\mathrm{G}}_{2}+\overline{\mathrm{P}}_{2} \overline{\mathrm{G}}_{1}+\overline{\mathrm{P}}_{2} \overline{\mathrm{P}}_{1} \overline{\mathrm{G}}_{0}+\overline{\mathrm{P}}_{2} \overline{\mathrm{P}}_{1} \overline{\mathrm{P}}_{0} C_{\mathrm{n}} \\
\overline{\mathrm{G}} & =\overline{\mathrm{G}}_{3}\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{2}\right)\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right)\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \\
\overline{\mathrm{P}} & =\overline{\mathrm{P}}_{3} \overline{\mathrm{P}}_{2} \overline{\mathrm{P}}_{1} \overline{\mathrm{P}}_{0}
\end{aligned}
$$

NOTE The 100000170 is a Schottky device.

100000171

16-Bit Multiple-Port Register File with 3-State Outputs

pIN CONFIGURATION

The 100000171 is a high-performance 16 -bil register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distinct sections

Section 1 permits the writing of data into any twobit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

1) Writing new data into two bits.
2) Reading from two bits.
3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.
Functions of the inputs and outputs are as shown in the following table:

100000172

Dual J-K Negative-Edge-Triggered Flip-Flop with Preset and Clear

PIN CONFIGURATION

FUNCTION TABLE

Inputs					Outputs	
Preset	Clear	Clock	\mathbf{J}	\mathbf{K}	\mathbf{Q}	$\overline{\mathbf{Q}}$
\mathbf{L}	\mathbf{H}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{H}	\mathbf{L}
\mathbf{H}	\mathbf{L}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{L}	\mathbf{H}
\mathbf{L}	\mathbf{L}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{H}^{*}	\mathbf{H}^{*}
\mathbf{H}	\mathbf{H}	\vdots	\mathbf{L}	\mathbf{L}	\mathbf{Q}_{0}	\mathbf{Q}_{0}
\mathbf{H}	\mathbf{H}		\mathbf{H}	\mathbf{L}	\mathbf{H}	\mathbf{L}
\mathbf{H}	\mathbf{H}		\mathbf{L}	\mathbf{H}	\mathbf{L}	\mathbf{H}
\mathbf{H}	\mathbf{H}	1	\mathbf{H}	\mathbf{H}	TOGGLE	
\mathbf{H}	\mathbf{H}	\mathbf{H}	\mathbf{X}	\mathbf{X}	\mathbf{Q}_{0}	\mathbf{Q}_{0}

Notes:
$\mathrm{H} \quad$ = high level (steady state).
$\mathrm{L} \quad=$ low level (steady state).
$\mathrm{X} \quad=$ irrelevant.
$\downarrow \quad=$ transition from high to low level.
$Q_{0} \quad=$ the level of Q before the indicated input conditions were established.
TOGGLE = Each output changes to the complement of its previous level on each active transition of the clock.
$=$ This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

100000173

Dual 4-Input Positive-NAND 50 Ohm Line Driver

Positive logic: $Y=\overline{\mathrm{ABCD}}$

NOTE The 100000173 is a Sohottky device

NOTE The 100000175 is a Schottky device.

100000181

Expandable 4-Wide AND-OR Gate

PIN CONFIGURATION

?ositive logic: $\mathrm{Y}=\mathrm{AB}+\mathrm{CDE}+\mathrm{FG}+\mathrm{HI}+\mathrm{X}$

100000182

4-2-3-2-Input AND-OR-INVERT Gate

PIN CONFIGURATION

Positive logic: $Y=\overline{\mathrm{ABCD}+\mathrm{EF}+\mathrm{GHI}+\mathrm{JK}}$

NOTE The 100000182 is a Schottky device.

100000185

Decoder/Demultiplexer

PIN CONFIGURATION

FUNCTION TABLE
(Each Decoder/Demultiplexer)

Inputs			Outputs			
Enable	Select					
G	B	A	YO	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

$\mathrm{H}=$ high level; $\mathrm{L}=$ low level; $\mathbf{X}=$ irrelevant
These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

NOTE The 100000185 is a Schottky device.

100000186

8-Line-To-1-Line Data Selector/Multiplexer

TRUTH TABLE

Note: When used to indicate an input, $\mathrm{X}=$ irrelevant.

The 100000186 is a one-of-eight data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N -lines to one-line.

100000187

Quad 2-Line-To-1-Line Data Selector/Multiplexer

Inputs				
Output Y Output Control	Select	A	B	
H	X	X X	Z	
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

$=$ high level. L = low level, X = irrelevant. $=$ high impedance (off).
ese Schottky-clamped multiplexers have threeite outputs which can interface directly with d drive data lines of bus-organized systems. th all but one of the common outputs disabled a high-impedance state), the low impedance the single enabled output will drive the bus e to a high or low logic level.
is three-state output means that n -bit (paraled) data selectors with up to 258 sources can imy lented for data buses. It also permits : use or standard TTL registers for data retio iroughout the system.

NOTE The 100000187 is a Schottky device.

100000188

Hex Inverter with Open-Collector Outputs

PIN CONFIGURATION

Positive logic: $\mathbf{Y}=\overline{\mathbf{A}}$

NOTE The 100000188 is a Schottky device.

100000193

Timer
PN CONFIGURATION

PN DESIGNATIONS

1.	Ground	5.	Control Voltage
2.	Trigger	6.	Threshold
3.	Output	7.	Discharge
4.	Reset	8.	$V_{C C}$

The 100000193 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting, if desired.

In the time delay mode of operation, the time is precisely controlled by one external resistor and one capacitor. For a stable operation as an oscillator, the free-running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor.

The circuit may be triggered and reset on falling waveforms, and the outpust structure can source or sink up to 200 mA or drive TTL circuits.

NOTE The 100000194 is a Schottky device.

100000194

Quad MOS Clock Driver

The 100000194 is a monolithic quad driver designed primarily for use as a : MOS clock driver. It can be driven by high current TTL buffers or drivers, either directly or through input coupling capacitors, if level shifting is required.

Notes:

$\mathrm{H}=$ high level (steady state).
$\mathrm{L}=$ low level (steady state).
$1=$ transition from low to high level.
$1=$ transition from high to low level.
$\Omega=$ one high-level pulse.
$\tau=$ one low-level pulse.
$\mathbf{X}=$ irrelevant (any input, including transitions).
An external timing capacitor may be connected between $C_{\text {ext }}$ and $F_{\text {ext }} / C_{\text {ext }}$ (positive).
*G2 $=\mathrm{G} 2 \mathrm{~A}+\mathrm{G} 2 \mathrm{~B}$
$\mathrm{H}=$ high level; $\mathrm{L}=$ low level; $\mathrm{X}=$ irrelevant

100000223

Decoder/Demultiplexer

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizint a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

NOTE The 100000223 is a Schottky device.

100000237

Triple 3-Input Positive-AND Gate

PIN CONFIGURATION

Positive logic: $\mathrm{Y}=\mathrm{ABC}$

NOTE The 100000237 is a Schottky device.

100000238

Dual Peripheral Driver

PIN CONFIGURATION

TRUTH TABLE
Positive logic: $\mathrm{AB}=\mathrm{X}$

A	B	Output X*
0	0	0
1	0	0
0	1	0
1	1	1

$$
\begin{aligned}
& * ' 0^{\prime \prime} \text { Output } \leq 0.7 \mathrm{~V} \\
& " 1 \text { ' Output } \leq 100 \mu \mathrm{~A}
\end{aligned}
$$

These devices are general purpose dual peripheral drivers, each capable of sinking two independent 300 mA loads to ground. In the off state (or with $\mathbf{V}_{\mathrm{CC}}=0 \mathrm{~V}$) the outputs will withstand 30 V . Inputs are fully DTL/TTL compatible.

100000250

Quad Exclusive-OR Gate

PN CONFIGURATION

TRUTH TABLE

A	B	Z	\bar{Z}
L	L	L	H
L	H	H	L
H	L	H	L
H	H	L	H

H = High Voltage Level
L = Low Voltage Level

The exclusive OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: $Z=A \bar{B}+\overline{\mathrm{A} B}$; $\overline{\mathbf{Z}}=\mathbf{A B}+\overline{\mathrm{AB}}$.

NOTE The 100000249 is a Schottky device.

100000259

Triple 3-Input Positive-AND Gate with Open-Collector Outputs

PIN CONFIGURATION

NOTE The 100000259 is a Schottky device.

100000260

Triple 3-Input Positive-NOR Gate

100000266

64-Bit RAM

TRUTH TABLE

Memory Enable	Write Enable	Operation	Outputs
	0	Write	Hi-Z State Complement of Data Stored in Memory Hi-Z State
	1	Read	

The 100000266 is a fully decoded 64 -bit RAM rganized as 164 -bit words. The memory is ddressed by applying a binary number to the our Address inputs. After addressing, informaion may be either written into or read from the nemory. To write, both the Memory Enable and he Write Enable inputs must be in the logical 0 ' state. Information applied to the four Write nputs will then be written into the addressed ocation. To read information from the memory he Memory Enable input must be in the logical $0^{\prime \prime}$ state and the Write Enable input in the logical $\mathbf{1}^{\prime \prime}$ state. Information will be read as the comlement of what was written into the memory. Then the Memory Enable input is in the logical 1 " state, the outputs will go to the high-impednce state. This allows up to 128 memories to e connected to a common bus-line without the se of pull-up resistors. All memories except ne are gated into the high-impedance while the ne s r^{-}ted memory exhibits the normally stem le low impedance output characteristics ${ }^{1} \mathrm{~T} / \mathrm{S}$

100000267

Operational Amplifier

The 100000267 is a general purpose operational amplifier. This amplifier offers overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30 pF capacitor.

In addition, the circuit can be used as a comparator with differential inputs up to $\pm 30 \mathrm{~V}$, and the output can be clamped at any desired level to make it compatible with logic circuits.
H = high level (steady state)

100000301

Phase-Frequency Detector

LOGIC DIAGRAM

FUNCTION TABLE

INPUT STATE	INPUT		OLTPLT			
	RI	VI	C 1	D1	12	D2
1	0	0	X	x	1	1
2	,	0	X	X	0	1
3	1	1	X	X	1	0
4	1	0	X	X	0	1
5	0	0	X	X	1	1
6	1	0	X	X	0	1
7	0	0	X	X	1	1
8	1	0	X	X	0	1
9	0	0	0	,	1	1
10	0	1	0	1	1	1
11	0	0	1	1	1	,
12	0	1	1	1	1	
13	0	0	1	0	1	1
14	0	1	1	0	1	1
15	0	0	1	0	1	1
16	1	0	1	0	0	1
17	0	0	1	1	1	1

1. X in ticates output state unkmon
2. Cl and Dl outputs are sequential: i. ϵ., they must be sequenced in order shown
3. U2 and D2 outputs are combinathonat: i. e., ther need onty imputs shown to obtain sutputs.

This is not strictly a functional truth table: i. e., it does nut show all possible modes of operation. It is useful for de testins.

The 100000301 contains two digital phase detectors and a charge pump circuit which converts MTTL inputs to a dc voltage level for use in frequency discrimination and phase-locked loop applications.
$\mathrm{L}=$ low level (steady state)
$\mathrm{X}=$ irrelevant
$1=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated input conditions were established.

* = This configuration is nonstable: that is. it will not persist when preset and clear inputs return to their inactive (high) level.
NOTE The 100000300 is a Schottky device.

100000470

Voltage Comparator

PIN CONFIGURATION

The 100000470 operates from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. The input common-mode voltage range includes ground, even though operated from a single power supply volt age.

100000472

Quad 2-Input Positive NAND Gate

PIN CONFIGURATION

NOTE The 100000472 is a Schottky device.

Pin Designations
$V_{+}=P i n 3$
Gnd $=\operatorname{Pin} 12$

100000475

Quad 2-Line-To-1-Line Data Selector/Multiplexer

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16$
Gnd $=\operatorname{Pin} 8$
truth table

Inputs				Output
Output Control	Select	A	B	Y
H	X	X	X	Z
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

$H=$ high level. $L=$ low level, $X=$ irrelevant.
Z = high impedance (off).

NOTE The 100000475 is a low power Schottky device.

1

100000476

Dual D-Type Positive-Edge-Triggered Flip-Flop with Preset and Clear

PIN CONFIGURATION

Logic Diagram Pin Designations

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 14 \\
& \text { Gnd }=\operatorname{Pin} 7
\end{aligned}
$$

function table

Inputs					Outputs
Preset	Clear	Clock	D	Q	$\overline{\mathrm{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H *	H *
H	H	.	H	H	L
H	H	,	L	L	H
H	H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

$\mathrm{H}=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
$\mathrm{X}=$ irrelevant
$\cdot=$ transition from low tu high level
$\mathrm{Q}_{0}=$ the level of Q before the indicated input conditions were established.

* = This configuration is nonstable: that is. it will not persist when preset and clear inputs return to their inactive (high) level.

NOTE The 100000476 is a low power Schottky device.

PIN CONFIGURATION

Positive logic: $\mathrm{Y}=\overline{\mathrm{AB}+\mathrm{CD}}$

NOTE

The 100000504 is a Schottky device.

100000505

Clock Driver

PIN CONFIGURATION

Centinued....

Transmiter Block Diogram

Description of Pin Functions (Continued)

41280	Name	Suntol	Furction
25.33	Ls: E E: 1 1-ju's		There are up tos Pata tiol inght liaes avillardo.
31	Con:ent strate	CS	A los: - rion thest-wi witl enerr the conteot butstes.s. SBP. NB?. T: ix Np, irice the control bils ioldine re:ister. Tris liatec.ub streded ist
33	No Praity	NP	A tozic - 1 on iths lest will eleminate the parite bit fromt the transmit: at and received chamoter foo Pk. induration:. The sec-p bitiss. x ill inmedeaiel: fillice nust he tied is a loser ${ }^{-0} \sigma^{-}$.
35	Noncter of S:op Exts	TS3	This lead will setret the rumberpor stop bits. 1022 en M appordedimmediatos: sfier the paritv but. A lopic $0^{-\sigma^{-}}$will in sert 1 slopp tit and a losic - F will insert 2 slop Mis
37-33	Number of E:ts Chuezeser	人32. S32 $^{\circ}$	These tros leads wall the internalle teroded in select either 3. 6. 7 ior 7 diata mis chariatec. SB2 SDS Bils Characiep
39	Ofs Erea Patity	EPS	The incectiocet om that pith seferts the expe of parit: whet will be sjppenten inmediasely aliope isp data his. It atso ceterminest the purity that wall be checked ly the geremter. 2 lincic "O" will insert aed yarity and a losic - 1 will i:sect eren puritu.
30	Tricswatter Clori: Leser	TCP	This liom will evantain a chock athse frequexry is if toanes inxp ine desired transmitere tond rate.

Continued....

Receiver Block Diogram

Continued....

data availagle

$\cdot \overline{R D E}, \overline{S W E}$

DATA OUTPUT STATUS WORO OUTPUT

Receiver Timing Disgran

notes：
L THIS IS THE TIME WHEN THE ERZOR CON－ DITIONS ARE DETECTED，IF ERRDA OECLIRS．
2 DATA AHILABLE IS SET ONLY HHEN THE RECEIVED DATA，PE，FE，OR HAS BEEN TRANSEEREO TO THE HOLDING REGISTERS． （SEE RECEIVER BLOCK DIAGRAM）．
3．RLL INFORNATION IS GOOD IT HOLOINS REGISTER UNTIL DATA AVAILABLE TPIES REGISTEG UNTIL DATA AVALLA
TO SET FOR NEXT CHARACTER．

2．230VE SHCWY FOR 8 CEVEL CODE pibity ani two stop．For no paritr． SiOp BITS FOLLOW DAEA．
3．Fot rll level code the data in the かつこの：ね 天ミSISTER IS R：EM NiSTIFIED： T－E：IS，LS3 ALWAYS RPPEARS IA Pコ，（DIN12）．

Transmitter Timing Diogram

100000537

Quad 2-Input AND Gate

PIN CONFIGURATION

NOTE The 100000537 is a Schottky device.

100000540

High Speed 6-Bit Identity Comparitor

LOGIC DAAGRAM

The 100000540 is a very high speed 6-Bit Identity Comparator. The device compares two words of up to 6 -bits and indicates identity in less than 12 ns It is easily expandable to any word length by using either serial or parallel expansion techniques. When the Enable Input (E) is LOW, it forces the output LOW. The device is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL product families.

100000541

8-Bit Parallel-Out Serial Shift Register

PIN CONFIGURATION

FUNCTION TABLE

INPUTS				OUTPUTS			
CLEAR	CLOCK	A	B	Q_{A}	Q_{B}	\ldots	Q_{H}
L	X	X	X	L	L	L	
H	L	X	X	$Q_{A O}$	$Q_{B O}$	$Q_{H O}$	
H	i	H	H	H	$Q_{A n}$	$Q_{G n}$	
H	\uparrow	L	X	L	$Q_{A n}$	$Q_{G n}$	
H	$*$	X	L	L	$Q_{A n}$	$Q_{G n}$	

Notes:
$\mathrm{H}=$ high level (steady state),
$\mathrm{L}=$ low level (steady state)
$\mathrm{X}=$ irrelevant (any input, including transitions)
$t=$ transition from low to high level.
$\mathrm{Q}_{\mathrm{A} 0}, \mathrm{Q}_{\mathrm{B} 0}, \mathrm{Q}_{\mathrm{H} 0}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$, or Q_{H}, respectively, before the indicated steadystate input conditions were established.
$Q_{A n}, Q_{G n}=$ the level of Q_{A} or Q_{G} before the most-recent \uparrow transition of the clock: indicates a one-bit shift.

The 100000541 features gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock

100000580

4-Bit Bidirectional Universal Shift Register

PIN CONFIGURATION

function table

INPUTS										OUTPUTS			
LEAN	MOOE		Clocx	SEmial		parallel				0_{A}	0	0 C	00
	S_{1}	s_{0}		LEFT	Hight	A	E	C	0				
1	x	x	\times	x	x	x	x	x	x	1	1	1	1
H	-	\times	1	*	\times	x	\times	\times	\times	$O_{A O}$	O_{80}	$a^{\text {a }}$	0_{00}
H	H	H	1		\times		0	c	0	*	0	e	0
H	L	H	,	x	н	x	x	x	x	H	$O_{\text {an }}$	$\mathrm{O}_{8 \mathrm{~m}}$	$a_{C n}$
M	1	H	,	x	1		x	x	x	1	$\mathrm{O}_{\text {an }}$	O_{8}	O_{Cn}
H	H	L	-	H	\times		x	x	x	$a_{8 n}$	a_{C}	O_{n}	H
H	H	1	${ }^{\prime}$	1	x		x	x	\times	$a_{8 n}$	O_{C}	O_{D}	1
\cdots	1	1	\times	x	\times	\times	\times	x	\times	a_{40}	O_{80}	$a_{c o}$	0_{∞}

$\mathrm{H}=$ high level (steady state).
$\mathrm{L}=$ low level (steady state).
$X=$ irrelevant (any input, including transitions).
$\varphi=$ transition from low to high level.
a, b, c, $d=$ the level of steady-state input at inputs A, B, C or D, respectively.
$\mathrm{Q}_{\mathrm{A} 0}, \mathrm{Q}_{\mathrm{B} 0}, \mathrm{Q}_{\mathrm{C} 0}, \mathrm{Q}_{\mathrm{D} 0}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$. Q_{C} or Q_{D}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ the level of Q_{A}, Q_{B}, Q_{C} or Q_{D}. respectively, before the most recent \uparrow transition of the clock.

100000581

Synchronous 4-Bit Counter

PN CONFIGURATION

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

This counter is fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

NOTE The 100000581 is a low power Schottky device.

100000594

Quad D Flip Flop with Clear

FUNCTION TABLE

Inputs			Output
Clear	Clock	D	Q
L	X	X	L
H	I	H	H
H	\vdots	L	L
H	L	X	Q_{0}

Notes:
H = high level (steady state)
L = low level (steady state)
X = irrelevant
$1=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state input conditions were established.

NOTE The 100000594 is a low power Schottky device.

100000595

Quad 2-Input Positive-AND Gate

NOTE The 100000595 is a low power Schottky device.
100000779
$74 \mathrm{~s} 3 \varepsilon$
Quad 2-Input NAND Buffer

The 100000779 consists of four 2-input NAND buffers with open collector-outputs.

NOTE The 100000779 is a Schottky device.

100000780

Quad 2-Input OR Gate

PIN CONFIGURATION

LOGIC DIAGRAM

The 100000780 consists of four 2-input OR gates with totem-pole outputs.

NOTE The 100000780 is a Schottky device.

100000795

Programmable Bit Rate Generator

PIN CONFIGURATION
PIN NAMES

CLOCK MODES AND INTTIALIZATION

Ix	$\overline{E C P}$	CP	OPERATION
ת几ת	H	1	Clocked from 'x
\times	1	תurs	Clocked from CP
x	H	H	Continuous Reset
x	\downarrow	Ω	Reset Ouring first CP $=$ HIGH Time

Note : Actust ourput freauency is 16 fimes the indicated Ourpur Rate. essuming a ciock frequency of 2.4576 MHz .

TRUTH TABLE FOR RATE SELECT WPUTS

S_{3}	\mathbf{S}_{2}	s_{1}	So	Outhut Rate (2) Note 1
2	1	6	1	Multuplexed Indur ${ }^{\text {(1M1 }}$
1	1	1	H	Multrplexed inpur (1 M)
\llcorner	1	H	L.	50 Eaud
1	1	H	H	75 Baut
1	H	t	L	1305 Baud
1	H	L	H	200 baus
1	H	H	1	600 Brud
1	H	H	-	2400 Bajo
H	L	L	L	9600 Bina
N	L	i	M	4800 Bjud
H	L	\cdots	\checkmark	1800 Baud
${ }^{\prime \prime}$	\checkmark	H	H	1200 Baut
4	\cdots	\bullet	1.	2400 Baud
H	H	1	H	300 Baud
H	\cdots	4	i.	150 Aiud
M	H	\rightarrow	\cdots	1cicaua

100000796

Dual J-K Negative-Edge-Triggered Flip-Flop

 with Preset and Clear

FUNCTION TABLE

Inputs					Outputs	
Preset	Clear	Clock	J	K	Q	$\overline{\mathrm{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	!	L	L	Q_{0}	\bar{Q}_{0}
H	H	1	H	L	H	L
H	H	,	L	H	L	H
H	H	-	H	H	TO	GLE
H	H	H	X	X	Q_{0}	\bar{Q}_{0}

Notes:
$\mathrm{H} \quad=$ high level (steady state).
$\mathrm{L} \quad=$ low level (steady state).
$X \quad=$ irrelevant.

- = transition from high to low level.
$Q_{0} \quad=$ the level of Q before the indicated input conditions were established.
TOGGLE $=$ Each output changes to the complement of its previous level on each active transition of the clock.
* $\quad=$ This configuration is nonstable: that is. it will not persist when preset and clear inputs return to their inactive (high) level.

NOTE The 100000796 is a low power Schottky device.

100000797

Triple 3-Input Positive-NAND Gate

PIN CONFIGURATION

Positive logic: $\mathbf{Y}=\overline{\mathbf{A B C}}$

NOTE The 100000797 is a low power Schottky device.

100000798

Hex Inverter with Open Collector Outputs

PIN CONFIGURATION

Positive logic: $Y=\bar{A}$

NOTE The 100000798 is a low power Schottky device.

100001018

Octal D-Type Transparent Latches
$11=363$

PIN CONFIGURATION

TRUTH TABLE

OUTPUT CONTROL	$\begin{gathered} \text { ENABLE } \\ G \end{gathered}$	D	OUTPUT
L	H	H	H
L	H	L	1
1	1	x	∞_{0}
H	\times	x	Mi-Z

Q_{0} Fine well of O before the indicared sieed-atere input conditions were estebllatied.
N I Mrath reve
LE tow revel
M1-2 E high imperance
$X=$ incotevant
t erencition trom low so hagh tevel

100001019

Octal D-Type Edge-Triggered Flip-Flops

TRUTH TABLE

OUTPUT CONTROL	CLOCK	D	OUTPUT
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	O_{0}
H	X	X	$M_{i}-Z$

\mathbf{O}_{0} " the revel of \mathbf{O} before ine indicesed stead-stere input conditions were established.
HEnigh level
L. low level

M1-2 $=$ high impeatance
$x=$ irrevevant
\dagger E iransition from low to high leva:

The 100001019 contains eight edge-triggered D-types flip-flops. On the low-to-high clock transition, the \mathbf{Q} outputs are set to the data states setup on the D inputs.

These flip-flops have totem-pole 3 state outputs for driving highly-capacitive or relatively low-impedance loads.

NOTE The 100001019 is a Schottky device.

100001020

Quad 2-Input NOR Gate

NOTE The 100001020 is a low power Schottky device.

100001045

- い !

8-Input NAND Gate

PN CONFIGURATION

pesinive lopic:
Y- ABCDEFGH

NOTE The 100001045 is a Schottky device.

100001046

Octal D-Type Transparent Latch

PIN CONFIGURATION

BLOCK DIAGRAM

TRANSPARENT LATCHES

The 100001047 and 100001048 are registers containing four D flip-flops with a buffered common clock and a two input multiplexer at the input of each flip-flop. The multiplexers are controlled by the common select line S. Data selected by S is stored in the flip-flops on the low-to-high transition of the clock. When the S input is low, the DiA data is stored in the register; when it is high, the DiB data is stored.

NOTE The 100001047 and 100001048 are Schottky devices. The 100001047 is a lower power component.

Ghavive mharactenistics

\because On in roplocsment for standard Am2301.
-. 20% to 30% faster than standard Am2901

- major improvements in D input and carry paths

F Dot raised $\because 20 \mathrm{~mA}$ on Y outputs - 30% more dive then standard Am2301

- lc reduced to 100 mA at $125^{\circ} \mathrm{C}-30 \%$ less timon standard Am2901
- Y it raised to 0.8 V over full military range for increased noise immunity

ORDERING INFORMATION

Package Type	Temperature Range	Order Number
Remolded DiP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	AM2901APC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	AM2901ADC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2901ADM
Hermetic Flat Pack	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AM2901AFM
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM2901AXC

Note: The Dits in this dotes shasiconiains expected typical par. formance for the Am2901A AS a ruts, worst case AC limits will An approximately 1.6 times typical over the commercial range ard approximately 2.0 times typical over the military range. Be sure to convert Advanced Micro Devices for the latest dora.

AVAILABLE FEBRUARY, 1977

GENERAL DESCRIPTION

The four-bit bipolar microprocessor slice is designed as a high-speed cascadable element intended for use in CPU's. peripheral controllers. programmable microprocessors and numerous oise: applications. The miroinstruction flexibilivy of the Am2901A will allow efficient emulation of almost any digital computing machine.
The device, as shown in the block diagram below. consists of a 16 -word by 4 -bit two-port RABi, a high-speed ALU. and the associated shifting, decoding and, multiplexing cirauitry. The ninebit microinstruction word is organized into three groups of three bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look-ahezd or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. Advance low-power Schotiky processing is used to fabricate this 40-iead LSI chip. The Am2901A is a plug in replacement for the Am2001. For detailed description and applica. tons see the Am2901 Data Sheet.

- $X=$ Don's care. Electricelly. the shift pin is a $T T_{L}$ input internally connected to three-state output which is in the high impedance state.
- B-Registor Addressed by B inputs.

Up is soware MSB. Down is toward LSB.
ALU Destination Control.

Source Operand and ALU Function friatrix.

ETALIIZATIONANDPAOLAYOUT

Top Vied

Note:
Pin 1 is marked for orianiation.

Top View

Caution: Am2901AFM pinout differs from Am2901FM on pins 4. 11, 12 and 13.

PIN DEFINITIONS

A0-3 The four address inputs to the register stack used to select one register whose contents are displayed through the A-port.
B_{0-3}
The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.
Jo-3 The nine instruction control lines to the Am2901. used to determine what data sources will be applied to the ALU (lo12), what function the ALU will perform (1_{345}), and what data is to be deposited in the 0 -register or the register stack $\left(\|_{673}\right)$.
$\mathrm{O}_{3} \quad A$ shift line at the MSB of the Q register $\left(\mathrm{O}_{3}\right)$ and the register stack (RAM3). Electrically these lines are three-state outputs connected to TTL inputs internal to the Am2901A. When the destination code on 1678 indicates an up shift (octal 6 or 7) the threestate outputs are enabled and the MS8 of the Q register is available on the O_{3} pin and the MSS of the ALU output is available on the RAM3 pin. Otherwise, the three-state outputs are OFF (high-impedance) and the pins are electrically LS-TTL inputs. When the destination code calls for a down_shift, the pins are used as the data inputs to the MSB of the Q registe: (octal 4) and RAM (octal 4 or 5).
$\mathrm{O}_{0} \quad$ Shift lines like O_{3} and RAM $_{3}$, but at the LSS of the RAinio O-register and RAM. These pins are tied to the O_{3} and RAM3 pins of the adjacent device to transfer data between devices for up and down shifts of the C regisier and ALU data.

Do-3 Direct data inputs. A four-bit data fielt which may be selected as one of the ALU data sources for entering data into the Am2901A, D_{0} is the LSS.

Yo-3 The four data outputs of the Am2901A. These are thre-state output lines. When enabled, they display either the four outputs of the ALU or the data on the A-port of the register stack, as determined by the destination code \mathbf{I}_{678}.
$\overline{\mathrm{OE}}$ - Output Enable. When $\overline{\mathrm{OE}}$ is HIGH, the Y outputs ara OFF: when $\overline{O E}$ is LOW, the Y outputs are active (HIGH or LOW).
$\bar{P} \overline{\mathbf{G}}$ The carry generate and propagate outputs of the Am2901A's ALU. These signals are used with the Am2902 for carry-lookahead.

OVR Overfiow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit. See figure 8 for logic equation.
$F=0$ This is an open collector output which goes HIGH (OFF) if the ciata on the four ALU outputs F_{0-3} are all LOW. In positive logic, it indicates the resslt of an ALU operation is zero.
$C_{n} \quad$ The carry-in to the Am2901A's ALU.
C_{n+4}. The carry-out of the Am2901A's ALU. See Figure 8 for equations.

CP The clock to the Am2901A. The \mathbf{Q} register and register stack outputs change on the clock LOW-ioHIGH transition. The clock LOW time is internally the write enable to the 16×4 RAPA which compromises the "master" latches of the register stack. White the clock is LOW, the "slove" Iatches on the RAM ouiputs are closed. storing the dais previously on the r.Ait outpuis. This allows synchronous master-sla: operation of the register stack.

Notas: 1. For conditions shown as MiN. or MAX., use tho approprlate vilue sporifiod under Electrical Choractorlaticz far the zopllcabie device type. 2. Typical limits are as $\mathrm{VCC}_{\mathrm{CC}}-5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ emblent and moximum tosding.

 siste outpus is DFr
5. "MA1R" - Am29JIAXM. D:A. FM. "CON"L" - Am2901AXC, PC. OC.
O. Worut case Iccis -. ininimum tamporatura

Wich :indes are definedrelative to the chock LOW:0inputs must be sieady at all times from the set-up
operation on the correct data so that the correct Al.U data can te written into one of the registers.

- Minimum Cycle Times from Inputs. Numbers Shown are Minimum Datr Stable Times for AM2901ADC, in ns. See Table III for Detailed information.

Typical Icc Versus Temperature

1. 11 . and 111 bolow detine the timing characteristics of Am2901A at $25^{\circ} \mathrm{C}$. The tables are divided into three types inputs to outputs, and satametistics, combinational delays from later table defines the time prior to the end of the cycle (i.e., clecic LOW-to-HIGH transition) that each input must be stable to guorantee that the correct data is wirten into one of the inter:izi ragisters.

All values are at $25^{\circ} \mathrm{C}$ and 5.0 V . Measurements are made at 1.5 V with $V_{I L}=O V$ and $V_{I H}=3.0 \mathrm{~V}$.

Thise	TYPICAL	GUARANTEED
ReastModify-urite Cycle (time from selection of A. Eregisters to end of. cycle)	55ns	
Ridximum Clock Frequency to Shift Q Resister 150% duty cycie) ! - 432 or 632	40 MHz	
Pinimum Clock LOW Time	30 ns	
Phinimum Clock HIGH Time	30 ns	
Minimum Clock Period	75ns	-

 rimes eypical ovar the commercial range and approximately 2.0 times typieal oyer the militery fanga. Be sure to contaci Advanced Micro Devices for the latest dats.

TABLE II
COB:BINATIONAL PROPAGATION DELAYS (all in ns, $C_{L} \leqslant 50 p F$)

	TYPICAL $25^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$								GUARANTEED $25^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$							
				G	$F=0$	OV	Shi Outp						$F=0$		Shift Outputs	
	γ	F_{3}	c_{n+4}	G,	$\begin{aligned} & R_{L}= \\ & 470 \end{aligned}$	OVR	$\begin{aligned} & \text { RAMO } \\ & \text { RAM }_{3} \end{aligned}$	$\begin{aligned} & a_{0} \\ & o_{3} \end{aligned}$	-	F_{3}	c_{n+4}	G.P	$\begin{aligned} & R_{L}= \\ & 470 \end{aligned}$	OVR	RAMO RAM $_{3}$	$\begin{aligned} & a_{0} \\ & a_{3} \end{aligned}$
A. B	45	45	45	40	65	50	60.	-								-
D (arithmetic mode)	30	30	30	25	45	30	40	-								-
D(1-×37) (Note 5)	30	30	-	-	45	-	40	-			--	-		-		-
C_{n}	20	20	10	-	35	20	30	-				-				-
1012	35	35	35	25	50	40	45	-							-	-
1345	35	35	35	25	45	35	45	-								-
1678	15	-	-	-	-	-	20	20		-	-	-	-	-		
OE Enable/Disable	20/20	-	-	-	-	-	-	-		-	-	-	-	-	-	-
$\begin{aligned} & \text { Abypassing } \\ & \text { ALU }(1=2 x x) \end{aligned}$	30	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Clock 5^{-}(Note 6)	40	40	40	30	55	40	55	20								

SE:̈UP AND HOLD TII.qES (all in ns) (Note 1)
TABLE III

From Inpu.	Notes	TYPICAL $25^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$		GUARANTEED $25^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$	
		Set-Up Time	Hold Time	Set-Up Time	Hold Time
$\begin{aligned} & \text { A.B } \\ & \text { Source } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.5 \end{aligned}$	$t_{p w}^{40}+15$	0		0
B Dest.	2.4	${ }^{\text {t }}$ pwL +15	0		0
D (arithmetic mode)		25	0		0
$D(1=\times 37)($ Note 5)		25	0	-	0
C_{n}		15	0		0
${ }^{1} 012$		30	0		0
1345		30	0		0
${ }_{6} 678$	4	${ }^{\text {t }} \mathrm{pw}^{L}+15$	0		0
RAM0.3. O0, 3		15	0		0

Notes: 1. Soenext paje.
 - 8 test" zot-ud time.
3. Whare swo numbers are shown, both must bemet.
4. "rowl" is ine clock LOW tmm .

DISTINCTIVE CHARACTERISTICS

- Plug-in replacement for Am2901 and Am2901A
- Up to 27% faster than Am2901A, up to 50% faster than 2901
- High reliability plastic and cerdip packages
- Available now

For applications information see the Am2900 Family Data Book and Chapters III and IV of "Build a Microcomputer", AMD's application series on the Am2900 family.

GENERAL DESCRIPTION

The four-bit bipolar microprocessor slice is designed as a highspeed cascadable element intended for use in CPU's, peripheral controllers, programmable microprocessors and numerous other applications. The microinstruction flexibility of the Am2901B will allow efficient emulation of almost any digital computing machine.
The device, as shown in the block diagram below, consists of a 16 -word by 4 -bit two-port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit microinstruction word is organized into three groups of three bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look-ahead or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. Advanced low-power Schottky processing is used to fabricate this 40 -lead LSI chip. The Am2901B is a plug in replacement for the Am2901 or Am2901A.

	MICRO CODE				ALU SOURCE OPERANDS	
Mnemonic	I $_{\mathbf{2}}$	I $_{\mathbf{1}}$	I	Octal Code	R	S
AQ	L	L	L	0	A	O
AB	L	L	H	1	A	B
ZO	L	H	L	2	O	O
ZB	L	H	H	3	O	B
ZA	H	L	L	4	O	A
DA	H	L	H	5	D	A
DO	H	H	L	6	D	Q
DZ	H	H	H	7	D	O

Figure 2. ALU Source Operand Control.

Mnemonic	MICRO CODE				allu Function	SYMBOL
	l_{5}	14	13	Octal Code		
ADD	L	L	1	0	R Plus S	R + S
SUBr	L	L	H	1	S Minus R	S - R
SUBS	L	H	L	2	R Minus S	R-S
OR	L	H	H	3	RORS	$R \vee S$
AND	H	L	1	4	R AND S	$\mathrm{R} \wedge \mathrm{S}$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\bar{R}} \wedge$
EXOR	H	H	L	6	REX-ORS	$R \forall S$
EXNOR	H	H	H	7	REX-NOR S	$\overline{\text { R }} \mathrm{FS}$

Figure 3. ALU Function Control.

Mnemonic	MICRO CODE				RAM FUNCTION		Q-REG. FUNCTION		$\stackrel{\mathbf{Y}}{\text { OUTPUT }}$	RAMSHIFTER			
	18	17	I_{6}	Octal Code	Shift	Load	Shift	Load		RAM ${ }_{0}$	RAM_{3}	a_{0}	O_{3}
QREG	L	L	L	0	x	NONE	NONE	$\mathrm{F} \rightarrow \mathrm{O}$	F	x	x	x	\times
NOP	L	1	H	1	x	NONE	\times	NONE	F	\times	\times	\times	x
RAMA	L	H	L	2	NONE	$F \rightarrow B$	x	NONE	A	x	x	x	x
RAMF	L	H	H	3	NONE	$F \rightarrow B$	\times	NONE	F	x	x	x	x
RAMQD	H	L	L	4	DOWN	$F / 2 \rightarrow B$	DOWN	$0 / 2 \rightarrow 0$	F	F_{0}	IN_{3}	O_{0}	IN_{3}
RAMD	H	L	H	5	DOWN	$F / 2 \rightarrow B$	x	NONE	F	F_{0}	IN_{3}	o_{0}	\times
RAMOU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$20 \rightarrow 0$	F	N_{0}	F_{3}	N_{0}	O_{3}
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	NONE	F	IN_{0}	F_{3}	x	O_{3}

$\mathrm{X}=$ Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state $\mathrm{B}=$ Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB.
Figure 4. ALU Destination Control.

- 1	210 OCTAL	0	1	2	3	4	5	6	7
$\begin{array}{ll} T & S \\ A & 4 \\ L & 3 \end{array}$	\qquad	A, 0	A, B	O, 0	O, B	O, A	D, A	D, $\mathbf{0}$	D, 0
0	$\begin{aligned} & C_{n}=L \\ & \text { R Plus } S \\ & C_{n}=H \end{aligned}$	$\begin{aligned} & A+Q \\ & A+Q+1 \end{aligned}$	$\begin{gathered} A+B \\ A+B+1 \end{gathered}$	$\begin{gathered} 0 \\ 0+1 \end{gathered}$	$\begin{gathered} B \\ B+1 \end{gathered}$	A $A+1$	$\begin{gathered} D+A \\ D+A+1 \end{gathered}$	$\begin{gathered} D+Q \\ D+Q+1 \end{gathered}$	$\begin{gathered} D \\ 0+1 \end{gathered}$
1	$C_{n}=L$ S Minus R $C_{n}=H$	$\begin{aligned} & Q-A-1 \\ & Q-A \end{aligned}$	$\begin{gathered} B-A-1 \\ B-A \end{gathered}$	$\begin{gathered} \mathrm{Q}-1 \\ 0 \end{gathered}$	$\begin{gathered} B-1 \\ B \end{gathered}$	$\begin{gathered} A-1 \\ A \end{gathered}$	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{aligned} & Q-D-1 \\ & Q-D \end{aligned}$	$\begin{gathered} -D-1 \\ -D \end{gathered}$
2	$\begin{gathered} C_{n}=L \\ R \text { Minus } S \\ C_{n}=H \end{gathered}$	$\begin{gathered} A-O-1 \\ A-O \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -\mathrm{O}-1 \\ -\mathrm{O} \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \end{gathered}$	$\begin{gathered} -A-1 \\ -A \end{gathered}$	$\begin{aligned} & D-A-1 \\ & D-A \end{aligned}$	$\begin{aligned} & D-Q-1 \\ & D-Q \end{aligned}$	$\begin{gathered} D-1 \\ 0 \end{gathered}$
3	R OR S	A. O	A B	0	B	A	D ; ${ }^{\text {A }}$	D $\vee 0$	D
4	R AND S	A $/ 0$	A B	0	0	0	$D \wedge A$	D^0	0
5	$\overline{\mathrm{R}}$ AND S	$\bar{A}, 0$	A B	0	B	A	D. A	$\overline{\mathrm{D}}$ - O	0
6	R EX-OR S	$A \forall 0$	$A \div B$	0	B	A	$D \forall A$	$\mathrm{D} \forall \mathrm{Q}$	D
7	REX-NORS	$\bar{A} \because \square$	$A \forall B$	0	B	A	$\overline{\mathrm{D}} \stackrel{-1}{ }$	$\bar{D} \forall 0$	$\bar{\square}$

Figure 5. Source Operand and ALU Function Matrix.

DIE SIZE $0.117^{\prime \prime} \times 0.128^{\prime \prime}$

PIN DEFINITIONS

A0-3 The four address inputs to the register stack used to select one register whose contents are displayed through the A-port.
B_{0-3} The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.
\mathbf{I}_{0-8} The nine instruction control lines. Used to determine what data sources will be applied to the ALU (l_{012}), what function the ALU will perform (I_{345}), and what data is to be deposited in the Q-register or the register stack (l_{678}).
$\mathrm{Q}_{3} \quad \mathrm{~A}$ shift line at the MSB of the Q register $\left(\mathrm{Q}_{3}\right)$ and the
$R A M_{3}$ register stack $\left(\mathrm{RAM}_{3}\right)$. Electrically these lines are threestate outputs connected to TTL inputs internal to the device. When the destination code on I_{678} indicates an up shift (octal 6 or 7) the three-state outputs are enabled and the MSB of the Q register is available on the Q_{3} pin and the MSB of the ALU output is available on the RAM 3 pin. Otherwise, the three-state outputs are OFF (high-impedance) and the pins are electrically LS-TTL inputs. When the destination code calls for a down shift, the pins are used as the data inputs to the MSB of the Q register (octal 4) and RAM (octal 4 or 5).
$Q_{0} \quad$ Shift lines like Q_{3} and $R A M_{3}$, but at the LSB of the RAM $M_{0} Q$-register and RAM. These pins are tied to the Q_{3} and RAM_{3} pins of the adjacent device to transfer data between devices for up and down shifts of the Q register and ALU data.
D_{0-3} Direct data inputs. A four-bit data field which may be selected as one of the ALU data sources for entering data into the device. D_{0} is the LSB.
\mathbf{Y}_{0-3} The four data outputs. These are three-state output lines. When enabled, they display either the four outputs of the ALU or the data on the A-port of the register stack, as determined by the destination code I_{678}.
$\overline{O E}$ Output Enable. When $\overline{O E}$ is HIGH, the Y outputs are OFF; when $\overline{O E}$ is LOW, the Y outputs are active (HIGH or LOW).
$\overline{\mathbf{P}}, \overline{\mathbf{G}} \quad$ The carry generate and propagate outputs of the internal ALU. These signals are used with the Am2902 for carrylookahead.
OVR Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit.
$F=0$ This is an open collector output which goes HIGH (OFF) the data on the four ALU outputs F_{0-3} are all LOW. I: positive logic, it indicates the result of an ALU operation i. zero.
$F_{3} \quad$ The most significant ALU output bit.
$C_{n} \quad$ The carry-in to the internal ALU.
C_{n+4} The carry-out of the internal ALU.
CP The clock input. The Q register and register stack outpl change on the clock LOW-to-HIGH transition. The clo LOW time is internally the write enable to the $16 \times 4 \mathrm{R} /$ which compromises the "master" latches of the regis stack. While the clock is LOW, the "slave" latches on RAM outputs are closed, storing the data previously the RAM outputs. This allows synchronous master-sli: operation of the register stack.

PRELIMINARY DATA
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) (Group A, Subgroups 1, 2, and 3)

Parameters	Description	Test Conditions (Note 1)				Min.	Typ. (Note 2)	Max.	Units	
$\mathrm{VOH}^{\text {O}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & Y_{0}, Y_{1}, Y_{2}, Y_{3} \end{aligned}$		2.4			Volts	
				$1 \mathrm{OH}=-1.0 \mathrm{~mA}, \mathrm{C}_{n+4}$		2.4				
				${ }^{1} \mathrm{OH}=-800 \mu \mathrm{~A}$, OVR, $\overline{\mathrm{P}}$		2.4				
				$\mathrm{IOH}^{\prime}=-600 \mu \mathrm{~A}, \mathrm{~F}_{3}$		2.4				
				$\begin{aligned} & \mathrm{IOH}^{\prime}=-600 \mu \mathrm{~A} \\ & \text { RAM }_{0,3}, Q_{0,3} \end{aligned}$		2.4				
				$1 \mathrm{OH}=-1.6 \mathrm{~mA}, \overline{\mathrm{G}}$		2.4				
'CEX	Output Leakage Current for $F=0$ Output	$\begin{aligned} & V_{C C}=\text { MIN., } V_{O H}=5.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$						250	$\mu \mathrm{A}$	
$\mathrm{v}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=M I N ., \\ & V_{I N}=V_{I H} \\ & \text { or } V_{I L} \end{aligned}$	$Y_{0}, Y_{1}, Y_{2}, Y_{3}$	I^{OL} = $20 \mathrm{~mA}(\mathrm{COM} \mathrm{L})$				0.5	Volts	
				$1 \mathrm{OL}=16 \mathrm{~mA}(\mathrm{MIL})$				0.5		
			$\bar{G}, F=0$	$\mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA}$.	0.5		
			$\mathrm{C}_{\mathrm{n}+4}$	$1 \mathrm{OL}=10 \mathrm{~mA}$				0.5		
			OVR, $\overline{\mathrm{P}}$	$1 \mathrm{OL}=8.0 \mathrm{~mA}$				0.5		
			$\begin{aligned} & \mathrm{F}_{3}, \text { RAM }_{0,3} . \\ & \mathrm{Q}_{0,3} \\ & \hline \end{aligned}$	$1 \mathrm{OL}=6.0 \mathrm{~mA}$				0.5		
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 7)				2.0			Volts	
$V_{\text {IL }}$	Input LOW Level	Guaranteed input logica! LOW voltage for all inputs (Note 7)						0.8	Volts	
v_{1}	Input Clamp Voltage	$V_{C C}=$ MIN. $I_{\text {IN }}=-18 \mathrm{~mA}$						-1.5	Volts	
IIL	Input LOW Current	$V_{C C}=M A X ., V_{I N}=0.5 V$		Clock, $\overline{\mathrm{OE}}$				-0.36	mA	
				$A_{0}, A_{1}, A_{2}, A_{3}$				-0.36		
				$\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$				-0.36		
				$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$				-0.72		
				$10,11,12,16,18$				-0.36		
				$13,14,15,17$				-0.72		
				RAM $0,3, \mathrm{Q}_{0,3}$ (Note 4)				-0.8		
				C_{n}				-3.6		
I_{1}	Input HIGH Current	$\mathrm{V}_{C C}=$ MAX., $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		Clock, $\overline{\mathrm{OE}}$				20	$\mu \mathrm{A}$	
				$A_{0}, A_{1}, A_{2}, A_{3}$				20		
				$B_{0}, B_{1}, B_{2}, B_{3}$				20		
				$\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$				40		
				$10,11,1_{2}, 1_{6}, 18$				20		
				$13,14,15,17$				40		
				RAM $_{0,3}, \mathrm{Q}_{0,3}{ }^{\text {(Note 4) }}$				100		
				$\mathrm{C}_{\mathrm{n}} \longrightarrow$				200		
11	Input HIGH Current	$V_{C C}=$ MAX., $V_{\text {IN }}=5.5 \mathrm{~V}$						1.0	mA	
$\begin{aligned} & \text { IOZH } \\ & \text { IOZL } \end{aligned}$	Off State (High Impedance) Output Current	$V_{C C}=$ MAX		$\begin{aligned} & Y_{0}, Y_{1} \\ & Y_{2}, Y_{3} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$	
				$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50			
				$\begin{aligned} & \text { RAM }_{0,3} \\ & Q_{0,3} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$			100		
				$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & (\text { Note 4) } \end{aligned}$			-800			
'os	Output Short Circuit Current (Note 3)	$V_{C C}=M A X+0.5 V, V_{O}=0.5 \mathrm{~V}$			$Y_{0}, Y_{1}, Y_{2}, Y_{3}, \bar{G}$		-30		-85	mA
				$\mathrm{C}_{n}+4$		-30		-85		
				OVR, $\overline{\mathrm{P}}$		-30		-85		
				F_{3}		-30		-85		
				RAM ${ }_{0}, 3, \mathrm{O}_{0,3}$		-30		-85		
${ }^{1} \mathrm{CC}$	Power Supply Current (Note 6)	$V_{C C}=M A X$ (See Fig. 12)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			160	250	mA	
				$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$			265		
			Am2901BPC, DC	$\mathrm{T}_{A}=+70$				220		
			Am2901BDM FM	$\begin{aligned} & T_{C}=55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$				265		
				$\mathrm{T}^{\mathrm{C}}=+125^{\circ} \mathrm{C}$				198		

 2. Typical limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. These are threestate outputs internally connected to TTL inputs. Input characteristics are measured with i 678 in a state such that the three
state ougput is OFF.
5. "MIL" = Am2901BXM, DM,FM. "COM'L $=A m 2901 B \times C \cdot P C, D C$.
6. Worst case ${ }^{1} \mathrm{CC}$ is at minimum temperature.
7. These input levels provide zero noise immunitv and should only be tested in a static, noise free environment.

1. Typical Room Temperature Periormance

The tables below specify the typical performance of the Am2901B at $25^{\circ} \mathrm{C}$ and 5.0 V . All data are in ns , with inputs changing between OV and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at 1.5 V . For guaranteed data, see following pages.

B. Combinational Propagation Delays.

$C_{L}=50 \mathrm{pF}$

To Output			Cn+4	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$F=0$	OVR	RAMO RAM3	$\begin{aligned} & \text { Q0 } \\ & \text { Q3 } \end{aligned}$
From Input	Y	F3					50	-
A, B Address	38	41	39	33	44	44	50	
D	22	23	24	20	28	29	31	-
Cn	17	19	13	-	22	19	26	-
1012	30	30	29	22	34	34	38	-
1345	32	32	30	25	32	30	34	-
1678	17	-	-	-	-	-	16	16
A Bypass ALU ($1=2 X X$)	22	-	-	-	-	-	-	-
Clock 5	29	31	29	23	33	35	40	19

C. Set-up and Hold Times Relative to Clock (CP) Input.

Input	CP: Set-up Time Before H \rightarrow L	Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	Set-up Time Before L \rightarrow H	Hold Time After L $\rightarrow \mathbf{H}$
A, B Source Address	20	0 (Note 3)	51 (Note 4)	0
B Destination	11	Do N	Change	0
Address		-	39	0
D	-		33	0
Cn	-	-		
1012	-	-	46	0
1345	-	-	42	0
1678	5	Do Not Change		0
RAMO, 3, Q0, 3	-	-	9	0

D. Output Enable/Disable Times.

 Output disable tests performed with $C_{L}=5 p F$ and measured to 0.5 V change of output voltage level.| Input | Output | Enable | Disable |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{OE}}$ | Y | 12 | 27 |

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change"
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition. regardless of when the clock $H \rightarrow L$ transition occurs.

II. Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2901B over the commercial operating range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, with V_{CC} from 4.75 V to 5.25 V . All data are in ns, with inputs switching between 0 V and 3 V at $\mathrm{IV} / \mathrm{ns}$ and measurements made at 1.5 .
A. Cycle Time and Clock Characteristics.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	77 ns
Maximum Clock Frequency to shift Q (50% duty cycle, $1=432$ or 632)	16 MHz
Minimum Clock LOW Time	30 ns
Minimum Clock HIGH Time	30 ns
Minimum Clock Period	77 ns

B. Combinational Propagation Delays.

$$
C_{L}=50 \mathrm{pF}
$$

To Output From Input	Y	F3	Cn+4	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$\mathrm{F}=0$	OVR	RAMO RAM3	$\begin{aligned} & \text { Q0 } \\ & \text { Q3 } \end{aligned}$
A, B Address	60	61	59	50	70	67	71	-
D	38	36	40	33	48	44	45	-
Cn	30	29	23	-	37	29	38	-
1012	50	47	45	35	56	53	57	-
1345	49	48	44	45	54	49	53	-
1678	28	-	-	-	-		27	27
$\begin{aligned} & \text { A Bypass ALU } \\ & (1=2 X X) \end{aligned}$	37	-	-	-			-	-
Clock 5	49	48	47	37		55	59	29

| Input | | | |
| :--- | :---: | :---: | :---: | :---: |

D. Output Enable/Disable Times.

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{O E}$	Y	35	25

1 : 1. A dash indicates a propagation delay path or set-up time constraint does not exist.
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes aff the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

III. Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2901B over the military operating range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with V_{Cc} from 4.5 V to 5.5 V . All data are in ns , with inputs switchina between 0 V and 3 V at $1 \mathrm{~V} / \mathrm{ns}$ and measurements made at

Read Modify-Write Cycle (from selection of A. B registers to end of cycle.	97 ns
Maximum Ciock Frequency to shit $\mathrm{Q}(50 \% \%$ duty cycie. $1=432$ or 632$)$	15 MHz
Minimum Clock LOW Time	30 ns
Minimum Clock HIGH Time	30 ns
Minimum Clock Period	97 ns

B. Combinational Propagation Delays.

$$
C_{L}=50 \mathrm{pF}
$$

To Output			$\mathrm{Cn}+4$	$\overline{\mathbf{G}}, \overline{\mathbf{P}}$	$F=0$	OVR	RAM3	Q3
From Input	Y	F3	Cn+4	G, 70	90	86	94	-
A, B Address	82	84	80	70	50	45	48	-
D	44	38	39	34	50	31	39	-
Cn	34	32	24	-	38	55	58	-
1012	53	50	47	37	59	50	55	-
1345	53	50	46	44	58		27	27
1678	29	-	-	-				-
$\begin{aligned} & \text { A Bypass ALU } \\ & (1=2 X X) \end{aligned}$	50	-	-	-		58	61	31

C. Set-up and Hold Times Retive to Clock (CP) Input.

Input	CP: Set-up Ting Before H \rightarrow	old Time After $H \rightarrow L$	Set-up Time Before L $\rightarrow \mathbf{H}$	Hold Time After L \rightarrow H
A, B Source Address	30%	0 (Note 3)	97 (Note 4)	0
B Destination	15	Do Not	Change	0
Address		-	60	0
D	-		55	0
Cn	-	-	73	0
1012	-	-	73	0
1345	-	Do Not Change		0
1678	14			3
RAMO, 3, Q0, 3	-	-	18	

D. Output Enable/Disable Times.

Output disable tests performed with $C_{L}=5 p F$ and measured to 0.5 V change of output voltage level.

Input	Output	Enable	Disable
$\overline{\mathrm{OE}}$	Y	40	35

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist
2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
3. Source addresses must be be address may thes must be stabe The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the prior to the ctable A and B addresses to the clock $L \rightarrow H$ transition, regardiess of when the clock $H \rightarrow L$ transition occurs.

Example of speed calculation for two's complement arithmetic operation with shift down. The worst case speed path is shown in halftone. For more detailed timing analysis, see Chapter III of "Build a Microcomputer," AMD's application series on the 2900 family.

Flatpack
 F-42-1

ORDERING INFORMATION

Order Number	Package Type (Note 1)	Temperature Range (Note 2)	Screening Level (Note 3)
AM2901BPC	P-40	C	$\mathrm{C}-1$
AM2901BDC	D-40	C	$\mathrm{C}-1$
AM2901BDC-B	D-40	C	$\mathrm{B}-1$
AM2901BDM	$\mathrm{D}-40$	M	$\mathrm{C}-3$
AM2901BDM-B	$\mathrm{D}-40$	M	$\mathrm{B}-3$
AM2901BFM	F-42	M	$\mathrm{C}-3$
AM2901BFM-B	F-42	M	B-3
			Visual inspection
AM2901BXC	Dice	C	to MIL-STD-883
AM2901BXM	Dice	M	Method 2010B.

Notes: 1. $P=$ Molded DIP, $D=$ Hermetic DIP, $F=$ Flat Pak. Number following letter is number of leads. See Appendix B for detailed outline. Where Appendix B contains several dash numbers, any of the variations of the package may be used unless otherwise specified.
2. $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. See Appendix A for details of screening. Levels $\mathrm{C}-1$ and $\mathrm{C}-3$ conform to MIL-STD883, Class C. Level B-3 conforms to MIL-STD-883, Class B.

这
 National Semiconductor

IDM2901A 4-Bit Bipolar Microprocessor

General Description

The IDM2901A 4-bit bipolar microprocessor slice is a cascadable device designed for use in Central Processing Units, programmable microprocessors, peripheral controllers, and other 'high-speed" applications where economy. hardware/software flexibility, and easy expansion are system prerequisites. The building-block architecture and microinstruction format of the IDM2901A permits efficient emulation of most digital-based systems.

As shown in the simplified block diagram, the IDM2901A device consists of a 16 -word by 4 -bit 2 -port RAM, a high-speed ALU, and the required shifting, decoding, and multiplexing circuits. The 9 -bit microinstruction word is organized into three groups of three bits each the first group (bits $0-2$) selects ALU source operands, the second group (bits 3-5) selects the ALU function, and the last group (bits 6-8) selects the destination register within the ALU. The slice microprocessor is cascadable with full look-ahead or ripple carry: all outputs are TRI-STATE and four status-flag outputs are available. To minimize power consumption and to maximize speed and reliability, the 40 -pin LSI chip is fabricated using state-of-the-art (Low-Power Schottky) technology.

Features and Benefits

- Multiple-address architecture - improves syd speed by providing simultaneous yet independe access to two working registers.
- Multifunction ALU - performs addition, two traction operations, and five logic functions on source operands.
- Flexible data-source selection - for every function, data is selected from five source ports total of 203 source operand pairs.
- Left/right shift independent of ALU - an arithme operation and a left or right shift can be obtainatl the same machine cycle.
- Four status flags - carry, overflow, zero, and tional sign are available as outputs.
- Expandable - Connect any number of IDM290 together for longer word lengths.
- Microprogrammable - three groups of 3 bits each source operand, ALU function, and destinatife control.

Solute' Maximum Ratings

5
Temperature
perature (Ambient) Under Bias Iy Voltage to Ground Potentia Joltage Applied to Outputs for Output State
mput Voltage
output Current, into Outputs nput Current

$$
\begin{aligned}
& -05^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -0.5 \mathrm{~V} \text { to }+6.3 \mathrm{~V}
\end{aligned}
$$

$$
-0.5 V \text { to }+V_{C C} \max
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

$$
30 \mathrm{~mA}
$$

Cidard Screening (Conforms to MIL-STD-883 for Class C parts)

Step	MLLSTD-883 Method	Conditions	Level	
			DC, PC	DM, FM
Pre-Seal Visual Inspection	2010	B	100\%	100\%
Stabilization Bake	1008	C: 24 -hour $150^{\circ} \mathrm{C}$	100\%	100\%
Temperature Cycle	1010	$\text { C: }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$ $10 \text { cycles }$	100\%	100\%
Centrifuge	2001	B: $10,000 \mathrm{G}$	100\%	100\%
Fine Leak	1014	A: $5 \times 10^{-8} \mathrm{~atm}-\mathrm{cc} / \mathrm{cm}^{3}$	100\%	100\%
Gross Leak	1014	C2: Fluorocarbon	100\%	100\%
Electrical Test Subgroups 1 and 7 and 9	5004	See below for definitions of subgroups	100\%	100\%

Insert Additional Screening here for Class B Parts
Group A Sample Tests

Subgroup 1
Subgroup 2
Subgroup 3
Subgroup 7
Subgroup 8
Subgroup 9 .

5005

See below for definitions of subgroups

Operating Range

P/N	Ambient Temperature	VCC
IDM2901A DC, PC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75 V to 5.25 V
IDM2901A DM, FM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.50 V to 5.50 V

Ctrical Characteristics Over Operating Range

Symbol	Description	Test Conditions (Note 1)		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
${ }^{\text {P }} \mathrm{VOH}^{\text {OH}}$	Output High Voitage	$\begin{aligned} & \cdot C C=\min \\ & \because V=V_{I H} \text { or } V_{I L} \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-1.6 \mathrm{~mA} \\ & \mathrm{Y}_{0} / \mathrm{Y}_{1} / \mathrm{Y}_{2} / \mathrm{Y}_{3} \end{aligned}$	2.4			v
			$\mathrm{IOH}^{1}=-1.0 \mathrm{~mA}: \mathrm{C}_{n+4}$	2.4			
			$\mathrm{I}^{1} \mathrm{OH}=-800 \mu \mathrm{~A}:$ OVR $/ \mathrm{P}$	2.4			
			$1 \mathrm{IOH}^{\prime}=-600 \mu \mathrm{~A} ; \mathrm{F}_{3}$	2.4			
			$\begin{aligned} & \mathrm{IOH}^{2}=-600 \mu \mathrm{~A} \\ & \text { RAM } 0.3 / O_{0.3} \end{aligned}$	2.4			
			$\mathrm{I}^{\mathrm{OH}}=-16 \mathrm{~mA} ; \mathrm{C}$	2.4			

LTPD $=5$	LTPD $=5$
LTPD $=7$	LTPD $=7$
LTPD $=7$	LTPD $=7$
LTPD $=7$	LTPD $=5$
LTPD $=7$	LTPD $=7$
LTPD $=7$	LTPD $=5$

LTPD $=7$
LTPD $=7$

LTPD $=7$
LTPD $=5$

Additional Screening for Class B Parts

Step	MiLsTDes Methed	Con
Burn-In	1015	2: 125° C. isp mours min
Electrical Test	5004	100%
Subgroup 1		100%
Subgroup 2		100%
Subgroup 3		100%
Subgroup 7		100%
Subgroup 9		100%

Group A Subgroups

(as defined in MIL-STD-883, method 5006)

Subgroup	Parameter	Temperature
1	DC	$25^{\circ} \mathrm{C}$
2	DC	Maximum rated temperature
3	DC	Minimum rated temperature
7	Function	$25^{\circ} \mathrm{C}$
8	Function	Maximum and minimum rated
		temperature
9	Switching	$25^{\circ} \mathrm{C}$
10	Switching	Maximum rated temperature
11	Switching	Minimum rated temperature

Electrical Characteristics (cont'd.)

Note 1: For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type.
Note 2: Typical limits are at $V_{C C}=5.0 \mathrm{~V} .25^{\circ} \mathrm{C}$ ambient, and maximum loading.
Note 3: Not more than ona output ahould be shorted at a time. Duration of the short circuit test should not exceed ane second.
Note 4: These are TRI-STATE outputs internally connected to PNP inputs. Input characteristics are measured with $\mathbf{I}_{6,7,8}$ in a state such that the TRI-STATE output is off (high-impedance).
Note 5: "Mil" = IDM2901A DM, FM: "Com7" = IDM2901A DC, PC
Note 6: Worst case ICC is at minimum temperature.

Architecture

Figure 1 shows a detailed block diagram of the IDM2901A. Observe that all data paths are 4 bits wide; however, the 4 -bit slice can be cascaded to the number of bits required for a particular application. Although all parts of the bipolar device are important, the two key elements are the 16 -word by 4 -bit 2 -port RAM and the high-speed ALU.

Any one of the 16 words in RAM can be read from the A-port ($A_{3}-A_{0}$) or the B-port ($B_{3}-B_{0}$); the selected word for the A-port is determined by the 4 -bit A-address field, whereas the B-address field controls the output of the B-port. If the two address codes are identical, the same file data appears simultaneously at both output ports (A and B).
When enfled by RAM EN, new data is written into the file "wofd" defined by the B-address field; the write function is implemented when the clock input is low.
Each bit of data to be written is input via a 3 -input multiplexer; this scheme permits shifting up one bit position (from LSB towards MSB), shifting down one bit position (from MSB towards LSB), or not shifting at all. A similar scheme is used when data is written into the " Q " register.
Each of the A and B data ports drives an associated 4-bit latch. These latches hold the RAM data while the clock input is low; consequently, any possibility of race conditions when writing new data is eliminated.

The high-speed ALU can perform three binary arithmetic and five logic operations on the two 4 -bit input words $\left(R_{3}-R_{0}\right.$ and $\left.S_{3}-S_{0}\right)$. The R-input field is driven from a 2 -input multiplexer, whereas the S-input field is driven by a 3 -input multiplexer. Both the R - and S -multiplexers
have an inhibit capability, where no data is passed is equivalent to a "zero" source operand. Refern" figure 1, observe that the A-port output of the RA the 4 -bit direct-data inputs ($\left.D_{3}-D_{0}\right)$ are connthe R-input multiplexers; the S-input multiplenc three inputs - one from the A-port of RAM. on
the B-port of RAM, and one from the O-register.

With the foregoing input-multiplexer scheme, the (A, B, D, O, and "Zero"), when taken in pairs, p" any one of ten source operands for the ALU - AB AQ, AO, BD, BQ, BO, DO, DO, and QO. When the B address fields for RAM are identical, it is cteq certain combinations (AD/BD, AQ/BQ, and AO/B0 redundant; that is, the identical function is imploin for either operand. Only seven of the combination completely nonredundant. Eight of the ten com tions (source operands) are implemented by IDM2901A microprocessor. The ALU source ope are selected by three microinstruction inputs -4_{i}^{2} and \mathbf{I}_{2}. These inputs are defined in figure 2. Each of preceding D and O operands provides an eme function. The D input (direct-data) is used to lond working registers inside the 2901 device; also, this source can be used to modify data files within the A The Q-register is an internal 4-bit data source the well suited for a multiply/divide operation; however some applications, it can be used as a datahold register or as an accumulator.

The ALU is a high-speed arithmetic/logic operator ith capable of performing three binary arithmetic functi and five logic functions. Three microinstruction ing (13. 14, and 15) are used to select one of the ef functions; these inputs, along with their octal codes, defined in figure 3.

Micro Code				ALU Source Operands	
I2	I1	Io	Octal Code	R	S
L	L	L	0	A	O
L	L	H	1	A	B
L	H	L	2	O	O
L	H	H	3	O	B
H	L	L	4	O	A
H	L	H	5	D	A
H	H	L	6	D	Q
H	H	H	7	D	O

ne, the inputi! pairs, provide $U-A B, A D$ en the A and is clear that A $A(B 0$) are implementeo binations are en combina ted by the rce operands uts - 10.11 . Each of the an essential to load the to, this input in the ALU. urce that is 'owever, for data-holding
rato
t is ic fuc ons stion inputs f the eight a codes, are Tore suitable for use in a carry-look-ahead generator. A and overflow (OVR). The F_{3} output is the most significant (sign) bit of the ALU, and, without enabling the TRI-STATE outputs, it can be used to determine positive or negative results. When enabled, the logic level of F_{3} is identical to that of sign bit Y_{3}. The $F=0$ output is used for zero detect; $F=0$ is high when all F outputs sre low. The $F=0$ output is of the open-collector type and can be wire ORed between microprocessor slices. The overflow (OVR) output is used to flag arithmetic operations that exceed the available twos-complement number range. When an overflow exists $\left(C_{n}+3\right.$ and $\mathrm{C}_{\mathrm{n}+4}$ are of opposite polarity), the OVR output is high.
Outputs from the ALU can be stored in the register file or the \mathbf{Q} register, or can be transmitted to the outside world. Eight possible destination codes are defined by microinstruction inputs 16, 17, and 18; the various destination control codes are shown in figure 4. The 4 bit data field $\left(Y_{3}-Y_{0}\right)$ is a TRI-STATE output that can be directly bus organized. The Y outputs are enabled by $\overline{\mathrm{OE}}$; when this control signal is high, the Y -outputs are TRI-STATEd. A 2 -input multiplexer is also used at the Y-output port to select either the A port of RAM or the F output of the ALU; this selection is controlled by the previously described microinstruction inputs ${ }^{(1} 6$, 17. and 18).

As previously described, the RAM inputs (register file) are driven by a 3 -input multiplexer. Thus, outputs from the ALU can be entered nonshifted, shifted up (towards

Normally, the look-ahead carry mode is used when cascading the ALUs of several microprocessor devices. The carry generate (\bar{G}) and carry propagate (\bar{P}) outputs FMSB) one position ($\times 2$), or shifted down (towards LSB) one position $(\div 2)$. The shifter is equipped with two ports - RAMO and RAM3; both ports consist of a TRI-STATE buffer-driver, each of which supplies one input to the foregoing multiplexer. In the shift-up ($\times 2$) mode, the RAM 3 output driver and the RAM 0 multi(plexer input are enabled, whereas in the shift-down $(\div 2)$ mode, the RAMO output driver and RAM 3 multiplexer
input are enabled; in the no-shift mode, both drivers are TRI-STATE and neither multiplexer input is enabled. The shifter is controlled by the \mathbf{I}_{6}. 17 , and 18 microinstruction inputs.
The O register likewise is driven from a 3 -input multiplexer and the Q shifter is equipped with two input/ output ports $-\mathrm{Q}_{0}$ and O_{3}. Operation of these two ports is similar to that of the RAM shifter, and the ports are controlled by $\mathrm{I}_{6}, 17$, and I_{8}. In the shift-up or shift-down modes, the Q register is shifted in a specified direction with the input/output terminals of the register being an input (for a shift-up) or an output (for a shift-down). In the no-shift mode, the multiplexer may enter the ALU data into the O register; in this case, input/output lines of the register are TRI-STATE.
The clock input shown in figure 1 controls the RAM, the A and B latches, and the O register. When the clock input is high, the A and B latches are open and data from the RAM outputs is allowed to pass through to the ALU or " Y " outputs. When the clock input is low, both latches are closed and the last data entered is retained. When the clock input is low and if the input control code (16. 17. and (8) has enabled a file-write operation. new data, as defined by the 4 -bit B-address field, is written into the RAM file. When enabled, data is clocked into the \mathbf{Q} register on the low-to-high transition of the clock pulse.

Source Operands and ALU Functions

Any one of eight source operand pairs can be selected by instruction inputs 10,11 , and I_{2} for use by the ALU: instruction inputs $I_{3}, 1_{4}$, and I_{5} then control function selection for the ALU - five logic and three arithmetic functions. In the arithmetic mode, the carry input (C_{n}) also affects the ALU functions; the carry input has no effect on the " F " result in the logic mode. These control parameters $\left(1_{6}-10\right.$ and $\left.C_{n}\right)$ are summarized in figure 5 to completely define the ALU/source operand functions.
The ALU functions can also be examined on a task basis: that is, add, subtract, AND, OR, and so on. Again, in the arithmetic mode, the carry input will affect the result, whereas in the logic mode it will not. Figures 6 and 7 , respectively, define the various logic and arithmetic functions of the ALU; both carry states ($C_{n}=0 / C_{n}=1$) are defined in the function matrices.

Figure 4. ALU Destination Control

x = Don't care. Electrically, the shift pin is a TTL input internally connected to P TRI-STATE output which is in the high-impedance state.
18- Register Addressed by 8 inputs.

[^0]Figure 5．Source Operand and ALU Function Matrix

	12，1，0 Octal	0	1	2	3	4	5	6	7
$\begin{aligned} & \text { Octal } \\ & 1543 \end{aligned}$		A， 0	A，B	O， 0	O，B	O，A	D，A	D． 0	D， 0
0	$C_{n}=L$ R Plus S $C_{n}=H$	$\begin{aligned} & A+O \\ & O+1 \end{aligned}$	$\begin{gathered} A+B \\ A+B+1 \end{gathered}$	$\begin{gathered} 0 \\ 0+1 \end{gathered}$	$\begin{gathered} B \\ B+1 \end{gathered}$	$\begin{gathered} A \\ A+1 \end{gathered}$	$\begin{gathered} D+A \\ D+A+1 \end{gathered}$	$\begin{gathered} D+Q \\ D+Q+1 \end{gathered}$	$\begin{gathered} D \\ D+1 \end{gathered}$
1	$\begin{aligned} & C_{n}=L \\ & S \text { Minus } R \\ & C_{n}=H \end{aligned}$	$\begin{gathered} O-A-1 \\ O-A \end{gathered}$	$\begin{gathered} B-A-1 \\ B-A \end{gathered}$	$\begin{gathered} 0-1 \\ 0 \end{gathered}$	$\begin{gathered} B-1 \\ B \end{gathered}$	$\begin{gathered} A-1 \\ A \end{gathered}$	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{gathered} O-D-1 \\ O-D \end{gathered}$	$\begin{gathered} -D-1 \\ -D \end{gathered}$
2	$\begin{aligned} C_{n} & =L \\ \text { R Minus } & S \\ C_{n} & =H \end{aligned}$	$\begin{gathered} A-Q-1 \\ A-Q \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -0-1 \\ -0 \end{gathered}$	$\begin{gathered} -8-1 \\ -B \end{gathered}$	$\begin{gathered} -A-1 \\ -A \end{gathered}$	$\begin{gathered} D-A-1 \\ D-A \end{gathered}$	$\begin{gathered} D-Q-1 \\ D-Q \end{gathered}$	$\begin{gathered} D-1 \\ D \end{gathered}$
3	R OR S	$A \vee 0$	$A \vee B$	0	B	A	D V A	D V 0	D
4	R AND S	$A \wedge 0$	$A \wedge B$	0	0	0	D＾A	D＾ 0	0
5	$\overline{\mathrm{R}}$ AND S	$\bar{A} \wedge 0$	$\bar{A} \wedge B$	0	B	A	$\bar{D} \wedge A$	$\overline{\mathrm{D}} \wedge 0$	0
6	R EX－OR S	$A \forall 0$	$A \forall B$	0	B	A	$D \forall A$	D $\forall 0$	D
7	R EX－NOR S	$A \forall 0$	$A \forall B$	$\overline{\mathbf{0}}$	\bar{B}	\bar{A}	$\overline{D \forall A}$	$\overline{\mathrm{D}} \mathrm{\square}$	D

$+=$ Plus $;-$ Minus $; V=O R, \Lambda=$ AND $; \forall=E X-O R$ ．

Figure 8．ALU Logic Mode Functions（ C_{n} Irrelevant）

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{5,4,3} / \mathbf{I}_{2,1,0} \end{gathered}$	Growe	Function
$\begin{array}{r} 40 \\ 41 \\ 45 \\ 46 \end{array}$	AND	$\begin{aligned} & A A O \\ & A A B \\ & D A A \\ & D A O \end{aligned}$
$\begin{aligned} & 30 \\ & 31 \\ & 35 \\ & 36 \end{aligned}$	OR	$\begin{aligned} & A \vee O \\ & A \vee B \\ & D \vee A \\ & D \vee O \end{aligned}$
$\begin{aligned} & 60 \\ & 61 \\ & 65 \\ & 66 \end{aligned}$	EXOR	$\begin{aligned} & A \forall O \\ & A \forall B \\ & D \forall A \\ & D \forall O \end{aligned}$
$\begin{aligned} & 70 \\ & 71 \\ & 75 \\ & 76 \end{aligned}$	EXNOR	$\begin{aligned} & \overline{\overline{A \forall O}} \\ & \overline{\overline{D \forall A}} \\ & \overline{D \forall O} \end{aligned}$
$\begin{aligned} & 72 \\ & 73 \\ & 74 \\ & 77 \end{aligned}$	INVERT	$\begin{aligned} & \bar{D} \\ & \bar{B} \\ & \bar{A} \end{aligned}$
$\begin{aligned} & 62 \\ & 63 \\ & 64 \\ & 67 \end{aligned}$	PASS	$\begin{aligned} & 0 \\ & \mathbf{B} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 37 \end{aligned}$	PASS	$\begin{aligned} & 0 \\ & B \\ & \text { A } \\ & \mathbf{D} \end{aligned}$
$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 47 \end{aligned}$	＂ZERO＂	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & 50 \\ & 51 \\ & 55 \\ & 56 \end{aligned}$	MASK	AAO 丸へ日 ठАA 6А0

Figure 7．ALU Arithmetic Mode Functions

$\begin{gathered} \text { Octal } \\ 15,4,3 / 12,1,0 \end{gathered}$	$C_{n}=0$（Low）		$C_{n}=1$（High）	
	Group	Function	Group	Function
$\begin{aligned} & 00 \\ & 01 \\ & 05 \\ & 06 \end{aligned}$	ADD	$\begin{aligned} & A+Q \\ & A+B \\ & D+A \\ & D+C \end{aligned}$	ADD plus one	$\begin{aligned} & A+Q+1 \\ & A+B+1 \\ & D+A+1 \\ & D+D+1 \end{aligned}$
$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 07 \end{aligned}$	PASS	$\begin{aligned} & \mathbf{Q} \\ & \mathbf{B} \\ & \mathbf{A} \\ & \mathbf{D} \end{aligned}$	Increment	$\begin{aligned} & Q+1 \\ & B+1 \\ & A+1 \\ & D+1 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 27 \\ & \hline \end{aligned}$	Decrement	$\begin{aligned} & Q-1 \\ & B-1 \\ & A-1 \\ & D-1 \end{aligned}$	PASS	$\begin{aligned} & \hline \mathbf{Q} \\ & \mathbf{B} \\ & \mathbf{A} \\ & \mathbf{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 17 \\ & \hline \end{aligned}$	1s Comp		2s Comp （Negate）	$\begin{aligned} & -0 \\ & -B \\ & -A \\ & -D \\ & \hline \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 15 \\ & 16 \\ & 20 \\ & 21 \\ & 25 \\ & 26 \end{aligned}$	Subtract （1s Comp）	$\begin{aligned} & O-A-1 \\ & B-A-1 \\ & A-D=1 \\ & C-D-1 \\ & A-Q-1 \\ & A-B-1 \\ & D-A-1 \\ & D-D-1 \end{aligned}$	Subtract （2s Comp）	$\begin{aligned} & Q-A \\ & B-A \\ & A-D \\ & Q-D \\ & A-Q \\ & A-B \\ & D-A \\ & D-Q \end{aligned}$

ic Functions for $G, P, C n+4$ OVR

the IDM2901A is in the add or the subtract mode. signals (G, P, C_{n+4}, and OVR) are available to ficate carry and overflow conditions. Based on the Whe ALU functions, logic equations for these signals * as follows. (Note: The " R " and " S " inputs are lected according to figure 2.)

Definitions ($+=O R$):
$P_{0}=R_{0}+S_{0}$

$$
G_{0}=R_{0} S_{0}
$$

$P_{1}=R_{1}+S_{1}$
$G_{1}=R_{1} S_{1}$
$P_{2}=R_{2}+S_{2}$
$G_{2}=R_{2} S_{2}$
$P_{3}=R_{3}+S_{3}$
$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$
$=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}$
$=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}$

nout Descriptions of IDM 2901A

functions for the IDM2901A 4-bit slice microprocesare as follows:

- A0 4-bit address field used to select one of the file registers whose contents are displayed through the A port of RAM.
$-B_{0}$
4-bit address field used to select one of the file registers whose contents are displayed through the B port of RAM. When the clock is low, new data can be written into the selected B-port register.
Nine instruction-control lines - $10 / 1 / / 12$ determine data sources of ALU. $\mathrm{I}_{3} / \mathrm{I}_{4} / \mathrm{I}_{5}$ select ALU function, and $16 / l_{7} / 1_{8}$ select data inputs for the \mathbf{O} register or the register file.
JIRAM $_{3}$ Serves as shift data input/output lines for the most significant bit (MSB) of \mathbf{Q} register $\left(\mathrm{Q}_{3}\right)$ and the register stack (RAM ${ }_{3}$). These lines are TRI-STATE outputs that connect to TTL inputs within the IDM2901A device. When the destination code, as defined by $1_{6} / 1_{7} / 1_{8}$, indicates an up-shift (octal 6 or 7), the TRI-STATE outputs are enabled; accordingly, the MSB of the \mathbf{Q} register is available on the O_{3} pin and the MSB of the ALU output is available on the RAM3 pin. Otherwise, these output lines are TRI-STATE or serve as LS-TTL inputs. When a down-shift is indicated by the destination code, the O_{3} and RAM $_{3}$ pins are used as data inputs to the MSB of the \mathbf{Q} register or RAM.
$Q_{0} /$ RAM M_{0} These shift lines are similar to O_{3} and $R A M_{3}$ except they operate on the least significant bit (LSB) of the O register and RAM. To transfer data for up- and down-shifts of the O register and the ALU, the O_{0} and RAM 0 pins are connected, respectively, to the next less-significant device (Q_{n} and RAM $_{n}$) in the cascaded chain.

A 4 -bit data field that can be selected as a source of external data for $A L U-D_{0}$ is the least significant bit.
$Y_{3}-Y_{0}$
4 -bit output data of IDM2901A. These lines are TRI-STATE; when enabled, they provide either the ALU output or data from the A port of the register file - the selected source is determined by the destination code, as defined by 16 17, and 18 .
When the Output Enable ($\overline{\mathrm{OE}}$) signal is high, the Y outputs are inactive; when the signal is active-low, the active high or low outputs are enabled.

Carry generate and propagate outputs - see figure 8 for logic equations.
OVR The overflow flag corresponds to the exclusive-OR of the carry-in and carry-out of the MSB of the ALU. When set high, it indicates that the result of an arithmetic twos-complement operation has overflowed into the sign bit - see figure 8 for the logic equation.
$\mathrm{F}=0 \quad$ An open-collector output that goes high if all data lines ($F_{3}-\mathrm{F}_{0}$) are low, that is, the result of an ALU operation is zero.
$\mathrm{C}_{\mathrm{n}} \quad$ Carry-in to ALU.
C_{n+4} Carry-out of ALU - see figure 8 for logic equations.
CP Clock input. Outputs of \mathbf{O} register and file are clocked on low-to-high transition; the low interval of the clock input corresponds to the "write enable" period of the 16 -by- 4 RAM, that is, the "master" latches of the register file. When the clock is low, the output latches store the data previously held at the RAM outputs; thus, synchronous master-slave operation of the register file is permitted.
F3 Most significant (sign) bit output of the ALU.

15,4,3	Function	$\overline{\mathbf{p}}$
0	R + S	$\overline{\boldsymbol{P}_{3} \boldsymbol{P}_{2} \boldsymbol{P}_{1} \mathrm{P}_{0}}$
1	$\mathbf{S - R}$	
2	R-S	
3	RVS	LOW
4	R^S	LOW
5	$\overline{\text { A }} \mathrm{S}$	LOW
6	R $\forall \mathrm{S}$	
7	$\overline{R \forall S}$	$G_{3}+G_{2}+G_{1}+G_{0}$

Guaranteed Operating Conditions Over Temperature and Voltage

When operated in a system, the timing requirements for the 1DM2901A are defined in tables 1, 2, and 3. Table 1 provides clock characteristics of the IDM2901A, table 2 gives the combinational delay times from input to output, and table 3 specifies setup and hold times. If used according to the specified delay and setup times, the device is guaranteed to function properly over the entire operating range. Table 3 defines the time prior to the end of the cycle llow-to-high transition of clock pulse) that each input must be stable to guarantee that the correct data is written into one of the internal registers.

Table 1. Cycle Time and Clock Characteristics

Time	IDM2901A	
	DC, PC	DM, FM
Read-Modify-Write Cycle (time from selection of A, B registers to end of cycle)	60 ns	75 ns
Maximum Clock Frequency to Shift Q Register (50\% duty cycle)	20 MHz	16 MHz
Minimum Clock Low Time	25 ns	30 ns
Minimum Clock High Time	25 ns	30 ns
Minimum Clock Period	60 ns	75 ns

Set-Up
Setup and nigh transi must be s until the

Table 2. Maximum Combinational Propagation Delays (all in ns; $\mathrm{C}_{\mathrm{L}} \leqslant \mathbf{5 0} \mathrm{pF}$)

Table 3. Setup and Hold Times (all in ns) - Note 1

	Commercial IDM2901A DC, PC $10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 5 \%$)			Military IDM2901A DM, FM $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, 5 \mathrm{~V} \pm 10 \%\right)$	
From Input	Notes	Setup Time	Hold Time	Setup Time	Hold Time
A, B Source	2, 3, 4, 5	60, $\mathrm{t}_{\mathrm{pw}} \mathrm{L}+20$	0	75, $\mathrm{t}_{\text {pw }} \mathrm{L}+25$	0
B Destination	2,4	$t_{\text {pw }}$ L +15	0	$t_{p w} L+15$	0
D (arithmetic mode)		40	0	50	0
D (1 = X 37)	5	40	0	50	0
C_{n}		25	0	30	0
12,1,0		45	0	55	0
15,4,3		45	0	55	0
18,7,6	4	${ }^{\text {tpw }}$ L +15	0	$t_{p w L}+15$	0
RAM $0,3 / 0_{0,3}$		20	0	25	0

Note 1: See figures 9 and 10.
Note 2: If the B address is used as a source operand, allow for the "A, B Source" setup time; if it is used only for the destination address, use the " B Destination" setup time.
Note 3: Where two numbers are shown, both must be met.
Note 4: "'pwL" is the clock low time.
Note 5: DVO is the fastest way to load the RAM from the D inputs. This function is obtained with $1=337$.
Note 6: Using Q register ess source operand in arithmetic mode. Clock is not normally in critical speed path when Q is not a source.

Set-Up and Hold Times (mimimum cycles from each input)
up and hold times are defined relative to the low-to-
i transition of the clock pulse. At all times, inputs
st be stable from the setup time prior to the clock until the hold time after the clock - observe that all
hold times are "zero." The set-up times allow sufficient time to perform the correct operation on the correct data so that the correct ALU data can be written into the correct register.

Note: Numbers shown are minimum data-stable times in nanoseconds for commercial product - see table 3 for detailed information.
Figure 9. Setup Times for Input Parameters of IDM2901A

Notes:

1. This delay is the max $i_{\text {pd }}$ of the register containing A, B, D, and I.
2. 10 ns for look-ehead carry. For ripple carry over 16 bits use $2 \times\left(C_{n} \rightarrow C_{n+4}\right)$, or 60 ns .
3. This is the delay associated with the multiplexer between the shift outputs and the shift inputs on the IDM2901A.
4. Not applicable for logic operations.
5. Clock rising edge may occur here if add and shift do not occur on same cycle.

Figure 10. Switching Wavaforms for 16 -Bit System Assuming A, B, D, and I are Drivan from Registers with the Same Propagation (These are maximum times in nanoseconds using commercial-product specifications.)

Figure 11. Input/Output Current Interface Conditions for IDM2901A

Figure 12. Burn-In Circuit for IDM2901A

Connection Diagrams

Physical Dimensions

Ordering Information

Package	Temperature Range	Order Number
Molded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	IDM2901APC
Hermetic DIP	$0^{\circ} \mathrm{C}$ to $+700^{\circ} \mathrm{C}$	IDM2901ADC
Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	IDM2901ADM
Hermetic Flat Pack	$-55^{\circ} \mathrm{C}$ to $+1255^{\circ} \mathrm{C}$	IDM2901AFM
Dice	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	IDM2901AXC

National Semiconductor

100001073

Four-Bit Bipolar Microprocessor Slice

PIN CONFIGURATION

Note Pin 1 it marked for arientation.

MICROPROCESSOR SLICE BLOCK DIAGRAM

ALU ARITHMETIC MODE FUNCTIONS

'sialsixitu	Orw ${ }^{3} 343$ '210	$\mathrm{C}_{\mathrm{n}} \cdot 0$		$c_{n}=1$	
		Erex	Funstina	cous	Fmosuen
000000			A*O		A.0.1
001	01	000	A+	A00 0ne	A-2+1
101	$0 \cdot$		$0 \times \mathrm{A}$	-	D+A+1
110	$0 \cdot$		000		00001
000010	02		0		$0+1$
011	03	Past	-	Incremmen	001
100	$0 \cdot$		A		A* 1
111			0		0×1
001010	12		0-1		0
1011	13	Ducremen	-1	Pass	-
1100	1.		A-1		A
010111	21		0.1		D
010010	22		-0-1		-0
1011	23	It comb.	- - 1	ricome	-8
1100	24		-A-1		-A
001111	11		-0-1		-0
001000	10		O.A-1		O-A
001	11	Suericer	- A-1	Suerrest	- -A
101	15	11: Compl	A.0-1	18. Comel	A-D
1110	16		O-0-1		O-0
010000	20		A-0-1		A-O
001			A-0-1		A- ${ }^{\text {a }}$
1001	:		$\begin{array}{ll}0 & A\end{array}-1$		O.A
1110	: 8		0.0.1		0-0

100001073

(Continued)

The Q register is also driven from a 3-input multiplexer. In the no-shift mode, the multiplexer enters the ALU data into the Q register. In either the shift-up or shift-down mode, the multiplexer selects the Q register data appropriately shifted up or down. The Q shifter also has two ports: Q0-LO/RI and Q3-RO/LI. These ports operate in the same way as the RAM shifter and are controlled by I6, I7, and I8.

The RAM, the Q register, and the A and B data latches are controlled by the clock input. When enabled, data is clocked into the Q register on the low-to-high clock transition. When the clock input is high, the A and B latches are open and pass the data present at the RAM outputs. When the clock input is low, the latches are closed and retain the last data entered. If the RAM-EN is enabled, new data is written into the RAM file (word) which is specified by the B address field when the clock input is low.

The 100001073 has tri-state outputs.

NOTE The 100001073 is a low power Schottky device.

Microprogram Sequencer

DEFINITION OF TERMS

C_{n+4} Carry out from the incrementer

Internal Signals

$\mu \mathrm{PC}$	Contents of the microprogram counter
EG	Contenis of the register
STKO-STK3	Contents of the push/pop stack. By definition. the word in the four-by-four file, addressed by the stack pointer is STKO. Conceptually data is pushed into the stack at STKO; a subsequent push moves STKO to STK1: a pop implies STK3 \rightarrow STK2 \rightarrow STK1 \rightarrow STKO. Physically. only the stack pointer changes when a push or pop is performed. The data does not move. I/O occurs at STKO.
SP	Contents of the stack pointer

External

A.	Address to the control memory I(A)
μ WR	Instruction in control memory at address A Contents of the microword register lat output of control memory). The microword register contains the instruction currently being exe- cuted.
T_{n}	Time period (cycle) n

Inputs	
S_{1}, S_{0}	Control lines for address source selection
$\overline{\text { FE, PUP }}$	Control lines for push/fop stack
$\overline{\mathrm{RE}}$	Enabie line for internal address register
OR_{i}	Logic 09 inputs on each address output line
EERO	Logic ANO input on the output lines
$\overline{O E}$	Output Enable. When $\overline{\mathrm{OE}}$ is HIGH , the Y outputs are OFF (high impedance)
c_{n}	Carry-in to the incrementer
R_{i}	Inputs to the internal address register
$\mathrm{D}_{\boldsymbol{i}}$	Direct inputs to the multiplexer
CP	Clock input to the $A R$ and $\mu P C$ register and Push. Pop stack.

Outputs
Y_{i}

100001074
 (Continued)

ADDRESS SELECTION

OCTAL	S_{1}	S $_{0}$	SOURCE FOR Y OUTPUTS	SYMBOL
0	L	L	Microprogram Counter	MPC
1	L	H	Reghter	REG
2	H	L	Push-Pop stack	STKO
3	H	H	Direct inputs	D_{i}

OUTPUT CONTROL

$O R_{i}$	$\overline{Z E R O}$	$\overline{O E}$	Y_{i}
X	X	H	Z
X	L	L	L
H	H	L	H
L	H	L	Source selected by $S_{0} S_{1}$

SYNCHRONOUS STACK CONTROL

FE	PUP	PUSH-POP STACK CHANGE
H	X	No change Increment stack pointer, then push current PC onto STKO
L	H	Pop stack (decrement stack pointer)

OUTPUT AND $\operatorname{NTERNAL}$ NEXT-CYCLE REGISTER STATES

CYCLE	$S_{1}, S_{0}, \overline{F E}$, PUP	$\mu \mathrm{PC}$	REG	STKO	STK1	STK2	STK3	YOUT	COMMENT	PRINCIPLE USE
$\begin{gathered} \mathbf{N} \\ \mathbf{N}+1 \end{gathered}$	0000	$\underset{J+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Rb } \end{aligned}$	$\mathbf{R b}$ Rc	Rc Rd	$\begin{aligned} & \text { Rd } \\ & \text { Ra } \end{aligned}$	J	Pop Stack	End Loop
$\underset{N+1}{N}$	0001	$\underset{J+1}{J}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	Ra	$\begin{aligned} & R b \\ & R_{a} \end{aligned}$	Rc Rb	Rd Rc	J	Push μ PC	Set-up. Loop
$\begin{gathered} \mathbf{N} \\ \mathbf{N + 1} \end{gathered}$	$001 \times$	$\underset{\mathrm{J}+1}{\mathrm{~J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Ra } \end{aligned}$	$\begin{aligned} & \text { Rb } \\ & \text { Rb } \end{aligned}$	Rc Rc	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	J	Continue	Continue
$\stackrel{N}{N+1}$	0100	$\underset{K+1}{J}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	Ra Rb	$\mathbf{R b}$ Rc	Rc Rd	Rd Ra	$\begin{aligned} & \mathbf{K} \\ & - \end{aligned}$	Pop Stack: Use AR for Address	End Loop
$\begin{gathered} N \\ N+1 \end{gathered}$	0101	$\underset{K+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	Ra	Rb Ra_{a}	Rc Rb	Rd Rc	K	Push $\mu \mathrm{PC}$; Jump to Address in AR	JSR AR
$\begin{gathered} N \\ N+1 \end{gathered}$	011 l	$\underset{K+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	Ra Ra	$\begin{aligned} & \mathbf{R b} \\ & \mathbf{R b} \end{aligned}$	Rc Rc	Rd Rd	K	Jump to Address in AR	JMP AR
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1000	$\underset{R a+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Rb } \end{aligned}$	Rb Rc	$\begin{aligned} & \text { Rc } \\ & \text { Rd } \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Ra } \end{aligned}$	Ra	Jump to Address in STKO; Pop Stack	RTS
$\underset{N+1}{N}$	1001	$\underset{R_{a}+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} \mathrm{Ra} \\ 1 \end{aligned}$	$\begin{aligned} & \text { Rb } \\ & \text { Ra } \end{aligned}$	Rc $R b$	$\begin{aligned} & \text { Rd } \\ & \text { Rc } \end{aligned}$	Ra	Jump to Address in STKO; Push μ PC	
$\begin{gathered} N \\ N+1 \end{gathered}$	$101 \times$	$\underset{R_{a+1}}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \end{aligned}$	Rb Rb	Rc Rc	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	Ra	Jump to Address in STKO	Stack Ref (Loop)
$\underset{N+1}{N}$	1100	$\underset{D+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Rb} \end{aligned}$	Rb Rc	Rc Rd	$\begin{aligned} & \text { Rd } \\ & \text { Ra } \end{aligned}$	D	Pop Stack: Jump to Address on D	End Loop
$\stackrel{N}{N+1}$	1101	$\underset{\mathrm{D}+1}{\mathrm{~J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{gathered} \mathrm{Ra}_{\mathrm{j}} \end{gathered}$	$\begin{aligned} & R b \\ & R a \end{aligned}$	Rc Rb	Rd Rc	D	Jump to Address on D: Push μ PC	JSR D
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	$111 \times$	$\underset{\mathrm{D}+1}{\mathrm{~J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Ra } \end{aligned}$	$\begin{aligned} & R b \\ & R b \end{aligned}$	$\begin{aligned} & R c \\ & R c \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	D	Jump to Address on D	JMP D

$x=$ Don't =e: $0=$ LOW. $1=$ HICH. Assume $C_{n}=\mathrm{HIGH}$
Note STKO is the lo:e or ectesred by the siack pointer

100001074

(Continued)

100001074

(Continued)

The 100001074 is a bipolar microprogram sequencer consisting of a 4 -bit cascadable slice. Two 100001074 s can address up to 256 words of microprogram and three devices can address up to 4 K words of microprogram.

A four-input multiplexer is used select either the address register, direct inputs, microprogram counter, or file as the source of the next microinstruction address. The S 0 and S 1 inputs control this multiplexer.

The address register consists of four D-type, edge triggered flip-flops with a common clock enable. When the address register enable is low, data enters the register on the low-to-high transition of the clock. The 4-bit direct data inputs are also used as inputs to the register to permit an N -way branch where N is any word in the microcode.

The microprogram counter (uPC) consists of a 4-bit incrementer followed by a 4-bit register. The incrementer has carry-in (Cn) and carry-out ($\mathrm{Cn}+4$). When the least significant carry-in to the incrementer is high, the current Y output word plus one is loaded into the microprogram register on the next clock cycle. In this way, sequential microinstructions can be executed. When the least-significant Cn is low, the incrementer passes the Y unmodified and this same word is loaded into the microprogram register on the next clock cycle. In this way, the same microinstruction can be executed any number of times by using the least-significant Cn as the control.

The file is a 4×4 stack which provides the return address linkage when executing microsubroutines. It contains a stack pointer (SP) which points to the last file word written. This permits stack reference operations to be performed without a push or pop.

The stack pointer operates as an up/down counter with separate push/pop and file enable inputs. The Push operation is enabled when the file enable is low and the push/pop input is high. When this happens the stack pointer increments and the file is written with the appropriate return linkage (the next microinstruction address after the subroutine jump which initiated the Push). A Pop operation is enabled when the file enable is low and the push/pop input is low. The stack pointer decrements on the next low-to-high clock transition. When the file enable is high, no action is taken by the stack pointer regardless of any other input.

When the Zero input is low, all Y outputs are low regardless of any other inputs (except OE). Each Y output bit has an independent OR input so a conditional logic one can be forced at each Y output to allow jumping to different microinstructions on programmed conditions.

The 100001074 has tri-state outputs.

100001075

Octal D-Type Edge-Triggered Flip-Flops

PIN CONFIGURATION

lowic: see function table
function table

OUTPUT CONTROL	CLOCK	0	OUTPUT
L	T	H	H
L	1	L	L
L	L	X	O_{0}
H	X	X	Z

BLOCK DIAGRAM

The 100001075 is an 8 -bit register containing edge triggered D-type flip-flops with totem-pole tri-state outputs. The D inputs are applied to the Q outputs on the positive transition of the clock.

The buffered output control will place the outputs in a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs can neither load nor drive the bus lines. Data can be retained or new data entered even when the outputs are off.

NOTE The 100001075 is a low power Schottky device.

$$
x-11100-1014
$$

4DEVEL STAGK (lifu)

ACKOWS SUBROUTIVES in miCR.CODR
Sinplifinn BCock OiAg

Am2909-Am291t
 Microprogram Sequencers

DISTINCTIVE CHARACTERISTICS

- \&bit slice cascadable to any number of microwords
- Internal address register
- Branch inpur for N-way branches
- Cascadable 4-bit microprogram counter
- 4×4 file with stack pointer and push pop control for nesting microsubroutines.
- Zero input for returning to the zero microcode word
- Individual OR input for each bit for branching to higher microinstructions (Am2909 only).
- Three-state outputs
- All internal registers change state on the LOW-ro-HIGH transition of the clock
- Am2909 in 28-pin package
- Arn2911 in 20-pin package

TABLE OF CONTENTS

Blocik Diagram 2-2
Pin Definitions 2.5
Con:uection Ci3z:3m 2.5
Paysical Dimensions. 2-3
Function Tables 2-6
Subrrutining 2.6
Screening 2.8
Order Codes. 2.8
DC Characteristics 2.5
AC Characteristics $2 \cdot 10$

GENERAL DESCRIPTION

The Am2909 is a four-bit wide address controller intended for sequencing through a serizs of microinstructions contained in a ROM or PROM. Two Am2909's may be interconnected to generate an eight-bit address (256 words). and three may be used to generate a twelve-bit address (4K words).

The Am2909 can select an addiess from any of four sources. They are: 1) a set of external direct inputs (D): 2) external data from the R inputs, stored in an internal register: 3) a four-word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The pusi/pop stack includes certain contril lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs can be OR'ed with an external input for conditional skip or branch instructions, and a seóarate line forces the outputs to all zeroes. The ouiputs are inree-state.
The Am2911 is an identical circuit to the Am2909, except the four $O R$ inputs are removed and the D and R inputs are tied together. The Am2911 is in a 20 -pin, 0.3" centers package.

MICROPROGRAM SEQUENCER BLOCK DIAGRAM

 Hhe durice i: a cuicutahlo 4 bit slice stch that two device; a'low ederassing ol up to 255 words of microprogram an: thres device; allow addressing of up to 4 K words of microprogram. A detailed logic diagram is shown in Figure 2.
The device contains a four-input multiplexer that is used to select either the address register, direct injuts, microprogram counter, or file as the scurce of the next microinstruction ad. dress. This multiplexer is controlled by the S_{0} and S_{1} inputs.

The address register consists of four Diyp\% edge triggared flip-flops with a common clock enable. When the address register enable is LOM, new data is entered into the regis:er on the clock LON-to-HIGH transition. The address register is available at the multiplexer as a source for the next microinstruction address. The direct input is a fourbit fieid of inputs to the mulriplexer and can be selected as the next microinstruction address. On the Am2911, the ditect inputs are also used as inputs to the register. This allows an N-wiay branch where N is any word in the microcode.

The Am2909/Am2911 contains a microprogram counter (PPC) that is composed of a 4-bit incrementer followe 1 by a 4 -bit register. The incrementer has carry-in $\left(C_{n}\right)$ and carry-out $\left(C_{n}+4\right)$ such that cascading to larger word lengths is straightforward. The μ PC can be used in either of two ways. When the least significant carry-in to the incrementer is HIGH, the microprogram register is loaded on the next clock cycle with the current Y output word plus one $(Y+1 \rightarrow \mu P C$.) Thus sequential microinstructions can be executed. If this least significan: C_{n} is LOW, the incrementer passes the Y output word unmodified and the microprogram register is loaded with the same Y word on the next clock cycle ($Y \rightarrow \mu \mathrm{PC}$). Thus, the same microinstruction can be executed any number of times by using the least significan: C_{n} as the control.
The last source available at the multiplexer input is the 4×4 file (stack). The file is used to provide return address linkag?
performed without a puthor fup.
The siack pointer coperates as an up/down counter with separate pushipop and tilt enable inputs. When the file enatie input is LO'W and the push/pop input is HIGH. the PUSH operation is enabled. This causes the stack pointer to incremen: and the file to be written with the requiredreturn linkaye - the next microinstruction address following the sub. routine jump which initiated the PUSH.

If the file enoble input is LON and the push/pop control is LO:\% a POP operation occurs. This implies the usage of the return linkase during this cycle and thus areturn from sub. routine. The next LOW-to-HIGH clock transition causes the stack pointer to decrement. It the file enable is HIGH, no astion is taken by the stack pointer regardless of any other input.
The s:ack pointer linkage is such that any combination of pushes, pops or stack references can be achieved. One microirstruction subroutines can be perform 2 J . Since the stack is 4 words deep, up to four microsubroutines can be nested.
The ZERO input is used to force the four outputs to the binary zero state. When the ZERO inpui is LOW, all Y outputs are LOW regardless of any other inputs (except $\overline{\mathrm{OE}}$). Each Y output bit also has a separate $O R$ input such that a conditional logic one can be forced at each Y output. This allows jumping to different microinstructions on program. med conditions.

The Am2903/Am2911 feature three-state Y outputs. These can be particularly useful in military designs requiring external Ground Support Equipment (GSE) to provide automatic checkout of the microprocessor. The iniernal coniral can be placed in the high-impedance state, and preprogrammed seguences of microinstructions can be executed via external access to the control ROM/PROM. .

Figure 1.

A set ot symbois is used in this duis sneet to reprosent various incernat ad cxi.nel rajsters and signa's used with the Am2909. Since is principhe application is as a controller for a microprogram store, it is necessary to define some signais associsted with the microcode isself. Figure 3 illustraies the basic inferconnection of fim2909, memory, and microinstruc. tion-register. The definitions here apply to this architecture.

Inputs to Am2909/Am2911

S_{3}, S_{0}	Conirol lines for address source selection
FE. PUP	Control lines for push/pop stack
RE	Enable line for internal address register
OR;	Logic On inputs on each address outpert line
ZEKO	Logic AND input on the output lines
$\overline{O E}$	Output Enable. When $\overline{O E}$ is HIGH, the Y outputs are OFF (high impedance)
C_{n}	Carty-in to the incrementer
R_{i}	Inputs to the internal address register
D_{i}	Direct inputs to the multiplexer
CP	Clock inpu: to the $A R$ and $\mu P C$ register and Push-Pop stack

Outputs from the Am2909/Am2911
$\mathbf{Y}_{\mathbf{i}}$... Address outputs from Am2909. (Address inputs to control memory.)

Interna! Signals

$\mu P C$	Contents of the microprograrn counter
REG	Conients of the register
STKO-STK3	Contents of the push/pop stack. By definition the word in the four-by-four file, asdressed by the stack jointer is STKO. Concepiually data is pushed into the stack at STKO: a subsequent push moves STKO to STK1: a pup implie STK3 \rightarrow STK2 \rightarrow STKi \rightarrow STKO. Physically only the stack pointer changes when a push or pop is performed. The data does not rnove. 1/0 occurs at STKO.
SP	Contents of the stack pointer

External to the Am2909/Am2911

$T_{n} \quad$ Time period (cycie) n

Figure 3. Microprogram Sequencer Control.

Figure 4.

USERATION OF THE Am2909/Am2911

Figure 5 lists the select codes for the multiplexer. The two bit: applied from the microword register fand additional com Binational logic for branchingl determine which data source sontains the addtess for the next microinstruction. The cuntents of the setected source will appear on the Y outputs. figure 5 also shows the truth tabla for the output control and
for the control of the push/pop stack. Figure 6 shows in dotait the effect of $S_{0}, S_{1}, \overline{F E}$ and PUP on the Am2909. These four signals define what address appears on the Y outputs and what the state of all the internal regis:ers will be following the clock LOW-ro-HIGH eds?. In this illustration, the microprogram counter is assumed to contain initially some word J, the address regisier some word K, and the four words in the pushf pop stacix contain R_{a} ihrough R_{d}.

Figure 5.

CrCLE	$S_{1} . S_{\text {J }}, \overline{F E}, ~ P U P$	$\mu \mathrm{PC}$	REG	STKO	STK1	STK2	STK3	Your	COMMENT	PRINCIPLE USE
$\mathrm{SN}_{\mathrm{N}}^{\mathrm{N}}$	0000 -1	$\underset{\text { J+1 }}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & R a \\ & R b \end{aligned}$	$\begin{aligned} & R b \\ & R \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { Rc } \\ & \text { Rd } \end{aligned}$	Rd Ra	${ }^{5}$.	Pop Siack	End Loop
$\cdot N$	0001	$\underset{\mathbf{J}+1}{\mathbf{J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{gathered} \text { Ra } \\ \mathbf{J} \end{gathered}$	$\begin{aligned} & \mathbf{R b} \\ & \text { R:a } \end{aligned}$	Re Rb	$\begin{aligned} & \text { Rd } \\ & \text { Re } \end{aligned}$	J	Push μ PC	Set-up Loop
$\stackrel{N}{N+1}$	$001 \times$	$\underset{\mathrm{j}+1}{\mathrm{~J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { Re } \\ & \text { Re } \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	J	Continue	Continue
$\underset{N+1}{N}$	0100	$\stackrel{J}{K+1}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & R b \\ & R e \end{aligned}$	$\begin{aligned} & \text { Rc } \\ & \text { Rd } \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Ra } \end{aligned}$	K	Pop Stack: Use AR for Address	End Loop
$\underset{N+2}{N}$	0101	$\underset{K+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{gathered} \text { Ra } \\ \mathbf{J} \end{gathered}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ra} \end{aligned}$	$\begin{aligned} & \text { Rc } \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Re } \end{aligned}$	K	Push μ PC: Jump to Address in AR	JŞR AFs
$\begin{gathered} N \\ N+1 \end{gathered}$	$011 \times$	$\underset{x^{3}+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rb } \\ & \text { Rb } \end{aligned}$	Rc Re	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	K	Jump to Address in AR	JMP AR
$\underset{N+1}{N}$	1000	$\stackrel{3}{R a+1}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & R b \\ & \text { Re } \end{aligned}$	$\begin{aligned} & \text { Re } \\ & \text { Rd } \end{aligned}$	$\begin{aligned} & R d \\ & R_{a} \end{aligned}$	Ra	Jump to Address in STKO: Pop Siack	RTS
$\underset{N+1}{N}$	1001	$\underset{8 a+1}{J}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{gathered} \text { Ra } \\ j \end{gathered}$	$\begin{aligned} & R b \\ & R a \end{aligned}$	$\begin{aligned} & R c \\ & R b \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Re } \end{aligned}$	Ra	Jump to Address in STKO: Push pPC	
$\begin{gathered} N \\ N+1 \end{gathered}$	$101 \times$	$\underset{p a+1}{J}$	$\begin{aligned} & K \\ & K \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Rc} \\ & \mathrm{Rc} \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	Ro	Jump to Address in STKO	Stack Ref (LOOp)
$\begin{array}{r} N \\ N+1 \\ \hline \end{array}$	1100	$\begin{gathered} \mathrm{J} \\ \mathrm{D}+1 \end{gathered}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { Rb } \end{aligned}$	$\begin{aligned} & R b \\ & R c \end{aligned}$	$\begin{aligned} & R c \\ & R \mathrm{~d} \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Ra } \end{aligned}$	-	Pop-Sisck: Jump to Address on D	End Loop
$\begin{gathered} \mathrm{N} \\ \mathrm{~N}+1 \end{gathered}$	1101	${ }_{\mathrm{D}+1}^{3}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{gathered} \text { Ro } \\ j \end{gathered}$	$\begin{aligned} & \text { Rb } \\ & \text { Ra } \end{aligned}$	$\begin{aligned} & R c \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \text { RJ } \\ & \text { Re } \end{aligned}$	D	Jump to Address on D: Push μ PC	JSR 0
$\underset{N+1}{N}$	$111 \times$	$\underset{\mathbf{D}+1}{\mathbf{J}}$	$\begin{aligned} & K \\ & K \end{aligned}$	$\begin{aligned} & \text { Ra } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & R b \\ & R b \end{aligned}$	$\begin{aligned} & \mathrm{Re} \\ & \mathrm{ge} \end{aligned}$	$\begin{aligned} & \text { Rd } \\ & \text { Rd } \end{aligned}$	-	Jump to Address on D	JMP D

X - Dan's coro. O-L.OW, I - HiGH. Assuma C_{n} - HIGH

FiAXIMUM RATINGS (Above which the useful life may be impaired)

Siorse? Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Semporziure (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voirage to Ground Potential	-0.5 V to +7.0V
DC: Voltuge A.pplied to Outputs for HIGH Ouiput State	$-0.5 V$ to $+V_{\text {cc }}$ max.
DC Itiput Voltage	$-0.5 \mathrm{~V} 2077.0 \mathrm{~V}$
DC Outpur Current, Into Outputs	30 mA
OC Input Current	-30 mA to +5.0 iriA

P/N	Ambient Temperature	VCC
Am2909/29110C. PC	$0^{\circ} \mathrm{C}$ ro $+70^{\circ} \mathrm{C}$	4.75 V to 5.25 V
Am2909/29110. FM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.50 V to 5.50 V

STANDARD SCREENING
(Conforms to MILLSTD-883 for Class C Parts)

Strp	$\begin{aligned} & \text { MiL-STD. } 893 \\ & \text { Method } \end{aligned}$	Conditions	Level	
			Am2909/Am2911PC. DC	\|Am2909/Am29110M, FM
Preseal Visual inspection	2010	B	100\%	100%
Siabilization Bake	1008	$c^{24 \text { hour }} \begin{aligned} & 150^{\circ} \mathrm{C} \end{aligned}$	100\%	100\%
Temperature Cyele	1010	C $-55^{\circ} \mathrm{C}$ 80 $+150^{\circ} \mathrm{C}$	100\%	100\%
Centrituge	2001	B 10.000 G	100x.	100\%
Fine Le.th	1014	A $5 \times 10^{-8} \mathrm{arm}^{\text {a }}$ c/ $/ \mathrm{cm}^{3}$	102\%	100\%
Gross Leak	1014	C2 Fluorocarbon	100x ${ }^{\text {- }}$	100\%
Electriol Test Subgroups 1 and 7	5004	See below for definitions of subgroups	100\%	100\%
Imert Additionsi Soreening here for Class B Parts				
Group A Sample Tesco Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 7 Subgroup 8 Subgroup 9	5005	Sep below for definitions of subgroups	$\begin{aligned} & \text { LTPD }=5 \\ & \text { LTPD }=7 \end{aligned}$	$\begin{aligned} & L T P D=5 \\ & L T P D=7 \\ & \text { LTPD }=7 \\ & L T P D=7 \\ & \text { LTPD }=7 \\ & \text { LTPD }=7 \end{aligned}$

Not apalicablefor Amz909PC or Am2911PC.

ADDITIONAL SCREENING FOR CLASS B PAPTS

Step	MIL-STO-893 - Biethod	Conditions	Level
			Am2909/4m29110:13, FM8
Burn-in	1015	O 160 hours min.	100\%
Electrical Test Subgroup 1 Surgroud 2 Subyroup 3 Subgroup 7 Subgroup 9	5004		$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$
Retum to Groud A Tesis in Standard Screening			

ORDERING INFORMATION

Packag Typs	Temperature Range	Am2909 Order Number	Am2911 Ordar Number
Malded DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AM2909PC	A ${ }^{\text {a }} 2311 \mathrm{PC}$
Hermetic DIP	$0^{\circ} \mathrm{C}$ ro $0+70^{\circ} \mathrm{C}$	A ${ }^{\text {a }} \mathbf{1} 29090 \mathrm{C}$	AM29110C
Hermetic DIP	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	A.323090:9	Ais29110.4
Harmatic Flat Pat	$-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$	Am2cosfa	--
Dico	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Am2909xC	-

GROUP A SUBGROUPS
(as defined in MIL-STD-883, method 5005)

Subgroup	Parameter	Temperature
1	OC	$25^{\circ} \mathrm{C}$
2	DC	Maximumbrited tempersture
3	OC	Minimum onted temperature
7.	Funcrion	$25^{*} \mathrm{C}$
8	Function	Rhaximum and minimum rited tempersturs
9	Switching	$25^{\circ} \mathrm{C}$
10	Switching	A!sximum Rated Temeperature
11	Svischin?	Binime un isoted Temuerature

Notes: 1. For conditions shown as MiN. or MAX.. use the epproprisie walue soceifiec uncer Electricat Characteristics for she applicsble device type.
2. Typical timits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum toading
2. Not more then one outpur should be shorted at a time. Durstion of rif shart circuit test should not exceed one second.
 LOW-ROHIGH clock rronsition.
LOW-80-HIGH clock tronsition. io Y_{0}, Y_{1}, Y_{2} and Y_{3}.
6. For the Am2917. D_{i} and R_{i} ere Intarnally connseted Losding is doublod (ro asme values as Push/Pop).

100001080

Octal Buffer And Line Driver

 With 3-State OutputsPIN CONFIGURATION

This device features three-state outputs, selectable combinations of inverting and noninverting outputs, symmetrical G'(active-low output control) inputs, and complementary \mathbf{G} and G'inputs.

NOTE The 100001080 is a low power Schottky device.

100001081

Decoder/Demultiplexer

NOTE The 100001081 is a low power Schottky device.
insiruction bing executed at any given tirme is the one con
 a:VA also conirois (indirectly, perhop;) the four signals $S_{0} . S_{1}$. $\overline{F E}$, and PUP. The siarting addiess of the subroutine is applied to the D inputs of the Am2303 at the appropriate time.

In the columns on the tett is the sequence of microinstructions to be executed. At address $J+2$, the sequance control portion of the microinstruction contsins the comund "Jurnp to sub-
 the O inputs from the shifard appearson the Y outputs. The firs: insiruction ci the subutume. (A), is accessed and is a: the inpuis of the $\mu: W R$. On the next clock transition. lif $)$ is loaded in:o the μ :3R for execution, and the return address $1+3$ is pushed onto the stict. The return instruction is exe. cutad at T_{5}. Figure 8 is a similar timing chart showing one subioutine lirikirg to a jecond, the later consisting of oniy one microinzirustion.

Execut: Cyel:	P.licroprogram	
	AdSress	Sequezcer Instruction
	J-1	τ
T_{0}	J	--
T_{1}	+1	-
T_{2}	+ +2	JSR A
T_{6}	d+3	-
T_{7}	+1+4	-
	-	-
	-	-
	-	-
	-	-
T_{3}	A	(A)
T_{4}	A+1	-
T_{5}	A +2	RTS
	-	-
	-	-
	-	-
	-	-
	-	-
	-	-

Figure 7. Subroutine Execution.
$C_{n}=$ HIGH

Execute Cycle	Mieropregram	
	Address	Sequencer instruction
	J-1	-
To	J	-
T_{3}	5+1	-
T_{2}	S+2	ISR A.
T9	j+3	-
	-	-
	-	-
	-	-
T_{3}	A	-
r_{4}	A+1	-
T_{5}	$A+2$	JSR B
T_{7}	A+3	-
T_{3}	A+4	RTS
	-	-
	-	-
	-	-
T_{s}	B	Rrs
	-	-
	-	-

Execuse		T_{0}	T_{1}	T_{2}	T_{3}	T_{2}	T	T_{6}	T_{7}	T	T_{9}
Clock Signals											\square
Am2909 inputs (from μ MR)	$S_{1} . S_{0}$	0	0	3	0	0	3	2	0.	2	0
	$\overline{F E}$	H	H	L	H	H	1	1	H	L	H
	PUP	X	\times	H	\times	X	H	- L	X	1	x
	D	X	x	A	X	X	B	X	X	x	x
Internal Registers	- PPC	+1	J+2	$1+3$	A+1	A+2	A+3	$8+1$	A+4	A +5	J+4
	STKO	-	-	-	$\mathrm{J}+3$	j+3	f+3	A +3	+ +3	$1+3$	-
	STK1	-	-	-	-	-	--	d+3	-	-	-
	STK2	-	-	-	-	-	-	-	-	-	-
	STK3	-	-	-	-	-	-	-	-	-	
Am2909 Output	Y	+1	\$+2	A	$A+1$	A+2	8	A +3	A+4	J+3	J+4
ROM Outpue	(Y)	(1) 1)	JSR A	((A)	1(a+1)	JSR 8	RTS	$1(A+3)$	RTS	1(1+3)	1 $2+3$)
Contents of μ WR (enstruction being executed)	มW\%	(1)									
			(1)+1)	JSR A	(${ }^{\text {A }}$	$1(A+1)$.	158 8	RTS	$1(A+3)$	RTS	$118+3 i$

Figure 8. Two Nested Subroutines. Routine B is Only One Instruerion.
$\mathrm{C}_{\mathrm{n}}=\mathrm{HICH}$

$$
M K 4 / 16 \mathrm{P}-3
$$

MPD416
μ PD416-1
μ PD416-2
μ PD416-3

16384×1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

The NEC μ PD 416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD4 16 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the μ PD4 16 to be packaged in the standard 16 pin dual-in-line package. The $\mathbf{1 6}$ pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES - 16384 Words $\times 1$ Bit Organization

- High Memory Density - 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies $+12 \mathrm{~V},-5 \mathrm{~V},+5 \mathrm{~V}$
- Low Power Dissipation; 462 mW Active (MAX), 20 mW Standby (MAX)
- Output Data Controlled by $\overline{\mathrm{CAS}}$ and Unlatched at End of Cycle
- Read-Modify-Write, $\overline{\text { RAS }}$-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCL.E
μ PD4 16	300 ns	510 ns	510 ns
μ PD416-1	250 ns	430 ns	430 ns
μ PD416-2	200 ns	375 ns	375 ns
μ PD416-3	150 ns	375 ns	375 ns

PIN NAMES

$A_{0}-A_{6}$	Address Inputs
$\overline{C A S}$	Column Address Strobe
$D_{\text {IN }}$	Data In
$D_{\text {OUT }}$	Data Out
$\overline{\text { RAS }}$	Row Address Strobe
$\overline{W R I T E}$	Read/Write
$V_{B B}$	Power (-5 V)
$V_{C C}$	Power (+5 V)
$V_{O D}$	Power (+12 V)
$V_{S S}$	Ground

Operating Temperature
Storage Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Output Voltages (1)
-0.5 to +20 Volts
All Input Voltages (1).
-0.5 to +20 Volts
-0.5 to +20 Volts
Supply Voltages VDD, $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}(1)$. -1.0 to +15 Volts

Supply Voltages VDD, VCC (2) | -1.0 to + 15 Volts |
| :--- |
| |
| mA |

Power Dissipation 1 Watt

ABSOLUTE MAXIMUM RATINGS*

Notes:
(1) Relative to $V_{B B}$
(2) Relative to $V_{S S}$

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or eny other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods mav affect device relisbility.
${ }^{\circ} \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
$T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$,
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance ($A_{0}-A_{6}$), $D_{1 N}$	Cl_{11}		4	5	pF	
Input Capacitance $\overline{\text { RAS, }} \overline{\text { CAS }}, \overline{\text { WRITE }}$	Cl_{12}		8	10	pF	
Output Capacitance (DOUT)	C_{0}		5	7	pF	

$T_{a}=0^{\circ} \mathrm{C}$ то $+70^{\circ} \mathrm{C}$ (1) $, V_{D D}=+12 \mathrm{~V} \pm 10 \%, V_{C C}=+5 \mathrm{~V} \pm 10 \%, V_{B B}=-5 \mathrm{~V} \leq 10 \%, V_{S S}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Supply Voltage	v_{DO}	10.8	12.0	13.2	v	(2)
Supply Voltage	$V_{\text {CC }}$	4.5	5.0	5.5	v	(2) (3)
Supply Voltage	$\mathrm{V}_{\text {SS }}$	0	0	0	v	(2)
Supply Voltage	V_{BB}	-4.5	-5.0	-5.5	v	(2)
Input High (Logic 1) Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, WRITE	VIHC	2.7		7.0	V	(2)
Input High (Logic 1) Voltage, all inputs except RAS, $\overline{\mathrm{CAS}}$ WRITE	$V_{\text {IH }}$	2.4		7.0	v	(2)
Input Low (Logic 0) Voltage, all inputs	$v_{\text {IL }}$	-1.0		0.8	v	(2)
Operating $\mathrm{V}_{\text {DD }}$ Current	'DD1			35	mA	$\overline{\text { RAS }}, \overline{\text { CAS }}$ cycling: $t_{R C}=t_{R C} \text { Min. (4) }$
Standoy V ${ }^{\text {DO }}$ Current	'0D2			1.5	mA	$\overline{\text { RAS }}=V_{1 H C}, D_{O U T}$ $=$ High 1 mpedance
Refresh VDO Current	'003			25	mA	$\overline{\text { RAS }}$ cycling, CAS $=$ $V_{1 H C}: t_{R C}=375 \mathrm{~ns}(4)$
Page Mode VDD Current	'004			27	mA	$\overline{\text { RAS }}=V_{\text {IL }}, \overline{\text { CAS }}$ cycling: tPC $=$ 225 ns (4)
Operating VCC Current	'cci				$\mu \mathrm{A}$	$\overline{\text { RAS }}, \overline{\text { CAS }}$ cycling; $\mathrm{t}_{\mathrm{RC}}=375 \mathrm{~ns} \text { (5) }$
Standby V cc Current	'cc2	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{RAS}}=\mathrm{V}_{1 \mathrm{HC}}, \\ & \mathrm{D}_{\mathrm{OUT}}=\mathrm{High} \\ & \text { Impedance } \end{aligned}$
Refresh VCC Current	'cc3	-10		10	$\mu \mathrm{A}$	$\overline{\text { RAS cycling. }}$ $\begin{aligned} & \overline{\mathrm{CAS}}=V_{1 H C}, \\ & \text { T }_{\mathrm{RC}}=375 \mathrm{~ns} \end{aligned}$
Page Mode VCC Current	'cc4				$\mu \mathrm{A}$	$\overline{R A S}=V_{1 L}, \overline{C A S}$ cycling; tpC $=$ 225 ns (5)

CYCLE TIME tRC (ns)

CYCLE RATE $(\mathrm{MHz})=10^{3} / \mathrm{TRC}$ (ns)
FIGURE 1
Maximum ambient temperature versus cycle rate for extended frequency operation. T_{a} (max) for operation at cycling rates greater than 2.66 MHz ($\mathrm{CYC}<375 \mathrm{~ns}$) is
determined by $T_{a}(\max)\left[{ }^{\circ} \mathrm{C}\right]=70-9.0 x$ (cycle rate $[\mathrm{MHz}]-2.66)$.

CYCLE TIME TRC (ns)

CYCLE RATE $(\mathrm{MHz})=10^{3} / \mathrm{tRC}$ (ns)
FIGURE 3
Maximum IDO3 versus cycle rate for device operation at extended frequencies.

CYCLE TIME IRC (ns)

CYCLE RATE $(\mathrm{MHz})=10^{3} / \mathrm{tRC}$ (ns)
FIGURE 2
Maximum IDD1 versus cycle rate for device operation at extended frequencies:

CYCLE TIME tpC (ns)

CYCLE RATE (MHz) $=10^{3} / \mathrm{tPC}$ (ns)
FIGURE 4
Maximum IDD4 versus cycle rate for device operation in page mode.
$T_{8}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{O D}=+12 \mathrm{~V}: 10 \%, v_{C C}=+5 \mathrm{~V}: 10 \%, v_{B B}=-6 v \pm 10 \%, v_{S S}=0 V$

PARAMETER	SYMEOL	LImits								Unet	TEST CONDITIONS
		HPDA16		MPOAIG-1		upO4162		$4 \mathrm{POS1C-3}$			
		Min	max	Min	max	MIN	max	MaIN	MAX		
Random reed or write crete time	${ }^{\text {ta }}$	510		430		375		375		ns	(3)
Rend-write cyete time	tawC	510		430		375		375		$n 3$	(3)
Pege mode cycte time	${ }^{\text {IPC }}$	330		280		225		170		ns	
Aconse time from $\overline{\text { AAS }}$	trac		300		250		200		150	ns	(4) (6)
Accent time from CAS	${ }^{\text {t }} \mathbf{C A C}$		200		170		135		100	ns	(5) (6)
Ourput butfor tum-atf deloy	LOFF	0	80	0	70	0	50	0	40	ns	(7)
Transition time frime and fall)	T	3	50	3	50	3	50	3	35	ne	(2)
RAS precherge sime	tap	200		170		120		100		n	
ARS coutse width	tras	330	32,000	250	32.000	200	32,000	150	32,000	$n 3$	
RAS nold time	tRSH	200		170		135		100		ns	
CAS pulse width	CAS	200	10.000	170	10,000	135	10.000	100	10,000	ns	
RAS to CXS deloy time	tRCD	40	100	36	85	25	66	20	50	n\%	(8)
$\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precherge time	${ }^{\text {t CRP }}$	-20		-20		-20		-20		ns	
Aow sddress set-up rime	tasp	0		0		0		0		ns	
Row Addrem hold time	${ }^{\text {t RAM }}$	40		35		25		20		m	
Column addrees serep time	IASC	-10		-10		-10	.	- 10		ns	
Column addreses hold time	CAH	90		75		55		45		ns	
Column address hold time refersenced to aAS	IAR	190		160		120		95		ns	
Read commend setup time	tracs	0		0		0		0		ns	
Read commend hold time		0		0		0		0		ns	
Write commend hold time	WCH	80		75		55		45		ns	
Write commend hold time reforenced to AAS	WCR	190		160		120		95		ne	
Write commend putat widun	**P	90		75		58		45		ns	
Write commend to దम'S reed ofme	tpwi	120		100		80		60		ns	
Write commend to $\overline{C A S}$ read time	CWL	120		100		80		60		m	
Duta-in sue-up timp	tos	0		0		0		0		ns	(9)
Detein hold time	TOH	90		75		55		45		ns	(9)
Datein hold time refterenced to $\overline{\text { AAS }}$	¢DHA	190		160		120		95		$n 3$	
$\overline{\text { CAS }}$ prectharge time (for page mode cyele oniy)	${ }^{2} \mathrm{CP}$	120		100		80		60		m	
Refrean geriod	tref		2		2		2		2	ms	
White comerund seup time	twcs	-10		-10		-10		-10		ns	
CAS to WAITE deloy	\% ${ }^{\text {cmo }}$	140		120		195		70		ns	
RAS to WRITE del	tawo	210		175		160		120		ns	

Notes: (1) AC moceuromants semene it $=5 \mathrm{me}$
(2) $V_{I H C}(\min)$ or $V_{I M}(\min)$ and $V_{I L}$ (max) ane netarence lowis for messuring timing of input signela. Also, trensition times are masured between $V_{I H}+C$ or $V_{I H}$ and $V_{I L}$.
 full semperseure range $10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{s}}<70^{\circ} \mathrm{C}$) is aseurod.
(4) Assumbe that tRCD $<$ tRCD (mex). It tPCD is greeter then the meximum rocommended value sthown in this table. tRAC will incrsese by the amoum that taCD exceets the value shown.
(5) Asermen thet trco $>$ t RCO Imex).
(6) Merawred with a liced cquurvient to 2 TTL loactiond 100 PF .
(7) TOFF (max) defines the time at which the outpur schiswe the open circuit condition and is not refermend to output voltage levets.
 poimt onty, if tRCD is greater then the apecifled tRCO (max) timit, then access time is controlled exchusively by tCAC.
(9) These peramoters are refersnced to CAS leecting edgy in eerly write cyeten und to WRITE leading adep in detayed write or reac-modity-wite cveles.

READ CYCle
adoresses

WAITE

Dout

WRITE CYCLE

READ-WRITE/READ-MODIFY-WRITE CYCLE
s timing waveforms (CONT.)
"RASONLY" REFRESH CYCLE
$\overrightarrow{A \times S}$
addresses

	${ }^{\text {OH- }}$
${ }^{\text {O OUT }}$	\checkmark OL-

page mode read cycle

PAGE MODE WRITE CYCLE

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe ($\overline{\mathrm{RAS}}$), and the Column Address Strobe ($\overline{\mathrm{CAS}}$). The 7 bit row address is first applied and $\overline{\operatorname{RAS}}$ is then brought low. After the $\overline{\mathrm{RAS}}$ hold time has elapsed, the 7 bit column address is applied and $\overline{\mathrm{CAS}}$ is brought low. Since the column address is not needed internally until a time of ${ }^{\text {C }}$ CRD MAX after the row address, this multiplexing operation imposes no penalty on access time as long as $\overline{C A S}$ is applied no later thar: ${ }^{t}$ CRD MAX. If this time is exceeded, access time will be defined from $\overline{\text { CAS }}$ instead of $\overline{\text { RAS. }}$

For a write operation, the input data is latched on the chip by the negative going edge of WRITE or $\overline{\text { CAS }}$, whichever occurs later. If WRITE is active before CAS, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that $\overline{C A S}$ goes high.

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, " $\overline{R A S}$ only" cycles can be used for simple refreshing operation.

Either $\overline{\mathrm{RAS}}$ and/or $\overline{\mathrm{CAS}}$ can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.
The page mode feature allows the μ PD4 16 to be read or written at multiple column

PACKAGE OUTLINE μ PD416C/D

NEC Microcomputers
μ PD416D
(Ceramic)

ITEM	MILLIMETERS	INCHES
A	20.5 MAX .	0.81 MAX.
8	1.36	0.05
C	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.5 MIN.	0.14 MIN.
H	0.5 MIN.	0.02 MIN.
1	4.6 MAX.	0.18 MAX.
J	5.1 MAX.	0.20 MAX.
K	7.6	0.30
L	7.3	0.29
M	0.27	0.01

100001150

- -
 8-Bit Universal Shift/Storage Register

100001211

Quàd 2-Line-To-1-Line Data Selector/Multiplexer

H - high teval, L - low tovel, $X=$ irrelevent
BLOCK DIAGRAM

The 100001211 is a selector/multiplexor with inverters and drivers to supply on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The device presents inverted data.

100001212

JFET-Input Operational Amplifier

PIN CONFIGURATION

PIN 4 IS IN ELECTAICAL CONTACT WITM THE CASE

NC-No internal conncetion

LOGIC DIAGRAM

NOTE The 100001211 is a low power Schottky device.

100001231

8-Bit Parallel-Out Serial Shift Register

TRUTH TABLE

inputs				OUTPUTS		
CLEAR	CLOCK	A	B	0_{A}	0_{8}	0_{H}
L	X	x	\times	L	L	L
H	1	X	X	$a_{A O}$	O_{80}	$\mathrm{Q}_{\text {но }}$
H	1	H	H	H	$\mathrm{O}_{\text {an }}$	O_{G}
H	1	L	\times	L	$Q_{\text {an }}$	Q_{Gn}
H	1	X	L	1	$0_{\text {An }}$	$Q_{G n}$

H - Man wow (steecty statel L = low how (steedy gtate)
X - Iredevent (eny mput, inctuding transitions)
1 . Mremition hoom low io nion tiven
 betore the indicatiod stetey etate input conchons mere estebtened
$O_{\text {Arr }} O_{C n}$. The invel of or O_{G} betore the most-recent the traver of O_{A} or O_{G} betore the most-recent ghm.

BLOCK DIAGRAM

The 100001231 is a 8 -bit shift register which featu gated serial inputs, asynchronous clear, totem-pole outputs. A low on either (both) of serial gated inputs (A, B) inhibits the entry of 1 data and resets the first flip-flop to low on the x clock pulse. A high input enables the other in which will determine the state of the first flip-i Clocking occurs on the low-to-high transition of clock.

TYPICAL CLEAR, SHAFT, AND CLEAR SEQUENCES

NOTE The 100001231 is a low power Scho device.

100001232

Dual 4-Bit Binary Counter

TRUTH TABLE

COUNT	OUTPUT			
	O_{O}	Q_{C}	Q_{Q}	$Q_{\text {A }}$
O	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
B	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

The 100001232 consists of eight master-slave flip-flops and additional gating to implement two independent 4-bit counter. Each counter has a direct clear and a clock input.

NOTE The 100001231 is a low power Schottky device.

100001253

Octal Buffer And Line Driver

 With 3-State Outputs

NOTE The 100001253 is a low power Schottky device.

100001254

Octal Bus Transceiver
With 3-State Outputs

PN CONFIGURATION

FUNCTION TABLE

ENABLE E	OINECTION CONTROL OIR	CPERATION
L	L	B date ro A bus
L	H	A date ro B bus
H	X	laolation

H " high lovel, L - tow level, $X=$ irrelevent

This device allows data transmission from the $/$ to the B bus or from the B bus to the A bus deper upon the logic level at the direction control input. The enable input (G) can be used to disab) device so that the buses are effectively isolated.

NOTE The 100001254 is a low power Sch device.

100001264		
1024-Bit Bipolar PROM		
PIN CONFIGURATION		
$A_{5}{ }^{2}$		15 A ,
$\mathrm{A}_{4}{ }^{3}$		$14 \mathrm{CE}_{2}$
$A_{3} 4$		13 CE,
$A_{0} 5$		12 O,
A 16		$11 \mathrm{O}_{2}$
$A_{2}{ }^{7}$		$10 O_{3}$
GNO 8		90_{4}
C		
This 1024-bit programmable read only memory is organized as 256 words by 4 bits. It includes on-chip address decoding, two chip enable inputs (CE1, CE2), and uncommitted collector outputs.		

100001265

4-Bit Bistable Latch

$O_{0}=$ the level of O before the high-toion ereneltion of O

BLOCK DIAGRAM (each latch)

Data: Req $=17 \mathrm{k} \Omega$
Eneble: $R e q-4.2 \mathrm{k} \Omega$
Information present at a data (D) input is transferred to the \mathbf{Q} output when the enable (G) is high. The \mathbf{Q} output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable goes high.

NOTE The 100001265 is a low power Schottky device.

100001266
 14-5375
 Octal D-Type Flip-Flops With Enable

FUNCTION TABLE

(EACH FLIP.FLOP)		
NPUTS		
G	CLOCK	OATPUTS
H	X	X
L	1	H
L	1	L
X	L	X

EQUNALENT OF CLOCK OR ENABLE INPUT

EQUIVALENT OF DATA INPU

TYPICAL OF ALL OUTPUTS

The 100001266 consists of eight edge-triggered D-typ flip-flops with a common enable input.

Information at the D inputs meeting the setup tim requirements is transferred to the Q outputs on th positive going edge of the clock pulse if the enabl input \bar{G} is low. Clock triggering occurs at a particula voltage level and is not directly related to thi transition time of the positive-going pulse. When th clock input is at either the high or low level, the I input signal has no effect at the output.

NOTE The 100001266 is a low power Schottk device.

100001355

Dual 4-Line To 1-Line Data Selector/Multiplexer

PIN CONFIGURATION

TRUTH TABLE

select IMPUTS		DATA MPUTS				OUTPUT CONTROL	OUTPUT
-	A	co	C1	C_{2}	C3	c	γ
x	X	X	x	X	X	H	2
L	L	1	x	X	X	L	1
L	1	H	X	x	X	L	H
L	H	X	L	X	x	L	L
L	H	X	H	X	X	L	H
H	L	${ }^{x}$	x	L	\times	L	L
H	L	x	X	H	X	L	H
H	H	x	x	X	1	L	1
H	H	x	X	X	H	L	H

addrese mouts A and 8 ere common to both sectione

BLOCK DIAGRAM

The 100001355 data selector/multiplexor contains inverters and drivers which supply complementary, decoding data selection to its AND-OR gates. There are independent control inputs for each of the two 4 -line sections.

The tri-states outputs allow the 100001355 to drive the data lines of bus-oriented systems. When all of the common outputs but one are disabled (in a high impedance state), the remaining output is enabled (in low impedance state) to drive the bus line high or low.

NOTE The 100001355 is a Schottky device.

100001497

1024-Bit RAM

PIN CONFIGURATION

LOGIC SYMBOL

The 100001497 is a fully decoded 1024-bit random access memory organized as 256 words by 4 bits. It features three-state outputs and two chip select inputs. A word is addressed by the 8-bit address A0 through A7.

The read and write operations are controlled by the state of the active low Write Enable (WE). When WE is low and the chip is selected, the data at Din is written into the addressed location. When WE is high and the chip is selected, the data in the addressed location is read out at Dout.

TRUTH TABLE						
InPUTS					OUTPUTS	
$\begin{gathered} \overline{O E} \\ \text { PIN } 18 \end{gathered}$	$\begin{aligned} & \overline{C S} i \\ & \text { PIN } 19 \end{aligned}$	$\begin{gathered} \mathrm{CS}_{2} \\ \text { PIN } 17 \end{gathered}$	$\overline{W E}$ PIN 20	$\begin{gathered} D_{1}-O_{4} \\ \text { PINS } 9.11 .13,15 \end{gathered}$	$\begin{gathered} 93422 \\ \text { 3-STATE } \end{gathered}$	MODE
X	H	X	x	. X	HIGH Z	Not Selected
X	X	L	X	X	HIGH 2	Not Selected
L	L	H	H	X	$\mathrm{O}_{1}-\mathrm{O}_{4}$	Read S:ored Data
x	L	H	L	L	HIGH 2	Write "0"
x	1	H	1	H		Write "1"
H	L	H	H	\times	HIGH 2	Output Disabled
H	L	H	L	1	HIGH 2	Write "0" (Sutput Disabled)
H	L	H	L	H	HIGH 2	Write " 1 " Ouiput Disabled)

$H=$ HIGH Voltage. $:=$ LOW Voltage. $X=$ Oonit Care intGH or LOW), MIGHZ $=$ Hign impedarce

LOGIC DIAGRAM

100001524

Four-Bit Binary Counter

LOGIC DIAGRAM

LOGIC SYMBOL

function table

infuts									OUTPUTS			
CP	MA	FE	CEP	CET	P_{0}	P_{1}	P_{2}	P_{3}	0	0_{1}	O_{2}	03
\times	1	\times	x	x	\times	\times	\times	\times	1	1	1	1
1	H	1	x	x	D_{0}	D_{1}	O_{2}	O_{3}	D_{0}	O_{1}	D ${ }_{2}$	D_{3}
1	N	\cdots	1	1	x	\times	x	K	WC	NC	NC	WC
1	H	\cdots	1	N	x	x	x	x	NC	NC	NC	NC
1	\cdots	\cdots	H	1	x	x	x	x	NC	MC	NC	WC
1	H	\cdots	\cdots	H	\times	\times	\times	x	COUNT			

TERMINAL COUNT (TC) TRUTH TABLE

CET	O_{0}	O_{1}	O_{2}	O_{3}	TC
H	H	H	H	H	H
L	X	X	X	X	L
X	L	X	X	X	L
X	X	L	X	X	L
X	X	X	L	X	L
X	X	X	X	L	L

The 100001524 is a synchronous 4-bit binary counter. When the parallel enable ($\overline{\mathrm{PE}}$) is low, the data on the P0-P3 inputs is parallel loaded on the positive clock transition. When $\overline{\mathrm{PE}}$ is high and both count enables (CEP,CET) are also high, counting occurs on the positive transition of the clock. The terminal count output (TC) is high when CET is high and the counter is in its terminal count state. The counter also has a master reset input ($\overline{\mathrm{MR}}$), which, when low, forces the Q outputs low independently of all other inputs.

NOTE The 100001524 is a Schottky device.

100001528

High Speed Optically Coupled Isolators

PIN CONFIGURATION

This device uses Ga AsP light emitting diodes optically coupled to a photo-sensitive circuit. It provides 3000 Vdc isolation between the input and the output.

100001529

Quad 2-Input AND Gate
w/Open Collector Outputs

NOTE The 100001529 is a Schottky device.

[^0]: 4 Us is towerd MSB. Down is toward LSB

