= 29705DC NOVA 4/X I/C's ,25509 1048 03-4702-9-195 -AY-3-1015 /2341 74520 249 1 74522 174 2 AM ~ 2901 1073 4 - 29/10 - 1074 3 · 74530 -1045 1 29900 - 1500 74532-780 301 267 1 4 74537 472 339 47,? 2 2 MK4116P-3 //00 64 74538 - 779 3 .74851-504 555 173 1 2 -74564 182 723 094 1 1 728-002 1 74574 - 300 11 LA747 2 416 74586 - 365-1 **\$406** - 33 1 74S112 - +79+ 13172 7427 260 1 745113 160 1 7486 ++* 068 1 745138 223 6 -74LS02 - 1020 1 745139 185 1 +74LS05 - 798 745153 166 2 11 748158 -/2// 74LS08 575 1 1 -- 4LS29 -1 へ 74S161 - 1324 5 --74LS74-472 2 74S182 - 170 1 1080N ~74LS93-· 745240 - 15-22 1 -74LS158-/----74S241-1521 18 -3 -74LS161-581 2 745251- 165" 6 745253-1355 -74LS164-1231 4 2 745260 - 305 74LS194 580 1 5 10461745373-1018 > 74LS244- 1253 2 -745374-1019 > 74LS373-8 39 74LS377 748375 - 1265 2 1 -~ 74LS390-1232 - 74S399 -2 1 745240 74524) 74S00 15 4 75150 - 146 3 1 74502 360 (36) 75451 - 625 2 74504 15-7 75452 - 626 4 1 74805 188 \$93422 - 1497 4 2 74508 - 537 93546 - 540 5 3 74509 - 1529 1 DG 74511 237 1 641 14 1 7465299 6\$50 74515-25-9 1 14LS 14 -74S17 -1 576

(

()

1

C.

LANK

A . LO MERIA

Line of the summer of a state of the state o

Manhistra and

1.

The 100000157 is a differential voltage comparator intended for applications requiring high accuracy fast response times. Constructed on a single silicon chip, the device is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier, or a high-noise immunity line receiver.

100000164

256-Bit Bipolar RAM

he 10 _____00164 integrated circuit is a high speed, 11y decoded, static bipolar 256-bit random cess memory in a 256x1 organization. This vice provides uncommitted collector output id three chip selects. peration

Read

he memory is addressed through the A_0 - A_7 iputs which select one of the 256 words. The hip is enabled by placing all chip selects (CS) logic "0". If any or all CS inputs are logic 1", then the device will be disabled. If the rite enable (WE) is at logic "1" the stored bit read out of DO.

<u>Write</u>

he memory is addressed through the A_0 - A_7 puts which select one of the 256 words. The hip is enabled by placing all the CS inputs to gic "0". If the WE input is at logic "0", the hata on terminal DI is written into the addressed ord.

hen WE returns to logic "1", the information at was written in is now read out; however, ach "ord read out is the complement of what as ten in.

NOTE The 100000164 is a low power Schottky device.

10000165

Data Selector/Multiplexer with 3-State Outputs

FUNCTION TABLE

	Inputs			Outr	outs
5	Select		Strobe		
С	C B A		S	Y	W
x	Х	Х	Н	Z	Z
L	L	L	L	D0	DO
L	\mathbf{L}	Н	L	D1	D1
L	H	L	L	D2	D2
L	H	н	L	D3	D3
н	L	L	L	D4	D4
н	\mathbf{L}	н	L	D5	$\overline{\text{D5}}$
н	H	L	L	D6	D6
н	H	Н	L	D7	D7

H = high logic level, L = low logic level

X = irrelevant, Z = high impedance (off).

D0, D1.... D7 = the level of the respective D input.

NOTE The 100000165 is a Schottky device.

Output Control	Select	АВ	
H	х	хх	Z
L	L	LΧ	L
L	L	нх	н
L	H	ХL	L
L	Н	ХН	Н

H = high level, L = low level, X = irrelevant, Z = high impedance (off).

These Schottky-clamped multiplexers have threestate outputs which can interface directly with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

This three-state output means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

NOTE The 100000167 is a Schottky device.

6

 $\overline{P} = \overline{P}_3 \overline{P}_2 \overline{P}_1 \overline{P}_0$

NOTE The 100000170 is a Schottky device.

100000171

16-Bit Multiple-Port Register File with 3-State Outputs

The 100000171 is a high-performance 16-bit register file organized as eight words of two bits each.

Multiple address decoding circuitry is used so that the read and write operation can be performed independently on two word locations. This provides a true simultaneous read/write capability. Basically, the file consists of two distinct sections

Section 1 permits the writing of data into any twobit word location while reading two bits of data from another location simultaneously. To provide this flexibility, independent decoding is incorporated.

Section 2 of the register file is similar to section 1 with the exception that common read/write address circuitry is employed. This means that section 2 can be utilized in one of three modes:

- 1) Writing new data into two bits.
- 2) Reading from two bits.
- 3) Writing into and simultaneously reading from the same two bits.

Regardless of the mode, the operation of section 2 is entirely independent of section 1.

Functions of the inputs and outputs are as shown in the following table:

1-40

Expandable 4-Wide AND-OR Gate

Positive logic: Y = AB+CDE+FG+HI+X

63

100000182

4-2-3-2-Input AND-OR-INVERT Gate

Positive logic: $Y = \overline{ABCD + EF + GHI + JK}$

NOTE The 100000182 is a Schottky device.

(and a

NOTE The 100000194 is a Schottky device.

100000194

Quad MOS Clock Driver

The 100000194 is a monolithic quad driver designed primarily for use as a 1 MOS clock driver. It can be driven by high current TTL buffers or drivers, either directly or through input coupling capacitors, if level shifting is required.

63

100000223

PIN CONFIGURATION DATA OUTPUTS

¥3

¥2

¥6

¥5

×۸

Η Η Н Η Η

L Η Η Η Η

H = high level; L = low level; X = irrelevant

L Η

Η Η Η

L Η Η Η Η L Η Η Η

Н H Η Η Η Η ·L Η Η

L Η Н Η Η Η Η L Η

Η Η Η Η Η Η Η Η L

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times. In high performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

NOTE The 100000223 is a Schottky device.

 $\mathbf{y} = \mathbf{y}$

1.

10000250

A	В	Z	Ī
L	L	L	Н
L	H	H	L
H	L	H	L
H	H	L	Н

H = High Voltage Level L = Low Voltage Level

The exclusive OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: $Z = AB + \overline{AB}$; $\overline{Z} = AB + \overline{AB}$.

NOTE The 100000249 is a Schottky device.

TRUTH TABLE

Memory Enable	Write Enable	Operation	Outputs
y Oscar Contra	0	Write	Hi-Z State
	1	Read	Complement of Data Stored in Memory
1	x	Hold	Hi-Z State

The 100000266 is a fully decoded 64-bit RAM rganized as 16 4-bit words. The memory is ddressed by applying a binary number to the our Address inputs. After addressing, informaion may be either written into or read from the nemory. To write, both the Memory Enable and he Write Enable inputs must be in the logical '0'' state. Information applied to the four Write nputs will then be written into the addressed ocation. To read information from the memory he Memory Enable input must be in the logical 0" state and the Write Enable input in the logical 1" state. Information will be read as the comlement of what was written into the memory. Then the Memory Enable input is in the logical I" state, the outputs will go to the high-impednce state. This allows up to 128 memories to e connected to a common bus-line without the se of pull-up resistors. All memories except ne are gated into the high-impedance while the ne serviced memory exhibits the normally stem_{Manu}le low impedance output characteristics 1 T1

The 100000267 is a general purpose operational amplifier. This amplifier offers overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30pF capacitor.

In addition, the circuit can be used as a comparator with differential inputs up to $\pm 30V$, and the output can be clamped at any desired level to make it compatible with logic circuits.

10000365 10000366 (Quad 2-Input Exclusive-OR Gate Quad 2-Input Positive-NOR Gate PIN CONFIGURATION PIN CONFIGURATION 4 4 38 3 A 37 VCC **4**Y **4**B **4**A 3Y 3**B** 3A Vcc 14 13 12 11 10 9 8 13 10 12 8 GND 28 2 Y 7 1 2 3 5 6 14 1A 18 24 2A 28 GND OTE The 100000365 is a Schottky device. NOTE The 100000366 is a Schottky device.

The 100000470 operates from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. The input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Pin Designations

 $V_+ = Pin 3$ Gnd = Pin 12

100000472

Quad 2-Input Positive NAND Gate

NOTE The 100000472 is a Schottky device.

(x)

1.

(

wawsonn (DGL) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment of the properties of the proper Hware. The drawings and specifications contained herein are the property of D.C.C and shall neither be reproduced in whole or in part without D.C.C's prior written ap grant any license to main use, or sell equip sent manufactured in accordance berewith

Ċ

(

지지한 출신 전

Nec.

100000130 IUUUUUSso

Block Diagram

Asynchronous Receiver/Transmitter

E.

The Asynchronous Receiver/Transmitter is an LSI subsystem which accepts binary characters from either a terminal device or a computer and receives/transmits this character with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, one or two stop bits and either odd/even parity or no parity. The baud rate (bits per word), parity mode and the number of stop bits are externally selectable.

Description of Pin Functions

Name	Symbol	Function
Vec Power Supply	Ver	-5V Supply
Vgg Power Supply	Ver	-12V Supply
Ground	Vgr	Ground .
Received Data Enable	RDE	A logic "O" on the receiver enable line places the received data onto the output lines,
Received Data Bits	RD3-RD1	These are the 8 data output lines. Re- ceived characters are right pushind, the LSB always appears on RDL. These lines have tri-state outputs: i.e., they have the normal TTL output character- istics when RDE is "F" and a hird im- pedance state when RDE is "F". Thus, the data output lines can be hus stree- ture oriented.
Receive Parity Error	PE	This line goes to a logie "I" of the re- ceived character purity does not agree with the selected POE,
Framing Error	FE	This line goes to a logic "?" if the re- ceived character has no valid stop bet.
Over-Run	OR	This line goes to a logic "I" if the pre- viously received character is not read (DA line not reset) before the present character is transferred to the receiver holding register.
Status Word Enable	SWE	A logic "0" on this line places the status word bits (PK, FE, Olt, LA, T BMT) onto the output lines. These are tri-state also.
Receiver Click	RCP	This line will contain a clock whose frequency is 15 times (15%) the dy- sired receiver bod rate,
Reset Data Available	RDA	A locie "0" will resul the DA line.
Receive Data Available	DA	This line goes to a logic "I" when an entire character has been received and transferred to the receiver holding rep- ister.
Serial Input	SI	This line accepts the serial bit input stream. A Marking (logic "1") to spacing (logic "0") transition to se- quired for initiation of data recention.
External Reset	XR-	Resets all registers. Sets SO. EOC. and TBMT to a logie "".
Transmittee Buller Empty	TBMT	The transmitter buller empty flag coses to a logic "I" when the data bits - holding register may be loaded with another character.
Data Strobe	D3	A strobe on this line will enter the data bits into the data bits bolding reg- ister. Initial data transmission ba- initiated by the rising edge of DS.
End of Character	EOC	This line coes to a topic "1" each time a full character is transmitted. It re- mains at this fired until the start of transmission of the next character.
Serial Output	SO	This line will serially, by bit, provide the entire transmitted character, it will remain at a logic "I" when medata is being transmitted,
	Name V _{CC} Power Supply V _{CC} Power Supply Ground Received Data Enable Received Data Bits Received Data Bits Received Data Bits Framing Error Over-Run Status Word Enable Receiver Check Reset Data Atmitable Receiver Data Atmitable Serial Input Laternal Reset Transmitter Bulfer Empty Data Strobe End of Character Serial Output	NameSymbolVecPower SupplyVecVgg Power SupplyVggGroundRDEReceived Data BitsRDB-RD1Received Data BitsRDB-RD1Received Data BitsRDB-RD1Received Data BitsPEFraming ErrorFEOver-RunORStatus WordSWEReceiver ClackRCPReset Data AcuilableEDASerial InputSISerial InputSIData StrobeD3End of CharacterEDCSerial OutputSO

Continued

:,

. مى

()

Description	of Pin	Functions	(Continued)
-------------	--------	-----------	-------------

Pin No.	Name	Sumi-ol	Function		
25-33	Data Ect Inpuls	DBI-DBA	There are up to R data bit input lines available.		
31	Control Strobe	CS	A locic "I" on this load will enter the control bits IEPS, NBt, NBt, TSD, NPi into the control bits holder reg- ister. This has can be stroked or hard wired to a locic "I" level.		
35	No Pasity	NP	A locic "I" on this lead will eliminate the parity bit from the transmitted and received character for PE industron. The scop bitist, will inimediately follow the last data bit. If not used, this lead must be tied to a loce "O".		
35	Number of Stop Bits	TSÐ	This lead will select the number of stop bits. For 2, to be appended im- mediately after the particy bit. A logic "O" will insert 2 stop bits and a logic "I" will insert 2 stop bits.		
37-33	Number of Bits Character	NB2, NB1	These two leads will be internally de- coded to select either 3, 6, 7 or 3 duta his character.		
		1	NB1 NB2 Bits Character		
39	Odd Even Parity	EPS	The locic level on this pin selects the type of parity which will be appended inmediately after the data bits. It also determines the parity the will be checked by the receiver. A bolic "O" will insert odd parity and a locic "B" will insert odd parity and a locic		
49	Transmitter Clock Line	TCP	This has will contain a click whose frequency is 16 times (15X) the de- sired transmittee bad rate.		

Continued....

Transmitter Operation

Continued

Initializing

Power is applied, external reset is enabled and clock pulse is applied having a frequency of 16 times the desired baud rate. The above conditions will set TBMT, EOC and SO to logic "1" (line is marking).

After initializing is completed, user may set control bits and data bits with control bits selection normally occurring before data bits selection. However, one may set both DS and CS simultaneously if minimum pulse width specifications are followed. Once data strobe (DS) is pulsed the TBMT signal will change from a logic "1" to a logic "O" indicating that the data bits holding register is filled with a previous character and is unable to receive new data bits, and transmitter shift register is transmitting previously loaded data. TBMT will return to a logic "1". When transmitter shift register is empty, data bits in the holding register are immediately loaded into the transmitter shift register for transmission. The shifting of information from the holding register to the transmitter shift register will be followed by SO and EOC going to a logic "O", and TBMT will also go to a logic "1" indicating that the shifting operation is completed and that the data bits holding register is ready to accept new data. It should be remembered that one full character time is now available for loading of the next character without loss in transmission speed due to double buffering, (separate data bits holding register and transmitter shift register).

Data transmission is initiated with transmission of a start bit, data bits, parity bit (if desired) and stop bit(s). When the last stop bit has been on line for one bit time, EOC will go to a logic "1" indicating that new character is ready for transmission. This new character will be transmitted only if TBMT is a logic "0" as was previously mentioned.

Continued....

REV 03

Continued

Receiver Operation

Initializing

Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data available (DA) to a logic "0".

After initializing is completed, user should note that one set of control bits will be used for both receiver and transmitter making individual control bit setting unnecessary. Data reception starts when serial input signal changes from Marking (logic "1") to spacing (logic "0") which initiates start bit. The start bit is valid if, after transition from logic "1" to logic "0", the SI line continues to be at logic "0", when center sampled, 8 clock pulses later. If, however, line is at a logic "1" when center sampling occurs the start bit verification process will be reset. If the Serial Input line transitions from a logic "1" to a logic "0" (marking to spacing) when the 16X clock is in a logic "1" state, the bit time for center sampling will begin when the clock line transitions from a logic "1" to a logic "0" state. After verification of a genuine start bit, data bit reception, parity bit reception and stop bit(s), reception proceeds in an orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control data bits (parity and number of stop bits) previously set and indicate an error by changing the parity error flip-flop and/or the framing error flip-flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditioning set to a logic "0".

Once a full character is received, internal logic looks at the data available (DA) signal to determine if data has been read out. If the DA signal is at a logic "1" the receiver will assume data has not been read out and the overrun flip-flop of the status word holding register will be set to a logic "1". If the DA signal is at a logic "0" the receiver will assume that data has been read out. After DA goes to a logic "1", the receiver shift register is now ready to accept the next character and has one full character time to remove the received character.

Continued....

Receiver Propagation Deloy Timing Diagram

- ALL INFORMATION IS GOOD IN HOLDING Register Until Data Available tries to set for Next Character. З.
 - - Transmitter Timing Diagram

.,

Market supervises (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and Market has discuss and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to Market has discuss and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to Market has discuss and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to Market has discuss and specifications contained herein accordance herewith.

10000537

Quad 2-Input AND Gate

PIN CONFIGURATION

NOTE The 100000537 is a Schottky device.

100000540

LOGIC DIAGRAM

100

1

The 100000540 is a very high speed 6-Bit Identity Comparator. The device compares two words of up to 6-bits and indicates identity in less than 12 ns It is easily expandable to any word length by using either serial or parallel expansion techniques. When the Enable Input (E) is LOW, it forces the output LOW. The device is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL product families.

NOTE The 100000540 is a Schottky device.

100000541

8-Bit Parallel-Out Serial Shift Register

FUNCTION TABLE

INPUTS				OUTPUTS		
CLEAR	CLOCK	A	B	QA	QB	Q _H
L	x	X	х	L	L	L
н	L	X	х	Q _{A0}	QB0	QH0
н	t	н	н	н	Q _{An}	u _{Gn}
н	t	L	х	L	QAn	a _{Gn}
н	÷	x	L	L	Q _{An}	Q _{Gn}

Notes:

H = high level (steady state),

L = low level (steady state)

X = irrelevant (any input, including transitions) + = transition from low to high level.

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steadystate input conditions were established.

Q_{An}, Q_{Gn} = the level of Q_A or Q_G before the most-recent + transition of the clock; indicates a one-bit shift.

The 100000541 features gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock and the second s

10000580

4-Bit Bidirectional Universal Shift Register

- H = high level (steady state).
- L = low level (steady state).
- X = irrelevant (any input, including transitions).
- t = transition from low to high level.
- a, b, c, d = the level of steady-state input at inputs A, B, C or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the indicated steady-state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most recent † transition of the clock.

OTE The 100000580 is a low power Schottky device.

100000581

Synchronous 4-Bit Counter

PIN CONFIGURATION

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

This counter is fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

NOTE The 100000581 is a low power Schottky device.

100000594

Quad D Flip Flop with Clear

FUNCTION TABLE

Iı	Inputs					
Clear	Clear Clock D					
L	х	х	L			
Н	t	Η	Н			
н	t	L	L			
H	L	Х	Q ₀			

Notes:

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant
- t = transition from low to high level
- Q₀ = the level of Q before the indicated steady state input conditions were established.

NOTE The 100000594 is a low power Schottky device.

100000595

Quad 2-Input Positive-AND Gate

NOTE The 100000595 is a low power Schottky device.

STREET TO SERVICE

ŝ,

IGGC: has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to use, or self equipment manufactured in accordance herewith.

100000795

03-4709 -7

Programmable Bit Rate Generator

PIN CONFIGURATIO	N	PIN NAMES				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CP ECP IX IM Sn7S3 CO UX Q0 07 Z	External Cloct Input External Clock Enable Input (Active LOV) Crystal Input Multiplexed Input Rate Seject Inputs Clock Output Crystal Drive Output Scan Counter Output Bit Rate Output				

CLOCK MODES AND INITIALIZATION

١x	ECP	СР	OPERATION
w	н	L	Clocked from IX
×	L		Clocked from CP
×	н	н	Continuous Reset
×	L		Reset During First CP = HIGH Time

Note : Actual output frequency is 16 times the indicated Output Rate assuming a clock. frequency of 2:4576 MHz.

н -	HIGH Level
ι-	LOW Level
X =	Don't Care
	1st HIGH Leve
	Clock Pulse
	After ECP Goe
	LOW
൝	Clock Pulses

TRUTH TABLE FOR RATE SELECT INPUTS

л

Output Rate (Z) Note 1	\$ ₀	s ₁	\$2	s ₃
Multiplexed Input (I	L	L	L	L
Multiplexed Input II	н	L	L	Ĺ
50 Baud	L	н	· L	L
75 Baurt	н	н	Ł	L
134 5 Baud	ι	ι	н	L
200 Baud	н	L	н	ι
600 Baud	L	н	н	L
2400 Baud	4	н	н	L
9600 Baud	L	ι	ι	н
4800 Baud	н	i	L	н
1800 Baug	L	н	ι	н
1200 Baurt	н	-+	L	e1
2400 Baud	L.	•ι	н	ч
300 Baud	H	ι	H	н
150 Arud	к.	4	н	н
1 (C Baud	H	н	н	н

100000796

Dual J-K Negative-Edge-Triggered Flip-Flop with Preset and Clear

FUNCTION TABLE

	Out	outs				
Preset	Clear	Clock	J	K	Q	Q
L	Н	х	Х	х	Н	L
Н	L	Х	Х	Х	L	Н
L	L	Х	Х	Х	Н*	H*
Н	Н	•	L	L	Qn	\overline{Q}_{n}
Н	Н	ł	Н	L	н	L
Н	Н	•	L	H	L	н
Н	Н	ł	Н	Н	тос	GLE
Н	Н	Н	Х	X	Qn	Qu

Notes:

- H = high level (steady state).
- L = low level (steady state).
- X = irrelevant.
 - = transition from high to low level.
- Q₀ = the level of Q before the indicated input conditions were established.
- TOGGLE = Each output changes to the complement of its previous level on each active transition of the clock.
 - = This configuration is nonstable: that is, it will not persist when preset and clear inputs return to their inactive (high) level.

NOTE The 100000796 is a low power Schottky device.

Para General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

100001045

 $\overline{\mathcal{J}}\mathcal{U} \ll \mathcal{J}_{\mathcal{I}}$

8-Input NAND Gate

PIN CONFIGURATION

positive logic: Y = ABCDEFGH

-

()

NOTE The 100001045 is a Schottky device.

conservation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to license to make, use, or sell equipment manufactured in accordance herewith.

100001046

BLOCK DIAGRAM

TRANSPARENT LATCHES

6,

FUNCTION TABLE

OUTPUT CONTROL	ENABLE G	D	OUTPUT
L	н	н	н
L	н	L	L
L	L	x	00
н	×	X	Z

The 100001046 consists of eight, transparent D-type latches with totem-pole three-state outputs. When the enable (G) is high the Q outputs will follow the data ((D) inputs. When the enable goes low, the output will be latched at the level of the data that was setup.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are off.

NOTE The 100001046 is a low power Schottky device.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval ner be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

Ē

STUMINARY DATA TOARY**, 197**7

Four-Bit Bipolar Microprocessor Slice Advanced Micro Devices Bipolar Microprocessor Circuits

DISTINCTIVE CHARACTERISTICS

- Bug-in-replacement for standard Am2901.
- 20% to 30% faster than standard Am2901
- · Major improvements in D input and carry paths
- P IOL raised to 20mA on Y outputs 30% more drive than standard Am2901
- ICC reduced to 190mA at 125°C 30% less than standard Am2901
- V_{11_} raised to 0.8V over full military range for increased noise immunity

Note: $Q \in Q/2$ means $Q \in (1, Q)$

ORDERING INFORMATION

Package Type	Temperature Range	Orde r Number
Molded DIP	0°C to 70°C	AM2901APC
Hermetic DIP	0°C to 70°C	AM2901ADC
Hermetic DIP	-55°C to +125°C	AM2901ADN
Hermetic Flat Pack	-55°C to +125°C	AM2901AFM
Dice	0°C to +70°C	AM2901AXC
	-	
Note: The Data in the formance for the Am2 be approximately 1.6 t	is data sheat contains ex 301A As a ruta, worst o times typical over the con- is typical over the militar	pected typical par case AC limits will nmercial ranga are v range. Ba sure t

AVAILABLE FEBRUARY, 1977

The four-bit bipolar microprocessor slice is designed as a high-speed cascadable element intended for use in CPU's, peripheral controllers, programmable microprocessors and numerous other applications. The microinstruction flexibility of the Am2901A will allow efficient emulation of almost any digital computing machine.

The device, as shown in the block diagram below, consists of a 16-word by 4-bit two-port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit microinstruction word is organized into three groups of three bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look-ahead or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. Advanced low-power Schottky processing is used to fabricate this 40-lead LSI chip. The Am2901A is a plug in replacement for the Am2901. For detailed description and applications see the Am2901 Data Sheet.

Copyright © 1977 by Advanced Micro Devices, Inc.

MICRO CODE		ICRO CODE OPERANDS				MICI	DE	ALU	Sumbol			
12	11	10	Octal Code	R	S		15	14	13	Octol Code	Function	9;//-DC4
1	1	1	0		۵		L	L	c	0	R Pius S	R+S *
	,	Ĥ		A	B		L	L	н	1	S Minus R	5 – A
	н	1	2	0	Q		L	н	L	2	R Minus S	R - S
	н	Ĥ	3	0	B		L	н	н	3	RORS	RVS
		i.	4	0	Α	1	н	L	L	4	RANDS	RAS
н	ĩ	й	5	D	A		н	L	н	5	R AND S	គី^ S
	Ĥ	L	6	D	Q	· .	н	H	L	6	REX-ORS	RYS
Н	н	н	7	D	0		н	н	н	7	REX-NOR S	AVS

	MIC	RO CODE . FUNCTION FUNCTION				RAM Q-RE FUNCTION FUNCT		Y	RAM SHIFTER		Q SHIFTER	
18	17	16	Octal Code	Shift	Lood	Shitz	Lond	OUTPUT	RAMO	RAM3	٥٥	03
L	L	L	0	×	NONE	NONE	F→Q	F	x	×	×	×
L	L	н	. 1	X .	NONE	x	NONE	F	×	×	×	x
L	Н	L	2	NONE	F→B	x	NONE	•	x	×	×	×
L	н	н	3	NONE	F → 8	×	NONE	F	×	×	x	×
н	L	L	4	DOWN	F/2→B	DOWN	0/2→0	F	FO	IN3	00	1N ₃
н	L	н	5	DOWN	F/2→B	x	NONE	F	Fo	IN3	0 0	×
н	.H	L	6	UP	2F→B	UP	20→0	F	INO	F3	INO	Q3
н	н	н	7	UP	2F→B	×	NONE	F	INO	F3	×	0 ₃

X=Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the highimpedance state. B=Register Addressed by B inputs.

Up is toward MSB, Down is toward LSB.

۰.

ALU Destination Control.

.

	OCTAL	0 ·	· •	2	3	4	5	6	7
OLS TA4 L3	ALU Source ALU Function	A, Q	А, В	0,0	0, B	0, A	D, A	D, Q	D, O
0	C _n =L R Pius S	A+0	A+B	۵	B	A -	. D+A	D+Q	D
	С _п = Н	A+Q+1	A+B+1	Q+1	8+1	A+1	D+A+1	D+Q+1	D+1
1	·C _n ⊨ L S Minus R	Q-A-1	B-A-1	Q_1	8-1	A-1	A-D-1	Q-D-1	-D-1
	C _n =H	Q-A	B-A	٥	B	•	A-D	Q-D	-0
2	Cn = L R Minus S	A-Q-1	A-B-1	-0-1	-B-1	-A-1	D-A-1	D-Q-1	D-1
	Cn=H	A0	A-B	-0	-B	-A	D-A	D-Q	D
3	RORS	AVQ	AVB	۵	8	•	DVA	DVQ	Ð
4	R AND S	A A Q	AAB	. 0	C	0	DAA	DAQ	D
5	R AND S	۵۸A	Алв	۵	B	A	ō∧a	ō∧q	0
6	R EX-OR S	AYO	A¥B	٥	8	Α.	DYA	DYQ	D
7	REXINORS	AVQ	AYB	ō	Ē	. X	DVA	DVO	۳ ۵

Plus: - = Minus: V = OR, A = AND; V = EX-OR

Source Operand and ALU Function Matrix.

PIN DEFINITIONS

(C)

- AD-3 The four address inputs to the register stack used to select one register whose contents are displayed through the A-port.
- B₀₋₃ The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.
- I_{0-8} The nine instruction control lines to the Am2901, used to determine what data sources will be applied to the ALU (I_{012}), what function the ALU will perform (I_{345}), and what data is to be deposited in the Q-register or the register stack (I_{673}).
- Q₃ A shift line at the MSB of the Q register (Q₃) and the register stack (RAM₃). Electrically these lines are three-state outputs connected to TTL inputs internal to the Am2901A. When the destination code on I678 indicates an up shift (octal 6 or 7) the three-state outputs are enabled and the MSB of the Q register is available on the Q₃ pin and the MSB of the ALU output is available on the RAM₃ pin. Otherwise, the three-state outputs are electrically LS-TTL inputs. When the destination code calls for a down_shift, the pins are used as the data inputs to the MSB of the Q register (octal 4) and RAM (octal 4 or 5).
- Oo Shift lines like O3 and RAM3, but at the LSB of the RAM0
 O register and RAM. These pins are tied to the O3 and RAM3 pins of the adjacent device to transfer data between devices for up and down shifts of the C register and ALU data.
- D₀₋₃ Direct data inputs. A four-bit data field which may be selected as one of the ALU data sources for entering data into the Am2901A, D₀ is the LSB.

- Y₀₋₃ The four data outputs of the Am2901A. These are three-state output lines. When enabled, they display either the four outputs of the ALU or the data on the A-port of the register stack, as determined by the destination code 1678.
- OE Output Enable. When OE is HIGH, the Y outputs are OFF; when OE is LOW, the Y outputs are active (HIGH or LOW).
- **P**, **G** The carry generate and propagate outputs of the Am2901A's ALU. These signals are used with the Am2902 for carry-lookahead.
- OVR Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit. See Figure 8 for logic equation.
- F = 0 This is an open collector output which goes HIGH (OFF) if the data on the four ALU outputs F_{0-3} are all LOW. In positive logic, it indicates the result of an ALU operation is zero.
- C_n The carry-in to the Am2901A's ALU.
- C_{n+4} The carry-out of the Am2901A's ALU. See Figure 8 for equations.
- CP The clock to the Am2901A. The Q register and register stack outputs change on the clock LOW-to-HIGH transition. The clock LOW time is internally the write enable to the 16 x 4 RAM which compromises the "master" latches of the register stack. While the clock is LOW, the "slave" latches on the RAM outputs are closed, storing the data previously on the F.At1 outputs. This allows synchronous master-slave operation of the register stack.

CHARACIENISTICS OVEN -

Date in bold face is changed from Am2901 31

	1913	Description		Test Conditions {	Note 1)		Min.	Typ (Note 2)	Max.	Units
					1 _{OH} 1.6/ Yo.Y1.Y2.	nA Y3	2.4			
.				•	10H = -1.0	nA, Cn+4	2.4			· ·
Case'	1.53 I	Output HIGH Valrage	VCC - MIN		10H800	A. OVR. P	2.4			Volu
			VIN - VIH CI		10H 500	4.F3	2.4			
		•			10H 600	ųА	74			
	-				RAM0, 3, 0	0.3	2.7			
					10H1.6	nA,Ğ	2.4			
	thex .	Gutput Leakage Current for F = 0 Output	V _{CC} = MIN., V V _{IN} = V _{IH} or ¹	′он - 5 .5∨ V _{IL}					250	μΑ
ا تیج		•		Yo Ya Ya Ya	IOL = 20mA	(COM'L)			0.5	
			VCC - MIN-	-0, -1, -2, -3	101 - 16m	(MIL)			0.5	
7	Vol	Output LOW Voluage	$v_{IN} - v_{IH}$	Ğ, F = 0	10L = 16m2				0.5	Vola
21 مرک	•	•	or VIL	Cn+4	10L = 10m/				0.5	VOID
			1. A.	OVR, P	101 = 8.0m	4			0.5	
				F3, RAM0, 3, Q0, 3	101 = 6.0m	• ·	• •		0.5	
			Guaranteed inp	out logical HIGH			•••••		•	
	VD	Input HIGH Level	voltage for all i	oputs (Note 7)		•	2.0			Volts
			Guaranteed ing	out logical LOW				1		
<u> </u>	VIL	Input LOW Level	voltage for all i	nouts (Note 7)					0.8.	Voits
2	·····	Input Clamp Voltage	Vcc = MIN. I	IN = -18mA				1	-1.5	Volte
					Clock, DE		•	-	-0.36	
7	•			•	A0. A1. A7	Az			-0.36	
4				• •	Bo. B1. B2.	87			-0.36	
1					Do. D1. D2	Da			-0.72	
-	21L	Input LOW Current	VCC-MAX.	VCC = MAX., VIN = 0.5V				-0.36	mA	
÷,				•	10.11.12.10.18				-0.72	-
ł		•		•	RAMO 3. O	0 2 (Note 4)			-0.8	
.p		•	· ·		C.	0,3			-3.6	
١,					Clock JE				20	·
ş		-	·		Ap. A1. A2	A			20	
i		•	• .	•	Bo. B1. B7.	87			20	
ļ		•		• .	Do. D1. D2	Da			40	• •
ą	12H	Input HI3H Current	VCC - MAX.	V _{IN} = 2.7V	10,11,12,16	. 18			20	μA
i		-	•		12.14.1= 1-				40	
Ř		• •	I	•	RAMo 2.0	a a (Note 4)		1	100	-
-		•	r i	•	C			+	200	•
ji	t)	Input HIGH Current	VCC - MAX.	VIN = 5.5V	A				1.0	mΔ
i					Yo. Y.	V0=24V	·	1	50	
			l		Y2 Y2	V0=05V				{
i i i	1074	Olf State (Hich Imordance)			-2013	Vo=2.4V				ł.
3Î	107	Output Current	VCC-MAX.		RAMo 2	(Note 4)			. 100	μA
ąį	• وسند ه	·	. ·	•	0,3	V0=05V		1	¦	1
			· .		-0,3	(Note 4)			-800	• :
		· .		•	Y0. Y1. Y2	, ¥3. G			-85	I
]	tos	Output Short Circuit Current	VCC - 5.75V, VO - 0.5V		Cn+4		30	-f	-85	mA
1		(Note 3)		OVR.P		-30		-85	1.	
]					173		-30		-85	i .
1		•	ļ	، معالم الحياسية عن الإرباط المالية عالم في المراجع المالية عن المراجع المالية عن المراجع المالية عن المراجع الم	1 HAM0, 3. C	0.3	30		-85	L
					TA = 25"C			160	250	
		•		Am2901APC, DC	A-O'CI	o +70°C		160	265	1
1	100	Power Supply Current	Vcc - MAX.		TA - +70"	3		160	220	mA
		[40196]		Am2901ADM, FM	1C*-55* +125°C	L 10		160	280	
31			1		Tc = +125	C		160	190	1

Notes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

•

ia....

4. These are three state outputs internally connected to TTL inputs. Input characteristics are measured with 1678 in a state such that the three *

state output Is OFr.

5. "MIL" - Am29UIAXM, DM, FM. "COM'L" - Am2901AXC, PC. DC.

8. Worst case ICC is al ininimum temperature.

Na Linut

7. These input levels provide zero noise immunity and should only be tested in a static, noise-free enviroiment.

old times are defined relative to the clock LOW-to-. Inputs must be steady at all times from the set-up

operation on the correct data so that the correct ALU data can be written into one of the registers.

-Minimum Cycle Times from Inputs. Numbers Shown are Minimum Data Stable Times for AM2901ADC, in ns. See Table III for Detailed Information.

es 1, 11, and 111 below define the timing characteristics of Am2901A at 25°C. The tables are divided into three types of parameters; clock characteristics, combinational delays from inputs to outputs, and set-up and hold time requirements. The tator table defines the time prior to the end of the cycle (i.e., clock LOW-to-HIGH transition) that each input must be stable to guarantee that the correct data is written into one of the . Internal registers.

All values are at 25°C and 5.0V. Measurements are made at 1.5V with VIL = 0V and VIH = 3.0V.

TIME	TYPICAL	GUARANTEED
Read-Modify-Write Cycle (time from selection of A, B registers to end of cycle)	55ns	
Maximum Clock Frequency to Shift Q Register (50% duty cycle) ! = 432 or 632	40MHz	
Minimum Clock LOW Time	30 ns	
Minimum Clock HIGH Time	30ns	
Minimum Clock Period	75ns	

Hote: The Data In this data sheet contains expected typical performance for the Am2901A. As a rule, worst case AC limits will be approximately 1.6 times typical over the commercial range and approximately 2.0 times typical over the military range. Be sure to contact Advanced Micro Devices for the latest data.

TABLE II

COMBINATIONAL PROPAGATION DELAYS (all in ns, CL ≤ 50pF)

	. *	TYPICAL 25°C, 5.0V								(GUAR/	NTÉE	D 25°	C, 5.0\	/													
To Output	Y									¹ V	¹ V	v		Fo	C		F=0	OVP	Sh Outj	ift outs	V	E.	C	22	F=0	0.10	Sh Out	ift outs
From Input		13	Cn+4	0,1	470		RAMÓ RAM3	0 ₀ 0 ₃	I	• 3	-1174	9, r	470	-	RAMO RAM3	0 ₀ 0 ₃												
А, В	45	45	45	40	65	50	60																					
D (arithmetic mode)	30	30	30	25	45	30	40																					
D(I = X37) (Note 5)	30	30	-	-	45		40					-		-	· ·													
C _n	20	20	10	-	35	20	30					·				-												
l012	35	35	35	25	50	40	45	-	1																			
1345	35	35	35	2 5 [·]	45	35	45		1	•, •			1			-												
1678	15		-	-	-	-	20	20		-	-	-	-	· _														
OE Enable/Disable	20/20		-	-		-	-		1	-	-		-	-	-	- 4												
A bypassing ALU (I = 2xx)	30		-	-	-	-				-	-	-	-	-	-'	-												
Clock 4 (Note 6)	40	40	40	30	55	40	55	20																				

SET-UP AND HOLD TIMES (all in ns) (Note 1)

TABLE III

From Jonu.	Notat	TYPICAL	25°C, 5.0V	GUARANTEED 25°C, 5.0V			
From input	NOTES .	Set-Up Time	Hold Time	Set-Up Time	Hold Time		
A, B Source	2,4 3,5	40 t _{pw} L + 15	Ó		0 .		
B Dest.	2,4	t _{pw} L+15	0		0		
D (arithmetic mode)		25	0		0		
D(I = X37) (Note 5)		25	0	•	0		
C _n		15	0		0		
¹ 012		30	0		0		
345		30	0		0		
1 ₆₇₈	4	t _{pw} L + 15	0		0		
RAM0, 3. Q0, 3		15	0		0		

Notes: 1. See next page.

2. If the B address is used as a source operand, allow for the "A, B source" set-up time; if it is used only for the destination address, use the "B test" set-up time.

3. Where two numbers are shown, both must be met.

4. "tpwL" is the clock LOW time.
5. DVD is the fastest way to load the RAM from the D Inputs. This function is obtained with 1 = 337.

6. Using Q register, as source operand in arithmetic mode. Clock is not normally in critical speed path when Q la inta a source.

9100 GAITHER ROAD, GAITHERSBURG, MD. 20760 Phone: 301 948-0710

DISTINCTIVE CHARACTERISTICS

- Plug-in replacement for Am2901 and Am2901A
- Up to 27% faster than Am2901A, up to 50% faster than 2901
- High reliability plastic and cerdip packages
- Available now

For applications information see the Am2900 Family Data Book and Chapters III and IV of "Build a Microcomputer", AMD's application series on the Am2900 family.

Am2901B our-Bit Bipolar Microprocessor Slice Advanced Micro Devices

Bipolar Microprocessor Circuits

GENERAL DESCRIPTION

The four-bit bipolar microprocessor slice is designed as a highspeed cascadable element intended for use in CPU's, peripheral controllers, programmable microprocessors and numerous other applications. The microinstruction flexibility of the Am2901B will allow efficient emulation of almost any digital computing machine.

The device, as shown in the block diagram below, consists of a 16-word by 4-bit two-port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The nine-bit microinstruction word is organized into three groups of three bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look-ahead or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. Advanced low-power Schottky processing is used to fabricate this 40-lead LSI chip. The Am2901B is a plug in replacement for the Am2901 or Am2901A.

		MICR	о со	DE	ALU SOURCE OPERANDS		
Mnemonic	I2	4	I ₀	Octal Code	R	S	
AQ	L	L	L	0	Α	Q	
AB	L	L	н	1	A	В	
ZQ	L	н	L	2	0	a	
ZB	L	н	н	3	0	В	
ZA	н	L	L	4	0	A	
DA	н	L	н	5	D	A	
DQ	н	н	L	6	D	٥	
DZ	н	н	н	7	D	0	

MICRO CODE ALU SYMBOL Function Octai 14 Mnemonic 15 13 Code ADD R Plus S L L L 0 R + S SUBR L L Н 1 S Minus R S - R SUBS L н L 2 R Minus S R - S OR L н н 3 R OR S RVS AND н L L 4 R AND S RAS NOTRS н R AND S RΛS L н 5 EXOR н н R EX-OR S R∀S L 6 EXNOR н Н н 7 R EX-NOR S R¥S

Figure 2. ALU Source Operand Control.

Figure 3. ALU Function Control.

Mnemonic	MICRO CODE			R/ FUN	AM CTION	Q-I FUN	REG. CTION	v	RA SHIF	M	SHIF	2 -TER	
	1 ₈	17	I 6	Octal Code	Shift	Load	Shift	Load	Ουτρυτ	RAM ₀	RAM ₃	a ₀	Q ₃
QREG	ι	L	L	0	×	NONE	NONE	F→Q	F	×	x	x	x
NOP	L	L	н	1	×	NONE	×	NONE	F	×	x	x	x
RAMA	L	н	L	2	NONE	F→B	×	NONE	A	×	x	x	x
RAMF	L	н	н	3	NONE	F → B	×	NONE	F	×	x	x	x
RAMQD	н	L	L	4	DOWN	F/2 → B	DOWN	Q/2 → Q	F	Fo	IN ₃	Q0	IN ₃
RAMD	н	L	н	5	DOWN	F/2 → B	×	NONE	F	Fo	IN ₃	Q ₀	x
RAMQU	н	н	L	6	UP	2F → B	UP	2Q → Q	F	INo	F ₃	INo	Q3
RAMU	н	н	н	7	UP	2F → B	×	NONE	F	INO	F ₃	x	Q ₃

X = Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state B = Register Addressed by B inputs.

UP is toward MSB, DOWN is toward LSB.

Figure 4. ALU Destination Control.

\square	210 OCTAL	0	1	2	3	4	5	6	7
CI5 A 4 L 3	ALU Source ALU Function	Α, Q	А, В	ο, α	О, В	0, A	D, A	D, Q	D, O
0	C _n = L R Plus S	A+Q	A+B	۵	В	A	D+A	D+Q	D
	C _n = H	A+Q+1	A+B+1	Q+1	B+1	A+1	D+A+1	D+Q+1	D+1
1	C _n = L S Minus R	Q-A-1	BA-1	Q-1	B-1	A~1	A-D-1	Q-D-1	D1
		QA	B-A	0	В	Α	A – D	Q-D	D
2	Cn = L R Minus S	A-Q-1	A-B-1	Q-1	-B-1	-A-1	D-A-1	D-Q-1	D-1
	C _n = H	A-Q	A-B	Q	~B	-A	D-A	D-Q	D
3	RORS	$\mathbf{A} \lor \mathbf{Q}$	A⊻B	۵	В	A	D / A	DVQ	D
4	R AND S	A / Q	А∕В	0	0	0	DAA	DAQ	0
5	R AND S	Â∕Q	Ä ∧ B	۵	В	A	Ð ∧ A	ĒΛQ	0
6	R EX-OR S	A∀Q	А∀В	Q	В	A	D∀A	D∢Q	D
7	REX-NORS	Ā∀Q	A∀B	Ō	B	Ā	DVA	D∀Q	Đ

+ = Plus; \sim = Minus; V = OR; \wedge = AND; \forall = EX OR

1

Figure 5. Source Operand and ALU Function Matrix.

PIN DEFINITIONS

- A₀₋₃ The four address inputs to the register stack used to select one register whose contents are displayed through the A-port.
- **B**₀₋₃ The four address inputs to the register stack used to select one register whose contents are displayed through the B-port and into which new data can be written when the clock goes LOW.

 D_{0-3} Direct data inputs. A four-bit data field which may be selected as one of the ALU data sources for entering data into the device. D_0 is the LSB.

- $\begin{array}{lll} \textbf{Y}_{0-3} & \text{The four data outputs. These are three-state output lines.} \\ \text{When enabled, they display either the four outputs of the} \\ \text{ALU or the data on the A-port of the register stack, as} \\ \text{determined by the destination code } \textbf{I}_{678}. \end{array}$
- OE Output Enable. When OE is HIGH, the Y outputs are OFF; when OE is LOW, the Y outputs are active (HIGH or LOW).
- **P**,**G** The carry generate and propagate outputs of the internal ALU. These signals are used with the Am2902 for carry-lookahead.
- **OVR** Overflow. This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit.
- $\mathbf{F} = \mathbf{0}$ This is an open collector output which goes HIGH (OFF) is the data on the four ALU outputs F_{0-3} are all LOW. Is positive logic, it indicates the result of an ALU operation is zero.
- **F**₃ The most significant ALU output bit.
- **C**_n The carry-in to the internal ALU.
- C_{n+4} The carry-out of the internal ALU.
- CP The clock input. The Q register and register stack output change on the clock LOW-to-HIGH transition. The clo LOW time is internally the write enable to the 16 x 4 R/ which compromises the "master" latches of the regis stack. While the clock is LOW, the "slave" latches on RAM outputs are closed, storing the data previously the RAM outputs. This allows synchronous master-slioperation of the register stack.

- CONSIDER OCCURS

PRELIMINARY DATA ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

(Group A, Subgroups 1, 2, and 3)

Parameters	Description	Test Conditions (Note 1)				Min.	Typ. (Note 2)	Max.	Units	
				I _{OH} = -1. Y ₀ , Y ₁ , Y	6mA 2, Y3	2.4				
				IOH = -1.	0mA, Cn+4	2.4	-			
v _{он}	Output HIGH Voltage	VCC = MIN		IOH =80	0µA, OVR, P	2.4	-		Volts	
		VIN - VIH O	VIL .	10H = -60	0μA, F3	2.4				
				IOH = -600µA		2.4	1.			
				RAM0, 3,	0 _{0, 3}	2.4				
				IOH = -1.	6mA, G	2.4				
ICEX	Output Leakage Current for F = 0 Output	V _{CC} = MIN., V V _{IN} = V _{IH} or	V _{OH} = 5.5V VIL					250	μA	
				1 _{0L} = 20m	A (COM'L)		1 1	0.5		
		V _{CC} = MIN.,	10, 11, 12, 13	IOL = 16m	A (MIL)			0.5		
VOL	Output LOW Voltage	VIN = VIH	<u>G</u> , F = 0	IOL = 16m	A			0.5		
		or VIL	Cn+4	IOL = 10m	A		1	0.5	Volts	
			OVR, P	IOL = 8.0m	hΑ			0.5		
			F ₃ , RAM _{0, 3} , Q _{0, 3}	IOL = 6.0n	۱A			0.5		
V _{IH}	Input HIGH Level	Guaranteed in voltage for all	put logical HIGH inputs (Note 7)	-		2.0			Volts	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 7)					++	0.8	Volts	
VI	Input Clamp Voltage	Vcc = MIN. I	ini = -18mA					1.5	Volte	
				Clock OE				-0.36	• 0113	
				An. A1. A	. A2		-++	-0.36		
				Bo, B1, B2	.B2			-0.36		
Lu Input I OW Current	Input I OW Current			D ₀ , D ₁ , D ₂	, D3			-0.72		
11		VCC = MAX.,	VIN = 0.5V	10, 11, 12, 1	6, 18			-0.36	mA	
				13, 14, 15, 1	7		+	-0.72		
				RAM0, 3, 0	20, 3 (Note 4)		++	-0.8		
							-	-3.6		
				Clock, OE	ick, ÖE			20		
1				A ₀ , A ₁ , A ₂ , A ₃				20		
				B ₀ , B ₁ , B ₂	, B ₃			20		
Чн	Input HIGH Current	Vcc = MAX.,	VIN = 2.7V	D ₀ , D ₁ , D ₂ , D ₃ 1 ₀ , 1 ₁ , 1 ₂ , 1 ₆ , 1 ₈				40	μA	
								20		
				13, 14, 15, 17				40		
				RAM ₀ , 3, Q ₀ , 3 (Note 4)				100		
				Cn	Cn			200		
	Input HIGH Current	VCC = MAX.,	VIN = 5.5V	T				1.0	mA	
				Y ₀ , Y ₁ ,	V _O = 2.4V			50		
1071				Y ₂ , Y ₃	V _O = 0.5V			-50		
102H	Output Current	V _{CC} = MAX.			V _O = 2.4V			100	μA	
·02L	output carrent			RAM0, 3	(Note 4)					
				u _{0, 3}	$V_0 = 0.5V$ (Note 4)			-800		
				Y ₀ , Y ₁ , Y ₂	, Y3, Ĝ	-30		85		
los	IOS Output Short Circuit Current (Note 3)	V _{CC} = MAX.	0.5V, Vo = 0.5V	Cn+4		-30		-85	mA	
				OVH, P		30	+	-85		
				F3)	30		-85		
				T. = 25°0	40, 3	-30	100	-85		
		a confidence and a confid		$T_A = 0^{\circ}C$	0 + 70° C		160	250		
	Power Supply Current	Voc - MAY	Am2901BPC, DC	$T_A = 0 C T$				205		
'CC	(Note 6)	See Fig 12		$T_A = \div 70^\circ C$ $T_C = -55^\circ C \div C$		· · · · · · · · · · · · · · · · · · ·	++-	220	mA	
		- Jee 1 19, 12/	Am29018044 EAA	+125°C				265		
				$T_{C} = +125^{\circ}$	C			400		
		1		10 125	5		1	198		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

 These are three-state output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 These are three-state outputs internally connected to TTL inputs. Input characteristics are measured with 1678 in a state such that the three-state outputs internally connected to TTL inputs. state output is OFF. 5. "MIL" = Am2901BXM, DM, FM. "COM'L = Am2901BXC, PC, DC.

6. Worst case I_{CC} is at minimum temperature.
7. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment.

I. Typical Room Temperature Performance

The tables below specify the typical performance of the Am2901B at 25°C and 5.0V. All data are in ns, with inputs changing between OV and 3V at 1V/ns and measurements made at 1.5V. For guaranteed data, see following pages.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	51ns
Maximum Clock Frequency to shift Q (50% duty cycle, $I = 432$ or 632)	33MHz
Minimum Clock LOW Time	30ns
Minimum Clock HIGH Time	30ns
Minimum Clock Period	60ns

B. Combinational Propagation Delays.

CL	-	50pF
----	---	------

						1		
To Output	Y	F3	Cn+4	G, P	F=0	OVR	RAMO Ram3	Q0 Q3
From input						44	50	-
A B Address	38	41	39	33	44	44		
74,07.00		00	24	20	28	29	31	-
D	22	23	24	20				
0-	17	19	13	-	22	19	26	
Cn	17			+	24	34	38	-
1012	30	30	29	22	34			
			20	25	32	30	34	-
1345	32	32	30	20			10	16
1070	17	-	-	-	-	-	16	10
1078		<u> </u>		+				
A Bypass ALU	22	-	-	-	-	-	-	-
(1 = 2XX)	22							
(, _, , , , , , , , , , , , , , , , , ,		01	20	23	33	35	40	19
Clock	29	31	29				1	

C. Set-up and Hold Times Relative to Clock (CP) Input.

	CP:	L	7	-
Input	Set-up Time Before H → L	Hold Time After H → L	Set-up Time Before L → H	Hold Time After L → H
A B Source Address	20	0 (Note 3)	51 (Note 4)	0
B Destination	11	Do Not	Change	0
Address		-	39	0
D			33	0
Cn			46	0
1012			42	0
1345	-	- Do No	t Change	0
1678	5			0
RAM0, 3, Q0, 3		-	9	

D. Output Enable/Disable Times. Output disable tests performed with $C_L = 5pF$ and measured to 0.5V change of output voltage level.

Input	Input Output		Disable
ŌĒ	Y	12	27

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist.

- 2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
- 3. Source addresses must be stable prior to the clock H → L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally
- A and B are not changed during the clock LOW time. 4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It
- includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

II. Guaranteed Commercial Range Performance

The tables below specify the guaranteed performance of the Am2901B over the commercial operating range of 0°C to $+70^{\circ}$ C, with V_{CC} from 4.75V to 5.25V. All data are in ns, with inputs switching between 0V and 3V at 1V/ns and measurements made at 1.5.

A. Cycle Time and Clock Characteristics.

Read-Modify-Write Cycle (from selection of A, B registers to end of cycle.)	77ns
Maximum Clock Frequency to shift Q (50% duty cycle, $I = 432$ or 632)	16MHz
Minimum Clock LOW Time	30ns
Minimum Clock HIGH Time	30ns
Minimum Clock Period	77ns

B. Combinational Propagation Delays.

 $C_L = 50 pF$

To Output From Input	Y	F3	Cn+4	G, P	F=0	OVR	RAMO RAM3	Q0 Q3
A, B Address	60	61	59	50	70	67	71	-
D	38	36	40	33	48	44	45	-
Cn	30	29	23	-	37	29	38	-
1012	50	47	45	35	56	53	57	-
1345	49	48	44	45	54	49	53	-
1678	28	-	-	-	-	4-	27	27
A Bypass ALU (I = 2XX)	37	-	-	-	- 6	1º	-	-
Clock	49	48	47	37		55	59	29

C. Set-up and Hold Times Relative to Clock (CP) Input.

Input	CP: Set-up Time Before H++	Hold Time After H → L	Set-up Time Before L → H	Hold Time After L → H
A, B Source Address	25	0 (Note 3)	77 (Note 4)	0
B Destination Address	15	Do Not	Change	0
D	-	_	57	0
Cn	-	-	53	0
1012			70	0
1345		_	66	0
1678	11	Do Not	Change	0
RAM0, 3, Q0, 3	-	a kanan.	16	0

D. Output Enable/Disable Times. Output disable tests performed with $C_L = 5pF$ and measured to 0.5V change of output voltage level.

Input	Output	Enable	Disable
ŌĒ	Y	35	25

: 1. A dash indicates a propagation delay path or set-up time constraint does not exist.

t

- Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change".
 Source addresses must be stable prior to the clock H → L transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
- 4. The set-up time prior to the clock L → H transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock L → H transition, regardless of when the clock H → L transition occurs.

III. Guaranteed Military Range Performance

The tables below specify the guaranteed performance of the Am2901B over the military operating range of -55° C to $+125^{\circ}$ C, with V_{CC} from 4.5V to 5.5V. All data are in ns, with inputs switching between 0V and 3V at 1V/ns and measurements made at

Read-Modify-Write Cycle (from selection of A, B registers	97ns
to end of cycle.	15MHz
I = 432 or 632)	30ns
Minimum Clock LOW Time	30ns
Minimum Clock High Time	97ns

B. Combinational Propagation Delays.

CL :	= 50)pF
------	------	-----

		1		1			RAMO	Q0
To Output	v	F3	Cn+4	G, P	F=0	OVR	RAM3	Q3
-rom input				70	90	86	94	-
A, B Address	82	84	80	70		45	48	-
D	44	38	39	34	50	45	+	
0		22	24	-	38	31	39	
Cn	34	52		27	59	55	58	-
1012	53	50	4/			50	55	-
1245	53	50	46	44	58	50		07
1345	00			-	-	Alan -	27	21
1678	29			-+				-
A Bypass ALU	50	-	-	-	- &			
(I = 2XX)					Cen	58	61	31
Clock	53	50	49	41	03	¥		

Clock (CP) Input. C. Set-up and Hold Times Rel

-	•	4 · ·		
Input	CP: Set-up Time	Hold Time After $H \rightarrow L$	Set-up Time Before L → H	Hold Time After L → H
A D Courses Address	Berore 1	0 (Note 3)	97 (Note 4)	0
B Destination	15	Do Not	Change	0
Address			60	0
D			55	0
Cn	-		73	0
1012			73	0
1345	-		t Change	0
1678	14	DO NO	18	3
RAM0, 3, Q0, 3		-	10	

Output Enable/Disable Times. D. Output disable tests performed with $C_{L} = 5pF$ and measured to 0.5V change of output voltage level.

Input	Output	Enable	Disable
ŌĒ	Y	40	35

- Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist. 2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change". 3. Source addresses must be stable prior to the clock $H \rightarrow L$ transition to allow time to access the source data before the latches close. The A
 - address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally
 - 4. The set-up time prior to the clock $L \rightarrow H$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $H \rightarrow L$ transition occurs.

ADVANCED MICRO DEVICES, INC.,

901 Thompson Place, Sunnyvale, California 94086 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306 TOLL FREE: (800) 538-8450

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry embodied in an Advanced Micro Devices' product. 10-78

National Semiconductor

IDM2901A 4-Bit Bipolar Microprocessor

General Description

The IDM2901A 4-bit bipolar microprocessor slice is a cascadable device designed for use in Central Processing Units, programmable microprocessors, peripheral controllers, and other "high-speed" applications where economy, hardware/software flexibility, and easy expansion are system prerequisites. The building-block architecture and microinstruction format of the IDM2901A permits efficient emulation of most digital-based systems.

As shown in the simplified block diagram, the IDM2901A device consists of a 16-word by 4-bit 2-port RAM, a high-speed ALU, and the required shifting, decoding, and multiplexing circuits. The 9-bit microinstruction word is organized into three groups of three bits each — the first group (bits 0-2) selects ALU source operands, the second group (bits 3-5) selects the ALU function, and the last group (bits 6-8) selects the destination register within the ALU. The slice microprocessor is cascadable with full look-ahead or ripple carry; all outputs are TRI-STATE[®] and four status-flag outputs are available. To minimize power consumption and to maximize speed and reliability, the 40-pin LSI chip is fabricated using state-of-the-art (Low-Power Schottky) technology.

Features and Benefits

- Multiple-address architecture improves systems speed by providing simultaneous yet independent access to two working registers.
- Multifunction ALU performs addition, two traction operations, and five logic functions on source-operands.
- Flexible data-source selection for every A function, data is selected from five source ports to total of 203 source operand pairs.
- Left/right shift independent of ALU an arithma operation and a left or right shift can be obtained the same machine cycle.
- Four status flags carry, overflow, zero, and fittional sign are available as outputs.
- Expandable Connect any number of IDM2901 together for longer word lengths.
- Microprogrammable three groups of 3 bits each is source operand, ALU function, and destination control.

F3 (SIGN)

Block Diagram 5 4 ALU FUNCTION ... 24 ACTS RAM SHIFT 8.4.0 CI BCK B DATA U A IREAD D/WRITE) Q REGISTER DIRECT . ALU DATA SOURCE SELECTOR 8-FUNCTION ALU CARRY IN OUTPUT DATA SELECTOR OUTPUT ENABLE DATA OUT © 1977 National Semiconductor Corp.

DA-B20M77/Frinted M

National Semiconductor

MICROP

olute' Maximum Rati		Opera	ting	Range			
me Temperature	• Temperature -65° C to $+150^{\circ}$				Ambien	t	
arature (Ambient) Under Bias	−55°C to	+125°C	P/N	\$	Temperat	ure	∨ _{CC}
ly Voltage to Ground Potential Initage Applied to Outputs for	-0.5V to	o +6.3 V	IDM2901A DO	С, РС 1 ЕМ	0° C to +7	0°C 25°C	4.75 V to 5.25 V
Output State	-0.5 V to +V	CC max		•, • •••		25 0	4.50 ¥ (0 5.50 ¥
nput Voltage	-0.5V to	5.5 V					
utput Current, into Outputs		30 mA					
nput Current	-30 mA to +	5.0 mA					
ndard Screening (Con	NUL-STD-883	D-883 for C	lass C parts)		Le	vel	
Step	Method	C	onditions	C	DC, PC	D	M, FM
Pre-Seal Visual Inspection	2010		В		100%		100%
Stabilization Bake	1008	C: 24-hour 150°C			100%		100%
Temperature Cycle	1010	C: -65°C to +150°C 10 cycles			100%	100%	
Centrifuge	2001	B:	10,0 00 G		100%		100%
Fine Leak	1014	A: 5 x 1	0 ⁻⁸ atm-cc/cm ³		100%		100%
Gross Leak	1014	C2: F	luorocarbon		100%		100%
Electrical Test Subgroups 1 and 7 and 9	5004	See definitio	below for ns of subgroups		100%		100%
Insert Additional Screening he	re for Class B Part	ts					
Group A Sample Tests							
Subgroup 1				LT	'PD = 5	Ľ	TPD = 5
Subgroup 2				LT	'PD = 7	Ľ	TPD = 7
Subgroup 3	5005	See	below for	LT	"PD = 7	Ľ	TPD = 7
Subgroup 7	3003	definitio	ns of subgroups	LT	'PD = 7	Ľ	TPD = 5
Subgroup 8				LT	'PD = 7	Ľ	TPD = 7
Subgroup 9				LT	"PD = 7	Ľ	TPD = 5

Additional Screening for Class B Parts

	MIL STD.883		Level	
Step	Method	Conditions	DMB, FMB	
Burn-In	1015	D: 125°C, 160 hours min	100%	
Electrical Test	5004			
Subgroup 1			100%	
Subgroup 2			100%	
Subgroup 3			100%	
Subgroup 7			100%	
Subgroup 9			100%	

Group A Subgroups

(as defined in Mill STD-005, method 3000)						
Subgroup	Parameter	Temperature				
1	DC	25°C				
2	DC	Maximum rated temperature				
3	DC	Minimum rated temperature				
7	Function	25°C				
8	Function	Maximum and minimum rated temperature				
9	Switching	25°C				
10	Switching	Maximum rated temperature				
11	Switching	Minimum rated temperature				

Ctrical Characteristics Over Operating Range

Symbol	Description	Test Conditions (Note 1)			Typ (Note 2)	Max	Units
			1 _{OH} = -1.6 mA; Y ₀ /Y ₁ /Y ₂ /Y ₃	2.4			
ł			IOH = -1.0 mA; Cn+4	2.4			
Voi	Output High Value	· CC = min	10H = -800 µA; OVR/P	2.4			
- OH		N = VIH or VIL	10H = -600 µA; F3	2.4			
			¹ OH = -600 μA; RAM0,3/Q0,3	2.4			
			10H = -1.6 mA; G	2.4			

National Semiconductor

MICROPROCESSOR

Symbol	Description	Test	Conditio	ns (Not	Min	Typ (Note 2)	Мах	Units	
ICEX	Output Leakage Current for F = 0 Output	VCC = min; VOH = 5.5 V, VIN = VIH or VIL						250	μΑ
			loi Yo	L = 20 n)/Y 1/Y 2	nA (Com'l) /Y3			0.5	-
				L ≖ 16 r)/Y ₁ /Y 2	nA (Mil); /Y3			0.5	
Va	Output Low Voltage	VCC = min;	101	L = 16 r	nA; G/F = 0	1		0.5	1 .
VOL	Output Low Voltage	VIN ≖ VIH or	VIL 10	L = 10 r	nA; C _{n+4}			0.5] *
				L = 10 r / R/P	nA;			0.5	1
			101 F3	L = 8 m	A; 3/Q0 3			0.5	1
∨ін	Input High Level	Guaranteed in inputs	put logica	al high v	oltage for all	2.0			v
VIL	VIL Input Low Level		Guaranteed input logical low voltage for all inputs				1	0.8	v
VI	Input Clamp Voltage	VCC = min; I	N = -18 m	nA				-1.5	V
	· · · ·	Clock/OE/Cn			°C _n			-0.36	
			AO	A0/A1/A2/A3			ļ	-0.36	4
			B0/B1/B2/B3			· · · · ·		-0.36	4
112 1	Input Low Current	VCC = max;	D ₀)/D1/D2	/03			-0.36	mA
		V IN = 0.5 V	12/14/15		+	<u> </u>	-0.36	4	
			17/18		+	<u> </u>	-0.36	4	
			17/	18		+	 	-0.72	4
				1/10,3/C	10,3 (NOTE 4)	+		-0.30	
			An/A		/42	+		20	4
			80	/R1/A2	/Ro	+		20	- μΑ
	Input High Current	Vcc = may	00	/D1/D-	- <u>-</u>	+	t	20	
ЧΗ		VIN = 2.7 V	10/	/11/12/10		+		20	
			13/	/14/15/1	, , , , , , , , , , , , , , , , , , , ,	1	<u> </u>	20	1
			RAM _{0,3} /Q _{0,3} (Note 4) C _n		1	<u> </u>	100	1	
					1	t	20	1	
1	Input High Current	VCC = max; V	IN = 5.5	v		1	1	1.0	mA
			YON - N-	Walv	0 = 2.4 V			50	
•-			2	"'3 V	°O ≖ 0.5 V		<u> </u>	-50]
IOZH, IOZL	Off State (High Impedance) Output Current	VCC = max	RAMa a/C		0 = 2.4 V Note 4)			100	μΑ
			U,3/C	-0,3 V (I	'0 = 0.5 V Note 4)			-360	
			۲o	/Y1/Y2	/Y3/G	-30		-85]
	Output Short Circuit Current	V00 = 5 75 V	Cn	+4		-30		-85]
IOS	(Note 3)	Vo = 0.5 V	0	/R/P		-30		-85	mA
			F3	}		-30		-85	
			RA	AM0,3/0	20,3	-30		-85	
			TA	<u> = 25°</u> C			180	250	ļ
10-	Barrie Constanting of			. = 0°C	to +70°C		180	265	
'CC	Power Supply Current (Note 6)	VCC = max		<u>= +70°</u>	C	+	180	230	mA
			DM TC	; = -55°	C to +125°C		180	280	1
				:=+125	5°C	1	180	190	1

Note 1: For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type.

Note 2: Typical limits are at V_{CC} = 5.0 V, 25°C ambient, and maximum loading.

Note 3: Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. Note 4: These are TRI-STATE outputs internally connected to PNP inputs. Input characteristics are measured with 16,7,8 in a state such that the TRI-STATE output is off (high-impedance).

Note 5: "Mil" = IDM2901A DM, FM; "Com1" = IDM2901A DC, PC.

Note 6: Worst case I_{CC} is at minimum temperature.

ł

National Semiconductor

OPROCESSOR

AATER 1

1683

Architecture

Figure 1 shows a detailed block diagram of the IDM2901A. Observe that all data paths are 4 bits wide; however, the 4-bit slice can be cascaded to the number of bits required for a particular application. Although all parts of the bipolar device are important, the two key elements are the 16-word by 4-bit 2-port RAM and the high-speed ALU.

Any one of the 16 words in RAM can be read from the A-port (A_3-A_0) or the B-port (B_3-B_0) ; the selected word for the A-port is determined by the 4-bit A-address field, whereas the B-address field controls the output of the B-port. If the two address codes are identical, the same file data appears simultaneously at both output ports (A and B).

When enabled by RAM EN, new data is written into the file "word" defined by the B-address field; the write function is implemented when the clock input is low.

Each bit of data to be written is input via a 3-input multiplexer; this scheme permits shifting up one bit position (from LSB towards MSB), shifting down one bit position (from MSB towards LSB), or not shifting at all. A similar scheme is used when data is written into the "Q" register.

Each of the A and B data ports drives an associated 4-bit latch. These latches hold the RAM data while the clock input is low; consequently, any possibility of race conditions when writing new data is eliminated.

The high-speed ALU can perform three binary arithmetic and five logic operations on the two 4-bit input words ($R_3 - R_0$ and $S_3 - S_0$). The R-input field is driven from a 2-input multiplexer, whereas the S-input field is driven by a 3-input multiplexer. Both the R- and S-multiplexers have an inhibit capability, where no data is passed is equivalent to a "zero" source operand. Referr figure 1, observe that the A-port output of the RA the 4-bit direct-data inputs $(D_3 - D_0)$ are connec the R-input multiplexers; the S-input multiplexe three inputs — one from the A-port of RAM, one the B-port of RAM, and one from the Q-register. Norr casca The

are s

COT!

use

CATT)

are

outp

and cant

TRI

posi

of F

is US

are

and

The

ope

nurr

Cn+

Out

or 1

WO

mic

des

4-b

can

by

are

the

or

by

17,

As

are

the

MS

oni poi TR inp mc ple

R

With the foregoing input-multiplexer scheme, the (A, B, D, Q, and "Zero"), when taken in pairs, m any one of ten source operands for the ALU - AR AQ, A0, BD, BQ, B0, DQ, D0, and Q0. When the B address fields for RAM are identical, it is cla certain combinations (AD/BD, AQ/BQ, and AQ/BC redundant; that is, the identical function is imple for either operand. Only seven of the combination completely nonredundant. Eight of the ten con tions (source operands) are implemented by IDM2901A microprocessor. The ALU source on are selected by three microinstruction inputs and 12. These inputs are defined in figure 2. Each a preceding D and Q operands provides an er function. The D input (direct-data) is used to load working registers inside the 2901 device; also, this l source can be used to modify data files within the The Q-register is an internal 4-bit data source th well suited for a multiply/divide operation; however, some applications, it can be used as a data-holi register or as an accumulator.

The ALU is a high-speed arithmetic/logic operator the capable of performing three binary arithmetic function and five logic functions. Three microinstruction includes (13, 14, and 15) are used to select one of the effunctions; these inputs, along with their octal codes, defined in figure 3.

	Micro	Code		ALU Source Operands				
I2	11	10	l ₀ Octal Code		s			
L	L	L	0	A	Q			
L	L	н	1	A	В			
L	н	L	2	0	Q			
,L	н	н	3	0	В			
н	L	L	4	0	A			
н	L	н	5	D	A			
н	н	L	6	D	a			
н	н	н	7	n				

Micro Code ALU Symbo Function Octal 15 14 13 Code L L L n **R** Plus S R+1 L L н 1 S Minus R L н L 2 **R** Minus S R L н н 3 R OR S н L L 4 R AND S н L н 5 **R** AND S RΛ н н L 6 R EX:OR S R₩ RVS н н н 7 **R EX-NOR S**

Figure 2. ALU Source Operand Control

Figure 3. ALU Function Control

OIC M

ROCESSOR

Normally, the look-ahead carry mode is used when cascading the ALUs of several microprocessor devices. The carry generate (G) and carry propagate (P) outputs - the dare suitable for use in a carry-look-ahead generator. A

s pas the dare suitable for use in a carry-look-ahead generator. A Refine the suitable for use in a carry-look-ahead generator. A Refine the suitable for use in a carry-look-ahead generator. A Refine the suitable for use in a carry-look-ahead generator. A the RAM and use as the carry flag in a status register or as a rippleconnected to carry output. Both carry-in (C_n) and carry-out (C_{n+4}) ultiplexer have are active-high signals. Three other status-oriented M, one from outputs are available from the ALU; these are F3, F = 0, gister. and overflow (OVR). The F3 output is the most signifi-

cant (sign) bit of the ALU, and, without enabling the me, the input TRI-STATE outputs, it can be used to determine pairs, provide positive or negative results. When enabled, the logic level U - AB, AD of F3 is identical to that of sign bit Y3. The F = 0 output is used for zero detect; F = 0 is high when all F outputs is clear that are low. The F = 0 output is of the open-collector type d A0/B0) are and can be wire ORed between microprocessor slices. implemented The overflow (OVR) output is used to flag arithmetic binations are operations that exceed the available twos-complement number range. When an overflow exists (Cn+3 and Cn+4 are of opposite polarity), the OVR output is high.

Outputs from the ALU can be stored in the register file or the Q register, or can be transmitted to the outside world. Eight possible destination codes are defined by microinstruction inputs 16, 17, and 18; the various destination control codes are shown in figure 4. The 4-bit data field $(Y_3 - Y_0)$ is a TRI-STATE output that can be directly bus organized. The Y outputs are enabled by \overline{OE} ; when this control signal is high, the Y-outputs are TRI-STATEd. A 2-input multiplexer is also used at the Y-output port to select either the A port of RAM or the F output of the ALU; this selection is controlled by the previously described microinstruction inputs (16, 17, and 18).

As previously described, the RAM inputs (register file) are driven by a 3-input multiplexer. Thus, outputs from the ALU can be entered nonshifted, shifted up (towards MSB) one position (x 2), or shifted down (towards LSB) one position (\div 2). The shifter is equipped with two ports - RAM0 and RAM3; both ports consist of a TRI-STATE buffer-driver, each of which supplies one input to the foregoing multiplexer. In the shift-up (x 2) mode, the RAM3 output driver and the RAM0 multiplexer input are enabled, whereas in the shift-down (\div 2) mode, the RAM0 output driver and RAM3 multiplexer input are enabled; in the no-shift mode, both drivers are TRI-STATE and neither multiplexer input is enabled. The shifter is controlled by the 16, 17, and 18 microinstruction inputs.

The Q register likewise is driven from a 3-input multiplexer and the Q shifter is equipped with two input/ output ports – Q₀ and Q₃. Operation of these two ports is similar to that of the RAM shifter, and the ports are controlled by 16, 17, and 18. In the shift-up or shift-down modes, the Q register is shifted in a specified direction with the input/output terminals of the register being an input (for a shift-up) or an output (for a shift-down). In the no-shift mode, the multiplexer may enter the ALU data into the Q register; in this case, input/output lines of the register are TRI-STATE.

The clock input shown in figure 1 controls the RAM, the A and B latches, and the Q register. When the clock input is high, the A and B latches are open and data from the RAM outputs is allowed to pass through to the ALU or "Y" outputs. When the clock input is low, both latches are closed and the last data entered is retained. When the clock input is low and if the input control code (16, 17, and 18) has enabled a file-write operation, new data, as defined by the 4-bit B-address field, is written into the RAM file. When enabled, data is clocked into the Q register on the low-to-high transition of the clock pulse.

Source Operands and ALU Functions

Any one of eight source operand pairs can be selected by instruction inputs 10, 11, and 12 for use by the ALU; instruction inputs 13, 14, and 15 then control function selection for the ALU – five logic and three arithmetic functions. In the arithmetic mode, the carry input (C_n) also affects the ALU functions; the carry input has no effect on the "F" result in the logic mode. These control parameters (16-10 and C_n) are summarized in figure 5 to completely define the ALU/source operand functions.

The ALU functions can also be examined on a task basis: that is, add, subtract, AND, OR, and so on. Again, in the arithmetic mode, the carry input will affect the result, whereas in the logic mode it will not. Figures 6 and 7, respectively, define the various logic and arithmetic functions of the ALU; both carry states ($C_n = 0/C_n = 1$) are defined in the function matrices.

	Micro Code		RAM Function		Q-Reg.	Function	Y	RAM Shifter		Q Shifter			
18	18 17 16	Octal Code	Octal Code	Octal Code	Shift	Load	Shift	Load	Output	RAM0	RAM3	Q ₀	Q3
Ľ	Ĺ	L	0	х	None	None	F→Q	F	X	X	×	X	
L	Ŀ	н	1	X ·	None	Х	None	F	X	X	X	х	
L	н	L	2	None	F→B	х	None	A	x	X	X	x	
L	Н	н	3	None	F→B	X	None	F	X	X	X	х	
Н	L	L	4	Down	F/2 → B	Down	Q/2 → Q	F	Fo	IN3	Q ₀	IN3	
H	L	Н	5	Down	F/2 → B	x	None	F	Fo	IN3	Q ₀	x	
н	Н	L	6	Up	2F → B	Up	2Q → Q	F	INO	F3	INO	Q3	
Н	н	н	7	Up	2F → B	X	None	F	INO	F3	X	Q3	

Figure 4. ALU Destination Control

Don't care. Electrically, the shift pin is a TTL input internally connected to a TRI-STATE output which is in the high-impedance state.
 Register Addressed by B inputs.

Up is toward MSB, Down is toward LSB.

MICROPROCESSOR

MASTER

uts - 10, 11,

. Each of the

an essential

to load the

10, this input

in the ALU.

urce that is

however, for

data-holding

rator t is ic ful ons

ction inputs

if the eight

al codes, are

Symbol

R + S 9 - R R - S

R V S R ∧ S R ∧ S R V S R V S

•			Figure 5. So	urce Operand	and ALU Fur	nction Matrix			
	12,1,0 Octal	0	1	2	3	4	5	6	7
Octal 15,4,3	ALU Source ALU Function	A, Q	А, В	ο, ο	О, В	O, A	D, A	D, Q	D, 0
0	C _n = L R Plus S	A + Q	A + B	٥	В	A	D+A	D + Q	D
	C _n = H	Q + 1	A + B + 1	Q + 1	B + 1	A + 1	D + A + 1	D+Q+1	D+1
1	C _n = L S Minus R	Q - A - 1	B – A – 1	Q - 1	B – 1	A - 1	A - D - '1	Q – D – 1	- D - 1
	C _n = H	Q - A	B – A	Q	В	A	A - D	Q - D	- D
2	C _n = L R Minus S	A - Q - 1	A – B – 1	- Q - 1	- B - 1	- A - 1	D - A - 1	D - Q - 1	D - 1
	C _n = H	A - Q	A - B	- Q	– B	- A	D - A	D - Q	D
3	R OR S	AVQ	AVB	٥	В	A	DVA	DVQ	D
4	R AND S	AAQ	ΑΛΒ	0	0	0	DAA	DVD	0
5	R AND S	Ā٨Q	ĀΛΒ	۵	В	A	D۸A	D٨Q	0
6	R EX-OR S	A¥Q	А₩В	Q	В	А	D₩A	D≁Q	D
7	R EX-NOR S	A₩Q	А₩В	ā	B	Ā	D₩A	D¥Q	Đ

+ = Plus; - = Minus; V = OR, Λ = AND; \forall = EX-OR.

Figure 6.	ALU	Logic Mode	Functions	(Cn	Irrelevant)
-----------	-----	------------	-----------	-----	-------------

Octal \$6,4,3/\$2,1,0	Group	Function
40	1	A A Q
41	AND	A A B
46		DAQ
30	1	AVO
31	08	AVB
35		DVA
36		DVQ
60		A¥0
61	EX-OR	AYB
60		DVA
		0+u
70		AVQ
71 75 76	EX-NOR	AVB
	·····	
72		Q Q
73	INVERT	8
77		i ĉ
67	t	
63		B
64	PASS	Å
67		D
32]	Q
33	PASS	B
34		A
37		D
42		0
43	"ZERO"	0
44		0
4/		0
50		Ă٨Q
51	MASK	AA B
00		DAA
20		010

Figure 7. ALU Arithmetic Mode Functions

Octal	C _n = 0	(Low)	C _n = 1	(High)	
^{15,4,3/1} 2,1,0	Group	Function	Group	Function	
00 01 05 06	ADD	A + Q A + B D + A D + Q	ADD plus one	A + Q + 1 A + B + 1 D + A + 1 D + Q + 1	
02 03 04 07	PASS	Q B A D	Increment	Q+1 B+1 A+1 D+1	
12 13 14 27	Decrement	Q - 1 B - 1 A - 1 D - 1	PASS	Q B A D	
22 23 24 17	1s Comp	- Q - 1 - B - 1 - A - 1 - D - 1	2s Comp (Negate)	- Q - B - A - D	
10 11 15 16 20 21 25 26	Subtract (1s Comp)	Q - A - 1 B - A - 1 A - D - 1 Q - D - 1 A - Q - 1 A - B - 1 D - A - 1 D - Q - 1	Subtract (2s Comp)	Q - A B - A A - D Q - D A - Q A - B D - A D - Q	

When the IDN four signals indicate carry eight ALU f are as follow selected acco Defin P0 = f

Logic Fur and OVR

> P₂ = P₃ = C₄ = G₃ + P C₃ = G₂ + P

P1 =

pinout [

Pin functior sor are as fo A3 - A0

B3-B0

18-10

Q3/RAM3

Note 1: G

gic Functions for G, P, Cn+4, nd OVR

For the IDM2901A is in the add or the subtract mode, signals (G, P, C_{n+4} , and OVR) are available to dicate carry and overflow conditions. Based on the tot ALU functions, logic equations for these signals as follows. (Note: The "R" and "S" inputs are facted according to figure 2.)

Definitions (+ = OR):

$P_0 = R_0 + S_0$	$G_0 = R_0 S_0$
$P_1 = R_1 + S_1$	$G_1 = R_1 S_1$
$P_2 = R_2 + S_2$	$G_2 = R_2S_2$
P3 = R3 + S3	G3 = R3S3
G3 + P3G2 + P3P2G1	$+ P_3P_2P_1G_0 + P_3P_2P_1P_1$

 $= G_2 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_n$ $= G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_n$

nout Descriptions of IDM 2901A

functions for the IDM2901A 4-bit slice microprocesare as follows:

- A0 4-bit address field used to select one of the file registers whose contents are displayed through the A port of RAM.
- -B0 4-bit address field used to select one of the file registers whose contents are displayed through the B port of RAM. When the clock is low, new data can be written into the selected B-port register.
- 10 Nine instruction-control lines 10/11/12 determine data sources of ALU, 13/14/15 select ALU function, and 16/17/18 select data inputs for the Q register or the register file.
- WRAM3 Serves as shift data input/output lines for the most significant bit (MSB) of Q register (Q3) and the register stack (RAM3). These lines are TRI-STATE outputs that connect to TTL inputs within the IDM2901A device. When the destination code, as defined by 16/17/18, indicates an up-shift (octal 6 or 7), the TRI-STATE outputs are enabled; accordingly, the MSB of the Q register is available on the Q3 pin and the MSB of the ALU output is available on the RAM3 pin. Otherwise, these output lines are TRI-STATE or serve as LS-TTL inputs. When a down-shift is indicated by the destination code, the Q3 and RAM3 pins are used as data inputs to the MSB of the Q register or RAM.

- Q_0/RAM_0 These shift lines are similar to Q₃ and RAM₃, except they operate on the least significant bit (LSB) of the Q register and RAM. To transfer data for up- and down-shifts of the Q register and the ALU, the Q₀ and RAM₀ pins are connected, respectively, to the next less-significant device (Q_n and RAM_n) in the cascaded chain.
- $D_3 D_0$ A 4-bit data field that can be selected as a source of external data for ALU D_0 is the least significant bit.
- Y₃-Y₀ 4-bit output data of IDM2901A. These lines are TRI-STATE; when enabled, they provide either the ALU output or data from the A port of the register file – the selected source is determined by the destination code, as defined by 16, 17, and 18.
- \overline{OE} When the Output Enable (\overline{OE}) signal is high, the Y outputs are inactive; when the signal is active-low, the active high or low outputs are enabled.
- P/G Carry generate and propagate outputs see figure 8 for logic equations.
 - The overflow flag corresponds to the exclusive-OR of the carry-in and carry-out of the MSB of the ALU. When set high, it indicates that the result of an arithmetic twos-complement operation has overflowed into the sign bit see figure 8 for the logic equation.
- F=0 An open-collector output that goes high if all data lines (F3-F0) are low, that is, the result of an ALU operation is zero.

Cn Carry-in to ALU.

OVR

CP

F3

Cn+4 Carry-out of ALU -- see figure 8 for logic equations.

- Clock input. Outputs of Q register and file are clocked on low-to-high transition; the low interval of the clock input corresponds to the "write enable" period of the 16-by-4 RAM, that is, the "master" latches of the register file. When the clock is low, the output latches store the data previously held at the RAM outputs; thus, synchronous master-slave operation of the register file is permitted.
- Most significant (sign) bit output of the ALU.

_	15,4,3	Function	Ā	Ğ	Cn+4	OVR
	0	R + S	P3P2P1P0	$P_3P_2P_1P_0$ $G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$		C3 ¥ C4
_	1	S - R		Same as R + S equations, but sub:	stitute $\overline{R_i}$ for R_i in definition	ns.
	2	R - S		Same as R + S equations, but sub	stitute S; for S; in definitio	ns.
	3	RVS LOW		P3P2P1P0	P3P2P1P0 + Cn	$P_3P_2P_1P_0 + C_n$
_	4	RAS	LOW	$G_3 + G_2 + G_1 + G_0$	$G_3 + G_2 + G_1 + G_0 + C_n$	$G_3 + G_2 + G_1 + G_0 + C_0$
_	5	Ř∧s	LOW	Same as R A S equation	s, but substitute R; for R; i	n definitions.
	6	R∀S		Same as R ₩ S equations, but sub	stitute R; for R; in definitio	ns.
	7	R¥S	G3 + G2 + G1 + G0	$G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$	See Note 1	See Note 2

Figure 8. Logic Equations for Flag Outputs

National Semiconductor

Guaranteed Operating Conditions Over Temperature and Voltage

When operated in a system, the timing requirements for the IDM2901A are defined in tables 1, 2, and 3. Table 1 provides clock characteristics of the IDM2901A, table 2 gives the combinational delay times from input to output, and table 3 specifies setup and hold times. If used according to the specified delay and setup times, the device is guaranteed to function properly over the entire operating range. Table 3 defines the time prior to the end of the cycle (low-to-high transition of clock pulse) that each input must be stable to guarantee that the correct data is written into one of the internal registers.

Table	1.	Cycla	Time	and	Clock	Characteristics
-------	----	-------	------	-----	-------	-----------------

	IDM2901A				
Time	DC, PC	DM, FM			
Read-Modify-Write Cycle (time from selection of A, B registers to end of cycle)	60 ns	75 ns			
Maximum Clock Frequency to Shift Q Register (50% duty cycle)	20MHz	16 MHz			
Minimum Clock Low Time	25 ns	30 ns			
Minimum Clock High Time	25 ns	30 ns			
Minimum Clock Period	60 ns	75 ns			

Table 2. Maximum Combinational Propagation Delays (all in ns; CL < 50 pF)

		Commercial									Military						
		IDM	2901A D	C, PC (0	°C to +7	'0°C; 5 V	(± 5%)		IDM2901A DM, FM (-55°C to +125°C; 5 V ± 10%)							1	
To Output From Input					F=0	[Shift Outputs					1	F=0		Shift O	-	
	T	۲3	C _{n+4}	G/P	RL= 470	OVR	RAM0 RAM3	00 03	1 *	F3	Cn+4	G/P	RL = 470	OVR	RAM0 RAM3	88	
A, 8	70	65	65	60	70	65	70	-	85	80	80	75	85	80	85		
D (arithmetic mode)	45	45	45	45	55	45	50	-	55	55	55	55	70	55	60		
D (I = X37)	45	45		-	55	-	50	-	55	55	-	-	70	-	60		
Cn	32	32	20	-	40	30	35	-	40	40	25	-	50	35	45	-	
12,1,0	55	50	50	45	60	50	60	-	70	60	60	55	75	60	75	-3	
15,4,3	50	50	50	45	55	50	50	-	60	60	60	55	70	60	60	-	
18,7,6	25	-	-	-	-	-	30	30	30	- '	-	-	-	-	40	40	
OE Enable/Disable	30/25	-	-		-	-	-	-	40/25	-	-	-	-	-	-		
A Bypassing ALU (I = 2xx)	40	-	-	-	-	-	-	-	50	-	-		-	-	-	-	
Clock 📕 (Note 6)	60	60	60	50	60	55	60	35	75	75	75	65	75	70	75		

Table 3. Setup and Hold Times (all in ns) - Note 1

		Commercial IDM29 (0°C to +70°C, 5	01A DC, PC V ± 5%)	Military IDM2901A DM, FM (-55°C to +125°C, 5 V ± 10%)				
From Input	Notes	Setup Time	Hold Time	Setup Time	Hold Time			
A, B Source	2, 3, 4, 5	60, t _{pw} L + 20	0	75, t _{pw} L + 25	0 ·			
B Destination	2, 4	t _{pw} L + 15	0	t _{pw} L + 15	0			
D (arithmetic mode)		40	0	<u>.</u> 50	0			
D (I = X37)	5	40	0	50	0			
Cn		25	0	30	0			
12,1,0		45	0	55	0			
15,4,3	1	45	0	55	0			
18,7,6	4	t _{pw} L + 15	0	t _{pw} L + 15	0			
RAM0,3/Q0,3	1	20	0	25	0			

Note 1: See figures 9 and 10.

Note 2: If the B address is used as a source operand, allow for the "A, B Source" setup time; if it is used only for the destination address, use the "B Destination" setup time.

Note 3: Where two numbers are shown, both must be met.

Note 4: "tpwL" is the clock low time.

Note 5: DVO is the fastest way to load the RAM from the D inputs. This function is obtained with I = 337.

Note 6: Using Q register as source operand in arithmetic mode. Clock is not normally in critical speed path when Q is not a source.

Set-Up Setup and high transi must be si until the

Note: N

No 1. 2. 3. 4

5

F

National Semiconductor

43

Set-Up and Hold Times (mimimum cycles from each input)

up and hold times are defined relative to the low-totransition of the clock pulse. At all times, inputs st be stable from the setup time prior to the clock until the hold time after the clock - observe that all

hold times are "zero." The set-up times allow sufficient time to perform the correct operation on the correct data so that the correct ALU data can be written into the correct register.

Note: Numbers shown are minimum data-stable times in nanoseconds for commercial product - see table 3 for detailed information.

Figure 9. Setup Times for Input Parameters of IDM2901A

Notes:

- 1. This delay is the max tpd of the register containing A, B, D, and I.
- 2. 10 ns for look-sheed carry. For ripple carry over 16 bits use 2 x ($C_n \rightarrow C_{n+4}$), or 60 ns.
- 3. This is the delay associated with the multiplexer between the shift outputs and the shift inputs on the IDM2901A.
- 4. Not applicable for logic operations.
- 5. Clock rising edge may occur here if add and shift do not occur on same cycle.
- Figure 10. Switching Waveforms for 16-Bit System Assuming A, B, D, and I are Driven from Registers with the Same Propagation Delay and Clocked by the IDM2901A. (These are maximum times in nanoseconds using commercial-product specifications.)

National Semiconductor

MICROPROCESSOR

IDM2901A 4-Bit Bipolar Microprocessor

National does not assume any responsibility for use of any circuitry described; no circuit patent licences are implied; and National reserves the right, at any time without notice, to change said circuitry

OIC MASTER 1978

6

software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

100001073

Four-Bit Bipolar Microprocessor Slice

ALU LOGIC MODE FUNCTIONS

ALU ARITHMETIC MODE FUNCTIONS

	Ocust	C, - 0		C 1	
151413121110	1543 1210	Q	Function	Q	Function
000005	00		A+Q		A+Q+1
1 001	01	ADO	A+8	ADO plus	A+8+1
101	0.6		D+A	076	D+A+1
1 110	06		D+Q		0+0+1
000010	0 2		0		0+1
1 011	0 3	PASS	•	Increment	8+1
100	04		•		A+1
1 111	07		D	1	0+1
001010	12		0-1	T	٥
1 011	13	Decrement	8-1	PASS	
1 100	14		A-1		
010111	27		D-1		D
010010	2.2	1	-0-1		-0
1 011	23	1's Comp.	-8-1	2's Comp.	
1 100	2.4		-A-1		- 4
001111	17		-0-1		D
001000	10		0-A-1		0-A
1 001	11	Subtract	8-A-1	Subtract	8-A
101	15	11's Compl	A-D-1	171 Campl	A-D
1 110	16		0-0-1		0-0
010000	20		A-Q-1		A-0
1 001	21		A-8-1		A-8
101	2.6		D A-1		0-A
1 110	2.6		0.0.1		0-0

<u>ي</u>

Ð

ء 🥑

<u>ک</u>ا د

ar a

iing

nce, tor, iput bwn 10-29

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

10-30

1
Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenative of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or soll equipment manufactured in accordance herewith.

100001073 (Continued)

The Q register is also driven from a 3-input multiplexer. In the no-shift mode, the multiplexer enters the ALU data into the Q register. In either the shift-up or shift-down mode, the multiplexer selects the Q register data appropriately shifted up or down. The Q shifter also has two ports: Q0-LO/RI and Q3-RO/LI. These ports operate in the same way as the RAM shifter and are controlled by 16, 17, and 18.

The RAM, the Q register, and the A and B data latches are controlled by the clock input. When enabled, data is clocked into the Q register on the low-to-high clock transition. When the clock input is high, the A and B latches are open and pass the data present at the RAM outputs. When the clock input is low, the latches are closed and retain the last data entered. If the RAM-EN is enabled, new data is written into the RAM file (word) which is specified by the B address field when the clock input is low.

The 100001073 has tri-state outputs.

NOTE The 100001073 is a low power Schottky device.

100001074

Microprogram Sequencer

PIN CONFIGURATION

(1, 1)

6

	DEFINITION OF TERMS
C _{n+4}	Carry out from the incrementer
Internal Signa	Is
μΡΟ	Contents of the microprogram counter
RÉG	Contents of the register
STKO-STK3	Contents of the push/pop stack. By definition, the word in the four-by-four file, addressed by the stack pointer is STKO. Conceptually data is pushed into the stack at STKO; a subsequent push moves STKO to STK1; a pop implies STK3 \rightarrow STK2 \rightarrow STK1 \rightarrow STKO. Physically, only the stack pointer changes when a push or pop is performed. The data does not move. I/O occurs at STKO. Contents of the stack pointer
External	
Α.	Address to the control memory
I(A)	Instruction in control memory at address A
μWR	Contents of the microword register (at output of control memory). The microword register contains the instruction currently being exe- cuted
Tn	Time period (cycle) n
Inputs	
S1, S0	Control lines for address source selection
FE, PUP	Control lines for push/pop stack
OR:	Logic OB inputs on each address output line
ZERO	Logic AND input on the output lines
ŌĒ	Output Enable. When OE is HIGH, the Y out- puts are OFF (high impedance)
Cn	Carry-in to the incrementer
Ri	Inputs to the internal address register
u _i Cp	Direct inputs to the multiplexer Clock input to the AR and µPC register and Push-Pop stack
Outputs	
Yi	Address outputs . (Address inputs to control memory.)

10-33

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

100001074 (Continued)

ADDRESS SELECTION

1

8

the second se	OCTAL	S ₁	So	SOURCE FOR Y OUTPUTS	SYMBOL
	0	L	L	Microprogram Counter	μPC
	1	L	н	Register	REG
	2	н	L	Push-Pop stack	STKO
	3	н	н	Direct inputs	Di

OUTPUT CONTROL

ORi	ZERO	ŌĒ	Yi
x	x	н	Z
x	ι	L	L
н	н	L	н
L	н	L	Source selected by S ₀ S ₁

Z = High Impedance

SYNCHRONOUS STACK CONTROL

	FE	PUP	PUSH-POP STACK CHANGE
	HL	X H	No change Increment stack pointer, then
H = High L = Low X = Don't Care	L	L	Pop stack (decrement stack pointer)

OUTPUT AND INTERNAL NEXT-CYCLE REGISTER STATES

CYCLE	S ₁ , S ₀ , FE, PUP	μΡΟ	REG	STKO	STK1	STK2	STK3	YOUT	COMMENT	PRINCIPLE USE
N N+1	0000	J J+1	ĸĸ	Ra Rb	Rb Rc	Rc Rd	Rd Ra	J -	Pop Stack	End Loop
N N+1	0001	J J+1	K K	Ra J	Rb Ra	Rc Rb	Rd Rc	L _	Push µPC	Set-up Loop
N N+1	001X -	J J+1	K K	Ra Ra	Rb Rb	Rc Rc	Rd Rd	L _	Continue	Continue
N N+1	0100	J K+1	K K	Ra Rb	Rb Rc	Rc Rd	Rd Ra	к -	Pop Stack; Use AR for Address	End Loop
N N+1	0101	J K+1	к к	Ra J	Rb Ra	Rc Rb	Rd Rc	к -	Push µPC; Jump to Address in AR	JSR AR
N N+1	0 1 1 X -	J K+1	к к	Ra Ra	Rb Rb	Rc Rc	Rd Rd	к -	Jump to Address in AR	JMP AR
N N+1	1000	J Ra+1	к к	Ra Rb	Rb Rc	Rc Rd	Rd Ra	Ra -	Jump to Address in STK0; Pop Stack	RTS
N N+1	1001	J Ra+1	к к	Ra J	Rb Ra	Rc Rb	Rd Rc	Ra —	Jump to Address in STK0; Push μ PC	
N N+1	101X -	J Ra+1	к к	Ra Ra	Rb Rb	Rc Rc	Rd Rd	Ra —	Jump to Address in STK0	Stack Ref (Loop)
N N+1	1100	J D+1	к к	Ra Rb	Rb Rc	Rc Rd	Rd Ra	D -	Pop Stack; Jump to Address on D	End Loop
N N+1	1101	J D+1	к к	Ra J	Rb Ra	Rc Rb	Rd Rc	D -	Jump to Address on D; Push µPC	JSR D
N N+1	1 1 1 X -	J D+1	к к	Ra Ra	Rb Rb	Rc Rc	Rd Rd	D -	Jump to Address on D	JMP D

X = Don't care, 0 = LOW, 1 × HIGH, Assume C_n = HIGH Note: STKO is the locat or addrested by the stack pointer

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or self equipment manufactured in accordance herewith.

100001074 (Continued)

The 100001074 is a bipolar microprogram sequencer consisting of a 4-bit cascadable slice. Two 100001074s can address up to 256 words of microprogram and three devices can address up to 4K words of microprogram.

A four-input multiplexer is used select either the address register, direct inputs, microprogram counter, or file as the source of the next microinstruction address. The S0 and S1 inputs control this multiplexer.

The address register consists of four D-type, edge triggered flip-flops with a common clock enable. When the address register enable is low, data enters the register on the low-to-high transition of the clock. The 4-bit direct data inputs are also used as inputs to the register to permit an N-way branch where N is any word in the microcode.

The microprogram counter (uPC) consists of a 4-bit incrementer followed by a 4-bit register. The incrementer has carry-in (Cn) and carry-out (Cn+4). When the least significant carry-in to the incrementer is high, the current Y output word plus one is loaded into the microprogram register on the next clock cycle. In this way, sequential microinstructions can be executed. When the least-significant Cn is low, the incrementer passes the Y unmodified and this same word is loaded into the microprogram register on the next clock cycle. In this way, the same microinstruction can be executed any number of times by using the least-significant Cn as the control.

The file is a 4×4 stack which provides the return address linkage when executing microsubroutines. It contains a stack pointer (SP) which points to the last file word written. This permits stack reference operations to be performed without a push or pop. The stack pointer operates as an up/down counter with separate push/pop and file enable inputs. The Push operation is enabled when the file enable is low and the push/pop input is high. When this happens the stack pointer increments and the file is written with the appropriate return linkage (the next microinstruction address after the subroutine jump which initiated the Push). A Pop operation is enabled when the file enable is low and the push/pop input is low. The stack pointer decrements on the next low-to-high clock transition. When the file enable is high, no action is taken by the stack pointer regardless of any other input.

When the Zero input is low, all Y outputs are low regardless of any other inputs (except OE). Each Y output bit has an independent OR input so a conditional logic one can be forced at each Y output to allow jumping to different microinstructions on programmed conditions.

The 100001074 has tri-state outputs.

Ç

normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs can neither load nor drive the bus lines. Data can be retained or new data entered even when the outputs are off.

NOTE The 100001075 is a low power Schottky device.

ISTADDR GORSTO ALP.C. CIOBITS

Allows SUB ROUTILES IN MICROCODE

SIMPLIFIED BLOCK DIAg

*d :::-

Am2909 · Am2911

Microprogram Sequencers

DISTINCTIVE CHARACTERISTICS

- 4-bit slice cascadable to any number of microwords
- Internal address register
- Branch input for N-way branches
- Cascedable 4-bit microprogram counter
- 4×4 file with stack pointer and push pop control for nesting microsubroutines.
- Zero input for returning to the zero microcode word
- Individual OR input for each bit for branching to higher microinstructions (Am2909 only).
- Three-state outputs
- All internal registers change state on the LOW-to-HIGH transition of the clock
- Am2909 in 28-pin package
- Am2911 in 20-pin package

GENERAL DESCRIPTION

The Am2909 is a four-bit wide address controller intended for sequencing through a series of microinstructions contained in a ROM or PROM. Two Am2909's may be interconnected to generate an eight-bit address (256 words), and three may be used to generate a twelve-bit address (4K words).

The Am2909 can select an address from any of four sources. They are: 1) a set of external direct inputs (D); 2) external data from the R inputs, stored in an internal register; 3) a four-word deep push/pop stack; or 4) a program counter register (which usually contains the last address plus one). The push/pop stack includes certain control lines so that it can efficiently execute nested subroutine linkages. Each of the four outputs can be OR'ed with an external input for conditional skip or branch instructions, and a separate line forces the outputs to all zeroes. The outputs are three-state.

The Am2911 is an identical circuit to the Am2909, except the four OR inputs are removed and the D and R inputs are tied together. The Am2911 is in a 20-pin, 0.3" centers package.

2.2

Intended for use in high-speed microprocessor applications. The device is a cascadable 4 bit slice such that two devices allow addressing of up to 256-words of microprogram and three devices, allow addressing of up to 4K words of microprogram. A detailed logic diagram is shown in Figure 2.

The device contains a four-input multiplexer that is used to select either the address register, direct inputs, microprogram counter, or file as the source of the next microinstruction address. This multiplexer is controlled by the So and S₁ inputs.

The address register consists of four D-type, edge triggered flip-flops with a common clock enable. When the address register enable is LOW, new data is entered into the register on the clock LOW-to-HIGH transition. The address register is available at the multiplexer as a source for the next microinstruction address. The direct input is a four-bit field of inputs to the multiplexer and can be selected as the next microinstruction address. On the Am2911, the direct inputs are also used as inputs to the register. This allows an N-way branch where N is any word in the microcode.

The Am2909/Am2911 contains a microprogram counter (μ PC) that is composed of a 4-bit incrementer followed by a 4-bit register. The incrementer has carry-in (C_n) and carry-out (C_{n+4}) such that cascading to larger word lengths is straightforward. The μ PC can be used in either of two ways. When the least significant carry-in to the incrementer is HIGH, the microprogram register is loaded on the next clock cycle with the current Y output word plus one (Y+1- μ PC.) Thus sequential microinstructions can be executed. If this least significant C_n is LOW, the incrementer passes the Y output word unmodified and the microprogram register is loaded with the same microinstruction can be executed any number of times by using the least significant C_n as the control.

The last source available at the multiplexer input is the 4×4 file (stack). The file is used to provide return address linkage

performed without a push or pop.

The stack pointer operates as an up/down counter with separate push/pop and file enable inputs. When the file enable input is LOW and the push/pop input is HIGH, the PUSH operation is enabled. This causes the stack pointer to increment and the file to be written with the required return linkage — the next microinstruction address following the subroutine jump which initiated the PUSH.

If the file enable input is LOW and the push/pop control is LOW, a POP operation occurs. This implies the usage of the return linkage during this cycle and thus a-return from subroutine. The next LOW-to-HIGH clock transition causes the stack pointer to decrement. If the file enable is HIGH, no action is taken by the stack pointer regardless of any other input.

The stack pointer linkage is such that any combination of pushes, pops or stack references can be achieved. One microinstruction subroutines can be performed. Since the stack is 4 words deep, up to four microsubroutines can be nested.

The ZERO input is used to force the four outputs to the binary zero state. When the ZERO input is LOW, all Y outputs are LOW regardless of any other inputs (except \overline{OE}). Each Y output bit also has a separate OR input such that a conditional logic one can be forced at each Y output. This allows jumping to different microinstructions on programmed conditions.

The Am2909/Am2911 feature three-state Y outputs. These can be particularly useful in military designs requiring external Ground Support Equipment (GSE) to provide automatic checkout of the microprocessor. The internal control can be placed in the high-impedance state, and preprogrammed sequences of microinstructions can be executed via external access to the control ROM/PROM.

2.3

2-4

A set of symbols is used in this data sheet to represent various internal and external registers and signals used with the Am2909. Since its principle application is as a controller for a microprogram store, it is necessary to define some signals associated with the microcode itself. Figure 3 illustrates the basic interconnection of Am2909, memory, and microinstruction register. The definitions here apply to this architecture.

Inputs to Am2909/Am2911

S1. S0	Control lines for address source selection
FE. PUP	Control lines for push/pop stack
RE	Enable line for internal address register
OR;	Logic OR inputs on each address output line
ZEHO	Logic AND input on the output lines
ŌE .	Output Enable. When OE is HIGH, the Y out- puts are OFF (high impedance)
5	Carly-in to the incrementer
R;	Inputs to the internal address register
D;	Direct inputs to the multiplexer
CP	Clock input to the AR and µPC register and Push-Pop stack

to control memory.)

Figure 3. Microprogram Sequencer Control.

Address outputs from Am2909. (Address inputs

Outputs from the Am2909/Am2911

Internal Signals

μPC Contents of the microprogram counter

REG

Contents of the register

- STK0-STK3 Contents of the push/pop stack. By definition, the word in the four-by-four file, addressed by the stack pointer is STK0. Conceptually data is pushed into the stack at STK0; a subsequent push moves STK0 to STK1; a pop implies STK3 → STK2 → STK1 → STK0. Physically, only the stack pointer changes when a push or pop is performed. The data does not move, 1/0 occurs at STK0.
 - Contents of the stack pointer

External to the Am2909/Am2911

Α I(A) µWR

Address to the control memory

Instruction in control memory at address A Contents of the microword register (at output of control memory). The microword register contains the instruction currently being executed. Time period (cycle) n

Tn

SP

_____ ·

Figure 4.

Am290!

UPERATION OF THE Am2909/Am2911

Mindial State of the state of the

a state of the sta

delta a bisko katala ali cara sa sa

1+1

N

N+1

N

N+1

1101

111X

Figure 5 lists the select codes for the multiplexer. The two bits applied from the microword register (and additional combinational logic for branching) determine which data source contains the address for the next microinstruction. The cuntents of the selected source will appear on the Y outputs. Figure 5 also shows the truth table for the output control and for the control of the push/pop stack. Figure 6 shows in detail the effect of S_0 , S_1 , FE and PUP on the Am2909. These four signals define what address appears on the Y outputs and what the state of all the internal registers will be following the clock LOW-to-HIGH edge. In this illustration, the microprogram counter is assumed to contain initially some word J, the address register some word K, and the four words in the push/ pop stack contain R_a through R_d .

Jump to Address on D

Jump to Address on D;

Jump to Address on D

Push µPC

Loop

JSR D

JMP D

							and the second se	A REAL PROPERTY AND A REAL		and the state of t	And the second se		
			Addri	ess Selec	tion						Outp	out Control	· · ·
	OCTA	L S, So	SOUP	ICE FOR	YOUT	PUTS	SYMBOL].	OR;	ZER	<u>ס ס</u> ב	Yi	
	0 1 2 3	L L L H H L H H	Mic Reg Pus Dir	proprogra gister uh-Pop sta rect input	m Count ick	ter	μPC REG STK0 D;		X X H L	Х L H H	H L L	Z L H Source selected	by S ₀ S1
	· .		.L				vnchron	a Ious Stat	k Conti	ro ł		Z - Hig	h Impedance
		•		٢	FE	PUP		PUSH-P	OPSTAC	K CHAN	GE		
	H = His L = Lor			· ·	. H L ·	X H L	No Inc Pu Po	change crement s sh currer p stack {	itack poil it PC ont decremen	nter, ther o STKO nt stack p	n ointer]	•	
L	X = Do	m't Care		L				Figure 5		•		•	je e
Cr	CLE	S1. SJ. FE	, PUP	μΡΟ	REG	STKO	STK1	STK2	STK3	YOUT	c	OMMENT	PRINCIPL
i l	N 1+1	000	0	J J+1	к к	Ra Rb	Rb Rc	Rc Rd	Rd Ra	J . 	Pop Sca	ck .	End Loop
·	N +1	000	1	J J+1	к к	Ra J	Rb Pa	Rc Rb	Rd Rc	L -	Ρυsh μΡ	c	Set-up Loop
	N 1+1	001	×	J J+1	к к	Rə Ra	Rb Rb	Rc Rc	Rd Rd	J -	Continu	e	Continue
	N i+1	010	0.	J K+1	к к	Ra Rb	Rb Rc	Rc' Rd	Rd Ra	к -	Pop Sta Use AR	ck; for Address	End Loop
F	N 1+1	010	1	J K+1	к к	Ra J	Rb Ra	Rc Rb	Rd Rc	к -	Push µP Jump to	C; Address in AR	JSR AR
	N i+1	011	x	J K+1	к к	Ra Ra	. Rb Rb	Rc Rc	Rd Rd	К -	Jump to	o Address în AR	JMP AR
	N ++1	100	0	J Ra+1	к к	Ra Rb	Rb Rc	Rc Rd	Rd Ra	Ra	Jump to Pop Sta	o Address in STKO; ck	RTS
Γ,	N 1+1	100	1	J Ra+1	к к	Ra J	Rb Ra	Rc Rb	Rd Rc	Ra —	Jump to Push #P	o Address in STK0; C	
F.	N v+1	101	x	J Ra+1	к к	Ra Ra	Rb Rb	Rc Rc	Rd Rd	Rə —	Jump to	o Address in STKO	Stack Rel (Loop)
-	AL	110	~~~~~	1.	1 v	0.	Rh	Re	Rd	D	Pop-Sta	ck:	End

 $X = Don't care, 0 = LOW, 1 = HIGH, Assume <math>C_n = HIGH$ Note: STKO is the lacation addressed by the steck pointer.

D+1

3

D+1

J

D+1

ĸ

к к

> K K

Rb

Ra

J

Ra

Ra

Rc

RЬ

Ra

Rb

Rb

Figure 6. Output and Internal Next-Cycle Register States for Am2909/Am2911.

Rd

Rc

Яb

Rc

Rc

Ra

Rd

Rc

Rd

Rd

D

•••

D

Am2909/1

MAXIMUM RATINGS (Above which the useful life may be impaired)

	-65°C to +150°C
Storage Temperature	-55°C to +125°C
Supply Voltage to Ground Potential	-0.5 V to +7.0 V
DC Voltage to Outputs for HIGH Output State	-0.5 V to +V _{CC} max
DC Input Voltage	–0.5 V to ≯7.0 V
DC Output Current, Into Outputs	30 mA
DC Input Current	30 mA to +5.0 in A

OPERATING RANGE

P/N	Ambient Temperature	Vcc
Am2909/2911DC, PC	0°C to +70°C	4.75V to 5.25V
Am2909/2911DM, FM	55°C to +125°C	4.50V to 5.50V

STANDARD SCREENING (Conforms to MIL-STD-883 for Class C Parts)

	MIL .STD.833	T	Level			
Step	Method	Conditions	Am2909/Am2911PC, DC	Am2909/Am2911DM, FM		
Pre-Seal Visual Inspection	2010	В	100%	100%		
Stabilization Bake	1008	24-hour C 150°C	100%	100%		
Temperature Cycle	1010	C	100%	100%		
Centrifuer	2001	B 10,000 G	100% *	100%		
Finelesk	1014	A 5x 10-8 atm-cc/cm3	102%	100%		
Gross t eak	1014	C2 Fluorocarbon	100% *	100%		
Electrical Test Subgroups 1 and 7	5004	See below for definitions of subgroups	100%	100%		
Insert Additional Screening	here for Class B Part	3				
Group A Sample Tests	T					
Subcroup 1			LTPD = 5	LTPD=5		
Subgroup 2		•	LTPD-7	LTPD - 7		
Suboroup 3		See below for	LTPD=7	1TPD - 7		
Subgroup 7	5005	definitions of subgroups	LTPD = 7	LTPD = 7		
Subaroup 8			LTPD = 7	LTPD = 7		
Subaroup 9			LTPD -7	LTPD-7		

*Not applicable for Am2909PC or

1

:

Am2909PC or . Am2911PC.

ADDITIONAL SCREENING FOR CLASS B PARTS

	MIL-STD-893		Level
Step	 Method 	Conditions	Am2909/Am2911DMB, FME
Burn-In	1015	D 125°C 160 hours min.	100%
Electrical Test Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 7 Subgroup 9	5004		100% 100% 100% 100%

Return to Group A Tests in Standard Screening

ORDERING INFORMATION

Packasa Typ a	Temperature Range	Am2909 Order Number	Am2911 Order Number
Molded DIP	0°C to +70°C	AM2909PC	AM2911PC
Hermetic DIP	0°C to +70°C	AM2909DC	AM2911DC
Hermetic DIP	~55°C to +125°C	AM2909DM	AM2911DM
Hermetic Flat Pak	-55°C to +125°C	Am2909FM	
Dice	0°C to +70°C	Am2909XC	

GROUP A SUBGROUPS (as defined in MIL-STD-883, method 5005)

Subgroup	Parameter	Temperatura
1	DC	25°C
2	- 2G	Maximum rated temperature
3	DC	Minimum rated temperature
7.	Function	25°C
8	Function	Maximum and minimum rated temperatura
9	Switching	25°C
10	Switching	Maximum Rated Temeperature
11	Switching	Minim im Rated Temperature

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Payarnators	Description	Test Conditions (No:+ 1)					(Nota 2)	Max.	Units
a anio coro		VCC - MIN.,	MIL	10H -	-1.0mA	2.4			Volue
∨он	Output HIGH Voltage	VIN - VIH or VIL	COM'L 10H2.5mA		2.4			VOIG	
			IOL - 4.	OmA '				0.4	
		VCC - MIN.,	10L - 8.	OmA				0.45	Volue
VOL	Output LOW Voltage	VIN - VIH or VIL	IOL = 12 (Note 5)	?mA -				0.5	
ViH	Input HIGH Level	Guaranteed input lo voltage for all inputs	uaranteed input logical HIGH bltage for all inputs			2.0			Volts
	میں اس اور میں اور اور میں اور	Guarantead input to	Current input Insight I CW MIL					0.7	Volts
VIL	Input LOW Level	voltage for all inputs	S COM'L					6.0	
	Input Clamp Voltage	VCC - MIN., IIN -	-18mA					-1.5	Volts
			1 Cn					-1.03	
1.,	toput LOW Current	VCC - MAX.	Push/Pop, CE					-0.72	mA
•1L .		VIN = 0.4 V	Others (Note ô)				1	-0.38]
			Ca					40	
1	Input HIGH Current	VCC = MAX., Push/Pop						40	Au [
чн		V _{IN} =2.7V	Others (Note 6)				20	
		Vcc = MAX.	Cn. Pust	1/200				0.2	
lų –	Input HIGH Current	VIN - 7.0V	Others (Note 6)				0.1		
IOS	Cutput Short Circuit Current (Note 3)	VCC - MAX.			-40		-100	mA .	
	Power Supply Current	VCC = MAX. (Note	MAX. (Note 4)				80	130	mA
1071		VCC - MAX.,	VOUT	0.4V				-20	
1024	Output OFF Current	0E - 2.7V	VOUT	- 2.7 V				20	

Star 1 4 L Martin

ALC: NO

というないとなるというないという。

Notes: 1.

For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical limits are at V_{CC} = 5.0V, 25[°]C ambient and maximum loading.
 Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 Apply GND to Cn, Ro, R1, R2, R3, OR0, OR1, OR2, OR3, D0, D1, D2, and D3. Other inputs open. All outputs open. Measured after a LOW-to-HIGH clock transition.
 The 12mA guarantee applies only to Y0. Y1. Y2 and Y3.
 For the Am2911, D1 and R1 are Internally connected. Loading is doubled (to same values as Push/Pop).

S.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

instruction being executed at any given time is the one contained in the microword register (μ WR). The contents of the μ WR also controls (indirectly, perhaps) the four signals S₀, S₁, FE, and PUP. The starting address of the subroutine is applied to the D inputs of the Am2909 at the appropriate time.

In the columns on the left is the sequence of microinstructions to be executed. At address J+2, the sequence control portion of the microinstruction contains the comand "Jump to sub-

save the return eddress. The summative eddress is support to the D inputs from the μ WR and appears on the Y outputs. The first instruction of the subjoutine, I(A), is accessed and is at the inputs of the μ WR. On the next clock transition, I(A) is loaded into the μ WR for execution, and the return address J+3 is pushed onto the stack. The return instruction is executed at T₅. Figure 8 is a similar timing chart showing one subroutine linking to a second, the latter consisting of only one microinstruction.

LON	THULME	NURI	_		*	_				•					
Execute	Miero	program		Execute C	lycle lock			1 T ₂					T7	Ta	T9
Cycla	Address	Sequencer Instruction		Signa	1								L	1	Ц
τ ₀ τ ₁ τ ₂	J-1 J J+1 J+2 J+3	 JSRA		Am2909 Inputs (from µWR)	S1, S0 FE PUP D	0 H X X	о н х х	3 L H A	о н х х	• 0 Н Х	2 L L X	D H X X	онхх		•
τ ₇	J+4 			Internal Registers	#PC STK0 STK1 STK2 STK3	+1 - - -	J+2 - - -	J+3 	A+1 J+3 - -	A+2 J+3 	A+3 J+3 -	J+4 	J+5 - - -		
Т ₃ Т4	A A+1	1(A) -		Am2909 Output	Y	J+1	J+2	A	A+1	A+2	J+3	J+4	J+5		
T5	A+2 	RTS 		ROM Output	(Y)	1(J+1)	JSR A	I(A)	1(A+1)	RTS	1(1+3)	1(J+4)	1(J+5)	•	
		- - - - - - - -	•	Contents of µWR (Instruction being executed)	μWR	(L)I	1(2+1)	JSR A	I(A)	I(A+1)	RTS	I{J+3}	1(J+4)	<u>`</u>	
CON	TROL ME	MORY	· •	•	Figu	are 7. Su	broutin	e Execu	ition.					Cn	- HIGH
	Micro	program		Execute C	yde	To	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T7	T8	Tg
Xecute Cycle	Address	Sequencer Instruction		Ci Signal	lock									Ц	1
To T ₁ T2 To	J-1 J J+1 J+2 J+3	- - JSR A		Am2909 Inputs (from µWR)	S1. S0 FE PUP D	0 H X X	O H X X	3 L H A	он х х	о н х х	3 L H B	2 L .L X	0. H X	2 L L X	0 H X X
τ ₃		-		Internal Registers	μPC STKO STK1 STK2 STK3	J+1 	J+2 - - -	¥4 	A+1 J+3 	A+2 J+3 _ _	A+3 J+3 -	B+1 A+3 J+3 -	A+4 J+3 -	A+5 J+3 	J+4
14 T5 T7	A+1 A+2 A+3	JSR B		Am2909 Output	Y	J+1	J+2	A	A+1	A+2	B	A+3	A+4	J+3	J+4
Ta	A+4 	RTS -		ROM Output	(Y)	I(J+1)	JSR A	I(A)	1(A+1)	JSR B	RTS	1(A+3)	RTS	1(2+3)	1{]+4}
τ _s	- - 8 -	RTS		Contents of µWR (Instruction being executed)	μWR	{L}I	1(J+1)	JSR A	I(A)	I{A+1}	JSR B	RTS	I(A+3)	RTS	(C+L)1

Figure 8. Two Nested Subroutines. Routine B is Only One Instruction.

Ca - HIGH

μPD416 μPD416-1 μPD416-2 μPD416-3

16384 x 1 BIT DYNAMIC MOS RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD416 is a 16384 words by 1 bit Dynamic MOS RAM. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μ PD416 is fabricated using a double-poly-layer N channel silicon gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the μ PD416 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

FEATURES • 16384 Words x 1 Bit Organization

- High Memory Density 16 Pin Ceramic and Plastic Packages
- Multiplexed Address Inputs
- Standard Power Supplies +12V, -5V, +5V
- Low Power Dissipation; 462 mW Active (MAX), 20 mW Standby (MAX)
- Output Data Controlled by CAS and Unlatched at End of Cycle
- Read-Modify-Write, RAS-only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Capacitance
- 128 Refresh Cycles
- 4 Performance Ranges:

	ACCESS TIME	R/W CYCLE	RMW CYCLE
μPD416	300° ns	510 ns	510 ns
μPD416-1	250 ns	430 ns	430 ns
μPD416-2	200 ns	375 ns	375 ns
μPD416-3	150 ns	375 ns	375 ns

PIN CONFIGURATION

V88	P	1	-	16		vss
DIN	þ	2		15		CAS
WRITE	þ	3		14		DOUT
RAS	þ	4	μPD	13		А ₆
A ₀	þ	5	416	12	Þ	Α3
A2	þ	6		11	þ	A4
A1	þ	7		10	þ	A5
VDD	þ	8		9	þ	vcc

PIN NAMES

A0-A6	Address Inputs
CAS	Column Address Strobe
DIN	Data In
DOUT	Data Out
RAS	Row Address Strobe
WRITE	Read/Write
VBB	Power (-5V)
Vcc	Power (+5V)
VDD	Power (+12V)
Vee	Ground
- 33	

MEMORY

Operating Temperature	0°C +0 +70°C
Storage Temperature	-55° C to +150°C
All Output Voltages ①	-0.5 to +20 Volte
All Input Voltages ①	-0.5 to +20 Volts
Supply Voltages VDD, VCC, VSS ①	-0.5 to +20 Volts
Supply Voltages VDD, VCC (2)	- 1.0 to +15 Volts
Short Circuit Output Current	
Power Dissipation	1 Watt

Notes: ① Relative to VBB ② Relative to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = 0^{\circ}C$ to 70°C, $V_{DD} = +12V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{SS} = 0V$

PARAMETER	SYMBOL		LIMITS	;	LIAUT	TEST	
		MIN	TYP MAX		UNIT	CONDITIONS	
Input Capacitance (A0-A6), D1N	CI1		4	5	pF		
Input Capacitance RAS, CAS, WRITE	CI2		8	10	pF		
Output Capacitance (DOUT)	C ₀		5	7	pF	· · ·	

ABSOLUTE MAXIMUM RATINGS*

HPD4

BLOCK DIAGRAN

CAPACITANCE

an figure a structure of the second

6

$T_a = 0^{\circ}C$ to +70°C (1), $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$

CHARACTERISTICS

DADAMETED	SVMPOL	LIMITS			LINIT	TEST		
PARAMEIEK	JIMBUL	MIN	TYP	MAX		CONDITIONS		
Supply Voltage	VDD	10.8	12.0	13.2	v	2		
Supply Voltage	Vcc	4.5	5.0	5.5	v	23		
Supply Voltage	VSS	0	0	0	V	2		
Supply Voltage	VBB	-4.5	-5.0	-5.5	V	2		
Input High (Logic 1) Voltage, RAS, CAS, WRITE	VIHC	2.7		7.0	v	2		
Input High (Logic 1) Voltage, all inputs except RAS, CAS WRITE	VIH	2.4		7.0	v	0		
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0		0.8	V	2		
Operating V _{DD} Current	IDD1			35	mA	RAS, CAS cycling; t _{RC} = t _{RC} Min. 4		
Standby VDD Current	IDD2			1.5	mA	RAS = VIHC, DOUT = High Impedance		
Refresh V _{DD} Current	IDD3			25	mA	RAS cycling, CAS = V _{IHC} ; t _{RC} = 375 ns4		
Page Mode V _{DD} Current	^I DD4			27	mA	RAS = V _{IL} , CAS cycling; tpc = 225 ns ④		
Operating V _{CC} Current	ICC1				μA	RAS, CAS cycling; t _{RC} = 375 ns (5)		
Standby V _{CC} Current	ICC2	-10		10	μA	RAS = VIHC, D _{OUT} = High Impedance		
Refresh V _{CC} Current	ССЗ	-10		10	μA	RAS cycling, CAS = VIHC, t _{RC} = 375 ns		
Page Mode V _{CC} Current	ICC4				μΑ	RAS = V _{IL} , CAS cycling; tpc = 225 ns (5)		
Operating VBB Current	¹ 881			200	μA	RAS, CAS cycling; tRC = 375 ns		
Standby VBB Current	1882			100	μΑ	RAS = VIHC, D _{OUT} = High Impedance		
Refresh VBB Current	1883			200	μΑ	RAS cycling, CAS = VIHC; tRC = 375 ns		
Page Mode VBB Current	¹ 884			200	μΑ	RAS = V _{1L} , CAS cycling; tp _C = 225 ns		
Input Leakage (any input)	יו(ב)	-10		10	μА	VBB = -5V, 0V < VIN < +7V, all other pins not under test = 0V		
Output Leakage	¹ 0(L)	-10		10	μΑ	D_{OUT} is disabled, $0V \le V_{OUT} \le +5.5V$		
Output High Voltage (Logic 1)	VOH	2.4			v	10UT = -5 mA ③		
Output Low Voltage (Logic 0)	VOL			0.4	V	10UT = 4.2 mA		

set ① T_g is specified here for operation at frequencies to t_{RC} > t_{RC} (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. See Figure 1 for derating curve.

2 All voltages referenced to V_{SS}.
 2 All voltages referenced to V_{SS}.
 3 Ourpout voltage will swing from V_{SS} to V_{CC} when activised with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH} (min) specification is not guaranteed in this mode.
 4 1DD1, 1DD3, and 1DD4 depend on cycle rate. See Figures 2, 3 and 4 for 1DD limits at other cycle rates.
 5 1_{CC1} and 1_{CC4} depend upon output loading. During readout of high level data V_{CC} is connected through a low impedance (135Ω typ) to data out. At all other times t_{CC} consists of leakage currents only.

NEC Microcomputers

MEMORY

(

 C_{i}

DERATING CURVES

HPDA PD4

AC

FIGURE 1

Maximum ambient temperature versus cycle rate for extended frequency operation. T_a (max) for operation at cycling rates greater than 2.66 MHz ($t_{CYC} < 375$ ns) is determined by T_a (max) [°C] = 70 - 9.0 x (cycle rate [MHz] -2.66).

FIGURE 2

Maximum IDD1 versus cycle rate for device operation at extended frequencies:

FIGURE 3

Maximum IDD3 versus cycle rate for device operation at extended frequencies.

Maximum IDD4 versus cycle rate for device operation in page mode.

NEC Microcomputers

MENORY

yw 1 - ----

(

AC CHARACTERISTICS

T _a = 0°C to +70°C, V _D (0 = +12V ± 10%, V _{CC} = +5V ±	10%, V88 = -5V ± 10%, VSS = 0V
---	---	--------------------------------

	-										TEST
PARAMETER	STIMBUL	A AND		μρο	H16-1		416-2	μPC A41A4	3416-3	UNIT	CONDITIONS
Random read or write	1RC	510		430	maa	375	- MAA	375		ns	3
cycle time											
Read-write cycle time	TRWC	510		430	l	375		375		îns.	3
Page mode cycle time	1PC	330		280		225		170		ns	
Access time from RAS	TRAC		300		250		200		150	ns	@ @
Access time from CAS	1CAC		200		170		135		100	ns	\$ \$
Output buffer turn-off delay	VOFF	0	80	0	70	0	50	0	40	ns	Ø
Transition time (rise and fell)	ч	3	50	3	50	3	50	3	35	~	0
RAS precharge time	TRP	200		170		120		100		ns	
RAS oulse width	TRAS	300	32,000	250	32,000	200	32,000	150	32,000	ns	
RAS hold time	TRSH	200		170		135		100		ns	1
CAS pulse width	*CAS	200	10,000	170	10,000	135	10,000	100	10,000	ns	1 1
RAS to CAS delay time	TRCD	40	100	35	85	25	65	20	50	ns	8
CAS to RAS precharge time	ICRP	- 20		- 20		- 20		- 20		ns	
Row address set-up time	1ASR	0		0		0		0		ns	
Row Address hold time	1RAH	40		35		25	-	20		78	
Column address set-up time	^t ASC	- 10		- 10		- 10		- 10		ns	
Column address hold time	' САН	90		75		55		45		ns	
Column address hold time referenced to RAS	1AR	190		160		120		95		03	
Read command set-up time	IRCS	0		0		0		0		ns	
Read commend hold time	^t RCH	0		0		0		0		ns	
Write command hold time	WCH	90		75		55		45		ns	
Write command hold time referenced to RAS	WCR	190		160		120		95		ns	
Write command pulse width	WP	90		75		55		45		ns	
Write command to RAS lead time	tRWL	120		100		80		60		ns	
Write command to CAS lead time	1CML	120		100		80		80		- 11	
Data-in set-up time	tOS	0		0		0		0		ns	9
Dete-in hold time	10H	90		75		55		45		ns	9
Deta-in hold time referenced to RAS	tOHR	190		160		120		95		ns	
CAS precharge time (for page mode cycle only)	1CP	120		100		80		60		ns	
Refresh period	TREF		2		2		2		2	ms	
WRITE commend	twcs	- 10		- 10		- 10		- 10		ns	
CAS to WRITE datay	TCWD	140		120		195	[70		ns	
RAS to WRITE deley	4RWD	210		175		160		120		ns	

Notes: 1 AC measurements assume t_T = 5 ns.

- (2) V_{IHC} (m/n) or V_{IH} (m/n) and V_{IL} (max) are reference levels for measuring timing of input signels. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL} .
- (3) The specifications for tRC (min) and tRWC (min) are used only to indicate cycle time at which proper operation over the full temperature range (0°C < $T_8 \leq 70^{\circ}$ C) is assured.
- $\underbrace{\textbf{4}}_{\text{c}} \text{ Assumes that } t_{RCD} \leq t_{RCD} \text{ (max). If } t_{RCD} \text{ is greater then the maximum recommended value shown in this table, } t_{RAC} \\ \text{will increase by the amount that } t_{RCD} \text{ exceeds the values shown.}$
- (5) Assumes that tRCD ≥ tRCD (max).
- 6 Measured with a load equivalent to 2 TTL loads and 100 pF.
- () topp (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- (a) Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only, if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
- (9) These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.

NEC Microcomputers

MEMORY

4 4 4 4

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

*C MASTER 1978

C

NEC Microcomputers

The 14 address bits required to decode 1 of 16,384 bit locations are multiplexed onto the 7 address pins and then latched on the chip with the use of the Row Address Strobe (\overline{RAS}), and the Column Address Strobe (\overline{CAS}). The 7 bit row address is first applied and \overline{RAS} is then brought low. After the \overline{RAS} hold time has elapsed, the 7 bit column address is applied and \overline{CAS} is brought low. Since the column address is not needed internally until a time of t_{CRD} MAX after the row address, this multiplexing operation imposes no penalty on access time as long as \overline{CAS} is applied no later than t_{CRD} MAX. If this time is exceeded, access time will be defined from \overline{CAS} instead of \overline{RAS} .

ADDRESSING

μ**Ρ**[¹¹⁶

PACKA

DATA I/O

For a write operation, the input data is latched on the chip by the negative going edge of WRITE or CAS, whichever occurs later. If WRITE is active before CAS, this is an "early WRITE" cycle and data out will remain in the high impedance state throughout the cycle. For a READ, WRITE, OR READ-MODIFY-WRITE cycle, the data output will contain the data in the selected cell after the access time. Data out will assume the high impedance state anytime that CAS goes high.

The page mode feature allows the μ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on RAS and strobing the new column addresses with CAS. This eliminates the setup and hold times for the row address resulting in faster operation.

PAGE MODE

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128 row addresses every 2 milliseconds or less. Because data out is not latched, "RAS only" cycles can be used for simple refreshing operation.

Either RAS and/or CAS can be decoded for chip select function. Unselected chip outputs will remain in the high impedance state.

REFRESH

CHIP SELECTION

MEMORY

PACKAGE OUTLINE μPD416C/D

μ**PD416C** (Plastic)

ITEM	MILLIMETERS	INCHES
Α	19.4 MAX.	0.76 MAX.
B	0.81	0.03
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
I	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
к	7.62	0.30
L	6.4	0.25
м	0.25 +0.10 - 0.05	0.01

μPD416D

(Ceramic)								
ITEM	MILLIMETERS	INCHES						
A	20.5 MAX.	0.81 MAX.						
8	1.36	0.05						
С	2.54	0.10						
D	0.5	0.02						
Ε	17.78	0.70						
F	1.3	0.051						
G	3.5 MIN.	0.14 MIN.						
н	0.5 MIN.	0.02 MIN.						
1	4.6 MAX.	0.18 MAX.						
J	5.1 MAX.	0.20 MAX.						
ĸ	7.6	0.30						
L	7.3	0.29						
м	0.27	0.01						

NEC Microcomputers

MEMORY

SP416-8-77-GY-CAT

1411

MASTER 1978

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment an software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied t grant any license to make, use, or sell equipment manufactured in accordance herewith.

The 100001211 is a selector/multiplexor with inverters and drivers to supply on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The device presents inverted data.

The same and as being a set

NOTE The 100001211 is a low power Schottky device.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipmen software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC s prior written approval nor be impligrant any license to make, use, or sell equipment manufactured in accordance herewith.

100001231

8-Bit Parallel-Out Serial Shift Register

1425164

TRUTH TABLE

	0	UTPU	TS			
CLEAR	CLOCK		B	QA	QB	QH
L	X	X	X	L	L	L
н	L	X	X	QAO	QBO	QHO
н		н	H	H	QAn	QGn
н	†	L	X	L	QAn	QGn
н	1	x	L	L	QAn	QGn

H = high level (steedy state), L = low level (steady state)

X - irrelevent (any input, including tra f - transition from low to high level

O_{AD}, O_{BO}, O_{HO} - the level of O_A, O_B, or O_H, respectively before the indicated steedy-state input

 $Q_{Anr} Q_{Gn}$ = the level of Q_A or Q_G before the most-recent f transition of the clock; indicates a one-bit shift

TYPICAL CLEAR, SHIFT, AND CLEAR SEQUENCES

The 100001231 is a 8-bit shift register which featu gated serial inputs, asynchronous clear, a totem-pole outputs. A low on either (both) of serial gated inputs (A,B) inhibits the entry of r data and resets the first flip-flop to low on the r clock pulse. A high input enables the other in which will determine the state of the first flip-f Clocking occurs on the low-to-high transition of clock.

> NOTE The 100001231 is a low power Scho device.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC s prior written approval nor be implied to grant any license to make, use, or self equipment manufactured in accordance herewith.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equips software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be in grant any license to make, use, or sell equipment manufactured in accordance herewith.

100001254

Octal Bus Transceiver With 3-State Outputs

PIN CONFIGURATION

FUNCTION TABLE

ENABLE G	DIRECTION CONTROL DIR	OPERATION
L	L	B data to A bus
L	н	A data to B bus
н	x	Isolation

I = high level, L = low level, X = irrelevant

This device allows data transmission from the to the B bus or from the B bus to the A bus depen upon the logic level at the direction control input. The enable input (G) can be used to disable device so that the buses are effectively isolated.

NOTE The 100001254 is a low power Sch device.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manutactured in accordance herewith.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipmen software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC is prior written approval nor be impligrant any license to make, use, or sell equipment manufactured in accordance herewith.

and the second second

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

(

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and soltware. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith

100001497

1024-Bit RAM

PIN CONFIGURATION

 (\cdot)

LOGIC SYMBOL

The 100001497 is a fully decoded 1024-bit random access memory organized as 256 words by 4 bits. It features three-state outputs and two chip select inputs. A word is addressed by the 8-bit address A0 through A7.

The read and write operations are controlled by the state of the active low Write Enable (WE). When WE is low and the chip is selected, the data at Din is written into the addressed location. When WE is high and the chip is selected, the data in the addressed location is read out at Dout.

TRUTH TABLE

		INPU	TS		OUTPUTS	
OE	CS1	CS2	WE	D ₁ - D4	93422	MODE
PIN 18	PIN 19	PIN 17	PIN 20	PINS 9, 11,13, 15	3-STATE	
X X L X X	H X L L	Х L H H	Х X H L L	X X X L H	HIGH Z HIGH Z O1 - O4 HIGH Z HIGH Z	Not Selected Not Selected Read Stored Data Write "O" Write "1"
н	L	нн	H	X	HIGH Z	Output Disabled
н	L		L	L	HIGH Z	Write "O" (Output Disabled)
н	L		L	H	HIGH Z	Write "1" (Output Disabled)

H = HIGH Voltage, L = LOW Voltage, X = Don't Care (HIGH or LOW); HIGH Z = High Impedance.

LOGIC DIAGRAM

14-11

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenaisce of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

100001524

Four-Bit Binary Counter

(

(

(es)

Note: Pin 1 is marked for orientation.

LOGIC DIAGRAM

LOGIC SYMBOL

V_{CC} = Pin 16 GND = Pin 8

FUNCTION	TABLE
----------	-------

INPUTS							ουτ	PUTS				
CP	MR	PE	CEP	CET	Po	P1	P2	P3	00	01	02	03
×	L	X	×	x	×	x	×	×	L	L	L	L
1	н	L	×	×	Do	01	07	03	Do	D1	Qg	0,
1	н	H	L	ι	×	×	×	×	NC	NC	NC	NC
t	н	н	L	н	×	×	×	×	NC	NC	NC	NC
1	H	н	н	L	×	x	×	×	NC	NC	NC	NC
1	н	H	H	н	x	x	×	×	COUNT			

H = HIGH L = LOW X = Den's Care NC = No Change Di may be asher MIGH or LOW 1 LOW-to-MIGH Transition

TERMINAL COUNT (TC) TRUTH TABLE

CET	r Q 0	Q1	02	03	тс
н	н	н	н	н	н
L	×	x	x	x	ι
×	L	x	x	x	ι
×	×	L	x	X	L
×	x	×	ι	x	L
×	×	x	x	ι	ι

The 100001524 is a synchronous 4-bit binary counter. When the parallel enable (\overline{PE}) is low, the data on the P0-P3 inputs is parallel loaded on the positive clock transition. When \overline{PE} is high and both count enables (CEP,CET) are also high, counting occurs on the positive transition of the clock. The terminal count output (TC) is high when CET is high and the counter is in its terminal count state. The counter also has a master reset input (\overline{MR}), which, when low, forces the Q outputs low independently of all other inputs.

NOTE The 100001524 is a Schottky device.
Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

