{vDataGeneral

Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

Analyzing DG/UX"™
System Performance
093-701129-02

Analyzing DG/UX" System
Performance

093-701129-02

For the latest enhancements, cautions, documentation changes, and other
information on this product, please see the Release Notice (085—series)
and /or Update Notice (078-series) supplied with the software.

Copyright ©Data General Corporation, 1993, 1994

All Rights Reserved

Unpublished — all rights reserved under the copyright laws of the United States
and all other countries.

Printed in the United States of America

Rev. 02, July 1994

Licensed Material — Property of Data General Corporation

Ordering No. 093-701129-02

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC PERSONNEL,
LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF DGC; AND
THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER
THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document without
prior notice, and the reader should in all cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS
BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED
HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at Defense Federal
Acquisition Regulation (DFARS) 252.227-7013 and in subparagraphs (a) through (d) of the Commercial Computer
Software Restricted Rights clause at Federal Acquisition Regulations (FAR) 52.227-19, whichever may apply.
Data General Corporation
4400 Computer Drive
Westboro, MA 01580

AV Object Office, AV Office, AViiON, CEO, CLARiiON, DASHER, DATAPREP, DESKTOP GENERATION,
ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA,
NOVA, OpenMAC, PRESENT, PROXI, SWAT, TRENDVIEW, and WALKABOUT are U.S. registered
trademarks of Data General Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AV Image,
AV Imagizer Toolkit, AV SysScope, BaseLink, BusiGEN, BusiPEN, BusiTEXT, CEO Connection,

CEO Connection/LAN, CEO Drawing Board, CEQO DXA, CEO Light, CEO MAILI, CEO Object Office,

CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART, COMPUCALC, CSMAGIC, DATA GENERAL/One,
DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO,
DG/L, DG/LIBRARY, DG/UX, DG/ViiSION, DG/XAP, ECLIPSE MV/1000, ECLIPSE MV/1400,

ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/3200, ECLIPSE MV/3500, ECLIPSE MV/3600,
ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/5600, ECLIPSE MV/7800, ECLIPSE MV/9300,
ECLIPSE MV/9500, ECLIPSE MV/9600, ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000,
ECLIPSE MV/20000, ECLIPSE MV/25000, ECLIPSE MV/30000, ECLIPSE MV/35000, ECLIPSE MV/40000,
ECLIPSE MV/60000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, Intellibook, microECLIPSE,
microMV, MV/UX, OpStar, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL, SUPPORT MANAGER,
TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.
AV/Alert is a service mark of Data General Corporation.

UNIX is a U.S. registered trademark of Unix System Laboratories, Inc.

NFS is a U.S. registered trademark and ONC is a trademark of Sun Microsystems, Inc.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages. The functionality of the two
remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United
Kingdom of British Telecommunications plc and may not be used without permission.

X Window System is a trademark of the Massachusetts Institute of Technology.

Analyzing DG/UX™ System Performance
093-701129-02

Revision History: Effective with:

Original Release — March 1993 DG/UX System 5.4 Release 2.01
First Revision — January 1994 DG/UX System 5.4 Release 3.00
Second Revision — July 1994 DG/UX System 5.4 Release 3.10

A vertical bar in the margin of a page indicates substantive technical change from the
previous revision. (The exception is Appendix A, which contains entirely new material.)

About this manual

This manual describes how to analyze your DG/UX system
performance and fine-tune your system. It explains how the DG/UX
system implements the major abstractions of a computer: a CPU,
virtual memory, a file system, and I/O devices.

This manual is for people concerned with system performance, most
often system administrators.

How This Manual Is Organized

This manual contains seven chapters, an appendix, and a glossary

of terms:
Chapter 1 Introduces DG/UX system performance.
Chapter 2 Describes the CPU and processes.
Chapter 3 Discusses memory.
Chapter 4 Describes the DG/UX operating system’s file system and disk 1/0.
Chapter 5 Describes terminal I/O.
Chapter 6 Discusses networking.
Chapter 7 Contains some helpful, common sense tips for improving system
performance.
Appendix A Contains a tuning example. |
Glossary Defines some concepts and terms used in this manual.

Related Data General manuals

Within this manual, we refer to the following manuals:

Managing Mass Storage Devices and DG/ UX File Systems
(093-701136). Explains how to manage disk and tape drives. Also I
explains DG/UX file systems, virtual disks, mirrors, and caching.
Managing TCP/IP on the DG [UX™ System (093—-701051). Explains
how to prepare for the installation of Data General’s TCP/IP

(DG/UX) package on AViiON computer systems. Tells how to tailor

the software for your site, and use sysadm to manage the package

and troubleshoot system problems.

093-701129-02 Licensed Material — Property of Data General Corporation 1]

Reader, please note:

Reader, please note:

Data General manuals use certain symbols and styles of type to
indicate different meanings. The Data General symbol and typeface
conventions used in this manual are defined in the following list.
You should familiarize yourself with these conventions before
reading the manual.

This manual also presumes the following meanings for the terms
“command line,” “format line,” and “syntax line.” A command line is
an example of a command string that you should type verbatim; it
is preceded by a system prompt and is followed by a delimiter such
as the curved arrow symbol for the New Line key. A format line
shows how to structure a command; it shows the variables that
must be supplied and the available options. A syntax line is a
fragment of program code that shows how to use a particular
routine; some syntax lines contain variables.

Convention

Meaning

boldface

Typewriter

italic

In command lines and format lines: Indicates
text (including punctuation) that you type
verbatim from your keyboard.

All DG/UX commands, pathnames, and names
of files, directories, and manual pages also use
this typeface.

Represents a system response on your screen.
Syntax lines also use this font.

In format lines: Represents variables for which
you supply values; for example, the names of
your directories and files, your username and
password, and possible arguments to
commands.

In text: Indicates a term that is defined or in
the manual’s glossary.

In format lines: These brackets surround an
optional argument. Don’t type the brackets;
they only set off what is optional. The brackets
are in regular type and should not be confused
with the boldface brackets shown below.

In format lines: Indicates literal brackets that
you should type. These brackets are in boldface
type and should not be confused with the
regular type brackets shown above.

Licensed Material — Property of Data General Corporation 093-701129-02

Contacting Data General

In format lines and syntax lines: Means you
can repeat the preceding argument as many
times as desired.

$ and % In command lines and other examples:
Represent the system command prompt
symbols used for the Bourne and C shells,
respectively. Note that your system might use
different symbols for the command prompts.

) In command lines and other examples:
Represents the New Line key, which is the
name of the key used to generate a new line.
(Note that on some keyboards this key might be
called Enter or Return instead of New Line.)
Throughout this manual, a space precedes the
New Line symbol; this space is used only to
improve readability—you can ignore it.

<> In command lines and other examples: Angle
brackets distinguish a command sequence or a
keystroke (such as <Ctrl-D>, <Esc>, and
<3dw>) from surrounding text. Note that these
angle brackets are in regular type and that you
do not type them; there are, however, boldface
versions of these symbols (described below) that
you do type.

<, >, >> In text, command lines, and other examples:
These boldface symbols are redirection
operators, used for redirecting input and
output. When they appear in boldface type,
they are literal characters that you should type.

Contacting Data General

Data General wants to assist you in any way it can to help you use
its products. Please feel free to contact the company as outlined
below.

Manuals
If you require additional manuals, please use the enclosed TIPS
order form (United States only) or contact your local Data General
sales representative.
093-701129-02 Licensed Material — Property of Data General Corporation Vv

Joining our users group

Telephone assistance

If you are unable to solve a problem using any manual you received
with your system, free telephone assistance is available with your
hardware warranty and with most Data General software service
options. If you are within the United States or Canada, contact the
Data General Customer Support Center (CSC) by calling
1-800-DG-HELPS. Lines are open from 8:00 a.m. to 5:00 p.m.,
your time, Monday through Friday. The center will put you in touch
with a member of Data General’s telephone assistance staff who can
answer your questions.

For telephone assistance outside the United States or Canada, ask
your Data General sales representative for the appropriate
telephone number.

Joining our users group

Please consider joining the largest independent organization of
Data General users, the North American Data General Users
Group (NADGUG). In addition to making valuable contacts,
members receive FOCUS monthly magazine, a conference discount,
access to the Software Library and Electronic Bulletin Board, an
annual Member Directory, Regional and Special Interest Groups,
and much more. For more information about membership in the
North American Data General Users Group, call 1-800—253-3902
or 1-508-443-3330.

End of Preface

Vi

Licensed Material — Property of Data General Corporation 093-701129-02

Contents

Chapter 1 - Introduction to DG/UX System

Performance
Sources of Performance Datacouiiiiiniininiiiiiiniinnineenn 1-2
System Resourcescouuiiiiriiintiini ittt 1-3
CPU .o ettt et e 1-3
DY =3 1070 o/ 1-3
File Systems and Disk I/Oo 1-3
Terminal I/O i i e e i e e 1-4
NetWorkingttt i et et e i 1-4
Tuning System Parametersoiotmiiiiiiiiiiiiiiii .. 1-4

Chapter 2 - CPU and Processes

SehedUlIng . ..o e e 2-3
Medium Term Scheduler (MTS)oiiiiiii it 2-5
(00 o U B 7 - 2-7
CPU Time Interruptionsccoituiiieiineeinninnneneennnnnenn, 2-8
System Load AVeragecoeeeetininetiiiiiiiiaaeiiiine.. 2-11
Run Queues ... i i it it e e 2-12
Per-Process Statisticsiiiuiiiintt it it et 2-13
Per—LWP Statisticscouuiiiiiiii it ittt e et 2-19
System-Wide Process Statisticscoiiiiiiiiiiiiiiii e, 2-20
Configuration Variablescoiiiiiiinii ittt iei e, 2-25
CPU and Process Configuration Variables 2-25
Scheduler Configuration Variableso i, 2-27
Message Configuration Variablesc.ciiiiiiiiieeeeennn. 2-29
Semaphore Configuration Variables iiiiitt. 2-29

Chapter 3 - Memory

Typical DG/UX Memory System Behaviorcoiiiiiiienneeennnnn.. 3-1
2220 o) o) oV AP 3-6
Thrashingot i it it it it i i e 3-7
Hard Page Faults ...ttt ittt e iiiiiiiieieeeannnnnns 3-7
Per-Process Memory Statisticscoiiiiiiiiii it 3-8
System-Wide Memory Statisticsccoiiiiiiiiiiiiii i, 3-9

System Paging Statisticsccoviiiiiiiii i i 3-15
Memory Configuration Variablesc.ovuiinenniiiiinnenneneennnnnn. 3-17
Shared Memory Configuration Variablescc..... 3-18

093-701129-02 Licensed Material — Property of Data General Corporation Vil

Contents

Chapter 4 - File Systems and Disk 1I/0

Bufferingcoiiiiiiiiii i e et e
Metadata Buffering ...
File Systemiiiiiiii it ettt iiiaaaann
File Data Element Sizesccottiiiiiiinnnnnnnnn...
Keeping Data Close Togetheriiiiii...
Fragmentation i i
File System Sizecoiiiiiiiiiiiiiiieiiiinnaneeenenn.
Virtual Diskso e e
Balancingthe Disk Load ciiiiiina...
Balancing the Load Between Controllers
Disk Caching.........oouiiiiiiiiiiiiiiiiii it
Software Data Stripingcoiiiiiiiiiiiiiiii.,
Software Disk Mirroringccoiiiiiiiinnneennnnn.
Memory File Systemscciiiiiiiiiiiiiiannee...
Fast Recovery File Systemsccooiiiiii...
Other Concernscoviiriiiiieeeeeeeneneneeeeneenns
File System Toolsottt iiianannnnes
MKES L e

3+ o
DS ATTaYS oottt i e e et e
Disk I/O Statisticscoouiiiiiini i
File System Configuration Variables

Chapter 5 - Terminal I/0

Terminal Linesoiiniiitiiiii ittt tiie it iinanaann
Terminal Port Interrupts,
Editread ... e e
Terminal I/O Statisticscoiiiiiiiiii ittt
Pseudo—Device Unit Count Variables

Chapter 6 - Networking

Introduction to Network Analysiscccoiiiiiinnnnn..
AnalysisS ToOLS .. .viete it et e
Network Environmentttt
Etherneto i
Token Ringand FDDI ittt
Subnetting ...t e e
Routing Considerationsccoiiiiiiiiiiinnen....
Gateways and Data Transfers
Network Connectionsccoiiiiiiiiiiiinenenn...

.......... 5-2
.......... 5-2
.......... 5-2
.......... 5-3
.......... 5-4

Vil Licensed Material — Property of Data General Corporation

093-701129-02

Contents

Local System Environmentuuiiiiiiiiiiiiiiiiiiiiiiinnnn. 6-18
CPU Performanceoeunitneunenetnneenneenneeneeaanennnnns 6-18
Disk Performancecouiiiiiininenrnereeinenenenneanannns 6-19
Diskless Client Performancecouviiiieieiiiinnnneneeennnns 6-19
TCP/IP and Its Utilities .. .ovviireeen ettt eeieeeeeeeenns 6-19
Telnet and rlogincooiiiiiiiiii ittt 6-20
B 6-21
NS it e e e e e e 6-22
Analyzing NFSUsagecciiiiiiiiiiiiiiiii ittt iiiiineennns 6-22
ST R E A S ..ottt e e 6-24
STREAMS Configuration Variablesc.cooooiiiiina 6-25

Chapter 7 - Common Sense Performance Tips

dJob Schedulingt e 7-1
Checking User Search Path Variables 7-2
Checking Directory Sizeccooiiiiiiiiiii i ittt 7-2

Chapter 8 - Tuning Example

Example 1 ..ot et e A-1
Processesoiiiiii A-1
DL =5 4410 20 A-2
File Systems and Disk I/O it A2
Terminal /O o et e A-3
NetWorKINg ..ottt ittt e A3
Tuning Possibilitiescuuuuuni i i e A4
Tuning Results ..ottt e e A4

Chapter 9 - Glossary

Chapter 10 -Index

093-701129-02 Licensed Material — Property of Data General Corporation IX

Contents

Tables

Table

4-1
4-2
A-1

RAID Level Performance Advantagescciiiiiinn... 4-21
RAID Level Performance Disadvantages 4-22
Service, Wait, and Response Times Before Tuning A-3
Service, Wait, and Response Times After Tuning A-6

Figures

Figure

2-1 Processes, Threads, LWPs,and CPUsccoiiiiiiniininn.. 2-2
B—1 OWaAD SPACE ...ttt e e e 3-3
X Licensed Material — Property of Data General Corporation 093-701129-02

1 Introduction to DG/UX
System Performance

This manual is for people concerned with system performance, most
often system administrators. First, you should understand what
your system’s normal performance is; get a feel for the average
system load. Although this manual often gives general guidelines,
you should determine what the particular threshold values are for
your system. Then, use this manual to analyze your system
performance, to see if you can improve performance. You want to
maximize efficiency and find system bottlenecks; however, you
probably will reach a point at which you achieve maximum system
performance—at that point, further work on your part leads to
diminishing returns.

Finally, since you'll be familiar with the system’s normal
performance, you’ll no doubt detect when problems occur—use this
manual to help find out where the problem lies.

This document explains how the DG/UX system implements the
major abstractions of a computer: a CPU, virtual memory, a file
system, and I/O devices. Although performance metrics for
individual applications would be most useful, statistics for
operating systems are the best alternative. This manual explains
how you can use system operations performance data to understand
application performance.

Chapters 2—6 examine the CPU, memory, file systems and disk I/O,
terminal I/O, and networking, respectively. Consult Chapter 7 for
common sense performance tips.

Note that you should always use the revision of this manual that is
appropriate for your revision of the DG/UX operating system. This
manual is appropriate for DG/UX System 5.4 Release 3.10.

This chapter discusses the following topics:

® Sources of performance data
® System resources

® Tuning system parameters

093-701129-02 Licensed Material — Property of Data General Corporation 1 -1

Sources of Performance Data

Sources of Performance Data

Most performance data comes in raw form from system calls
shipped with the DG/UX operating system such as dg_sys_info(),
dg_paging_info(), dg_process_info(), dg_lwp_info(),
dg_vm_process_info(), dg_cpu_info(), getrusage(), and ioctl().
The include files found in /usr/include/sys describe the raw
numbers these calls generate. For more information about a system
call listed above, see its man page.

Performance analysis tools that are bundled with the DG/UX
operating system are sar, nsar, ps, nps, timex, and prof.

You can review statistics on CPU performance, disk and terminal
I/O, memory usage, process communication and execution, and
other activity with the sar (system activity reporter) command.

The nsar command displays system activity statistics as well. In
addition to the information displayed by sar, nsar displays data
such as DG/UX virtual memory statistics, kernel memory allocation
activity, page-out activity, and virtual disk I/O statistics.

The System —> System Activity menu of sysadm provides
operations for starting and stopping system activity monitoring,
deleting old data collection files, and reviewing reports. You can also
use nsar and sar at the command line; read the manual pages for
details.

The ps command prints information about active processes. In
addition to the information displayed by ps, nps prints DG/UX
process and LWP information (LWPs are defined in Chapter 2). The
System —> Process menu of sysadm provides operations for listing
and deleting processes as well as changing process priority. You can
also use nps and ps at the command line; read the manual pages
for more information.

You can measure the elapsed, user, and system time of a command,
report process data, and report system activity with the timex
command. The given command is executed; the elapsed time, user
time and system time spent in execution are reported (in seconds).
Optionally, you can choose to list or summarize process accounting
data for the command and all its children (see the acet(1M) man
page for accounting information). You can also receive a report of
total system activity during the execution interval. See the timex
manual page.

The prof command interprets a profile file produced by the
monitor(3C) function. See the manual pages for prof and
monitor.

Licensed Material — Property of Data General Corporation 093-701129-02

System Resources

You can also use optional, value-added tools such as UX/RPM (the
DG/UX Real-time Performance Monitor), Mxdb (Data General’s
Multi—extensible Debugger), and AV SysScope™.

UX/RPM collects and displays system and disk performance
information as well as process data. The data is presented through
a series of screens, and the performance data can be logged to disk
for later playback. UX/RPM can also produce data interchange
format (DIF) files from logs for analysis by standard spreadsheet
tools.

Another profiling command, mxprof, works with Elf executables
that use shared objects, and does not require special compilation or
linking. mxprof is available in the separate product Mxdb.

The sscope command is a component of AV SysScope™, which logs
and displays performance information about the DG/UX operating
system. From the monitor control window, you may display disk
data for the current host, start monitoring additional hosts, log
performance data to a file, and examine previously created logfiles.

sscope-ps is a component of AV SysScope™ that monitors process
performance information. This monitor displays an updating
window of performance statistics similar to ps statistics.

System Resources

CPU

Memory

This section describes your system resources and where to find
information about them.

Chapter 2 explains how the DG/UX operating system allocates
limited CPU resources to all processes. The chapter covers the
concepts of threads, LWPs, LWP groups, the Medium Term
Scheduler, context switching, and interrupt handling.

Chapter 3 explains how the DG/UX operating system uses limited
physical memory and a swapping device so that each process has
access to a large virtual address space. The chapter describes the
concepts of page faults, purging, and swapping.

File Systems and Disk I/O

Chapter 4 explains how the DG/UX operating system supports its
file system, file system metadata caching, and raw device I/O. The
chapter tells how to organize data on a disk for most efficient
access.

093-701129-02

Licensed Material — Property of Data General Corporation 1 -3

Tuning System Parameters

Terminal I/O

Chapter 5 explains how the DG/UX operating system supports
terminal I/O.

Networking

Chapter 6 explains the most important and common factors
affecting network performance.

Tuning System Parameters

Tunable system parameters set various table sizes and system
thresholds to handle the expected load on your system. You’ll find
the default values of tunable parameters are adequate for most
configurations and applications. If your application has special
performance needs, you may have to experiment with different
combinations to find an optimal set.

Chapters 26 list the appropriate tunable system parameters at the
end of each chapter under the Configuration Variables section. To
set tunable parameters described in the following chapters, edit the
values in your system file (use the sysadm
System—>Kernel->Build menu option) when building a new kernel.
General information about DG/UX kernel tuning parameters is
available in /usr/etc/master.d/*.

End of Chapter

Licensed Material — Property of Data General Corporation 093-701129-02

CPU and Processes

The DG/UX system, like most general-purpose operating systems,
provides the abstraction of a virtual CPU to processes running on it.
Each process appears to have the processor and a virtual address
space to itself.

This chapter describes how your system deals with processes. These
topics are covered:

CPU usage, including system calls, context switches, and signals
LWPs and LWP groups

Medium Term Scheduler

Per-process statistics

Per-LWP statistics

System-wide process statistics

Configuration variables (CPU/process, message, semaphore, and
scheduler)

Here are some terms that will be used in the following sections:

A process consists of an address space with one or more threads
executing within that address space and their required system
resources.

A thread is a single flow of control within a process. Each thread
has its own thread ID number, its own scheduling priority and
class, and its own stack, which the thread uses to store local
variables. Threads are equal siblings that share the resources of a
process. This sharing reduces significantly the thread’s overhead
and simplifies inter-thread communication.

An LWP is a “lightweight process.” Each thread has a corresponding
LWP in kernel space. These highly optimized LWPs have very low
memory overhead (128 bytes). In this manual, “LWP” describes a
thread at the kernel level. Because LWPs execute (rather than a
process), “LWP” denotes an active executing entity in the kernel.

An LWP group is a set of computationally related LWPs sharing the
same global priority, global scheduling class, CPU accounting, and
scheduling time slice.

A Job processor (JP) is one CPU in an AViiON computer system.
AViiON computers are available currently with one, two, four, eight,
and sixteen JPs.

093-701129-02

Licensed Material — Property of Data General Corporation 2-1

The Medium Term Scheduler (MTS) is a kernel LWP that schedules
LWP groups. LWP groups are scheduled globally against other LWP
groups in the system based upon their global scheduling priority
and class. Each LWP group has one or more LWPs that are
scheduled locally within the LWP group, based upon their local
scheduling priority and class.

The dispatcher runs LWP groups, then LWPs within LWP groups.
Multiple processors may execute LWPs from the same LWP group
at the same time. The hardware implementation (actual number of
physical processors) becomes irrelevant to the higher levels of the
kernel.

Figure 2—-1 shows the general design.

Multi-threaded Process Ve Single-threaded Process

User . —— Threads ——»
Space
I LWP\“ LWP | | LWP | <€— WP Groups —»
Kernel N
Space
Y
CPU CPU CPU ceee CPU
Figure 2-1 Processes, Threads, LWPs, and CPUs

A VP (virtual processor) is the dispatcher-level component of an
LWP. The dispatcher maps every LWP to a VP, so multiplexing
(where there were more active processes than available VPs) no
longer exists.

The code for the kernel’s dispatch scheduler runs on each JP in a
multiprocessor system. A JP may reschedule globally (among LWP
groups) or locally (within LWP groups) depending on the event that
provoked the rescheduling. When an LWP within an LWP group
suspends itself, the JP reschedules locally. Otherwise,when a JP is
available, it reschedules globally by looking at the scheduling
queues to determine which LWP group to run next.

Licensed Material ~ Property of Data General Corporation 093-701129-02

Scheduling

A scheduling queue contains a list of eligible LWP groups. There
may be multiple scheduling queues, depending upon the number of
CPUs in your system and the complexity of the cache hierarchy. The
kernel dispatch code looks at the queues and loads the highest
priority LWP group.

Scheduling

The DG/UX system supports symmetric multiprocessing and uses a
multi-level scheduler. The Medium Term Scheduler (MTS)
determines the policy, while the actual scheduling is done by the
dispatcher.

The MTS binds an LWP group by giving it one or more wired
transient data sections. It is called transient data because it is only
used by an LWP for one trip inside the kernel. An LWP group must
be bound in order to be dispatched. If there are more LWP groups
than available transient data, the MTS decides which subset of the
LWP groups will be bound. The dispatcher then decides how to
distribute transient data among LWPs in an LWP group. An LWP
must have transient data in order to run on a processor.

Once an LWP enters the kernel for a normal system call or
interrupt, it keeps its transient data until it leaves the kernel or
exits. An LWP that suspends itself in user space is free to give up
its transient data to other LWPs in its LWP group.

Check the rate of forks (Fork System Calls/Sec using UX/RPM or
sscope, fork/s using nsar —c) versus the rate of binds (Process
Binds/sec using UX/RPM, Binds/Second using sscope, swpin/s
using nsar —w). For example, use this nsar command to query the
system three times at 10-second intervals (see the nsar or sar man
page for more information about command arguments):

% nsar -cw 10 3 .

11:40:12 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s

swpin/s bswin/s swpot/s bswot/s pswch/s

11:40:22 38 2 4 0.00 0.00 409 410
0.10 4.4 0.00 0.0 43

11:40:32 55 3 6 0.00 0.00 428 422
0.00 0.3 0.00 0.0 39

11:40:42 28 1 4 0.00 0.00 345 357
0.00 0.0 0.00 0.0 36

Average 41 2 5 0.00 0.00 394 396

Average 0.03 1.6 0.00 0.0 39

If the rate of binds is greater than the rate of forks, probably more
LWP groups need bound transient data sections than actually have
bound transient data sections.

093-701129-02

Licensed Material — Property of Data General Corporation 2-3

Scheduling

To see if your system is severely loaded, check the unbound
runnable LWP groups (Unbound Runnable Processes using
UX/RPM or sscope, swpq—sz using nsar —q). A value other than
zero indicates one of two conditions:

MAXBOUND (the configured number of bound transient data
sections) is set too low. If it is consistently the case that more LWP
groups need bound transient data sections, it is a good idea to
increase the number of LWPs that can be ready to run in the kernel
with the MAXBOUND parameter in your system configuration file.
MAXBOUND specifies the maximum number of user LWPs that
can be ready to run in the kernel, which is the same as the number
of bound transient data sections. This is similar to NVPS in
previous releases. You will need to rebuild and reboot your system
for this change to take effect.

The MTS has detected thrashing (LWP groups competing
simultaneously for inadequate resources) and has temporarily
reduced the available number of bound transient data sections in
order to ease the system load. The system load due to the current
number of bound runnable LWPs is too great to support adequate
progress. When thrashing occurs, increasing MAXBOUND will not
help. The common correction to reduce thrashing is to increase the
amount of memory on the system.

The MTS is tuned to deal with fairness issues in a normal
time-sharing environment. Therefore, its algorithms are slanted
towards that environment. There are, however, other environments
where fairness is not the main goal. In these areas the MTS may be
hindering more than helping. There are several tuning parameters
that can either adjust some of the MTS algorithms or completely
turn them off. These tuning parameters all have default values; if
you do not set the parameters, their default values will tune the
MTS for a normal time-sharing environment.

If you feel that the MTS is obstructing (rather than helping) your
particular environment, you can change configuration parameters
to tune the MTS towards that environment. For example, if you
want the MTS to unbind fewer transient data sections, you could
increase MINBOUND (the minimum number of bound transient
data sections). If you want the MTS to bind fewer transient data
sections (perhaps you feel that the system is thrashing), you could
decrease MAXBOUND.

To get approximate numbers for bound transient data sections, you
can use crash to read these values:

mts_current_bound_transients: Current number of bound
transients.

mts_min_allowed_bound_transients: Minimum; equal to
MINBOUND if set, calculated by the MTS if not.

Licensed Material — Property of Data General Corporation 093-701129-02

Scheduling

mts_max_allowed_bound_transients: Maximum; equal to
MAXBOUND if set, calculated by the MTS if not.

mts_allowed_bound_transients: Current maximum number of
allowed bound transients. The MTS will not allow any more bound
transients than mts_allowed_bound_transients. This value will
range between mts_min_allowed_bound_transients and
mts_max_allowed_bound_transients.

If the MTS believes the system is thrashing, it will decrease
mts_allowed_bound_transients down to a minumum of
mts_min_allowed_bound_transients. If the MTS believes the system
is not thrashing, it will increase mts_allowed_bound_transients up
to a maximum of mts_max_allowed_bound_transients.

As long as mts_current_bound_transients is less than
mts_allowed_bound_transients, the MTS has some available
transient data sections. In other words, no processes that are ready
to run are being deprived of transient data sections.

For example, after invoking crash, type this command:

> mr mts_current_bound_transients 1 4 .
mts_current_bound_transients: 121

Medium Term Scheduler (MTS)

One role of the MTS is to maintain interactive response and
non-interactive throughput. It accomplishes this by regulating the
execution of non-interactive LWP groups to ensure that they do not
simultaneously compete for inadequate resources (a condition
known as “thrashing”).

The MTS tries to detect over-subscription of some of the basic
system resources such as memory and the CPU. Once the MTS has
identified a resource problem, it reduces the number of available
bound transient data sections to prevent thrashing and
consequently maintain system throughput. By reducing the number
of available bound transient data sections, the MTS effectively
reduces the number of dispatchable LWP groups, thereby
eliminating some of the system load.

As long as the MTS detects thrashing, it will gradually reduce the
number of available bound transient data sections down to the
configurable low-water mark, MINBOUND. When the MTS
identifies that the system is once again stable, it will gradually
increase the number of available bound transients up to
configurable high-water mark, MAXBOUND.

093-701129-02

Licensed Material — Property of Data General Corporation 2-5

Scheduling

Additionally, the MTS tries to be fair to timeshare LWP groups by
adjusting their priorities so that

Users are treated fairly. If LWP groups must be unbound to prevent
thrashing, the MTS selects the groups to unbind. It first selects
bound LWP groups that have no runnable LWPs, and then selects
bound runnable LWP groups with the worst priority.

Aging and languishing processes are boosted. If an LWP group is
runnable but unbound for more than 8 seconds, it is said to be
aging. When an LWP group is aged, it is given a temporary priority
boost. If, after the boost, the LWP group has a better priority than a
bound runnable LWP group, the MTS unbinds transient data from
the bound runnable LWP group and binds it to the aged unbound
runnable LWP group. Once the aged LWP group has made some
progress, its aging priority boost is removed. You can turn off the
aging check with the NOLANGUISHING configuration variable.

If an LWP group is bound and runnable, but has not made any
progress for 8 seconds, it is said to be languishing in the dispatcher.
If a runnable timeshare LWP group has not been given any CPU
cycles because it is languishing behind higher priority runnable
LWP groups, the MTS gives it a temporary priority boost to allow it
to make progress. This allows the LWP group to process any
pending signals or get its state updated. Once the languishing LWP
group has made some progress, its languishing priority boost is
removed. You can turn off the languishing check with the
NOLANGUISHING configuration variable; however, be aware that
since CPU time is required for an LWP group to recognize and
process its pending signals, a low priority LWP group may not die
for a long time from either a kill command or a console interrupt.

Interactive response is maintained. The MTS gives priority boosts
to interactive LWP groups. A highly interactive LWP group tends to
release its processor before its time slice has expired, whereas a
CPU-intensive LWP group will use the entire slice. For example, an
interactive LWP group might be doing terminal I/0; you want the
response time to be minimal. On the other hand, CPU intensive
processes are not very interactive and will not get much of a boost,
if any. You can turn off the interactivity level adjustments with the
NOILEVEL configuration variable.

Some related statistics that you can view are the process priority
(PRI using UX/RPM, sscope-ps, or nps -1) and the process
utilization field (C using nps —o putil, ps -1, ori using UX/RPM).
The process utilization field denotes the priority boost that the MTS
gives an LWP group due to aging/languishing and interactivity;
higher process utilization values mean higher priority boosts.

2-6

Licensed Material — Property of Data General Corporation 093-701129-02

CPU Usage

CPU Usage

The DG/UX system measures the CPU resources that a process
receives by the amount of time its LWPs spend executing
instructions (CPU time).

You can measure CPU time consumed by a process or by the system
as a whole. To measure CPU time per-process, use the nps
command. The data under TIME is the CPU time. (You can receive
the same data from sscope-ps under TOTAL_TIME.) To get a list
of the ten processes having the highest cumulative CPU execution
times, use the command line

% nps—ellgrep-vUID | sed-e ”s,:,.,” |sort—rn+9-101|head-10

UX/RPM provides a process screen that automatically shows the
highest CPU usage per-process over a selected time period, as well
as a breakdown of idle, system, and user times.

Note that using a lot of shell scripts on a system can result in
forking many processes such as tput, cat, stty, awk, and grep.
Even though these processes are short-lived (often a second or less),
their overhead can be very expensive. If you think that these
short-lived processes may be a system problem, turn on accounting
(in sysadm, System —> Accounting —> Start) and analyze the
accounting file; see the acctcom manual page. Reducing the size of
the configuration variable MAXSLICE can improve the situation,
since MAXSLICE specifies the maximum time in milliseconds a
user process’s LWPs can run before being suspended.

To measure CPU usage system-wide, use the nsar —u command.
The output will look similar to this:

15:47:13 gusr gsys gidle
15:47:43 64 24 12

The data under %sys is the percent system time, the relative
amount of time spent executing instructions in system (not user)
code. (You can get the same data from all UX/RPM data screens or
from sscope under Percent System Time.) A high percentage of
system time indicates that applications are requesting
CPU-intensive kernel services. Context switching between LWP
groups and frequent process synchronization via IPCs are common
examples of CPU-intensive kernel operations. Check processes’
system time versus user time.

093-701129-02

Licensed Material — Property of Data General Corporation 2-7

CPU Usage

The data under %idle is the time spent by the system waiting for
something to do. Ideally, you want the idle time to be rather
low—for example, around 20%. However, if the system load is low,
the idle time will be high, which is to be expected. If the idle time
and the system load are both high, you probably have a memory
problem. You could also have disk- or network-related I/O problems.
If your system has zero or very low idle time, your system might
have a runaway process or it might just be fully loaded.

An application that uses one single-LWP process cannot run any
faster than a single processor can execute that process. A
quad-processor system that is 75% idle may be executing a process
as fast as it can be executed.

The data under %usr is the relative amount of time spent executing
instructions in user code. A high percentage of user time indicates
that one or more user applications are CPU-intensive. To find out
which ones, look for processes with high CPU times per-process. By
default, UX/RPM screens sort processes’ CPU usage in descending
order, highlighting the most active processes.

Short-lived processes can consume the CPU but exit before
appearing in more than one nps sample. To check for this, look at
the difference in the process ID numbers of consecutive nps
commands or the difference in the fork rate with nsar —c. Because
process ID numbers are assigned sequentially, the difference tells
you the number of processes that have been created between nps
invocations. See the acet(1M) man page for more information about
per—process CPU usage.

CPU Time Interruptions

&~ W

System Calls

Interruptions of user CPU time can also affect performance.
Sequential execution of instructions by an LWP in a user process
may be interrupted in any of four ways:

System calls
Context switches
Interrupts

Signals

Whenever an LWP calls for system services by making a system
call, the process accumulates CPU time for the time spent executing
instructions in the kernel address space on the process’s behalf.

2-8

Licensed Material — Property of Data General Corporation 093-701129-02

CPU Usage

System calls vary widely in what they do and how long they take.
However, even the simplest system call requires a fair amount of
overhead. This overhead includes saving user registers, loading
kernel registers, switching the clock to record system time as
opposed to user time, performing the actual operation, switching
the clock back, restoring registers, and returning.

In general, system calls such as read(), write(), open(), and
select() that cause disk I/O, cause network I/O, or wait for a
rendezvous are most expensive in terms of resources.

Context Switches

The basic unit of scheduling is the LWP group—each process has at
least one LWP group (containing one or more LWPs). LWP groups in
the system compete for global processor resources. The DG/UX
operating system manages to run many LWPs at once by

scheduling LWP groups on all the processors available,

stopping an LWP group after it has run a certain time and letting
another LWP group run, and

running another LWP group that is ready to run whenever all of an
LWP group’s LWPs are waiting for input or some other event.

An LWP group may not perform well, however, if there are many
other LWP groups competing with it for a processor. A lot of context
switching (LWP groups being switched onto a physical processor to
run) is a waste of time; unfortunately, this is often hard to control.

Look at the number of context switches (pswch/s using nsar -w,
Process Switches using UX/RPM or sscope). When this rate gets
into the thousands per second, the system is spending a lot of time
switching between LWP groups rather than running LWPs. Hence,
LWP groups are not getting much time in any given time slice. Note
that this rate is very system dependent and some systems can
support a higher rate with no decline in performance.

The measures of how many LWP groups are competing for the
processors on a system are

Number of bound/eligible/bound runnable LWP groups (Bound
Processes, Eligible Processes, and Bound Runnable Processes using
UX/RPM or sscope; rung—sz using nsar —q)

Load average (described in the next section)

Number of processes, which indicates the total but not how many
are competing (Processes using UX/RPM or sscope; proc—sz using
nsar -v; Pids using sscope-ps)

093-701129-02

Licensed Material — Property of Data General Corporation 2-9

CPU Usage

Interrupts

Percent CPU time per—process—the amount of CPU time used
divided by the product of the elapsed time and the number of
processors (%CPU using UX/RPM or sscope-ps)

If an LWP group has little competition for the CPU and is using the
CPU exclusively, but performance is still below what you expect,
examine the process to find inefficiencies in its implementation.
Consider these things:

. Can you revise an application to eliminate context switches?

a. Can you buffer more data so that the system can do more
efficient processing?

b. Can fewer programs do the processing? This can help eliminate
the need for such things as IPCs, pipes, reads, and writes.

c. Can you eliminate or postpone flush or sync operations?

d. Can you revise the programs to reduce the number of
semaphore, message queue, or signal processing calls? Look at
the rate of message operations and semaphore operations.
Some systems perform well while doing a few thousand
message and semaphore operations per second, while other
systems have poor performance doing a few hundred per
second. This is very application and system dependent.

. Is the application a good threads candidate?

a. Are you doing a large amount of I/0?

b. Isthere a large task that could be split up into multiple
threads and run on separate CPUs?

c. Are there large numbers of processes that could be condensed
into a single multi-threaded process?

. Should you consider a CPU upgrade?

Interrupts are caused by hardware events external to a processor.
They include timer expiration and disk device events. Interrupts
change the instruction stream suddenly to an interrupt handler
that quickly records essential information pertaining to the
hardware event. If no other LWP with a higher priority is waiting to
execute, the LWP executing at the time of the interrupt then
resumes execution. Because their execution speed is important,
interrupt handlers do not switch the CPU timer from user to system
time. As a consequence, the time spent in interrupt handlers is
billed to whatever LWP group (and ultimately its process) that was
running at the time of the interrupt.

2-10

Licensed Material — Property of Data General Corporation 093-701129-02

CPU Usage

Signals

IMPORTANT:

Signals provide asynchronous interrupts to a process. They are not
intended to be used for process synchronization and have not been
optimized to provide the performance expected from common
synchronization calls.

Note that on many AViiON computers, and UNIX systems in
general, the clock ticks only 100 times per second. Thus, the time
values returned by various system calls and commands are not
exact. This leads to wide variability in reported times, for shorter
processes especially.

System Load Average

The system load average is the average number of eligible LWP
groups over a time period, normalized for processors. An LWP group
is eligible if it has at least one LWP that is

not waiting for any external event such as keyboard input,
not waiting of its own accord (including stopped for I/O), and
scheduled.

In other words, the load average only counts LWP groups that

would run if a CPU were available.

If your system has TCP/IP networking and each system on the local
network is running the rwhod daemon, you can use the ruptime
command to show the one-, five-, and fifteen-minute load averages
for each host on the local network:

% ruptime J

abc
def
ghi
jk1
mno

server

up
up
down
up
up
up

14+23:
35+20:
12+20:
13+21:
21+02:
19+23:

user,

user,

users,

0 users,

users,

load 1.
load 0.

load 1.
load O.
load O.

00,
07,

21,
00,
02,

.08,
.15,

.53,
.02,
.09,

.99
.17

.37
0.16
.12

You can also get the same information for a system from UX/RPM
or sscope (use the Load format). Here’s sample sscope output:

171 171 One Min Load Avyg (x100)
129 129 Five Min Load Avg (%100)

106 106 Ffteen Min Load Avg (X100)

093-701129-02

Licensed Material — Property of Data General Corporation 2-1 1

CPU Usage

Check the system load average regularly to determine normal
system loads for your system and other systems on your network. If
your system performance seems to be poor, check the system load
average. Note whether the load average is rising or falling—ifit is
falling, wait for a while to see if performance improves to a normal
level for your system.

As stated earlier, the load average is normalized for the number of
processors. A lower load average results if the number of LWP
groups does not increase with the number of processors.

Run Queues

Another way to get a general idea of system load is to check run
queues. You can use nsar —(to get this information; the example
below queries the system six times at 10-second intervals:

% nsar -q 10 6 .

14:46:58 rung-sz %runocc sSwpg-sz 3ISwWpocCc

14:47:08 13.0 100 0.0 0
14:47:18 13.0 100 0.0 0
14:47:28 14.0 100 0.0 0
14:47:38 16.0 100 0.0 0
14:47:48 15.0 100 0.0 0
14:47:58 16.0 100 0.0 0
Average 14.5 100 0.0 0

The average length of the run queue for a time interval is shown
under rung-sz; longer run queues mean a heavier load. Again,
determine what is normal for your system by monitoring this value.
The runqg-sz column shows how many LWP groups the scheduler
thought were runnable, including LWP groups that were waiting for
resources but have not exhausted their await interval. Most of the
kernel LWPs (approximately 10 or 11) fit into this category.

The percentage of time that the run queue is occupied is shown
under %runocc; ideally, this percentage should be high. If your
system seems to be performing poorly, but the run queue is empty,
look for memory or I/O problems.

UX/RPM and sscope report rung—sz as Bound Runnable Processes.

2-12 Licensed Material — Property of Data General Corporation 093-701129-02

Per-Process Statistics

Per-Process Statistics

Descriptions of per-process statistics follow, with CPU, system, user,
and elapsed time listed first—the rest are in alphabetical order.
Per-process statistics are the sums of statistics from processes’ LWP
groups. Note that the application that you use or the command that
you type is shown to the left of the colon; the field of interest to you
is on the right of the colon and should not be typed in:

CPU time Percent UX/RPM: %CPU
sscope—ps: %CPU

Amount of CPU time used divided by the product of the elapsed
time and the number of processors. Look at which processes are
using the most CPU time. See if you can run those processes’
LWPs during off-peak hours or adjust their priorities.

Time UX/RPM: cpu
sscope—ps: TOTAL_TIME
nps: TIME
ps: TIME

Sum of user time and system time.

System time UX/RPM: system
sscope—ps: SYS_TIME

Amount of time that the kernel was running on behalf of the
process.

User time UX/RPM: user
sscope—ps: USER_TIME

Amount of time the process’s LWPs were running in user space.

Elapsed time UX/RPM: start time
nps —o etime: ETIME

Amount of time elapsed since the process started.

Binds UX/RPM: binds
nps —o nbind: NBIND

Number of times a process’s LWP groups have been bound.

Command UX/RPM: command
name sscope—ps: COMMAND
nps —o cmd: CMD
ps -1: CMD

Command name of the process.

093-701129-02 Licensed Material - Property of Data General Corporation 2-13

Per-Process Statistics

Context Involuntary UX/RPM: iv_switch
Switches nps —o nswtch: NSWTCH

Number of involuntary context switches.

Involuntary (LWP) nps —o Inswtch: LNSWTCH

Number of involuntary context switches associated with a globally
scheduled LWP (“-” for locally scheduled LWPs).

Voluntary UX/RPM: v_switch
nps —o vswtch: VSWTCH

Number of voluntary context switches.

Voluntary (LWP) nps —o lvswtch: LVSWTCH

Number of voluntary context switches associated with a globally
scheduled LWP (“=” for locally scheduled LWPs).

Emulated UX/RPM: emul
instructions nps —o0 emul: EMUL

Emulated instruction count. Applications that were compiled with
Gnu C prior to DG/UX System 5.4 or with compilers not fully
compatible with the MC88110 platform generate instructions that
are not directly supported by the MC88110 processor.

To execute these applications, DG/UX System 5.4 Release 2.10
and greater provide code that emulates the unsupported
instruction tasks. The identification and emulation of the obsolete
instructions decrease performance substantially. To get full
MC88110 capability and performance, you should rebuild
applications with the newest compiler revision that is available.

You can find out if you are running an older application with
emulated instructions by executing the nps —o pid,emul
command. The output provides the process ID and the number of
instructions being emulated in the process; floating—point
instructions are not included.

Floating UX/RPM: fpex
point nps —o fpx: FPX
exceptions

Floating point exception count.

IDs Process ID UX/RPM: pid
sscope—ps: PID
nps —f or nps —1: PID
ps —for ps —1: PID

The process ID.

2-14 Licensed Material — Property of Data General Corporation 093-701129-02

Per-Process Statistics

Memory

Parent process ID UX/RPM: ppid
sscope—ps: PPID
nps —f or nps -1: PPID
ps —for ps -1: PPID

The parent process ID.

Process size UX/RPM: size
sscope—ps: SIZE
nps -1: SZ and RSS
ps -1: SZ

The number of 4096-byte pages that are resident in memory for a
process. A process’s resident memory requirements are a good
indication of how much stress it places on the memory system.

In nps, the SZ field is the size of the process’s mapped address
space in kilobytes. The RSS field is the size of the resident portion
of the process’s address space in kilobytes. See Chapter 3 for more
information about memory.

Use the following command line to get a list of the 10 processes
using the most resident memory:

% nps—ellgrep—vUIDIsed—e ”s,:,.,” | sort—rn +5-6 |\
head -10

The UX/RPM process screen can sort processes by resident
memory size, in descending order.

Swap space UX/RPM: swap
sscope—ps: SWAP
nps —o swap: SWAP

Amount, in pages, of anonymous memory (swap space) reserved
for use by the process, whether actually used or not. This value is
a process’ contribution to the Reserved Anonymous Pages statistic
discussed in Chapter 3.

093-701129-02

Licensed Material — Property of Data General Corporation 2-1 5

Per-Process Statistics

Process state

Process
utilization

Scheduling

UX/RPM: s
sscope—ps: S
nps -1: S
ps-1: S

State of the process’s initial LWP group:
Non-existent

Intermediate

Runnable

Sleeping

Stopped

Waiting

Terminated (Zombie)

NSsSHwn9H |

Sleeping and waiting LWP groups are usually waiting for
keyboard input. Waiting LWP groups are candidates for becoming
unbound and bound. The process state becomes important to
consider if the system begins binding and unbinding LWP groups
that are otherwise runnable.

Zombie (also referred to as terminated or defunct) LWP groups
are LWP groups that are waiting for their parent process to get a
termination IPC (Interprocess Communication). They disappear
either when their parent process calls wait(2) or when the parent
process dies as you reboot your system.

UX/RPM: i
sscope—ps: C
nps —o putil: C
ps—forps-1:C

Process utilization represented by an integer from 0 to 7. This
number is the sum of the initial LWP group’s interactive level and
its languishing level and aging level as determined by the MTS.
There are 4 levels of interactivity and 4 levels of
languishing/aging. Each successive process utilization level
results in an additional priority boost being applied to the initial
LWP group of the process. Therefore, the higher the process
utilization, the more priority the initial thread group of the
process has for being loaded onto a processor.

Class UX/RPM: SC
nps —c: CLS
ps —c: CLS

Scheduling class; based on the process’s initial LWP group. The
value can be pFF (FIFO), pRR (round robin), dTS (time share),
dLF (DG/UX LIFO), or dFF (DG/UX FIFO). However, you'll
almost always see dTS. The FIFO scheduling class provides
fixed-priority scheduling. A FIFO LWP group has an infinitely
long time slice; once its LWPs are executing on CPUs, the LWP
group stays there until the LWPs complete, are preempted by a
higher priority LWP group, are blocked by actions that they take,
or voluntarily give up the CPUs.

2-16

Licensed Material — Property of Data General Corporation 093-701129-02

Per-Process Statistics

The round robin class supports fixed-priority, time-sharing LWP
groups. With one exception, the rules for the round robin class are
the same as the rules for FIFO class: the round robin class
includes the concept of the time slice, which promotes fair
scheduling by helping prevent LWP groups of the same priority
from monopolizing a CPU.

The DG/UX time share class is very similar to the round robin
class, except that round robin class LWP groups have a fixed
priority—the MTS does not change their priorities as it can for
time share LWP groups. This is the class you will see most often.

The DG/UX FIFO class is provided for developers or users who
require absolute control over the way LWP groups are scheduled.
LWP groups in this class can be assigned any priority. If you use
this class, take care not to inadvertently set the priority of an
LWP group higher than that of a critical kernel LWP.

The DG/UX LIFO class is identical to the DG/UX FIFO class,
except that unblocked LWPs are placed before blocked LWPs
when the process awakens.

Nice value UX/RPM: nice
sscope—ps: NI
nps —o nice : NI
ps —1: NI

Nice value used in priority computation; based on the process’s
initial LWP group. The nice values can range from 0 to 39. The
higher the nice value, the lower the priority of a process. This
reduces the demand that the process makes on the system. The
default nice priority value is 20. This means that you can specify a
maximum value of 19 or a minimum value of —20 (if you are
superuser) when you issue a nice command. Only superusers can
specify that a process’s LWPs should execute at a higher priority.

Also, if you are superuser, you can use renice to force a process to
a lower priority level. If a process’s virtual memory requirements
are very large, however, don’t force it to a lower priority level; that
will only make it linger in your system.

093-701129-02

Licensed Material — Property of Data General Corporation 2-1 7

Per-Process Statistics

Signals

User

Process priority UX/RPM: pri
sscope—ps: PRI
nps —c: PRI
ps —c: PRI

Priority of the process’s initial LWP group; higher numbers mean
better priority. This number changes dynamically. The system
reduces the priority of LWP groups that require a lot of CPU time.

The priority of a process’s initial LWP group is the sum of its base
scheduling priority and its scheduling boost. The default base
scheduling priority for the dTS scheduling class is 0x4FF (1279).

The scheduling boost is derived from this equation:

((MAXNICE - nice_value) * nice_scale) + (process_utilization *
14)

where MAXNICE = 39, nice_value = nice value, nice_scale = the
value of mts_nice_scale (you can get this value from crash,; it is
often 11), process_utilization = process utilization, and 14
represents the “fair scheduling level gap.”

So, for a process with a dTS initial LWP group, a nice value of 20,
and a process utilization of 4, the priority would be

1279 + (((39 — 20) * 11) + (4 * 14)) = 1544

UX/RPM.: sigs
nps —o nsig: NSIG

Number of times a signal has been caught.

1D sscope—ps: UID
nps -1: UID
ps -1: UID

User ID of the process.

Name UX/RPM: user
sscope—ps: NAME
nps —f: UID
ps -f: UID

User name for the user ID of the process, if available from NIS or
the password file. Otherwise, the user ID.

2-18

Licensed Material — Property of Data General Corporation 093-701129-02

Per-LWP Statistics

Per-LWP Statistics

CPU

LwP

Descriptions of per-LWP statistics follow. Note that this information
applies directly to a process’s corresponding threads (which have
the same IDs as the LWPs):

ID nps —-WL: CPU

The CPU upon which the LWP is running; “-” when the LWP is
not on a CPU.

Time nps —L: LTIME
The total CPU time for globally scheduled LWPs.

Active LWPs UX/RPM: lwps
nps —f: NLWP

The number of LWPs active in the process.

ID nps -L: LWP
The ID of the LWP.

Joining nps —WL: NJOIN

The number of LWPs waiting for the LWP to terminate; “-” if
none.

Join Target ID nps —WL: JNTARG

The LWP ID of the LWP that this LWP is waiting for to terminate;
“~” if none.

Mutex nps —-WL: MUTEX

The hexadecimal address of the mutex upon which the LWP is
waiting or the mutex associated with a conditional variable (if
waiting upon a condition); “-~” otherwise.

Priority nps —o lprior: LPRI
The scheduling priority of the LWP. The priority depends upon

whether the LWP was locally or globally scheduled; globally
scheduled LWPs have dedicated LWP groups.

Scheduling Class nps —o Isclass: LCLS

Scheduling class of the LWP. The value can be pFF (FIFO), pRR
(round robin), dTS (time share), dLF (DG/UX LIFO), or dFF
(DG/UX FIFO). However, you'll almost always see dTS. “G” or “L”
is appended for globally or locally scheduled LWPs, respectively.

093-701129-02

Licensed Material — Property of Data General Corporation 2-1 9

System-Wide Process Statistics

State nps —-WL: KU SPECL

The state of the LWP. The K column refers to kernel space, the U
column refers to user space and the SPECL column displays
special annotations about the LWP state. For most
single-threaded processes and kernel LWPs, LWP states reflect
kernel space only. For multi-threaded processes, LWPs tend to
have both kernel and user states.

In kernel (K) space:
R runnable
X exiting
W waiting

In user (U) space:
runnable
exiting
waiting
sleeping

n = XI

The special (SPECL) annotations:

Y yielded

I software interrupted

T stopped

D detached

C canceled

Variable nps —~-WL: CONDVAR

The hexadecimal address of the conditional variable upon which
the LWP is waiting; “~” if the LWP is not waiting upon a
condition.

System-Wide Process Statistics

Descriptions of system process statistics follow with idle, system,
and user time first—the rest follow in alphabetical order:

Idle time UX/RPM: Idle
sscope: Percent Idle Time
nsar —u: %idle
sar —u: %idle

Time spent by the system waiting for something to do. If no LWP
can run because it is waiting for devices or timeouts, the DG/UX
system runs the idle LWP. Idle LWPs may run on each processor;
therefore an application with three single-LWP processes on a
quad processor system may be completely CPU-bound but
nonetheless show 25% idle time.

Ideally, you want the idle time to be rather low—for example,
around 20%. However, if the system load is low, the idle time will
be high, which is to be expected. If the idle time and the system
load are both high, you probably have a memory problem. You
could also have disk- or network-related I/O problems.

2-20 Licensed Material — Property of Data General Corporation 093-701129-02

System-Wide Process Statistics

System time

User time

Binds

If your system has zero or very low idle time, your system might
have a runaway process (one that uses progressively more system
resources over a period of time while you are monitoring it). On
the other hand, the system might just be fully loaded.

UX/RPM: Sys

sscope: Percent System Time
nsar —u: %sys

sar —u: %sys

Relative amount of time spent executing instructions in kernel
(not user) code. The time spent waiting for devices is not charged
to system time.

A high percentage of system time indicates that applications are
requesting CPU-intensive kernel services. Context switching
caused by forks and frequent process synchronization via IPCs
are common examples of CPU-intensive kernel operations. Check
processes’ system time versus user time.

A system that is spending a large percentage (perhaps 50%) of its
time in the system state might be doing a lot of disk I/O, system
call processing, scheduling, or handling a saturated resource such
as memory. If the system time continues to be high, determine
where the time is being spent. Consider using kernel profiling; see
the prfld(1M) manual page for more information.

See System Calls.

UX/RPM: User

sscope: Percent User Time
nsar —u: %usr

sar —u: %usr

Relative amount of time spent executing instructions in user code.
Time spent waiting for devices or executing kernel services is not
billed to user time. There are exceptions to this that are normally
not significant. For example, user time is billed for the time it
takes to handle interrupts that occur while an LWP is running. A
high percentage of user time indicates that one or more user
applications are CPU-intensive. To find out which ones, look for
processes with high percentages of CPU time.

UX/RPM: Process Binds/sec
sscope: Binds/Sec

nsar —w: swpin/s

sar —w: swpin/s

Rate at which LWP groups are being bound, usually caused by
fork(2) calls but also caused when the MTS must manage more
LWP groups. Binding and unbinding incur overhead and, if they
persist, result in lowered system efficiency. An LWP group that
has been unbound will be bound only when it is runnable. See
Fork System Calls, Bound LWP Groups, and Unbinds.

093-701129-02

Licensed Material — Property of Data General Corporation 2-21

System-Wide Process Statistics

Bound LWP UX/RPM: Bound Processes
groups sscope: Bound Processes

Number of LWP groups bound at the time of the sample. LWP
groups must be bound before their LWPs can run. Therefore, the
LWPs of bound LWP groups are able to run at lower cost than the
LWPs of unbound LWP groups, which must first be bound. This
number increases with forks and decreases with exits.

The number of bound LWP groups is limited by the number of
bound transient data sections, determined by the static system
configuration variable MAXBOUND. This is similar to NVPS in

previous releases.

Bound UX/RPM: Bound Runnable

runnable Processes

LWP groups sscope: Bound Runnable
Processes

nsar —q: runq—sz
sar —q: runq-sz

Number of bound LWP groups that have LWPs ready to run. See
Unbound Runnable LWP Groups.

Context UX/RPM: Process Switches/Sec
switches sscope: Process Switches/Sec
nsar —w: pswch/s
sar —w: pswch/s

Number of times LWP groups are switched onto a CPU to run;
previously known as process switches. High numbers (thousands
per second) indicate that LWP groups are not getting much time
in any given time slice. This number will also go up with the
number of CPUs. The number of system calls per second should
be higher than this number (perhaps 3—4 times higher), because
system calls often complete during one trip into the kernel
without being switched out and back.

Eligible LWP UX/RPM: Eligible Processes
groups sscope: Eligible Processes

Number of LWP groups having LWPs that are either running or
that have been chosen to run when a CPU is available. Although
its maximum value is limited by the MTS, this number is a
measure of system load. See also Bound Runnable LWP Groups
and Unbound Runnable LWP Groups.

Exec system UX/RPM: Exec System Calls/Sec
calls sscope: Exec System Calls/Sec
nsar —c: exec/s
sar —c: exec/s

Number of exec(2) system calls. An exec call typically follows a
fork. Because it typically starts a new executable program, exec
creates demands on a system to read in the new program’s pages.

2-22 Licensed Material — Property of Data General Corporation 093-701129-02

System-Wide Process Statistics

Fork system
calls

Load
averages

Message

operations

Process table

Processes

UX/RPM: Fork System Calls/Sec
sscope: Fork System Calls/Sec
nsar —c: fork/s

sar —c: fork/s

Number of fork(2) and vfork(2) system calls. Forks create new
LWP groups and therefore create a demand for additional memory
and, potentially, CPU resources.

UX/RPM and sscope:

One Minute Load Average,
Five Minute Load Average,
Fifteen Minute Load Average

The average number of eligible LWP groups over the last one,
five, or fifteen minutes; this average is normalized by the number
of CPUs.

UX/RPM: Message Operations
sscope: Message Operations/Sec
nsar —m: msg/s

sar —m: msg/s

Number of msgsnd calls; msgget and msgrev calls are not
counted in this number.

Overflow UX/RPM: Process Table
Overflows
sscope: Process Table Overflow
nsar —v: ov
sar —v: ov

Number of attempts to create more than Process Table Size
processes. A non-zero value may indicate an insufficient NPROC
value; see Process Table Size.

Size sscope: Process Table Size
nsar —v: proc—sz (2nd number)
sar —v: proc—sz (2nd number)

Value of a static system configuration variable, NPROC, that is
the upper bound on the number of user processes. Configuring a
kernel with a high NPROC value is not without cost because some
resources, particularly memory, are allocated for per process
whether they are used or not. You can change this value in the
system configuration file (follow the sysadm path System —>
Kernel —> Build option).

UX/RPM: Processes

sscope: Processes

nsar —v: proc—sz (1st number)
sar —v: proc—sz (1st number)

Number of user processes existing at the time of the sample.

093-701129-02

Licensed Material — Property of Data General Corporation 2-23

System-Wide Process Statistics

Processors

Semaphore
operations

System calls

Unbinds

Unbound
LWP groups

UX/RPM: CPU Count
sscope: Number of Processors

Number of active CPUs on the monitored system.

UX/RPM: Semaphore Operations
sscope: Semaphore Operations
nsar —m: sema/s

sar —m: sema/s

Number of semaphore operations performed by the semop system
call. If the rate of semaphore operations is high (on the order of
500/CPU/sec) and your system seems underutilized, you may have
a bottleneck among processes that are heavily contending for
semaphores (and resources that are protected by the semaphores).
The solution to this problem is to understand what resources are
causing the contention and either reduce dependency on the
problem resources, provide more of them, or divide the resource
into smaller components that each have their own semaphore.

UX/RPM: System Calls/Sec
sscope: System Calls/Sec
nsar —c: scalls/s

sar —c: scalls/s

Number of system calls made by LWPs. The rate and type of
system calls may determine the amount of CPU time being used
by the DG/UX system. This value is very dependent on the
application and can range from a few hundred to thirty or forty
thousand. If the system is spending a lot of time executing
instructions in user code and this value is high (say, greater than
1500 system calls per CPU), applications could be making
excessive system calls.

See System Time, User Time, and Context Switches.

UX/RPM: Process Unbinds/sec

sscope: Unbinds/Sec

nsar —w: swpot/s

sar —w: swpot/s
Rate at which LWP groups are being unbound, caused by the
MTS. Binding and unbinding incur overhead and, if they persist,
result in lowered system efficiency. An LWP group that has been
unbound will be bound again only when it is runnable.

UX/RPM: Unbound Processes
sscope: Unbound Processes

Number of LWP groups that are not bound; see Bound LWP
Groups.

2-24

Licensed Material — Property of Data General Corporation 093-701129-02

Configuration Variables

Unbound
runnable
LWP groups

UX/RPM: Unbound Runnable
Processes

sscope: Unbound Runnable
Processes

nsar —q: SWpQq—sz

sar —q: swpq—sz

LWP groups having LWPs that could run, but are not bound.
When this number is not zero, your system most likely has a
performance problem. Either MAXBOUND may be set too low or
the MTS has detected system thrashing and has temporarily
restricted the number of bound transients.

Configuration Variables

CPU and Process Configuration Variables

The CPU and process configuration variables are also listed in the
file /usr/etc/master.d/dgux.

NCPUS
Specifies the number of processors to run. If set to 0 (the
default), all available CPUs will be used. Any other value
specifies that number of CPUs to run. If the value specified
is more or less than the number of CPUs present, a message
to that effect is printed when the kernel is booted. Notice
that on a uniprocessor system, this parameter has no real
effect since the one processor will always be run.

NPROC
Specifies the maximum number of user processes the
system can have at one time. For various sized systems use
the following values: small (such as workstations), 96;
medium (the default, such as AViiON 4xxx and 5xxx
computers), 256; and large (such as AViiON 62xx and 8xxx
computers), 2048. The overall number of processes needed
depends on the number of terminal lines available, the
number of processes spawned by each user, and the number
of system processes and network daemons. If the maximum
number of processes is used up, the fork(2) or vfork(2)
system call will result in a process table overflow and will
fail.

Specifies the maximum number of user LWPs the system
can have at any one time. If set to 0 (the default), this value
is dynamically calculated based on the amount of available
memory in the system.

093-701129-02

Licensed Material — Property of Data General Corporation 2-25

Configuration Variables

NLWPGROUPS
Specifies the maximum number of user LWP groups the
system can have at any one time. If set to 0 (the default),
this value is dynamically calculated based on the amount of
available memory in the system. An LWP group is a set of
locally scheduled LWPs from the same process that share
the same accounting and global scheduling parameters.

MAXUP
Specifies the maximum number of processes that a user
(other than root) can have in existence at one time. The
default is 50. This value should not exceed the value of
NPROC (NPROC should be at least 10% more than
MAXUP). This value is per user identification number, not
per terminal. For example, if ten people logged in with the
same user ID, the default limit would be reached very
quickly.

MAXULWP
Specifies the maximum number of LWPs that a user (other
than root) can have in existence at one time. By default,
there is no per-user limit.

MAXULWPGROUPS
Specifies the maximum number of LWP groups that a user
(other than root) can have in existence at one time. By
default, there is no per-user limit.

SDESLIM
Specifies the default (soft) number of file descriptors a
process is allowed to have at one time. A non-superuser
process may change its soft limit up to the value of the hard
limit. The default is 64. It is a good idea to keep the default
value; you can code any applications that require additional
file descriptors to use the system call setrlimit(), which sets
resource limits.

HDESLIM
Specifies the maximum (hard) number of file descriptors a
non-superuser process is ever allowed to have at one time.
The default is 1024.

MAXGLOBALSQS
Specifies the maximum number of global synchronization
queues that can be used for user process-shared mutexes
and condition variables. The default is 32768.

2-26 Licensed Material - Property of Data General Corporation 093-701129-02

Configuration Variables

INITCPUMASK

Specifies the set of CPUs on which the kernel demons and
the initial user processes may run. You can use this to
reserve some CPUs in the system for later exclusive use by
a dedicated application. If this mask is 0 (default), the
kernel demons and user processes are allowed to run on all
CPUs in the system. In a specified mask, the low-order bit
(0x1) specifies CPUO.

STRDEMONSCPUMASK

Specifies the set of CPUs on which the STREAMS demons
may run. You can use this to keep STREAMS demons away
from certain CPUs in the system. If the CPU mask does not
specify any CPU (0, the default), then the STREAMS
demons are allowed to run on any CPU specified by
INITCPUMASK above (default is all). In a specified mask,
the low-order bit (0x1) specifies CPUO.

Scheduler Configuration Variables

The following scheduler configuration variables are also listed in
/usr/etc/master.d/dgux:

MAXSLICE

Specifies the dispatcher round-robin time slice used for the
SCHED_OTHER (timesharing) and SCHED_RR scheduling
policies. If a user LWP or LWP group runs for this amount
of time, it will yield the CPU to other LWPs or LWP groups
with the same priority. Note that the round—robin time
slice is essentially infinite for SCHED_FIFO and
SCHED_DG_LIFO scheduling policies. The default is 100
(1/10 second).

MAXAFFINITYSLICE

Specifies the time slice (in “real” time) that an LWP group
may stay transiently joined to a given JP set before its
affinity relationship is reset. This affinity time slice is used
to implement a load-balancing algorithm for timesharing
LWP groups—the smaller the value, the smoother the load
balancing, at the expense of better throughput, and
vice—versa.

This time slice does not affect realtime LWP groups because
they are never allowed (by default) to migrate below the
root of the JP set hierarchy—thus, they have no specific
affinity. Also, manual affinity assignments are not broken
by this time slice. This time slice only breaks migrations
within the manual or default constraints imposed on the
LWP group.

093-701129-02

Licensed Material — Property of Data General Corporation 2-27

Configuration Variables

In summary, the LWP group is brought up to the highest
level in the JP set hierarchy that makes sense for that LWP
group. The default value for this parameter is 10 realtime
seconds.

MAXLATENCY

Specifies the maximum time the current VP will run before
being interrupted to check for preemption due to another JP
adding a VP to an eligible list. The default is 50
milliseconds.

MINBOUND

Specifies the minimum number of user LWPs that can be
ready to run in the kernel, which is the same as the
minimum number of bound transient data sections (i.e.,
wired kernel stacks). If this parameter is set to 0 (the
default), the minimum number of bound transients is
determined dynamically based on system load. The
minimum bound can never be larger than the maximum
bound. If MAXBOUND is not 0 and MINBOUND is not 0,
the minimum bound is the smaller of MINBOUND and
MAXBOUND.

MAXBOUND

Specifies the maximum number of user LWPs that can be
ready to run in the kernel, which is the same as the
maximum number of bound transient data sections (i.e.,
wired kernel stacks). By default, this parameter is set to
the size of physical memory (in MB) * 16. This
configuration parameter corresponds most closely to NVPS
in previous releases. The maximum bound can never be
less than the minimum bound. If MINBOUND is not 0 and
MAXBOUND is not 0, the maximum bound is the larger of
MINBOUND and MAXBOUND.

NOLANGUISHING

Specifies to allow or disallow languishing for timeshare
LWP groups. The default (1) is to detect, and try to correct,
languishing for a timeshare LWP group by giving it a
temporary priority boost until it makes progress. If the
value of this variable is 0, the scheduler does not do
anything about runnable timeshare LWP groups that are
not making progress.

NOILEVEL

Specifies to allow or disallow interactive level computations
for timeshare LWP groups. The default (1) is to
automatically adjust the interactive level of timeshare LWP
groups. If the value of this variable is 0, interactive level
adjustments for timeshare LWP groups will not be made.

2-28

Licensed Material — Property of Data General Corporation 093-701129-02

Configuration Variables

Without interactive level adjustments, the DG/UX operating
system does not adjust priority based on LWP groups’ CPU
utilization. Instead, LWP groups are scheduled in a
round-robin nature at the same priority level.

USEFILEPURGES
Specifies whether data file purges should be used in
addition to program frame purges to detect thrashing. The
default (0) is to only use program frames to detect
thrashing.

LIFO
Specifies whether to set the dispatcher level scheduling
policy for timeshare LWP groups as FIFO or LIFO. The
default (0) for timeshare LWP groups is to use FIFO. If the
value of this variable is 1, timeshare LWP groups are
scheduled LIFO at the same priority within the dispatcher.

Message Configuration Variables

These variables are also listed in /usr/etc/master.d/dgux. They are
dynamic variables that set the message parameters shown in the
following list.

MSGMNI
Specifies the maximum number of message queues that
may exist in the system at one time. The default is 1024.

MSGTQL
Specifies the maximum number of outstanding messages
that may exist in the system at one time. The default is
1024.

MSGMNB
Specifies the maximum number of bytes that a message
queue may contain. The default is 4096.

MSGMAX
Specifies the maximum number of bytes that a message
may contain. The default 2048.

Semaphore Configuration Variables

The following semaphore configuration variables are also listed in
lusr/etc/master.d/dgux; they are dynamic variables:

SEMMNI
Specifies the maximum number of unique semaphore sets
that may be active at any one time on the system. The
default is 1024.

093-701129-02 Licensed Material — Property of Data General Corporation 2-29

Configuration Variables

SEMMSL
Specifies the maximum number of semaphores that a
semaphore set may contain. The default is 256.

SEMOPM
Specifies the maximum number of semaphore operations
that can be executed per semop(2) system call. The default
is 10.

SEMVMX
Specifies the maximum value a semaphore may have. The
default is the maximum value for this parameter, 32767.

SEMUME
Specifies the maximum number of undo entries per undo
structure. The default is 10.

SEMAEM
Specifies the maximum value of the adjustment for
adjust-on-exit. The value is used whenever a semaphore
value becomes greater than or equal to the absolute value of
semop(2), unless the program has set its own value. The
default value is the maximum value for this parameter,
16384.

SEMAPM
The maximum number of processes that may specify
semaphore operation with SEM_UNDO option. The default
is 16384.

End of Chapter

2-30

Licensed Material — Property of Data General Corporation 093-701129-02

3 Memory

After a general discussion of memory, this chapter lists memory
statistics, followed by shared memory configuration variables.

Effective use of memory is critical because the difference between
referencing data cached in memory and referencing data on a disk
is the difference between perhaps 100 nanoseconds and 50
milliseconds—a hundred-thousand-fold difference! A DG/UX system
uses its physical memory to implement a large virtual address
space and to cache the computer’s file system. The system tries to
keep the physical memory filled with processes’ address space and
file system objects; doing so avoids having to read from a disk. In
this discussion, all forms of secondary storage are referred to as
“disks” at the risk of some inaccuracy. For instance, file system and
swap devices may include remote NFS—mounted file systems, swap
areas on a diskless client’s server, or even devices that are
implemented by NVRAM (non-volatile random access memory).

This chapter describes the many facets of virtual memory and file
system buffering that influence a DG/UX system’s performance.
Some applications do not use file system buffering, so the memory
statistics reported by the DG/UX system do not apply to them.
Database management systems, for example, may have no choice
about whether their data may be cached before writing to a disk; an
update transaction may require that data reach a disk before the
transaction is considered complete. These database management
systems typically bypass file system buffering by using raw disk
I/0, described in Chapter 4. Also, memory used for file system
metadata (described in Chapter 4) and metadata operations is not
reported by the memory statistics.

Typical DG/UX Memory System Behavior

A program begins execution when the DG/UX system overlays the
address space of a process with the segments of a program file
(called mapping). DG/UX memory statistics are reported in terms of
pages. A page is the smallest unit of memory that supports access
control, mapping to secondary storage devices, and
modified/'unmodified and age attributes; a page is 4096 bytes.

093-701129-02 Licensed Material — Property of Data General Corporation 3-1

Typical DG/UX Memory System Behavior

As a program begins execution, it references instructions or data on
the pages of its address space. These pages may already be in
memory—this occurs when the program is being executed or has
recently been executed by another process. If the pages are already
in memory, those pages (referred to as “resident pages”) do not need
to be read from disk; only the page table entry, which maps the
program file pages into the process’s address, needs to be set up.
This operation, called a soft page fault, is much less expensive than
referencing a page that is not in memory and which must then be
read from a disk (called a hard page fault).

Pages that are executable and mapped to a file in the file system
are called program file pages. The DG/UX system reports the
number of program file pages that are resident and the numbers of
various memory operations performed on these pages. Program file
pages are read-only; this is important because these pages stay
“clean”. A clean page may be replaced in memory without first
writing a copy of the page to disk.

Program files in the Executable and Linking Format (ELF) may
specify that several portions of a process’s address space should
come from other files called shared libraries . With shared libraries,
program file pages may be shared among many executing
programs. You can load shared libraries into memory once and then
many programs can reference the libraries when using common
routines. Shared libraries may dramatically reduce the size of a
program file in comparison to static libraries, and correspondingly
reduce the pages necessary for many programs to run
simultaneously. See 1d(1) for more information about shared
libraries and ce(1) for information about ELF.

Memory resident pages from files that are only read from or written
to (in other words, files that are not executed) are called data file
pages. A process can access such pages via the read() or write()
system calls or by using the mmap() system call to map pages from
those files directly into the process’s address space. Data file pages
are typically shared amongst all processes that are accessing the
file in question, and changes made to the file by any of the
processes are immediately seen by all the processes.

3-2 Licensed Material — Property of Data General Corporation 093-701129-02

Typical DG/UX Memory System Behavior

A process can map a file so that it can share the pages from the file
with other users of the file until the process modifies the page.
When it modifies the page, it takes a copy-on-write (COW) fault, at
which time the process receives a private copy of the page in
question, which it may then freely modify. Such a feature is
commonly used with file pages to properly handle the initialized
data section of a program (the .data section of an executable). As
long as the initialized data is unchanged, it may be shared by
several processes; once a process modifies its initialized data, it
creates a private copy of the page. This is also how the
MAP_PRIVATE option of mmap() is implemented.

A program’s uninitialized data (which includes the “.bss” section of
an executable) is not stored in the executable file at all, and
therefore does not occupy file pages. The pages available for
uninitialized data, along with an initial allotment of pages for a
stack, are known as as private anonymous pages; these pages are
allocated in a system’s swap area. When allocating these pages, the
system does not actually access a disk. The disk is accessed only
when a page has been modified (become dirty) and the dirty page
must be purged—that is, removed to make room for another page.

Private anonymous pages from the swap area are counted as
reserved anonymous pages. Any time that you make a request for
space (for example, by calling malloc() or extending a stack), you
decrease the freeswap count (the amount of available swap space).
The DG/UX system uses the number of reserved anonymous pages
to guard against running out of swap space. Swap space consists of
the swap area on disk and a portion of physical memory; this is also
known as total anonymous pages. If you try to allocate a number of
anonymous pages that would make the reserved anonymous pages
exceed the total anonymous pages, the system reports the error
message “out of swap space.” Thus, an allocation request may fail
even if there is unused swap space if that swap space is reserved by
an earlier allocation request. This prevents the situation where an
application finds out later that there is not enough swap space for
its existing requests.

Total Anonymous Pages
- (SWAP SPACE) —>

Freeswap ITeserved Anonymous Pages |

(Total — Reserved
Anonymous Pages)

Figure 3-1 Swap Space

093-701129-02 Licensed Material — Property of Data General Corporation 3-3

Typical DG/UX Memory System Behavior

Other private anonymous pages are allocated during program
execution, most commonly by touching new pages on the stack and
by calling malloc(), which allocates memory. These calls to
malloc() increase the number of reserved anonymous pages and
may fail if that would cause the reserved anonymous pages to
exceed the number of total anonymous pages.

Shared anonymous pages, as the name implies, may be shared by
many processes. Interprocess communication through shared
memory segments is a common use of this type of page.

Once exec() has loaded a program and allocated memory for the
executable portion, the initialized data portion, and the
uninitialized data portion, the I/O caused by the program depends
on the following:

On what pages are the instructions that the program executes?
Which data pages does the program touch?

How does the program handle stack and heap allocation, and how
much memory is available for creating new pages?

Which files does the program read?

Reading from a file causes the required pages to be brought into
memory if they are not resident pages. Memory operations resulting
from calls to read() and write() are counted as non-fault
operations. The amount of physical memory available for these
pages is controlled by the PERCENTBUTF configuration parameter.

It is possible for a program to execute from beginning to end
without ever requiring disk I/O. The following must be true:

The text and data pages for the program are already in memory
from a previous execution.

There are enough free pages in the swap area so that the system
can create copy-on-writes and new stack and heap pages without
throwing out dirty pages.

The file pages being read from and written to are already in
memory.

Although pages written to the file system by a program may not
reach the disk while the program runs, eventually the data is
written to disk. The DG/UX system accomplishes this with a kernel
LWP called the page cleaning daemon. This daemon runs
periodically to make the file system memory image and the disk
consistent. This policy ensures that in case of a system crash, data
that programs have written to the file system at the time the page
cleaning daemon last ran can be recovered from the disk. The
MAXBUFAGE configuration parameter governs the age of
unwritten file system data and the frequency at which the page
cleaning daemon runs.

Licensed Material — Property of Data General Corporation 093-701129-02

Typical DG/UX Memory System Behavior

You are now familiar with the four classifications of memory that
the DG/UX system uses to report memory statistics: program file
pages, data file pages, private anonymous pages, and shared
anonymous pages. A fifth classification, kernel anonymous pages,
consists of memory in use by the kernel. This section has considered
typical uses of each of the four classifications of user-accessible
memory, but other usage patterns may show up in the statistics.
For example, the memct]l and mmap system calls allow programs
to create portions of their address space with any of the page
classifications we’ve discussed (with the exception of kernel
anonymous pages). Some forms of I/O, such as that for metadata,
are not reported by the memory statistics.

When the last LWP of a process exits, the process’s anonymous
pages may be reclaimed, but the file system pages (program file and
data file pages) remain in memory for some time, depending on the
demand for memory. A second execution of the same program will
encounter mostly soft faults, and typically will execute much more
quickly.

Here is a summary of the five types of pages:

Program file pages Pages that are executable and
mapped to a file in the file system.
These pages are read-only.

Data file pages Memory resident pages from files
that are only read from or written to
(in other words, files that are not
executed). These pages are typically
shared amongst all processes that
are accessing the file in question,
and changes made to the file by any
of the processes are immediately
seen by all the processes.

Private anonymous pages Pages available for uninitialized
data, along with an initial allotment
of pages for a stack. These pages are
allocated in a system’s swap area.

Shared anonymous pages Pages that may be shared by many
processes. Interprocess
communication through shared
memory segments is a common use
of this type of page.

Kernel anonymous pages Memory in use by the kernel.

093-701129-02 Licensed Material — Property of Data General Corporation 3-5

Swapping

Swapping

As described above, a program’s data is eventually written to disk.
However, when the system is extremely short of memory, active
LWPs may be “swapped out”; that is, the LWPs are moved from
memory to disk so that other LWPs can run.

Adding swap areas on disks where there are not currently any may
improve performance; see the sysadm File System —> Swap Area
menu. Do not skimp on the system’s swap area to save disk space.
Performance never improves when you must go to disk, since pages
are written to the swap area because there is not enough memory to
accommodate all LWPs running at a given time. If your system
mixes high-speed disks and low-speed disks, use the fastest disks
for all your swapping.

The best way to distribute traffic evenly over multiple disks is to
use several equal swap areas, one per disk. The reason to keep
these areas roughly equal in size is to keep their percentage of free
space roughly equal as well. Greater free space percentages imply
less fragmentation, which improves efficiency.

You can use the freeswap value reported by nsar —r to find out how
much swap space is available. (Multiplying freeswap by 512, then
dividing by 108 converts blocks to megabytes.) As a rule, the
freeswap value should be 15-30% of the total physical memory and
swap area on the system. For example, if your system has 256 MB
of physical memory and 384 MB of swap area space, the sum is 640
MB.

15% of 640 MB = 96 MB, or 196,608 blocks
30% of 640 MB = 192 MB, or 393,216 blocks

For this system, if the freeswap value is usually under 200,000
blocks (or frequently under 100,000 blocks), you should probably
increase the swap area space. On the other hand, if the freeswap
value is typically over 400,000 blocks (and rarely under 300,000
blocks), you can probably decrease the amount of swap space to
recover disk space.

Systems with large bursts of swap usage will need a reserve larger
than 15-30%, while systems with more static swap usage will need
a smaller reserve. Note that swap space requirements are highly
application dependent.

3-6

Licensed Material — Property of Data General Corporation 093-701129-02

Thrashing

Thrashing

If interactive users notice long pauses in response time, the pauses
may be the result of anti-thrashing measures by the kernel.
(Thrashing is when non-interactive LWP groups simultaneously
compete for inadequate resources.) To verify this, see if the rate of
binds (Process Binds/sec using UX/RPM, swpin/s using nsar -w,
Binds/Sec using sscope) is greater than the rate of forks (Fork
System Calls/Sec using UX/RPM or sscope, fork/s using nsar -c).
Also, check to see if the number of unbound runnable LWP groups
is consistently non-zero (Unbound Runnable Processes using
UX/RPM or sscope, swpg—sz using nsar —q).

If these statistics lead you to believe that slow response time is the
result of anti-thrashing measures, consider increasing memory,
examining applications that seem to cause high frames purged and
page fault rates (for per-process page fault statistics, try nps —eo
cmd,hfault,sfault), or increasing the value of MINBOUND (the
minimum number of user LWPs that can be ready to run in the
kernel). Note that by default, the system determines MINBOUND
dynamically based upon system load; by specifying this value
yourself and guaranteeing that a specific number of LWPs can be
ready to run, you are overriding system algorithms. This can either
improve performance or increase thrashing. See Chapter 2 for a
description of MINBOUND.

Hard Page Faults

As a basic guideline, hard page faults should probably be kept
under 15 per second; you can monitor hard page faults with
UX/RPM’s or sscope’s Hard Page Faults or nsar —p’s vflt/s
statistic. A rate of 15 per second generally indicates increased disk
I/O and unnecessary faulting. However, you should determine what
your system’s threshold value is for hard page faults by regularly
monitoring the system; if your system performance is good, 15 per
second may be perfectly acceptable.

093-701129-02 Licensed Material — Property of Data General Corporation 3-7

Per-Process Memory Statistics

Per-Process Memory Statistics

File system
operations

Page faults

Resident
memory

Resident
shared
memory

Resident
unshared
memory

Input

UX/RPM: fsinop
nps —o fsiops: FSIOPS

Number of file system input operations.

Output

Hard

UX/RPM: fsoutop
nps —o fsoops: FSOOPS

Number of file system output operations.

UX/RPM: hfault
nps —o hfault: HFAULT

Number of hard page faults.

Soft

Number of soft page faults.

Current size

UX/RPM: sfault
nps —o sfault: SFAULT

UX/RPM: rss

nps —o rss: RSS

Descriptions of per-process memory statistics are given below. Note
that the application that you use or the command that you type is
shown to the left of the colon; the field of interest to you is on the
right of the colon and should not be typed in:

Size of the resident portion of the process’s address space, in

kilobytes.

Maximum size

UX/RPM: maxrss
nps —o maxrss: MAXRSS

Maximum resident set size, in kilobytes.

nps —o xrss: XRSS

Sum of shared program file, data file, and shared anonymous

pages, in kilobytes.

Size, excluding stack

pages

nps —o drss: DRSS

Private unshared or COW-shared anonymous pages, excluding

stack pages, in kilobytes.

Licensed Material — Property of Data General Corporation

093-701129-02

System-Wide Memory Statistics

Size, stack pages nps —o srss: SRSS
Private unshared or COW-shared stack pages, in kilobytes.

System-Wide Memory Statistics

Descriptions of system-wide memory statistics are given below:

Anonymous Allocated nsar -W O%swap: %swap
pages
Percentage of total swap space that has been allocated.

Free UX/RPM: Free Anonymous (frames)
nsar -r: freeswp
sar —r: freeswp

Number of 512-byte blocks that are available in swap space.

Reserved UX/RPM: Reserved Anonymous
sscope: Reserved Anonymous Pages

Number of anonymous pages that have been reserved, but not
necessarily accessed. Applications reserve anonymous pages for
their uninitialized or bss data sections, for heap space when they
call malloe(3C) or brk(2), for stack frames, and when they
modify initialized data pages. Attempts to reserve anonymous
pages that would make this number equal Total Anonymous
Pages will fail and cause the system to report that it is out of
swap space.

You can configure more swap space by using swapon(1), available
from sysadm(1M).

Total UX/RPM: Total Anonymous
sscope: Total Anonymous Pages

Number of pages of physical memory and on the swap device that
may be used for virtual address space. Anonymous pages are
distinct from file pages. Anonymous pages must be written to disk
when they are removed from memory.

093-701128-02 Licensed Material — Property of Data General Gorporation 3-9

System-Wide Memory Statistics

Bound frames
purged

Frames
purged

UX/RPM: Bound Frames Purged
sscope: Bound Frames Purged/Sec
nsar —w: bswot/s

sar -w: bswot/s

Number of resident pages that were taken away from bound LWP
groups.

Purging bound pages is expensive because bound LWP groups will
likely run again soon and require access to the purged pages,
resulting in hard page faults. The DG/UX system favors
reclaiming pages from unbound LWP groups. A non-zero value of
this statistic indicates insufficient memory.

UX/RPM: Frames Purged
sscope: Frames Purged/Sec

nsar —g: pgfree/s
sar —p: rclm/s

The number of pages removed from main memory by the system
to make room for other pages. Purging is initiated when the
number of free memory frames reaches a minimum level. The
frame purger then scans memory frames, looking for the least
recently used eligible frames to replace. This number includes all
purged pages, such as anonymous, bound, and unbound pages
(see Bound Frames Purged). Pages freed voluntarily, such as
pages belonging to an exiting LWP, are not counted as purged.

Possible kernel parameters that may assist in decreasing high
values (values that indicate poor system performance on your
machine) are MAXBUFAGE and PERCENTBUEF. If applications
on your system are writing randomly to a large number of pages,
decreasing MAXBUFAGE from the default of 60 seconds to 30
seconds may improve overall performance by making the frame
cleaner run more often, with less to do in each pass.

If a lot of file I/O on your system is causing programs to be pushed
out of memory, decreasing PERCENTBUF from its default of
100% to 50% or less ensures that executables will remain longer
in memory.

With large memory configurations, the page cleaning daemon can
use a substantial amount of time searching for modified data
pages. The amount of time is based upon MAXBUFAGE and
PERCENTBUEF. If you suspect that your system time is high due
to page cleaning, increase MAXBUFAGE and PERCENTBUF.

Other kernel parameters that may need fine tuning are
MAXPAGEOUTS, MAXSLICE, and HOGFILESIZE.

See Chapter 4 for descriptions of MAXBUFAGE, PERCENTBUF,
and HOGFILESIZE; see Chapter 2 for a description of
MAXSLICE. MAXPAGEOUTS is described later in this chapter.

Other solutions are to add more physical memory, redesign
applications to use memory more efficiently, or reduce the number
of users allowed on the system at one time. UX/RPM displays the
number of users on its overview screen.

3-10

Licensed Material — Property of Data General Corporation 093-701129-02

System-Wide Memory Statistics

Free memory
frames

Kernel
Memory
Allocation

UX/RPM: Free Memory (frames)
sscope: Free Memory Frames
nsar -r: freemem

sar -r: freemem

Number of memory pages available for immediate allocation,
including pages in memory objects that are not mapped by bound
LWP groups, and pages of non-open files. This value is an
indication of how much cushion there is in meeting processes’
demands for memory without purging. Except for a few dedicated
memory areas like the free memory pool, the DG/UX system will
use all of memory for buffering, unless you've set PERCENTBUTF.
If you’'ve set PERCENTBUTF, using the free memory frames value
to evaluate memory usage is difficult. Also, the DG/UX system
tries to keep potentially useful information such as recently
executed programs and recently read files in memory. Using the
rate of frames purged is a better indicator of how busy your
virtual memory system is; see Frames Purged.

Non-pageable nsar —k: (npg mem) alloc
Allocation

Number of bytes allocated to requests from the kernel for
non-pageable memory.

Non-pageable Memory nsar —k: npg mem
Pool

Non-pageable memory pool size, in bytes. The memory pool size is
dynamic and will always be larger than allocations from it. The
maximum size for this memory pool is equal to main memory size.

Non-pageable Request nsar —k: (npg mem) fail
Failure

Number of requests for non-pageable memory that have failed.

Pageable Allocation nsar —k: (pg mem) alloc

Number of bytes allocated to requests from the kernel for
pageable memory.

Pageable Memory nsar —k: pg mem
Pool

Pageable memory pool size, in bytes. The memory pool size is
dynamic and will always be larger than allocations from it.

Pageable Request nsar —k: (pg mem) fail
Failure

Number of requests for pageable memory that have failed.

093-701129-02

Licensed Material - Property of Data General Corporation 3-1 1

System-Wide Memory Statistics

Memory Data File Pages UX/RPM: Data Pages
Usage nsar —W Odfile-res: dfile

Number of resident pages that are data file pages.

Kernel Anonymous UX/RPM: Kernel Anon
Pages nsar —-W Okanon-res: kanon

Number of resident pages that are kernel anonymous pages.
These pages include not only pages allocated from the memory
pools, but also all of the kernel wired text and data that is
initially loaded from the boot image. A significant amount of
kernel data structures are dynamically allocated from the wired
memory pool in particular (for example, STREAMS and device
driver structures).

Program File Pages UX/RPM: Program Pages
nsar —W Opfile-res: pfile

Number of resident pages that are program file pages.

User Private UX/RPM: Private Anon
Anonymous Pages nsar —W Oupanon-res: upanon

Number of resident pages that are user private anonymous pages.

User Shared UX/RPM: Shared Anon
Anonymous Pages nsar —W Ousanon-res: usanon

Number of resident pages that are user shared anonymous pages.
These pages may exist in the address space of more than one
process, such as a shared memory segment.

Page Faults User UX/RPM: User Faults/Sec
sscope: User Page Faults/Sec
nsar —w: bswin/s
sar —w: bswin/s

Number of page faults accumulated by user processes (the faults
are actually taken by LWPs). This number includes hard page
faults, faults satisfied by pages already in memory (soft page
faults), and copy-on-write faults. It also includes faults on pages
of remote mounted file systems. It does not include page faults
taken by the DG/UX kernel.

3-12 Licensed Material — Property of Data General Corporation 093-701129-02

System-Wide Memory Statistics

Hard UX/RPM: Hard Faults/Sec
sscope: Hard Page Faults/Sec
nsar —p: vilt/s
sar —p: vilt/s

Page faults due to referencing pages not in memory and which
must then be read from disk, either from local or remote-mounted
file systems. These faults are rather expensive: there is the disk
read cost and the file system overhead.

See Frames Purged.

Fill from file UX/RPM: Fill Faults/Sec
sscope: Fill From File Page Faults/Sec
sar —p: pgfil/s
Number of hard page faults satisfied by reading from a file as
opposed to reading from the swap area. This includes hard faults
on all mapped files, whether mapped by exec(2) or mmap(2). The
difference between Hard Page Faults and Fill From File Page
Faults is the number of swap area page faults.

An increase in forks can increase this value since pages that
contain code and initialized data must be read in from disk.

Soft UX/RPM.: soft faults
nsar —p: atch/s

Page faults satisfied by reclaiming a page already in memory.
These faults occur when a page is mapped in the address space of
a process, but is not marked resident because it has not been
referenced yet by that process (even though the page is resident in
memory). Such a fault obviously does not require I/O, but does
require that the page table entry for the faulting process be
changed to reflect the residency of the page being mapped. You
incur the cost of taking the exception and changing the page table
entry, but you needn’t go to disk to service the fault. These faults
are inexpensive.

093-701129-02

Licensed Material — Property of Data General Corporation 3-1 3

System-Wide Memory Statistics

Copy on write UX/RPM: COW/Sec
sscope: Copy on Write Page Faults/Sec
nsar —p: pflt/s
sar —p: pflt/s

User page faults that result in the creation of private copies of
shared pages. The shared pages copied by these operations fall
into two categories:

1. File pages that have been mapped private by either an exec(2)
function or mmap(2) and then have been modified, such as when
a program assigns a new value to an initialized variable for the
first time.

2. Privately-mapped anonymous pages that are shared among
multiple processes as a consequence of fork(2).

Copy-on-write faults may also be hard faults, and always require
copying a page. A copy-on-write fault is hard when the page to be
copied from is not in memory and must be fetched. This value
generally goes up as the fork rate goes up.

Page-In Pages nsar —p: ppgin/s

Pages paged-in per second (system-wide). Each request can bring
in more than one page.

Requests nsar —p: pgin/s

Number of page-in requests (system-wide). This number includes
hard page faults and file faults (such as file page-ins due to read
and write system calls).

Page-Out Operations nsar —g: pgout/s
Number of page-out operations.

Pages nsar —g: ppgout/s

Number of pages paged-out per second. This value may be greater
than the number of page-out operations because a single
operation may page-out several pages.

3-1 4 Licensed Material — Property of Data General Corporation 093-701129-02

System-Wide Memory Statistics

System Paging Statistics

In addition to the standard statistics listed above, nsar reports
statistics on system paging activity. The following statistics describe
system paging activity, both in terms of the number of pages
affected and the number of paging operations. The syntax of the
nsar command for system paging activity is:

nsar -W QOoperation-pagetype-units

where operation is a paging operation type, pagetype is a page type,
and units is a units type. Each of the variables is referred to as a
syllable.

These are the paging operation types:

Syllable Name Description

hfault hard faults Requires physical I/O (read from disk
and/or the file system).

sfault soft faults Requires page table manipulation but no
physical 1/0.

hnfault hard non—faults Page-in operation that is not caused by a
page fault.

snfault soft non—faults Explicit request that references a resident
or zero-fill-on-demand page.

cfault copy-on—write Operations in which a private copy of a

page faults page is created. Each of these operations

will have already been counted in one the
the four previous types.

rdirty replace dirty New pages made available by writing
page modified or “dirty” pages to backing store.
rclean replace clean New pages made available by making
page unmodified or “clean” pages non-resident.
fclean forced page Explicit request to clean a “dirty page.”
clean Modified pages written to backing store by
the mementl(2) MC_SYNC operation or
fsync(2).
uclean unforced file Modified file pages written to backing
page clean store by the file page cleaning daemon.

093-701129-02

Licensed Material — Property of Data General Corporation 3-1 5

System-Wide Memory Statistics

The syllables for page types are:

Syllable Name

kanon Kernel anonymous pages
upanon User private anonymous pages
usanon User shared anonymous pages
pfile Program file pages

dfile Data file pages

The syllables for specifying the units of these statistics are:

Syllable Name
op Number of operations or requests
pp Number of pages affected. The number of pages affected is

always greater than the number of operations/requests
because each operation can affect multiple pages.

Here is an example of using nsar to report paging statistics (three
times at 10-second intervals:

% nsar —~W Ohfault-pfile—op,hfault—dfile—op,hfault-upanon-op 10 3 .

This reports the number of hard faults in program file pages, data
file pages, and user private anonymous pages. For each sample this
will print a line of the form

00:00:05 hf-pf-op/s hf-df-op/s hp-up-op/s
00:00:15 2 0 12

UX/RPM presents these system paging statistics on additional
virtual memory windows. Both system paging requests and
operations per second are displayed.

3-16

Licensed Material — Property of Data General Corporation 093-701129-02

Memory Configuration Variables

Memory Configuration Variables

The following message configuration variables are also listed in
/usr/etc/master.d/dgux:

PERCENTLOCKABLE

Specifies the percentage of physical memory available for
locking by user processes, provided through the
memcentl(2) system call. The kernel automatically rounds
down any reservation requests that would otherwise
impinge on memory used for the kernel itself. The default is
10. Note that reserving and then locking large amounts of
memory may deadlock the system. Conversely, not reserving
enough may cause programs that need to lock memory to
fail.

UPOOL_MIN

Specifies the minimum size, in megabytes, to make the
kernel pageable memory pool. A value of 0 (the default) tells
the system to choose a reasonable size based on the size of
physical memory. Certain small memory systems that use
certain classes of devices may need to set this value. Note
that unnecessarily setting this value on a small memory
system will increase the amount of memory used by the
kernel.

CONFMEM

Specifies the configured amount of physical memory, in
megabytes, in the system. A value of 0 (the default) tells the
system to use all the available physical memory in the
system. Specifying a non—zero value allows the system to be
configured to use less than the amount of usable physical
memory (mostly useful for stress testing).

MAXPAGEOUTS

Specifies the maximum number of concurrent pageout I/O
operations that the system can have outstanding at one
time. The default is 0, indicating that the system should
pick a reasonable value based on the amount of physical
memory present on the system.

This assumes that the system’s effective pageout
throughput is relatively balanced with main memory size. A
small memory system which pages out to a large number of
disk spindles may achieve better performance by increasing
this value. Conversely, a large memory system which has
few spindles effectively used in pageouts may achieve better
performance by decreasing this value.

093-701129-02

Licensed Material — Property of Data General Corporation 3-1 7

Shared Memory Configuration Variables

A reasonable guideline is to set this variable to a small
multiple of (one to three times) the number of disk spindles
which are actively involved in pageouts. This excludes disks
which are written to less than others, as well as disks
written using only raw or unbuffered I/O (which database
management software often uses).

Setting this value too high can cause high latencies for
other accesses to the disks used in pageouts. Setting this
value too low can artificially limit the system’s effective
pageout throughput, which can cause delays for memory
allocation. Latency is the time it takes for a sector (with the
data you want) to revolve under a disk’s head.

Shared Memory Configuration Variables

The tunable parameters shown below are associated with
interprocess communication shared memory; they are dynamic
variables. These parameters are also defined in the
/usr/etc/master.d/dgux file.

SHMMNI
Specifies the maximum number of shared memory
identifiers system wide. Each entry contains 52 bytes. The
default is 1024.

SHMSEG
Specifies the number of attached shared memory segments
per process. The default is 256.

SHMMAX
Specifies the maximum shared memory segment size in
bytes. The default is 4¥1024*1024 (4 MB). The shared
memory maximum should be equal to or greater than the
size of the shared memory area defined by an application
system.

SHMMIN
Specifies the minimum shared memory segment size in
bytes. The default is 1 byte.

End of Chapter

3-1 8 Licensed Material — Property of Data General Corporation 093-701129-02

4 File Systems and Disk I/O

This chapter discusses several topics related to I/O and file systems,
including:

® Disks

® File systems

® Virtual disks

o File system tools
® Disk I/O statistics

® File system configuration variables

Here are some terms that are used in this chapter:

To increase DG/UX file system performance, the disk storage of a
file system is divided into Disk Allocation Regions (DARs). To access
a file, the DG/UX file system alternately reads a file’s inode (to find
where the file’s blocks are stored) and the blocks themselves. By
using DARs, a file system can keep a file’s data blocks and inodes
physically close together, minimizing seek time.

Disk Allocation Region (DAR)
A
hini

sl

File
Data
Blocks

An inode contains all the information pertaining to the mode, type,
owner, size, and location (of the blocks) of a file. A unique inode
number identifies each file in a UNIX system’s flat file structure.
Pointers in an inode tell the file system’s Flat File Manager (FFM)
where a file’s data elements are stored.

A data block is a block of data that is stored on a virtual disk. Data
blocks are 512 bytes, and are typically equal to the underlying
physical disk’s sector size.

093-701129-02 Licensed Material — Property of Data General Corporation 4-1

A data element is the logical granularity at which the DG/UX file
system transfers a file’s data. The default data element size on
DG/UX systems is 8 KB, which is sixteen 512 byte disk sectors. As
the figure shows, data blocks are stored as data elements in a Disk
Allocation Region.

A virtual disk is a software abstraction that enables you to
construct a file system that appears as if it were a single sequential
collection of disk blocks, even though it may span multiple physical
disks. All virtual disks are associated with one or more physical
devices, usually disks. Virtual disks enable the DG/UX operating
system to manage files the same way, regardless of how the files are
stored physically. Additionally, you can manipulate virtual disks
online (such as renaming, copying, moving, and expanding them).

In order for a virtual disk to be accessible for mounting as a file
system, the virtual disk must be a volume. Every virtual disk
created with a non-null name is made a volume by default. Virtual
disks that are volumes have device node entries such as
/dev/dsk/foo and /dev/rdsk/foo; it is via these nodes that virtual
disks are accessed.

File system metadata, in the context of the DG/UX demand-paged
file I/O system, is “data about data.” This is data, such as inodes,
index elements, and directory information, that the file system uses
to describe and locate files. File system metadata is cached in the
kernel’s data cache.

Mirroring is the technique of writing the same data to separate
virtual or physical disks at the same time. If one disk fails, the data
is still available on the mirror disk. Mirrored disks can also perform
read operations faster than single disks because the system can
simultaneously read from each of the mirrors. You can set up
software disk mirroring (described in this chapter) or hardware disk
mirroring (described in disk-array documentation).

Striping is the technique of distributing (or interleaving) data
across several disks so that data can be accessed in parallel,
increasing disk I/0 performance. The DG/UX operating system
supports striping at both the software and hardware levels.
Software-level striping works within virtual disks. The Data
General high availability disk systems support hardware-level
striping across disk modules in a disk group. Hardware-level
striping is part of the RAID 5 design, which provides uninterrupted
access to data if a disk module in the array fails.

4-2

Licensed Material — Property of Data General Corporation 093-701129-02

Disks

Disks

Buffering

A raw disk is a disk that is being accessed in character mode.
Character I/O can be used with disks to allow unbuffered transfers
of an arbitrary number of disk sectors. Applications can bypass
virtual memory by performing character I/O operations to disk. For
example, a database management program might use character I/O
to manage its own disk transfers. Disk transfers are subject to a
device’s alignment and granularity requirements (usually 512
bytes). Physical disks and virtual disks are accessible in character
mode; character nodes for physical disks are in /dev/rpdsk, those
for virtual disks are in /dev/rdsk.

A block disk is a disk that is being accessed in block mode—block
I/0O transfers are of a fixed size and must go through virtual
memory. Disks accessed in block mode have no alignment or
granularity requirements. For example, you can read a single byte
from a block disk. Physical disks and virtual disks are accessible in
block mode; block nodes for physical disks are in /dev/pdsk, those
for virtual disks are in /dev/dsk.

The best way to improve I/O performance is to avoid going to disk.
This is accomplished by using a large enough buffer cache, using
correct element sizes, and keeping frequently used data in close
proximity.

If heavy data file usage is hampering system performance by
provoking excessive paging, you may want to reduce the
configuration parameter PERCENTBUF (which specifies the
maximum percentage of physical memory that can be occupied by
data files). The idea is to free memory used by file I/O to allow more
memory for code.

Buffering is best when it is used to hold shared data. Database
products need special consideration. Generally, database data is
private to the database, and the database software controls and
provides access to all users. Since the database software should
have the ability to best understand the use of the data and its
buffering needs, database applications often achieve the best
performance by allowing the database software to buffer the data
internally. Hence, the following tips are important for tuning a
system supporting database applications:

Increase the data buffer size of the database. Since database tuning
varies from product to product, please refer to your database
administrator’s manual.

093-701129-02

Licensed Material — Property of Data General Corporation 4-3

Disks

Decrease the value of PERCENTBUTF to avoid excessive paging as
described above and leave memory available for allocation by the
database application.

Set up the database to use raw disk (i.e., /dev/rdsk/foo). I/O to a
raw disk is faster than synchronous I/O to a buffered disk, and the
additional buffering gained by using the file system does not help if
the database is doing a fair job of buffering the data.

When using block disks, the maximum size of a buffered I/O
operation is equal to the data element size assigned to the block
special file node that represents the disk. When using raw disks,
you can attempt to write up to 2 GB (although data types may be a
limiting factor). However, the system will break a large request into
smaller ones if it cannot safely allocate enough wired memory to
support the request, or if the disks or SCSI interface cannot support
the requested transfer size.

Metadata Buffering

Using nsar -b, get the average %rcache and %wcache for your
system; these file system cache hit ratios measure the effectiveness
of file system metadata buffering. On most systems, you should
expect an average %rcache ratio of 95 or better. You can also use
UX/RPM to check Read Cache Hits. The %wcache is generally much
lower (down to around 65%), depending on the size of data files and
the type of I/O being done.

If your system’s cache hit ratios fall beneath these percentages, it
may be possible for you to improve these rates by increasing the
kernel parameter PERCENTSYSBUF (which specifies the
percentage of physical memory reserved for system buffers) and
decreasing MAXSYSBUFAGE (which specifies the maximum time
that metadata will remain in system buffer caches before being
written to stable storage).

On the other hand, if your system’s read cache hit ratio is
consistently 99-100%, you might want to decrease
PERCENTSYSBUF so that %rcache is 97-98%. To determine the
current percentage of physical memory reserved for system buffers,
you can use crash to read the value of
cf_bm_percent_memory_for_system_buffers. For example, after
invoking crash, enter this command:

> mr cf_bm percent_memory for_system buffers 1 b J
cf_bm_percent_memory_for_system buffers: 05

Licensed Material — Property of Data General Corporation 093-701129-02

File System

Using nsar -a, get the rate of inode entry searches (iget/s, or Iget
Calls using UX/RPM). If this number seems high (greater than 100
per second), there may be unnecessary file searches or heavy NFS
activity (typically, there is one inode entry search per NF'S
operation). Keep in mind that UNIX systems do not hash filenames
within directories. Studies have shown that for directory sizes
found in typical UNIX environments, a simple sequential search is
quicker than a hashing implementation. If a directory contains
thousands of files, then the sequential search can be quite slow and
can adversely affect file lookup operations.

In particular, the /dev directory may be very large—this is
especially a problem when you try to use ttyname(3C); if you need
to know your TTY device name frequently, set the $TTY
environmental variable and use that to retrieve the name.

The login procedure uses ttyname to search the /dev directory. To
set the device name for the TTY that you are logging onto, use
login with the —d device option. You can modify _pmtab directly
for your ttymon (look in /ete/saf) and add this option to each login
line.

File System

The following sections describe how files are made on the DG/UX
file system.

File Data Element Sizes

The size of the file system’s buffered I/O operations to disk is based
on file data element sizes. The default data element size for a file
system is 8 KB (16 blocks), but can be modified on a per file system
basis by using either the mkfs or tunefs command. The data
element size for a file can be specified at file creation by using the
dg_mknod() call. Data element sizes must be a power of 2, and
should be greater than 4 KB for better efficiency. The default data
element size and other information about a file system can be
dumped by using the dumpfs command; this command can be run
by the root user with the file system still mounted.

The default element size is based upon the assumption that I/O is
often sequential; after a read operation, another read is very likely
to occur.

093-701129-02

Licensed Material — Property of Data General Corporation 4-5

File System

When data access is random and done with read/write operations
that are much smaller than 8-KB units, adjusting the data element
size becomes important. For example, if a program is doing random,
4-KB reads from a very large database (in relation to the size of the
file system buffers) whose data elements are 8 KB,

The system is reading an extra 4 KB of data for every 4 KB of data
that is likely to be used.

The extra 4 KB of data is wasting buffer cache that could be better
used for another I/O request.

By adjusting the data element size to 4 KB, you can effectively
increase the buffer cache size (more buffers are available) and
improve the speed of the disk (4-KB reads instead of 8-KB reads). 4
KB is the smallest buffer size that the kernel will use for a file;
using a data element size smaller than 4 KB will increase disk I/O
and adversely affect performance.

In most situations, the default of 8 KB (16 blocks) is fine.

Keeping Data Close Together

The location of data in a file can affect the time it takes to access
the data. The first ten data elements are directly accessed. Then,
depending on the file’s data element size and how deep into the file
the data is located, the remaining data elements are accessed
through single, double, or triple indirect pointers.

You can keep frequently used data in close proximity on a disk two
ways. The first way is to group frequently used file systems close
together.

The second way is to adjust anniversary sizes so that large, more
permanent type files all have their data in the same Disk Allocation
Region (DAR). As a file grows in size, the file system allocates more
and more blocks out of the DAR that contains the file, until the file
reaches its first anniversary size. The first anniversary size is a
limit that, when reached by a file, tells the file system to start
allocating a file’s data into another DAR. The anniversary size limit
protects against having any one DAR too heavily subscribed. The
second anniversary size is the size limit that, when reached, causes
the file system to stop allocating data blocks from the secondary
DAR and starts allocating from another DAR.

Generally, small file systems work well with the default
anniversary sizes. However, file systems greater than 300 MB and
containing a few files work better when the first and second
anniversary sizes equal the DAR size.

Licensed Material — Property of Data General Corporation 093-701129-02

File System

Note that disk fragmentation is unavoidable, but DG/UX file
systems minimize the effect by limiting fragmentation to a DAR
(see “Fragmentation” below). Building a file system with the wrong
size DAR can inappropriately spread a file’s data across a
disk—distributing a file’s data into multiple DARs. By adjusting the
size of the DAR and/or the anniversary size, you can enjoy the
benefits of the DAR without the side effect of frequent, long seeks
between DARs when reading a single file.

Correctly setting the DAR size and anniversary size is more critical
for sequentially accessed data than for data stored in large (or very
small) data files that are randomly accessed. The Average Service
(avserv using nsar —d or aver serv using UX/RPM) time can help
you determine how close data is stored. As these times go up, the
disk is having to do longer seeks. For example, on some SCSI disks,
a 14 millisecond access is theoretically possible. For individual SCSI
disks, Average Service times less than 20 milliseconds are excellent.
Average Service times in the 25-35 millisecond time range are not
bad. High values may indicate on-disk cache misses or, if you are
using a striped file system, that the file system’s DARs are
misaligned, causing higher seek rates.

The DAR size should be an integer multiple of the data element
size. The recommended size is a multiple of 8 KB (16 blocks).

If there is one large file, use a single DAR. If there are a few large
files, consider using a single DAR or fewer DARs than the default.
However, using only one or two DARSs on very large virtual disks
may increase the time needed to search bitmaps and increase the
CPU time required to process a write request.

Fragmentation

Fragmentation generally worsens over time as files are deleted and
created. You should periodically look for and archive (or delete)
unnecessary files, such as duplicate file names, log files, accounting
system files, and idle files.

Multiple volatile file systems on one disk can cause “ping-pong”
fragmentation. Each file system has its own free space, which
routines must skip over to reach other file systems on the same
disk. Try to balance the load per disk by storing a mix of static and
volatile file systems on each.

093-701129-02 Licensed Material — Property of Data General Corporation 4-7

File System

You can use the dumpfs command to display information about
DARs; the root user can run this command with a file system still
mounted. When the “free data blocks histogram” shows that a DAR
does not contain any large blocks (block sizes of 16 or larger),
fragmentation may be an issue. Also, mixing files of different data
element sizes hurts overall disk subsystem performance. You can
eliminate fragmentation by archiving and then restoring the files in
the affected file system.

The dump (or dump?2) and restore commands are a good way to
eliminate fragmentation. Files are restored one at a time, so a file’s
data is pretty much contiguous. In addition, dump (or dump?2) and
restore maintain file “holes”: empty file data elements that
increase a file’s extent, created by seeks. These holes use index
pointer space but do not use data blocks.

Note that since tar and cpio see these holes as null data, those
commands archive the nulls and restore them; after reloading via
tar or cpio, a file that originally contained holes will actually
consume more data blocks and the holes will no longer exist.

File System Size

By default, DG/UX file systems allow only the root user to write to a
file system that is more than 90% full. This limit can be overridden
with mkfs, tunefs, or cpd. Reducing the minimum free space
reclaims some disk storage. However, the more full the system
becomes, the longer it takes to find free space; also, data element
sizes may become smaller. Searches for files whose data element
sizes are smaller than 8 KB take longer than 8-KB searches
(searches have been optimized for the default file system data
element size). In general, try to keep read-write file systems less
than 80% full.

Increasing the minimum free space probably will not increase disk
performance; 10% is optimum for most situations.

To display the percentages of blocks and inodes that are in use for
each mounted local file system (as well as the total number of
blocks and inodes and the number of free blocks and inodes), use
this command:

admfsinfo -o diskuse -1 J

When planning a virtual disk’s size, you need to consider file system
overhead for the kind of file system (if any) you intend to put on the
virtual disk. File system overhead refers to internal data
structures, such as data allocation tables, that the operating system
requires to manage file access in the file system.

Licensed Material — Property of Data General Corporation 093-701129-02

Virtual Disks

When planning a virtual disk for a DG/UX file system, you need to
make it at least 17% larger than the amount of space you intend to
use in the file system. This 17% overhead includes the 10% reserved
free space buffer and the internal structures that the operating
system requires for tracking files and directories. For example, if
you need a file system large enough to hold 100 MB of data, you
should create a file system 117 MB in size. With no files, the file
system will be around 4% full. After adding 100 MB of data, the file
system will be around 90% full.

the amount of free space. Also, if a file system is extremely large (1

If a file system will contain read-only static data, you can decrease
GB or more), you may want to decrease the amount of free space.

Note that the root file system in particular can fill up and then
panic the system.

Virtual Disks

Once you have reduced the disk accesses, the next most important
activity is to improve the speed of the disk accesses. This means
that you may need to

® Balance the load between disks.

® Balance the load between controllers.
® Use or tune disk caching

® Use data striping

® Use disk mirroring

® Use memory file systems

® Use fast recovery file systems

® Consider other concerns, such as bad blocks, write verification, and
file synchronization.

Balancing the Disk Load

You determine the disk load by looking at disk data such as percent
busy (%busy using nsar —d or UX/RPM, Percent Busy using
sscope), average wait (avwait using nsar -d, Average Wait using
sscope), and average response (aver resp using UX/RPM, Average
Response using sscope). The busy data gives you an idea of how
much time the disk is spending servicing requests; generally, this
statistic should be under 30%. Faster machines and servers are able
to push %busy to larger values. The average wait time gives you an
idea of how long requests are waiting in a queue before getting sent
to the disk subsystem. For good system response, this value should
be less than 15-20 milliseconds on individual disks.

093-701129-02 Licensed Material — Property of Data General Corporation 4-9

Virtual Disks

For response time, 40 milliseconds is considered good for an
individual disk. For a system disk (the disk that contains root) or a
RAID 5 unit, 50 milliseconds is generally good.

Also look at the average queue (avque using nsar -d, aver queue
using UX/RPM, and Average Queue using sscope) disk data: for
good system response, it is important for the disk subsystem to be
able to keep this number in the low single digits. If this number
seems high, your system may need more disk modules, controllers,
disk striping, and adjustment of file system parameters like DAR
size and data element sizes. As this queue length increases, the
average wait time will also increase.

With a multi-disk configuration of similar disks, the number of
requests should be balanced across the disk units; writes are
particularly expensive. Check the read and write requests (r+w/s
using nsar -d, % tot using UX/RPM, and Read+Writes Reqs/Sec
using sscope). Overall system performance could be bottlenecked if
one or a few disk units in a multi-disk configuration handle most of
the I/0 load. To balance the load, check which file systems are
mounted on the most heavily used disks and attempt to better
distribute those file systems. You may need disk striping (discussed
later in this chapter) to better distribute the load across disks. To
see which file systems reside on each physical disk, use sysadm
(Device—>Disk—>Physical->List, answering “partitions” to the
Listing Style query).

You can determine which virtual disks are bottlenecks by listing the
I/O statistics per virtual disk with the command nsar -d -WD=v or
with the UX/RPM disk screen. For nsar to list a virtual disk, it
must be a volume. As described earlier in this chapter, every virtual
disk created with a non-null name is made a volume by default.
However, if a virtual disk is not a volume, you can use the
admvdisk command with the -o modify -vy option to make it a
volume.

It is quite possible for the system physical disk (the disk that
contains the root virtual disk) to become a bottleneck. Normally, the
system disk contains the first piece of swap, /tmp, and /var; many
administrative log files are also written to the system disk. An
application that does a lot of sorting can overtax /var/tmp. Also,
print spooling uses the /var directory. Here are some possible
solutions:

Move /tmp and /var to less active physical disks. Those two virtual
disks might be good candidates for software striping if they are
heavily used.

4-10

Licensed Material — Property of Data General Corporation 093-701129-02

Virtual Disks

Create other swap virtual disk areas on less frequently used
physical disks (one area per disk). Using multiple swap areas of
equal size allows DG/UX to optimize swapping operations by using
a round-robin system between areas (however, sequential memory
pages are not mapped sequentially in the swap area).

Do not put application executables on the same physical disk as
root.

Balancing the Load Between Controllers

Balancing the load between controllers means that you want to
keep all controllers as busy as possible, without overtaxing them. It
is best to distribute data over multiple controllers. Refer to the
specification guides for the type of disks and controllers you are
using to determine limits. Also look at the disk I/O statistics from
nsar, UX/RPM, and sscope.

On a CLARIiON, the dual-SP configuration may provide better
performance and higher availability than a single-SP configuration.
Using dual-SP, one host and one SCSI-2 adapter with one channel
is connected by the SCSI-2 bus to two SPs.

To improve performance on the dual-SP, you can bind some disks on
one SP and the other disks on the other SP. The SP that binds a
physical disk determines the primary storage-system route to that
disk; the route through the other SP will be available if a
component in the primary route fails.

Disk Caching

Disk caching increases access rates to disk media by combining
small fast storage devices (nonvolatile RAM or disks) with large
slow disks. An application uses a fast device for read and write
operations, while the operating system duplicates these operations
on a larger device. The purpose of the configuration is to accelerate
file system access for I/O-intensive applications without risking
data integrity.

The primary caching configuration consists of a nonvolatile RAM
(NVRAM) or battery backed-up random access memory (BBURAM)
board functioning as the fast device (the frontend) while a physical
disk functions as the slow device (the backend). Although the RAM
board has a relatively small storage capacity, its superior I/O
performance can boost the performance of I/O-intensive
applications such as database management systems. DG/UX
System 5.4 Release 3.00 also supports the use of a disk drive,
preferably a fast one, as a frontend device.

093-701129-02

Licensed Material — Property of Data General Corporation 4-1 1

Virtual Disks

RAM-based caches introduce the risk that a failure could lose the
data in the cache before the system has a chance to write it to the
more stable backend device. The ideal frontend device is nonvolatile
or battery backed-up RAM or a fast disk, which provides the
required speed as well as stability.

The disk functioning as the backend, meanwhile, provides greater
storage capacity than a RAM device or fast disk device and has the
added stability normally attributed to disk drives. The backend
device must be a local disk.

The DG/UX system optimizes disk caching for accessing DG/UX file
systems rather than for other data structures (such as databases
built directly on virtual or physical disks). You may, nevertheless,
use cached disks for any purpose that benefits from the accelerated
I/0 performance.

Note that caching a virtual disk may be redundant with file system
buffering, which will cause no performance improvement. You may
consider running your applications both with and without disk
caching, then comparing results to see which configuration offers
the best performance. With virtual disks, you can add and remove a
cache from a file system while it is active and in use. You can
experiment with disk caching without having to shut down your
application or file system.

The following section tells how to get the most out of a cached disk
configuration.

How Caching Works

As I/O requests arrive for the cached disk, the system allocates
buffers in the frontend device to hold data for the backend device.
These allocated buffers are considered either clean or dirty. A clean
buffer is one whose data matches the corresponding buffer on the
backend. For example, a buffer that was copied from the backend to
the frontend for a read operation is considered clean because it
contains the same data that is on the backend. A dirty buffer
contains data that is inconsistent with the backend. For example, a
buffer that was written by an application but has not yet been
flushed to the backend is considered dirty.

As /O access to the cached disk continues, the system allocates
more buffers until the frontend device becomes full. Then, the cache
flushes a dirty buffer from the frontend to the backend to make
room for additional buffers. There is an asynchronous flushing LWP
running in the background that does much of this flushing so that
buffers are usually immediately available on the frontend.

4-12

Licensed Material - Property of Data General Corporation 093-701129-02

Virtual Disks

The process of freeing buffers involves seeking out which buffers
are the least frequently accessed and flushing their contents to disk
(if dirty) and then flagging them as unallocated. The system is then
free to allocate them for more I/O requests.

To determine which buffers are the least frequently accessed, the
system maintains an access weight number for each buffer. Each
time an I/O request accesses the buffer, the system increments its
access weight number. When the time comes to reclaim buffers, the
system can then compare the access weight numbers of the buffers
to see which are most frequently accessed (and should stay in the
cache) and which are least frequently accessed (and may be freed).

Tuning a Cached Disk

The DG/UX system’s disk caching feature provides several
parameters you can tune to optimize cache efficiency. These
parameters are:

Cache reads
Specify if reading from the cache is enabled. Answering
“yes” causes data to be shipped from the backend device to
the frontend for reading. Otherwise, data is read directly
from the slow backend device.

Cache writes
Specify if writing to the cache is enabled (when possible).
Answering “yes” causes data to be written directly to the
frontend, which subsequently sends the data to the
backend. Otherwise, data is written directly to the slow
backend device.

Asynchronous write policy
This parameter is meaningful only if writes are cached. You
can request direct writes from the frontend to the backend
device without caching it under certain conditions:

Never: The system will never write data directly to the
backend. The advantage is that no redundant disk activity
takes place, but the disadvantage is that cache performance
may degrade if the frontend gets full.

All writes: Any time a buffer is written to the cache, the
buffer is flushed to the backend device. This may improve
performance in caches doing more reads than writes. A
disadvantage of this operation is that substantial redundant
disk activity may take place.

093-701129-02

Licensed Material — Property of Data General Corporation 4-1 3

Virtual Disks

First write: The first time a new buffer is written to the
cache, it is flushed to the backend device. This helps to
keep the cache clean when there are a lot of buffers that are
written only once, such as for large sequential writes.
However, it minimizes disk activity for those blocks that are
written repeatedly. In general, “first write” is the best
policy.

Cache only file system metadata

Metadata includes important file system data such as file
system inodes, size, the date stamp, and owner. There are
several instances in which caching file system data may not
be useful, but caching the metadata is useful. For example,

1) A database manager application is responsible for
regulating its own data transfers. Allowing the DG/UX
system to cache file system data would be superfluous and
probably ineffective.

2) An NF'S server using a cache over a LAN also regulates
its own buffering needs. Data received over a LAN would
likely flood a cache’s buffers.

Caching metadata only is useful in instances such as these.
File system data is read from and written to the slow
backend device directly, bypassing the frontend entirely.

Caching both file system data and its metadata is desired
for a local file system.

If the cache is to contain a non—-DG/UX file system, such as
a database, do not elect to cache file system metadata only.
Such a selection would prevent any data caching.

Read weight

Use the read weight parameter to assign relative priority to
read operations that occur in a frontend device; a larger
weight means higher priority. When a cache is searched for
available space, buffers with lower weights are reused first.
Thus, buffers with a high read rates can be retained in the
cache longer.

If multiple cached virtual disks share a frontend, you can
assign a higher priority to one cache by increasing its read
and write weight values. Conversely, you may assign a
lower priority to one or more remaining caches by
decreasing their read and write weight values. The
maximum read weight is 100; the default is 1.

4-14

Licensed Material — Property of Data General Corporation 093-701129-02

Virtual Disks

Write weight
Use the write weight parameter to assign relative priority
to write operations that occur in a frontend device; a larger
weight means higher priority. When a cache is searched for
available space, buffers with lower weights are reused first.
Thus, buffers with high write rates can be retained in the
cache longer.

If multiple cached virtual disks share a frontend, you can
assign a higher priority to one cache by increasing its write
and read weight values. Conversely, you may assign a
lower priority to one or more remaining caches by
decreasing their write and read weight values. The
maximum write weight is 100; the default is 1.

Search Percentage
This is the percentage of the cache’s frontend that the
system searches when it is looking for a clean buffer or data
block with the lowest read or write weight. If the system
does not find a clean buffer, it flushes and reuses a dirty
buffer with the lowest read or write weight. On the next
search for a clean buffer, the search will begin where the
last search ended, so eventually the entire cache will be
searched. Setting the percentage to zero causes the first
available buffer to be used. By default, when creating a
cache, the search percentage is 10 percent.

Ideally, a cached disk provides a performance improvement by
satisfying disk accesses using much faster memory accesses. There
are two obstacles, however, that prevent disk caching from reaching
this ideal level of performance:

The frontend device is not large enough to contain all the data that
applications will require of it; therefore, some I/O requests will
require accessing the backend device for data not currently in the
frontend. The ratio of I/O requests satisfied by the frontend device
(cache hits) to the total number of I/O requests is called the cache
hit rate. You want the cache hit rate, which is expressed as a
percentage, to be as high as possible.

In a cache used for writing as well as reading, the cache must at
some point write, or flush, the data in its buffers to disk. If your
application accesses the cache during a flush, or if your application
causes a flush, it will have to wait, or stall, until the flush
completes. You want stalls to occur as seldom as possible.
Increasing the search percentage will bring down the occurrence of
stalls.

093-701129-02

Licensed Material — Property of Data General Corporation 4-1 5

Virtual Disks

By experimenting with the various parameters, you can find ways
to maximize the cache hit rate and minimize the frequency of stalls
for your cached disk. Once you have created the cached disk, use
sysadm’s Device—> Disk—> Virtual-> Cache—> List to review
performance statistics, and use sysadm’s Device—> Disk—>
Virtual-> Cache-> Modify to adjust the operating parameters.

For more information on caching, see Managing Mass Storage
Devices and DG /UX File Systems.

If you have a CLARIiiON system configured as RAID 3 or RAID 5,
there is a cache option available that can help performance
significantly. If you have a lot of output to the disks, you may want
to configure all the cache as write cache instead of configuring it as
read/write cache.

Software Data Striping

Depending on the nature of your applications, you may find that
data striping improves disk I/O performance. You can implement
data striping through the hardware (if you have a disk array) or
through the software.

To implement software data striping, you need to create a virtual
disk with this purpose in mind. Once you have created a striped
virtual disk and its file system, striping is transparent to your
applications. You use and manage the striped file system just like
any other file system. The only difference is that you cannot change
the size of a striped virtual disk; you cannot expand or shrink it.

Applications that perform a lot of random I/O (reads as well as
writes) and applications that perform a lot of sequential reads can
benefit from data striping. Also, striping is often used to balance
disk load. Data striping may not help applications that perform a
lot of sequential writes.

If your application does not appear suited to striping, do not
attempt to implement striping: striping can have a negative impact
on performance for inappropriate applications.

Data striping involves placing consecutive file data elements in the
file system so that they alternate from one partition of the virtual
disk to the next. For example, in the case of a striped aggregation of
partitions, each partition must be the same size and each must
reside on a different physical disk. The system will place the first
data element in the first partition, the second data element in the
second partition, and the third data element in the third partition,
and so on. The data elements alternate this way so that consecutive
data elements are stored on alternating disks.

4-16

Licensed Material — Property of Data General Corporation 093-701129-02

Virtual Disks

The performance advantage results not only because you have
distributed the I/O load across three disks, but also because you are
using the hardware’s read-ahead implementation to get the next
sectors on that disk and the operating system’s read-ahead
implementation to get the next data element, even before you have
explicitly requested it.

The partitions must all be the same size, and the size must be a
multiple of the stripe size (16 blocks by default). The stripe size
must be no smaller than the data element size, and it must be a
multiple of the data element size (16 blocks by default).

IMPORTANT: Rotate the starting address of the first piece of each virtual disk
across multiple physical disks, using a number that is a multiple of
the stripe size.

IMPORTANT: The root (/) and /usr file systems must not be on striped virtual
disks if you intend to boot images from them.

For information on software data striping, see Managing Mass
Storage Devices and DG/ UX File Systems. For information on
hardware data striping, see your disk array documentation.

Software Disk Mirroring

You can improve the reliability and availability of your Data
General AViiON system by using disk mirrors. You can set up disk
mirroring through the hardware (if you have a disk array), through
the software, or both. Software disk mirroring involves maintaining
redundant virtual disks where all are “mirror images” of each other;
they all contain the same data. The system manages access to the
disks in a manner that is transparent to users.

Disk mirrors provide higher data availability by allowing your
system to continue service to users even when disk errors occur.
Disk mirrors also protect data integrity by maintaining redundant
images of the same data.

Disk mirrors whose images lie on different physical disks offer
increased throughput (and thus improve overall system
performance) in environments where multiple concurrently running
applications perform intensive reads of the mirror. This benefit
arises because the system can use the images of the mirror as
individual virtual disks during concurrent read operations, using
one image to satisfy one read request while using another image to
satisfy a different read request. Thus, the mirror distributes the I/O
load across multiple disk drives.

Mirroring can slow performance of applications that are write
intensive.

093-701129-02 Licensed Material — Property of Data General Corporation 4-1 7

Virtual Disks

For information on how to create software disk mirrors, see
Managing Mass Storage Devices and DG/ UX File Systems. For
information on hardware disk mirroring, see your disk-array
documentation.

Memory File Systems

For applications that would benefit from very fast access to
relatively small databases, you can use memory file systems. A
memory file system is a portion of your computer’s physical memory
that is mounted. A memory file system behaves like a disk that has
no rotational, seek, or controller overhead. You can access it the
same as any file system. Also, memory file systems can speed access
to files on diskless workstations. However, memory file systems are
volatile—if the system loses power, the data in the memory file
system is lost. For this reason, you should be able to recreate these
file systems. For more information on how to create memory file
systems, see Managing Mass Storage Devices and DG [UX File
Systems.

Fast Recovery File Systems

To reduce the amount of time that the system requires to recover a
file system after a failure, mount the file system with fsck logging
turned on. With fsck logging, the system logs file system
modifications to reduce the amount of time that fsck requires to
verify the integrity of the file system. This feature is desirable for
systems where rapid recovery and high availability are crucial.
However, running with fsck logging turned on will incur a runtime
performance penalty.

If you select fsck logging, the operation later prompts you for log
size. Specify the log size in 512-byte blocks (32 or 64 blocks is
average). There is a tradeoff in performance between log files of
different sizes. A large log file improves run time performance but
prolongs recovery time. A small log file degrades run time
performance but reduces recovery time.

Other Concerns

Bad Blocks

Other concerns about structuring virtual disks for efficiency are bad
blocks, write verification, and file synchronization.

The presence of bad blocks can mean that the bad blocks are getting
remapped, thus decreasing performance. You can check for bad
blocks by using the sysadm operation
Device—>Disk—>Physical->Bad Blocks—>List.

4-18

Licensed Material — Property of Data General Corporation 093-701129-02

File System Tools

When the DG/UX system detects a flaw on a disk, it flags the block
(a 512-byte portion of disk space) as bad. If a write operation was
performed, DG/UX finds a good block to replace the bad block. The
operating system takes care of redirecting reads and writes
intended for the bad block so that they go to the replacement block
instead. A part of the disk called the bad block remap area contains
good blocks reserved specifically for this purpose: to replace blocks
that go bad elsewhere on the disk.

With DG/UX System 5.4 Release 3.00, you can choose not to install
remapping on disks that do it themselves, such as CLARiiON disk
arrays. This increases performance slightly because blocks do not
need to be checked before I/O to see if they are remapped.

Write Verification

In applications where data integrity is vital, you can benefit from
write verification. By turning write verification on for a physical
disk (use the dketl command with the wehk option), you can be
sure that data written to the disk is readable. You can enable write
verification only for SCSI disks that support the feature; see your
disk hardware documentation.

The disk hardware verifies every write operation by reading the
written data off of the disk and comparing it to the data as
originally received. However, the additional verification overhead in
the hardware can have a significant negative impact on the
performance of write-intensive applications.

File Synchronization

If you specify the fsync_on_close option to the mount command,
whenever a file in the mounted file system is closed, all modified
data and attributes of that file are written to disk. This option
decreases the likelihood of data loss in the event of a system crash,
but may degrade performance.

File System Tools

There are several tools available to help you tune file systems.
What follows is an overview of each. For more information, consult
the online manual pages.

Take care when tuning file systems, since file system performance
may be improved for one application, but degraded for another.

093-701129-02

Licensed Material — Property of Data General Corporation 4-1 9

File System Tools

mkfs

This utility is used to create an empty file system on a virtual or
physical disk. The mkfs utility limits a file system to a maximum of
60 DARs by default (you can override this number), but if you grow
the file system, this may increase. There are several options you
can use to override the default file system settings such as the
following:

® Inode density, which controls the number of inodes per DAR. The
default is one inode per 3500 bytes (the actual density will be
rounded down to an integral multiple of 64 inodes per DAR).

® Size, in blocks, of the DARs. The default DAR size is 1/60th of file
system size if the file system is greater than or equal to 241,920
blocks; the smallest DAR size is 4032 blocks.

Data and index element size for files
Data and index element size for directories

First anniversary size; the default is (DAR_size + 32)/ 63

Second anniversary size; the default is (DAR_size + 2)/ 4

tunefs

This utility allows you to alter the data and index element sizes and
anniversary sizes of any already existing file system. Running this
utility will not affect files that are already stored in the file system,
but the altered parameters will be applied to subsequent files. Note
that the file system must not be mounted.

dg_mknod

With this system call, you can create a file and specify the data and
index element sizes. You can control the data element size for a
single file with dg_mknod, whereas mkfs and tunefs affect a
complete file system.

dumpfs

This utility displays information about a file system. It shows you
the settings of various file parameters, as well as a map of how
blocks are allocated on a file system.

cpd

This utility displays the current allocation and the maximum
allocation of blocks and file nodes for each control point directory
named on the command line. You can also set the allocation limits
for a control point directory. Since the root of every file system is a
control point directory, you can use this command to change the
maximum number of file nodes and blocks that a user can allocate.

4-20 Licensed Material — Property of Data General Corporation 093-701129-02

Disk Arrays

Disk Arrays

Table 4-1

In the context of disk subsystems, a disk array is a collection of one
or more groups of disk modules and one or more SCSI busses that
participate in a RAID redundancy scheme. Each group in an array
appears to the operating system as a single physical disk. To
improve performance on systems with disk arrays, the following
may be helpful:

Partition write-intensive portions of applications onto mirrors; this
is using hardware disk mirroring, not software disk mirroring. For
example, for typical database applications, you would want to have
a mirrored pair for the system disk, work directories, and the
database journal file, and one or more RAID5 groups for the
read-intensive database files. A RAID5 group should not contain a
swap area; that should be included in the system disk mirrored
pair. For information on hardware disk mirroring, see your disk
array documentation.

The hardware stripe size should be larger than the data element
size. Partitions should be a multiple of this size and should start on
a stripe boundary. For information on hardware data striping, see
your disk array documentation.

Generally, if your hardware is striped or mirrored, striping or
mirroring the software is redundant. However, software striping
can be combined with hardware mirroring or RAID5. Such a
combination allows better I/O balance among the various disks and
can improve performance. A software striped RAID5 configuration
has been described as a “plaid” configuration. This type of
configuration requires very careful planning and alignment.

Tables 4—1 and 4-2 show the advantages and disadvantages of
different RAID levels:

RAID Level Performance Advantages

RAID 0 RAID 1 RAID 3 RAID 5

Maintains high Maintains high Maintains high Maintains high 1/O
I/O throughput in 1/O throughput in data throughput throughput in

write-intensive write-intensive in large file read-intensive

applications applications transfer applications
applications

No write penalty No write penalty Parity information See

from storing from storing can be stored disadvantages

parity parity with a single

write operation

Continued

093-701129-02

Licensed Material — Property of Data General Corporation 4-21

Disk Arrays

Table 4-1 RAID Level Performance Advantages
RAID 0 RAID 1 RAID 3 RAID 5
Most efficient for Most efficient for Most efficient for
combined transferring large random reads of
read/write contiguous files many small files
operations
Suited for “fault Suited fordata Suited for
tolerant” transfer transaction-
environments applications such oriented
where cost is asimagingand applications
less of anissue graphics
Can mirror root Cost-effective Cost-effective
and swap virtual data redundancy data redundancy
disks for high- for high-
availability availability
solution solution
Table 4-2 RAID Level Performance Disadvantages
RAIDO RAID 1 RAID 3 RAID 5
Failure/reliability = 100% overhead All drives are Write penalty
not addressed for data locked together, when storing data;
redundancy eliminating 4 operations
benefits of instead of 1
multiple
actuators
Not capable of Most expensive Performs poorly Minimum
automatic rebuild redundancy with high performance
of data if one solution numbers of small benefit with
disk lost random reads single-threaded
I/O operations
Loss of one disk Requires a Dedicated parity
means loss of higher number of disk can become
everything in a drives to achieve a bottleneck
stripe redundancy

4-22

Licensed Material — Property of Data General Corporation

093-701129-02

Disk I/O Statistics

Disk I/O Statistics

Descriptions of disk I/O statistics are given below. Note that the
application that you use or the command that you type is shown to
the left of the colon; the field of interest to you is on the right of the
colon and should not be typed in:

Busy UX/RPM: %busy
sscope: Percent Busy
nsar —d: %busy
sar —d: %busy

The percentage of time the specified disk subsystem has spent
handling requests over the interval between samples.

Directory UX/RPM: Directory Block Reads
blocks sscope: Directory Block Reads/Sec
nsar -a: dirblk/s
sar —a: dirblk/s

Number of reads of directory blocks. This rate should probably be
under 100 per second.

File System UX/RPM: Iget Calls
Cache misses sscope: Iget Calls/Sec
nsar —a: iget/s
sar —a: iget/s

Number of times there was a file system name cache miss. It does
not indicate the number of times the file system media was
accessed. If this number seems high (perhaps over 100 per
second), the file system may contain large directories—it possible,
avoid searching large directories and put them at the end of your
search path. Also, a search path variable (path or PATH), which
lists the directories that the system should search when looking
for a command, may be too long or not efficient.

File table size UX/RPM: File Table Size
sscope: File Table Size
nsar —v: file-sz
sar —v: file-sz

Number of distinct open file descriptors. It includes descriptors for
sockets, pipes, and local and NFS—-mounted files.

Inode table UX/RPM: Inode Table Size
size sscope: Inode Table Size
nsar —v: inod—sz
sar —v: inod—sz

The size of an internal local file system hash table. This value has
very little application-level interpretation.

093-701129-02 Licensed Material ~ Property of Data General Corporation 4-23

Disk 1/O Statistics

Metadata Logical reads UX/RPM: Log. Block Reads
sscope: MD Logical Reads

Number of blocks of metadata transferred by logical reads. This
includes blocks that are cached and blocks that require physical
reads from the disk. Metadata includes inodes and directory
blocks.

Logical writes UX/RPM: Log. Block Writes
sscope: MD Logical Writes

Number of blocks of metadata transferred by logical writes. This
includes blocks that are cached or physically written to the disk.
Metadata includes inodes and directory blocks.

Physical reads UX/RPM: Phys. Block Reads
sscope: MD Physical Reads — Blocks

Number of blocks of metadata transferred by physical reads.
These are blocks that are read from disk.

Physical read requests UX/RPM: Phys. Read Requests
sscope: MD Physical Reads — Regs
nsar —b: pread/s
sar —b: pread/s

Number of metadata read requests from the disk.

Physical writes UX/RPM: Phys. Block Writes
sscope: MD Physical Writes — Blocks

Number of blocks of metadata transferred by physical writes to

the disk.
Physical write UX/RPM: Phys. Write Requests
requests sscope: MD Physical Writes — Regs

nsar —b: pwrit/s
sar —b: pwrit/s

Number of metadata write requests to the disk.

Read cache UX/RPM: Read Cache Hits
nsar —b: %rcache
sar —b: %rcache

The read cache hit ratio, i.e., the fraction of the number of logical
reads which were found in the buffer cache.

Write cache nsar -b: %wcache
sar —b: %wcache

The write cache hit ratio, i.e., the fraction of the number of logical
writes which were found in the buffer cache.

4-24 Licensed Material — Property of Data General Corporation 093-701129-02

Disk I/O Statistics

Pathnames UX/RPM: Pathname Searches
sscope: Pathname Searches/Sec
nsar —a: namei/s
sar —a: namei/s

Number of times pathnames have been resolved. This rate should
probably be under 100 per second.

Queue UX/RPM: aver queue
sscope: Average Queue
nsar —d: avque
sar —d: avque

The average number of requests waiting to be serviced. This is
the ratio of change in response time to change in busy time.

For good system response, it is important for the disk subsystem
to be able to keep this value in the low single digits.

Read system Bytes transferred UX/RPM: Total Characters Read
calls sscope: Chars Transferred by Read
nsar —c: rchar/s
sar —c: rchar/s

Number of bytes transferred by the read system call. This does
not include all input to user applications, only that done by
read(2) and readv(2).

This number can range from zero to a few million and includes
terminal I/O as well as disk I/O. See Write System Calls.

Number of reads UX/RPM: Read System Calls/Sec
sscope: Read System Calls/Sec
nsar —c: sread/s
sar —c: sread/s

Number of read system calls. The ratio of the number of bytes
transferred by reads to this statistic indicates the average size of
read calls. A small number of bytes per read may indicate a
performance bottleneck because system call overhead contributes
most to the cost of read. If the circumstances permit an
application to read many bytes at once, it would probably perform
better.

Reads Number of reads UX/RPM: blocks read
sscope: Reads — Blocks/Sec
nsar —W Odrblock: rblks/s

The number of 512-byte blocks read from the specified disk.

Requests sscope: Reads — Reqs/Sec
nsar —W Odrreq: reads/s

The number of separate read<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>