# Data General Corporation

1

**Technical Manual** 

Nova 1220



# DATA GENERAL TECHNICAL MANUAL

# NOVA 1220 COMPUTER

<u>MODELS</u> 8151, 8152, 8153, 8154 8155, 8156, 8157, 8158

Ordering No. 015-000011-02 Copyright © 1972, Data General Corporation All Rights Reserved. Frinted in the United States of America Rev. 02 March 1973

# INTRODUCTION

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipmen and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor b implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

CENTRAL PROCESSOR

# OPERATORS CONSOLE

**K** (

Ρ

M

N

POWER SUPPLY

MEMORY

INSTALLATION

MAINTENANCE

**REFERENCE TABLES** 



# NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

> DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS MANUAL FOR INFORMATION PURPOSES ONLY. DGC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE IN THE SPECIFICATIONS AND MATERIALS CONTAINED HEREIN AND SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES CAUSED BY RELIANCE ON THE MATERIALS PRESENTED, INCLUDING BUT NOT LIMITED TO TYPOGRAPHICAL OR ARITHMETIC ERRORS, COMPANY POLICY AND PRICING IN-FORMATION.



# TABLE OF CONTENTS

# SECTION O

# INTRODUCTION

. . .

SECTION C

THE NOVA 1220 COMPUTER .....

. . . . . . . . .

THIS MANUAL .....

| INTRODUCTION.   C-1     THE CONTROL UNIT.   C-1     Major States.   C-1     TS Cycles   C-2     Timing Generator Cycles   C-2     The Processor Timing Generator.   C-2     The Accumulator Timing Generator.   C-2     The Memory Timing Generator.   C-2     CPU DATA PATHS.   C-5     Registers   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-16     PEFER.   C-16     IDE FER.   C-12     IOCH.   C-22     DCH.   C-24     PI.   C-3     SFORD   C-6     The Second Conter (PC).   C-6     CPU Interface Register (MBO).   C-5     Soft COUNCER (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-6 <t< th=""><th>THE CENTRAL PROCESSOR UNIT</th></t<>                                                                                                                                                             | THE CENTRAL PROCESSOR UNIT                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| THE CONTROL UNIT   C-1     Major States.   C-1     TS Cycles   C-2     Timing Generator Cycles   C-2     The Processor Timing Generator   C-2     The Accumulator Timing Generator   C-2     The Memory Timing Generator   C-2     The Memory Timing Generator   C-2     CPU DATA PATHS   C-5     Registers   C-5     Instruction Register (IR and MBC)   C-5     Shift Buffer (ACB)   C-5     Accumulators (ACO, AC1, AC2, AC3)   C-5     Data Flow.   C-5     Instruction Overlapping   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-1     ALC   C-1     DE FER   C-1     DCH.   C-2     PI   C-3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INTRODUCTION                                                      |
| THE CONTROL UNIT   C-1     Major States.   C-1     TS Cycles.   C-2     Timing Generator Cycles.   C-2     The Processor Timing Generator   C-2     The Accumulator Timing Generator   C-2     The Memory Timing Generator   C-2     The Memory Timing Generator   C-2     CPU DATA PATHS.   C-5     Registers.   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Instruction Overlapping.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-12     I/O.   C-14     DEFER.   C-12     DCH.   C-2     PI   C-2     Made Column Counter Column Co |                                                                   |
| Major States.   C-1     TS Cycles.   C-2     Timing Generator Cycles   C-2     The Processor Timing Generator.   C-2     The Accumulator Timing Generator.   C-2     The Memory Timing Generator.   C-2     The Memory Timing Generator.   C-2     CPU DATA PATHS.   C-5     Registers   C-5     Instruction Register (IR and MBC).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Instruction Overlapping.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-11     I/O.   C-12     I/O.   C-12     The FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-16     FETCH.   C-16     PEFER.   C-16     PI I.   C-20     PI I.   C-30     The FOOM.   C-26     The FOOM.   C-26     The FOOM.   C-26     The FOOM.   C-30     The FOOM.   C-30                                                                                                                                                                                                                                                      | THE CONTROL UNIT                                                  |
| TS Cycles   C-2     Timing Generator Cycles   C-2     The Processor Timing Generator   C-2     The Accumulator Timing Generator   C-2     The Memory Timing Generator   C-2     The Memory Timing Generator   C-2     CPU DATA PATHS   C-5     Registers   C-5     Instruction Register (IR and MBC)   C-5     Shift Buffer (ACB)   C-5     Accumulators (AC0, AC1, AC2, AC3)   C-5     Data Flow   C-5     Instruction Overlapping   C-6     The FLOW AND TIMING DIAGRAMS   C-6     FETCH   C-11     I/O   C-12     I/O   C-11     DEFER   C-11     EXEC   C-11     EXEC   C-21     DCH   C-22     TH   C-33     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                    | Major States                                                      |
| Timing Generator Cycles   C-2     The Processor Timing Generator   C-2     The Accumulator Timing Generator   C-2     The Memory Timing Generator   C-2     The Memory Timing Generator   C-2     CPU DATA PATHS   C-5     Registers   C-5     Program Counter (PC)   C-5     Instruction Register (IR and MBC)   C-5     Shift Buffer (ACB)   C-5     Accumulators (AC0, AC1, AC2, AC3)   C-5     Nibble Transfers   C-5     Instruction Overlapping   C-6     Data Buses   C-6     The FLOW AND TIMING DIAGRAMS   C-6     FETCH   C-10     EFA   C-11     I/O.   C-11     DEFER   C-12     I/O.   C-11     DEFER   C-12     I/O.   C-12     I/O.   C-12     I/O.   C-12     I/O.   C-14     EFA   C-20     I/O.   C-12     I/O.   C-12     I/O.   C-12     I/O.   C-12 <                                                                                                                                                                                                                                                                                         | TS Cycles                                                         |
| The Processor Timing Generator.   C-2     The Accumulator Timing Generator.   C-2     The Memory Timing Generator.   C-2     The Memory Timing Generator.   C-2     CPU DATA PATHS.   C-5     Registers.   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-8     ALC.   C-11     EFA.   C-12     I/O.   C-11     DE FER.   C-12     I/O.   C-14     EFA.   C-16     FETCH.   C-8     ALC.   C-16     FETCH.   C-16     FETCH.   C-16     FETCH.   C-16     FETCH.   C-26     FETCH.   C-16     FETCH.   C-16     FETCH                                                                                                                                                                                                                                                                   | Timing Generator Cycles                                           |
| The Accumulator Timing Generator.   C-2     The Memory Timing Generator.   C-2     CPU DATA PATHS.   C-5     Registers.   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC)   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-8     ALC.   C-10     EFA.   C-11     DE FER.   C-12     I/O.   C-11     DE FER.   C-12     DCH.   C-26     PETCH.   C-10     FETCH.   C-6     FETCH.   C-6     FETCH.   C-10     FFA.   C-11     DE FER.   C-10     FETCH.   C-10     The FLOW AND TIMING DIAGRAMS   C-10     Register C.   C-20     PI   C-10   C-10     DE FER.                                                                                                                                                                                                                                                                                                | The Processor Timing Generator                                    |
| The Memory Timing Generator.   C-2     CPU DATA PATHS.   C-5     Registers.   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Instruction Overlapping.   C-5     Instruction Overlapping.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-8     ALC.   C-10     LOB.   C-11     I/O.   C-12     DE FER.   C-16     FETCH.   C-26     PI   C-26     PI   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Accumulator Timing Generator                                  |
| CPU DATA PATHS.   C-5     Registers   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-16     EFA.   C-16     DEFER.   C-16     DEFER.   C-16     DEFER.   C-16     PETCH.   C-22     DCH.   C-24     DCH.   C-26     DCH.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Memory Timing Generator                                       |
| Registers   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO)   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-16     FETCH.   C-16     FETCH.   C-16     FETCH.   C-16     Grade ALC:   C-16     C-17   C-16     DE FER.   C-16     QCH.   C-22     QCH.   C-33     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CPU DATA PATHS                                                    |
| Registers   C-5     Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Instruction Overlapping.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-12     I/O.   C-12     I/O.   C-12     DEFER.   C-16     EXEC.   C-16     DCH.   C-26     PI   C-33     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |
| Program Counter (PC).   C-5     Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-12     I/O.   C-12     I/O.   C-12     I/O.   C-12     DE FER.   C-16     EFER.   C-16     PI.   C-20     DCH.   C-33     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Registers (DO)                                                    |
| Instruction Register (IR and MBC).   C-5     CPU Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-16     FEA.   C-12     I/O.   C-12     DE FER.   C-12     DC.   C-12     DC.   C-12     DF FER.   C-12     DC.   C-12     DC.   C-12     I/O.   C-12     DE FER.   C-12     DCH.   C-20     DCH.   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Program Counter (PC)                                              |
| CP0 Interface Register (MBO).   C-5     Shift Buffer (ACB).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-8     ALC.   C-10     EFA.   C-12     I/O.   C-12     DE FER.   C-16     EXEC.   C-16     EXEC.   C-20     DCH.   C-30     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (DIL Interface Degister (IR and MBC)                              |
| Accumulators (AC0, AC1, AC2, AC3).   C-5     Accumulators (AC0, AC1, AC2, AC3).   C-5     Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-8     ALC:   C-10     EFA.   C-12     I/O.   C-12     DE FER.   C-16     EXEC.   C-20     DCH.   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CPU Internace Register (MDO)C-5<br>Shift Duffon (ACD) $C_{-5}$    |
| Data Flow.   C-5     Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-8     ALC.   C-10     EFA.   C-12     I/O.   C-16     DE FER.   C-16     EXEC.   C-16     DCH.   C-20     PI   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta ccumulators (\Delta C0  \Delta C1  \Delta C2  \Delta C3)$ |
| Nibble Transfers.   C-5     Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS.   C-6     FETCH.   C-8     ALC.   C-10     EFA.   C-12     I/O.   C-15     DE FER.   C-16     EXEC.   C-16     DCH.   C-20     PI.   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data Flow                                                         |
| Instruction Overlapping.   C-6     Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.      ALC.      EFA.      I/O.      DE FER.   C-16     EXEC.   C-20     DCH.   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nibble Transfers                                                  |
| Data Buses.   C-6     THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.      ALC.      EFA.   C-10     I/O.      DE FER.   C-16     EXEC.   C-20     DCH.   C-30     F COM.   C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Instruction Overlapping                                           |
| THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.   C-8     ALC.   C-10     EFA.   C-12     I/O.   C-15     DE FER.   C-16     EXEC.   C-20     DCH.   C-30     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data BusesC-6                                                     |
| THE FLOW AND TIMING DIAGRAMS   C-6     FETCH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| FETCH.   .C-8     ALC.   .C-10     EFA.   .C-12     I/O.   .C-15     DE FER.   .C-16     EXEC.   .C-20     DCH.   .C-20     PI   .C-30     F COM.   .C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THE FLOW AND TIMING DIAGRAMS C-6                                  |
| FETCH.   C-8     ALC.   C-10     EFA.   C-12     I/O.   C-15     DE FER.   C-16     EXEC.   C-20     DCH.   C-20     PI   C-30     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |
| ALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FETCHC-8                                                          |
| EFAC-12<br>I/OC-15<br>DEFERC-16<br>EXECC-20<br>DCHC-26<br>PIC-30<br>F COMC-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALC:                                                              |
| I/O   C-15     DEFER.   C-16     EXEC.   C-20     DCH.   C-26     PI   C-30     F COM.   C-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EFA                                                               |
| DEFERC-16<br>EXECC-20<br>DCHC-26<br>PIC-30<br>F COMC-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/0C-1                                                            |
| EXEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFER $C-1$                                                       |
| PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EAEC                                                              |
| F COMC-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCH $C-2l$                                                        |
| Г СОмС-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F COM                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 COM                                                             |
| PETERFNCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEFEDENCES                                                        |

Page

. 0-1

. . . . . . . . . . . . . . . .

..... O-2

i

# SECTION K

# THE OPERATOR'S CONSOLE

Page

| INTRODUCTION                                                                                                                                                                            | K-1                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| CONSOLE LIGHTS AND SWITCHES                                                                                                                                                             | K-1                                    |
| The Console ADDRESS Lights<br>The Console DATA Lights<br>The Console Operational Indicators<br>The Console Switch Register<br>The Console Control Switches<br>The Console Rotary Switch | K-1<br>K-1<br>K-2<br>K-2<br>K-2<br>K-2 |
| REFERENCES                                                                                                                                                                              | K-2                                    |

# SECTION P

#### THE POWER SUPPLY

| INTRODUCTION                         | P-1   |
|--------------------------------------|-------|
| POWER SUPPLY CIRCUITS                | . P-1 |
| The 30V Unregulated Supply           |       |
| The Series Pass Switching Regulators | . P-1 |
| The Fuses                            | P-1   |
| The Power Fail Module                | . P-1 |
| REFERENCES                           | . P-1 |

#### SECTION M

# THE MEMORY

| A REVIEW OF CORE MEMORIES    | M-1 |
|------------------------------|-----|
| DATA GENERAL'S CORE MEMORIES | M-2 |
| The Memory Select Logic      | M-2 |
| REFERENCES                   | M-2 |

# SECTION I

# INSTALLING THE COMPUTER

| INTRODUCTION                                                                                                                           | . I-1                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| PLACING THE COMPUTER                                                                                                                   | .I-1                                                         |
| UNPACKING THE COMPUTER                                                                                                                 | . I-1                                                        |
| PACKING THE COMPUTER                                                                                                                   | .1-3                                                         |
| ASSEMBLING THE COMPUTER                                                                                                                | I-3                                                          |
| Installing or Removing Boards<br>Rack Mounting The Computer                                                                            | .I-3<br>.I-5                                                 |
| CABLING ASSEMBLIES TOGETHER                                                                                                            | I-5                                                          |
| Types of Cables.<br>I/O Cables.<br>Device Cables.<br>Internal Cables.<br>Interdevice Cables.<br>Adapter Cables.<br>Cabling The System. | .I-5<br>.I-5<br>.I-5<br>.I-5<br>.I-5<br>.I-5<br>.I-5<br>.I-5 |
| REFERENCES                                                                                                                             | .I-8                                                         |

# SECTION N

# MAINTAINING THE COMPUTER

| INTRODUCTION N-1                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIELD SERVICE ORGANIZATIONN-1                                                                                                                                           |
| Field Service Programs.   N-1     On Call Service Contract.   N-1     Factory Service Contract.   N-1     Hourly Service.   N-1     General Terms and Conditions.   N-1 |
| TRAINING ORGANIZATION N-2                                                                                                                                               |
| Mainframe Maintenance Course.N-2Fundamentals of Mini-Computer Programming.N-2Basic Programming.N-2Advanced Programming.N-2                                              |
| PREVENTIVE MAINTENANCE                                                                                                                                                  |
| HOW TO TEST THE COMPUTER                                                                                                                                                |

# **REFERENCE TABLES**

|                |                                   |                             |                               |                                       | Page |
|----------------|-----------------------------------|-----------------------------|-------------------------------|---------------------------------------|------|
| SIGNAL LIST    | • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · · | T1-1 |
| ABBREVIATIONS. |                                   | •••••                       |                               | • • • • • • • • • • • • • • • •       | T2-1 |

# LIST OF ILLUSTRATIONS

| F | igure | Title                                                                                      | Page    |
|---|-------|--------------------------------------------------------------------------------------------|---------|
|   | O-1   | Exploded View of The Nova 1220 Computer With Central Processor and<br>Memory Cards Removed | 0-1     |
|   | O-2   | Block Diagram of The Basic Nova 1220 Computer                                              | 0-3,0-4 |
|   | O-3   | Nova 1220 Hardware Documentation                                                           | O-5     |
|   | C-1   | Timing For The Processor Timing Generator During All Major States Except<br>Fetch or Key   | . C -2  |
|   | C-2   | Timing For The Processor Timing Generator During Fetch or Key                              | C-3     |
|   | C-3   | Timing For The Accumulator Timing Generator                                                | .C-3    |
|   | C-4   | Timing For The Memory Timing Generator                                                     | C-4     |
|   | C-5   | The Nova 1220 Central Processor                                                            | C-7     |
|   | C-6   | Data Channel Signals                                                                       | C-36    |
|   | C-7   | Deposit Timing Diagram                                                                     | C-37    |
|   | C-8   | Examine AC1 Timing Diagram                                                                 | C-38    |
|   | C-9   | ADD0, 1, SKP Timing Diagram                                                                | C-39    |
|   | C-10  | MOV0, 0 Timing Diagram                                                                     | C-40    |
|   | C-11  | Timing Diagram For Both The ISZ And DSZ                                                    | C-41    |
|   | C-12  | LDA Timing Diagram                                                                         | C-42    |
|   | C-13  | STA Timing Diagram                                                                         | .C-43   |
|   | C-14  | JMP @ 100 Timing Diagram                                                                   | .C-44   |
|   | C-15  | JSR @ 20 Timing Diagram                                                                    | .C-45   |
|   | C-16  | 1/O Input Timing Diagram                                                                   | C-46    |
|   | C-17  | I/O Output Timing Diagram                                                                  | .C-47   |

# LIST OF ILLUSTRATIONS (Continued)

| Figure | Title                                                                | Page |
|--------|----------------------------------------------------------------------|------|
| C-18   | PI Timing Diagram                                                    | C-48 |
| C-19   | Data Channel Increment Timing                                        | C-49 |
| C-20   | Data Channel In Timing                                               | C-49 |
| C-21   | Data Channel Out Timing                                              | C-50 |
| C-22   | Data Channel Out Followed By Data Channel In Timing                  | C-50 |
| K-1    | The Console                                                          | K-1  |
| К-2    | The CPU Key Sequence Timing Diagram                                  | K-2  |
| К-3    | Key, KEYM and Manual Flow Diagrams                                   | K-4  |
| P-1    | Simplified Schematic of The +5Vdc Series Switching Regulator         | P-3  |
| P-2    | Simplified Schematic of The +15Vdc Series Switching Regulator        | P-4  |
| M-1    | Simplified Schematic of a Memory Core                                | M-1  |
| M-2    | Simplified Schematic of The Core Memory's Sense and<br>Inhibit Lines | M-2  |
| M-3    | Core Memory                                                          | M-3  |
| M-4    | Wiring Up The Select Logic of 1K and 2K Boards                       | M-4  |
| M-5    | Wiring Up The Select Logic of 4K and 8K Boards                       | M-5  |
| I-1    | The Nova 1220 Shipping Kit                                           | I-2  |
| I-2    | Nova 1220 Board Slots                                                | I-3  |
| I-3    | Rack Mounting Hardware For The Nova 1220                             | I-4  |
| I-4    | Sketch of The Nova 1220 Cabling Schemes                              | I-6  |

# LIST OF TABLES

| Number     | Title                                                                 | Page |
|------------|-----------------------------------------------------------------------|------|
| C-1        | Adder and Multiplexer Control Signals During EFA Instructions         | C-34 |
| C-2        | Adder Control Signals During ALC Instructions (TS3)                   | C-34 |
| C-3        | Carry Chart For ALC Instruction                                       | C-35 |
| C-4        | Memory Reference Instruction Decoding Chart                           | C-35 |
| K-1        | Control Switch Decoding To The Instruction Register                   | K-3  |
| K-2        | Backpanel Connections To The Console Through POA                      | K-5  |
| P-1        | Nova 1220 Power Supply Specifications                                 | P-2  |
| <b>P-2</b> | Output Signals Of The Nova 1220 Power Fail Module                     | P-2  |
| M-1        | External Memory Signals                                               | M-6  |
| I-1        | The Nova 1220 Electrical, Mechanical and Environmental Specifications | I-1  |
| I-2        | P3 Interconnections For Nova 1220                                     | I-7  |
| I-3        | P4 Interconnections For Nova 1220                                     | I-8  |
| N-1        | Preventive Maintenance Check List                                     | N-3  |
| N-2        | Recommended Maintenance Tool Kit                                      | N-4  |
| N-3        | The Nova 1220 Diagnostics                                             | N-5  |

vi

# SECTION O

## INTRODUCTION

## THE NOVA 1220 COMPUTER

The Nova 1220 computer shown in Figure O-1 consists of a power supply-backpanel assembly and a console assembly mounted on a chassis into which plug up to ten 15" by 15" PC boards. The chassis includes a frame, two fans, a filter, a power transformer and a power switch assembly; the power supply-backpanel includes the power supply and ten sets of edge connectors mounted on an etched PC board. The console includes a frame, front panel and PC board which holds the switches, lights and associated logic. Each basic Nova 1220 includes a Central Processor module, and any one of four types of memory modules; 1K, 2K, 4K or 8K. A table top assembly is also available but not shown.



Figure O-1 Exploded View of The Nova 1220 Computer With Central Processor and Memory Cards Removed

The Central Processor, Console, Memories and Controllers communicate with each other along 16 bit buses called MEM, MBO and IN-OUT as shown in Figure O-2. MEM transfers information from Memory or the Console to the MBO or Instruction registers; MBO transfers information from the MBO register to the Console and Memories, and IN-OUT transfers information between the Memory's MB register and peripheral controllers. In the Nova 1220 proper all these data paths and their associated control signals travel along etched tracks on the backpanel to the board's edge connectors and to a plug in the console's PC board.

# THIS MANUAL

This manual explains how the basic Nova 1220 works, how it is installed and how it is maintained. It is divided into 8 sections:

Section O introduces the machine and this manual;

Section C explains how the Central Processor works;

Section K explains how the operator's Console works;

Section P explains how the Power Supply works;

Section M explains how the Memories work;

Section I explains how to install the computer;

Section N explains how to maintain the computer;

Section T has two reference tables - a signal list and a list of expanded abbreviations. The signal list traces the source and destination of each signal in the Central Processor and the Memory. Source signals are listed alphanumerically by name. Each source signal originates at the output pin (PIN) of an integrated circuit (CHIP) which is called out on a drawing (DWG) at a grid reference (GRID). Each signal is wired to one or more ICs which themselves originate more signals, or (FUNCTIONS), whose names and locations are listed in the DESTINATION column beside their originating signal. Drawing numbers are identified by the last two numbers of the print followed by a hyphen followed by their sheet number(s).

#### RELATED DOCUMENTS

Figure O-3 lists the engineering prints and manuals which describe the basic computer. The manual "How To Use The Nova Computers" explains how to program the machine. The manual "The I.C. User's Guide" gives logic diagrams and truth tables for the I.C.s used in Data General's machines. Data General Corporation (DGC) has prepared this manual for use by DGC personnel and cu and software. The drawings and specifications contained herein are the property of DGC and implied to grant any license to make, use, or sell equipment manufactured in accordance h

ATTIM







Figure O-3 Nova 1220 Hardware Documentation

This Page Left Blank

Intentionally

## SECTION C

#### THE CENTRAL PROCESSOR UNIT

#### INTRODUCTION

The central processor unit (CPU) used in this computer is a binary, 2's complement, fixed word length, parallel/serial, digital, automatic processor. It takes up to 32K words of  $1.2\mu$  sec co-ordinate-addressed core memory of 16 bits per word. It has 7 sixteen bit hardware registers: four accumulators (AC0, AC1, AC2 and AC3); a programtransparent shift buffer (ACB); a program-transparent memory buffer (MBO); and one 15 bit program counter (PC). All internal data paths are four bits (or one "nibble") wide, so each internal transfer takes four steps; all three external data paths or buses, (MEM, MBO and IN-OUT) are 16 bits wide so each external transfer takes one step.

There are three classes of instructions; memory reference (EFA), input-output (I/O) and arithmetic and logic (ALC). There are three modes of addressing; absolute, index (to AC2 or AC3) and relative (to PC).

Peripheral devices can interrupt the processor and transfer data to or from its accumulators via the I/O instruction set, or simply use the processor's high speed data channel directly to memory.

The CPU is contained on a single 15" by 15" PC board which is inserted into the first slot of the computer's chassis. Power is supplied by the chassis' power supply.

#### THE CONTROL UNIT

The CPU is a synchronous processor for which time is broken up by two clocks into discrete, fixed periods. The two clocks are derived from a 13.333Mhz crystal oscillator which is divided by two. One clock, called MEM CLK is always running; the other, called CPU CLK is gated by three signals RUN, STUTTER and WHOA. RUN is a control flip-flop which stops the processor when it resets; STUTTER inhibits the clock for one cycle and WHOA is used by certain options like the multiply divide to slow the machine down. With these clocks the Control generates eight major states and two levels of minor states called timing state (TS) cycles and timing generator (TG) cycles.

#### **Major States**

Major states define what type of memory function is under way. The designated major state of the machine is set at the beginning of each memory cycle and remains set throughout that memory cycle. There are eight major states; Fetch, Defer, Execute, PI,DCH,Key, Keym, and a "dummy" state during which none of the other states are set.

- 1. Fetch occurs when the next word to be read from memory is to be treated as an instruction.
- 2. Defer occurs when the next word from memory is to be treated as the address of an operandor instruction, i.e., during indirect addressing.
- 3. Execute occurs when the next word from memory is to be treated as an operand. Programmed I/O operations also set Execute, but the memory is not allowed to run.
- 4. PI occurs during a program interrupt when:
  - the contents of the PC are stored in location 0
  - the next major state is set to Defer
  - A JMP instruction is forced into the Instruction Register
  - the next address executed is in location 1, which should be set to the starting address of the service routine.
- 5. DCH occurs when the next memory cycle is to be a direct transfer between an I/O device and Memory.
- 6. Key occurs when a manual function is being requested from the Console. During Key, either all or part of the manual function is performed. The memory is not allowed to run during the Key cycle.
- 7. Keym occurs when the manual function requires a memory cycle, such as Examine or Program Load.
- 8. "Dummy" State occurs only when a machine stop is pending and the current instruction requires the skip conditions to be interrogated. During this state the machine increments the PC if the skip is successful in order that the address lights reflect the true next address.

#### **TS** Cycles

The TS cycles are four clock pulses long, and may be thought of as the time required to transfer a 16 bit word between two CPU registers at the rate of four bits per clock cycle. Each Major State consists of at least two complementary TS levels, called TS0 and TS3. TS0 occurs during the first half of the Major State, and TS3 occurs during the second half. Certain operations require more time than that provided by the two TS cycles, so a flip-flop called Loop is set to force the TS0 cycle to repeat and give the Major State three TS time intervals. During TS0 of this operation the data is fetched from the memory and loaded into the MBO; then Loop is set, TS0 is repeated, and the data in the MBO is shifted through the Adder. Finally, TS3 is set and the data is transferred from the MBO to the Memory and re-written.

## **Timing Generator Cycles**

There are three timing generators, called the processor timing generator (PTG); the accumulator timing generator (ACTG) and the memory timing generator (MTG). These timing generators effectively designate the clock pulses for specific functions in the processor, accumulator and memory respectively.

The Processor Timing Generator. This two bit counter, designated, PTG0 and PTG1, cycles every four clock pulses. PTG0 is set during the two middle clock cycles of a TS cycle, and PTG1 is set during the last two cycles of a TS cycle. These two levels are decoded into two others called PTG2 and PTG5. PTG2 is the last clock interval during TS0, and PTG5 is the last clock interval during TS3. PTG5 is used, for example, to enable the major state flip-flops. PTG0 "anded" with TS0 to form  $\overline{PTG0 \cdot TS0}$ , the first clock interval during TSO, is used to increment the Adder as the least significant four bit nibble is passed through it. Figures C-1 and C-2 show the timing for the PTG during FETCH or KEY major states, and all other states.

The Accumulator Timing Generator. This two bit counter, designated ACTG0 and ACTG1, is always one clock state ahead of the PTG counter. Its two signals are used to drive the accumulator chips. Their timing is given in Figure C-3.

The Memory Timing Generator. This four bit counter, designated MTG0, MTG2, MTG3, is used to form the control signals for memory. Its timing is given in Figure C-4.



NEXT MAJOR STATE

Figure C-1 Timing For The Processor Timing Generator During All Major States Except Fetch or Key



Figure C-2 Timing For The Processor Timing Generator During Fetch or Key

BUS FOR  $1050\mu$  sec.

| MEM<br>CLOCK<br>(88-1-A6)<br>ACTG0<br>(88-1-D8) |
|-------------------------------------------------|
| ACTG1<br>(88-1-D8)                              |
| <u>ТS0</u><br>КЕУ/FETCH                         |
| TS0<br>KEY/FETCH                                |
| TS3<br>KEY/FETCH                                |
| TS3<br>KEY/FETCH                                |
| END CYCLE KEY/FETCH                             |
| END CYCLE KEY/FETCH                             |
| DG-00046                                        |

ACCUMULATOR TRUTH TABLE (88-4-B6 & B7 U124 & U123)

| ACTG0 | ACTG | 1         |   |
|-------|------|-----------|---|
| 0     | 0    | BITS 12-1 | 5 |
| 1     | 0    | BITS 8-1  | 1 |
| 1     | 1    | BITS 4-7  |   |
| 0     | 1    | BITS 0-3  |   |
|       |      |           |   |

Figure C-3 Timing For The Accumulator **Timing Generator** 



NOTE - IF LOOPING TS0, CLOCK FREEZES WITH ALL ONES UNTIL FIRST CLOCK IN TS3.

DG-00047

Figure C-4 Timing For The Memory Timing Generator

## CPU DATA PATHS

#### Registers

The CPU is organized around eight hardware registers as shown in Figure C-5; a shift buffer (ACB); a program counter (PC); a CPU interface register (MBO); an instruction register (IR and MBC); and four accumulators, (AC0, AC1, AC2, AC3). These eight registers are all 16 bits long except for the PC which is 15 bits. All internal data paths are four bits wide, so it takes four separate operations to perform an add, or a register-to-register transfer.

Program Counter (PC). The 15 bit address of the next instruction to be fetched is held in the PC. During the fetch of an instruction, the PC is incremented by one so that it points to the next sequential instruction. Certain instructions, such as JMP can change the contents of the PC. The PC consists of one 16 bit latch.

Instruction Register (IR and MBC). The Instruction Register stores the instruction currently being executed. The CPU decodes the data held in the Instruction Register in order to perform the instruction. The register is organized into two parts, the IR and MBC. The IR consists of the eight high order bits, and the MBC of the eight low order bits. During an effective address calculation, the MBC contains the displacement and shifts through the source multiplexer into the Adder and the IR bits remain static.

CPU Interface Register (MBO). The MBO is used in every operation the CPU performs. It acts as a parallel-to-serial converter for 16 bit data flowing into the machine from the MEM bus. This data is loaded from the MEM bus into the MBO in parallel, and shifted out four bits at a time into some other part of the machine. Conversely, data is shifted into the MBO from the Adder four bits at a time to be loaded into a Memory from the MBO bus. During effective address calculations, the MBO holds the present address used in relative addressing. During memory modify operations (such as ISZ) data is loaded into the MBO Memory. The MBO then modifies the data by recirculating it through the Adder and back into the MBO. The modified data is then loaded from the MBO back into Memory.

Shift Buffer (ACB). All data to be loaded into the Accumulators are passed through the ACB, where the results of an ALC instruction are assembled before they are loaded back into the Destination Accumulator.

Accumulators (AC0, AC1, AC2, AC3.) There are two identical sets of four - 16bit accumulators all of which can be logically and arithmetically manipulated under program control. Each set of accumulators is contained in a single 64 bit chip; (only one accumulator - nibble per chip can be addressed at any one time). Since it is necessary to be able to access two accumulators simultaneously, two sets are available, called source (S) and destination (D), each set containing the same information as the other. For example, two accumulators can be added together by simultaneously fetching the source data from one chip and the destination data from the other and then adding the two. The accumulators are buffered by four bit registers (source and destination) so that the next nibble can be selected while the current nibble is being processed. It takes 100 ns to access a nibble in the accumulator, and 100 ns to move a nibble through the Adder and Multiplexer, so by overlapping the two, the total time to process a nibble is 100 ns.

During the first nibble, the Adder is idle and a flag called STUTTER inhibits the clock until data is ready.

#### Data Flow

Nibble Transfers. When transferring data from one register to another, the lower order bits are always transferred first. The first clock interval would transfer bits 12-15, the second 8-11, the third 4-7, and the fourth 0-3. If an operation is to be performed upon a word, two things must be specified; the bit position inside the nibble, and the nibble to be acted upon. For example, to increment a word during FETCH. TS0 time when the MBO is incremented, a carry is inserted into the low order bit of the Adder during the first clock interval, PTG=0·TSO, so a "one" is added to that first nibble. If a carry resulted from that first addition, it is stored in a flip-flop for the next clock interval where it is inserted into the Adder as a carry into the low order bit. This continues until all four nibbles have passed through the Adder. During JSR it is necessary to force bit 0 to be zero as it is stored into AC3. A gate in the high order position of the nibble forces the output of the multiplexer/shifter gate high (to load zero) during JSR and the fourth clock interval during the time state in which the PC is being loaded into AC3.

Instruction Overlapping. Certain instructions are carried out at the same time as parts of other instructions. For example, any operation which loads an accumulator is overlapped with the next major state. Such is the case with the ALC instruction when the CPU first operates upon the  $\operatorname{accumulator}(s)$ , loads the result into the ACB register while memory is re-writing the instruction, and then waits until the next state to transfer the result from the ACB back into the accumulator. The next state could be FETCH, PI, DCH or even KEY. Another operation that is overlapped with the next Major State is the interrogation of skip conditions for ALC and ISZ/DSZ instructions. The results of these instructions are loaded into the ACB, which shifts through the multiplexer/shifter during TS0 of the next major state, after which the data may or may not be loaded into the accumulators. The output of the multiplexer/shifter is checked for all zeroes to see if it fulfills the skip conditions. If it does, the SKIP flip-flop is set at the end of TS0. If the next major state was FETCH, the execution of that instruction is inhibited, effectively skipping it, even though it was fetched from memory and loaded into the instruction register. If the next major state is PI, the PC that is loaded into address zero is incremented to reflect the skip before it is stored. If the next state is DCH and the SKIP flip-flop is left in the set state, appropriate action will be taken on the next FETCH or PI cycle. If the machine is about to be stopped from the Console by STOP, ISTP, or MSTP, a "Dummy State" is entered in which the skip conditions are interrogated, and the PC incremented as required to permit the ADDRESS lights on the Console to show the correct next address when the machine is stopped.

## Data Buses

Data is transferred between memory and the central processor or an I/O device along three data buses called:

- **MEM** which transfers data from memory to the Central Processor;
- MBO which transfers data from the Central Processor to Memory;
- DATA which transfers data in either direction between memory and I/O devices.

During an output I/O instruction, data moves from the source AC into the MBO and on to the MBO bus. From the bus it is strobed into the memory MB register and on through the IN-OUT bus to the destination device. During an output I/O instruction the destination device outputs to the IN-OUT bus into the memory's MB register, which dumps into the MEM bus. The MEM bus is strobed into the MBO which moves it through the Adder to the ACB and into the destination AC.

#### THE FLOW AND TIMING DIAGRAMS

The following diagrams illustrate each step in the sequence of functions carried out by the central processor and memory. Each block of a flow diagram describes an operation, its data path and the location of critical logic. For example, this block means that the ACB register was transferred to an AC register via the  $ACB_{3}-AC_{88-4-A7}$ 

shifter (ACB) which is located on print 001-000088, sheet 4, in grid A7. The symbol  $\Sigma$  means Adder, M means Multiplexer, and S means Shifter. Supporting notes near the blocks give the current time state, relevant figures and the status of important signals.

#### REFERENCES

| 1. | Nova 1200 CPU | Print D-001-000088-13 |
|----|---------------|-----------------------|
| 2. | Flow Charts   | Print D-001-000106-00 |
| 3. | Waveforms     | Print D-001-000107-00 |

Rev. 01



Figure C-5 The Nova 1220 Central Processor













C-13





C-15






L)(18)(K) (18) PTG5·TS3 JMP+JSRLDA+STA+ISZ+DSZOF A DEFER мво то мво то ADDER ADDER DISABLE D MULT=LOW 88-4 88-4  $\overline{\text{ACD} \cdot \text{OUT}} = \text{HI } 88 - 2 - B2$  $\frac{S2, S1, S0 = LOW 88 - 2 - C2}{ADD ONE = HI 88 - 2 - D2}$ S MULT OUT = ZEROS CLOCK ADDER CLOCK ADDER  $\overline{\text{LOAD PC}} = \text{LOW}$  $\overline{\text{LOAD PC}} = \text{HI}$ **LOAD MBO**= HI 88-3-B2 TO MBO, PC, ACB 88-4 TO MBO ACB 88-2-B2 88-2-B2 SHIFT ACB=HI 88-3-C2 88-4 FOURTH NIBBLE MULTI-MULTI YES YES DEFER DEFER 88-2-D7 88-2-D7 F COM (33)SET SET EXEC DEFER DG-00015 88-2-D6 88-2-D6 DEFER (16)EXEC (20)



Rev. 01



Rev. 02



٠



Rev. 01







Y (26)COMMON SIGNALS FOR ALL FOUR NIBBLES DCH INC·TS0 LOOP S2, S1, S0 = LOW 88-2-C2DISABLES S MULT TO ADDER  $\overline{\text{ADD ONE}} = \text{LOW}$ MBO PLUS ONE DISABLE D MULT = HI 88-2-B2 88-2-D2 THRU ADDER TO  $\overline{\text{ACD OUT}} = \text{HI } 88-2-\text{B2}$ LOAD MBO = HI 88-3-B2MBO 88-4 FIRST NIBBLE  $\overline{PC IN} = HI 88 - 2 - D4$  $\overline{\text{FETCH} \cdot \text{TSO}} = \text{HI } 88-2-\text{D4}$  $\overline{\text{ADD ONE}} = \text{LOW IF}$ MBO PLUS CARRY  $\overline{\text{STA} \cdot \text{E}} = \text{HI } 88-2-\text{B4}$ CARRY FROM FIRST THRU ADDER TO NIBBLE 88-2-D2 MBO 88-4  $PTG0 = 1 \cdot PTG1 = 0$  SECOND NIBBLE  $\overline{\text{ADD ONE}} = \text{LOW IF}$ MBO PLUS CARRY CARRY FROM SECOND THRU ADDER TO NIBBLE 88-2-D2 MBO 88-4  $PTG0 = 1 \cdot PTG1 = 1$  THIRD NIBBLE  $\overline{\text{ADD ONE}} = \text{LOW IF}$ MBO PLUS CARRY CARRY FROM THRU ADDER TO THIRD NIBBLE MBO 88-4 88-2-D2 DG-00023 (28)х











C-32

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith. F COM (33) TS3 NOT GOING TO DEFER+EXECUTE STOP YES PENDING? TEST NO 88-1-B7 SKIP SET NO 88-3-D7 YES DCHR? YES 88-1-B6 88-1-C5 SET DCHA  $TS3 \cdot D + E NOT$ EXECUTE DUMMY NO MAJOR SETTING 88-1-D4 CYCLE ADD 1 TO STATES = 088-1-D5 MBO AND PC IF 88-2-D6 SKIP SATISFIED SET DCH MAJOR STATE 88 RESET RUN DCH 88-1-C6 YES INTR PENDING? HALT LOAD MBO=LOW 0→MBO 88-3-B2 NO 88-4 INH TRANS=LOW 88-1-B2 SET FETCH SET PI 88-2-D6 88-2-D6 NOTE: ION FLIP FLOP GETS Ý ۷ CLEARED PI (30) FETCH (8) DG-00030 88-2-C7

Table C-1

Adder and Multiplexer Control Signals During EFA Instructions

|                      | *   |    |    |                   | *                                |                                            |               |
|----------------------|-----|----|----|-------------------|----------------------------------|--------------------------------------------|---------------|
|                      | S0  | S1 | S2 | DISABLE<br>D MULT | $\frac{\text{EFA}}{\text{PTG1}}$ | $\frac{\overline{\text{ACD}}}{\text{OUT}}$ |               |
| REL · + (P6)         | H/L | L  | L  | L                 | H/L                              | H                                          |               |
| REL(P6)              | H/H | L  | L  | $\mathbf{L}$      | H/L                              | Н                                          |               |
| (AC2)<br>BASE +(AC3) | H/L | L  | L  | L                 | H/L                              | L                                          |               |
| (AC2)<br>BASE -(AC3) | Н/Н | L  | L  | L                 | H/L                              | L                                          |               |
| PAGE ZERO            | H/L | L  | L  | Н                 | H/L                              | H                                          | DON'T<br>CARE |

\* H for L for FIRST TWO LAST TWO NIBBLES NIBBLES

DG-00049

Table C-2

## Adder Control Signals During ALC Instructions (TS3)

| IR BITS<br>5 6 7 | FUNCTION          | IR5(1)=LOW<br>DISABLE<br>D MULT | ACD<br>OUT | EFA<br>PTG1 | IR6(1)<br>= HI<br>S0 | S1         | IR6(0)<br>= HI<br>S2 | IR7(1) = LOW  ADD  ONE |
|------------------|-------------------|---------------------------------|------------|-------------|----------------------|------------|----------------------|------------------------|
| 0 0 0            | COMPLEMENT        | H                               | L          | L           | L                    | Н          | Н                    | Н                      |
| 0 0 1            | NEGATE            | Н                               | L          | L           | L                    | Н          | Н                    | L                      |
| 0 1 0            | MOVE              | Н                               | L          | L           | Н                    | L          | L                    | Н                      |
| 0 1 1            | INCREMENT         | H                               | L          | L           | Н                    | L          | L                    | L                      |
| 1 0 0            | ADD<br>COMPLEMENT | L                               | L          | L           | L                    | Н          | Н                    | Н                      |
| 1 0 1            | SUBTRACT          | L                               | L          | L           | L                    | Н          | Н                    | L                      |
| 1 1 0            | ADD               | L                               | L          | L           | Н                    | L          | L                    | Н                      |
| 1 1 1            | AND               | L                               | L          | L           | Н                    | H          | L                    | L                      |
| 88-2<br>A7 & 6   |                   | 88-2-B2                         | 88-2<br>B2 | 88-2<br>A2  | 88-2<br>C2           | 88-2<br>C2 | 88-2<br>C2           | 88-2<br>D2             |

DG-00048

| PRIOR TO<br>INSTRUCTION | IR<br>10 | BITS<br>11 | OVERFLOW<br>OCCURRED? | CARRY AT<br>COMPLETION |
|-------------------------|----------|------------|-----------------------|------------------------|
| CARRY RESET             | 0        | 0          | NO                    | RESET                  |
| CARRY RESET             | 0        | 0          | YES                   | SET                    |
| CARRY SET               | 0        | 0          | NO                    | SET                    |
| CARRY SET               | 0        | 0          | YES                   | RESET                  |
|                         |          |            |                       |                        |
| CARRY RESET             | 0        | 1          | NO                    | RESET                  |
| CARRY RESET             | 0        | 1<br>      | YES                   | SET                    |
| CARRY SET               | 0        | 1          | NO                    | RESET                  |
| CARRY SET               | 0        | 1          | YES                   | SET                    |
|                         |          |            |                       |                        |
| CARRY RESET             | 1        | 0          | NO                    | SET                    |
| CARRY RESET             | 1        | 0          | YES                   | RESET                  |
| CARRY SET               | 1        | 0          | NO                    | SET                    |
| CARRY SET               | 1        | 0          | YES                   | RESET                  |
|                         |          |            |                       |                        |
| CARRY RESET             | 1        | 1          | NO                    | SET                    |
| CARRY RESET             | 1        | 1          | YES                   | RESET                  |
| CARRY SET               | 1        | 1          | NO                    | RESET                  |
| CARRY SET               | 1        | 1          | YES                   | SET                    |

# Table C-3 Carry Chart For ALC Instruction

DG-00050

## Table C-4

Memory Reference Instruction Decoding Chart

| IR    | { 0 | 1 | 2 | 3  | 4  |     |                             |
|-------|-----|---|---|----|----|-----|-----------------------------|
|       | 0   | 0 | 0 | 0  | 0  | JMP | SINGLE CYCLE(FETCH)         |
| NO AC | 0   | 0 | 0 | 0  | 1  | JSR | $\int EXCEPT DEFER(BIT5=1)$ |
| NU AC | 0   | 0 | 0 | 1  | 0  | ISZ |                             |
|       | 0   | 0 | 0 | 1  | 1  | DSZ | TWO CYCLE(FETCH & EXEC)     |
|       | ∫ 0 | 0 | 1 | AC | CD | LDA | EXCEPT DEFER(BIT5=1)        |
| AC ·  | 0   | 1 | 0 | AC | CD | STA |                             |

|                                                                     | REQENB             |           |
|---------------------------------------------------------------------|--------------------|-----------|
| n - Carlo Martina<br>1997 - Santa Santa Santa<br>1997 - Santa Santa | DCHR               |           |
|                                                                     | DCHA               |           |
|                                                                     | DATA BUS (0-15)    |           |
|                                                                     | MODE (DCHM0-DCHM1) |           |
|                                                                     | DCHO               |           |
|                                                                     | DCHI               |           |
|                                                                     | OVERFLOW           |           |
|                                                                     | DONE               |           |
|                                                                     | BUSY               | INTERFACE |
|                                                                     | INTR               |           |

### DATA CHANNEL SIGNALS

CPU

## SEQUENCE:

- 1. REQENB TO I/O 2. DCHR TO CPU 3. DCHA TO I/O

- 4. a. MAIN MEMORY ADDRESS ON DATA BUS TO CPU
  - b. MODE BITS TO CPU (SEE TABLE)
- 5. DATA ON DATA BUS DIRECTION DETERMINED BY TYPE OF OPERATION.
- 6. DCHO OR DCHI TO INTERFACE
- A. OVERFLOW LINE APPLIES ON TO INCREMENT MODE
- B. DONE, BUSY AND INTR SAME AS NORMAL I/O

#### MODE BIT TABLE

| DCHM0 | DCHM1 | FUNCTION    |
|-------|-------|-------------|
| H     | Н     | OUT (WRITE) |
| Н     | L     | INCREMENT   |
| L     | Н     | IN (READ)   |
| L     | L     | NOT USED    |

DG-00031

### Figure C-6 Data Channel Signals



Figure C-7 Deposit Timing Diagram

8



Figure C-8 Examine AC1 Timing Diagram



Figure C-9 ADD0, 1, SKP Timing Diagram



Figure C-10 MOV 0, 0 Timing Diagram



Figure C-11 Timing Diagram For Both The ISZ And DSZ Instructions







Figure C-13 STA Timing Diagram

-FETCH CYCLE-DEFER CYCLE -MEM CLOCK CPU CLOCK тsø TS3 PTG2 PTG5 END CYCLE LOAD IR STUTTER MA LOAD MB LOAD ாப LOAD PC П Л Г LOAD MBO EFA PARALLEL TRANSFERS мво MEM --MBO -->MA - MA NIBBLE TRANSFERS -мво -- мво -EFA-►PC,MBO 

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

DG-00110

Figure C-14 JMP @ 100 Timing Diagram



Figure C-15 JSR @ 20 Timing Diagram



۴

Figure C-16 I/O Input Timing Diagram



Figure C-17 I/O Output Timing Diagram



¥

Figure C-18 PI Timing Diagram















Figure C-22 Data Channel Out Followed By Data Channel In Timing

### SECTION K

#### THE OPERATOR'S CONSOLE

#### INTRODUCTION

The console illustrated in Figure K-1, has a set of ADDRESS lights which display the contents of the MBO bus; a set of DATA lights which display the contents of the MEM bus; a register of toggle switches which will output to the MEM bus; a row of control switches at the bottom of the panel which instruct the computer on what to display in the lights, what to do with the information in the toggle switches, where to start or stop and how. The console also has a three position keyed rotary switch which turns power on and off and locks some of the operating switches.

#### CONSOLE LIGHTS AND SWITCHES

All the lights in the console are continually drawing about 10ma each through series resistors, so their filaments are always hot (but not glowing) and large surge currents are avoided when the filaments are driven on.

#### The Console ADDRESS Lights

These lights are always showing the state of the MBO bus which is driven directly from the MBO register. When the machine is running, the MBO register is continually shifting, so the display is meaningless; when the machine is stopped, the MBO register shows the contents of the PC, i.e., the next address.

#### The Console DATA Lights

These lights are always showing the state of the MEM bus. When the machine is running this bus carries data from memory to the instruction and MBO registers; when the machine is stopped this bus contains the contents of the memory buffer of the last memory selected.

The Console Operational Indicators

These lights are driven directly from their corresponding flip-flops in the central processor.



\* Issued by CPU

Figure K-1 The Console

#### The Console Switch Register

These switches connect non-inverting open collector buffers directly to the MEM bus. All Drivers go low when the  $\overline{\text{CON DATA}}$  level goes low;  $\overline{\text{CON DATA}}$  is issued by the CPU during the READS instruction or during a console operation that requires input from these switches, such as EXAMINE.

#### The Console Control Switches

All the control switches except STOP and RESET are wired through pull-up resistors to a common circuit which detects when current is flowing through a switch, initiates a delay to suppress contact bounce and then issues the signal CON REQ to the CPU. This signal forces the CPU into the key sequence shown in Figure K-2 which returns the signal CON INST to the console. CON INST connects switches AC0, AC1, AC2, AC3, DEPOSIT, DEPOSIT NEXT, EXAMINE and EXAMINE NEXT through a decoder to the MEM <0, 7> lines, which are input to the Instruction Register and interpreted as shown in Table K-1. The computer then goes into either the KEY or KEYM major state and follows the flows of Figure K-3.

The switches RESET, STOP, MEMORY STEP, IN-STRUCTION STEP and PROGRAM LOAD are wired separately to the CPU. RESET stops the computer at the end of the current cycle, issues the IORST pulse to all I/O devices, clears ION and sets the real time clock to the line frequency. STOP simply stops the computer at the end of the current instruction.

MEMORY STEP takes the processor through the current state and then stops. INST STEP takes the processor through the current state and on to the end of the current instruction. Both signals force a  $\overline{\text{CON}}$   $\overline{\text{RQ}}$  to the CPU and output  $\overline{\text{MSTP}}$  and **ISTP** respectively. **PROGRAM LOAD** deposits the contents of the bootstrap ROM into locations 0-37 and the machine at location 0. It outputs the signal  $\overline{\mathbf{PL}}$  to the CPU.

The Console Rotary Switch

This switch controls the primary power to the power supply. It has three positions:

| OFF | - the primary power is removed    |
|-----|-----------------------------------|
|     | from the power supply             |
| ON  | - the primary power is applied to |

- ry power is applied to P the power supply
- LOCK - the primary power is applied to the power supply but the STOP **RESET** switch is disabled

#### REFERENCES

- 1. "How To Use The Nova Computers" 015-000009-00.
- 2. Nova 800/1200 Console Print D-001-000089-05.



Figure K-2 The CPU Key Sequence Timing Diagram

K-2

## Table K-1

# Control Switch Decoding To The Instruction Register

| CONSOL      | E    |      |     |       |     |       |     |       |     |             |
|-------------|------|------|-----|-------|-----|-------|-----|-------|-----|-------------|
| INSTRUCT    | ION  | IR0  | IR1 | IR2   | IR3 | IR4   | IR5 | IR6   | IR7 | IR8 TO 15   |
|             | AC0  | 0    | 0   | 1     | 0   | 0     | 0   | 1     | 1   | 0           |
| AC          | AC1  | 0    | 0   | 1     | 0   | 1     | 0   | 1     | 1   | 0           |
| DEP.        | AC2  | 0    | 0   | 1     | 1   | 0     | 0   | 1     | 1   | 0           |
|             | AC3  | 0    | 0   | 1     | 1   | 1     | 0   | 1     | 1   | 0           |
|             | AC0  | 0    | 1   | 1     | 0   | 0     | 1   | 1     | 1   | 0           |
| AC          | AC1  | 0    | 1   | 1     | 0   | 1     | 1   | 1     | 1   | 0           |
| EXAM.       | AC2  | 0    | 1   | 1     | 1   | 0     | 1   | 1     | 1   | 0           |
|             | AC3  | 0    | 1   | 1     | 1   | 1     | 1   | 1     | 1   | 0           |
| DEPOSIT     |      | 1    | 1   | 0     | 1   | 1     | 1   | 0     | 1   | 0           |
| DEPOSIT NEX | Т    | 1    | 1   | 0     | 1   | 1     | 1   | 0     | 0   | 0           |
| EXAMINE     |      | 1    | 1   | 1     | 1   | 1     | 0   | 0     | 1   | 0           |
| EXAMINE NEX | ζT   | 1    | 1   | 1     | 1   | 1     | 1   | 0     | 0   | 0           |
| MEMORY STE  | Р    | 1    | 1   | 1     | 1   | 1     | 1   | 1     | 1   | 0           |
| INSTRUCTION | STEP | 1    | 1   | 1     | 1   | 1     | 1   | 1     | 1   | 0           |
| PROGRAM LO  | AD   | 1    | 1   | 1     | 1   | 1     | 1   | 0     | 1   | 0           |
| START       |      | 1    | 1   | 1     | 1   | 1     | 0   | 1     | 1   | 0           |
| WHEN        | BIT  | ACDX | ACD | OF D. |     | ON AC | FR  | AVA V |     | E ON TE ALS |

AF THE 



## Figure K-3 Key, KEYM and Manual Flow Diagrams
|     | <u> </u>   |                |                  |            |                                              |                  |
|-----|------------|----------------|------------------|------------|----------------------------------------------|------------------|
|     | POA<br>PIN | SIGNAL         | BACKPANEL<br>PIN | POA<br>PIN | SIGNAL                                       | BACKPANEL<br>PIN |
|     |            | CND            | B1               | 27         | + 5                                          | B4               |
|     | 1          | MEM15          | B18              | 28         | MBO15                                        | A 41             |
|     | 2          | MEM13<br>MEM14 | B10<br>B76       | 29         | MEM13                                        | A35              |
|     | 4          | MBO13          | A37              | 30         | MBO12                                        | A 39             |
|     | 5          | MEM12          | A36              | 31         | MEM11                                        | A51              |
|     | 6          | MB011          | B5               | 32         | MEM10                                        | A45              |
|     | 7          | MEM9           | A53              | 33         | $+ V_{-}$                                    | N/A (BUS TO      |
|     | •          | 1111110        |                  |            | LAMP                                         | POWER SUPPLY)    |
|     | 8          | MBO9           | <b>B9</b>        | 34         | MEM8                                         | A55              |
|     | 9          | MBO7           | B14              | 35         | MBO6                                         | B16              |
|     | 10         | MEM6           | B22              | 36         | MEM5                                         | B26              |
| · . | 11         | MBO5           | B32              | 37         | MEM4                                         | B28              |
|     | 12         | MBO14          | A43              | 38         | MBO3                                         | B43              |
|     | 13         | MEM2           | B47              | 39         | MEM0                                         | B71              |
|     | 14         | MBO1           | B77              | 40         | LAMP                                         | GND              |
|     | 15         | MBO2           | B44              | 41         | MEM1                                         | B70              |
|     | 16         | MBO4           | B42              | 42         | MEM7                                         | B24              |
|     | 17         | GND            | B2               | 43         | MEM3                                         | B68              |
|     | 18         | MBO8           | B12              | 44         | MBO10                                        | B8               |
|     | 19         | RESTART        |                  |            |                                              |                  |
|     |            | ENABLE         | A32              | 45         | STOP                                         | A31              |
|     | 20         | RST            | A30              | 46         | CONT DATA                                    | A28              |
|     | 21         | CON RQ         | A27              | 47         | $\underline{\text{CONT}}_{+}\text{ISTP}_{+}$ |                  |
|     |            |                |                  |            | MSTP                                         | A25              |
|     | 22         | CON INST       | A22              | 48         | MSTP                                         | A20              |
|     | 23         | PL             | A19              | 49         | CARRY                                        | A15              |
|     | 24         | ISTP           | A17              | 50         | FETCH                                        | A13              |
|     | 25         | ION            | A16              | 51         | EXEC                                         | A11              |
|     | 26         | RUN            | A14              | 52         | DEFER                                        | A12              |
|     |            |                |                  |            |                                              |                  |

4

¥

Table K-2 Backpanel Connections To The Console Through POA This Page Left Blank

Intentionally

÷

#### SECTION P

#### POWER SUPPLY

#### INTRODUCTION

The Nova 1220 power supply is mounted on the backpanel below the circuit boards where it converts either 110Vac at 60Hz or 220Vac at 50Hz to regulated, current limited 5Vdc, -5Vdc, +15Vdc for the logic and memories, and to unregulated 6.3Vac for the real time clock. With the power monitor and restart option, the power supply interrupts the computer when it detects a line voltage failure (less than 90% of nominal) stops the computer when the voltage gets too low for reliable operation, and issues a start pulse to the computer when the line voltage recovers.

#### POWER SUPPLY CIRCUITS

The 30V Unregulated Supply

110Vac or 220Vac are input through the power cord to a switch on the console S1, then on to transformer T1. The two primaries of T1 are wired in parallel for 110Vac, and in series for 220Vac. Note that the cooling fan operates on 110Vac only.

The secondary of the transformer is wired to two full wave bridge rectifiers which output approximately 30V and -15V into RC filters. The 30V is applied to two series pass switching regulators which supply the regulated +5Vdc and +15Vdc. The 15V is applied to a simple linear regulator for the -5Vdc.

The Series Pass Switching Regulators

A series pass switching regulator acts like a multivibrator which sets when it detects a low output voltage and resets when it detects a high output voltage. When the regulator is set, it gates current from the 30V supply into an LC circuit and the load; when the regulator is reset, the load draws all of its power from the LC circuit until the circuit is sufficiently exhausted to be recharged by the regulator. The frequency at which the regulator sets and resets varies from 0 to 25KHz depending on the load. There are two such regulators in the 1220 power supply, one for the +15Vdc (Figure P-1) and the other for the +5Vdc (Figure P-2). The -5Vdc is controlled by a linear regulator.

Note that the outputs of these circuits are DC levels with about .15V ripple at frequencies which vary with the loads.

#### The Fuses

The 1220 power supply has two fuses, a 10 amp between the power cord and the switch S1, and a 15 amp just after the bridge rectifier. The 10 amp will blow if there is a short in the cabling to S1, or if the convenience receptacle is overdrawing; the 15 amp will blow if the  $\pm 15$ Vdc or  $\pm 5$ Vds levels rise high enough to trigger an SCR, which then creates a short between the 30V supply and ground.

The Power Fail Module

This module detects a line voltage failure and outputs the signals shown in Table 2.

#### **REFERENCES:**

- 1. Fairchild Semiconductor Integrated Circuit Data Catalog - Fairchild Semiconductor 1970
- 2. Backpanel Nova 1220 print No. D-001-000208-00
- 3. Backpanel 1220 Power Supply print No. D-001-000173-02.

# Table P-1

| Output Voltage Level<br>Name | Output<br>Voltage             | Maximum<br>Current | Used<br>On                | Remarks                                                                           |
|------------------------------|-------------------------------|--------------------|---------------------------|-----------------------------------------------------------------------------------|
| + 15V                        | 14.5-15.1Vdc<br>(.15V ripple) | 9A                 | XY Drivers                | Full wave rectified;<br>Short Circuit & Over-<br>voltage Protection<br>Regulated  |
| 5V                           | -5→-7Vdc                      | 1A                 | Sense Amplifiers          | Full wave rectified;<br>Current limited by<br>a resistor, regulated               |
| + 5 <b>V</b>                 | 5.2→5.4Vdc                    | 20A                | IC Logic                  | Full wave rectified;<br>Short Circuit & Over-<br>voltage Protection<br>Regulated  |
| TTY                          | -5→-7Vdc<br>(.15V ripple)     |                    | Teletypewriter            | Full wave rectified;<br>Current limited by<br>a resistor, regulated               |
| RINH<0,15>                   | 14.5-15.1Vdc                  | 760mA each         | Inhibit Driver            | Full wave rectified;<br>Short Circuit & Over-<br>voltage Protection,<br>Regulated |
| 60Hz                         | <u>6.3Vac</u>                 | 500mAc             | Real Time<br>Clock        | This signal has the<br>same frequency<br>as the line (input)<br>voltage           |
| A10(VINH)                    | 14.5-15.1Vdc<br>(.15V ripple) | 6Adc               | Memory In-<br>hibit Logic | Current Limited                                                                   |
| B84(VINH)                    | 14.5-15.1Vdc<br>(.15V ripple) |                    | Memory<br>Drivers         | Turns off memory<br>drivers at about<br>+12Vdc                                    |
| <sup>+V</sup> LAMP           | ≈14-16Vdc                     | 2Adc               | Console Lamps             | Unfiltered, Unregu-                                                               |

Nova 1220 Power Supply Specifications

Table P-2

Output Signals of the Nova 1220 Power Fail Module

| SIGNAL NAME | SIGNAL FUNCTION                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| PWR FAIL    | -sets the PWR LOW flag in the proces-<br>sor when the line voltage drops to<br>90% of nominal voltage.                                    |
| MEM OK      | -resets the RUN flag and stops the com-<br>puter when the + Vmem (+15Vdc)<br>voltage goes too low for the memory<br>to function reliably. |
| + 5OK       | -sets the RUN flag and starts the computer when the $\pm 5$ Vdc has risen to 4.4 Vdc.                                                     |



Figure P-1 Simplified Schematic of the +5Vdc Series Switching Regulator. When the comparator senses a difference between the (divided) reference voltage (1) and the output voltage (2) it switches, turning on the driver transistor (3) and consequently the series pass transistors (4). Current is shunted through the series pass transistors to the coil, output capacitor and load (5). The output voltage rises, reducing the error voltage to the comparator, which resets, turning off the driver (3) and consequently the series pass transistors. Now the load is supplied from power stored in the LC circuit. The back emf developed across the coil as a result of this switching is dropped across the free wheeling diode (6). Note that each time the comparator is forced to switch it is driven into saturation by the positive feed-back loop which includes the 220K resistors (7).

The current limiter (8) turns on if the output voltage drops below about 4V, turning the driver (3) and subsequently the series pass transistors (4) off. The supply is latched in this state until power is removed and then returned.

The diode (9) feeds current from the 15V supply to +5V during power-down, driving the memory supply off early and the logic supply off later.

**P-3** 



Figure P-2 Simplified Schematic of the +15Vdc Series Switching Regulator. When the comparator senses a difference between the reference voltage (1) and the divided output voltage (2), it switches, turning on the driver transistor (3) and consequently the series pass transistors (4). Current is shunted through the series pass transistors to the coil, output capacitor and load (5). The output voltage rises, reducing the error voltage to the comparator, which resets, turning off the driver (3) and consequently the series pass transistors. Now the load is supplied from power stored in the LC circuit. The back emf developed across the coil as a result of this switching is dropped across the free wheeling diode (6). Note that each time the comparator is forced to switch it is driven into saturation by the positive feedback loop which includes the 220K resistor (7).

The current limiter (8) turns on if the output voltage V MEM drops too low, or if the current at either terminal of (9) (memory inhibit and memory drive) is too high. When on, the current limiter turns off the driver and subsequently the series pass transistors, latching the supply into this mode until power is removed and then returned.

The transistor at (9) will switch off when the +15V drops too low for memory to function properly, thus removing power to the memory drivers.

P-4

# SECTION M

## THE MEMORY

#### A REVIEW OF CORE MEMORIES

A "bit" of information can be stored in a ferrite core by magnetizing the core in one of two possible directions or "states" and then calling one state a "1" and the other state a "0", similar to a flip-flop. Unlike a flip-flop, however, a core cannot be read simply by examining its output voltages; a core is read by forcing it into the "0" state and then watching for the current pulse which is always generated when a core changes state. If the pulse occurs, then the core must have been in the "1" state before it was excited; if no pulse occurs then the core must already have been in the "0" state because no transition took place.

Reading a core, then, always leaves it in the "0" state and although the information that it contained has probably been transferred to some register which was set by the current pulse, that information is no longer in the core, and it usually has to be restored with what is called a "write cycle". Writing means setting the core to a one or a zero, depending on the state of the memory register that usually contains core bound information.

Reading or writing into a core is a matter of sending current pulses along wires into the core; the direction of current relative to the core determines into which state the core will move. Data General's core memories contain many thousands of these ferrite cores strung together like beads on wire. Each core has three wires passing through it, and these wires carry the currents to magnetize them and the pulses which occur when they change state. The memories are wired so that the computer can select any group of 16 bits at once, and read or write a complete 16 bit word "in parallel". A group of 16 cores, called an "address" is picked by passing current down two selected wires called X and Y, which are strung into the cores so that they both pass through only one address. The combined effect of current in these two wires is enough to flip the core into the zero state if it is not already there. Each core that flips sends a pulse down its own third wire called the sense wire which is then fed into one flip-flop of a 16 bit Memory Buffer. The flip-flop sets if it sees a pulse, and remains static if it does not. The register which selects the X Y wire or "lines" is called the Address Register.

Restoring the contents of the address involves resetting those core bits that set ones into the Memory Buffer. This is done by sending reverse currents down all the X and Y lines of that address, and inhibit currents to these bits which should remain in the "0" state. The contents of the memory buffer could be changed before this write-cycle so that new information is entered into the address.





A core will remain in the "one" state until currents pass through the X and Y excitation windings and force it into the "zero" state. The transition causes a pulse to travel down the sense winding to the detection logic. The core can be reset to the "one" state by reversing the currents in the X and Y windings. The transition will still cause a pulse to be generated in the sense and inhibit winding, but the sense logic is disabled at this point.

#### DATA GENERAL'S CORE MEMORIES

The memories used on the basic computer consist of cores arranged in a three wire 3D scheme in which the sense and inhibit functions share the same wire. The cores are laid out in a single plane in mats, and wired together in the bow tie pattern shown in Figure M-2. There are four core planes available; 1K, 2K, 4K, and 8K. Each plane is assembled on a "daughter" board which is mounted on a 15" by 15" "mother" board, where most of the memory logic sits. Power is supplied by the chassis supply

The memory logic on any board consists of drivers, sense amplifiers, a Memory Address Register, a Memory Buffer Register, Multiplexers, and Memory select logic shown in Figure M-3.

Data is transferred between memory and the central processor or an I/O device along three data buses called:

- **MEM** which transfers data from memory to the Central Processor;
- MBOwhich transfers data from the Cen-<br/>tral Processor to Memory
- DATA which transfers data between memory and I/O devices in either direction.

#### The Memory Select Logic

When a memory board is plugged into a computer, its select logic must be wired to respond to the correct code in the MA register, since the MA registers of all boards are loaded with the same address at the same time. This wiring is done with a set of jumpers that connect either the 0 or 1 side of the high order MA bits to an "and" gate. The output of this "and" gate will be true only if the code for which it is wired is in the MA register, and only when this output is true can the memory respond. This code must be unique to that memory board.

The jumpers are forced into points on the board. These points are located on the logic side of the board at the lower right hand corner when its fingers are pointing at you. If there is a mixture of boards, i.e., 1K, 2K, 4K or 8K, it is a good policy to wire the largest board for low core, the second largest above it and so on. This way there will not be any gaps in the system's core map.

Figures M-4 and M-5 show how the select logic of the four types of boards are jumpered.

## **REFERENCES**:

| 8K | Memory Prints | #001-000238-00 |
|----|---------------|----------------|
| 4K | Memory Prints | #001-000236-00 |
| 2K | Memory Prints | #001-000234-00 |
| 1K | Memory Prints | #001-000232-00 |



Figure M-2 Simplified Schematic of The Core Memory's Sense and Inhibit Lines

The sense and inhibit functions share the same wire. The sense circuitry, (1), sees both ends of the wire, and detects negative pulses with a differential amplifier. The output of this amplifier is examined at STROBE time.

The inhibit logic, (2), drives +15Vdc level into the middle of the same wire at INHIBIT time. The current is divided and passes through all cores to ground through the diodes at the other end.



\* Issued by CPU

#### Figure M-3 Core Memory

During a typical FETCH instruction, the CPU outputs the memory address on the MBO <0, 15> data lines and then issues MA LOAD. READ I/O is high, so the address is strobed into the Memory Address register and output to the driver select logic. Then, READ 1 and READ 2 are issued, gating the X and Y currents to the selected address. A little later, STROBE is output by the CPU and it gates all core pulses into their corresponding Memory Buffer bits. The Memory Buffer is then re-read back into core by reversing all the driver currents and gating the INHIBIT signal issued by the CPU to those bits which are not to be reset. If the contents of the address are to change, the Memory Buffer is loaded with the new word before the address is re-written.



| 1K BOARDS           |   |   |   |   |                 |                               |  |
|---------------------|---|---|---|---|-----------------|-------------------------------|--|
| MA BITS<br>JUMPERED |   |   |   |   | BOARD<br>NUMBER | ADDRESSES ENABLED<br>(OC TAL) |  |
| 1                   | 2 | 3 | 4 | 5 |                 |                               |  |
| 0                   | 0 | 0 | 0 | 0 | I               | 00000-01777                   |  |
| 0                   | 0 | 0 | 0 | 1 | 2               | 02000-03777                   |  |
| 0                   | 0 | 0 | I | 0 | 3               | 04000-05777                   |  |
| 0                   | 0 | 0 | T | 1 | 4               | 06000-07777                   |  |
| 0                   | 0 | I | 0 | 0 | 5               | 10000-11777                   |  |
| 0                   | 0 | Т | 0 | Т | 6               | 12000-13777                   |  |
| 0                   | 0 | I | 1 | 0 | 7               | 14000-15777                   |  |
| 0                   | Ō | I | 1 | 1 | 8               | 16000-17777                   |  |

SELECT

MA REGISTER

2K BOARDS

BOARD

NUMBER

T

2

3

4

5

6

7

8

2 3 4 5

MA BITS JUMPERED

000

0 1 1

100

1

1 2 3 4

0 0 0 1

0

0 0 1 0

0

0

0 1 0 1

0 1 1 0

0 1 1

DG-00095A



Selecting 1K Memory Boards. On the lower right hand side of the board between U33 and U34 there are 3 sets of 5 points. The first two sets are wired to MA <1, 5> on the 1 and 0 side respectively; the last set of points is wired to the "and" gate. The board of this figure is wired for 00001, board #2.



Selecting 2K Memory Boards. On the lower right hand side of the board between U33 and U34 there are 3 sets of 4 points. The first two sets are wired to MA <1, 4> on the 0 and 1 side of each flip-flop; the last four points are wired to the "and" gate. The board of this figure is wired for 0000, board #1.



M-4

15

ADDRESSES ENABLED

(OCTAL)

00000-03777

04000 - 07777

10000-13777

14000-17777

20000 - 23777

24000 - 27777

30000 **- 33777** 34000 **-** 37777



W IIII



|    |    |    |           |   | 4K BOARDS       | S                            |
|----|----|----|-----------|---|-----------------|------------------------------|
|    | MA | BI | TS<br>RED | ) | BOARD<br>NUMBER | ADDRESSES ENABLED<br>(OCTAL) |
| 1  | 2  | 3  |           |   |                 |                              |
| 0  | 0  | 0  |           |   |                 | 00000-07777                  |
| 0  | 0  | T  |           |   | 2               | 10000-17777                  |
| 0  | 1  | Q  |           |   | 3               | 20000-27777                  |
| 0  | 1  | Τ  |           |   | 4               | 30000 - 37777                |
| .1 | 0  | 0  |           |   | 5               | 40000-47777                  |
| 1  | 0  | 1  | 14        |   | 6               | 50000 - 57777                |
| 1  | 1  | 0  |           |   | 7               | 60000-67777                  |
| 1  | 1  | 1  |           |   | 8               | 70000-77777                  |

Selecting 4K Memory Boards. On the lower right hand side of the board between U33 and U34 there are 3 sets of 4 points. The first two sets are wired to MA <1, 3> on the 1 and 0 sides respectively, the last set is wired to the "and" gate. The board of this figure is wired for 010, board #3. Sard 4 should NOT be jumpered.



| 8K BOARDS           |   |   |  |  |                 |                              |  |  |  |
|---------------------|---|---|--|--|-----------------|------------------------------|--|--|--|
| MA BITS<br>JUMPERED |   |   |  |  | BOARD<br>NUMBER | ADDRESSES ENABLED<br>(OCTAL) |  |  |  |
| Ι                   | 2 |   |  |  |                 |                              |  |  |  |
| Q                   | 0 |   |  |  |                 | 00000 - 17777                |  |  |  |
| 0                   | 1 |   |  |  | 2               | 20000 - 37777                |  |  |  |
| I                   | 0 |   |  |  | 3               | 40000 - 57777                |  |  |  |
| .1                  | 1 | - |  |  | 4               | 60000 - 77777                |  |  |  |
| DC-000858           |   |   |  |  |                 |                              |  |  |  |



Selecting 8K Memory Boards. On the lower right hand side of the board between U30 and U31 there are 2 sets of 6 points. The first set is wired to MA <1, 3> on the 1 and 0 sides; the second set is wired to the "and" gate. The board of this figure is wired for 10, board #3. Position 3 should NOT be jumpered.

Figure M-5 Wiring Up The Select Logic of 4K and 8K Boards

# Table M-1

External Memory Signals

| SIGNAL NAME            | FUNCTION                                                                                                                      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                               |
| DATA <0, 15>           | 16 bidirectional lines which carry information to and from devices on the IN-OUT bus.                                         |
| DRIVE I/O              | Issued by CPU-1 to strobe the MB register onto DATA $<0, 15>$ lines.                                                          |
| INH TRAN               | Issued by CPU-1 to prevent the MB register from outputting to the MEM $<0$ , 15> bus during a data transfer from the console. |
| INHIBIT SELECT         | Issued by CPU-1 to prevent the memory from being selected.                                                                    |
| MA LOAD                | Issued by CPU-1 to load the MA register.                                                                                      |
| <u>MEM &lt;0, 15</u> > | 16 lines which carry information from the memory to CPU-1.                                                                    |
| MB CLEAR               | Issued by CPU-1 to clear the MB register.                                                                                     |
| MB LOAD                | Issued by CPU-1 to load the MB register.                                                                                      |
| READ 1                 | Issued by CPU-1 to select the memory drivers.                                                                                 |
| READ 2                 | Issued by CPU-1 to select memory drivers.                                                                                     |
| READ I/O               | Issued by CPU-1 to enable the DATA $< 0$ , 15> lines into the MD $< 1-15>$ lines.                                             |
| RELOAD DISABLE         | Issued by CPU-1 to inhibit MB Load.                                                                                           |
| STROBE                 | Issued by CPU-1 to strobe core pulses into the Memory Buffer.                                                                 |
| MBO <0, 15>            | 16 lines which carry information from CPU-1 to memory.                                                                        |

#### SECTION I

#### NOVA 1220 INSTALLATION

## INTRODUCTION

This section explains how to unpack, assemble and cable the computer.

#### PLACING THE COMPUTER

The computer room must be large enough to accommodate the equipment, operating personnel, tables and chairs, storage space (for tapes, manuals and listings), service clearances and possible future expansion. The room should be well lit and clean, with adequate primary power. The temperature and humidity must fall within acceptable tolerances of the most sensitive peripheral.

Overhead sprinklers should be "dry pipe" systems that remove primary power from the room and turn on a battery operated light source before opening the master valve. If power connections are made under the floor, use waterproof receptacles and connections. Any carpeting should be of the type that minimizes static electricity, and metal flooring should be well grounded.

#### UNPACKING THE COMPUTER

The computer is shipped in the kit shown in Figure I-1.

- 1. Open the top of the outer carton; remove all cables, manuals, packing filler, etc.
- 2. Remove the styrofoam container (it and contents weigh about 50 pounds) and place it on a flat surface right side up.
- 3. Unstrap the container and remove the cover and styrofoam spacers.
- 4. Carefully remove the styrofoam block from the back of the computer.
- 5. Remove the computer, placing your hands under the chassis front and back.
- 6. The computer is sometimes shipped with cardboard spacers in spare slots to keep the boards from vibrating during shipment. Remove these.

#### Table I-1

The Nova 1220 Electrical, Mechanical and Environmental Specifications

| Voltage<br>(AC) | Current<br>(A)<br>NOMINAL<br>@ 115V | Power<br>Dissipation<br>(W) | Heat<br>Dissipation<br>(Btu/hr) | Operating<br>Temperature<br>(min-max F) | Storage<br>Temperature<br>(min-max F) | Humidity<br>(Rel)<br>(min-max) | Maximum<br>Wet<br>Bulb | Maximum<br>Cable<br>Length | Dimensions<br>(inches)                                | Service<br>Clearance<br>(inches) | Weight<br>(Ibs)                     |
|-----------------|-------------------------------------|-----------------------------|---------------------------------|-----------------------------------------|---------------------------------------|--------------------------------|------------------------|----------------------------|-------------------------------------------------------|----------------------------------|-------------------------------------|
| 110             | 9                                   | 1000                        | 3400                            | 32-130                                  | -30-+160                              | 20% 90%                        | 78°F                   | IN-OUT<br>50FT             | HEIGHT<br>10 ½"<br>WIDTH<br>17 ½"<br>LENGTH<br>22 14" | BACK<br>3"<br>FRONT<br>36"       | PACKED<br>65<br>UN-<br>PACKED<br>45 |

The Nova 1220 operates from a single-phase source at 115V 60Hz or  $\pm$ 50Hz all  $\pm$ 20%. This device has a separate 4.5 foot power cord terminating in a standard 3 wire single-phase male connector. An earth ground connection must be supplied through the power cord.



Figure I-1 The Nova 1220 Shipping Kit

#### PACKING THE COMPUTER

- 1. Locate the original shipping container and packing material. If it is not available, order a shipping kit from Data General Corporation. DO NOT SHIP THE COMPUTER IN ANYOTHER CONTAINER.
- 2. Fill any large spaces inside the chassis with just enough cardboard spacers so the boards cannot vibrate.
- 3. Place the computer in the bottom half of styrofoam container "front justified" with the back end on top of the extra rib. Pack the power cord into the hollow area at the back. Fill in the space at the back with the styrofoam block to prevent the computer from moving during shipment.
- 4. Add the styrofoam spacers as needed.
- 5. Put on the cover of the styrofoam container and strap the pieces together.
- 6. Put the styrofoam container into the cardboard box. Place any odds and ends on top of the container, and fill in any empty spaces with cardboard or pieces of styrofoam.
- 7. Close and seal the cardboard box.
- 8. Call your local Field Service representative for the correct address if the equipment is to be shipped to Data General Corporation.

#### ASSEMBLING THE COMPUTER

Assembling the computer outside the factory involves installing memory or controller boards or mounting the chassis into a 19" rack.

Installing or Removing Boards

The Nova 1220 computer has slots for ten  $15 \times 15$  inch circuit boards which plug into ten sets of 100 pin connectors on the PC backpanel. The slots are numbered from the bottom up and assigned as follows:

| Slot Number | <b>Boards Accepted</b>                                     |
|-------------|------------------------------------------------------------|
| 1           | CPU-1 Only                                                 |
| 2           | Any 1220 Memory<br>or the Multiply<br>Divide option (8107) |
| 3           | Any 1220 Memory<br>or the I/O Interface<br>Assembly (4007) |
| 4-8         | Any 1220 Memory<br>or Controller                           |
| 9,10        | Any 1220 Controller                                        |

Note that slot 3 has special wiring for the 4007.

|     | SLOT 9 CONTROLLER                |           |  |
|-----|----------------------------------|-----------|--|
|     | SLOT & MEMORY OR CONTROLLER      |           |  |
|     | SLOT 7 MEMORY OR CONTROLLER      |           |  |
| 3   | SLOT 6 MEMORY OR CONTROLLER      |           |  |
| ]   | SLOT 5 MEMORY OR CONTROLLER      |           |  |
|     | SLOT 4 MEMORY OR CONTROLLER      |           |  |
|     | SLOT 3 MEMORY OR I/O INTERFACE   |           |  |
|     | SLOT 2 MEMORY OR MULTIPLY DIVIDE |           |  |
| j j | SLOT I CPU-I                     |           |  |
|     |                                  |           |  |
|     |                                  |           |  |
|     |                                  | <b>1.</b> |  |
| Ş.  |                                  |           |  |

DG-00099

Figure I-2 Nova 1220 Board Slots



Note that if the Multiply Divide option 8107 is used, it must go into slot 2, and if the I/O Interface Assembly is used it must go into slot 3. If a new memory board is installed, check that the select logic jumpers are correct (See Section M).

If boards are installed or removed from the computer chassis, it is important that the integrity of the Program Interrupt and Data Channel priority systems be preserved. The Priority systems of the Program Interrupt and Data Channel facilities each use a scheme in which a wire is chained through every controller, one after the other, in such a way that only when there is an enabling level on that wire can a controller effectively request service of the facility. The enabling level on the wire will appear at any given controller only if all controllers closer to the computer on the chain are not requesting service themselves; i.e., whenever a controller requests service it removes the enabling level from all devices below it on the chain. There are two chains, one for the Program Interrupt and the other for the Data Channel.

The program interrupt chain enters a board slot at pin A96 and leaves at pin A95; the data channel chain enters at pin A94 and leaves at pin A93. (See "How to Use the Nova Computers" for more details.)

Here are the rules:

- 1. Memories take Data Channel and Program Interrupt signals and pass them through their slots.
- 2. All controllers that use the interrupt system must be included in the interrupt chain; all controllers that use the data channel must be included in the data channel chain.
- 3. The Data Channel and Program Interrupt chains are completely independent and must not cross. Each chain must run through the controllers in series, NEVER in parallel.
- 4. Controllers that use the Program Interrupt system but do not use the Data Channel system do not need a jumper for the unused line. The only jumpering required is on unused slots or the user's manufactured boards.

## Rack Mounting The Computer

The Nova 1220 can be mounted in a standard 19 inch rack, so each unit is shipped with rack slides attached and all of the necessary mounting hardware included. Figure I-3 shows how the right side of the rack slide is assembled in a cabinet; the other side uses identical hardware.

Leave at least two inches open at the back for cables and about 36" open at the front for servicing.

The console protrudes  $1 \ 3/4$  inches out of the front of the rack.

## CABLING ASSEMBLIES TOGETHER

## Types of Cables

There are five types of cables used on a typical installation; I/O cables, device cables, internal cables, interdevice cables, and adapter cables. The correct cables are supplied with the equipment unless otherwise specified in the price list.

<u>I/O Cables</u> which connect peripheral controllers mounted outside the computer chassis, to the computer IN-OUT bus. The cables form a daisy chain, from controller to controller and finally to the computer chassis, where the first cable must terminate in a female connector compatible with the 100 finger male called P3 shown in Figure I-4. Controllers mounted inside the chassis are connected to the IN-OUT bus through backpanel etching, and therefore do not need an I/O cable.

Device Cables which connect each peripheral controller to the device it is controlling. When such a controller is inserted into the Nova 1220 chassis, an internal cable is run from the appropriate backpanel pins to a male connector, such as P3 of Figure I-4. The device cable must then run between the male paddle board on the 1220 chassis and the device.

Internal Cables are added when the controller is added, whether in the factory or in the field, so each shipment includes a wire list for the internal cable, and the internal cable itself. Figure I-4 shows how the paddle boards are mounted on the chassis.

Interdevice Cables interconnect peripheral devices. Some controllers will drive more than one device of the same kind, such as industry compatible tape controllers. In this case the device cables are daisy chained from device to device in the same way that the I/O cables are chained between controllers. The cables which interconnect the devices are not always the same as the device cable that runs from the controller to the first device, however, so these cables are called "interdevice cables".

Adapter Cables reconcile different cabling schemes. The Nova, Supernova, Nova 1200 and Nova 800 series computers use Cannon connectors instead of paddle boards for their device and I/O cables, and Data General supplies adapters so that peripherals used on these machines can also be used on the new models, or the other way around.



# Table I-2

# P3 Interconnections for Nova 1220

| P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P3          |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|
| LETTER SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NUMBER SIDE | SIGNAL NAME                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 THRU 50   | GND                        |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | — — — — GND                |
| $\mathbf{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | PWR ON $(+5V)$             |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | MSKO                       |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | INTA                       |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATIB                      |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | - — — — DATIA              |
| $\mathbf{H}$ , where $\mathbf{H}$ is the second |             | $\overline{\mathrm{DS3}}$  |
| $\mathbf{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | DATOC                      |
| K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | CLR                        |
| $\mathbf{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | STRT                       |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATIC                      |
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATO B                     |
| $\mathbf{P}_{\mathbf{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | DATO A                     |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DCHA                       |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DS4                        |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | $ \underline{DS5}$         |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | $\underline{\mathrm{DS2}}$ |
| $\mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | DS1                        |
| $\mathbf{W}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | IORST                      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DS0                        |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | $ \underline{IO PLS}$      |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | SELD                       |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | SELB                       |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DCHP OUT                   |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | INTP OUT                   |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                            |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                            |
| I state in the second sec                                                                                                                                                                                                                                                       |             |                            |
| II<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                            |
| ja sin j ja se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | OVELO                      |
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | BOENB                      |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATA7                      |
| α<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | DATA14                     |
| ř – – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $ \overline{DATA5}$        |
| S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | DATA11                     |
| t the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | DATA12                     |
| <b>u u</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | DATA8                      |
| $\mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | DATA4                      |
| w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | $ \overline{\text{DATA0}}$ |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATA9                      |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATA13                     |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | DATA1                      |
| AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DATA15                     |
| AB+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | + DATA3                    |
| AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DATA10                     |
| AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DATA2                      |
| AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DATA6                      |
| AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | GND                        |

# Table I-3

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4                                 | BACKPANEL                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------|
| NUMBER SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LETTER SIDE                        | SLOT-SIDE-PIN No.                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A THRU AF GND                      |                                                                        |
| NUMBER SIDE         1       -         2       3         4       -         5       -         6       -         7       8         9       10       -         11       12         13       14         15       -       -         16       17       18         19       20       -       -         21       22       23       24         25       -       -       -         26       27       28       29         30       -       -       31         32       33       34       -         35       -       -       36         37       38       39       - | P4<br>LETTER SIDE<br>A THRU AF GND | BACKPANEL<br>SLOT-SIDE-PIN No.                                         |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | 9 B 36<br>9 B 36<br>9 B 38<br>9 B 40<br>9 B 48<br>9 B 49<br>9 B 51<br> |

## P4 Interconnections for Nova 1220

Cabling The System

Turn all systems off, do not plug in any power cords, then:

- 1. install all internal cables not factory installed, following the instructions in the appropriate controller's manual.
- 2. install all device cables, remembering not to exceed the maximum length in each case. Be careful to protect each cable from wear and tear.
- 3. install the teletypewriter cable as shown in Figure I-4.

- 4. measure the line voltage of each service outlet, and check that it is correct for the computer.
- 5. measure the voltage between the ac return line and the frame ground at each outlet. THIS MUST BE ZERO
- 6. plug the power cord of each device into its service outlet.

#### **REFERENCES:**

Nova 1220 Rack Installation Print D-010-000014-01.

This Page Left Blank

Intentionally

#### SECTION N

## MAINTAINING THE COMPUTER

#### INTRODUCTION

The Data General Corporation supports its equipment with a large field service organization, customer training programs and technical documentation. This section summarizes these services and includes tips on preventive maintenance, recommended tools and trouble shooting.

#### FIELD SERVICE ORGANIZATION

#### Field Service Programs

Data General's Field Service Organization currently offers its users a choice of three maintenance services. These services are subject to change without notice.

- 1. On Call Service Contract under which DGC will repair equipment at the installation when DGC is notified of a problem by the user. DGC also provides preventive maintenance on a regular schedule under this contract. Parts, labor and travel are included in the monthly payment schedule which is determined by the type and amount of equipment to be serviced and the distance between the installation and the nearest DGC service center.
- 2. Factory Service Contract under which DGC will:
  - repair equipment when it is returned to the DGC factory in Southboro, Mass. The user assumes full responsibility for freight and insurance charges to and from the plant. Parts and labor are included in the monthly payment schedule.
  - (2) repair equipment at the installation when notified of a problem by the user. Parts are included in the monthly maintenance schedule, labor is charged at reduced rates and travel is charged at the prevailing standard rates.
- 3. <u>Hourly Service</u> under which parts, labor and travel are charged as needed at prevailing rates. No contract is signed for this service.

Field Service will also generate on request a complete spare parts list for any installation, and rent or sell replacement and loaner boards.

General Terms and Conditions (Subject to change without notice).

- 1. Equipment which is not under a DGC service contract or normal warranty is subject to an inspection by DGC Field Service before it is eligible for a service contract. All costs for this inspection are borne by the user.
- 2. The user must bear all maintenance costs incurred as a result of unauthorized changes to DGC equipment. These costs will be charged as <u>Hourly Service</u>, regardless of the type of service contract existing between DGC and the user.
- 3. No additional service charge will be added for new (add-on) equipment until the warranty period of that equipment has expired.
- 4. All services are offered between 9 a.m. and 5 p.m. Monday through Friday excluding DGC holidays.
- 5. The minimum contract period is 6 months.
- 6. Field Service price schedules are available on request from Data General Field Service, Southboro, Mass. 01772, Telephone 617-485-9100.

## TRAINING ORGANIZATION

Data General's Training Organization currently offers its users four types of training courses. These courses are subject to change without notice.

Mainframe Maintenance Course. This course covers the logical structure of the central processor, memory, operator's console and power supply. Students must have experience with digital logic, integrated circuits and computer principles.

Fundamentals of Mini-Computer Programming. This course covers number systems, logic, flow charts and computer architecture. Students should have an aptitude for mathematics.

Basic Programming. This course covers Data General's assembly language utility software including loaders, editors, debuggers and assemblers. Students should have experience in programming.

Advanced Programming. This course covers Data General's Operating Systems, DOS, RTOS and SOS. Students must have experience in programming.

Courses are scheduled regularly in the training department at Southboro, Mass., and occasionally in field offices. Special courses can be arranged.

For more information call or write

Training Department Data General Corporation Southboro, Mass. 01772

Tel. 617-485-9100

## **PREVENTIVE MAINTENANCE**

Periodically carry out the checks listed in Table, N-1, and remember the following points:

- 1. It is very poor practice to use the equipment as a counter top, particularly for liquids like coffee or soft drinks.
- 2. Always check the line voltage before plugging an expensive piece of equipment into an unknown socket. (see Section I).
- 3. Be careful not to get metal filings into the equipment; for example never let the equipment room be cleaned with steel wool.
- 4. Never clean the equipment with a vacuum cleaner that has a metal (conducting) noz-zle.
- 5. Always be aware that too much heat, moisture or contaminants can do much to harm the equipment (see Section I).
- 6. Be very careful how cables are routed; they should never be strained, cramped or crushed (underfoot).

| Theble                 | 3.7 4 |
|------------------------|-------|
| ranie                  | N - I |
| <b>T</b> UN <b>T</b> U |       |

| Preventive M            | Maintenance Check List                                                                                            |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| Item                    | Check                                                                                                             |
| Mechanical Connections  | 1. that all screws are tight and that all mechanical assem-                                                       |
|                         | <ol> <li>that all crimped lugs are<br/>secure and properly inserted<br/>onto their mating connectors.</li> </ol>  |
| Wiring and Cables       | 1. all wiring and cables for<br>breaks, cuts, frayed leads, or<br>missing lugs.                                   |
|                         | 2. wire wraps for broken or missing pins.                                                                         |
|                         | 3. that no wires or cables are strained or cramped.                                                               |
|                         | 4. that cables do not interfere<br>with doors, and that they do not<br>chafe when doors are opened<br>and closed. |
| Air Filters             | all air filters for cleanliness and<br>for normal air movement through<br>cabinets.                               |
| Modules and Components  | 1. that all modules are properly<br>seated. Look for areas of dis-<br>coloration on all exposed<br>surfaces.      |
|                         | 2. all exposed capacitors for<br>signs of discoloration, leakage,<br>or corrosion.                                |
|                         | 3. power supply capacitors for bulges.                                                                            |
| Indicators and Switches | all indicators and switches for<br>tightness; check for cracks,<br>discoloration, or other visual<br>defects.     |
| Fans                    | for broken fan blades.                                                                                            |
| Diagnostics             | Run all diagnostics periodically                                                                                  |

N-3

|      |     | Recommended Maintenance Too                                                                             | l Kit              |
|------|-----|---------------------------------------------------------------------------------------------------------|--------------------|
| ITEM | QTY | DESCRIPTION                                                                                             | MFG. & PART No.    |
| 1    | 1   | 6" combination slip joint pliers                                                                        | Utica # 5-6        |
| 2    | 2   | 5 1/2" needle nose pliers                                                                               | Utica # 654-5 1/2  |
| 3    | 1   | 4" needle nose pliers                                                                                   | Utica # 23-4       |
| 4    | 1   | 5" diagonal wire cutters                                                                                | Utica # 44-5       |
| 5    | 1   | 4" diagonal wire cutters                                                                                | Utica # 347-4 CFJS |
| 6    | 1   | 5" ignition pliers                                                                                      | Utica # 517-5      |
| 7    | 1   | Screwdriver kit including handle,<br>3/16", 1/4", 5/16" slotted #1,<br>#2 phillips blades, each 4" long | Xcelite # 99 PV-6  |
| 8    | 1   | 3/32 slotter screwdriver with 2" blade                                                                  | Xcelite # R3322    |
| 9    | 1   | 1/8" #0 phillips screwdriver                                                                            | Xcelite # P12S     |
| 10   | 1   | Magnetic pick up tool                                                                                   | Bonney # K26       |
| 11   | 1   | 3/32 through 3/8, 10 pc nut<br>driver set                                                               | Xcelite # PS120    |
| 12   | 1   | Xacto knife                                                                                             |                    |
| 13   | 1   | 6" adjustable wrench                                                                                    | Utica # 91-6       |
| 14   | 1   | Ignition wrench                                                                                         | Bonney # N24R      |
| 15   | 1   | Set of 25 feeler gauges with 3" blades                                                                  | Bonney # K53       |
| 16   | 1   | Set of 15 hex keys                                                                                      | Bonney # N6R       |
| 17   | 1   | Slotter 5" screw starter                                                                                | Bonney # 5527      |
| 18   | 1   | Phillips 6 1/4" screw starter                                                                           | Bonney # 556       |
| 19   | 1   | 5" adjustable wire strippers                                                                            | Utica # 110-5      |
| 20   | 1   | Set of 4 cut needle files                                                                               | Hunter # F228A     |
| 21   | 1   | 4 1/2" electrical tweezers                                                                              | Hunter # B3M3      |
| 22   | 1   | flash light                                                                                             |                    |
| 23   | 1   | Can Quick Freez (circuit cooler)                                                                        |                    |

Table N-2

# Table N-2 (Continued)

|      |     | Recommended Maintenance Tool F                           | Sit                                                                                                                     |
|------|-----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| ITEM | QTY | DESCRIPTION                                              | MFG & PART No.                                                                                                          |
| 24   | 1   | Can degreaser (flux remover)                             |                                                                                                                         |
| 25   | 2   | 16P I/C test clip                                        | $ \begin{array}{l} \left\{ \left  $ |
| 26   | 1   | 23 $1/2$ watt soldering iron with iron plated chisel tip | Ungar                                                                                                                   |
| 27   | 1   | $47 \ 1/2$ watt soldering iron element                   |                                                                                                                         |
| 28   | 1   | 11b, 60/40 resin core solder                             | Kester                                                                                                                  |
| 29   | 3   | Spools of solder wick                                    |                                                                                                                         |
| 30   | 2   | Acid brushes                                             |                                                                                                                         |
| 31   | 1   | Vacuum solder removal tool                               |                                                                                                                         |
| 32   | 1   | Multimeter                                               | Simpson # 260                                                                                                           |
| 33   | 1   | Tool carrying case                                       |                                                                                                                         |
| 34   | 1   | Oscilloscope                                             | Tektronics # 453                                                                                                        |
| 35   | 1   | Current probes                                           | Tektronics # P60-22                                                                                                     |

# Table N-3

|                                | The        | Nova 1220 Diagnostics | <b>5</b>                                                                      |
|--------------------------------|------------|-----------------------|-------------------------------------------------------------------------------|
| Diagnostic                     | Part No.   | Binary Tape No.       | Description                                                                   |
| Address Test                   | 097-000007 | 095-000005            | checks memory address<br>selection logic                                      |
| Checkerboard III               | 097-000014 | 095-000031            | tests memory sense<br>amplifiers and inhibit<br>logic                         |
| Nova 1220 Logic<br>Test        | 097-000017 | 095-000036            | tests CPU logic other<br>than I/O                                             |
| Nova 1220<br>Instruction Timer | 097-000019 | 095-000038            | tests CPU clock logic and<br>outputs time-to-complete<br>for each instruction |
| Exerciser                      | 097-000004 | 095-000012            | tests CPU logic,<br>teletypewriter, reader,<br>punch and real-time<br>clock;  |
| Arithmetic Test                | 097-000018 | 095-000037            | exercises arithmetic<br>and logical instructions<br>in CPU                    |

#### HOW TO TEST THE COMPUTER



- 12. Unlock the computer and hit STOP.
- 13. Depress DEPOSIT NEXT several times and check that the PC increments
- 14. Depress EXAMINE NEXT several times and check that the PC increments

MEMORY FAILURE IN STACK. SEE SECTION M YES BOOTSTRAP INTO A DIFFERENT MEMORY STACK (IF AVAILABLE) PROBLEM COULD • CONSOLE TROUBLESHOOT • MEMORY NO WITH SCOPE ·CPU CAN YOU LOAD THE BE: REFER TO "HOW TO USE THE NOVA COMPUTERS" FOR LOAD-ING THE BOOTSTRAP AND 0N N REFER TO THE READER'S TECHNICAL LOAD PROPERLY BINARY LOADER PROBABLY A READER PROBLEM. BOOTSTRAP IN TRY A DIFFERENT PROPERLY WILL THE READER IF YOU HAVE ONE, OR NO NO IS THE 0 BINARY LOADERS (m) YES MANUAL. THE PROGRAM LOAD OPTION. TRY USING THE BOOTSTRAP LOADER YES AUTOMATIC PROGRAM LOADING. LOAD IN THE PROGRAM LOAD TAPE STUDY THE DIAGNOSTICS PROGRAMS OF TABLE N-4 NO COULD BE REFER TO "HOW TO USE THE NOVA COMPUTERS" FOR IN PROPERLY LOAD LOGIC LOADER IS THE  $\bigcirc$ છ \$ YES TEST THE DG-00100

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipmen and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.



N-8

# SIGNAL LIST

ŀ

# Table 1 - Nova 1210/1220

| O]                          | RIGIN     |          |      |           | DES               | STINA     | ΓION   | ſ                                     |            |
|-----------------------------|-----------|----------|------|-----------|-------------------|-----------|--------|---------------------------------------|------------|
| SIGNAL                      | СНІР      | PIN      | DWG  | GRID      | FUNCTION          | CHIP      | PIN    | DWG                                   | GRID       |
| ACB0                        | 105       | 5        | 88-4 | B4        | ACB12             | 105       | 14     | 88-4                                  | B3         |
| ACB1                        | 106       | 5        | 11   | B3        | ACB13             | 106       | 14     | 1.11                                  | B2         |
| ACB2                        | 107       | 5        | 11   | A4        | ACB14             | 107       | 14     | 11                                    | A4         |
|                             |           |          |      |           | LOAD MBO*         | 98        | 6      | 88-3                                  | A3         |
|                             |           |          |      | a station | KEYM SET*         | 101       | 9      | 88-1                                  | B7         |
| ACB3                        | 108       | 5        |      | A3        | ACB15             | 108       | 14     | 88-4                                  | A2         |
| ACB4                        | 105       | 7        | 11   | B4        | ACB0              | 105       | 3      | ••                                    | B4         |
| ACB5                        | 106       | 7        | 11   | В3        | ACB1              | 106       | . 3    |                                       | B3         |
| ACB6                        | 107       | 7        | 11   | A4        | ACB2              | 107       | 3      | •••                                   | A4         |
| ACB7                        | 108       | 7        | . 11 | A3        | ACB3              | 108       | 3      | 11                                    | A3         |
| ACB8                        | 105       | 9        | 11   | B4        | ACB4              | 105       | 2      | 11                                    | B4         |
| ACB9                        | 106       | 9        | **   | B3        | ACB5              | 106       | 2      | **                                    | B3         |
| ACB10                       | 107       | 9        | . 11 | A4        | ACB6              | 107       | 2      |                                       | A4         |
| ACB11                       | 108       | 9        | 11   | A3        | CRY SET           | 81        | 13     | 88-3                                  | - C6       |
|                             |           | 30<br>   |      |           | ACB7              | 108       | 2      | 88-4                                  | A3         |
|                             |           |          |      |           | SHIFTER           |           |        |                                       |            |
|                             |           |          |      |           | Logic             | 114       | 10     | 11                                    | A8         |
| ACB12                       | 105       | 11       | 11   | B4        | ACB12 SAVE        | 69        | 3      | 88-1                                  | D5         |
|                             |           |          |      |           | SHIFTER           |           |        |                                       |            |
|                             |           |          |      |           | Logic             | 109       | 9      | 88-4                                  | A8         |
| ACB12*                      | 105       | 12       | 11   | B3        | SHIFTER           | 125       | 19     | 11                                    | A7         |
| ACB13                       | 106       | 11       | 11   | B2        |                   |           |        |                                       |            |
| ACB13*                      | 106       | 12       | 11   | 11        | SHIFTER           | 125       | 2      | 11                                    | A7         |
|                             |           |          |      |           | SHIFTER           | 125       | 20     |                                       | A7         |
| ACB14                       | 107       | 11       | 11   | A4        |                   |           |        |                                       |            |
| ACB14*                      | 107       | 12       | 11   | A3        | SHIFTER           | 125       | 1      | 11                                    | A7         |
|                             | (16-1).   | - A.     |      |           | SHIFTER           | 125       | 5      | 11                                    | A6         |
|                             |           |          |      |           | SHIFTER           | 125       | 18     | 11                                    | A7         |
| ACB15                       | 108       | 11       |      | A2        |                   | 105       |        |                                       |            |
| ACB15*                      | 108       | 12       | **   | AZ        | SHIFTER           | 125       | 3      |                                       | Α'         |
| ACB12                       | <b>co</b> | <u> </u> | 00 1 | 54        |                   | 1.00      |        |                                       |            |
| SAVE                        | 69        | 5        | 88-1 | D4        | SHIFTER           | 00        | 2.<br> | 00 4                                  |            |
|                             |           |          |      | 10        | LOGIC             | 90        | 5      | 00-4                                  |            |
| AC CLR                      | 20        | ษ        |      | AO        |                   | 00<br>195 | 7      | 00-2                                  |            |
|                             |           |          |      |           |                   | 140       | 2      | 00-4                                  |            |
|                             | 192       | E F      | 88 1 | Ъο        | MUIT T            | 120       | 5      | 00-3<br>80_1                          | - D3<br>75 |
| ACDU                        | 143       |          | 00-4 | Бо        |                   | 120       | 3      | ···                                   | CS         |
|                             | 192       | 77       | ., 1 | ъs        | D DUFFR<br>MIII T | 122       | ິງ     | · · · · · · · · · · · · · · · · · · · | D5         |
| ACDI<br>*Indiantog !! Not!! | 145       | <u> </u> |      | Бо        | MULI              | 140       | - 4    |                                       | 100        |
| mulcales not                |           |          |      |           |                   |           |        |                                       |            |

| O]              | RIGIN  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | DESTINATION                                                                                                                                                 |      |      |                                                                                                                 |      |
|-----------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------------------------------------------------------------------------------------------------------------|------|
| SIGNAL          | СНІР   | PIN      | DWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRID              | FUNCTION                                                                                                                                                    | CHIP | PIN  | DWG                                                                                                             | GRID |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | D BUFFER                                                                                                                                                    | 122  | 2    | 88-4                                                                                                            | C8   |
| ACD2            | 123    | 9        | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B8                | MULT                                                                                                                                                        | 120  | 22   | 11                                                                                                              | C5   |
|                 |        |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | D BUFFER                                                                                                                                                    | 122  | 15   | 1                                                                                                               | C7   |
| ACD3            | 123    | 11       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B8                | MULT                                                                                                                                                        | 120  | 19   | 11                                                                                                              | C5   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | D BUFFER                                                                                                                                                    | 122  | 14   | 1                                                                                                               | C7   |
| ACD3 SEL*       | 50     | 6        | 88-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D4                | ACD                                                                                                                                                         | 123  | 1    | 11<br>1 1                                                                                                       | B8   |
| ACD4 SEL*       | 44     | 8        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4                | ACD                                                                                                                                                         | 123  | 15   | · · · · ·                                                                                                       | B8   |
| ACD OUT*        | 45     | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B3                | D MULT(SEL)                                                                                                                                                 | 121  | 1    |                                                                                                                 | C8   |
| [ACS0]          | 124    | 5        | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B7                | S BUFFER                                                                                                                                                    | 115  | 3    | 11 N                                                                                                            | C7   |
| [ACS1]          | 124    | 7        | ta Mastria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B7                | 11                                                                                                                                                          | 115  | 2    | 11                                                                                                              | C7   |
| [ACS2]          | 124    | 9        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B6                | 11                                                                                                                                                          | 115  | 15   | . <b>††</b> - 44                                                                                                | C6   |
| [ACS3]          | 124    | 11       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B6                | ning <b>HT</b> ana ang kanalasi kanalasi<br>Kanalasi kanalasi kan | 115  | 14   | 11                                                                                                              | C6   |
| ACS1 SEL*       | 49     | 6,8      | 88-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C4                | ACS                                                                                                                                                         | 124  | 1    | 11                                                                                                              | B7   |
| ACS2 SEL*       | 49     | 3,11     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B4                | ACS                                                                                                                                                         | 124  | 15   | 1                                                                                                               | B7   |
| ACTG0           | 54     | 5        | 88-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D8                | ACTG1                                                                                                                                                       | 73   | 9    | 88-1                                                                                                            | C8   |
|                 |        |          | $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | IR(SH) LOGIC                                                                                                                                                | 111  | 2    | 88-2                                                                                                            | B8   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACD                                                                                                                                                         | 123  | 14   | 88-4                                                                                                            | B8 - |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACS                                                                                                                                                         | 124  | 14   | 1                                                                                                               | B7   |
| ACTG1           | 54     | 7        | 88-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D8                | ACTG0                                                                                                                                                       | 53   | 9    | 88-1                                                                                                            | D8   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | IR(SH) LOGIC                                                                                                                                                | 111  | 9    | 88-2                                                                                                            | A8   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACD                                                                                                                                                         | 123  | 1    | 88-4                                                                                                            | B8   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACS                                                                                                                                                         | 124  | 13   | 1. 1. <b>1</b> 1                                                                                                | B7   |
| ADDER0          | 117    | 13       | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D7                | CRY SET*                                                                                                                                                    | 81   | 3    | 88-3                                                                                                            | C6   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACB (DS)                                                                                                                                                    | 105  | 4    | 88-4                                                                                                            | B4   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACB8                                                                                                                                                        | 105  | 15   | . <u>11</u>                                                                                                     | B4   |
|                 |        | 1        | $\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} \right) \left( \frac{1}{2}$ |                   | PC LOGIC                                                                                                                                                    | 118  | 5, 4 | 11                                                                                                              | B6   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | MULT                                                                                                                                                        | 120  | 4    | <u>. 11</u>                                                                                                     | D5   |
| ADDER1          | 117    | 11       | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D7                | ACB(DS)                                                                                                                                                     | 106  | 4    | the second se | B3   |
|                 |        | $\leq 1$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACB9                                                                                                                                                        | 106  | 15   |                                                                                                                 | B3   |
|                 |        | 1.1      | $(\underline{a}_{1},\underline{b}_{2},\underline{b}_{3},\underline{b}_{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | PC LOGIC                                                                                                                                                    | 118  | 1, 2 | 11                                                                                                              | B6   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | MULT                                                                                                                                                        | 120  | 1    | 11                                                                                                              | D5   |
| ADDER2          | 117    | 10       | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D7                | ACB(DS)                                                                                                                                                     | 107  | 4    | . т. т                                                                                                          | A4   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $E_{\rm eff} = 0$ | ACB10                                                                                                                                                       | 107  | 15   |                                                                                                                 | B2   |
|                 |        |          | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | PC LOGIC                                                                                                                                                    | 118  | 12,  |                                                                                                                 |      |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the second        |                                                                                                                                                             |      | 13   | 11                                                                                                              | A6   |
|                 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | MULT                                                                                                                                                        | 120  | 23   | <b></b> .                                                                                                       | C5   |
| ADDER3          | 117    | 9        | 88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D7                | ACB(DS)                                                                                                                                                     | 108  | 4    | 11                                                                                                              | A3   |
|                 | ta a a |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | ACB11                                                                                                                                                       | 108  | 15   | 11                                                                                                              | A2   |
| Indicates "Not" |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                             |      |      |                                                                                                                 |      |

# SIGNAL LIST

Table 1 - Nova 1210/1220

ï

| OF                 | RIGIN    |         |              |          | DES                                          | TINAT                 | TION                    | -                              |                      |
|--------------------|----------|---------|--------------|----------|----------------------------------------------|-----------------------|-------------------------|--------------------------------|----------------------|
| SIGNAL             | СНІ₽     | PIN     | DWG          | GRID     | FUNCTION                                     | CHIP                  | PIN                     | DWG                            | GRID                 |
|                    |          |         |              |          | PC LOGIC<br>MULT                             | 118<br>120            | 9,<br>10<br>20          | 88-4<br>''                     | A6<br>C5             |
| ADD ONE*<br>ADDER  | 88       | 8       | 88-2         | D2       | ADDER                                        | 117                   | 7                       | 1                              | D6                   |
| TEST<br>ALC        | 58<br>94 | 3<br>6  | 88-3<br>88-2 | A4<br>B7 | LOOP SET*<br>DISABLE D                       | 104                   | 5                       | 88-3                           | D6                   |
|                    |          |         |              |          | MULT<br>S0<br>TEST SKIP                      | 46<br>47              | 10<br>1                 | 88-2                           | В3<br>С3             |
| ALC*               | 50       | 8       | 88-2         | В7       | SET<br>ADD ONE*<br>AND<br>E SET              | 86<br>44<br>65<br>74  | 5<br>2<br>5<br>1        | 88-3<br>88-2<br>''             | D8<br>D3<br>B7<br>C7 |
|                    |          |         |              |          | S2<br>ALC<br>S BUFFER                        | 91<br>94              | 12<br>5                 | 11<br>11                       | C3<br>B7             |
| ALC·SKIP<br>AND    | 83<br>65 | 10<br>6 | 88-3<br>88-2 | D8<br>B7 | (SH)<br>LOAD CRY*<br>CRY ENAE<br>S1<br>ADDEP | 115<br>97<br>91<br>91 | 13<br>13<br>2<br>5<br>8 | "<br>88-3<br>"<br>88-2<br>88-4 | C7<br>C5<br>C6<br>C3 |
| AND ENAB*          | 64       | 11      | 88-2         | B7       | IO DCDR<br>AND<br>PACK                       | 62<br>65<br>89        | 13<br>4<br>2            | 88 -1<br>88 -2<br>88 -3        | A5<br>B7<br>C5       |
| CARRY<br>(F/F)     | 76       | 8       | 88-3         | C5       | CRY ENAB                                     | 77                    | 4                       | 88-3                           | C7                   |
| (F/F)              | 76       | 9       | 11           | C5       | CON IND<br>(A15, P49)<br>CRY ENAB            | 6<br>77               | 5<br>3                  | 89-1<br>88-3                   | C8<br>C7             |
| CLK FLOP           | 20       | 5       | 88-1         | A6       | MA LOAD*<br>CPU CLK                          | 56<br>72              | 10<br>2,<br>12          | 88-1                           | D3                   |
|                    |          |         |              |          | MEM CLK<br>LOAD AC*                          | 73<br>93              | 3<br>5                  | ,,<br>88-3                     | A7<br>D3             |
| *Indicates ''Not'' |          |         |              |          |                                              |                       |                         |                                |                      |

i

SIGNAL LIST Table 1 - Nova 1210/1220

T1-3

| SI | GN | IAL | LIS | Т |  |
|----|----|-----|-----|---|--|
|    |    |     |     |   |  |
|    |    |     |     |   |  |

ORIGIN DESTINATION SIGNAL CHI₽ PIN DWG GRID FUNCTION CHIP PIN DWG GRIL CLK FLOP\* 20 6 88-1 A7 CLK FLOP 202 88-1 A7 [CLR\*] 63 5 11 A4 CLR 7 1 11 Α4 **ČLR** 7  $\mathbf{2}$ \*\* A4 (IO CLR PLS) (A50) 90-1 CLR ION\* 63 11 11 B4ION 84 4 88-2 **C7** CLR SKIP\* 99 8 88-3 B3 SKIP 79 13 88-3 **B**5 LOAD MBO\* 98 10 11 B3[CON0\*](S11) 6 4 89-1 C8 MEM0\* **C**8 (B71) (391)89-1 **C**8 (CON IND) 9 7 11 [CON1\*](S12)  $\mathbf{2}$ 89-1 C7C76 11 MEM1\* (B70)P41 C7(CON IND) 13 11 7 C7 [CON2\*](S13) 6 8 89-1 C7MEM2\* (B47) (P13 11 C7(CON IND) 3 11 7 [CON3\*](S14) C7 C76 12 89-1 MEM3\* (B68)P43 11 C7(CON IND) 11 7 1 C6 **C6** [CON4\*](S15) 3 8 89-1 MEM4\* (B28) P37 11 C6 (CON IND) 13 11 8 [CON5\*](S16) 3 10 89-1 C6 C6 MEM5\* (B26) (P36 11 C6 3 (CON IND) 11 8 C6 [CON6\*](S17) 3 89-1 **C**6 6 MEM6\* (B22) P10 11 (CON IND) C6 11 8 1 C5 [CON7\*](S18) 3 4 89-1 MEM7\* (B24) (P42 C5 11 C513 11 (CON IND) 9 C5 C5 3 [CON8\*](S19) 2 89-1 MEM8\* (A55) P34 11 C5(CON IND) 3 11 9 [CON9\*](S20) **C**5 C5 3 12 89-1 MEM9\* (A53) (P7) 11 C5 (CON IND) 11 9 1 C4 C4[CON10\*](S21) 4 8 89-1 **MEM10\*** (A45) P32 11 C4(CON IND) 13 11 10 [CON11\*](S22) 89-1 C4 C44 10 **MEM11\*** (A51)(P31 \* \* 3 \*\* C4(CON IND) 10 [CON12\*](S23) 4 1289-1 C3 (A36) (P5) \*\* C3 **MEM12\*** C3(CON IND) 11 10 1 [CON13\*](S24) 4 6 89-1 C3C3 **MEM13\*** (A35)(P29 11 C3(CON IND) 11 13 • • \*Indicates ''Not''

<u>Table 1 - Nova 1210/1220</u>

| OI               | RIGIN                    |                                          |                                          |                                   | DES                                              | TINA           | ΓION      | <b>[</b>      |       |
|------------------|--------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------|----------------|-----------|---------------|-------|
| SIGNAL           | CHIP                     | PIN                                      | DWG                                      | GRID                              | FUNCTION                                         | CHIP           | PIN       | DWG           | GRID  |
| [CON14*](S25)    | 4                        | 4                                        | 89-1                                     | C3                                | MEM14*                                           | (B76)          | (P3)      | 89-1          | C3    |
|                  | 1                        |                                          |                                          |                                   | (CON IND)                                        | 11             | 3         | 11            | C3    |
| [CON15*](S26)    | 4                        | 2                                        | 89-1                                     | C2                                | MEM15*                                           | (B18)          | (P2)      | 11            | C2    |
|                  |                          |                                          | 00.1                                     |                                   | (CON IND)                                        | 12             | 13        |               | C2    |
| CON DATA*        | 4                        | 8                                        | 88-1                                     | AZ                                | [CON0*](911)                                     | (A28)          | (P40<br>3 |               | Co    |
|                  |                          |                                          |                                          |                                   | $[CON0^{+}](S11)$                                | 6              | 1         | .,,           | $C_7$ |
|                  |                          |                                          |                                          |                                   | [CON2*](S12)                                     | 6              | 9         | 11            | C7    |
|                  |                          |                                          |                                          |                                   | $[CON2^+](S14)$                                  | 6              | 13        | 1             | C7    |
|                  |                          |                                          |                                          |                                   | [CON4*](S15)                                     | 3              | 9         | **            | C6    |
|                  |                          |                                          |                                          |                                   | CON5* (S16)                                      | 3              | 11        | 11            | C6    |
|                  |                          |                                          |                                          |                                   | CON6* (S17)                                      | 3              | 5         | 11            | C6    |
|                  |                          |                                          |                                          |                                   | [CON7*](S18)                                     | 3              | 3         | <b>11</b> 1 1 | C5    |
|                  |                          |                                          |                                          |                                   | [CON8*](S19)                                     | 3              | 1         | **            | C5    |
|                  |                          | 94.<br>1910 - 1910 - 1910                |                                          |                                   | [CON9*](S20)                                     | 3              | 13        | 11            | C5    |
|                  |                          | n an |                                          |                                   | [CON10*]                                         |                |           |               | C4    |
|                  |                          |                                          |                                          | pi i st                           | (S21)                                            | 4              | 9         | TT -          | C4    |
|                  |                          |                                          | an a |                                   | $\begin{bmatrix} \text{CONI1}^{+} \end{bmatrix}$ | 1              | 11        | ,,            | ~1    |
|                  |                          |                                          |                                          |                                   | (844)                                            | 4              | 11        |               | C4    |
|                  |                          |                                          |                                          | $(1,1) \in \mathbb{R}^{n}$        | $\left[ CON12^{+} \right]$                       | 4              | 13        | 11            | C3    |
|                  |                          |                                          |                                          |                                   | [CON13*]                                         | т.<br>Т.       | 10        |               | 00    |
|                  |                          |                                          |                                          |                                   | (S24)                                            | 4              | 5         | .,            | C3    |
|                  |                          |                                          |                                          |                                   | $\begin{bmatrix} CON14* \end{bmatrix}$           | 1              |           |               |       |
|                  |                          |                                          |                                          |                                   | (S25)                                            | 4              | 3         | 11            |       |
|                  |                          |                                          |                                          |                                   | [CON15*]                                         |                |           |               | C2    |
|                  |                          |                                          |                                          |                                   | (S26)                                            | 4              | 1         | 11            |       |
| CON INST*        | 36                       | 8                                        | 88-1                                     | A2                                |                                                  | (A22)          | (P22      | 1 <b>11</b> 1 |       |
|                  |                          |                                          |                                          |                                   | [CON INST]                                       | 5              | 9         | <b>11</b>     | A8    |
| [CON INST]       | 5                        | 8                                        | 89-1                                     |                                   | MEM0*                                            | 1              | 2         | 11            | C8    |
|                  |                          |                                          |                                          |                                   | MEM1*                                            | 1              | 4         |               | C7    |
|                  | e di se di               |                                          |                                          | ana<br>Article<br>Article Article | MEMZ*                                            | 2              | 10        |               | C7    |
|                  |                          |                                          |                                          |                                   | MEMA*                                            |                | 10        | 11            |       |
|                  | a de personal            |                                          |                                          |                                   | MEM5*                                            | $\frac{1}{2}$  | 12        | н             |       |
|                  |                          |                                          |                                          |                                   | MEM6*                                            | $\frac{1}{2}$  | 2         |               | $C_6$ |
|                  | 22 I                     |                                          |                                          |                                   | MEM7*                                            | $\overline{2}$ | 4         |               | C5    |
| *Indicates "Not" |                          |                                          |                                          |                                   |                                                  |                |           |               |       |
| mulcales not     | - 1 - 1 - 1 - <b>1</b> - | 3 - <sup>1</sup> -                       |                                          |                                   |                                                  |                |           |               |       |

SIGNAL LIST Table 1 - Nova 1210/1220

1

| SIGNAL         CHIP         PIN         DWG         GRID         FUNCTION         CHIP         PIN         DWG         GRID           CON RQ*         5         6         89-1         C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O                  | RIGIN |           |              |                                                                                                                                                                                                                                                    | DES                     | STINA | ΓION   | Ţ            |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------|--------------|----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIGNAL             | СНІР  | PIN       | DWG          | GRID                                                                                                                                                                                                                                               | FUNCTION                | CHIP  | PIN    | DWG          | GRID     |
| A27)       (P21)       KEY SEEN       3       4       88-1       B8         CONT+ISTP*       (A20)       89-1       B3       KEY ENAB*       3       2       88-1       B6         CPU CLK       72       3,8       88-1       A6       MB LOAD       14       4       "C2         IR4-IR7       28       6       88-2       A6       MBC       32       6       "A4         MBC       32       6       "A4       MBC       33       6       "A4         MBC       33       6       "A4       MBC       38       6       "A4         MBO       39       6       "D3       MBC       38       6       "A4         MBO       38       6       "D4       42       6       88-1       D2         INPUT       66       13       "C5       MALOAD*       10       88-3                                                                                                                             | CON RQ*            | 5     | 6         | 89-1         | C8                                                                                                                                                                                                                                                 |                         |       |        |              |          |
| CPU CLK       (A20)       89-1       B3       KEY ENAB*       3       2       88-1       B8         CPU CLK       72       3,8       88-1       A6       MB LOAD       14       4       "C2         IR4-IR7       28       6       88-2       A6       MBC       32       6       "A4         MBC       33       6       "C2       A6       MBC       33       6       "A4         MBO       37       6       88-4       C4       MBO       38       6       "C2         MBO       39       6       "D3       B6       "D4       42       6       88-1       C6         MBO       39       6       "D4       42       6       88-1       C6       "D4         MBO       40       6       "D4       42       6       88-1       C6       "D4         MBO       40       6       "D4       20       6       88-3       B3         MADON       60       10       88-3       B3       MAJOR       "D6       "D6         SKIP       78       13       88-3       C5       C2       C2       TD6       C8                                                                                                                              | CONTRESTD          | A27)  | (P21      | )            |                                                                                                                                                                                                                                                    | KEY SEEN                | 3     | 4      | 88-1         | B8       |
| CPU CLK         72         3,8         88-1         A6         MB LOAD         14         4         "         C2           IR4-IR7         28         6         88-2         A6           MBC         32         6         "         A4           MBC         33         6         "         A4           MBO         37         6         88-4         C4           MBO         38         6         "         D4           MBO         39         6         "         D5           MBO         39         6         "         D4           MBO         40         6         "         D4           MBO         10         88-3         B5         MAJOR         S                                                                                                              | MSTP*              | (A20) |           | 89-1         | B3                                                                                                                                                                                                                                                 | KEY ENAB*               | 3     | 2      | 88-1         | B8       |
| CPU INST       6       11       88-2       86       88-2       46         MBC       32       6       "       44         MBC       33       6       "       44         MBO       37       6       88-4       C4         MBO       38       6       "       05         MBO       39       6       "       05         MBO       40       6       "       05         MBO       40       6       "       05         MBO       40       6       "       05         MBO       10       88-1       05       06         MALOAD*       60       10       88-3       05         MAJOR       STATES       95       6       88-2       06         CPU INST       6       11       2       8 <t< td=""><td>CPU CLK</td><td>72</td><td>6,8</td><td>88-1</td><td>Ā6</td><td>MB LOAD</td><td>14</td><td>4</td><td>11</td><td>C2</td></t<>                                                                   | CPU CLK            | 72    | 6,8       | 88-1         | Ā6                                                                                                                                                                                                                                                 | MB LOAD                 | 14    | 4      | 11           | C2       |
| CPU INST       6       11       88-2       B7       MBC       32       6       "       A4         MBC       33       6       "       A5         MBO       37       6       88-4       C4         MBO       38       6       "       D3         MBO       39       6       "       D3         MBO       40       6       "       D4         42       6       88-1       C5         INPUT       66       13       "       C5         PTG       69       6       "       D4         SKIP       78       13       88-3       B5         MAJOR       -       -       -       -         LOOP/PACK       -       -       -       -         KEFA       103       6       "       D5         ACB       105       6       88-4       B4         ACB       105       6       88-4       B4                                                                                                                                                                                                        |                    |       |           |              |                                                                                                                                                                                                                                                    | IR4-IR7                 | 28    | 6      | 88 <b>-2</b> | A6       |
| CPU INST       6       11       88-2       B7       MBC       33       6       "       A5         MBO       37       6       88-4       C4       C4         MBO       38       6       "       D5         MBO       38       6       "       D5         MBO       38       6       "       D5         MBO       40       6       "       D4         42       6       88-1       C6         IOAD PC*       57       10       88-3       B5         MA LOAD*       60       10       88-1       D2         INPUT       66       13       "       C7         PTG       69       6       "       D4         SKIP       78       13       88-3       B5         MAJOR       STATES       95       6       88-2       D6         CPU INST       6       11       88-2       B7       102       6       "       D5         ACB       106       6       "       B3       ACB       106       6       "       A3         END CYCLE       F/F       113       13                                                                                                                                                                           |                    |       |           |              |                                                                                                                                                                                                                                                    | MBC                     | 32    | 6      | 11           | A4       |
| CPU INST       6       11       88-2       B7       MBO       37       6       88-4       C4         MBO       38       6       "       C3       MBO       39       6       "       D3         MBO       39       6       "       D4       D4       D4       D4       D4       D4         MBO       40       6       "       D4                                                                                                        |                    |       |           |              |                                                                                                                                                                                                                                                    | MBC                     | 33    | 6      | 11           | A5       |
| CPU INST       6       11       88-2       B7       MBO       38       66       "       C3         MBO       39       6       "       D3         MBO       40       6       "       D4         42       6       88-1       C6         LOAD PC*       57       10       88-3       B3         MA LOAD*       60       10       88-1       D2         INPUT       66       13       "       C5         PTG       69       6       "       D4         SKIP       78       13       88-3       B5         MAJOR       -       -       -       -         SCPU       F/F       -       -       -         Loogic       97       9       88-3       C5         102       6       "       D8         ACB       103       6       "       D8         ACB       105       6       88-4       B4         ACB       106       6       "       A3         END CYCLE       -       -       -       -         F/F       113       13       88-1                                                                                                                                                                                                  |                    |       |           |              |                                                                                                                                                                                                                                                    | MBO                     | 37    | 6      | 88-4         | C4       |
| CPU INST       6       11       88-2       B7       MBO       40       6       ''       D4         MBO       42       6       88-1       C2       C2       CA       B8-3       B3         LOAD PC*       57       10       88-3       B3       B4                                                                                            |                    |       |           |              |                                                                                                                                                                                                                                                    | MBO                     | 38    | 6<br>C |              | C3       |
| CPU INST       6       11       88-2       B7       MISO       40       6       88-1       C6         LOAD PC*       57       10       88-3       B3         MA LOAD*       60       10       88-1       D2         INPUT       66       13       ''       C5         PTG       69       6       ''       D4         SKIP       78       13       88-3       B5         MAJOR       -       -       -       -         STATES       95       6       88-2       D6         CARRY F/F       -       -       -       -         LOOP/PACK       -       -       -       -         /EFA       103       6       ''       D8         ACB       105       6       88-4       B4         ACB       106       6''       -         ACB       106       6''       -       -         F/F       113       13       88-1       D5         G       11       88-2       B7       INTA       6       ''       A3         MACB       106       6'''       -       -                                                                                                                                                                                |                    |       |           |              |                                                                                                                                                                                                                                                    | MBO                     | 39    | 0      |              | D3       |
| CPU INST       6       11       88-2       B7       B7       10       88-3       B3       B3         CPU INST       6       11       88-2       B7       INPUT       66       13       "       C5         CPU INST       6       11       88-2       B7       INTA       6       5       "       B4         CPU INST       6       11       88-2       B7       B7       103       6       "       D5         CPU INST       6       11       88-2       B7       INTA       6       5       "       B5         CPU INST       6       11       88-2       B7       INTA       6       5       "       B5         CPU INST       6       11       88-2       B7       INTA       6       "       A2         CPU INST       6       11       88-2       B7       INTA       6       "       A3         CPU INST       6       11       88-2       B7       INTA       6       "       A3         CPU INST       6       11       2       88-3       B7       INTA       6       S       S         CPU INST <td></td> <td></td> <td>(1,1,1,1)</td> <td></td> <td></td> <td>MPO</td> <td>40</td> <td>6</td> <td>88_1</td> <td></td> |                    |       | (1,1,1,1) |              |                                                                                                                                                                                                                                                    | MPO                     | 40    | 6      | 88_1         |          |
| CPU INST       6       11       88-2       B7       B7       INDA DAD*       60       10       88-1       D2         INPUT       66       13       "       C5       PTG       69       6       "       D4         SKIP       78       13       88-3       B5       MAJOR       5       102       6       "       D4         SKIP       78       13       88-3       C5       102       6       "       D6         CARRY F/F       Logic       97       9       88-3       C5       102       6       "       D8         LOOP/PACK       //       -       103       6       "       D5       ACB       105       6       88-4       B4         ACB       106       6       "       B3       ACB       107       6       "       A3         ACB       106       6       "       B3       ACB       108       6       "       A3         CPU INST       6       11       88-2       B7       INTA       6       5       "       B3         ACB       107       6       "       A3       -       55                                                                                                                                  |                    |       |           |              |                                                                                                                                                                                                                                                    | LOAD PC*                | 57    | 10     | 88-3         | B3       |
| CPU INST       6       11       88-2       B7       B7       13       13       88-1       D5         CPU INST       6       11       88-2       B7       B7       13       13       88-1       D5         CPU INST       6       11       88-2       B7       B7       13       88-1       D5         CPU INST       6       11       88-2       B7       B7       133       88-1       D5         CPU INST       6       11       88-2       B7       B7       B7       13       88-1       D5         CPU INST       6       11       88-2       B7       B7       INTA       6       5       "       B7         INTA       6       5       "       B5       10       "       A4         CPU INST       6       11       88-2       B7       INTA       6       5       "         CPU INST       6       11       88-2       B7       INTA       13       13       88-1       D5         IORST       6       10       "       A4       A2       11       12       88-3       B7         '''       11                                                                                                                           |                    |       |           |              |                                                                                                                                                                                                                                                    | MA LOAD*                | 60    | 10     | 88-1         | $D^2$    |
| CPU INST       6       11       88-2       B7       B7       13       88-1       D5         CPU INST       6       11       88-2       B7       IOPTG       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       102       6       10       102       6       11       103       6       11       103       6       11       103       6       11       103       6       11       103       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       <                                                                             |                    |       |           |              |                                                                                                                                                                                                                                                    | INPUT                   | 66    | 13     | 11           | C5       |
| CPU INST       6       11       88-2       B7       SKIP       78       13       88-3       B5         NAJOR       STATES       95       6       88-2       D6         CARRY F/F       Logic       97       9       88-3       C5         Logic       97       9       88-3       C5         LOOP/PACK       6       ''       D8         ACB       103       6       ''       D8         ACB       105       6       88-4       B4         ACB       106       6       ''       B3         ACB       106       6       ''       B3         ACB       108       6       ''       A3         END CYCLE       F       113       13       88-1       D5         IORST       6       10       ''       A4         ACB       108       6       ''       B5         IORST       6       10       ''       A4         ''       11       2       88-3       B7         ''       11       12       ''       B7                                                                                                                                                                                                                             |                    |       |           |              |                                                                                                                                                                                                                                                    | PTG                     | 69    | 6      |              | D4       |
| CPU INST       6       11       88-2       B7       MAJOR       5       6       88-2       D6         CPU INST       6       11       88-2       D6       102       6       ''       D8         CPU INST       6       11       88-2       B7       INTA       6       5       ''       D6         ''       D8       102       6       ''       D8       D6       ''       D8         ''       D6       103       6       ''       D6       ''       D8         LOOP/PACK       '       103       6       ''       D8       ACB       105       6       88-4       B4         ACB       106       6       ''       B3       ACB       106       6       ''       B3         CPU INST       6       11       88-2       B7       INTA       6       5       ''       B3         CPU INST       6       11       88-2       B7       INTA       6       5       ''       B5         ''       11       2       88-3       5       ''       B7       B7       B7       B7       B7       B7       B7                                                                                                                                 |                    |       |           |              |                                                                                                                                                                                                                                                    | SKIP                    | 78    | 13     | 88-3         | B5       |
| CPU INST       6       11       88-2       B7       STATES       95       6       88-2       D6         CARRY F/F       Logic       97       9       88-3       C5         LOOP/PACK       102       6       ''       D5         ACB       103       6       ''       D5         ACB       105       6       88-4       B4         ACB       106       6       ''       B3         ACB       106       6       ''       B3         ACB       106       6       ''       A3         F/F       113       13       88-1       D5         IORST       6       10       ''       A4         (SKIP Logic)       11       2       88-3       B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |       |           |              |                                                                                                                                                                                                                                                    | MAJOR                   | i i   |        |              |          |
| CPU INST       6       11       88-2       B7       B7       9       88-3       C5         Logic       97       9       88-3       C5         LOOP/PACK       102       6       ''       D5         ACB       105       6       88-4       B4         ACB       106       6       ''       B3         ACB       108       6       ''       A3         F/F       113       13       88-1       D5         IORST       6       10       ''       A4         (SKIP Logic)       11       2       88-3       B7                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |       |           |              |                                                                                                                                                                                                                                                    | STATES                  | 95    | 6      | 88-2         | D6       |
| CPU INST       6       11       88-2       B7       B7       97       9       88-3       C5         IO2       6       ''       D5       102       6       ''       D5         LOOP/PACK       /EFA       103       6       ''       D5         ACB       105       6       88-4       B4         ACB       106       6       ''       B3         ACB       106       6       ''       B3         ACB       106       6       ''       B3         ACB       106       6       ''       A4         ACB       108       6       ''       A3         END CYCLE       -       -       -       -         F/F       113       13       88-1       D5         IORST       6       10       ''       A4         (SKIP Logic)       11       2       88-3       B7         '''       11       12       11       12       11                                                                                                                                                                                                                                                                                                                |                    |       |           |              |                                                                                                                                                                                                                                                    | CARRY F/F               |       |        |              |          |
| CPU INST       6       11       88-2       B7       INTA       6       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                |                    |       |           |              |                                                                                                                                                                                                                                                    | Logic                   | 97    | 9      | 88-3         | C5       |
| CPU INST       6       11       88-2       B7       INTA       6       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                |                    |       |           |              |                                                                                                                                                                                                                                                    |                         | 102   | 6      | 11           | D8       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           |              |                                                                                                                                                                                                                                                    | LOOP/PACK               | 1.02  | c      | .,           | DE       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           |              |                                                                                                                                                                                                                                                    | / LFA<br>ACB            | 105   | 0      | 88-4         | D5<br>B4 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           |              | n an the<br>Case of the                                                                                                                                                                                                                            | ACB                     | 106   | 6      | 11           | B3       |
| CPU INST       6       11       88-2       B7       ACB<br>END CYCLE<br>F/F       108       6       ''       A3<br>CB         CPU INST       6       11       88-2       B7       INTA       6       5       ''       B5<br>IORST       6       10       ''       A4<br>CSKIP Logic)       11       2       88-3       B7         ''       11       12       ''       B7       11       12       ''       B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |       |           |              |                                                                                                                                                                                                                                                    | ACB                     | 107   | 6      | 11           | Ă4       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           |              |                                                                                                                                                                                                                                                    | ACB                     | 108   | 6      | 11           | A3       |
| CPU INST         6         11         88-2         B7         F/F         113         13         88-1         D5           INTA         6         5         ''         B5         INTA         6         5         ''         B5           IORST         6         10         ''         A4           (SKIP Logic)         11         2         88-3         B7           ''         11         12         ''         B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |       |           |              |                                                                                                                                                                                                                                                    | END CYCLE               | 2     |        |              |          |
| CPU INST         6         11         88-2         B7         INTA         6         5         ''         B5           IORST         6         10         ''         A4           (SKIP Logic)         11         2         88-3         B7           ''         11         12         ''         B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |       |           |              |                                                                                                                                                                                                                                                    | $\mathbf{F}/\mathbf{F}$ | 113   | 13     | 88-1         | D5       |
| IORST         6         10         ''         A4           (SKIP Logic)         11         2         88-3         B7           ''         11         12         ''         B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPU INST           | 6     | 11        | 88 <b>-2</b> | B7                                                                                                                                                                                                                                                 | INTA                    | 6     | 5      | 11           | B5       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           |              |                                                                                                                                                                                                                                                    | IORST                   | 6     | 10     |              | A4       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |       |           |              |                                                                                                                                                                                                                                                    | (SKIP Logic)            |       | 2      | 88-3         | B7<br>D7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |       |           |              | n an                                                                                                                                                                                                           |                         | 11    | 14     | 11           | в(       |
| $(\text{Reads}) \qquad 24  4  88 - 1  A3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |       |           |              | a da antes<br>Servicio de la composición de la composi<br>Servicio de la composición de la composi | (Reads)                 | 24    | 4      | 88-1         | Δ3       |
| (neaus) 27 7 00-1, A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |           | raat.<br>A   |                                                                                                                                                                                                                                                    | (Ileaus)                | 47    | T      | оо-т ,<br>// | лu       |
| *Indicates ''Not''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *Indicates ''Not'' |       |           |              |                                                                                                                                                                                                                                                    |                         |       |        | (1, 1)       |          |

# SIGNAL LIST

Table 1 - Nova 1210/1220
| S | SIGN | JAL | LIS | Т |
|---|------|-----|-----|---|
|   |      |     |     |   |

ORIGIN DESTINATION СНІ₽ PIN DWG CHIP PIN DWG GRIE SIGNAL GRID FUNCTION (IO OCDR) 64 2 88-1 B5HALT\* 71 2 88-2 **C**8 PACK Logic 87 4 88-3 **C**6 **CPU INST\*** 6 88-2 B7 MSKO\* 4 13 88-1 A4 10 CPU INST 6 12, 88-2 B713 CRY ENAB 80 88-3 C6 CRY SET\* 81 4 88-3 C6 11 CRY ENAB SAVE 102 15 11 D7 CRY ENAB 102 9 88-3 D7 SHIFT Logic 10 88-4 A7 SAVE 90 11 11 114 13 11 A8 CRY OUT\* 88-4 D8 SERIAL CRY 14 88-1 D7 117 16 54 CRY ENAB 91 88-3 C6 1 81 88-3 C5 CRY SET CRY SET\* 8 42 15 88-1 C7SAVE CARRY F/F 76 12 88-3 C5CRY SET SAVE 42 9 88-1 C7 (SKIP Logic) 779 11 B7 88-3 103-1 С **C**8 DATA0\* 16 11 Terminator 17 1 11 (B62)103-1 C **C**8 Terminator 88-3 DATA1\* 16 8 17 3 11 (B65)103-1 C **C**8 88-3 DATA2\* 14 11 Terminator 15 1 11 (B82) С DATA3\* 14 8 103 - 1Terminator 88-3 **C**8 3 \*\* 15 (B73) 103 - 1С 88 - 3 **C**8 DATA4\* 12Terminator 11 13 1 11 (B61) \*Indicates ''Not''

#### Table 1 - Nova 1210/1220

| 0                  | RIGIN       |     |            | -                     | DES            | STINA | TION     | 1      |            |
|--------------------|-------------|-----|------------|-----------------------|----------------|-------|----------|--------|------------|
| SIGNAL             | СНІ₽        | PIN | DWG        | GRID                  | FUNCTION       | CHIP  | PIN      | DWG    | GRID       |
| DATA5*             | 12          | 8   | 103-1      | C                     | Terminator     | Î     | ſ        | 88-3   | C8         |
|                    | 13<br>(B57) | 3   |            |                       |                |       |          |        |            |
| DATA6*             | 10          | 11  | 103-1      | С                     | Terminator     |       |          | 88-3   | C8         |
|                    | 11          | 1   | **         |                       |                |       |          |        |            |
| DATA7*             | (B95)<br>10 | 8   | тт.<br>ТТ. | C                     | Terminator     |       |          | 88-3   | <b>C</b> 0 |
|                    | 11          | 3   |            | Ŭ                     |                |       |          |        |            |
| T) A /TT A Q *     | (B55)       | 44  | 102 1      |                       | Tonnington     |       |          | 00.0   |            |
| DA I A8*           | 0<br>9      | 1   | 103-1      | C                     | Terminator     |       |          | 88-3   | C8         |
|                    | (B60)       |     |            |                       |                |       |          |        |            |
| DATA9*             | 8           | 8   | 103-1      | С                     | Terminator     |       |          | 88-3   | B8         |
|                    | (B63)       | 3   |            |                       |                |       | -        |        |            |
| DATA10*            | 6           | 11  | 103-1      | С                     | Terminator     |       |          | 88-3   | B8         |
|                    | 7<br>(B75)  | 1   | 11         |                       |                |       |          |        |            |
| DATA11*            | (D13)<br>6  | 8   | 103-1      | С                     | Terminator     |       |          | 88-3   | B8         |
|                    | 7           | 3   | 11         |                       |                |       |          |        |            |
| DATA12*            | (B58)<br>4  | 11  | 103-1      | C                     | Terminator     |       |          | 88 - 3 |            |
| DAIAIZ             | 5           | 1   | 100-1      |                       | Terminator     |       |          | 00-3   | 88         |
|                    | (B59)       |     | 100.1      | ~                     |                |       |          |        |            |
| DATA13*            | 45          | 8   | 103-1      | С                     | Terminator     |       |          | 88-3   | B8         |
|                    | (B64)       |     |            | 1993, 199<br>1987 - E |                |       |          |        |            |
| DATA14*            | 2           | 11  | 103-1      | C                     | Terminator     |       |          | 88-3   | B8         |
|                    | (B56)       |     |            |                       |                |       |          |        |            |
| DATA15*            | 2           | 8   | 103-1      | С                     | Terminator     |       |          | 88-3   | B8         |
|                    | (B66)       | 3   |            |                       |                |       |          |        |            |
| [DATOA*]           | 25          | 6   | 88-1       | B4                    | DATOA          | 7     | 9        | 88-1   | В4         |
| DATOA              | 7           | 8   |            | B4                    |                | (A58) |          | 90-1   |            |
| DATOB*             | 25          | 5   |            | B4                    | DATOB<br>MSKO* | 7     | 13<br>12 | 88-1   | B4<br>B4   |
| DATOB              | 7           | 12  | 88-1       | В4                    | 1410120        | (A56) | 14       | 90-1   | FU         |
| 'Indicates ''Not'' |             |     | 1 S. S.    |                       |                |       |          |        |            |

## SIGNAL LIST

Table 1 - Nova 1210/1220

t.

#### SIGNAL LIST

Table 1 - Nova 1210/1220

٤

| <b>O</b> ]                                          | RIGIN                           |                   |                  |                            | DESTINATION                                      |                                 |                    |                      |                            |
|-----------------------------------------------------|---------------------------------|-------------------|------------------|----------------------------|--------------------------------------------------|---------------------------------|--------------------|----------------------|----------------------------|
| SIGNAL                                              | СНІР                            | PIN               | DWG              | GRID                       | FUNCTION                                         | CHIP                            | PIN                | DWG                  | GRID                       |
| [DATOC*]<br>DATOC<br>[DATIA*]<br>DATIA              | 25<br>26<br>25<br>5             | 4<br>6<br>9<br>12 | 88-1<br>''<br>'' | B4<br>B4<br>B4<br>B4       | DATOC<br>DATIA<br>CON DATA*                      | 26<br>(A48)<br>5<br>24          | 5<br>13<br>5       | 88-1<br>90-1<br>88-1 | B4<br>B4<br>A3             |
| [DATIB*]<br>DATIB                                   | 25<br>5                         | 10<br>10          | 11<br>11<br>11   | B4<br>B4                   | DATIB<br>INTA                                    | (A44)<br>5<br>6<br>(A42)        | 11<br>4            | 88-1<br>''           | B4<br>A4                   |
| [DATIC*]<br>DATIC                                   | 25<br>7                         | 11<br>6           | TT<br>TT         | B4<br>B4                   | DATIC<br>IORST                                   | (A54)                           | 5<br>9             | 88-1<br>''           | B4<br>A4                   |
| [D BUFFR0]<br>[D BUFF1]<br>[D BUFFR2]<br>[D BUFFR3] | 122<br>122<br>122<br>122<br>122 | 5<br>7<br>9<br>11 | 88-4<br>''<br>'' | C8<br>C8<br>C8<br>C8<br>C8 | [D MULT0]<br>[D MULT1]<br>[D MULT2]<br>[D MULT3] | 121<br>121<br>121<br>121<br>121 | 2<br>5<br>14<br>11 | 88-4<br>''           | C8<br>C8<br>C8<br>C8<br>C8 |
| DCH                                                 | 23                              | 9                 | 88-1             | C6                         | DCHI<br>DCH LOOP<br>ENAB                         | 14<br>15                        | 9<br>2             | 88-1<br>88-1         | C2<br>B3                   |
| DCHA                                                | 69                              | 7                 | 88-1             | D4                         | ADD ONE*<br>DCHA*<br>DRIVE IO*<br>DCH            | 41<br>7<br>13<br>23             | 2<br>11<br>5<br>15 | 88-2<br>88-1<br>,,   | D4<br>C2<br>B3<br>C6       |
| DCHA*<br>DCHA SET*                                  | 7<br>71                         | 10<br>8           | 88-2<br>88-1     | C2<br>C4                   | [DCHA SET]<br>FETCH                              | 23<br>(A60)<br>67<br>97         | 15<br>3<br>1       | 90-1<br>88-1<br>88-2 | C4<br>D7                   |
| [DCHA SET]<br>DCHI                                  | 67<br>14                        | 4<br>8            | 88-1<br>''       | C4<br>C2                   | DCHA<br>DRIVE IO*                                | 69<br>(B37)<br>13               | 2<br>4             | 88-1<br>90-1<br>88-1 | C4<br>B3                   |
| DCH LOOP<br>ENAB                                    | 15                              | 6                 | 88-1             | В2                         | OVFLO<br>DCHO                                    | 15<br>18                        | 9<br>12,<br>13     | 88-1<br>88-1         | B2<br>B2                   |
|                                                     |                                 |                   |                  |                            | ACTG(LD)<br>LOOP SET*                            | 75<br>104                       | 10<br>10,<br>13    | 88-3                 | D8<br>C6                   |
| *Indicates ''Not''                                  |                                 |                   |                  |                            |                                                  |                                 |                    |                      |                            |

| SI | GN | AL | LIS | Т      |  |
|----|----|----|-----|--------|--|
|    |    |    |     | A 44 1 |  |

Table 1 - Nova 1210/1220

L

| 01                              | RIGIN       |        |            |          | DESTINATION                        |                   |               |                    |                |
|---------------------------------|-------------|--------|------------|----------|------------------------------------|-------------------|---------------|--------------------|----------------|
| SIGNAL                          | СНІ₽        | ₽IN    | DWG        | GRID     | FUNCTION                           | CHIP              | PIN           | DWG                | GRID           |
| DCHM0*                          | (B17)       |        | 88-1       | В3       | DCH LOOP<br>ENAB<br>[DCHM0]        | 15<br>16          | 4,5<br>1      | 88-1<br>''         | B3<br>B3       |
| [DCHM0]<br>DCHM1*               | 16<br>(B21) | 2      | 88-1<br>'' | B3<br>B3 | DCHI<br>"<br>[DCHM1]               | 14<br>14<br>16    | 10<br>12<br>3 | 11<br>11           | B2<br>B2<br>B3 |
| [DCHM1]                         | 16          | 4<br>0 | 88-1       | B3       | LOOP SET*<br>OVFLO                 | 34<br>15          | 12<br>10      | 88-3<br>88-1       | C6<br>B2       |
| DCHO<br>DCHR*<br>DCHR PEND      | (B35)<br>13 | о<br>3 | 11<br>11   | C5<br>C5 | DCHR PEND<br>DCHA SET*             | (B33)<br>13<br>71 | 2<br>10       | 90-1<br>88-1<br>   | C5<br>C5       |
| DEFER                           | 95          | 7      | 88-2       | D6       | LOOP SET*<br>DEFER<br>AGAIN        | 104<br>76         | 9<br>4        | 88-3<br>88-2       | D6<br>C7       |
|                                 |             |        |            |          | ADD ONE*<br>DEFER*<br>LOOP SET*    | 90<br>94<br>104   | 4<br>11<br>6  | "<br>"<br>88-3     | D4<br>D6<br>D6 |
| DEFER*                          | 94          | 10     | 88-2       | D6       | (CON IND)<br>S0                    | (A12)<br>48       | (P52<br>1     | ) 89-1<br>88-2     | C2<br>C4       |
|                                 |             |        |            |          | ADDER<br>TEST<br>ADDER             | 58                | 12            | 88-3               | A6             |
|                                 |             |        |            |          | TEST<br>FETCH +<br>DEFEB           | 59<br>75          | 10<br>2       | ''<br>88-2         | A6             |
| DEFER AGAIN*<br>$(D_+ E SET) +$ | 76          | 5      | 88-2       | C7       | D SET                              | 74                | 9             | 11                 | C7             |
| TS3                             | 36          | 11     | .,,        | D5       | DCHR PEND<br>(RUN LOGIC)<br>PC IN* | 13<br>24<br>35    | 1<br>13<br>1  | 88-1<br>''<br>88-2 | C5<br>B7<br>D5 |
| D+E SET*                        | 96          | 11     | 88-2       | D7       | (D+ E SET)+<br>TS3<br>(RUN LOGIC)  | 36<br>43          | 13<br>13      | 88-2<br>88-1       | D5<br>B7       |
|                                 |             |        |            |          | LOGIC                              | 97                | 5             | 88-2               | C7             |
| *Indicates ''Not''              |             |        |            |          |                                    |                   |               |                    |                |

| 0]                                                                         | RIGIN                                          |                        |                  |                                  | DESTINATION                                                                                                                                                       |                                                                                |                                                                                              |                                                                |                                                                                                                 |
|----------------------------------------------------------------------------|------------------------------------------------|------------------------|------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| SIGNAL                                                                     | СНІР                                           | ₽IN                    | DWG              | GRID                             | FUNCTION                                                                                                                                                          | CHIP                                                                           | PIN                                                                                          | DWG                                                            | GRID                                                                                                            |
| Disable D Mult<br>DIV*<br>[D MULT0]<br>[D MULT1]<br>[D MULT2]<br>[D MULT3] | 53<br>(A91)<br>121<br>121<br>121<br>121<br>121 | 3<br>4<br>7<br>12<br>9 | 88-4<br>''<br>'' | B2<br>C5<br>C7<br>C7<br>C7<br>C7 | D Mult (Enab)<br>Carry F/F<br>ADDER<br>''<br>''                                                                                                                   | 121<br>76<br>117<br>117<br>117<br>117                                          | 15<br>10<br>19<br>21<br>23<br>2                                                              | 88-4<br>88-3<br>88-4<br>''                                     | C8<br>C5<br>D7<br>D7<br>D7<br>D7                                                                                |
| DRIVE IO*                                                                  | 12                                             | 8                      | 88-1             | B2                               | READ IO*<br>[DRIVE IO]                                                                                                                                            | (B88)<br>12<br>18                                                              | 4,5<br>1                                                                                     | 90-1<br>88-1<br>103-1                                          | B2<br>C8                                                                                                        |
| [DRIVE IO]                                                                 | 18                                             | 2                      | 103-1            | C8                               | [Drive IO·<br>Select]                                                                                                                                             | 26                                                                             | 9,<br>10,<br>12                                                                              | 103-1                                                          | C8                                                                                                              |
| [DRIVE IO-<br>Select]                                                      | 26                                             | 8                      | 103-1            | C8                               | DATA0*<br>DATA1*<br>DATA2*<br>DATA3*<br>DATA4*<br>DATA5*<br>DATA6*<br>DATA6*<br>DATA7*<br>DATA8*<br>DATA9*<br>DATA10*<br>DATA11*<br>DATA13*<br>DATA14*<br>DATA15* | 16<br>16<br>14<br>12<br>12<br>10<br>10<br>8<br>8<br>6<br>6<br>4<br>4<br>2<br>2 | 12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10<br>12<br>10 | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 000000000000000000                                                                                              |
| *Indicates ''Not''                                                         |                                                |                        |                  |                                  |                                                                                                                                                                   |                                                                                |                                                                                              |                                                                | a se presenta de la composición de la c |

# SIGNAL LIST Table 1 - Nova 1210/1220

1

| SI | GN | AL | LIS | Т |
|----|----|----|-----|---|
|    |    |    |     |   |

| OF                                           | RIGIN                  |                              |                              |                                        | DES                                                                                           | TINA                                               | ΓION                                        | [                              |                                                    |
|----------------------------------------------|------------------------|------------------------------|------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------------------|
| SIGNAL                                       | CHIP                   | PIN                          | DWG                          | GRID                                   | FUNCTION                                                                                      | CHIP                                               | PIN                                         | DWG                            | GRID                                               |
| DS0*<br>DS1*<br>DS2*<br>DS3*<br>DS4*<br>DS5* | 8<br>8<br>22<br>8<br>8 | 8<br>10<br>12<br>8<br>4<br>2 | 88-1<br>''<br>''<br>''<br>'' | C4<br>C4<br>C4<br>C4<br>C4<br>C4<br>C4 |                                                                                               | (A72)<br>(A68)<br>(A66)<br>(A46)<br>(A62)<br>(A64) |                                             | 90-1<br>''<br>''<br>''         |                                                    |
| D SET<br>DSZ·E·TS0*                          | 74<br>52               | 8<br>4                       | 88-2<br>88-2                 | C6<br>B4                               | DEFER<br>E SET<br>D+E SET*<br>S0                                                              | 95<br>96<br>96<br>92                               | 2<br>2<br>13<br>1                           | 88-2<br>''<br>''               | C6<br>C6<br>D7<br>C3                               |
| EFA                                          | 103                    | 11                           | 88-3                         | D5                                     | MBC(SH)<br>MBC(SH)<br>ACD4 SEL*<br>ACD OUT*<br>Disable D Mult<br>S0<br>S0<br>D SET            | 32<br>33<br>44<br>45<br>46<br>47<br>47<br>74       | 13<br>13<br>9<br>10<br>4<br>3<br>4<br>4     | 88-2<br>"'<br>"'<br>"'<br>"'   | A5<br>A4<br>C5<br>B3<br>C3<br>B3<br>C3<br>C7<br>C7 |
| EFA*                                         | 103                    | 12                           | 88-3                         | D5                                     | JSR · EFA<br>EFA · PTG1<br>ACD4 SEL*<br>ACD3 SEL*                                             | 93<br>34<br>44<br>50                               | 13<br>5<br>1<br>3                           | 71<br>71<br>11<br>11           | C8<br>A3<br>C5<br>C5                               |
| $EFA \cdot \overline{PTG1}$                  | 34<br>113              | 6<br>1                       | 88-2<br>88-1                 | A2                                     | MBC (DS)<br>S Mult (SEL)                                                                      | 32<br>116<br>53                                    | 4<br>1<br>10                                | ''<br>88-4                     | A4<br>C7                                           |
|                                              |                        |                              | 00-1                         | 6 <b>0</b>                             | End Cycle(F/F)<br>LOAD CRY*<br>(LD) Test Skip<br>(LD) Loop/<br>Pack<br>Shifter Logic<br>'' '' | 113<br>97<br>102<br>103<br>109<br>114              | 10,<br>12<br>2<br>12<br>10<br>10<br>13<br>1 | 88-1<br>"<br>88-3<br>"<br>88-4 | C8<br>C5<br>C5<br>D8<br>D5<br>A8<br>A8             |
| *Indicates ''Not''                           |                        |                              |                              |                                        |                                                                                               |                                                    |                                             |                                |                                                    |

Table 1 - Nova 1210/1220

£

 $\mathbf{x}^{i}$ 

| 01                 | RIGIN          |     |      |          | DESTINATION                                                           |                                        |                                    |                                          |                                        |
|--------------------|----------------|-----|------|----------|-----------------------------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------|----------------------------------------|
| SIGNAL             | СНІ₽           | ₽IN | DWG  | GRID     | FUNCTION                                                              | CHIP                                   | PIN                                | DWG                                      | GRID                                   |
| End Cycle*(F/F)    | 113            | 6   | 88-1 | C5       | Shifter Logic<br>PTG0·TS0                                             | 114                                    | 9                                  | 88-4                                     | A8                                     |
| E SET              | 96             | 3   | 88-2 | C6       | Logic<br>EXEC                                                         | 112<br>95                              | 15                                 | 88-1<br>88-2                             | A6<br>D6                               |
| EXEC               | 95             | 9   | 88-2 | D6       | D+E SEI*<br>EXEC*<br>(INST DCDR)                                      | 96<br>73<br>92                         | 12<br>11<br>9                      | 11                                       | D7<br>D6<br>B5                         |
| EXEC*              | 73             | 10  | 1    | D6       | (CON IND)<br>(INST DCDR)                                              | (A11)<br>52                            | (P51<br>15                         | 89-1<br>88-2                             | C1<br>B5                               |
| EXT LOAD*          | (A47)<br>(B49) |     |      | A3<br>A8 | LOAD AC*<br>Shifter (Enab)                                            | 111<br>125                             | 4<br>8,9                           | 88-3<br>88-4                             | D3<br>A8                               |
| EXT Select*        | (B80)          |     |      |          | SELECT                                                                | 35                                     | 9,<br>10                           | 103-1                                    |                                        |
| FETCH              | 95             | 5   | 88-2 | D6       | MB LOAD<br>LOAD IR<br>LOAD PC*<br>FETCH·TS0*<br>ALC*<br>ION<br>FETCH* | 13<br>34<br>61<br>64<br>50<br>85<br>94 | 13<br>9<br>10<br>9<br>9<br>1<br>13 | 88-1<br>88-2<br>88-3<br>88-2<br>''<br>'' | C3<br>A7<br>B4<br>D5<br>B8<br>C6<br>D6 |
| FETCH*             | 94             | 12  | 88-2 | D6       | CLR SKIP*<br>(CON IND)<br>ACD OUT*                                    | 100<br>(A13)<br>45                     | 4<br>(P50<br>1,<br>13              | 88-3<br>)89-1<br>88-2                    | B4<br>C2<br>B4                         |
| Fetch+Defer        | 75             | 3   | 88-2 | C7       | FETCH+<br>DEFER<br>ADD ONE*<br>IR0+SKP                                | 75<br>89<br>50                         | 1<br>12<br>1                       | 11<br>11<br>11                           | C7<br>D3<br>B6                         |
| FETCH·TS0*         | 64             | 8   | 88-2 | D4       | E SET<br>EFA<br>Mult (SEI )                                           | 74<br>85<br>120                        | 13<br>12<br>16                     | יי<br>יי<br>۸ ۵0                         | C7<br>C5                               |
| Force Load IR*     | (A85)          |     | 88-2 | A8       | IR(LD)                                                                | 120                                    | 4                                  | 88-2                                     | A8                                     |
|                    |                |     |      |          |                                                                       |                                        |                                    |                                          |                                        |
| *Indicates ''Not'' |                |     |      |          |                                                                       |                                        |                                    |                                          |                                        |

SIGNAL LIST Table 1 - Nova 1210/1220

1

#### SIGNAL LIST

| Ol                 | RIGIN    |        |             |        | DESTINATION                       |                |                    |                      |                |
|--------------------|----------|--------|-------------|--------|-----------------------------------|----------------|--------------------|----------------------|----------------|
| SIGNAL             | CHIP     | PIN    | DWG         | GRID   | FUNCTION                          | CHIP           | PIN                | DWG                  | GRID           |
| HALT*              | 71       | 6      | 88-2        | C7     | MB LOAD<br>(RUN LOGIC)<br>DCHA    | 14<br>62<br>71 | 2<br>3<br>9        | 88-1<br>'''          | C2<br>B7<br>C5 |
| INH0               | 34       | 9      | 103-1       | В      |                                   | 16<br>16       | 1<br>13            | 103-1                | C              |
| INH0*<br>INH1      | 34<br>34 | 8<br>5 | 103-1<br>'' | B<br>B | (INHB0) (Q15)<br>MEM1*<br>DATA1*  | 68<br>16<br>16 | 13<br>12<br>5<br>9 | 103-2<br>103-1<br>'' | 7<br>C<br>C    |
| INH1*<br>INH2      | 34<br>32 | 6<br>5 | 103-1       | B<br>B | (INHB1) (Q16)<br>MEM2*<br>DATA2*  | 68<br>14<br>14 | 2<br>1<br>13       | 103-2<br>103-1<br>'' | 7<br>C<br>C    |
| INH2*<br>INH3      | 32<br>32 | 6<br>9 | 103-1       | B<br>B | (INHB2) (Q13)<br>MEM3*<br>DATA3*  | 64<br>14<br>14 | 2<br>5<br>9        | 103-2<br>103-1<br>'' | 7<br>C<br>C    |
| INH3*<br>INH4      | 32<br>31 | 8<br>9 | 103-1<br>'' | B<br>B | INHB3) (Q14)<br>MEM4*<br>DATA4*   | 64<br>12<br>12 | 12<br>1<br>13      | 103-2<br>103-1       | 7<br>C<br>C    |
| INH4*<br>INH5      | 31<br>31 | 8<br>5 | 11          | B<br>B | (INHB4) (Q11)<br>MEM5*<br>DATA5*  | 58<br>12<br>12 | 12<br>5<br>9       | 103-2<br>103-1<br>'' | 7<br>C<br>C    |
| INH5*<br>INH6      | 31<br>28 | 6<br>5 | 103-1<br>'' | B<br>B | (INHB5) (Q12)<br>MEM6*<br>DATA6*  | 58<br>10       | 2<br>1<br>13       | 103-2<br>103-1       | 7<br>C<br>C    |
| INH6*<br>INH7      | 28<br>28 | 6<br>9 | 103-1<br>'' | B<br>B | (INHB6) (Q9)<br>MEM7*<br>DATA7*   | 55<br>10       | 2<br>5<br>9        | 103-2<br>103-1<br>'' | 0<br>7<br>C    |
| INH7*<br>INH8      | 28<br>27 | 8<br>9 | 103-1       | B<br>B | (INHB7) (Q10)<br>MEM8*<br>DATA8*  | 55<br>8<br>8   | 12<br>1<br>13      | 103-2<br>103-1<br>'' | 7<br>C<br>C    |
| INH8*<br>INH9      | 27<br>27 | 8<br>5 | 103-1<br>'' | B<br>B | (INHB8) (Q7)<br>MEM9*<br>DATA9*   | 48<br>8<br>8   | 12<br>5<br>9       | 103-2<br>103-1       | 4<br>C<br>C    |
| INH9*<br>INH10     | 27<br>24 | 6<br>5 | 103-1<br>'' | B<br>B | (INHB9) (Q8)<br>MEM10*<br>DATA10* | 48<br>6        | 2<br>1<br>13       | 103-2<br>103-1<br>'' | 4<br>C<br>C    |
| INH10*             | 24       | 6      | 103-1       | В      | (INHB10)(Q5)                      | 45             | 2                  | 103-2                | 4              |
| *Indicates ''Not'' |          |        |             |        |                                   |                |                    |                      |                |

Table 1 - Nova 1210/1220

X

| 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RIGIN                                                                                                                                             |                                                                             |                                                                                                   |                                                                                                     | DES                                                                                                                                                                                                                                                                        | TINA                                                                                 | FION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ſ                                                                                               | 9<br>                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------|
| SIGNAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHIP                                                                                                                                              | PIN                                                                         | DWG                                                                                               | GRID                                                                                                | FUNCTION                                                                                                                                                                                                                                                                   | CHIP                                                                                 | PIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DWG                                                                                             | GRID                                            |
| OI<br>SIGNAL<br>INH11<br>INH11*<br>INH12*<br>INH12*<br>INH12*<br>INH13*<br>INH13*<br>INH14*<br>INH14*<br>INH15*<br>INH15*<br>INH15*<br>INH15*<br>INH15*<br>INH15*<br>INH15*<br>INH15*<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH15<br>INH1 | RIGIN<br>CHIP<br>24<br>24<br>23<br>23<br>23<br>23<br>23<br>23<br>21<br>21<br>21<br>21<br>21<br>70<br>70<br>63<br>63<br>61<br>61<br>53<br>53<br>51 | PIN<br>9<br>89<br>85<br>65<br>69<br>835353535353535353535353535353535353535 | DWG<br>103-1<br>103-1<br>"<br>103-1<br>103-1<br>103-1<br>103-2<br>"<br>"<br>"<br>"<br>"<br>"<br>" | GRID<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | DES<br>FUNCTION<br>MEM11*<br>DATA11*<br>(INHB11) (Q6)<br>MEM12*<br>DATA12*<br>(INHB12) (Q3)<br>MEM13*<br>DATA13*<br>(INHB13) (Q4)<br>MEM14*<br>DATA14*<br>(INHB14) (Q1)<br>MEM15*<br>DATA15*<br>(INHB15) (Q2)<br>Q15<br>Q16<br>Q13<br>Q14<br>Q11<br>Q12<br>Q9<br>Q10<br>Q7 | CHIP<br>6<br>6<br>45<br>4<br>4<br>39<br>4<br>4<br>39<br>2<br>2<br>37<br>2<br>2<br>37 | FION<br>PIN<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>2<br>1<br>13<br>2<br>5<br>9<br>12<br>1<br>13<br>2<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>2<br>1<br>13<br>2<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>2<br>1<br>13<br>12<br>5<br>9<br>2<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>1<br>13<br>12<br>5<br>9<br>12<br>12<br>13<br>12<br>5<br>9<br>12<br>13<br>12<br>5<br>9<br>12<br>12<br>13<br>12<br>5<br>9<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | DWG<br>103-1<br>"<br>103-2<br>103-1<br>"<br>103-2<br>103-1<br>"<br>103-2<br>103-1<br>"<br>103-2 | GRID<br>5 C C 5 C C 5 C C 5 7 7 7 7 7 7 7 7 7 7 |
| INHB9<br>INHB10<br>INHB11<br>INHB12<br>INHB13<br>INHB14<br>INHB15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51<br>43<br>43<br>42<br>42<br>20<br>20                                                                                                            | 5353535                                                                     | 11<br>11<br>11<br>11<br>11<br>11                                                                  | 4<br>4<br>4<br>4<br>4<br>4<br>4                                                                     | Q8<br>Q5<br>Q6<br>Q3<br>Q4<br>Q1<br>Q2                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 | 4<br>4<br>4<br>4<br>4<br>4<br>4                 |

SIGNAL LIST Table 1 - Nova 1210/1220

ŝ

| C                                       | RIGIN           |        |               |           | DESTINATION                                                                                                                        |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                      |
|-----------------------------------------|-----------------|--------|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| SIGNAL                                  | СНІР            | ₽IN    | DWG           | GRID      | FUNCTION                                                                                                                           | CHIP                                                                    | PIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DWG                                       | GRID                                 |
| INH GATE B                              | 26              | 6      | 103-1         | D2        | (INHB8) (Q7)<br>(INHB9) (Q8)<br>(INHB10) (Q5)<br>(INHB11) (Q6)<br>(INHB12) (Q3)<br>(INHB13) (Q4)<br>(INHB14) (Q1)<br>(INHB15) (Q2) | 48<br>48<br>45<br>45<br>39<br>39<br>39<br>37                            | 13<br>1<br>13<br>13<br>13<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103-2<br>''<br>''<br>''<br>''<br>''       | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |
| INHIBIT                                 | 13              | 8      | 88-1          | C2        | INH GATE A, B<br>WRITE MEM                                                                                                         | (B30)<br>41<br>41                                                       | 9<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103-1<br>103-1<br>''                      | D3<br>D3<br>D3                       |
| SELECT*<br>INPUT*(F/F)                  | (B85)<br>66     | 8      | 103-1<br>88-1 | D8<br>B5  | SELECT<br>DRIVE IO*<br>(IO INST                                                                                                    | 35<br>12                                                                | 5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-1<br>88-1                             | D8<br>B3                             |
| [INTA*]<br>INTA<br>INTR*<br>INIL TRANS* | 6<br>5<br>(B29) | 6<br>8 | 88-1<br>''    | A4<br>A4  | MB LOAD<br>INTA<br>PI SET                                                                                                          | 25<br>112<br>5<br>(A40)<br>75<br>(D45)                                  | 15<br>1,9<br>9<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ''<br>90-1<br>88-2                        | B4<br>C3<br>A4<br>C7                 |
| INH TRANS                               | 90              | 0      | 00-1          | <b>B2</b> | [INH TRANS·<br>SEL]                                                                                                                | (В45)<br>36                                                             | 2,5,<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90-1<br>103-1                             | C8                                   |
| SEL]                                    | 36              | 6      | 103-1         | C8        | MEM0*<br>MEM1*<br>MEM2*<br>MEM3*<br>MEM4*<br>MEM5*<br>MEM6*<br>MEM7*<br>MEM7*<br>MEM8*<br>MEM9*<br>MEM10*<br>MEM11*<br>MEM12*      | $16 \\ 16 \\ 14 \\ 14 \\ 12 \\ 12 \\ 10 \\ 10 \\ 8 \\ 8 \\ 6 \\ 6 \\ 4$ | 2 $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ $4$ $2$ | 103-1<br>"'<br>"'<br>"'<br>"'<br>"'<br>"' | 000000000000000                      |

# SIGNAL LIST Table 1 - Nova 1210/1220

ì

| O]                                                                                                                    | RIGIN                                                                   |                                                                   |                                                                       |                                                                              | DESTINATION                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| SIGNAL                                                                                                                | СНІ₽                                                                    | ₽IN                                                               | DWG                                                                   | GRID                                                                         | FUNCTION                                                                                                                                                                                                                                                                               | CHIP                                                                                                                                                 | PIN                                                                                                                                                                                      | DWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GRID                                                                                                                                   |
| SIGNAL<br>IO·E<br>[O·E*<br>[IO(F+D*]<br>IO(F+D)<br>ION<br>ION*<br>[IO PLS*]<br>IO PLS<br>IORST<br>IO SKIP*<br>IO SKIP | CHI P<br>42<br>94<br>51<br>27<br>82<br>84<br>63<br>26<br>10<br>25<br>26 | PIN<br>5<br>4<br>12<br>6<br>6<br>6<br>6<br>4<br>4<br>8<br>12<br>2 | DWG<br>88-1<br>88-1<br>88-2<br>"<br>88-2<br>88-1<br>"<br>88-1<br>88-1 | GRID<br>C8<br>C7<br>B6<br>B5<br>C7<br>C7<br>C7<br>C7<br>A4<br>A4<br>B4<br>B4 | FUNCTION<br>MEM13*<br>MEM14*<br>MEM15*<br>IO·E*<br>(IO Inst DCDR)<br>(IO DCDR)<br>HALT*<br>LOOP SET*<br>(Pack Logic)<br>MA LOAD*<br>IO(F+D)<br>INPUT F/F<br>Logic<br>IO·E<br>(SKIP Logic)<br>ION*<br>(CON IND)<br>ION<br>(ION LOGIC)<br>IO PLS<br>IO SKIP<br>SKIP INC*<br>(Skip Logic) | CHIP<br>4<br>2<br>94<br>64<br>62<br>71<br>86<br>89<br>60<br>27<br>9<br>42<br>11<br>84<br>(A16)<br>82<br>85<br>26<br>(A74)<br>(A70)<br>26<br>87<br>59 | $\begin{array}{c} \text{PIN} \\ 4 \\ 2 \\ 4 \\ 3 \\ 4 \\ 2 \\ 1 \\ 9 \\ 4 \\ 1 \\ 5 \\ 1 \\ 3 \\ 1 \\ 5 \\ (\text{P26} \\ 5 \\ 3 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1 \\ 5 \\ 1 \\ 1$ | DWG<br>103-1<br>"<br>88-1<br>"<br>88-2<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-1<br>88-2<br>88-1<br>88-2<br>88-1<br>88-2<br>88-1<br>88-2<br>88-1<br>88-2<br>88-1<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-3<br>88-1<br>88-3<br>88-1<br>88-3<br>88-3<br>88-1<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-3<br>88-1<br>88-3<br>88-3<br>88-1<br>88-3<br>88-1<br>88-3<br>88-1<br>88-3<br>88-1<br>88-3<br>88-1<br>88-3<br>88-1<br>88-2<br>88-1<br>88-3<br>88-1<br>88-3<br>88-1<br>88-2<br>88-1<br>88-3<br>88-1<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-2<br>88-1<br>88-3<br>88-1<br>88-1<br>88-3<br>88-1<br>88-1<br>88-3<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1<br>88-1 | GRID<br>C<br>C<br>C7<br>D5<br>A5<br>C8<br>C7<br>C5<br>D2<br>B6<br>C5<br>C8<br>B7<br>C7<br>D2<br>C7<br>C7<br>A4<br>B8<br>B8<br>B8<br>B6 |
| IR5·IR6<br>IR0+SKIP<br>*Indicates '' Not''                                                                            | 20<br>28<br>65<br>50                                                    | 2<br>5<br>3<br>12                                                 | 88-2<br>88-2<br>88-2                                                  | B4<br>A6<br>B8<br>B6                                                         | (SKIP LOGIC)<br>(RUN LOGIC)<br>ACD OUT*<br>SH/SWP DCDR<br>"<br>PC ENAB*<br>(Pack Logic)<br>AND ENAB*<br>HALT*<br>ALC*<br>(SH/SWP<br>DCDR)                                                                                                                                              | <ul> <li>39</li> <li>43</li> <li>45</li> <li>50</li> <li>51</li> <li>53</li> <li>92</li> <li>64</li> <li>71</li> <li>50</li> <li>51</li> </ul>       | $     \begin{array}{r}       3 \\       10 \\       3 \\       13 \\       1 \\       4, 5 \\       4 \\       12 \\       4 \\       11 \\       15 \\     \end{array} $                | 88-3<br>88-2<br>88-2<br>"<br>88-3<br>88-3<br>88-2<br>"<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B0<br>B7<br>B3<br>B6<br>B6<br>B4<br>C6<br>B8<br>D8<br>B8<br>D8<br>D6                                                                   |

## SIGNAL LIST Table 1 - Nova 1210/1220

| OI                           | RIGIN |      |      |      | DESTINATION                 |          |                |                                                  |          |
|------------------------------|-------|------|------|------|-----------------------------|----------|----------------|--------------------------------------------------|----------|
| SIGNAL                       | СНІР  | PIN  | DWG  | GRID | FUNCTION                    | CHIP     | PIN            | DWG                                              | GRID     |
| ISTP*                        | (A17) | (P24 | 89-1 | B8   | (RUN LOGIC)                 | 24       | 9              | 88-1                                             | B7       |
| (ISZ+DSZ)E                   | 84    | 8    | 88-3 | D6   | CRY SET*                    | 81       | 9,             | 00 0                                             |          |
|                              |       |      |      |      |                             | 104      | $\frac{10}{2}$ | 88-3                                             |          |
| (ISZ + DSZ)E*                | 52    | 9    | 88-2 | В4   | (INST DCDR)                 | 52       | 1              | 88-2                                             | B5       |
| (122+222)2                   |       | Ū    |      |      | (ISZ+DSZ)E                  | 84       | 13             | 88-3                                             | D6       |
|                              |       |      |      |      | Test Skip Set               | 86       | 1              | t t                                              | D8       |
| $ISZ \cdot E \cdot TSO*$     | 52    | 5    | 88-2 | B4   | ADD ONE*                    | 89       | 9              | 88-2                                             | D3       |
| (IMP+JSE)                    |       |      |      |      |                             |          |                |                                                  |          |
| $(\mathbf{F}_{+}\mathbf{D})$ | 48    | 11   |      | В5   | PC ENAB*                    | 61       | 3              | 88-3                                             | B4       |
|                              |       |      |      |      | $JSR \cdot EFA^*$           | 93       | 2              | 88-2                                             | C7       |
| JSR.EFA                      | 92    | 11   | 88-3 | C3   | SHIFT ACB                   | 100      | 1              | 88-3                                             | C3       |
|                              | 02    | 10   | 00 9 | 07   | WAS JSR                     | 103      | 3              | ••                                               | D5<br>C2 |
| JSR·EFA*                     | 93    | 14   | 00-2 | C1   | JSR·EFA<br>(Pack Logic)     | 92<br>93 | 13<br>9        | 11                                               | $C_{5}$  |
| KEY                          | 23    | 5    | 88-1 | C6   | KEY*                        | 6        | 1              | 88-1                                             | C7       |
|                              |       |      |      |      | LOAD IR                     | 34       | 10             | 88-2                                             | A7       |
|                              |       |      |      |      | CON INST*                   | 36       | 9              | 88-1                                             | A2       |
|                              |       |      |      |      | (RUN LOGIC)                 | 43       | 9              |                                                  | B7       |
|                              |       |      |      |      | KEYM SET*<br>Disable D Mult | 22<br>16 | ן<br>1         | QQ 9                                             | 80<br>B2 |
|                              |       |      |      |      | LOAD PC*                    | 61       | 5              | 88-3                                             | BJ<br>B4 |
| KEY*                         | 6     | 3    | 88-1 | C6   | KEY.LOOP                    | 4        | 2              | 88-1                                             | C6       |
|                              |       |      |      |      | (DS)                        | 23       | 4              | ** ***                                           | C6       |
|                              |       |      |      |      | ADD ONE*                    | 44       | 5              | 88-2                                             | D3       |
|                              |       |      |      |      | INH TRANS*<br>MALOAD*       | 56<br>56 | 4              | 88-1                                             | B2<br>D3 |
|                              |       |      |      |      | (Pack Logic)                | 70       | 13             | 88-3                                             | D5<br>C6 |
|                              |       |      |      |      | LOOP SET*                   | 84       | 10             | 11                                               | Č6       |
|                              |       |      |      |      | CLR SKIP*                   | 99       | 10             | 11                                               | B3       |
| KEY ENAB*                    | 3     | 3    | 88-1 | B8   | $\frac{PRESET*}{VEV}$       | 3        | 12             | 88-1                                             | B7       |
| KEV.LOOP                     | 4     | 3    | 88_1 | CG   | ΚΕΥ<br>CON DATA*            | 6<br>4   | 2              | , , , , , , , , , , , , , , , , , , ,            |          |
| IZE I LOOF                   | Т     | J    | 00-1 | 0    | ACD OUT*                    | 45       | $\frac{10}{2}$ | 88-2                                             | A3       |
|                              |       |      |      |      | LOAD MBO*                   | 98       | 13             | 88-3                                             | B3       |
| *Indicates ''Not''           |       |      |      |      |                             |          |                | e a subers<br>e l'égalementes<br>e l'égalementes |          |
|                              |       |      |      |      |                             |          |                |                                                  |          |

SIGNAL LIST Table 1 - Nova 1210/1220

X

| OF                             | RIGIN    |         |                |          | DESTINATION                                               |                               |                           |                                  |                            |
|--------------------------------|----------|---------|----------------|----------|-----------------------------------------------------------|-------------------------------|---------------------------|----------------------------------|----------------------------|
| SIGNAL                         | СНІР     | PIN     | DWG            | GRID     | FUNCTION                                                  | CHIP                          | PIN                       | DWG                              | GRID                       |
| KEYM                           | 23       | 11      | 88-1           | C6       | CON DATA*<br>(RUN LOGIC)<br>ADD ONE*                      | 24<br>43<br>41                | 3<br>2<br>1               | 88-1<br><br>88-2                 | A3<br>B7<br>D4             |
| KEYM*<br>KEYM·PL               | 23<br>41 | 12<br>8 | 88-1<br>88-1   | C6<br>C5 | KEYM SET*<br>KEYM·PL·TS0*<br>JSR·EFA<br>LOAD MBO*         | 55<br>57<br>93<br>98          | 3<br>2<br>9<br>5          | 88-1<br>88-3<br>''               | B6<br>C4<br>C4<br>A3       |
| TS0*                           | 57       | 3       | 88-3           | C3       | INH TRANS*<br>LOAD PC*                                    | 56<br>57                      | 5<br>4                    | 88-1<br>88-3                     | B2<br>B3                   |
| KEYM SET*<br>[KEYM SET]        | 55<br>22 | 6<br>2  | 88-1<br>88-1   | В6<br>В6 | [KEY M SET]<br>FETCH<br>KEYM                              | 22<br>97<br>23                | 1<br>2<br>14              | 88-1<br>88-2<br>88-1             | В6<br>D7<br>A6             |
| ŘEY SEEN*<br>(F/F)             | 2        | 6       | 11<br>11<br>11 | B8       | (RUN LOGIC)<br>(MR)<br>(MR)                               | 21<br>54<br>102               | 1<br>1<br>1               | ''<br>''<br>88-3                 | B6<br>D8<br>D8             |
| KEY SEEN<br>(F/F)              | 2        | 5       | 88-1           | B8       | KEY ENAB*<br>(SH)                                         | 3<br>23                       | 1<br>13                   | 88-1<br>''                       | D8<br>C6                   |
| LDA·E*<br>LOAD AC*             | 52<br>93 | 10<br>6 | 88-2<br>88-3   | B4<br>D2 | (Pack Logic)<br>ACD                                       | 99<br>(A77)<br>123<br>124     | 1<br>3<br>3               | 88-3<br>90-1<br>88-4             | D5<br>B8<br>B7             |
| LOAD ACB                       | 100      | 11      | 88-3           | C3       | SHIFT ACB<br>ACB(LD)<br>ACB(LD)<br>ACB(LD)                | 100<br>105<br>107<br>108      | 2<br>10<br>10<br>10       | 88-3<br>88-4<br>''               | C3<br>B4<br>B4<br>B4       |
| LOAD CRY*                      | 97       | 8       | 88-3           | C5       | CARRY<br>(Pack Logic)                                     | 76<br>99                      | 11<br>5                   | 88-3<br>''                       | C5<br>C5                   |
| LOAD IR<br>*Indicates '' Not'' | 34       | 3       | 88-2           | A6       | IR(LD)<br>IR(LD) Logic<br>MBC(LD)<br>MBC(LD)<br>[STUTTER] | (A73)<br>28<br>32<br>33<br>54 | 10<br>5<br>10<br>10<br>15 | 90-1<br>88-2<br>''<br>''<br>88-1 | A6<br>A8<br>A4<br>A5<br>D7 |

# SIGNAL LIST Table 1 - Nova 1210/1220

UL

| 0                 | RIGIN |     |       |                 | DESTINATION       |      |      |                                       |      |
|-------------------|-------|-----|-------|-----------------|-------------------|------|------|---------------------------------------|------|
| SIGNAL            | СНІР  | PIN | DWG   | GRID            | FUNCTION          | CHIP | PIN  | DWG                                   | GRID |
| LOAD MBO*         | 98    | 8   | 88-3  | A2              | MBO(SH)           | 37   | 13   | 88-4                                  | C4   |
|                   |       |     |       |                 | MBO(SH)           | 38   | 13   | 11                                    | C4   |
|                   |       |     |       |                 | MBO(SH)           | 39   | 13   |                                       | C4   |
|                   |       |     |       |                 | MBO(SH)           | 40   | 13   | 11                                    | C4   |
| LOAD PC*          | 57    | 8   | 88-3  | A2              | PC                | 119  | 12   | 11                                    | A6   |
| LOOP              | 103   | 7   | 11    | D5              | MB LOAD           | 13   | 12   | 88-1                                  | C3   |
|                   |       |     |       |                 | LOOP*             | 22   | 5    | 88-3                                  | D5   |
|                   |       |     |       |                 | S0                | 47   | 9    | 88-2                                  | C3   |
|                   |       |     |       |                 | (IO Inst DCDR)    | 64   | 5    | 88-1                                  | B5   |
|                   |       |     |       |                 | $PTG2 \cdot LOOP$ | 70   | 4    | 1 <b>11</b>                           | D5   |
| LOOP*             | 22    | 6   | 88-3  | D5              | PC IN*            | 35   | 5    | 88-2                                  | D5   |
|                   |       |     |       |                 | CON INST*         | 36   | 10   | 88-1                                  | A2   |
|                   |       |     |       |                 | MA LOAD*          | 56   | 13   |                                       | D3   |
| LOOP SET          | 83    | 2   | 88-3  | D5              | (TS3/TS0)         | 65   | 9    | 11                                    | C5   |
|                   |       |     |       |                 | PTG-5             | 70   | 10   | 11 2 2                                | D5   |
|                   |       |     |       |                 | LOOP              | 103  | 2    | 88-3                                  | D5   |
| LOOP SET*         | 104   | 8   | 88-3  | D5              | DCHA SET*         | 71   | 12   | 88-1                                  | C5   |
|                   |       |     |       |                 | LOOP SET          | 83   | 1    | 88-3                                  | D5   |
| MA1               | 33    | 15  | 103-1 | C7              | [SARD1](Jumper)   | 35   | 4    | 103-1                                 | D8   |
| MA1*              | 33    | 14  | 11    | C7              | [SARD1] "         | 35   | 4    | 11                                    | D8   |
| MA2               | 33    | 10  | 11    | C7              | SARD2 "           | 35   | 1    | 1. <b></b>                            | D8   |
| MA2*              | 33    | 11  |       | C7              | SARD2 "           | 35   | 11   | 11                                    | D8   |
| MA3               | 33    | 9   | 11    | C7              | SARD2 ''          | 35   | 2    | · · · · · · · · · · · · · · · · · · · | D8   |
| MA3*              | 33    | 8   | 11    | C7              | SARD3 "           | 35   | 2    | ,, i                                  | D8   |
| MA4               | 29    | 16  | 11    | C7              | MA4B*             | 67   | 3    | 103-4                                 | D8   |
| MA4*              | 29    | 1   | 11    | C7              |                   |      |      |                                       |      |
| MA4B*             | 67    | 4   | 103-4 | D8              | MA4B              | 67   | 11   | 11                                    | D8   |
|                   |       |     |       |                 | Y ADDR DCDR       | 52   | 5.4  | 11                                    | 7    |
|                   |       |     |       |                 |                   | 66   | 5, 4 | 1.11                                  | 7    |
| MA4B              | 67    | 10  | 103-4 | D8              |                   | 54   | 5, 4 | 11.000                                | 7    |
|                   |       |     |       |                 |                   | 62   | 5, 4 | 11                                    | 7    |
| MA5               | 29    | 15  | 103-1 | C6              |                   |      |      |                                       |      |
| MA5*              | 29    | 14  | 11    | C6              | MA5B              | 67   | 5    | 103-4                                 | C8   |
| MA5B              | 67    | 6   | 103-4 | C8              | MA5B*             | 67   | 9    | ••                                    | C8   |
|                   |       |     |       |                 |                   |      |      |                                       |      |
|                   |       |     |       | 나는 것이<br>네이지 않는 |                   |      |      |                                       |      |
| Indicates ''Not'' |       |     |       |                 |                   |      |      |                                       |      |

•

# SIGNAL LIST Table 1 - Nova 1210/1220

| O                    | ORIGIN         |               |                      |                |                         | DESTINATION          |                  |                |                  |  |
|----------------------|----------------|---------------|----------------------|----------------|-------------------------|----------------------|------------------|----------------|------------------|--|
| SIGNAL               | СНІ₽           | PIN           | DWG                  | GRID           | FUNCTION                | CHIP                 | PIN              | DWG            | GRID             |  |
|                      |                |               |                      |                | Y ADDR DCDR<br>"'<br>"' | 54<br>62<br>52<br>66 | 7<br>7<br>7<br>7 | 103-4          | 7<br>7<br>7<br>7 |  |
| MA5B*                | 67             | 8             | 103-4                | C8             | Y ADDR DCDR             | 54<br>62<br>52<br>66 | 1<br>1<br>1<br>1 | 103-4          | 7<br>7<br>7<br>7 |  |
| MA6<br>MA6*<br>MA6B* | 29<br>29<br>67 | 10<br>11<br>2 | 103-1<br>''<br>103-4 | C5<br>C5<br>B8 | MA6B*<br>MA6B           | 67<br>67<br>62       | 1<br>13          |                | B8<br>B8<br>7    |  |
| MA6B                 | 67             | 12            | 103-4                | B8             | Y ADDR DCDR<br>''<br>'' | 62<br>66<br>54<br>52 | 6<br>6<br>6      | TT<br>TT<br>TT | 7<br>7<br>7      |  |
| MA7<br>MA7*<br>MA7P* | 29<br>29       | 9<br>8        | 103-1                | C5<br>C5       | MA7B*                   | 44                   | 0<br>11<br>2     | 109.4          | A8               |  |
| MA7B*                | 44             | 10            | 103-4                | Ao             | Y ADDR DCDR             | 44<br>60<br>50       | 5,4<br>5,4       | 103-4          | A<br>A<br>A      |  |
| MA7B<br>MA8          | 44<br>25       | 4<br>16       | 103-4<br>103-1       | A8<br>C4       | ''<br>MA8B*             | 57<br>47<br>44       | 5,4<br>5,4<br>9  | ,,<br>103-4    | A<br>A<br>A8     |  |
| MA8*<br>MA8B*        | 25<br>44       | 1<br>8        | ''<br>103-4          | C4<br>A8       | MA8B<br>Y ADDR DCDR     | 44<br>60             | 5<br>7           | 103-4          | A8<br>A          |  |
|                      |                |               |                      |                | 11<br>11<br>11          | 50<br>57<br>47       | 7<br>7<br>7      | 11 · · ·       | A<br>A<br>A      |  |
| MA8B                 | 44             | 6             | 103-4                | A8             | 11                      | 60<br>50<br>57       | 1<br>1<br>1      | **<br>**<br>** | A<br>A<br>A      |  |
| MA9<br>MA9*          | 25<br>25       | 15<br>14      | 103-1                | C4<br>C4       | ''<br>MA9B*             | 47<br>44             | 1<br>13          | 11<br>. 11     | A<br>A8          |  |
| *Indicates ''Not''   |                |               |                      |                |                         |                      |                  |                | ,<br>,           |  |

SIGNAL LIST Table 1 - Nova 1210/1220

| C                  | RIGIN    |              |            |            | DESTINATION                              |             |             |                 |      |
|--------------------|----------|--------------|------------|------------|------------------------------------------|-------------|-------------|-----------------|------|
| SIGNAL             | CHIP     | ₽IN          | DWG        | GRID       | FUNCTION                                 | CHIP        | PIN         | DWG             | GRID |
| MA9B*              | 44       | 12           | 103-4      | A8         | MA9B                                     | 44          | 1           | 103-4           | A8   |
|                    |          |              |            |            | Y ADDR DCDR                              | 60          | 6           |                 | Α    |
|                    |          |              |            |            |                                          | 57          | 6           | 1               | A    |
| MA9B               | 44       | 2            | 103-4      | A8         |                                          | 50          | 6           |                 | A    |
|                    |          |              |            | 04         | 11                                       | 47          | 6           |                 | A    |
| MA10               | 25       | 10           | 103-1      | C4         | MA10B*                                   | <u></u> 11. | 3           |                 | D8_  |
| MA10*              | 25       | 11           | 100.0      |            | DCA10D                                   |             |             | 100 0           |      |
| MA10B*             | /1       | 4            | 103-3      | D8         | MAI0B                                    | 71          |             | 103-3           | D8   |
|                    |          |              |            |            | X ADDR DCDR                              | 73          | 5,4         |                 | 1    |
| N/A 10D            | 771      | 10           | 102 2      | 78         |                                          | 79          | 5, 4        |                 | 7    |
| MAIUB              | (1       | 10           | 103-3      | D0         |                                          | 14          | 5, 4<br>5 1 |                 | 7    |
| λπ Α 1 1           | 25       | 0            | 102 1      | C4         |                                          | 10          | 5, 4        |                 |      |
|                    | 25       | 9<br>Q       | 103-1      | $C_4$      | MA11B                                    | 71          | 5           | 103-3           | C8   |
|                    | 20<br>71 | 6            | 103-3      |            | MAIID<br>MAIIB*                          | 71          | Q           | 100-0           |      |
| MAIID              | ''       | U            | 100-0      | 00         | X ADDR DCDR                              | 72          | 7           | 11              | 7    |
|                    |          |              |            |            | N ADDIT DODIT                            | 76          | 7           |                 | 7    |
|                    |          |              |            |            |                                          | 73          | 7           | 11              | 7    |
|                    |          |              |            |            | 1                                        | 77          | 7           | 11              | 7    |
| MA11B*             | 71       | 8            | 103-3      | C8         | Alerta de Carlos de Carlos               | 72          | 1           |                 | 7    |
|                    |          | Ĩ            | 200 0      |            |                                          | 76          | 1           | 11              | 7    |
|                    |          |              |            |            | 11 (11)                                  | 73          | 1           | 11              | 7    |
|                    |          |              |            |            |                                          | 77          | 1           | 1 <b>11</b> 1 1 | 7    |
| MA12               | 22       | 16           | 103-1      | C3         | MA12B*                                   | 71          | 1           | 103-3           | B8   |
| MA12*              | 22       | 1            | 11         | C3         |                                          |             |             |                 |      |
| MA12B*             | 71       | 2            | 103-3      | B8         | MA12B                                    | 71          | 13          | 103-3           | B8   |
|                    |          |              |            |            | X ADDR DCDR                              | 76          | 6           | 11              | 7    |
|                    |          |              |            |            |                                          | 77          | 6           | 1 11            | 7    |
| MA12B              | 71       | 12           | 11         | B8         |                                          | 72          | 6           |                 | - 7  |
|                    |          |              |            | ~ ~ ~      | 11 (1) (1) (1) (1) (1) (1) (1) (1) (1) ( | 73          | 6           | 11              | 7    |
| MA13               | 22       | 15           | 103-1      | C3         | MA13B*                                   | 80          | 11          | 11              | A8   |
| MA13*              | 22       | 14           | 100.0      |            | 7544077                                  |             |             | 100.0           |      |
| MA13B*             | 80       | 10           | 103-3      | Að         | MAI3B                                    | 80          | 3           | 103-3           | A8   |
|                    |          |              |            |            | X ADDR DCDR                              | 79          | 5,4         |                 | A    |
| M & 1 9 D          |          |              | 102 0      | A 0        | תתיסת תתתא ע                             | 74          | ס,4<br>ה∖   |                 | A    |
| MAI3B              | 80       | 4            | 103-3      | Að         | ADDR DCDR                                | 10          | 5,4         | ,               | A    |
|                    |          |              |            |            |                                          | 10          | 5, 4        |                 | A    |
| *Indicates ''Not'' |          |              |            |            |                                          |             |             |                 |      |
|                    |          | - 1 <b>1</b> | a ta san a | 14 S. 1994 |                                          |             |             |                 |      |

# SIGNAL LIST Table 1 - Nova 1210/1220

¥

÷,

| SI | G١ | ١A | $\mathbf{L}$ | L | IS | T |  |
|----|----|----|--------------|---|----|---|--|
|    |    |    |              |   |    |   |  |

Table 1 - Nova 1210/1220

| O]                                                                                                                                                                                                                                                                                                                                                   | RIGIN    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESTINATION  |                                          |                                                             |          |                      |        |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-------------------------------------------------------------|----------|----------------------|--------|------------|
| SIGNAL                                                                                                                                                                                                                                                                                                                                               | СНІР     | ₽IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DWG          | GRID                                     | FUNCTION                                                    | CHIP     | PIN                  | DWG    | GRID       |
| MA14<br>MA14*                                                                                                                                                                                                                                                                                                                                        | 22<br>22 | 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103-1        | C2<br>C2                                 | MA14B*                                                      | 80       | 9                    | 103-3  | A8         |
| MA14B*                                                                                                                                                                                                                                                                                                                                               | 80       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-3        | A8                                       | MA14B                                                       | 80       | 5                    | 103-3  | A8         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 1.1                                      | X ADDR DCDR                                                 | 79       | 7                    | 11     | A          |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 1.0                                      |                                                             | 74       | 7                    | 11     | A<br>A     |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | 11 (1) (1) (1) (1) (1) (1) (1) (1) (1) (                    | 75       | 7                    | 11     | A          |
| MA14B                                                                                                                                                                                                                                                                                                                                                | 80       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-3        | A8                                       | 19 - 20 - <b>11</b> - 11 - 12 - 13 - 13 - 13 - 13 - 13 - 13 | 79       | 1                    |        | Α          |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                                                             | 74       | 1                    | 11     | A          |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                                                             | 78       | 1                    | 11     | A          |
| 34415                                                                                                                                                                                                                                                                                                                                                |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102 1        | <b>C</b> 2                               | MA15D*                                                      | 75       | 1                    | ,,     | A<br>A8    |
| MA15<br>MA15*                                                                                                                                                                                                                                                                                                                                        | 22<br>22 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-1        | $C_2$                                    | MAIJD                                                       | 04       | 13                   |        | ΠŪ         |
| MA15B*                                                                                                                                                                                                                                                                                                                                               | 80       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103-3        | A8                                       | MA15B                                                       | 80       | 1                    | 103-3  | A8         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | X ADDR DCDR                                                 | 79       | 6                    | 11     | Α          |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | <b>11</b>                                                   | 78       | 6                    | 1. 11  | Α          |
| MA15B                                                                                                                                                                                                                                                                                                                                                | 80       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-3        | A8                                       |                                                             | 74       | 6                    | • • •  | A          |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the go   |                                          |                                                             | 75       | 0                    |        | A          |
| MA LOAD*                                                                                                                                                                                                                                                                                                                                             | 60       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88-1         | D2                                       |                                                             | (B7)     |                      | 90-1   |            |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | MTG(SH)                                                     | 35       | 11                   | 88-1   | C7         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | [MA LOAD]                                                   | 30       | 9,10                 | 103-1  | C8         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | <b>**</b>                                                   | 30       | 12,                  |        | <b>C</b> 0 |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                                                             |          | 13                   | ŢŢ     | C8         |
| [MA LOAD]                                                                                                                                                                                                                                                                                                                                            | 30       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103-1        |                                          | MA1-3                                                       | 33       | 13                   | 103-1  |            |
| []                                                                                                                                                                                                                                                                                                                                                   |          | , in the second s |              |                                          |                                                             | 33       | 4                    | 1. TT  |            |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | MA4-7                                                       | 29       | 13                   |        |            |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | 3740 11                                                     | 29       | 4                    | 11     |            |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 - 17 - 1  |                                          | MA8-11                                                      | 20<br>25 | 13                   | **     |            |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | MA12-15                                                     | 22       | 13                   | ,<br>, |            |
| MBC8*                                                                                                                                                                                                                                                                                                                                                | 33       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88-2         | A5                                       | (SKIP LOGIC)                                                | •11      | 9                    | 88-3   | B7         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | MBC8                                                        | 27       | , <b>1</b> , , , , , | 88-2   | A5         |
|                                                                                                                                                                                                                                                                                                                                                      |          | Angela<br>Ngang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          | MBC(DS)                                                     | 33       | 4                    | ••     | A5         |
|                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | an a | (SH/SWP DCDR)                                               | 63<br>D1 | ວ<br>ຊ               | 88_1   | P0         |
| ана станция и на ст<br>мощится на станция и на станция и<br>на станция на станция и на станци |          | нн<br>1. Мар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                          |                                                             | 63       | 13                   | 11     | A4         |
| "Indicates ''Not''                                                                                                                                                                                                                                                                                                                                   |          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and a second |                                          |                                                             |          |                      |        |            |

| O]                                     | RIGIN |                   |      |      | DESTINATION   |          |        |              |      |
|----------------------------------------|-------|-------------------|------|------|---------------|----------|--------|--------------|------|
| SIGNAL                                 | СНІР  | PIN               | DWG  | GRID | FUNCTION      | CHIP     | PIN    | DWG          | GRID |
| MBC8                                   | 27    | 2                 | 88-2 | A4   | (SKIP LOGIC)  | 11<br>47 | 5<br>5 | 88-3<br>88-2 | B7   |
| MBC9*                                  | 32    | 5                 | 88-2 | A4   | (SH/SWP DCDR) | 51       | 2      |              | B6   |
|                                        |       |                   |      |      | (IO DCDR)     | 63       | 2      | 88-1         | A4   |
|                                        |       |                   |      |      |               | 63       | 14     | 11           | A4   |
| 이 같은 것 같은 것이 같다.                       |       | 가 다. 가 가<br>다음이 가 |      |      | MBC9          | 79       | 9,     |              |      |
|                                        | 50    |                   | 00.0 |      |               |          | 10     | 88-2         | A4   |
|                                        | .79   | 8                 | 88-2 | A3   | (SKIP LOGIC)  | 80       | 1      | 88-3         | B6   |
| MBC10*                                 | 33    | 9                 | 88-2 | АЭ   | MBC10         | 27       | 9      | 88-2         | A4   |
| MBC10                                  | 27    | Q                 | 00 9 | 1    | CRI ENAB      |          | 5      | 00 0         |      |
| MDC10                                  | 41    | 0                 | 00-2 |      |               | 9<br>8   | 9      | 00-4<br>88_1 |      |
| MBC11*                                 | 32    | 9                 | 11   | Δ4   | MBC11         | 27       | 13     | 88_2         | 43   |
| MBC11                                  | 27    | 12                |      | A3   | DS1*          | 8        | 11     | 88-1         | C4   |
|                                        |       |                   |      |      | CPU INST*     | 9        | 4      | 88-2         | B8   |
|                                        |       |                   |      |      | CRY ENAB      | 77       | 5      | 88-3         | C7   |
| MBC12*                                 | 33    | 7                 | 88-2 | A5   | MBC12         | 27       | 11     | 88 <b>-2</b> | A4   |
| MBC12                                  | 27    | 10                | 88-2 | A4   | DS2*          | 8        | 13     | 88-1         | C4   |
|                                        |       |                   |      |      | CPU INST*     | 9        | 2      | 88 <b>-2</b> | D8   |
|                                        |       |                   |      |      | LOAD CRY*     | 101      | 1      | 88-3         | C6   |
| 이 글 같은 것이 아파                           |       |                   |      |      | S MULT        | 116      | 3      | 88-4         | C7   |
| MBC13*                                 | 32    | 7                 | 88-2 | A4   | MBC13         | 27       | 3      | 88-2         | A3   |
| MBC13                                  | 27    | 4                 | "    | A3   | DS3*          | 22       | 9      | 88-1         | C4   |
|                                        |       |                   |      |      | CPU INST*     | 9        | 1      | 88-2         | B8   |
| 지 이 가슴을 가지 않는다.<br>이 가지 않는다. 이 가지 않는다. |       |                   |      |      | (SKIP LOGIC)  | 110      |        | 88-3         | B'/  |
|                                        | 22    | 11                | 88_9 |      | SMULT         | 110      | b      | 88-4         | C.1  |
| (NOT USED)                             | 55    | 11                | 00-2 |      |               |          |        |              |      |
| MBC14                                  | 33    | 12                | 88-2 | A5   | DS4*          | 8        | 3      | 88-1         | C4   |
|                                        |       |                   |      | 1    | CPU INST*     | 10       | 1      | 88-2         | B8   |
|                                        |       |                   |      |      | (SKIP LOGIC)  | 77       | 10     | 88-3         | B7   |
|                                        |       |                   |      |      | S MULT        | 116      | 13     | 88-4         | C6   |
| MBC15*                                 | 32    | 11                | 88-2 | A4   | (SKIP LOGIC)  | 80       | 4      | 88-3         | B6   |
| MBC15                                  | 32    | 12                | 11   | A3   | DS5*          | 8        | 1      | 88-1         | C4   |
|                                        |       |                   |      |      | CPU INST*     | 10       | 2      | 88-2         | B8   |
| 그는 말 같은 것이다.                           |       | 1C 1              |      |      | S MULT        | 116      | 10     | 88-4         | C6   |
| Ψ <b>Τ 1 1 1 1 1 1 1 1 1 1</b>         |       |                   |      |      |               |          |        |              |      |
| *Indicates "Not"                       |       |                   | 1.   |      |               |          |        |              |      |
|                                        |       |                   |      |      |               | 1        |        |              |      |

# SIGNAL LIST Table 1 - Nova 1210/1220

| <b>O</b> ]            | RIGIN    | e lang <sup>or</sup> | n de la composition<br>Anticipation<br>Anticipation |          | DESTINATION                                                                                                                                                                                                    |                                                                                  |                                                                                                   |                                                             |                                                                                             |
|-----------------------|----------|----------------------|-----------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| SIGNAL                | СНІ₽     | ₽IN                  | DWG                                                 | GRID     | FUNCTION                                                                                                                                                                                                       | CHIP                                                                             | PIN                                                                                               | DWG                                                         | GRIE                                                                                        |
| MB CLR*<br>[MB CLEAR] | 19<br>18 | 6<br>8               | 88-1<br>103-1                                       | D2<br>B8 |                                                                                                                                                                                                                | (B86)<br>30                                                                      | 2,4,<br>5                                                                                         | 103-1<br>103-1                                              | В8<br>В8                                                                                    |
| [MB CLEAR·<br>SEL]    | 30       | 6                    |                                                     | B8       | INH0 F/F<br>INH1 F/F<br>INH2 F/F<br>INH3 F/F<br>INH3 F/F<br>INH5 F/F<br>INH6 F/F<br>INH6 F/F<br>INH7 F/F<br>INH8 F/F<br>INH9 F/F<br>INH10 F/F<br>INH11 F/F<br>INH12 F/F<br>INH13 F/F<br>INH14 F/F<br>INH15 F/F | 34<br>32<br>32<br>31<br>31<br>28<br>27<br>27<br>24<br>24<br>23<br>23<br>21<br>21 | 13<br>1<br>1<br>13<br>13<br>1<br>1<br>1<br>13<br>13<br>1<br>1<br>1<br>13<br>1<br>1<br>1<br>13     | 103-1<br>"' "' "' "' "' "' "' "' "' "' "' "' "'             | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B |
| MB LOAD               | 14       | 6                    | 88-1                                                | C2       |                                                                                                                                                                                                                | (B74)<br>36                                                                      | 9                                                                                                 | 90-1<br>103-1                                               | B8                                                                                          |
| [MB LOAD·<br>SEL]     | 36       | 8                    | 103-1                                               | B8       | INH0 F/F<br>INH1 F/F<br>INH2 F/F<br>INH3 F/F<br>INH4 F/F<br>INH5 F/F<br>INH6 F/F<br>INH6 F/F<br>INH7 F/F<br>INH8 F/F<br>INH8 F/F<br>INH10 F/F<br>INH10 F/F<br>INH11 F/F<br>INH12 F/F<br>INH13 F/F<br>INH14 F/F | 34<br>32<br>32<br>31<br>28<br>27<br>27<br>24<br>24<br>23<br>23<br>21             | $ \begin{array}{c} 11\\3\\3\\11\\11\\3\\11\\11\\3\\11\\11\\3\\3\\11\\11\\3\\3\end{array}\right. $ | 103-1<br>"<br>103-1<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B |

# SIGNAL LIST

Table 1 - Nova 1210/1220

| OT CIN  | TAT  | TTOM |  |
|---------|------|------|--|
| S11 - P |      |      |  |
| DIGI    | vnu. |      |  |
|         |      |      |  |
|         |      |      |  |

| C                  | RIGIN |     |      |       | DESTINATION            |          |                           |       |                |
|--------------------|-------|-----|------|-------|------------------------|----------|---------------------------|-------|----------------|
| SIGNAL             | СНІ₽  | PIN | DWG  | GRID  | FUNCTION               | CHIP     | PIN                       | DWG   | GRID           |
|                    |       |     |      |       | INH15 F/F              | 21       | 11                        | 103-1 | В              |
| MBO0*              | 40    | 5   | 88-4 | D4    |                        | (B79)    |                           |       |                |
|                    |       |     |      |       | [ MD0 ]                | 17       | 9                         | 103-1 | A7             |
| MBO1*              | 39    | 5   | 88-4 | D3    |                        | (B77)    | n San A<br>A <u>P</u> art |       |                |
|                    |       |     |      |       | MB1                    | 17       | 5                         | 103-1 | A'/            |
| 1-000+             | 07    |     | 00.4 |       | (CON IND) (P14)        |          | 11                        | 89-1  | D7             |
| MBO2*              | 37    | อ   | 88-4 | C4    | MD9                    | (B44)    | 0                         | 102 1 | 17             |
|                    |       |     |      |       | MD2<br>(CON IND) (D15) | 15       | 9                         | 103-1 | D7             |
| MD03*              | 32    | 5   | 88_4 | C2    | (CON IND) (P13)        | (B43)    | 5                         | 09-1  | D1             |
| MIDO2              |       | 5   | 00-1 | 03    | MD3                    | (D-15)   | 5                         | 103-1 | AG             |
|                    |       |     |      |       | (CON IND) (P38)        | 8        | 9                         | 89-1  | D7             |
| MBO4*              | 40    | 7   | 88-4 | D4    |                        | (B42)    |                           | 00 1  |                |
|                    |       |     |      | T     | MD4                    | 13       | 9                         | 103-1 | A6             |
|                    |       |     |      |       | (CON IND) (P16)        | 8        | 11                        | 89-1  | D6             |
| MBO5*              | 39    | 7   | 88-4 | D3    |                        | (B32)    |                           |       |                |
|                    |       |     |      |       | MD5                    | 13       | 5                         | 103-1 | A6             |
|                    |       |     |      |       | (CON IND) (P11)        | 8        | 5                         | 89-1  | D6             |
| MBO6*              | 37    | 7   | 88-4 | C4    |                        | (B16)    |                           |       |                |
|                    |       |     |      |       | MD6                    | 11       | 9                         | 103-1 | A5             |
|                    |       |     |      |       | (CON IND) (P35)        | 9        | 9                         | 89-1  | D6             |
| MBO7*              | 38    | 7   | 88-4 | C3    |                        | (B14)    |                           |       | . –            |
|                    |       |     |      |       | MD7                    | 11       | 5                         | 103-1 | A5             |
| 1-00-              | 10    |     | 00.4 |       | (CON IND) (P9)         | (D10)    | 11                        | 89-1  | DS             |
| MBO8*              | 40    | 9   | 88-4 | $D^4$ |                        | (B12)    | 9                         | 00 1  | <u></u>        |
|                    |       |     |      |       | MD8                    | 44<br>Q  | 4                         | 00-1  |                |
|                    |       |     |      |       | (CON IND) (P18)        | g        | 5                         | 89_1  | D5             |
| MBO9*              | 39    | 9   | 88-4 | D3    |                        | (B9)     |                           | 00 1  | 50             |
|                    |       |     |      |       | MD9                    | 9        | 5                         | 103-1 | C4             |
|                    |       |     |      |       | (CON IND) (P8)         | 10       | 9                         | 89-1  | D5             |
| MBO10*             | 37    | 9   | 88-4 | C4    |                        |          |                           |       |                |
|                    |       |     |      |       | MD10                   | 7        | 9                         | 103-1 | C4             |
|                    |       |     |      |       | (CON IND) (P44)        | 10       | 11                        | 89-1  | D4             |
| MBO11*             | 38    | 9   | 88-4 | C3    |                        | (B5)     |                           |       |                |
|                    |       |     |      |       | MD11                   | 7        | 5                         | 103-1 | C4             |
|                    |       |     |      |       | (CON IND) (P6)         | 10       | 5                         | 89-1  | D4             |
| *Indicates ''Not'' |       |     |      |       |                        |          |                           |       |                |
|                    |       |     |      | 1924  |                        | 1.202.00 |                           |       | 1. 1. 1. 1. 1. |

Table 1 - Nova 1210/1220

¥.

| O                  | RIGIN    |          |       |            | DESTINATION        |               |               |       |      |
|--------------------|----------|----------|-------|------------|--------------------|---------------|---------------|-------|------|
| SIGNAL             | СНІ₽     | ₽IN      | DWG   | GRID       | FUNCTION           | CHIP          | PIN           | DWG   | GRID |
| MBO12*             | 40       | 11       | 88-4  | D4         |                    | (A39)         |               |       |      |
|                    |          | 1 - S.   |       |            | MD12               | 5             | 9             | 103-1 |      |
| 10010              | 10       | 10       | 00.4  | <b>D</b> 2 | (CON IND) (P30)    | 101           | 9             | 89-1  |      |
| MBO12              | 40       | 12       | 88-4  |            |                    | 121           | S<br>C        | 00-4  |      |
|                    |          |          |       |            | MULI<br>ADDED TEST | 120           | 12            | 88-3  |      |
| MDO19*             | 30       | 11       | 88-4  | 79         | ADDER IESI         | $(\Delta 37)$ | 14            | 00-0  |      |
| MIDO12             | 55       |          | 00-1  | $D_2$      | ADDER TEST         | 60            | 5             | 88-3  | Δ4   |
|                    |          |          |       |            | MD13               | 5             | 5             | 103-1 | A3   |
|                    |          |          |       |            | (CON IND) (P4)     | 11            | 11            | 89-1  | D3   |
| MBO13              | 39       | 12       | 88-4  | D2         |                    | 121           | 6             | 88-4  | C8   |
| MIDOIO             |          | 10       | 00 1  | Du         | MULT               | 120           | 3             |       | D6   |
| MBO14*             | 37       | 11       | 88-4  | C4         |                    | (A43)         |               |       |      |
|                    |          |          |       | 01         | ADDER TEST         | 60            | 4             | 88-3  | A4   |
|                    |          |          |       |            | MD14               | 3             | 9             | 103-1 | A3   |
|                    |          |          |       |            | (CON IND) (P12)    | 11            | 5             | 89-1  | D3   |
| MBO14              | 37       | 12       | 88-4  | C3         | D MULT             | 121           | 13            | 88-4  | C7   |
|                    |          |          |       |            | MULT               | 120           | 21            | 11 1  | C6   |
| MBO15*             | 38       | 11       | 88-4  | C2         |                    | (A41)         |               |       |      |
|                    |          |          |       |            | MD15               | 3             | 5             | 103-1 | A2   |
|                    |          |          |       |            | (CON IND) (P28)    | 11            | 1             | 89-1  | D3   |
| MBO15              | 38       | 12       | 88-4  | C2         | ADDER TEST         | -84           | 9             | 88-3  | A4   |
|                    |          |          |       |            | D MULT             | 120           | 10            | 88-4  | C7   |
|                    | a da ser |          |       |            | MULT               | 121           | 18            | 11    | C6   |
| MBO12 SAVE*        | 42       | 7.       | 88-1  | C7         | S0                 | 48            | 2             | 88-2  | C4   |
|                    |          |          |       |            | ADD ONE*           | 90            | 5             |       | D4   |
| [ MD0 ]            | 17       | 8        | 103-1 | B7         | INH0               | 34            | 12            | 103-1 | B7   |
| MD1                | 17       | 6        | 103-1 | B7         | INH1               | 34            | 2             | 103-1 | BT   |
| 1/00               | 1 5      | 0        | 102 1 | 70         | MAI                | 33<br>20      | ა<br>ი        |       | 07   |
| MD2                | 15       | 8        | 103-1 | Бі         |                    | 34<br>33      | 6             | 11    |      |
|                    | 15       | C C      | 102 1 | <b>B</b> 6 | IVIAL<br>INHS      | 30<br>30      | 1.2           |       | R7   |
| INTO 2             | 10       |          | 103-1 | Ъ0<br>1    | MA3                | 33            | 7             |       | C7   |
| MD4                | 13       | 8        | 103-1 | B6         | INH4               | 31            | 12            | . 11  | B7   |
| TITI               | 10       | Ÿ        | 100-1 | <i></i>    | MA4                | 29            | $\frac{1}{2}$ |       | C7   |
|                    |          | 1.<br>1. |       |            |                    |               | _             |       | - '  |
|                    |          |          |       |            |                    |               |               |       |      |
| *Indicates ''Not'' |          |          |       |            |                    |               |               |       |      |
|                    |          |          |       |            |                    |               |               |       |      |

# SIGNAL LIST Table 1 - Nova 1210/1220

Lille

Ĵ.

y

| 0                  | ORIGIN    |         |        |          |                 | DESTINATION |        |            |                               |
|--------------------|-----------|---------|--------|----------|-----------------|-------------|--------|------------|-------------------------------|
| SIGNAL             | СНІР      | PIN     | DWG    | GRID     | FUNCTION        | CHIP        | PIN    | DWG        | GRID                          |
| MD5                | 13        | 6       | 103-1  | B6       | INH5            | 31          | 2      | 103-1      | B6                            |
|                    |           |         |        |          | MA5             | 39          | 3      | 11         | C6                            |
| MD6                | 11        | 8       | 103-1  | B5       | INH6            | 28          | 2      | 11         | B5                            |
|                    |           |         |        |          | MA6             | 29          | 6      | 11 III III | C5                            |
| MD7                | 11        | 6       | 103-1  | В2       | INH7            | 28          | 12     |            | B5                            |
|                    |           |         |        | <b>.</b> | MA7             | 29          | 7      | 11         | C5                            |
| MD8                | 9         | 8       | 103-1  | Bo       | INH8            | 27          | 12     | TT SA      | B5                            |
|                    |           |         | 100 1  | D/       | MA8             | 25          | 2      | 11         | C5                            |
| MD9                | 9         | 6       | 103-1  | В4       | INH9            | 27          | 2      |            | B4                            |
|                    |           |         | 100 1  | D/       | MA9             | 25          | 3      |            | C4                            |
| MD10               | 1         | 8       | 103-1  | D4       | INH10           | 24          | 2      |            | B4                            |
| 3 4754 4           |           |         | 100 1  | DИ       | MAIO            | 25          | 6      | : ''.      | C4                            |
| MDII               |           | 0       | 103-1  | D4       |                 | 24          |        |            | B4                            |
| 147010             |           | 0       | 109 1  | ЪЗ       | MAII<br>INHII9  | 20          | 10     |            | C4                            |
| MD12               | Э         | ð       | 103-1  | Do       |                 | 40          | 14     |            | B3<br>C2                      |
| 1/1719             | E         | c       | 102 1  | ЪЗ       |                 | 44          | 4      |            | C3<br>D2                      |
| MD19               | ິ         | 0       | -109-1 | D0       |                 | 40<br>99    | 2      |            | - Б3<br>С2                    |
| MD14               | 2         | Q       | 103 1  | B3       |                 | 22<br>91    | ວ<br>ງ |            | C3<br>D2                      |
| MID14              | J         | 0       | 103-1  |          |                 | 21          | 6      | 11         |                               |
| MD15               | ર         | 6       | 103_1  | B2       | INH15           | 22          | 12     |            | B2                            |
| IMID I 9           | J         | U       | 100-1  |          | MA15            | 21          | 14     | 103-1      | $C_2$                         |
| MIII TIDI V/       |           |         |        |          | 1/1/10          | 44          |        | 105-1      | 0.2                           |
| DIVIDE             | SEL.      |         |        |          |                 |             |        |            |                               |
| MD SEL1*           | (A87)     |         | 88-2   | C5       | ACS1 SEL*       | 49          | 68     | 88-2       | C4                            |
| MEM0*              | 16        | 3       | 103-1  | B7       | MODI DEE        | (B71)       | 0,0    | 00 1       |                               |
| (ACEX + ACDP)      | Ĩ         | 3       | 89-1   | A5       | (CON IND) (P39) | 7           | 9      | 89-1       | C8                            |
| (,                 |           |         |        |          | IR0*            | 28          | 3      | 88-2       | A6                            |
|                    |           |         |        |          | MBO0*           | 40          | 3      | 88-4       | D4                            |
|                    |           |         |        |          | Defer Again     | 76          | 2      | 88-2       | C7                            |
|                    |           |         |        |          | (EFA LOGIC)     | 55          | 10,    |            | $(-1)_{i \in \mathbb{N}} = 0$ |
|                    |           |         |        |          |                 |             | 13     | 88-3       | C6                            |
| MEM1*              | 16        | 6       | 103-1  | B7       |                 | (B70)       |        |            | n an tra<br>Taon              |
| (ACDP)             | 1         | 6       | 89-1   | A5       | (CON IND) (P41) | 7           | 13     | 89-1       | C7                            |
|                    |           |         |        |          | IR1*            | 29          | 2      | 88-2       | A7                            |
|                    |           |         |        |          | MBO1*           | 39          | 3      | 88-4       | D3                            |
|                    |           |         |        |          | (EFA LOGIC)     | 55          | 9      | 88-3       | C6                            |
| *Indicates ''Not'' |           |         |        |          |                 |             |        |            |                               |
|                    | a di seri | and the |        |          |                 |             |        |            |                               |

# SIGNAL LIST Table 1 - Nova 1210/1220

ŗ

4

| 0                             | RIGIN         |             |                        |                | DESTINATION                               |                                       |                   |                              |                      |
|-------------------------------|---------------|-------------|------------------------|----------------|-------------------------------------------|---------------------------------------|-------------------|------------------------------|----------------------|
| SIGNAL                        | СНІР          | ₽IN         | DWG                    | GRID           | FUNCTION                                  | CHIP                                  | PIN               | DWG                          | GRID                 |
| MEM2*<br>(DP+DPN)             | 14<br>2       | 3<br>8      | 103 -1<br>89-1         | B7<br>A4       | (CON IND) (P13)<br>IR2*<br>MBO2*          | (B47)<br>7<br>29<br>37                | $3 \\ 15 \\ 3$    | 89-1<br>88-2<br>88-4         | C7<br>A7<br>C4       |
| MEM3*<br>(ACEX+ACDP)          | 14<br>1       | 6<br>11     | 103-1<br>89-1          | В6<br>А7       | (EFA LOGIC)<br>(CON IND) (P43)<br>IR3*    | 55<br>(B68)<br>7<br>29                | 1<br>1<br>14      | 88-3<br>89-1<br>88-2         | C6<br>C7<br>A7<br>C2 |
| MEM4*<br>(ACEX+ACDP)<br>MEM5* | 12<br>1       | 3<br>8<br>6 | 103-1<br>89-1          | B6<br>A6<br>B6 | MBO3*<br>(CON IND) (P37)<br>IR4*<br>MBO4* | 38<br>(B28)<br>8<br>29<br>40<br>(B26) | 3<br>13<br>3<br>2 | 88-4<br>89-1<br>88-2<br>88-4 | C6<br>A7<br>D4       |
| (EX+STRT+<br>ACDP)<br>MEM6*   | 2             | 11          | 89-1                   | A3             | (CON IND) (P36)<br>IR5*<br>MBO5*          | (B20)<br>8<br>28<br>39<br>(B22)       | 3<br>2<br>2       | 89-1<br>88-2<br>88-4         | C6<br>A6<br>D3       |
| (EX+EXN+DP+<br>DPN)           | 10<br>2<br>10 | 3           | 89-1                   | A3             | (CON IND) (P10)<br>IR6*<br>MBO6*          | (B22)<br>8<br>28<br>37<br>(D24)       | 1<br>15<br>2      | 89-1<br>88-2<br>88-4         | C6<br>A6<br>C4       |
| MEM (*<br>(EXN+DPN)<br>MEM8*  | 10<br>2<br>8  | о<br>6<br>3 | 103-1<br>89-1<br>103-1 | в5<br>В5       | (CON IND) (P42)<br>IR7*<br>MBO7*          | (B24)<br>9<br>28<br>38<br>(A55)       | 13<br>14<br>2     | 89-1<br>88-2<br>88-4         | C5<br>A6<br>C3       |
| MEM9*                         | 8             | 6           | 103-1                  | В4             | (CON IND) (P34)<br>MBC8*<br>MBO8*         | 9<br>33<br>40<br>(A53)                | 3<br>3<br>15      | 89-1<br>88-2<br>88-4         | C5<br>A5<br>D4       |
|                               |               |             |                        |                | (CON IND) (P7)<br>MBC9*<br>MBO9*          | 9<br>32<br>39                         | 1<br>3<br>15      | 89-1<br>88-2<br>88-4         | C5<br>A4<br>C3       |
| *Indicates ''Not''            |               |             |                        |                |                                           |                                       |                   |                              |                      |

#### SIGNAL LIST

## Table 1 - Nova 1210/1220

2

>

#### SIGNAL LIST

| С                  | RIGIN |     |       |      | DESTINATION                                                      |                                                   |                       |                                   |                                  |
|--------------------|-------|-----|-------|------|------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------------------|----------------------------------|
| SIGNAL             | СНІ₽  | PIN | DWG   | GRID | FUNCTION                                                         | CHIP                                              | PIN                   | DWG                               | GRID                             |
| MEM10*             | 6     | 3   | 103-1 | B4   | (CON IND) (P32)<br>MBC10*<br>MBO10*                              | (A45)<br>10<br>33<br>37                           | 13<br>15<br>15        | 89-1<br>88-2<br>88-4              | C4<br>A5<br>C4                   |
| MEM11*             | 6     | 6   | 103-1 | В4   | (CON IND) (P31)<br>MBC11*<br>MBO11*                              | (A51)<br>10<br>32<br>38                           | 3<br>15<br>15         | 89-1<br>88-2<br>88-4              | C4<br>C4<br>A4<br>C3             |
| MEM12*             | 4     | 3   | 103-1 | в3   | (CON IND) (P5)<br>MBC12*<br>MBC12*                               | (A36)<br>10<br>33<br>40                           | 1<br>1<br>2           | 89-1<br>88-2                      | C4<br>A5                         |
| MEM13*             | 4     | 6   | 103-1 | B3   | (CON IND) (P29)<br>MBC13*<br>MPC12*                              | 40<br>(A35)<br>11<br>32<br>20                     | 14<br>13<br>2         | 89-1<br>88-2                      | C3<br>A4                         |
| MEM14*             | 2     | 3   | 103-1 | B2   | MBO13*<br>(CON IND) (P3)<br>MBC14*<br>MDO14*                     | 39<br>(B76)<br>11<br>33<br>27                     | 14<br>3<br>14         | 89-1<br>88-2                      | C3<br>A5                         |
| MEM15*             | 2     | 6   | 103-1 | B2   | MBO14*<br>(CON IND) (P2)<br>MBC15*<br>MPO15*                     | 37<br>(B18)<br>12<br>32<br>39                     | 14<br>13<br>14        | 89-1<br>88-2                      | C4<br>C3<br>A4<br>C2             |
| MEM CLK            | 73    | 6   | 88-1  | A6   | (MTG)<br>(KEY/RUN/DCH)<br>(ACTG)<br>LOAD AC*<br>S BUFF<br>D'BUFF | 38<br>(B48)<br>17<br>23<br>54<br>93<br>115<br>122 | 6<br>6<br>4<br>6<br>6 | 90-1<br>88-1<br>"<br>88-3<br>88-4 | D6<br>C6<br>D8<br>D3<br>C7<br>C8 |
| MEM OK             | (A9)  |     | 91    | B2   | IR4, IR1-3<br>RUN LOGIC                                          | 29<br>62                                          | 6<br>5                | 88-2<br>88-1                      | A8<br>C7                         |
| *Indicates ''Not'' |       |     |       |      |                                                                  |                                                   |                       |                                   |                                  |

#### Table 1 - Nova 1210/1220

£

Ę

۲

| 0                                    | RIGIN                    |                      |                      |                   | DESTINATION                                                           |                                   |                               |                                      |                                  |
|--------------------------------------|--------------------------|----------------------|----------------------|-------------------|-----------------------------------------------------------------------|-----------------------------------|-------------------------------|--------------------------------------|----------------------------------|
| SIGNAL                               | СНІ₽                     | ₽IN                  | DWG                  | GRID              | FUNCTION                                                              | CHIP                              | PIN                           | DWG                                  | GRID                             |
| [MSKO]<br>MSKO*<br>MSTP              | 4<br>5<br>(A20)          | 11<br>4<br>(P48      | 88-1<br>''<br>) 89-1 | B4<br>A4          | MSKO*<br>(RUN LOGIC)                                                  | 5<br>(A38)<br>24                  | 3<br>1,                       | 88-1<br>90-1                         | A4                               |
| MTG0                                 | 17                       | 5                    | 88-1                 | D6                | INHIBIT<br>DCHI<br>MTG0*<br>MTG                                       | 13<br>14<br>16<br>17              | 10<br>10<br>13<br>13<br>2,    | 88-1<br>''<br>''                     | B7<br>C2<br>C2<br>D6             |
|                                      |                          |                      |                      |                   | READ1*<br>MB CLR*                                                     | 19<br>19                          | 15,<br>14<br>1<br>4           | 11<br>11<br>11                       | D6<br>D2<br>D2                   |
| MTG0*<br>MTG1                        | 16<br>17                 | 12<br>7              | 88-1<br>88-1         | D6<br>D6          | MTG(SH)(Logic)<br>RQENB*<br>MTG1*<br>READ2*                           | 36<br>16<br>16<br>19              | 4<br>5<br>11<br>10            | 11<br>11<br>11<br>11                 | C7<br>C2<br>D6<br>D2             |
| MTG1*                                | 16<br>17                 | 10<br>12             | 88-1<br>88-1         | D6                | MB CLR*<br>DCHO<br>MTG(SH)(Logid<br>MTG(DS)                           | 19<br>18<br>36<br>17              | 5<br>10<br>5<br>4             | 17<br>17<br>17                       | D2<br>B2<br>D6<br>D6             |
| IWI 03                               |                          | 14                   | 00-1                 | Du                | READ1*                                                                | 18<br>19                          | 1,2, 4                        | TT<br>TT                             | D2<br>D2                         |
| MULT0*<br>MULT1*<br>MULT2*<br>MULT3* | 120<br>120<br>120<br>120 | 10<br>11<br>13<br>14 | 88-4<br>''<br>''     | CD 5<br>'''<br>'' | READ2*<br>MBO(DS)<br>MBO(DS)<br>MBO(DS)<br>MBO(DS)                    | 19<br>40<br>39<br>37<br>38        | 9<br>4<br>4<br>4<br>4         | 88-4<br>''<br>''                     | D2<br>CD34<br>''<br>''           |
| OVFLO                                | 15                       | 8                    | 88-1                 | B2                |                                                                       | (B39)                             |                               | 90-1                                 |                                  |
| PACK<br>PACK*                        | 103<br>83                | 9<br>12              | 88-3<br>88-3         | D5<br>D5          | ACS1 SEL*<br>ACS2 SEL*<br>PACK*<br>ACS1 SEL*<br>ACS2 SEL*<br>LOAD AC* | 49<br>49<br>83<br>49<br>49<br>111 | 10<br>12<br>13<br>4<br>2<br>5 | 88-2<br><br>88-3<br>88-2<br><br>88-3 | C5<br>B5<br>D5<br>C5<br>B5<br>D3 |
| *Indicates ''Not''                   |                          |                      |                      |                   |                                                                       |                                   |                               |                                      |                                  |

#### SIGNAL LIST

Table 1 - Nova 1210/1220

•

7

| 0                  | RIGIN |       |      |      | DESTINATION          |      |      |                |            |
|--------------------|-------|-------|------|------|----------------------|------|------|----------------|------------|
| SIGNAL             | CHIP  | ₽IN   | DWG  | GRID | FUNCTION             | CHIP | PIN  | DWG            | GRID       |
| [ PC0]             | 119   | 10    | 88-4 | A5   | MULT0*               | 120  | 10   | 88-4           | CD 5       |
| [ PC1 ]            | 119   | 9     | ••   | A5   | MULT1*               | 120  | 11   | 11             | CD 5       |
| [ PC2 ]            | 119   | 7     | 11   | A5   | MULT2*               | 120  | 13   | 11             | CD5        |
| [ PC3]             | 119   | 6     | **   | A5   | MULT3*               | 120  | 14   | 1.11           | CD 5       |
| PC ENAB*           | 61    | 8     | 88-3 | B3   | PC IN*               | 36   | 1    | 88-2           | D5         |
|                    |       |       |      |      | LOAD PC*             | 57   | 5    | 88-3           | B3         |
|                    |       |       |      |      | E SET                | 74   | 2    | 88-2           | C7         |
| PC IN*             | 36    | 3     | 88-2 | D4   | PC                   | 119  | 11   | 88-4           | A5         |
|                    |       |       |      |      | Multiplexer          | 120  | 7,8, |                |            |
|                    |       |       |      |      |                      |      | 9    | 88-4           | C5         |
|                    |       |       |      |      | MULT(ENAB)           | 120  | 7,8, |                |            |
|                    |       |       |      |      |                      |      | 9    | 88-4           | C5         |
| PI                 | 95    | 11    | 88-2 | D6   | PC IN*               | 35   | 4    | 88-2           | D5         |
|                    |       |       |      |      | ADD ONE*             | 90   | 3    | 1.11           | D4         |
|                    |       |       |      |      | CLR SKIP*            | 100  | 5    | 88-3           | A4         |
|                    |       |       |      |      | Disable D Mult       | 46   | 2,3  | 88-2           | B3         |
| PI*                | 95    | 12    | 88-2 | D6   | IR(SH)               | 114  | 2    | 88-2           | A8         |
|                    |       |       |      |      | IR(DS)               | 12   | 13   | 11             | A8         |
|                    |       |       |      | 경험문  | D SET                | 74   | 11   | 11             | C7         |
|                    |       |       |      |      | ADD ONE*             | 82   | 13   | . <b>11</b>    | D3         |
|                    |       |       |      |      | ION*                 | 84   | 1    | 11             | C7         |
|                    |       |       |      |      | LOOP SET*            | 84   | 12   | 88-3           | D6         |
| PI SET             | 96    | 6     | 88-2 | C6   | PI                   | 95   | 14   | an interaction |            |
|                    |       |       |      |      | FETCH                | 96   | 9    | en attinger    | D6         |
|                    |       |       |      |      | LOAD MBO*            | 98   | 2    | 88-3           | A3         |
| PL*                | (A19) | (P23) | 89-1 | B2   | KEYM · PL            | 41   | 9    | 88-1           | C6         |
|                    |       |       |      |      | (RUN Logic)          | 43   | 3    | 11             | B7         |
|                    |       |       |      |      | Disable D Mult       | 87   | 9    | 88-2           | B4         |
| PRESET*            | 22    | 10    | 88-1 | B7   | MTG(MR)              | 17   | 1    | 88-1           | D7         |
|                    |       |       |      |      | INPUT                | 66   | 1    |                | B5         |
|                    |       |       |      |      | PTG(MR)              | 69   | 1    | 11             | D5         |
|                    |       |       |      |      | SKIP                 | 78   | 1    | 88-3           | B5         |
| 이 집 같은 것이 같아.      |       |       |      |      | (Major States)       | 95   | 1    | 88-2           | D7         |
| PTG0               | 69    | 9     | 88-1 | D4   | PTG DCDR             | 68   | 2    | 88-1           | D3         |
|                    |       |       |      |      |                      | 68   | 14   |                | D3         |
|                    |       |       |      |      | PTG                  | 69   | 14   | 11             | D4         |
|                    |       | I     |      |      | PC                   | 119  | 4    | 88-4           | A5         |
| *Tendianton UNT-tu |       |       |      |      | PC                   | 119  | 13   |                | A5         |
| "indicates "Not"   |       |       |      |      | 이 이 물건이 많이 많이 많이 같아. |      |      |                | 1. No. 241 |

£

## SIGNAL LIST

Table 1 - Nova 1210/1220

| O                  | RIGIN    |        |              |          | DESTINATION                                                         |                            |                         |                                      |                            |
|--------------------|----------|--------|--------------|----------|---------------------------------------------------------------------|----------------------------|-------------------------|--------------------------------------|----------------------------|
| SIGNAL             | СНІ₽     | ₽IN    | DWG          | GRID     | FUNCTION                                                            | CHIP                       | PIN                     | DWG                                  | GRID                       |
| PTG1               | 69       | 11     | 88-1         | D4       | MB L <u>OAD</u><br>EFA· PTG1<br>PTG DCDR<br>''                      | 112<br>34<br>68            | 13<br>4<br>3            | 88-1<br>88-2<br>88-1                 | C3<br>A3<br>D3             |
|                    |          |        |              |          | End Cycle F/F<br>PC<br>PC<br>MB LOAD                                | 00<br>113<br>119<br>119    | 13<br>3<br>5<br>14      | 88-4<br>''                           | D5<br>D5<br>A5<br>A5       |
| PTG1*              | 69       | 12     | 88-1         | D4       | MB LOAD<br>SO<br>PTG                                                | 47<br>69                   | 10<br>2<br>15           | 88-1<br>88-2<br>88-1                 | C3<br>D4                   |
| PTG2*              | 68       | 10     | 88-1         | D4       | ADDER Test<br>TS0/TS3<br>PTG2<br>PTG2:LOOP                          | 57<br>65<br>67<br>70       | 13<br>10<br>9<br>5      | 88-3<br>88-1<br>''                   | A6<br>C5<br>D3<br>D5       |
| PTG2<br>PTG5       | 67<br>70 | 8<br>8 | 88-1<br>88-1 | D3<br>D4 | INPUT F/F<br>Key/Run/DCH/                                           | 66                         | 12                      | ''<br>00 1                           | B5                         |
|                    |          |        |              |          | (LD)<br>(LD)<br>TS0/TS F/F<br>Adder Test                            | 23<br>42<br>66<br>78       | 10<br>10<br>2<br>12     | 88-3                                 | C6<br>C8<br>C5<br>A5       |
|                    |          |        |              |          | Major States<br>(LD)<br>LOAD MBO*                                   | 95<br>98<br>98             | 4<br>10<br>3            | 88-2<br>88-3                         | A5<br>D7<br>A3             |
| PTG5 ENAB*         | 68       | 6      | 88-1         | D3       | IOAD MBO*<br>INH TRANS*<br>PTG5<br>Pack Logic                       | 98<br>56<br>70<br>70       | 4<br>1<br>9<br>12       | 88-3<br>88-1<br><br>88-3             | A3<br>B2<br>D5<br>C6       |
| PTG=0·TS0          | 113      | 9      | 88-1         | A5       | SKIP F/F<br>LOAD ACB<br>Adder Test<br>MA LOAD*                      | 79<br>100<br>58<br>60      | 12<br>12<br>13<br>12    | "'<br>"'<br>88-1                     | B5<br>C3<br>A6<br>D2       |
| PTG=0·TS0*         | 113      | 8      | 88-1         | A5       | ADD ONE*<br>Shifter Logic<br>ADD ONE*<br>Shifter Logic<br>SHIFT ACB | 88<br>90<br>88<br>90<br>93 | 9<br>9<br>4<br>13<br>10 | 88-2<br>88-4<br>88-2<br>88-4<br>88-3 | D3<br>A7<br>D3<br>A7<br>C4 |
| *Indicates ''Not'' |          |        |              |          |                                                                     |                            |                         |                                      |                            |

#### SIGNAL LIST Table 1 - Nova 1210/1220

4

| 0]                 | RIGIN                                     |     |       | DESTINATION |                                                                                                                                                                                                                                        |          |           |              |            |
|--------------------|-------------------------------------------|-----|-------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------|------------|
| SIGNAL             | СНІ₽                                      | ₽IN | DWG   | GRID        | FUNCTION                                                                                                                                                                                                                               | CHIP     | PIN       | DWG          | GRID       |
| PTG=0.TS3*         | 68                                        | 4   | 88-1  | D3          | PTG=0.TS3                                                                                                                                                                                                                              | 67       | 13        | 88-1         | D3         |
| PTG = 0.TS3        | 67                                        | 12  | 88-1  | D3          | ADD ONE*<br>INPUT F/F                                                                                                                                                                                                                  | 88<br>9  | 5<br>9    | 88-2         | D3         |
| 110-0 100          | Ŭ.                                        |     |       | Ĩ           |                                                                                                                                                                                                                                        | Ŭ        | 10        | 88-1         | C5         |
|                    |                                           |     |       |             | MTG(LD)                                                                                                                                                                                                                                | 17       | 10        | 11           | D7         |
|                    |                                           |     |       |             | ADD ONE*                                                                                                                                                                                                                               | 88       | 1, 2      | 88-2         | D3         |
| PTG=1·TS0*         | 68                                        | 11  | 88-1  | D3          | ADDER Test                                                                                                                                                                                                                             | 80       | 10        | 88-3         | A6         |
|                    |                                           |     |       |             | SHIFT ACB                                                                                                                                                                                                                              | 93       | 11        | 11           | C4         |
| $PTG=1 \cdot TS3*$ | 68                                        | 5   | 88-1  | D3          | $\frac{(10 \text{ DCDR})}{700000000000000000000000000000000000$                                                                                                                                                                        | 109      | 5         | 88-1         | A5         |
| PTG2·LOOP          | 70                                        | 6   | 88-1  | D4          | PTG2+LOOP                                                                                                                                                                                                                              | 73       | 13        | 1-88         | D4         |
|                    |                                           |     |       | the second  | LOAD MBO*                                                                                                                                                                                                                              | 98       | 2 1       | 88-3         | B3         |
|                    | 79                                        | 19  | 00 1  | D4          | LOOP SEI*                                                                                                                                                                                                                              | 104      | ม, 4<br>1 | 00-J<br>00 J |            |
| PIG2+LOOP          | 13                                        | 14  | 00-1  | D4          | LOAD IR                                                                                                                                                                                                                                | 70       | 1         | 00-2         | D5         |
| DILL OF FNAD       | 100                                       | 6   | 99.1  | 45          | OVELO                                                                                                                                                                                                                                  | 19       | 4<br>19   | 88_1         | _ БЈ<br>В) |
| PULSE ENAD         | 109                                       | 0   | 00-1  | AJ          |                                                                                                                                                                                                                                        | 10<br>62 | 1         | 11           |            |
| DWR FAIL*          | (45)                                      |     | 91_1  | C2          | PWB LOW                                                                                                                                                                                                                                | 86       | 12        | 88-3         |            |
|                    | (10)                                      |     | 01 1  |             | AC CLB                                                                                                                                                                                                                                 | 20       | 12        | 88-1         | A6         |
| PWR LOW            | 102                                       | 11  | 88-3  | D7          | (SKIP Logic)                                                                                                                                                                                                                           | 11       | 1         | 88-3         | B1         |
| PWR LOG*           | 102                                       | 12  | 11    | D7          | PI SET                                                                                                                                                                                                                                 | 75       | 13        | 88-2         | C7         |
|                    |                                           |     |       |             | PWR LOW                                                                                                                                                                                                                                | 86       | 13        | 88-3         | D8         |
| READ1*             | 19                                        | 3   | 88-1  | D2          | 1943년 1743년 1943년<br>1947년 - 1947년 19<br>1947년 1947년 194 | (B87)    |           | 103-1        |            |
|                    |                                           |     |       |             | MTG(SH)                                                                                                                                                                                                                                | 35       | 10        | 88-1         | D6         |
|                    |                                           |     |       |             | READ 1B                                                                                                                                                                                                                                | 18       | 13        | 103-1        | D6         |
|                    | 18                                        | 12  | 103-1 | D6          |                                                                                                                                                                                                                                        | 19       | 5, 4      | 103-1        | D6         |
|                    |                                           |     |       |             | READ2B                                                                                                                                                                                                                                 | 19       | 12        | 103-1        | D6         |
| READ 1B            | 19                                        | 6   | 103-1 | D5          |                                                                                                                                                                                                                                        | 19       | 10        | 11           |            |
|                    |                                           |     |       |             | (X ADDR DCDR)                                                                                                                                                                                                                          | 72       | 2         | 103-3        | A7         |
|                    | na sa |     |       |             |                                                                                                                                                                                                                                        | 76       | 2         |              | A7         |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        | 73       | 2         |              | A7         |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        | 77       | 2         |              | A7         |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        | 19<br>74 | ູ         |              | A'7        |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        | 78       | 2         |              |            |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        | 75       | 3         | 1.<br>1.     |            |
|                    | 가지 않                                      |     |       |             |                                                                                                                                                                                                                                        | 10       | U         |              | A          |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        |          |           |              |            |
| *Indicates ''Not'' |                                           |     |       |             |                                                                                                                                                                                                                                        |          |           |              |            |
|                    |                                           |     |       |             |                                                                                                                                                                                                                                        |          |           |              |            |

# SIGNAL LIST

<u>Table 1 - Nova 1210/1220</u>

4

1

| OI                 | RIGIN |     |       |      | DESTINATION                           |               |                |                 |      |
|--------------------|-------|-----|-------|------|---------------------------------------|---------------|----------------|-----------------|------|
| SIGNAL             | СНІ₽  | ₽IN | DWG   | GRID | FUNCTION                              | CHIP          | PIN            | DWG             | GRID |
| READ 2*            | 19    | 8   | 88-1  | D2   |                                       | (B90)         |                | 103-1           | D6   |
|                    | 10    | 10  | 103.1 | De   | READ 2B                               | 18            | 11<br>0        | · 11<br>· 11    | D6   |
|                    | 10    | 10  | 103-1 | DO   |                                       | 19            | 13             | **              | D6   |
| READ 2B            | 19    | 8   | 103-2 | D5   | (Y ADDR DCDR)                         | 54            | 2              | 103-4           | A7   |
|                    |       |     |       |      | 11                                    | 62            | 2              | 11              | A7   |
|                    |       |     |       |      | · · ·                                 | 52            | 2              | 11              | A7   |
|                    |       |     |       |      |                                       | 66<br>60      | 2              |                 | A'7  |
|                    |       |     |       |      |                                       | 60<br>50      | 3              |                 | A7   |
|                    |       |     |       |      |                                       | 50<br>57      | ა<br>ე         |                 |      |
|                    |       |     |       |      | • • • • • • • • • • • • • • • • • • • | 17            | ູ              | 11              |      |
| ΒΕΔΟΙΟ*            | 12    | 3   | 88-1  | B2   |                                       | (B83)         | С, 1           | 103-1           | A8   |
| ILLIND IO          | 14    | Ŭ   | 00 1  | 21   | [READ IO]                             | 18            | 3              | 11              | A8   |
|                    | 18    | 4   | 103-1 | A8   | [MD0]                                 | 17            | 13             | 11              | Ā    |
|                    |       | -   |       |      | MD1                                   | 17            | 2              | **              | Α    |
|                    |       |     |       |      | MD2                                   | 15            | 13             | **              | Α    |
|                    |       |     |       |      | MD3                                   | 15            | 2              | **              | Α    |
|                    |       |     |       |      | MD4                                   | 13            | 13             |                 | A    |
|                    |       |     |       |      | MD5                                   | 13            | 2              | 11              | Α    |
|                    |       |     |       |      | MD6                                   | 11            | 13             | 11              | Α    |
|                    |       |     |       |      | MD7                                   | 11            | 2              |                 | Α    |
|                    |       |     |       |      | MD8                                   | 9             | 13             | 11              | A    |
|                    |       |     |       |      | MD9                                   | 9             | 2              |                 | A    |
|                    |       |     |       |      | MDI0                                  |               | 13             |                 |      |
|                    |       |     |       |      | MD11<br>MD19                          | <i>і</i><br>Б | 4              |                 |      |
|                    |       |     |       |      | MD12<br>MD13                          | 5             | 2              | 103_1           | Δ    |
|                    | 1. A  |     |       |      | MD15<br>MD14                          | 3             | $\frac{2}{13}$ | 100-1           | A    |
|                    |       |     |       |      | MD15                                  | 3             | 2              | - <del>11</del> | A    |
| [READ IO]          | 18    | 6   | 103-1 | - A8 |                                       | 18            | 5              | .,              | A8   |
|                    |       |     |       |      | [MD0]                                 | 17            | 10             |                 | A    |
|                    |       |     |       |      | MD1                                   | 17            | 4              | **              | Α    |
|                    |       |     |       |      | MD2                                   | 15            | 10             | **              | Α    |
|                    |       |     |       |      | MD3                                   | 15            | 4              | 11              | Α    |
|                    |       |     |       |      | MD4                                   | 13            | 10             |                 | A    |
|                    |       |     |       |      | MD5<br>MD6                            | 13            | 4              |                 | A    |
| *Indicates ''Not'' |       |     |       |      | οστιντ                                | 11            | 10             |                 | А    |

SIGNAL LIST Table 1 - Nova 1210/1220

ALC: N

3

| O                                                                                                                                                 | RIGIN                                                                                                          |      |                                                                              | DESTINATION                                          |                                                           |                                         |                                          |                               |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------|--------------------------------------|
| SIGNAL                                                                                                                                            | CHIP                                                                                                           | PIN  | DWG                                                                          | GRID                                                 | FUNCTION                                                  | CHIP                                    | PIN                                      | DWG                           | GRID                                 |
|                                                                                                                                                   |                                                                                                                |      |                                                                              |                                                      | MD7<br>MD8<br>MD9<br>MD10<br>MD11<br>MD12<br>MD13<br>MD14 | 11<br>9<br>9<br>7<br>7<br>5<br>5<br>5   | 4<br>10<br>4<br>10<br>4<br>10<br>4<br>10 | 103-1<br>""<br>""<br>""<br>"" | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A |
| RESET*                                                                                                                                            | 22                                                                                                             | 4    | 88-1                                                                         | B7                                                   | MD14<br>MD15<br>PRESET*<br>IORST                          | 3<br>3<br>10<br>21                      | 4<br>13<br>13<br>9                       | ''<br>88-1<br>''              | A<br>B7<br>A4<br>B8                  |
|                                                                                                                                                   |                                                                                                                |      |                                                                              |                                                      | KEY/RUN/DCH<br>(MR)<br>(MR)<br>ION*<br>LOOP/PACK          | 23<br>42<br>84                          | 1<br>1<br>2                              | <br>88-2                      | C6<br>C8<br>C7                       |
| RESTART*                                                                                                                                          |                                                                                                                |      | 88-1                                                                         | A8                                                   | (MR)<br>KEY SEEN F/F<br>Disable D Mult                    | $\begin{array}{c}103\\3\\87\end{array}$ | 1<br>5<br>10                             | 88-3<br>88-1<br>88-2          | D5<br>B8<br>B4                       |
| RELOAD<br>Disable*                                                                                                                                | (B72)                                                                                                          |      |                                                                              |                                                      |                                                           | 36                                      | 10,                                      | 102 1                         | B8                                   |
| RESTART<br>Enable<br>RINH0<br>RINH1<br>RINH2<br>RINH3<br>RINH4<br>RINH5<br>RINH6<br>RINH7<br>RINH6<br>RINH7<br>RINH8<br>RINH9<br>RINH10<br>RINH11 | (A32)<br>(A5)<br>(A7)<br>(A9)<br>(A11)<br>(A13)<br>(A15)<br>(A18)<br>(A17)<br>(A19)<br>(A24)<br>(A23)<br>(A21) | (P19 | ) 89-1<br>103-2<br>'''<br>''<br>''<br>''<br>''<br>''<br>''<br>''<br>''<br>'' | B7<br>7<br>7<br>7<br>7<br>7<br>7<br>4<br>4<br>4<br>4 |                                                           |                                         |                                          |                               |                                      |
| *Indicates ''Not''                                                                                                                                |                                                                                                                |      |                                                                              |                                                      | 승규는 것 같은 것                                                |                                         |                                          |                               | (1, 2, 2)                            |

# SIGNAL LIST Table 1 - Nova 1210/1220

| O                                                            | RIGIN                                                 |                   |                                           |                               | DESTINATION                          |                                                                                                                  |                          |                              |                            |
|--------------------------------------------------------------|-------------------------------------------------------|-------------------|-------------------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|----------------------------|
| SIGNAL                                                       | СНІ₽                                                  | ₽IN               | DWG                                       | GRID                          | FUNCTION                             | CHIP                                                                                                             | PIN                      | DWG                          | GRID                       |
| RINH12<br>RINH13<br>RINH14<br>RIN15<br>RQENB*<br>RST*<br>RUN | (A28)<br>(A25)<br>(A29)<br>(A27)<br>16<br>(A30)<br>23 | 6<br>(P20<br>7    | 103-2<br>"<br>"<br>88-1<br>) 89-1<br>88-1 | 4<br>4<br>4<br>C2<br>B6<br>C6 | RESET*<br>RUN*<br>CPU CLK            | (B41)<br>21<br>22<br>72                                                                                          | 12<br>13<br>4,           | 90-1<br>88-1<br>''           | B8<br>C6                   |
| RUN*                                                         | 22                                                    | 12                | 88-1                                      | C6                            | (CON IND) (A14)<br>KEY SEEN F/F      | 12<br>2                                                                                                          | $10 \\ 1 \\ 1, 2$        | 89-1<br>88-1                 | D2<br>B8                   |
| S0<br>S1<br>S2<br>[S BUFFR0]                                 | 92<br>91<br>91<br>115                                 | 3<br>8<br>11<br>5 | 88-2<br>''<br>88-4                        | C2<br>C2<br>C2<br>C7          | ADDER<br>''<br>S1<br>ADDER<br>S MULT | 117<br>117<br>91<br>117<br>116                                                                                   | 3,6<br>5<br>4<br>4<br>2  | 88-4<br><br>88-2<br>88-4<br> | D8<br>D8<br>C3<br>D8<br>C7 |
| S BUFFR1<br>S BUFFR2<br>S BUFFR3<br>SELB*<br>SELD*           | 115<br>115<br>(A82)<br>(A80)                          | 7<br>9<br>11      | "<br>"<br>90-1<br>90-1                    | C7<br>C7<br>C7                | "<br>SKIP Logic                      | $     \begin{array}{r}       116 \\       116 \\       116 \\       11 \\       11 \\       11     \end{array} $ | 5<br>14<br>11<br>10<br>4 | "<br>"<br>88-3<br>"          | C7<br>C7<br>C7<br>B6<br>B6 |
| SELECT                                                       | 35                                                    | 8                 | 103-1                                     | D7                            | STRBA, B,<br>C, D                    | 1                                                                                                                | 1,<br>10<br>12.          | 103-1                        | D4                         |
|                                                              |                                                       |                   |                                           |                               | READ 1B<br>INH GATE                  | 19                                                                                                               | 13 <sup>°</sup><br>1,2   | 17<br>77                     | D5<br>D6                   |
|                                                              |                                                       |                   |                                           |                               | A, B<br>''                           | 26<br>41                                                                                                         | 2,4,<br>5<br>10,<br>12.  |                              | D3                         |
|                                                              |                                                       |                   |                                           |                               | (DRIVE IO)                           | 26                                                                                                               | 13<br>13                 | 77<br>                       | D3<br>C8                   |
| *Indicates ''Not'                                            |                                                       |                   |                                           |                               |                                      |                                                                                                                  |                          |                              |                            |

## SIGNAL LIST Table 1 - Nova 1210/1220

1

- }

| ORIGIN              |           |          |              |             | DESTINATION                                          |                            |                      |                      |                      |
|---------------------|-----------|----------|--------------|-------------|------------------------------------------------------|----------------------------|----------------------|----------------------|----------------------|
| SIGNAL              | CHIP      | PIN      | DWG          | GRIĎ        | FUNCTION                                             | CHIP                       | PIN                  | DWG                  | GRID                 |
|                     |           |          |              |             | (INH TRANS*)<br>(MB LOAD)<br>(MB CLEAR)              | 36<br>36<br>30             | 1<br>13<br>1         | 103-1<br>''          | B8<br>B8<br>B8       |
| SERIAL CRY          | 54        | 12       | 88-1         | D7          | OVFLO<br>ADD ONE*                                    | 15<br>88                   | 13<br>6              | 88-1<br>88-2         | B2<br>D3             |
| SET ION*<br>SHIFT0* | 63<br>125 | 10<br>13 | ''<br>88-4   | B8<br>A 678 | ION*                                                 | 82<br>(B94)                | 4                    | "                    | C7                   |
|                     |           |          |              |             | SKIP Logic<br>ACD<br>ACS                             | 110<br>123<br>124          | 12<br>4<br>4         | 88-3<br>88-4<br>''   | A6<br>A 678<br>''    |
| SHIF''1'*           | 125       | 14       | 88-4         |             | SKIP Logic<br>ACD<br>ACS                             | (B96)<br>110<br>123<br>124 | 10<br>6<br>6         | 88-3<br>88-4         | A6<br>A 678          |
| SHIFT2*             | 125       | 11       | 88-4         |             | SKIP Logic                                           | (B93)<br>110<br>123        | 13<br>10             | 88-3<br>88-4         | A6<br>A 678          |
| SHIFT3*             | 125       | 10       | 88-4         |             | ACS<br>SKIP Logic<br>ACD<br>ACS                      | 124<br>110<br>123<br>124   | 10<br>9<br>12<br>12  | 88-3<br>88-4<br>''   | A6<br>A 678<br>      |
| SHIFT ACB           | 100       | 3        | 88-3         | C2          | ACB(SH)<br>ACB(SH)<br>ACB(SH)<br>ACB(SH)             | 105<br>106<br>107<br>108   | 13<br>13<br>13<br>13 | 11<br>11<br>11<br>11 | B4<br>B4<br>B4<br>B4 |
| SHL*                | 51        | 6        | 88-2         | B6          | Carry F/F Logic<br>[SHL]                             | 101<br>101                 | 53                   | 88-3                 | C6<br>C6             |
| [SHL]<br>SHR*       | 101<br>51 | 4<br>5   | 88-3<br>88-2 | C6<br>B6    | SHIFTER(SEL)<br>CRY SET*<br>Carry F/F Logic<br>[SHR] | 125<br>81<br>81<br>101     | 16<br>2<br>6<br>5    | 88-4<br>88-3<br>''   | A8<br>C6<br>C6<br>C6 |
| [SHR]               | 101       | 6        | 88-3         | C6          | SHIFTER (SEL)<br>CRY SET*                            | 125<br>81                  | 17<br>1              | 88-4<br>88-3         | A8<br>C6             |
|                     |           |          |              |             |                                                      |                            |                      |                      |                      |

# SIGNAL LIST

Table 1 - Nova 1210/1220

C

×

ć

ж,

| ORIGIN                                                                                                                                                                       |          |        |                                                       |                  | DESTINATION                                                                                                   |                                                                                                                                          |                          |                                                |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|---------------------------------------|
| SIGNAL                                                                                                                                                                       | СНІР     | PIN    | DWG                                                   | GRID             | FUNCTION                                                                                                      | CHIP                                                                                                                                     | PIN                      | DWG                                            | GRID                                  |
| SKIP<br>SKIP*                                                                                                                                                                | 78<br>78 | 5<br>6 | 88-3<br>''                                            | B5<br>B5         | ADD ONE*<br>IR0+SKIP                                                                                          | 90<br>(B69)<br>50<br>74                                                                                                                  | 2<br>2<br>3              | 88-2<br>90-1<br>88-2                           | D4<br>B6<br>C7                        |
| SKIP INC*                                                                                                                                                                    | 42       | 12     | 88-1                                                  | C7               | ADD ONE*<br>Test Skip Set<br>PC IN*                                                                           | 82<br>86<br>35                                                                                                                           | 12<br>4<br>13            | ''<br>88-3<br>88-2                             | D3<br>A8<br>D5                        |
|                                                                                                                                                                              |          |        |                                                       |                  | MA LOAD*<br>PC ENAB*<br>CLR SKIP*                                                                             | 56<br>58<br>99                                                                                                                           | $12 \\ 4,5 \\ 12$        | 88-1<br>88-3<br>''                             | D3<br>B4<br>B3                        |
| +SL0<br>-SL0<br>+SL1<br>-SL1<br>+s12<br>-SL2<br>+SL3<br>-SL3<br>+SL4<br>+SL5<br>-SL4<br>+SL5<br>-SL5<br>+SL6<br>-SL6<br>+SL7<br>-SL7<br>+SL8<br>-SL8<br>+SL8<br>+SL9<br>-SL9 |          |        | 103-2<br>""<br>""<br>""<br>""<br>""<br>""<br>""<br>"" | 7777777777744444 | SNS0<br>" SNS1<br>" SNS2<br>" SNS3<br>" SNS4<br>" SNS5<br>" SNS6<br>" SNS7<br>" SNS8<br>" SNS8<br>" SNS9<br>" | $\begin{array}{c} 69\\ 69\\ 69\\ 65\\ 65\\ 65\\ 59\\ 59\\ 59\\ 59\\ 56\\ 56\\ 56\\ 56\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49$ | 236723672367236723672367 | 103-2<br>" " " " " " " " " " " " " " " " " " " | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 3 3 3 3 3 |
| +SL10<br>-SL10<br>+SL11<br>-SL11<br>*Indicates ''Not''                                                                                                                       |          |        | 11<br>11<br>11<br>11                                  | 4<br>4<br>4<br>4 | SNS10<br>''<br>SNS11<br>''                                                                                    | 46<br>46<br>46<br>46                                                                                                                     | 2<br>3<br>6<br>7         | 77<br>17<br>17<br>17                           | 3<br>3<br>3<br>3                      |

# SIGNAL LIST

Table 1 - Nova 1210/1220

)

\*

)

<u>f.</u>,

| ORIGIN                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                               |                                                                         | DESTINATION                                                             |                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| SIGNAL                                                                                                                                                                                                                                           | СНІР                                                                                                                                     | ₽IN                                                                           | DWG                                                                     | GRID                                                                    | FUNCTION                                                                                                                                                                                                                              | CHIP                                                                                                                                                     | PIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GRID                                                                                                                       |
| + SL12<br>-SL12<br>+ SL13<br>-SL13<br>+ SL14<br>-SL14<br>+ SL15<br>-SL15                                                                                                                                                                         |                                                                                                                                          |                                                                               | 103-2<br>''<br>''<br>''<br>''<br>''                                     | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                    | SNS12<br>''<br>SNS13<br>''<br>SNS14<br>''<br>SNS15<br>SNS15                                                                                                                                                                           | 40<br>40<br>40<br>38<br>38<br>38<br>38<br>38                                                                                                             | 2<br>3<br>6<br>7<br>2<br>3<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103-2<br>''<br>''<br>''<br>''<br>''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                             |
| [S MULT0]<br>[S MULT1]<br>[S MULT2]<br>[S MULT3]                                                                                                                                                                                                 | 116<br>116<br>116<br>116                                                                                                                 | 4<br>7<br>12<br>9                                                             | 88-4<br>''<br>''                                                        | C 6, 7                                                                  | ADDER<br>ADDER<br>''<br>''                                                                                                                                                                                                            | 117<br>117<br>117<br>117<br>117                                                                                                                          | 18<br>20<br>22<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88-4<br>''<br>''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D,78<br>''<br>''                                                                                                           |
| SNS0<br>SNS0*<br>SNS1<br>SNS1*<br>SNS2<br>SNS2*<br>SNS3<br>SNS3*<br>SNS3*<br>SNS4<br>SNS4*<br>SNS5<br>SNS5*<br>SNS5*<br>SNS6<br>SNS6*<br>SNS6*<br>SNS6*<br>SNS7*<br>SNS7*<br>SNS7*<br>SNS7*<br>SNS8<br>SNS8*<br>SNS9<br>SNS9*<br>SNS10<br>SNS10* | $\begin{array}{c} 69\\ 68\\ 69\\ 68\\ 65\\ 64\\ 59\\ 58\\ 59\\ 58\\ 56\\ 55\\ 55\\ 49\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48$ | $14\\8\\12\\6\\14\\6\\12\\8\\14\\6\\14\\6\\14\\8\\12\\6\\14\\6\\14\\6\\14\\6$ | 103-2<br>""<br>""<br>""<br>""<br>""<br>""<br>""<br>""<br>""<br>""<br>"" | $\begin{array}{c} 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ $ | SNS0*<br>INH0 F/F<br>SNS1*<br>INH1 F/F<br>SNS2*<br>INH2 F/F<br>SNS3*<br>INH3 F/F<br>SNS4*<br>INH4 F/F<br>SNS5*<br>INH5 F/F<br>SNS6*<br>INH6 F/F<br>SNS7*<br>INH7 F/F<br>SNS8*<br>INH8 F/F<br>SNS9*<br>INH9 F/F<br>SNS10*<br>INH10 F/F | 68<br>34<br>68<br>34<br>64<br>32<br>64<br>32<br>58<br>31<br>55<br>28<br>31<br>55<br>28<br>31<br>55<br>28<br>48<br>27<br>48<br>27<br>48<br>27<br>45<br>24 | $9 \\ 10 \\ 5 \\ 4 \\ 9 \\ 10 \\ 5 \\ 4 \\ 9 \\ 10 \\ 5 \\ 4 \\ 9 \\ 10 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5$ | 103 - 2 $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ $103 - 2$ $103 - 1$ | D6<br>B7<br>C6<br>B7<br>C6<br>B6<br>C6<br>B6<br>B6<br>B6<br>B6<br>B6<br>B5<br>A6<br>B5<br>D3<br>B5<br>D3<br>B4<br>C3<br>B4 |
| *Indicates ''Not''                                                                                                                                                                                                                               |                                                                                                                                          |                                                                               |                                                                         |                                                                         |                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |

# SIGNAL LIST Table 1 - Nova 1210/1220

£

•

£

.1

| ORIGIN                                                                             |                                                    |                                                |                                           | DESTINATION                                              |                                                                                                    |                                                    |                                             |                                                                               |                                                          |
|------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|
| SIGNAL                                                                             | СНІР                                               | ₽IN                                            | DWG                                       | GRID                                                     | FUNCTION                                                                                           | CHIP                                               | PIN                                         | DWG                                                                           | GRID                                                     |
| SNS11<br>SNS11*<br>SNS12<br>SNS12*<br>SNS13*<br>SNS13*<br>SNS14<br>SNS14*<br>SNS15 | 46<br>45<br>40<br>39<br>40<br>39<br>38<br>37<br>38 | 12<br>8<br>14<br>8<br>12<br>6<br>14<br>6<br>12 | 103-2<br>''<br>''<br>''<br>''<br>''<br>'' | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | SNS11*<br>INH11 F/F<br>SNS12*<br>INH12 F/F<br>SNS13*<br>INH13 F/F<br>SNS14*<br>INH14 F/F<br>SNS15* | 45<br>24<br>39<br>23<br>39<br>23<br>37<br>21<br>37 | 9<br>10<br>9<br>10<br>5<br>4<br>5<br>4<br>9 | 103-2<br>103-1<br>103-2<br>103-1<br>103-2<br>103-1<br>103-2<br>103-1<br>103-2 | C3<br>B3<br>C3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B2<br>A3 |
| SNS15*<br>STA·E*                                                                   | 37<br>52                                           | 8                                              | ''<br>88-2                                | 3<br>B5                                                  | INH15 F/F<br>LOAD MBO*                                                                             | 21<br>99                                           | 10<br>9                                     | 100-2<br>103-1<br>88-3                                                        | B2<br>B3                                                 |
| STOP*<br>STOP INH*                                                                 | (A31)<br>82                                        | (P45)<br>8                                     | 89-1<br>88-1                              | B5<br>B6                                                 | MULT (SEL)<br>STOP SYNC<br>DCHA SET*<br>SKIP INC*<br>FETCH                                         | 120<br>4<br>71<br>87<br>97                         | 17<br>4,5<br>13<br>2<br>4                   | 88-4<br>88-3<br>88-1<br>''<br>88-2                                            | D8<br>C5<br>C8<br>D7                                     |
| STOP SYNC<br>STROBE                                                                | 102<br>18                                          | 5<br>6                                         | 88-3<br>88-1                              | D7<br>C2                                                 | RUN Logic<br>STRB A, B, C,<br>D                                                                    | 43<br>(B20)<br>1                                   | 1<br>5                                      | 88-1<br>103-1                                                                 | В7<br>D5                                                 |
| STRB A                                                                             | 1                                                  | 6                                              | 103-1                                     | D4                                                       | SNS0*<br>SNS1*<br>SNS2*<br>SNS3*                                                                   | 68<br>68<br>64<br>64                               | 10<br>4<br>4<br>10                          | 103-2<br>''<br>''                                                             | C6<br>C6<br>C6<br>C6                                     |
| STRB B                                                                             | 1                                                  | 6                                              | 103-1                                     | D4                                                       | SNS4*<br>SNS5*<br>SNS6*<br>SNS7*                                                                   | 58<br>58<br>55<br>55                               | 10<br>4<br>4<br>10                          | 77<br>77<br>77<br>77                                                          | A6<br>A6<br>A6<br>A6                                     |
| STRB C                                                                             | 1                                                  | 6                                              | 103-1                                     | D4                                                       | SNS8*<br>SNS9*<br>SNS10*<br>SNS11*                                                                 | 48<br>48<br>45<br>45                               | 10<br>4<br>4<br>10                          | 77<br>77<br>77<br>77                                                          | C3<br>C3<br>C3<br>C3<br>C3                               |
| STRB D<br>*Indicates ''Not''                                                       | 1                                                  | 6                                              | 103-1                                     | D4                                                       | SNS12*<br>SNS13*<br>SNS14*<br>SNS15*                                                               | 39<br>39<br>37<br>37                               | 10<br>4<br>4<br>10                          | 103-2<br>''<br>''                                                             | A3<br>A3<br>A3<br>A3<br>A3                               |

# SIGNAL LIST

Table 1 - Nova 1210/1220

)

3

Ì

£.

| ORIGIN                                                       |                           |                       |                                | DESTINATION                |                                                                                                                                     |                                                     |                                                      |                                                  |                                                          |
|--------------------------------------------------------------|---------------------------|-----------------------|--------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| SIGNAL                                                       | СНІР                      | PIN                   | DWG                            | GRID                       | FUNCTION                                                                                                                            | CHIP                                                | PIN                                                  | DWG                                              | GRID                                                     |
| [STRT*]<br>STRT<br>[STUTTER]<br>STUTTER*<br>SWP*             | 63<br>7<br>54<br>73<br>51 | 6<br>4<br>9<br>2<br>4 | 88-1<br>''<br>''<br>''<br>88-2 | A4<br>A4<br>D7<br>D7<br>B6 | STRT<br>(IO STRT PLS)<br>STUTTER*<br>CPU CLK<br>LOAD ACB                                                                            | 7<br>(A52)<br>73<br>72<br>100                       | 3<br>1<br>1,13<br>13                                 | 88-1<br>90-1<br>88-1<br>88-1<br>88-3             | A4<br>D7<br>A7<br>C3                                     |
| TS0                                                          | 66                        | 6                     | 88-1                           | C5                         | PC IN<br>IR(SH)<br>INST DCDR<br>Disable D Mult<br>KEYM·PL·TS0*<br>PC ENAB*<br>FETCH·TS0*<br>PTG DCDR<br>S1                          | 35<br>114<br>92<br>53<br>57<br>61<br>64<br>68<br>91 | 3<br>5<br>10<br>1<br>1<br>9<br>10<br>1<br>10         | 88-2<br>" " " 88-3 " 88-2 88-1 88-2              | D5<br>B8<br>B5<br>B3<br>C4<br>B4<br>D5<br>D3<br>C3       |
| <b>TS3</b>                                                   | 66                        | 5                     | 88-1                           | C5                         | LOOP SET*<br>(D+E SET)+TS3<br>ACD OUT*<br>ALC*<br>PC ENAB*<br>PC ENAB*<br>IO DCDR Logic<br>PTG DCDR<br>ACTG(LD)<br>Defer Accin (E/F | 34<br>36<br>45<br>50<br>61<br>109<br>68<br>75<br>76 | 13<br>12<br>4<br>10<br>1<br>2,4<br>2<br>15<br>9<br>3 | 88-3<br>88-2<br>"<br>"<br>88-3<br>88-1<br>"<br>" | C6<br>D5<br>B3<br>B8<br>B4<br>B4<br>A5<br>D3<br>D8<br>D7 |
| TS3 SET<br>TEST*<br>TEST SKIP<br>Test Skip Set               | 65<br>(A92)<br>102<br>86  | 8<br>7<br>3           | 88-1<br>90-1<br>88-3<br>''     | C5<br>D7<br>D7             | PTG=0·TS0 "<br>CARRY F/F<br>SKIP F/F Logic<br>RUN LOGIC<br>STOP INH*<br>TEST SKIP                                                   | 112<br>76<br>59<br>41<br>82<br>102                  | 3<br>13<br>3<br>13<br>9<br>2                         | 88-1<br>88-3<br>"<br>88-1<br>"<br>88-3           | A6<br>C5<br>B6<br>B6<br>B6<br>D7                         |
| WAS JSR<br>WAS JSR*<br>WHOA*<br>+ 5 OK<br>*Indicates ''Not'' | 103<br>48<br>(B6)<br>(A8) | 5<br>8                | 88-3<br>88-2<br>90-1<br>91-1   | D5<br>C5<br>B2             | ACS1 SEL*<br>SHIFTER Logic<br>CPU CLK<br>RESET*                                                                                     | 48<br>109<br>(A89)<br>72<br>21                      | 10<br>12<br>5,9<br>13                                | 88-2<br>88-4<br>90-1<br>88-1<br>''               | C5<br>A8<br>A7<br>B8                                     |

Ċ

#### SIGNAL LIST Table 1 - Nova 1210/1220

T1 - 42
Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

| ORIGIN     |     |     |                | DESTINATION |                              |                                              |                                  |                               |                                                    |
|------------|-----|-----|----------------|-------------|------------------------------|----------------------------------------------|----------------------------------|-------------------------------|----------------------------------------------------|
| SIGNAL     | СШР | ₽IN | DWG            | GRID        | FUNCTION                     | CHIP                                         | PIN                              | DWG                           | GRID                                               |
| WRITE MEM  | 41  | 6   | 103-1          | D2          | X DRIVERS                    | 72<br>76<br>73<br>77<br>79<br>74             | 3<br>3<br>3<br>2<br>2            | 103-3<br>''<br>''<br>''<br>'' | A7<br>A7<br>A7<br>A7<br>A7<br>A7                   |
|            |     |     |                |             | Y DRIVERS                    | 78<br>75<br>54<br>62<br>52<br>66<br>60<br>50 | 2<br>2<br>3<br>3<br>3<br>2<br>2  | ''<br>103-4<br>''<br>''<br>'' | A7<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7<br>A7 |
| XRS<br>XWS |     |     | 103-3<br>103-3 | B2<br>B2    | X DRIVERS<br>''<br>X DRIVERS | 72<br>76<br>73<br>77<br>75<br>78             | 11<br>11<br>11<br>11<br>11<br>11 | 103-3<br>'''<br>'''<br>'''    | B7<br>B7<br>B7<br>B3<br>B3<br>B3                   |
| YRS        |     |     | 103-4          | B2          | "<br>Y DRIVERS<br>"<br>"     | 79<br>54<br>62<br>52<br>66                   | 11<br>11<br>11<br>11<br>11<br>11 | ''<br>103-4<br>''             | B3<br>B3<br>B7<br>B7<br>B7<br>B7                   |
| YWS        |     |     | 103-4          | B2          | Y DRIVERS<br>''<br>''        | 47<br>57<br>50<br>60                         | 11<br>11<br>11<br>11             | 17<br>17<br>17                | B3<br>B3<br>B3                                     |

## SIGNAL LIST

Table 1 - Nova 1210/1220

)

Ç

¢

This Page Left Blank

Intentionally

£

\*

(

3

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

## ABBREVIATIONS

### CENTRAL PROCESSOR AND MEMORY

#### NOVA 1210/1220

| P                                      |                                                 |                   |                                          |  |
|----------------------------------------|-------------------------------------------------|-------------------|------------------------------------------|--|
| ABC0 thru ACB15                        | Accumulator Buffer<br>Register Outputs          | DATIA             | Data In A (I/O instruc-<br>tion)         |  |
| ACD                                    | 0 thru 15<br>Destination Accumulator            | DATIB             | Data In B $(I/O \text{ instruc} - tion)$ |  |
| ACD OUT                                | Destination Accumulator                         | DATIC             | Data In C (I/O instruc-                  |  |
| ACDP                                   | Accumulator Deposit                             | DATOA             | Data Out A (I/O in-                      |  |
| ACD 3 SEL                              | Destination Accumu-                             |                   | struction)                               |  |
|                                        | lator Select enable line                        | DATOB             | Data Out B (I/O in-<br>struction)        |  |
| ACD 4 SEL                              | Destination Accumu-<br>lator Select enable line | DATOC             | Data Out C (I/O in-<br>struction)        |  |
| AC EX                                  | Accumulator Examine                             |                   |                                          |  |
| ACS                                    | Source Accumulator                              | DATA0 thru DATA15 | I/O Data bus signals,<br>16 bits wide    |  |
| ACS 1 SEL                              | Source Accumulator<br>Select enable line        | D BUFFER          | Destination (Accumulator)<br>Buffer      |  |
| ACS 2 SEL                              | Source Accumulator                              | INTA              | Interrupt Acknowledge                    |  |
| ACTG0, ACTG1                           | Accumulator Timing<br>Generator outputs 0 & 1   | INTP IN           | Interrupt Priority In<br>(to Device)     |  |
| ALC                                    | Arithmetic Logic Class<br>(instruction)         | INTP OUT          | Interrupt Priority Out<br>(from Device)  |  |
| AND ENAB                               | AND (instruction)<br>Enable                     | INTR              | Interrupt (Bus Signal<br>from Device)    |  |
| CLK                                    | Clock                                           | IO $(F+D)$        | IO (instruction) (Fetch or Defer state)  |  |
| CLR                                    | Clear                                           | IO or I/O         | Input/Output                             |  |
| CLR ION                                | Clear Interrupt On                              | ION               | Interrupt On                             |  |
| CON DATA                               | Console Data                                    | IO PLS            | Input/Output Pulse                       |  |
| CON INST                               | Console Instruction                             | IORST             | Input/Output Reset                       |  |
| CON RQ                                 | Console Request                                 | IO SKIP           | Input/Output Skip                        |  |
| CONT                                   | Continue switch at<br>Console                   | IR0 thru IR7      | (instruction)                            |  |
| CPU                                    | Central Processor Unit                          |                   | Instruction Register<br>outputs 0 thru 7 |  |
| CPU CLK                                | Central Processor Unit<br>Clock                 | ISTP              | Instruction Step (Con-<br>sole switch)   |  |
| CPU INST                               | Central Processor Unit<br>Instruction           | ISZ               | Increment and Skip if Zero(instruction)  |  |
| CRY ENAB                               | Carry Enable                                    | JMP               | Jump (instruction)                       |  |
| CRY OUT Carry Out<br>CRY SET Carry Set |                                                 | JSR               | Jump to Subroutine<br>(instruction)      |  |
|                                        |                                                 |                   |                                          |  |

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

# ABBREVIATIONS (Continued)

| KEYM            | Key Memory (access                               | STRB A       | Strobe A (Memory Stack)                                    |  |  |
|-----------------|--------------------------------------------------|--------------|------------------------------------------------------------|--|--|
|                 | cycle)                                           | STRB B       | Strobe B (Memory Stack)                                    |  |  |
| LOAD AC         | Load Accumulator                                 | STRB C       | Strobe C (Memory Stack)                                    |  |  |
| LOAD ACB        | Load Accumulator Buf-<br>fer (Shifter)           | STRB D       | Strobe D (Memory Stack)                                    |  |  |
| LOAD IR         | Load Instruction Regis-                          | STRT         | Start (Console switch)                                     |  |  |
|                 | ter                                              | SWP          | Swap (bytes)                                               |  |  |
| LOAD MBO        | Load Memory Bus Out-                             | TS0 thru TS3 | Time State 0 thru 3                                        |  |  |
|                 | puts (CPU Interface<br>Register)                 | TT           | Teletype                                                   |  |  |
| LOAD PC         | Load Program Counter                             | TTI          | Teletype In (Teletype                                      |  |  |
| MA1 thru MA15   | Memory Address Reg-                              |              | Keyboard/Reader Buf-<br>fer)                               |  |  |
|                 | ister outputs 1 thru 15                          |              | Teletype Out (Teletype                                     |  |  |
| MA LOAD         | Load Memory Address<br>Register                  |              | Teleprinter/Punch<br>(Buffer)                              |  |  |
| MB CLEAR        | Memory Buffer Clear                              | XRS          | X (plane) Read Source                                      |  |  |
| MBC8 thru MBC15 | Memory Buffer Com-                               |              | (Memory Stack)<br>X (plane) Write Source<br>(Memory Stack) |  |  |
|                 | puter outputs 8 thru 15                          | XWS          |                                                            |  |  |
| MB LOAD         | Load Memory Buffer<br>Register                   | YRS          | Y (plane) Read Source<br>(Memory Stack)                    |  |  |
| MBO0 thru MBO15 | Memory Bus Outputs                               |              |                                                            |  |  |
|                 | (CPU Interface Regis-<br>ter) 0 thru 15          | YWS          | Y (plane) Write Source<br>(Memory Stack)                   |  |  |
| MD SEL1         | Multiply Divide Select 1                         | 32 VNR       | + 32 Volts, Not                                            |  |  |
| MD1-MD15        | Memory Data 1 thru 15                            |              | Regulated                                                  |  |  |
| SET ION         | Set Interrupt On                                 | + VINH       | + (Memory) Inhibit<br>Voltage                              |  |  |
| SHIFT ACB       | Shift Accumulator Buf-<br>fer                    | +VLamp       | + Lamp Voltage (Con-<br>sole indicators)                   |  |  |
| SHL             | Shift Left                                       | + VMEM       | + Voltage Memory                                           |  |  |
| SHR             | Shift Right                                      | + 5 OK       | + 5 Volt (power)                                           |  |  |
| SKIP INC        | Skip Increment                                   |              | operating properly                                         |  |  |
| SL0 thru SL15   | Sense Lines (Memory<br>Stack) 0 thru 15          |              |                                                            |  |  |
| S MULT          | Source Multiplexer                               |              |                                                            |  |  |
| SNS0 thru SNS15 | Sense Amplifier Out-<br>puts 0 thru 15           |              |                                                            |  |  |
| S0 thru S2      | (Adder function) Select<br>Control Bits 0 thru 2 |              |                                                            |  |  |
| STOP INH        | (Processor) STOP<br>INHIBIT                      |              |                                                            |  |  |

3

Ĵ,



