
q» Data General

Customer Documentation

Programmer's Reference for the
DG/UXTM System (Volume 2)

A Vii ON?
PRODUCT LINE

Programmer’s Reference. forthe —
DG/UXTM System (Volume 2)

093-701056-02.

For the latest enhanceménts, cautions, ‘documentation changes, and
other information on this product, please see the Release Notice

(085-series) supplied with the software. -

Ordering No. 093-701056

Copyright © Data General Corporation, 1990, 1991

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 02, June 1991

Licensed material—property of copyright holder(s)

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS

~ DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS,. THE INFORMATION

CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
- THIS‘ MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
“ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves ‘the right to aftkec changes in specifications and other information contained in this
‘document without priar notice, and the reager. ‘thot fd'in all cases determine whether any. such changes have been
nade.

ONS, ERNING THE SALE OF DGC HARDW4RE-PRODUCTS AND. THE
SOFIWAR CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN |
EN ‘poe AND Ets CUSTOMERS, AND THE TERMS AND CONDITIONS:

. OF. THYE TY SOFTWARE CONSIST SOLELY. OF:THOSE SET
7 FORTH IN THE "APPLICABLE ‘LICENSE AGREEMENT. NO REPRESENTATION-OR OTHER —

“INNO EVENT SHAI

AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO"

CENTS *APACITY, RESPONSE-TIME. PERFORMANCE, SUITABILITY FOR USE
ORMANCE OF Pi DUCTS B' SCRIBED HEREIN SHALL BE DEEMED’T0 BE A, WARRANTY
OR ANY BURPC SE, o8 Ghee RISE TQ:ANY LIABILITY OF DGC WHATSOEVER.

HOR. ANY INCIDENTAL, INDIRECT, SPECIAL i‘| ALL, DGC'BE 1: ‘OR -
| ‘CONSEQUENTIAL DAMAGES WHATSOEVER NCLUDING. BUT NOT LIMITED. TO.LOST. PROEITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,
“EVEN IF, DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
sUCH DAMAGES:

“ AL software i is made available solely pursuant to the terms and conditions of the applicable license agreement which

- |} Restricted Rights Legend: “Use, duiplications, OF disclge ze
| ay 1 in mee (¢)(1)(i) of the Rights’ in ‘Tee

it ay 9

+ governs dts use...”
Wn

oat 6 by the U. Ss. Government i is subject to restrictions as set
umcal Data. and Computer S Software clause at [FAR] $2.227-7013

DATA GENERAL CORPORATION
4400 Computer Drive

Westboro, MA 01580

| AVION, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,

CEO Cohnection/LAN, ‘DASHER/One, DASHER/286, DASHER/386, DAS

se

ROLIPSE MV/10000, ECLIPSE MY¥/15000, ECLAPSEM

PRESENT, ‘and TRENDVIEW | are U.S. registered trademarks of Data General Corporation. CEO Connection,
-N; ‘DATA GENERAL/One,

DG/UX; “ECLIPSE Mv /1000; ECLIPSE MV/1460, ‘ECLIPSE MV /2000, ECLIPSE MV/2500, ECLIPSE MV/7800,
V.418000, ECLIPSE MV/20000, ECLIPSE MV/40000,

miicrOECLIPSE, niicroMV, MV /UX, PC Liaison, ! , SPARE MAIL, TEO, TEO/3D, TEO/Electronics,
TURBO/4, UNITE, and XODIAC are trademarks of: Data General. Corporation. _ |
IBM is a US. registered trademark of International Business Machines Corporation.
UNIX is aU.S. registered trademark of American Télé; shone & Telegraph Company. |
_NFS is a trademark of ' Sun Microsystems, Inc.
° Portions of this text are reprinted from IEEE Std 1063.1-1988, Portable Operating System Interface for Computer

_ Environments, copyright © 1988 by the Institute of Electrical and Electronics Engineers, Inc., with the permission of
the IEEE Standards Department. To purchase IEEE Standards, call 800/678-IEEE.

Portions of.this material have been previously copyrighted by: American Telephone & Telegraph Company, 1989,

' 1990; Regents | of. the ‘University of California, 1980, 1983, 1985, 1986; Sun Microsystems, Inc, 1988. .

The Network. ‘Information Service (NIS) was formerly known as Sux Yellow Pages. The functionality of the two
remains the same; only the name has changed. The name Yellow Pages is a registered trademark in the United

- Kingdom of British Telecommunications plc and may. not be used without permission.

LEGAL NOTICE TO USERS: Yellow Pages is a registered trademark in the United Kingdon of British
. Telecomminications pic, and may also be a trademark of various telephone companies around the world. Sun will

- be revising future versions of software and documentation to remove references to Yellow Pages.

Programmer’s Reference for the DG/UX System (Volume 2)

093-701056-02

Revision History: | Effective with:

Original Release — February 1990 DG/UX 4.20
Revision 1 ~ June 1990 DG/UX 4.30
Revision 2 — June 1991 DG/UX 5.4

‘Fhis is Volume: 2-Of the Programmer’ 5, Réference for te POU " * Systane: <The, Progranener’ rs
| Reference. describés the Ix én: Te@ontains individual -

zi alls; SOOT “Ou Gis ee file: formats,-and ‘other
useful topics; ‘such.as the ASCIL table shown. Peron

This manual ‘is part: pia five-volume. reference;set; 7: he otner mapuals-are the’ Sy;
_Manager’s Reference for the DG/UX System andthe User's: Referenca for the DGIU
These manuals goentain-in ‘printed: (typeset) form.the online:entries: teleased: with. thé DG/X
System in /iisr/éatmai¥ for access By: the man. command.

The Programmer's Reference provides neither a géiieral overview of the bG/UX' ‘systeni- ee .

details. of the implementation of, the system. . For more. details about some, of. the most,often

used programming tools, see Programmer’s Guide: ANSI Cand Programhiing ‘Ssipport: Fools:
Progranimier’s Guidé: System: Servicés.and Application Packaging Téols,-and thé Data Geieral
supplements to.these two, manuals. . Other related: fanuals are listed under: ‘“Rahatad:
Manuals” at the end of this manual. / -

Man Pages

For historical redsons;; each entry is called a “‘manual page” or “man page,” thougira an, entry
- “may occupy. more than: one physical’ page’ and | meayscontain more than one. entry, Tt th the.man

page contains more than: oné-entry, it: is, alph, abetizédender its ‘ “primary” nanie; for eaimaple,
the abs manual page describes: the-abs‘and. labs t Ce

Manual pages are assigned to classes ranging from.0 through :8 for easy: j. cross-reference, ‘The
class number appears in parentheses following the name; for example, ‘in-acee (1M) the “1”
indicates that accept is.a-command, and thé: ‘‘M’?,indicates that the. jan*page’ isin t the ‘System
Manager’s Reference.

A command followed by. a-(1) or (1G) usually: means that it is descripcu. mr ure user's
Reference. (Class 1 commands: appropriate for‘use by programmers’are: Joéated in ‘the te
Programmer’s Reference.) A man page namé'with a (1M); (4M), (7), or (8): ‘following’ it’means
that the entry is in the System Manager’s Reference. ‘Names with (2) or (3x), (4),.(5). fexcept
editread(5)], or (6F). are.in-the Programmer’s. Reference. -Occasionally,, DG/UX man pages ..
refer to other products’ man pages, which are not part. of the DG/UX documentation; these

are so noted.

093-701056 Licensed material—property of copyright holder(s)

Preface

Manual Organization

Volume 1 contains two chapters:

Chapter 1:.Commands,(1).

This chapter describes commands that support C and other programming languages.

Chapter 2: System Calls '(1) This chapter describes the access to services provided by the
DG/UX kernel, including the C language interface and a description of returned error ccdes.

Volume 2 contains one chapter:

Chapter. 32;Subroutines and Libraries. Q).. ‘This chapter describes the available subroutines
and subroutine libraries, . Their bjnary versions reside.in various system libraries in the
directories fib and /usr/lib. See intro(3) for descriptions of these libraries and the files in
which they ate stored.’ ‘Althougti these iitan pages are alphabetized: together, each has-a letter
associated with the number 3 indicating the pertinent libratv:

3C C Programming Language. Libraries.

3E ,. ELE. Library Routines.

3G General Library Routines
3M Mathematical Library Routines

3Ni: Networking. Support Utilities

3R Remote Procedure Call Routines.

3S Standard I/O Library Routines

3W Multinational Language Set (MNLS) Routines

3X Specialized Libraries

Volume 3 contains three chapters and one appendix:

Chapter 4:. File Formats (4) This chapter documents the structure of particular kinds of files;

for example, the format of the output.of the link editor is given in a.out(4). Excluded are
files. used by only one command (for example, the assembler’s intermediate files). In general,
the C language structures corresponding to these formats can be found in the directories
/usr/include and /usr/include/ sys.

Chapter 5: Miscellaneous Features (5) This chapter contains a variety of facilities. Included
are descriptions of character sets, macro packages, and other things.

Chapter 6: Communications Protocols (6) This chapter contains a description of the

unix_ipe communications facility.

Appendix A: Contents and Permuted Index Man Pages

These manual pages contain information extracted from the DG/UX man pages in all five

reference volumes.

iv Licensed material—property of copyright holder(s) 093-701056

Preface

Man Page Format

Each man page has at least some of the following sections:

NAME gives the primary name (and secondary names; *

‘briefly states its purpose. |

SYNOPSIS _— summarizes the usage of the pragram being described...

-- DESCRIPTION. discusses how tc use these commands..

EXAMPLES _ gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES "discusses values set when the‘cémimatid ferminaté. The valnd bhi" 3 3
| ” -aVailable i in the shell envir om ent ‘variable “2” ” (see! sh(1))** -

DIAGNOSTICS. "discusses. the error thessages that. may. : bexproduced,.. Messages th that Lage
‘intended to be, self-explanatory. are,not: Ii hsted.

SEE ALSO offers pointers to related information. -

NOTES gives information that may be helpful u under the particular cirbamstances
described.

Some man pages may contain other heads such as ENVIRONMENT andiCAVEATS:

Man Page Notation Conventions

This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbol and typeface conventions are defined in the following list. Youshould
familiarize yourself with these conventions before reading the manual.

The description of-convéntion mteanings usés the terms “command line,” ‘format: ‘Hine,’ and

“syntax line.”” A coiimand line is an ‘example’ ‘Of 4 command String that you should type’
verbatim; it is preceded-by a system prompt. ~A’ format line shows how to structure a’
command; it shows the variables that must be supplied and the available optiéns?: A‘ syntax:
line is a fragment of program code that shows how to use a particular routine; some syntax

lines contain variables. ~

093-701056 Licensed material—property of copyright hoider(s) _ Vv

__ Preface

Convention Meaning

boldface

constant

width/

monospace

italic

[optional }

choicel|choice2

$, %, #

i a

This font is used for section heads and subsection heads. It is

alsa: used to: distinguish input from output in examples where the

two are intermixed.

In command formats and code syntax: This typeface indicates text

(including punctuation) that you type verbatim from your

keyboard.

in text: This typeface is used for examples, code samples,
nathnantes,;;and the names of commands, files,. directories, and

manual pages..
In all contexts: The following characters, which have special

«meanings explained below, do not have special meaning but simply

‘represent themselves when they appear in constant-width font: < -

> { J { } |» Ineonstant-width font they are are‘I/O

redirection operators, brackets, braces, and the pipe symbol.

In format lines: This font represents variables for which you
supply values; for example, the names of your directories and

files, your username and password, : and possible arguments io

commands.

In format lines: Regular-font brackets surround an optional

argument. Don’t type the brackets; they only set off what is

optional. These brackets should not be confused with constant-

width brackets. ,

In format lines: The vertical bar indicates a choice between

choicel and choice2.

In format lines and syntax lines: You can repeat the preceding
argument as many times as desired.

In format lines: These regular-font braces surround either two or

more choices or syntax elements that are repeatable as a group.

In command lines and other examples: Angle brackets distinguish

a command sequence or a Keystroke (such as <Ctrl-D>, <Esc>,

and <3dw>) from surrounding text. Note that these angle

brackets are in regular type and that you do not type them; there

are, however, constant-width versions of these symbols that you

do type.

In command lines and other examples: These symbols represent

the system command prompt symbols used for the Bourne and

Korn shells, the C shell, and the superuser, respectively. Note

that your system might use different symbols for the command

prompts.

Licensed material—property of copyright holder(s) 093-701056

| Preface

Contacting Data-General.

Data General wants to assist you in any way it can to-help you usé:its:products:. Please feel
free to contact the company as outlined below.

Manuals’

If you require additional manuals, please use the enclosed’ TIBSorder form:.(United States

only) or.contact your local Data General sales representative. A:list of related documents

appears at the end of this manual with the TIPS order form... |

For a complete list. of AViiON® and DG/UXTM. manuals, see the Guide to AViiON® and

DG/UXTM System Documentation (069-701085). The on-line.version.of this manual found in
/usr/release/doc_guide contains the most current fist.

Telephone Assistance.

If you are unable to solve a problem using any manual you received with your system, free

telephone assistance is available with your hardware warranty and with most Data General

software service options. If you are within the United States or Canada, contact the Data

General Service Center by calling 1-800-DG-HELPS. Lines are open from 8:00-a.m. to 5:00

p-m., your time, Monday through Friday. The center will put you in touch with a member of

Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales

representative for the appropriate telephone number.

Joining Our Users.Group

Please consider joining the largest independent organization or Lata General users, the North

American Data General Users Group (NADGUG). In addition to making valuable contacts,

members receive FOCUS monthly magazine, a conference discount, access to the Software

Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special

Interest Groups, and much more. For more information about membership in the North

American Data General Users Group, call 1-800-877-4787 or 1-512-345-5316. |

End of Preface

093-701056 Licensed material—property of copyright holder(s) Vii

Contents

Chapter 3 — Subroutines and Libraries

INtTO(3)cesecsecscnscscscsscsscaccesceccsscescesccescesceccesesscesseecseseccetececcsccscececcccececceseecees 3-2

INCTO(BN)scesccscscscccsccscoecescescnscesccesccescacssseeccescceccescscccesssscscccececcecsceccecsesesecs 3-8

AG4S1(3C) 20... sececceceecececeeees Lececcccccccccccccscssescceeesccsascscesepescersscececescecececscesescscscesescees 3-9

ADOTE(3C) 2... seeeececcecsccsccsccsscesececcssccsscnesseeccscccsccesscsccecccesececccssccecesceccscesccsscuecs 3-10 |

ADS(3C)ccsccsececececscccsccscscevcsccccscecceccscceccccscescesess sccscsccecccsceccecececscecescscscecesces 3-11

Addseverity(3C)cecscsscsscscssccccescecssccesccsccccsesecesesccscscccccsccsesscscececcccccecsccescess 3-12

ASSEIU(BK)ceeceeececcccccscesccscescsscsscsccsccessecccsceeccestessecccsccessesesesecescceuccccecsccesesces. 3-13

ALEXIt(3C) 2.0... eseececcecscescesccneccecceccsscescesssceccsssesceescescceceseccssssessccceces cescssscseeseess 3-14

basename(3G)sscsccsscssccsccsccescnsccnsccsscceccscccsscnscesccesccuscsesseeescecscceccecececeseues 3-15

DCMP(3C)cesscecccsccscesceccsscnscecenscecccsccestecceccessceceecssscesecsccesecesceccscscsccsecsesscees 3-16

DCOPY(3C)cssccscsccscscccccscsecescnscescesccscscsccsccscescceccescesacsecscsecececceccscececcecsceoscees 3-17

berk_regex(3C)csssecsscssccecssccccsscesccsssescescnscesssscescescesceeccesceesecccssecescsceccescees 3-18

Derk_signal(3C)cscsccscsscsscsccecescescsscnsccsccccscesscesescescescesscsccesccesecccecsccecscsscess 3-19

bessel(3M)csscscscsccscescsscssccecescesccsscesscsccscesencesecteccecccsssecccescoscecccccceccccscscess 3-21

bgets(3G)c sccccsccsccsccscnsccscceccnccnsccssccsseecceseesccesccecensccessseseeseccsccececcscocsosseess 3-22

bsearch(3C)cscsesscsccscsscnccceccscescnsccecececcccscteccescecccsscccccsccsceseccscsssccessccsecscess 3-23

bufsplit(SG) cc cececscsecceccecscescescnsccnsccnececesccescescescesscecscesceceseccecsscececsccsecesees 3-25

Dyteorder(3N)cccccccsenssscccescccccecesecesecessceseeseeessessecesssscccessssssesssoscesscecssssssssssssess S720

DZerO(3C)ceecsscecescccsccsccnscescescescesccesscsccsssseacececcesccsccccssccccssccccecsceccsceccecesecs 3-27

Catgets(3C)ccecccsececscsscssceccseccescescesscesesccsccesccascesecesceesececesessecescceecscccsecseness 3-28

CAtOPEN(3BC)sscecscscsccccsccecsscescscceccsccaccescecsscscssccecceseccceccsccececscecccccccsscsccsseces 3-29

Cfsetospeed(3C)cccccscccceccscsccscecsccsscesceseccssesccsccecececceccoscscccscscceccsscccecccscescess 3-31

CLOCK(3C) 2... se eccsececsscscsssccscceececceccsccssccsscescsccnccesecsccscceceseccecscssccccessccsceccescseness 3-33

CODV(3C)sccsscsscncecscsccscsscscceccsccccsccescescesccccscsscseccececccsccscssccecceccececcccccccseseccess 3-34

— COPYLISt(3G)csscecsscscscssccsccesceccsccsccesccescnscescecccsscescsccessseccescessscccsceccscecsoss sees 3-35

CTYPU(3BC) 22.2... ee cecececececsceccncsececcecsccscnscnsceseeaecescescaccscssceccscesceccsscecceescccccecsceceess 3-36

CTYPt(3BX)ceesccscecscscccsccccsccscscescscescescnsceseecscessescncescnscescecescesscscccccescecccssecescess 3-37

CtErMid(3S)ccececsccscescssccsccsccscssccsscnsccnccscescceccescesceescescesscesscoscccecccceccsceceeecs 3-39

Ctime(3C)cececsceeceecees aeceescscccccsccccnscssscsscncscccscncscscececscscscscscscscecccceccecescececess 3-40

Ctype(3C) 2.2... sccececcsccccccsscecceccecssceccsscescesccccsccsccecceccssesscsccsscesscsceccssecccsccscescess GAG

CUFS_AddCH(3X)secececsscssceccsccncescecceccnscnscucesccsccscescescesccssesccesccesececcscecaccscessess 3-45

CUFS_Addchst(3X)cscecceccsceccscecsecnscnscnscececesceccecescescsscsccsecsscsccscscsscccscecescess 3-47

CULS_AddCHStr(3X)scecsccscsccccscscecceccscecsecenecsccscescececcscssescecceccecesecscececscsceseees 3-48

CUFS_AdAStr(3X)cececcscssccsccsceccecsncescceccnccecsccescnccnscnscescescescccscescecscoscccsceccesees 3-49

CUPS_AddWCH(3BX)csceccsccnscsccsscnscescesccnsccececcesscescescesccecccsscecscecsecseceesecsccscescees 3-50

Curs_addwehstr(3X)cccecsscecsccececscocceccecescececes a ecsescscscscsscscecees oacsceccscsccscscscsceees 3-51

CULS_Altr(3X)cccecscscscscsccesescescscsccscsscescecescecescesceccscescnscesssescsscescesscesccscasescess 3-52

CULS_De|p(3X)ceeccsscsscssccsccscsscceccascnsccnccecesscnscescescesccesscessescseccecescsceceseesceess 3-54

CUPS_DKgd(3X)cscececcccsccsccsccscscsccsecscenceeasscescesceccecsescescescescssccscscscccesescescoece 3-55

CULS_DOrder(3X)cccecesccsccescescncceccnsccscceccscsssnscscescceccescesscesscescsceccecsssccesecess 3-56

CUPS_Clear(3X)ccccscssscnscnccececcecscscescescscsccscescesceecssesccsccecsccescscecececsceccesecesse 3-57

CUPS_COLOT(BX)eecececccscsccsceccscecsscnccscnscsececsccscescescecescescescaccsscescececesccscecseesceess 3-58

CUFS_delCh(3X) 2.0.0... cececcecssccccsccececcncsccescnscececcscesseesssccaccessescascescececscecscececeeces 3-60

Curs_deleteln(3X)cscsccscsccscecsscecssssscnscessccecsecsscsscesesecscescecsaccscscacecececeseseeses 3-61

093-701056 Licensed material—property of copvriaht holder(s) iX

Contents

CUFS_ZeEtCh(3X)cecscscvscsccscccsscccssccsccscscscscsccscecscsessessessascsseesessssescscesencsenseees 3-62

CULS_getStr(3X)ccccccccsccceccccccenssccesscccsseccnscesccesccccesssccccessscsenscececcescccusseeecccessess 3-66

CUFS_getWCH(3X) ..:.....scccccvscresssssrscssceesesreessesccesesseeeeseesseesseessesessseseseereeseeenens veseees 3-67

CULS_getwstr(3X)sscsessssescsssessnsceesccscccecaeneceessecsssseesesesssessessesesssssesseeaseaeeees 3-71

curs_getyx(3X) seageqeenequvagspesuensasessvees dssecssccsccsccscsscncccnsccssccesscnscceceeesceesoescoecesceeses 3-72
¢ CUFS_INCH(3X)ecoreeeeees seeeeeececscscececscccascsesccccscssenscscecescessscesssecesesesscesseneecsesceeeass 3-73

_eurs_inchstr(3X) oeeessesesscescecens deecscescececscecnccccscnccscescnsencescscecsceesseescscecscscseess 3-74
‘seurs_initscr(3X) sessssqeveeescsssssenens beesccscescesccsccscscecesonccsscsccssccescssceccescecesonsesseccsceecees 3-75

-. curs_inopts(3X). necesceees seasccesccsccnssccescescsccnssessscensssseesconescsessoesceseeessonsoseseess 3-77

_seurs_insch(3X). sasaeees steeseeces aescececcccsccssccnscccsccscsscscesecescccessceescecsccesccessessescescesccssceess 3-80
5° CULS_imSStr(3X)cccccsscssessceccceeccessesssssecssseseesssseeessssecssssesesssscsesosssensesssesseeeeseoees 3-81

< Curs_instr(3X) oo... ceeeceseseeeenees seecosccccsceecceccscscsscensccnscesccssccessescescesceceeseccescecescesceses 3-82

-~curs_inswch(3X), . rratencreconecssecs beececccseescescescescscscscscesoess seesecsscescsscnccscesescecasceccscesoscess 3-83
gurs_inswstr(3X) .. dtp secscucccucecscnccccccsceesscnsescesencscsessecssesecsenscescescesescecescsesceseecesacscoscess 3-84
“CUFS_INWCH(3X) ..s.,ccessessessssssccccscssveccessssessesssssseencscessesesssssesssesessssssesesessesaeesessaes 3-85

~ curs inwehstr(3X) asseucecsesescccecosecesccussscnseneceesessonsscceesccosssensccesccesseeeseeseesceeeceees 3-86

7 PUPSLIMWStr(3X)cceeececseccescserecsessescesessesesscsesssccecsscersessssesseessseesessnsesesesseeseesensees 3-87
-* Curs_Kkernel(3X)scssccccsssccessscsssecsssecsseanccesesecsssecssssessesceessesesesscesaeceestecsesesseceeesess 3-88

-& CUPS_MOVE(3X)cccccccssscrcsseescccessccecessseseesecssccnessecerseesssscseeesseseueeceucescesacssssacsscs 3-90

“= CULS_OUTOPts(3X)ccssccscscccsecccnsssccesssscceeeccssscnesesecessssssceseeesscceeesscessecceeesceeescees 3-91

CULS_OVET]ay(3X)cscscserecccreccccsscsscessescsssescscscscssececcnsccescessensonscnscecesceccescecescescess 3-93

© CULPS_Pad(3X)cccccccccsvsccscscccsccccsssccensesssecsccessensscsccescescscssescccsceccscessessececsccconsecs 3-94

© CUFS_PTINtW(3X)cssscccsesssscceseecessssstecssessssssssesssessssseessssesessssssseseeescesssseseseeseeees 3-96

Curs_refresh(3X)ssssssssssssssssssssssecesssssscssecssssscssscessssseseescssssscoessssssesessesssaesess 3-97

CULS_SCANW(3X)cscscerscsccccccecsccscscnscessscnscessecscssssssscessescescesceceseececessscecescssesessecs 3-99

CULS_SCF_GUMP(3X)cccossccccssssccccessssssessceeeseceesscecceceeeceeeaecssscsceeasseecesecesacseeeees 3-100

CUFS_SCFOI](3X)ccecscsccscncsccscscsscsccesceccncsscssecscesesscesceseescescesseeessesseacscecescseaceees 3-101

_ CUFS_termMattrs(3X)cccssccccscscssssscssccsscsscsscscscccsscsscesssccesscesscscescscnccsccscessescecsers 3-104

CULS_tETMCAP(3X)ccscccsccccsccccccccceccccscecccscscccescccssescsceressssscsssssessecsssseassecescoeees 3-106

— CUrS_terminfo(3X)ccccccscccccssccssssscccccessescessccecececesccccesssssesscsecesecsees sesscscscsccnces 3-107

-curs_touch(3X) dacassectcecececscsscscsssnccscsecscenccessceceecescnscescecceccececececcscscessecscerens 3-110

- CUPS_Util(3X)ccccecccecccescccsccccccecssscesecsccccscnsnceccescsscsecsssscccccseccescesscssussssssccoeess 3-111

CULS_WINdOW(3X)ccecscerocccccccscnscnccsccsccsccensecsscscsscecessscescescessescscsseccessesesceseccece 3-113

% CULSES(3X)cccecsccccssccnssccnsscccsccceessccceeessccesecesccecessssesseccccsecesscesssessssecescesesseeces 3-115

CUSETIAC(3S)cecccscsccsceveccccecscevcccesccsscccececceetececccececccsccececscscsccscccesecsescscsceceeces 3-125

— ADM(3X)ceesecsesseesceseccssseesccessceseoeens see ccececcsccscenescsceseecescsecsecescssesecseceeesocses 3-126

oo dg_flock(3C) cece cece ec eccc ence eter eesetesee esse eeeeeeeeeeenseeee se eeeeseeeeseeeeeererecesaneeeeressenccnseeeeeeees 3-128

bs Ug seek(3C)ccscscscsccecececcceccccccnsceccsccscecscecenscssescccceccecccccscsececsscccscersocscsccesees 3-130
i « Mial(BC)cscccsessccnssccsccccescccsscccsssccecscessccesccacecsesssceseccccssccesecsscccscssccsscsccssceseess 3-131

GITECTOTY(3X)cececcesccccecscecsccssccscescsccsccscscccsescscessecsscescescesceccsceseecesscscccsececesecs 3-133

© Girmame(3G)ccssessccssssscesccscceneecsssesccsencescnsssccescsecesccccsscesseescnessceesconessseeees 3-135
IV(BC) .o.ceescessesscsscssscccsccsssccsssescsccssssscssscsecccececscsssecsscescesetacseseceesetecesssescessueeees 3-136

GOcOnfig(3N)sscescecsceccscscsccscssescescsscsccscscscssesesscesccsscaccesceccsccsceccscessececcessececs 3-137

Urand48(3C)cccccssseccsccecceccsccscceccsccsecscsscsscecccscssceaceccaceseseessssesscasesucsseaseaceacees 3-139

rem(3M)ccceccescssesscocceccescecceececceccsccscscesceccecececseccesecssessscecessessessesssassassaccaesaes 3-141

CCVE(BC)seceecesccccsceccsceccscscscnccsescceccnscecesnscecescectecescsecsccescssceccecsscescecsscesccecs 3-142

C1F(ZE)eccescescecsscecsccecsccscnscsscsscsccscccccscesessecsscsesceceeesccsetecceccssssccsecseccceccsceees 3-143

elf_begin(3E)ccccccsscsssscssesscscccsscccssscssccssscccseccessescessssecessessusceuecsececaesesacess 3-147

Elf_cnth(ZE)cscecscccccecscccscccecnccccecsceesensecsescectsccecsccececcsccccccscecececscescscsceccees 3-152

Clf_eMA(BE)ccesescscsccececscccsccnccecsscnscescscscscsccsensenscesscescessecssececsecsesccsccesscsceecs 3-153

E]f_eTLOr(BE)scesececscecscccscscccecsesscsccsescecsscacssnecsccscnscaccuccecsccccccecccscccssssceseecs 3-154

Elf _fI(BE)ccceesscecescecsecsccscsccecesccscesccscacecsscessescusccesccnscteccsessccccssccscsccscceccess 3-155

X Licensed material—property of copyright hoider(s) 093-701056

Contents

Clf_flag(3E)csscsscsscoccscsccccsscsceccscecescecscsscssescscsscessscescecsscncceseesscesecscececesecsses 3-156

Elf _fSiZe(BE)cccscsccsscccscsccscccccscccssescscscssssssscsssscscsccessssesesssssccscsssteceeenseessoreees 3-158

elf_getarhdr(3E)scscececscscscsccccscorscsecssessees senensensssersenccccccerccesssovescsccescnsece 3-159

elf getarsym(3E)ccessssescccssscscsscscscscssecens wecscecvecscscasnncsecccccsscescscececscsesseeees 3-160

elf_getbase(3E)cccsscssssccsccssscescscscevescscees wesececececees sevebebeesesdesscscecscscsscscscoeses STLOL

elf_getdata(3ZE)ssscscscccssescescsscscesescescsccseescssssceseanses sesseenesssceecsceescsceseesoees 3-162

elf_getehdr(3E)csccscceccececseccsccssceccescsscccscsscescesceeseeees vesesssseqeossessnseseesszevess 3-166

elf_getident(3E)secscsescscsscescsccscecescecosceeees seecsstsecesesevsesgeccccssesceseceseceessense SOT

elf getphdr(3E)cccsccscsccsscscescecsscscesecences ceesscecssscccscessnesssessceseseestovschesesesss SLOS

elf_getsCn(3E)sssscccsssssccesssseseceeessseeeescecssessceesssscssessssesersssssteassesssssecgueseees STLO9

elf_getshdr(3E)cssccsecocscesecnsccnccscsccucss sesesececceeseaseees Secaceeseeseees weseeeeeceeseee G71

elf_hash(3E)ssssssssesessscecceesceceecccccseenessssccscecscccecesccssssssessessesesssssssstesseberesesse GL72

Clf_Kind(3E)::ccccscssssssssseeccceseecccececeecessseceeecscecescessesssneensssessbecsssctdeeeaeeterseses SoLTS

elf_mext(3E)::scccsscsssessesesscessseeacesscaseseuscsesoussessssssssssrsssseassebesssdescesscesenteesees GL T4

Elf rand(BE)ccccescscscncsccccescscncscevescececscsscsesscecsenscnccecscscecs seeccessesesescsceenecee SLID

elf_rawfile(3E)cssccccsecsesceaccecessceeeess bovelslecceseccuseececesessescessesesenssscececueceteesees SLIO

elf_strptr(3E)scsccessccescceccesecescecccceeascesscseesceescccuesceesessessseesseeees cseeseesscessees SALT

elf_update(3E)ssscccsssscsccccccsssecccessecsccssesessenesesesonenscenscessesscesscarsessecssecseees QoL10

eLf_versioN(3E)sscccessscssseesssssscecescceccessscssessscceseeeseseeees sseeeeesecssesscecesessceeee SULOL

elf_xlate(3E):.cccsccecsscncsccscscceccecnscececcsccecceccsceseeeseessesecesccesessceesess secesceees 37182

CNBC) 00... ceceeesccesccscccsccescnccsceccsscescsscceceecescesseeecescssccesececeesceesecseseseesececerecessscees 3-184

CTL(BM)ssceccescescescscsscccncncececsscncesescececoecescsseececsccceesesccsceccssesces eeeeeees seseseseesees F185

ethers(3N)ceecssceececeeeees a eeecececescsccecscscsscsscscesescscsscnscecoscneoesees seeseseeveccesssseees F186

CXP(3M)ccssscsscccsescccssccescssceeeesccessccessccnseseceuseccnseccecescseeseecesseeeesceeses seseeeeee 3-188

EXPOFtent(3C) 2.1... cececescecescscscsccecncecsceececscsscececscsecstescstecescecseccsseeseesececcesesecese 3-190

extended_perror(3C)cececscsscecsceccscececescescscescecsccescscasneccsececcesecscscececececssecs 3-192

extended_strerror(3C)cccccscscscsscccecscecccececsesececccscetscsensescecnsccsccesscececsscesecces 3-194

fattach(3C)cccescecescscscsccccssnccccecscsccseececssceseeeessesssecscesnsceseestessescscscecessseseces 3-195

Fclose(3S)ssssccseesscceeesccencnsccteesscesceeessscssssecesscecsssecesssessscssssssseessscsseceneseeeron FeLOG

fdetach(3C)cccccccsssssssececccssccceeccccsceassssssssssescccccsssscccseessessssesscssssessesseecsesseces S197

ferrOr(3S)cccsccsccsecescncscccscescescoscescescnccsscaseescesesstescesececcesssesceescscesecscess wo. 3-198

FES(BC)cccceccescsecescncceceecececeeeseesceseceseusaceecsssesececesceccescscesceseesssesseccectecsecscsess 3-199

FlOOT(3M)cecescescsccscsscececscscecsscevsccseuesscccescesceceseccesceccececcessessessseccecseesees reese 3-200

FMtMSE(3BC)cecsenececscececencescscscscscscscecenseccececececescescecscececesessesscecceeecoscenseseees 3-201

fopen(3S)ssccccssscceseccssceeccnctsesecsesecesceesceeeees Lescesssecasccccessecscceessscescescesceesses PQOD

fOTM_CUTSOF(3X)scececsceecccccscccncececcscececccecececcececscedecececeececscsscessscscccccecces wees 3-207

form data(3X)cccscseccceccscecccscscncncscecscscsssscececscscscescsceccecsescessesceaceccececcesecees 3-208

form_driver(3X):ccscssccscscececscscecececscscscscsscececscncsccscscscesesesssecccs steceuescsceceees 209

form _field(3X)cccscscceccssccesccceeccceccesscecscccececsceecececscecsesessececescsscssssessaseeesssesses 3-211

form_field_attributes(3X)cccsecscecscecscecccscscecececsccecscecsccsarscsscsscececcccecescececs 3-212

form_field_buffer(3X) se ececececsccececsececscsesececcccsccecescececscesceececcscscececsecesesess 3-213

form field_imfo(3X)cccscscscscccsscecscecsccscsseececscscsscscsscecessstesscsceecessecescesecseees 3-214

form _field_just(3X)cscsscccscscscsssscscscscscscsscsscsecccscecescesscecescesceccssscecescesseveres 3-215

form field_mew(3X)ccssecscscscsccscsscsceccececsccescecscescecescescecscesscesssscecscccscecscscees 3-216

form _field_opts(3X)csccececcscceccsccscscsscsscssccececescssceesceccesccessecssceeccececessesecess 3-217

form _field_userptr(3X)cccsccssccscsscccccccsecsstesecececcescsccecceseeeseesssescescesessscceecs 3-218

form _field_validation(3X)cceccessscoesccscnccsccececescscesceccsccscesceseccscessscscsccscecees 3-219

form _fieldtype(3.X)cccececscssccsccscsccscsscscssececeececescceccscesscescescsessescscscacscseescs 3-220

form _hook(3X)escsscoccccsccsccsscsccecesccsccesceccscecsescteccecceessesssecscseccscececsccecacs 3-222

FOrM_MEW(3X)-cccesccecsececcceccccccscescescecceccsscnsceccesesccesscscesetescsessecescsccscecscsccecs 3-223

form _mew_page(3X)ceccecscscssccsscsccscsccscsscescercecsccscceccecscceesecssseseuececcaccececscs 3-224

FOFM_OPts(3X)cseccecsscscscscscssccssccescscnsenessccecescscscceetacccctecccsssesscseecscsescsssses 3-225

form _page(3X)ceceecscsceceeecececcscecscecsccscsccecececscscnscscscasccscesccssoscssceccscececscecs 3-226

093-701056 Licensed material—property of copyright holder(s) xi

Contents

FOFM_POSt(3X)ccsccscccscsscsccscceccssccescceccececsecesacesecescescesscsecsssesecsecesccscesoesces 3-227

FOFM_USETPtr(3X)ecesceccsccscssccssccescceccecscesceccecssccsccesscascecescececesesseesccscueees 3-228

FOTM_WIN(3X)ccccsvesevscccevescsscsccnscssccnsccnsceccscacssenseesccsceesssescessscseccescceececsscceccs 3-229

FOFMS(3X)ceeeccececesccsersnvesceececeescescessccesesceccsceseecceseeecsssssceseccescssccescssseucceccescs 3-230

fpgetround(3C)cecccsssscssceecescesccescccsceccececcsceccescesccsecesscssssscssccescecscescsscesses 3-233

' fread(3S) deeuccescenacensveccsccesevescaveenersesaassesacesesnseseesaeseesesssnnsceresersnesescessccerteceece 3-235

| Frexp(BC)ccceeecceceseccnvecerssseccescccsssceccesssssecesceescenssssssseseseeseessssscceesscceeesseseosecs 3-236

Fseek (BS) oo... eee ceertevseuevsceecesccsscensescenscescesccscesccesseceseesecesessccsecscsecescenscesceees 3-238

ftime(BC) oo... ce esses essceesevevcucuccecceseecsscecesscecccsceacessccscccsceccsssccccssccesscensecenecseceness 3-239

EIW(3C) occ cececsccvevesssscereetsevenceesecsscssesseseseseuseeesecececessssesecesscscesceeeaucccceceossccccescess 3-240

GAMMA(ZM)ccccscccsccsereeccsccescccsssccessesscesceescnsscseseseressssseececsosessccccesccssceesences 3-242

5 BOTC(AS) ... ces seecesececsecsevcseseecceuecscccsscceeasssccuscceeessccesesesessssessescssssssecesecceessececeeoes 3-243

BetCwd(3BC)ccceccscccccscccssceccsccecssccesecessesccsceccscescescusesesccecscccssecsccessesscescesesenes 3-244

Betdate(3C).........cccscscccecsccsvessccssccnssscsssseccescescesccssseessccessecssnccsccccseccscuccecesseseseees 3-245

ZELENV(3C)cecescsecccvevesccssscsscssccsssccsssssenscesceccesecsccecssecesceenscscecccccccsceceseasceceess 3-248

, BetEsent(3C)ccerececseccecrsesecsceeessssssssssssessesessceessscsssssessssssessssssssesssesseceseeeeeeees 3-249
BETRTEN(3C) 2... cssccsccvccrscssccececceccesccsssonsceececeeseccscceccssececssscesessccsccassessvessescescs 3-250

© Gethostent(3N)ccecccccccssccscssccssccscssssssesccecssceccescesccessecessececsscceescesccescceccossecs 3-252

Betlogin(3C)c.cccsccescssssccscsssccsccsesccssscssceecceceeccescecessccesccccssescccccesessescesssooes 3-254

Betmntent(3C)ccccccccccsssssssccccssssssescesecesceeessececessescecsesseecscsscsscecseeseesecsesssesecs 3-255

- BEtMetconsig(3N)cscccccsccsccceccscsccsccsscceccececsceccccecsccsscsccescecsssscesceseseccecesescesens 3-256

© getmetent(SN)ccsscsscscssscssssccscnsceccssssscesescees See ececceeeccececcesceseesecscesensessesescecoece 3-258

GEMESrent(3N)ccceccecssesccssssscssssensssscescnscsecceccesccesscesscssescsccsceccsescccossosconeses 3-260

getmetpath(3N)sccccsssssssecccseseccecnsssssccsssencscccecsccessceccsccsssecsessscscesececcensesceceess 3-261

BETOPt(3C)ccccccssvcnvccssccesccsscnsccnsscccesscesscecssescessenecceessccessesscccesceessecssssesconss 3-262

PEtTPASS(3C)secrcessecccceccccnsscccscesssccsssssssensceescessceeseseesscsescesssssscssecesscececsccoesssees 3-264

QEtPFOtOENt(3N)csscscssccscsccscsccccsccesceescevsceesccecessesecseccsccessccvesescescsscsscessecossecs 3-265

ZETPW(3C)csecccsescccerescssscescssccsccessseesseescescecesceeccesscescecsscccsssseeccccsecccseecessees 3-266

BEtTPWENE(SC)ccccccrrccccccrsccsccssessssecssccscsscescesceseeesscesenssssssccccccscccccccsccecceses 3-267

- PEtrPCeNt(3N)ceccecccccecssccscsscessesscnssccssencescscesenscesccessscscecssecccsecesceecssssescescess 3-269

, getrpeport(3R) seseececeesccceeecceeesesssssseesaceeecccaenscnccescecsssssnsesssseessecseseeseaseeseeess 3-270

Zets(SS) 2... eeseccesccertsccssceecseceeceseessseceseecscescesccecseseecccecseseeccesccsccssconscescoscecs 3-271

GETSEFVENt(SN)cceccccccsccsccscssccsccssscesssescecescecescesscescncsccesceasccccecscsccescssccecceses 3-272

BEtSPEMt(3C)reesccccccseccssccsccssccescccsssscsscnscnscesscnsseucscesscsenssssseccssesccossscsesscess 3-274

getsubopt(3C) Vesvecesees seescscsenes a scecceecececcccccncscecescssesseseessescescnccesesceccceseeneeas 3-276

BEUKt(BC) 0... esscccsssccecssccssseeccescnsccessscscececcscescesesscsesesscsccecccccssesccesccsnsececensceeess 3-279

PETUL(SC) 20... ecccsesceccecccssesccceccsccsccesccesscscseessnecessessesccnsccscsccesscsccesccescssscceccecsons 3-281

ZETWC(SW)cecsscccsccscsccescescessccnscescnsceesscecscsscscesceccssseccescsssscssccsecceccsscscescaceees 3-283

BCCWA(BC) 20... cceeecsssccccccccscccesccnsccsssecsssscecesceseeaccesccesceecsscssccscssceccccscccnsscccsccesees 3-284

getwidth(3W)ccsccscccssssssessssssscsscescsscsccsccceseccesacecaccecccesssescasssessscnscssessecueenes 3-285

ZETWS(SW)ccesscesccecsccscssccecscsscscnccsssceccececetececsececscceccessescssscccccsscsscescescscesaecs 3-286

BMALCH(3BG)ceescescscescescsccscecescnscesenscescacscsccscecseuscsecccccsesccssscsscescessessescecsceecs 3-287

PTANtpt(3C)ecssccsccscscccsccccscssccsecssccsscsccecscsssscescescesscessecesscsasecscccccsececescaceess 3-288

Wsearch(3C)sscccsccsccssccsscsccsssnscenssosacsesecseccsscesccesecesssccsccsscscecsccccsccesessces 3-289

Wypot(3M)ccccssccssccsccnsscescsscssccnsccesseceacnscecceccsccesseececeseesccssesecscceccccsccsccscees 3-291

1ECCEP(BC)ecsescssececccccceccecaceccscsveccecees ce seccececccccccccscescscescescsscsscececcsseccscsecceces 3-292

INGEX(3C)ccceessccsccsccsecsscescescnscssssesssescnscscecceccescececescssecessescssccesccesccsccecesess 3-293

imet(SN)csccsscsssssssscesssssssssscccscccscccseescesseesscceesccececeecsessssssssessestesseceecsecessens 3-295

IMITZTOUPS(3C)cescecnsccescnccsccecsccnsccnscescnseececessecescesscescesceessscessessscoscsenscsceess 3-297

INSQUE(3C)ccsecscnscsccsccsecsccccecceccnscsescesenceseccessessccescecscessscssscsccccscsssccececcuccecs 3-298

ISalphanuM(3C)-.ssccscsscscsscscceccsccnscnecececscecnececescesssscesccesccesscccessccsccececcscess 3-299

IsastreaM(3C)ccccecesecsecececscceccecceseeecececscecescscescesseesceseescecscccscssccscscsccseess 3-300

ISCNCTYPt(BG)csceccsscscccecscscsscscecscceececeascesessscssceseeceecssesecescesccesccscoeceseceess 3-301

Xil Licensed material—property of copyright holder(s) 093-701056

Contents

ISHEX(SC)sscescescesccssccescnscscsscnccececcscescecesseeseesscescesessseceesesscteccceseceeecssccasceeecs 3-302

ISMAN(3C)cecceccsccsccescnsceccecsscscncescecscsscecescssccsceenssseseseescesseccecacecessesecssescoees 3-303

1tOA(BC)scesceccesccessccsccnscsccncscnscesceseeecescsssensccescceseesccecccsseeccececsccceocccessesees 3-304

JODS(BC) 0... ee ee tesecsceccnsccnccecceccecenccceseccecessseescseeseseceveeesessscasecoescaee secascceges FOOD

TBtol(3C)ssecesccsscccssscccccnccsscnscnsessesscnscesccesseeesacseeesesevceeceseceseesesevecessceeeces 3-310

Idahread(3X)cssssccsccecsscsccscsccnssscscceccsccscesseececescesceseesceescscsssseescseacescescess 3-311

Idclose(3X)seccscssecscccscsscecscsscaccscsccscsceccscceccasccccsccscceccscssccssesscessessescosees sees F312

Idfhread(3X)cscccssscssccecceccnccscsecescestescasccesecesececssssccsseccecsessccessesscecesce seeces HOLS

Idgetname(3X)csccsscscescscecscscscscscsccccssecsceceees stascsecscececaccescscscescsececcscescesees . 3-314

dlread(3X)-csscssssccsscsccccscscaccscsccceccccscsccstscsecceccecsesseccs sececscscscecensscnseeseesees. 3-315

Id seek(3.X)sccsccssccsscccccscsscsscscssenscsccscescsccesscessesccsesscncscecscrcnseseesnscesesescescs . 3-316

Idohseek(3X)cccssssssccccssccesccesccccscccsccesssccccsssececseseececsenss seveeecs peseneaeeeeecseeees S°OL7

Idopen(3X)ccccecsssscccssccscceccsccssccsccsccnscesccessscnsccsceasccesceresccascceequesqescessesasces QOLS

Idrseek(3X)ssesccccssssessccececccsccccesceccssceccesssccscessscecssscessenassssscasenneseanssaesseeeess SS2O0

Idshread(3X)ccesccsccssccscsccscecsccececsecscescsccsccsecesccscssssssecssceecsescens steeeceneesescecs 3-321

Idsseek(3X)scsccssccsssccsccecceccsccsccesestescescesctesscesccaccecccesccscssencecsseccesssesscacscsee SO22

Idtbindex(3X)ceccesccsscccsscecsccecsccscescsceccscnscesccssccccsccsccsacescesescssesceees seesceeeacs . 3-323

Idtbread(3X)cssscsccssecccecsccscssceccccsceccscectescuccecececsecsnccecssceansesncorsenscesseeccsses 3-324

Idtbseek(3X)sescsesccsscescescscscceccecescessacescesceescceccesccccsccecssescscencssveeuseeee aeeeee 3-325

localeCONv(3C)csssscesesscsescceecosececcsceasccnsceeseccasecesesenseseeseeeesens neveveseseseeeeeeese 3-326

LOCKE(BC)cceececccescccscccsccssesccscscssccseesenssescsesctesscesseesceseeecscencacsenceecccescenseess 3-329

logmame(3X)scsscssscssccscscsccscsccncncescncescncssccescesecscescsecsesescecees ce sesececceescsnecere 3-331

Isearch(3C)esccesccssecssceccsceccsccccnccscoscesceccecccesensccecceacscccsececeaencescsseccesensances 3-332

MAIN(3C) ceccescesccesccescnccscsscesceccececcecescescesseesscsctecccesscssececenscsescessseesccscsoess 3-334 .

MALOC(3C)ceccescesccnscccscssescnscscceccsccccscscescescscsccceteccectecsssccsceceesccscessssoseceess 3-336

MAl]OC(3X)-ececcoccssscsccscsecsccscacescececcscecseesececcecccececcsssecceccsececsecccscsscsscceccece 3-338

Matherr(3C)cecceecseecescsccececcscscsscecsccecsscesceccesecscsescscsecescesesscccssecssescecssseseucs 3-340

Mbchar(3C)ccccececcsccscscecccccscscscscecccceecs stcecscceesesensescecscnsecescesesscssosctscececeecs 3-343

MDchar(3W)cecsscsscccccsccscecsceccccscecsccscscsccsccsecscsececcscsccesseccsccecsacecsnsscscecsseees 3-345

MEMOLY(3C) sc cecescesccscsccccccsccceccscecscsccececcecscccccccceccecsccecssssscecssesccsscsscansnazes . 3-348

MENU_attributes(3X)cscsccecscececscecscsceccsccceccscesteecsceccccscscesccecscecscesccsccecseceess 3-349

MENU_CUTSOL(3X)cssceecsccccscscscsccccccccscscscsceccsccecsccecsccecscccceccecscsccscescesceccecacecs 3-350

MENU_Ariver(3X)ssscescscnccccecscsccccecstsccecseteccosssccssoccaccecsccescensccscssscccececscess . 3-351

MeENU_fOrMat(3X)ssececcccecsccceccscscccsssssscsceccscececccccesesccessscecsccessessscercesececsscs 3-353

MeENU_NOOK(3X)scecesccscsccccccscscsccscscecsscsccscescescocccccscsceccessccsscscesccersesecececees 3-354

MENU_iteM_CUITent(3X)cecccsccceccccccsssccscccecsccsceccccscscecsccscsssccecccecsescscccsscecees 3-355

MeNU_item_MamMe(3X)cessececsccccsccccscccscccceccsccsccececcscecceccscseccscsccscceccesseccecees 3-356

MENU_iteM_MEW(3X)ceecscscccccsccecscscscecsceccsceecccceccccscecccceccccecccccceccscscceccacccaces 3-357

menu_item_opts(3X) fae ececonccencevesscesvecceesssesssnsessncscsncccecssosscesescssssecccseecce 3-358

Menu_iteM_userptr(3X) ce cececscscscscecscecccsccccscccceccccececccececcescscssccsscsscsccecsccs 3-359

Menu_item_Value(3X)ssececscccecccceccccceccccscscccceccccscccecscsccececsceccscescecsscecececes 3-360

Menu_item_Visible(3X)csccscscsecscsccscsceccscecccccsccsceccsccsseccscsescecsccsccesecscecsecces 3-361

menu_items(3X)sceeeee po ecececcccccsceccceccecccscscescscesecsesencesssnscsesceescesessscesseeseees 3-362

MeENU_MArk(3X)scccssecceccscceccsccccsssscnsccscsccescesccesececssccaccescesececceceecseescsesceseesee 3-363

MENU_MNEW(3X)cssccssccssccsscscescecceccsceccsescsscsscnscesscescoscessescsescscescsscsscesceseesce 3-364

MENU_OPtS(3X)ccceccsccesccsceccecscncsccecscesssssceccscesccscnccescececcecseescecccsesscssscescscsecees 3-365

MENU_pattern(3X)ssccccsccsccccsccsccsccsccsccescnsccnsssessccesseccesscesecessesscescssessenscaeecs 3-366

MENU_POSt(3X)ceccessccseccsccscssccccsccscsccscescnscsscensccsscecccscescesecessecccsesecsessscesceess 3-367

MENU_USEIPtr(3X)scccsccsccseccscccesccsccscceccescensscesscesecsccsssessesssesseescseescsescseese 3-368

MENU_WIN(3X)cecceccsccscsscccecscecscsssscececscececsecescsccecesecsecsscecscsccscecesssssscaccuscess 3-369

MENUS(3X)ceceeecscscsscsceceeecs os eenceccecccccecccscccccsceccseccescessasessececsesescsseccecesscens 3-370

093-701056 Licensed material—property of copyright hoider(s) Xill

Contents

MKirP(3G) ...ecceccescecescecsccscceccssssscseccssceccsscsscsssesssessesssesssssssssssssessessessessssssssseceees 3-373

MKFIFO(3BC)ceececceccscscccsccccccsccceccccccsccscncecscscecscsscnsccscecscecececssecescesesecssecssssnces 3-374

Mistemp(3C)ssccsssccsccsccscssscsccscsccscescossessescescscscssessesssscsscecesscscsscescssescesenees 3-375

MKteMp(3C)-csecccnccsccscscsccscscscscscsscsccscscsscsssssccesssecsescssessscesescssssscesseseesesceees 3-376

MIOCK(3BC)ccsccsecorsscsccccsccssccscscscscessescssesccscescscscscsssenscsssscssessssccesseccecssscescoess 3-377

Mlockall(3C),.ss0sccsscseccsceccecceccncscnccscsscsscscescsscccscscncsscecseasssesscscsessesasesesseecoess 3-378

MOMITOT(3C)ceencccessccsccsccescceccccescescnssenssescnscnccscescesascececssesscessensseeseeseeseesenees 3-379

| MNP(BX)ccscserecsccsencssensceseees ceecescscncccseccesccscsceccscecscscncsscscscnsssssseecsssesessecssscesseees 3-381

" MASYMC(3C)sscssccssscnscceccccsccesenccscscsceecescnsesseecsceseeescessesecescessscessessessesesessersseees 3-383

— MADM(BC) cc ccescccsssconcenececceccnscnscccnscsscsccsscsecsccsesenssecssssccascscessesceeseesssseeseeensens 3-384

Mtdir(BN)c...csscssessessserenesscsscccscsscsccsecsscnssssscsscssescessecssescsscescesscessssesessesseoneeees 3-386

~ Mi Tanginfo(3C)ccsccccsscsccsscsssccecscccccsccescsscceccsccsceccecsscnscesseecsesonessssonceecsscescees 3-390
Nlist(BC)ssesccsccsscnssccesccensscensccescecescsscescsscscecessecsssscesesccsscscnsccecsescescececonsceees 3-391

Msgetcall(3N)cssessscsscccscsssnsnccessssscscsscscsesscssssssssscnssscessesecsccsscesessessseseseeseeees 3-392

~ PU sprovider(3BN)sscssscscsscssccsscsccsssccscesccsccsssscscescscsscssescessescescnsceescosessesessonees 3-393

~ Misrequest(3N)ssccsccsssssscsssssccnccccccsssccscsccsceccscecscsecescessscesccsssescesssccecsceseeessees 3-394

~ P2OPEN(3G)cccccccrcererccrccccnesserscenccccsssecsccescseeseesseecsessseesssesssesessessesenseseeceeeseees 3-395

pamel_above(3X)ssscccssccsscccsscesccscesscssscesceesscssesesssscsseesssseseesssenssseeecesconesseees 3-397

_ Pamel_Move(3X)ccscsccescescsscssscescsccsscescsssesccscssccscessssessesscessescessesssseseessesoesceees 3-398

PAE] _MEW(3X)csecccsccscsscscsccscescscscscsscsscssscsecsceesssessecsssecsscseeseecsseecssseeceeescescees 3-399

- Pammel_ShOW(3X)cseccscccsccscsccscssccsessscscceccscssesssscecscssessssescesescessescesessencesessecesses 3-400

PAMEL_tOP(3X)cccsccrescccscscccccssccscsecccssceccsscsccscssccccscscsscsscsscsssesssssssssssesseceseeseees 3-401

Panel_update(3X)cccccccscsccsccscscccscscsscsccssscscsscscscscecscsscscesescssssssssnscsescsossesceees 3-402

PaMel_userptr(3X)ccscccsecsscessscccccsssssscescscesesccscscsssssesessssesssscesssesssesesescessceeeess 3-403

PAMel_WINdOW(3X)scssccscsccccsccecscecsccscscescscescscessehessessssscssessessscesesssssssescessceesecs 3-404

PAMels(3BX)csscccsscrssccsscsccsccssccscsccccsessccsssscssccscecsscscsssessscesccssesscsssessesseseseesceees 3-405

Pathfind(3G)ccecsccsccsccccsscsscssessccscsscsscscssensescsseccscssesescescessscescescescescscssseccess 3-406

PETFOT(3BC)cceccscccsceccsesccscecescscscscscseess sssecesecesceseceececeesceeessesseeseseesssesssesseesceess 3-407

POPEN(BS)cscsccscccccsscccaccccecsscscecscecscscessscecscsssecsnensecssessseececsseeescesceseecsescscseeees 3-408

PTINtL(SS)ccccessccssccescsscescsscceccscsccscsscsssescescescssesescssssseesescessessncssessescesseseeess 3-410

PTINtE(SW)ceccssccssccsccscsccsscsccsccsnscscsscssssccssescssescecscgenscscescesessessesesercececesceccess 3-415

PSigmal(3C)ssccsscssccsccccescssceccenscscnscescescecsececessesscececcssscescecscessceccecsensssceess 3-416

PtsmamMe(3C)cccccsccecceccecsscsecsscscecescescescecescecsecscececescecescescecesceccescescesescseeeeees 3-417

PULC(BS)cecescssccssccsccsceccscsscscncececescssescscesceseenseensecescesecescescecsccssescesescecseacens 3-418

putenv(3C) a seescesccsseesesccscesscesescecscsccscescscsccscesscacececessecesnscececcscessescsestesescesecs 3-419

PUtPWeENt(3C)cesccssccscecsccsccsceescscescsteecscnscessesscensecsscecesceescesceccssescescececeseeeess 3-420

PUES(3S) 20.2... cee cecccesccscceecncceccecescescscscescssescnscssesceceecececesecceeseccececeecessceccecsceseecoess 3-421

| PUtSPENt(3C)csecsecccececsccccccscecencncessscscecscecececsccececscscececscsccccscssescecessecsesesess 3-422

PULWC(BW)cccscecccsccscsccscccescccncncncncscnssscncesescececseecsecesescccetecsscecscescascecececscssess 3-423

PULWS(SW)ccccccsccesccnsccecssccscerscscnscsccsscssessescnsceseccscessecscescscecsececescescscescesseees 3-424

GSOTE(3BC)eccecceccescnccescecnscscescncecsscecssescncescessecsesesescececescsccsesceseccsccecesecsccecees 3-425

TAISE(3BC)csceccccescesccscsccescncescscnsscscscnssscscesescscecececseesseseeceseccececscessesscescccescsess 3-426

TANA(3BC)cececceccescsscceescccscnscscecscscscscescscsssssecsescessecsssscecesecsecscecesseccececececcssees 3-427

TANGCOM(3C)scesccsccscccccccscssccecscscscccsscsccccecescscncnsscecsscececescececcsecscescessecenscsesees 3-428

TCMA(3X)ececsecsseceseees gecsccsccsccssaccecccssescescsecseesceceseseseesescesescescescescescescecesecsecees 3-430

Tealpath(3C)csssssccsccccccesccecccscescesccesccssccscceccesesceecssenssesssesssessesescsseseoeceees 3-431

TEQCINP(3G)ccescccssccescsscssccsccsccecscsccesceesesccscescscessscssesceseosessseceescesseescsceceosseees 3-432

TEQCMP(3X)secesecscsescsceccccscscsscscscscsceccccscecsssssecessasecscessecsssescescesessesescssccsesesens 3-434

TEQEXPT(3G)ccesccoccccsccsccccsccsccsccccscscssecccscsscnsescseessscesessecesceceecescesecscescecscesecess 3-437

TEMOVE(3C)-sececsccecccscnscesccsccscsccscssecsssscescsscscecescesesteccesesscessececescescscscaecesces 3-440

TEMQUE(3BC)cececesscecscecccccnccescescsesscescnscnsceees saccccsccccsccscescescsccsceescenscscseseeesees 3-441

TESO]Ver(3BC) ee eeeecesceecec sec scescecnsscececcscsccecececececscecscsececsseccssecssscecssescccccseeess 3-443

TEXEC(3BX) sc scsscecccscssccccscsceccecscecsscscscccssescsascecscacececececscecscescecsceseseesescecscecsccsess 3-445

XIV Licensed material—property of copyright holder(s) 093-701056

Contents

TINAEX(3C)ccecsscscecccscsscescnscnssscececscscscececscsceeececsscececececssausscesecsessetersecesceeces 3-446

TPC(BN)cccececcecscscsccccsecscescnsssccssscneecscscccsescecessseesesescscesesssecesessoees et eeeecsesescsoes 3-448

Ttime(3N)-ccseccsccsscssscessecssecncsccecsscescseasccsseescesscsscsscsseessescesccerseesssensseeseaes 3-464

SCANGIF(3C)ceccececcsccsccsscssccescscsssscscecsssscecescnscessesesceeeecescsccesseseecesesescescesceec’s 3-465

SCAML(BS)eesescescsccsccsccsccssccsscsscncscsccecsccscecsecescecescesesecececceccuccetececsceessesstecses 3-466

scamf(SW)cccsssccsscsssscssccssssscssssccccscccessscecsscecsccsscececcesccesscecrecsuecsaceeseaccsceseesces 3-470

SCtDuUL(3S)ceccescsscescsccnscccescssescescscnscscnscsccsecescesseseecescessuscsesesssesseusesenseseees 3-472

Setbuffer(3C)cccececcssccsccscensscscecsecscsceecncescecescescesseensesssocssscesoesecsssscceseeeeeeess 3-473

SCtJMP(3C)ceeccscesccscccssccsssscsscsccscscesceseesssscescsscssceecsresssscessnseessseeseseeeneseees 3-474

Setlinebuf(3C)c.ccecsccsscnsccsccscecsececscncecescecscnscecceceseucecGevsvcsssenes sevenssceseeeneoene 3-476

Setlocale(3C)ccccscsccsceccscsccscscscecccescctscscsccccsceeecececscsessaccecesscses aesvecesenceecees 3-477

SIQSEt]MP(3C)scecssccccsscescnscescecsscecececscscescscescecscesccecscesuecsceees se neceecescaccoseesecs 3-479

SIGSELOPS(3C)cesceccscccsscesccesccsscsceccscescnccssecenscnsenscesscececusceescesoessestenssseeseeecens 3-480

SIMH(3M)ccesccscscccscsscccssccsscnscescscesescsscecsscsececcecetecececeeceeceesensessceenecoseneccess 3-481

Sleep(3BC) ccc esccesceceeccssscesecessccscscesesccscscsscsscnscsscsssuscssesctescsscsscescascectssessesesees S4O2

SPULI(SX) 2.2... eecsscesssccsccsscssccnscssceceesscececsececasceseecseceecesucscsscesteseecsesseesvasenecces 3-483

SSigMal(3BC)scccecsecscceccescceccenccsceceececececsccsccseesssscesesccececsscescesseecsseesecessesceecues 3-484

StdiO(3S)ccesecsscceccsccsccsscesccescescscscecescsccssescascceceesesccececceccescestescesccensssescees 3-485

StdIPC(3C)csecsecsscsccsccesccsscsscescnccecececessscecssccscesceececescscescescessesesceecensssceseecees 3-487

StI(BG)cscsceccesccscccccesccescccecccnsccssescnscncescnecseceeecescesssesceecesceeesesseescesscseeseeeseeees 3-488

SEFCCPY(BG)ceccesceecesccsccescecsceascsscecescecescscescesccsseecessencescesenecasseeccescesseseesceseess 3-489

StFCOL(3C)cescecsscscsscscceccescnscscncescececececscsccscesceteccsssccecsccccesesssscucesseucsesenseuenes 3-490

StFETTOT(3C)ccccecsccscsccsccnscescsscecscsecccecececsccscescesescecsecsessescescscesuceecsescteseneseeees 3-491

strftime(3C) wee cece cece cece eee e cece een eect eee ene e teen eee e eee e eee e esses eee ee ee cee ee eee eeenseecesseteceseseeeces 3-492

StriNgG(3C)ceecesceccncescsscsccscesecncescecececcececescecceccscescecaccecesteccsccscesssesceeseessseces 3-494

StPSAVE(3C)ecsecsscscsscsccsccsscnsccecnccecececscucsccccesescaccsceececasescsccececcssssseccuscecescesess 3-496

StItOd(3C)ccescsscscceccsccesccssscnscesnscecsscsccscesesscesceeccecestecesesessessosscesseeeceectecses 3-498

StItOl(SC)cescsscsscscsscssccssccsccsscscsscsceceecscesescescessescescececcecessestescecsecsessseseresseees 3-499

StrXfr(3C)csecsscscssscnsccescssccncecescccscnscsceccsscseesceeteccsceccsececsstecceccesecusenascesecs 3-500

SWAD(3BC)cccsccssccsccsccssccsssccnscssscssceecsscscescescceccesseescescestascosesescescceccsesscsececeerecs 3-501

SWAPCONERt(3C)ceeecsescsssccesccscsccscsscscecssccsccscassceceecsecsecescensasseessesescescceceesens 3-502

SYS]OG(3C)csccsccececcscccsccsscnscesceecscecescecscscecsceseeccestecesceccscessess detcseeecsscescereees 3-503

SYSteM(3S)cecccsccsccsccssccceccsscscescecescscssescsscesceccesesececcecsscesesecesecseseneseecsseneen 3-505

SYSV3_CUSETIC(3S)cecsecescoscsscececscccecsccccscccscscsasccecscccececceseceseres sececcecescsceces 3-506

tiaccept(3N)sccsccseccssccsssecsscescsscescescncescssccescascessscessssscessescenscnesseessceeeceecs 3-507

tallOc(3N)cccscscsccecsscsccercscsecccececscececccscsccccecsecsescecsceccstscescssccesceesesssccscesens 3-509

tLDINd(3N)e..csessessccssccsesscssccsecesecessecescsssessssssssssscsssscessssesscesscssesscescasssseaseneees 3-511

tclose(3N)ssscscssccssccscccssecsccecnccscsccscescnscsscnsceseescescescescescesssccsccesseseseeeseess 3-513

TCOMMECE(3N)ccecscsssscssccsccscescscscecscscecscscscecescscescsseeseccescecescecesssescessesceceseece 3-514

Lierror(3N)ccssccsccssssssesceesscesescsscescesccsceceesccssccesecesecsscessessscessenscenesssseessseeees 3-516

tfree(3N) ..c..cccsccssssssssssscsscssscsssssecscssccecsccceseccesscececccescecsesceescecseeseceesesssceneeescens 3-517

tigetimfo(3N)ccccsscsscsccssccscssccscsascecssesssecesesceccecescscecescescseesesseseescescescescessees 3-518

tigetstate(3N)cccscsscscssccscnscecececscccecescececsccccccetecscscetesscescecesesscascecsscsccsceescs 3-520

tlisten(3N)ccccsccsccescssscssscecescecescscsccscsccsscsceccessessececcccecseccscceseescessessesseess 3-521

TJOOK(BN)cccccscesccsscnssecssccnscsccecsccecescsccssessesccecceececescesecccessesecescsesssssceeseess 3-523

topem(3N)-cccccsssccssccsssccssccnscseeeecsceecsscsccceceseessaecsecescoestesseecseesceeesceesseess 3-524

toptmgmt(3N)cscsesccssccsscccsccsceececcscscnscnscsscnscescescescsscscescesceeeessseeseessecesenees 3-526

t_rCV(BN)csssscssccscccessccsscssessessessesssssscssssssssscseseccesecessecessecessecsesenecessesseaceacesnes 3-528

TICVCOMMECE(BN)ccceccsccsccsscsccecscscccscecccscesecnscesecessecaceceecetescetecsccscssseseveseceees 3-529

TICVIS(BN)cccececescesccscccccnsceccscececscnscccecsccscescscessscsceccsteccscecessececssssceseseceses 3-531

trevrel(3N)ccccccsssssssssssscsssscscsssssscsccssscccceccseceecceecsaseacecscerscsacceesecseassaeeseseesees 3-533

trcvudata(3N)sscssecscsscesccscscsceescesesecescececeeescecsccecececessceesesesescessestescecsesecs 3-534

trcvuderr(3N)csccsscssccssccsssesscscecscescscsceccscecssceccscececescesestececeecesessetscescsess 3-536

093-701056 Licensed material—property of copyright holder(s) XV

Contents

tsmd(SN)csccccscesccscesscccceccsccsccseceeseccccscesceccsccesccesecscesccecsesecesccscessscesescesens 3-537

T_SNAAIS(3N)ccccceccsccsccccsceccccsccsccccecccecececcccscecetececececsceccenscecsccsessscscescscececs 3-539

t_smdrel(BN)ccccscsccecscccscsceccccscesccceucecceccccccceccccccccccececcccccscccccccceccecscecccsceecs 3-541

tusmdudata(3N)csccsscescsccccsccecssccececccsccccsccccsccecscceccccscsscscccescessescsscssccscssecs 3-542

T_SYNC(3N)cseccsccosccnssccnsccssereccescenesccecceccescsscccecececcecceccsssesccessecsscescsscesceesess 3-544

TLUMDINA(3N)sscccscccccscccnsccesccccssceesecsccescecesseescesceececceceseusccessseessccceessensccees 3-546

tcflush(3C) sesecceccesecsececccseseeseceseeeceuceccssssscssceecescececsecsssecescecssssssssssseeesscess 3-547

tegetpgrp(3C)cscccsssccresccnsccssccesscnsceescescasecesceeceescssesccsssesecccsessccssceseesecescesscs 3-550

tcsetattr(3C)ccecceccssccscsscceccscescesccsceccvees sateccecsceccscccccscccscecccecesescesceccscscecsens 3-551

tcsetpgrp(3C)ssccsssssccsscccnsccsssccessccscceccesccseseesscecceecsssecssecscesscscenssssesescescese 3-553

TETMCAP(3X)ccsccsscccsssccrescccsscccscessscesvececccccccsccesecesceccecccsceccscceseccccscccceseecsecs 3-554

tETMIOS(3C)scsccesccssecccesccscensccscsccesececcesceccesccsscecccececseccssececccecescsscessccessceescs 3-556

tmpfile(3S)sssscssccssssscccssccesccesscecsseescscesescessececcccccccescccseccscesccccscssscccesccssces 3-560

tmpnam (3S)c.scssccosscccesccssccescsccccnesseccecseccescecsececcecceccscccscccsccsccsssccessccesceucs 3-561

trig(SM)ccssssccsssccssssscecrssccceesceessseccesecesssresceseeseesescscecccsesscscsseecssssceseseseseces 3-562

tsearch(3C)ccsscssssccsssscccessccnscccsssecesccesecessessccusecocccceccscesccsceeesceecessscsecceees 3-563

ttymame(3SC)scscsssccssscssccsscnsccesccescnscecceccecsesenecssosssccecccsceescsesecescssceseccoscees 3-567

ttyslot(3C)scccccscccssccnsscssscsccnsccecccnseecesseesccessescescessssescceccecssecessscsecsecssoseces 3-568

UNGELC(SS)cccrcccscccsscccnesscrssccssccsssccssceesensccesccesccescesccscsssceescessssesceesencssereceeees 3-569

UNGZETWC(SW)sesccsccsscccsccssccssccsccessccescnscescesscessesceeseecsssescscsescescscesscssecscesceees 3-570

UMOCKPt(3C)ccsscsccesccrsscssccssencccesccescsccscescesscesenscecesescsscsessosscessessensscssecsscees 3-571

V]IMIt(3C)ceesceescessccsesccsssccnsccnscecesensececcesetesesesceecesscsceeccccesscscecessscecescecscees 3-572

VPTINtl(3S)ccccccscsccsscssccsscnsccscescesscesceccscescesceceecescesesceccsscssceecscesccssssssesesscceece 3-573

VPTint£(SW)scccssccsscsssccssccssccesccescccescescesecsssesccsseeecesscesscesssesesees peenssccsccsccccecs 3-574

VSCANE(3BS)ceesccesccsscccssecssscnsscnscccnsscceccnsccessensceeceesceccesesessccescsesessesssceeecseceese 3-575

VtiMES(3C)cccescoscsscesccrsccsscceccnsccnsccescnscesencesscessesesceeceecescesscncsesecsscesssscessoseess 3-576

WCOMV(SW))sscssccsccsccscsssssccnscccccsccsccescestescsccscessescecesssecesssseseccscsscsccsssscecesocececs 3-577

WCHYPe(SW)cccccscscescoccsccsscssseccsccsccsscesescecescecsseescscnsessccscessescescecsssesccssscoesesseces 3-578

WIdEC(SW)cccsssceccscsccesscccssscnssecescccesseescnsccnsccesccescnscescnssecesceseccesscesecsssecesceess 3-579

WSUring(SW)cccccosccssccssscscscccssccsssccssecccnsscsscesccescesceceeccescescsescesseresscesesscescees 3-581

XAr(SN)scssccsccssccscsscsssccsscnsscnscesccesccesceccesesscsccescsccscecsecescssccsscesesescecssscessescees 3-583

YPCINU(BN)csescccssccsecssssssceccscceccsscsesescnscucescesceseeccscsccceeseecccsseccsscesscsesccesscees 3-590

Index

Related Documents

Xvi Licensed material—property of copyright holder(s) 093-701056

Chapter 3

Subroutines and Libraries

This chapter contains in printed form all the online manual entries for DG/UX subroutines
and libraries. The entries are in alphabetical order except for intro(3) and intro(3N), which
appear at the beginning. Subroutines are listed by library in intro(3).

093-701056 Licensed material—property of copyright hoider(s) 3-1

intro(3) DG/UX 5.4 intro(3)

NAME

intro — introduction to subroutines and libraries

DESCRIPTION

This section describes functions found in various libraries supplied with the DG/UX

System. Declarations for some of these functions may be obtained from #include

files indicated on the appropriate pages. The man pages are grouped by using various

suffixes after the number 3. They are sorted together in the manual.

(3C) These functions make up the "general" C functions, many of which are part of

the ANSI C. The others have traditionally been part of libc on AT&T Unix

based systems. .

(3E) These functions constitute the ELF library.

(3G) These are general C functions not part of libc.

(3M) These functions constitute the math library, libm. They are not automatically

loaded by the C compiler, cc(1); however, the link editor searches this library

under the ~1m option. Declarations for these functions may be obtained from

the #include file <math.h>. Several generally useful mathematical con-

stants are also defined there (see math(5)).

(3N) These functions constitute the Internet network library, and Network Services

library.

(3R) RPC (Remote Procedure Call) related functions.

(3S) These functions constitute the standard I/O package (see stdio(3S)).

Declarations for them may be obtained from the #include file <stdio.h>.

(3W) Multinational Language Set (MNLS) functions. |

(3X) Various specialized libraries. The library names in which these functions are

found are given on the appropriate pages.

The DG/UX System provides a number of Software Development Environments, or

SDEs. A SDE represents a target binary or object interface. It is made up of a set

of libraries (object and binary interfaces) and header files (constants, data structures,

types) that may be used together to create applications that adhere to a particular

binary interface standard.

See sde(S5) and sde-target(1) for how to select SDEs. The function groupings

described above may not be available in all the SDEs. Some functions even appear in

different libraries from one SDE to another.

The DG/UX System supports 2 object formats, commonly known as COFF and ELF.

The COFF format is associated with pre-V.4 Unix systems from AT&T. The ELF

format originates from V.4 Unix systems. In general, the SDEs deal with one specific

object file format. However, the SDEs that handle ELF format can also handle

COFF format by converting objects from COFF to ELF.

The following SDEs are available.

m88kdguxelf (and m88kdgux)

This is the System V Release 4 ELF environment. The default environment,

m&8kdgux, points to m88kdguxelf. This is the environment that contains ELF

shared libraries. There are also several ELF static libraries. Also, in order to

avoid duplication, several libraries in this environment are COFF libraries and

are shared with the COFF environments.

m8&kdguxcoff

This is the 4.3x based System V Release 3 COFF development environment.

it is provided for development of applications that will ran on DG/UX 4.3x

systems. This environment corresponds to m88kdgux on 4.3x systems.

3-2 Licensed material—property of copyright holder(s) 093-701056

intro(3)

093-701056

DG/UX 8.4 intro(3)

m8&8kocs

This COFF environment provides the 88open OCS standard interface. It

should be used for developing applications that include object files that will

be linked on the application target machine (i.e. libraries). OCS certification

has not taken place at this time.

m&&skbcs

The m88kbcs environment is essentially unchanged from 4.3x. It is intended

for developing applications consisting entirely of statically linked COFF exe-

cutables that adhere to the 880pen BCS. It provides a System V Interface

Definition, Edition 2 compatible libe with BSD, POSIX, and ANSI exten-

sions.

m&&kdgux

This environment is a pointer to one of the other environments. It provides

the default if no other environment is explicitly requested. In 4.3x, this was a

pointer to what is now m8&&kdguxcoff. In DG/UX Release 5.4 this is a

pointer to m88kdguxelf.

All of the above environments are intended to provide the set of interfaces specified

by the OCS standard. In the ELF environments, these interfaces may not appear in

the same libraries specified by the OCS. This is due to restructuring by AT&T in

System V Release 4. See below for more information.

A few functions are located in different libraries in the ELF environments than in the

COFF environments. The regex and regemp functions are available in libPW in the

COFF environments, and in libgen in the ELF environments. The nlist function is

available in libe in the COFF environments, and in libelf in the ELF environments.

In addition, many functions normally found in libe in the m88kdguxcoff environment

are found in libdge in the DG/UX Release 5.4 ELF environment. The reason for this

split is to facilitate ABI compliance in the future. The general classes that have been

moved are the RPC/YP (3N) functions, socket/internet functions (3N), domain name

service functions (3N), Berkeley 4.2 and 4.3 extensions, and miscellaneous DG exten-

sions.

This is the list of symbols in libdge in the ELF environment. These symbols are

located in libe in the COFF environments.

accept addexportent

addmntent : alphasort

authdes_create authdes_getucred

authnone_create authunix_create

authunix_create_default bemp

bcopy berk_signal

berk_sigpause bind

bindresvport bzero

callrpc cbc_crypt

clnt_broadcast clnt_create

cint_pcreateerror clnt_perrno

clnt_perror clnt_spcreateerror

clnt_sperrno clnt_sperror

clntraw_create clnttcp_create

Licensed material—property of copyright holder(s) 3-3

intro(3) DG/UX 5.4 intro(3)

clntudp_create connect

dbm_clearerr dbm_close

dbm_delete dbm_error

dbm_fetch dbm_firstkey

dbm_nextkey dbm_open

dbm_store des_setparity

dg_allow_shared_descriptor_attach dg_attach_to_shared_descriptors

dg_block_seek dg_decryptsessionkey

dg_encryptsessionkey dg_ext_errno

dg_file_info dg_flock

dg_fstat dg_getrootkey

dg_ipc_info dg_icntl
dg_lock_kill dg_lock_reset

dg_lock_wait dg_mknod

dg_mount dg_mstat

dg_paging_info dg_process_info

dg_seek dg_set_cpd_limits

dg_setsecretkey dg_stat

dg_sys_info dg_sysctl

dg_unbuffered_read dg_unbuffered_write

dg_xtrace dn_comp

dn_expand ecb_crypt
endexportent endfsent

endhostent endmntent

endnetent endnetgrent

endprotoent endrpcent

endservent ether_aton

ether_hostton ether_line

ether_ntoa ether_ntohost

extended_perror ftime

get_myaddress getdomainname

getdtablesize getexportent

getexportopt getfh

getfsent getfsfile

getfsspec getfstype

gethostbyaddr gethostbyname

gethostent — gethostid

gethostname getmntent

getnetbyaddr getnetbyname

getnetent getnetgrent

getnetname getpagesize

getpeername getperp2

getpriority getprotobyname

getprotobynumber getprotoent

getpsr getrpcbyname

getrpcbynumber getrpcent

getrpcport getrusage

getservbyname getservbyport

getservent getsockname

3-4 Licensed material—property of copyright hoider(s) 093-701056

intro(3)

getsockopt

h_errlist

hasmntopt

* host2netname

093-701056

inet_addr _

inet_makeaddr

inet_network

initstate

isalphanum

itoa

key_encryptsession

key_setsecret

listen

mkstemp

netname2host

p_type
pmap_getport

pmap_set

random

re_comp

reboot

recvirom

registerrpc

res_init

res_send

rindex

rresvport

ruserok

select

send

sendto

setegid

setexportent

sethostent

sethostname

setnetent

setperp2

setprotoent

setregid

setrpcent

setsockopt

shmsys

sigblock

sigsetmask

socket

srandom

strsave

svc_getreq

svc_register

DG/UX 5.4

getwd

h_errno

herror

index

inet_Inaof

inet_netof

inet_ntoa

innetgr

ishex

key_decryptsession

key_gendes

_ killpg

memctl

msgsys

netname2user

pmap_getmaps

pmap_rmtcall

pmap_unset

remd

re_exec

recv

recvmsg

remexportent

res_mkquery —

rexec

rpc_createerr

rtime

scandir

semsys

sendmsg

setdomainname

seteuid

setfsent

sethostid

setmntent

setnetgrent

setpriority

setpsr

setreuid

setservent

setstate

shutdown

sigret

sigstack

socketpair

strmsave

svc_fdset

svc_getreqset

svc_run

Licensed material—property of copyright hoider(s)

intro(3)

3-5

intro(3) DG/UX 5.4 intro(3)

svc_sendreply svc_unregister

svcerr_auth svcerr_decode

svcerr_noproc svcerr_noprog

svcerr_progvers svcerr_systemerr

svcerr_weakauth svcfd_create

svcraw_create svctcp_create

svcudp_create swapon

user2netname utimes

vhangup vlimit

vtimes wait3

wait4 xdr_accepted_reply

xdr_array xdr_authunix_parms

xdr_bool xdr_bytes

xdr_callhdr xdr_callmsg

xdr_char xdr_double

xdr_enum xdr_float

xdr_free xdr_int

xdr_long xdr_opaque

xdr_opaque_auth xdr_pmap

xdr_pmaplist xdr_pointer

xdr_reference xdr_rejected_reply

xdr_replymsg xdr_short

xdr_string xdr_u_char

xdr_u_int xdr_u_long

xdr_u_short xdr_union

xdr_vector xdr_void

xdr_wrapstring xdrmem_create

xdrrec_create xdrrec_endofrecord

xdrrec_eof xdrrec_skiprecord

xdrstdio_create xprt_register

xprt_unregister yp_all

yp_bind yp_first

yp_get_default_domain yp_gethostbyname

yp_master yp_match

yp_next yp_order

yp_unbind yp_update

yperr_string ypprot_err

Many of the internationalization features, such as message catalog facilities (see

gettxt(3C)) that are available in the m88kdguxelf environment are absent from the

m&8kdguxcoff, m88kbcs, and m88kocs environments. Many other internationalization

features, such as strcol1(3C) are present, but offer only C locale behavior.

Definitions

character Any bit pattern able to fit into a byte on the machine.

null character A character with value 0, represented in the C language as ’\0’.

character array A sequence of characters.

null-terminated character array

A sequence of characters, the last of which is the null character.

string is a designation for a null-terminated character array.

null string A character array containing only the null character.

3-6 Licensed material—property of copyright holder(s) 093-701056

intro(3) DG/UX 5.4 Intro(3)

NULL pointer The value that is obtained by casting 0 into a pointer. The C

language guarantees that this value will not match that of any legiti-

mate pointer, so many functions that return pointers return it to

indicate an error.

NULL Defined as 0 in <stdio.h>; the user may include an appropriate

definition if not using <stdio.h>.

FILES

/usr/lib/libc.a

/usr/lib/libcrypt.a

/usr/lib/libdbm.a

/lib/libcurses.a

f/usr/lib/libm.a

/usr/lib/libmalloc.a

/usr/lib/libmp.a

/usr/lib/libnsl_s.a

/lib/libtermcap.a

/usr/1ib/libPW.a

/usr/sde/*/lib/*

/usr/lib/libdl.a

/usr/lib/libdgc.a

f/usr/lib/libelf.a

/usr/lib/libgen.a

/usr/lib/libmail.a

DIAGNOSTICS

Standard C library

Alternate encryption library

Database access library

Terminal screen handling library

Math library

Alternate memory management library

Multi-precision integer math library

Network Services library

termcap access library

Programmer Workbench library

Any SDE specific components linked via elinks

Dynamic linking interfaces (ELF)

Non-AT&T based portion of libc (ELF)

Object format interfaces (COFF)

General library functions (COFF)

Mail file interfaces (ELF)

Functions in the C and math Libraries (3C and 3M) may return the conventional

values 0 or +HUGE when the function is undefined for the given arguments or when

the value is not representable. These are the largest-magnitude single-precision

floating-point numbers; HUGE is defined in the <math.h> header file. In these cases,

the external variable errno (see intro(2)) is set to the value EDOM or ERANGE.

SEE ALSO

ar(1), ec(1), £77(1), 1d(1), lint(1), nm(1), sde-target(1), intro(2), intro(3N),
stdio(3S), math(5).

CAUTION

Many of the functions in the libraries call and/or refer to other functions and external

variables described in this section and in Chapter 2 (System Calls). If a program

inadvertently defines a function or external variable with the same name, the

presumed library version of the function or external variable may not be loaded. The

lint(1) program checker reports name conflicts of this kind as multiple declarations

of the names in question. Definitions for sections 2, 3C, 3N, 3R and 3S are checked

automatically. Other definitions can be included by using the -1 option (for example,

—1m includes definitions for the math library, section 3M). Use of lint is highly

recommended.

093-701056 Licensed material—property of copyright holder(s) 3-7

intro(SN) DG/UX 5.4 intro(3N)

NAME

intro — introduction to network library functions

DESCRIPTION .
This page lists functions that apply to the DARPA Internet network.

List of Functions

Name Appears on Page __ Description

gethostbyaddr gethostent(3N) get network host entry

gethostbyname gethostent(3N) get network host entry

gethostent gethostent(3N) get network host entry

getnetbyaddr getnetent(3N) get network entry

getnetbyname getnetent(3N) get network entry

getnetent getnetent(3N) get network entry

getprotobyname _ getprotoent(3N) get protocol entry

getprotobynumber getprotoent.3n get protocol entry

getprotoent getprotoent(3N) get protocol entry

getservbyname getservent(3N) get service entry

getservbyport getservent(3N) get service entry

getservent getservent(3N) get service entry

htonl byteorder(3N) convert values between host and

network byte order

htons byteorder(3N) convert values between host and

network byte order

ntohl byteorder(3N) convert values between host and

network byte order

ntohs byteorder(3N) convert values between host and

network byte order

SEE ALSO

intro(3).

3-8 Licensed material—property of copyright holder(s) 093-701056

a64i(3C)

NAME

DG/UX 5.4 a641(3C)

a641, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

#include <stdlib.h>

long a641l (const char xs);

char +164a (long /!);

DESCRIPTION

These functions are used to maintain numbers stored in base-64 ASCII characters.

These characters define a notation by which long integers can be represented by up to
six characters; each character represents a digit in a radix-64 notation. Like normal
numerals, the digits are arranged from right to left.

The characters used to represent “digits” are:

for 0

/ for 1

0-9 for 2-11

A-Z for 12-37

a-z for 38-63

a641 takes a pointer to a null-terminated base-64 representation and returns a

corresponding long value. If the string pointed to by s contains more than six char-

acters, a641 will use the first six.

a641 scans the character string from left to right with the least significant digit on the

left, decoding each character as a 6-bit radix-64 number.

164a takes a long argument and returns a pointer to the corresponding base-64

representation. If the argument is 0, 164a returns a pointer to a null string.

SEE ALSO

13to0l(3C).

CAVEATS

093-701056

The value returned by 164a is a pointer into a static buffer, the contents of which

are overwritten by each call.

Licensed material—property of copyright holder(s) 3-9

abort(3C) DG/UX 5.4 abort(3C)

NAME

abort — generate an abnormal termination signal

SYNOPSIS

#include <stdlib.h>

void abort (void);

DESCRIPTION

abort first closes all open files, stdio(3S) streams, directory streams and message

catalogue descriptors, if possible, then causes the signal SIGABRT to be sent to the

calling process.

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a

core dump is produced and the message abort - core dumped is written by the

shell [see sh(1)].

SEE ALSO

sdb(1), exit(2), kill(2), signal(2), catopen(3C), stdio(3S).

sh(1) in the User’s Reference Manual.

3- 1 0 Licensed material—property of copyright holder(s) 093-701056

abs(3C) DG/UX 5.4 abs(3C)

NAME

abs, labs — return integer absolute value

SYNOPSIS

#Hinclude <stdlib.h>

int abs (int val); .

long labs (long lval);

DESCRIPTION

abs returns the absolute value of its int operand. labs returns the absolute value

of its long operand.

SEE ALSO

floor(3M).

NOTES

In 2’s-complement representation, the absolute value of the largest magnitude negative

integral value is undefined.

093-701056 Licensed material—property of copyright hoider(s) 3- 1 1

addseverity(3C) DG/UX 5.4 addseverity(3C)

NAME

addseverity — build list of severity levels for application to be used with fmtmsg

SYNOPSIS

#include <fmtmsg.h>

int addseverity(int severity, const char sxsiring);

DESCRIPTION

The addseverity function builds a list of severity levels for an application to be

used with the message formatting facility, fmtmsg. severity is an integer value indi-

cating the seriousness of the condition, and string is a pointer to a string describing

the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously defined,

the function adds that new severity value and print string to the existing set of stan-

dard severity levels.

If addseverity is called with an integer value that has been previously defined, the

function redefines that value with the new print string. Previously defined severity

levels may be removed by supplying the NULL string. If addseverity is called with

a negative number or an integer value of 0, 1, 2, 3, or 4, the function fails and returns

-1. The values 0-4 are reserved for the standard severity levels and cannot be modi-

fied. Identifiers for the standard levels of severity are:

MM _HALT indicates that the application has encountered a severe fault

and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces

the print string ERROR.

° MM_WARNING indicates a condition that is out of the ordinary, that might be

a problem, and should be watched. Produces the print string

WARNING.

MM_INFO provides information about a condition that is not in error.

Produces the print string INFO.

MM _NOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment

variable [see fmtmsg(3C)].

EXAMPLES

When the function addseverity is used as follows:

addseverity(7, "ALERT")

the following call to fmtmsg:

fmtmsg(MM PRINT, “UX:cat", 7, “invalid syntax", “refer to

manual”, "UX:cat:001")

produces:

UX:cat: ALERT: invalid syntax

TO FIX: refer to manual UX3cat:001

DIAGNOSTICS

addseverity returns MM _OK on success or MM_NOTOK on failure.

SEE ALSO

fmtmsg(1M), fmtmsg(3C), gettxt(3C), print £(3S).

3-1 2 Licensed material—property of copyright holder(s) 093-701056

assert(3X) _ DG/UX 5.4 assert(3X)

NAME

assert — verify program assertion

SYNOPSIS

#include <assert.h>

void assert (int expression) ;

DESCRIPTION

This macro is useful for putting diagnostics into programs. When it is executed, if

expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of the

source file and nnn the source line number of the assert statement. The latter are

respectively the values of the preprocessor macros _ FILE __ and _ LINE _

Compiling with the preprocessor option -DNDEBUG [see cc(1) or cpp(1)], or with

the preprocessor control statement

#define NDEBUG

ahead of the

#include <assert,h>

statement will stop assertions from being compiled into the program.

SEE ALSO

ec(1), cpp(1), abort(3C).

NOTES

Since assert is implemented as a macro, the expression may not contain any string

literals.

093-701056 Licensed materiai—property of copyright hoider(s) 3-1 3

atexit(3C) DG/UX 5.4 atexit(3C)

NAME

atexit — add program termination routine

SYNOPSIS

#include <stdlib.h>

int atexit (void (func) (void));

DESCRIPTION °

atexit adds the function func to a list of functions to be called without arguments

on normal termination of the program. Normal termination occurs by either a call to

the exit system call or a return from main. At most 32 functions may be registered

by atexit; the functions will be called in the reverse order of their registration.

atexit returns 0 if the registration succeeds, nonzero if it fails.

SEE ALSO

exit(2).

3-1 4 Licensed material—property of copyright holder(s) 093-701056

basename(3G) | DG/UX 6.4 basename(3G)

NAME

basename — return the last element of a path name

SYNOPSIS

ec [flag ...] file ... -1gen [library ...]

#include <libgen.h>

char *«basename (char path);

DESCRIPTION |

Given a pointer to a null-terminated character string that contains a path name,

basename returns a pointer to the last element of path. Trailing “/” characters are

deleted.

If path or «path is zero, pointer to a static constant ‘“*.” is returned.

EXAMPLES

Input string Output pointer

/usr/lib lib

/usr/ usr

/ /

SEE ALSO

dirname(3G).

basename(1) in the User’s Reference Manual.

093-701056 Licensed material—property of copyright holder(s) 3-1 5

bemp(3C) DG/UX 5.4 bemp(3C)

NAME

bemp — compare two areas of memory

SYNOPSIS

int bemp(), result, length;

char *pirl, *ptr2;

result = bemp(pirl, ptr2, length);

where:

ptrl A pointer to the first area.

ptr2 A pointer to the second area.

length The number of bytes to compare.

DESCRIPTION

The bemp function compares two areas of memory, byte by byte, as unsigned values.
It compares the number of bytes you specify with length; this function comes from
the University of California Berkeley UNIX (BSD) system. Unlike the mememp func-
tion, the bemp function tests only for equality. This function does not indicate
whether the first area is greater or less than the second area.

RETURN VALUE

The bemp function returns 0 if the areas are equal. Otherwise, it returns a nonzero
value. However, if length is negative, the function bemp returns 0.

EXAMPLE
The following program compares an input string to the username mike.

/* Program test for the bemp() function */

#include <stdio.h>

int bemp();

char buf[80];

main() [{

printf("Type in a name: ");

if (fgets(buf, sizeof(buf), stdin)) {

if (!bemp(buf, "mike\n", 5))

printf("You typed mike!\n");

else

printf("You did not type mike.\n");

}

return 0;

}

SEE ALSO

memcemp(3C).

3-1 6 Licensed material—property of copyright hoider(s) 093-701056

beopy(3C) DG/UX 5.4 beopy(3C)

NAME

bcopy — copy bytes from one area to another

SYNOPSIS

int bcopy(), length;

char *source, *destination;

beopy (source, destination, length) ;

where:

source The start of the area to copy from

destination The start of the area to copy the bytes to

length The number of bytes to move :

DESCRIPTION

The bcopy function copies the number of bytes that you specify from one memory

location to another; this function comes from the University of California Berkeley

UNIX (BSD) system. Unlike the memcpy function, bcopy behaves well if the two

areas overlap. Also note that the source and destination arguments are reversed as

compared to memcpy’s calling sequence.

EXAMPLE ,

The following program copies a string into a buffer and then prints it.

/* Program test for the bcopy() function */

#include <stdio.h>

int bcopy(); . .

char buffer[80];

main() {

beopy("Copy string with bcopy.\n", buffer, 24);

fputs(buffer, stdout);

return 0;

}

RETURN VALUE

The bcopy function returns no value.

SEE ALSO

memory(3C).

093-701056 Licensed material—property of copyright holder(s) 3- 1 7

berk_regex(3C) DG/UX 5.4 berk_regex(3C)

NAME

berk_regex, regex, re_comp, re_exec ~— handle regular expressions

SYNOPSIS

char *re_comp(S)

char *S;

re_exec(S)

char *5;

DESCRIPTION

Re_comp compiles a string into an internal form suitable for pattern matching.

Re_exec checks the argument string against the last string passed to re_comp.

Re_comp returns 0 if the string s was compiled successfully; otherwise a string con-

taining an error message is returned. If re_comp is passed 0 or a null string, it

returns without changing the currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if

the string s failed to match the last compiled regular expression, and -1 if the com-

piled regular expression was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded

newline characters; they are terminated by nulls. The regular expressions recognized

are described in the manual entry for ed (1), given the above difference.

DIAGNOSTICS

Re_exec returns -—1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expression

Regular expression too long

Unmatched \(

Missing]

Too many \(\) pairs

_ Unmatched \)

SEE ALSO

3-18

ed(1), ex(1).

Licensed material—property of copyright holder(s) 093-701056

berk_signal(3C) DG/UX 5.4 berk_signal(3C)

NAME

berk_signal, signal — simplified software signal facilities

SYNOPSIS

#define _BSD_ SIGNAL FLAVOR

#include <signal.h>

(*signal(sig, func))()

int (*func)();

DESCRIPTION

signal is a simplified interface to the more general sigvec(2) facility. If you

define the BSD_SIGNAL_FLAVOR macro or only the _BSD_SOURCE macro

when you compile your C application, you will get the signal functionality

described in this entry; otherwise, you will get the functionality described in sig-

nal(2). For more information on the BSD_SIGNAL_FLAVOR and

_BSD_SOURCE macros, see Porting Applications to the DG/UXTM System.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,

interrupt, stop), by a program error (bus error, etc.), by request of another program

(kill), or when a process is stopped because it wishes to access its control terminal

while in the background (see tty(4)). Signals are optionally generated when a pro-

cess resumes after being stopped, when the status of child processes changes, or

when input is ready at the control terminal. Most signals cause termination of the

' receiving process if no action is taken; some signals instead cause the process receiv-

ing them to be stopped, or are simply discarded if the process has not requested oth-

erwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows sig-

nals either to be ignored or to cause an interrupt to a specified location. For a list of

the signals, see <sys/signal.h>.

If func is SIG_DFL, the default action for signal sig is reinstated. If func is

SIG_IGN, the signal is subsequently ignored and pending instances of the signal are

discarded. Otherwise, when the signal occurs, further occurences of the signal are

automatically blocked and func is called. |

A return from the function unblocks the handled signal and continues the process at

the point it was interrupted. Unlike previous signal facilities, the handler func

remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate

prematurely, the call is automatically restarted. In particular this can occur during a

read(2) or write(2) on a slow device (such as a terminal; but not a file) and during

a wait(2). |

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. Execve(2) resets all

caught signals to the default action; ignored signals remain ignored.

RETURN VALUE

The previous action is returned on a successful call. Otherwise, —1 is returned and

errno is set to indicate the error.

DIAGNOSTICS

signal will fail and no action will take place if one of the following occur:

EINVAL Sig is not a valid signal number.

EINVAL An attempt is made to ignore or supply a handler for SIGKILL or

SIGSTOP.

093-701056 Licensed material—property of copyright holder(s) 3-1 9

berk_signal(3C) DG/UX 5.4 berk_signal(3C)

EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is

ignored).

SEE ALSO

kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), signal(2), sigset-

mask(2), sigpause(2), sigstack(2), setjmp(3C), tty(4)

NOTES

signal(3C) provides compatibility with BSD signal handling while signal(2) is Sys-

-tem V based. You can use signal(3C) in either of the following ways:

1) Define BSD_SIGNAL_FLAVOR (or define _BSD_SOURCE while not defin-

ing -POSIX_SOURCE or _SYSV3_SOURCE), include <signal.h>, and call

signal(). Calls to signal will translate to berk_signal, which is

signal(3C). signal(2) is unavailable with this method.

2) Include <signal.h> and call berk_signal. With this method you can use

both System V signal facilities (call signal to get signal(2)) and BSD signal

facilities (call berk_signal to get signal(3C)).

STANDARDS

When using m88kbcs as the Software Development Environment (SDE) target, the

berk_signal function will be an incomplete emulation of Berkeley semantics. Since

we are using BCS system calls, system call restart is not available. Instead, inter-

rupted system calls will fail with errno set to EINTR. Also, since this is an emula-

tion requiring several BCS system calls, a slight performance degradation may be

noticed in comparison to using berk_signal in /lib/libc.a.

3-20 Licensed material—property of copyright holder(s) 093-701056

besse/(3M) DG/UX 5.4 bessei(SM)

NAME

bessel: j0, j1, jn, yO, yl, yn — Bessel functions

SYNOPSIS

ce [flag ...] file ... -1m [library ...]

#include <math.h>

double 30 (double x);

double j1 (double x);

double jn (int m, double xX);

double yO (double x);

double yl (double x);

double yn (int m, double Xx);

DESCRIPTION

30 and j1 return Bessel functions of x of the first kind of orders 0 and 1, respec-

tively. jn returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and 1, respec-

tively. yn returns the Bessel function of x of the second kind of ordern. The value

of x must be positive.

DIAGNOSTICS

Non-positive arguments cause y0, yl, and yn to return the value —HUGE and to set

errno to EDOM. In addition, a message indicating DOMAIN error is printed on the

standard error output.

Arguments too large in magnitude cause j0, j1, y0, and y1 to return 0 and to set

errno to ERANGE. In addition, a message indicating TLOSS error is printed on the

standard error output.

Except when the —Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the -Xa or -Xc compilation

options are used, HUGE_VAL is returned instead of HUGE and no error messages are

printed.

SEE ALSO

093-701056

matherr(3M).

Licensed material—property of copyright hoider(s) 3-21

bgets(3G) DG/UX 5.4 bgets(3G)

NAME

bgets — read stream up to next delimiter

SYNOPSIS

ce [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *bgets (char *buffer, size_t «count, FILE «stream,

const char xbreakstring) ;

DESCRIPTION :

bgets reads characters from stream into buffer until either count is exhausted or one

of the characters in breakstring is encountered in the stream. The read data is ter-

minated with a null byte (’\0’) and a pointer to the trailing null is returned. Ifa

breakstring character is encountered, the last non-null is the delimiter character that

terminated the scan.

Note that, except for the fact that the returned value points to the end of the read

string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\n");

is identical to

| fgets (buffer, sizeof buffer, stream) ;

There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is used.

If breakstring is null at the first call, no characters will be used to delimit the string.

EXAMPLES

#include <libgen.h>

char buffer([8];

/7* read in first user name from /etc/passwd +*/

fp = fopen("/etc/passwd","r");

bgets(buffer, 8, fp, ":");

DIAGNOSTICS

NULL is returned on error or end-of-file. Reporting the condition is delayed to the

next call if any characters were read but not yet returned.

SEE ALSO

gets(3S).

3-22 Licensed material—property of copyright hoider(s) 093-701056

bsearch(3C) DG/UX 58.4 bsearch(3C)

NAME |

bsearch — binary search a sorted table

SYNOPSIS

#include <stdlib.h>

void *«bsearch (const void «key, const void «base,

size_t nel, size_t size, |

int (*compar)(const void *, const void *));

DESCRIPTION

bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It

returns a pointer into a table (an array) indicating where a datum may be found or a

null pointer if the datum cannot be found. The table must be previously sorted in

increasing order according to a comparison function pointed to by compar. key

points to a datum instance to be sought in the table. base points to the element at the

base of the table. nel is the number of elements in the table. size is the number of

bytes in each element. The function pointed to by compar is called with two argu-

ments that point to the elements being compared. The function must return an

integer less than, equal to, or greater than 0 as accordingly the first argument is to be

considered less than, equal to, or greater than the second.

EXAMPLE | :
The example below searches a table containing pointers to nodes consisting of a string

and its length. The table is ordered alphabetically on the string in the node pointed

to by each entry.

This program reads in strings and either finds the corresponding node and prints out

the string and its length, or prints an error message.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct node { /* these are stored in the table «/

char «string;

int length;

};

static struct node table[] = /* table to be searched <«/

{

“asparagus”, 10 },

"beans", 6 },

“tomato”, 7 },

“watermelon”, 11 },as e r
};

main()

struct node «node _ptr, node;

/* routine to compare 2 nodes +/

static int node_compare(const void *, const void ¢*);

char str_space[20]; /* Space to read string into «/

node.string = str_space;

while (scanf("%20s", node.string) != EOF) {

node _ptr = bsearch(&node,

093-701056 Licensed material—property of copyright holder(s) 3-23

bsearch(3C)

DIAGNOSTICS

SEE ALSO

NOTES

The pointers to the key and the element at the base of the table should be of type

3-24

}

DG/UX 5.4 bsearch(3C)

table, sizeof(table)/sizeof(struct node),

sizeof(struct node), node_compare) ;

if (node_ptr != NULL) {

(void) printf("string = %20s, length = %d\n",

node_ptr—>string, node_ptr—>length) ;

} else {

(void)printf("not found: %20s\n", node.string) ;

}

}

return(0);

/* routine to compare two nodes based on an +*/

/* alphabetical ordering of the string field +«/

static int :

node_compare(const void *nodel, const void *«node2)

{

}

return (strcmp(

((const struct node *)nodel)—>string,

((const struct node *)node2)—>string));

A null pointer is returned if the key cannot be found in the table.

hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be con-

tained in the elements in addition to the values being compared.

Although declared as type void *, the value returned should be cast into type pointer-

element.

If the number of elements in the table is less than the size reserved for the table, nel

should be the lower number.

Licensed material—property of copyright holder(s) 093-701056

bufsplit(3G) DG/UX 5.4 bufsplit(3G)

NAME

bufsplit — split buffer into fields

SYNOPSIS

cc [flag ...] file ... -1lgen [library ...]

#include <libgen.h>

size_t bufsplit (char «buf, size_t n, char *«a);

DESCRIPTION

bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so that

the pointers point to the first n fields in buf that are delimited by tabs or new-lines.

To change the characters used to separate fields, call bufsplit with buf pointing to

the string of characters, and n and a set to zero. For example, to use ’:’,’.’, and’,’

as separators along with tab and new-line:

bufsplit (":.,\t\n", 0, (char«s)0);

RETURN VALUE

The number of fields assigned in the array a. If buf is zero, the return value is zero

and the array is unchanged. Otherwise the value is at least one. The remainder of

the elements in the array are assigned the address of the null byte at the end of the

buffer.

EXAMPLES

/*

* set a[0] = "This", a[(1] = “is", a[2] = "a",

* a[3] = “test”

* /
bufsplit("This\tis\ta\ttest\n", 4, a);

SEE ALSO

sefbuf(3S), setbuffer(3C).

NOTES

bufsplit changes the delimiters to null bytes in buf.

093-701056 Licensed material—property of copyright hoider(s) 3-25

byteorder(3N) | DG/UX 5.4 byteorder(3N)

NAME

htonl, htons, ntohl, ntohs — convert values between host and network byte

order

SYNOPSIS

#include <sys/types.h>

#include <netinet/in.h>

netlong = htonl(hostlong) ;

u_long netlong, hostlong;

netshort = htons(hostshort) ;

u_short netshort, hostshort;

hostlong = ntohl(netlong) ;

u_long hostlong, netlong;

hostshort = ntohs(netshort) ;
u_short hdstshort, netshort;

DESCRIPTION

These routines convert 16- and 32-bit quantities between network byte order and host

byte order. These routines are defined as null macros in the include file

netinet/in.h.

These routines are most often used with Internet addresses and ports as returned by

gethostent(3N) and getservent(3N).

SEE ALSO

3-26

gethostent(3N), getservent(3N).

Licensed material—property of copyright hoider(s) 093-701056

bzero(3C) DG/UX 8.4

NAME

bzero — zero a portion of memory

SYNOPSIS

int bzero(), length;

char *ptr;

bzero(ptr, length);

where:

ptr A pointer to the area to clear

length The number of bytes set to zero

DESCRIPTION

bzero(3C)

The bzero function fills a specified memory area with zeros. The size of the area of
memory is equal to length.

This function comes from the University of California Berkeley UNLX (BSD) system.

RETURNS

The bzero function returns no value.

EXAMPLE

/* Program test for the bzero() function */

#include <stdio.h>

int bzero();

char buf[80] = "abcdef";

main() { |
printf("“buf = ’%s’\n", buf);

bzero(buf, sizeof(buf));

printf("buf = ’%s’\n", buf);

return 0;

}

A call to this program generates the output

buf = ‘’abcdef’

buf = /’!

SEE ALSO

memory(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-27

catgets(3C) DG/UX 5.4 : catgets(SC)

NAME

catgets — read a program message

SYNOPSIS

#include <nl_types.h>

char *catgets (nl_catd catd, int setnum, int msg_num, char *s);

DESCRIPTION

catgets attempts to read message msg_num, in set set_num, from the X/Open-style

message catalogue identified by catd. catd is a catalogue descriptor returned from an

earlier call to catopen. s points to a default message string which will be returned

by catgets if the identified message catalogue is not currently available.

DIAGNOSTICS |

If the identified message is retrieved successfully, catgets returns a pointer to an

internal buffer area containing the null terminated message string. If the call is unsuc-

cessful because the message catalogue identified by catd is not currently available, a

pointer to s is returned.

SEE ALSO

catopen(3C).

gettxt(3C) — AT&T-style message facility.

3-28 Licensed material—property of copyright holder(s) 093-701056

catopen(3C) DG/UX 8.4 © catopen(3C)

NAME

catopen, catclose — open/close a message catalogue

SYNOPSIS

#include <nl_types.h>

nl_catd catopen (char *name, int oflag);

int catclose (nl_catd catd);

DESCRIPTION

catopen opens an X/Open-style message catalogue and returns a catalogue descrip-

tor. name specifies the name of the message catalogue to be opened. If name con-

tains a “/” then name specifies a pathname for the message catalogue. Otherwise, the

environment variable NLSPATH is used. If NLSPATH does not exist in the environ-

ment, or if a message catalogue cannot be opened in any of the paths specified by

NLSPATH, then the default path is used [see nl_types(5)].

The names of message catalogues, and their location in the filestore, can vary from

one system to another. Individual applications can choose to name or locate message

catalogues according to their own special needs. A mechanism is therefore required

to specify where the catalogue resides.

The NLSPATH variable provides both the location of message catalogues, in the form

of a search path, and the naming conventions associated with message catalogue files.

For example: |

NLSPATH=/usr/lib/nls/msg/%L/%N. cat: /usr/lib/nls/msg/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current

setting of the LANG environment variable (see following section), and %N substitutes

the value of the namme parameter passed to catopen. Thus, in the above example,

catopen will search in /usr/lib/nls/msg/$LANG/name.cat, then in

/usr/lib/nls/msg/name/$LANG, for the required message catalogue.

NLSPATH will normally be set up on a system wide basis (e.g., in /etc/profile)

and thus makes the location and naming conventions associated with message catalo-

gues transparent to both programs and users.

The full set of metacharacters is:

%N The value of the name parameter passed to catopen.

tL The value of LANG.

1 The value of the language element of LANG.

%t The value of the territory element of LANG.

tc The value of the codeset element of LANG.

%% <A single %.

The LANG environment variable provides the ability to specify the user’s requirements

for native languages, local customs and character set, as an ASCII string in the form

LANG=language[_ territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal which

operates in the PC 850 codeset, would want the setting of the LANG variable to be

LANG=de_AT.850

With this setting it should be possible for that user to find any relevant catalogues

should they exist.

093-701056 Licensed material—property of copyright holder(s) 3-29

catopen(3C) DG/UX 5.4 catopen(3C)

Should the LANG variable not be set then the value of LC_MESSAGES as returned by

setlocale is used. If this is NULL then the default path as defined in nl_types iS

used.

oflag is reserved for future use and should be set to 0. The results of setting this field

to any other value are undefined.

catclose closes the message catalogue identified by catd.

DIAGNOSTICS

If successful, catopen returns a message catalogue descriptor for use on subsequent

calls to catgets and catclose. Otherwise catopen returns (nl_ catd) -1.

catclose returns 0 if successful, otherwise —1.

SEE ALSO

gencat(1), catexstr(1), catgets(3C), setlocale(3C), environ(5),

nl_types(5).

mkmsgs(1), gettxt(3C) — AT&T-style message facilities.

3-30 Licensed material—property of copyright hoider(s) 093-701056

ctsetospeed(3C) DG/UX 5.4 cfsetospeed(3C)

NAME

cfgetispeed, cfgetospeed, cfsetispeed, cfsetospeed — baud rate functions

SYNOPSIS

#include <termios.h>

speed_t cfgetospeed (fermios_p)

struct termios +*fermios_p;

int cfsetospeed (termios_p, speed)

struct termios +fermlos_p;

speed _t speed;

speed_t cfgetispeed (flermios_p)

struct termios +«fermlos_p;

int cfsetispeed (termios_p, speed)

struct termios *fermlos_p;

speed_t speed;

DESCRIPTION

The following interfaces are provided for getting and setting the values of the input

and output baud rates in the termios structure. The effects on the terminal device

described below do not become effective until the tcsetattr() function is success-

fully called.

The input and output baud rates are stored in the termios structure. The values

shown in the table "termios Baud Rate Values” are supported. The name symbols in

this table are defined in <termios.h>.

termios Baud Rate Values

Name Description Name __— Description

BO Hang up B600 600 baud

B50 50 baud B1200 1200 baud

B75 75 baud B1800 1800 baud

B110 110 baud B2400 2400 baud

B134 = 1134.5 baud B4800 4800 baud

B150 150 baud B9600 $9600 baud

B200 200 baud B1i9200 19200 baud

B300 300 baud B38400 38400 baud

The type speed_t shall be defined in <termios.h> and shall be an unsigned integral

type.

The termios_p argument is a pointer to a termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure pointed

to by termios_p.

cfsetospeed() sets the output baud rate stored in the fermios structure pointed to

by termios_p to speed. The zero baud rate, BO, is used to terminate the connection.

If BO is specified, the modem control lines shall no longer be asserted. Normally,

this will disconnect the line.

093-701056 Licensed material—property of copyright holder(s) 3-31

cfsetospeed(3C) DG/UX 5.4 cfsetospeed(3C)

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed. If

the input baud rate is set to zero, the input baud rate will be specified by the value of

the output baud rate. Both cfsetispeed() and cfsetospeed() return a value of

zero if successful and ~—1 to indicate an error. Attempts to set unsupported baud

rates shall be ignored, and it is implementation-defined whether an error is returned

by any or all of cfsetispeed(), cfsetospeed(), or tcsetattr(). This refers

both to changes to baud rates not supported by the hardware, and to changes setting

the input and output baud rates to different values if the hardware does not support

this.

RETURNS

See DESCRIPTION.

DIAGNOSTICS

This standard does not specify any error conditions that are required to be detected

for the cfgetispeed(), cfgetospeed(), cfsetispeed(), or cfsetospeed()

functions. Some errors may be detected under implementation-defined conditions.

SEE ALSO

tesetattr(3C).

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the.permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-ITEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

3-32

Attempts to set unsupported baud rates will be ignored, and will not cause any error

to be returned by the functions cfsetispeed() or cfsetospeed().

There are no implementation-defined conditions under which the cfsetispeed() or

cfsetospeed() functions will detect additional errors.

Licensed material—property of copyright hoider(s) 093-701056

clock(3C) DG/UX 5.4 clock(3C)

NAME

clock - report CPU time used

SYNOPSIS

DESCR

#include <time.h>

clock_t clock (void);

IPTION

clock returns the amount of CPU time (in microseconds) used since the first call to

clock by the calling process. The time reported is the sum of the user and system

times of the calling process and its terminated child processes for which it has exe-

cuted the wait(2) system call, the pclose(3S) function, or the system(3S)

function.

Dividing the value returned by clock by the constant CLOCKS_PER_SEC, defined in

the time.h header file, will give the time in seconds.

The resolution of the clock is 10 milliseconds on Data General processors.

SEE ALSO

times(2), wait(2), popen(3S), system(3S).

NOTES

093-701056

The value returned by clock is defined in microseconds for compatibility with sys-

tems that have CPU clocks with much higher resolution. Because of this, the value

returmed will wrap around after accumulating only 2147 seconds of CPU time (about

36 minutes). If the process time used is not available or cannot be represented, clock

returns the value (clock_t)-1.

Licensed material—property of copyright holder(s) 3-33

conv(3C)

NAME

DG/UX 5.4 conv(3C)

conv: toupper, tolower, _toupper, _tolower, toascii — translate charac-

ters |

SYNOPSIS

#include <ctype.h>

int toupper (int c);

int tolower (int c);

int _toupper (int c);

int _tolower (int c);

int toascii (int c);

DESCRIPTION

toupper and tolower have as their domain the range of the function getc: all

values represented in an unsigned char and the value of the macro EOF as defined

in stdio.h. Ifthe argument of toupper represents a lower-case letter, the result is

the corresponding upper-case letter. If the argument of tolower represents an

upper-case letter, the result is the corresponding lower-case letter. All other argu-

ments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same things as toupper and

tolower, respectively, but have restricted domains and are faster. _toupper

requires a lower-case letter as its argument; its result is the corresponding upper-case

letter. _tolower requires an upper-case letter as its argument; its result is the

corresponding lower-case letter. Arguments outside the domain cause undefined

results.

toascii yields its argument with all bits turned off that are not part of a standard 7-

bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _toupper, and_tolower are affected by LC_CTYPE. In the

C locale, or in a locale where shift information is not defined, these functions deter-

mine the case of characters according to the rules of the ASCII-coded character set.

Characters outside the ASCII range of characters are returned unchanged.

SEE ALSO

3-34

etype(3C), getc(3S), setlocale(3C), environ(5).

Licensed material—property of copyright holder(s) 093-701056

copylist(3G) DG/UX 5.4 copylist(3G)

NAME

copylist —- copy a file into memory

SYNOPSIS

ce [flag ...] file ... -1lgen [library ...]

#include <libgen.h>

char *copylist (const char *«filenm, off_t *szptr);

DESCRIPTION

copylist copies a list of items from a file into freshly allocated memory, replacing

new-lines with null characters. It expects two arguments: a pointer filenm to the name

of the file to be copied, and a pointer szprr to a variable where the size of the file will

be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it

returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES

/* read "file" into buf «/

off t size;

char «buf;

buf = copylist("file”, &size);

for (i = 0; i < size; itt)

if(buf[i])

putchar(buf[i]);

else

putchar(’\n’);

SEE ALSO

malloc(3C).

093-701056 Licensed material—property of copyright holder(s) 3-35

crypt(3C) DG/UX 5.4 crypt(3C)

NAME

crypt, setkey, encrypt -— generate encryption

SYNOPSIS

#include <crypt.h>

char *crypt (const char +key, const char «salt);

void setkey (const char «key);

void encrypt (char «block, int edflag);

DESCRIPTION

crypt is the password encryption function. It is based on a one-way encryption algo-
rithm with variations intended (among other things) to frustrate use of hardware

implementations of a key search.

key is the input string to encrypt, for instance, a user’s typed password. Only the first

eight characters are used; the rest are ignored. salt is a two-character string chosen

from the set a-zA-Z0-9./; this string is used to perturb the hashing algorithm in

one of 4096 different ways, after which the input string is used as the key to encrypt

repeatedly a constant string. The returned value points to the encrypted input string.

The first two characters of the return value are the salt itself.

The setkey and encrypt functions provide (rather primitive) access to the actual

hashing algorithm. The argument of setkey is a character array of length 64 con- -

taining only the characters with numerical value 0 and 1. This string is divided into

groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key that is

set into the machine. This is the key that will be used with the hashing algorithm to

encrypt the string block with the encrypt function.

The block argument of encrypt is a character array of length 64 containing only the

characters with numerical value 0 and 1. The argument array is modified in place to a

similar array representing the bits of the argument after having been subjected to the

hashing algorithm using the key set by setkey. The argument edflag, indicating

decryption rather than encryption, is ignored; use encrypt in liberypt [see

cerypt(3X)] for decryption.

SEE ALSO

getpass(3C), cerypt(3X), passwd(4).

login(1), passwd(1) in the User’s Reference for the DGI UX System.
DIAGNOSTICS

If edflag is set to anything other than zero, errno will be set to ENOSYS.

NOTES

The return value for crypt points to static data that are overwritten by each call.

3-36 Licensed material—property of copyright holder(s) 093-701056

crypt(3X) DG/UX 5.4 crypt(SX)

NAME

crypt — password and file encryption functions

SYNOPSIS

ce [flag ...] file -lerypt [library ...]

#include <crypt.h>

char *crypt (const char «key, const char «salt);

void setkey (const char +«key);

void encrypt (char *block, int flag);

char *des_crypt (const char «key, const char +*salt);

void des_setkey (const char +key);

void des_encrypt (char *block, int flag);

int run_setkey (int *p, const char *key);

int run_crypt (long offset, char «buffer, unsigned int count,

int *p);

int crypt_close(int xp);

DESCRIPTION

des_crypt is the password encryption function. It is based on a one-way hashing

encryption algorithm with variations intended (among other things) to frustrate use of

hardware implementations of a key search.

key is a user’s typed password. salt is a two-character string chosen from the set [a-
zA-Z0-9./]; this string is used to perturb the hashing algorithm in one of 4096 dif-

ferent ways, after which the password is used as the key to encrypt repeatedly a con-

stant string. The returned value points to the encrypted password. The first two

characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to the

actual hashing algorithm. The argument of des_setkey is a character array of

length 64 containing only the characters with numerical value 0 and 1. [If this string is

divided into groups of 8, the low-order bit in each group is ignored, thereby creating a

56-bit key that is set into the machine. This key is the key that will be used with the

hashing algorithm to encrypt the string block with the function des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 containing

only the characters with numerical value 0 and 1. The argument array is modified in

place to a similar array representing the bits of the argument after having been sub-

jected to the hashing algorithm using the key set by des —Ssetkey. If flag is zero, the

argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. If
decryption is attempted with the international version of des_encrypt, an error

message is printed.

crypt, setkey, and encrypt are front-end routines that invoke des_crypt,

des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications that

need cryptographic capabilities [such as ed(1) and vi(1)] that must be compatible

with the crypt(1) user-level utility. run_setkey establishes a two-way pipe con-

nection with the crypt utility, using key as the password argument. run_crypt

takes a block of characters and transforms the cleartext or ciphertext into their

093-701056 Licensed material—property of copyright hoider(s) 3-37

crypt(3X) DG/UX 5.4 crypt(3X)

ciphertext or cleartext using the crypt utility. offser is the relative byte position from

the beginning of the file that the block of text provided in block is coming from.

count is the number of characters in block, and connection is an array containing

indices to a table of input and output file streams. When encryption is finished,

crypt_close is used to terminate the connection with the crypt utility.

run_setkey returns —1 if a connection with the crypt utility cannot be established.

This result will occur in international versions of the DG/UX system in which the

crypt utility is not available. If a null key is passed to run_setkey, 0 1s returned.

Otherwise, 1 is returned. run_crypt returns —1 if it cannot write output or read

input from the pipe attached to crypt. Otherwise it returns 0.

The program must be linked with the object file access routine library libcrypt.a.

DIAGNOSTICS

In the international version of crypt(3X), a flag argument of 1 to encrypt or

des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the func-

tionality is not available.

SEE ALSO

getpass(3C), passwd(4).

erypt(1), login(1), passwd(1) in the User’s Reference for the DG/UX System.

NOTES

3-38

The return value in crypt points to static data that are overwritten by each call.

Licensed material—property of copyright holder(s) 093-701056

etermid(3S) DG/UX 5.4 ctermid(3S)

NAME

ctermid - generate file name for terminal

SYNOPSIS

#include <stdio.h>

char *ctermid (char *s);

DESCRIPTION

ctermid generates the path name of the controlling terminal for the current process,

and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of

which are overwritten at the next call to ctermid, and the address of which is

returned. Otherwise, s is assumed to point to a character array of at least -

L_ctermid elements; the path name is placed in this array and the value of s is

returned. The constant L_ctermid is defined in the stdio.h header file.

SEE ALSO

ttyname(3C).

NOTES

093-701056

The difference between ctermid and ttyname(3C) is that ttyname must be

handed a file descriptor and returns the actual name of the terminal associated with

that file descriptor, while ctermid returns a string (/dev/tty) that will refer to the

terminal if used as a file name. Thus ttyname is useful only if the process already

has at least one file open to a terminal.

Licensed material—property of copyright holder(s) 3-39

ctime(3C) DG/UX 5.4 ctime(3C)

NAME

ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS

#include <time.h>

char *«ctime (const time t *clock);

struct tm *«localtime (const time_t *clock);

struct tm *«gmtime (const time_t *clock);

char *xasctime (const struct tm «tm);

extern time_t timezone, altzone;

extern int daylight;

extern char *tzname[2];

void tzset (void);

DESCRIPTION

3-40

ctime, localtime, and gmtime accept arguments of type time_t, pointed to by

clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970.

ctime returns a pointer to a 26-character string as shown below. Time zone and day-

light savings corrections are made before the string is generated. The fields are con-

stant in width:

Fri Sep 13 00:00:00 1986\n\0

localtime and gmtime return pointers to tm structures, described below. local-

time corrects for the main time zone and possible alternate (“daylight savings”) time

zone; gmtime converts directly to Coordinated Universal Time (UTC), which is the

time the DG/UX system uses internally.

asctime converts a tm structure to a 26-character string, as shown in the above

example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the

time.h header file. The structure declaration is:

struct tm {

int tm_sec; /* seconds after the minute [0, 61] «*/

/* for leap seconds +/

int tm_min; 7* minutes after the hour [0, 59] x«/

int tm_hour; /7* hour since nidnight [0, 23] */

int tm_mday; /7* day of the month {1, 31] */

int tm_mon; 7* months since January [O, 11] «*/

int tm_year; /7* years since 1900 x/

int tm_wday; /7* days since Sunday [0, 6] x«/

int tm_yday; /7* days since January 1 [0, 365] */

int tm_isdst; /* flag for alternate daylight */

/* savings time +*/

};

The value of tm_isdst is positive if daylight savings time is in effect, zero if daylight

savings time is not in effect, and negative if the information is not available. (Previ-

ously, the value of tm_isdst was defined as non-zero if daylight savings time was in

effect.)

The external time_t variable altzone contains the difference, in seconds, between

Coordinated Universal Time and the alternate time zone. The external variable

Licensed material—property of copyright holder(s) 093-701056

ctime(3C) —— DG/UX 5.4 ctime(3C)

FILES

timezone contains the difference, in seconds, between UTC and local standard time

(in EST, timezone is 5*60*60). The external variable daylight indicates whether

time should reflect daylight savings time. Both timezone and altzone default to 0

(UTC). The external variable daylight is non-zero if an alternate time zone exists.

The time zone names are contained in the external variable tzname, which by default

is set to:

char *«tzname[2] = { "cmt", " a

These functions know about the peculiarities of this conversion for various time

periods for the U.S. (specifically, the years 1974, 1975, and 1987). They will handle

the new daylight savings time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to override the value of the

different external variables. The function tzset is called by asctime and may also

be called by the user. See environ(5) for a description of the TZ environment vari-

able.

tzset scans the contents of the environment variable and assigns the different fields —

to the respective variable. For example, the most complete setting for New Jersey in

1986 could be

ESTSEDT4,116/2:00:00,298/2:00:00

or simply

ESTSEDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9: 30KST10: 00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[0] is EST,

timezone will be set to 5460+60, tzname[Z] is EDT, altzone will be set to 4«60+60,

the starting date of the alternate time zone is the 117th day at 2 AM, the ending date

of the alternate time zone is the 299th day at 2 AM (using zero-based Julian days), and

daylight will be set positive. Starting and ending times are relative to the alternate

time zone. If the alternate time zone start and end dates and the time are not pro-

vided, the days for the United States that year will be used and the time will be 2 AM.

If the start and end dates are provided but the time is not provided, the time will be 2

AM. The effects of tzset are thus to change the values of the external variables

timezone, altzone, daylight, and tzname. ctime, localtime, mktime,

and strftime will also update these external variables as if they had called tzset

at the time specified by the time_t or struct tm value that they are converting.

Note that in most installations, 12 is set to the correct value by default when the user

logs on, via the local /etc/profile file [see profile(4) and timezone(4)].

time(2) is quite useful for producing the values with which to call ctime(3C).

/usr/lib/locale/language/LC_TIME — file containing locale specific date and time

information

SEE ALSO

time(2), getenv(3C), difftime(3C), mktime(3C), putenv(3C), printf(3S),

setlocale(3C), strftime(3C), cftime(4), profile(4), timezone(4),

environ(5), zic(l).

NOTES

093-701056

The return values for ctime, localtime, and gmtime point to static data whose

content is overwritten by each call.

Licensed material—property of copyright holder(s) 3-41

ctime(3C) DG/UX 5.4 ctime(3C)

Setting the time during the interval of change from timezone to altzone or vice

versa can produce unpredictable results.

The system administrator must change the Julian start and end days annually if the

full form of the 12 variable is specified.

3-42 Licensed material—property of copyright holder(s) 093-701056

ctype(3C)

NAME

DG/UX 5.4 ctype(3C)

ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnun,

isspace, iscntrl, ispunct, isprint, isgraph, isascii — character han-

dling

SYNOPSIS

#include <ctype.h>

093-701056

int isalpha(int c);

int isupper(int c);

int islower(int c);

int isdigit(int c);

int isxdigit(int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int isentrl(int c);

int isascii(int c);

DESCRIPTION

These macros classify character-coded integer values. Each is a predicate returning

non-zero for true, zero for false. The behavior of these macros, except isascii, is

affected by the current locale [see setlocale(3C)]. To modify the behavior, change

the LC_TYPE category using setlocale, that is, setlocale (LC_CTYPE, newlo-

cale), or setlocale (LC_ALL, newlocale). In the C locale, or in a locale where

character type information is not defined, characters are classified according to the

rules of the US-ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only where

the argument is an int, the value of which is representable as an unsigned char,

or EOF, which is defined by the stdio.h header file and represents end-of-file.

isalpha

Lsupper

islower

tests for any character for which isupper or islower is true, or

any Character that is one of an implementation-defined set of charac-

ters for which none of iscntrl1, isdigit, ispunct, or isspace is

true. In the C locale, isalpha returns true only for the characters

for which isupper or islower is true.

tests for any character that is an upper-case letter or is one of an

implementation-defined set of characters for which none of

iscntrl, isdigit, ispunct, isspace, or islower is true. In

the C locale, isupper returns true only for the characters defined as

upper-case ASCII characters.

tests for any character that is a lower-case letter or is one of an

implementation-defined set of characters for which none of

iscntrl, isdigit, ispunct, isspace, or isupper is true. In

the C locale, islower returns true only for the characters defined as

lower-case ASCII characters.

Licensed materiali—property of copyright hoider(s) 3-43

ctype(3C)

FILES

3-44

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

DG/UX 5.4 ctype (3C)

tests for any decimal-digit character.

tests for any hexadecimal-digit character ([0-9], [A-F] or [a-f]).

tests for any character for which isalpha or isdigit is true (letter

or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or

form-feed (standard white-space characters) or for one of an

implementation-defined set of characters for which isalnum is false.

In the C locale, isspace returns true only for the standard white-

space characters.

tests for any printing character which is neither a space nor a charac-

ter for which isalnunm is true.

tests for any printing character, including space ("_ ").

tests for any printing character, except space.

tests for any “‘control character” as defined by the character set.

tests for any ASCII character, code between 0 and 0177 inclusive.

All the character classification macros and the conversion functions and macros use a

table lookup.

Functions exist for all the above-defined macros. To get the function form, the

macro name must be undefined (e.g., #undef isdigit).

/usr/lib/locale/locale/LC_CTYPE

DIAGNOSTICS

If the argument to any of the character handling macros is not in the domain of the

function, the result is undefined.

SEE ALSO

chrtbl(1M), setlocale(3C), stdio(3S), ascii(5), environ(5).

Licensed material—property of copyright holder(s) 093-701056

curs_addch(3X) | DG/UX 5.4 curs_ecdch(3Xx)

NAME

curs_addch: addch, waddch, mvaddch, myvwacdch, echechar, wechochar -

add a character (with attributes) to a curses window

SYNOPSIS

#include <curses.h>

addch(chtype ch);

waddch(WINDOW *win, chtype ch);

mvaddch(int y, int x, chtype ch);

mvwaddch (WINDOW *win, int y, int x, chtype ch);

echochar(chtype ch);

wechochar(WINDOW *win, chtype ch);

DESCRIPTION

With the addch, waddch, mvaddch and mvwaddch routines, the character ch is

put into the window at the current cursor position of the window and the sosition of

the window cursor is advanced. Its function is similar to that of putchar. At the

right margin, an automatic newline is performed. Ai the bottom of ihe scrolling

region, if scrollok is enabled, the scrolling region is scrolied wy: one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the

window. A newline also does a clrtoeol before moving. Tab: are cxns:dered to

be at every eighth column. If ch is another control character, it is drawn in the ~X

notation. Calling winch after adding a control character does not return the control

character, but instead returns the representation of the control character.

Video attributes can be combined with a character by OR-ing them_into. the parame-

ter. This results in these attributes also being set. (The intent here is that text,

including attributes, can be copied from one place to anotiier using inch and

addch.) [see standout, predefined video attribute constavts, on the curs_attr(3X)

page].

The echochar and wechochar routines are functionally equivalent to a call to

addch followed by a call to refresh, or acall io waddch io! wed by a call to

wrefresh. The knowledge that only a single character is being output is taken into

consideration and, for non-control characters, a cousiderable perfurmance gain might

be seen by using these routines instead of their equivalents.

Line Graphics

The following variables may be used to add line drawing characters to the screen with

routines of the addch family. When variables are defined for the terminal, the

A_ALTCHARSET bit is turned on [see curs_attr(3X)]. Otherwise, the default character

listed below is stored in the variable. The names chosen are consistent with the

VT100 nomenclature.

093-701056 Licensed material—property of copyright hofder(s) 3°45

curs_addch(3X) DG/UX 5.4 curs_addch(3xX)

Name Default Glyph Description

ACS_ULCORNER + upper left-hand corner

ACS_LLCORNER + lower left-hand corner

ACS_URCORNER + upper right-hand corner

ACS_LRCORNER + lower right-hand corner

ACS_RTEE + right tee (-|)
ACS_LTEE + left tee (+)
ACS_BTEE + bottom tee (1)

ACS _TTEE + top tee (|)
ACS _HLINE - horizontal line

ACS_VLINE vertical line

ACS_PLUS + plus

ACS_S1l - scan line 1

ACS_S9 _ scan line 9

ACS_DIAMOND diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE f degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET oO bullet

ACS_LARROW < arrow pointing left

ACS_RARROW > arrow pointing right

ACS_DARROW Vv arrow pointing down

ACS_UARROW 0 arrow pointing up

ACS_BOARD # board of squares

ACS LANTERN # lantern symbol

: ACS BLOCK # solid square block

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

‘upon successful completion, unless otherwise noted in the preceding routine descrip-

tions.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that addch, mvaddch, mvwaddch, and echochar may be macros.

SEE ALSO

curses(3X), curs_attr(3X), curs_clear(3X), curs_inch(3X),

curs_outopts(3X), curs_refresh(3X) putc(3S).

3-46 _ Ucensed material—property of copyright holders) 093-701056

curs_addchstr(3X) DG/UX 5.4 curs_addchstr(3X)

NAME

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr,

mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr -— add string of char-

acters (and attributes) toa curses window

SYNOPSIS

#include <curses.h>

int

int

int

int

int

int

int

int

addchstr(chtype *chstr);

addchnstr(chtype *chstr, int n);

waddchstr(WINDOW *win, chtype *chstr);

waddchnstr(WINDOW *win, chtype *chstr, int n);

mvaddchstr(int y, int x, chtype *chstr);

mvaddchnstr(int y, int x, chtype *chstr, int n);

mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

mvwaddchnstr(WINDOW *win, int y, int x,

chtype *chstr, int n);

DESCRIPTION

All of these routines copy chstr directly into the window image structure starting at

the current cursor position. The four routines with n as the last argument copy at

most 7 elements, but no more than will fit on the line. If n=—-1 then the whole string

is copied, to the maximum number that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster

than waddnstr because they merely copy chstr into the window image structure. On

the other hand, care must be taken when using these functions because they don’t

perform any kind of checking (such as for the newline character), they don’t advance

the current cursor position, and they truncate the string, rather then wrappixg it

around to the new line.

RETURN VALUE |

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion, unless otherwise noted in the preceding routine descrip-

tions. | |

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except waddchnstr may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright holder(s) 3-47

curs_addchstr(3X) DG/UX 5.4 curs_addchstr(3X)

NAME

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr,

mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr — add string of char-

acters (and attributes) to a curses window

SYNOPSIS

#include <curses.h>

int addchstr(chtype *chstr);

int addchnstr(chtype *chstr, int n);

int waddchstr(WINDOW *win, chtype *chstr); .

int waddchnstr(WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x,

chtype *chstr, int n);

DESCRIPTION

All of these routines copy chstr directly into the window image structure starting at

the current cursor position. The four routines with n as the last argument copy at

most n elements, but no more than will fit on the line. If n=-1 then the whole string

is copied, to the maximum number that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster

than waddnstr because they merely copy chstr into the window image structure. On

the other hand, care must be taken when using these functions because they don’t

perform any kind of checking (such as for the newline character), they don’t advance

the current cursor position, and they truncate the string, rather then wrapping it

around to the new line.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion, unless otherwise noted in the preceding routine descrip-

tions.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except waddchnstr may be macros.

SEE ALSO

curses(3X).

3-48 . Licensed materiai—property of copyright hoider(s) 093-701056

curs_addstr(3X) DG/UX 5.4 curs_addstr(3X)

NAME

curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr,

mvaddnstr, mvwaddstr, mvwaddnstr — add a string of characters to a curses

window and advance cursor

SYNOPSIS

#include <curses.h>

int addstr(char *str);

int addnstr(char *str, int n);

int waddstr(WINDOW *win, char *str);

int waddnstr(WINDOW *win, char *str, int n);

int mvaddstr(y, int x, char *str);

int mvaddnstr(y, int x, char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, char *str);

int mvwaddnstr(WINDOW *win, int y, int x, char *str,

int n);

DESCRIPTION |
All of these routines write all the characters of the null terminated character string str

on the given window. It is similar to calling waddch once for each character in the

string. The four routines with n as the last argument write at most n characters. Ifn

is negative, then the entire string will be added.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all of these routines except waddstr and waddnstr may be macros.

SEE ALSO

curses(3X), curs_addch(3X).

093-701056 Licensed material—property of copyright holder(s) 3-49

curs_addweh(3x) DG/UX 5.4 curs_addwch(3X)

NAME

curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,

wechowchar — add a wchar_t character to a curses window

SYNOPSIS

#include <curses.h)>

int addwch(chtype wch);

int waddwch(WINDOW *win, chtype wch);

int mvaddwch(int y, int x, chtype wch);

int mvwaddwch(WINDOW *win, int y, int x, chtype wch);

int echowchar(chtype wceh);

int wechowchar(WINDOW *win, chtype wch);

DESCRIPTION

With the addwch, waddwch, mvaddwch and mvwaddwch routines, the character

wch which is holding a wchar_t character is put into the window at the current cur-

sor position of the window and the position of the window cursor is advanced. Its

function is similar to that of putwchar in the C multibyte library. At the right mar-

gin, an automatic newline is performed. At the bottom of the scrolling region, if

scrollok is enabled, the scrolling region is scrolled up one line. :

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the

window. A newline also does a clrtoeol before moving. Tabs are considered to

be at every eighth column. If wch is another control character, it is drawn in the ~X

notation. Calling winwch after adding a control character does not return the con-

trol character, but instead returns the representation of the control character.

The echowchar and wechowchar routines are functionally equivalent to a call to

addwch fcllowed by a call to refresh, or a call to waddwch followed by a call to

wrefresh. The knowledge that only a single character is being output is taken into

consideration and, for non-control characters, a considerable performance gain might

be seen by using these routines instead of their equivalents.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion, unless otherwise noted in the preceding routine descrip-

tions.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that addwch, mvaddwch, mvwaddwch, and echowchar may be macros.

SEE ALSO

curses(3X), curs_attr(3X), curs_clear(3X), curs_inwch(3X),

curs_outopts(3X), curs_refresh(3X) putwc(3W).

3-50 Licensed material—property of copyright holder(s) 093-701056

curs_addwehstr(3X) DG/UX 8.4 curs_addwehstr(3X)

NAME

curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,

mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr — add string of

wehar_t characters to a curses window

SYNOPSIS

#include <curses.h>

int addwchstr(chtype *wchstr);

int addwchnstr(chtype *wchstr, int n);

int waddwchstr(WINDOW *win, chtype *wchstr);

int waddwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvaddwchstr(int y, int x, chtype *wchstr) ;

int mvaddwchnstr(int y, int x, chtype *wchstr, int n);

int mvwaddwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwaddwchnstr(WINDOW *win, int y, int x,

chtype *wchstr, int n);

DESCRIPTION |

All of these routines copy wchstr which points to the string of wchar_t characters

directly into the window image structure starting at the current cursor position. The

four routines with 7 as the last argument copy at most n elements, but no more than

will fit on the line. If n=-1 then the whole string is copied, to the maximum number

that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster

than waddnwstr because they merely copy wcksir into the window image structure.

On the other hand, care must be taken when using these functions because they don’t

perform any kind of checking (such as for the newline character), they don’t advance

the current cursor position, and they truncate the string, rather then wrapping it

around to the new line.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion, unless otherwise noted in the preceding routine descrip-

tions.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except waddwchnstr may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright holder(s) 3-5 1

curs_attr(3X) DG/UX 5.4 curs_attr(3X)

NAME

curs attr: attroff, wattroff, attron, wattron, attrset, wattrset,

standend, wstandend, standout, wstandout - curses character and window

attribute control routines

SYNOPSIS

#include <curses.h>

int attroff(int attrs);

int wattroff(WINDOW *win, int attrs);

int attron(int attrs);

int wattron(WINDOW *win, int attrs);

int attrset(int attrs);

int wattrset(WINDOW *win, int attrs);

int standend (void) ;

int wstandend(WINDOW *win);

int standout(void) ;

int wstandout(WINDOW *win);

DESCRIPTION

All of these routines manipulate the current attributes of the named window. The

current attributes of a window are applied to all characters that are written into the

window with waddch, waddstr and wprintw. Attributes are a property of the

character, and move with the character through any scrolling and insert/delete

line/character operations. To the extent possible on the particular terminal, they are

displayed as the graphic rendition of characters put on the screen.

The routine attrset sets the current attributes of the given window to attrs. The

routine attroff turns off the named attributes without turning any other attributes

on or off. The routine attron turns on the named attributes without affecting any

others. The routine standout is the same as attron(A_STANDOUT). The routine

standend is the same as attrset(0), that is, it turns off all attributes.

Attributes

The following video attributes, defined in <curses.h>, can be passed to the rou-

tines attron, attroff, and attrset, or OR-ed with the characters passed to

addch.

A_STANDOUT Best highlighting mode of the terminal.

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_ALTCHARSET Alternate character set

A_CHARTEXT Bit-mask to extract a character

COLOR_PAIR(7) Color-pair number n

The following macro is the reverse of COLOR_PAIR(n):

PAIR_NUMBER(attrs) Returns the pair number associated

with the COLOR_PAIR(n) attribute.

RETURN VALUE

These routines always return 1.

3-52 Licensed material—property of copyright holder(s) 093-701056

curs_attr(3X) DG/UX 5.4 curs_attr(3X)

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that attroff, wattroff, attron, wattron, attrset, wattrset, stan-
dend and standout may be macros.

SEE ALSO .

curses(3X), curs_addch(3X), curs_addstr(3X), curs_printw(3X).

093-701056 Licensed material—property of copyright holder(s) 3-53

curs_beep(3X) DG/UX 5.4 curs_beep(3X)

NAME

curs_beep: beep, flash -— curses bell and screen flash routines

SYNOPSIS

#include <curses. h>

int beep(void) ;

int flash(void);

DESCRIPTION

The beep and flash routines are used to signal the terminal user. The routine

beep sounds the audible alarm on the terminal, if possible; if that is not possible, it

flashes the screen (visible bell), if that is possible. The routine flash flashes the

screen, and if that is not possible, sounds the audible signal. If neither signal is possi-

ble, nothing happens. Nearly all terminals have an audible signal (bell or beep), but

only some can flash the screen.

RETURN VALUE

These routines always return OK.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

SEE ALSO

curses(3X).

3-54 Licensed material—property of copyright holder(s) 093-701056

~ eurs_bkgd(3X) | DG/UX 5.4 curs_bkgd(3X)

NAME

curs _bkgd: bkgdset, wbkgdset, bkgd, wbkgd—- curses window background

manipulation routines

SYNOPSIS

#include <curses.h>

void bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

int bkgd(chtype ch);

int wbkgd(WINDOW *win, chtype ch);

DESCRIPTION

The bkgdset and wbkgdset routines manipulate the background of the named win-

dow. Background is a chtype consisting of any combination of attributes and a

character. The attribute part of the background is combined (ORed) with all non-

blank characters that are written into the window with waddch. Both the character

and attribute parts of the background are combined with the blank characters. The

background becomes a property of the character and moves with the character

through any scrolling and insert/delete line/character operations. To the extent possi-

ble on a particular terminal, the attribute part of the background is displayed as the

graphic rendition of the character put on the screen.

The bkgd and wbkgd routines combine the new background with every position in

the window. Background is any combination of attributes and a character. Only the

attribute part is used to set the background of non-blank characters, while both char-

acter and.attributes are used for blank positions. To the extent possible on a particu-

lar terminal, the attribute part of the background is displayed as the graphic rendition

of the character put on the screen.

RETURN VALUE

bkgd and wbkgd return the integer OK, or a non-negative integer, if immedok is set.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that bkgdset and bkgd may be macros.

SEE ALSO

curses(3X), curs_addch(3X), curs_outopts(3X).

093-701056 Licensed material—property of copyright holder(s) 3-55

curs_border(3X) | DG/UX 5.4 curs_border(3X)

NAME

curs border: border, wborder, box, whline, wvline — create curses

borders, horizontal and vertical lines

SYNOPSIS
#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs,

chtype tl, chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs,
chtype ts, chtype bs, chtype tl, chtype tr,

chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch) ;

int hline(chtype ch, int n);

int whline(WINDOW *win, chtype ch, int n);

int vline(chtype ch, int n);

int wvline(WINDOW *win, chtype ch, int n);

DESCRIPTION

With the border, wborder and box routines, a border is drawn around the edges

of the window. The argument Is is a character and attributes used for the left side of

the border, rs - right side, ts - top side, bs - bottom side, ¢l - top left-hand corner, ¢7 -

top right-hand corner, bi - bottom left-hand corner, and br - bottom right-hand

corner. If any of these arguments is zero, then the following default values (defined

in <curses.h>) are used instead: ACS_VLINE, ACS _VLINE, ACS_HLINE,

ACS_HLINE, ACS_ULCORNER, ACS_URCORNER, ACS BLCORNER,

ACS_BRCORNER.

box(win, verch, horch) is a shorthand for the following call: wborder (win,

verch, verch, horch, horch, 0, 0, 0, 0).

hline and whline draw a horizontal (left to right) line using ch starting at the

current cursor position in the window. The current cursor position is not changed.

The line is at most 7 characters long, or as many as fit into the window.

vline and wvline draw a vertical (top to bottom) line using ch starting at the

current cursor position in the window. The current cursor position is not changed.

The line is at most » characters long, or as many as fit into the window.

RETURN VALUE

All routines return the integer OK, or a non-negative integer if immedok is set.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that border and box may be macros.

SEE ALSO

curses(3X), curs_outopts(3X).

3-56 Licensed material—property of copyright holder(s) 093-701056

curs_clear(3X) DG/UX 5.4 curs_clear(3X)

NAME

curs_clear: erase, werase, clear, wclear, clrtobot, welrtobot,

clrtoeol, wclrtoeol - clear all or part of a curses window

SYNOPSIS

include <curses.h)>

int erase(void);

int werase(WINDOW *win);

int clear(void);

int wclear(WINDOW *win);

int clrtobot(void) ;

int wclrtobot(WINDOW *win);

int clrtoeol (void);

int wclrtoeol(WINDOW *win);

DESCRIPTION

The erase and werase routines copy blanks to every position in the window.

The clear and wclear routines are like erase and werase, but they also call
clearok, so that the screen is cleared completely on the next call to wrefresh for
that window and repainted from scratch.

The clrtobot and welrtobot routines erase all lines below the cursor in the win-
dow. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol and wclrtoeol routines erase the current line to the right of the
cursor, inclusive.

RETURN VALUE

All routines return the integer OK, or a non-negative integer if immedok is set.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that erase, werase, clear, welear, clrtobot, and clrtoeol may be

macros.

SEE ALSO

curses(3X), curs_outopts(3X), curs_refresh(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-57

curs_color(3X) DG/UX 5.4 curs_color(3X)

NAME

curs_color: start_color, init_pair, init_color, has_colors,

can_change_color, color_content, pair_content — curses color manipula-

tion routines

SYNOPSIS

include <curses.h>

int start_color(void);

int init pair(short pair, short f, short b);

int init_color(short color, short r, short g, short b);

bool has_colors(void);

bool can_change_color(void);

int color_content(short color, short *r, short *g, short *b);

int pair _content(short pair, short *f, short *b);

DESCRIPTION

Overview

curses provides routines that manipulate color on color alphanumeric terminals.

To use these routines start_color must be called, usually right after initscr.

Colors are always. used in pairs (referred to as color-pairs). A color-pair consists of a

foreground color (for characters) and a background color (for the field on which the

characters are displayed). A programmer initializes a color-pair with the routine

init_pair. After it has been initialized, COLOR_PAIR(m), a macro defined in

<curses.h>, can be used in the same ways other video attributes can be used. Ifa

terminal is capable of redefining colors, the programmer can use the routine

init color to change the definition of a color. The routines has_colors and

can_change_color return TRUE or FALSE, depending on whether the terminal has

color capabilities and whether the programmer can change the colors. The routine

color_content allows a programmer to identify the amounts of red, green, and blue

components in an initialized color. The routine pair_content allows a program-

mer to find out how a given color-pair is currently defined.

Routine Descriptions 7

3-58

The start_color routine requires no arguments. It must be called if the program-

mer wants to use colors, and before any other color manipulation routine is called. It

is good practice to call this routine right after initscr. start_color initializes

eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and

two global variables, COLORS and COLOR_PAIRS (respectively defining the maximum

number of colors and color-pairs the terminal can support). It also restores the

colors on the terminal to the values they had when the terminal was just turned on.

The init pair routine changes the definition of a color-pair. It takes three argu-

ments: the number of the color-pair to be changed, the foreground color number, and

the background color number. The value of the first argument must be between 1

and COLOR_PAIRS-1. The value of the second and third argurients must be between

0 and coors. If the color-pair was previously initialized, the screen is refreshed

and all occurrences of that color-pair is changed to the new definition.

The init_color routine changes the definition of a color. It takes four arguments:

the number of the color to be changed followed by three RGB values (for the

amounts of red, green, and blue components). The value of the first argument must

be between 0 and COLORS. (See the section Colors for the default color index.)

Each of the last three arguments must be a value between 0 and 1000. When

init_color is used, all occurrences of that color on the screen immediately change

Licensed material—property of copyright hoider(s) 093-701056

curs_color(3X) ° DG/UX 5.4 curs_color(3X)

to the new definition.

The has_colors routine requires no arguments. It returns TRUE if the terminal can

manipulate colors; otherwise, it returns FALSE. This routine facilitates writing

terminal-independent programs. For example, a programmer can use it to decide

whether to use color or some other video attribute.

The can_change_color routine requires no arguments. It returns TRUE if the ter-

minal supports colors and can change their definitions; other, it returns FALSE. This

routine facilitates writing terminal-independent programs.

The color_content routine gives users a way to find the intensity of the red, green,

and blue (RGB) components in a color. It requires four arguments: the color

number, and three addresses of shorts for storing the information about the

amounts of red, green, and blue components in the given color. The value of the first

argument must be between 0 and COLORS. The values that are stored at the

addresses pointed to by the last three arguments are between 0 (no component) and

1000 (maximum amount of component).

The pair content routine allows users to find out what colors a given color-pair

consists of. It requires three arguments: the color-pair number, and two addresses of

shorts for storing the foreground and the background color numbers. The value of

the first argument must be between 1 and COLOR_PAIRS-1. The values that are

stored at the addresses pointed to by the second and third arguments are between 0

and COLORS.

Colors

In <curses.h> the following macros are defined. These are the default colors.

curses also assumes that COLOR_BLACK is the default background color for all ter-

minals.

COLOR_BLACK

COLOR_RED

COLOR_GREEN

COLOR_YELLOW

COLOR_BLUE

COLOR_MAGENTA

COLOR_CYAN

COLOR_WHITE

RETURN VALUE

All routines that return an integer return ERR upon failure and OK upon successful

completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

SEE ALSO

curses(3X), curs_initser(3X), curs_attr(3X).

093-701056 Licensed material—property of copyright holder(s) 3-59

curs_deich(3X) ° DG/UX 5.4 curs_deich(3X)

NAME

curs_delch: delch, wdelch, mvdelch, mvwdelch - delete character under

cursor in a curses window.

SYNOPSIS

#include <curses.h>

int delch(void);

int wdelch(WINDOW *win) ;

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

DESCRIPTION

With these routines the character under the cursor in the window is deleted; all char-
acters to the right of the cursor on the same line are moved to the left one position

and the last character on the line is filled with a blank. The cursor position does not
change (after moving to y, x, if specified). (This does not imply use of the hardware
delete character feature.)

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that delch, mvdelch, and mvwdelch may be macros.

SEE ALSO

curses(3X).

3-60 Licensed materiali—property of copyright hoider(s) 093-701056

curs_deletein(3X) DG/UX 5.4 curs_deletein(3X)

NAME

curs deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln,

winsertln — delete and insert lines in a curses window

SYNOPSIS

#include <curses.h>

int deleteln(void) ;

int wdeleteln(WINDOW *win);

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

int insertln(void) ;

int winsertln(WINDOW *win) ;

DESCRIPTION

With the deleteln and wdeleteln routines, the line under the cursor in the win-

dow is deleted; all lines below the current line are moved up one line. The bottom

line of the window is cleared. The cursor position does not change. (This does not

imply use of a hardware delete line feature.)

With the insdelln and winsdelln routines, for positive 1, insert n lines into the

specified window above the current line. The n bottom lines are lost. For negative n,

delete n lines (starting with the one under the cursor), and move the remaining lines

up. The bottom n lines are cleared. The current cursor position remains the same.

With the insertln and insertln routines, a blank line is inserted above the |

current line and the bottom line is lost. (This does not imply use of a hardware insert

line feature.)

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all but winsdelln may be a macros.

SEE ALSO

093-701056

curses(3X).

Licensed material—property of copyright holder(s) . 3-61

curs_getch(3X) DG/UX 5.4 | curs_getch(3X)

NAME

curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch — get (or push

back) characters from curses terminal keyboard

SYNOPSIS

#include <curses.h>

int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int xX);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

DESCRIPTION

With the getch, wgetch, mvgetch and mvwgetch, routines a character 1s read

from the terminal associated with the window. In no-delay mode, if no input is wait-

ing, the value ERR is returned. In delay mode, the program waits until the system

passes text through to the program. Depending on the setting of cbreak, this is

after one character (cbreak mode), or after the first newline (nocbreak mode). In

half-delay mode, the program waits until a character is typed or the specified timeout

has been reached. Unless noecho has been set, the character will also be echoed

into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to

wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is

returned instead of the raw characters. Possible function keys are defined in

<curses.h> with integers beginning with 0401, whose names begin with KEY_. If

a character that could be the beginning of a function key (such as escape) is received,

curses sets a timer. If the remainder of the sequence does not come in within the

designated time, the character is passed through; otherwise, the function key value is

returned. For this reason, many terminals experience a delay between the time a user

presses the escape key and the escape is returned to the program. Since tokens

returned by these routines are outside the ASCII range, they are not printable.

The ungetch routine places ch back onto the input queue to be returned by the next
call to wgetch.

Function Keys.

The following function keys, defined in <curses.h>, might be returned by getch if

keypad has been enabled. Note that not all of these may be supported on a particu-

lar terminal if the terminal does not transmit a unique code when the key is pressed

or if the definition for the key is not present in the terminfo database.

3-62 Licensed material—property of copyright holder(s) 093-701056

curs_getch(3X) DG/UX 5.4 curs_getch(3X)

Name Key name

KEY_BREAK Break key

KEY_DOWN The four arrow keys ...

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE

KEY FO

KEY _F(7)

KEY_DL

KEY_IL

KEY DC

KEY_IC

KEY_EIC

KEY_CLEAR

KEY_EOS

KEY_EOL

KEY_SF

KEY_SR

KEY_NPAGE-

KEY_PPAGE

KEY_STAB

KEY_CTAB

KEY_CATAB

KEY_ ENTER

KEY_SRESET

KEY_RESET

KEY_PRINT

KEY_LL

KEY_Al

KEY_A3

KEY B2

KEY Cl

KEY C3

KEY BTAB

KEY_BEG

KEY_CANCEL

KEY_CLOSE

KEY_COMMAND

KEY COPY

KEY_CREATE

KEY_END

KEY EXIT

Backspace

Function keys; space for 64 keys is reserved.

For0<n< 63

Delete line

Insert line

Delete character

Insert char or enter insert mode

Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backward (reverse)

Next page |

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send

Soft (partial) reset

Reset or hard reset

Print or copy

Home down or bottom (lower left). Keypad

is arranged like this:

Al up A3

left B2 right

Cl down C3

Upper left of keypad

Upper right of keypad

Center of keypad

Lower left of keypad

Lower right of keypad

Back tab key

Beg(inning) key
Cancel key

Close key

Cmd (command) key

Copy key

Create key

End key

Exit key

Licensed material—property of copyright hoider(s) 3-63

curs_getch(3X)

KEY FIND

KEY_HELP

KEY_MARK

KEY_MESSAGE

KEY_MOVE

KEY_NEXT

KEY_OPEN

KEY_OPTIONS

KEY_PREVIOUS

KEY_REDO

KEY_REFERENCE

KEY_REFRESH

KEY_REPLACE

KEY_RESTART

KEY_RESUME

KEY_SAVE

KEY_SBEG

KEY_SCANCEL

KEY_SCOMMAND

KEY_SCOPY

KEY_SCREATE

KEY_SDC

KEY_SDL

KEY_SELECT

KEY_SEND

KEY_SEOL

KEY_SEXIT

KEY_SFIND

KEY_SHELP

KEY_SHOME

KEY_SIC

KEY_SLEFT

KEY_SMESSAGE

KEY_SMOVE

KEY_SNEXT

KEY_SOPTIONS

KEY_SPREVIOUS

KEY_SPRINT

KEY_SREDO

KEY_SREPLACE

KEY_SRIGHT

KEY_SRSUME

KEY_SSAVE

KEY_SSUSPEND

KEY_SUNDO

KEY_SUSPEND

KEY_UNDO

RETURN VALUE

DG/UX 5.4 curs_getch(3X)

Find key

Help key

Mark key

Message key

Move key

Next object key

Open key

Options key

Previous object key

Redo key

Ref(erence) key

Refresh key

Replace key

Restart key

Resume key

Save key

Shifted beginning key

Shifted cancel key

Shifted command key

Shifted copy key

Shifted create key

Shifted delete char key

Shifted delete line key

Select key

Shifted end key

Shifted clear line key

Shifted exit key

Shifted find key

Shifted help key

Shifted home key

Shifted input key

Shifted left arrow key

Shifted message key

Shifted move key

Shifted next key

Shifted options key

Shifted prev key

Shifted print key

Shifted redo key

Shifted replace key

Shifted right arrow

Shifted resume key

Shifted save key

Shifted suspend key

Shifted undo key

Suspend key

Undo key

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

3-64 Licensed material—property of copyright holder(s) 093-701056

curs_getch(3X) DG/UX 5.4 curs_getch(3X)

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Use of the escape key by a programmer for a single character function is discouraged.

When using getch, wgetch, mvgetch, or mvwgetch, nocbreak mode (nocbreak)
and echo mode (echo) should not be used at the same time. Depending on the state
of the tty driver when each character is typed, the program may produce undesirable
results.

Note that getch, mvgetch, and mvwgetch may be macros.

SEE ALSO

093-701056

curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X).

Licensed material—property of copyright holder(s) 3-65

curs_getstr(3X) DG/UX 5.4 curs_getstr(3X)

NAME

curs _getstr: getstr, getnstr, wgetstr, wgetnstr, mvgetstr,

mvgetnstr, mvwgetstr, mvwgetnstr — get character strings from curses termi-

nal keyboard

SYNOPSIS

finclude <curses.h>

int getstr(char *str);

int getnstr(char *str, int n);

int wgetstr(WINDOW *win, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

int mvgetstr(int y, int x, char *str);

int mvgetnstr(int y, int x, char *str, int n);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int mvwgetnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION

The effect of getstr is as though a series of calls to getch were made, until a new-

line and carriage return is received. The resulting value is placed in the area pointed

to by the character pointer str. getnstr reads at most n characters, thus preventing

a possible overflow of the input buffer. The user’s erase and kill characters are inter-

preted, as well as any special keys (such as function keys, “home” key, "clear" key,

efc.).

RETURN. VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except wgetnstr may be macros.

SEE ALSO

curses(3X), curs_getch(3X).

3-66 Licensed material—property of copyright holder(s) 093-701056

curs_getweh(3X) DG/UX 5.4 curs_getweh(3X)

NAME

curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch - get (or

push back) wchar_t characters from curses terminal keyboard

SYNOPSIS

#include <curses.h>

int getwch(void);

int wgetwch(WINDOW *win);

int mvgetwch(int y, int x);

int mvwgetwch(WINDOW *win, int y, int x);

int ungetwch(int wch),;

DESCRIPTION

With the getwch, wgetwch, mvgetwch and mvwgetwch routines, a EUC character

is read from the terminal associated with the window, it is transformed into a

wehar t character, and a wchar_t character is returned. In no-delay mode, if no

input is waiting, the value ERR is returned. In delay mode, the program waits until

the system passes text through to the program. Depending on the setting of cbreak,

this is after one character (cbreak mode), or after the first newline (nocbreak mode).

In half-delay mode, the program waits until a character is typed or the specified

timeout has been reached. Unless noecho has been set, the character will also be

echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to

wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is

returned instead of the raw characters. Possible function keys are defined in

<curses.h> with integers beginning with 0401, whose names begin with KEY_. If

a character that could be the beginning of a function key (such as escape) is received,

curses Sets a timer. If the remainder of the sequence does not come in within the

designated time, the character is passed through; otherwise, the function key value is

returned. For this reason, many terminals experience a delay between the time a user

presses the escape key and the escape is returned to the program.

The ungetwch routine places wch back onto the input queue to be returned by the

next call to wgetwch.

Function Keys

The following function keys, defined in <curses.h>, might be returned by ‘getwch

if keypad has been enabled. Note that not all of these may be supported on a par-

ticular terminal if the terminal does not transmit a unique code when the key is

pressed or if the definition for the key is not present in the terminfo database.

093-701056 Licensed material—property of copyright hoider(s) 3-67

curs_getwech(3X)

3-68

DG/UX 5.4 curs_getwch(3X)

Name Key name

KEY BREAK Break key

KEY_DOWN The four arrow keys ...

KEY UP

KEY LEFT

KEY RIGHT

KEY_HOME Home key (upward+left arrow)

KEY_BACKSPACE

KEY_FO

KEY_F(n)

KEY_DL

KEY_IL

KEY _DC

KEY_IC

KEY_EIC

KEY_CLEAR

KEY_EOS

KEY_EOL

KEY_SF

KEY_SR

KEY_NPAGE

KEY _PPAGE

KEY_STAB

KEY CTAB

KEY_CATAB

KEY_ENTER

KEY_SRESET

KEY_RESET

KEY PRINT

KEY _LL

KEY Al

KEY_A3

KEY _B2

KEY Cl

KEY C3

KEY_BTAB

KEY_BEG

KEY_CANCEL

KEY_CLOSE

KEY_COMMAND

KEY COPY

KEY_CREATE

KEY_END

KEY_EXIT

Licensed material—property of copyright holder(s)

Backspace

Function keys; space for 64 keys is reserved.

For0 <n < 63

Delete line

Insert line

Delete character

Insert char or enter insert mode

Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backward (reverse)

Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send

Soft (partial) reset

Reset or hard reset

Print or copy

Home down or bottom (lower left). Keypad

is arranged like this:

Al up A3

left B2 right

C1 down C3

Upper left of keypad

Upper right of keypad

Center of keypad

Lower left of keypad

Lower right of keypad

Back tab key

Beg(inning) key
Cancel key

Close key

Cmd (command) key

Copy key

Create key

End key

Exit key

093-701056

curs_getwch(3X)

KEY_FIND

KEY HELP

KEY MARK

KEY_MESSAGE

KEY MOVE

KEY NEXT

KEY_OPEN

KEY_OPTIONS

KEY_PREVIOUS

KEY_REDO

KEY REFERENCE

KEY REFRESH

KEY_REPLACE

KEY RESTART

KEY_RESUME

KEY SAVE

KEY_SBEG

KEY_SCANCEL

KEY_SCOMMAND

KEY_SCOPY

KEY_SCREATE

KEY SDC

KEY_SDL

KEY SELECT

KEY_SEND

KEY_SEOL

KEY_SEXIT

KEY_SFIND

KEY_SHELP

KEY_SHOME

KEY SIC

KEY SLEFT

KEY_SMESSAGE

KEY_SMOVE

KEY_SNEXT

KEY_SOPTIONS

KEY_SPREVIOUS

KEY SPRINT

KEY_SREDO

KEY_SREPLACE

KEY_SRIGHT

KEY_SRSUME

KEY_SSAVE

KEY _SSUSPEND

KEY_SUNDO

KEY_SUSPEND

KEY UNDO

RETURN VALUE

DG/UX 5.4 curs_getweh(3X)

Find key

Help key

Mark key

Message key

Move key

Next object key

Open key

Options key

Previous object key

Redo key=

Ref(erence) key

Refresh key

Replace key

Restart key

Resume key

Save key

Shifted beginning key

Shifted cancel key

Shifted command key

Shifted copy key

Shifted create key

Shifted delete char key

Shifted delete line key

Select key

Shifted end key

Shifted clear line key

Shifted exit key

Shifted find key

Shifted help key

Shifted home key

Shifted input key

Shifted left arrow key

Shifted message key

Shifted move key

Shifted next key

Shifted options key

Shifted prev key

Shifted print key

Shifted redo key

Shifted replace key

Shifted right arrow

Shifted resume key

Shifted save key

Shifted suspend key

Shifted undo key

Suspend key

Undo key

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

093-701056 Licensed material—property of copyright holder(s) 3-69

curs_getwch(3X) DG/UX 5.4 curs_getwch(3X)

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.
:

Use of the escape key by a programmer for a single character function is discouraged.

When using getwch, wgetwch, mvgetwch, or mvwgetwch, nocbreak mode (noc-

break) and echo mode (echo) should not be used at the same time. Depending on

the state of the tty driver when each character is typed, the program may produce

undesirable results.

Note that getwch, mvgetwch, and mvwgetwch may be macros.

SEE ALSO

curses(3X), curs_inopts(3X), curs_move(3X), curs_refresh(3X).

3-70 Licensed material—property of copyright holder(s) 093-701056

curs_getwstr(3X) DG/UX 5.4 curs_getwstr(3X)

NAME

curs _getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr,

mvgetnwstr, mvwgetwstr, mvwgetnwstr - get wchar_t character strings from

curses terminal keyboard

SYNOPSIS

#include <curses.h>

int getwstr(wchar_t *wstr);

int getnwstr(wchar_t *wstr, int n);

int mvgetwstr(int y, int x, wcehar_t *wstr);

int mvgetnwstr(int y, int x, wchar_t ewstr, int n);

int mvwgetwstr(WINDOW *win, int y, int x, wchar_t *wstr);

int mvwgetnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

int wgetwstr(WINDOW *win, wchar_t *wstr);_

int wgetnwstr(WINDOW *win, wchar_t *wstr, int n);

DESCRIPTION

The effect of getwstr is as though a series of calls to getwch were made, until a

newline and carriage return is received. The resulting value is placed in the area

pointed to by the wchar_t pointer str. getnwstr reads at most m wchar_t char-

acters, thus preventing a possible overflow of the input buffer. The user’s erase and

kill characters are interpreted, as well as any special keys (such as function keys,

"home" key, "clear" key, etc.).

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

| The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that all routines except wgetnwstr may be macros.

SEE ALSO

curses(3X), curs_getwch(3X).

093-701056 Licensed material—property of copyright holder(s) 3-71

curs_getyx(3X) DG/UX 5.4 curs_getyx(3X)

NAME

curs_getyx: getyx, getparyx, getbegyx, getmaxyx - get curses cursor
and window coordinates

SYNOPSIS

#include <curses.h>

void getyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

DESCRIPTION

With the getyx macro, the cursor position of the window is placed in the two integer
variables y and x.

With the getparyx macro, if win is a subwindow, the beginning coordinates of the

subwindow relative to the parent window are placed into two integer variables, y and

x. Otherwise, ~1 is placed into y and x.

Like getyx, the getbegyx and getmaxyx macros store the current beginning coor-
dinates and size of the specified window.

RETURN VALUE |

The return values of these macros are undefined (i.e., they should not be used as the
right-hand side of assignment statements).

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all of these interfaces are macros and that "&" is not necessary before the
variables y and x.

SEE ALSO

curses(3X).

3-72 Licensed material—property of copyright holder(s) 093-701056

curs_inch(3X) DG/UX 5.4 curs_inech(3X)

NAME
curs_inch: inch, winch, mvinch, mvwinch — get a character and its attributes

from a curses window

SYNOPSIS

#include <curses.h>

chtype inch(void);

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

DESCRIPTION

With these routines, the character, of type chtype, at the current position in the

named window is returned. If any attributes are set for that position, their values are

OR-ed into the value returned. Constants defined in <curses.h> can be used with

the « (logical AND) operator to extract the character or attributes alone.

Attributes

The following bit-masks may be AND-ed with characters returned by winch.

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES _ Bit-mask to extract attributes

A_COLOR Bit-mask to extract color-pair field information

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all of these routines may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-73

curs_inchstr(3X) DG/UX 5.4 curs_inchstr(3X)

NAME

curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr,

mvinchnstr, mvwinchstr, mvwinchnstr — get a string of characters (and attri-

butes) from a curses window

SYNOPSIS

#include <curses.h>

int

int

int

int

int

int

int

int

inchstr(chtype *chstr);

inchnstr(chtype *chstr, int n);

winchstr(WINDOW *win, chtype *chstr);

winchnstr(WINDOW *win, chtype *chstr, int n);

mvinchstr(int y, int x, chtype *chstr);

mvinchnstr(int y, int x, chtype *chstr, int n);

mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION

With these routines, a string of type chtype, starting at the current cursor position

in the named window and ending at the right margin of the window, is returned. The

four functions with n as the last argument, return the string at most 7 characters long.

Constants defined in <curses.h> can be used with the s& (logical AND) operator to

extract the character or the attribute alone from any position in the chstr [see
curs_inch(3X)].

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except winchnstr may be macros.

SEE ALSO

curses(3X), curs_inch(3X).

3-74 Licensed material—property of copyright holder(s) 093-701056

curs_initscr(3X) DG/UX 5.4 curs_initser(3X)

NAME

curs_initscr: initscr, newterm, endwin, isendwin, set_term, del-

screen — curses screen initialization and manipulation routines

SYNOPSIS

#include <curses.h>

WINDOW *initscr(void) ;

int endwin(void) ;

int isendwin(void);

SCREEN *newterm(char *type, FILE *outfd, FILE *infd);

SCREEN *set_term(SCREEN *new) ;

void delscreen(SCREEN* sp);

DESCRIPTION

initscr is almost always the first routine that should be called (the exceptions are

slk_init, filter, ripoffline, use_env and, for multiple-terminal applica-

tions, newterm.) This determines the terminal type and initializes all curses data

structures. initscr also causes the first call to refresh to clear the screen. If

errors occur, initscer writes an appropriate error message to standard error and

exits; otherwise, a pointer is returned to stdscr. If the program needs an indication

of error conditions, newterm() should be used instead of initscr; initscr

should only be called once per application.

A program that outputs to more than one terminal should use the newterm routine

for each terminal instead of initscr. A program that needs an indication of error

conditions, so it can continue to run in a line-oriented mode if the terminal cannot

support a screen-oriented program, would also use this routine. The routine

newterm should be called once for each terminal. It returns a variable of type

SCREEN * which should be saved as a reference to that terminal. The arguments are

the type of the terminal to be used in place of $TERM, a file pointer for output to the

terminal, and another file pointer for input from the terminal (if type is NULL, $TERM

will be used). The program must also call endwin for each terminal being used

before exiting from curses. If newterm is called more than once for the same termi-

nal, the first terminal referred to must be the last one for which endwin is called.

A program should always call endwin before exiting or escaping from curses mode

temporarily. This routine restores tty modes, moves the cursor to the lower left-hand

comer of the screen and resets the terminal into the proper non-visual mode. Calling

refresh or doupdate after a temporary escape causes the program to resume visual

mode.

The isendwin routine returns TRUE if endwin has been called without any subse-

quent calls to wrefresh, and FALSE otherwise.

The set_term routine is used to switch between different terminals. The screen

reference new becomes the new current terminal. The previous terminal is returned

by the routine. This is the only routine which manipulates SCREEN pointers; all other

routines affect only the current terminal.

The delscreen routine frees storage associated with the SCREEN data structure.

The endwin routine does not do this, so delscreen should be called after endwin

if a particular SCREEN is no longer needed.

093-701056 Licensed material—property of copyright holder(s) 3-75

cura_initscr(3X) DG/UX 5.4 curs_initser(3X)

RETURN VALUE

endwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that initscr and newterm may be macros.

SEE ALSO

curses(3X), curs_kernel(3X), curs_refresh(3X), curs_slk(3X),
curs_util(3X).

3-76 Licensed material—property of copyright holder(s) 093-701056

curs_inopts(3X) DG/UX 5.4 curs_inopts(3X)

NAME

curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush,

keypad, meta, nodelay, notimeout, raw, noraw, noqiflush, qiflush,

timeout, wtimeout, typeahead - curses terminal input option control routines

SYNOPSIS

#include <curses.h>

int cbreak(void) ;

int nocbreak(void) ;

int echo(void);

int noecho(void) ;

int halfdelay(int tenths);

int intrflush(WINDOW *win, bool bf);

int keypad(WINDOW *win, bool bf);

int meta(WINDOW *win, bool bf);

int nodelay(WINDOW *win, bool bf);

int notimeout(WINDOW *win, bool bf);

int raw(void);

int noraw(void);

void nogiflush(void);

void qiflush(void);

void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

int typeahead(int fd);

DESCRIPTION

093-701056

The cbreak and nocbreak routines put the terminal into and out of cbreak
mode, respectively. In this mode, characters typed by the user are immediately avail-

able to the program, and erase/kill character-processing is not performed. When out

of this mode, the tty driver buffers the typed characters until a newline or carriage

return is typed. Interrupt and flow control characters are unaffected by this mode.

Initially the terminal may or may not be in cbreak mode, as the mode is inherited;

therefore, a program should call cbreak or nocbreak explicitly. Most interactive

programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3X) for a discussion of how these

routines interact with echo and noecho.]

The echo and noecho routines control whether characters typed by the user are

echoed by getch as they are typed. Echoing by the tty driver is always disabled, but

initially getch is in echo mode, so characters typed are echoed. -Authors of most

interactive programs prefer to do their own echoing in a controlled area of the screen,

or not to echo at all, so they disable echoing by calling noecho. [See curs_getch(3X)

for a discussion of how these routines interact with cbreak and nocbreak.]

Licensed material—property of copyright hoider(s) , 3-77

curs_inopts(3X) DG/UX 5.4 curs_inopts(3X)

3-78

The halfdelay routine is used for half-delay mode, which is similar to cbreak

mode in that characters typed by the user are immediately available to the program.

However, after blocking for tenths tenths of seconds, ERR is returned if nothing has

been typed. The value of tenths must be a number between 1 and 255. Use noc-

break to leave half-delay mode.

If the intrflush option is enabled, (bf is TRUE), when an interrupt key is pressed

on the keyboard (interrupt, break, quit) all output in the tty driver queue will be

flushed, giving the effect of faster response to the interrupt, but causing curses to

have the wrong idea of what is on the screen. Disabling (bf is FALSE), the option

prevents the flush. The default for the option i is inherited from the tty driver settings.

The window argument is ignored.

The keypad option enables the keypad of the user’s terminal. If enabled (bf is

TRUE), the user can press a function key (such as an arrow key) and wgetch returns

a single value representing the function key, as in KEY_LEFT. If disabled (bf is

FALSE), curses does not treat function keys specially and the program has to inter-

pret the escape sequences itself. If the keypad in the terminal can be turned on

(made to transmit) and off (made to work locally), turning on this option causes the

terminal keypad to be turned on when wgetch is called. The default value for

keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on the

control mode of the tty driver [see termio(7)]. To force 8 bits to be returned, invoke

meta(win, TRUE). To force 7 bits to be returned, invoke meta(win, FALSE). The

window argument, win, is always ignored. If the terminfo capabilities smm (meta_on)

and rmm (meta_off) are defined for the terminal, smm is sent to the terminal when

meta(win, TRUE) is called and rmm is sent when meta(win, FALSE) is called.

The nodelay option causes getch to be a non-blocking call. If no input is ready,

getch returns ERR. If disabled (bf is FALSE), getch waits until a key is pressed.

While interpreting an input escape sequence, wgetch sets a timer while waiting for

the next character. If notimeout(win, TRUE) is called, then wgetch does not set a

timer. The purpose of the timeout is to differentiate between sequences received

from a function key and those typed by a user.

With the raw and noraw routines, the terminal is placed into or out of raw mode.

Raw mode is similar to cbreak mode, in that characters typed are immediately

passed through to the user program. The differences are that in raw mode, the inter-

rupt, quit, suspend, and flow control characters are all passed through uninterpreted,

instead of generating a signal. The behavior of the BREAK key depends on other

bits in the tty driver that are not set by curses.

When the noqiflush routine is used, normal flush of input and output queues asso-
ciated with the INTR, QUIT and SUSP characters will not be done [see termio(7)].

When qiflush is called, the queues will be flushed when these control characters

are read.

The timeout and wtimeout routines set blocking or non-blocaing read for a given

window. If delay is negative, blocking read is used (i.e., waits indefinitely for input).

If delay is zero, then non-blocking read is used (i.e., read returns ERR if no input is

waiting). If delay is positive, then read blocks for delay milliseconds, and returns

ERR if there is still no input. Hence, these routines provide the same functionality as

nodelay, plus the additional capability of being able to block for only delay mil-

liseconds (where delay is positive).

Licensed materiai—property of copyright holder(s) 093-701056

curs_inopts(3X) DG/UX 5.4 curs_inopts(3X)

curses does “line-breakout optimization” by looking for typeahead periodically while

updating the screen. If input is found, and it is coming from a tty, the current update

is postponed until refresh or doupdate is called again. This allows faster

response to commands typed in advance. Normally, the input FILE pointer passed to

newterm, or stdin in the case that initscr was used, will be used to do this

typeahead checking. The typeahead routine specifies that the file descriptor fd is

to be used to check for typeahead instead. If fd is -1, then no typeahead checking is

done.

RETURN VALUE

All routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion, unless otherwise noted in the preceding rou-

tine descriptions. |

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that echo, noecho, halfdelay, intrflush, meta, nodelay,

notimeout, nogiflush, qiflush, timeout, and wtimeout may be macros.

SEE ALSO

curses(3X), curs_getch(3X), curs_initser(3X), termio(7).

093-701056 Licensed material—property of copyright holder(s) 3-79

curs_insch(3X) DG/UX 5.4 curs_insch(3X)

NAME

curs_insch: insch, winsch, mvinsch, mvwinsch -— insert a character before

the character under the cursor in a curses window

SYNOPSIS

#include <curses.h>

int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

DESCRIPTION

With these routines, the character ch is inserted before the character under the cur-
sor. All characters to the right of the cursor are moved one space to the right, with
the possibility of the rightmost character on the line being lost. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that insch, mvinsch, and mvwinsch may be macros.

SEE ALSO

curses(3X).

3-80 Licensed material—property of copyright holder(s) 093-701056

curs_insstr(3X) DG/UX 5.4 curs_insstr(3X)

NAME

curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr,

mvinsnstr, mvwinsstr, mvwinsnstr -— insert string before character under the

cursor In a curses window

SYNOPSIS

#include <curses.h>

int insstr(char *str);

int insnstr(char *str, int n);

int winsstr(WINDOW *win, char *str);

int winsnstr(WINDOW *win, char *str, int n);

int mvinsstr(int y, int x, char *str);

int mvinsnstr(int y, int x, char *str, int n);

int mvwinsstr(WINDOW *win, int y, int x, char *str);

int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION

With these routines, a character string (as many characters as will fit on the line) is

inserted before the character under the cursor. All characters to the right of the cur-

sor are moved to the right, with the possibility of the rightmost characters on the line

being lost. The cursor position does not change (after moving to y, x, if specified).

(This does not imply use of the hardware insert character feature.) The four routines

with 7 as the last argument insert at most n characters. If n<=0, then the entire

string is inserted. :

If a character in str is a tab, newline, carriage return or backspace, the cursor is

moved appropriately within the window. A newline also does a clrtoeol before

moving. Tabs are considered to be at every eighth column. If a character in str is

another control character, it is drawn in the ~X notation. Calling winch after

adding a control character (and moving to it, if necessary) does not return the control

character, but instead returns the representation of the control character.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all but winsnstr may be macros.

SEE ALSO

curses(3X), curs_clear(3X), curs_inch(3X).

093-701056 Licensed materlal—property of copyright hoider(s) 3-81

curs_instr(3X) DG/UX 5.4 curs_instr(3X)

NAME

curs instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr,

mvwinstr, mvwinnstr — get a string of characters from a curses window

SYNOPSIS

#include <curses.h>

int instr(char *str);

int innstr(char *str, int n);

int winstr(WINDOW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION

These routines return a string of characters in str, starting at the current cursor posi-

tion in the named window and ending at the right margin of the window. Attributes

are stripped from the characters. The four functions with n as the last argument

return the string at most m characters long.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except winnstr may be macros.

SEE ALSO

curses(3X).

-

3-82 Licensed material—property of copyright holder(s) 093-701056

curs_inswch(3X) DG/UX 5.4 curs_inswch(3X)

NAME

curs_inswch: inswch, winswch, mvinswch, mvwinswch — insert a wchar t

character before the character under the cursor in a curses window

SYNOPSIS |

#include <curses.h>

int inswch(chtype wch);

int winswch(WINDOW *win, chtype wch);

int mvinswch(int y, int x, chtype wch);

int mvwinswch(WINDOW *win, int y, int x, chtype wch);

DESCRIPTION

With these routines, the character wch holding a wchar_t character is inserted

before the character under the cursor. All characters to the right of the cursor are

moved one space to the right, with the possibility of the rightmost character on the

line being lost. The cursor position does not change (after moving to y, x, if speci-

fied). (This does not imply use of the hardware insert character feature.)

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that inswch, mvinswch, and mvwinswch may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-83

curs_inswstr(3X) DG/UX 5.4 curs_inswstr(3X)

NAME

curs_instr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr,

mvinsnwstr, mvwinswstr, mvwinsnwstr — insert wchar_t string before charac-

ter under the cursor in a curses window

SYNOPSIS

#include <curses.h>

int inswstr(char *wstr);

int insnwstr(char *wstr, int n);

int winswstr(WINDOW *win, char *wstr);

int winsnwstr(WINDOW *win, char *wstr, int n);

int mvinswstr(int y, int x, char *wstr);

int mvinsnwstr(int y, int x, char *wstr, int n);

int mvwinswstr(WINDOW *win, int y, int x, char *wstr);

int mvwinsnwstr(WINDOW *win, int y, int x, char *wstr, int n);

DESCRIPTION

With these routines, a wchar_t character string (as many wchar_+t characters as

will fit on the line) is inserted before the character under the cursor. All characters

to the right of the cursor are moved to the right, with the possibility of the rightmost

characters on the line being lost. The cursor position does not change (after moving

to y, x, if specified). (This does not imply use of the hardware insert character

feature.) The four routines with n as the last argument insert at most 2 wchar_t

Characters. If n<=0, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return or backspace, the cursor is

moved appropriately within the window. A newline also does a clrtoeol before

moving. Tabs are considered to be at every eighth column. If a character in wstr is

another control character, it is drawn in the ~X notation. Calling winch after

adding a control character (and moving to it, if necessary) does not return the control

character, but instead returns the representation of the control character.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all but winsnwstr may be macros.

SEE ALSO

curses(3X), curs_clear(3X), curs_inwch(3X).

3-84 Licensed material—property of copyright holder(s) 093-701056

curs_inweh(3X) DG/UX 5.4

NAME

curs_inweh(3X)

curs_inwch: inwch, winwch, mvinwch, mvwinwch — get a wchar_t character

from a curses window

SYNOPSIS

#include <curses.h>

chtype inwch(void) ;

chtype winwch(WINDOW *win);

chtype mvinwch(int y, int xX);

chtype mvwinwch(WINDOW *win, int y, int x);

DESCRIPTION

With these routines, the wchar_t character, of type chtype, at the current position

in the named window is returned. If any attributes are set for that position, their

values are OR-ed into the value returned. Constants defined in <curses.h> can be

used with the & (logical AND) operator to extract the character or attributes alone.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all of these routines may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright holder(s)

curs_inwehstr(3X) DG/UX 5.4 curs_inwehstr(3X)

NAME

curs_inwchstr: inwchstr, inwehnstr, winwchstr, winwchnstr,

mvinwchstr, mvinwchnstr, mvwinwchstr, mvwinwchnstr — get a string of

wehar_t characters from a curses window

SYNOPSIS

#include <curses.h>

int inwchstr(chtype *wchstr);

int inwchnstr(chtype *wchstr, int n);

int winwchstr(WINDOW *win, chtype *wchstr) ;

int winwchnstr(WINDOW *win, chtype *wchstr, int n);

int mvinwchstr(int y, int x, chtype *wchstr);

int mvinwchnstr(int y, int x, chtype *wchstr, int n);

int mvwinwchstr(WINDOW *win, int y, int x, chtype *wchstr);

int mvwinwchnstr(WINDOW *win, int y, int x, chtype *wchstr, int n);

DESCRIPTION

With these routines, a string of type chtype holding wchar_t characters, starting at

the current cursor position in the named window and ending at the right margin of the

window, is returned. The four functions with n as the last argument, return the string

at most nm wchar_t characters long. Constants defined in <curses.h> can be used

with the & (logical AND) operator to extract the wchar_t character alone from any

position in the chstr [see curs_inch(3X)].

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except winwchnstr may be macros.

SEE ALSO

curses(3X), curs_inwch(3X).

3-86 Licensed material—property of copyright holder(s) 093-701056

curs_inwstr(SX) DG/UX 5.4 curs_inwstr(3X)

NAME

curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr,

mvinnwstr, mvwinwstr, mvwinnwstr -— get a string of wchar_t characters from a

curses window

SYNOPSIS

#include <curses.h>.

int inwstr(char *str);

int innwstr(char *str, int n);

int winwstr(WINDOW *win, char *str);

int winnwstr(WINDOW *win, char *str, int n);

int mvinwstr(int y, int x, char *str);

int mvinnwstr(int y, int x, char *str, int n);

int mvwinwstr(WINDOW *win, int y, int x, char *str);

int mvwinnwstr(WINDOW *win, int y, int x, char *str, int n);

_ DESCRIPTION :

These routines return a string of wchar_t characters in sir, starting at the current

cursor position in the named window and ending at the right margin of the window.

Attributes are stripped from the characters. The four functions with v as the last

argument return the string at most n wchar_+t characters long.

RETURN VALUE ,

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except winnwstr may be macros.

SEE ALSO

curses(3X).

093-701056 Licensed material—property of copyright holder(s) 3-87

curs_kernel(3X) DG/UX 5.4 curs_kernel(3X)

NAME

curs_kernel: def_prog_mode, def_shell_mode, reset_prog_ mode,

reset_shell mode, resetty, savetty, getsyx, setsyx, ripoffline,

curs_set, napms — low-level curses routines

SYNOPSIS

#include <curses.h>

int def_prog_mode(void) ;

int def_shell mode(void) ;

int reset_prog_mode(void) ;

int reset_shell_mode(void);

int resetty(void) ;

int savetty(void) ;

int getsyx(int y, int x);

int setsyx(int y, int x);

int ripoffline(int line, int (*init) (WINDOW *, int));

int curs_set(int visibility) ;

int napms(int ms);

DESCRIPTION

3-88

The following routines give low-level access to various curses functionality. Theses

routines typically are used inside library routines.

The def_prog_mode and def_shell_mode routines save the current terminal

modes as the "program" (in curses) or "shell" (not in curses) state for use by the

reset_prog_mode and reset_shell_mode routines. This is done automatically by

initscr.

The reset_prog_mode and reset_shell mode routines restore the terminal to

“program” (in curses) or "shell" (out of curses) state. These are done automati-

cally by endwin and, after an endwin, by doupdate, so they normally are not

called.

The resetty and savetty routines save and restore the state of the terminal

modes. savetty saves the current state in a buffer and resetty restores the state

to what it was at the last call to savetty.

With the getsyx routine, the current coordinates of the virtual screen cursor are

returned in y and x. If leaveok is currently TRUE, then -1,-1 is returned. If lines

have been removed from the top of the screen, using ripoffline, y and x include

these lines; therefore, y and x should be used only as arguments for setsyx.

With the setsyx routine, the virtual screen cursor is set to y, x. If y and x are both

-1, then leaveok is set. The two routines getsyx and setsyx are designed to be

used by a library routine, which manipulates curses windows but does not want to

change the current position of the program’s cursor. The library routine would call

getsyx at the beginning, do its manipulation of its own windows, do a

wnoutrefresh on its windows, call setsyx, and then call doupdate.

Licensed material—property of copyright holder(s) 093-701056

curs_kernel(3X) | DG/UX 5.4 curs_kernel(3X)

The ripoffline routine provides access to the same facility that slk_init [see

curs_sik(3X)] uses to reduce the size of the screen. ripoffline must be called

before initscr or newterm is called. If line is positive, a line is removed from the

top of stdscr; if line is negative, a line is removed from the bottom. When this is

done inside initscr, the routine init (supplied by the user) is called with two

arguments: a window pointer to the one-line window that has been allocated and an

integer with the number of columns in the window. Inside this initialization routine,

the integer variables LINES and COLS (defined in <curses.h>) are not guaranteed

to be accurate and wrefresh or doupdate must not be called. It is allowable to

call wnoutrefresh during the initialization routine.

ripoffline can be called up to five times before calling initscr or newtern.

With the curs_set routine, the cursor state is set to invisible, normal, or very visi-

ble for visibility equal to 0, 1, or 2 respectively. If the terminal supports the

visibility requested, the previous cursor state is returned; otherwise, ERR is returned.

The napms routine is used to sleep for ms milliseconds.

RETURN VALUE

NOTES

Except for curs_set, these routines always return OK. curs_set returns the pre-

vious cursor state, or ERR if the requested visibility is not supported.

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that getsyx is a macro, so & is not necessary before the variables y and x..

SEE ALSO

093-701056

curses(3X), curs_initser(3X), curs_outopts(3X), curs_refresh(3X),

curs_scr_dump(3X), curs_slk(3X).

‘Licensed material—property of copyright holder(s) 3-89

curs_move(3X) | DG/UX 5.4 curs_move(3X)

NAME

curs _mMove; move, wmove - move curses window cursor

SYNOPSIS

#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

DESCRIPTION ;

With these routines, the cursor associated with the window is moved to line y and

column x. This routine does not move the physical cursor of the terminal until

refresh is called. The position specified is relative to the upper left-hand corner of

the window, which is (0,0).

RETURN VALUE

These routines return the integer ERR upon failure and an integer value other than

ERR upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

. Note that move may be a macro.

SEE ALSO

curses(3X), curs_refresh(3X).

3-90 Licensed material—property of copyright holder(s) 093-701056

curs_outopts(3X) DG/UX 5.4 curs_outopts(3X)

NAME

curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,

wsetscrreg, scrollok, nl, nonl - curses terminal output option control rou-

tines |

SYNOPSIS

#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

void idcok(WINDOW twin, bool bf);

void immedok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

int scrollok(WINDOW *win, bool bf);

int nl(void);

int nonl(void);

DESCRIPTION

These routines set options that deal with output within curses. All options are ini-

tially FALSE, unless otherwise stated. It is not necessary to turn these options off

before calling endwin.

With the clearok routine, if enabled (bf is TRUE), the next call to wrefresh with

this window will clear the screen completely and redraw the entire screen from

scratch. This is useful when the contents of the screen are uncertain, or in some

cases for a more pleasing visual effect. If the win argument to clearok is the global

variable curscr, the next call to wrefresh with any window causes the screen to

be cleared and repainted from scratch.

With the idlok routine, if enabled (bf is TRUE), curses considers using the

hardware insert/delete line feature of terminals so equipped. If disabled (bf is

FALSE), curses very seldom uses this feature. (The insert/delete character feature

is always considered.) This option should be enabled only if the application needs

insert/delete line, for example, for a screen editor. It is disabled by default because

insert/delete line tends to be visually annoying when used in applications where it isn’t

really needed. If insert/delete line cannot be used, curses redraws the changed por-

tions of all lines.

With the idcok routine, if enabled (bf is TRUE), curses considers using the

hardware insert/delete character feature of terminals so equipped. This is enabled by

default.

With the immedok routine, if enabled (bf is TRUE), any change in the window

image, such as the ones caused by waddch, wclrtobot, wscrl, efc., automati-

cally cause a call to wrefresh. However, it may degrade the performance consider-

ably, due to repeated calls to wrefresh. It is disabled by default.

Normally, the hardware cursor is left at the location of the window cursor being

refreshed. The leaveok option allows the cursor to be left wherever the update

093-701056 Licensed material—property of copyright holder(s) 3-91

curs_outopts(3X) DG/UX 5.4 curs_outopts(3X)

happens to leave it. It is useful for applications where the cursor is not used, since it

reduces the need for cursor motions. If possible, the cursor is made invisible when

this option is enabled.

The setscrreg and wsetscrreg routines allow the application programmer to set

a software scrolling region in a window. top and bot are the line numbers of the top

and bottom margin of the scrolling region. (Line 0 is the top line of the window.) If

this option and scrollok are enabled, an attempt to move off the bottom margin

line causes all lines in the scrolling region to scroll up one line. Only the text of the

window is scrolled. (Note that this has nothing to do with the use of a physical scrol-

ling region capability in the terminal, like that in the VT100. If idlok is enabled and

the terminal has either a scrolling region or insert/delete line capability, they will

probably be used by the output routines.)

The scrollok option controls what happens when the cursor of a window is moved

off the edge of the window or scrolling region, either as a result of a newline action

on the bottom line, or typing the last character of the last line. If disabled, (bf is

FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE), wrefresh is

called on the window, and the physical terminal and window are scrolled up one line.

[Note that in order to get the physical scrolling effect on the terminal, it is also neces-

sary to call idlok.]

The nl and nonl routines control whether newline is translated into carriage return

and linefeed on output, and whether return is translated into newline on input. Ini-

tially, the translations do occur. By disabling these translations using nonl, curses

is able to make better use of the linefeed capability, resulting in faster cursor motion.

RETURN VALUE

setscrreg and wsetscrreg return OK upon success and ERR upon failure. All

other routines that return an integer always return OK.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that clearok, leaveok, scrollok, idcok, nl, nonl and setscrreg

may be macros.

The immedok routine is useful for windows that are used as terminal emulators.

SEE ALSO

3-92

curses(3X), curs_addch(3X), curs_clear(3X), curs_initscr(3X),

curs_scroll1(3X), curs_refresh(3X).

Licensed material—property of copyright holder(s) 093-701056

curs_overlay(3X) . DG/UX 5.4 curs_overlay(3X)

NAME

curs_overlay: overlay, overwrite, copywin -— overlap and manipulate over-
lapped curses windows

SYNOPSIS

#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin) ;

int overwrite(WINDOW *srcwin, WINDOW *dstwin);

int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow,

int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

DESCRIPTION

The overlay and overwrite routines overlay srcwin on top of dstwin. scrwin and
dstwin are not required to be the same size; only text where the two windows overlap
is copied. The difference is that overlay is non-destructive (blanks are not copied)
whereas overwrite is destructive.

The copywin routine provides a finer granularity of control over the overlay and
overwrite routines. Like in the prefresh routine, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and ‘the upper-
left-corner coordinates of the source window, (sminrow, smincol). If the argument
overlay is true, then copying is non-destructive, as in overlay.

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that overlay and overwrite may be macros.

SEE ALSO

curses(3X), curs_pad(3X), curs_refresh(3X).

093-701056 Licensed material—property of copyright holder(s) 3-93

curs_pad(3X) DG/UX 5.4 curs_pad(3X)

NAME

curs_pad: newpad, subpad, prefresh, pnoutrefresh, pechochar,

pechowchar -— create and display curses pads

SYNOPSIS

#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

WINDOW *subpad(WINDOW *orig, int nlines, int ncols,

int begin_y, int begin_x);

int prefresh(WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);

int pechochar(WINDOW *pad, chtype ch);

int pechowchar(WINDOW *pad, chtype wch);

DESCRIPTION

3-94

The newpad routine creates and returns a pointer to a new pad data structure with

the given number of lines, nlines, and columns, ncols. A pad is like a window, except

that it is not restricted by the screen size, and is not necessarily associated with a par-

ticular part of the screen. Pads can be used when a large window is needed, and only

a part of the window will be on the screen at one time. Automatic refreshes of pads

(e.g., from scrolling or echoing of input) do not occur. It is not legal to call

wrefresh with a pad as an argument; the routines prefresh or pnoutrefresh

should be called instead. Note that these routines require additional parameters to

specify the part of the pad to be displayed and the location on the screen to be used

for the display.

The subpad routine creates and returns a pointer to a subwindow within a pad with

the given number of lines, lines, and columns, nmcols. Unlike subwin, which uses

screen coordinates, the window is at position (begin_x, begin_y) on the pad. The

window is made in the middle of the window orig, so that changes made to one win-

dow affect both windows. During the use of this routine, it will often be necessary to

call touchwin or touchline on orig before calling prefresh.

The prefresh and pnoutrefresh routines are analogous to wrefresh and

wnoutrefresh except that they relate to pads instead of windows. The additional

parameters are needed to indicate what part of the pad and screen are involved.

pminrow and pmincol specify the upper left-hand corner of the rectangle to be

displayed in the pad. sminrow, smincol, smaxrow, and smaxcol specify the edges of

the rectangle to be displayed on the screen. The lower right-hand corner of the rec-

tangle to be displayed in the pad is calculated from the screen coordinates, since the

rectangles must be the same size. Both rectangles must be entirely contained within

their respective structures. Negative values of pminrow, pmincol, sminrow, or smincol

are treated as if they were zero. |

The pechochar routine is functionally equivalent to a call to addch followed by a

call to refresh, a call to waddch followed by a call to wrefresh, or a call to

waddch followed by a call to prefresh. The knowledge that only a single character

is being output 1s taken into consideration and, for non-control characters, a consid-

erable performance gain might be seen by using these routines instead of their

Licensed material—property of copyright holder(s) 093-701056

curs_pad(3X) DG/UX 5.4 _ curs_pad(3X)

equivalents. In the case of pechochar, the last location of the pad on the screen is

reused for the arguments to prefresh. :

The pechowchar routine is functionally equivalent to a call to addwch followed by a

call to refresh, a call to waddwch followed by a call to wrefresh, ora call to

waddwch followed by a call to prefresh.

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion.

Routines that return pointers return NULL on error.

NOTES |

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that pechochar may be a macro.

SEE ALSO

curses(3X), curs_refresh(3X), curs_touch(3X), curs_addch(3X),

curs_addwch(3X).

093-701056 Licensed material—property of copyright holder(s) | 3-95

curs_printw(3X) DG/UX 5.4 . curs_printw(3X)

NAME

curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw — print

formatted output in curses windows

SYNOPSIS

#include <curses.h>

int printw(char *fmt [, arg] ...);

int wprintw(WINDOW *win, char *fmt [, arg] ...);

int mvprintw(int y, int x, char *fmt [, arg] ...);

int mvwprintw(WINDOW *win, int y, int x,
char *fmt [, arg] ...);

#include <varargs.h>

int vwprintw(WINDOW *win, char *fmt, varglist);

DESCRIPTION

The printw, wprintw, mvprintw and mvwprintw routines are analogous to

printf [see printf(3S)]. In effect, the string that would be output by printf is

output instead as though waddstr were used on the given window.

The vwprintw routine is analogous to vprintf [see vprintf(3S)] and performs a

wprintw using a variable argument list. The third argument is a va_list, a pointer

to a list of arguments, as defined in <varargs.h>.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

SEE ALSO

3-96

curses(3X), printf(3S), printf(W), vprint£(3S).

Licensed material—property of copyright holder(s) 093-701056

curs_refresh(3X) DG/UX 5.4 curs_refresh(3X)

NAME

curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin,

wredrawln — refresh curses windows and lines

SYNOPSIS

#include <curses.h>

int refresh(void);

int wrefresh(WINDOW *win);

int wnoutrefresh(WINDOW *win);

int doupdate(void) ;

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg line, int num_lines);

DESCRIPTION

The refresh and wrefresh routines (or wnoutrefresh and doupdate) must be

called to get any output on the terminal, as other routines merely manipulate data

structures. The routine wrefresh copies the named window to the physical terminal

screen, taking into account what is already there in order to do optimizations. The

refresh routine is the same, using stdscr as the default window. Unless

leaveok has been enabled, the physical cursor of the terminal is left at the location

of the cursor for that window.

The wnoutrefresh and doupdate routines allow multiple updates with more effi-

ciency than wrefresh alone. In addition to all the window structures, curses

keeps two data structures representing the terminal screen: a physical screen,

describing what is actually on the screen, and a virtual screen, describing what the

programmer wants to have on the screen.

The routine wrefresh works by first calling wnoutrefresh, which copies the

named window to the virtual screen, and then calling doupdate, which compares the

virtual screen to the physical screen and does the actual update. If the programmer

wishes to output several windows at once, a series of calls to wrefresh results in

alternating calls to wnoutrefresh and doupdate, causing several bursts of output

to the screen. By first calling wnoutrefresh for each window, it is then possible to

call doupdate once, resulting in only one burst of output, with fewer total characters

transmitted and less CPU time used. If the win argument to wrefresh is the global

variable curscr, the screen is immediately cleared and repainted from scratch.

The redrawwin routine indicates to curses that some screen lines are corrupted

and should be thrown away before anything is written over them. These routines

could be used for programs such as editors, which want a command to redraw some

part of the screen or the entire screen. The routine redrawln is preferred over

redrawwin where a noisy communication line exists and redrawing the entire window

could be subject to even more communication noise. Just redrawing several lines

offers the possibility that they would show up unblemished.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion.

NOTES

093-701056 Licensed material—property of copyright holder(s) 3-97

curs_refresh(3X) DG/UX 5.4 curs_refresh(3X)

The header file <curses.h> automatically includes the header files <stdio. h> and

<unctrl.h>.
:

Note that refresh and redrawwin may be macros.

SEE ALSO

curses(3X), curs_outopts(3X).

3-98 Licensed material—property of copyright holder(s) 093-701056

curs_scanw(3X) DG/UX 5.4 curs_scanw(3X)

NAME

curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw — convert format-

ted input from a curses widow |

SYNOPSIS

#include <curses.h>

int scanw(char *fmt [, arg] ...);

int wscanw(WINDOW *win, char *fmt [, arg] ...);

int mvscanw(int y, int x, char *fmt [, arg] ...);

int mvwscanw (WINDOW «win, int y, int x,
char *fmt [, arg] ...);

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION

The scanw, wscanw and mvscanw routines correspond to scanf [see scanf(3S)].

The effect of these routines is as though wgetstr were called on the window, and

the resulting line used as input for the scan. Fields which do not map to a variable in

the fmt field are lost.

The vwscanw routine is similar to vwprintw in that it performs a wscanw using a

variable argument list. The third argument is a va_list, a pointer to a list of argu-

ments, as defined in <varargs.h>.

RETURN VALUE

NOTES

vwscanw returns ERR on failure and an integer equal to the number of fields scanned

on success.

Applications may interrogate the return value from the scanw, wscanw, mvscanw

and mvwscanw routines to determine the number of fields which were mapped in the

call.

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

SEE ALSO

093-701056

curses(3X), curs_getstr(3X), curs_printw(3X), scanf(3S), scanf(3W).

Licensed material—property of copyright hoider(s) | 3-99

curs_scr_dump(3X) DG/UX 8.4 curs_scr_dump(3X)

NAME

_ curs_ser_dump: scr_dump, scr_restore, scr_init, scr_set — read (write)

a curses screen from (to) a file |

SYNOPSIS

#include <curses.h>

int scr_dump(char *filename) ;

int scr_restore(char *filename) ;

int scr_init(char *filename) ;

int scr_set(char *filename);

DESCRIPTION

With the scr_dump routine, the current contents of the virtual screen are written to

the file filename.

With the scr_restore routine, the virtual screen is set to the contents of filename,

which must have been written using scr_dump. The next call to doupdate restores

the screen to the way it looked in the dump file.

With the scr_init routine, the contents of filename are read in and used to initial-

ize the curses data structures about what the terminal currently has on its screen.

If the data is determined to be valid, curses bases its next update of the screen on

this information rather than clearing the screen and starting from scratch.

scr_init is used after initscr ora system [see system(BA_LIB)] call to share

the screen with another process which has done a scr_dump after its endwin call.

The data is declared invalid if the time-stamp of the tty is old or the terminfo capabili-

ties rmcup and nrrmc exist.

The scr_set routine is a combination of scr_restore and scr_init. It tells

the program that the information in filename is what is currently on the screen, and

also what the program wants on the screen. This can be thought of as a screen inher-

itance function.

To read (write) a window from (to) a file, use the getwin and putwin routines [see
curs_util(3X)].

RETURN VALUE

All routines return the integer ERR upon failure and OK upon success.

NOTES |
The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that scr_init, scr_set, and scr_restore may be macros.

SEE ALSO

curses(3X), curs_initser(3X), curs_refresh(3X), curs_util(3X),

system(3S).

3-1 00 Licensed material—property of copyright holder(s) 093-701056

curs_scroll(3X) DG/UX 5.4 curs_scroll(3Xx)

NAME

curs_scroll: scroll, srcl, wserl — scroll a curses window

SYNOPSIS

#include <curses.h)>

int scroll(WINDOW *win);

int scrl(int n);

int wscrl(WINDOW *win, int n);

DESCRIPTION

With the scroll routine, the window is scrolled up.one line. This involves moving
the lines in the window data structure. As an optimization, if the scrolling region of
the window is the entire screen, the physical screen is scrolled at the same time.

With the scrl and wscr1 routines, for positive n scroll the window up n lines (line
i+n becomes i); otherwise scroll the window down 7 lines. This involves moving the
lines in the window character image structure. The current cursor position is not
changed.

For these functions to work, scrolling must be enabled via scrollok.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

Note that scrl and scroll may be macros.

SEE ALSO

curses(3X), curs_outopts(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-1 01

curs_sik(3X) DG/UX 5.4 curs_sik(3X)

NAME

curs _slk: slk_init, slk_set, slk_refresh, slk_noutrefresh,

slk_label, slk_clear, slk_restore, slk_touch, slk_attron,

slk_attrset, slk_attroff - curses soft label routines

SYNOPSIS

#include <curses.h>

int slk_init(int fmt);

int slk_set(int labnum, char *label, int fmt);

int slk_refresh(void) ;

int slk_noutrefresh(void);

char *slk_label(int labnum) ;

int slk_clear(void);

int slk_restore(void);

int slk_touch(void);

int slk_attron(chtype attrs);

int slk_attrset(chtype attrs);

int slk_attroff(chtype attrs);

DESCRIPTION

curses manipulates the set of soft function-key labels that exist on many terminals.

For those terminals that do not have soft labels, curses takes over the bottom line

of stdscr, reducing the size of stdscr and the variable LINES. curses stand-

ardizes on eight labels of up to eight characters each.

To use soft labels, the sl1k_init routine must be called before initscr or

newterm is called. If initscr eventually uses a line from stdscr to emulate the

soft labels, then fmr determines how the labels are arranged on the screen. Setting

fmt to 0 indicates a 3-2-3 arrangement of the labels; 1 indicates a 44 arrangement.

With the slk_set routine, lJabnum is the label number, from 1 to 8. label is the

string to be put on the label, up to eight characters in length. A null string or a null

pointer sets up a blank label. fmt is either 0, 1, or 2, indicating whether the label is

to be left-justified, centered, or right-justified, respectively, within the label.

The slk_refresh and slk_noutrefresh routines correspond to the wrefresh

and wnoutrefresh routines.

With the slk_label routine, the current label for label number /abnum is returned

with leading and trailing blanks stripped.

With the slk_clear routine, the soft labels are cleared from the screen.

With the slk_restore routine, the soft labels are restored to tne screen after a

slk_clear is performed.

With the slk_touch routine, all the soft labels are forced to be output the next time

a slk_noutrefresh is performed.

The slk_attron, slk_attrset and slk_attroff routines correspond to

attron, attrset, and attroff. They have an effect only if soft labels are simu-

lated on the bottom line of the screen.

3-1 02 Licensed material—property of copyright holder(s) 093-701056

curs_sik(3X) DG/UX 5.4 curs_sik(3X)

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion.

slk_label returns NULL on error.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Most applications would use slk_noutrefresh because a wrefresh is likely to

follow soon.

SEE ALSO

curses(3X), curs_attr(3X), curs_initser(3X), curs_refresh(3X).

093-701056 Licensed material—property of copyright holder(s) 3-1 03

curs_termattrs(3X) DG/UX 5.4 curs_termattrs(3X)

NAME

curs_termattrs: baudrate, erasechar, has_ic, has_il, killchar,

longname, termattrs, termname - curses environment query routines

SYNOPSIS

#include <curses.h)>

int baudrate(void) ;

char erasechar(void) ;

int has_ic(void);

int has_il(void);

char killchar(void) ;

char *longname(void) ;

chtype termattrs(void) ;

char *termname(void) ;

DESCRIPTION

The baudrate routine returns the output speed of the terminal. The number

returned is in bits per second, for example 9600, and is an integer.

With the erasechar routine, the user’s current erase character is returned.

The has_ic routine is true if the terminal has insert- and delete-character capabili-

ties.

The has_il routine is true if the terminal has insert- and delete-line capabilities, or

can simulate them using scrolling regions. This might be used to determine if it would

be appropriate to turn on physical scrolling using scrollok.

With the killchar routine, the user’s current line kill character is returned.

The longname routine returns a pointer to a static area containing a verbose descrip-

tion of the current terminal. The maximum length of a verbose description is 128

characters. It is defined only after the call to initscr or newterm. The area is

overwritten by each call to newterm and is not restored by set_term, so the value

should be saved between calls to newterm if longname is going to be used with mul-
tiple terminals. 7

If a given terminal doesn’t support a video attribute that an application program is try-

ing to use, curses may substitute a different video attribute for it. The termattrs

function returns a logical OR of all video attributes supported by the terminal. This

information is useful when a curses program needs complete control over the

appearance of the screen.

_ The termname routine returns the value of the environmental variable TERM (trun-

cated to 14 characters).

RETURN VALUE

longname and termname return NULL on error.

Routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion.

NOTES

3-1 04 Licensed material—property of copyright holder(s) 093-701056

curs_termattrs(3X) DG/UX 5.4 curs_termattrs(3X)

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that termattrs may be a macro.

SEE ALSO

curses(3X), curs_initscr(3X), curs_outopts(3X).

093-701056 Licensed material—property of copyright holder(s) 3-1 Q5

curs_termeap(3X) DG/UX 5.4 curs_termcap(3X)

NAME

curs _termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs —

curses interfaces (emulated) to the termcap library

SYNOPSIS

#include <curses.h>

#include <term.h>

int tgetent(char *bp, char *name);

int tgetflag(char id[2]);

int tgetnum(char id[2]);

char *tgetstr(char id[{2], char **area);

char *tgoto(char *cap, int col, int row);

int tputs(char *str, int affcent, int (*putc)(void));

DESCRIPTION

These routines are included as a conversion aid for programs that use the termcap

library. Their parameters are the same and the routines are emulated using the fer-

minfo database. These routines are supported at Level 2 and should not be used in

new applications.

The tgetent routine looks up the termcap entry for name. The emulation ignores

the buffer pointer bp.

The tgetflag routine gets the boolean entry for id.

The tgetnum routine gets the numeric entry for id.

The tgetstr routine returns the string entry for id. Use tputs to output the

returned string.

The tgoto routine instantiates the parameters into the given capability. The output

from this routine is to be passed to tputs.

The tputs routine is described on the curs_terminfo(4) manual page.

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion.

Routines that return pointers return NULL on error.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

SEE ALSO

curses(3X), curs_terminfo(4), putc(3S).

3-1 06 Licensed material—property of copyright holder(s) 093-701056

curs_terminfo(3X) DG/UX 5.4 curs_terminfo(3X)

NAME

curs _terminfo: setupterm, setterm, set_curterm, del_curterm, res-

tartterm, tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag,

tigetnum, tigetstr - curses interfaces to terminfo database

SYNOPSIS

#include <curses.h>

#include <term.h>

int setupterm(char *term, int fildes, int *errret);

int setterm(char *term) ;

int set_curterm(TERMINAL *nterm) ;

int del_curterm(TERMINAL *oterm) ;

int restartterm(char *term, int fildes, int *errret);

char *tparm(char *str, long int pl, long int p2, long int p3,

long int p4, long int p5, long int p6, long int p7,

long int p8, long int p9);

int tputs(char *str, int affent, int (*putc)(char));

int putp(char *str);

int vidputs(chtype attrs, int (*putc)(char));

int vidattr(chtype attrs);

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

int tigetflag(char *capname) ;

int tigetnum(char *capname) ;

int tigetstr(char *capname) ;

DESCRIPTION

These low-level routines must be called by programs that have to deal directly with

the terminfo database to handle certain terminal capabilities, such as programming

function keys. For all other functionality, curses routines are more suitable and

their use is recommended.

Initially, setupterm should be called. Note that setupterm is automatically called

by initscr and newterm. This defines the set of terminal-dependent variables

[listed in terminfo(4)]. The terminfo variables lines and columns are initialized

by setupterm as follows: If use_env(FALSE) has been called, values for lines

and columns specified in terminfo are used. Otherwise, if the environment variables

LINES and COLUMNS exist, their values are used. If these environment variables do

not exist and the program is running in a window, the current window size is used.

Otherwise, if the environment variables do not exist, the values for lines and

columns specified in the terminfo database are used.

The header files <curses.h> and <term.h> should be included (in this order) to

get the definitions for these strings, numbers, and flags. Parameterized strings should

be passed through tparm to instantiate them. All terminfo strings {including the out-

put of tparm] should be printed with tputs or putp. Call the

reset_shell_mode to restore the tty modes before exiting [see curs_kernel(3X)].

Programs which use cursor addressing should output enter_ca_mode upon startup

093-701056 Licensed material—property of copyright holder(s) 3- 1 07

curs_terminfo(3X) DG/UX 5.4 curs_terminfo(3X)

and should output exit_ca_mode before exiting. Programs desiring shell escapes

should call reset_shell_mode and output exit_ca_mode before the shell is

called and should output enter_ca_mode and call reset_prog_mode after return-

ing from the shell. ‘

The setupterm routine reads in the terminfo database, initializing the terminfo struc-

tures, but does not set up the output virtualization structures used by curses. The

terminal type is the character string term; if term is null, the environment variable

TERM is used. All output is to file descriptor fildes which is initialized for output.

If errret is not null, then setupterm returns OK or ERR and stores a status value in

the integer pointed to by errret. A status of 1 in errret is normal, 0 means that the

terminal could not be found, and -1 means that the terminfo database could not be

found. If errret is null, setupterm prints an error message upon finding an error

and exits. Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0),,

which uses all the defaults and sends the output to stdout.

The setterm routine is being replaced by setupterm. The call:

setupterm(term, 1, (int *)0)

provides the same functionality as setterm(term). The setterm routine is

included here for compatibility and is supported at Level 2.

The set_curterm routine sets the variable cur_term to nterm, and makes all of

the terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm routine frees the space pointed to by oterm and makes it available

for further use. If oterm is the same as cur_term, references to any of the terminfo

boolean, numeric, and string variables thereafter may refer to invalid memory loca-

tions until another setupterm has been called.

The restartterm routine is similar to setupterm and initscr, except that it is

called after restoring memory to a previous state. It assumes that the windows and

the input and output options are the same as when memory was saved, but the termi-

nal type and baud rate may be different.

The tparm routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs routine applies padding information to the string str and outputs it. The

str must be a terminfo string variable or the return value from tparm, tgetstr, or

tgoto. affcnt is the number of lines affected, or 1 if not applicable. putc is a

putchar-like routine to which the characters are passed, one at a time.

The putp routine calls tputs(str, 1, putchar). Note that the output of putp
always goes to stdout, not to the fildes specified in setupterm.

The vidputs routine displays the string on the terminal in the video attribute mode

attrs, which is any combination of the attributes listed in curses(3X). The charac-

ters are passed to the putchar-like routine putc.

The vidattr routine is like the vidputs routine, except that it outputs through

putchar.

The mvcur routine provides low-level cursor motion.

The tigetflag, tigetnum and tigetstr routines return the value of the capabil-

ity corresponding to the terminfo capname passed to them, such as xenl.

3-1 08 Licensed material—property of copyright holder(s) 093-701056

curs_terminfo (3X) DG/UX 5.4 curs_terminfo(3X)

With the tigetflag routine, the value —-1 is returned if capname is not a boolean
capability.

With the tigetnum routine, the value -2 is returned if capname is not a numeric
capability.

With the tigetstr routine, the value (char *)-1 is returned if capname is not a
string capability.

The capname for each capability is given in the table column entitled capname code in
the capabilities section of terminfo(4).

char *boolnames, *boolcodes, *boolfnames -

char *numnames, *numcodes, *numfnames

char *strnames, *strcodes, *strfnames

These null-terminated arrays contain the capnames, the termcap codes, and the full C
names, for each of the terminfo variables.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine descrip-
tions.

Routines that return pointers always return NULL on error.

The header file <curses.h> automatically includes the header files <stdio.h> and
<unctrl.h>.

The setupterm routine should be used in place of settern.

Note that vidattr and vidputs may be macros.

SEE ALSO

093-701056

curses(3X), curs_initscr(3X), curs_kernel(3X), curs_termceap(3X),
putc(3S), terminfo(4).

Licensed material—property of copyright holder(s) 3- 1 09

curs_touch(3X) DG/UX 5.4 curs_touch(3X)

NAME

curs touch: touchwin, touchline, untouchwin, wtouchln,

is_linetouched, is_wintouched - curses refresh control routines

SYNOPSIS

#include <curses.h>

int touchwin(WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);

int is linetouched(WINDOW *win, int line);

int is_wintouched(WINDOW *win);

DESCRIPTION

The touchwin and touchline routines throw away all optimization information

about which parts of the window have been touched, by pretending that the entire

window has been drawn on. This is sometimes necessary when using overlapping win-

dows, since a change to one window affects the other window, but the records of

which lines have been changed in the other window do not reflect the change. The

routine touchline only pretends that count lines have been changed, beginning with

line start.

The untouchwin routine marks all lines in the window as unchanged since the last
call to wrefresh. |

The wtouchln routine makes n lines in the window, starting at line y, look as if they

have (changed=1) or have not (changed=0) been changed since the last call to

wrefresh.

The is_linetouched and is_wintouched routines return TRUE if the specified

line/window was modified since the last call to wrefresh; otherwise they return

FALSE. In addition, is_linetouched returns ERR if line is not valid for the given

window.

RETURN VALUE

All routines return the integer ERR upon failure and an integer value other than ERR

upon successful completion, unless otherwise noted in the preceding routine descrip-

tions.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that all routines except wtouchln may be macros.

SEE ALSO

curses(3X), curs _refresh(3X).

3-1 1 0 Licensed material—property of copyright holder(s) 093-701056

curs_util(3X) DG/UX 5.4 . curs_util(3X)

NAME

curs util: unctrl, keyname, filter, use_env, putwin, getwin,

delay output, flushinp — miscellaneous curses utility routines

SYNOPSIS

#include <curses.h>

char *unctrl(chtype c);

char *keyname(int c);

int filter(void);

void use_env(char bool) ;

int putwin(WINDOW *win, FILE *filep);

WINDOW *getwin(FILE *filep);

int delay _output(int ms);

int flushinp(void);

DESCRIPTION

The unctrl macro expands to a character string which is a printable representation

of the character c. Control characters are displayed in the ~X notation. Printing

characters are displayed as is. |

With the keyname routine, a character string corresponding to the key c 1s returned.

The filter routine, if used, is called before initscr or newterm are called. It

makes curses think that there is a one-line screen. curses does not use any ter-

minal capabilities that assume that they know on what line of the screen the cursor is

positioned.

The use_env routine, if used, is called before initscr or newterm are called.

When called with FALSE as an argument, the values of lines and columns speci-

fied in the terminfo database will be used, even if environment variables LINES and

COLUMNS (used by default) are set, or if curses is running in a window (in which

case default behavior would be to use the window size if LINES and COLUMNS are

not set).

With the putwin routine, all data associated with window win is written into the file
to which filep points. This information can be later retrieved using the getwin func-

tion.

The getwin routine reads window related data stored in the file by putwin. The

routine then creates and initializes a new window using that data. It returns a pointer

to the new window.

The delay output routine inserts an ms millisecond pause in output. This routine

should not be used extensively because padding characters are used rather than a

CPU pause.

The flushinp routine throws away any typeahead that has been typed by the user

and has not yet been read by the program.

RETURN VALUE

Except for flushinp, routines that return an integer return ERR upon failure and an

integer value other than ERR upon successful completion.

093-701056 Licensed material—property of copyright holder(s) 3-1 1 1

curs_util(3X) DG/UX5.4 | curs_util(3X)

flushinp always returns OK.

Routines that return pointers return NULL on error.

NOTES

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Note that unctr1 is a macro, which is defined in <unctrl.h>.

SEE ALSO

curses(3X), curs_initser(3X), curs_scr_dump(3X).

3-1 1 2 Licensed material—property of copyright holder(s) 093-701056

curs_window(3X) DG/UX 5.4 curs_window(3X)

NAME

curs window: newwin, delwin, mvwin, subwin, derwin, mvderwin,

dupwin, wsyncup, syncok, wcursyncup, wsyncdown - create curses windows

SYNOPSIS

#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin y,

| intbegin_x);

int delwin(WINDOW *win);

int mvwin(WINDOW *win, int y, int x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols,

int begin_y, int begin_x);

WINDOW *derwin(WINDOW *orig, int nlines, int ncols,

int begin_y, int begin x);

int mvderwin(WINDOW *win, int par_y, int par_x);

WINDOW *dupwin(WINDOW *win);

void wsyncup(WINDOW *win);

int syncok(WINDOW *win, bool bf);

void weursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

DESCRIPTION

The newwin routine creates and returns a pointer to a new window with the given

number of lines, nlines, and columns, ncols. The upper left-hand corner of the win-

dow is at line begin_y, column begin_x. If either nlines or ncols is zero, they default

to LINES Degin_y and COLS begin_x. A new full-screen window is created by

calling newwin(0,0,0,0).

The delwin routine deletes the named window, freeing all memory associated with

it. Subwindows must be deleted before the main window can be deleted.

The mvwin routine moves the window so that the upper left-hand corner is at posi-

tion (x, y). If the move would cause the window to be off the screen, it is an error

and the window is not moved. Moving subwindows is allowed, but should be avoided.

The subwin routine creates and returns a pointer to a new window with the given

number of lines, nlines, and columns, ncols. The window is at position (begin_y, -

begin_x) on the screen. (This position is relative to the screen, and not to the win-

dow orig.) The window is made in the middle of the window orig, so that changes

made to one window will affect both windows. The subwindow shares memory with

the window orig. When using this routine, it is necessary to call touchwin or

touchline on orig before calling wrefresh on the subwindow.

The derwin routine is the same as subwin, except that begin_y and begin_x are

relative to the origin of the window orig rather than the screen. There is no differ-

ence between the subwindows and the derived windows.

The mvderwin routine moves a derived window (or subwindow) inside its parent

window. The screen-relative parameters of the window are not changed. This routine

093-701056 Licensed material—property of copyright holder(s) 3-1 1 3

curs_window(3X) DG/UX 5.4 curs_window(3X)

is used to display different parts of the parent window at the same physical position

on the screen. |

The dupwin routine creates an exact duplicate of the window win.

Each curses window maintains two data structures: the character image structure

and the status structure. The character image structure is shared among all windows

in the window hierarchy (i.e., the window with all subwindows). The status structure,

which contains information about individual line changes in the window, is private to

each window. The routine wrefresh uses the status data structure when performing

screen updating. Since status structures are not shared, changes made to one window

in the hierarchy may not be properly reflected on the screen.

The routine wsyncup causes the changes in the status structure of a window to be

reflected in the status structures of its ancestors. If syncok is called with second

argument TRUE then wsyncup is called automatically whenever there is a change in

the window.

The routine wcursyncup updates the current cursor position of all the ancestors of

the window to reflect the current cursor position of the window.

The routine wsyncdown updates the status structure of the window to reflect the

changes in the status structures of its ancestors. Applications seldom call this routine

because it is called automatically by wrefresh.

RETURN VALUE

NOTES

Routines that return an integer return the integer ERR upon failure and an integer

value other than ERR upon successful completion.

delwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers return NULL on error.

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

If many small changes are made to the window, the wsyncup option could degrade

performance.

Note that syncok may be a macro.

SEE ALSO

3-114

curses(3X), curs_refresh(3X), curs_touch(3X).

Licensed materiai—property of copyright hoider(s) 093-701056

curses(3X) DG/UX 5.4 curses(3X)

NAME

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>

DESCRIPTION

The curses library routines give the user a terminal-independent method of updating

character screens with reasonable optimization. A ‘program using these routines must

be compiled with the -lcurses option of cc.

The curses package allows: overall screen, window and pad manipulation; output

to windows and pads; reading terminal input; control over terminal and curses

input and output options; environment query routines; color manipulation; use of soft

label keys; terminfo access; and access to low-level curses routines.

To initialize the routines, the routine initscr or newterm must be called before

any of the other routines that deal with windows and screens are used. The routine

endwin must be called before exiting. To get character-at-a-time input without echo-

ing (most interactive, screen oriented programs want this), the following sequence

should be used:

initscr,cbreak,noecho;

Most programs would additionally use the sequence:

nonl,intrflush(stdscr, FALSE) ,keypad(stdscr, TRUE) ;

Before a curses program is run, the tab stops of the terminal should be set and its

initialization strings, if defined, must be output. This can be done by executing the

tput init command after the shell environment variable TERM has been exported.

[See terminfo(4) for further details.]

The curses library permits manipulation of data structures, called windows, which

can be thought of as two-dimensional arrays of characters representing all or part of a

CRT screen. A default window called stdscr, which is the size of the terminal

screen, is supplied. Others may be created with newwin.

Windows are referred to by variables declared as WINDOW *. These data structures

are manipulated with routines described on 3X paages (whose names begin "curs_").

Among which the most basic routines are move and addch. More general versions

of these routines are included with names beginning with w, allowing the user to

specify a window. The routines not beginning with w affect stdscr.)

After using routines to manipulate a window, refresh is called, telling curses to

make the user’s CRT screen look like stdscr. The characters in a window are actu-

ally of type chtype, (character and attribute data) so that other information about

the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows which are

not constrained to the size of the screen and whose contents need not be completely

displayed. See curs_pad(3X) for more information.

In addition to drawing characters on the screen, video attributes and colors may be

included, causing the characters to show up in such modes as underlined, in reverse

video, or in color on terminals that support such display enhancements. Line drawing

characters may be specified to be output. On input, curses is also able to translate

arrow and function keys that transmit escape sequences into single values. The video

attributes, line drawing characters, and input values use names, defined in

<curses.h>, such as A_REVERSE, ACS HLINE, and KEY_LEFT.

093-701056 Licensed material—property of copyright holder(s) 3-1 1 5

curses(3X) DG/UX 5.4 curses(3X)

If the environment variables LINES and COLUMNS are set, or if the program is exe-

cuting in a window environment, line and column information in the environment will

override information read by terminfo. This would effect a program running in an

AT&T 630 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses checks

for a local terminal definition before checking in the standard place. For example, if

TERM is set to att4424, then the compiled terminal definition is found in

/usr/share/lib/terminfo/a/att4424. |

(The a is copied from the first letter of att4424 to avoid creation of huge direc-
tories.) However, if TERMINFO is set to $HOME/myterms, curses first checks

SHOME/myterms/a/att4424,

and if that fails, it then checks

/usr/share/1lib/terminfo/a/att4424.

This is useful for developing experimental definitions or when write permission in

/usr/share/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h> and will be filled

in by initscr with the size of the screen. The constants TRUE and FALSE have the

values 1 and 0, respectively.

The curses routines also define the WINDOW * variable curser which is used for

certain low-level operations like clearing and redrawing a screen containing garbage.

The curscr can be used in only a few routines.

International Functions

In addition to the standard curses library, the curses32 library is available for

handling multibyte characters in 32 bit process code. The curses32 library provides

additional functions, as well as enhancements to existing curses library functions.

This section describes characteristics of the curses32 library. A program using the

curses32 library functions must be compiled with the -lcurses32 option of cc.

The number of bytes and the number of columns to hold a character from a supple-

mentary character set is locale-specific (locale category LC_CTYPE) and can be speci-

fied in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for-

matting, arbitrary movement of characters on the screen is not desirable.

Overwriting characters (for example, addch) operates on a screen level. Overwriting

a character by a character which requires a different number of columns may produce

orphaned columns. These orphaned columns are filled with the background charac-

ter.

Inserting characters (for example, insch) operates on a character level (that is, at

the character boundaries). The specified character is inserted right before the charac-

ter, regardless of whichever column of a character the cursor points to. Before inser-

tion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (for example, delch) operates on a

character level (that is, at the character boundaries). The character at the cursor is

deleted regardless of whichever columns of the character the cursor points to. Before

deletion, the cursor position is adjusted to the first column of the character.

Multi-column characters cannot be put on the last column of lines. When such

attempts are made, the last column is set to the background character. In addition,

when such an operation creates orphaned columns, the columns are also filled with

the background character.

3-1 1 6 Licensed material—property of copyright holder(s) 093-701056

curses(3X) DG/UX 5.4 curses(3X)

Overlapping and overwriting windows follows the operation of overwriting characters
around its edge. The orphaned columns, if any, are handled in the same manner as

the character operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or deletion

is made when the cursor points to the second or later column position of a character
which holds multiple columns, the cursor is adjusted to the first column of it before

the insertion or deletion.

Routine and Argument Names

Many curses routines have two or more versions. The routines prefixed with w
require a window argument. The routines prefixed with p require a pad argument.

Those without a prefix generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before per-

forming the appropriate action. The mv routines imply a call to move before the call
to the other routine. The coordinate y always refers to the row (of the window), and

x always refers to the column. The upper left-hand corner is always (0,0), not (1,1).

The routines prefixed with mvw take both a window argument and x and y coordi-

nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad
are always pointers to type WINDOW.

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; Df is
always of type bool. The variables ch and attrs below are always of type chtype.

' The types WINDOW, SCREEN, bool, and chtype are defined in <curses.h>. The

type TERMINAL is defined in <term.h>. All other arguments are integers.

Routine Name Index

The following table lists each curses routine and the name of the manual page on
which it is described. The routines marked with an "*" provide new or enhanced func-

tion in the curses32 library.

curses Routine Name Manual Page Name

addch curs _addch(3X)

addchnstr curs _addchstr (3X)

addchstr curs_addchstr (3X)

addnstr curs_addstr(3X)

*xaddnwstr curs_addwstr (3X)

addstr curs_addstr (3X)

*addwch curs_addwch (3X)

*xaddwchnstr curs_addwchstr (3X)

xaddwchstr curs _addwchstr (3X)

*addwstr curs _addwstr (3X)

attroff curs_attr(3X)

attron curs attr(3X)

attrset curs_attr(3X)

baudrate . curs termattrs (3X)

beep curs_beep(3X)

bkgd curs_bkgd(3X)

Licensed material—property of copyright holder(s) 3-1 1 7

curses(3X)

bkgdset

border

box

can_ change color

cbreak |

clear

clearok

clrtobot

clrtoeol

color_content

copywin

curs_set

def_prog_mode

def shell mode

del_curterm

delay output

*delch

deleteln

delscreen

delwin

derwin

doupdate

dupwin

echo

echochar

*xechowchar

endwin

erase

erasechar

filter

flash

flushinp

getbegyx

getch

getmaxyx

*getnstr

xgetnwstr

getparyx

getstr

getsyx

*getwch

getwin

*getwstr

getyx
halfdelay

has_colors

has_ ic

has_il

3-118

DG/UX 5.4 curses(3X)

curs_bkgd(3X)

curs_border (3X)

curs_border (3X)

curs _color(3X)

curs inopts(3X)

curs clear(3X)

curs _outopts (3X)

curs_clear(3X)

curs_clear(3X)

curs_color(3X)

curs overlay (3X)

curs_kernel (3X)

curs_kernel (3X)

curs _kernel(3X)

curs_terminfo(4)

curs_util(3X)

curs_delch(3X)

curs deleteln(3X)

curs_initscr (3X)

curs _window(3X)

curs_window(3X)

curs_refresh(3X)

curs _window(3X)

curs _inopts(3X)

curs _addch(3X)

curs_addwch (3X)

curs _initscer (3X)

curs_clear(3X)

curs_termattrs (3X)

curs_util(3X)

curs_beep(3X)

curs _util(3X)

curs_getyx(3X)

curs _getch(3X)

curs_getyx(3X)

curs _getstr(3X)

curs _ getwstr (3X)

curs getyx(3X)

curs_getstr(3X)

curs_kernel (3X)

curs _getwch(3X)

curs_util (3X)

curs _ getwstr (3X)

curs_getyx(3X)

curs_inopts(3X)

curs_color (3X)

curs _termattrs (3X)

curs_termattrs (3X)

Licensed material—property of copyright hoider(s) 093-701056

curses(3X)

idcok

idlok

immedok

inch

inchnstr

inchstr

init _color

init pair

initscr

innstr

*innwstr

insch

insdelln

insertln

insnstr

*insnwstr

insstr

instr

*inswch

*inswstr

intrflush

*inwch

*inwchnstr

*xinwchstr

*inwstr

is_linetouched

is_wintouched

isendwin

keyname

keypad

killchar

leaveok

longname

meta

move

mvaddch

mvaddchnstr

mvaddchstr

mvaddnstr

*mvaddnwstr

mvaddstr

*mvaddwch

*mvaddwchnstr

*mvaddwchstr

*mvaddwstr

mvcur

zmvdelch

mvderwin

093-701056

DG/UX 5.4 curses(3X)

curs_outopts (3X)

curs_outopts (3X)

curs _outopts (3X)

curs_inch(3X)

curs_inchstr(3X)

curs_inchstr(3X)

curs color(3X)

curs_color(3X)

curs _initscr(3X)

curs_instr(3X)

curs _inwstr (3X)

curs_insch(3X)

curs _deleteln(3X)

curs_deleteln(3X)

curs_insstr(3X)

curs_inswstr(3X)

curs_insstr(3X)

curs _instr(3X)

curs _inswch (3X)

curs _inswstr(3X)

curs_inopts(3X)

curs_inwch(3X)

curs _inwchstr(3X)

curs_inwchstr(3X)

curs_inwstr(3X)

curs_touch(3X)

curs_touch(3X)

curs initscr(3X)

curs _util(3X)

curs_inopts (3X)

curs _ termattrs (3X)

curs _outopts (3X)

curs _termattrs(3X)

curs_inopts (3X)

curs_move(3X)

curs_addch(3X)

curs _addchstr(3X)

curs_addchstr(3X)

curs_addstr(3X)

curs _addwstr(3X)

curs_addstr (3X)

curs _addwch (3X)

curs_addwchstr (3X)

curs_addwchstr (3X)

curs addwstr (3X)

curs _terminfo(4)

curs_delch(3X)

curs_window(3X)

Licensed materiai—property of copyright hoider(s) 3-1 1 9

curses(3X)

mvgetch

*mvgetnstr

*nvgetnwstr

mvgetstr

*mvgetwch

*mvgetwstr

mvinch

mvinchnstr

mvinchstr

mvinnstr

*mvinnwstr

mvinsch

mvinsnstr

*mvinsnwstr

mvinsstr

mvinstr

*mvinswch

*nvinswstr

*mvinwch

*mvinwchnstr

*nvinwchstr

*mvinwstr

*nvprintw

*mvscanw

mvwaddch

mvwaddchnstr

mvwaddchstr

mvwaddnstr

*mvwaddnwstr

mvwaddstr

*nvwaddwch

*mvwaddwchnstr

*mvwaddwchstr

*mvwaddwstr

*mvwdelch

mvwgetch

*mvwgetnstr

*mvwgetnwstr

myvwgetstr

*mvwgetwch

*mvwgetwstr

mvwin

mvwinch

mvwinchnstr

mvwinchstr

mvwinnstr

*nvwinnwstr

mvwinsch

3-120

DG/UX 5.4 curses(3X)

curs_getch(3X)

curs getstr(3X)

curs_getwstr(3X)

curs_getstr (3X)

curs_getwch (3X)

curs _getwstr (3X)

curs_inch(3X)

curs_inchstr (3X)

curs_inchstr (3X)

curs _instr(3X)

curs_inwstr (3X)

curs_insch(3X)

curs insstr(3X)

curs _inswstr(3X)

curs_insstr(3X)

curs instr(3X)

curs_inswch(3X)

curs_inswstr (3X)

curs_inwch(3X)

curs inwchstr (3X)

curs inwchstr (3X)

curs _inwstr(3X)

curs_printw(3X)

curs _ scanw(3X)

curs addch(3X)

curs_addchstr (3X)

curs_addchstr(3X)

curs _addstr(3X)

curs_addwstr(3X)

curs_addstr (3X)

curs addwch(3X)

curs addwchstr (3X)

curs_addwchstr (3X)

curs_addwstr (3X)

curs delch(3X)

curs getch(3X)

curs _getstr(3X)

curs _getwstr (3X)

curs_getstr(3X)

curs _getwch (3X)

curs getwstr (3X)

curs _window(3X)

curs_inch(3X)

curs_inchstr(3X)

curs_inchstr (3X)

curs_instr(3X)

curs_inwstr (3X)

curs_insch(3X)

Licensed materiali—property of copyright holder(s) 093-701056

curses(3X)

mvwinsnstr

*mvwinsnwstr

mvwinsstr

mvwinstr

*mvwinswch

*mvwinswstr

*mvwinwch

*mvwinwchnstr

*mvwinwchstr

*mvwinwstr

*mvwprintw

*mvwscanw

napms

newpad

newterm

newwin

nl

nocbreak

nodelay

noecho

nonl

nogiflush

noraw

notimeout

overlay

overwrite

pair_content

pechochar

*pechowchar

pnoutrefresh

prefresh

*printw

putp
putwin

qiflush

raw

redrawwin

refresh

reset_prog_ mode

reset_shell mode

resetty

restartterm

ripoffline

savetty

*scanw

scr_dump

scr_init

scr_restore

093-701056

DG/UX 5.4 curses(3X)

curs _insstr(3X)

curs_inswstr(3X)

curs _insstr(3X)

curs_instr(3X)

curs _inswch (3X)

curs_inswstr(3X)

curs_inwch(3X)

curs_inwchstr (3X)

curs_inwchstr (3X)

curs_inwstr(3X)

curs_printw(3X)

curs_scanw(3X)

curs_kernel (3X)

curs pad(3X)

curs _initscr(3xX)

curs_window(3X)

curs_outopts (3X)

curs _inopts (3X)

curs_inopts (3X)

curs _inopts (3X)

curs_outopts (3X)

curs_inopts (3X)

curs_inopts (3X)

curs_inopts (3X)

curs_overlay(3X)

curs_overlay(3X)

curs _color(3X)

curs_pad(3X)

curs_pad(3X)

curs_pad(3xX)

curs_pad(3X)

curs. printw(3X)

curs _terminfo(4)

curs_util (3X)

curs_inopts(3X)

curs inopts(3X)

curs_refresh(3X)

curs _refresh(3xX)

curs_kernel (3X)

curs kernel (3X)

curs_kernel (3X)

curs terminfo(4)

curs_kernel(3X)

curs _kernel (3X)

curs_scanw(3X)

curs_scr_dump(3X)

curs _scr_dump(3X)

curs _scr_dump(3X)

Licensed material—property of copyright holder(s) 3-1 21

curses(3X)

scr_set

scroll

scrollok

set_curterm

set_term

setscrreg

setsyx

setterm

setupterm

slk_attroff

slk_attron

slk_attrset

slk_clear

slk_init

slk_label

slk_noutrefresh

slk_refresh

slk_restore

slk_set

slk_touch

srel

standend

standout

start_color

subpad

subwin

syncok

termattrs

termname

tgetent

tgetflag

tgetnum

tgetstr

tgoto

tigetflag

tigetnum

tigetstr

timeout

touchline

touchwin

tparm

tputs

tputs

typeahead

unctrl

ungetch

*ungetwch

untouchwin

DG/UX 5.4

curs_scr_dump(3X)

curs_scroll1(3X)

curs_outopts (3X)

curs_terminfo(4)

curs_initscr(3X)

curs_outopts (3X)

curs _ kernel (3X)

curs_terminfo(4)

curs_terminfo(4)

curs_slk(3X)

curs _slk(3X)

curs_slk(3X)

curs_slk(3X)

curs_slk(3X)

curs _slk(3X)

curs_sSlk(3X)

curs_slk(3X)

curs_slk(3X)

curs_slk(3X)

curs_slk(3X)

curs_scroll(3X)

curs _attr(3X)

curs_attr(3X)

curs_color(3X)

curs_pad(3X)

curs window(3X)

curs_window(3X)

curs _termattrs (3X)

curs_termattrs (3X)

curs_termcap(3X)

curs_termcap (3X)

curs_termcap(3X)

curs_termcap (3X)

curs_termcap(3X)

curs_terminfo(4)

curs_terminfo(4)

curs_terminfo(4)

curs_inopts (3X)

curs_ touch (3X)

curs_ touch (3X)

curs _terminfo(4)

curs_termcap (3X)

curs_terminfo(4)

curs _inopts (3X)

curs _ util(3X)

curs_getch(3X)

curs_getwch (3X)

curs touch(3X)

Licensed material—property of copyright holder(s)

curses(3X)

093-701056

curses(3X)

use_env

vidattr

vidputs

vwprintw

vwscanw

waddch

waddchnstr

waddchstr

waddnstr

*waddnwstr

waddstr

*waddwch

*waddwchnstr

*waddwchstr

*waddwstr

wattroff

wattron

wattrset

wbhkgd

wbkgdset

wborder

wcelear

welrtobot

wclrtoeol

weursyncup

*wdelch

wdeleteln

wechochar

*xwechowchar

werase

wgetch

wgetnstr

*wgetnwstr

wgetstr

*wgetwch

*wgetwstr

whline

winch

winchnstr

winchstr

winnstr

*winnwstr

winsch

winsdelln

winsertln

winsnstr

*winsnwstr

winsstr

093-701056

DG/UX 5.4 curses(3X)

curs_util(3X)

curs_terminfo(4)

curs_terminfo(4)

curs_printw/(3X)

curs_scanw(3X)

curs_addch(3X)

curs _addchstr (3X)

curs_addchstr (3X)

curs_addstr(3X)

curs_addwstr(3X)

curs_addstr (3X)

curs_addwch (3X)

curs_addwchstr(3X)

curs_addwchstr (3X)

curs_addwstr (3X)

curs attr(3X)

curs_attr(3X)

curs_attr(3X)

curs_bkgd(3X)

curs _bkgd(3X)

curs_border (3X)

curs_clear(3X)

curs_clear(3X)

curs _clear(3X)

curs_window(3X)

curs_delch(3X)

curs _deleteln(3X)

curs_addch(3X)

curs _addwch (3X)

curs_clear(3X)

curs_getch(3xX)

curs _getstr (3X)

curs_getwstr(3X)

curs_getstr(3X)

curs_getwch (3X)

curs _getwstr(3X)

curs_border (3X)

curs_inch(3xX)

curs_inchstr(3X)

curs_inchstr(3X)

curs_instr(3X)

curs_inwstr(3X)

curs_insch(3X)

curs _deleteln(3X)

curs_deleteln(3xX)

curs_insstr(3X)

curs_inswstr(3X)

curs_insstr(3X)

Licensed material—property of copyright holder(s) 3-1 23

curses(3X) DG/UX 5.4 curses(3X)

winstr curs _instr(3X)

*winswch curs_inswch (3X)

*winswstr curs _inswstr(3xX)

*winwch curs _inwch(3X)

*winwchnstr curs_inwchstr (3X)

*winwchstr curs_inwchstr (3X)

*winwstr curs_inwstr (3X)

wmove curs _move(3X)

wnoutrefresh curs_refresh (3X)

*wprintw curs printw(3X)

wredrawln curs_refresh(3X)

wrefresh curs_refresh(3X)

*wscanw curs_scanw(3X)

wserl curs_scroll(3X)

wsetscrreg curs outopts (3X)

wstandend curs_attr(3X)

wstandout curs_attr(3X)

wsyncdown curs window(3X)

wsyncup curs _window(3X)

wtimeout curs_inopts (3X)

wtouchin curs_touch(3X)

wvline curs_border (3X)

RETURN VALUE

Routines that return an integer return ERR upon failure and an integer value other

than ERR upon successful completion, unless otherwise noted in the routine descrip-

tions.

All macros return the value of the w version, except setscrreg, wsetscrreg,

getyx, getbegyx, getmaxyx. The return values of setscrreg, wsetscrreg,

getyx, getbegyx, and getmaxyx are undefined (that is, these should not be used

as the nght-hand side of assignment statements).

Routines that return pointers return NULL on error.

SEE ALSO

terminfo(4) and 3X pages whose names begin "curs_" for detailed routine descrip-

tions.

curs_addch(3X), curs_addchstr(3X), curs_addstr(3X), curs_attr(3X),

curs_beep(3X), curs_bkgd(3X), curs_border(3X), curs_clear(3X),

curs_color(3X), curs_delch(3X), curs_deleteln(3X), curs_getch(3X),

curs_getyx(3X), curs_inch(3X), curs_inchstr(3X), curs_initscr(3X),

curs_inopts(3X), curs_insch(3X), curs_insstr(3X), curs_instr(3X),

curs_kernel(3X), curs_move(3X), curs_outopts(3X), curs_overlay(3X),

curs_refresh(3X), curs_scr_dmp(3X), curs_scroll(3X), curs_s1k(3X),

curs_termattr(3X), curs_termcap(3X), curs_terminfo(3X),

curs_touch(3X), curs_util(3X), curs_window(3X) in the System V Release 4.0

Programmer's Guide: Character User Interface.

The header file <curses.h> automatically includes the header files <stdio.h> and

<unctrl.h>.

Licensed material—property of copyright holder(s) 093-701056

cuserid(3S) DG/UX 5.4 cuserid(3S)

NAME

cuserid — get character login name or user name associated with effective UID

SYNOPSIS

#include <stdio.h>

char *«cuserid (char *s);

DESCRIPTION

cuserid generates either

@ acharacter-string representation of the login name that the owner of the current
process is logged in under (the default).

or

@ acharacter-string representation for the user name associated with the effective
user ID of the process (the POSIX 1003.1-1988 defined behavior obtained at
link time with -lposix).

If s is a NULL pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an array of at least
L_cuserid characters; the representation is left in this array. The constant

L_cuserid is defined in the stdio.h header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character ~\0’ will be placed at s[0].

SEE ALSO

getlogin(3C), getpwent(3C).

093-701056 Licensed material—property of copyright holder(s) 3-1 25

dbm(3X)

NAME

DG/UX 5.4 | dbm(SX)

dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS

#include <dbm.h>

typedef struct {

char *dptr;

int dsize;

} datum;

dbminit(file)

char *file;

dbmclose()

datum fetch(key)

datum key;

store(key, content)

datum key, content;

delete(key)

datum key;

datum firstkey()

datum nextkey(key)

datum key;

DESCRIPTION

Note: the dbm library has been superceded by ndbm(3C), and is now implemented

using ndbm. These functions maintain key/content pairs in a data base. The func-

tions will handle very large (a billion blocks) databases and will access a keyed item in

one or two file system accesses. The functions are obtained with the loader option

~ldbn.

Keys and contents are described by the datum typedef. A datum specifies a string of

dsize bytes pointed to by dprr. Arbitrary binary data, as well as normal ASCII strings,

are allowed. The data base is stored in two files. One file is a directory containing a

bit map and has ‘.dir’ as its suffix. The second file contains all data and has ‘.pag’ as

its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this

call, the files file. dir and file. pag must exist. (An empty database is created by

creating zero-length ‘.dir’ and ‘.pag’ files.)

A database may be closed by calling dbmclose. You must close a database before

opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed under

a key by store. A key (and its associated contents) is deleted by delete. A linear pass

through all keys in a database may be made, in an (apparently) random order, by use

of firstkey and nextkey. Firstkey will return the first key in the database. With any

key nextkey will return the next key in the database. This code will traverse the data

base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))

DIAGNOSTICS

3-126

All functions that return an int indicate errors with negative values. A zero return

Licensed material—property of copyright holder(s) 093-701056

dbm(3X) DG/UX 5.4 dbm(3X) |

indicates ok. Routines that return a datum indicate errors with a null (0) dprr.
SEE ALSO

NOTES

093-701056

ndbm(3C).

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual

content. Older UNIX systems may create real file blocks for these holes when

touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without

filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed

by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size

(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on

a single block. Store will return an error in the event that a disk block fills with

inseparable data.

Delete does not physically reclaim file space, although it does make it available for

reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function,

not on anything interesting.

Licensed material—property of copyright holder(s) 3- 1 27

dg_flock(3C) DG/UX 5.4 dg_flock(3C)

NAME

dg_flock - apply or remove an advisory lock on an open DG/UX file

SYNOPSIS |
#include <sys/types.h>

#include <sys/file.h>

#define LOCK_SH 1 /* shared lock */

#define LOCK_EX 2 /* exclusive lock */

#define LOCK_NB 4 /* don’t block when locking */

#define LOCK_UN 8 /* unlock */

dg_flock(fildes, operation)

int fildes, operation;

DESCRIPTION

Dg_flock applies or removes an advisory lock on the file associated with the file

descriptor fildes, depending on the operation specified. A lock is applied by specify-

ing an operation parameter that is the ‘exclusive or‘ of LOCK_SH or LOCK_EX and,

possibly, LOCK_NB. Operation should be LOCK_UN to unlock an existing lock.

Advisory locks allow cooperating processes to perform consistent operations on files,

but do not guarantee consistency (i.e., processes may still access files without using

advisory locks, possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks.

A shared lock is similar to a read lock as described in fent1(2). That is, an

exclusive lock cannot be applied as long as a shared lock is in effect. An exclusive

lock is similar to a write lock in that no other lock can be applied as long as the

exclusive lock is in effect.

At any time, multiple shared locks may be applied to a file, but at no time are multi-

ple exclusive, or both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by speci-

fying the appropriate lock. This is an atomic operation; that is, the lock is not

released during the change.

The child of a process acts independently of its parent process in regards to locks.
More specifically, the child of a process does not inherit locks; and if a child unlocks

a file, it does not release the lock of the parent.

Requesting a lock on an object that is already locked normally causes the caller to be

blocked until the lock may be acquired. If LOCK_NB is included in operation, then

this block will not happen; instead the call will fail and the errno EACCES will be ©

set.

Fildes must be open for reading | in order to obtain a shared lock, open for writing to
obtain an exclusive lock.

RETURN VALUE

If the operation was successful, 0 is returned; on an error, a —1 is returned and an

error code is left in the global location errno.

DIAGNOSTICS

The dg_flock call fails if:

[EACCES] The file is locked and the LOCK_NB option was specified.

[EBADF] The argument fildes is an invalid descriptor, or its mode does

not allow a request of the given lock type.

3- 1 28 Licensed materiai—property of copyright hoider(s) 093-701056

dg_flock(3C) DG/UX 5.4 dg_flock(3C)

[EINTR] An interrupt was received before the lock was obtained.

[EINVAL] The argument fildes refers to an object other than a file.

[EDEADLK] Awaiting the lock would cause a deadlock.

SEE ALSO

NOTES

093-701056

open(2), close(2), dup(2), exec(2), fork(2), fcnt1(2).

Locks are on files, not file descriptors. That is, file descriptors duplicated through

dup(2) do not result in multiple instances of a lock.

Blocked processes awaiting a lock may be awakened by signals.

Note the following departures from Berkeley 4.2 specifications for dg_flock com-
pared to the BSD flock call:

Dg_flock can return EDEADLK whereas 4.2 BSD would simply deadlock.

Upgrading a lock will be an atomic operation. That is, a lock is not released
to upgrade that lock.

Dg_flock will return EACCES instead of EVOULDBLOCK if using
LOCK_NB and a lock is already held.

A child process does not inherit locks from its parent process.

Fildes must be open for reading to obtain a shared lock, open for writing to
obtain an exclusive lock.

Dg_ flock and ‘lock are mutually compatible until lockf has a mandatory
locking option. :

Licensed material—property of copyright holder(s) 3-1 29

dg_seek(3C) DG/UX 5.4 . dg_seek(3C)

NAME

dg_seek, dg_block_seek — extended seek functions

SYNOPSIS

#include <sys/dg_c_generics.h>

boolean type dg_seek (int fildes, uint high, uint low);

boolean type dg_block_seek (int fildes, ulong block);

DESCRIPTION

Dg_seek performs an extended seek operation to a device whose offsets are too large

to be handled by lseek(2). Dg_seek will use the values high and low to form

a 64 bit file position value with respect to position zero in the

file. The current file position for fildes is then set to this value.

High is the top 32 bits of the device address and low is the bottom 32 bits of the

device address.

Dg_block_seek will use block to create a 64 bit file position value, using 512-byte

blocks as the block size. The current file position for fildes is then set to this

value.

SEE ALSO

lseek(2).

DIAGNOSTICS

Both functions return TRUE (1 as defined in <sys/dg_c_generics.h>) when the seek is
successful, and FALSE (0 as defined in <sys/dg_c_generics.h>) when unsuccessful.

Calling this function on an invalid file descriptor will also result in a FALSE result.

3- 1 30 Licensed material—property of copyright holder(s) 093-701056

dial(SC) DG/UX 5.4 dial(3C)

NAME

dial — establish an out-going terminal line connection

SYNOPSIS

#include <dial.h>

int dial (call)

CALL call;

void undial (fd)

int fa ;

DESCRIPTION

Dial returns a file-descriptor for a terminal line open for read/write. The argument

to dial is a CALL structure (defined in the dial.h header file).

When finished with the terminal line, the calling program must invoke undial to

release the semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the dial.h header file is:

typedef struct {

struct termio «attr; /* pointer to termio attribute struct «/

int baud; /« transmission data rate +/

int speed; /+ 212A modem: low=300, high=1200 +/

char «line; /« device name for out-going line +/

char stelno; §/* pointer to tel-no digits string «/

int modem; /s* specify modem control for direct lines «/

char *device; /« unused +/

int dev_ien; /« unused «/

+ CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in

which case its value should be either 300 or 1200 to identify the 113A modem, or the

high- or low-speed setting on the 212A modem. Note that the 113A modem or the

low-speed setting of the 212A modem will transmit at any rate between 0 and 300 bits

per second. However, the high-speed setting of the 212A modem transmits and

receives at 1200 bits per second only. The CALL element baud is for the desired

transmission baud rate. For example, one might set baud to 110 and speed to 300 (or

1200). However, if speed is set to 1200, baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should

be placed in the line element in the CALL structure. Legal values for such terminal

device names are kept in the Devices file. In this case, the value of the baud ele-

ment should be set to -1. This will cause dial to determine the correct value from

the Devices file.

The telno element is for a pointer to a character string representing the telephone

number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9

* dial «

dial

wait for secondary dail tone

- delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This

element should be non-zero if modem control is required. The CALL element attr is

093-701056 Licensed material—property of copyright holder(s) 3-1 31

dial(3C) DG/UX 5.4 dial(3C)

a pointer to a termio structure, as defined in the termio.h header file. A NULL

value for this pointer element may be passed to the dial function, but if such a

structure is included, the elements specified in it will be set for the outgoing terminal

line before the connection is established. This is often important for certain attri-

butes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in the

CALL structure for compatibility reasons.

FILES

/etc/uucp/Devices

/etc/uucp/Systems

/usr/spool/uucp/LCkK. . tty-device

DIAGNOSTICS

On failure, a negative value indicating the reason for the failure will be returned.

Mnemonics for these negative indices as listed here are defined in the dial.h header

file.

INTRPT -1 /* interrupt occurred +/

D.HUNG -2 /« dialer hung (no return from write) +/

NO_ANS) -3 /* no answer within 10 seconds +/

ILL_BD —4 /+ illegal baud-rate +/

A.PROB- -5 /* acu problem (open() failure) «/

LPROB -6 /s« line problem (open() failure) «/

NO_Ldv -7 /* can’t open Devices file «/

DV.NT_A -8 /+ requested device not available +«/

DV_NTK -9 /* requested device not known +/

NO_BD_A -10 /« no device available at requested baud +/

NO_BD_K -11 /« no device known at requested baud «/

DV_NT_E -12 /+ requested speed does not match «/

BAD_SYS -13 /* system not in Systems files/

SEE ALSO

alarm(2), read(2), write(2).

acu(7), termio(7) in the System Manager’s Reference for the DG/UX System.

uucp(1C) in the User’s Reference for the DG/UX System.

CAUTIONS

Including the dial.h header file automatically includes the termio.h header file.

The above routine uses stdio.h, which causes it to increase the size of programs,

not otherwise using standard I/O, more than might be expected.

BUGS

An alarm(2) system call for 3600 seconds is made (and caught) within the dial

module for the purpose of “touching” the LCK.. file and constitutes the device alloca-

tion semaphore for the terminal device. Otherwise, uucp(1C) may simply delete the

LCK.. entry on its 90-minute clean-up rounds. The alarm may go off while the user

program is in a read(2) or write(2) system call, causing an apparent error return.

If the user program expects to be around for an hour or more, error returns from

reads should be checked for (errno==EINTR), and the read possibly reissued.

3-1 32 Licensed material—property of copyright hoider(s) 093-701056

directory(3C) DG/UX 5.4 directory(3C)

NAME

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir —

directory operations |

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

DIR *opendir (const char «filename) ;

struct dirent *«readdir (DIR +dirp);

long telldir (DIR *dirp);

void seekdir (DIR *dirp, long loc);

void rewinddir (DIR *dirp);

int closedir (DIR *dirp);

Alternate Syntax

#include <sys/dir.h>

struct direct *readdir (DIR «dirp);

DESCRIPTION

opendir opens the directory named by filename and associates a directory stream

with it. opendir returns a pointer to be used to identify the directory stream in

subsequent operations. The directory stream is positioned at the first entry. A null

pointer is returned if filename cannot be accessed or is not a directory, or if it cannot

malloc(3C) enough memory to hold a DIR structure or a buffer for the directory

entries.

readdir returns a pointer to the next active directory entry and positions the direc-

tory stream at the next entry. No inactive entries are returned. It returns NULL upon

reaching the end of the directory or upon detecting an invalid location in the direc-

tory. readdir buffers several directory entries per actual read operation; readdir

marks for update the st_atime field of the directory each time the directory is actu-

ally read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.

The new position reverts to the position associated with the directory stream at the

time the telldir operation that provides loc was performed. Values returned by

telldir are valid only if the directory has not changed because of compaction or |

expansion. This situation is not a problem with System V, but it can be with DG/UX

and some file system types.

rewinddir resets the position of the named directory stream to the beginning of the

directory. It also causes the directory stream to refer to the current state of the

corresponding directory, as a call to opendir would.

closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets errno to one of the following values:

ENOTDIR A component of filename is not a directory.

EACCES A component of filename denies search permission.

093-701056 Licensed materiali—property of copyright holder(s) 3-1 33

directory(3C)

EACCES

EMFILE

ENFILE

EFAULT

ELOOP

ENAMETOOLONG

ENOENT

DG/UX 5.4 directory(3C)

Read permission is denied on the specified directory.

The maximum number of file descriptors are currently open.

The system file table is full. |

filename points outside the allocated address space.

Too many symbolic links were encountered in translating

filename.

The length of the filename argument exceeds [PATH_MAX}, or

the length of a filename component exceeds {NAME_MAX} while

{ POSIX_NO_TRUNC} is in effect.

A component of filename does not exist or is a null pathname.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT

EBADF

The current file pointer for the directory is not located at a

valid entry.

The file descriptor determined by the DIR stream is no longer

valid. This result occurs if the DIR stream has been closed.

telldir, seekdir, and closedir return —1 on failure and set errno to the fol-

lowing value:

EBADF

EXAMPLE

The file descriptor determined by the DIR stream is no longer

valid. This results if the DIR stream has been closed.

Here is a sample program that prints the names of all the files in the current direc-

tory:

#include <stdio.h>

#include <dirent.h>

main()

{

dirp = opendir(

DIR *dirp;

struct dirent +direntp ;

ol);

while ((direntp = readdir(dirp)) != NULL)

(void)printf("%s\n", direntp->d_name);

closedir(dirp);

return (0);

SEE ALSO

getdents(2), dirent(4).

NOTES

rewinddir is implemented as a macro, so its function address cannot be taken.

3-134 Licensed material—property of copyright hoider(s) 093-701056

dirname (3G) DG/UX 5.4 dirname (3G)

NAME

dirname — report the parent directory name ofa file path name

‘SYNOPSIS

ce [flag ...] file ... -1lgen [library ...]

#include <libgen.h>

char «dirname (char *path);

DESCRIPTION

Given a pointer to a null-terminated character string that contains a file system path

name, dirname returns a pointer to a static constant string that is the parent direc-

tory of that file. In doing this, it sometimes places a null byte in the path name after

the next to last element, so the content of path must be disposable. Trailing “/”

characters in the path are not counted as part of the path.

If path or xpath is zero, a pointer to a static constant “.” is returned.

dirname and basename together yield a complete path name. dirname (path) is

the directory where basename (path) is found.

EXAMPLES

A simple file name and the strings “.” and “. .” all have “.” as their return value.

Input string Output pointer

/usr/lib /usr

fusr/ . /

usr

/ /

The following code reads a path name, changes directory to the appropriate directory

[see chdir(2)], and opens the file.

char path[100], *pathcopy;

int fd;

gets (path);

pathcopy = strdup (path);

chdir (dirname (pathcopy));

fd = open (basename (path), O_RDONLY);

SEE ALSO

chdir(2), basename(3G).

basename(1) in the User’s Reference Manual.

093-701056 Licensed material—property of copyright holder(s) 3- 1 35

div(3C)

NAME

DG/UX 5.4 div(3C)

div, ldiv — compute the quotient and remainder

SYNOPSIS

#include <stdlib.h>

div_t div (int numer, int denom);

ldiv_t ldiv (long int numer, long int denon);

DESCRIPTION

div computes the quotient and remainder of the division of the numerator numer by

the denominator denom. This function provides a well-defined semantics for the

signed integral division and remainder operations, unlike the implementation-defined

semantics of the built-in operations. The sign of the resulting quotient is that of the

algebraic quotient, and, if the division is inexact, the magnitude of the resulting quo-

tient is the largest integer less than the magnitude of the algebraic quotient. If the

result cannot be represented, the behavior is undefined; otherwise, quotient « denom

+ remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and remainder:

typedef struct div_t [{

int quot; /*quotient*/

int rem; /*remainder*/

} div_t;

ldiv is similar to div, except that the arguments and the members of the returned

structure (which has type ldiv_t) all have type long int.

SEE ALSO

3-136

mp(3X).

Licensed material—property of copyright holder(s) 093-701056

doconfig(3N) DG/UX 5.4 doconfig(3N)

NAME

doconfig - execute a configuration script

SYNOPSIS

include <sac.h> int doconfig(int fd, char *script, long rflag);

DESCRIPTION

doconfig is a Service Access Facility library function that interprets the configura-

tion scripts contained in the files /etc/saf/pmtag/_config,

/etc/saf/_sysconfig, and /etc/saf/pmtag/svctag.

script is the name of the configuration script; fd is a file descriptor that designates

the stream to which stream manipulation operations are to be applied; rflag is a bit-

mask that indicates the mode in which script is to be interpreted. rflag may take

two values, NORUN and NOASSIGN, which may be or’d. If rflag is zero, all com-

mands in the configuration script are eligible to be interpreted. If rflag has the NOAS-

SIGN bit set, the assign command is considered illegal and will generate an error

return. If rflag has the NORUN bit set, the run and runwait commands are con-

sidered illegal and will generate error returns.

The configuration language in which script is written consists of a sequence of

commands, each of which is interpreted separately. The following reserved keywords

are defined: assign, push, pop, runwait, and run. The comment character is

#; when a # occurs on a line, everything from that point to the end of the line is

ignored. Blank lines are not significant. No line in a command script may exceed

1024 characters.

assign variable=value

Used to define environment variables. variable is the name of the environ-

ment variable and value is the value to be assigned to it. The value assigned

must be a string constant; no form of parameter substitution is available.

value may be quoted. The quoting rules are those used by the shell for defin-

ing environment variables. assign will fail if space cannot be allocated for

the new variable or if any part of the specification is invalid.

push modulel|, module2, module3, . . .]

Used to push STREAMS modules onto the stream designated by fd. modulel

is the name of the first module to be pushed, module2 is the name of the

second module to be pushed, etc. The command will fail if any of the named

modules cannot be pushed. If a module cannot be pushed, the subsequent

modules on the same command line will be ignored and modules that have

already been pushed will be popped.

pop [module]

Used to pop STREAMS modules off the designated stream. If pop is invoked

with no arguments, the top module on the stream is popped. If an argument

is given, modules will be popped one at a time until the named module is at

the top of the stream. If the named module is not on the designated stream,

the stream is left as it was and the command fails. If module is the special.

keyword ALL, then all modules on the stream will be popped. Note that only

modules above the topmost driver are affected.

runwait command

The runwait command runs a command and waits for it to complete. com-

mand is the pathname of the command to be run. The command is run with

/usr/bin/sh ~c prepended to it; shell scripts may thus be executed from

093-701056 Licensed materiai—property of copyright holder(s) 3-1 37

doconfig(SN) DG/UX 5.4 docontig(SN)

configuration scripts. The runwait command will fail if command cannot

be found or cannot be executed, or if command exits with a non-zero status.

run command

The run command is identical to runwait except that it does not wait for

command to complete. command is the pathname of the command to be run.

run Will not fail unless it is unable to create a child process to execute the

command.

Although they are syntactically indistinguishable, some of the commands available to

run and runwait are interpreter built-in commands. Interpreter built-ins are used

when it is necessary to alter the state of a process within the context of that process.

The doconfig interpreter built-in commands are similar to the shell special com-

mands and, like these, they do not spawn another process for execution. See sh(1).

The initial set of built-in commands is:

cd

ulimit

umask

DIAGNOSTICS

doconfig returns 0 if the script was interpreted successfully. If a command in the

script fails, the interpretation of the script ceases at that point and a positive number

is returned; this number indicates which line in the script failed. If a system error

occurs, a value of -1 is returned. When a script fails, the process whose environ-

ment was being established should nor be started.

SEE ALSO

3-138

pmadm(1M), sacadm(1M), sh(1).

Licensed material—property of copyright hoider(s) 093-701056

drand48(3C) DG/UX 5.4 drand48(3C)

NAME

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,

seed48, lcong48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS

#include <stdlib.h>

double drand48 (void);

double erand48 (unsigned short xsubi[3]);

long lrand48 (void);

long nrand48 (unsigned short xsubi[3]);

long mrand48 (void); .

long jrand48 (unsigned short xsubi[3]);

void srand48 (long seedval);

unsigned short *seed48 (unsigned short seedl6v([3]);

void lcong48 (unsigned short param[7]);

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-known

linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point

values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly distri-

buted over the interval [0, 274).

Functions mrand48 and jrand48 return signed long integers uniformly distributed

over the interval [—2*!, 234).

Functions srand48, seed48, and lcong48 are initialization entry points, one of

which should be invoked before either drand48, lrand48, or mrand48 is called.

(Although it is not recommended practice, constant default initializer values will be

supplied automatically if drand48, lrand48, or mrand48 is called without a prior

call to an initialization entry point.) Functions erand48, nrand48, and jrand48

do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, according

to the linear congruential formula

Xn4t = (AX, +C) mod m n>0.

The parameter m =2*; hence 48-bit integer arithmetic is performed. Unless

1cong48 has been invoked, the multiplier value a and the addend value c are given

by

a = SDEECE66D 16 = 273673163155 ,

c=B 16 = 13 8°

The value returned by any of the functions drand48, erand48, lrand48,

nrand48, mrand48, or jrand48 is computed by first generating the next 48-bit X;

in the sequence. Then the appropriate number of bits, according to the type of

data item to be returned, are copied from the high-order (leftmost) bits of X; and

transformed into the returned value.

093-701056 Licensed materiali—property of copyright holder(s) 3-139

drand48(3C) DG/UX 5.4 drand48(3C)

The functions drand48, lrand48, and mrand48 store the last 48-bit X; generated
in an internal buffer. X; must be initialized prior to being invoked. The functions
erand48, nrand48, and jrand48 require the calling program to provide storage for

the successive X; values in the array specified as an argument when the functions are
invoked. These routines do not have to be initialized; the calling program must place
the desired initial value of X; into the array and pass it as an argument. By using dif-
ferent arguments, functions erand48, nrand48, and jrand48 allow separate
modules of a large program to generate several independent streams of pseudo-
random numbers, i.e., the sequence of numbers in each stream will not depend upon
how many times the routines have been called to generate numbers for the other
streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits con-
tained in its argument. The low-order 16 bits of X; are set to the arbitrary value

* 330Ej¢.

The initializer function seed48 sets the value of X; to the 48-bit value specified in
the argument array. In addition, the previous value of X; is copied into a 48-bit inter-
nal buffer, used only by seed48, and a pointer to this buffer is the value returned by
seed48. This returned pointer, which can just be ignored if not needed, is useful if a
program is to be restarted from a given point at some future time — use the pointer
to get at and store the last X; value, and then use this value to reinitialize via seed48
when the program is restarted.

_ The initialization function lcong48 allows the user to specify the initial X;, the mul-
tiplier value a, and the addend value c. Argument array elements param[0-2] specify
X;, param[3-5] specify the multiplier a, and param[6] specifies the 16-bit addend c.
After lcong48 has been called, a subsequent call to either srand48 or seed48 will
restore the “standard” multiplier and addend values, a and c, specified on the previ-
ous page.

SEE ALSO

3-140

rand(3C).

Licensed material—property of copyright holder(s) 093-701056

drem(3M) DG/UX 5.4 drem(3M)

NAME

drem — IFEE floating-point remainder

SYNOPSIS

#include <ieeefp.h> /« for TEEE environment +«/

or

#include <math.h> /s for System V environment +/

double drem (x,y)

double x, y;

DESCRIPTION

drem returns the remainder of x/y as specified by IEEE Standard 754 for Binary
Floating-Point Arithmetic. The remainder r is calculated as

r=xX-n «ty

where n is the integer nearest the exact value of x/y. If the absolute value of x/y is .5,
then 7 is the even integer nearest the result of x/y. Since the IEEE standard requires
that the exact value of x/y be used in the calculation, the ’round nearest’ rounding
mode is in effect throughout the execution of the drem function. The remainder is

always considered to be exact, so inexact exceptions are never raised.

DIAGNOSTICS

The IEEE standard defines drem(x, 0) and drem(infinity, y) to be invalid opera-

tions. In addition, this implementation considers drem(x, y) to be an invalid opera-

tion when x/y results in infinity or double-precision overflow. These operations raise

an ‘invalid operation’ exception, which results in signal SIGFPE if traps are enabled

and a NaN otherwise.

SEE ALSO

BUGS

093-701056

fpgetround(3C), isnan(3C).

This implementation of drem does not allow exceptional values to be fixed by a trap

handler.

Licensed material—property of copyright holder(s) 3-1 41

ecvt(3C) DG/UX 5.4 ecvt(3C)

NAME

ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS

#include <stdlib.h>

char *«ecvt (double value, int ndigit, int *decpt, int *sign);

‘Char *«fcvt (double value, int ndigit, int *decpt, int *sign);

char «gcvt (double value, int ndigit, char «buf);

DESCRIPTION

ecvt converts value to a null-terminated string of ndigit digits and returns a pointer

thereto. The high-order digit is non-zero, unless the value is zero. The low-order

digit is rounded. The position of the decimal point relative to the beginning of the

string is stored indirectly through decpt (negative means to the left of the returned

digits). The decimal point is not included in the returned string. If the sign of the

result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

fcvt is identical to ecvt, except that the correct digit has been rounded for printf

%f output of the number of digits specified by ndigit. So, where ecvt(12.3456,

3, decpt, sign) returns a pointer to character string 123\0, fcevt(12.3456, 3,

decpt, sign) returns a pointer to character string 123456\0.

gevt converts the value to a null-terminated string in the array pointed to by buf and

returns buf. It attempts to produce ndigit significant digits in %f format if possible,

otherwise %e format (scientific notation), ready for printing. A minus sign, if there is

one, or a decimal point will be included as part of the returned string. Trailing zeros

are suppressed.

SEE ALSO

printf(3S).

NOTES

The values returned by ecvt and fevt point to a single static data array whose con-

tent is overwritten by each call.

3-1 42 Licensed material—property of copyright holder(s) 093-701056

elf(SE) DG/UX 5.4 elf (SE)

NAME

elf — object file access library

SYNOPSIS

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

DESCRIPTION -

Functions in the ELF access library let a program manipulate ELF (Executable and

Linking Format) object files, archive files, and archive members. The header file

provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF descrip-

tor. That is, when the program starts working with a file, elf begin creates an ELF

descriptor through which the program manipulates the structures and information in

the file. These ELF descriptors can be used both to read and to wnite files. After the

program establishes an ELF descriptor for a file, it may then obtain section descriptors

to manipulate the sections of the file [see elf _getscn(3E)]. Sections hold the bulk

of an object file’s real information, such as text, data, the symbol table, and so on.

A section descriptor “belongs” to a particular ELF descriptor, just as a section

belongs to a file. Finally, data descriptors are available through section descriptors,

allowing the program to manipulate the information associated with a section. A data

descriptor “belongs” to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data

descriptor is associated with one section descriptor, which is associated with one ELF

descriptor, which is associated with one file. Although descriptors are private, they

give access to data that may be shared. Consider programs that combine input files,

using incoming data to create or update another file. Such a program might get data

descriptors for an input and an output section. It then could update the output

descriptor to reuse the input descriptor’s data. That is, the descriptors are distinct,

but they could share the associated data bytes. This sharing avoids the space over-

head for duplicate buffers and the performance overhead for copying data unneces-

sarily.

File Classes

ELF provides a framework in which to define a family of object files, supporting mul-

tiple processors and architectures. An important distinction among object files is the

class, or capacity, of the file. The 32-bit class supports architectures in which a 32-bit

object can represent addresses, file sizes, etc., as in the following.

Name Purpose

E1f£32_Addr Unsigned address

E1£32_Half Unsigned medium integer

El1f£32_Off Unsigned file offset

El1£32_Sword Signed large integer

E1£32_Word Unsigned large integer

unsigned char | Unsigned small integer

Other classes will be defined as necessary, to support larger (or smaller) machines.

Some library services deal only with data objects for a specific class, while others are

class-independent. To make this distinction clear, library function names reflect their

status, as described below.

Data Representations

Conceptually, two parallel sets of objects support cross compilation environments.

093-701056 Licensed materiai—property of copyright holder(s) 3- 1 43

elf(SE) DG/UX 5.4 elf(3E)

One set corresponds to file contents, while the other set corresponds to the native

memory image of the program manipulating the file. Type definitions supplied by the

header files work on the native machine, which may have different data encodings
(size, byte order, etc.) than the target machine. Although native memory objects

should be at least as big as the file objects (to avoid information loss), they may be

bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations. Some

library routines convert data automatically, while others leave conversion as the

program’s responsibility. Either way, programs that create object files must write

file-typed objects to those files; programs that read object files must take a similar

view. See elf_xlate(3E) and elf_fsize(3E) for more information.

Programs may translate data explicitly, taking full control over the object file layout

and semantics. If the program prefers not to have and exercise complete control, the

library provides a higher-level interface that hides many object file details.

elf_begin and related functions let a program deal with the native memory types,

converting between memory objects and their file equivalents automatically when

reading or writing an object file.

Elf Versions

Object file versions allow ELF to adapt to new requirements. Three—independent—
versions can be important to a program. First, an application program knows about a

particular version by virtue of being compiled with certain header files. Second, the

access library similarly is compiled with header files that control what versions it

understands. Third, an ELF object file holds a value identifying its version, deter-

mined by the ELF version known by the file’s creator. Ideally, all three versions

would be the same, but they may differ.

If a program’s version is newer than the access library, the program might use

information unknown to the library. Translation routines might not work

properly, leading to undefined behavior. This condition merits installing a

new library.

The library’s version might be newer than the program’s and the file’s. The:

library understands old versions, thus avoiding compatibility problems in this

case.

Finally, a file’s version might be newer than either the program or the library

understands. The program might or might not be able to process the file

properly, depending on whether the file has extra information and whether

that information can be safely ignored. Again, the safe alternative is to install

a new library that understands the file’s version.

To accommodate these differences, a program must use elf_version to pass its

version to the library, thus establishing the working version for the process. Using

this, the library accepts data from and presents data to the program in the proper

representations. When the library reads object files, it uses each file’s version to

interpret the data. When writing files or converting memory types to the file

equivalents, the library uses the program’s working version for the file data.

System Services

3-144

As mentioned above, elf_begin and related routines provide a higher-level inter-

face to ELF files, performing input and output on behalf of the application program.

These routines assume a program can hold entire files in memory, without explicitly

using temporary files. When reading a file, the library routines bring the data into

Licensed material—property of copyright holder(s) 093-701056

elf (3E) DG/UX 5.4 | elf (SE)

memory and perform subsequent operations on the memory copy. Programs that

wish to read or write large object files with this model must execute on a machine

with a large process virtual address space. If the underlying operating system limits

the number of open files, a program can use elf_cntl to retrieve all necessary data

from the file, allowing the program to close the file descriptor and reuse it.

Although the elf_begin interfaces are convenient and efficient for many programs,

they might be inappropriate for some. In those cases, an application may invoke the

elf_xlate data translation routines directly. These routines perform no input or

output, leaving that as the application’s responsibility. By assuming a larger share of

the job, an application controls its input and output model.

- Library Names

Names associated with the library take several forms.

elf name These class-independent names perform some service, name, for the

program.

elf32_name Service names with an embedded class, 32 here, indicate they work

only for the designated class of files.

Elf _ Type Data types can be class-independent as well, distinguished by Type.

E1f£32_Type Class-dependent data types have an embedded class name, 32 here.

ELF_C_CMD Several functions take commands that control their actions. These

values are members of the E1f_Cmd enumeration; they range from

zero through ELF_C_NUM-1.

ELF_F_ FLAG _ Several functions take flags that control library status and/or

actions. Flags are bits that may be combined.

ELF32_FSZ_TYPE
These constants give the file sizes in bytes of the basic ELF types for

the 32-bit class of files. See elf _fsize for more information.

ELF_K_ KIND The function elf_kind identifies the KIND of file associated with

an ELF descriptor. These values are members of the Elf_Kind

enumeration; they range from zero through ELF_K_NUM-1.

ELF_T_TYPE When a service function, such as elf_xlate, deals with multiple

types, names of this form specify the desired TYPE. Thus, for

example, ELF_T_EHDR is directly related to E1£32_Ehdr. These

values are members of the Elf_Type enumeration; they range from

zero through ELF_T NUM-1.

SEE ALSO

NOTES

093-701056

cof2elf(1), elf_begin(3E), elf_cnt1(3E), elf_end(3E), elf _error(3E),

elf _f111(3E), elf_flag(3E), elf_fsize(3E), elf_getarhdr(3E),

elf _getarsym(3E), elf_getbase(3E), elf_getdata(3E), elf_getehdr(3E),

elf_getident(3E), elf_getphdr(3E), elf_getscn(3E), elf_getshdr(3E),

elf_hash(3E), elf_kind(3E), elf_next(3E), elf_rand(3E),

elf _rawfile(3E), elf_strptr(3E), elf_update(3E), elf version(3E),

elf xlate(3E), a.out(4) ar(4)

The “Object Files” chapterin the Programmer’s Guide: ANSI C and Programming

Support Tools.

Information in the ELF header files is separated into common parts and processor-

Licensed material—property of copyright holder(s) 3-1 45

elf(SE)

3-146

DG/UX 5.4 elf(3E)

specific parts. A program can make a processor’s information available by including

the appropriate header file: <sys/elf_NAME.h> where NAME matches the pro-

cessor name as used in the ELF file header.

Symbol Processor

M32 AT&T WE 32100

SPARC | SPARC

386 Intel] 80386

486 Intel 80486

860 Intel 80860

68K Motorola 68000

88K Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to “‘see’’ the processor-specific information for the

Motorola 88000:

#include <libelf.h>

#include <sys/elf_88K.h>

Without the <sys/elf_88K.h> definition, only the common ELF information would
be visible.

Licensed material—property of copyright holder(s) 093-701056

elf_begin(3E)

NAME

093-701056

DG/UX 5.4 © elf_begin(SE)

elf begin — make a file descriptor

SYNOPSIS

cc [flag ...| file ... -lelf [library ...|

#include <libelf.h>

Elf self begin(int fildes, Elf _Cmd cmd, Elf «ref);

DESCRIPTION

elf begin, elf_next, elf_rand, and elf_end work together to process ELF

object files, either individually or as members of archives. After obtaining an ELF

descriptor from elf_begin, the program may read an existing file, update an exist-

ing file, or create a new file. fildes is an open file descriptor that elf _begin uses

for reading or writing. The initial file offset [see 1lseek(2)] is unconstrained, and the

resulting file offset is undefined.

cmd may have the following values.

ELF_C_NULL

ELF_C_READ

ELF_C_RDWR

When a program sets cmd to this value, elf begin returns a null

pointer, without opening a new descriptor. ref is ignored for this

command. See elf _next(3E) and the examples below for more

information.

When a program wishes to examine the contents of an existing file,

it should set cmd to this value. Depending on the value of ref, this

command examines archive members or entire files. Three cases

can occur.

First, if ref is a null pointer, elf begin allocates a new ELF

descriptor and prepares to process the entire file. If the file being

read is an archive, elf_begin also prepares the resulting descrip-

tor to examine the initial archive member on the next call to

elf begin, as if the program had used elf_next or elf_rand

to “‘move”’ to the initial member.

Second, if ref is a non-null descriptor associated with an archive

file, elf_begin lets a program obtain a separate ELF descriptor

associated with an individual member. The program should have

used elf_next or elf_rand to position ref appropriately (except

for the initial member, which elf begin prepares; see the exam-

ple below). In this case, fildes should be the same file descriptor

used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,

elf_begin increments the number of activations for the descriptor

and returns ref, without allocating a new descriptor and without

changing the descriptor’s read/write permissions. To terminate the

descriptor for ref, the program must call elf _end once for each

activation. See elf next(3E) and the examples below for more

information.

This command duplicates the actions of ELF_C_READ and addition-

ally allows the program to update the file image [see

elf_update(3E)]. That is, using ELF_C_ READ gives a read-only

view of the file, while ELF_C_RDWR lets the program read and write

the file. ELF_C_RDWR is not valid for archive members. If ref is

Licensed material—property of copyright holder(s) 3-1 47

elf_begin(SE) DG/UX 5.4 elf_begin(3£)

non-null, it must have been created with the ELF_C_RDWR com-

mand.

ELF_C_WRITE If the program wishes to ignore previous file contents, presumably

to create a new file, it should set cmd to this value. ref is ignored

for this command.

elf_begin “works” on all files (including files with zero bytes), providing it can allo-

cate memory for its internal structures and read any necessary information from the

file. Programs reading object files thus may call elf_kind or elf_getehdr to

determine the file type (only object files have an ELF header). If the file is an

archive with no more members to process, or an error occurs, elf begin returns a

null pointer. Otherwise, the return value is a non-null ELF descriptor.

Before the first call to elf_begin, a program must call elf version to coordinate

versions.

SYSTEM SERVICES

When processing a file, the library decides when to read or write the file, depending

on the program’s requests. Normally, the library assumes the file descriptor remains

usable for the life of the ELF descriptor. If, however, a program must process many

files simultaneously and the underlying operating system limits the number of open

files, the program can use elf_cntl to let it reuse file descriptors. After calling

elf_cntl with appropriate arguments, the program may close the file descriptor

without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf end ter-

minates the descriptor’s last activation. After the descriptors have been terminated,

the storage is released; attempting to reference such data gives undefined behavior.

Consequently, a program that deals with multiple input (or output) files must keep the

ELF descriptors active until it finishes with them.

EXAMPLES

3-148

A prototype for reading a file appears below. If the file is a simple object file, the

program executes the loop one time, receiving a null descriptor in the second itera-

tion. In this case, both elf and arf will have the same value, the activation count

will be two, and the program calls elf_end twice to terminate the descriptor. If the

file is an archive, the loop processes each archive member in turn, ignoring those that

are not object files.

Licensed material—property of copyright holder(s) _ 093-701056

elf_begin(3E) DG/UX 5.4 elf_begin(3E)

if (elf_version(EV_CURRENT) == EV_NONE)

{

/* library out of date +/

/* recover from error «/

cmd = ELF_C_READ;

arf elf begin(fildes, cmd, (Elf +#)0);

while ((elf = elf_begin(fildes, cmd, arf)) != 0)

if ((ehdr = elf32_getehdr(elf)) != 0)

/* process the file ... */

amd = elf next(elf);
elf end(elf);

elf endcarf),
Alternatively, the next example illustrates random archive processing. After identify-

ing the file as an archive, the program repeatedly processes archive members of

interest. For clarity, this example omits error checking and ignores simple object |

files. Additionally, this fragment preserves the ELF descriptors for all archive

members, because it does not call elf_end to terminate them.

elf _version(EV_CURRENT) ;

arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);

if (elf_kind(arf) != ELF_K_AR)

{

/* not an archive x/

}

/* initial processing +«/

/* set offset = ... for desired member header +«/

while (elf rand(arf, offset) == offset)

{

if ((elf = elf_begin(fildes, ELF_C_READ, arf)) == 0)

break;

if ((ehdr = elf32_getehdr(elf)) != 0)

{

/* process archive member ... +/

}

/* set offset = ... for desired member header +«/

}

The following outline shows how one might create a new ELF file. This example is

simplified to show the overall flow.

093-701056 Licensed materiai—property of copyright holder(s) 3- 1 49

elf_begin(3E) DG/UX 5.4 elf_begin(3E)

elf version(EV_CURRENT) ;

fildes = open("path/name", O_RDWR|O_TRUNC|O_CREAT, 0666);
if ((elf = elf_begin(fildes, ELF_C_WRITE, (Elf *)0)) == 0)

return;

ehdr = elf32_newehdr(elf);

phdr = elf32_newphdr(elf, count);

scn = elf newscn(elf);

shdr = elf32_getshdr(scn);

data = elf newdata(scn);

elf _update(elf, ELF_C_ WRITE);

elf end(elf);

Finally, the following outline shows how one might update an existing ELF file.

Again, this example is simplified to show the overall flow.

elf _version(EV_CURRENT) ;

fildes = open("path/name", O_RDWR);

elf = elf _begin(fildes, ELF_C_RDWR, (Elf *)0);

/*x add new or delete old information ... #/

close(creat("path/name", 0666));

elf_update(elf, ELF_C_WRITE);

elf end(elf);

In the example above, the call to creat truncates the file, thus ensuring the resulting

file will have the “right” size. Without truncation, the updated file might be as big as

the original, even if information were deleted. The library truncates the file, if it can,

with ftruncate [see truncate(2)]. Some systems, however, do not support

ftruncate, and the call to creat protects against this.

Notice that both file creation examples open the file with write and read permissions.

On systems that support mmap, the library uses it to enhance performance, and mmap

requires a readable file descriptor. Although the library can use a write-only file

descriptor, the application will not obtain the performance advantages of mmap.

SEE ALSO

cof2elf(1), creat(2), lseek(2), mmap(2), open(2), truncate(2), e1f(3E),

elf cntl(3E), elf_end(3E), elf_getarhdr(3E), elf_getbase(3E),

elf _getdata(3E), elf_getehdr(3E), elf_getphdr(3E), elf_getscn(3E),

elf kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E),

elf update(3E), elf version(3E), ar(4).

NOTES

COFF is an object file format that preceded ELF . When a program calls elf_begin

on a COFF file, the library translates COFF structures to their ELF equivalents, allow-

ing programs to read (but not to write) a COFF file as if it were ELF . This conver-

sion happens only to the memory image and not to the file itself. After the initial

elf begin, file offsets and addresses in the ELF header, the program headers, and
the section headers retain the original COFF values jsee elf_getehdr,

elf_getphdr, and elf_getshdr]. A program may call elf_update to adjust
these values (without writing the file), and the library will then present a consistent,

ELF view of the file. Data obtained through elf_getdata are translated (the COFF

symbol table is presented as ELF, etc.). Data viewed through elf _rawdata undergo

no conversion, allowing the program to view the bytes from the file itself.

x 1 50 Licensed materiai—property of copyright holder(s) 093-701056

elf_begin(SE) DG/UX 8.4 elf_begin(3E)

Some COFF debugging information is not translated, though this does not affect the

semantics of a running program. |

Although the ELF library supports COFF, programmers are strongly encouraged to

recompile their programs, obtaining ELF object files.

093-701056 Licensed material—property of copyright holder(s) 3-1 51

elf_cntl(SE) DG/UX 5.4 elf_enti(3E)

NAME

elf_cntl — control a file descriptor

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

NOTE

3-152

#include <libelf.h>

int elf_cntl(E1f *elf, Elf_Cmd cmd);

DESCRIPTION

elf_cntl instructs the library to modify its behavior with respect to an ELF descrip-

tor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple activa-
tions, and multiple ELF descriptors may share a single file descriptor. Generally,

elf_cntl commands apply to all activations of elf. Moreover, if the ELF descriptor

is associated with an archive file, descriptors for members within the archive will also

be affected as described below. Unless stated otherwise, operations on archive

members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF_C_FDDONE

ELF_C_FDREAD

This value tells the library not to use the file descriptor associated

with elf. A program should use this command when it has requested

all the information it cares to use and wishes to avoid the overhead

of reading the rest of the file. The memory for all completed opera-

tions remains valid, but later file operations, such as the initial

elf_getdata for a section, will fail if the data are not in memory

already.

This command is similar to ELF_C_FDDONE, except it forces the

library to read the rest of the file. A program should use this com-

mand when it must close the file descriptor but has not yet read

everything it needs from the file. After elf _cntl completes the

ELF_C_FDREAD command, future operations, such as

elf_getdata, will use the memory version of the file without need-

ing to use the file descriptor.

If elf_cntl succeeds, it returns zero. Otherwise elf was null or an error occurred,
and the function returns —1.

SEE ALSO

elf(3E), elf_begin(3E), elf_getdata(3E), elf_rawfile(3E).

If the program wishes to use the “raw” operations [see elf_rawdata, which

elf_getdata(3E) describes, and elf_rawfile(3E)] after disabling the file descrip-

tor with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw operations

explicitly beforehand. Otherwise, the raw file operations will fail. Calling

elf_rawfile makes the entire image available, thus supporting subsequent

elf rawdata calls.

Licensed material—property of copyright hoider(s) 093-701056

elf_end(SE) DG/UX 5.4 elf_end(3E)

NAME

elf end — finish using an object file

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

int elf_end(Elf xelf);

DESCRIPTION

A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate data

associated with the descriptor. Until the program terminates a descriptor, the data

remain allocated. elf should be a value previously returned by elf_begin; a null

pointer is allowed as an argument, to simplify error handling. If the program wishes

to write data associated with the ELF descriptor to the file, it must use elf update

before calling elf_end.

As elf_begin(3E) explains, a descriptor can have more than one activation. Cal-

ling elf_end removes one activation and returns the remaining activation count.

The library does not terminate the descriptor until the activation count reaches zero.

Consequently, a zero return value indicates the ELF descriptor is no longer valid.

SEE ALSO

elf(3E), elf_begin(3E), elf_update(3E).

093-701056 Licensed material—property of copyright holder(s) 3-1 53

elf_error(3E) DG/UX 5.4 elf_error(3E)

NAME

elf_errmsg, elf_errno -— error handling

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

const char *elf_errmsg(int err);

int elf errno(.void) ;

DESCRIPTION

If an ELF library function fails, a program may call elf_errno to retrieve the

library’s internal error number. As a side effect, this function resets the internal

error number to zero, which indicates no error.

elf_errmsg takes an error number, err, and returns a null-terminated error message

(with no trailing new-line) that describes the problem. A zero err retrieves a message

for the most recent error. If no error has occurred, the return value is a null pointer

(not a pointer to the null string). Using err of -1 also retrieves the most recent error,

except it guarantees a non-null return value, even when no error has occurred. If no

message is available for the given number, elf_errmsg returns a pointer to an

appropriate message. This function does not have the side effect of clearing the inter-

nal error number.

EXAMPLE

The following fragment clears the internal error number and checks it later for errors.

Unless an error occurs after the first call to elf _errno, the next call will return

zero.

(void)jelf errno();

while (more_to do)

{ .

/* processing ... */

if ((err = elf_errno()) != 0)

{

msg = elf _errmsg(err);

/* print msg +*/

SEE ALSO

3-154

elf(3E), elf_version(3E).

Licensed material—property of copyright holder(s) 093-701056

elf_fill(3E) | DG/UX 5.4 olf_fill(3E)

NAME

elf fill — set fill byte

SYNOPSIS

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

void elf fill(int fill);

DESCRIPTION

Alignment constraints for ELF files sometimes require the presence of “holes.” For

example, if the data for one section are required to begin on an eight-byte boundary,

but the preceding section is too “short,” the library must fill the intervening bytes.

These bytes are set to the fill character. The library uses zero bytes unless the appli-

cation supplies a value. See elf_getdata(3E) for more information about these

holes.

SEE ALSO

elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E).

NOTE

An application can assume control of the object file organization by setting the

ELF_F_LAYOUT bit [see elf_flag(3E)]. When this is done, the library does not fill

holes. :

093-701056 Licensed material—property of copyright holder(s) 3-1 55

elf_flag(3E) | DG/UX 5.4 elf_flag(3E)

NAME

elf flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr,

elf flagscn, elf_flagshdr - manipulate flags

SYNOPSIS |
ce [flag ...] file ... -lelf [library ...]

#include <libelf.h> |

unsigned elf _flagdata(Elf Data «data, Elf_Cmd cmd, unsigned flags);

unsigned elf flagehdr(E1f self, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cmd cnd, unsigned flags);

unsigned elf_flagphdr(Elf xelf, Elf_Cmd cmd, unsigned flags);

unsigned elf flagscn(E1f_Scn *scn, Elf_Cmd cmd, unsigned flags);

unsigned elf flagshdr(El1£_Scn *scn, Elf _Cmd cmd, unsigned flags);

DESCRIPTION

These functions manipulate the flags associated with various structures of an ELF file.

Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor (scn),

the functions may set or clear the associated status bits, returning the updated bits.

A null descriptor is allowed, to simplify error handling; all functions return zero for

this degenerate case.

cmd may have the following values:

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the non-

zero bits in flags are cleared; zero bits do not change the status of

the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the non-

zero bits in flags are set; zero bits do not change the status of the

descriptor.

Descriptions of the defined flags bits appear below.

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts

_ the associated information needs to be written to the file. Thus,

for example, a program that wished to update the ELF header of

an existing file would call elf_flagehdr with this bit set in flags

and cmd equal to ELF_C_SET. A later call to elf_update

would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file. That

is, it automatically decides where to place sections, how to align

them in the file, etc. If this bit is set for an ELF descriptor, the

program assumes responsibility for determining all file positions.

This bit is meaningful only for elf _flagelf and applies to the

entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for exam-

ple, if the program sets the ELF_F_DIRTY bit with elf flagelf, the entire logical

file is “dirty.”

EXAMPLE

The following fragment shows how one might mark the ELF header to be written to

the output file.

3-1 56 Licensed material—property of copyright holder(s) 093-701056

elf_flag(SE) DG/UX 5.4 elf_fiag(SE)

ehdr = elf32_getehdr(elf);

7* dirty ehdr ... */

elf flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

SEE ALSO

elf(3E), elf_end(3E), elf_getdata(3E), elf_getehdr(3E), elf_update(3E).

093-701056 Licensed material—property of copyright holder(s) 3-1 57

elf_ftsize(SE) DG/UX 5.4 elf_fsize(3E)

NAME

elf fsize: elf32_fsize — return the size of an object file type

SYNOPSIS

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

DESCRIPTION

elf32_fsize gives the size in bytes of the 32-bit file representation of count data

objects with the given type. The library uses version ver to calculate the size [see

elf(3E) and elf_version(3E)].

Constant values are available for the sizes of fundamental types.

Elf Type File Size Memory Size

ELF T ADDR | ELF32_FSZ_ADDR | sizeof(El1f£32_Addr)

ELF_T_BYTE 1 sizeof(unsigned char)

ELF_T HALF ELF32_FSZ HALF sizeof (El1f£32_Half)

ELT T OFF ELF32_FSZ_OFF sizeof (E1f£32_O0ff)

ELF _T SWORD | ELF32_FSZ_SWORD | sizeof (E1£32_Sword)

ELF _T WORD | ELF32_FSZ_WORD | sizeof(E1f£32_Word)

elf32_fsize returns zero if the value of type or ver is unknown. See

elf xlate(3E) for a list of the type values.

SEE ALSO

elf(3E), elf_version(3E), elf_xlate(3E).

3-1 58 Licensed material—property of copyright holder(s) 093-701056

elf_getarhdr(3E) . DG/UX 5.4 elf_getarhdr(3E)

NAME

elf getarhdr - retrieve archive member header

SYNOPSIS

ce [flag ...] file -lelf [library ...|

#include <libelf.h>

Elf _Arhdr *elf_getarhdr(Elf +*elf);

DESCRIPTION

elf getarhdr returns a pointer to an archive member header, if one is available for

the ELF descriptor elf. Otherwise, no archive member header exists, an error

occurred, or elf was null; elf_getarhdr then returns a null value. The header

includes the following members.

char sar name;

time t ar_date;

long ar_uid;

long ar_gid;

unsigned long ar_mode;

off_t ar_size;

char #ar_ rawname;

An archive member name, available through ar_name, is a null-terminated string, —

with the ar format control characters removed. The ar_rawname member holds a

null-terminated string that represents the original name bytes in the file, including the

terminating slash and trailing blanks as specified in the archive format.

In addition to “regular” archive members, the archive format defines some special

members. All special member names begin with a slash (/), distinguishing them from

regular members (whose names may not contain a slash). These special members

have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive

member. A program may access the archive symbol table through

elf getarsym. The information in the symbol table is useful for random

archive processing [see elf _rand(3E)].

// This member, if present, holds a string table for long archive member

names. An archive member’s header contains a 16-byte area for the name,

which may be exceeded in some file systems. The library automatically

retrieves long member names from the string table, setting ar_name to the

appropriate value.

Under some error conditions, a member’s name might not be available. Although

this causes the library to set ar_name to a null pointer, the ar_rawname member

will be set as usual. |

SEE ALSO

elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4).

093-701056 Licensed material—property of copyright holder(s) 3- 1 59

elf_getarsym(S3E) DG/UX 5.4 elf_getarsym(3E)

NAME

elf _getarsym — retrieve archive symbol table

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Arsym *elf_getarsym(El1f *elf, size_t «*ptr);

DESCRIPTION

elf_getarsym returns a pointer to the archive symbol table, if one is available for

the ELF descriptor elf. Otherwise, the archive doesn’t have a symbol table, an error
occurred, or elf was null; elf_getarsym then returns a null value. The symbol

table is an array of structures that include the following members.

char *as name;

size t as off;

unsigned long as_hash;

These members have the following semantics.

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the

member’s header. The archive member residing at the given offset defines

the associated symbol. Values in as_off may be passed as arguments to

elf rand to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which pfr points. This value is set to zero when the return value is null. The table’s

last entry, which is included in the count, has a null as_name, a zero value for

as_off, and ~OUL for as_hash.

SEE ALSO

elf(3E), elf_getarhdr(3E), elf_hash(3E), elf_rand(3E), ar(4).

3-1 60 Licensed materiat—property of copyright holder(s) 093-701056

elf_getbase(3E) DG/UX 5.4 elf_getbase(3E)

NAME

elf_getbase — get the base offset for an object file

SYNOPSIS |

ce [flag ...] file ... -lelf [library ...]

#finclude <libelf.h>

off_t elf_getbase(E1f self);

DESCRIPTION .

elf_getbase returns the file offset of the first byte of the file or archive member

associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is

allowed, to simplify error handling; the return value in this case is -—1. The base

offset of an archive member is the beginning of the member’s information, not the

beginning of the archive member header.

SEE ALSO

elf(3E), elf_begin(3E), ar(4).

093-701056 Licensed material—property of copyright holder(s) 3-1 61

elf_getdata(SE) DG/UX 5.4 elf_getdata(3E)

NAME

elf _getdata, elf_newdata, elf_rawdata — get section data

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf Data *elf_getdata(El1f_ Sen *scn, Elf_Data data);

Elf Data self _newdata(El1f_ Sen *scn);

Elf Data self rawdata(El1f£_Sen *scen, Elf_Data +*data);

DESCRIPTION

3-162

These functions access and manipulate the data associated with a section descriptor,

scn. When reading an existing file, a section will have a single data buffer associated

with it. A program may build a new section in pieces, however, composing the new

data from multiple data buffers. For this reason, “the” data for a section should be

viewed as a list of buffers, each of which is available through a data descriptor.

elf_getdata lets a program step through a section’s data list. If the incoming data

descriptor, data, is null, the function returns the first buffer associated with the sec-

tion. Otherwise, data should be a data descriptor associated with scn, and the func-

tion gives the program access to the next data element for the section. If scn is null

or an error occurs, elf_getdata returns a null pointer.

elf_getdata translates the data from file representations into memory representa-

tions [see elf_xlate(3E)] and presents objects with memory data types to the pro-

gram, based on the file’s class [see elf(3E)]. The working library version [see

elf version(3E)] specifies what version of the memory structures the program

wishes elf_getdata to present.

elf newdata creates a new data descriptor for a section, appending it to any data

elements already associated with the section. As described below, the new data

descriptor appears empty, indicating the element holds no data. For convenience, the

descriptor’s type (d_type below) is set to ELF_T BYTE, and the version

(d_version below) is set to the working version. The program is responsible for set-

ting (or changing) the descriptor members as needed. This function implicitly sets the

ELF_F_DIRTY bit for the section’s data [see elf _flag(3E)]. If scn is null or an

error occurs, elf newdata returns a null pointer. |

elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,

regardless of the section type. This function typically should be used only to retrieve

a section image from a file being read, and then only when a program must avoid the

automatic data translation described below. Moreover, a program may not close or

disable [see elf _cnt1(3E)] the file descriptor associated with elf before the initial

raw operation, because elf_rawdata might read the data from the file to ensure it

doesn’t interfere with elf_getdata. See elf_rawfile(3E) for a related facility

that applies to the entire file. When elf_getdata provides the right translation, its

use is recommended over elf_rawdata. If scn is null cr an error occurs,

elf_rawdata returns a null pointer.

The Elf_Data structure includes the following members:

Licensed material—property of copyright hoider(s) 093-701056

elf_getdata(3E) DG/UX 5.4 elf_getdata(3E)

void *@_buf;

Elf Type d_type;

size t | d_size;

off t d_ off;

size_t d_align;

unsigned d_version;

These members are available for direct manipulation by the program. Descriptions

appear below.

d_buf A pointer to the data buffer resides here. A data element with no

data has a null pointer.

d_type This member’s value specifies the type of the data to which d_buf

points. A section’s type determines how to interpret the section con-

tents, as summarized below.

d_size This member holds the total size, in bytes, of the memory occupied by

the data. This may differ from the size as represented in the file. The

size will be zero if no data exist. [See the discussion of SHT_NOBITS

below for more information.]

d_off This member gives the offset, within the section, at which the buffer

resides. This offset is relative to the file’s section, not the memory

object’s.

d_align This member holds the buffer’s required alignment, from the begin-

ning of the section. That is, d_off will be a multiple of this

member’s value. For example, if this member’s value is four, the

beginning of the buffer will be four-byte aligned within the section.

Moreover, the entire section will be aligned to the maximum of its

constituents, thus ensuring appropriate alignment for a buffer within

the section and within the file.

d version This member holds the version number of the objects in the buffer.

When the library originally read the data from the object file, it used

the working version to control the translation to memory objects.

Data Alignment |

As mentioned above, data buffers within a section have explicit alignment constraints.

Consequently, adjacent buffers sometimes will not abut, causing “holes” within a sec-

tion. Programs that create output files have two ways of dealing with these holes.

First, the program can use elf fill to tell the library how to set the intervening

bytes. When the library must generate gaps in the file, it uses the fill byte to initialize

the data there. The library’s initial fill value is zero, and elf fill lets the applica-

tion change that.

Second, the application can generate its own data buffers to occupy the gaps, filling

the gaps with values appropriate for the section being created. A program might even

use different fill values for different sections. For example, it could set text sections’

bytes to no-operation instructions, while filling data section holes with zero. Using

this technique, the library finds no holes to fill, because the application eliminated

them.

Section and Memory Types

elf getdata interprets sections’ data according to the section type, as noted in the

section header available through elf _getshdr. The following table shows the

093-701056 Licensed material—property of copyright holder(s) 3-1 63

elf_getdata(3E) DG/UX 5.4 elf_getdata(3E)

section types and how the library represents them with memory data types for the 32-

bit file class. Other classes would have similar tables. By implication, the memory

data types control translation by elf_xlate.

Section Type Elf Type 32-Bit Type

SHT_DYNAMIC | ELF_T DYN | Elf32_Dyn

SHT_DYNSYM ELF_T SYM | El1f32_Sym

SHT HASH ELF_T WORD | Elf32_Word
SHT_NOBITS ELF_T BYTE | unsigned char

SHT_NOTE ELF_T_BYTE | unsigned char

SHT_NULL none none

SHT_PROGBITS | ELF_T BYTE | unsigned char

SHT REL ELF_T REL | E1f£32_Rel

SHT_RELA ELF_T_RELA | El1f32_Rela

SHT_STRTAB ELF_T BYTE | unsigned char

SHT_SYMTAB ELF_T SYM | El£32_Sym

other ELF_T BYTE | unsigned char

elf _rawdata creates a buffer with type ELF_T BYTE.

As mentioned above, the program’s working version controls what structures the

library creates for the application. The library similarly interprets section types
according to the versions. If a section type “belongs” to a version newer than the

application’s working version, the library does not translate the section data. Because

the application cannot know the data format in this case, the library presents an

untranslated buffer of type ELF_T_BYTE, just as it would for an unrecognized section

type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even

when the section header indicates a non-zero size. elf _getdata and

elf_rawdata “work” on such a section, setting the data structure to have a null

buffer pointer and the type indicated above. Although no data are present, the

d_size value is set to the size from the section header. When a program is creating

a new section of type SHT_NOBITS, it should use elf newdata to add data buffers

to the section. These “empty” data buffers should have the d_size members set to

the desired size and the d_buf members set to null.

EXAMPLE

The following fragment obtains the string table that holds section names (ignoring

error checking). See elf_strptr(3E) for a variation of string table handling.

ehdr = elf32_getehdr(elf);

sen = elf _ getscn(elf, (size_t)ehdr->e shstrndx) ;

shdr = elf32_getshdr(scn);

if (shdr->sh_type != SHT_STRTAB)

{

/* not a string table +/

}

data = 0;

if ((data = elf _getdata(scn, data)) == 0 || data->d_size == 0)

{

/7* error or no data */

}

3-1 64 Licensed material—property of copyright holder(s) 093-701056

elf_getdata(3E) DG/UX 5.4 elf_getdata(3E)

The e_shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
String table, and then retrieves the data. When this fragment finishes, data->d_buf
points at the first byte of the string table, and data->d_size holds the string table’s
size in bytes. |

SEE ALSO

093-701056

elf(3E), elf_cnt1(3E), elf_fil1(3E), elf_flag(3B), elf getehdr(3E),
elf_getscn(3E), elf_getshdr(3E), elf_rawfile(3E), elf _version(3E),
elf _xlate(3E).

Licensed material—property of copyright holder(s) 3-1 65

elf_getehdr(3E) DG/UX 5.4 elf_getehdr(3E)

NAME

elf getehdr: elf32_getehdr, elf32_newehdr — retrieve class-dependent object

file header

SYNOPSIS

ce [flag ...] file ... -1lelf [library ...]

#include <libelf.h>

E1f32_Ehdr *elf32_getehdr(El1f self);

El1£32_Ehdr +*elf32_newehdr(Elf self);

DESCRIPTION .

For a 32-bit class file, el1£32_getehdr returns a pointer to an ELF header, if one is

available for the ELF descriptor elf. If no header exists for the descriptor,

e1f32_newehdr allocates a “clean” one, but it otherwise behaves the same as

elf32_getehdr. It does not allocate a new header if one exists already. If no

header exists (for elf _getehdr), one cannot be created (for elf_newehdr), a sys-

tem error occurs, the file is not a 32-bit class file, or elf is null, both functions return

a null pointer.

The header includes the following members.

unsigned char e_ ident [EI_NIDENT];

E1f£32_ Half e_ type;

El1f£32_ Half e machine;

E1f£32_Word e version;

E1f£32_ Addr e_entry;

Elf£32_off e phoff;

El1f£32_oOff e_shoff;

E1£32_ Word e_ flags;

El1f£32_ Half e_ehsize;

E1f£32_ Half e_phentsize;

E1f32_Half e_phnun;

E1f£32_Half e shentsize;

E1f32_ Half e_shnun;

Elf£32_ Half e_shstrndx;

elf32 newehdr automatically sets the ELF_F_ DIRTY bit [see elf _flag(3E)]. A

program may use elf _getident to inspect the identification bytes from a file.

SEE ALSO

elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E).

3-166 Licensed material—property of copyright holder(s) 093-701056

elf_getident(SE) DG/UX 5.4 elf_getident(SE)

NAME

elf getident -— retrieve file identification data

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char self _getident(E1f *elf, size_t *ptr);

DESCRIPTION

As el1f(3E) explains, ELF provides a framework for various classes of files, where

basic objects may have 32 bits, 64 bits, etc. To accommodate these differences,

without forcing the larger sizes on smaller machines, the initial bytes in an ELF file

hold identification information common to all file classes. Every ELF header’s

e ident has EI_NIDENT bytes with the following interpretation.

e_ident Index Value Purpose

EI _MAGO ELFMAGO

EI_MAG1 ELFMAG1 wp eg epee
EI _MAG2 ELFMAG2 File identification

EI_MAG3 ELFMAG3

ELFCLASSNONE

EI_CLASS ELFCLASS32 File class

ELFCLASS64

ELFDATANONE

EI_DATA ELFDATA2LSB Data encoding

ELFDATA2MSB

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files [see elf _kind(3E)] also may have identification data, though

they would not conform to e_ident.

elf_getident returns a pointer to the file’s “initial bytes.” If the library recognizes

the file, a conversion from the file image to the memory image may occur. In any

case, the identification bytes are guaranteed not to have been modified, though the

size of the unmodified area depends on the file type. If ptr is non-null, the library

stores the number of identification bytes in the location to which ptr points. If no

data are present, elf is null, or an error occurs, the return value is a null pointer, with

zero optionally stored through ptr.

SEE ALSO

elf(3E), elf_begin(3E), elf_getehdr(3E), elf_kind(3E), elf _rawfile(3E).

093-701056 Licensed material—property of copyright hoider(s) 3-1 67

elf_getphdr(3E) DG/UX 5.4 elf_getphdr(3E)

NAME

elf_getphdr: elf32_getphdr, elf£32_newphdr - retrieve class-dependent pro-

gram header table

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

E1£32_Phdr *elf£32_getphdr(Elf *elf);

E1f£32_Phdr *elf£32_newphdr(Elf *xelf, size_t count);

DESCRIPTION

For a 32-bit class file, e1f32_getphdr returns a pointer to the program execution

header table, if one is available for the ELF descriptor elf.

e1f£32_newphdr allocates a new table with count entries, regardless of whether one

existed previously, and sets the ELF_F_DIRTY bit for the table [see elf_flag(3E)].

Specifying a zero count deletes an existing table. Note this behavior differs from that

of elf32_newehdr [see elf32_getehdr(3E)], allowing a program to replace or

delete the program header table, changing its size if necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs, or

elf is null, both functions return a null pointer. Additionally, e1f32_newphdr

returns a null pointer if count is zero.

The table is an array of E1£32_Phdr structures, each of which includes the following

members. |

E1L£32_ Word p_type;

E1£32_Off p_offset;

E1£32_Addr p_vaddr;

El1£32_ Addr p_paddr;

E1f£32_ Word p_filesz;

E1£32 Word p_memsz;

E1£32_ Word p_flags;

E1£32_Word p_align;

The ELF header’s e_phnum member tells how many entries the program header table

has [see elf_getehdr(3E)]. A program may inspect this value to determine the size

of an existing table; e1£32_newphdr automatically sets the member’s value to count.
If the program is building a new file, it is responsible for creating the file’s ELF

header before creating the program header table.

SEE ALSO

elf(3E), elf_begin(3E), elf_flag(3E), elf_getehdr(3E).

3- 1 68 Licensed material—property of copyright holder(s) 093-701056

elf_getscen(3E) DG/UX 5.4 elf_getscn(3E)

NAME

elf _getscn, elf_ndxscn, elf_newscen, elf_nextscn — get section information

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf Sen self _getscn(Elf *elf, size_t index);

size_t elf _ndxscn(E1f_Scn *scn);

Elf Sen *xelf newscen(E1f +*elf);

Elf Scn *elf_nextscn(ElLf *xelf, Elf Scn *scn);

DESCRIPTION

These functions provide indexed and sequential access to the sections associated with

the ELF descriptor elf. If the program is building a new file, it is responsible for

creating the file’s ELF header before creating sections; see elf_getehdr(3E).

elf _getscn returns a section descriptor, given an index into the file’s section header

table. Note the first “real’’ section has index 1. Although a program can get a sec-

tion descriptor for the section whose index is 0 (SHN_UNDEF, the undefined section),

the section has no data and the section header is “empty” (though present). If the

specified section does not exist, an error occurs, or e/f is null, elf _getscn returns a

null pointer. |

elf _newscn creates a new section and appends it to the list for elf. Because the

SHN_UNDEF section is required and not “interesting” to applications, the library

creates it automatically. Thus the first call to elf _newscn for an ELF descriptor

with no existing sections returns a descriptor for section 1. If an error occurs or elf is

null, elf _newscn returns a null pointer.

After creating a new section descriptor, the program can use elf _getshdr to

retrieve the newly created, “clean” section header. The new section descriptor will

have no associated data [see elf _getdata(3E)]. When creating a new section in

this way, the library updates the e_shnum member of the ELF header and sets the

ELF_F_DIRTY bit for the section [see elf _flag(3E)]. If the program is building a

new file, it is responsible for creating the file’s ELF header [see elf getehdr(3E)]

before creating new sections. |

elf _nextscn takes an existing section descriptor, scn, and returns a section descrip-

tor for the next higher section. One may use a null scn to obtain a section descriptor

for the section whose index is 1 (skipping the section whose index is SHN_UNDEF). If

no further sections are present or an error occurs, elf nextscn returns a null

pointer.

elf ndxscn takes an existing section descriptor, scn, and returns its section table

index. If scn is null or an error occurs, elf _ndxscn returns SHN_UNDEF.

EXAMPLE

N932.701056

An example of sequential access appears below. Each pass through the loop

processes the next section in the file; the loop terminates when all sections have been

processed.

Licenead matarial—nranarty af eonvriaht haidar(ec) 2.4 69

elf_getsen(SE) DG/UX 5.4 | elf_getsen(3E)

scn = QO; .

while ((scn = elf_nextscn(elf, scn)) != 0)
[,

/* process section */

}

SEE ALSO

elf(3E), elf _begin(3E), elf_flag(3E), elf_getdata(3E), elf_getehdr(3E),

elf _getshdr(3E).

2.4 70) Llnaanead matarial_ maranarhi: Af rARnuriaht? haiAarie\ Nara_7FTNniNkR

elf_getshdr(3E) DG/UX 5.4 elf_getshdr(3E)

NAME

elf getshdr: elf32_getshdr — retrieve class-dependent section header

SYNOPSIS |

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

E1f£32_ Shdr *elf32_getshdr(Elf_Scen *scn);

DESCRIPTION

For a 32-bit class file, el1£32_getshdr returns a pointer to a section header for the

section descriptor scn. Otherwise, the file is not a 32-bit class file, scn was null, or

an error occurred; el£32_getshdr then returns null.

The header includes the following members.

E1L£32_Word sh_name;

E1£32_ Word sh_type;

E1£32_ Word sh_ flags;

E1f£32_ Addr sh_addr;

E1f£32_Off sh_offset;

E1£32_ Word sh_size;

E1L£32_ Word sh_link;

E1£32_Word sh_info;

E1L£32 Word sh_addralign;

E1£32_Word sh_entsize;

If the program is building a new file, it is responsible for creating the file’s ELF

header before creating sections.

SEE ALSO

elf(3E), elf_flag(3E), elf_getscn(3E), elf_strptr(3E).

093-701056 Licensed material—property of copyright holder(s) 3-1 7 1

elf_hash(3E) DG/UX 5.4 elf_hash(3E)

NAME

elf_hash — compute hash value

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION

elf_hash computes a hash value, given a null terminated string, name. The

returned hash value, h, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf hash
uses unsigned arithmetic to avoid possible differences in various machines’ signed
arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned chars to avoid sign extension differences. Using chars eliminates type

conflicts with expressions such as elf_hash("name”).

ELF files’ symbol hash tables are computed using this function [see

elf_getdata(3E) and elf_xlate(3E)]. The hash value returned is guaranteed not
to be the bit pattern of all ones (~OUL).

SEE ALSO

elf(3E), elf_getdata(3E), elf_xlate(3E). ©

3- 1 72 Licensed material—property of copyright holder(s) 093-701056

elf_kind(3E) DG/UX 5.4 elf_kind(3E)

NAME

elf_kind — determine file type

SYNOPSIS

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf Kind elf_kind(Elf *elf);

DESCRIPTION

This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Currently defined values appear below.

ELF_K_AR The file is an archive [see ar(4)]. -An ELF descriptor may also be
associated with an archive member, not the archive itself, and then
elf_kind identifies the member’s type.

ELF_K_COFF The file is a COFF object file. e1f_begin(3E) describes the
library’s handling for COFF files.

ELF_K_ELF The file is an ELF file. The program may use elf_getident to
determine the class. Other functions, such as elf _getehdr, are
available to retrieve other file information.

ELF_K_NONE This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should
be a value previously returned by elf_begin. A null pointer is allowed, to simplify
error handling, and causes elf_kind to return ELF_K_NONE.

SEE ALSO

elf(3E), elf_begin(3E), elf_getehdr(3E), elf_getident(3B), ar(4).

093-701056 Licensed material—property of copyright holder(s) 3-1 13

elf_next(3E) DG/UX 5.4 elf_next(3E)

NAME

elf next — sequential archive member access

SYNOPSIS

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

Elf Cmd elf _next(Elf *elf);

DESCRIPTION

elf next, elf_rand, and elf begin manipulate simple object files and archives.

elf is an ELF descriptor previously returned from elf_begin.

elf _next provides sequential access to the next.archive member. That is, having an

ELF descriptor, elf, associated with an archive member, elf _next prepares the con-

taining archive to access the following member when the program calls elf_begin.

After successfully positioning an archive for the next member, elf_next returns the

value ELF_C_READ. Otherwise, the open file was not an archive, elf was null, or an

error occurred, and the return value is ELF_C_NULL. In either case, the return value

may be passed as an argument to elf_begin, specifying the appropriate action.

SEE ALSO

elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4).

3-1 74 Licensed material—property of copyright holder(s) 093-701056

elf_rand(3E) . DG/UX 5.4 elf_rand(3E)

NAME

elf rand — random archive member access

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

size_t elf _rand(Elf self, size_t offset);

DESCRIPTION

elf _rand, elf_next, and elf begin manipulate simple object files and archives.

elf is an ELF descriptor previously returned from elf begin.

elf_rand provides random archive processing, preparing elf to access an arbitrary

archive member. elf must be a descriptor for the archive itself, not a member within

the archive. offset gives the byte offset from the beginning of the archive to the

archive header of the desired member. See elf_getarsym(3E) for more informa-

tion about archive member offsets. When elf_rand works, it returns offset. Other-

wise it returns 0, because an error occurred, elf was null, or the file was not an

archive (no archive member can have a zero offset). A program may mix random

and sequential archive processing.

EXAMPLE

An archive starts with a “magic string” that has SARMAG bytes; the initial archive

member follows immediately. An application could thus provide the following func-

tion to rewind an archive (the function returns -1 for errors and 0 otherwise).

#include <ar.h>

#include <libelf.h>

int

rewindelf(Elf *elf)

{

if (elf_rand(elf, (size_t)SARMAG) == SARMAG)

return 0;

return -1;

}

SEE ALSO

elf(3E), elf_begin(3E), elf_getarsym(3E), elf_next(3E), ar(4).

093-701056 Licensed material—property of copyright holder(s) a | 15

elf_rawftile(3E) . DG/UX 5.4 elf_rawtile(SE)

NAME

elf_rawfile - retrieve uninterpreted file contents

SYNOPSIS -

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char «elf rawfile(Elf *xelf, size_t *ptr);

DESCRIPTION

elf_rawfile returns a pointer to an uninterpreted byte image of the file. This func-

tion should be used only to retrieve a file being read. For example, a program might

use elf _rawfile to retrieve the bytes for an archive member.

A program may not close or disable [see elf_cnt1(3E)] the file descriptor associ-

ated with elf before the initial call to elf_rawfile, because elf_rawfile might

have to read the data from the file if it does not already have the original bytes in

memory. Generally, this function is more efficient for unknown file types than for

object files. The library implicitly translates object files in memory, while it leaves

unknown files unmodified. Thus asking for the uninterpreted image of an object file

may create a duplicate copy in memory.

elf rawdata [see elf_getdata(3E)] is a related function, providing access to sec-

tions within a file.

If ptr is non-null, the library also stores the file’s size, in bytes, in the location to

which ptr points. If no data are present, elf is null, or an error occurs, the return

value is a null pointer, with zero optionally stored through ptr.

SEE ALSO

elf(3E), elf_begin(3E), elf_cnt1(3E), elf_getdata(3E), elf_getehdr(3E),

elf_getident(3E), elf_kind(3E).

NOTE

A program that uses elf_rawfile and that also interprets the same file as an object

file potentially has two copies of the bytes in memory. If such a program requests the

raw image first, before it asks for translated information (through such functions as

elf_getehdr, elf_getdata, and so on), the library “‘freezes” its original memory

copy for the raw image. It then uses this frozen copy as the source for creating

translated objects, without reading the file again. Consequently, the application

should view the raw file image returned by elf_rawfile as a read-only buffer,

unless it wants to alter its own view of data subsequently translated. In any case, the

application may alter the translated objects without changing bytes visible in the raw

image.

Multiple calls to elf_rawfile with the same ELF descriptor return the same value;

the library does not create duplicate copies of the file.

3-1 76 Licensed material—property of copyright holder(s) 093-701056

elf_strptr(3E) DG/UX 5.4 elf_strptr(3E)

NAME

elf_strptr — make a string pointer

SYNOPSIS

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *+elf_strptr(Elf *elf, size_t section, size_t offset);

DESCRIPTION

This function converts a string section offset to a string pointer. elf identifies the file
in which the string section resides, and section gives the section table index for the
strings. elf_strptr normally returns a pointer to a string, but it returns a null
pointer when e/f is null, section is invalid or is not a section of type SHT_STRTAB, the
section data cannot be obtained, offser is invalid, or an error occurs.

EXAMPLE

A prototype for retrieving section names appears below. The file header specifies the

section name string table in the e_shstrndx member. The following code loops

through the sections, printing their names.

if ((ehdr = elf32_getehdr(elf)) == 0)

{

/* handle the error +*/

return;

}

ndx = ehdr->e_shstrndx;

scn = 0;

while ((scn = elf_nextscn(elf, sen)) != 0)

{

char xname = 0;

if ((shdr = elf32_getshdr(scn)) != 0)

name = elf _strptr(elf, ndx, (size_t)shdr->sh_name) ;

printf("’%s’\n", name? name: “(null)");

SEE ALSO .

elf(3E), elf_getdata(3E), elf_getshdr(3E), elf _xlate(3E).

NOTE

A program may call elf_getdata to retrieve an entire string table section. For

some applications, that would be both more efficient and more convenient than using

elf strptr. |

093-701056 Licensed material—property of copyright holder(s) 3-1 71

elf_update(SE) DG/UX 8.4 elf_update(3E)

NAME

elf update — update an ELF descriptor

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off t elf_update(Elf *elf, Elf_Cmd cmd);

. DESCRIPTION

elf_update causes the library to examine the information associated with an ELF

descriptor, elf, and to recalculate the structural data needed to generate the file’s

image. |

cmd may have the following values.

ELF_C_NULL This value tells el1f_update to recalculate various values, updating

only the ELF descriptor’s memory structures. Any modified struc-

tures are flagged with the ELF_F_DIRTY bit. A program thus can

update the structural information and then reexamine them without

changing the file associated with the ELF descriptor. Because this

does not change the file, the ELF descriptor may allow reading, writ-

ing, or both reading and writing [see elf_begin(3E)].

ELF_C_ WRITE If cmd has this value, elf_update duplicates its ELF_C_NULL

actions and also writes any “dirty” information associated with the

ELF descriptor to the file. That is, when a program has used

elf _getdata or the elf_flag facilities to supply new (or update

existing) information for an ELF descriptor, those data will be exam-

ined, coordinated, translated if necessary [see elf_xlate(3E)],

and written to the file. When portions of the file are written, any

ELF_F_DIRTY bits are reset, indicating those items no longer need

to be written to the file [see elf_flag(3E)]. The sections’ data are

written in the order of their section header entries, and the section

header table is written to the end of the file.

When the ELF descriptor was created with elf_begin, it must

have allowed writing the file. That is, the elf begin command

must have been either ELF_C_RDWR or ELF_C_WRITE.

If elf_update succeeds, it returns the total size of the file image (not the memory

image), in bytes. Otherwise an error occurred, and the function returns —1.

When updating the internal structures, elf_update sets some members itself.

Members listed below are the application’s responsibility and retain the values given

by the program.

3-1 78 Licensed material—property of copyright holder(s) 093-701056

elf_update(3E) DG/UX §.4

Member

e_ident [EI_DATA]

e type

e_machine

e version

ELF Header e_ entry

e phoff

e_shoff

e flags

e_ shstrndx

elf_update (SE)

Notes

Library controls other e_ident values

Only when ELF_F_LAYOUT asserted

Only when ELF_F_LAYOUT asserted

Member Notes

p_type The application controls all

p_offset | program header entries

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align ©

Program Header

Member Notes

sh_name

sh_type

sh_ flags

sh_addr

Section Header
sh_offset Only when ELF_F_ LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

sh_addralign | Only when ELF F LAYOUT asserted
sh_entsize

Member Notes

d_buf

d_type

Data Descriptor disize

d_align

d_version

d_off Only when ELF_F_ LAYOUT asserted

Note that the program is responsible for two particularly important members (among

others) in the ELF header. The e_version member controls the version of data

structures written to the file. If the version is EV_NONE, the library uses its own

internal version. The e_ident[EI_DATA] entry controls the data encoding used in

the file. As a special case, the value may be ELFDATANONE to request the native

data encoding for the host machine. An error occurs in this case if the native

093-701056 Licensed materiai—property of copyright holder(s) 3-1 19

elf_update (SE) DG/UX 6.4 elf_update(3E)

encoding doesn’t match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header

member. Although the library sets it for sections with known types, it cannot reliably

know the correct value for all sections. Consequently, the library relies on the pro-

gram to provide the values for unknown section type. If the entry size is unknown or

not applicable, the value should be set to zero.

When deciding how to build the output file, elf_update obeys the alignments of

individual data buffers to create output sections. A section’s most strictly aligned

data buffer controls the section’s alignment. The library also inserts padding between

buffers, as necessary, to ensure the proper alignment of each buffer.

SEE ALSO

NOTE

3-180

elf(3E), elf_begin(3E), elf_flag(3E), elf_fsize(3E), elf_getdata(3E),

elf_getehdr(3E), elf_getshdr(3E), elf_xlate(3E).

As mentioned above, the ELF_C_WRITE command translates data as necessary,

before writing them to the file. This translation is nor always transparent to the appli-

cation program. If a program has obtained pointers to data associated with a file [for

example, see elf_getehdr(3E) and elf_getdata(3E)], the program should rees-

tablish the pointers after calling elf update.

As elf_begin(3E) describes, a program may “update” a COFF file to make the

image consistent for ELF . The ELF_C_NULL command updates only the memory

image; one can use the ELF_C_WRITE command to modify the file as well. Absolute

executable files (a. out files) require special alignment, which cannot normally be

preserved between COFF and ELF . Consequently, one may not update an executable

COFF file with the ELF_C_WRITE command (though ELF_C_NULL is allowed).

Licensed material—property of copyright hoider(s) 093-701056

elf_version(3E) DG/UX 5.4 elf_version(3E)

NAME

elf version — coordinate ELF library and application versions

SYNOPSIS

ce [flag ...] file -lelf [library ...]

#include <libelf.h>

unsigned elf _version(unsigned ver);

DESCRIPTION

As el1f(3E) explains, the program, the library, and an object file have independent
notions of the “latest” ELF version. elf version lets a program determine the

ELF library’s internal version. It further lets the program specify what memory types

it uses by giving its own working version, ver, to the library. Every program that uses

the ELF library must coordinate versions as described below.

The header file <libelf.h> supplies the version to the program with the macro

EV_CURRENT. If the library’s internal version (the highest version known to the

library) is lower than that known by the program itself, the library may lack semantic
knowledge assumed by the program. Accordingly, elf_version will not accept a
working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library’s internal
version, without altering the working version. If ver is a version known to the library,

elf_version returns. the previous (or initial) working version number. Otherwise,

the working version remains unchanged and elf version returns EV_NONE.

EXAMPLE

NOTES

The following excerpt from an application program protects itself from using an older

library. — : .

if (elf_version(EV_CURRENT) == EV_NONE)

{

/* library out of date «/

/* recover from error +/

The working version should be the same for all operations on a particular elf descrip-

tor. Changing the version between operations on a descriptor will probably not give

the expected results.

SEE ALSO

093-701056

elf(3E), elf_begin(3E), elf_xlate(3E).

Licensed material—property of copyright holder(s) 3-1 81

elf_xiate(3E) DG/UX 5.4 elf_xiate(3E)

NAME

elf xlate: elf32_xlatetof, elf32_xlatetom — class-dependent data transla-

tion

SYNOPSIS

ce [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf Data +elf32_xlatetof(El1f_Data «dst, const Elf_Data #*src,

unsigned encode);

Elf Data *elf32_xlatetom(Elf Data «dst, const Elf_Data «src,

unsigned encode) ; |

DESCRIPTION

3-182

elf32_xlatetom translates various data structures from their 32-bit class file

representations to their memory representations; elf32_xlatetof provides the

inverse. This conversion is particularly important for cross development environ-

ments. src is a pointer to the source buffer that holds the original data; dst is a

pointer to a destination buffer that will hold the translated copy. encode gives the

byte encoding in which the file objects are (to be) represented and must have one of

the encoding values defined for the ELF header’s e_ident[EI_DATA] entry [see

elf _getident(3E)]. If the data can be translated, the functions return dst. Other-

wise, they return null because an error occurred, such as incompatible types, destina-

tion buffer overflow, etc.

elf getdata(3E) describes the El1f_Data descriptor, which the translation routines

use as follows.

d_buf Both the source and destination must have valid buffer pointers.

d_type This member’s value specifies the type of the data to which d_buf

points and the type of data to be created in the destination. The pro-

gram supplies a d_type value in the source; the library sets the

destination’s d_type to the same value. These values are summar-

ized below.

d_size This member holds the total size, in bytes, of the memory occupied by

the source data and the size allocated for the destination data. If the

destination buffer is not large enough, the routines do not change its

Original contents. The translation routines reset the destination’s

d_size member to the actual size required, after the translation

occurs. The source and destination sizes may differ.

d_ version This member holds version number of the objects (desired) in the

buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,

dst->d_buf may equal src->d_buf. Other cases where the source and destination

-buffers overlap give undefined behavior.

Licensed material—property of copyright holder(s) 093-701056

elf_xiate(3E) DG/UX 5.4 elf_xiate(3E)

Elf_Type 32-Bit Memory Type

ELF_T ADDR | E1f£32_Addr

ELF_T BYTE unsigned char

ELF T DYN | E1f32_Dyn

ELF_T EHDR | E1f32_Ehdr

ELF_T HALF E1f32_ Half

ELT T OFF E1f32_O0ff
ELF_T PHDR | E1f£32_Phdr

ELF_T_ REL E1f32_Rel
ELF T RELA | E1f£32_Rela

ELF_T_SHDR E1f32_Shdr

ELF_T SWORD | El1f£32_Sword

ELF_T SYM E1f32_Sym

ELF_T WORD | El1f£32_ Word

‘Translating’ buffers of type ELF_T_ BYTE does not change the byte order.

SEE ALSO

elf(3E), elf_fsize(3E), elf_getdata(3E), elf_getident(3E).

093-701056 Licensed material—property of copyright holder(s) 3- 1 83

end(3C) DG/UX 5.4 end(3C)

NAME

end, etext, edata — last locations in program

SYNOPSIS

extern etext;

extern etext;

extern etext;

extern edata;

extern edata;

extern _edata;

extern end;

extern _end;

extern __end;

DESCRIPTION

These names refer neither to routines nor to locations with interesting contents; only

their addresses are meaningful.

etext, etext, etext

The address of these symbols is the first address above the program text.

edata, _edata, _edata

The address of these symbols is the first address above the initialized data

region. |

end, _end, _ end

The address of these symbols is the first address above the uninitialized data

region.

SEE ALSO

ec(1), brk(2), malloc(3C), stdio(3S).

NOTE |
When execution begins, the program break (the first location beyond the data) coin-

cides with end, but the program break may be reset by the routines brk and mal-

loc, by standard input/output routines [see stdio(3S)], by the profile (—p) option of

cc, and so on. Thus, the current value of the program break should be determined

by sbrk ((char +*)0) [see brk(2)].

3-1 84 Licensed material—property of copyright holder(s) 093-701056

erf(3M) DG/UX 5.4 ert(3M)

NAME

erf, erfc — error function and complementary error function

SYNOPSIS

ce [flag ...] file ... -1m [library ...]

#include <math.h>.

double erf (double x);

double erfc (double x);

DESCRIPTION

erf returns the error function of x, defined as

feed
7 0

erfc, which returns 1.0- erf(x), is provided because of the extreme loss of rela-
tive accuracy if erf(x) is called for large x and the result subtracted from 1.0 (e.g.,
for x = 5, 12 places are lost).

SEE ALSO

exp(3M).

093-701056 Licensed material—property of copyright holder(s) 3-1 85

ethers(SN) DG/UX 5.4 ethers(3N)

NAME

ethers, ether _ntoa, ether_aton, ether_ntohost, ether_hostton,

ether line — Ethernet address mapping operations

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/in.h>

#include <netinet/if_ether.h>

char *

ether ntoa(e)

struct ether addr *e;

struct ether _addr *

ether aton(s)

char *s;

ether ntohost(hostname, e)

char *hostname;

struct ether_addr *e;

ether hostton(hostname, e)

char *hostname;

struct ether addr *e;

ether line(l, e, hostname)

char *1;

struct ether addr *e;

char *hostname;

DESCRIPTION

3-186

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII

representations or their corresponding host names, and vice versa.

The function ether_ntoa converts a 48 bit Ethernet number pointed to by e to its

standard ACSII representation; it returns a pointer to the ASCII string. The represen-

tation is of the form: x:x:x:x:x:x where x is a hexadecimal number between 0 and ff.

The function ether_aton converts an ASCII string in the standard representation

back to a 48 bit Ethernet number; the function returns NULL if the string cannot be

scanned successfully.

The function ether_ntohost maps an Ethernet number (pointed to by e) to its

associated hostname. The string pointed to by hostname must be long enough to

hold the hostname and a NULL character. The function returns zero upon success

and non-zero upon failure. Inversely, the function ether_hostton maps a host-

name string to its corresponding Ethernet number; the function modifies the Ethernet

number pointed to by e. The function also returns zero upon success and non-zero

upon failure.

The function ether line scans a line (pointed to by /) and sets the hostname and

the Ethernet number (pointed to by e). The string pointed to by hostname must be

long enough to hold the hostname and a NULL character. The function returns zero

upon success and non-zero upon failure. The format of the scanned line is described

by ethers(4).

Licensed material—property of copyright holder(s) 093-701056

ethers(SN) DG/UX 5.4 ethers(SN)

FILES

/etc/ethers (or the Network Information Services maps ethers. byaddr

and ethers. byname)

SEE ALSO

ethers(4).

093-701056 Licensed material-—property of copyright holder(s) 3-1 87

exp(3M) DG/UX 5.4 exp(SM)

NAME

exp, expf, cbrt, log, logf, logl0, logl0f, pow, powf, sqrt, sqrtf —

exponential, logarithm, power, square root functions

SYNOPSIS

ce [flag ...] file ... -1m [library ...]

#include <math.h>

double exp (double X);

float expf (float x);

double cbrt (double x);

double log (double x);

float logf (float x);

double log10 (double x);

float logl0f (float x);

double pow (double x, double y);

float powf (float x, float y);

double sqrt (double x);

float sqrtf (float x);

DESCRIPTION

exp and expf return e’.

cbrt returns the cube root of x.

log and logf return the natural logarithm of x. The value of x must be positive.

1log10 and 1log10f return the base ten logarithm of x. The value of x must be posi-

tive.

pow and powf return x”. If x is 0, y must be positive. If x is negative, y must be an
integer.

sqrt and sqrtf return the non-negative square root of x. The value of x may not

be negative.

DIAGNOSTICS

exp and expf return HUGE when the correct value would overflow, or 0 when the

correct value would underflow, and set errno to ERANGE.

log, logf, logi0, and logl0f return —-HUGE and set errno to EDOM when x is

non-positive. A message indicating DOMAIN error is printed on standard error.

pow and powf return 0 and set errno to EDOM when x is 0 and y is non-positive, or

when x is negative and y is not an integer. In these cases, a message indicating

DOMAIN error is printed on standard error. When the correct value for pow or powf

would overflow or underflow, these functions return +HUGE or 0, respectively, and set

errno to ERANGE.

sqrt and sqrtf return 0 and set errno to EDOM when x is negative. A message

indicating DOMAIN error is printed on standard error.

Except when the -Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the -Xa or -Xc compilation

options are used, HUGE_VAL is returned instead of HUGE and no error messages are

3-1 88 Licensed material—property of copyright holder(s) 093-701056

exp(3M) DG/UX 5.4 exp(3M)

printed. In these compilation modes, pow and powf return 1, with no error, when

both x and y are 0; when x is 0 and y is negative, they return —-HUGE_VAL and set

errno to EDOM. Under -Xc, log and logf return -HUGE_VAL and set errno to

ERANGE when x is 0. Under -Xc, sqrt and sqrtf return NaN when x is negative.

SEE ALSO

hypot(3M), matherr(3M), sinh(3M).

093-701056 Licensed material—property of copyright holder(s) 3-1 89

exportent(3C) DG/UX 5.4 exportent(3C)

NAME

exportent, getexportent, setexportent, addexportent, remexportent,

endexportent, getexportopt — get exported file system information

SYNOPSIS

#include <stdio.h>

#include <exportent.h>

FILE *setexportent()

struct exportent *getexportent(filep)

FILE *filep;

int addexportent(filep, dirname, options)

FILE *filep;

char *dirname;

char *options;

int remexportent(filep, dirname)

FILE *filep;

char *dirname;

char *getexportopt(xent, opt)

struct exportent *xent;

char *opt;

void endexportent(filep)

FILE *filep;

DESCRIPTION

These routines access the exported filesystem information in /etc/xtab.

setexportent opens the export information file (creating it if it does not already

exist) and returns a file pointer to use with getexportent, addexportent,

remexportent, and endexportent. You must be superuser to call setexpor-

tent. getexportent reads the next line from filep and returns a pointer to an

object with the following structure containing the broken-out fields of a line in the file

/etc/xtab:

#define ACCESS_OPT ~~access’’ /* machines that can mount fs */

#define ROOT_OPT ~~root’’ /* machines with root access of fs */

#define RO OPT ~~zrol? /* export read-only */

#define ANON OPT ~~anon’ ’ /* uid for anonymous requests */
~

#define SECURE_OPT

#define WINDOW_OPT

struct exportent {

char *xent_dirname; /* directory (or file) to export */

char *xent_options; /* options, as above */

~“secure’’ /* require secure NFS for access */

“window’’ /* expiration window for credential */
~

};

For more information about the fields, see exports(5).

addexportent adds the exportent to the end of the open file filep. It returns 0 if

successful and —1 on failure. remexportent removes the indicated entry from the

list. It also returns 0 on success and -1 on failure. getexportopt scans the

xent_options field of the exportent structure for a substring that matches opr. It

returns the string value of opt, or NULL if the option is not found.

endexportent closes the file.

ACCESS |

You must be superuser to execute setexportent.

3-190 Licensed material—property of copyright holder(s) 093-701056

exportent(3C) DG/UX 5.4 exportent(3C)

FILES

/etc/exports

/etc/xtab

SEE ALSO

exports(5), xtab(5), exportfs(8)

DIAGNOSTICS

NULL pointer (0) returned on EOF or error.

BUGS

The returned exportent structure points to static information that is overwritten in

each call. :

093-701056 Licensed material—property of copyright holder(s) 3-191

extended_perror(3C) DG/UX 5.4 extended_perror(3C)

NAME

extended_perror — print an error message to standard error

SYNOPSIS

void extended_perror();

char *string;

extended_perror (string) ;

where:

string A pointer to a null-terminated string that is printed (along with a colon)
before the error message is printed

DESCRIPTION

The extended_perror function prints to the standard error file a string and an

error message corresponding to the last DG/UX extended error with the

dg_ext_errno function. If no extended error message is available, nothing is

printed.

RETURNS

The extended_perror function returns no value.

EXAMPLE

The following program copies data from the tape drive to the standard output. If an

error occurs, the extended_perror function prints an error message.

/* Program test for the extended_perror() function */

#include <fcntl.h>

#tdefine MBUF 32768
#define STDOUT 1

char buf [MBUF] ;

void perror(), extended_perror();

int read(), write();

main() {

int len, fd = open("/dev/rmt/0", O RDONLY);

if (fd == -1l) {

perror("Open of /dev/rmt/0");

return 1;

}

while ((len = read(fd, buf, MBUF)) > 0) {

if (write(STDOUT, buf, len) < 0) {

perror("Write to stdout");

return 1;

}

}

if (len < 0) {

extended _perror(”"Read of /dev/rmt/0");

return 1; |

3-1 92 Licensed material—property of copyright holder(9) 093-701056

extended_perror(3C) DG/UX 5.4 extended_perror(3C)

return 0;

FILES

/usr/lib/nlis/msg/locale/exterr .cat — message catalog.

SEE ALSO

See also the perror function.

extended_strerror(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-1 93

extended_strerror(3C) DG/UX 5.4 extended_strerror(3C)

NAME

extended_strerror — get extended error message string

SYNOPSIS |
char *extended_strerror (int extended_errnum) ;

DESCRIPTION

extended_strerror maps the error number in extended_errnum to an error mes-

sage string, and returns a pointer to that string. extended_strerror uses the |

same set of error messages as extended_perror. The returned string should not

be overwritten. |

Many system calls return an extended error number in dg_ext_errno.

FILES

/usr/lib/nls/msg/locale/exterr .cat — message catalog.

SEE ALSO

extended_perror(3C), strerror(3C).

3-1 94 Licensed material—property of copyright holder(s) 093-701056

fattach(3C) DG/UX 5.4 fattach(3C)

NAME

fattach — attach STREAMS-based file descriptor to object in file system name space

SYNOPSIS

#include <unistd.h>

int fattach(int fildes, const char *path)

DESCRIPTION

The fattach routine attaches a STREAMS-based file descriptor to an object in the

file system name space, effectively associating a name with fildes. fildes must be a

valid open file descriptor representing a STREAMS file. path is a path name of an

existing object and the user must have appropriate privileges or be the owner of the

file and have write permissions. All subsequent operations on path will operate on

the STREAMS file until the STREAMS file is detached from the node. fildes can be

attached to more than one path, i.e., a stream can have several names associated with

it.

The attributes of the named stream [see stat(2)], are initialized as follows: the per-

missions, user ID, group ID, and times are set to those of path, the number of links is

set to 1, and the size and device identifier are set to those of the streams device asso-

ciated with fildes. If any attributes of the named stream are subsequently changed

[e.g., chmod(2)], the attributes of the underlying object are not affected.

RETURN VALUE

If successful, fattach returns 0; otherwise it returns -1 and sets errno to indicate

an error.

DIAGNOSTICS

Under the following conditions, the function fattach fails and sets errno to:

EACCES The user is the owner of path but does not have write permissions on

path or fildes is locked.

EBADF fildes is not a valid open file descriptor.

ENOENT path does not exist.

ENOTDIR A component of a path prefix is not a directory.

EINVAL fildes does not represent a STREAMS file. |

EPERM The effective user ID is not the owner of path or a user with the

appropriate privileges.

EBUSY path is currently a mount point or has a STREAMS file descriptor

attached it.

ENAMETOOLONG

The size of path exceeds {PATH_MAX}, or the component of a path

name is longer than {NAME_MAX} while {_POSIX_NO TRUNC} is in

effect. |

ELOOP Too many symbolic links were encountered in translating path.

EREMOTE path is a file in a remotely mounted directory.

SEE ALSO

fdetach(1M),fdetach(3C), isastream(3C), streamio(7)

in the Programmer’s Guide: STREAMS

093-701056 Licensed material—property of copyright holder(s) 3-1 95

felose (3S) DG/UX 5.4 felose(3S)

NAME

fclose, fflush — close or flush a stream

SYNOPSIS

#include <stdio.h>

int fclose (FILE *stream) ;

int fflush (FILE *stream) ;

DESCRIPTION

fclose causes any buffered data waiting to be written for the named stream [see

intro(3)] to be written out, and the stream to be closed. If the underlying file
pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with the
byte after the last one read from or written to the file being closed.

fclose is performed automatically for all open files upon calling exit.

If stream points to an output stream or an update stream on which the most recent
operation was not input, fflush causes any buffered data waiting to be written for

the named stream to be written to that file. Any unread data buffered in stream is
discarded. The stream remains open. If stream is open for reading, the underlying
file pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with the
byte after the last one read from or written to the stream.

When calling fflush, if stream is a null pointer, all files open for writing are
flushed.

SEE ALSO

close(2), exit(2), intro(3), fopen(3S), setbuf£(3S), stdio(3S).

DIAGNOSTICS

3-196

Upon successful completion these functions return a value of zero. Otherwise EOF is
returned.

Licensed material—property of copyright holder(s) 093-701056

fdetach(3C) DG/UX 5.4 fdetach(SC)

NAME

fdetach — detach a name from a STREAMS-based file descriptor

SYNOPSIS

#include <unistd.h>

int fdetach(const char *path)

DESCRIPTION

The fdetach routine detaches a STREAMS-based file descriptor from a name in the
file system. path is the path name of the object in the file system name space, which
was previously attached [see fattach(3C)]. The user must be the owner of the file

or a user with the appropriate privileges. All subsequent operations on path will
operate on the file system node and not on the STREAMS file. The permissions and
status of the node are restored to the state the node was in before the STREAMS file
was attached to it.

RETURN VALUE

If successful, fdetach returns 0; otherwise it returns -1 and sets errno to indicate

an error.

DIAGNOSTICS

Under the following conditions, the function fdetach fails and sets errno to:

EPERM The effective user ID is not the owner of path or is not a user with
appropriate permissions.

ENOTDIR A component of the path prefix is not a directory.

ENOENT path does not exist.

EINVAL path is not attached to a STREAMS file.

ENAMETOOLONG

The size of path exceeds {PATH_MAX)}, or a path name component is

longer than {NAME_MAX) while {_POSIX_NO_TRUNC)} is in effect.

ELOOP Too many symbolic links were encountered in translating path.

SEE ALSO

fdetach(1M), fattach(3C), streamio(7).

in the Programmer’s Guide: STREAMS

093-701056 Licensed materiai—property of copyright holder(s) 3- 1 97

ferror(3S) DG/UX 5.4 ferror(3S)

NAME

ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS

#include <stdio.h>

int ferror (FILE *stream) ;

int feof (FILE xstream) ;

void clearerr (FILE *stream) ;

int fileno (FILE *stream);

DESCRIPTION

ferror returms non-zero when an error has previously occurred reading from or writ-

ing to the named stream [see intro(3)], otherwise zero.

feof returns non-zero when EOF has previously been detected reading the named

input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on the named stream.

fileno returns the integer file descriptor associated with the named stream; see

open(2).

SEE ALSO

3-198

open(2), fopen(3S), stdio(3S).

Licensed material—property of copyright holder(s) 093-701056

ffs(3C) DG/UX 5.4 ffs(SC)

NAME

ffs — find first set bit

SYNOPSIS

#include <string.h>

int ffs(const int i);

DESCRIPTION

ffs finds the first bit set in the argument passed it and returns the index of that bit.

Bits are numbered starting at 1 from the low order bit. A return value of zero indi-

cates that the value passed is zero.

SEE ALSO

string(3C).

093-701056 Licensed material—property of copyright holder(s) 3- 1 99

floor(3M) DG/UX 5.4 floor(3M)

NAME

floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint,

remainder -— floor, ceiling, remainder, absolute value functions

SYNOPSIS
ce [flag ...] file ... -1m [library ...]

#include <math.h>

double floor (double x);

float floorf (float x);

double ceil (double x);

float ceilf (float x);

double copysign (double x, double y);

double fmod (double x, double y);

float fmodf (float x, float y);

double fabs (double x);

float fabsf (float x);

double rint (double x);

double remainder (double x, double y),;

DESCRIPTION

floor and floorf return the largest integer not greater thanx. ceil and ceilf

return the smallest integer not less than x.

copysign returns x but with the sign of y.

fmod and fmodf return the floating point remainder of the division of x by y. More

precisely, they return the number f with the same sign as x, such that x = iy + f for

some integer i, and | f| <| y|.

fabs and fabsf return the absolute value of x, | x| .

rint returns the nearest integer value to its floating point argument x as a double-

precision floating point number. The returned value is rounded according to the

currently set machine rounding mode. If round-to-nearest (the default mode) is set

and the difference between the function argument and the rounded result is exactly

0.5, then the result will be rounded to the nearest even integer.

remainder returns the floating point remainder of the division of x by y. More pre-

cisely, it returns the value r = x ~ yn, where n is the integer nearest the exact value

x/y. Whenever | n — x/y| = 4A, then n is even.

SEE ALSO

abs(3C), matherr(3M).

DIAGNOSTICS .

fmod and fmodf return x when y is 0 and set errno to EDOM. remainder returns

NaN when y is 0 and sets errno to EDOM. In both cases, except in compilation

modes -Xa or —Xc, a message indicating DOMAIN error is printed on standard error.

Except under ~—Xc, these error-handling procedures may be changed with the function

matherr.

3-200 Licensed material—property of copyright holder(s) 093-701056

fmtmsg(3C) DG/UX 5.4 fmtmsg(3C)

NAME

fmtmsg — display a message on stderr or system console

SYNOPSIS

#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,

const char *text, const char *action, const char *tag);

DESCRIPTION

Based on a message’s classification component, fmtmsg writes a formatted message

to stderr, to the console, or to both.

fmtmsg can be used instead of the traditional printf interface to display messages

to stderr. fmtmsg, in conjunction with gettxt, provides a simple interface for

producing language-independent applications.

A formatted message consists of up to five standard components as defined below.

The component, classification, is not part of the standard message displayed to the

user, but rather defines the source of the message and directs the display of the for-

matted message.

classification

Contains identifiers from the following groups of major classifications and sub-

classifications. Any one identifier from a subclass may be used in combination

by ORing the values together with a single identifier from a different subclass.

Two or more identifiers from the same subclass should not be used together,

with the exception of identifiers from the display subclass. (Both display sub-

class identifiers may be used so that messages can be displayed to both

stderr and the system console).

“Major classifications” identify the source of the condition. Identifiers are:

MM_HARD (hardware),. MM_SOFT (software), and MM FIRM (firmware).

‘Message source subclassifications” identify the type of software in which

the problem is spotted. Identifiers are: MM_APPL (application), MM UTIL

(utility), and MM_OPSYS (operating system).

‘Display subclassifications” indicate where the message is to be displayed.

Identifiers are: MM_PRINT to display the message on the standard error

stream, MM CONSOLE to display the message on the system console. Nei-

ther, either, or both identifiers may be used.

“Status subclassifications”’ indicate whether the application will recover

from the condition. Identifiers are: MM_RECOVER (recoverable) and

MM_NRECOV (non-recoverable).

An additional identifier, MM_..NULLMC, indicates that no classification com-

ponent is supplied for the message.

label Identifies the source of the message. The format of this component is two

fields separated by a colon. The first field is up to 10 characters long; the

second is up to 14 characters. Suggested usage is that /abel identifies the pack-

age in which the application resides as well as the program or application

name. For example, the Jabel UX: cat indicates the UNIX System V package

and the cat application.

severity |

Indicates the seriousness of the condition. Identifiers for the standard levels of

093-701056 Licensed material—property of copyright holder(s) 3-201

fmtmseg(3C) DG/UX 5.4 fmtmsg(3C)

severity are:

MM_ HALT indicates that the application has encountered a severe fault and is

halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces the

print string ERROR.

MM WARNING indicates a condition out of the ordinary that might be a prob-

lem and should be watched. Produces the print string WARNING.

MM _INFO provides information about a condition that is not in error. Pro-

duces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity routine.

text Describes the condition that produced the message. The text string is not lim-

ited to a specific size.

action

Describes the first step to be taken in the error recovery process. fmtmsg

precedes each action string with the prefix: TO FIX:. The action string is

not limited to a specific size.

tag An identifier which references on-line documentation for the message. Sug-

gested usage is that tag includes the label and a unique identifying number. A

sample tag is UX:cat:146.

Environment Variables

There are two environment variables that control the behavior of fmtmsg:
MSGVERB and SEV_LEVEL.

MSGVERB tells fmtmsg which message components it is to select when writing mes-

sages to stderr. The value of MSGVERB is a colon-separated list of optional key-

words. MSGVERB can be set as follows:

MSGVERB=[Keyword[: keyword[:...]]] .

export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB

contains a keyword for a component and the component’s value is not the

component’s null value, fmtmsg includes that component in the message when writ-

ing the message to stderr. If MSGVERB does not include a keyword for a message

component, that component is not included in the display of the message. The key-

words may appear in any order. If MSGVERB is not defined, if its value is the null-

string, if its value is not of the correct format, or if it contains keywords other than

the valid ones listed above, fmtmsg selects all components.

The first time fmtmsg is called, it examines the MSGVERB environment variable to

see which message components it is to select when generating a message to write to

the standard error stream, stderr. The values accepted on the initial call are saved

for future calls.

MSGVERB affects only which components are selected for display to the standard error

stream. All message components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by

fmtmsg. The standard severity levels shown below cannot be modified. Additional

severity levels can also be defined, redefined, and removed using addseverity [see

3-202 Licensed material—property of copyright holder(s) 093-701056

fmtmsg(3C) DG/UX 5.4 fmtmsg(3C)

addseverity(3C)]. If the same severity level is defined by both SEV_LEVEL and

addseverity, the definition by addseverity is controlling. |

0 (no severity is used)

1 HALT

2 ERROR

3 WARNING

4 INFO

SEV_LEVEL can be set as follows:

SEV_LEVEL=[|description{ : description{ : ...}]]

export SEV_LEVEL

description is a comma-separated list containing three fields:

description=severity_keyword , level , printstring

severity_keyword is a character string that is used as the keyword on the —s Severity

option to the fmtmsg command. (This field is not used by the fmtmsg function.)

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or

4, which are reserved for the standard severity levels). If the keyword

severity_keyword is used, level is the severity value passed on to the fmtmsg function.

printstring is the character string used by fmtmsg in the standard message format

whenever the severity value level is used.

If a description in the colon list is not a three-field comma list, or, if the second field

of a comma list does not evaluate to a positive integer, that description in the colon

list is ignored.

The first time fmtmsg is called, it examines the SEVY_LEVEL environment variable, if

defined, to see whether the environment expands the levels of severity beyond the five

standard levels and those defined using addseverity. The values accepted on the

initial call are saved for future calls.

Use in Applications

One or more message components may be systematically omitted from messages gen-

erated by an application by using the null value of the argument for that component.

The table below indicates the null values and identifiers for fmtmsg arguments.

Argument Type Null- Value Identifier

label char* (char*) NULL MM NULLLBL

severity int 0 ‘MM_NULLSEV

class long OL MM_NULLMC

text char* (char*) NULL MM _NULLTXT

action char* (char*) NULL MM _NULLACT

tag char* (char*) NULL MM NULLTAG

Another means of systematically omitting a component is by omitting the component

keyword(s) when defining the MSGVERB environment variable (see the “Environment

Variables” section).

EXAMPLES

Example 1:

The following example of fmtmsg:

093-701056 Licensed material—property of copyright holder(s) 3-203

fmtmsg(3C) DG/UX §.4 fmtmsg(3C)

fmtmsg(MM_PRINT, "UX:cat", MM _ERROR, “invalid syntax",

“refer to manual", "UX:cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax

TO FIX: refer to manual UX:cat:001

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity: text: action

and the Example 1 is used, fmtmsg produces:

ERROR: invalid syntax

TO FIX: refer to manual

Example 3:

When the environment variable SEV_LEVEL is set as follows:

| SEV_LEVEL=note,5,NOTE

the following call to fmtmsg:

fmtmsg(MM_UTIL | MM_PRINT, "UX:cat", 5, “invalid syntax",
“refer to manual", "“UX:cat:001")

produces: _

UX:cat: NOTE: invalid syntax

TO FIX: refer to manual UX: cat: 001

SEE ALSO

addseverity(3C), gettxt(3C), print£(3S).

fmtmsg(1) in the User’s Reference Manual.

DIAGNOSTICS

The exit codes for fmtmsg are the following:

MM_OK. The function succeeded.

MM_NOTOK The function failed completely.

MM _NOMSG The function was unable to generate a message on the standard error

stream, but otherwise succeeded.

MM _NOCON The function was unable to generate a console message, but otherwise

succeeded. :

3-204 Licensed material—property of copyright holder(s) 093-701056

fopen(3S) DG/UX 5.4 fopen(3S)

NAME

fopen, freopen, fdopen — open a stream

SYNOPSIS

#include <stdio.h>

FILE «fopen (const char «filename, const char xtype) ;

FILE *freopen (const char «filename, const char «type, FILE

*xstream) ;

FILE *fdopen (int fildes, const char «type);

DESCRIPTION

fopen opens the file named by filename and associates a stream with it. fopen

returns a pointer to the FILE structure associated with the stream.

filename points to a character string that contains the name of the file to be opened.

type is a character string beginning with one of the following sequences:

A] r" or A rb "

open for reading

ee w" Or "wh ve

truncate to zero length or create for writing

A oe

a" or "ab".

append; open for writing at end of file, or create for writing

"r+", “r+b" or "rbt"

open for update (reading and writing)

"wt", "wtb" Or “wbh+"

truncate or create for update

"at", "atb" or "ab+"

append; open or create for update at end-of-file

The “b” is ignored in the above types. The “‘b” exists to distinguish binary files from
' text files. However, there is no distinction between these types of files on a UNIX

system.

freopen substitutes the named file in place of the open stream. A flush is first

attempted, and then the original stream is closed, regardless of whether the open ulti-
mately succeeds. Failure to flush or close stream successfully is ignored. freopen

returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the preopened streams associated with stdin,

stdout, and stderr to other files. stderr is by default unbuffered, but the use

of freopen will cause it to become buffered or line-buffered.

£dopen associates a stream with a file descriptor. File descriptors are obtained from

open, dup, creat, or pipe, which open files but do not return pointers to a FILE

structure stream. Streams are necessary input for almost all of the Section 3S library

routines. The type of stream must agree with the mode of the open file. The file

position indicator associated with stream is set to the position indicated by the file

offset associated with fildes.

When a file is opened for update, both input and output may be done on the resulting

stream. However, output may not be directly followed by input without an interven-

ing fflush, fseek, fsetpos, or rewind, and input may not be directly followed

093-701056 Licensed material—property of copyright holder(s) 3-205

fopen(3S) DG/UX 5.4 fopen(3S)

by output without an intervening fseek, fsetpos, or rewind, or an input opera-

tion that encounters end-of-file.

When a file is opened for append (i.e., when type is "a", "ab", “at+t",or “ab+”),

it is impossible to’ overwrite information already in the file. fseek may be used to

reposition the file pointer to any position in the file, but when output is written to the

file, the current file pointer is disregarded. All output is written at the end of the file

and causes the file pointer to be repositioned at the end of the output. If two

separate processes open the same file for append, each process may write freely to

the file without fear of destroying output being written by the other. The output from

the two processes will be intermixed in the file in the order in which it is written.

When opened, a stream is fully buffered if and only if it can be determined not to

refer to an interactive device. The error and end-of-file indicators are cleared for the

stream.

SEE ALSO

close(2), creat(2), dup(2), open(2), pipe(2), write(2), fclose(3S),

fseek(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

3-206

The functions fopen and freopen return a null pointer if path cannot be accessed,

or if type is invalid, or if the file cannot be opened. In addition, errno is set to

ENOENT if filename is a NULL pointer or the string it points to is a null string.

The function fdopen returns a null pointer if fildes is not an open file descriptor, or

if type is invalid, or if the file cannot be opened.

The functions fopen or fdopen may fail and not set errno if there are no free

stdio streams.

File descriptors used by fdopen must be less than 255.

Licensed material—property of copyright holder(s) 093-701056

form_cursor(3X) DG/UX 5.4 form_cursor(3X)

NAME

form_cursor: pos_form_cursor -— position forms window cursor

SYNOPSIS

#include <form.h>

int pos_form_cursor(FORM *form) ;

DESCRIPTION

pos_form_cursor moves the form window cursor to the location required by the

form driver to resume form processing. This may be needed after the application

calls a curses library I/O routine.

RETURN VALUE

pos_form_cursor returns one of the following:

E_OK — The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD ARGUMENT -— An argument is incorrect.

E_NOT_ POSTED ~ The form is not posted.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

093-701056 Licensed material—property of copyright holder(s) 3-207

form_data(3X) DG/UX 5.4 form_data(3X)

NAME

form_data: data_ahead, data_behind -tellif forms field has off-screen data
ahead or behind

SYNOPSIS

#include <form.h>

int data_ahead(FORM *form) ;

int data_behind(FORM *form) ;

DESCRIPTION

data_ahead retumms TRUE (1) if the current field has more off-screen data ahead;
otherwise it returns FALSE (0). |

data_behind returns TRUE (1) if the current field has more off-screen data
behind; otherwise it returns FALSE (0).

NOTES

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

curses(3X), forms(3X).

3-208 Licensed material—property of copyright holder(s) 093-701056

form_driver(3X) DG/UX 5.4 form_driver(3X)

NAME

form_driver — command processor for the forms subsystem

SYNOPSIS

#include <form.h>

int form_driver(FORM *form, int c);

DESCRIPTION

form_driver is the workhorse of the forms subsystem; it checks to determine

whether the character c is a forms request or data. If it is a request, the form driver
executes the request and reports the result. If it is data (a printable ASCII charac-

ter), it enters the data into the current position in the current field. If it is not recog-
nized, the form driver assumes it is an application-defined command and returns

E_UNKNOWN_COMMAND. Application defined commands should be defined relative to

MAX COMMAND, the maximum value of a request listed below.

Form driver requests:

REQ NEXT PAGE Move to the next page.

REQ PREV_PAGE Move to the previous page.

REQ FIRST_PAGE Move to the first page.

REQ_LAST PAGE Move to the last page.

REQ NEXT FIELD Move to the next field.

REQ _PREV_FIELD Move to the previous field.

REQ FIRST _FIELD Move to the first field.

REQ LAST FIELD Move to the last field.

REQ SNEXT FIELD Move to the sorted next field.

REQ _SPREV_FIELD Move to the sorted prev field.

REQ SFIRST_FIELD Move to the sorted first field.

REQ_SLAST_FIELD Move to the sorted last field.

REQ LEFT FIELD Move left to field.

REQ RIGHT FIELD Move right to field.

REQ_UP_FIELD Move up to field.

REQ DOWN_FIELD Move down to field.

REQ NEXT CHAR Move to the next character in the field.

REQ PREV_CHAR Move to the previous character in the field.

REQ NEXT LINE Move to the next line in the field.

REQ _PREV_LINE Move to the previous line in the field.

REQ NEXT WORD Move to the next word in the field.

REQ PREV_WORD Move to the previous word in the field.

REQ BEG FIELD Move to the first char in the field.

REQ END FIELD Move after the last char in the field.

REQ BEG LINE Move to the beginning of the line.

REQ END LINE Move after the last char in the line.

REQ LEFT CHAR Move left in the field.

REQ RIGHT CHAR Move right in the field.

REQ UP_CHAR Move up in the field.

REQ DOWN CHAR Move down in the field.

093-701056 Licensed material—property of copyright holder(s) 3-209

form_driver(3X) DG/UX 5.4 form_driver(3X)

REQ NEW _LINE Insert/overlay a new line.

REQ INS CHAR Insert the blank character at the cursor.

REQ INS LINE Insert a blank line at the cursor.

REQ DEL CHAR Delete the character at the cursor.

REQ DEL PREV Delete the character before the cursor.

REQ DEL _LINE Delete the line at the cursor.

REQ DEL_WORD Delete the word at the cursor.

REQ CLR_EOL Clear to the end of the line.

REQ CLR_EOF Clear to the end of the field.

REQ _CLR_FIELD Clear the entire field.

REQ_OVL_MODE Enter overlay mode.

REQ INS MODE Enter insert mode.

REQ SCR_FLINE Scroll the field forward a line.

REQ _SCR_BLINE Scroll the field backward a line.

REQ SCR_FPAGE Scroll the field forward a page.

REQ SCR_BPAGE Scroll the field backward a page.

REQ SCR_FHPAGE Scroll the field forward half a page.

REQ SCR_BHPAGE Scroll the field backward half a page.

REQ SCR_FCHAR Horizontal scroll forward a character.

REQ SCR_BCHAR Horizontal scroll backward a character.

REQ SCR_HFLINE Horizontal scroll forward a line.

REQ SCR_HBLINE Horizontal scroll backward a line.

REQ SCR_HFHALF Horizontal scroll forward half a line.

REQ SCR_HBHALF Horizontal scroll backward half a line.

REQ VALIDATION Validate field.

REQ PREV CHOICE Display the previous field choice.

REQ NEXT CHOICE Display the next field choice.

RETURN VALUE

form_driver returns one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR — System error.

E_BAD ARGUMENT - An argument is incorrect.

E_NOT_POSTED ~- The form is not posted.

E INVALID FIELD —- The field contents are invalid.

E_BAD_STATE — The routine was called from an initialization or

termination function.

E_REQUEST DENIED - The form driver request failed.

E_UNKNOWN_COMMAND — An unknown request was passed to the the

form driver.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and.

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

3-21 0 Licensed material—property of copyright holder(s) 093-701056

form_field(3X) DG/UX 5.4 form_field(3X)

NAME

form field: set _form_fields, form_fields, field_count, move_field —

connect fields to forms

SYNOPSIS
#include <form.h>

int set_form_fields(FORM *form, FIELD **field);

FIELD **form_fields(FORM *form) ;

int field_count(FORM *form) ;

int move field(FIELD *field, int frow, int fcol);

DESCRIPTION

set_form_fields changes the fields connected to form to fields. The original fields

are disconnected.

form fields returns a pointer to the field pointer array connected to form.

field count returns the number of fields connected to form.

move_field moves the disconnected field to the location frow, fcol in the forms

subwindow.

RETURN VALUE

form_fields returns NULL On error.

field_count returns —1 on error.

set _form_ fields and move_field return one of the following:

E_OK — The function returned successfully. .

E_CONNECTED - The field is already connected to a form.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT — An argument is incorrect.

E_POSTED - The form is posted.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

093-701056

curses(3X), forms(3X).

Licensed materiali—property of copyright hoider(s) 3-21 1

form_field_attributes(3X) DG/UX 5.4 _ torm_field_attributes(3X)

NAME

form_field_attributes: set_field_fore, field_fore, set_field_back,

field_back, set_field_pad, field_pad — format the general display attributes

of forms

SYNOPSIS

#include <form.h>

int set_field_fore(FIELD *field, chtype attr);

chtype field fore(FIELD *field);

int set_field back(FIELD *field, chtype attr);

chtype tield_back(FIELD *field);

int set_field_pad(FIELD *field, int pad);

int field pad(FIELD *field);

DESCRIPTION

set_field_fore sets the foreground attribute of field. The foreground attribute is

the low-level curses display attribute used to display the field contents.

field_fore returns the foreground attribute of field.

set_field_back sets the background attribute of field. The background attribute is

the low-level curses display attribute used to display the extent of the field.

£field_back returns the background attribute of field.

set_field_pad sets the pad character of field to pad. The pad character is the

character used to fill within the field. field_pad returns the pad character of field.

RETURN VALUE

NOTES

field fore, field_back and field_pad return default values if field is NULL.

If field is not NULL and is not a valid FIELD pointer, the return value from these

routines is undefined.

set_field_ fore, set_field_back and set_field_ pad return one of the fol-

lowing:

E_OK | - The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT —- An argument is incorrect.

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

3-212

curses(3X), forms(3X).

Licensed material—property of copyright holder(s) 093-701056

form_field_buffer(3X) DG/UX 5.4 form_field_buffer(3X)

NAME

form_field_buffer: set_field buffer, field_buffer,
set_field_status, field_status, set_max_field — set and get forms field

attributes

SYNOPSIS

#include <form.h> .

int set_field_ buffer(FIELD *field, int buf, char *value);

char *field_ buffer(FIELD *field, int buf);

int set_field_status(FIELD *field, int status);

int field _status(FIELD *field) ;

int set_max_field(FIELD *field, int max);

DESCRIPTION

set_field_buffer sets buffer buf of field to value. Buffer 0 stores the displayed

contents of the field. Buffers other than 0 are application specific and not used by

the forms library routines. field_buffer returns the value of field buffer buf.

Every field has an associated status flag that is set whenever the contents of field

buffer 0 changes. set_field_status sets the status flag of field to status.

field_status returns the status of field.

set_max_field sets a maximum growth on a dynamic field, or if max=0 turns off

any maximum growth.

RETURN VALUE

NOTES

field buffer returns NULL on error.

field status returns TRUE or FALSE.

set_field_ buffer, set_field_status and set_max field return one of the

following:

E_OK — The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT —- An argument is incorrect.

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

093-701056

curses(3X), forms(3X).

Licensed materiai—property of copyright holder(s) 3-21 3

form_field_into(3X) DG/UX 5.4 form_field_into(3X)

NAME

form_field_info: field_info, dynamic_field_info - get forms field

characteristics

SYNOPSIS

#finclude <form.h>

int field info(FIELD *field, int *rows, int *cols,
int *frow, int *fcol, int *nrow, int *nbuf);

int dynamic field_info(FIELD *field, int *drows, int *dcols,

int *max);

DESCRIPTION

field_info returns the size, position, and other named field characteristics, as

defined in the original call to new_field, to the locations pointed to by the argu-

ments rows, cols, frow, fcol, nrow, and nbuf.

dynamic _field_info returns the actual size of the field in the pointer arguments

drows, dcols and returns the maximum growth allowed for field in max. If no max-

imum growth limit is specified for field, max will contain 0. A field can be made

dynamic by turning off the field option O_STATIC.

RETURN VALUE

These routines return one of the following:

E_OK — The function returned successfully.

E_SYSTEM_ ERROR -— System error.

E_BAD_ARGUMENT — An argument is incorrect.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

3-21 4 Licensed material—property of copyright holder(s) 093-701056

form_field_just(3X) DG/UX 5.4 torm_field_just(3X)

NAME

form_field_just: set_field_just, field_just — format the general appear-

ance of forms

SYNOPSIS

#include <form.h>

int set_field_just(FIELD *field, int justification) ;

int field_just(FIELD *field);

DESCRIPTION

set_field_just sets the justification for field. Justification may be one of:

NO_JUSTIFICATION, JUSTIFY_RIGHT, JUSTIFY_LEFT, or

JUSTIFY_CENTER. |

The field justification will be ignored if field is a dynamic field.

field just returns the type of justification assigned to field.

RETURN VALUE

field_just returns the one of:

NO_JUSTIFICATION, JUSTIFY_RIGHT, JUSTIFY_LEFT, or

JUSTIFY_CENTER.

set_field_just returns one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT — An argument is incorrect.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>. |

SEE ALSO

curses(3X), forms(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-21 5

form_field_new(3X) DG/UX 5.4 form_field_new(3X)

NAME

form_field_ new: new_field, dup field, link_field, free field, -

create and destroy forms fields 7

SYNOPSIS

#include <form.h>

FIELD *new_field(int r, int c, int frow, int fcol,

int nrow, int ncol);

FIELD *dup_field(FIELD *field, int frow, int fcol);

FIELD *link field(FIELD *field, int frow, int fcol);

int free_field(FIELD *field);

DESCRIPTION

new_field creates a new field with r rows and c columns, starting at frow, fcol, in

the subwindow of a form. row is the number of off-screen rows and nbuf is the

number of additional working buffers. This routine returns a pointer to the new field.

dup_field duplicates field at the specified location. All field attributes are dupli-

cated, including the current contents of the field buffers.

link_field also duplicates field at the specified location. However, unlike

dup_field, the new field shares the field buffers with the original field. After crea-

tion, the attributes of the new field can be changed without affecting the original field.

free_field frees the storage allocated for field.

RETURN VALUE

Routines that return pointers return NULL on error. free field returns one of
the following:

E_OK — The function returned successfully.

E_CONNECTED - The field is already connected to a form.

E_SYSTEM_ERROR -— System error.

E_BAD_ ARGUMENT -—- An argument is incorrect.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

forms(3X).

3-21 6 Licensed material—property of copyright holder(s) 093-701056

form_field_opts(3X) DG/UX 5.4 form_field_opts(3X)

NAME

form_field_opts: set_field_opts, field_opts_on, field_opts off,

field_opts — forms field option routines

SYNOPSIS

#include <form.h>

int set_field_opts(FIELD *field, OPTIONS opts);

int field_opts_on(FIELD *field, OPTIONS opts);

int field_opts_off(FIELD *field, OPTIONS opts);

OPTIONS field_opts(FIELD *field);

DESCRIPTION

set_field_opts turns on the named options of field and turns off all remaining

options. Options are boolean values that can be OR-ed together.

field_opts_on turns on the named options; no other options are changed.

field_opts_off turns off the named options; no other options are changed.

field_opts returns the options set for field.

Field Options:

O_VISIBLE The field is displayed.

O_ACTIVE The field is visited during processing.

O_PUBLIC The field contents are displayed as data is entered.
O_EDIT The field can be edited.

O_WRAP Words not fitting on a line are wrapped to the next line.
O BLANK The whole field is cleared if a character is entered in the

first position.

O_AUTOSKIP Skip to the next field when the current field becomes full.
O_NULLOK A blank field is considered valid.

O_STATIC The field buffers are fixed in size.

O_PASSOK Validate field only if modified by user.

RETURN VALUE

set_field_opts, field_opts_onand field_opts off return one of the fol-

lowing:

E_OK ~ The function returned successfully.

E_SYSTEM_ ERROR -— System error.

E_CURRENT — The field is the current field.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

093-701056 Licensed material—property of copyright holder(s) 3-21 7

form_fieid_userptr(3X) - DG/UX 8.4 form_field_userptr(3X)

NAME

form_field_userptr: set_field_userptr, field_userptr - associate appli-

cation data with forms

SYNOPSIS

#include <form.h>

int set_field_userptr(FIELD *field, char *ptr);

char *field_userptr(FIELD *field);

DESCRIPTION

Every field has an associated user pointer that can be used to store pertinent data.

set_field_userptr sets the user pointer of field. field_userptr returns the

user pointer of field.

RETURN VALUE

field_userptr returns NULL on error. set_field_userptr returns one of the

following:

E_OK - The function returned successfully.

E_SYSTEM_ ERROR — System error.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

3-21 8 . Licensed material—property of copyright holder(s) 093-701056

form_field_validation(3X) DG/UX 5.4 form_field_validation(3X)

NAME

form_field_validation: set_field_type, field_type, field_arg -

forms field data type validation

SYNOPSIS

#include <form.h>

int set_field_type(FIELD *field, FIELDTYPE *type, ...);

FIELDTYPE *field_ type(FIELD *field);

char *field_arg(FIELD *field);

DESCRIPTION

set_field_type associates the specified field type with field. Certain field types

take additional arguments. TYPE_ALNUM, for instance, requires one, the minimum

width specification for the field. The other predefined field types are: TYPE_ALPHA,

TYPE_ENUM, TYPE_INTEGER, TYPE_NUMERIC, TYPE_REGEXP.

field_type returns a pointer to the field type of field. NULL is returned if no field

type is assigned.

field_arg returns a pointer to the field arguments associated with the field type of

field. NULL is returned if no field type is assigned.

RETURN VALUE

field_type and field_arg return NULL on error.

set_field_type returns one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR — System error.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

093-701056

curses(3X), forms(3X).

Licensed material—property of copyright holder(s) 3-21 9

form_fieldtype (3X) DG/UX 5.4 form_fieldtype (3X)

NAME

form_fieldtype: new_fieldtype, free_fieldtype, set_fieldtype_ arg,

set_fieldtype_choice, link_fieldtype — forms fieldtype routines

SYNOPSIS

#include <form.h>

FIELDTYPE *new_fieldtype(int (* field_check)(FIELD *, char *),

int (* char _check)(int, char *));

int free_fieldtype(FIELDTYPE *fieldtype) ;

int set_fieldtype _arg(FIELDTYPE *fieldtype,

char *(* mak_arg) (va_list *),

char *(* copy _arg)(char *), void (* free_arg)(char *));

int set_fieldtype choice(FIELDTYPE *fieldtype,

int (* next_choice) (FIELD *, char *),

int (* prev_choice) (FIELD *, char *));

FIELDTYPE *link_fieldtype(FIELDTYPE *typel, FIELDTYPE *type2);

DESCRIPTION

new_fieldtype creates a new field type. The application programmer must write

the function field_check, which validates the field value, and the function char_check,

which validates each character. free_fieldtype frees the space allocated for the

field type.

By associating function pointers with a field type, set_fieldtype arg connects to

the field type additional arguments necessary for a set_field_type call. Function

mak_arg allocates a structure for the field specific parameters to set_field_type

and returns a pointer to the saved data. Function copy_arg duplicates the structure

created by make_arg. Function free_arg frees any storage allocated by make_arg or

copy_arg.

The form_driver requests REQ NEXT CHOICE and REQ PREV_CHOICE let the

user request the next or previous value of a field type comprising an ordered set of

values. set_fieldtype_ choice allows the application programmer to implement

these requests for the given field type. It associates with the given field type those

application-defined functions that return pointers to the next or previous choice for

the field.

link_fieldtype returns a pointer to the field type built from the two given types.

The constituent types may be any application-defined or pre-defined types.

RETURN VALUE

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK — The function returned successfully.

E_SYSTEM_ERROR — System error.

E_BAD ARGUMENT -. An argument is incorrect.

E_CONNECTED - Type is connected to one or more fields.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

3-220 Licensed material—property of copyright holder(s) 093-701056

form_fieldtype (3X) . DG/UX 5.4 form_fieldtype (3X)

SEE ALSO

curses(3X), forms(3X).

093-701056 Licensed material—property of copyright holder(s) 3-221

form_hook(3X) . DG/UX 5.4 form_hook(3X)

NAME

form_hook: set_form_init, form_init, set_form_term, form_tern,

set _field_init, field_init, set_field_term, field_term — assign

application-specific routines for invocation by forms

SYNOPSIS

#include <form.h>

int set_form_init(FORM *form, void (*func) (FORM *));

void (*)(FORM *) form_init(FORM *form);

int set_form_term(FORM *form, void (*func) (FORM *));

void (*)(FORM *) form_term(FORM *form) ;

int set_field_init(FORM *form, void (*func) (FORM *));

void (*)(FORM *) field_init(FORM *form) ;

int set_field_term(FORM *form, void (*func) (FORM *));

void (*)(FORM *) field_term(FORM *form) ;

DESCRIPTION

These routines allow the programer to assign application specific routines to be exe-

cuted automatically at initialization and termination points in the forms application.

The user need not specify any application-defined initialization or termination rou- —

tines at all, but they may be helpful for displaying messages or page numbers and

other chores.

set_form_init assigns an application-defined initialization function to be called

when the form is posted and just after a page change. form_init returns a pointer

to the initialization function, if any.

set_form_term assigns an application-defined function to be called when the form is

unposted and just before a page change. form_term returns a pointer to the func-

tion, if any.

set_field_init assigns an application-defined function to be called when the form

is posted and just after the current field changes. field_init returns a pointer to

the function, if any.

set_field_term assigns an application-defined function to be called when the form

is unposted and just before the current field changes. field_term returns a pointer

to the function, if any.

RETURN VALUE

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR -— System error.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X).

3-222 Licensed material—property of copyright holder(s) 093-701056

form_new(3X) DG/UX 5.4 form_new(3X)

NAME

form_new: new_form, free_form — create and destroy forms

SYNOPSIS .

#include <form.h>

FORM *new_form(FIELD **fields);

int free_form(FORM *form);

DESCRIPTION

new_form creates a new form connected to the designated fields and returns a

pointer to the form.

free_form disconnects the form from its associated field pointer array and deallo-

cates the space for the form.

RETURN VALUE

new_form always returns NULL on error. free_form returns one of the following:

E_OK ~ The function returned. successfully.

E_BAD_ARGUMENT — An argument is incorrect.

E_POSTED ~ The form is posted.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>. |

SEE ALSO

curses(3X), forms(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-223

form_new_page (3X) DG/UX 5.4 form_new_page(3X)

NAME

form_new_page: set_new_page, new_page - forms pagination

SYNOPSIS

#include <form.h>

int set_new_page(FIELD *field, int bool);

int new_page(FIELD *field);

DESCRIPTION

set_new_page marks field as the beginning of a new page on the form.

new_page returns a boolean value indicating whether or not field begins a new page

of the form.

RETURN VALUE

new_page returns TRUE or FALSE.

set_new_page returns one of the following:

E_OK - The function returned successfully.

E_CONNECTED —- The field is already connected to a form.

E_SYSTEM_ERROR -— System error.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>. |

SEE ALSO

curses(3X), forms(3X).

3-224 Licensed material—property of copyright holder(s) 093-701056

form_opts(3X) DG/UX 5.4 form_opts(3X)

NAME

form_opts: set_form_opts, form_opts_on, form_opts_ off, form_opts -

forms option routines

SYNOPSIS

#include <form.h>

int set_form_opts(FORM *form, OPTIONS opts);

int form_opts_on(FORM *form, OPTIONS opts);

int form_opts_off(FORM *form, OPTIONS opts);

OPTIONS form_opts(FORM *form) ;

DESCRIPTION

set_form_opts turns on the named options for form and turns off all remaining -

options. Options are boolean values which can be OR-ed together.

form_opts_on turns on the named options; no other options are changed.

form_opts_off turns off the named options; no other options are changed.

form_opts returns the options set for form.

Form Options:

O_NL_OVERLOAD Overload the REQ_NEW_LINE form driver request.

O_BS_OVERLOAD Overload the REQ_DEL_PREV form driver request.

RETURN VALUE

NOTES

set_form_opts, form_opts_on and form_opts_off return one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR - System error.

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

093-701056

curses(3X), forms(3X).

Licensed material—property of copyright hoider(s) 3-225

form_page(3X) DG/UX 8.4 form_page (3X)

NAME

form_page: set_form_page, form_page, set_current_field,

current field, field: index — set forms current page and field

SYNOPSIS

#include <form.h>

int set_form_page(FORM *form, int page);

int form_page(FORM *form);

int set_current_field(FORM *form, FIELD *field) ;

FIELD *current field(FORM *form);

int field_index(FIELD *field);

DESCRIPTION

set_form_page sets the page number of form to page. form_page returns the

current page number of form.

set_current_field sets the current field of form to field. current_field

returns a pointer to the current field of form.

field_index returns the index in the field pointer array of field.

RETURN VALUE

NOTES

form_page returns -1 on.error.

current _field returns NULL on error.

field index returns -1 on error.

set_form_page and set_current_field return one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ ARGUMENT - An argument is incorrect.

E_ BAD STATE - The routine was called from an initialization

or termination function.

E_INVALID_FIELD -—- The field contents are invalid.

E_REQUEST_ DENIED — The form driver request failed.

The header file <form. h? automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

3-226

curses(3X), forms(3X).

Licensed material—property of copyright holder(s) 093-701056

form_post(3X) DG/UX 5.4 form_post(3X)

NAME

form_post: post_form, unpost_form -— write or erase forms from associated

subwindows

SYNOPSIS

#include <form.h>

int post_form(FORM *form);

int unpost_form(FORM *form);

DESCRIPTION

post_form writes form into its associated subwindow. The application programmer

must use curses library routines to display the form on the physical screen or call

update_panels if the panels library is being used.

unpost_form erases form from its associated subwindow.

RETURN VALUE

These routines return one of the following:

E_OK - The function returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT — An argument Is incorrect.

E_POSTED —- The form is posted.

E_NOT_ POSTED - The form is not posted.

E_NO_ROOM - The form does not fit in the subwindow.

E_BAD_ STATE ~- The routine was called from an initialization

or termination function.

E_NOT_CONNECTED - The field is not connected to a form.

NOTES

The header file <form. h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), forms(3X), panels(3X), panel_update(3X).

093-701056 Licensed material—property of copyright holder(s) 3-227

form_userptr(3Xx) DG/UX 8.4 form_userptr(3X)

NAME

_form_userptr: set_form_userptr, form_userptr -— associate application data
with forms

SYNOPSIS

#include <form.h>

int set_form_userptr(FORM *form, char *ptr);

| char *form_userptr(FORM *form);

DESCRIPTION

Every form has an associated user pointer that can be used to store pertinent data.
set_form_userptr sets the user pointer of form. form_userptr returns the user
pointer of form.

RETURN VALUE

form_userptr returns NULL on error. set_form_userptr returns one of the fol-
lowing:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO |

curses(3X), forms(3X).

3-228 Licensed material—property of copyright holder(s) 093-701056

form_win(3X) DG/UX 5.4 form_win(3X)

NAME

form_win: set_form_win, form_win, set_form_sub, form_sub,

scale_form- forms window and subwindow association routines

SYNOPSIS

#include <form.h>

int set_form_win(FORM *form, WINDOW *win);

WINDOW *form_win(FORM *form) ;

int set_form_sub(FORM *form, WINDOW *sub) ;

WINDOW *form_sub(FORM *form);

int scale_form(FORM *form, int *rows, int *cols);

DESCRIPTION

set_form_win sets the window of form to win. form_win returns a pointer to the

window associated with form.

set_form_sub sets the subwindow of form to sub. form_sub returns a pointer to

the subwindow associated with form.

scale_form returns the smallest window size necessary for the subwindow of form.

rows and cols are pointers to the locations used to return the number of rows and

columns for the form.

RETURN VALUE

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK - The function returned successfully.

E_SYSTEM ERROR -— System error.

E_BAD ARGUMENT —-— An argument is incorrect.

E_NOT CONNECTED - The field is not connected to a form.

E_POSTED —- The form is posted.

NOTES

The header file <form.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

093-701056

curses(3X), forms(3X).

Licensed material—property of copyright hoider(s) 3-229

forms(3X) DG/UX 5.4 forms(3X)

forms — character based forms package

SYNOPSIS

#include <form.h>

DESCRIPTION

The form library is built using the curses library, and any program using forms

routines must call one of the curses initialization routines such as initscr. A

program using these routines must be compiled with -l1form and -lcurses on the

cc command line.

The forms package gives the applications programmer a terminal-independent

method of creating and customizing forms for user-interaction. The forms package

includes: field routines, which are used to create and customize fields, link fields and

assign field types; fieldtype routines, which are used to create new field types for vali-

dating fields; and form routines, which are used to create and customize forms, assign

pre/post processing functions, and display and interact with forms.

Current Default Values for Field Attributes

The forms package establishes initial current default values for field attributes. Dur-

ing field initialization, each field attribute is assigned the current default value for that

attribute. An application can change or retrieve a current default attribute value by

calling the appropriate set or retrieve routine with a NULL field pointer. If an appli-

cation changes a current default field attribute value, subsequent fields created using

new_field will have the new default attribute value. (The attributes of previously

created fields are not changed if a current default attribute value is changed.)

Routine Name Index

The following table lists each forms routine and the name of the manual page on

which it is described.

forms Routine Name Manual Page Name

current field form_page(3X)

data_ahead form_data(3X)

data_behind form_data(3X)

dup_field form_field_new(3X)

dynamic field _info form_field_info(3X)

field_arg form_field_validation(3X)

field_back form_field_attributes(3X)

field buffer form_field_buffer(3X)

field_count form_field(3X)

field fore form_field_attributes(3X)

field index form_page(3X)

field_info form_field_info(3X)

field_init form_hook(3X)

field just form_field_just(3X)

field opts form_field_opts(3X)

field_opts off form_field_opts(3X)

field_opts on form_field_opts(3X)

field pad form_field_attributes(3X)

3-230 Licensed material—property of copyright holder(s) 093-701056

forms(3X)

field_ status

field term

field type

field_userptr

form_ driver

form_fields

form_init

form_opts

form _opts_off

form_opts_on

form_page

form_sub

form_term

form_userptr

form_win

free field

free fieldtype

free form

link field

link_fieldtype

move_field

new_field

new_fieldtype

new_form

new_page

pos_form_cursor

post_form

scale form

set_current_field

set_field_back

set_field_buffer

set_field_ fore

set_field_ init

set_field_ just

set_field opts

set_field_pad

set_field status

set_field_ term

set_field type

set_field_userptr

set_fieldtype_arg

set_fieldtype_choice

set_form_fields

set_form_init

set_form_opts

set_form_page

set_form_sub

set_form_term

DG/UX 5.4 forms(3X)

form_field_buffer(3X)

form_hook(3X)

form_field_validation(3X)

form_field_userptr(3X)

form_driver(3X)

form_field(3X)

form_hook(3X)

form_opts(3X)

form_opts(3X)

form_opts(3X)

form_page(3X)

form_win(3X)

form_hook(3X)

form_userptr(3X)

form_win(3X)

form_field_new(3X)

form_fieldtype(3X)

form_new(3X)

form_field_new(3X)

form_fieldtype(3X)

form_field(3X)

form_field_new(3X)

form_fieldtype(3X)

form_new(3X)

form_new_page(3X)

form_cursor(3X)

form_post(3X)

form_win(3X)

form_page(3X)

form_field_attributes(3X)

form_field_buffer(3X)

form_field_attributes(3X)

form_hook(3X)

‘form_field_just(3X)

form_field_opts(3X)

form_field_attributes(3X)

form_field_buffer(3X)

form_hook(3X)

form_field_validation(3X)

form_field_userptr(3X)

form_fieldtype(3X)

form_fieldtype(3X)

form_field(3X)

form_hook(3X)

form_opts(3X)

form_page(3X)

form_win(3X)

form_hook(3X)

093-701056 Licensed material—property of copyright holder(s) 3-231

forms(3X)

set_form_userptr

set_form_win

set_max field

set_new_page

unpost_form

RETURN VALUE

Routines that return a pointer always return NULL on error. Roittines that return an
integer return one of the following:

NOTES

E_OK -

E_CONNECTED -

E_SYSTEM_ ERROR

E_BAD_ARGUMENT -
E_CURRENT -
E_POSTED -

E_NOT_POSTED -

E_INVALID_FIELD -

E_NOT_CONNECTED -

E_NO_ROOM -

E_BAD_STATE -

E_REQUEST_DENIED

E_UNKNOWN_COMMAND

DG/UX 5.4 forms(3X)

form_userptr(3X)

form_win(3X)

form_field_buffer(3X)

form_new_page(3X)

form_post(3X)

The function returned successfully.

The field is already connected to a form.

System error.

An argument is incorrect.

The field is the current field.

The form is posted.

The form is not posted.

The field contents are invalid.

The field is not connected to a form.

The form does not fit in the subwindow.

The routine was called from an initiali-

zation or termination function.

The form driver request failed.
An unknown request was passed to the

the form driver.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

curses(3X), and 3X pages whose names begin "form_" for detailed routine descrip-

3-232

tions.

Licensed material—property of copyright holder(s) 093-701056

fpgetround(3C) DG/UX 5.4 fpgetround(3C)

NAME

fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetst-

icky — IEEE floating-point environment control

SYNOPSIS

#include <ieeefp.h>

fp_md fpgetround ();

fp_rnd fpsetround (rnd_dir)

fp_rnd rnd_dir;

fp_except fpgetmask ();

fp_except fpsetmask (mask)

fp_except mask;

fp_except fpgetsticky ();

fp_except fpsetsticky (sticky)

fp_except sticky;

DESCRIPTION

There are five floating-point exceptions: divide-by-zero, overflow, underflow, impre-

cise (inexact) result, and invalid operation. When a floating-point exception is .

detected, a trap (SIGFPE) occurs only when the corresponding mask bit is enabled.

Otherwise, the corresponding sticky bit is set and the standard IEEE-specified fixup

is performed on the result. These routines let the user control the behavior on

occurrence of any of these exceptions, as well as the rounding mode for floating-point

operations.

fpgetround returns the current rounding mode. fpsetround sets the rounding

mode and returns the previous rounding mode. The enumeration type fp_rnd

(defined in <ieeefp.h>) comprises the following rounding modes:

FP_RN /* round to nearest +/

FPRP —_= /* round to plus +/

FP_RM /x round to minus +/

FP_RZ /* round to zero (truncate) «/

fpgetmask returns the current exception masks.

fpsetmask sets the exception masks and returns the previous setting.

fpgetsticky returns the current exception sticky flags.

fpsetsticky sets (clears) the exception sticky flags and returns the previous setting.

The type fp_except is defined in <ieeefp.h>, along with the following exception

masks:

FP_X_INV /« invalid operation exception +/

FP_X_OFL /« overflow exception «/

FP_X_UFL /« underflow exception +«/

FP_X_DZ __/« divide-by-zero exception +/

FP_X_IMP /« imprecise (loss of precision) +/

The following defaults are in effect unless your program includes the file

<ieeefp.h>:

093-701056 Licensed material—property of copyright holder(s) 3-233

fpgetround(3C) DG/UX 5.4 fpgetround(3C)

Rounding mode set to nearest (FP_RN).

Divide-by-zero,

floating-point overflow, and

invalid operation traps enabled.

If your program includes the file <ieeefp.h>, all traps are disabled.

SEE ALSO

isnan(3C).

CAUTIONS

fpsetsticky modifies all sticky flags. fpsetmask changes all mask bits.

Both C and F77 require truncation (round to zero) for floating-point to integral

conversions. The rounding mode has no effect on these conversions.

The sticky bit is never set when the trap for the exception is enabled. As a result, it

is currently impossible to determine what IEEE floating-point exception occurred

from a C-coded signal handler.

3-234 Licensed material—property of copyright hoider(s) 093-701056

fread(3S) DG/UX 5.4 fread(3S)

NAME

fread, fwrite — binary input/output

SYNOPSIS

#include <stdio.h>

size_t fread (void «ptr, size_t size, size_t nitems, FILE «stream) ;

size_t fwrite (const void «ptr, size_t size, size_t nitems, FILE

stream);

DESCRIPTION

fread reads into an array pointed to by pir up to nitems items of data from stream,

where an item of data is a sequence of bytes (not necessarily terminated by a null

byte) of length size. fread stops reading bytes if an end-of-file or error condition is

encountered while reading stream, or if nitems items have been read. fread incre-

ments the data pointer in stream to point to the byte following the last byte read if

there is one. fread does not change the contents of stream. fread returns the

number of items read.

fwrite writes to the named output stream at most nitems items of data from the

array pointed to by ptr, where an item of data is a sequence of bytes (not necessarily

terminated by a null byte) of length size. fwrite stops writing when it has written

nitems items of data or if an error condition is encountered on stream. fwrite does

not change the contents of the array pointed to by ptr. fwrite increments the

data-pointer in stream by the number of bytes written. fwrite returns the number

of items written.

If size or nitems is zero, then fread and fwrite return a value of 0 and do not

effect the state of stream.

The ferror or feof routines must be used to distinguish between an error condi-

tion and end-of-file condition.

SEE ALSO

exit(2), lseek(2), read(2), write(2), abort(3C), fclose(3S), fopen(3S),

getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S), stdio(3S).

DIAGNOSTICS

If an error occurs, the error indicator for stream is set. If fread (fwrite) was

called with a stream that was not opened for reading (writing) then errno will be set to

EBADF.

093-701056 Licensed material—property of copyright holder(s) 3-235

frexp(3C) DG/UX 5.4 frexp(3C)

NAME

frexp, ldexp, logb, modf, modff, nextafter, scalb — manipulate parts of

floating-point numbers

SYNOPSIS |

#include <math.h>

double frexp (double value, int *eptr);

double ldexp (double value, int exp);

double logb (double value) ;

double nextafter (double valuel, double value2);

double scalb (double value, double exp); |

double modf (double value, double xiptr);

float modff (float value, float *iptr);

DESCRIPTION

Every non-zero number can be written uniquely as x * 2”, where the “mantissa” (frac-

tion) x is in the range 0.5 < |x| < 1.0, and the “exponent” n is an integer. frexp

returns the mantissa of a double value, and stores the exponent indirectly in the loca-

tion pointed to by eptr. If value is zero, both results returned by frexp are zero.

ldexp and scalb return the quantity value « 2°”. The only difference between the

two is that scalb of a signaling NaN will result in the invalid operation exception

being raised.

logb returns the unbiased exponent of its floating-point argument as a double-

precision floating-point value.

modf and modff (single-precision version) return the signed fractional part of value
and store the integral part indirectly in the location pointed to by iprr.

nextafter returns the next representable double-precision floating-point value fol-

lowing value in the direction of value2. Thus, if value2 is less than valuel,

nextafter returns the largest representable floating-point number less than valuel.

DIAGNOSTICS |

If 1ldexp would cause overflow, +HUGE (defined in math.h) is returned (according

to the sign of value), and errno is set to ERANGEETI . If ldexp would cause

underflow, zero is returned and errno is set to ERANGEETI . If the input value to

ldexp is NaN or infinity, that input is returned and errno is set to EDOMETI . The

same error conditions apply to scalb except that a signaling NaN as input will result

in the raising of the invalid operation exception.

logb of NaN returns that NaN, 1logb of infinity returns positive infinity, and logb

of zero returns negative infinity and results in the raising of the divide by zero excep-

tion. In each of these conditions errno is set to EDOMETI .

If input value] to nextafter is positive or negative infinity, that input is returned

and errno is set to EDOMETI . The overflow and inexact exceptions are signalled

when input value! is finite, but nextafter(valuel, value2) is not. The underflow

and inexact exceptions are signalled when nextafter(valuel, value2) lies strictly

between +27 '°*. In both cases errno is set to ERANGEETI .

When the program is compiled with the cc options -Xc or —Xa, HUGE_VAL is

returned instead of HUGE.

3-236 Licensed material—property of copyright hoider(s) 093-701056

frexp(3C) DG/UX 5.4 frexp(3C)

SEE ALSO

ec(1), intro(3M).

093-701056 Licensed material—property of copyright hoider(s) 3-237

fseek(3S) DG/UX 5.4 fseek(3S)

NAME

fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS:

#include <stdio.h>

int fseek (FILE «stream, long offset, int ptrname);

void rewind (FILE *stream) ;

long ftell (FILE *stream) ;

DESCRIPTION

fseek sets the position of the next input or output operation on the stream [see
intro(3)]. The new position is at the signed distance offset bytes from the beginning,

from the current position, or from the end of the file, according to a ptrname value of

SEEK SET, SEEK_CUR, or SEEK_END (defined in stdio.h) as follows:

SEEK_SET set position equal to offset bytes.

SEEK_CUR _ set position to current location plus offset.

SEEK_END set position to EOF plus offset.

fseek allows the file position indicator to be set beyond the end of the existing data

in the file. If data is later written at this point, subsequent reads of data in the gap

will return zero until data is actually ' written into the gap. fseek, by itself, does not

extend the size of the file.

rewind (stream) is equivalent to:

(void) fseek (stream, OL, SEEK_SET);

except that rewind also clears the error indicator on stream.

fseek and rewind clear the EOF indicator and undo any effects of ungetc on

stream. After fseek or rewind, the next operation on a file opened for update

may be either imput or output.

If stream is writable and buffered data has not been written to the underlying file,

fseek and rewind cause the unwritten data to be written to the file.

ftell returns the offset of the current byte relative to the beginning of the file asso-

ciated with the named stream.

SEE ALSO

lseek(2), write(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS

fseek returns —1 for improper seeks, otherwise zero. An 1 improper seek can be, for
example, an fseek done on a file that has not been opened via fopen; in particular, .

fseek may not be used on a terminal or on a file opened via popen. If the file has

not been opened, errno is set to EBADF along with a non-zero return value. After a

stream is closed, no further operations are defined on that stream.

NOTES

Although on the UNIX system an offset returned by ftell is measured in bytes, and

it is permissible to seek to positions relative to that offset, portability to non-UNIX -

systems requires that an offset be used by fseek directly. Arithmetic may not mean-

ingfully be performed on such an offset, which is not necessarily measured in bytes.

3-238 Licensed material—property of copyright holder(s) 093-701056

ftime(3C) DG/UX 5.4 ftime(3C)

NAME

ftime — get date and time

SYNOPSIS

#include <sys/types.h>

#include <sys/timeb.h>

int ftime (struct timeb *tp)

DESCRIPTION

This interface is obsoleted by gettimeofday(2).

ftime fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

/ *

* Structure returned by ftime system call

*/
struct timeb

{

time t time;

unsigned short millitm;

short timezone;

short dstflag;

};

The structure contains the time since 00:00:00 GMT, January 1, 1970 (in seconds) up
to 1000 milliseconds of more-precise interval, the local time zone (measured in
minutes of time westward from Greenwich), and a flag that, if nonzero, indicates that
Daylight Saving time applies locally during the appropriate part of the year.

SEE ALSO

date(1), gettimeofday(2), settimeofday(2), time(2), ctime(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-239

ftw(3C) DG/UX 5.4 ftw(3C)

NAME

ftw, nftw - walk a file tree

SYNOPSIS

#include <ftw.h»>

int ftw (const char «path, int (*fn) (const char +, const struct

stat *, int), int depth);

int nftw (const char *path, int (*fn) (const char *, const struct

stat *, int, struct FTWs), int depth, int flags);

DESCRIPTION

ftw recursively descends the directory hierarchy rooted in path. For each object in

the hierarchy, ftw calls the user-defined function fn, passing it a pointer to a null-

terminated character string containing the name of the object, a pointer toa stat

structure (see stat(2)) containing information about the object, and an integer. Pos-

sible values of the integer, defined in the ftw.h header file, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW DNR The object is a directory that cannot be read. Descendants of the direc-

tory will not be processed.

FTW_NS stat failed on the object because of lack of appropriate permission or

the object is a symbolic link that points to a non-existent file. The stat

buffer passed to fn is undefined.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fm returns a

nonzero value, or some error is detected within ftw (such as an I/O error). If the

tree is exhausted, ftw returns zero. If fn returns a nonzero value, ftw stops its tree

traversal and returns whatever value was returned by fn. If ftw detects an error

other than EACCES, it returns —1, and sets the error type in errno.

The function nftw is similar to ftw except that it takes an additional argument,

flags. The flags field is used to specify:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw will fol-

low links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

The function nftw calls fn with four arguments at each file and directory. The first

argument is the pathname of the object, the second is a pointer to the stat buffer,

the third is an integer giving additional information, and the fourth is a struct FTW

that contains the following members:

int base;

int level;

base is the offset into the pathname of the base name of the object. level indi-

cates the depth relative to the rest of the walk, where the root level is zero.

The values of the third argument are as follows:

3-240 Licensed material—property of copyright holder(s) 093-701056

ftw(3C) DG/UX 5.4 ftw(3C)

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited.

FIW_SLN The object is a symbolic link that points to a non-existent file.

FTW_DNR The object is a directory that cannot be read. fn will not be called for

any of its descendants.

FTW_NS stat failed on the object because of lack of appropriate permission.
The stat buffer passed to fn is undefined. stat failure other than lack
of appropriate permission (EACCES) is considered an error and nftw

will return -1.

Both ftw and nftw use one file descriptor for each level in the tree. The depth

argument limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. depth must not be greater than the number of
file descriptors currently available for use. ftw will run faster if depth is at least as
large as the number of levels in the tree. When ftw and nftw return, they close any

file descriptors they have opened; they do not close any file descriptors that may have

been opened by fn.

SEE ALSO

NOTES

093-701056

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault when

applied to very deep file structures.

ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is

forcibly terminated, such as by long jmp being executed by jn or an interrupt rou-

tine, ftw will not have a chance to free that storage, so it will remain permanently
allocated. A safe way to handle interrupts is to store the fact that an interrupt has

occurred, and arrange to have fn return a nonzero value at its next invocation.

Licensed material—property of copyright holder(s) 3-241

gamma(3M) DG/UX 5.4 gamma(3M)

NAME

gamma, lgamma — log gamma function

SYNOPSIS

ce [flag ...] file ... -1m [library ...]

#include <math.h>

double gamma (double x);

double lgamma (double X);

extern int signgam;

DESCRIPTION

gamma and lgamma return

In(| T(x) |)

where I(x) is defined as

oo

ferrdt
0

The sign of I(x) is returned in the external integer signgam. The argument x may

not be a non-positive integer.

The following C program fragment might be used to calculate I:

if ((y = gamma(x)) > LN_MAXDOUBLE)

error();

y = signgam + exp(y);

where LN _MAXDOUBLE is the least value that causes exp to return a range error, and

is defined in the values.h header file.

SEE ALSO

exp(3M), matherr(3M), values(5).

DIAGNOSTICS

For non-positive integer arguments HUGE is returned and errno is set to EDOM. A

message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma and lgamma return HUGE and set errno

to ERANGE.

Except when the -—Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the -Xa or —Xc compilation

options are used, HUGE_VAL is returned instead of HUGE and no error messages are

printed.

3-242 Licensed material—property of copyright holder(s) 093-701056

getc(3S) DG/UX 5.4 getc(3S)

NAME

getc, getchar, fgetc, getw — get character or word from a stream

SYNOPSIS

#include <stdio.h>

int getc (FILE «*stream);

int getchar (void);

int fgetc (FILE *stream) ;

int getw (FILE *stream) ;

DESCRIPTION

getc returns the next character (i.e., byte) from the named input stream [see

intro(3)] as an unsigned char converted to an int. It also moves the file

pointer, if defined, ahead one character in stream. getchar is defined as

getc(stdin). getc and getchar are macros.

fgetc behaves like getc, but is a function rather than a macro. fgetc runs more

slowly than getc, but it takes less space per invocation and its name can be passed

as an argument to a function.

getw returns the next word (i.e., integer) from the named input stream. getw incre-

ments the associated file pointer, if defined, to point to the next word. The size of a

word is the size of an integer and varies from machine to machine. getw assumes

no special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),

scanf(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error and set the

EOF or error indicator of stream, respectively. If the stream was not open for read-

ing, errno will be set to EBADF. Because EOF is a valid integer, ferror should be

used to detect getw errors.

NOTES

If the integer value returned by getc, getchar, or fgetc is stored into a character

variable and then compared against the integer constant EOF, the comparison may

never succeed, because sign-extension of a character on widening to integer is imple-

mentation dependent.

The macro version of getc evaluates a stream argument more than once and may

treat side effects incorrectly. In particular, getc(+«f++) does not work sensibly.

Use fgetc instead.

Because of possible differences in word length and byte ordering, files written using —

putw are implementation dependent, and may not be read using getw on a different

processor.

Functions exist for all the above-defined macros. To get the function form, the

macro name must be undefined (e.g., #undef getc).

093-701056 Licensed material—property of copyright holder(s) 3-243

getewd(3C) DG/UX 5.4 getewd(3C)

NAME

getcwd - get pathname of current working directory

SYNOPSIS

#include <unistd.h>

char *getcwd (char «buf, int size);

DESCRIPTION

getcwd returms a pomter to the current directory pathname. The value of size must
be at least one greater than the length of the pathname to be returned.

If buf is not NULL, the pathname will be stored in the space pointed to by buf.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C).
In this case, the pointer returned by getcwd may be used as the argument in a subse-
quent call to free.

getcwd will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL size is less than or equal to 0.

ERANGE size is greater than 0 and less than the length of the pathname plus 1.

EXAMPLE

| Here is a program that prints the current working directory.

#include <unistd.h>

#include <stdio.h>

main()

{

char s*cwd; |

if ((cwd = getcwd(NULL, 64)) == NULL)

{

perror("pwd") ;

exit(2);

}

(void)printf("%s\n", cwd);

return(0);

}

DIAGNOSTICS

Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function. |

SEE ALSO

getwd(3C), malloc(3C).

3-244 Licensed material—property of copyright hoider(s) 093-701056

getdate(3C) DG/UX 5.4 getdate(3C)

NAME

getdate, getdate_err — convert user format date and time

SYNOPSIS

#include <time.h>

struct tm «getdate (const char *string);

extern int getdate _err;

DESCRIPTION

getdate converts user-definable date and/or time specifications pointed to by string

into a tm structure. The structure declaration is in the time.h header file [see also

ctime(3C)].

User-supplied templates are used to parse and interpret the input string. The tem-
plates are text files created by the user and identified via the environment variable

DATEMSK. Each line in the template represents an acceptable date and/or time specif-

ication using some of the same field descriptors as the ones used by the date com-
mand. The first line in the template that matches the input specification is used for

interpretation and conversion into the internal time format. If successful, the func-

tion getdate returns a pointer to a tm structure; otherwise, it returns NULL and
sets the global variable getdate_err to indicate the error.

The following field descriptors are supported:

%% same as %

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

tc locale’s appropriate date and time representation

$d day of month (01-31; the leading 0 is optional)

te sameas %d

%D date as %m/%d/ty

%h abbreviated month name

H hour (00-23)

I hour (01-12)

%m month number (01-12)

$M minute (00-59)

$n same as \n

%p locale’s equivalent of either AM or PM

tr time as $1:%M:%S %p

tR time as %H:%3M

%S seconds (00-59)

$t imsert a tab

$T time as %H:%M:%S

sw weekday number (0-6; Sunday = 0)

%x locale’s appropriate date representation

%X locale’s appropriate time representation

%y year with century (00-99)

$Y year as ccyy (e.g., 1986)

%Z time zone name or no characters if no time zone exists

The month and weekday names can consist of any combination of upper and lower

case letters. The user can request that the input date or time specification be in a

093-701056 Licensed material—property of copyright holder(s) 3-245

getdate(3C) DG/UX 5.4 getdate(3SC)

specific language by setting the categories LC_TIME and LC_CTYPE of setlocale.

The following example shows the possible contents of a template:

$m |

%*A %B td &Y, tH: 3M:%S

tA

%B

$m/%d/sy %I %p

$d,%m,%Y %H:%M

at %*A the %dst of %B in %Y

run job at %I tp,%B %tdnd

%A den %d. %*B %Y t*H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("10/1/87 4 PM")

getdate("Friday")

getdate("Friday September 19 1987, 10:30:30")

getdate("24,9,1986 10:30")

getdate("at monday the lst of december in 1986")

getdate("run job at 3 PM, december %2nd")

If the LANG environment variable is set to german, the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show
how local date and time specification can be defined in the template.

Invocation Line in Template

getdate("11/27/86") $m/%d/sy

getdate("27.11.86") $d.%m.%y

getdate("86-11-27") sy—-%tm-3d

getdate("Friday 12:00:00") | %A %H:%M:%S

The following rules are applied for converting the input specification into the internal

format:

If only the weekday is given, today is assumed if the given day is equal to the

current day and next week if it is less.

If only the month is given, the current month is assumed if the given month is

equal to the current month and next year if it is less and no year Is given.

(The first day of month is assumed if no day is given.)

If no hour, minute, and second are given, the current hour, minute, and

second are assumed.

If no date is given, today is assumed if the given hour is greater than the

current hour and tomorrow is assumed if it is less.

The following examples illustrate the above rules. Assume that the current date is

Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable is not set.

3-246 Licensed material—property of copyright holder(s) 093-701056

getdate(SC) DG/UX 5.4 getdate(3C)

Input Line in Template Date

Mon $a Mon Sep 22 12:19:48 EDT 1986

Sun $a Sun Sep 28 12:19:49 EDT 1986

Fri %a Fri Sep 26 12:19:49 EDT 1986

September $B Mon Sep 1 12:19:49 EDT 1986

January $B Thu Jan 1 12:19:49 EST 1987

December &B Mon Dec 1 12:19:49 EST 1986

Sep Mon tb ta Mon Sep 1 12:19:50 EDT 1986

Jan Fri tbh ta Fri Jan 2 12:19:50 EST 1987

Dec Mon tb ta Mon Dec 1 12:19:50 EST 1986

Jan Wed 1989 | &b %a %Y Wed Jan 4 12:19:51 EST 1989

Fri 9 $a %H Fri Sep 26 09:00:00 EDT 1986

Feb 10:30 tb tH:%S Sun Feb 1 10:00:30 EST 1987

10:30 SH: $M Tue Sep 23 10:30:00 EDT 1986

13:30 $H: $M Mon Sep 22 13:30:00 EDT 1986

FILES

/usr/lib/locale/locale/LC_TIME language specific printable files

/usr/lib/locale/locale/LC_CTYPE code set specific printable files

DIAGNOSTICS

On failure getdate returns NULL and sets the variable getdate_err to indicate

the error.

The following is a complete list of the getdate_err settings and their meanings.

The DATEMSK environment variable is null or undefined.

The template file cannot be opened for reading.

Failed to get file status information. _

The template file is not a regular file.

An error is encountered while reading the template file.

malloc failed (not enough memory is available).

There is no line in the template that matches the input.oO nr HD WM fF WwW NY FF The input specification is invalid (e.g., February 31).

SEE ALSO

setlocale(3C), ctype(3C), environ(5).

NOTES

Subsequent calls to getdate alter the contents of getdate_err.

Dates before 1970 and after 2037 are illegal.

getdate makes explicit use of macros described in ctype(3C).

093-701056 Licensed material—property of copyright holder(s) 3-247

getenv(3C) DG/UX 5.4 getenv(3C)

NAME

getenv — return value for environment name

SYNOPSIS

#include <stdlib.h>

char *«getenv (const char ¢name);

DESCRIPTION

getenv searches the environment list [see environ(5)] for a string of the form
name=value and, if the string is present, returns a pointer to the value in the current
environment. Otherwise, it returns a null pointer.

SEE ALSO

exec(2), putenv(3C), environ(5).

3-248 Licensed material—property of copyright hoider(s) 093-701056

getfsent(3C) DG/UX 5.4 getfsent(SC)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent — get

filesystem descriptor file entry

SYNOPSIS

#include <fstab.h>

struct fstab *getfsent(void)

struct fstab *getfsspec(char *spec)

struct fstab *getfsfile(char *file)

struct fstab *getfstype(char *type)

int setfsent(void)

int endfsent(void)

DESCRIPTION

FILES

These routines are included for compatibility with earlier revisions of the DG/UX

System. They have been superseded by the getmntent(3C) library routines.

getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an

object with the following structure containing the broken-out fields of a line in the

filesystem description file,

< fstab.h >.

struct fstab{

char *fs_spec;

char *fs file;

char *fs_type;

int fs_freq;

int fs_passno;

};

The fields have meanings described in fstab(4). Note that new fs_type definition

strings have been added to these functions and to the <fstab.h> file to describe

NFS remote file systems. |

getfsent reads the next line of the file, opening the file if necessary.

setfsent opens and rewinds the file.

endfsent closes the file.

getfsspec and getfsfile sequentially search from the beginning of the file until a

matching special file name or filesystem file name is found, or until EOF is encoun-

tered. getfstype does likewise, matching on the filesystem type field.

/etc/fstab

RETURN VALUE

Null pointer (0) returned on EOF or error.

SEE ALSO

fstab(4).

CAVEAT

093-701056

The return value points to static information which is overwritten in each call.

Licensed material—property of copyright holder(s) 3-249

getgrent(3C) -DG/UX 5.4 getgrent(3C)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent -— get

group file entry

SYNOPSIS

#include <grp.h>

struct group *getgrent(void)

struct group *getgrgid(gid_t gid)

struct group *getgrnam(const char *name)

void setgrent(void)

void endgrent (void)

struct group *fgetgrent(FILE *f)

DESCRIPTION
getgrent, getgrgid, and getgrnam each return pointers to an object with the fol-

lowing structure containing the broken-out fields of a line in the group file.

structgroup [{

char *grname;

char *gr_passwd;

gid_t grgid;
char **gr_ynem;

};

The members of this structure are:

gr.name The name of the group.

gr_passwad The encrypted password of the group.

gr_gid The numerical group-ID.

gr_mem Null-terminated vector of pointers to the individual member names.

getgrent simply reads the next line while getgrgid and getgrnam search until a

matching gid or name is found (or until EOF is encountered). Each routine picks up

where the others leave off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated

searches. endgrent may be called to close the group file when processing is com-

plete.

fgetgrent returns a pointer to the next group structure in the stream f, which must

refer to an open file in the same format as the group file /etc/group.

FILES

/etc/group

DIAGNOSTICS

A null pointer (0) is returned on EOF or error.

SEE ALSO

bes _cat(1M), getlogin(3C), getpwent(3C), group(5), ypserv(8).

BUGS

All information is contained in a static area, so it must be copied if it is to be saved.

STANDARDS

When using m88kbcs as the Software Development Environment target, the

3-250 Licensed material-—property of copyright hoider(s) 093-701056

getgrent(SC) DG/UX 5.4 getgrent(SC)

functions mentioned above will be implemented on top of the bes_cat command.

Because of this, some performance degradation may be noticed in comparison to

using these routines in /lib/libc.a.

093-701056 Licensed material—property of copyright holder(s) 3-251

gethostent(SN) DG/UX 5.4 gethostent(3N)

NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent —

get network host entry

SYNOPSIS

#include <netdb.h>

struct hostent *gethostent()

struct hostent *gethostbyname(name)

char *name;

struct hostent *gethostbyaddr(addr, len, type)

char *addr; int len, type;

sethostent (stayopen)

int stayopen

endhostent()

DESCRIPTION

3-252

gethostent, gethostbyname, and gethostbyaddr each return a pointer to an

object with the following structure describing an Internet host referenced by name or

by address, respectively. This structure contains either the information obtained from

the name server, named(8), YP (see Managing NFS and Its Facilities on the DG/UX

System), or broken-out fields from a line in /etc/hosts. gethostbyname and

gethostbyaddr read the /etc/svcorder file to determine which host/name

address resolution method to use. If /etc/svcorder does not exist or has invalid

data, the default order is YP, /etc/hosts, then the name server.

struct hostent [{

char *h name; /* official name of host */

char *xh aliases; 7/* alias list */

int h_addrtype; /* host address type */

int h_ length; /* length of address */

char **h_ addr list; /* list of address from the name server */

};

#define h_addr h_addr_list{0] /* address for backward

compatibility */

The members of this structure are: |

h_name

Official name of the host.

h_ aliases

A zero-terminated array of alternate names for the host.

h_addrtype

The type of address being returned; currently always AF_INET.

h_length

The length, in bytes, of the address.

h_ addr list

A zero-terminated array of network addresses for the host. Host addresses

are returned in network byte order.

h_addr |
The first address in h_addr_list; this is for backward compatibility.

Licensed material—property of copyright holder(s) 093-701056

gethostent(3N) DG/UX 5.4 gethostent(3N)

When using the name server, gethostbyname will search for the named host in the

current domain and its parents unless the name ends in a dot. See hostname(7) for

the domain search procedure and the alias file format.

Sethostent may be used to request the use of a connected TCP socket for queries.

If the stayopen flag is non-zero, this sets the option to send all queries to the name

server using TCP and to retain the connection after each call to gethostbyname or

gethostbyaddr. Otherwise, queries are performed using UDP datagrams.

gethostent reads the next line of /etc/hosts, opening the file if necessary.

Sethostent is redefined to open and rewind the file. If the stayopen argument is

non-zero, the hosts database will not be closed after each call to gethostbyname or

gethostbyaddr. Endhostent is redefined to close the file.

If your system is using Network Information Services (NIS), you may need to see

Managing NFS and Its Facilities on the DG/UX System for information on how to

update the /etc/hosts file.

DIAGNOSTICS

FILES

Error return status from gethostbyname and gethostbyaddr is indicated by

return of a null pointer. The external integer h_errno may then be checked to see

whether this is a temporary failure or an invalid or unknown host. The routine her-

ror can be used to print an error message describing the failure. If its argument

string is non-NULL, it is printed, followed by a colon and a space. The error mes-

sage is printed with a trailing newline.

h_errno can have the following values:

HOST_NOT_FOUND

No such host is known.

TRY_AGAIN

This is usually a temporary error and means that the local server did not

receive a response from an authoritative server. A retry at some later time

may succeed.

NO_RECOVERY

Some unexpected server failure was encountered. This is a non-recoverable

‘error. :

NO_DATA

The requested name is valid but does not have an IP address; this is not a

temporary error. This means that the name is known to the name server but

there is no address associated with this name. Another type of request to the

name server using this domain name will result in an answer; for example, a

mail-forwarder may be registered for this domain.

Null pointer (0) returned on EOF or error.

/etc/hosts, /etc/svcorder

SEE ALSO

BUGS

093-701056

hosts(4).

All information is contained in a static area, so you must copy it if you want to save

it. Only the Internet address format is currently understood.

Licensed material—property of copyright holder(s) 3-253

getiogin(SC) DG/UX 5.4 getlogin(3C)

NAME

getlogin — get login name

SYNOPSIS

#include <stdlib.h>

char *getlogin (void);

DESCRIPTION

getlogin returns a pointer to the login name as found in /etc/utmp. It may be

used in conjunction with getpwnam to locate the correct password file entry when

the same user id is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a

null pointer. This is the case for processes started at the system console. The

correct procedure for determining the login name is to call cuserid, or to call get-

login and if it fails to call getpwuid.

FILES

/etc/utmp

SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

Returns a null pointer if the login name is not found.

NOTES

The return values point to static data whose content is overwritten by each call.

3-254 Licensed material—property of copyright holder(s) 093-701056

getmntent(3C) DG/UX 5.4 getmntent(3C)

NAME

getmntent, setmntent, addmntent, endmntent, hasmntopt — get file system

descriptor file entry

SYNOPSIS

#include <stdio.h>

#include <mntent.h>

FILE *setmntent(char *filep, char *type)

“struct mntent *vetmntent(FILE *filep)

int addmntent(FILE “*filep, struct mntent *mnt)

char *hasmntopt(struct mntent *mnt, char *opt)

int endmntent(FILE *filep)

DESCRIPTION

These routines replace the getfsent routines for accessing the file system descrip-

tion file /etc/fstab. They are also used to access the mounted file system descrip-

tion file /etc/mnttab.

setmntent opens a file system description file and returns a file pointer which can

then be used with getmntent, addmntent, or endmntent. The type argument is

the same as in fopen(3S). getmntent reads the next line from filep and returns a

pointer to an object with the following structure containing the broken-out fields of a

line in the filesystem description file, <mntent.h>. The fields have meanings

described in fstab(4).

struct mntent {

char *mnt fsname; /* file system name */

char xmnt_dir; /* file system path prefix */

char *mnt_type; /* 4.2, nfs, swap, or xx */

char *mnt_opts; /* ro, quota, etc. */

int mnt freq; /* dump frequency, in days */

int mnt_passno; /* pass number on parallel fsck */

};

addmntent adds the mntent structure mnt to the end of the open file filep.

addmntent returns 0 on success. Note: filep has to be opened for writing if this is

to work. hasmntopt scans the mnt_opts field of the mntent structure mnt for a

substring that matches opt. It returns the address of the substring if a match is

found, 0 otherwise. endmntent closes the file.

FILES

/etc/fstab_

fetc/mnttab

DIAGNOSTICS

NULL pointer (0) returned on EOF or error.

SEE ALSO

fopen(3S), getfsent(3), fstab(4), mnttab(4).

BUGS

The returned mntent structure points to static information that is overwritten in

each call.

093-701056 Licensed material—property of copyright holder(s) 3-255

| getnetconfig(3N) DG/UX 5.4 getnetconfig(SN)

NAME

getnetconfig — get network configuration database entry

SYNOPSIS

#include <netconfig.h>

void *

setnetconfig()

struct netconfig *

getnetconfig(handlep)

void * handlep

int

endnetconfig(handlep)

void * handlep

struct netconfig *

getnetconfigent(netid)

char * netid ;

int

freenetconfigent(netconfigp)

struct netconfig * netconfigp ;

DESCRIPTION

The five library routines described on this page are part of the UNIX System V Net-
work Selection component. They provide application access to the system network

configuration database, /etc/netconfig. In addition to the netconfig database

and the routines for accessing it, Network Selection includes the environment variable

NETPATH (see environ(5)) and the NETPATH access routines described in

getnetpath(3N).

A call to setnetconfig() has the effect of “binding” or “rewinding” the netcon-

fig database. setnetconfig() must be called before the first call to get-

netconfig() and may be called at any other time. setnetconfig() need not be

called before a call to getnetconfigent(). setnetconfig() returns a unique

handle to be used by getnetconfig().

When first called, getnetconfig() returns a pointer to the current entry in the

netconfig database, formatted asa struct netconfig. getnetconfig() can

thus be used to search the entire netconfig file. getnetconfig() returns NULL

at end of file.

endnetconfig() should be called when processing is complete to release resources

for reuse. Programmers should be aware, however, that the last call to endnetcon-

fig() frees all memory allocated by getnetconfig() for the struct netconfig

data structure. endnetconfig() may not be called before setnetconfig().

endnetconfig() returns 0 on success and -1 on failure (e.g., if setnetconfig()

was not called previously).

getnetconfigent(netid) returns a pointer to the struct netconfig structure

corresponding to netid. It returns NULL if nefid is invalid (i.e., does not name an

entry in the netconfig database). It returns NULL and sets errno in case of failure

(e.g., if setnetconfig() was not called previously).

freenetconfigent (netconfigp) frees the netconfig structure pointed to by netcon-

figp (previously returned by getnetconfigent()).

3-256 Licensed material—property of copyright hoider(s) 093-701056

getnetconfig(3N) DG/UX 5.4 getnetconfig(3N)

SEE ALSO | |

netconfig(4), getnetpath(3N), environ(5)

Network Programmer’s Guide

System Administrator’s Guide

093-701056 Licensed material—property of copyright holder(s) 3-257

getnetent(3N) DG/UX 5.4 getnetent(SN)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get net-

work entry

SYNOPSIS

#include <netdb.h>

struct netent *getnetent()

struct netent *getnetbyname(name)

char *name;

struct netent *getnetbyaddr(net, type)

long net;

int type;

setnetent(stayopen)

int stayopen;

endnetent()

DESCRIPTION

FILES

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object

with the following structure containing the broken-out fields of a line in the network

data base, /etc/networks.

struct netent {

char *n_name; /* official name of net */

char **y aliases; /* alias list */

int n_addrtype; /* net number type */

unsigned long n_net; /* net number */

}5

The members of this structure are:

n_name The official name of the network.

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in machine byte

order.

getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data

base will not be closed after each call to getnetbyname or getnetbyaddr.

Endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of the

file until a matching net name or net address and type is found, or until EOF is

encountered. Network numbers are supplied in host order.

/etc/networks

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

SEE ALSO

3-258

networks(5), ypserv(8).

Licensed material—property of copyright holder(s) 093-701056

getnetent(SN) DG/UX 5.4 getnetent(3N)

BUGS

All information is contained in a static area so it must be copied if it is to be saved.

Only Internet network numbers are currently understood. Expecting network

numbers to fit in no more than 32 bits is probably naive.

093-701056 Licensed material—property of copyright holder(s) 3-259

getnetgrent(3N) DG/UX 5.4 getnetgrent(3N)

NAME

getnetgrent, setnetgrent, endnetgrent, innetgr — get network group entry

SYNOPSIS

innetgr(netgroup, machine, user, domain)

char *netgroup, *machine, *user, *domain;

setnetgrent (nelgroup) -

char *netgroup

endnetgrent()

getnetgrent(machinep, userp, domainp)

char **machinep, **userp, **domainp;

DESCRIPTION

inngetgr returns 1 or 0, depending on whether netgroup contains the machine, user,

domain triple as a member. Any of the three strings machine, user, or domain can

be NULL, in which case it signifies a wild card.

getnetgrent() returns the next member of a network group. After the call,

machinep will contain a pointer to a string containing the name of the machine part of

the network group member, and similarly for userp and domainp. If any of

machinep , userp or domainp is returned as a NULL pointer, it signifies a wild card.

getnetgrent() will use malloc(3C) to allocate space for the name. This space is

released when a endnetgrent() callis made. getnetgrent() returns 1 if it

succeeding in obtaining another member of the network group, 0 if it has reached the

end of the group.

getnetgrent() establishes the network group from which getnetgrent() will

obtain members, and also restarts calls to getnetgrent() from the beginning of

the list. If the previous setnetgrent() call was to a different network group, a

endnetgrent() call is implied. endnetgrent() frees the space allocated during

the getnetgrent() calls.

FILES

/etc/netgroup

SEE ALSO

malloc(3C).

3-260 Licensed materlal—property of copyright holder(s) 093-701056

getnetpath(SN) DG/UX 5.4 getnetpath(3N)

NAME

getnetpath — get /etc/netconfig entry corresponding to NETPATH component

SYNOPSIS

#include <netconfig.h>

void *

setnetpath()

struct netconfig *

getnetpath(handlep) ;

void * handlep;

int

endnetpath(handlep) ;

void * handlep;

DESCRIPTION

The three routines described on this page are part of the UNIX System V Network

Selection component. They provide application access to the system network confi-

guration database, /etc/netconfig, as it is “filtered” by the NETPATH environ-

ment variable (see environ(5)). Network Selection also includes routines that

access the network configuration database directly (see getnetconfig(3N)).

A call to setnetpath() “binds” or “rewinds’” NETPATH. setnetpath() must be

called before the first call to getnetpath() and may be called at any other time. It

returns a handle that is used by getnetpath. setnetpath() will fail if the

netconfig database is not present. If NETPATH is unset, setnetpath() returns

the number of “visible” networks in the netconfig file. The set of visible networks

constitutes a default NETPATH.

When first called, getnetpath() returns a pointer to the netconfig database

entry corresponding to the first valid NETPATH component. The netconfig entry is

formatted as a struct netconfig. On each subsequent call, getnetpath returns

a pointer to the netconfig entry that corresponds to the next valid NETPATH com-

ponent. getnetpath() can thus be used to search the netconfig database for all

networks included in the NETPATH variable. When NETPATH has been exhausted,

getnetpath() returns NULL.

getnetpath() silently ignores invalid NETPATH components. A NETPATH com-

ponent is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath() behaves as if NETPATH were set to

the sequence of “default’’ or “visible” networks in the netconfig database, in the

order in which they are listed.

endnetpath() may be called to “unbind” NETPATH when processing is complete,

releasing resources for reuse. Programmer’s should be aware, however, that endnet-

path() frees all memory allocated by setnetpath(). endnetpath() returns 0

on success and -1 on failure (e.g., if setnetpath() was not called previously).

SEE ALSO

netconfig(4), getnetconfig(3N), environ(5)

Network Programmer’s Guide

System Administrator’s Guide

093-701056 Licensed material—property of copyright holders) 3-261

getopt(3C) DG/UX 5.4 getopt(SC)

NAME

getopt — get option letter from argument vector

SYNOPSIS

#include <stdlib.h>

int getopt (int argc, char * const *argv, const char x*optstring);

extern char +optarg;

extern int optind, opterr, optopt;

DESCRIPTION

getopt returns the next option letter in argv that matches a letter in optstring. It

supports all the rules of the command syntax standard [see intro(1)].

optstring must contain the option letters the command using getopt will recognize;

if a letter is followed by a colon, the option is expected to have an argument, or

group of arguments, which may be separated from it by white space. optarg is set to

point to the start of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be processed. optind

is external and is initialized to 1 before the first call to getopt. When all options

have been processed (i.e., up to the first non-option argument), getopt returns

EOF. The special option ‘“--” (two hyphens) may be used to delimit the end of the

options; when it is encountered, EOF is returned and “‘——”’ is skipped. This is useful

in delimiting non-option arguments that begin with ‘“‘—’’ (hyphen).

EXAMPLE

3-262

The following code fragment shows how one might process the arguments for a com-

mand that can take the mutually exclusive options a and b, and the option o, which

requires an argument:

#include <stdlib.h>

#finclude <stdio.h>

main (int argc, char +*xargv)

{

int c;

extern char *optarg;

extern int optind;

int aflg = 0;

int bflg = 0;

int errflg = 0;

char *ofile = NULL;

while ((c = getopt(arge, argv, "abo:")) != EOF)

switch (c) {

case ‘a’:

if (bflg)

errflgt+;

else

aflgt+;

break;

case ‘b’:

if (aflg)

Licensed material—property of copyright holder(s) 093-701056

getopt(3C) DG/UX 5.4 getopt(3C)

errflgtt+;

else

bflgt+;

break;

case ’o’:

ofile = optarg;

(void)printf("ofile = %s\n", ofile);

break;

case '?!:

errflgt+;

}

if (errflg) {

(void)fprintf(stderr,

“usage: cmd [-al-b] [-ofile] files...\n");

exit (2);

}
for (; optind < argc; optind++)

(void)printf("%s\n", argv[optind]);

return 0;

}

DIAGNOSTICS |

getopt prints an error message on the standard error and returns a “?” (question

mark) when it encounters an option letter not included in optstring or no argument

_ after an option that expects one. This error message may be disabled by setting

opterr to 0. The value of the character that caused the error is in optopt.

SEE ALSO

getsubopt(3C).

getopts(1), intro(1) in the User’s Reference Manual.

NOTES :

The library routine getopt does not fully check for mandatory arguments. That is,

given an option string a:b and the input -a —b, getopt assumes that —b is the

mandatory argument to the option —a and not that —a is missing a mandatory argu-

ment.

It is a violation of the command syntax standard [see intro(1)] for options with

arguments to be grouped with other options, as in cmd -aboxxx file, where a

and b are options, o is an option that requires an argument, and xxx is the argu-

ment to o. Although this syntax is permitted in the current implementation, it should

not be used because it may not be supported in future releases. The correct syntax is

cmd -ab -oxxx file.

Changing the value of the variable optind, or calling getopt with different values of

argv, may lead to unexpected results.

093-701056 Licensed material—property of copyright hoider(s) 3-263

getpass(3C) DG/UX 5.4 getpass(3C)

NAME

getpass — read a password

SYNOPSIS

#include <stdlib.h>

char *getpass (const char *prompt);

DESCRIPTION

getpass reads up to a newline or EOF from the file /dev/tty, after prompting on

the standard error output with the null-terminated string prompt and disabling echo-

ing. A pointer is returned to a null-terminated string of at most 8 characters. If

/dev/tty cannot be opened, a null pointer is returned. An interrupt will terminate

input and send an interrupt signal to the calling program before returning.

FILES

/dev/tty

SEE ALSO

getpwent(3C), passwd(4).

NOTE

The return value points to static data whose content is overwritten by each call.

3-264 Licensed material—property of copyright holder(s) 093-701056

getprotoent(3N) DG/UX 5.4 getprotoent(3N)

NAME

getprotoent, getprotobynumber, getprotobyname, setprotoent, endpro-

toent — get protocol entry

SYNOPSIS

#include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)

char *name;

struct protoent *getprotobynumber (proto)

int proto;

setprotoent(stayopen)

int stayopen

endprotoent()

DESCRIPTION

getprotoent, getprotobyname, and getprotobynumber each return a pointer

to an object with the following structure containing the broken-out fields of a line in

the network protocol data base, /etc/protocols.

struct protoent {

char *p_name; /* official name of protocol */

char **p_aliases; /* alias list */

int p_proto; /* protocol number */

}s

The members of this structure are:

pname The official name of the protocol.

paliases A zero terminated list of alternate names for the protocol.

p-proto The protocol number.

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net

data base will not be closed after each call to getprotobyname or getproto-

bynumber.

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning

of the file until a matching protocol name or protocol number is found, or until EOF

is encountered.

FILES

/etc/protocols

SEE ALSO

protocols(5), ypserv(8).

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

BUGS
|

All information is contained in a static area, so it must be copied if it is to be saved.

Only the Internet protocols are currently understood.

093-701056 Licensed materiai—property of copyright hoilder(s) 3-265

getpw(3C) . DG/UX 5.4 getpw(3C)

NAME

getpw — get name from UID

SYNOPSIS

#include <stdio.h>

int getpw (uid_t uid, char *buf);

DESCRIPTION

getpw goes through three steps:

1. Search the password file for a user id number that equals uid.

2. Copy the line of the password file in which uid was found into the array pointed

to by buf.

3. Return 0.

getpw returns non-zero if uid cannot be found.

Do not use this routine in new programs; it is included only for compatibility with

prior systems. See getpwent(3C) for routines to use instead.

FILES

/etc/passwd

DIAGNOSTICS

getpw returns non-zero on error.

SEE ALSO

getpwent(3C) :

passwd(4) in the System Manager’s Reference for the DG/UX System.

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs

that don’t otherwise use standard I/O.

3-266 Licensed material—property of copyright hoider(s) 093-701056

getpwent(3C) DG/UX 5.4 getpwent(SC)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile,

fgetpwent — manipulate password file entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwnam(const char *name);

struct passwd *getpwent(void);

setpwent(void);

endpwent(void);

setpwfile(char *name);

struct passwd *fgetpwent(FILE *f);

DESCRIPTION

getpwent, getpwuid and getpwnam each return a pointer to an object with the

following structure containing the broken-out fields of a line in the password stream.

The password stream consists of the /etc/passwd file and optionally the Network

Information Services (NIS) password database.

struct passwd {

char *pw_name;

char *pw_passwd;

uid_t pw_uid;

gid t pw gid;
char *pw_age;

char *pw comment;

char *pw_gecos;

char *pw_dir;

char *pw_shell;

}5

struct comment {

char ‘*c_dept;

char *c_name;

char *c_acct;

char *c_bin;

};

The pw_comment field is not used; the others have meanings described in passwd(5).

setpwent opens the database; endpwent closes it. getpwuid and getpwnam

search the database (opening it if necessary) for a matching uid or name. EOF is

returned if there is no entry.

For programs wishing to read the entire database, getpwent reads the next line

(opening the database if necessary). In addition to opening the database, setpwent

can be used to make getpwent begin its search from the beginning of the database.

setpwfile changes the default password file to name thus allowing alternate pass-

word files to be used. Note that it does not close the previous file. If this is desired,

endpwent should be called prior to it.

093-701056 Licensed material—property of copyright holder(s) 3-267

getpwent(3C) DG/UX 5.4 getpwent(3sC)

fgetpwent returns a pointer to the next passwd structure in the stream f, which

matches the format of the password file /etc/passwd.

FILES

/etc/passwd

DIAGNOSTICS

The routines getpwent, getpwuid, getpwnam, and fgetpwent, return a null

pointer (0) on EOF or error.

SEE ALSO

getlogin(3C), getgrent(3C), passwd(5), ypserv(8).

BUGS

All information is contained in a static area, so it must be copied if it is to be saved.

STANDARDS

When using m88kbcs as the Software Development Environment target, the func-

tions mentioned above will be implemented on top of the bes_cat command.

Because of this, some performance degradation may be noticed in comparison to

using these routines in /lib/libc.a.

3-268 Licensed material—property of copyright holder(s) 093-701056

getrpcent(3N) DG/UX 5.4 getrpcent(3N)

NAME

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, endrpcent - get

RPC entry

SYNOPSIS

#include <netdb.h>

struct rpcent *getrpcent()

struct rpcent *getrpcbyname(name)

char *name;

struct rpcent *getrpcbynumber (number)

int number;

setrpcent (stayopen)

int stayopen

endrpcent ()

DESCRIPTION

FILES

getrpcent, getrpcbyname, and getrpcbynumber each return a pointer to an

object with the following structure containing the broken-out fields of a line in the rpc

program number data base, /etc/rpc.

structrpcent { ,

char *r_name; /* name of server for this rpc program */

char **r_aliases;/* alias list */

long r_number; /* rpc program number */

};

The members of this structure are:

r_name The name of the server for this rpc program.

r_aliases A zero terminated list of alternate names for the rpc

program.

r_number The rpc program number for this service.

getrpcent reads the next line of the file, opening the file if necessary.

getrpcent opens and rewinds the file. If the stayopen flag is non-zero, the net data

base will not be closed after each call to getrpcent (either directly, or indirectly

through one of the other getrpc calls).

endrpcent closes the file.

getrpcbyname and getrpcbynumber sequentially search from the beginning of the

file until a matching rpc program name or program number is found, or until end-of-

file is encountered.

/etc/rpe

/var/yp/domainname/rpc.bynumber

SEE ALSO

rpc(5), rpcinfo(8), ypservices(8).

DIAGNOSTICS

BUGS

093-701056

A NULL pointer is returned on end-of-file or error.

All information is contained in a static area so it must be copied if it is to be saved.

Licensed material—property of copyright hoider(s) 3-269

getrpeport(3R) DG/UX §.4 getrpeport(3R)

NAME

getrpceport — get RPC port number

SYNOPSIS

int getrpcport (host, prognum, versnum, proto)

char *host;

int prognum, versnum, proto;

DESCRIPTION |

getrpcport returns the port number for version versnum of the RPC program prog-

num running on host and using protocol proto. It returns 0 if it cannot contact the

portmapper, or if prognum is not registered. If prognum is registered but not with

version versnum, it will still return a port number (for some version of the program)

indicating that the program is indeed registered. The version mismatch will be

detected upon the first call to the service.

SEE ALSO

getrpcent(3N), rpc(3N).

3-270 Licensed material—property of copyright holder(s) 093-701056

gets(3S)

NAME

DG/UX 5.4 | gets(3S)

gets, fgets — get a string from a stream

SYNOPSIS

#include <stdio.h>

char «gets (char *s);

char *xfgets (char *s, int n, FILE *stream);

DESCRIPTION

gets reads characters from the standard input stream [see intro(3)], stdin, into

the array pointed to by s, until a newline character is read or an end-of-file condition

is encountered. The newline character is discarded and the string is terminated with a

null character.

fgets reads characters from the stream into the array pointed to by s, until n-1
characters are read, or a newline character is read and transferred to s, or an end-of-

file condition is encountered. The string is then terminated with a null character.

When using gets, if the length of an input line exceeds the size of s, indeterminate

behavior may result. For this reason, it is strongly recommended that gets be

avoided in favor of fgets.

SEE ALSO

lseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S),

stdio(3S), ungetc(3S).

DIAGNOSTICS

AAYX PANEL

If end-of-file is encountered and no characters have been read, no characters are

transferred to s and a null pointer is returned. If a read error occurs, such as trying

to use these functions on a file that has not been opened for reading, a null pointer is

returned and the error indicator for the stream is set. If end-of-file is encountered,

the EOF indicator for the stream is set. Otherwise s is returned.

lleaneari matarial_nroanerty of convriaht holder/e¢) 3.97 4

getservent(3N) | DG/UX 5.4 | getservent(3N)

NAME .

getservent, getservbyport, getservbyname, setservent, endservent —

get service entry

SYNOPSIS

#include <netdb.h>

struct servent *getservent()

struct servent *getservbyname(name, proto)

char *name, *proto;

struct servent *getservbyport(port, proto)

int port; char *proto;

setservent(stayopen)

int stayopen

endservent()

DESCRIPTION

Getservent, getservbyname, and getservbyport each return a pointer to an

object with the following structure containing the broken-out fields of a line in the

network services data base, /etc/services.

structservent {

char *s_name; /* official name of service */

char **s aliases;/* alias list */

int S_port; /* port service resides at */

char ¥*s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.

s_ aliases

A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned

in network byte order.

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data

base will not be closed after each call to getservbyname or getservbyport.

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the

file until a matching protocol name or port number is found, or until EOF is encoun-

tered. If a protocol name is also supplied (non-NULL), searches must also match the

protocol.

FILES

/etc/services

SEE ALSO

getprotoent(3N), services(5), ypserv(8).

3-272 Licensed material—property of copyright holder(s) 093-701056

getservent(3N) DG/UX 5.4 getservent(3N)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

BUGS

All information is contained in a static area so it must be copied if it is to be saved.

Expecting port numbers to fit in a 32 bit quantity is probably naive.

093-701056 Licensed material—property of copyright holder(s) 3-273

getspent(3C) DG/UX 5.4 getspent(3C)

NAME

getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf

- manipulate shadow password file entry

SYNOPSIS

#include <shadow.h>

struct spwd *getspent (void);

struct spwd *getspnam (const char *«name);

int lckpwdf (void);

int ulckpwdf (void);

void setspent (void);

void endspent (void);

struct spwd *fgetspent (FILE *fp);

DESCRIPTION

The getspent and getspnam routines each return a pointer to an object with the

following structure containing the broken-out fields of a line in the /etc/shadow

file. Each line in the file contains a ‘“‘shadow password”’ structure, declared in the

shadow.h header file:

struct spwd{

char +*sp_namp;

char «sp _pwdp;

long sp_lstchg;

long sp min;

long sp_max;

long sp_warn;

long sp_inact;

long sp_expire;

unsigned long sp_flag;

};

The getspent routine when first called returns a pointer to the first spwd structure

in the file; thereafter, it returns a pointer to the next spwd structure in the file; so

successive calls can be used to search the entire file. The getspnam routine

searches from the beginning of the file until a login name matching name is found,

and returns a pointer to the particular structure in which it was found. The

getspent and getspnam routines populate the sp min, sp_max, sp_lstchg,

sp_warn, sp_inact, sp_expire, or sp_flag field with —1 if the corresponding

field in /etc/shadow is empty. If an end-of-file or an error is encountered on read-

ing, or there is a format error in the file, these functions return a null pointer and set

errno to EINVAL. |

/etc/.pwd.lock is the lock file. It is used to coordinate modification access to the

password files /etc/passwd and /etc/shadow. lckpwdf and ulckpwdf are

routines that are used to gain modification access to the password files, through the

lock file. A process first uses lckpwdf to lock the lock file, thereby gaining

exclusive rights to modify the /etc/passwd or /etc/shadow password file. Upon

completing modifications, a process should release the lock on the lock file via

ulckpwdf. This mechanism prevents simultaneous modification of the password

files. |

3-274 Licensed material—property of copyright holder(s) 093-701056

getspent(3C) DG/UX 5.4 getspent(3C)

FILES

lckpwdf attempts to lock the file /etc/.pwd.lock within 15 seconds. If unsuc-

cessful, e.g., /etc/.pwd.lock is already locked, it returns -1. If successful, a

return code other than —1 is returned.

ulckpwdf attempts to unlock the file /etc/.pwd.lock. If unsuccessful, e.g.,

/etc/.pwd.lock is already unlocked, it returns -1. If successful, it returns 0.

A call to the setspent routine has the effect of rewinding the shadow password file

to allow repeated searches. The endspent routine may be called to close the sha-

dow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream

fp, which matches the format of /etc/shadow.

/etc/shadow

/etc/passwd

Jfetc/.pwd.lock

SEE ALSO

getpwent(3C), putpwent(3C), putspent(3C).

DIAGNOSTICS

NOTES

getspent, getspnam, lckpwdf, ulckpwdf, and fgetspent return a null pointer

on EOF or error.

This routine is for internal use only; compatibility is not guaranteed.

All information is contained in a static area, so it must be copied if it is to be saved.

093-701056 Licensed material—property of copyright holder(s) 3-275

getsubopt(3C) DG/UX 5.4 getsubopt(3C)

NAME

getsubopt — parse suboptions from a string

SYNOPSIS

#include <stdlib.h>

int getsubopt (char **optionp, char * const *tokens, char *#valuep) ;

DESCRIPTION

getsubopt parses suboptions in a flag argument that was initially parsed by getopt.

These suboptions are separated by commas and may consist of either a single token
or a token-value pair separated by an equal sign. Since commas delimit suboptions in
the option string, they are not allowed to be part of the suboption or the value of a
suboption. A command that uses this syntax is mount(1M), which allows the user to
specify mount parameters with the -o option as follows:

mount -o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of
which has an associated value of 1024.

getsubopt takes the address of a pointer to the option string, a vector of possible

tokens, and the address of a value string pointer. It returns the index of the token
that matched the suboption in the input string or -1 if there was no match. If the
option string at optionp contains only one subobtion, getsubopt updates optionp to
point to the null character at the end of the string; otherwise it isolates the suboption
by replacing the comma separator with a null character, and updates optionp to point

to the start of the next suboption. If the suboption has an associated value, getsu-
bopt updates valuep to point to the value’s first character. Otherwise it sets valuep to
NULL.

The token vector is organized as a series of pointers to null strings. The end of the
token vector is identified by a null pointer.

When getsubopt returns, if valuep is not NULL, then the suboption processed
included a value. The calling program may use this information to determine if the
presence or lack of a value for this subobtion is an error.

Additionally, when getsubopt fails to match the suboption with the tokens in the
tokens array, the calling program should decide if this is an error, or if the unrecog-
nized option should be passed to another program.

EXAMPLE

The following code fragment shows how to process options to the mount command
using getsubopt.

#include <stdlib.h>

char «myopts[] = {

#define READONLY 0

"ro",

#define READWRITE 1
ve rw" ;

3-276 Licensed material—property of copyright holder(s) 093-701056

getsubopt(3C) DG/UX 5.4 getsubopt(3C)

#define WRITESIZE 2

#define READSIZE

Main(argce, argv)

093-701056

int argc;

“wsize",

3

"rsize",

NULL};

char **argv;

int sc, c, errflag;

char *options, *value;

extern char +optarg;

extern int optind;

while((c = getopt(arge, argv, “abf:o:")) != -1) {

Switch (c) {

case

case

case

case

case

‘a’: /* process a option +*/

break; |

’b’: /* process b option +*/

break;

'£’;

ofile = optarg;

break;

‘9’;

errflagt+;

break;

‘o’;:

options = optarg;

while (*options != ‘\0’) {

switch(getsubopt(soptions,myopts, &value) [

case READONLY : /* process ro option */

break;

case READWRITE : /* process rw option *«/

break;

case WRITESIZE : /*x process wsize option +*/

if (value == NULL) {

error no arg();

errflagt+;

}) else

write_size = atoi(value) ;

break;

case READSIZE : /* process rsize option +*/

if (value == NULL) [{

error_no_arg();

errflagt+;

} else

read_size = atoi(value);

break;

default :

Licensed material—property of copyright holder(s) 3-277

getsubopt(3C) DG/UX 5.4 getsubopt(3SC)

/* process unknown token */

error _bad_token(value) ;

errflagtt+;

break;

}

break;
}

j

}

if (errflag) {

/* print usage instructions etc. */

}

for (; optind<argc; optindt+) {

/* process remaining arguments */

}

SEE ALSO |

getopt(3C).

DIAGNOSTICS

getsubopt returns -1 when the token it is scanning is not in the token vector. The

variable addressed by valuep contains a pointer to the first character of the token that

was not recognized rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null

character if there are no more options.

NOTES

During parsing, commas in the option input string are changed to null characters.

White space in tokens or token-value pairs must be protected from the shell by

quotes.

3-2/8 Licensed material—property of copyright holder(s) 093-701056

gettxt(3C) DG/UX 5.4 gettxt(3C)

NAME

gettxt — retrieve a text string

SYNOPSIS

#include <nl_types.h>

char *gettxt (const char *«msgid, const char *dflt_str);

DESCRIPTION

gettxt retrieves a text string from an AT&T-style message file. The arguments to the

function are a message identification msgid and a default string dflt_str to be used if

the retrieval fails.

The text strings are in files created by the mkmsgs utility [see mkmsgs(1)] and

installed in directories in /usr/lib/locale/locale/LC_MESSAGES.

The directory /ocale can be viewed as the language in which the text strings are writ-

ten. The user can request that messages be displayed in a specific language by setting

the environment variable LC_MESSAGES. If LC_MESSAGES is not set, the environ-

ment variable LANG will be used. If LANG is not set, the files containing the strings

are in /usr/lib/locale/C/LC_MESSAGES/*«.

The user can also change the language in which the messages are displayed by invok-

ing the setlocale function with the appropriate arguments.

If gettxt fails to retrieve a message in a specific language it will try to retrieve the

same message in U.S. English. On failure, the processing depends on what the

second argument d/lt_str points to. A pointer to the second argument is returned if

the second argument is not the null string. If dflt_str points to the null string, a

pointer to the U.S. English text string "Message not found! !\n" is returned.

The following depicts the acceptable syntax of msgid for a call to gettxt.

msgid = msgfilename: msgnumber

The first field is used to indicate the file that contains the text strings and must be

limited to 14 characters. These characters must be selected from the set of all char-

acter values excluding \0 (null) and the ASCII code for / (slash) and : (colon). The

names of message files must be the same as the names of files created by mkmsgs

and installed in /usr/lib/locale/locale/LC_MESSAGES/*. The numeric field

indicates the sequence number of the string in the file. The strings are numbered

from J ton where n is the number of strings in the file.

On failure to pass the correct msgid or a valid message number to gettxt a pointer

to the text string "Message not found! !\n” is returned.

EXAMPLE

gettxt("UX:10", "hello world\n”)
gettxt("UX:10", “my

UX is the name of the file that contains the messages. 10 is the message number.

FILES

/usr/lib/locale/C/LC_MESSAGES/ contains default message files created by

mkmsgs

/usr/lib/locale/locale/LC_MESSAGES/* contains message files for different

languages created by mkmsgs

SEE ALSO

fmtmsg(3C), setlocale(3C), environ(5).

093-701056 Licensed material—property of copyright holder(s) 3-279

gettxt(3C) DG/UX 5.4 gettxt(3C)

exstr(1), mkmsgs(1), srchtxt(1) in the User’s Reference Manual.

gencat(1), catopen(3C), catgets(3C) — X/Open-style message facilities.

3-280 Licensed material—property of copyright holder(s) 093-701056

getut(3C) DG/UX 5.4 | getut(3C)

NAME

getut. getutent, getutid, getutline, pututline, setutent, endutent,

utmpname — access utmp file entry

SYNOPSIS

#include <utmp.h>

struct utmp *«getutent (void);

struct utmp *«getutid (const struct utmp id);

struct utmp *getutline (const struct utmp +«line);

struct utmp *pututline (const struct utmp s«utmp);

void setutent (void);

void endutent (void);

int utmpname (const char *file),;

DESCRIPTION

getutent, getutid, getutline, and pututline each return a pointer to a

structure with the following members:

char ut_user[{8]; /* user login name +/

char ut_id[4]; /* /sbin/inittab id (usually line #) +/

char ut_line[12];/* device name (console, lnxx) +*/

short ut_pid; /* process id */

short ut_type; /* type of entry +*/

struct exit_status [{

} ut_exit; /* exit status of a process «/

/* marked as DEAD PROCESS «/

time t ut_time; /* time entry was made +*/

The structure exit status includes the following members:

short e_termination; /* termination status +*/

short e exit; /7* exit status *«/

getutent reads in the next entry from a utmp-like file. If the file is not already

open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it finds an

entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,

BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is

INIT PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD PROCESS, then

getutid will return a pointer to the first entry whose type is one of these four and

whose ut_id field matches, character by character, id->ut_id . If the end of file is

reached without a match, it fails.

getutline searches forward from the current point in the utmp file until it finds an

entry of the type LOGIN_PROCESS or USER_PROCESS that also has a ut_line string

matching the line->ut_line string. If the end of file is reached without a match, it

fails.

pututline writes out the supplied utmp structure into the utmp file. It uses getu-

tid to search forward for the proper place if it finds that it is not already at the

proper place. It is expected that normally the user of pututline will have searched

for the proper entry using one of the getut routines. If so, pututline will not

search. If pututline does not find a matching slot for the new entry, it will add a

093-701056 Licensed material—property of copyright hoider(s) 3-281

getut(3C) DG/UX 5.4 : getut(3C)

new entry to the end of the file. It returns a pointer to the utmp structure.

setutent resets the input stream to the beginning of the file. This reset should be
done before each search for a new entry if it is desired that the entire file be exam-

ined.

endutent closes the currently open file.

utmpname allows the user to change the name of the file examined, from /etc/utmp

to any other file. It is most often expected that this other file will be /etc/wtmp. If

the file does not exist, this will not be apparent until the first attempt to reference the

file is made. utmpname does not open the file. It just closes the old file if it is

currently open and saves the new file name. If the file name given is longer than 79

characters, utmpname returns 0. Otherwise, it will return 1.

FILES

/etc/utmp

/etc/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A null pointer is returned upon failure to read, whether for permissions or having

reached the end of file, or upon failure to write.

NOTES

The most current entry is saved in a static structure. Multiple accesses require that it

be copied before further accesses are made. On each call to either getutid or

getutline, the routine examines the static structure before performing more I/O. If

the contents of the static structure match what it is searching for, it looks no further.

For this reason, to use getutline to search for multiple occurrences, it would be

necessary to zero out the static area after each success, or getutline would just

return the same structure over and over again. There is one exception to the rule

about emptying the structure before further reads are done. The implicit read done

by pututline (if it finds that it is not already at the correct place in the file) will not

hurt the contents of the static structure returned by the getutent, getutid or

getutline routines, if the user has just modified those contents and passed the

pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an unbuf-

fered non-standard write to avoid race conditions between processes trying to modify

the utmp and wtmp files.

3-282 Licensed material—property of copyright holder(s) 093-701056

getwe(3W) DG/UX 5.4 getwe(SW)

NAME

getwc, getwchar, fgetwc — get wchar_t character from a stream

SYNOPSIS

#include <stdio.h>

#include <widec.h>

int getwc(FILE xStream) ;

int getwchar(void);

int fgetwe(FILE stream);

DESCRIPTION (International Functions)

getwc() transforms the next EUC character from the named input stream into a

wchar_+t character, and returns it It also increments the file pointer, if defined, by

one EUC character in the stream. getwchar() is defined as getwc(stdin).

getwe() and getwchar() are macros.

fgetwce() behaves like getwc(), however, it is a function.

DIAGNOSTICS

These functions return the constant EOF at the end-of-file or upon an error and set

the EOF or error indicator of stream, respectively. If the error is an illegal sequence,

EILSEQ is set to errno.

WARNINGS

If the value returned by getwce(), getwchar(), or fgetwc() is compared with the

integer constant EOF after being stored in a wchar_t variable, the comparison may

not succeed unless EOF is cast to type wchar t.

SEE ALSO

getws(3W), putwc(3W), scanf(3W), widec(3W).

fclose(3S), ferror(3S), fopen(3S), scanf(3S), stdio(3S) in the System V Release 4.0

Programmer's Reference Manual.

093-701056 Licensed material—property of copyright holder(s) 3-283

getwd(SC) DG/UX 5.4 getwd(3C)

NAME

getwd — get current working directory pathname

SYNOPSIS

char *getwd (pathname)

char *pathname;

DESCRIPTION

getwd copies the absolute pathname of the current working directory to pathname

and returns a pointer to the result.

LIMITATIONS

The maximum pathname length is limited by the length of the array pathname.

DIAGNOSTICS |

getwd returns zero and sets errno to an appropriate value if an error occurs.

SEE ALSO

getcwd(3C).

3-284 Licensed material—property of copyright hoider(s) 093-701056

getwidth(3W) DG/UX 5.4 getwidth(3W)

NAME

SYNOP

getwidth — get information of supplementary code sets

SIS

#include <sys/euc.h>

#include <getwidth.h>

void getwidth(eucwidth_t «pir);

DESCRIPTION

getwidth() reads the character class table, which is generated by chrtbl or

wchrtbl, to get information of supplementary code sets, and sets it into the structure

eucwidth t. -

The structure eucwidth_t is defined in the header file /usr/include/euc.h as

follows:

typedef struct [{

short int _eucwl, eucw2,_ eucw3;

short int _scrwl,_scrw2,_scrw3;

short int _pew;

char _multibyte;

} eucwidth t;

Code set width values for three supplementary code sets are set in _eucwl, _eucw2

and _eucw3, respectively. Screen width values for the three supplementary code sets

are setin _scrwl, _scrw2 and _scrw3, respectively. The width of EUC process

code is set in _pcw. The maximum width in bytes of EUC is set in _multibyte.

If the cswidth parameter is not set, the system default is required. The system default

is cswidth 1:1,0:0,0:0.

SEE ALSO

093-701056

wehrtbl(1M).

chrtbl(1M) in the Sytem V System Release 4.0 System Administration Reference

Manual.

Licensed material—property of copyright holder(s) 3-285

getws(3SW) DG/UX 5.4 getws(3W)

NAME

getws, fgetws — get a wchar_t string from a stream

SYNOPSIS

#include <stdio.h>

#include <widec.h>

wehar t *getws(wchar _t #5);

wcehar t *fgetws(wchar_t *5, int”, FILE *stream);

DESCRIPTION (laternational Functions)

getws() reads EUC characters from stdin, converts them to wchar_t characters,

and places them in the wchar_t array pointed to bys. getws() reads until a new-

line character is read or an end-of-file condition is encountered. The new-line charac-

ter is discarded and the wchar_t string is terminated with a wchar_t null character.

fgetws() reads EUC characters from the stream, converts them to wchar_t charac-

ters, and places them in the wchar_t array pointed to bys. fgetws() reads until

n-1 wchar_t characters are transferred to s, or a new-line character or an end-of-file

condition is encountered. The wchar_t String is then terminated with a wchar_t

null character.

DIAGNOSTICS

If end-of-file or a read error is encountered and no characters have been transformed,

no wchar_t characters are transferred to s and a null pointer is returned and the

error indicator for the stream is set. If the read error is an illegal byte sequence,

EILSEQ is set to errno. If end-of-file is encountered, the EOF indicator for the

stream is set. Otherwise, s is returned.

SEE ALSO

3-286

getwc(3W), scanf(3W), widec(3W).

ferror(3S), fopen(3S), fread(3S), scanf(3S), stdio(3S) in the System V Release 4.0

Programmer’s Reference Manual.

Licensed material—property of copyright holder(s) 093-701056

gmatch(3G) DG/UX 5.4 | gmatch(3G)

NAME

gmatch — shell global pattern matching

SYNOPSIS

ce [flag ...] file ... -lgen [library ...]

#include <libgen.h>

- int gmatch (const char «str, const char *pattern);

DESCRIPTION

gmatch checks whether the null-terminated string str matches the null-terminated pat-

tern string pattern. See the sh(1) section “File Name Generation” for a discussion

of pattern matching. gmatch returns non-zero if the pattern matches the string,

zero if the pattern doesn’t. A backslash (‘\’) is used as an escape character in pat-

tern strings.

EXAMPLE

char <«s;

gmatch (s, "“*[a\-]")

gmatch returns non-zero (true) for all strings with ‘a’ or ‘—’ as their last character.

SEE ALSO

sh(1) in the User’s Reference Manual

093-701056 Licensed material—property of copyright holder(s) 3-287

grantpt(3C) DG/UX 5.4 grantpt(3C)

NAME

grantpt — grant access to the slave pseudo-terminal device

SYNOPSIS.

int grantpt(int fildes);

DESCRIPTION

The function grantpt changes the mode and ownership of the slave pseudo-terminal
device associated with its master pseudo-terminal counter part. fildes is the file
descriptor returned from a successful open of the master pseudo-terminal device. A

setuid root program [see setuid(2)] is invoked to change the permissions. The

user ID of the slave is set to the effective owner of the calling process and the group

ID is set to a.reserved group. The permission mode of the slave pseudo-terminal is

set to readable, writeable by the owner and writeable by the group.

RETURN VALUE

Upon successful completion, the function grantpt returns 0; otherwise it returns
-1. Failure could occur if fildes is not an open file descriptor, if fildes is not associ-

ated with a master pseudo-terminal device, or if the corresponding slave device could

not be accessed.

SEE ALSO

open(2), setuid(2).

ptsname(3C), unlockpt(3C)

in the Programmer’s Guide: STREAMS.

3-288 Licensed material—property of copyright holder(s) 093-701056

hsearch(3C) DG/UX 5.4 hsearch(3C)

NAME

hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY *xhsearch (ENTRY item, ACTION action);

int hcreate (size_t nel);

void hdestroy (void);

DESCRIPTION

hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It
_Teturns a pointer into a hash table indicating the location at which an entry can be

found. The comparison function used by hsearch is stremp [see string(3C)].

item is a structure of type ENTRY (defined in the search.h header file) containing
two pointers: item.key points to the comparison key, and item.data points to any

other data to be associated with that key. (Pointers to types other than void should

be cast to pointer-to-void.) action is a member of an enumeration type ACTION
(defined in search. h) indicating the disposition of the entry if it cannot be found in
the table. ENTER indicates that the item should be inserted in the table at an

appropriate point. Given a duplicate of an existing item, the new item is not entered

and hsearch returns a pointer to the existing item. FIND indicates that no entry

Should be made. Unsuccessful resolution is indicated by the return of a null pointer.

hcreate allocates sufficient space for the table, and must be called before hsearch

is used. nel is an estimate of the maximum number of entries that the table will con-

tain. This number may be adjusted upward by the algorithm in order to obtain cer-

tain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another call to

hcreate.

EXAMPLE

The following example will read in strings followed by two numbers and store them in

a hash table, discarding duplicates. It will then read in strings and find the matching

entry in the hash table and print it out.

#include <stdio.h>

#include <search.h>

#include <string.h>

#include <stdlib.h>

struct info [{ /* this is the info stored in table «/

int age, roon; /* other than the key «/

};

#define NUM_EMPL 5000 /* # of elements in search table +/

main()

{

/* space to store strings */

char string_space[NUM_EMPL+20];

/* Space to store employee info +«/

struct info info_space[NUM_EMPL];

/* next avail space in string_space +/

093-701056 Licensed material—property of copyright hoider(s) 3-289

hsearch(3C) DG/UX 5.4 hsearch(3C)

char *«str_ptr = string_space;

/* next avail space in info_space */

struct info *«info_ptr = info_space;

ENTRY item, *found_item;

/* name to look for in table */

char name_to_ find[30];

int i = 0;

/* create table *«/

(void) hcreate(NUM_EMPL); |

while (scanf("%s%d%d", str_ptr, sinfo_ptr— age,

Sinfo_ptr—>room) != EOF && i++ < NUM_EMPL) [{

/* put info in structure, and structure in item +/

item.key = str_ptr;

item.data = (void +*)info_ptr;

str_ptr += strlen(str_ptr) + 1;

info_ptrtt;

/* put item into table +*/

(void) hsearch(item, ENTER);

}

/* access table */

item. key = name_to_ find; |

while (scanf("%s", item.key) != EOF) [

if ((found_item = hsearch(item, FIND)) != NULL) [

/* if item is in the table +/

(void)printf("found %s, age = %d, room = %d\n",

found_item—>key,

((struct info +*)found_item—>data)—age,

((struct info *)found_item—>data)—>room) ;

} else f{

(void) printf("no such employee %s\n",

name _to_find)

}

}

return 0;

}

DIAGNOSTICS

hsearch returns a null pointer if either the action is FIND and the item could not be

found or the action is ENTER and the table is full.

hcreate returns zero if it cannot allocate sufficient space for the table.

SEE ALSO

bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C),

tsearch(3C).

NOTES

hsearch and hcreate use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

3-290 Licensed material—property of copyright holder(s) 093-701056

hypot(3M) DG/UX 6.4 _ hypot(3M)

NAME

hypot — Euclidean distance function

SYNOPSIS

ce [flag ...| file ... -1m [library ...]

#include <math.h>

double hypot (double x, double y);

DESCRIPTION

hypot returns

sqrt(x * x t y * y)

taking precautions against unwarranted overflows.

EXAMPLE

/* Program test for the hypot() function */

#include <stdio.h>

#include <math.h>

double atof(), x, y, z, hypot();

Main(argc, argv)

int arge;

char *xargv[];

{

x = atof(argv[1]);

y atof(argv[(2]});

printf("Hypotenuse = %f.\n", z = hypot(x, y));

}

A call to the program test with the numbers 3.3 and 4.4

Hypotenuse = 5.500000.

SEE ALSO

matherr(3M).

DIAGNOSTICS

When the correct value would overflow, hypot returns HUGE and sets errno to

ERANGE.

Except when the —Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the —Xa or —Xc compilation

options are used, HUGE_VAL is returned instead of HUGE.

093-701056 Licensed material—property of copyright holder(s) 3-291

leeefp(SC) DG/UX 5.4° leeefp(3C)

NAME

finite, unordered, copysign — IEEE floating-point routines

SYNOPSIS

#include <ieeefp.h>

int finite (x)

float Xx;

or

double x;

int unordered (x, y)

float x;

or

double x;

float y;

or

double y;

double copysign (x, y)

double x;

double y;

DESCRIPTION

Copysign returns the value of x with the same sign as y.

Finite returns true (1) if its argument is finite: that is, -infinity < x < +infinity.

Otherwise finite returns false (0).

Unordered returns true (1) if its arguments are unordered; otherwise it returns false

(0). The arguments x and y are unordered if either or both are NaNs (Not-a-

Number).

Both finite and unordered are implemented as macros included in

<ieeefp.h>. Both accept either single- or double-precision arguments: To access

finite as a function, the user may suppress the macro definition:

#include <ieeefp.h>

#undef finite

The finite function is also accessed when <ieeefp.h> is not included.

DIAGNOSTICS

None of these routines generates any exception.

SEE ALSO

fpgetround(3C), isnan(3C).

3-292 Licensed material—property of copyright hoider(s) 093-70105€

index(3C) DG/UX 5.4 index(3C)

NAME

index — search for the first occurrence of a character in a string

SYNOPSIS

#include <string.h>

char *search, template, *index();

index(search, template) ;

where:

search is the character array to inspect.

template is the character you want to match.

DESCRIPTION

Use the index function to find the first occurrence of a specified character in a

string. The include file string.h defines this function. The index function is the

same as the strchr function.

EXAMPLE

/* Program test for the index() function */

#include <string.h>

#include <stdio.h>

#define MAX 80

char c, string[MAX], *index();

int i= 1, loc;

mMain(arge, argv)

int argc;

char *argv[];

{

printf("Character template?\n") ;

scanf("%c", &C);

while (i < argc) {

sprintf(string, "%s", argv[i]);

if (({(loc = index(string, c)) == 0)

printf("Character ‘%c’ does not occur in \n\t’%s’\n",

c, string);

else

printf("First occurrence of ‘%c’ in\n\t’%s’\nat %o.\n",

c, string, loc);

1++;

}

If you call the program test with the strings alphabet, syllabary, and string, and then

respond to the query with the character a, you generate the output

First occurrence of ’a’ in

‘alphabet’

at 34000023356.

First occurrence of ’a’ in

093-701056 Licensed material—property of copyright holder(s) 3-293

index(3C) DG/UX 5.4 index(3C)

‘syllabary’

at 34000023362.

Character ‘a’ does not occur in
a ‘strin g’

(The locations returned will vary with execution.)

RETURNS

The function returns NULL if the character does not occur in the string; otherwise it

returns the pointer to the byte it found.

SEE ALSO

memchr(3C), strchr(3C), strrchr(3C).

3-294 Licensed material—property of copyright hoider(s) 093-701056

inet(SN)

NAME

DG/UX 5.4 inet(SN)

inet_addr, inet_network, inet_ntoa, inet makeaddr, inet_lnaof,

inet_netof — Internet address manipulation routines

SYNOPSIS

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

struct in_addr inet_addr(cp)

char *cp;

unsigned long inet_network(cp)

char *cp;

char *inet_ntoa(in)

struct in_addr in;

struct in_addr inet_makeaddr(net, Ina)

int net, Ina;

int inet_Inaof(in)

struct in_addr in;

int inet_netof(in)

struct in_addr in;

DESCRIPTION

inet_addr, inet_network

Interpret character strings representing numbers expressed in the Internet

standard dot notation, returning numbers suitable for use as Internet

addresses and Internet network numbers, respectively.

inet_ntoa

Takes an Internet address and returns an ASCII string representing the

address in dot notation.

inet _makeaddr

Takes an Internet network number and a local network address, and con-

structs an Internet address from it.

inet_netof, inet_lnaof

Break apart Internet host addresses, returning the network number and

local network address part, respectively.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine-format

integer values.

Internet Addresses

Values specified using the dot notation take one of the following forms:

a.b.c.d

a.b.c

a.b

a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

093-701056 Licensed material—property of copyright holder(s) 3-295

inet(SN) DG/UX 5.4 inet(3N)

When a three-part address is specified, the last part is interpreted as a 16-bit quantity

and placed in the rightmost two bytes of the network address. This makes the three-

part address format convenient for specifying Class B network addresses as

128.net.host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity

and placed in the rightmost three bytes of the network address. This makes the two-

part address format convenient for specifying Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network address

without any byte rearrangement.

All numbers supplied as parts in a dot notation may be decimal, octal, or hexade-

cimal, as specified in the C language (i.e., a leading Ox or OX implies hexadecimal;

otherwise, a leading 0 implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO

gethostent(3N), getnetent(3N), hosts(4), networks(4).

DIAGNOSTICS

Inet_addr and inet_network return the value —1 for malformed requests.

BUGS

The problem of host byte ordering versus network byte ordering is confusing. There

is no simple way to specify Class C network addresses, as there is for Classes A and

B. The string returned by inet_ntoa resides in a static memory area.

3-296 Licensed material—property of copyright holder(s) 093-701056

initgroups(3C) DG/UX §.4 initgroups(3C)

NAME

initgroups —~ initialize the supplementary group access list

SYNOPSIS

#include <grp.h>

#include <sys/types.h>

int initgroups (const char *name, gid_t basegid)

DESCRIPTION

initgroups reads the group file, using getgrent, to get the group membership for

the user specified by name and then initializes the supplementary group access list of
the calling process using setgroups. The basegid group id is also included in the
supplementary group access list. This is typically the real group id from the password

file.

While scanning the group file, if the number of groups, including the basegid entry,
exceeds {NGROUPS_MAX}, subsequent group entries are ignored.

initgroups will fail and not change the supplementary group access list if:

EPERM The effective user id is not superuser.

initgroups uses the routines based on getgrent(3C). If the invoking program

uses any of these routines, the group structure will be overwritten in the call to init-
groups

SEE ALSO

setgroups(2), getgrent(3C).

DIAGNOSTICS

093-701056

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Licensed material—property of copyright holder(s) 3-297

insque(3C) DG/UX 5.4 insque(3C)

NAME

insque, remque — insert/remove element from a queue

SYNOPSIS

include <search.h>

void insque(struct gelem +elem, struct gelem *pred);

void remque(struct gelem +elem);

DESCRIPTION

insque and remque manipulate queues built from doubly linked lists. Each element

in the queue must be in the following form:

struct gelem [{

structgelem *q_forw;

structgqelem *q_back;

char q _data[];

};

insque inserts elem in a queue immediately after pred. remque removes an entry
elem from a queue.

3-298 Licensed material—property of copyright holder(s) 093-701056

isalphanum(3C) DG/UX 5.4 isaiphanum(3C)

NAME

isalphanum — determine if a character is alphanumeric

SYNOPSIS

#include <ctype.h>

int c, result;

result = isalphanum(c) ;

DESCRIPTION

Use the isalphanum macro to determine whether a character is alphabetic or

numeric. isalphanum is the same as isalnum. Alphabetics are A-Z and a-z;

numerics are 0-9.

Do not try to redeclare this macro or you might get unexpected results.

Return Value

The isalphanum macro returns a nonzero value if the character is alphanumeric;

otherwise, it returns 0.

EXAMPLES

/* Program test for the isalphanum() macro */

#include <ctype.h>

#include <stdio.h>

int i= 1, result;

Main(argc, argv)

int argc;

char *argv[];

{

while (i < argc) {

printf("Is character %c alphanumeric? ", argv[i][0]);

printf("%s.\n", (result = isalphanum(argv[i][0])) == 0 ? "No" : "Yes");

it+;

}

return 0;

}

A call to the program test with the characters &, 7, \, and g generates the output

Is character & alphanumeric? No.

Is character 7 alphanumeric? Yes.

Is character \ alphanumeric? No.

Is character g alphanumeric? Yes.

SEE ALSO

ishex(3C), isnan(3C).

093-701056 Licensed material—property of copyright holder(s) 3-299

isastream(3C) - DG/UX 5.4 isastream(3C)

NAME

isastream - test a file descriptor

SYNOPSIS.

int isastream(int fildes);

DESCRIPTION

The function isastream() determines if a file descriptor represents a STREAMS file.

fildes refers to an open file.

RETURN VALUE

If successful, isastream() returns 1 if fildes represents a STREAMS file, and 0 if

not. On failure, isastream() returns -1 with errno set to indicate an error.

DIAGNOSTICS

Under the following conditions, isastream() fails and sets errno to:

EBADF fildes is not a valid open file.

SEE ALSO

streamio(7).

in the Programmer’s Guide: STREAMS

3-300 Licensed material—property of copyright holder(s) 093-701056

isencrypt(3G) DG/UX 5.4 - Isenerypt(3G)

NAME

isencrypt — determine whether a character buffer is encrypted

SYNOPSIS

ce [flag ...] file ... -1gen [library ...]

#include <libgen.h>

int isencrypt (const char «fbuf, size_t ninbuf);

DESCRIPTION

isencrypt uses heuristics to determine whether a buffer of characters is encrypted.

It requires two arguments: a pointer to an array of characters and the number of char-
acters in the buffer. |

isencrypt assumes that the file is not encrypted if all the characters in the first

block are ASCII characters. If there are non-ASCII characters in the first ninbuf
characters, isencrypt assumes that the buffer is encrypted if the setlocale
LC_CTYPE category is set to Cor ascii.

If the LC_CTYPE category is set to a value other than C or ascii, then isencrypt
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf has
at least 64 characters, a chi-square test is used to determine if the bytes in the buffer
have a uniform distribution; and isencrypt assumes the buffer is encrypted if it
does. If the buffer has less than 64 characters, a check is made for null characters

and a terminating new-line to determine whether the buffer is encrypted.

DIAGNOSTICS

If the buffer is encrypted,.1 is returned; otherwise zero is returned.

SEE ALSO

setlocale(3C). .

093-701056 Licensed material—property of copyright holder(s) 3-301

ishex(3C) DG/UX 5.4 : ishex(3C)

NAME

ishex — determine if a character is hexadecimal

SYNOPSIS

#include <ctype.h>

int c, result;

result = ishex(c);

DESCRIPTION

Use the ishex macro to determine whether a character is a hexadecimal. Hexade-

cimals are0-9 anda-forA-F. |

The ishex macro is the same as the isxdigit macro.

Do not try to redeclare this macro or you might get unexpected results.

EXAMPLE

/* Program testit for the ishex() macro */

#include <ctype.h>

#include <stdio.h>

int i= 1, result;

main(argc, argv)

int arge;

char targv(];

{ .

while (i < argc) {

printf("Is %c a hexadecimal digit?

printf("%s.\n",

(result = ishex(argv[i][0])) == 0 ? "No" : "Yes");

i++;

’ argv[i] [0] i

}

Calling testit with A, f, g, and H generates the output

Is A a hexadecimal digit? Yes.

Is f a hexadecimal digit? Yes.

Is g a hexadecimal digit? No.

Is H a hexadecimal digit? No.

RETURNS

The ishex macro returns a nonzero value if the character is hexadecimal. Other-

wise, it returns 0.

SEE ALSO

etype(3C).

3-302 Licensed material—property of copyright holder(s) 093-701056

isnan(3C) DG/UX 5.4 isnan(3C)

NAME

isnan, isnand, isnanf, finite, fpclass, unordered — determine type of

floating-point number

SYNOPSIS

#include <ieeefp.h>

int isnand (double dsrc);

int isnanf (float fsrc);

int finite (double dsrc);

fpclass t fpclass (double dsrc);

int unordered (double dsrcl, double dsrc2);

#include <math.h>

int isnan (double dsrc);

DESCRIPTION

isnan, isnand, and isnanf return true (1) if the argument dsrc or fsrc is a NaN;

otherwise they return false (0). The functionalty of isnan is identical to that of

isnand.

isnanf is implemented as a macro included in the ieeefp.h header file.

fpclass returns the class the dsrc belongs to. The 10 possible classes are as follows:

FP _SNAN signaling NaN

FP_QNAN quiet NaN

FP_NINF negative infinity

FP _PINF positive infinity

FP_NDENORM negative denormalized non-zero

FP_PDENORM positive denormalized non-zero

FP_NZERO negative zero

FP_PZERO positive zero

FP _NNORM negative normalized non-zero

FP_PNORM positive normalized non-zero

finite returns true (1) if the argument dsrc is neither infinity nor NaN; otherwise it

returns false (0).

unordered returns true (1) if one of its two arguments is unordered with respect to

the other argument. This is equivalent to reporting whether either argument is NaN.

If neither of the arguments is NaN, false (0) is returned.

None of these routines generate any exception, even for signaling NaNs.

SEE ALSO

fpgetround(3C), intro(3M).

093-701056 Licensed material—property of copyright holder(s) 3-303

itoa(3C) DG/UX 5.4 itoa(3C)

NAME

itoa — convert an integer to an ASCII character string

SYNOPSIS

int num;

char *itoa(int, char *), string;

itoa(num, string);

where:

num Value of type int

string A byte pointer to a character array

DESCRIPTION

The itoa function converts an integer to an ASCII string. If num is negative, the

string will contain a minus sign, one to 10 digits, and a null.

The maximum number of characters itoa returns is 13.

RETURN VALUE

Address The address of the string returned

EXAMPLE

#include <stdio.h>

#define STRINGMIN 13

int i= 1, nun;

char string(STRINGMIN], *itoa(int, char *);

Main(argc, argv)

int argc;

char *argv[];

{

while (i < argc) {

num = atoi(argv[i]);

num *= i;

itoa(num, string);

printf("%s\n", string);

itt+;

}

return 0;

}

A call to the program test with the numbers 1, 2, 3, and 4 generates the output

1

4

9

16

SEE ALSO :

atoi(3C), sprintf(3C).

3-304 Licensed material—property of copyright hoilder(s) 093-701056

jobs(3C) DG/UX 5.4 jobs(3C)

NAME

jobs — summary of DG/UX job control facilities

SYNOPSIS

#include <sys/sgtty.h>

#include <signal.h>

#include <sys/resource.h>

#include <sys/time.h>

#include <wait.h>

int fildes, signo;

int pid, perp;

union wait status;

int options;

struct rusage mM;

ioctl (fildes, TIOCSPGRP, spgrp)

ioctl (fildes, TIOCGPGRP, spgrp)

setpgrp2(pid, perp)

getpgrp2 (pid)
killpg(pgrp, signo)

sigset(signo, action)

sighold(signo)

sigrelse(signo)

sigpause (Signo)

sigsys(signo, action)

wait3(&status, options, &ru)

DESCRIPTION

The facilities described here support the job control implemented in csh(1) and may

be used in other programs to provide similar facilities.

For descriptions of the individual routines, see SEE ALSO below. This section

describes the facilities in general.

Terminal arbitration mechanisms

The job control mechanism works by associating with each process a number called a

process group; related processes (e.g. in a pipeline) are given the same process group.

The system assigns a single process group number to each terminal. Processes run-

ning on a terminal are given read access to that terminal only if they are in the same

process group as that terminal.

Thus, a command interpreter may start several jobs running in different process

groups and arbitrate access to the terminal by controlling which, if any, of these

processes is in the same process group as the terminal. When a process outside the

process group of the terminal tries to read from the terminal, all members of the pro-

cess group of the process receive a SIGTTIN signal. This usually stops them until

they are continued with a SIGCONT signal. (See sigsys(2) for a description of

these signals; see tty(4) for a description of process groups.)

If a process is not in the process group of the terminal, and it tries to change the

terminal’s mode, the process group of that process is sent a SIGITOU signal, causing

the process group to stop. A similar mechanism is (optionally) available for output,

causing processes to block with SIGTTOU when they try to write to the terminal

while not in its process group; this is controlled by the LTOSTOP bit in the tty mode

093-701056 Licensed material—property of copyright holder(s) 3-305

jobs(3C) DG/UX 5.4 jobs(3C)

word. LTOSTOP is enabled by

stty tostop

and disabled (the default) by stty-tostop. (The LTOSTOP bit is described in

tty(4)).

How the shell manipulates process groups

An interactive shell first establishes its own process group and a process group for

the terminal; this keeps other processes from being stopped while the terminal is

under its control. The shell then assigns a distinct process group to each job it

creates. When a job is to be run in the foreground, the shell gives the terminal to the

process group of the job using the TIOCSPGRP ioctl (See ioct1(2) and tty(4)).

When a job stops or completes, the shell reclaims the terminal by resetting the

terminal’s process group to that of the shell, using TIOCSPGRP again.

Shells running shell scripts or running non-interactively do not manipulate process

groups of jobs they create. Instead, they leave the process group of sub-processes

and the terminal unchanged. This assures that if any sub-process they create blocks

for terminal I/O, the shell and all its sub-processes will be blocked (since they are a

single process group). The first interactive parent of the non-interactive shell can

then be used to deal with the stoppage.

Processes whose parents have exited, and descendants of these processes, are pro-

tected by the system from stopping, since there can be no interactive parent. Rather

than blocking, reads from the control terminal return end-of-file and writes to the

control terminal are permitted (i.e., LTOSTOP has no effect for these processes.)

Similarly processes that ignore or hold the SIGTTIN or SIGTTOU signal are not sent

these signals when accessing their control terminal; if they are not in the process

group of the control terminal, reads simply return end-of-file. Output and mode set-

ting are also allowed.

Before a shell suspends itself, it places itself back in the process group in which it

was created. It then sends this original group a stopping signal, stopping the shell, and

any other intermediate processes, back up to an interactive parent. The shell also

restores the process group of the terminal when it finishes; the process that resumes

might not have control of the terminal otherwise.

Naive processes

A naive process does not alter the state of the terminal, and does no job control. It

can usually invoke subprocesses safely, even if it has shell escapes or invokes other

processes. If such a process issues a system(3C) call and this command is then

stopped, both of the processes will stop together. Thus simple processes need not

worry about job control. |

Processes that modify the terminal state

When first setting the terminal into an unusual mode, the process should check, with

the stopping signals held, that it is in the foreground. It should then change the state

of the terminal, and set the catches for SIGITIN, SIGITOU and SIGTSTP. The

following is a sample of the code that will be needed, assuming that unit 2 is known to

be a terminal.

int tpgrp;

retry:

sigset(SIGTSTP, SIG HOLD);

3-306 Licensed material—property of copyright hoider(s) 093-701056

jobs(3C)

093-701056

DG/UX 5.4 , jobs(3C)

Sigset(SIGTTIN, SIG HOLD);

Sigset(SIGTTOU, SIG_HOLD);

if (ioctl(2, TIOCGPGRP, &tpgrp) != 0)

goto nottty;

if (tpgrp != getpgrp(0)) { /* not in foreground */

sigset(SIGTTOU, SIG_DFL);

kill(0, SIGTTOU);

/* job stops here waiting for SIGCONT */

goto retry;

}

...save old terminal modes and set new modes...

Ssigset(SIGTTIN, onstop);

Sigset(SIGTTOU, onstop);

Sigset(SIGTSTP, onstop);

SIGTSTP is ignored in this code to prevent our process from being moved from the

foreground to the background while checking if it is in the foreground. The process

holds all the stopping signals in this critical section so that no other process in our

process group can block us on one of these signals in the middle of our check. (This

code assumes that the command interpreter will not move a process from foreground

to background without stopping it; if it did, we could not make the check correctly.)

The signal-handling routine should clear the catch for the stop signal and kill(2) the

processes in its process group with the same signal. The statement after this kill

will be executed when the process is continued with SIGCONT.

Thus the code for the catch routine might look like:

Sigset(SIGTSTP, onstop);

Sigset(SIGTTIN, onstop);

Sigset(SIGTTOU, onstop);

onstop(signo)

int signo;

{

... restore old terminal State ...

sigset(signo, SIG DFL);

kill(0, signo);

/* stop here until continued */

Sigset(signo, onstop);

... restore our special terminal state ...

}

This routine can also simulate a stop signal.

If a process does not need to save and restore state when it is stopped, but wishes to

be notified when it is continued after a stop, it can catch the SIGCONT signal; the

SIGCONT handler will be run when the process is continued.

Processes that lock data bases (such as the password file) should ignore SIGTTIN,

SIGTTOU, and SIGTSTP signals while the data bases are being manipulated. While

a process is ignoring SIGTTIN signals, reads that would normally have hung will

return end-of-file; writes that would normally have caused SIGTTOU signals are

instead permitted while SIGTTOU is ignored.

Licensed material—property of copyright hoider(s) 3-307

jobs(3C) DG/UX 6.4 _jobs(3C)

Interrupt-level process handling

sigset(3C) lets you handle process state changes as they occur. It provides an
interrupt-handling routine for the SIGCHLD signal,.a signal that occurs whenever the
status of a child process changes. You establish a signal handler as follows:

Sigset(SIGCHLD, onchild);

The shell or other process then waits for a change in child status with code like this:

recheck:

Sighold(SIGCHLD) ; /* start critical section */

if (no children to process) {

Ssigpause(SIGCHLD);/* release SIGCHLD and pause */

goto recheck;

}

Sigrelse(SIGCHLD) ; /* end critical region */

/* now have a child to process */

Here, sighold temporarily blocks the SIGCHLD signal while the data structures

are checked for a child to process. If we didn’t block the signal, we would have a

race condition; the signal might corrupt our decision by arriving shortly after we had

finished checking the condition but before we paused.

If we need to wait, we call sigpause, which automically releases the hold on the

- SIGCHLD signal and waits for a signal to occur by starting a pause(2). Otherwise,
we simply release the SIGCHLD signal and process the child.

Important: a long-standing bug in the signal mechanism has been fixed. The bug lost

a SIGCHLD signal if it occurred while the signal was blocked. This is because sig-

hold uses the SIG_HOLD signal set of sigsys(2) to prevent the signal action from

being taken without losing the signal. Similarly, a signal action set with sigset has

the signal held while the action routine is running, much as the interrupt priority of a

processor is raised when a device interrupt is taken.

In this interrupt-driven style of termination processing, wait calls must not block

when they retrieve status in the SIGCHLD signal handler. This is because a single

invocation of the SIGCHLD handler may indicate an arbitrary number of process

status changes: signals are not queued. This is similar to the case in a disk driver

where several drives on a single controller may report status at once, while only one

interrupt is taken.

It is even possible that no children will be ready to report status when the SIGCHLD

handler is invoked, if the signal was posted while the SIGCHLD handler was active,

and the child was noticed due to a SIGCHLD initially sent for another process. This

causes no problem, since the handler will be called whenever there is work to do; the

handler just has to collect all information by calling wait3 until no more information

is available. Further status changes are guaranteed to be reflected in another

SIGCHLD handler call.

Restarting system calls

In older versions of UNIX, slow system calls were interrupted when signals occurred,

returning EINTR. The new signal mechanism sigset(3C) normally restarts such

calls rather than interrupting them. To summarize: pause and wait return error

EINTR (as before), ioctl and wait3 restart, and read and write restart unless

some data was read or written; in that case, they return indicating how much data was

read or written. In programs that use the older signal(2) mechanisms, all of these

calls return EINTR if a signal occurs during the call.

3-308 Licensed material—property of copyright holder(s) 093-701056

jobs(3C) | DG/UX 5.4 _ jobs(3C)

SEE ALSO

esh(1), ioctl(2), killpg(2), setpgrp(2), sigsys(2), wait3(2), sigset(3C),

tty(4).

093-701056 Licensed material—property of copyright hoider(s) 3-309

Btol(SC) DG/UX 5.4 Btol(3C)

NAME

13tol, 1tol3 — convert between 3-byte integers and long integers

SYNOPSIS

#include <stdlib.h>

void 13tol (long *lp, const char *cp, int n);

void ltol3 (char *cp, const long «lp, int n);

DESCRIPTION ,
13tol converts a list of n three-byte integers packed into a character string pointed

to by cp into a list of long integers pointed to by /p.

1tol3 performs the reverse conversion from long integers (Ip) to three-byte integers

(cp).

These functions are useful for file-system maintenance where the block numbers are

three bytes long.

SEE ALSO

fs(4).

NOTES

Because of possible differences in byte ordering, the numerical values of the long

integers are machine-dependent.

3-31 0 Licensed material—property of copyright holder(s) 093-701056

idahread(3X) DG/UX 5.4 idahread(3X)

NAME

ldahread -— read the archive header of a member of a COFF archive file

SYNOPSIS

#include <stdio.h>

#include <ar.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldahread (ldptr, arhead)

LDFILE *ldptr; —

ARCHDR *arhead;

DESCRIPTION

If typeE(/dptr) is the archive file magic number, ldahread reads the archive header

of the common object file currently associated with /dpir into the area of memory

beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if typE(/dprr) does not

represent an archive file or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

093-701056

ldclose(3X), ldopen(3X), ar(4), ldfen(4).

Licensed materiai—property of copyright holder(s) 3-31 1

idciose(3X) DG/UX 5.4 idclose(3X)

NAME

ldclose, ldaclose — close a common object file

SYNOPSIS |

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldclose (ldptr)

LDFILE *ldptr;

int ldaclose (lidptr)

LDFILE *ldptr;

DESCRIPTION

Ldopen(3X) and ldclose provide uniform access to both simple common object

(COFF) files and common object files that are members of archive files. Thus an

archive of object files can be processed as if it were a series of simple object files.

If typre(/dptr) does not represent an archive file, ldclose will close the file and free

the memory allocated to the LDFILE structure associated with Idptr. If typE(Idptr) is

the magic number of an archive file and if there are any more files in the archive,

ldclose will reinitialize orrset(/dptr) to the file address of the next archive member

and return FAILURE. The LDFILE structure is prepared for a subsequent

ldopen(3X). In all other cases, ldclose returns succEss.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure

associated with /dprr regardless of the value of TypE(Idptr). Ldaclose always

returns SUCCESS. Ldaclose is often used in conjunction with ldaopen(3X).

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

fclose(3S), ldopen(3X), ldfcn(4).

3-31 2 Licensed material—property of copyright holder(s) 093-701056

idfhread(3X) " DG/UX 5.4 idfhread(3X)

NAME

ldfhread — read the file header of a common object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldfhread (ldptr, filehead)

LDFILE «ldptr;

FILHDR *filehead;

DESCRIPTION

Ldfhread reads the file header of the common object file currently associated with
Idptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read the

file header.

In most cases you can avoid using 1dfhread by using the macro HEADERETI (ldptr)

defined in ldfcn.h (see ldfcn(4)). The information in any field fieldname of the

file header may be accessed using HEADER(Idptr).fieldname or

HEADER(Idptr).sectionname.fieldname (for a field within a section descriptor).

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

093-701056

ldclose(3X), ldopen(3X), ldshread(3X), ldsyshread(3X), filehdr(4),

ldfcen(4).

Licensed material—property of copyright holder(s) 3-31 3

idgetname(3X) DG/UX 5.4 Idgetname (3X)

NAME

ldgetname - retrieve symbol name for object file symbol table entry

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <syms.h>

#include <ldfcn.h>

char *+ldgetname (ldptr, symbol)

LDFILE *ldptr;

SYMENT «symbol;

DESCRIPTION

Ldgetname returns a pointer to the name associated with symbol as a string. The

string is contained in a static buffer local to 1dgetname that is overwritten by each

call to ldgetname, and therefore must be copied by the caller if the name is to be

saved.

Ldgetname will return NULL (defined in stdio.h) if the name cannot be retrieved.

Typically, ldgetname will be called immediately after a successful call to ldtbread

to retrieve the name associated with the symbol table entry filled by ldtbread.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

3-314

ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

Licensed material—property of copyright holder(s) 093-701056

idiread(3X) DG/UX 5.4 idiread(3X)

NAME

ldlread, ldlinit, 1dlitem — manipulate line number entries of a common object

file function

SYNOPSIS

#include <stdio.h>

#finclude <filehdr.h>

#finclude <linenum.h>

#include <ldfcn.h>

int ldlread(ldptr, fcnindx, linenum, linent)

LDFILE «ldptr;

long fcnindx;

unsigned short linenun;

LINENO *«linent;

int ldlinit(ldptr, fcnindx)

LDFILE *ldptr;

long fenindx;

int ldlitem(ldptr, linenum, linent)

LDFILE *«ldptr;

unsigned short linenun;

LINENO *«linent;

DESCRIPTION

Ldlread searches the line number entries of the common object file currently associ-

ated with /dptr. Ldlread begins its search with the line number entry for the begin-

ning of a function and confines its search to the line numbers associated with a single

function. The function is identified by fcnindx, the index of its entry in the object file

symbol table. Ldlread reads the entry with the smallest line number equal to or

greater than Jinenum into the memory beginning at linent.

Ldlinit and ldlitem together perform exactly the same function as 1dlread.

After an initial call to ldlread or ldlinit, 1ldlitem may be used to retrieve a

series of line number entries associated with a single function. Ldlinit simply

locates the line number entries for the function identified by fcnindx. Ldlitem finds

and reads the entry with the smallest line number equal to or greater than linenum

into the memory beginning at linent.

Ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE.

Ldlread will fail if there are no line number entries in the object file, if fcnindx does

not index a function entry in the symbol table, or if it finds no line number equal to

or greater than linenum. Ldlinit will fail if there are no line number entries in the

object file or if fcnindx does not index a function entry in the symbol table. Ldli-

tem will fail if it finds no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library libld.a.

SEE ALSO

ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4).

093-701056 Licensed materiai—property of copyright nolder(s) 3-31 5

idiseek(3X) DG/UX 5.4 idiseek(3X)

NAME

ldlseek, ldnlseek - seek to line number entries of a section of a common object

file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldlseek (ldptr, sectindx)

LDFILE *ldptr;

unsigned short sectindx;

int ldnlseek (ldptr, sectname)

LDFILE «ldptr;

char *sectname;

DESCRIPTION

Ldlseek seeks to the line number entries of the section specified by sectindx of the

common object file currently associated with Idprr.

Ldniseek seeks to the line number entries of the section specified by sectname.

Ldlseek and ldnlseek return SUCCESS Or FAILURE. Ldlseek will fail if sectindx

is greater than the number of sections in the object file; 1dnlseek will fail if there is

no section name corresponding with ssectname. Either function will fail if the speci-

fied section has no line number entries or if it cannot seek to the specified line

number entries.

Note that the first section has an index of 1.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

ldclose(3X), ldopen(3X), ldshread(3X), 1dfcn(4).

3-31 6 Licensed material—property of copyright holder(s) 093-701056

idohseek(3X) DG/UX 5.4 idohseek(3X)

NAME

ldohseek — seek to the optional file header of an object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldohseek (ldptr)

LDFILE *ldptr;

DESCRIPTION

Ldohseek positions the file at the optional file header of the object file currently

associated with [dptr.

Ldohseek returms SUCCESS or FAILURE. Ldohseek will fail if it cannot seek to the
system header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

093-701056

ldclose(3X), ldopen(3X), 1dfhread(3X), 1dfen(4).

Licensed material—property of copyright holder(s) 3-31 7

idopen(3X) DG/UX 5.4 idopen(SX)

NAME

ldopen, ldaopen — open an object file for reading

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

LDFILE *ldopen (filename, ldptr)

char *filename;

LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)

char «filename;

LDFILE *oldptr;

DESCRIPTION

Ldopen and ldclose(3X) provide uniform access to both simple common object

(COFF) files and object files that are members of archive files. Thus an archive of

object files can be processed as if it were a series of simple object files.

If Idptr has the value NULL, then ldopen will open filename and allocate and initial-

ize the LDFILE structure, and return a pointer to the structure to the calling program.

If Idptr is valid and if typE(/dptr) is the archive magic number, ldopen will reinitial-

ize the LDFILE structure for the next archive member of filename.

Ldopen and ldclose(3X) work in concert. Ldclose will return FAILURE only

when tyPe(Idprr) is the archive magic number and when another file in the archive is

to be processed. Only then should ldopen be called with the current value of /dprtr.

In all other cases, and particularly whenever a new filename is opened, ldopen

should be called with a NULL /dptr argument.

The following is a model for the use of ldopen and ldclose(3X).

/* for each filename to be processed *«/

ldptr = NULL;

do

{

if ((ldptr = ldopen(filename, lIdptr)) != NULL)

{

/*check magic numbers/

/* process the file */
} .

} while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will reopen filename and allocate and ini-

tialize a new LDFILE structure, copying the TYPE, OFFSET, and HEADER fields from

oldptr. Ldaopen returns a pointer to the new LDFILE structure. This new pointer

is independent of the old pointer, oldptr. The two pointers may be used concurrently

to read separate parts of the object file.

Both ldopen and ldaopen open filename for reading. Both functions return NULL
if

a) filename cannot be opened

b) memory for the LDFILE structure cannot be allocated

3-31 8 Licensed material—property of copyright holder(s) 093-701056

Idopen(3X) DG/UX 5.4 idopen(3X)

c) filename is too small to be an object file or an archive of object files. The

functions try to read the header of object files, so a file smaller than‘a

header will cause the functions to return NULL.

Note that a successful open does not ensure that the given file is an object file or an

archive of object files.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

fopen(3S), ldclose(3X), ldfcn(4).

093-701056 Licensed materiali—property of copyright holder(s) 3-31 9

idrseek(3X) DG/UX 5.4 ldrseek(3X)

NAME

idrseek, ldnrseek - seek to relocation entries of a section of a common object

file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldrseek (ldptr, sectindx)

LDFILE *ldptr;

unsigned short sectindx;

int ldnrseek (ldptr, sectname)

LDFILE *«ldptr;

char *sectname;

DESCRIPTION

Ldrseek seeks to the relocation entries of the section specified by sectindx of the

common object file currently associated with Idptr.

Ldnrseek seeks to the relocation entries of the section specified by sectname.

Ldrseek and ldnrseek return SUCCESS or FAILURE. lLdrseek will fail if sectindx

is greater than the number of sections in the object file; ldnrseek will fail if there is

no section name corresponding with sectname. Either function will fail if the speci-

fied section has no relocation entries or if it cannot seek to the specified relocation

entries. :

Note that the first section has an index of 1.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

3-320

ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

Licensed material—property of copyright holder(s) 093-701056

ldshread(3X) DG/UX 5.4 ldshread(3X)

NAME

ldshread, ldnshread -— read an indexed/named section header of a common

object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <scnhdr.h>

#include <ldfen.h>

int ldshread (ldptr, sectindx, secthead)

LDFILE *«ldptr;

unsigned short sectindx;

SCNHDR *secthead;

int ldnshread (ldptr, sectname, secthead)

LDFILE *«ldptr;

char *sectname;

SCNHDR *secthead;

DESCRIPTION

Ldshread reads the section header specified by sectindx of the common object file

currently associated with /dptr into the area of memory beginning at secthead.

Ldnshread reads the section header specified by sectname into the area of memory

beginning at secthead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread will fail if sec-

tindx is greater than the number of sections in the object file; ldnshread will fail if

there is no section name corresponding with sectname. Either function will fail if it

cannot read the specified section header.

Note that the first section header has an index of 1.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

093-701056

ldclose(3X), ldopen(3X), ldfcn(4).

Licensed material—property of copyright hoider(s) 3-321

idsseek(3X) DG/UX 5.4 idsseek(SX)

NAME

ldsseek, ldnsseek — seek to an indexed/named section of a common object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#finclude <ldfcen.h>

int ldsseek (ldptr, sectindx)

LDFILE *ldptr;

unsigned short sectindx;

int ldnsseek (ldptr, sectname)

LDFILE «ldptr;

char *«sectname;

DESCRIPTION

Ldsseek seeks to the section specified by sectindx of the common object file

currently associated with /dptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek will fail if sectindx

is greater than the number of sections in the object file; 1dnsseek will fail if there is

no section name corresponding with sectname. Either function will fail if there is no

section data for the specified section or if it cannot seek to the specified section.

Note that the first section has an index of 1.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

3-322

ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

Licensed material—property of copyright holder(s) 093-701056

Idtbindex(SX) DG/UX 5.4 idtbindex(3X)

NAME

ldtbindex — compute index of symbol table entry of an object file

SYNOPSIS

#include <stdio.h>

#finclude <filehdr.h>

#include <syms.h>

#include <ldfcn.h>

long ldtbindex (ldptr)

LDFILE «ldptr;

DESCRIPTION

Ldtbindex returns the (long) index of the symbol table entry at the current position

of the object file associated with /dptr.

The index returned by 1dtbindex may be used in subsequent calls to

ldtbread(3X). Ldtbindex returns the index of the symbol table entry that begins

at the current position of the object file. If ldtbindex is called immediately after a

particular symbol table entry has been read, it will return the index of the next entry.

Ldtbindex will fail, returning BADINDEX, if there are no symbols in the object file or

if the object file is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of 0.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

093-701056

ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

Licensed material—property of copyright holder(s) 3-323

idtbread(SX) DG/UX 5.4 ldtbread(3X)

NAME

ldtbread — read an indexed symbol table entry of an object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <syms.h>

#include <ldfcn.h>

int ldtbread (ldptr, symindex, symbol)

LDFILE «ldptr;

long symindex;

SYMENT *symbol;

DESCRIPTION

Ldtbread reads the symbol table entry specified by symindex of the object file

currently associated with /dptr into the area of memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if symindex is greater

than the number of symbols in the object file or if it cannot read the specified symbol

table entry.

Note that the first symbol in the symbol table has an index of 0.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

3-324

ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4).

Licensed material—property of copyright hoider(s) 093-701056

idtbseek(3X) DG/UX 5.4 kitbseek(3X)

NAME

ldtbseek — seek to the symbol table of an object file

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfcn.h>

int ldtbseek (ldptr)

LDFILE *«ldptr;

DESCRIPTION

Ldtbseek seeks to the symbol table of the object file currently associated with Idprr.

Ldtbseek returns SUCCESS Or FAILURE. Ldtbseek will fail if the symbol table has

been stripped from the object file or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

ldclose(3X), ldopen(3X), ldtbread(3X), ldfcen(4).

093-701056 Licensed material—property of copyright holder(s) 3-325

localeconv(3C)

NAME

3-326

DG/UX 5.4

localeconv - get numeric formatting information

SYNOPSIS "

#include <locale.h>

struct lconv *localeconv (void);

DESCRIPTION

localeconv sets the components of an object with type struct lconv (defined in
locale.h) with the values appropriate for the formatting of numeric quantities

(monetary and otherwise) according to the rules of the current locale [see

setlocale(3C)]. The definition of struct lconv is given below (the values for the

fields in the

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

we CY

. x /
oe ¢¢

oe 09 + /

oe e9

+ /
a LA] + /

"ey

"yy

oe,

"ay

oe,

CHAR MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR MAX

CHAR MAX

CHAR_MAX

C locale are given in comments):

«decimal point; /*

thousands_ sep; /

«grouping; /*
int_curr_symbol; /
«currency symbol; /*
amon_decimal_point; /*

xmon_thousands_sep; /*

«mon_grouping; /*
xpositive_sign; /
anegative_sign; /*
int_frac_digits; /*
frac_digits; /*
p_cs_precedes; /*
p_sep_by space; /*
n_cs_precedes; /*
n_sep_by space; [*
p_sign_posn; [*
n_sign_posn; /[* CHAR_MAX

«/

*«/

+ /

«/

«/

*/

«/

«/

localeconv(3C)

(zero length string) */

The members of the structure with type char « are strings, any of which (except

decimal point) can point to "", to indicate that the value is not available in the

current locale or is of zero length. The members with type char are nonnegative

numbers, any of which can be CHAR_MAX (defined in the limits.h header file) to

indicate that the value is not available in the current locale. The members are the fol-

lowing:

char «decimal point

The decimal-point character used to format non-monetary quantities.

char *thousands_sep

The character used to separate groups of digits to the left of the decimal-point

character in formatted non-monetary quantities.

char *grouping

A string in which each element is taken as an integer tha‘ indicates the

number of digits that compose the current group in a formatted non-monetary

quantity. The elements of grouping are interpreted according to the follow-

ing:

CHAR-MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder

of the digits.

Licensed material—property of copyright hoider(s) 093-701056

localeconv(SC) DG/UX 5.4 localeconv(3C)

093-701056

other The value is the number of digits that compose the current

group. The next element is examined to determine the size of

the next group of digits to the left of the current group.

char *int_curr_symbol

The international currency symbol applicable to the current locale, left-

justified within a four-character space-padded field. The character sequences’

should match with those specified in: [SO 4217 Codes for the Representation

of Currency and Funds.

char «currency_symbol

The local currency symbol applicable to the current locale.

char *«mon_ decimal point

The decimal point used to format monetary quantities.

char *mon_thousands_sep

The separator for groups of digits to the left of the decimal point in formatted

monetary quantities.

char *«mon_grouping

A string in which each element is taken as an integer that indicates the

number of digits that compose the current group in a formatted monetary

quantity. The elements of mon_grouping are interpreted according to the

rules described under grouping.

char *positive_sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign

The string used to indicate a negative-valued formatted monetary quantity.

char int _frac_digits

The number of fractional digits (those to the right of the decimal point) to be

displayed in an internationally formatted monetary quantity.

char frac_digits

The number of fractional digits (those to the right of the decimal point) to be

displayed in a formatted monetary quantity.

char p_cs_precedes

Set to 1 or Oif the currency_symbol respectively precedes or succeeds the

value for a nonnegative formatted monetary quantity.

char p_sep_by_ space

Set to 1 or 0 if the currency_symbol respectively is or is not separated by a

space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes

Set to 1 or 0 if the currency symbol respectively precedes or succeeds the

value for a negative formatted monetary quantity.

char n_sep_by_ space

Set to 1 or Oif the currency_symbol respectively is or is not separated by a

space from the value for a negative formatted monetary quantity.

char p_sign_posn

Set to a value indicating the positioning of the positive sign for a nonne-

gative formatted monetary quantity. The value of p_sign_posn is inter-

preted according to the following:

Licensed material—property of copyright holder(s) 3-327

localeconv(3C) DG/UX 5.4 localeconv(3C)

Parentheses surround the quantity and currency _symbol.

The sign string precedes the quantity and currency_symbol.

The sign string succeeds the quantity and currency_symbol.

The sign string immediately precedes the currency_symbol.me WwW NY -F © The sign string immediately succeeds the currency_symbol.

char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a nega-

tive formatted monetary quantity. The value of n_sign_posn is interpreted

according to the rules described under p_sign_posn.

RETURNS

localeconv returns a pointer to the filled-in object. The structure pointed to by the

return value may be overwritten by a subsequent call to localeconv.

EXAMPLES

The following table illustrates the rules used by four countries to format monetary

quantities.

Country Positive format Negative format International format

Italy L.1.234 -L.1.234 ITL.1.234

Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56- NOK 1.234,56

Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the

structure returned by localeconv are as follows:

Italy Netherlands Norway Switzerland

int_curr_symbol "ITL." “NLG " "NOK " "CHF "

currency symbol "L.” "Fr" “kr" "SFrs."

mon decimal point "" "," “," a

mon thousands _sep ".” a "n "

mon_ grouping "\3" "\3" "\3" "\3"

positive sign "" ome ne ne

negative_sign

int_frac_digits

frac_digits

p_cs_ precedes

p_sep_by space

n_cs_ precedes

n_sep_ by space

p_sign_posn

n_sign_posn

no" ous oeoul!#., "c"

2 2

rPrROoOrK-OKO:S Pree ee wd NH OHOFRN NH OrHOFRN Wb
FILES

/usr/lib/locale/locale/LC_MONETARY LC_MONETARY database for locale

/usr/lib/locale/locale/LC_NUMERIC LC_NUMERIC database for locale

SEE ALSO

setlocale(3C).

chrtb1(1M), montb1(1M) in the System Administrator’s Reference Manual.

3-328 Licensed material—property of copyright holder(s) 093-701056

lockf(3C) DG/UX 5.4 lockf(3C)

NAME

lockf — record locking on files

SYNOPSIS

#include <unistd.h>

int lockf (int fildes, int function, long size);

DESCRIPTION

_lockf allows sections of a file to be locked; advisory or mandatory write locks

depending on the mode bits of the file [see chmod(2)]. Locking calls from other

processes that attempt to lock the locked file section will either return an error value

or be put to sleep until the resource becomes unlocked. All the locks for a process

are removed when the process terminates. [See fcnt1(2) for more information

about record locking.]

fildes is an open file descriptor. The file descriptor must have O_WRONLY or O_RDWR

permission in order to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible

values for function are defined in unistd.h as follows:

#define F_ULOCK 0 /*x unlock previously locked section +«/

#define F_LOCK 1 /x lock section for exclusive use «/

#define F_TLOCK 2 /* test & lock section for exclusive use «/

#define fF _TEST 3 /x*x test section for other locks +/

All other values of function are reserved for future extensions and will result in an

error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified sec-

tion. F_LOCK and F_TLOCK both lock a section of a file if the section is available.

F_ULOCK removes locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be

locked or unlocked starts at the current offset in the file and extends forward for a

positive size and backward for a negative size (the preceding bytes up to but not

including the current offset). If size is zero, the section from the current offset

through the largest file offset is locked (i.e., from the current offset through the

present or any future end-of-file). An area need not be allocated to the file in order

to be locked as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or

be contained by a previously locked section for the same process. Locked sections

will be unlocked starting at the the point of the offset through size bytes or to the end

of file if size is (of £_t) 0. When this situation occurs, or if this situation occurs in

adjacent sections, the sections are combined into a single section. If the request

requires that a new element be added to the table of active locks and this table is

already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not

available. F_LOCK will cause the calling process to sleep until the resource is avail-

able. F_TLOCK will cause the function to return a —1 and set errno to EACCES if

the section is already locked by another process. |

F_ULOCK requests may, in whole or in part, release one or more locked sections con-

trolled by the process. When sections are not fully released, the remaining sections

are still locked by the process. Releasing the center section of a locked section

requires an additional element in the table of active locks. If this table is full, an

093-701056 Licensed material—-property of copyright holder(s) 3-329

lockf(3C) DG/UX 5.4 lockf(3C)

errno is set to ENOLK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to

sleep by requesting another process’s locked resource. Thus calls to lockf or

fentl scan for a deadlock prior to sleeping on a locked resource. An error return is

made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm system call may be

used to provide a timeout facility in applications that require this facility.

locké£ will fail if one or more of the following are true:

EBADF fildes is not a valid open descriptor.

EAGAIN cmd is F_TLOCK or F_TEST and the section is already locked by another

process.

EDEADLK cmd is F_LOCK and a deadlock would occur.

ENOLK cmd is F_LOCK, F_TLOCK, or F_ULOCK and the number of entries in the

lock table would exceed the number allocated on the system.

ECOMM fildes is on a remote machine and the link to that machine is no longer

active.

SEE ALSO

intro(2), alarm(2), chmod(2), close(2), creat(2), fentl1(2), open(2),

read(2), write(2).

DIAGNOSTICS

NOTES

3-330

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is

returned and errno Is set to indicate the error.

Unexpected results may occur in processes that do buffering in the user address

space. The process may later read/write data that is/was locked. The standard I/O

package is the most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN rather than EACCES

when a section of a file is already locked by another process, portable application

programs should expect and test for either value.

Licensed material—property of copyright holder(s) 093-701056

logname (3X) DG/UX 5.4 logname (3X)

NAME

logname — return login name of user

SYNOPSIS

char +logname()

DESCRIPTION

Logname returns a pointer to the null-terminated login name; it extracts the $Loc-

NAME variable from the user’s environment.

This routine is kept in /lib/libPW.a.

FILES

/etc/profile

SEE ALSO

profile(4), environ(5), cuserid(3S), getlogin(3C), getpwuid(3C).

env(1), login(1) in the User’s Reference for the DG/UX System

CAVEATS

The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

This routine will cease to exist in the future. Use cuserid, or a combination of

getlogin and getpwuid instead.

093-701056 Licensed material—property of copyright holder(s) 3-331

lsearch(3C) DG/UX 5.4 lsearch(3C)

NAME

lsearch, l1find — linear search and update

SYNOPSIS

#include <search.h>

void *lsearch (const void +key, void * base,

size_t *«nelp, size_t width,

int (*xcompar) (const void *, const void +#));

void *lfind (const void «key, const void «base,

size_t *«nelp, size_t width,

int (*«compar)(const void *, const void +*));

DESCRIPTION

NOTES

1search is a linear search routine generalized from Knuth (6.1) Algorithm S. It

returns a pointer into a table indicating where a datum may be found. If the datum

does not occur, it is added at the end of the table.

key points to the datum to be sought in the table. base points to the first element in

the table. nelp points to an integer containing the current number of elements in the

table. The integer is incremented if the datum is added to the table. width is the

size of an element in bytes.

compar is a pointer to the comparison function that the user must supply (stremp,

for example). It is called with two arguments that point to the elements being com-

pared. The function must return zero if the elements are equal and non-zero other-

wise.

lfind is the same as lsearch except that if the datum is not found, it is not added

to the table. Instead, a null pointer is returned.

The pointers to the key and the element at the base of the table may be pointers to

any type.

The comparison function need not compare every byte, so arbitrary data may be con-

tained in the elements in addition to the values being compared.

The value returned should be cast into type pointer-to-element.

EXAMPLE

3-332

This program will read in less than TABSIZE strings of length less than ELSIZE and

store them in a table, eliminating duplicates, and then will print each entry.

#include <search.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define TABSIZE 50

#define ELSIZE 120

main()

{

char line[ELSIZE];/* buffer to hold input string +«/

char tab[TABSIZE] [ELSIZE] ; /* table of strings +/

size_t nel = 0; /* number of entries in tab +«/

int i;

Licensed material—property of copyright hoider(s) 093-701056

lsearch(3C) DG/UX 5.4 tsearch(3C)

while (fgets(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)

(void) lsearch(line, tab, &nel, ELSIZE, strcmp);

for(i= 0; i < nel; i++)

(void)fputs(tab[i], stdout);

return 0;

} -

SEE ALSO . |

bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

NOTES

If the searched-for datum is found, both lsearch and 1find return a pointer to it.

Otherwise, 1find returns NULL and lsearch returns a pointer to the newly added
element.

Undefined results can occur if there is not enough room in the table to add a new

item.

093-701056 Licensed material—property of copyright holder(s) 3-333

main(3C) DG/UX 5.4 main(3C)

NAME

main — enter a C main program

SYNOPSIS

main (argc, argv, envp])

int argc;

char *argv[];

char *envp[];

{

where:

argc _is optional and is the number of arguments, including the program name, with

which you invoke the C program.

argv is optional and is a pointer to an array of pointers to strings; argv([0] is the

name you invoked the program with; argv[1] is the first argument on the com-

mand line after the program name; argv(argc] is a null pointer.

envp is optional and is a pointer to an array of pointers to strings, each of which is

a separate environment variable of the form NAME = VALUE. The getenv

function (described earlier in this chapter) accesses this list of environment

variables. The DG/UX system routines execle and execve can change the

environment of the new process if it is a C program.

DESCRIPTION

Every C program has at least one function: the main function. This function provides

a place for the program to begin execution; the main function must be present to ini-

tiate a C program. The runtime initializer calls main and returns to the system when

main returns.

Since argv(0] is the program name, the initial value of argc is always at least 1. If you

want to manipulate the argv character arrays as something other than strings, you

must make explicit use of such functions as atof or atoi.

If your program does not process command line arguments, begin the function with
the following:

main()

EXAMPLE

/* Program test for the main() function */

int i=1;

main(arge, argv, envp)

int argc;

char *argv[];

char *envp[];

{

printf£("You called the program %s.\n", argv[0]);

while (i < argc) {

printf("Argument %d for this run is %s.\n",

i, argv[i]);

3-334 Licensed material—property of copyright holder(s) 093-701056

main(3C) | | DG/UX 5.4 main(3C)

i++;

}

A call to the program test with arguments alpha, beta, and gamma generates the out-

put

You called the program test.

Argument 1 for this run is alpha.

Argument 2 for this run is beta.

Argument 3 for this run is gamma.

RETURNS

The main function’s return value is used as an argument to the exit function. The

value 0 typically means no errors occurred, and a non-zero value indicates an error

condition. The wait function can retrieve this value.

SEE ALSO

exec(2), wait(2), wait3(2), exit(3C), getenv(3C).

093-701056 Licensed material—property of copyright holder(s) 3-335

malloc(3C) _ DG/UX 5.4 maliloc(3C)

NAME

malloc, free, realloc, calloc, memalign, valloc, — memory allocator

SYNOPSIS |

#include <stdlib.h>

void «malloc (size_t size);

void free (void ptr);

void *realloc (void «ptr, size_t size);

void *«calloc (size_t nelem, size_t elsize);

void *memalign(size_t alignment, size_t size);

void *valloc(size_t size);

#include <alloca.h>

char *«alloca(int size);

DESCRIPTION

malloc and free provide a simple general-purpose memory allocation package.

malloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc, cal-

loc or realloc. After free is performed this space is made available for further

allocation. If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc is overrun or if some

random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a

pointer to the (possibly moved) block. The contents will be unchanged up to the

lesser of the new and old sizes. If ptr is NULL, realloc behaves like malloc for

the specified size. If size is zero and pir is not a null pointer, the object pointed to is —

freed.

calloc allocates space for an array of nelem elements of size elsize. The space is

initialized to zeros.

memalign allocates size bytes on a specified alignment boundary, and returns a

pointer to the allocated block. The value of the returned address is guaranteed to be

an even multiple of alignment. Note: the value of alignment must be a power of two,

and must be greater than or equal to the size of a word.

valloc(size) is equivalent to memalign(sysconf (_SC_PAGESIZE) ,size).

Each of the allocation routines returns a pointer to space suitably aligned (after possi-

ble pointer coercion) for storage of any type of object.

malloc, realloc, calloc, memalign, and valloc will fail if there is not enough

available memory.

alloca allocates size bytes of space in the stack frame of the caller. This temporary

space is automatically freed on return. alloca is only supported by the GNU C

language compiler.

SEE ALSO

malloc(3X), gcc(1).

DIAGNOSTICS | |

If there is no available memory, malloc, realloc, memalign, valloc, and

3-336 Licensed material—property of copyright holder(s) 093-701056

mailoc(3C) DG/UX 5.4 malloc(3C)

calloc return a null pointer. When realloc returns NULL, the block pointed to

by pir is left intact. If size, nelem, or elsize is 0, a unique pointer to the arena is

returned.

093-701056 Licensed material—property of copyright holder(s) 3-337

malloc(3X) DG/UX 5.4 mailoc(3X)

NAME

malloc, free, realloc, calloc, mallopt, mallinfo - memory allocator

SYNOPSIS:

cc [flag ...] file ... ~-lmalloce [library ...]

#include <stdlib.h>

void *malloc (size_t size)

void free (void *ptr)

void «realloc (void «ptr, size_t size)

void *«calloc (size_t nelem, size_t elsize)

#include <malloc.h>

int mallopt (int cmd, int value)

struct mallinfo mallinfo (void)

#include <alloca.h>

char *«alloca(int size);

DESCRIPTION

malloc and free provide a simple general-purpose memory allocation package. It

is found in the library “malloc”, and is loaded if the option “‘-lmalloc”’ is used with

ec(1) or 1d(1).

malloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc; after

free is performed this space is made available for further allocation, and its contents

have been destroyed (but see mallopt below for a way to change this behavior). If

ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc is overrun or if some ran-

dom number is handed to free. |

realloc changes the size of the block pointed to by pir to size bytes and returns a

pointer to the (possibly moved) block. The contents are unchanged up to the lesser

of the new and old sizes. If ptr is a null pointer, realloc behaves like malloc for

the specified size. If size is zero and pr is not a null pointer, the object it points to is

freed.

calloc allocates space for an array of nelern elements of size elsize. The space is

initialized to zeros.

mallopt provides for control over the allocation algorithm. The available values for

cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below the size of

maxfast in large groups and then doles them out very quickly. The default

value for maxfast is 96.

M_NLBLKS Set numlblks to value. The above mentioned “large groups” each contain

numlblks blocks. numlblks must be greater than 0. The default value for

numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are con-

sidered to be rounded up to the nearest multiple of grain. grain must be

greater than 0. The default value of grain is the smallest number of bytes

3-338 Licensed material—property of copyright holder(s) 093-701056

malloc(3X) DG/UX 5.4 malloc(3X)

that will allow alignment of any data type. Value will be rounded up to a

multiple of the default when grain is set.

M_KEEP ‘Preserve data in a freed block until the next malloc, realloc, or cal-
loc. This option is provided only for compatibility with the old version

of malloc and is not recommended.

These values are defined in the malloc.h header file.

mallopt may be called repeatedly, but may not be called after the first small block is

allocated.

mallinfo provides instrumentation describing space usage. It returns the structure:

struct mallinfo {

int arena; /* total space in arena */

int ordblks; /* number of ordinary blocks +*/

int smblks; 7* number of small blocks +/

int hblkhd; /* space in holding block headers +/

int hblks; /7* number of holding blocks «/

int usmblks; /* space in small blocks in use +/

int fsmblks; /* Space in free small blocks *«/

int uordblks; /* space in ordinary blocks in use *«/

int fordblks; /* space in free ordinary blocks +*/

int keepcost; /* space penalty if keep option +«/

/* is used *«/

}

This structure is defined in the malloc.h header file.

Each of the allocation routines returns a pointer to space suitably aligned (after possi-

ble pointer coercion) for storage of any type of object.

alloca allocates size bytes of space in the stack frame of the caller. This temporary

space is automatically freed on return. alloca is only supported by the GNU C

language compiler.

SEE ALSO

brk(2), malloc(3C), gcc(1).

DIAGNOSTICS |

malloc, realloc, and calloc return a NULL pointer if there is not enough avail-

able memory. When realloc returns NULL, the block pointed to by prr is left

intact. If mallopt is called after any allocation or if cmd or value are invalid, non-

zero is returned. Otherwise, it returns zero.

NOTES

Note that unlike malloc(3C), this package does not preserve the contents of a block

when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for malloc, realloc, calloc and free are also defined in

the <malloc.h> header file for compatibility with old applications. New applications

should include <stdlib.h> to access the prototypes for these functions.

093-701056 Licensed material—property of copyright holder(s) 3-339

matherr(3M) DG/UX 5.4 matherr(SM)

NAME

matherr — error-handling function

SYNOPSIS

ce [flag ...] file ... -1m [library ...]

#include <math.h>

int matherr (struct exception *x);

DESCRIPTION

matherr is invoked by functions in the math libraries when errors are detected.

Note that matherr is not invoked when the -Xc compilation option is used. Users

may define their own procedures for handling errors, by including a function named

matherr in their programs. matherr must be of the form described above. When

an error occurs, a pointer to the exception structure x will be passed to the user-

supplied matherr function. This structure, which is defined in the math.h header

file, is as follows:

struct exception [{

int type;

char *name; |

double argl, arg2, retval;

);

The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

DOMAIN argument domain error

SING argument singularity

OVERFLOW overflow range error

UNDERFLOW underflow range error

TLOSS total loss of significance

PLOSS partial loss of significance

The element name points to a string containing the name of the function that

incurred the error. The variables arg1 and arg2 are the arguments with which the

function was invoked. retval is set to the default value that will be returned by the

function unless the user’s matherr sets it to a different value.

If the user’s matherr function returns non-zero, no error message will be printed,
and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,

described with the math functions involved, will be invoked upon error. These pro-

cedures are also summarized in the table below. In every case, errno is set to EDOM

or ERANGE and the program continues.

3-340 Licensed material—property of copyright hoider(s) 093-701056

matherr(3M) DG/UX 5.4 matherr(3M)

Default Error Handling Procedures

Types of Errors .

type DOMAIN’ | SING | OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE | ERANGE

BESSEL: - - - _ M, 0 -

yO, yl, yn (arg < 0) M, -H - - - - -

EXP, EXPF: - - H 0 - -

LOG, LOG10:

LOGF, LOGIOF:

(arg < 0) M, -H - - - - -

(arg = 0) M, -H - - - - -

POW, POWF: - - +H 0 - -

neg ** non-int M, 0 - - - - -

0 ** non-pos M, 0 - - ~ - -

SQRT, SQRTF: M, 0 ~ - - - -

FMOD, FMODF:

(arg2 = 0) M, X - - - - -

REMAINDER:

(arg2 = 0) M, N - - | - - -

GAMMA, LGAMMA: - M, H H - - -

HYPOT: - - H - - -

SINH, SINHF: - - +H - - -

COSH, COSHF: - - H - - -

ASIN, ACOS, ATAN2:

ASINF, ACOSF, ATAN2F: M, 0 - - - - -

ACOSH: M, N - - - = ~

ATANH:

(| arg| > 1) M, N - = | -— -. -

(| arg| = 1) | - M, N - - - -

Abbreviations

M Message is printed (not with the —Xa or —Xc options).

H HUGE is returned (HUGE_VAL with the —Xa or —Xc options).

-H —-HUGE is returned (-HUGE_VAL with the —Xa or —Xc options).

+H HUGE or —HUGE ts returned.

(HUGE_VAL or -HUGE_VAL with the —Xa or -Xc options).

0 0 is returned.

X arg! is returned.

N NaN is returned.

EXAMPLE

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

093-701056 Licensed material—property of copyright holder(s) 3-041

matherr(3M) DG/UX 5.4 matherr(3M)

int

matherr(register struct exception +*x);

{

switch (x->type) [

case DOMAIN:

/* change sqrt to return sqrt(-argl), not 0 +«/

if (!stremp(x->name, "“sqrt")) {

x->retval = sqrt(-x->argl);

return (0); /* print message and set errno *+/

}

case SING:

/* all other domain or sing errors, print message +*/

/* and abort */

fprintf(stderr, "domain error in %s\n", x->name);

abort();

case PLOSS:

/* print detailed error message +/

fprintf(stderr, "loss of significance in %s(%g)=%g\n",

x~->name, x->argl, x->retval);

return (1); /* take no other action +*/

}

return (0); /* all other errors, execute default procedure +*/

}

SEE ALSO

erf(3M).

NOTES

Error handling in -Xa and -xt modes [see cc(1)] is described more completely on

individual math library pages.

3-342 Licensed material—property of copyright hoider(s) 093-701056

mbchar(3C) - DG/UX 5.4 mbchar(3C)

NAME

mbchar: mbtowc, mblen, wctomb — multibyte character handling

SYNOPSIS

#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

int mblen (const char *s, size_t n);

int wctomb (char *s, wchar_t wchar);

DESCRIPTION

Multibyte characters are used to represent characters in an extended character set.

This is needed for locales where 8 bits are not enough to represent all the characters

in the character set.

The multibyte character handling functions provide the means of translating multibyte

characters into wide characters and back again. Wide characters have type wchar_t

(defined in stdlib.h), which is an integral type whose range of values can represent

distinct codes for all members of the largest extended character set specified among

the supported locales.

A maximum of 3 extended character sets are supported for each locale. The number

of bytes in an extended character set is defined by the LC_CTYPE category of the

locale [see setlocale(3C)]. However, the maximum number of bytes in any multi-

byte character will never be greater than MB_LEN MAX. which is defined in

stdlib.h. The maximum number of bytes in a character in an extended character

set in the current locale is given by the macro, MB_CUR_MAX, also defined in

stdlib.h.

‘mbtowc determines the number of bytes that comprise the multibyte character

pointed to by s. Also, if pwc is not a null pointer, mbtowc converts the multibyte

character to a wide character and places the result in the object pointed to by pwc.

(The value of the wide character corresponding to the null character is zero.) At

most ” characters will be examined, starting at the character pointed to by s.

If s is a null pointer, mbtowc simply returns 0. If s is not a null pointer, then, if s

points to the null character, mbtowc returns 0; if the next 7 or fewer bytes form a

valid multibyte character, mbtowc returns the number of bytes that comprise the con-

verted multibyte character; otherwise, s does not point to a valid multibyte character

and mbtowc returns —1.

mblen determines the number of bytes comprising the multibyte character pointed to

by s. It is equivalent to

mbtowc ((wchar_t *)0, s, n);

wctomb determines the number of bytes needed to represent the multibyte character

corresponding to the code whose value is wchar, and, if s is not a null pointer, stores

the multibyte character representation in the array pointed to by s. At most

MB _CUR_MAX characters are stored.

If s is a null pointer, wctomb simply returns 0. If s is not a null pointer, wetomb

returns —1-if the value of wchar does not correspond to a valid multibyte character;

otherwise it returns the number of bytes that comprise the multibyte character

corresponding to the value of wchar.

SEE ALSO

mbstring(3C), setlocale(3C), environ(5).

093-701056 Licensed material—property of copyright holder(s) 3-343

mbchar(3C) - DG/UX 5.4 mbchar(3C)

chrtb1(1M) in the System Administrator’s Reference Manual.

3-344 Licensed material—property of copyright holder(s) 093-701056

mbchar(3W) DG/UX 5.4

NAME

mbchar: mbtowc, wctomb, mblen — multibyte character conversion

SYNOPSIS

#include <stdlib.h>

int mbtowc(wchar_t «pwc, char #s, size_t n);

int wetomb(char *5, wchar_t wehar);

int mblen(char #5, size_t n);

DESCRIPTION

These three functions can support both

typedef unsigned short wchar t;

and

typedef long wchar t;

conditionally.

SEE ALSO

mbstring(3W), wchrtb1(1M).

mbchar(3C) in the System V Release 4.0 Programmer’s Reference Manual.

093-701056 Licensed material—property of copyright holder(s)

mbchar(3W)

3-345

mbstring(3C) DG/UX 5.4 mbstring(3C)

NAME

mbstring: mbstowcs, wcstombs — multibyte string functions

SYNOPSIS

#include <stdlib.h>

Size_t mbstowcs (wchar_t *#pwcs, const char +s, size_t n);

size_t westombs (char *s, const wchar_t *pwes, size_t n);

DESCRIPTION

mbstowcs converts a sequence of multibyte characters from the array pointed to by s

into a sequence of corresponding wide character codes and stores these codes into

the array pointed to by pwcs, stopping after n codes are stored or a code with value

zero (a converted null character) is stored. If an invalid multibyte character is

encountered, mbstowcs returns (size_t)-1. Otherwise, mbstowcs returns the

number of array elements modified, not including the terminating zero code, if any.

westombs converts a sequence of wide character codes from the array pointed to by

pwes into a sequence of multibyte characters and stores these multibyte characters

into the array pointed to by s, stopping if a multibyte character would exceed the limit

of n total bytes or if a null character is stored. If a wide character code is encoun-

tered that does not correspond to a valid multibyte character, wcstombs returns

(size_t)-1. Otherwise, westombs returns the number of bytes modified, not

including a terminating null character, if any.

SEE ALSO

3-346

mbchar(3C), setlocale(3C), environ(5).
chrtb1(1M) in the System Administrator’s Reference Manual.

Licensed material—property of copyright holder(s) 093-701056

mbstring(3W) DG/UX 5.4

NAME

mbstring: mbstowcs, wctombs — multibyte string conversion

.SYNOPSIS

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwes, char +5, size_t);

size_t westombs(char #5, wchar_t +«pwces, size_t);

DESCRIPTION

These two functions can support both

typedef unsigned short wchar t;

and

typedef long wchar t;

conditionally.

SEE ALSO

wehrtbl(1M), mbchar(3W), mbstring(3C).

093-701056 Licensed material—property of copyright holder(s)

mbstring(Sw)

3-347

memory(3C) DG/UX 5.4 memory(3C)

NAME

memory: memccpy, memchr, memcmp, memcpy, memmove, memset — memory

operations

SYNOPSIS

#include <string.h>

void *memccpy (void *sl, const void *s2, int c, size_t n);

void *memchr (const void *s, int c, size_t n);

int memcmp (const void *sl, const void +*s2, size_t n);

void *memcpy (void *sl, const void *s2, size_t n);

void *memmove (void «sl, const void *s2, size_t n);

void *memset (void *s, int c, size_t n);

DESCRIPTION

These functions operate as efficiently as possible on memory areas (arrays of bytes

bounded by a count, not terminated by a null character). They do not check for the

overflow of any receiving memory area.

memccpy copies bytes from memory area s2 into s1, stopping after the first

occurrence of c (converted to an unsigned char) has been copied, or after n bytes

have been copied, whichever comes first. It returns a pointer to the byte after the

copy of c in s1, or a null pointer if c was not found in the first n bytes of s2.

memchr returns a pointer to the first occurrence of c (converted to an unsigned

char) in the first n bytes (each interpreted as an unsigned char) of memory area

S$, or a null pointer if c does not occur.

memcmp compares its arguments, looking at the first n bytes (each interpreted as an

unsigned char), and returns an integer less than, equal to, or greater than 0,

according as si is lexicographically less than, equal to, or greater than s2 when taken

to be unsigned characters.

memcpy copies n bytes from memory area s2 to s]. It returns sJ.

memmove copies n bytes from memory areas s2 to sl. Copying between objects that

overlap will take place correctly. It returns sJ.

memset sets the first n bytes in memory area s to the value of c (converted to an

unsigned char). It returns s.

SEE ALSO

3-348

string(3C).

Licensed material—property of copyright hoider(s) 093-701056

menu_attributes(3X) DG/UX 5.4 menu_attributes(3X)

NAME

menu_attributes: set_menu_fore, menu_fore, set_menu_back,

menu_back, set_menu_grey, menu_grey, set_menu_pad, menu_pad - control

menus display attributes

SYNOPSIS

#include <menu.h>

int set_menu_fore(MENU *menu, chtype attr);

chtype menu_fore(MENU *menu) ;

int set_menu_back(MENU *menu, chtype attr);

chtype menu_back(MENU *menu) ;

int set_menu_grey(MENU *menu, chtype attr);

chtype menu_grey(MENU *menu) ;

int set_menu_pad(MENU *menu, int pad);

int menu_pad(MENU *menu) ;

DESCRIPTION

set_menu_fore sets the foreground attribute of menu — the display attribute for the

current item (if selectable) on single-valued menus and for selected items on multi-

valued menus. This display attribute is a curses library visual attribute.

menu_fore returns the foreground attribute of menu.

set_menu_back sets the background attribute of menu — the display attribute for
unselected, yet selectable, items. This display attribute is a curses library visual

attribute.

set_menu_grey sets the grey attribute of menu — the display attribute for nonselect-

able items in multi-valued menus. This display attribute is a curses library visual

attribute. menu_grey returns the grey attribute of menu.

The pad character is the character that fills the space between the name and descrip-

tion of an item. set_menu_pad sets the pad character for menu to pad.

menu_pad returns the pad character of menu.

RETURN VALUE

These routines return one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ ARGUMENT — An incorrect argument was passed to the routine.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>. |

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed materlal—-property of copyright hoider(s) 3-349

menu_cursor(3X) DG/UX 5.4 menu_cursor(3X)

NAME

menu_cursor: pos_menu_cursor — correctly position a menus cursor

SYNOPSIS

#include <menu.h>

int pos_menu_cursor(MENU *menu) ;

DESCRIPTION

pos_menu_cursor moves the cursor in the window of menu to the correct position

to resume menu processing. This is needed after the application calls a curses

library I/O routine.

RETURN VALUE

This routine returns one of the following:

E_OK — The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

E_NOT POSTED - The menu has not been posted.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X), panels(3X), panel_update(3X).

3-350 Licensed material—property of copyright holder(s) 093-701056

menu_driver(3X) DG/UX 5.4 menu_driver(3X)

NAME

menu driver — command processor for the menus subsystem

SYNOPSIS

#include <menu.h>

int menu_driver(MENU *menu, int Cc);

DESCRIPTION

menu_driver is the workhorse of the menus subsystem. It checks to determine

whether the character c is a menu request or data. If c is a request, the menu driver

executes the request and reports the result. If c is data (a printable ASCII charac-

ter), it enters the data into the pattern buffer and tries to find a matching item. If no

match is found, the menu driver deletes the character from the pattern buffer and

returns E_NO MATCH. If the character is not recognized, the menu driver assumes it

is an application-defined command and returns E_UNKNOWN_COMMAND.

Menu driver requests:

REQ LEFT ITEM Move left to an item.

REQ RIGHT ITEM Move right to an item.

REQ_UP_ITEM Move up to an item.

REQ DOWN_ITEM Move down to an item.

REQ_SCR_ULINE Scroll up a line.

REQ _SCR_DLINE Scroll down a line.

REQ SCR_DPAGE Scroll up a page.

REQ SCR_UPAGE Scroll down a page.

REQ FIRST_ITEM Move to the first item.

REQ LAST ITEM Move to the last item.

REQ NEXT ITEM Move to the next item. |

REQ PREV_ITEM Move to the previous item.

REQ _TOGGLE_ITEM Select/de-select an item.

REQ CLEAR PATTERN Clear the menu pattern buffer.

REQ BACK PATTERN Delete the previous character from pattern buffer.

REQ NEXT MATCH Move the next matching item.

REQ PREV_MATCH Move to the previous matching item.

RETURN VALUE

menu_driver returns one of the following:

E_OK — The routine returned successfully.

E_SYSTEM ERROR - System error. |

E_BAD_ ARGUMENT — An incorrect argument was passed to the routine.

E_BAD STATE — The routine was called from an initialization or

termination function.

E_NOT_POSTED - The menu has not been posted.

093-701056 Licensed material—property of copyright holder(s) 3-351

menu_driver(3X) DG/UX 8.4 menu_driver(3X)

NOTES

E_UNKNOWN_COMMAND — An unknown request was passed to the menu

| driver.

E_NO_MATCH ~ The character failed to match.

E_NOT_SELECTABLE — The item cannot be selected.

E_REQUEST_DENIED - The menu driver could not process the request.

Application defined commands should be defined relative to (greater than)

MAX COMMAND, the maximum value of a request listed above.

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

3-352

curses(3X), menus(3X).

Licensed material—property of copyright holder(s) 093-701056

menu_format(3X) DG/UX 5.4 _ menu_format(3X)

NAME

menu_format: set_menu_format, menu_format -— set and get maximum

numbers of rows and columns in menus

SYNOPSIS

#include <menu.h>

int set_menu_format(MENU *menu, int rows, int cols);

void menu_format(MENU *menu, int *rows, int *cols);

DESCRIPTION

set_menu_format sets the maximum number of rows and columns of items that may

be displayed at one time on a menu. If the menu contains more items than can be

displayed at once, the menu will be scrollable.

menu_format returns the maximum number of rows and columns that may be

displayed at one time on menu. rows and cols are pointers to the variables used to

return these values.

RETURN VALUE

set_menu_format returns one of the following:

E_OK — The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

E_POSTED ~ The menu is already posted.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-353

menu_hook(3X) DG/UX 5.4 menu_hook(3X)

NAME

menu_hook: set_item_init, item_init, set_item_term, item_tern,

set_menu_ init, menu_init, set_menu_term, menu_term — assign application-

specific routines for automatic invocation by menus

SYNOPSIS

#include <menu.h>

int set_item_init(MENU *menu, void (*func) (MENU *));

void (*)(MENU *) item_init(MENU *menu) ;

int set_item_term(MENU *menu, void (*func) (MENU *));

void (*)(MENU *) item_term(MENU *menu);

int set_menu_init(MENU *menu, void (*func) (MENU *));

void (*)(MENU *) menu_init(MENU *menu);

int set_menu_term(MENU *menu, void (*func) (MENU *));

void (*)(MENU *) menu_term(MENU *menu);

DESCRIPTION

set_item_ init assigns the application-defined function to be called when the menu

is posted and just after the current item changes. item_init returns a pointer to

the item initialization routine, if any, called when the menu is posted and just after

the current item changes. :

set_item term assigns an application-defined function to be called when the menu -

is unposted and just before the current item changes. item_term returns a pointer

to the termination function, if any, called when the menu is unposted and just before

the current item changes.

set_menu_init assigns an application-defined function to be called when the menu

is posted and just after the top row changes on a posted menu. menu_init returns

a pointer to the menu initialization routine, if any, called when the menu is posted

and just after the top row changes on a posted menu.

set_menu_term assigns an application-defined function to be called when the menu

is unposted and just before the top row changes on a posted menu. menu_term

returns a pointer to the menu termination routine, if any, called when the menu is

unposted and just before the top row changes on a posted menu.

RETURN VALUE

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR - System error.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X), menu_control(3X), menu_hook(3X).

3-354 Licensed material—property of copyright holder(s) 093-701056

menu_item_current(3X) DG/UX 5.4 menu_item_current(3X)

NAME

menu_item current: set_current_item, current_item, set_top_row,

top row, item_index — set and get current menus items

SYNOPSIS

#include <menu.h>

int set_current_item(MENU *menu, ITEM *item);

ITEM *current_item(MENU *menu) ;

int set_top_row(MENU *menu, int row);

int top_row(MENU *menu) ;

int item_index(ITEM *item);

DESCRIPTION

The current item of a menu is the item where the cursor is currently positioned.

set_current_item sets the current item of menu to item. current_item returns

a pointer to the the current item in menu.

set_top_row sets the top row of menu to row. The left-most item on the new top

row becomes the current item. top _row returns the number of the menu row

currently displayed at the top of menu.

item index returns the index to the item in the item pointer array. The value of this
index ranges from 0 through N-1, where N is the total number of items connected to

the menu.

RETURN VALUE

current _item returns NULL on error.

top row and index_item return -1 on error.

set_current_item and set_top_row return one of the following:

E_OK - The routine returned successfully.

E SYSTEM ERROR -— System error.

E BAD ARGUMENT -— An incorrect argument was passed to the routine.

E_BAD_ STATE — The routine was called from an initialization or

termination function.

E_NOT CONNECTED — No items are connected to the menu.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright holder(s) 3-355

menu_item_name (3X) DG/UX 8.4 menu_item_name(3X)

NAME

menu_item_name: item_name, item_description — get menus item name and

description

SYNOPSIS

#include <menu.h>

char *item_name(ITEM *item) ;

char *item_description(ITEM *item) ;

DESCRIPTION |

item_name returns a pointer to the name of item.

item_description returns a pointer to the description of item.

RETURN VALUE

These routines return NULL on error.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X), menu_new(3X).

3-356 Licensed materiai—property of copyright holder(s) 093-701056

menu_item_new(3X) DG/UX 5.4 menu_item_new(3X)

NAME

menu_item_new: new_item, free_item - create and destroy menus items

SYNOPSIS

#include <menu.h>

ITEM *new_item(char *name, char *desc) ;

int free_item(ITEM *item);

DESCRIPTION

new_item creates a new item from name and description, and returns a pointer to the
new item.

free_item frees the storage allocated for item. Once an item is freed, the user can
no longer connect it to a menu.

RETURN VALUE

new_item returns NULL on error.

free_item returns one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR -—- System error.

E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

E_CONNECTED ~ One or more items are already connected

to another menu.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-357

menu_item_opts(3X) DG/UX 5.4 menu_item_opts(3X)

NAME

menu_item_opts: set_item_ opts, item_opts_on, item_opts off,

item_opts — menus item option routines

SYNOPSIS

#include <menu.h>

int set_item opts(ITEM *item, OPTIONS opts);

int item_opts_on(ITEM *item, OPTIONS opts);

int item_opts_off(ITEM *item, OPTIONS opts);

OPTIONS item_opts(ITEM *item);

DESCRIPTION

set_item_opts turns on the named options for item and turns off all other options.

Options are boolean values that can be OR-ed together.

item_opts_on turns on the named options for item; no other option is changed.

item_opts_off turns off the named options for item; no other option is changed.

item_opts returns the current options of item.

Item Options:

O_SELECTABLE

The item can be selected during menu processing.

RETURN VALUE

NOTES

Except for item_opts, these routines return one of the following:

E_OK ~ The routine returned successfully.

E_SYSTEM ERROR — System error.

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

3-358

curses(3X), menus(3X).

Licensed material—property of copyright holder(s) 093-701056

menu_item_userptr(3X) DG/UX 5.4 menu_item_userptr(3X)

NAME

menu_item_userptr: set_item_userptr, item_userptr — associate applica-

tion data with menus items

SYNOPSIS

#include <menu.h)>

int set_item_userptr(ITEM *item, char *userptr) ;

char *item_userptr(ITEM *item) ;

DESCRIPTION

Every item has an associated user pointer that can be used to store relevant informa-

tion. set_item_userptr sets the user pointer of item. item_userptr returns

the user pointer of item.

RETURN VALUE

item_userptr returns NULL onerror. set_item_userptr returns one of the fol-

lowing:

E_OK ~ The routine returned successfully.

E_SYSTEM_ERROR -— System error.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-359

menu_item_value (3X) DG/UX 5.4 _ menu_item_value (3X)

NAME

menu_item_value: set_item_value, item _value - set and get menus item
values

SYNOPSIS |

#include <menu.h>

int set_item value(ITEM *item, int bool);

int item_value(ITEM *item) ;

DESCRIPTION

Unlike single-valued menus, multi-valued menus enable the end-user to select one or
more items from amenu. set_item_value sets the selected value of the item —
TRUE (selected) or FALSE (not selected). set_item value may be used only with
multi-valued menus. To make a menu multi-valued, use set_menu_opts or
menu_opts_off to turn off the option O_ONEVALUE. [see menu_opts(3X)].

item_value returns the select value of item, either TRUE (selected) or FALSE
(unselected).

RETURN VALUE

set_item_value returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR -— System error.

E_REQUEST_DENIED —- The menu driver could not pro-

cess the request.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>. .

SEE ALSO

curses(3X), menus(3X), menu_opts(3X).

3-360 Licensed material—property of copyright holder(s) 093-701056

menu_item_visible (3X) DG/UX 5.4 _ Menu_item_visible(3X)

NAME

menu_item_visible: item_visible - tell if menus item is visible

SYNOPSIS

#include <menu.h>

‘int item_visible(ITEM *item) ;

DESCRIPTION

A menu item is visible if it currently appears in the subwindow of a posted menu.
item visible returns TRUE if item is visible, otherwise it returns FALSE.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

curses(3X), menus(3X), menu_new(3X).

093-701056 Licensed material—property of copyright holder(s) 3-361

menu_items(SX) DG/UX 8.4

NAME

menu_items(3X)

menu_items: set_menu_items, menu_items, item_count — connect and

disconnect items to and from menus

SYNOPSIS

#include <menu.h>

int set_menu_items(MENU *menu, ITEM **items) ;

ITEM **menu_items(MENU *menu) ;

int item_count(MENU *menu) ;

DESCRIPTION |

set_menu_items changes the item pointer array connected to menu to the item

pointer array items.

menu_items returns a pointer to the item pointer array connected to menu.

item count returns the number of items in menu.

RETURN VALUE

NOTES

menu_items returns NULL on error.

item_count returns -1 on error.

set_menu_items returns one of the following:

E_OK ~ The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT -—- An incorrect argument was passed to the routine.
E_POSTED ~ The menu is already posted.

E_CONNECTED ~ One or more items are already connected to

another menu.

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

3-362

curses(3X), menus(3X).

Licensed material—property of copyright holder(s) 093-701056

menu_mark(3X) DG/UX §.4 menu_mark(3X)

NAME

menu_mark: set_menu_mark, menu_mark - menus mark string routines

SYNOPSIS

#include <menu.h>

int set_menu_mark(MENU *menu, char *mark) ;

char *menu_mark(MENU *menu) ;

DESCRIPTION |
menus displays mark strings to distinguish selected items in a menu (or the current

item in a single-valued menu). set_menu_mark sets the mark string of menu to

mark. menu_mark returns a pointer to the mark string of menu.

RETURN VALUE

menu_mark returns NULL on error. set_menu_mark returns one of the following:

E_OK ~- The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT -—- An incorrect argument was passed to the routine.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright holder(s) 3-363

menu_new(3X) DG/UX 8.4 menu_new(SX)

NAME

menu_new: new_menu, free_menu - create and destroy menus

SYNOPSIS

#finclude <menu.h>

MENU *new_menu(ITEM **items) ;

int free_menu(MENU *menu) ;

DESCRIPTION

new_menu creates a new menu connected to the item pointer array items and returns

a pointer to the new menu. -

free_menu disconnects menu from its associated item pointer array and frees the

storage allocated for the menu.

RETURN VALUE

new_menu returns NULL on error.

free_menu returns one of the following:

E_OK ~ The routine returned successfully.

E_SYSTEM_ ERROR -— System error.

E_BAD_ ARGUMENT — An incorrect argument was passed to the routine.

E_POSTED ~ The menu is already posted.

NOTES |

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

3-364 Licensed material—property of copyright holder(s) 093-701056

menu_opts(3X) DG/UX 5.4 menu_opts(3X)

NAME

menu_opts: set_menu_opts, menu_opts_on, menu_opts_off, menu_opts -

menus option routines

SYNOPSIS

#include <menu.h>

int set_menu_opts(MENU *menu, OPTIONS opts);

int menu_opts_on(MENU *menu, OPTIONS opts) ;

int menu_opts_off(MENU *menu, OPTIONS opts);

OPTIONS menu_opts(MENU *menu) ;

DESCRIPTION

Menu Options

set_menu_opts turns on the named options for menu and turns off all other

options. Options are boolean values that can be OR-ed together.

menu_opts_on turns on the named options for menu; no other option is changed.

menu_opts_off turns off the named options for menu; no other option is changed.

menu_opts returns the current options of menu.

Menu Options:

O_ONEVALUE Only one item can be selected from the menu.

O_SHOWDESC Display the description of the items.

O_ROWMAJOR Display the menu in row major order.

O_IGNORECASE Ignore the case when pattern matching.

O_SHOWMATCH Place the cursor within the item name when pattern

matching.

O_NONCYCLIC Make certain menu driver requests non-cyclic.

RETURN VALUE

Except for menu_opts, these routines return one of the following:

E_OK — The routine returned successfully.

E_SYSTEM ERROR -— System error.

E_POSTED — The menu is already posted.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X).

093-701056 Licensed material—property of copyright holder(s) 3-365

menu_pattern(3X) DG/UX §.4 menu_pattern(3X)

NAME

menu_pattern: set_menu_pattern, menu_pattern - set and get menus pat-

tern match buffer

SYNOPSIS

#include <menu.h>

int set_menu_pattern(MENU *menu, char *pat);.

char *menu_pattern(MENU *menu);

DESCRIPTION

Every menu has a pattern buffer to match entered data with menu items.

set_menu_pattern sets the pattern buffer to pat and tries to find the first item that

matches the pattern. If it does, the matching item becomes the current item. If not,

the current item does not change. menu_pattern returns the string in the pattern

buffer of menu. |

RETURN VALUE

menu_pattern returns NULL onerror. set_menu_pattern returns one of the fol-

lowing:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

E_NO_MATCH - The character failed to match. |

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO |

curses(3X), menus(3X).

3-366 Licensed material—property of copyright holder(s) 093-701056

menu_post(3X) DG/UX 5.4 menu_post(3X)

NAME

menu_post: post_menu, unpost_menu -— write or erase menus from associated

subwindows

SYNOPSIS

#include <menu.h>

int post_menu(MENU *menu);

int unpost_menu(MENU *menu) ;

DESCRIPTION

post_menu writes menu to the subwindow. The application programmer must use

curses library routines to display the menu on the physical screen or call

update_panels if the panels library is being used.

unpost_menu erases menu from its associated subwindow.

RETURN VALUE

These routines return one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR - System error.

E_BAD_ ARGUMENT - An incorrect argument was passed to the routine.

E_POSTED - The menu is already posted.

E_BAD STATE - The routine was called from an initialization or

termination function.

E_NO_ROOM - The menu does not fit within its subwindow.

E_NOT_ POSTED - The menu has not been posted.

E_NOT CONNECTED - No items are connected to the menu.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE ALSO

curses(3X), menus(3X), panels(3X).

093-701056 Licensed material—property of copyright holder(s) 3-367

menu_userptr(3X) DG/UX 5.4 menu_userptr(3X)

NAME

menu_userptr: set_menu_userptr, menu_userptr — associate application data

with menus

SYNOPSIS

#include <menu.h>

int set_menu_userptr(MENU *menu, char *userptr);

char *menu_userptr(MENU *menu) ;

DESCRIPTION

Every menu has an associated user pointer that can be used to store relevant informa-
tion. set_menu_userptr sets the user pointer of menu. menu_userptr returns
the user pointer of menu.

RETURN VALUE

menu_userptr returns NULL on error.

set_menu_userptr returns one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR - System error.

NOTES

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

curses(3X), menus(3X).

3-368 Licensed material—property of copyright holder(s) 093-701056

menu_win(3X) DG/UX 5.4 menu_win(3X)

NAME

menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub,

scale menu — menus window and subwindow association routines

SYNOPSIS

#include <menu.h>

int set_menu_win(MENU *menu, WINDOW *win);

WINDOW *menu_win(MENU *menu) ;

int set_menu_sub(MENU *menu, WINDOW *sub) ;

WINDOW *menu_sub(MENU *menu) ;

int scale_window(MENU *menu, int *rows, int *cols);

DESCRIPTION

set_menu_win sets the window of menu to win. menu_win returns a pointer to the

window of menu.

set_menu_sub sets the subwindow of menu to sub. menu_sub returns a pointer to

the subwindow of menu.

scale _window returns the minimum window size necessary for the subwindow of

menu. rows and cols are pointers to the locations used to return the values.

RETURN VALUE

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK - The routine returned successfully.

E_SYSTEM_ERROR -— System error.

E_BAD_ ARGUMENT — An incorrect argument was passed to the routine.

E_POSTED _- The menu is already posted.

E_NOT CONNECTED ~ No items are connected to the menu.

NOTES |

The header file <menu.h> automatically includes the header files <eti.h> and

<curses.h>.

SEE } ALSO
curses(3X), menus(3X).

093-701056 Licensed material—property of copyright holder(s) 3-369

menus(3X)

NAME

DG/UX &.4 menus(3X)

menus ~ character based menus package

- SYNOPSIS

#include <menu.h>

DESCRIPTION

The menu library is built using the curses library, and any program using menus

routines must call one of the curses initialization routines, such as initscr. A

program using these routines must be compiled with -lmenu and ~lcurses on the

cc command line.

The menus package gives the applications programmer a terminal-independent _

method of creating and customizing menus for user interaction. The menus package

includes: item routines, which are used to create and customize menu items; and

menu routines, which are used to create and customize menus, assign pre- and post-

processing routines, and display and interact with menus.

Current Default Values for Item Attributes

The menus package establishes initial current default values for item attributes. Dur-

ing item initialization, each item attribute is assigned the current default value for that

attribute. An application can change or retrieve a current default attribute value by

calling the appropriate set or retrieve routine with a NULL item pointer. If an appli-

cation changes a current default item attribute value, subsequent items created using

new_item will have the new default attribute value. (The attributes of previously

created items are not changed if a current default attribute value is changed.)

Routine Name Index

The following table lists each menus routine and the name of the manual page on

which it is described.

menus Routine Name Manual Page Name

current_item

free_item

free menu

item count

item_description

item_index

item init

item_name

item opts

item_opts_ off

item_opts_on

item _term

item _userptr

item_value

item_visible

menu_back

menu_driver

menu_fore

menu_format

3-370

menu_item_current(3X)

menu_item_new(3X)

menu_new(3X)

menu_items(3X)

menu_item_name(3X)

menu_item_current(3X)

menu_hook(3X)

menu_item_name(3X)

menu_item_opts(3X)

menu_item_opts(3X)

menu_item_opts(3X)

menu_hook(3X)

menu_item_userptr(3X)

menu_item_value(3X)

menu_item_visible(3X)

menu_attributes(3X)

menu_driver(3X)

menu_attributes(3X)

menu_format(3X)

Licensed material—property of copyright holder(s) 093-701056

menus(3X)

menu_grey

menu_init

menu_items

menu_mark

menu_opts

menu_opts_off

menu_opts_on

menu_pad

menu_pattern

menu_sub

menu_term

menu_userptr

menu_win

new_item

new_menu

pos_menu_cursor

post_menu

scale menu

set_current_item

set_item_ init

set_item_opts

set_item_ term

set_item_userptr

set_item_ value

set_menu_back

set_menu_fore

set_menu_format

set_menu_grey

set_menu_init

set_menu_items

set_menu_mark

set_menu_opts

set_menu_pad

set_menu_pattern

set_menu_sub

set_menu_term

set_menu_userptr

set_menu_win

set_top_row

top_row

unpost_menu

RETURN VALUE

DG/UX 5.4 menus(3X)

menu_attributes(3X)

menu_hook(3X)

menu_items(3X)

menu_mark(3X)

menu_opts(3X)

menu_opts(3X)

menu_opts(3X)

menu_attributes(3X)

menu_pattern(3X)

menu_win(3X)

menu_hook(3X)

menu_userptr(3X)

menu_win(3X)

menu_item_new(3X)

menu_new(3X)

menu_cursor(3X)

menu_post(3X)

menu_win(3X)

menu_item_current(3X)

menu_hook(3X)

menu_item_opts(3X)

menu_hook(3X)

menu_item_userptr(3X)

menu_item_value(3X)

menu_attributes(3X)

menu_attributes(3X)

menu_format(3X)

menu_attributes(3X)

menu_hook(3X)

menu_items(3X)

menu_mark(3X)

menu_opts(3X)

menu_attributes(3X)

menu_pattern(3X)

menu_win(3X)

menu_hook(3X)

menu_userptr(3X)

menu_win(3X)

menu_item_current(3X)

menu_item_current(3X)

menu_post(3X)

Routines that return pointers always return NULL on error. Routines that return an

integer return one of the following:

E_OK — The routine returned successfully.

E_SYSTEM ERROR — System error.

E_ BAD ARGUMENT — An incorrect argument was passed to the

routine.

093-701056 Licensed material—property of copyright holder(s) 3-371

menus(3X) DG/UX 8.4 menus(SX)

E_POSTED - The menu is already posted.

E_CONNECTED - One or more items are already connected

to another menu.

E_BAD_STATE ~- The routine was called from an initialization

or termination function.

E_NO_ROOM - The menu does not fit within its subwindow.

E_NOT_ POSTED —- The menu has not been posted.

E_UNKNOWN_COMMAND —- An unknown request was passed to the

menu driver.

E_NO_MATCH — The character failed to match.

E_NOT_SELECTABLE -—- The item cannot be selected.

E_NOT_CONNECTED - No-items are connected to the menu.

E_REQUEST_DENIED —- The menu driver could not process the

NOTES

request.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO

curses(3X), and 3X pages whose names begin "menu_” for detailed routine descrip-
tions.

3-372 Licensed materiai—property of copyright hoider(s) 093-701056

mkdirp(3G) DG/UX 5.4 mkdirp(3G)

NAME

mkdirp, rmdirp — create, remove directories in a path

SYNOPSIS

cc [flag ...] file ... -1lgen [library ...]

#include <libgen.h>

int mkdirp (const char *path, mode _t mode);

int rmdirp (char «d, char +#dl);

DESCRIPTION

mkdirp creates all the missing directories in the given path with the given mode. [See

chmod(2) for the values of mode.]

rmdirp removes directories in path d. This removal starts at the end of the path and

moves back toward the root as far as possible. If an error occurs, the remaining path

is stored in dJ. rmdirp returns a 0 only if it is able to remove every directory in the

path.

EXAMPLES

/* create scratch directories +/

if (mkdirp("/tmp/sub1/sub2/sub3", 0755) == -1) [

fprintf(stderr, “cannot create directory”);

exit(l1);

}

chdir("/tmp/sub1/sub2/sub3");

/* cleanup +*/

chdir("/tmp");

rmdirp("“subl1/sub2/sub3") ;

SEE ALSO

mkdir(2), rmdir(2).

DIAGNOSTICS

If a needed directory cannot be created, mkdirp returns -1 and sets errno to one

of the mkdir error numbers. [If all the directories are created, or existed to begin

with, it returns zero.

NOTES

mkdirp uses malloc to allocate temporary space for the string.

rmdirp returns —2 ifa “.” or “..” is in the path and —3 if an attempt is made to

remove the current directory. If an error occurs other than one of the above, —1 is

returned.

093-701056 Licensed material—property of copyright holder(s) 3-373

mkfifo(3C) DG/UX &.4 mkfifo(3C)

NAME

mkfifo — create a new FIFO

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

DESCRIPTION

The mkfifo routine creates a new FIFO special file named by the pathname pointed

to by path. The mode of the new FIFO is initialized from mode. The file permission

bits of the mode argument are modified by the process’s file creation mask [see

umask(2)].

The FIFO’s owner id is set to the process’s effective user id. The FIFO’s group id is

set to the process’s effective group id, or if the S_ISGID bit is set in the parent

directory then the group id of the FIFO is inherited from the parent.

mkfifo calls the system call mknod to make the file.

SEE ALSO

chmod(2), exec(2), mknod(2), umask(2), f£s(4), stat(5).

mkdir(1) in the User’s Reference Manual.

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is

returned and errno is set to indicate the error.

NOTES

Bits other than the file permission bits in mode are ignored.

3-374 Licensed material—property of copyright hoider(s) 093-701056

mkstemp(3C) DG/UX 8.4 mkstemp(3C)

NAME

mkstemp — make a unique file name

SYNOPSIS

mkstemp (femplate)

char *template;

DESCRIPTION .

Mkstemp creates a unique file name, typically in a temporary filesystem, by replacing

template with a unique file name and returning a file descriptor for the template file

open for reading and writing. The template should contain a file name with six trail-

ing X’s, which are replaced with the current process id and a unique letter.

Mkstemp avoids the race between testing whether the file exists and opening it for

use.

DIAGNOSTICS

Mkstemp returns an open file descriptor upon success. It returns -1 if no suitable

file could be created.

SEE ALSO

getpid(2), open(2).

093-701056 Licensed material—property of copyright hoider(s) 3-375

mktemp(3C) OG/UX &.4 mktemp(SC)

NAME

mktemp — make a unique file name

SYNOPSIS

#include <stdlib.h>

char «mktemp(char «template) ;

DESCRIPTION

mktemp replaces the contents of the string pointed to by template with a unique file

name, and returns template. The string in template should look like a file name with

six trailing Xs; mktemp will replace the Xs with a character string that can be used to

create a unique file name. |

SEE ALSO

tmpfile(3S), tmpnam(3S).

DIAGNOSTIC |
mktemp will assign to template the empty string if it cannot create a unique name.

NOTES

mktemp can create only 26 unique file names per process for each unique template.

3-376 Licensed material—property of copyright holder(s) 093-701056

miock(3C) DG/UX 5.4 miock(3C)

NAME

mlock, munlock — lock (or unlock) pages in memory

SYNOPSIS

#include <sys/types.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

DESCRIPTION

The function mlock uses the mappings established for the address range [addr, addr
+ len) to identify pages to be locked in memory. The effect of mlock (addr, len) is
equivalent to mementl(addr, len, MC_LOCK, 0, 0, 0).

munlock removes locks established with mlock. The effect of munlock(addr, len)
is equivalent to mementl (addr, len, MC_UNLOCK, 0, 0, 0).

Locks established with mlock are not inherited by a child process after a fork and
are not nested.

RETURN VALUE

Upon successful completion, the functions mlock and munlock return a value of 0;
otherwise, they return a value of -1 and set errno to indicate an error.

DIAGNOSTICS

See memcnt1(2).

NOTES
.

Use of mlock and munlock requires that the user have appropriate privileges.

SEE ALSO

fork(2), memcnt1(2), mlockall(3C), plock(2), sysconf(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-377

miockail(3C) DG/UX 6.4 miockall(3C)

NAME

mlockall, munlockall — lock or unlock address space

SYNOPSIS

. #include <sys/mman.h>

int mlockall(int flags);

int munlockall (void);

DESCRIPTION

The function mlockall causes all pages mapped by an address space to be locked in

memory. The effect of mlockall(flags) is equivalent to: -

memcntl(0, 0, MC_LOCKAS, flags, 0, 0)

The value of flags determines whether the pages to be locked are those currently

mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

The function munlockall removes address space locks and locks on mappings in

the address space. The effect of munlockall is equivalent to:

memcntl(0, 0, MC_UNLOCKAS, 0, 0, 0)

Locks established with mlocka11 are not inherited by a child process after a fork

and are not nested.

RETURN VALUE ;

Upon successful completion, the functions mlockall and munlockall return a

value of 0; otherwise, they return a value of —1 and set errno to indicate an error.

DIAGNOSTICS

See mement1(2).

NOTES

Use of mlockall and munlockall requires that the user have appropriate

privileges.

SEE ALSO

fork(2), mementl(2), mlock(3C), plock(2), sysconf(3C).

3-378 Licensed material—property of copyright holder(s) 093-701056

monitor(3C) DG/UX 5.4 monitor(3C)

NAME

monitor — prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor (int (*lowpc)(), int (*highpc)(), WORD «buffer,

size_t bufsize, size_t nfunc);

DESCRIPTION

monitor is an interface to profil, and is called automatically with default parame-

ters by any program created by cc -p. Except to establish further control over pro-

filing activity, it is not necessary to explicitly call monitor.

When used, monitor is called at least at the beginning and the end of a program.

The first call to monitor initiates the recording of two different kinds of execution-

profile information: execution-time distribution and function call count. Execution-

time distribution data is generated by profil and the function call counts are gen-

erated by code supplied to the object file (or files) by cc -p. Both types of informa-

tion are collected as a program executes. The last call to monitor writes this col-

lected data to the output file mon. out.

lowpc and highpc are the beginning and ending addresses of the region to be profiled.

buffer is the address of a user-supplied array of WORD (WORD is defined in the header

file mon.h). buffer is used by monitor to store the histogram generated by profil

and the call counts.

bufsize identifies the number of array elements in buffer.

nfunc is the number of call count cells that have been reserved in buffer. Additional

call count cells will be allocated automatically as they are needed.

bufsize should be computed using the following formula:

size_of_buffer =

sizeof(struct hdr) +

nfunc *« sizeof(struct cnt) +

((highpc-lowpc)/BARSIZE) * sizeof(WORD) +

sizeof(WORD) - l ;

bufsize = (size_of_buffer / sizeof(WORD)) ;

where:

lowpc, highpc, nfunc are the same as the arguments to monitor;

BARSIZE is the number of program bytes that correspond to each histogram

bar, or cell, of the profil buffer;

the hdr and cnt structures and the type WORD are defined in the header file

mon.h.

093-701056 Licensed materialt—property of copyright holder(s) 3-379

monitor(3C) DG/UX 8.4 monitor(3C)

FILES

The default call to monitor is shown below:

monitor (&eprol, &Setext, wbhuf, whufsz, 600);

where:

eprol is the beginning of the user’s program when linked with cc —p [see

end(3C)];

etext is the end of the user’s program [see end(3C)];

wbuf is an array of WORD with wbufsz elements;

wbufsz is computed using the bufsize formula shown above with BARSIZE of

8;

600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribution

histogram that uses profil for the entire program, initially reserves room for 600

call count cells in buffer, and provides for enough histogram cells to generate signifi-

cant distribution-measurement results. [For more information on the effects of buf-

size on execution-distribution measurements, see profil(2).]

To stop execution monitoring and write the results to a file, use the following:

monitor((int (*)())0, (int (*)())0, (WORD «)0, 0, 0);

Use prof to examine the results.

mon.out

SEE ALSO

NOTE

3-380

ec(1), prof(1), profil(2), end(3C).

Additional calls to monitor after main has been called and before exit has been

called will add to the function-call count capacity, but such calls will also replace and

restart the profil histogram computation.

The name of the file written by monitor is controlled by the environment variable

PROFDIR. If PROFDIR does not exist, the file mon. out is created in the current

directory. If PROFDIR exists but has no value, monitor does no profiling and

creates no output file. If PROFDIR is dirname, and monitor is called automatically

by compilation with cc —p, the file created is dirname/pid.progname where prog-

name is the name of the program.

Licensed materiai—property of copyright hoider(s) 093-701056

mp(3X)

NAME

DG/UX 5.4 mp(3X)

mp: madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move,

min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, itom- multiple

precision integer arithmetic

SYNOPSIS

#include <mp.h>

#include <stdio.h>

typedef struct mint { int len; short *val; } MINT;

madd(a, b, c)

msub(a, b, c)

mult(a, b, c)

mdiv(a, b, q, r)

pow(a, b, m, Cc)

gcd(a, b, c)

invert(a, b, c)

rpow(a, n, C)

msqrt(a, b, r)

mcmp(a, b)

move(a, b)

min(a)

omin(a)

fmin(a, f)

m_in(a, n, f)

mout(a)

omout (a)

fmout(a, f£)

m out(a, n, f£)

MINT *a, *b, *c, *m, *q, *Y;

FILE *f; —

int n;

sdiv(a, n, q, IX)

MINT *a, *q;

short n;

short *r;

MINT *itom(n)

DESCRIPTION

These routines perform arithmetic on integers of arbitrary length. The integers are

stored using the defined type MINT. Pointers to a MINT can be initialized using the

function itom which sets the initial value ton. After that, space is managed

- automatically by the routines.

madd, msub and mult assign to c the sum, difference and product, respectively, of a

and b. mdiv assigns to q and r the quotient and remainder obtained from dividing a

by b. sdiv is like mdiv except that the divisor is a short integer n and the

remainder is placed in a short whose address is given asr. msqrt produces the

integer square root of a in b and places the remainder inr. rpow calculates in c the

value of a raised to the (“regular” integral) power n, while pow calculates this with a

full multiple precision exponent b and the result is reduced modulo m. gcd returns

the greatest common denominator of a and b inc, and invert computes c such that

a*c mod b = 1, for a and 5 relatively prime. mecmp returns a negative, zero or

093-701056 Licensed material—property of copyright holder(s) 3-381

mp(3X) DG/UX 5.4 mp(3X)

positive integer value when a is less than, equal to or greater than b, respectively.

move copies BIRa"to"b. min and mout do decimal input and output while

omin and omout do octal input and output. More generally, fmin and fmout do

decimal input and output using file f, and m_in and m_out do I/O with arbitrary radix

n. On input, records should have the form of strings of digits terminated by a new-

line; output records have a similar form.

Programs which use the multiple-precision arithmetic library must be loaded using the

loader flag ~1mp.

FILES

/usr/include/mp.h include file

/usr/lib/libmp.a object code library

SEE ALSO

be(1), de(1).

DIAGNOSTICS

Illegal operations and running out of memory produce messages and core images.

BUGS

Bases for input and output should be <= 10.

de(1) and be(1) don’t use this library.

_ pow is also the name of a standard math library routine.

3-382 Licensed material—property of copyright holder(s) 093-701056

msyne(3C)
DG/UX 5.4

msyne(3C)

NAME

msync — synchronize memory with physical storage

SYNOPSIS

#include <sys/types.h>

#include <sys/mman.h>

int msync(caddr_t addr, size_t len, int flags);

DESCRIPTION | |
The function msync writes all modified copies of pages over the range (addr, addr +

len) to their backing storage locations. msync optionally invalidates any copies so

that further references to the pages will be obtained by the system from their backing

storage locations. The backing storage for a modified MAP_SHARED mapping is the

file the page is mapped to; the backing storage for a modified MAP_PRIVATE map-

ping is its swap area.

flags is a bit pattern built from the following values:

MS _ASYNC perform asynchronous writes

MS SYNC — perform synchronous writes

MS_INVALIDATE invalidate mappings

If MS_ASYNC is set, msync returns immediately once all write operations are

scheduled; if MS_SYNC is set, msync does not return until all write operations are

completed.

MS_INVALIDATE invalidates all cached copies of data in memory, so that further

references to the pages will be obtained by the system from their backing storage

locations.

The effect of msync(addr, len, flags) is equivalent to:

memcntl(addr, len, MC_SYNC, flags, 0, 0)

SEE ALSO

memcnt1(2), mmap(2), sysconf(3C).

‘DIAGNOSTICS

Upon successful completion, the function msync returns 0; otherwise, it returns -—1

and sets errno to indicate the error.

NOTES

msync should be used by programs that require a memory object to be in a known

state, for example, in building transaction facilities.

093-701056 Licensed materiai—property of copyright holder(s) 3-383

ndbm(3C) DG/UX 5.4 ndbm(3C)

NAME

ndbm: dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete,

dbm_ firstkey, dbm_nextkey, dbm_error, dbm_clearerr - data base subrou-

tines

SYNOPSIS

#include <ndbm.h>

typedef struct [

char *dptr;

int dsize;

} datum;

DBM *dbm_open(file, flags, mode)

char *file;

int flags, mode;

void dbm_close(db)

DBM *db;

datum dbm_ fetch(db, key)

DBM *db;

datum key;

int dbm_store(db, key, content, flags)

DBM *db;

datum key, content;

int flags;

int dbm_delete(db, key)

DBM *db;

datum key;

datum dbm_ firstkey(db)

DBM *db;

datum dbm_nextkey(db)

DBM *db;

int dbm_error(db)

DBM *db;

int dbm_clearerr(db)

DBM *db;

DESCRIPTION ,

These functions maintain key/content pairs in a data base. The functions will handle

very large (a billion blocks) databases and will access a keyed item in one or two file

system accesses. This package replaces the earlier dbm(3X) library, which managed

only a single database.

Keys and contents are described by the datum typedef. A datum specifies a string of

dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCTI strings,

are allowed. The data base is stored in two files. One file is a directory containing a

bit map and has ‘.dir’ as its suffix. The second file contains all data and has ‘.pag’ as

its suffix.

Before a database can be accessed, it must be opened by dbm_open.. This will open

and/or create the files file.dir and file. pag depending on the flags parameter (see

open(2)).

3-384 Licensed material—property of copyright holder(s) 093-701056

ndbm(3C) DG/UX 5.4 ndbm(3C)

Once open, the data stored under a key is accessed by dbm_fetch and data is placed
under a key by dbm_store. The flags field can be either DBM_INSERT or

DBM_REPLACE. DBM_INSERT will only insert new entries into the database and will

not change an existing entry with the same key. DBM_REPLACE will replace an exist-

ing entry if it has the same key. A key (and its associated contents) is deleted by

dbm_delete. A linear pass through all keys in a database may be made, in an

(apparently) random order, by use of dbm_firstkey and dbm_nextkey. Dbm_firstkey
will return the first key in the database. Dbm_nextkey will return the next key in the

' database. This code will traverse the data base:

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

Dbm_error returns non-zero when an error has occurred reading or writing the data-
base. Dbm_clearerr resets the error condition on the named database.

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dprr. If

dbm_store called with a flags value of DBM_INSERT finds an existing entry with the

same key it returns 1.

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual
content. Older UNIX systems may create real file blocks for these holes when

touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without

filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed

by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size

(currently 1024 bytes - 6 bytes of overhead). Moreover all key/content pairs that hash
together must fit on a single block. Dbm_store will return an error in the event that a

disk block fills with inseparable data.

Dbm_delete does not physically reclaim file space, although it does make it available

for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a hashing

function, not on anything interesting.

SEE ALSO

093-701056

dbm(3X)

Licensed material—property of copyright holder(s) 3-385

netdir(3N) DG/UX 5.4 netdir(3N)

NAME

netdir: netdir_getbyname, netdir_getbyaddr, netdir_free,

netdir_mergeaddr, taddr2uaddr, uaddr2taddr, netdir_perror,

netdir_sperror — generic transport name-to-address translation

SYNOPSIS

#include <netdir.h>

int

netdir_getbyname(config, service, addrs)

struct netconfig *config;

struct nd_hostserv *service;

struct nd_addrlist **addrs;

int

netdir getbyaddr(config, service, netaddr)

struct netconfig *config;

struct nd_hostservlist **service;

struct netbuf *netaddr;

void

netdir free(ptr, ident)

void *ptr;

int ident;

int

netdir_mergeaddr(config, mrg_uaddr, s_uaddr, c_uaddr)

struct netconfig *config;

char **mrg_uaddr, *s_uaddr, *c_uaddr;

char *

taddr2uaddr(config, addr)

struct netconfig *config;

struct netbuf *addr;

struct netbuf *

uaddr2taddr(config, uaddr)

struct netconfig *config;

char *uaddr;

int

netdir_ options(netconfig, option, fd, pointer_to_ args)

struct netconfig *netconfig;

int option;

int fd;

char *point_to_args;

void

netdir perror(s)

char *s;

char *

netdir_ sperror()

DESCRIPTION

These routines provide a generic interface for name-to-address mapping that will work

with a all transport protocols. This interface provides a generic way for programs to

3-386 Licensed material—property of copyright holder(s) 093-701056

netdir(3N) DG/UX 5.4 netdir(3N)

convert transport specific addresses into common structures and back again.

The netdir_getbyname() routine maps the machine name and service name in the

nd_hostserv structure to a collection of addresses of the type understood by the

transport identified in the netconfig structure. This routine returns all addresses

that are valid for that transport in the nd_addrlist structure. The nd_hostserv

and nd_addrlist structures have the following elements. The netconfig struc-

ture is described on the netconfig(4) manual page.

struct nd_addrlist

int n_cnt

struct netbuf *n_addrs;

struct nd_hostserv

char *h_ host;

char *h_serv;

netdir_getbyname() accepts some special-case host names. These host names are

hints to the underlying mapping routines that define the intent of the request. This

information is required for some transport provider developers to provide the correct

information back to the caller. The host names are defined in

/usr/include/netdir.h. The currently defined host names are:

HOST_SELF Represents the address to which local programs will bind their end-

points. HOST SELF differs from the host name provided by gethost-

name(3), which represents the address to which remote programs will

bind their endpoints.

HOST ANY Represents any host accessible by this transport provider. HOST_ANY

_ allows applications to specify a required service without specifying a par-

ticular host name.

HOST_BROADCAST

Represents the address for all hosts accessible by this transport pro-

‘vider. Network requests to this address will be received by all machines.

All fields of the nd_hostserv structure must be initialized.

To. find all available transports, call the netdir_getbyname() routine with each

struct netconfig structure returned by the getnetpath(3N) call.

The netdir_getbyaddr() routine maps addresses to service names. This routine

returns a list of host and service pairs that would yield this address. If more than one

tuple of host and service name is returned then the first tuple contains the preferred

host and service names. |

struct nd_hostservlist

int *h_cnt;

struct hostserv *h_hostservs;

The netdir_free() structure is used to free the structures allocated by the name

to address translation routines.

The netdir_mergeaddr() routine is used by a network service to return an optim-

ized network addresses to a client. This routine takes the universal address of the

endpoint that the service has bound to, which is pointed to by the s_uaddr parameter,

and the address of the endpoint that a request came in on, which is pointed to by the

c_uaddr paramter, to create an optimized address for communication with the

093-701056 Licensed material—property of copyright holder(s) 3-387

netdir(3N) : DG/UX 5.4 netdir(3N)

3-388

service. The service address should be an address returned by the

netdir_getbyname() call, specified with the special host name HOST_SELF.

The. taddr2uaddr() and uaddr2taddr() routines support translation between

universal addresses and TLI type netbufs. The take and return character string

pointers. The taddr2uaddr() routine returns a pointer to a string that contains the

universal address and returns NULL if the conversion is not possible. This is not a

fatal condition as some transports may not suppose a universal address form.

option, fd, and pointer_to_args are passed to the netdir_options routine for the

transport specified in netconfigp. There are four values for option:

ND_SET BROADCAST

ND_SET_RESERVEDPORT

ND_CHECK_RESERVEDPORT

ND_MERGEADDR

If a transport provider does not support an option, netdir_options returns -1

and sets _nderror to ND_NOCTRL.

The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the tran-

sport supports broadcast. fd is a file descriptor into the tran-

sport (i.e., the result of a t_open of /dev/udp).

pointer_to_args is not used. If this completes, broadcast opera-

tions may be performed on file descriptor fd.

ND_SET_RESERVEDPORT

Allows the application to bind to a reserved port, if that con-

cept exists for the transport provider. fd is a file descriptor

into the transport (it must not be bound to an address). If

pointer_to_args is NULL, fd will be bound to a reserved port. If

pointer_to_args is a pointer to a netbuf structure, an attempt

will be made to bind to a reserved port on the specified

° address.

ND_CHECK_RESERVEDPORT

Used to verify that an address corresponds to a reserved port, if

that concept exists for the transport provider. fd is not used.

pointer_to_args is a pointer to a netbuf structure that contains

an address. This option returns 0 only if the address specified

in pointer_to_args is reserved.

ND_MERGEADDR Used to take a “local address” (like the 0.0.0.0 address that

TCP uses) and return a “real address” that client machines can

connect to. fd is not used. pointer_to_args is a pointer to a

struct nd_mergearg, which has the following form:

struct nd_mergearg { .

char *s_uaddr; /* server’s universal address */

char *c_uaddr; /* client’s universal address */

char *m_uaddr; /* the result */

}

s_uaddr is something like 0.0.0.0.1.12, and, if the call is

successful, m_uaddr will be set to something like

192.11.109.89.1.12. For most transports, m_uaddr is

Licensed material—property of copyright holder(s) 093-701056

netdir(SN) DG/UX 5.4 netdir(3N)

exactly what s_uaddr is.

The netdir_perror() routine prints an error message on the standard output stat-

ing why one of the name-to-address mapping routines failed. The error message is
preceded by the string given as an argument.

The netdir_sperror() routine returns a string containing an error message stating
why one of the name-to-address mapping routines failed.

SEE ALSO

093-701056

getnetpath(3N).

Licensed material—property of copyright hoider(s) 3-389

ni_langinfo(3C) DG/UX 5.4 ni_langinfo(3C)

NAME

nl_langinfo — language information

SYNOPSIS

#include <nl_types.h>

#include <langinfo.h>

char *nl_langinfo (nl_item item);

DESCRIPTION

nl_langinfo returns a pointer to a null-terminated string containing information

relevant to a particular language or cultural area defined in the programs locale. The

manifest constant names and values of item are defined by langinfo.h.

For example:

nl_langinfo (ABDAY_1);

would return a pointer to the string “Dim” if the identified language was French and a

French locale was correctly installed; or “Sun’”’ if the identified language was English.

SEE ALSO

gettxt(3C), localeconv(3C), setlocale(3C), strftime(3C), langinfo(5),

nl_types(5).

DIAGNOSTICS

If setlocale has not been called successfully, or if langinfo data for a supported

language is either not available or item is not defined therein, then nl_langinfo

returns a pointer to the corresponding string in the C locale. In all locales,

nl_langinfo returns a pointer to an empty string if item contains an invalid setting.

WARNING |

The array pointed to by the return value should not be modified by the program.

Subsequent calls to nl_langinfo may overwrite the array.

The nl_langinfo function is built upon the functions localeconv, strftime,

and gettxt [see langinfo(5)]. Where possible users are advised to use these

interfaces to the required data instead of using calls to nl_langinfo.

3-390 Licensed material—property of copyright holder(s) 093-701056

nlist(3C)

NAME

DG/UX 5.4 nlist(3C)

nlist — get entries from name list

SYNOPSIS

#include <nlist.h>

int nlist (file-name, nl)

DESCR

char +file-name;

struct nilist nl;

IPTION |

nlist examines the name list in the COFF executable file whose name is pointed to

by filename, and selectively extracts a list of values and puts them in the array of

nlist structures pointed to by nJ. The name list ni consists of an array of structures

containing names of variables, types, and values. The list is terminated with a null

name, that is, a null string is in the name position of the structure.

Each variable name is looked up in the name list of the file. If the name is found,

the type, value, storage class, and section number of the name are inserted in the

other fields. The type field may be set to 0 if the file was not compiled with the -g

option. If the name is not found, all fields in the structure except n_name are set to

0. See a.out(4) for a discussion of the symbol table structure.

This function is useful for examining the system name list kept in the file /dgux. In
. this way programs can obtain system addresses that are up to date.

NOTES

The <nlist.h> header file is automatically included by <a.out.h> for compatibility.

However, if the only information needed from <a.out.h> is for use of nlist, then

including <a.out.h> is discouraged. If <a@.out.h> is included, the line #undef

n_name may need to follow it.

DIAGNOSTICS

All value entries are set to 0 if the file cannot be read or if it does not contain a valid

name list.

nlist returns 0 on success, —1 on error.

SEE ALSO

093-701056

a.out(4).

Licensed material—property of copyright hoider(s) 3-391

nisgetcall(3N) . DG/UX 5.4 nisgetcall(3N)

NAME

nlsgetcall — get client’s data passed via the listener

SYNOPSIS

#include <sys/tiuser.h>

struct t_call «nlsgetcall (int fd);

DESCRIPTION ,

nlsgetcall allows server processes started by the listener process to access the

client’s t_call structure, that is, the sndcall argument of t_connect(3N). |

The t_call structure returned by nlsgetcall can be released using t_free(3N).

nlsgetcall returns the address of an allocated t_call structure or NULL if a

t_call structure cannot be allocated. If the t_alloc succeeds, undefined environ-

ment variables are indicated by a negative Jen field in the appropriate netbuf struc-

ture. A len field of zero in the netbuf structure is valid and means that the original

buffer in the listener’s t_call structure was NULL.

WARNING

The len field in the netbuf structure is defined as being unsigned. In order to check

for error returns, it should first be cast to an int.

The listener process limits the amount of user data (udata) and options data (opr) to

128 bytes each. Address data addr is limited to 64 bytes. If the original data was

longer, no indication of overflow is given.

DIAGNOSTICS

A NULL pointer is returned if a t_call structure cannot be allocated by t_alloc.

t_errno can be inspected for further error information. Undefined environment

variables are indicated by a negative length field (/en) in the appropriate netbuf

structure.

FILES

/usr/lib/libnsl_s.a

/usr/lib/libslan.a

/usr/lib/libnils.a

SEE ALSO

nlsadmin(1), getenv(3), t_connect(3N), t_alloc(3N), t_free(3N), t.error(3N).

NOTES

Server processes must call t_sync(3N) before calling this routine.

3-392 Licensed material—property of copyright holder(s) 093-701056

nisprovider(3N) DG/UX 5.4 - nlsprovider(3N)

NAME

nlsprovider — get name of transport provider

SYNOPSIS

char *«nlsprovider();

DESCRIPTION

nlsprovider returns a pointer to a null terminated character string which contains

the name of the transport provider as placed in the environment by the listener pro-

cess. If the variable is not defined in the environment, a NULL pointer is returned.

The environment variable is only available to server processes started by the listener

process. .

SEE ALSO

nlsadmin(1M).

DIAGNOSTICS

If the variable is not defined in the environment, a NULL pointer is returned.

FILES

/usr/lib/libslan.a (7300)

fusr/lib/libnis.a (3B2 Computer)

/usr/lib/libnsl_s.a

093-701056 Licensed material—property of copyright holder(s) 3-393

nisrequest(3N) DG/UX 5.4 | nisrequest(3N)

NAME

nlsrequest — format and send listener service request message

SYNOPSIS

#include <listen.h>

int nlsrequest (int fd, char *service_code);

extern int _nlslog, t_errno;
extern char *_nlsrmsg;

DESCRIPTION

Given a virtual circuit to a listener process (fd) and a service code of a server pro-

cess, nlsrequest formats and sends a service request message to the remote listener

process requesting that it start the given service. nlsrequest waits for the remote

listener process to return a service request response message, which is made available

to the caller in the static, null terminated data buffer pointed to by _nlsrmsg. The

service request response message includes a success or failure code and a text message.

The entire message is printable.

SEE ALSO

nlsadmin(1), t_error(3).

FILES

/usr/lib/libnls.a

/usr/lib/libslan.a

/usr/lib/libnsl_s.a

DIAGNOSTICS

The success or failure code is the integer return code from nlsrequest. Zero indi-

cates success, other negative values indicate nlsrequest failures as follows:

-1: Error encountered by nisrequest, see t_errno.

Postive values are error return codes from the listener process. Mnemonics for these

codes are defined in <listen.h>.

2: Request message not interpretable.

3: Request service code unknown.

4: Service code known, but currently disabled.

If non-null, _nlsxrmsg contains a pointer to a static, null terminated character buffer

containing the service request response message. Note that both _nlsrmsg and the

data buffer are overwritten by each call to nlsrequest.

If _nlslog is non-zero, nlsrequest prints error messages on stderr. Initially,

_nlslog is zero.

WARNING

nlsrequest cannot always be certain that the remote server process has been suc-

cessfully started. In this case, nlsrequest returns with no indication of an error

and the caller will receive notification of a disconnect event via a T_LOOK error before

_ or during the first t_snd or t_rcv call.

3-394 Licensed material—property of copyright holder(s) 093-701056

p2open(3G) | DG/UX 5.4 p2open(3G)

NAME

p2open, p2close - open, close pipes to and from a command

SYNOPSIS |
ce [flag ...] file ... -1lgen [library ...]

#include <libgen.h> .

int p2open (const char «cmd, FILE *fp[2]);

int p2close (FILE *fp[2));

DESCRIPTION

p2open forks and execs a shell running the command line pointed to by cmd. On

return, fp[{0] points to a FILE pointer to write the command’s standard input and

fp[1] points to a FILE pointer to read from the command’s standard output. In

this way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise it returns —1.

p2close is used to close the file pointers that p2open opened. It waits for the pro-

cess to terminate and returns the process status. It returns 0 if successful; otherwise

it returns —1.

EXAMPLES

#include <stdio.h>

#include <libgen.h>

main(argc, argv)

int argc;

char *xargv;

{

FILE xfp[2];

pid_t pid;

char buf[16];

pid=p2open("/usr/bin/cat", fp);

if (pid == 0) {

fprintf(stderr, “p2open failed\n");

exit(1);

}

write(fileno(fp[(0]),"This is a test\n", 16);

if(read(fileno(fp[1]), buf, 16) <=0)

fprintf(stderr, "p2open failed\n”");

else |

write(1, buf, 16);

(void) p2close(fp);
} |

SEE ALSO

fclose(3S), popen(3S), setbuf(3S).

DIAGNOSTICS

A common problem is having too few file descriptors. p2close returns -1 if the

two file pointers are not from the same p2open.

NOTES

Buffered writes on fp[0] can make it appear that the command is not listening.

Judiciously placed fflush calls or unbuffering fp(0] can be a big help; see

093-701056 Licensed material—property of copyright holder(s) 3-395

p2open(3G) : DG/UX §.4 p2open(3G)

fclose(3S).

Many commands use buffered output when connected to a pipe. That, too, can make

it appear as if things are not working.

Usage is not the same as for popen, although it is closely related.

3-396 Licensed material—property of copyright hoider(s) 093-701056

panel_above(3X) DG/UX 5.4 - panel_above(3X)

NAME

panel_above: panel_above, panel_below - panels deck traversal primitives

SYNOPSIS

#include <panel.h>

PANEL *panel_above(PANEL *panel) ;

PANEL *panel_ below(PANEL *panel);

DESCRIPTION

panel_above returns a pointer to the panel just above panel, or NULL if panel is the
top panel. panel_below returns a pointer to the panel just below panel, or NULL if
panel is the bottom panel.

If NULL is passed for panel, panel_above returns a pointer to the bottom panel in
the deck, and panel_below returns a pointer to the top panel in the deck.

RETURN VALUE

NULL is returned if an error occurs.

NOTES

These routines allow traversal of the deck of currently visible panels.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO |

curses(3X), panels(3X).

093-701056 Licensed material—property of copyright holder(s) 3-397

panel_move(3X) DG/UX 5.4 . panel_move(3X)

NAME

panel_move: move_panel ~— move a panels window on the virtual screen

SYNOPSIS

#include <panel.h>

int move_panel(PANEL *panel, int starty, int startx);

DESCRIPTION

move_panel moves the curses window associated with panel so that its upper left-

hand corner is at starty, startx. See usage note, below.

RETURN VALUE

OK is returned if the routine completes successfully, otherwise ERR is returned.

NOTES

For panels windows, use move_panel instead of the mvwin curses routine.

Otherwise, update_panels will not properly update the virtual screen.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X), panel_update(3X).

3-398 Licensed materiali—property of copyright hoider(s) 093-701056

panel_new(3X) - DG/UX 8.4 panel_new(3X)

NAME

panel _new: new_panel, del_panel - create and destroy panels

SYNOPSIS

#include <panel.h>

PANEL *new_panel(WINDOW *win);

int del_panel(PANEL *panel) ;

DESCRIPTION

new_panel creates a new panel associated with win and returns the panel pointer.

The new panel is placed on top of the panel deck.

del_panel destroys panel, but not its associated window.

RETURN VALUE

new_panel returns NULL if an error occurs.

del_win returns OK if successful, ERR otherwise.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X), panel_update(3X).

093-701056 Licensed material—property of copyright holder(s) 3-399

panel_show(3X) . DG/UX 8.4 panel_show(3X)

NAME

panel_show: show_panel, hide panel, panel_hidden—- panels deck mani-

pulation routines

SYNOPSIS

#include <panel.h>

int show_panel(PANEL *panel) ;

int hide_panel(PANEL *panel) ;

int panel_hidden(PANEL *panel) ;

DESCRIPTION :

show_panel makes panel, previously hidden, visible and places it on top of the deck

of panels. :

hide_panel removes panel from the panel deck and, thus, hides it from view. The

internal data structure of the panel is retained.

panel_hidden returns TRUE (1) or FALSE (0) indicating whether or not panel is in

the deck of panels.

RETURN VALUE

show_panel and hide_panel return the integer OK upon successful completion or

ERR upon error.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X), panel_update(3X).

3-400 Licensed material—property of copyright hoider(s) 093-701056

panel_top(3X) DG/UX 5.4 panel_top(3X)

NAME

panel_top: top_panel, bottom_panel - panels deck manipulation routines

SYNOPSIS ,

#include <panel.h>

int top _panel(PANEL *panel);

int bottom_panel(PANEL *panel) ;

DESCRIPTION

top_panel pulls panel to the top of the desk of panels. It leaves the size, location,
and contents of its associated window unchanged.

bottom_panel puts panel at the bottom of the deck of panels. It leaves the size,

location, and contents of its associated window unchanged.

RETURN VALUE

All of these routines return the integer OK upon successful completion or ERR upon
error.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X), panel_update(3X).

093-701056 Licensed material—property of copyright holder(s) 3-401

panel_update(3X) DG/UX 5.4 panel_update (3X)

NAME

panel update: update_panels - panels virtual screen refresh routine

SYNOPSIS

#include <panel.h>

void update_panels(void);

DESCRIPTION

update_panels refreshes the virtual screen to reflect the depth relationships

between the panels in the deck. The user must use the curses library call doupdate

[see curs_refresh(3X)] to refresh the physical screen.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X), curs_refresh(3X).

3-402 Licensed material—property of copyright hoilder(s) 093-701056

panel_userptr(3X) DG/UX &.4 panel_userptr(3X)

NAME

panel_userptr: set_panel_userptr, panel_userptr — associate application

data with a panels panel

SYNOPSIS

#include <panel.h>

int set_panel_userptr(PANEL *panel, char *ptr);

char * panel _userptr(PANEL *panel);

DESCRIPTION

Each panel has a user pointer available for maintaining relevant information.

set_panel_userptr sets the user pointer of panel to ptr.

panel_userptr returns the user pointer of panel.

RETURN VALUE

set_panel_ userptr returns OK if successful, ERR otherwise.

panel _userptr returns NULL if there is no user pointer assigned to panel.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X).

093-701056 Licensed material—property of copyright hoider(s) 3-403

panel_window(3X) DG/UX 5.4 panel_window(3X)

NAME

panel_window: panel_window, replace_panel - get or set the current window

of a panels panel

SYNOPSIS

#include <panel.h>

WINDOW *panel_window(PANEL *panel) ;

int replace_panel(PANEL *panel, WINDOW *win);

DESCRIPTION

panel_window returns a pointer to the window of panel.

replace_panel replaces the current window of panel with win.

RETURN VALUE |

panel window returns NULL on failure.

replace_panel returns OK on successful completion, ERR otherwise.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), panels(3X).

3-404 . Licensed material—property of copyright holder(s) 093-701056

paneis(3X)

NAME

DG/UX 5.4 paneils(3X)

panels — character based panels package

SYNOPSIS

#include <panel.h>

DESCRIPTION

The panel library is built using the curses library, and any program using panels
routines must call one of the curses initialization routines such as initscr. A
program using these routines must be compiled with -lpanel and -lcurses on the
ec command line.

The panels package gives the applications programmer a way to have depth relation-
ships between curses windows; a curses window is associated with every panel.
The panels routines allow curses windows to overlap without making visible the
overlapped portions of underlying windows. The initial curses window, stdscr,
lies beneath all panels. The set of currently visible panels is the deck of panels.

The panels package allows the applications programmer to create panels, fetch and
set their associated windows, shuffle panels in the deck, and manipulate panels in
other ways.

Routine Name Index

The following table lists each panels routine and the name of the manual page on
which it is described.

panels Routine Name Manual Page Name

bottom _panel

del panel

hide panel

move_panel

new_panel

panel _ above

panel below

panel hidden

panel _userptr

panel window

replace_panel

set_panel_userptr

show_panel

top_panel

update_panels

RETURN VALUE

panel_top(3X)

panel_new(3X)

panel_show(3X)

panel_move(3X)

panel_new(3X)

panel_above(3X)

panel_above(3X)

panel_show(3X)

panel_userptr(3X)

panel_window(3X)

panel_window(3X)

panel_userptr(3X)

panel_show(3X)

panel_top(3X)

panel_update(3X)

Each panels routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes success-

fully and ERR if it does not.

NOTES

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO

curses(3X), and 3X pages whose names begin "panel_," for detailed routine descrip-
tions.

093-701056 Licensed material—property of copyright holder(s) 3-405

pathfind(3G) DG/UX 5.4 pathfind(3G)

NAME

pathfind — search for named file in named directories

SYNOPSIS

ce [flag ...] file ... -1gen [library ...]

#include <libgen.h>

char *«pathfind (const char *path, const char *name, const char

*mode) ;

DESCRIPTION

pathfind searches the directories named in path for the file name. The directories

named in path are separated by semicolons. mode is a string of option letters chosen

from the set rwxfbcdpugks:

Letter Meaning

readable

writable

executable

normal file

block special

character special

directory

FIFO (pipe)

set user ID bit

set group ID bit

sticky bit

size nonzero

Options read, write, and execute are checked relative to the real (not the effective)

user ID and group ID of the current process.

K

hArQoed aa omy Fs
If the file name, with all the characteristics specified by mode, is found in any of the

directories specified by path, then pathfind returns a pointer to a string containing

the member of path, followed by a slash character (/), followed by name.

If name begins with a slash, it is treated as an absolute path name, and path is

ignored.

An empty path member is treated as the current directory. rather, the unadorned

name is returned.

EXAMPLES

To find the 1s command using the PATH environment variable:

pathfind (getenv ("PATH"), “ls", “rx")

SEE ALSO

access(2), mknod(2), stat(2), getenv(3C).

sh(1), test(1) in the User’s Reference Manual.

DIAGNOSTICS

If no match is found, pathname returns a null pointer, ((char *) 0).

NOTES

The string pointed to by the returned pointer is stored in a static area that is reused

on subsequent calls to pathfind.

3-406 Licensed material—property of copyright holder(s) 093-701056

perror(3C) DG/UX 8.4 perror(3C)

NAME

perror — print system error messages

SYNOPSIS

#include <stdio.h>

void perror (const char +s);

DESCRIPTION

perror produces a message on the standard error output (file descriptor 2), describ-

ing the last error encountered during a call to a system or library function. The argu-

ment string s is printed first, then a colon and a blank, then the message and a new-

line. (However, if s is a null pointer or points to a null string, the colon is not

printed.) To be of most use, the argument string should include the name of the pro-

gram that incurred the error. The error number is taken from the external variable

errno, which is set when errors occur but not cleared when non-erroneous calls are

made.

FILES

/usr/lib/locale/locale/LC_MESSAGES/uxsyserr — message catalog.

SEE ALSO

intro(2), fmtmsg(3C), strerror(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-407

popen(3S) DG/UX 5.4 popen(3S)

NAME

popen, pclose - initiate pipe to/from a process

SYNOPSIS

#include <stdio.h>

FILE *popen (const char «command, const char type);

int pclose (FILE *stream);

DESCRIPTION

popen creates a pipe between the calling program and the command to be executed.

The arguments to popen are pointers to null-terminated strings. command consists
of a shell command line. type is an I/O mode, either r for reading or w for writing.
The value returned is a stream pointer such that one can write to the standard input
of the command, if the I/O mode is w, by writing to the file stream [see intro(3)];
and one can read from the standard output of the command, if the I/O mode is r, by
reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associ-
ated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and

a type w as an output filter.

EXAMPLE

Here is an example of a typical call:

#include <stdio.h>

#include <stdlib.h>

main()

{

char *cmd = "/usr/bin/ls +*.c";

char buf [BUFSIZ];

FILE «ptr;

if ((ptr = popen(cmd, "“r")) != NULL)

while (fgets(buf, BUFSIZ, ptr) != NULL)

(void) printf("%s", buf);

return 0; .

)

This program will print on the standard output [see stdio(3S)] all the file names in
the current directory that have a .c suffix.

SEE ALSO |

pipe(2), signal(2), wait(2), waitpid(2), fclose(3S), fopen(3S), stdio(3S),
system(3S).

DIAGNOSTICS

popen returns a null pointer if files or processes cannot be created.

pclose returns —1 if stream is not associated with a popened command or waitpid

(used in the implementation of pclose) returns a —1 for some reason (see NOTES
below).

NOTES

If the original and popened processes concurrently read or write a common file,

3-408 | Licensed material—property of copyright holder(s) 093-701056

popen(3S) DG/UX 5.4 popen(3S)

093-701056

neither should use buffered I/O. Problems with an output filter may be forestalled by

careful buffer flushing, e.g., with fflush [see fclose(3S)].

If SIGCHLD is set to SIG_IGN, pclose will return a -1 with errno set to ECHILD

(the results of calling waitpid).

A security hole exists through the IFS and PATH environment variables. Full path-

names should be used (or PATH reset) and IFS should be set to space and tab ("

\t").

Licensed material—property of copyright holder(s) 3-409

printf (3S) DG/UX &.4 printf(3S)

NAME | |

printf, fprintf, sprintf — print formatted output

SYNOPSIS

#include <stdio.h>

int printf(const char «format, .../* args */);

int fprintf(FILE #strm, const char «format, .../* args */);

int sprintf(char *s, const char «format, .../* args */);

DESCRIPTION

printf places output on the standard output stream stdout.

fprintf places output on strm.

sprintf places output, followed by the null character (\0), in consecutive bytes

starting ats. It is the user’s responsibility to ensure that enough storage is available.

Each function returns the number of characters transmitted (not including the \0 in
the case of sprintf) or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the for-

mat. The format is a character string that contains three types of objects defined

below:

1. plain characters that are simply copied to the output stream;

2. escape sequences that represent non-graphic characters;

3. conversion specifications.

The following escape sequences produce the associated action on display devices

capable of the action:

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current

position, unless the current position is the start of a line.

\f Form feed. Move the printing position to the initial printing position of the

next logical page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current line.

\t Horizontal tab. Move the printing position to the next implementation-

defined horizontal tab position on the current line.

\v Vertical tab. Move the printing position to the start of the next

implementation-defined vertical tab position.

All forms of the printf functions allow for the insertion of a language-dependent

decimal-point character. The decimal-point character is defined by the program’s

locale (category LC_NUMERIC). In the C locale, or in a locale where the decimal-

point character is not defined, the decimal-point character defau.ts to a period (.).

Each conversion specification is introduced by the character %. After the character

%, the following appear in sequence:

An optional field, consisting of a decimal digit string followed by a $, speci-

fying the next args to be converted. If this field is not provided, the args fol-

lowing the last args converted will be used. |

3-410 Licensed material—property of copyright holder(s) 093-701056

printf(3S) DG/UX 5.4 printf(3S)

093-701056

Zero or more flags, which modify the meaning of the conversion specifica-

tion. |

An optional string of decimal digits to specify a minimum field width. If the

converted value has fewer characters than the field width, it will be padded on

the left (or right, if the left-adjustment flag (—), described below, has been

given) to the field width.

An optional precision that gives the minimum number of digits to appear for

the d, i, o, u, x, or X conversions (the field is padded with leading

zeros), the number of digits to appear after the decimal-point character for

the e, E, and f conversions, the maximum number of significant digits for

the g and G conversions, or the maximum number of characters to be

printed from a string in s conversion. The precision takes the form of a

period (.) followed by a decimal digit string; a null digit string is treated as

zero. Padding specified by the precision overrides the padding specified by

the field width.

An optional h specifies that a following d, i, o, u, x, or X conversion

specifier applies to a short int or unsigned short int argument (the

argument will be promoted according to the integral promotions and its value

converted to short int or unsigned short int before printing); an

optional h specifies that a following n conversion specifier applies to a

pointer toa short int argument. An optional 1 (ell) specifies that a fol-

lowing d, i, o, u, x, or X conversion specifier applies toa long int or

unsigned long int argument; an optional 1 (ell) specifies that a following

n conversion specifier applies to a pointer to long int argument. An

optional L specifies that a following e, E, £, g, or G conversion specifier

applies toa long double argument. If an h, 1, or L appears before any

other conversion specifier, the behavior is undefined.

A conversion character (see below) that indicates the type of conversion to be

applied.

A field width or precision may be indicated by an asterisk (+) instead of a digit string.

In this case, an integer args supplies the field width or precision. The args that is

actually converted is not fetched until the conversion letter is seen, so the args speci-

fying field width or precision must appear before the args (if any) to be converted. If

the precision argument is negative, it will be changed to zero. A negative field width

argument is taken as a — flag, followed by a positive field width.

In format strings containing the +digits$ form of a conversion specification, a field

width or precision may also be indicated by the sequence sdigits$, giving the position

in the argument list of an integer args containing the field width or precision.

When numbered argument specifications are used, specifying the Nth argument

requires that all the leading arguments, from the first to the (N—1)th, be specified in

the format string.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field. (It will be

right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or —). (It

will begin with a sign only when a negative value is converted if this flag is not

specified.)

Licensed materlal—property of copyright holder(s) 3-41 1

printf (3S)

3-412

DG/UX 5.4 printf(3S)

space If the first character of a signed conversion is not a sign, a space will be

placed before the result. This means that if the space and + flags both

appear, the space flag will be ignored.

The value is to be’ converted to an alternate form. For c, d, i, s, and u

conversions, the flag has no effect. For an o conversion, it increases the pre-

cision to force the first digit of the result to be a zero. For x (or X) conver-

sion, a non-zero result will have 0x (or 0X) prepended to it. For e, E, f,

g, and G conversions, the result will always contain a decimal-point charac-

ter, even if no digits follow the point (normally, a decimal point appears in

the result of these conversions only if a digit follows it). For g and G

conversions, trailing zeros will not be removed from the result as they nor-

mally are.

For d, i, 0, u, x, X, e, E, £, g, and G conversions, leading zeros (fol-

lowing any indication of sign or base) are used to pad to the field width; no

space padding is performed. Ifthe 0 and flags both appear, the 0 flag will

be ignored. For d, i, o, u, x, and X conversions, if a precision is speci-

fied, the 0 flag will be ignored. For other conversions, the behavior is unde-

fined.

Each conversion character results in fetching zero or more args. The results are

undefined if there are insufficient args for the format. If the format is exhausted

while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), (unsigned

e,E

octal (0), unsigned decimal (u), or unsigned hexadecimal notation (x

and X). The x conversion uses the letters abcdef and the x

conversion uses the letters ABCDEF. The precision specifies the

minimum number of digits to appear. If the value being converted

can be represented in fewer digits than the specified minimum, it will

be expanded with leading zeros. The default precision is 1. The

result of converting a zero value with a precision of zero is no charac-

ters.

The double args is converted to decimal notation in the style

[-]ddd.ddd, where the number of digits after the decimal-point

character [see setlocale(3C)] is equal to the precision specifica-

tion. If the precision is omitted from arg, six digits are output; if the

precision is explicitly zero and the # flag is not specified, no

decimal-point character appears. If a decimal-point character

appears, at least 1 digit appears before it. The value is rounded to

the appropriate number of digits.

The double args is converted to the style [-]d.ddde+dd, where

there is one digit before the decimal-point character (which is non-

zero if the argument is non-zero) and the number of digits after it is

equal to the precision. When the precision is missing, six digits are

produced; if the precision is zero and the # flag is not specified, no

decimal-point character appears. The E conversion character will

produce a number with E instead of e introducing the exponent.

The exponent always contains at least two digits. The value is

rounded to the appropriate number of digits.

Licensed material—property of copyright holder(s) 093-701056

printf(3S)

g,G

%

DG/UX 5.4 printf(3S)

The double args is printed in style £ or e (or in style E in the case

of a G conversion character), with the precision specifying the

number of significant digits. If the precision is zero, it is taken as

one. The style used depends on the value converted: style e (or E)

will be used only if the exponent resulting from the conversion is less

than -4 or greater than or equal to the precision. Trailing zeros are

removed from the fractional part of the result. A decimal-point char-

acter appears only if it is followed by a digit.

The int args is converted to an unsigned char, and the resulting

character is printed.

The args is taken to be a string (character pointer) and characters

from the string are written up to (but not including) a terminating null

character; if the precision is specified, no more than that many char-

acters are written. If the precision is not specified, it is taken to be

infinite, so all characters up to the first null character are printed. A

NULL value for args will yield undefined results.

The args should be a pointer to void. The value of the pointer is

converted to an implementation-defined set of sequences of printable

characters, which should be the same as the set of sequences that are

matched by the %p conversion of the scanf function.

The argument should be a pointer to an integer into which is written

the number of characters written to the output standard I/O stream

so far by this call to printf, fprintf, or sprintf. No argument

is converted.

Print a %; no argument is converted.

If the character after the % or %digits$ sequence is not a valid conversion character,

the results of the conversion are undefined.

If a floating-point value is the internal representation for infinity, the output is [+]inf,

where inf is either inf or INF, depending on the conversion character. Printing of

the sign follows the rules described above.

If a floating-point value is the internal representation for “not-a-number,” the output

is [+]nan0xm. Depending on the conversion character, nan is either nan or NAN.

Additionally, 0xm represents the most significant part of the mantissa. Again

depending on the conversion character, x will be x or X, and m will use the letters

abcdef or ABCDEF. Printing of the sign follows the rules described above.

In no case does a non-existent or small field width cause truncation of a field; if the

result of a conversion is wider than the field width, the field is simply expanded to

contain the conversion result. Characters generated by printf and fprintf are

printed as if the putc routine had been called.

EXAMPLE

To print a date and time in the form Sunday, July 3, 10:02, where weekday

and month are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d",
weekday, month, day, hour, min);

To print 7 to 5 decimal places:

093-701056 Licensed material—property of copyright holder(s) 3-41 3

printf(3S) DG/UX 5.4 printf(SS)

printf("pi = %.5£", 4 * atan(1.0));

SEE ALSO |
exit(2), lseek(2), write(2), abort(3C), ecvt(3C), putc(3S), scanf(3S),

setlocale(3C), stdio(3S).

DIAGNOSTICS

printf, fprintf, and sprintf return the number of characters transmitted, or

return a negative value if an error was encountered.

3-414 Licensed material—property of copyright holder(s) 093-701056

printf (SW) | DG/UX 5.4 printf (SW)

NAME

printf, fprintf, sprintf — print formatted output

SYNOPSIS

#include <stdio.h>

#include <widec.h>

int printf (const char sformat [, arg] ...);

int fprintf (FILE «stream, const char format [, arg] ...);

int sprintf (char *s, const char sformat [, arg] ...);

DESCRIPTION (International Functions)

printf () places output on the standard output stream stdout. fprintf() places

output on the named output stream. sprintf () places output followed by the

NULL character in a character array pointed to by s. Each function returns the

number of bytes transmitted (not including the NULL character in the case of sprintf),

or a negative value if an output error was encountered.

Each of these functions converts, formats and prints its args under control of the for-

mat. The format is a character string that contains two types of object: plain charac-

ters, including ASCII characters and characters in supplementary code sets which are

simply copied to the output stream, and conversion specifications which can contain

only ASCII characters, each of which results in the fetching of zero or more args.

we and ws are the new conversion specifications for wchar_t character control.

Both we and ws may be used in all three functions.

we The wchar_t character arg is transformed into EUC, and then printed. Ifa

field width is specified and the transformed EUC has fewer bytes than the

field width, it will by padded to the given width. A precision specification is

ignored, if specified. |

ws The arg is taken to be a wchar_t string and the wchar_t characters from

the string are transformed into EUC, and printed until a wchar_t null char-

acter is encountered or the number of bytes indicated by the precision specifi-

cation is printed. If the precision specification is missing, it is taken to be

infinite, and all wchar_t characters up to the first wchar_t null character

are transformed into EUC and printed. [If a field width is specified and the

transformed EUC have fewer bytes than the field width, they are padded to

the given width.

The ASCII space character (0x20) is used as a padding characters.

DIAGNOSTICS

printf, fprintf, and sprintf returns the number of bytes transmitted, or return

a negative value if an error was encountered.

SEE ALSO

printf(3S), scanf(3W), stdio(3S), vprintf(3W), widec(3W).

093-701056 Licensed material—property of copyright holder(s) 3-41 5

psignal(3C) | DG/UX 5.4 psignal(3C)

NAME

psignal, psiginfo -— system signal messages |

SYNOPSIS

#include <siginfo.h>

void psignal (int sig, const char *s);

void psiginfo (siginfo_ t *pinfo, char *s);

DESCRIPTION |
psignal and psiginfo produce messages on the standard error output describing a

signal. sig is a signal that may have been passed as the first argument to a signal
handler. pinfo is a pointer to a siginfo structure that may have been passed as the
second argument to an enhanced signal handler [see sigaction(2)]. The argument

string s is printed first, then a colon and a blank, then the message and a newline.

SEE ALSO

sigaction(2), perror(3C), siginfo(5), signal(5).

3-41 6 Licensed material—property of copyright hoider(s) 093-701056

ptsname(3C) DG/UX 5.4 ptsname(3C)

NAME

ptsname — get name of the slave pseudo-terminal device

SYNOPSIS

#include <stdio.h>

char *ptsname(int fildes);

DESCRIPTION | |
The function ptsname() returns the name of the slave pseudo-terminal device asso-
ciated with a master pseudo-terminal device. fildes is a file descriptor returned from
a successful open of the master device. ptsname() returns a pointer to a string con-
taining the null-terminated path name of the slave device of the form /dev/pts/N,
where N is an integer between 0 and 255.

RETURN VALUE

Upon successful completion, the function ptsname() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to ptsname(). Upon failure, ptsnane()
returns NULL. This could occur if fildes is an invalid file descriptor or if the slave
device name does not exist in the file system.

SEE ALSO

open(2), grantpt(3C), ttyname(3C), unlockpt(3C).

Programmer's Guide: STREAMS.

093-701056 Licensed material—property of copyright holder(s) 3-41 7

putc(3S) DG/UX 5.4 putc(3S)

NAME

putc, putchar, fputc, putw -— put character or word on a stream

SYNOPSIS

#include <stdio.h>

int pute (int c, FILE *stream);

int putchar (int c);

int fputec (int c, FILE *stream);

int putw (int w, FILEETI *stream);

DESCRIPTION

pute writes c (converted to an unsigned char) onto the output stream [see

intro(3)] at the position where the file pointer (if defined) is pointing, and advances

the file pointer appropriately. If the file cannot support positioning requests, or

stream was opened with append mode, the character is appended to the output

stream. putchar(c) is defined as putc(c, stdout). pute and putchar are

macros.

fputc behaves like putc, but is a function rather than a macro. fputc runs more

slowly than putc, but it takes less space per invocation and its name can be passed

as an argument to a function.

putw writes the word (i.e., integer) w to the output stream (where the file pointer, if

defined, is pointing). The size of a word is the size of an integer and varies from

machine to machine. putw neither assumes nor causes special alignment in the file.

SEE ALSO

exit(2), lseek(2), write(2), abort(3C), fclose(3S), ferror(3S), fopen(3S),

fread(3S), printf£(3S), puts(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

On success, these functions (with the exception of putw) each return the value they

have written. putwreturns ferror (stream). On failure, they return the constant

EOF. This result will occur, for example, if the file stream is not open for writing or

if the output file cannot grow.

NOTES

Because it is implemented as a macro, putc evaluates a stream argument more than

once. In particular, putc(c, +*f++); doesn’t work sensibly. fputc should be

used instead.

Because of possible differences in word length and byte ordering, files written using

putw are machine-dependent, and may not be read using getw on a different proces-

sor.

Functions exist for all the above defined macros. To get the function form, the

macro name must be undefined (e.g., #undef putc).

3-41 8 Licensed material—property of copyright holder(s) 093-701056

putenv(3C) DG/UX 5.4 putenv(3C)

NAME

putenv — change or add value to environment

SYNOPSIS

#include <stdlib.h>

int putenv (char s«string);

DESCRIPTION

string points to a string of the form “‘name=value.’’ putenv makes the value of the

environment variable name equal to value by altering an existing variable or creating a

new one. In either case, the string pointed to by string becomes part of the environ-

ment, so altering the string will change the environment. The space used by string is

no longer used once a new string-defining name is passed to putenv. Because of

this limitation, string should be declared static if it is declared within a function.

SEE ALSO

exec(2), getenv(3C), malloc(3C), environ(5).

DIAGNOSTICS

putenv returns non-zero if it was unable to obtain enough space via malloc for an

expanded environment, otherwise zero.

NOTES .

putenv manipulates the environment pointed to by environ, and can be used in con-

junction with getenv. However, envp (the third argument to main) is not changed.

This routine uses malloc(3C) to enlarge the environment.

After putenv is called, environmental variables are not in alphabetical order. A

potential error is to call the function putenv with a pointer to an automatic variable

as the argument and to then exit the calling function while string is still part of the

environment.

ann ees nen { laanead matarial—nproperty of copvriaght.holider(¢) 3244 9

putpwent(SC) DG/UX 8.4 putpwent(3C)

NAME

putpwent - write password file entry

SYNOPSIS

#include <pwd.h>

int putpwent (const struct passwd «p, PILE +f);

DESCRIPTION

putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure

created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the

stream f, which matches the format of /etc/passwd.

SEE ALSO

getpwent(3C).

DIAGNOSTICS

putpwent returns non-zero if an error was detected during its operation, otherwise

zero.

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs

that otherwise don’t use standard I/O. The size increases more than might be

expected.

3-420 Licensed material—property of copyright holder(s) 093-701056

puts(3S) DG/UX 5.4 | puts(3S)

NAME

puts, fputs — put a string on a stream

SYNOPSIS

#finclude <stdio.h>

int puts (const char xs);

int fputs (const char «+s, FILE *stream);

DESCRIPTION

puts writes the string pointed to by s, followed by a new-line character, to the stan-

dard output stream stdout [see intro(3)].

fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

SEE ALSO

exit(2), lseek(2), write(2), abort(3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS

On success both routines return the number of characters written; otherwise they

return EOF. In addition, if the routines try to write to a file that has not been opened

for writing, errno will be set to EBADF.

NOTES |

puts appends a new-line character while fputs does. not.

093-701056 Licensed material—property of copyright holder(s) 3-421

putspent(3C) DG/UX 5.4 putspent(3C)

NAME

putspent — write shadow password file entry

SYNOPSIS

#include <shadow.h>

int putspent (const struct spwd «p, FILE *«fp);

DESCRIPTION

The putspent routine is the inverse of getspent. Given a pointer toa spwd

structure created by the getspent routine (or the getspnam routine), the

putspent routine writes a line on the stream fp, which matches the format of

/etc/shadow.

If the sp_min, sp_max, sp_lstchg, sp_warn, sp_inact, or sp_expire field

of the spwd structure is -1, or if sp_flag is 0, the corresponding /etc/shadow

field is cleared. |

SEE ALSO

getspent(3C), getpwent(3C), putpwent(3C).

DIAGNOSTICS

The putspent routine returns non-zero if an error was detected during its operation,

otherwise zero.

NOTES

This routine is for internal use only, compatibility is not guaranteed.

3-422 Licensed material—property of copyright hoider(s) 093-701056

putwe(3W) DG/UX 5.4 putwe(3W)

NAME

putwe, putwchar, fputwe — put wchar_t character on a stream

SYNOPSIS

#include <stdio.h>

#include <widec.h>

int putwce(wchar_tc, FILE *stream);

int putwchar(wchar_t C);

int fputwce(wchar_t c, FILE *Stream) ;

DESCRIPTION (international Functions)

putwe() transforms the wchar_t character c into EUC, and writes it onto the out-

put stream (at the position where the file pointer, if defined, is pointing). The

putwchar(c) is defined as putwe(c, stdout). putwe() and putwchar() are

macros.

fputwe() behaves like putwce(), but is a function rather than a macro.

DIAGNOSTICS

On success, each of these functions return the value they have written. On failure,

they return the constant EOF.

SEE ALSO

printf(3W), putws(3W), widec(3W).

fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), setbuf(3S),

stdio(3S).

093-701056 Licensed material—property of copyright hoilder(s) 3-423

putwe(3W) DG/UX 5.4 putws(3W)

NAME

putws, fputws — put a wchar_t string on a stream

SYNOPSIS -

#include <stdio.h>

#include <widec.h>

int putws(const wchar_t *S5);

int fputws(const wchar_t «5, FILE *Stream);

DESCRIPTION (International Functions)
putws() transforms the wchar_t null-terminated wchar_t string pointed to by s

into a byte string in EUC, and writes the string followed by a new-line character to

stdout.

fputws() transforms the wchar_t null-terminated wchar_t string pointed to by s

into a byte string in EUC, and writes the string to the named output stream.

Neither function writes the terminating wchar_t null character.

DIAGNOSTICS

On success both functions return the number of wchar_t characters transformed

and written (not including the new-line character in the case of putws()); Otherwise

they return EOF.

NOTES

putws() appends a new-line character while fputws() does not.

SEE ALSO

printf(3W), putwe(3W), widec(3W).

ferror(3S), fopen(3S), fread(3S), print£(3S), stdio(3S).

3-424 Licensed material—property of copyright holder(s) 093-701056

qsort(3C) DG/UX 5.4 qsort(3C)

NAME

qsort — quicker sort

SYNOPSIS

#include <stdlib.h>

void qsort (voids base, size_t nel, size_t width), int (*compar)

(const void *, const void *)); |

DESCRIPTION

qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in

place. The contents of the table are sorted in ascending order according to the user-

supplied comparison function.

base points to the element at the base of the table. nel is the number of elements in

the table. width specifies the size of each element in bytes. compar is the name of

the comparison function, which is called with two arguments that point to the ele-
ments being compared. The function must return an integer less than, equal to, or

greater than zero to indicate if the first argument is to be considered less than, equal

to, or greater than the second.

The contents of the table are sorted in ascending order according to the user supplied

comparison function.

SEE ALSO

NOTES

093-701056

bsearch(3C), lsearch(3C), string(3C).

sort(1) in the User’s Reference Manual.

The comparison function need not compare every byte, so arbitrary data may be con-

tained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredictable.

Licensed material—property of copyright holder(s) 3-425

raise(3C) DG/UX 5.4 raise(3C)

NAME

raise — send signal to program

SYNOPSIS

#include <signal.h>

int raise (int sig);

DESCRIPTION

raise sends the signal sig to the executing program.

raise returns zero if the operation succeeds. Otherwise, raise returns —1 and errno

is set to indicate the error. raise uses kill to send the signal to the executing

program.

kill(getpid(), sig);

See kill(2) for a detailed list of failure conditions. See signal(2) for a list of sig-

nals.

SEE ALSO

getpid(2), kill(2), signal(2).

3-426 Licensed material—property of copyright hoider(s) 093-701056

rand(3C) DG/UX 5.4 rand(SC)

NAME

rand, srand — simple random-number generator

SYNOPSIS

#include <stdlib.h>

int rand (void);

void srand (unsigned int seed);

DESCRIPTION

rand uses a multiplicative congruential random-number generator with period 2° that
returns successive pseudo-random numbers in the range from 0 to RAND_MAX

(defined in stdlib.h).

The function srand uses the argument seed as a seed for a new sequence of pseudo-

random numbers to be returned by subsequent calls to the function rand. If the

function srand is then called with the same seed value, the sequence of pseudo-

random numbers will be repeated. If the function rand is called before any calls to

srand have been made, the same sequence will be generated as when srand is first

called with a seed value of 1.

NOTES

The spectral properties of rand are limited. drand48(3C) provides a much better,

though more elaborate, random-number generator.

SEE ALSO

drand48(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-427

random(3C) DG/UX 5.4 random(3C)

NAME

random, srandom, initstate, setstate — generate random numbers better, or

change the generator

SYNOPSIS

long random()

srandom(seed)

int seed;

char *initstate(seed, State, n)

unsigned seed;

char *state;

int 2”;

char *setstate(State)

char *state;

DESCRIPTION

Random uses a non-linear additive feedback random number generator employing a

default table of size 31 long integers to return successive pseudo-random numbers in

the range from 0 to 27'—1. The period of this random number generator is very large,
approximately 16x(27!—1).

Random/srandom have (almost) the same calling sequence and initialization proper-

ties as rand/srand. The difference is that rand(3C) produces a much less random

sequence — in fact, the low dozen bits generated by rand go through a cyclic pat-

tern. All the bits generated by random are usable. For example, “random()&01”

will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the

amount of state information used is much more than a single word. (Two other rou-

tines are provided to deal with restarting/changing random number generators). Like

rand(3C), however, random will by default produce a sequence of numbers that can

be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initial-

ized for future use. The size of the state array (in bytes) is used by initstate to

decide how sophisticated a random number generator it should use — the more state,

the better the random numbers will be. (Current “optimal” values for the amount of

state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded

down to the nearest known amount. Using less than 8 bytes will cause an error). The

seed for the initialization (which specifies a starting point for the random number

sequence, and provides for restarting at the same point) is also an argument. Init-

state returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching

between states. Setstate returns a pointer to the previous state array; its argument

state array is used for further random number generation until the next call to init-

state or setstate.

Once a state array has been initialized, it may be restarted at a different point either

by calling initstate (with the desired seed, the state array, and its size) or by cal-

ling both setstate (with the state array) and srandom (with the desired seed).

The advantage of calling both setstate and srandon is that the size of the state

array does not have to be remembered after it is initialized.

3-428 Licensed material—property of copyright holders) 093-701056

random(3C) DG/UX 5.4 random(3C)

With 256 bytes of state information, the period of the random number generator is
greater than 2° which should be sufficient for most purposes.

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate
detects that the state information has been garbled, error messages are printed on the
standard error output.

SEE ALSO

rand(3C).

CAVEAT

About 2/3 the speed of rand(3C).

093-701056 Licensed material—property of copyright holder(s) 3-429

remd(3X) DG/UX 5.4 remd(SX)

NAME

remd, rresvport, ruserok — routines for returning a stream to a remote com-

mand
.

SYNOPSIS |

rem = remd(ahost, inport, locuser, remuser, cmd, fd2p);

char **ahost;

u_short inport;

char *locuser, *remuser, *cmd;

int *fd2p;

Ss = rresvport(port);

int *port;

ruserok(rhost, superuser, ruser, luser);

char *rhost;

int superuser;

char *ruser, *luser;

DESCRIPTION

remd is a routine used by the super-user to execute a command on a remote machine

using an authentication scheme based on reserved port numbers. rresvport is a

routine which returns a descriptor to a socket with an address in the privileged port

space. ruserok is a routine used by servers to authenticate clients requesting ser-

vice with reomd.

remd looks up the host *ahost using gethostbyname(3N), returning —1 if the host

does not exist. Otherwise *ahost is set to the standard name of the host and a con-

nection is established to a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and

given to the remote command as stdin and stdout. If fd2p is non-zero, then an

auxiliary channel to a control process will be set up, and a descriptor for it will be

placed in *fd2p. The control process will return diagnostic output from the command

(unit 2) on this channel, and will also accept bytes on this channel as being DG/UX

system signal numbers, to be forwarded to the process group of the command. If

fd2p is 0, then the stderr (unit 2 of the remote command) will be made the same as

the stdout and no provision is made for sending arbitrary signals to the remote pro-

cess, although you may be able to get its attention by using out-of-band data.

The rresvport routine is used to obtain a socket with a privileged address bound to

it. This socket is suitable for use by remd and sevral other routines. Privileged

addresses consist of a port in the range 0 to 1023. Only the super-user is allowed to

bind an address of this sort to a socket.

ruserok takes a remote host’s name, as returned by a gethostent(3N) routine,

two user names and a flag indicating if the local user’s name is the super-user. It then

checks the files /etc/hosts.equiv and, possibly, .rhosts in the local user’s

home directory to see if the request for service is allowed. A 0 is returned if the

machine name is listed in the “‘hosts.equiv”’ file, or the host and remote user name

are found in the “.rhosts” file; otherwise ruserok’returns -1. Ii the superuser flag

is 1, the checking of the “‘host.equiv”’ file is bypassed.

SEE ALSO

rlogin(1C), rsh(1C), rexec(3X), rexecd(8C), rlogind(8C),

NOTE

There is no way to specify options to the socket call that rcmd makes.

3-430 Licensed materiai—property of copyright holder(s) 093-701056

realpath(3C) DG/UX 5.4 | realpath(3C)

NAME

realpath — returns the real file name

SYNOPSIS

#include <stdlib.h>

#include <sys/param.h>

char *«realpath (char + file_name, char * resolved_name) ;

DESCRIPTION

realpath resolves all links and references to “.” and “..” in file_name and stores it

in resolved_name.

It can handle both relative and absolute path names. For absolute path names and

the relative names whose resolved name cannot be expressed relatively (e.g.,

../../reldir), it returns the resolved absolute name. For the other relative path

names, it returns the resolved relative name.

resolved_name must be big enough (MAXPATHLEN) to contain the fully resolved path

name.

SEE ALSO

getcwd(3C).

DIAGNOSTICS

NOTES

093-701056

If there is no error, realpath returns a pointer to the resolved_name. Otherwise it

returns a null pointer and places the name of the offending file in resolved_name.

The global variable errno Is set to indicate the error.

realpath operates on null-terminated strings.

One should have execute permission on all the directories in the given and the

resolved path.

realpath may fail to return to the current directory if an error occurs.

Licensed material—property of copyright holder(s) 3-431

regemp(3G) DG/UX 5.4 regemp(3G)

NAME

regcmp, regex - compile and execute regular expression

SYNOPSIS

#include <libgen.h>

ce [flag ...] file ... -lgen [library ...]

char *regemp (const char *+stringl [, char «string2, ...],

(char +*)0);

char «regex (const char *re, const char «subject

{[, char *ret0O, ...]);

extern char *_ locl;

DESCRIPTION

Regcemp and Regex implement extended regular expressions, without support for

internationalization features. See regexpr(3C) as well.

regcmp compiles a regular expression (consisting of the concatenated arguments) and

returns a pointer to the compiled form. malloc(3C) is used to create space for the

compiled form. It is the user’s responsibility to free unneeded space so allocated. A

NULL return from regcmp indicates an incorrect argument.

regcmp(1) has been written to generally preclude the need for this routine at execu-
tion time. If regcmp(1) is used, the running of regcmp(1) and regex must occur

in the same locale (see setlocale(3C)).

regex executes a compiled pattern against the subject string. Additional arguments

are passed to receive values back. regex returns NULL on failure or a pointer to

the next unmatched character on success. A global character pointer __1loc1 points

to where the match began. regcemp and regex were mostly borrowed from the edi-

tor, ed(1); however, the syntax and semantics have been changed slightly. The fol-

lowing are the valid symbols and associated meanings.

[]*.~ | These symbols retain their meaning in ed(1).

$. Matches the end of the string; \n matches a newline.

- Within brackets the minus means through. For example, [a-z] is _

equivalent to [abcd. . .xyz]. The — can appear as itself only if used

as the first or last character. For example, the character class expression

(]-—] matches the characters] and -.

+ A regular expression followed by + means one or more times. For exam-

ple, [0-9]+ is equivalent to [0-9] [0-9] x.

{m} {m,} [(m,u}

Integer values enclosed in { } indicate the number of times the preceding

regular expression is to be applied. The value m is the minimum number

and u is a number, less than 256, which is the maximum. If only m is

present (i.e., {}), it indicates the exact number of times the regular

expression is to be applied. The value {m, } is analogous to

{m,infinity}. The plus (+) and star (*) operations are equivalent to

{1,} and [0,} respectively.

(...)$n

The value of the enclosed regular expression is to be returned. The value

will be stored in the (7+1)th argument following the subject argument. At

most, ten enclosed regular expressions are allowed. regex makes its

3-432 Licensed material—property of copyright holder(s) 093-701056

regemp(3G) DG/UX 5.4 regemp(3G)

assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., +, +, { }, can

work on a single character or a regular expression enclosed in

parentheses. For example, (a*(cbt+)+*)$0.

By necessity, all the above defined symbols are special. They must, therefore, be

escaped with a \ (backslash) to be used as themselves.

regcmp and regex do not support the following international features in regular

expressions that are described in ed(1):

[.ch.] multi-character collation symbol

[=c=] collation-order equivalence class

{:alpha:] character class

Moreover, character ranges such as [a-j] are interpreted by simply comparing the

numeric values of the character bytes, not by using collation ordering information.

EXAMPLES

The following example matches a leading newline in the subject string pointed at by

cursor.

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regemp("“\n", (char *)0)), cursor);

free(ptr); |

The following example matches through the string Testing3 and returns the address

of the character after the last matched character (the “4”). The string Testing3 is

copied to the character array ret0.

char ret0[9];

char *«newcursor, «name;

name = regcmp("([(A-Za-z] [A-za-z0-9][0,7})$0", (char *)0);

newcursor = regex(name, "012Testing345", ret0);

The following example applies a precompiled regular expression in file.i [see

regcmp(1)] against string.

#ineclude “file.i"

char *«string, *newcursor;

newcursor = regex(name, string);

SEE ALSO

regemp(1), malloc(3C).

ed(1) in the User’s Reference Manual.

NOTES

The user program may run out of memory if regcmp is called iteratively without free-

ing the vectors no longer required.

10%.7ni1nee Licensad material—nronertyv of coovriaht halderf(s) 3-433

regemp(3X) DG/UX 5.4 regemp(3X)

NAME

regemp, regex — compile and execute regular expression

SYNOPSIS

char *«regemp (stringl [, string2, ..., stringn], (char *)0)

char «stringl, *string2, ..., *stringn;

char *regex (re, subject[, ret0, ...]})

char *re, *subject, «ret0, ...;

extern char «_locl1;

DESCRIPTION .

regcmp and regex implement extended regular expressions, without support for

internationalization features. See regexpr(3C) as well.

regcmp compiles a regular expression and returns a pointer to the compiled form.

Malloc(3C) is used to create space for the vector. You must free unneeded space so

allocated. A NULL return from regemp indicates an incorrect argument.

Regcmp(1) has been written to generally preclude the need for this routine at execu-

tion time. If regcmp(1) is used, the running of regcmp(1) and regex must occur in

the same locale (see setlocale(3C)).

regex executes a compiled pattern against the subject string. Additional arguments

are passed to receive values back. regex returns NULL on failure or a pointer to

the next unmatched character on success. A global character pointer _Joc1 points to

where the match began. regcmp and regex were mostly borrowed from the editor,

ed(1); however, the syntax and semantics have been changed slightly. The following

are the valid symbols and their associated meanings.

[]*.~ | These symbols retain their current meaning.

$ Matches the end of the string; \n matches a new-line. The $ symbol

must be the last character of the last stringn argument given to

regcemp, or the $ symbol is taken as a literal ’$’ character (ie., it is given

no special meaning at all).

- Within brackets the minus means through. For example, [a-z] is

equivalent to [abed...xyz]. The — can appear as itself only if used

as the first or last character. For example, the character class expression

{]-] matches the characters]\f4and\fl-.

+ A regular expression followed by + means one or more times. For exam-

ple, [0-9]+ is equivalent to [0-9] [0-9] «x.

{m} {m,} {m,u} ,

_ Integer values enclosed in { } indicate the number of times the preceding

regular expression is to be applied. The value m is the minimum number

and u is a number, less than 256, which is the maximum. If only m is

present (e.g., {m}), it indicates the exact number of times the regular

- expression is to be applied. The value {m,} is analogous to {m, infinity}.

The plus (+) and star (*) operations are equivalent to {1,} and {0,}

respectively.

(...)$n

The value of the enclosed regular expression is returned. The value will

be stored in the (n+1)th argument following the subject argument. At

most ten enclosed regular expressions are allowed. regex makes its

3-434 Licensed material—property of copyright holder(s) 093-701056

regemp(3X) - DG/UX 8.4 regomp(3X)

assignments unconditionally.

(_...) Parentheses are used for grouping. An operator, e.g., *, +, {), can

work on a single character or a regular expression enclosed in

parentheses. For example, (a+(cb+)+)$0.

All of these symbols are special. They must, therefore, be escaped to be used as

themselves (except in the case of the $ symbol which is explained above).

regemp and regex do not support the following international features in regular

expressions that are described in ed(1): :

[.ch.] | - multi-character collation symbol

[=c=] _ collation-order equivalence class

[:alpha:] character class

Moreover, character ranges such as [a-j] are interpreted by simply comparing the

numeric values of the character bytes, not by using collation ordering information.

EXAMPLES

Example 1:

char «cursor, «newcursor, +ptr;

newcursor = regex((ptr = regemp("\n", 0)), cursor);

free(ptr); |

This example will match a leading new-line in the subject string that the cursor points

to.

Example 2:

char ret0(9];

char «newcursor, «name;

name = regemp("([A—Za-z]| A-za—z0-9_]{0,7})$0", 0);

newcursor = regex(name, "123Testing321", ret0);

This example matches through the string Testing3 and returns the address of the char-

acter after the last matched character (cursor+11). The string Testing3 is copied to

the character array retd.

Example 3:

char ret0(9];

char «newcursor, «name;

name = regemp("(at+)$0", "$", (char *) 0);

newcursor = regex(name, "aabcaaa”, ret0);

This is an example of how the $ symbol should be used to anchor regular expres-

sions. This example matches through the string ’aaa’ and returns the address of the

character after the last matched character. The string ’aaa’ is copied to the character

array ret0.

Example 4:

#include “file.i"

char xstring, *mewcursor;

newcursor = regex(name, string);

093-701056 Licensed material—propertv of coovriaht holderfe) 3-435

regemp(3X) DG/UX 5.4 régemp(3X)

This example applies a precompiled regular expression in file.i (see regemp(1))

against siving.

This routine is kept in /lib/l1ibPW. a.

SEE ALSO

regemp(3G), malloc(3C).

ed(1), regemp(1) in the User’s Reference for the DG/UX System

CAUTION

The user program may run out of memory if regcmp is called iteratively without free-

ing the vectors no longer required. _

This regemp in /1ib/libpw.a has been replaced by the one in /lib/libgen.a.

See regemp(3G).

3-436 Licensed material—property of copyright hoider(s) 093-701056

regexpr(3G) DG/UX 5.4 regexpr(3G)

NAME

regexpr: compile, step, advance — regular expression compile and match rou-

tines

SYNOPSIS

cc [flag ...] file -lgen [library ...]

#include <regexpr.h>

char *compile (const char *instring, char *sexpbuf, char xendbuf) ;

int step (const char *string, char *expbuf) ;

int advance (const char «string, char *expbuf);

char *regerr (int regerrno) ;

extern char *locl, +*loc2, «locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

DESCRIPTION

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions supported are "simple" internation-
alized regular expressions, such as those used in ed. For "extended" regular expres-

sions, see regcmp(3G).

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf)

The parameter instring is a null-terminated string representing the regular expression.

The parameter expbuf points to the place where the compiled regular expression is to

be placed. If expbuf is NULL, compile uses malloc to allocate the space for the

compiled regular expression. If an error occurs, this space is freed. It is the user’s

responsibility to free unneeded space after the compiled regular expression is no

longer needed.

The parameter endbuf is one more than the highest address where the compiled regu-
lar expression may be placed. This argument is ignored if expbuf is NULL. If the

compiled expression cannot fit in (endbuf—expbuf) bytes, compile returns NULL and

regerrno (see below) is set to 50. :

If compile succeeds, it returns a non-NULL pointer whose value depends on expbuf.

If expbuf is non-NULL, compile returns a pointer to the byte after the last byte in the

compiled regular expression. The length of the compiled regular expression is stored

_in reglength. Otherwise, compile returns a pointer to the space allocated by

malloc.

If an error is detected when compiling the regular expression, a NULL pointer is

returned from compile and regerrno is set to one of the non-zero error numbers

indicated below:

ERROR MEANING

11 Range endpoint too large.

093-701056 Licensed material—property of copyright holder(s) 3-437

regexpr(3G) | DG/UX 5.4 regexpr(3G)

16 Bad number.

25 ‘\ digit”’ out of range.

36 Illegal or missing delimiter.

41 No remembered search string.

42 \(~\) imbalance.

43 Too many \(.

44 More than 2 numbers given in \{ ~\}.

45 } expected after \.

46 First number exceeds second in \{ ~\}.

49 [] imbalance.

50 Regular expression overflow. .

200 Inside [{],a [.cc.] construct was used to

describe a two-character collation symbol which does

not exist in the current locale.

202 Unterminated [= =] or [. .] construct within []}.

203 Illegal use of multibyte character in [].

204 Unrecognized [:xxx:] classin [].

205 Both a multibyte character and a multicharacter col-

lation symbol included in a [] construct (the colla-

tion symbol may not be explicit).

regerror accepts as input a regerrno value, and returns a pointer to a statically-

allocated copy of a description of the error. This pointer is good only until the next

call to regerror.

The call to step is as follows:

step (string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a

match. This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the

function compile.

The function step returns non-zero if the given string matches the regular expres-

sion, and zero if the expressions do not match. If there is a match, two external

character pointers are set as a side effect to the call to step. The variable set in

step is loci. loci is a pointer to the first character that matched the regular

expression. The variable loc2 points to the character after the last character that

matches the regular expression. Thus if the regular expression matches the entire

line, loci points to the first character of string and loc2 points to the null at the

end of string. :

The purpose of step is to step through the stving argument until a match is found or

until the end of string is reached. If the regular expression begins with ~, step tries

to match the regular expression at the beginning of the string only.

The function advance has the same arguments and side effects as step, but it

always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, locs

should be set equal to loc2, and step should be called with string equal to loc2.

locs is used by commands like ed and sed so that global substitutions like

s/y*//g do not loop forever, and is NULL by default.

3-438 Licensed material—property of copyright holder(s) 093-701056

regexpr(3G) DG/UX 5.4 regexpr(3G)

The external variable nbra is used to determine the number of subexpressions in the

compiled regular expression. braslist and braelist are arrays of character

pointers that point to the start and end of the nbra subexpressions in the matched

string. For example, after calling step or advance with string sabcdefg and regu-

lar expression \(abcdef\), braslist[0] will point at a and braelist[0] will

point at g. These arrays are used by commands like ed and sed for substitute

replacement patterns that contain the \n notation for subexpressions.

Note that it isn’t necessary to use the external variables regerrno, nbra. locl,

loc2 locs, braelist, and braslist if one is only checking whether or not a

string matches a regular expression.

EXAMPLES

The following is similar to the regular expression code from grep:

#include <regexpr.h>

if (compile(sargv, (char *)0, (char *)0) == (char *)0)
regerr(regerrno) ;

if (step(linebuf, expbuf))

succeed();

SEE ALSO

regexpr(3G).

regexp(5).

ed(1), grep(1), sed(1) in the User’s Reference Manual.

093-701086 Licensed material—property of copyright hoider(s) 3-439

remove(SC) DG/UX 5.4 remove (SC)

NAME

remove — remove file

SYNOPSIS

#include <stdio.h>

int remove(const char *path);

DESCRIPTION

remove causes the file or empty directory whose name is the string pointed to by path
to be no longer accessible by that name. A subsequent attempt to open that file using

that name will fail, unless the file is created anew. Ifa file is removed while one or

more processes have the file open, the removal is postponed until all references to

the file are closed. |

For files, remove is identical to unlink. For directories, remove is identical to

rmdir.

See rmdir(2) and unlink(2) for a detailed list of failure conditions.

SEE ALSO

rmdir(2), unlink(2).

RETURN VALUE

Upon successful completion, remove returns a value of 0; otherwise, it returns a

value of -1 and sets errno to indicate an error.

3-440 Licensed material—property of copyright holder(s) 093-70T056

remque(3C) DG/UX 5.4 remque(3C)

NAME

remque — remove an element from a circular queue

SYNOPSIS

struct gelem {

struct qelem *q_forw;

struct qelem *q_back;

/* User data follows */

} *elem;

int remque() ;

remque (elem) ;

elem A pointer to the structure to remove from a linked list

DESCRIPTION

The remque function removes an element from a circular linked list; this function

comes from the University of California Berkeley UNIX (BSD) system.

The structures in the linked list must reserve the first two double words for use as the

forward and backward pointers. Since the linked list is a circular list, the initial ele-

ment must have forward and backward links to itself.

RETURNS

The remque function does not return a value.

SEE ALSO

insque(3C).

EXAMPLE

This program reads lines from standard input, creates a linked list, removes elements

from the list with remque, and prints the elements.

/* Program test for the remque() function */

#include <stdio.h>

#define LSIZE 256 /7* line size */

extern char *malloc();

extern int insque(), remque();

extern void free();

struct gelem {

struct gelem *q_forw; /* forward link */

struct gelem *q_back; /* backward link */

char buffer [LSIZE] ; /7* line buffer */

};

struct gelem head = {&head, &head}; /* head of queue */

struct gelem *p last = &head; /* last item */

struct gelem *p_line; /* ptr to walk list */

struct gelem *p_ next; /* next item in list */

main() {

093-701056 Licensed material—property of copyright holder(s) 3-441

remque(3C)

3-442

DG/UX 5.4 remque(3C)

for (;;) f
p_line = (struct qelem *)

malloc(sizeof(struct qelem));

if (p_line == (struct qelem *)0) {

printf ("Out of memory.\2");

exit(1);

}

if (!'fgets(p_line —> buffer, LSIZE, stdin))

break; /* End of file found */

(void) insque(p_line, p_last);

p_last = p_line;

}

free((char *)p_line);

/* Now walk list and print elements */

for (p_line = head.q_forw; p_line != &head;

p_line = p_next) [{

p_next = p_line -> q_forw;

(void) remque(p_ line);

fputs(p_line -> buffer, stdout) ;

free((char *)p_line);

}

return 0;

Licensed material—property of copyright holder(s) 093-701056

resolver(3C) DG/UX 5.4 resolver(3C)

NAME

resolver: res_mkquery, res_send, res_init, dn_comp, dn_expand - make,

send, and interpret packets to Internet domain name servers

SYNOPSIS

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

res _mkquery(op, dname, class, type, data, datalen, newrr, buf,

buflen)

int op;

char *dname;

int class, type;

char *data;

int datalen;

struct rrec *newrr;

char *buf;

int buflen;

res_send(msg, msglen, answer, anslen)

char *msg; |

int msglen;

char *answer;

int anslen;

res _init()

dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)

char *exp_dn, *comp_dn;

int length;

char **dnptrs, **lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)

char *msg, *eomorig, *comp_dn, exp dn;

int length;

DESCRIPTION

These routines are used for making, sending and interpreting packets to Internet

domain name servers. Global information that is used by the resolver routines is kept

in the variable _res. Most of the values have reasonable defaults and can be ignored.

Options stored in _res.options are defined in resolv.h and are as follows. Options

are a simple bit mask and are or’ed in to enable.

RES_INIT

True if the initial name server address and default domain name are initialized

(i.e., res_init has been called).

RES_DEBUG

Print debugging messages.

RES_AAONLY

Accept authoritative answers only. Res_send will continue until it finds an

authoritative answer or finds an error. Currently this is not implemented.

RES_USEVC

Use TCP connections for queries instead of UDP.

093-701056 Licensed material—property of copyright holder(s) 3-443

resolver(3C) DG/UX 5.4 resolver(3C)

FILES

RES_STAYOPEN

Used with RES_USEVC to keep the TCP connection open between queries.

This is useful only in programs that regularly do many queries. UDP should

be the normal mode used.

RES_IGNTC

Unused currently (ignore truncation errors, i.e., don’t retry with TCP).

RES_RECURSE

Set the recursion desired bit in queries. This is the default. (res_send does

not do iterative queries and expects the name server to handle recursion.)

RES_DEFNAMES

Append the default domain name to single label queries. This is the default.

Res_init

reads the initialization file to get the default domain name and the Internet address of

the initial hosts running the name server. If this line does not exist, the host running

the resolver is tried. Res_mkquery makes a standard query message and places it in

buf. Res_mkquery will return the size of the query or ~1 if the query is larger than

buflen. Op is usually QUERY but can be any of the query types defined in

nameser.h. Dname is the domain name. If dname consists of a single label and the

RES_DEFNAMES flag is enabled (the default), dname will be appended with the

current domain name. The current domain name is defined in a system file and can

be overridden by the environment variable LOCALDOMAIN. Newrr is currently

unused but is intended for making update messages.

Res_send sends a query to name servers and returns an answer. It will call

res_init if RES_INIT is not set, send the query to the local name server, and han-

dle timeouts and retries. The length of the message is returned or —1 if there were

errors.

Dn_expand expands the compressed domain name comp_dn to a full domain name.

Expanded names are converted to upper case. Msg is a pointer to the beginning of

the message, exp_dn is a pointer to a buffer of size length for the result. The size of

compressed name is returned or -1 if there was an error.

Dn_comp compresses the domain name exp_dn and stores it in comp_dn. The size of

the compressed name is returned or -1 if there were errors. length is the size of the

array pointed to by comp_dn. Dnptrs is a list of pointers to previously compressed

names in the current message. The first pointer points to to the beginning of the mes-

sage and the list ends with NULL. Jastdnptr is a pointer to the end of the array

pointed to dnptrs. A side effect is to update the list of pointers for labels inserted

into the message by dn_comp as the name is compressed. If dnprr is NULL, we

don’t try to compress names. If lastdnptr is NULL, we don’t update the list.

fetc/resolv.conf

SEE ALSO

named(1M), resolve.conf(5).

Licensed material—property of copyright holder(s) 093-701056

rexec(3X) DG/UX 8.4 rexec(3X)

NAME

rexec — return stream to a remote command

SYNOPSIS

rem = rexec(ahost, inport, user, passwd, cmd, fd2p);

char **ahost;

u_short inport;

char *user, *passwd, *cmd;

int *fd2p;

DESCRIPTION

rexec looks up the host *ahost using gethostbyname(3N), returning —1 if the host

does not exist. Otherwise *ahost is set to the standard name of the ‘host. If a user-

name and password are both specified, then these are used to authenticate to the

foreign host; otherwise the environment and then the user’s .netrc file in his home

directory are searched for appropriate information. If all this fails, the user is

prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the con-

nection; it will normally be the value returned from the call “getservbyname("exec”,

"tep")”? (see getservent(3N)). The protocol for connection is described in detail in

rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and

given to the remote command as stdin and stdout. If fd2p is non-zero, then a

auxiliary channel to a control process will be setup, and a descriptor for it will be

placed in *fd2p. The control process will return diagnostic output from the command

(unit 2) on this channel, and will also accept bytes on this channel as being DG/UX

system signal numbers, to be forwarded to the process group of the command. If

fd2p is 0, then the stderr (unit 2 of the remote command) will be made the same as

the stdout and no provision is made for sending arbitrary signals to the remote pro-

cess, although you may be able to get its attention by using out-of-band data.

SEE ALSO

BUGS

093-701056

rexecd(1M), remd(3X).

There is no way to specify options to the socket call that rexec makes.

Licensed material—property of copyright holder(s) 3-445

rindex(3C) DG/UX 5.4 rindex(3C)

NAME

rindex — search for the last occurrence of a character in a string

SYNOPSIS

#include <string.h>

char *search, c, *rindex(), *result;

result = rindex(search, Cc);

where:

search The string to inspect

Cc The character you want to match

DESCRIPTION

Use the rindex function to find the last occurrence of a specified character in a

string. This function is the same as the strrchr function.

The include file string.h defines this function.

EXAMPLE

/* Program test for the rindex() function */

#include <string.h>

#include <stdio.h>

#define MAX 80

char c, string(MAX], *rindex();

int result, i= 1;

main(arge, argv)

int arge;

char *argv[];

{

printf("Character template?\n") ;

scanf("%c", &¢);

while (i < argc) {

sprintf(string, "ts", argv[i]);

if ((result = strrchr(string, ¢c)) == NULL)

printf("Character '%c’ does not occur in \n\t’%s’\n",

c, string); |

else .

printf("Last occurrence of ’%c’ in\n\t’%s’\nat %o.\n",

c, string, result);

it+;

}

A call to the program test with the strings element, digital, and execute generates the
output

Character template?

e

Last occurrence of ’e’ in

3-446 Licensed material-—property of copyright holder(s) 093-701056

rindex(3C) DG/UX 5.4 rindex(3C)

‘element’

at 34000023362.

Character ’e’ does not occur in

‘digital’

Last occurrence of ’e’ in

execute’

at 34000023364.

(The locations will vary with execution.)

RETURNS

The rindex function returns NULL if the character does not occur in the string.

Otherwise it returns a pointer to the last occurrence of the character.

SEE ALSO

index(3C), memchr(3C), strchr(3C), strrcehr(3C).

093-701056 Licensed material—property of copyright holder(s) 3-447

rpe(3N)

NAME

DG/UX 5.4 rpe(3N)

auth_destroy, authnone_create, authdes_create, authdes_getucred,

authunix_create, authunix_create_default, callrpc, clnt_broadcast,

clnt_call, clnt_destroy, clnt_create, clnt_control, clnt_freeres,

clnt_geterr, clnt_pcreateerror, clnt_perrno, clnt_perror,

clnt_spcreateerror, clnt_sperrno, clnt_sperror, clntraw_create,

clnttcp_create, clntudp_create, host2netname, key _decryptsession,

key_encryptsession, key_gendes, key_setsecret, get_myaddress, get-

netname, netname2host, netname2user, pmap_getmaps, pmap_getport,

pmap_rmtcall, pmap_set, pmap_unset, registerrpc, svc_destroy,

svce_freeargs, svc_getargs, svc_getcaller, svc_getreqset,

sve_getreq, svc_register, svc_run, svc_sendreply, svc_unregister,

svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,

svcerr_progvers, svcerr_systemerr, svcerr_weakauth, svcraw_create,

svctcp_ create, svcfd_ create, svcudp create, user2netnanme,

xdr_accepted_reply, xdr_authunix_parms, xdr_callhdr, xdr_callmsg,

xdr_opaque_auth, xdr_pmap, xdr_pmaplist, xdr_rejected_reply,

xdr_replymsg, xprt_register, xprt_unregister -— library routines for remote

procedure calls

SYNOPSIS AND DESCRIPTION

3-448

These routines let C programs make procedure calls on other machines across the

network. First, the client calls a procedure to send a data packet to the server.

Upon receipt of the packet, the server calls a dispatch routine to perform the

requested service, and then sends back a reply. Finally, the procedure call returns to

the client.

#include <rpc/rpc.h>

void

auth_destroy(auth)

AUTH *aquth;

A macro that destroys the authentication information associated with auth.

Destruction usually involves deallocation of private data structures. The use

of auth is undefined after calling auth_destroy().

AUTH *

authnone_create()

Create and returns an RPC authentication handle that passes nonusable

authentication information with each remote procedure call. This is the

Licensed material—property of copyright holder(s) 093-701056

rpc(SN)

093-701056

DG/UX 6.4 rpe(3N)

default authentication used by RPC.

AUTH *

authdes create(name, window, syncaddr, ckey)

char *name;

unsigned window;

struct sockaddr *syncaddr;

des_block *ckey;

NOTE: Secure RPC using DES Authentication is an additional feature that must be

purchased separately from the DG/UXTM ONCTM/NFS@® product.

authdes _ create() 1s the first of two routines which interface to the RPC

secure authentication system, known as DES authentication. The second is

authdes_getucred(), below. Note: the keyserver daemon keyserv(8)

must be running for the DES authentication system to work.

authdes create(), used on the client side, returns an authentication han-

dle that will enable the use of the secure authentication system. The first

parameter name is the network name, or netname, of the owner of the server

process. This field usually represents a hostname derived from the utility rou-

tine host 2netname, but could also represent a user name using

user2netname. The second field is window on the validity of the client

credential, given in seconds. A small window is more secure than a large

one, but choosing too small of a window will increase the frequency of resyn-

chronizations because of clock drift. The third parameter syncaddr is

optional. If it is NULL, then the authentication system will assume that the

local clock is always in sync with the server’s clock, and will not attempt

resynchronizations. If an address is supplied, however, then the system will

use the address for consulting the remote time service whenever resynchroni-

zation is required. This parameter is usually the address of the RPC server

itself. The final parameter ckey is also optional. If it is NULL, then the

authentication system will generate a random DES key to be used for the

encryption of credentials. If it is supplied, however, then it will be used

instead.

authdes_getucred(adc, uid, gid, grouplen, groups)

struct authdes_cred *adc;

short *uid;

short *gid;

short *grouplen;

int *groups;

authdes_getucred(), the second of the two DES authentication routines,

is used on the server side for converting a DES credential, which is operating

system independent, into a UNIX credential. This routine differs from utility

routine netname2user in that authdes_getucred_() pulls its information

from a cache, and does not have to do a Network Information Services (NIS)

lookup everytime it is called to get its information.

Licensed materiai—property of copyright holder(s) 3-449

rpc(3N)

3-450

DG/UX 5.4 rpc(3N)

AUTH *

authunix_create(host, uid, gid, len, aup_gids)

char *host;

int uid, gid, len, *aup.gids;

Create and return an RPC authentication handle that contains UNIX authenti-

cation information. The parameter host is the name of the machine on which

the information was created; uid is the user’s user ID ; gid is the user’s

current group ID ; len and aup_gids refer to a counted array of groups to

which the user belongs. It is easy to impersonate a user.

AUTH *

authunix_create_default()

Calls authunix_create() with the appropriate parameters.

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)

char *host;

u_long prognum, versnum, procnum;

char *in, *out;

xdrproc_t inproc, outproc;

Call the remote procedure associated with prognum, versnum, and procnum

on the machine, host. The parameter in is the address of the procedure’s

argument(s), and out is the address of where to place the result(s); inproc is

used to encode the procedure’s parameters, and outproc is used to decode the

procedure’s results. This routine returns zero if it succeeds, or the value of

enum clnt_stat cast to an integer if it fails. The routine clnt_perrno()

is handy for translating failure statuses into messages.

Warning: calling remote procedures with this routine uses UDP/IP as a tran-
sport; see clntudp_create() for restrictions. You do not have control of

timeouts or authentication using this routine.

enum clnt_stat

clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc,

“out, eachresult)

u_long prognum, versnum, procnum;

char *in, *out;

xdrproc_t inproc, outproc;

resultproc_t eachresult;

Like callrpc(), except the call message is broadcast to all locally con-

nected broadcast nets. Each time it receives a response, this routine calls

eachresult(), whose form is:

eachresult(out, addr)

char *out;

struct sockaddr_in *addr;

where out is the same as out passed to clnt_broadcast(), except that the

remote procedure’s output is decoded there; addr points to the address of the

machine that sent the results. If eachresult() returns zero,

clnt_broadcast() waits for more replies; otherwise it returns with

appropriate status.

Licensed material—property of copyright holder(s) 093-701056

rpc(SN)

093-701056

DG/UX 5.4 rpc(3N)

Warning: broadcast sockets are limited in size to the maximum transfer unit

of the data link. For ethernet, this value is 1500 bytes.

enum clnt_stat

eclnt_call(clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *clnt;

u_long

procnun;

xdrproc_t inproc, outproc;

char *in, *out;

struct timeval tout;

A macro that calls the remote procedure procnum associated with the client

handle, clint, which is obtained with an RPC client creation routine such as

clnt_create(). The parameter in is the address of the procedure’s

argument(s), and out is the address of where to place the result(s); inproc is

used to encode the procedure’s parameters, and outproc is used to decode the

procedure’s results; tout is the time allowed for results to come back.

clnt_destroy(clnt)

CLIENT *clnt;

A macro that destroys the client’s RPC handle. Destruction usually involves

deallocation of private data structures, including cint itself. Use of clint is

undefined after calling clnt_destroy(). If the RPC library opened the

associated socket, it will close it also. Otherwise, the socket remains open.

CLIENT *

clnt_create(host, prog, vers, proto)

char *host; °

u_long prog, vers;

char *proto;

Generic client creation routine. host identifies the name of the remote host

where the server is located. proto indicates which kind of transport protocol

to use. The currently supported values for this field are udp and tcp. Default

timeouts are set, but can be modified using clnt_control().

Warning: Using UDP has its shortcomings. Since UDP-based RPC messages

can only hold up to 8 Kbytes of encoded data, this transport cannot be used

for procedures that take large arguments or return huge results.

bool t

clnt_control(cl, req, info)

CLIENT *cl;

Char *info;

A macro used to change or retrieve various information about a client object.

req indicates the type of operation, and info is a pointer to the information.

For both UDP and TCP, the supported values of req and their argument types

and what they do are:

CLSET_TIMEOUT ‘Struct

timeval set

total

timeout

CLGET_TIMEOUT struct

Licensed material—property of copyright holder(s) 3-451

rpc(3N)

3-452

DG/UX 5.4 . rpc(3N)

timeval get

total

timeout

Note: if you set the timeout using clnt_control(), the timeout parameter

passed to clnt_call() will be ignored in all future calls.

CLGET_SERVER_ADDR struct

sockaddr get

server’s

address

The following operations are valid for UDP only:

CLSET_RETRY_TIMEOUT struct

timeval set

the

retry

timeout

CLGET_RETRY_TIMEOUT struct

timeval get

the

retry

timeout

The retry timeout is the time that UDP RPC waits for the server to reply

before retransmitting the request.

clnt_freeres(clnt, outproc, out)

CLIENT *clnt;

xdrproc_t outproc;

char *out;

A macro that frees any data allocated by the RPC/XDR system when it

decoded the results of an RPC call. The parameter out is the address of the

results, and outproc is the XDR routine describing the results. This routine

returns one if the results were successfully freed, and zero otherwise.

void

clnt_geterr(clnt, errp)

CLIENT *clnt;

struct rpc_err *errp;

A macro that copies the error structure out of the client handle to the struc-

ture at address errp.

void

clnt_pcreateerror(s)

char *s;

Print a message to standard error indicating why a client RPC handle could

not be created. The message is prepended with string s and a colon. Used

when a clnt_create(), clntraw_create(), clnttcp create(), or

clntudp_create() call fails.

Licensed material—property of copyright holder(s) 093-701056

rpc(3N) DG/UX 5.4 rpe(3N)

void

clnt_perrno(stat)

enum clnt_ stat stat;

Print a message to standard error corresponding to the condition indicated by

stat. Used after callrpc().

elnt_perror(clnt, s)
CLIENT *clnt;

char *s;

Print a message to standard error indicating why an RPC call failed; cint is the

handle used to do the call. The message is prepended with string s and a

colon. Used after clnt_call().

char *

clnt_spcreateerror

char *s;

Like clnt_pcreateerror(), except that it returns a string instead of print-

ing to the standard error.

Bugs: returns pointer to static data that is overwritten on each call.

char *

clnt_sperrno(stat)

enum clnt_stat stat;

Take the same arguments as clnt_perrno(), but instead of sending a mes-

sage to the standard error indicating why an RPC call failed, return a pointer

to a string which contains the message. The string ends with a NEWLINE.

clnt_sperrno() is used instead of clnt_perrno() if the program does

not have a standard error (as a program running as a server quite likely does

not), or if the programmer does not want the message to be output with

printf, or if a message format different than that supported by

clnt_perrno() is to be used. Note: unlike clnt_sperror() and

clnt_spcreaterror(), clnt_sperrno() does not return pointer to

static data so the result will not get overwritten on each call.

char *

clnt_sperror(rpch, s)

CLIENT *rpch;

char *s;

Like clnt_perror(), except that (like clnt_sperrno()) it returns a

string instead of printing to standard error.

Bugs: returns pointer to static data that is overwritten on each call.

Na2_T7AINKe § lene mal don wl «tt ins md Es Hm nM ce Be eh 2 ARR

rpc(SN)

3-454

DG/UX 5.4 rpc(SN)

CLIENT *

clantraw_create(prognum, versnum)

u_long prognum, versnum;

This routine creates a toy RPC client for the remote program prognum., ver-

sion versnum. The transport used to pass messages to the service is actually a

buffer within the process’s address space, so the corresponding RPC server

should live in the same address space; see svcraw_create(). This allows

simulation of RPC and acquisition of RPC overheads, such as round trip

times, without any kernel interference. This routine returns NULL if it fails.

CLIENT *

clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)

struct sockaddr_in *addr;

u_long prognum, versnum;

int *sockp;

u_int sendsz, recvsz;

This routine creates an RPC client for the remote program prognum, version

versnum ; the client uses TCP/IP as a transport. The remote program is located

at Internet address *addr. If addr->sin_port is zero, then it is set to the

actual port that the remote program is listening on (the remote portmap ser-

vice is consulted for this information). The parameter sockp is a socket; if it

is RPC_ANYSOCK, then this routine opens a new one and sets sockp. Since

TCP-based RPC uses buffered I/O , the user may specify the size of the send

and receive buffers with the parameters sendsz and recvsz; values of zero

choose suitable defaults. This routine returns NULL if it fails.

CLIENT *

clntudp_create(addr, pronum, versnum, wait, sockp)

struct sockaddr_in *addr;

u_long prognum, versnumn;

struct timeval wait;

int *sockp;

This routine creates an RPC client for the remote program prognum, version

versnum ; the client uses use UDP/IP as a transport. The remote program is

located at Internet address addr. If addr->sin_port is zero, then it is set

to actual port that the remote program is listening on (the remote portmap

service is consulted for this information). The parameter sockp is a socket; if

it is RPC_ANYSOCcK, then this routine opens a new one and sets sockp. The

UDP transport resends the call message in intervals of wait time until a

response is received or until the call times out. The total time for the call to

time out is specified by clnt_call().

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of

encoded data, this transport cannot be used for procedures that take large

arguments or return huge results.

Licensed material—property of copyright holder(s) 093-701056

rpc(3N) DG/UX 5.4 rpe(SN)

host2netname(name, host, domain)

char *name;

char *host;

char *domain;

Convert from a domain-specific hostname to an operating-system independent

netname. Return TRUE if it succeeds and FALSE if it fails. Inverse of

netname2host().

key_decryptsession(remotename, deskey)

char *remotename;

des_block *deskey;

key_decryptsession() is an interface to the keyserver daemon, which is

associated with RPC’s secure authentication system (DES authentication).

User programs rarely need to call it, or its associated routines

key_encryptsession(), key_gendes() and key_setsecret(). Sys-

tem commands such as login and the RPC library are the main clients of

these four routines.

key_decryptsession() takes a server netname and a des key, and

decrypts the key by using the the public key of the the server and the secret

key associated with the effective uid of the calling process. It is the inverse of

key_encryptsession().

key _encryptsession(remotename, deskey)

char *remotename;

des_block *deskey;

key_encryptsession() is a keyserver interface routine. It takes a server

netname and a des key, and encrypts it using the public key of the the server

and the secret key associated with the effective uid of the calling process. It

is the inverse of key_decryptsession().

key_gendes(deskey)

des_ block *deskey;

key_gendes() is a keyserver interface routine. It is used to ask the

keyserver for a secure conversation key. Choosing one at random is usually

not good enough, because the common ways of choosing random numbers,

such as using the current time, are very easy to guess.

key_setsecret (key)

char *key;

key_setsecret() is a keyserver interface routine. It is used to set the key
for the effective uid of the calling process.

void

get_myaddress (addr)

struct sockaddr_in *addr;

Stuff the machine’s IP address into *addr, without consulting the library rou-

tines that deal with /etc/hosts. The port number is always set to

htons (PMAPPORT).

093-701056 Licensed materiali—property of copyright holder(s) 3-455

rpe(3N) DG/UX 5.4 rpc(SN)

getnetname(name)

char name [MAXNETNAMELEN] ;

getnetname() installs the unique, operating-system independent netname of

the caller in the fixed-length array name. Returns TRUE if it succeeds and

FALSE if it fails.

netname2host(name, host, hostlen)

char *name;

char *host;

int hostlen;

Convert from an operating-system independent netname to a domain-specific
hostname. Returns TRUE if it succeeds and FALSE if it fails. Inverse of

host2netname().

netname2user(name, uidp, gidp, gidlenp, gidlist)

char *name;

int *uidp;

int *gidp;

int *gidlenp;

int *gidlist;

Convert from an operating-system independent netname to a domain-specific

user ID. Returns TRUE if it succeeds and FALSE if it fails. Inverse of

user2netname().

struct pmaplist *

pmap_getmaps(addr)

struct sockaddr_in *addr;

A user interface to the portmap service, which returns a list of the current

RPC program-to-port mappings on the host located at IP address *addr. This

routine can return NULL. The command ‘rpcinfo —p’ uses this routine.

u_short

pmap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;

u_long prognum, versnum, protocol;

A user interface to the portmap service, which returns the port number on

which waits a service that supports program number prognum., version vers-

num, and speaks the transport protocol associated with protocol. The value

of protocol is most likely IPPROTO_UDP or IPpPpRoTo_tcP. A return value of

zero means that the mapping does not exist or that the RPC system failured to

contact the remote portmap service. In the latter case, the global variable

rpc_createerr() contains the RPC status.

3-456 Licensed material—property of copyright holder(s) 093-701056

rpc(3N) DG/UX 5.4 rpc(3N)

enum clnt_stat

pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc,

out, tout, portp)

struct sockaddr_in *addr;

u_long prognum, versnum, procnun;

char *in, *out;

xdrproc_t inproc, outproc;

struct timeval tout;

u_long *portp;

A user interface to the portmap service, which instructs portmap on the

host at IP address *addr to make an RPC call on your behalf to a procedure

on that host. The parameter *portp will be modified to the program’s port

number if the procedure succeeds. The definitions of other parameters are

discussed in callrpe() and clnt_cail(). This procedure should be

used for a ping and nothing else. See also clnt_broadcast().

pmap_set(prognum, versnum, protocol, port)

u_long prognum, versnum, protocol;

u_short port;

A user interface to the portmap service, which establishes a mapping

between the triple [prognum ,versnum ,protocol] and port on the machine’s

portmap service. The value of protocol is most likely IPPROTO_UDP or

IPPROTO_TCP. This routine returns one if it succeeds, zero otherwise.

Automatically done by svc_register().

pmap_unset(prognum, versnum)

u_long prognum, versnun;

A user interface to the portmap service, which destroys all mapping between

the triple [prognum ,versnum ,*] and ports on the machine’s portmap ser-

vice. This routine returns one if it succeeds, zero otherwise.

registerrpce(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnun;

char *(*procname) () ;

xdrproc _t inproc,. outproc;

Register procedure procname with the RPC service package. If a request

arrives for program prognum, version versnum, and procedure procnum,

procname is called with a pointer to its parameter(s); progname should return

a pointer to its static result(s); inproc is used to decode the parameters while

outproc is used to encode the results. This routine returns zero if the registra-

tion succeeded, —1 otherwise.

Warning: remote procedures registered in this form are accessed using the

UDP/IP transport; see svcudp_create() for restrictions.

struct rpc _createerr rpce_createerr;

A global variable whose value is set by any RPC client creation routine that

does not succeed. Use the routine clnt_pcreateerror() to print the rea-

Fy AFF

rpc(3N)

3-458

DG/UX 5.4 rpc(3N)

son why.

svc_destroy(xprt)

SVCXPRT *xprt;

A macro that destroys the RPC service transport handle, xprt. Destruction

usually involves deallocation of private data structures, including xprt itself.

Use of xprt is undefined after calling this routine.

fd_set sve_f dset;

A global variable reflecting the RPC service side’s read file descriptor bit

mask; it is suitable as a parameter to the select system call. This is only of

interest if a service implementor does not call svc_run(), but rather does

his own asynchronous event processing. This variable is read-only (do not

pass its address to select!), yet it may change after calls to

sve_getreqset() or any creation routines.

int svc_fds;

Similar to svc_fedset(), but limited to 32 descriptors. This interface is

obsoleted by svc_fdset().

svc_freeargs(xprt, inproc, in)

SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

A macro that frees any data allocated by the RPC/XDR system when it

decoded the arguments to a service procedure using svc_getargs(). This

routine returns 1 if the results were successfully freed, and zero otherwise.

Svc_getargs(xprt, inproc, in)

SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

A macro that decodes the arguments of an RPC request associated with the

. RPC service transport handle, xprt. The parameter in is the address where

the arguments will be placed; inproc is the XDR routine used to decode the

arguments. This routine returns one if decoding succeeds, and zero other-

wise. |

struct sockaddr_in *

svc_getcaller(xprt)

SVCXPRT *xprt;

The approved way of getting the network address of the caller of a procedure

associated with the RPC service transport handle, xprt.

svc_getreqset (rdfds)

fd_set *rdfds;

This routine is only of interest if a service implementor does not call

svc _run(), but instead implements custom asynchronous event processing.

It is called when the select system call has determined that an RPC request

has arrived on some RPC socket(s) ; rdfds is the resultant read file descriptor

bit mask. The routine returns when all sockets associated with the value of

rdfds have been serviced.

Licensed material—property of copyright holder(s) 093-701056

rpe(SN)

093-701056

DG/UX 5.4 __ rpe(3N)

svc_getreq(rdfds)

int rdfds;

Similar to svc_getreqset(), but limited to 32 descriptors. This interface is

obsoleted by svc_getreqset().

svc_register(xprt, prognum, versnum, dispatch, protocol)

SVCXPRT *xprt;

u_long prognum, versnun;

void (*dispatch) ();

u_long protocol;

Associates prognum and versnum with the service dispatch procedure,

dispatch. If protocol is zero, the service is not registered with the portmap

service. If protocol is non-zero, then a mapping of the triple

[prognum ,versnum ,protocol] to xprt-—>xp_port is established with the local

portmap service (generally protocol is zero, IPPROTO_UDP or IPPROTO_TCP

). The procedure dispatch has the following form:

dispatch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The svc_register() routine returns one if it succeeds, and zero other-

wise.

svc_run()

This routine never returns. It waits for RPC requests to arrive, and calls the

appropriate service procedure using svc_getreq() when one arrives. This

procedure is usually waiting for a select() system call to return.

svc_sendreply(xprt, outproc, out)

SVCXPRT *xprt;

xdrproc_t outproc;

char *out;

Called by an RPC service’s dispatch routine to send the results of a remote

procedure call. The parameter xprt is the request’s associated transport han-

dle; outproc is the XDR routine which is used to encode the results; and out is

the address of the results. This routine returns one if it succeeds, zero other-

wise.

void

svc_unregister(prognum, versnum)

u_long prognum, versnun;

Remove all mapping of the double [prognum ,versnum] to dispatch routines,

and of the triple [prognum ,versnum ,*| to port number.

void

- sveerr_auth(xprt, why)

SVCXPRT *xprt;

enum auth_stat why;

Called by a service dispatch routine that refuses to perform a remote pro-

cedure call due to an authentication error.

Licensed material—property of copyright holder(s) 3-459

rpc(3N) DG/UX 5.4 rpc(SN)

void

svcerr_decode(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that cannot successfully decode its

parameters. See also svc_getargs().

void —
svcerr_noproc(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

void

svcerr_noprog(xprt)

SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package. Ser-

vice implementors usually do not need this routine.

void

svcerr_progvers(xprt)

SVCXPRT *xprt;

Called when the desired version of a program is not registered with the RPC

package. Service implementors usually do not need this routine.

void

svcerr_systemerr(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not

covered by any particular protocol. For example, if a service can no longer ©

allocate storage, it may call this routine.

void

svcerr_weakauth(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that refuses to perform a remote pro-

cedure call due to insufficient (but correct) authentication parameters. The

routine calls svcerr_auth(xprt, AUTH_TOOWBAK).

SVCXPRT *

svcraw_create()

This routine creates a toy RPC service transport, to which it returns a pointer.

The transport is really a buffer within the process’s address space, so the

corresponding RPC client should live in the same address space; see

clntraw_create(). This routine allows simulation of RPC and acquisition

of RPC overheads (such as round trip times), without any kernel interference.

This routine returns NULL if it fails.

3-460 Licensed materialt—property of copyright holder(s) 093-701056

rpc(SN) DG/UX 5.4 ~ rpe(3N)

SVCXPRT *

svctcp_create(sock, send_buf_size, recv_buf_ size)

int sock;

u_int send _buf_size, recv_buf_size;

This routine creates a TCP/IP-based RPC service transport, to which it returns

a pointer. The transport is associated with the socket sock, which may be

RPC_ANYSOCK, in which case a new socket is created. If the socket is not

bound to a local TCP port, then this routine binds it to an arbitrary port.

Upon completion, xprt->xp_sock is the transport’s socket descriptor, nd

xprt->xp_port is the transport’s port number. This routine returns NULL

if it fails. Since TCP-based RPC uses buffered I/O , users may specify the size .

of buffers; values of zero choose suitable defaults.

void

svcfd_create(fd, sendsize, recvsize)

int fd;

u_int sendsize;

u_int recvsize;

Create a service on top of any open desciptor. Typically, this descriptor is a

connected socket for a stream protocol such as TCP. sendsize and recvsize

indicate sizes for the send and receive buffers. If they are zero, a reasonable

default is chosen.

SVCXPRT * |

svcudp_create(sock)

int sock;

This routine creates a UDP/IP-based RPC service transport, to which it returns

a pointer. The transport is associated with the socket sock, which may be

RPC_ANYSOCK , in which case a new socket is created. If the socket is not

bound to a local UDP port, then this routine binds it to an arbitrary port.

Upon completion, xprt—>xp_sock is the transport’s socket descriptor, and

xprt—>xp_port is the transport’s port number. This routine returns NULL

if it fails.

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of

encoded data, this transport cannot be used for procedures that take large

arguments or return huge results.

user2netname(name, uid, domain)

char *name;

int uid;

char *domain;

Convert from a domain-specific username to an operating-system independent

netname. Returns TRUE if it succeeds and FALSE if it fails. Inverse of

netname2user().

093-701056 Licensed material—property of copyright holder(s) 3-46 1

rpc(3N) DG/UX 5.4 rpe(3N)

xdr_accepted_reply(xdrs, ar)

XDR *xdrs;

struct accepted reply *ar;

_ Used for encoding RPC reply messages. This routine is useful for users who

wish to generate RPC-style messages without using the RPC package.

xdr_authunix_parms(xdrs, aupp)

XDR *xdrs;

struct authunix_parms *aupp;

Used for describing UNIX credentials. This routine is useful for users who

wish to generate these credentials without using the RPC authentication pack-

age. |

void

xdr_callhdr(xdrs, chdr)

XDR *xdrs;

struct rpe_msg *chdr;

Used for describing RPC call header messages. This routine is useful for

users who wish to generate RPC-style messages without using the RPC pack-

age.

xdr_callmsg(xdrs, msg)

XDR *xdrs;

struct rpc_msg *cmsg;

Used for describing RPC call messages. This routine is useful for users who

wish to generate RPC-style messages without using the RPC package.

xdr_opaque_auth(xdrs, ap)

XDR *xdrs;

struct opaque_auth *ap;

Used for describing RPC authentication information messages. This routine is

useful for users who wish to generate RPC-style messages without using the

RPC package.

xdr_pmap(xdrs, regs)

XDR *xdrs;

struct pmap *regs;

Used for describing parameters to various portmap procedures, externally.

This routine is useful for users who wish to generate these parameters without

using the pmap interface.

xdr_pmaplist(xdrs, rp)

XDR *xdrs;

struct pmaplist **rp;

Used for describing a list of port mappings, externally. This routine is useful

for users who wish to generate these parameters without using the pmap inter-

face.

3-462 | Licensed material—property of copyright holder(s) 093-701056

rpc(3N) DG/UX &.4 rpe(3N)

xdr_rejected_reply(xdrs, rr)

XDR *xdrs;

struct rejected_reply *rr;

Used for describing RPC reply messages. This routine is useful for users who

wish to generate RPC-style messages without using the RPC package.

xdr_replymsg(xdrs, rmsg)

XDR *xdrs;

struct rpe_msg *rmsg;

Used for describing RPC reply messages. This routine is useful for users who

wish to generate RPC style messages without using the RPC package.

void

xprt_register(xprt)

SVCXPRT *xprt;

After RPC service transport handles are created, they should register them-

selves with the RPC service package. This routine modifies the global variable

svc_fds(). Service implementors usually do not need this routine.

void

xprt_unregister(xprt)

SVCXPRT *xprt;

Before an RPC service transport handle is destroyed, it should unregister itself

with the RPC service package. This routine modifies the global variable

svc_fds(). Service implementors usually do not need this routine.

SEE ALSO

093-701056

xdr(3N), keyserv(8).

Licensed material—property of copyright holder(s) 3-463

rtime(SN) - DG/UX 5.4 rtime (3N)

NAME

rtime — get remote time

SYNOPSIS

#include <sys/types.h>

#include <sys/time.h>

#include <netinet/in.h>

int rtime(addrp, timep, timeout)

struct sockaddr_in saddrp;

struct timeval sfimep;

struct timeval «timeout;

DESCRIPTION

The rtime function consults the Internet Time Server at the address pointed to by

addrp and returns the remote time in the timeval struct pointed to by timep. Nor-

mally, the UDP protocol is used when consulting the Time Server. The timeout

parameter specifies how long the routine should wait before giving up when waiting

for a reply. If timeout is specified as NULL, however, the routine will instead use

TCP and block until a reply is received from the time server.

The routine returns 0 if it is successful. Otherwise, it returns -1 and errno is set to

reflect the cause of the error.

SEE ALSO

gettimeofday(2), ftime(3C).

3-464 Licensed material—property of copyright holder(s) 093-701056

scandir(3C) DG/UX 5.4 scandir(3C)

NAME

scandir, alphasort — scan a directory |

SYNOPSIS |

#include <sys/dir.h>

scandir(dirname, namelist, select, compar)

char *dirname;

struct direct *(*namelist[]);

int (*select)();

int (*compar)();

_alphasort(d1, d2)

struct direct **d1, **d2;

DESCRIPTION

scandir reads the directory dirname and builds an array of pointers to directory

entries using malloc(3C). It returns the number of entries in the array and a pointer

to the array through namelist.

The select parameter is a pointer to a user supplied subroutine which is called by

scandir to select which entries are to be included in the array. The select routine is

passed a pointer to a directory entry and should return a non-zero value if the direc-

tory entry is to be included in the array. If select is null, then all the directory entries

will be included. |

The compar parameter is a pointer to a user supplied subroutine which is passed to

qsort(3C) to sort the completed array. If this pointer is null, the array is not sorted.

Alphasort is a routine which can be used for the compar parameter to sort the array

alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3C))

by freeing each pointer in the array and the array itself.

DIAGNOSTICS

Returns —1 if the directory cannot be opened for reading or if malloc(3C) cannot

allocate enough memory to hold all the data structures.

SEE ALSO

directory(3C), malloc(3C), qsort(3C), dir(5)

093-701056 Licensed material—property of copyright holder(s) 3-465

scanf(3S) DG/UX 5.4 — scanf(3S)

NAME

scanf, fscanf, sscanf — convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf(const char «format, ...);

int fscanf(FILE *strm, const char *format, ...);

int sscanf(const char *«s, const char «format, ...);

DESCRIPTION

scanf reads from the standard input stream, stdin.

fscanf reads from the stream strm.

sscanf reads from the character string s.

Each function reads characters, interprets them according to a format, and stores the

results in its arguments. Each expects, as arguments, a control string, format,

described below and a set of pointer arguments indicating where the converted input

should be stored. If there are insufficient arguments for the format, the behavior is

undefined. If the format is exhausted while arguments remain, the excess arguments

are simply ignored.

The control string usually contains conversion specifications, which are used to direct

interpretation of input sequences. The control string may contain: |

1. White-space characters (blanks, tabs, new-lines, or form-feeds) that, except

in two cases described below, cause input to be read up to the next non-

white-space character.

2. An ordinary character (not %) that must match the next character of the

input stream.

3. Conversion specifications consisting of the character % or the character

sequence %digits$, an optional assignment suppression character «, a

decimal digit string that specifies an optional numerical maximum field

width, an optional letter 1 (ell), L, or h indicating the size of the receiving

object, and a conversion code. The conversion specifiers d, i, and n

should be preceded by h if the corresponding argument is a pointer to

short int rather than a pointer to int, or by 1 if it is a pointer to long

int. Similarly, the conversion specifiers o, u, and x should be preceded

by h if the corresponding argument is a pointer to. unsigned short int

rather than a pointer to unsigned int, or by 1 if it is a pointer to

unsigned long int. Finally, the conversion specifiers e, f£, and g

should be preceded by 1 if the corresponding argument is a pointer to

double rather than a pointer to float, or by L if it is a pointer to long

double. The h, 1, or L modifier is ignored with any other conversion

specifier.

A conversion specification directs the conversion of the next input field; the result is

placed in the variable pointed to by the corresponding argument unless assignment

suppression was indicated by the character *«. The suppression of assignment pro-

vides a way of describing an input field that is to be skipped. An input field is

defined as a string of non-space characters; it extends to the next inappropriate char-

acter or until the maximum field width, if one is specified, is exhausted. For all

descriptors except the character [and the character c, white space leading an input

3-466 Licensed material—property of copyright hoider(s) 093-701056

scant(3S) DG/UX 5.4 scanf(3S)

093-701056

field is ignored.

Conversions can be applied to the nth argument in the argument list, rather than to

the next unused argument. In this case, the conversion character % (see above) is

replaced by the sequence %digits$ where digits is a decimal integer 7, giving the posi-

tion of the argument in the argument list. The first such argument, %1$, immediately

follows format. The control string can contain either form of a conversion specifica-

tion, 1.e., % or %digits$, although the two forms cannot be mixed within a single con-

trol string.

The conversion code indicates the interpretation of the input field; the corresponding

pointer argument must usually be of a restricted type. For a suppressed field, no

pointer argument is given. The following conversion codes are valid:

% A single % is expected in the input at this point; no assignment is done.

d Matches an optionally signed decimal integer, whose format is the same as

expected for the subject sequence of the strtol function with the value 10

for the base argument. The corresponding argument should be a pointer to

integer.

u Matches an optionally signed decimal integer, whose format is the same as

expected for the subject sequence of the strtoul function with the value 10

for the base argument. The corresponding argument should be a pointer to

unsigned integer.

° Matches an optionally signed octal integer, whose format is the same as

expected for the subject sequence of the strtoul function with the value 8

for the base argument. The corresponding argument should be a pointer to

unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same

as expected for the subject sequence of the strtoul function with the value

16 for the base argument. The corresponding argument should be a pointer to

unsigned integer.

i Matches an optionally signed integer, whose format is the same as expected

for the subject sequence of the strtol function with the value 0 for the base

argument. The corresponding argument should be a pointer to integer.

n No input is consumed. The corresponding argument should be a pointer to

integer into which is to be written the number of characters read from the

input stream so far by the call to the function. Execution of a %n directive

does not increment the assignment count returned at the completion of execu-

tion of the function.

e,f,g Matches an optionally signed floating point number, whose format is the same

as expected for the subject string of the strtod function. The correspond-

ing argument should be a pointer to floating.

s A character string is expected; the corresponding argument should be a char-

acter pointer pointing to an array of characters large enough to accept the

string and a terminating \0, which will be added automatically. The input

field is terminated by a white-space character.

c Matches a sequence of characters of the number specified by the field width

(1 if no field width is present in the directive). The corresponding argument

should be a pointer to the initial character of an array large enough to accept

the sequence. No null character is added. The normal skip over white space

Licensed material—property of copyright holder(s) 3-467

sceanf(3S) DG/UX 5.4 scanf(3S)

is suppressed.

[Matches a nonempty sequence of characters from a set of expected characters

(the scanset). The corresponding argument should be a pointer to the initial

character of an array large enough to accept the sequence and a terminating

null character, which will be added automatically. The conversion specifier

includes all subsequent characters in the format string, up to and including the

matching right bracket (]). The characters between the brackets (the scaniist)

comprise the scanset, unless the character after the left bracket is a circum-

flex (~), in which case the scanset contains all characters that do not appear

in the scanlist between the circumflex and the right bracket. If the conversion

specifier begins with [] or [7], the right bracket character is in the scanlist

and the next right bracket character is the matching right bracket that ends

the specification; otherwise the first right bracket character is the one that

ends the specification.

A range of characters in the scanset may be represented by the construct first

- last; thus [0123456789] may be expressed [0-9]. Using this convention,

first must be lexically less than or equal to Jast, or else the dash will stand for

itself. The character - will also stand for itself whenever it is the first or the

last character in the scanlist. To include the right bracket as an element of

the scanset, it must appear as the first character (possibly preceded by a cir-

cumflex) of the scanlist and in this case it will not be syntactically interpreted

as the closing bracket. At least one character must match for this conversion

to be considered successful.

Pp Matches an implementation-defined set of sequences, which should be the

same as the set of sequences that may be produced by the %p conversion of

the printf function. The corresponding argument should be a pointer to

void. The interpretation of the input item is implementation-defined. If the

input item is a value converted earlier during the same program execution, the

pointer that results shall compare equal to that value; otherwise, the behavior .

of the %p conversion is undefined.

If an invalid conversion character follows the %, the results of the operation may not

be predictable.

The conversion specifiers E, G, and X are also valid and, under the -Xa and -Xe

compilation modes [see cc(1)], behave the same as e, g, and x, respectively.

Under the -xt compilation mode, E, G, and x behave the same as le, lg, and

1x, respectively.

Each function allows for detection of a language-dependent decimal point character in

the input string. The decimal point character is defined by the program’s locale

(category LC_NUMERIC). In the "Cc" locale, or in a locale where the decimal point

character is not defined, the decimal point character defaults to a period (.).

The scanf conversion terminates at end of file, at the end of the control string, or

when an input character conflicts with the control string.

If end-of-file is encountered during input, conversion is terminated. If end-of-file

occurs before any characters matching the current directive have been read (other

than leading white space, where permitted), execution of the current directive ter-

minates with an input failure; otherwise, unless execution of the current directive is

terminated with a matching failure, execution of the following directive (if any) is ter-

minated with an input failure.

3-468 Licensed material—property of copyright holder(s) 093-701056

scanf(SS) DG/ UX 5.4 scant (3S)

If conversion terminates on a conflicting input character, the offending input charac-

ter is left unread in the input stream. Trailing white space (including new-line charac-

ters) is left unread unless matched by a directive. The success of literal matches and

suppressed assignments is not directly determinable other than via the %n directive.

EXAMPLES

The call to the function scanf:

int i, n; float x; char name[50];

n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name

will contain thompson\0.

The call to the function scanf:

int i; float x; char name[50];

(void) scanf ("%2d%f%*d %[0-9]", Si, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the characters 56\0 in

name. The next character read from stdin will be a.

SEE ALSO

cc(1), print£(3S), strtod(3C), strtol(3C), strtoul(3C).

DIAGNOSTICS

093-701056

These routines return the number of successfully matched and assigned input items;

this number can be zero in the event of an early matching failure between an input

character and the control string. If the input ends before the first matching failure or

conversion, EOF is returned.

Licensed material—property of copyright holder(s) 3-469

scanf(SW) DG/UX 5.4 scanf(SW)

NAME

scanf, fscanf, sscanf -— convert formatted input

SYNOPSIS

#include <stdio.h>

#include <widec.h>

int scanf(const char «format [, pointer] ...);

int fscanf(FILE «stream, const char «format [, pointer] ...);

int sscanf(char *5, const char +format [, pointer] ...);

DESCRIPTION (international Functions)

scanf() reads from the standard input stream stdin. fscanf() reads from the

named input stream. sscanf() reads from the character string s. Each function

reads characters (bytes), interprets them according to a control string format, and

stores the results in its arguments.

The control string usually contains conversion specification, which are used to direct

interpretation of input sequences. The control string may contain:

A. White-space characters (characters are defined in isspace() of

ctype(3C)). Except in two cases described below, these cause input to be

read up to the next non-white-space character.

B. An ordinary character (any EUC character , except the ASCII character %),

which must match the next byte of the input stream.

C. Conversion specifications which direct the conversion of the next input field.

Only ASCII characters are allowed as conversion characters.

The conversion code indicates the interpretation of the input field, and the

corresponding pointer argument must match the type being read. we and ws are the

new conversion specifications for wchar_t character control, and both may be used

in all three functions.

we A wehar_t character is expected; the character, which should be in EUC, is

transformed into a wchar_t character, and stored in the location pointed to

by the corresponding argument which should be a wchar_t pointer. The

normal skip over white space is suppressed in this case. To read the next

non-space character as the wchar_t character, %1ws should be used. Ifa

field width is given, the corresponding argument should refer to a wchar_t

array; the indicated number of wchar_t characters are read.

ws A wcehar_t string is expected; characters in EUC are transformed into

wchar_t characters and stored in the location pointed to by the correspond-

ing argument. The corresponding argument should be a pointer pointing to a

wchar_t array large enough to accept the string and a terminating wchar_t

null character, which is added automatically. wchar_t characters are read

until the number of wchar_t characters specified in the field width, if sup-

plied, or a white-space character is read.

The conversion of these functions terminate at EOF or a NULL character in the case

of sscanf(), at the end of the control string, or when an input character conflicts

with the control string. In the last case, the offending character is left unread in the

input stream.

These functions return the number of successfully matched and assigned input items;

this number can be zero in the event of an early conflict between an input character

3-470 Licensed material—property of copyright hoider(s) 093-701056

scant (3W) DG/UX 6.4 scant (SW)

and the control string. If the input ends before the first conflict or conversion, EOF

is returned.

WARNING
A character from a supplementary code set i a scanset enclosed in a pair of

square brackets is simply interpreted as a byte string. Each byte of the input field is

compared to the byte in the scanset.

SEE ALSO

printf(3W), vprintf£(3W), widec(3W).

scanf(3S), stdio(3S).

093-701056 Licensed material—property of copyright holder(s) 3-471

setbuf(3S) ‘DG/UX 5.4 setbuf(3S)

NAME

setbuf, setvbuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

void setbuf (FILE «stream, char «buf);

int setvbuf (FILE «stream, char *buf, int type, size_t size);

DESCRIPTION

setbuf may be used after a stream [see intro(3)] has been opened but before it is

read or written. It causes the array pointed to by buf to be used instead of an

automatically allocated buffer. If buf is the NULL pointer input/output will be com-

pletely unbuffered.

While there is no limititation on the size of the buffer, the constant BUFSIZ, defined

in the <stdio.h> header file, is typically a good buffer size:

char buf [BUFSIZ];

setvbuf may be used after a stream has been opened but before it is read or written.

type determines how stream will be buffered. Legal values for type (defined in

stdio.h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a new-

line is written, the buffer is full, or input is requested.

| _IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,

instead of an automatically allocated buffer. size specifies the size of the buffer to be

used. If input/output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3S).

SEE ALSO |

fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

If an illegal value for type is provided, setvbuf returns a non-zero value. Otherwise,

it returns zero.

NOTES

A common source of error is allocating buffer space as an “automatic” variable in a

code block, and then failing to close the stream in the same block.

Parts of buf will be used for internal bookkeeping of the stream and, therefore, buf

will contain less than size bytes when full. It is recommended that the automatically

allocated buffer is used when using setvbuf.

3-472 Licensed material—property of copyright holder(s) 093-701056

setbuffer(3C) DG/UX 5.4 setbuffer(3C)

NAME

setbuffer — assign a buffer to a specified stream

SYNOPSIS

#include <stdio.h>

FILE *fp;

Char *bufptr;

int size;

void setbuffer();

setbuffer(fp, bufptr, size); (or) setbuffer(fp, NULL, size);

where size is the size of the character array bufptr.

DESCRIPTION

The setbuffer function assigns a buffer to a stream whose I/O you have been han-
dling with the stdio(3S) functions. Output is sent to the file or device only when
you call f££lush(3S) or when the buffer fills up. This function is an alternate form
of setbuf. If the buffer pointer bufptr is null (0), it specifies an unbuffered file
and uses single byte I/O. Otherwise, the routine assumes that the buffer can hold at
least the number of characters specified by size.

RETURN VALUE

setbuffer does not return a value.

SEE ALSO

093-701056

setbuf(3S), setlinebuf(3C).

Licensed material—property of copyright holder(s) 3-473

setimp(SC) DG/UX 5.4 setimp(3C)

NAME

setjmp, longjmp — non-local goto

SYNOPSIS

#include <setjmp.h>

int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered in a

low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp_buf, is defined in the

<setjmp.h> header file) for later use by longjmp. It returns the value 0.

long jmp restores the environment saved by the last call of setjmp with the

corresponding env argument. After longjmp is completed, program execution con-

tinues as if the corresponding call of setjmp had just returned the value val. (The

caller of setjmp must not have returned in the interim.) longjmp cannot cause

setjmp to return the value 0. If longjmp is invoked with a second argument of 0,

setjmp will return 1. At the time of the second return from setjmp, all external

and static variables have values as of the time long jmp is called (see example). The
values of register and automatic variables are undefined.

Register or automatic variables whose value must be relied upon must be declared as

volatile.

EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

jmp_buf env;

int i = 0;

main ()
[

void exit();

if(setjmp(env) != 0) {

(void) printf("value of i on 2nd return from setjmp: %td\n", i);

exit(0);

}

(void) printf("value of i on lst return from setjmp: %d\n", i);

i= 1;

g();

/* NOTREACHED <x/

longjmp(env, 1);

/* NOTREACHED +/

If the a.out resulting from this C language code is run, the output will be:

value of i on lst return from setjmp: 0

3-474 Licensed material—property of copyright hoider(s) 093-701056

setimp(SC) DG/UX 5.4 setimp(SC)

value of i on 2nd return from setjmp:1

SEE ALSO

signal({2), sigsetjmp(3C).

NOTES

If long jmp is called even though env was never primed by a call to setjmp, or

when the last such call was in a function that has since returned, absolute chaos is

guaranteed.

093-701056 Licensed material—property of copyright hoider(s) 3-475

setlinebuf(3C) DG/UX 5.4 setlinebuf(3C)

NAME

setlinebuf -— assign line buffering for a specified stream

SYNOPSIS

#include <stdio.h>

FILE *fp;

void setlinebuf();

setlinebuf (fp) ;

DESCRIPTION

The setlinebuf function assigns line buffering for a stream whose I/O you are han-

dling with the stdio(3S) functions. Output will be sent to the file or device when a

line terminator is printed or when you call ££lush(3S).

RETURNS

setlinebuf does not return a value.

SEE ALSO

setbuf(3S), setbuffer(3C).

3-476 Licensed material—property of copyright holder(s) 093-701056

setiocaie(3C) DG/UX 5.4 setiocale(3C)

NAME

setlocale — modify and query a program’s locale

SYNOPSIS

#include <locale.h>

char *setlocale (int category, const char +slocale) ;

DESCRIPTION

setlocale selects the appropriate piece of the program’s locale as specified by the

category and locale arguments. The category argument may have the following values:

LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY,

LC_MESSAGES and LC_ALL. These names are defined in the locale.h header file.

LC_CTYPE affects the behavior of the character handling functions (isdigit,

tolower, etc.) and the multibyte character functions (such as mbtowe and wctomb).

LC_NUMERIC affects the decimal-point character for the formatted input/output func-

tions and the string conversion functions as well as the non-monetary formatting

information returned by localeconv. [See localeconv(3C).]. LC_TIME affects

the behavior of ascftime, cftime, getdate and strftime. LC_COLLATE

affects the behavior of strcoll and strxfrm, and the regular expression code

described in regexpr3C). LC_MONETARY affects the monetary formatted informa-

tion returned by localeconv. LC_MESSAGES affects the behavior of gettxt,

catopen, catclose, and catgets. [See catopen(3C) and catgets(3C).]

LC_ALL names the program’s entire locale.

Each category corresponds to a set of databases which contain the relevant informa-

tion for each defined locale. The location of a database is given by the following

path, /usr/lib/locale/locale/category, where locale and category are the names

of locale and category, respectively. For example, the database for the LC_CTYPE

category for the Italian locale would be found in /usr/lib/locale/it/LC_CTYPE.

A value of "C" for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from environment

variables. The order in which the environment variables are checked for the various

_ categories is given below:

Category lst Env. Var. 2nd Env. Var 3rd Env. Var

LC_CTYPE LC_CTYPE LANG CHRCLASS

LC_COLLATE LC_COLLATE LANG

LC_TIME LC_TIME LANG LANGUAGE

LC_NUMERIC LC_NUMERIC LANG

LC_MONETARY LC_MONETARY LANG

LC_MESSAGES LC_MESSAGES LANG

At program startup, the equivalent of

setlocale(LC_ALL, "C")

is executed automatically. This has the effect of initializing each category to the

locale described by the environment "C".

For programs that do not depend upon the C locale, the normal use of setlocale is

to execute

setlocale(LC_ALL, "")

as the first action in the application code. This has the effect of initializing each

category according to the environment variables described above.

093-701056 Licensed material—property of copyright holder(s) 3-477

setiocale(3C) DG/UX 5.4 setlocale(3C)

FILES

If a pointer to a string is given for locale, setlocale attempts to set the locale for

the given category to locale. If setlocale succeeds, locale is returned. If setlo-

cale fails, a null pointer is returned and the program’s locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is

given for locale and LC_ALL is given for category, setlocale attempts to set the

locale for all the categories to locale. The locale may be a simple locale, consisting of

a single locale, or a composite locale. A composite locale is a string beginning with a

"/" followed by the locale of each category separated by a"/". If setlocale fails to

set the locale for any category, a null pointer is returnedand the program’s locale for

all categories is not changed. Otherwise, locale is returned.

A null pointer for locale causes setlocale to return the current locale associated

with the category. The program’s locale is not changed.

/usr/lib/locale/C/LC_CTYPE — LC_CTYPE database for the C locale.

/usr/lib/locale/C/LC_MONETARY - LC_MONETARY database for the C locale.

/usr/lib/locale/C/LC_NUMERIC —- LC_NUMERIC database for the C locale.

/usr/lib/locale/C/LC_TIME ~ LC_TIME database for the C locale.

/usr/lib/locale/C/LC_COLLATE —- LC_COLLATE database for the C locale.

/usr/lib/locale/C/LC_MESSAGES —- LC_MESSAGES database for the C locale

(this is a directory).

/usr/lib/locale/locale/category — files containing the locale specific information

for each locale and category.

SEE ALSO

3-478

testlocale(1M),

ctime(3C), ctype(3C), getdate(3C), gettxt(3G), localeconv(3C),

mbtowc(3C), printf£(3S), streoll(3C), strftime(3C), strtod(3C),

strxfrm(3C), wetomb(3C), environ(5).

Licensed material—property of copyright holder(s) 093-701056

sigestimp(3C) DG/UX 8.4 sige timp(3C)

NAME

sigsetjmp, siglongjmp —- a non-local goto with signal state

SYNOPSIS

#include <setjmp.h>

int sigsetjmp (sigjmp_buf env, int savemask) ;

void siglongjmp (sigjmp_buf env, int val);

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered in a

low-level subroutine of a program.

sigsetjmp saves the calling process’s registers and stack environment [see

sigaltstack(2)| in env (whose type, sigjmp_buf, is defined in the <setjmp.h>

header file) for later use by siglongjmp. If savemask is non-zero, the calling

process’s signal mask [see sigprocmask(2)] and scheduling parameters [see

priocnt1(2)] are also saved. sigsetjmp returns the value 0.

siglongjmp restores the environment saved by the last call of sigset jmp with the

corresponding env argument. After siglong jmp is completed, program execution

continues as if the corresponding call of sigsetjmp had just returned the value val.

siglongjmp cannot cause sigsetjmp to return the value zero. If siglong jmp is

invoked with a second argument of zero, sigset jmp will return 1. At the time of

the second return from sigset jmp, all external and static variables have values as of

the time siglongjmp is called. The values of register and automatic variables are

undefined. Register or automatic variables whose value must be relied upon must be

declared as volatile.

If a signal-catching function interrupts sleep and calls siglong jmp to restore an

environment saved prior to the sleep call, the action associated with SIGALRM and

time it is scheduled to be generated are unspecified. It is also unspecified whether the

SIGALRM signal is blocked, unless the process’s signal mask is restored as part of the

environment.

The function siglongjmp restores the saved signal mask if and only if the env argu-

ment was initialized by a call to the sigsetjmp function with a non-zero savemask

argument.

SEE ALSO

getcontext(2), priocntl(2), sigaction(2), sigaltstack(2), sigproc-

mask(2), setjmp(3C).

NOTES

If siglongjmp is called even though env was never primed by a call to sigsetjmp,

or when the last such call was in a function that has since returned, absolute chaos is

guaranteed.

093-701056 Licensed material—property of copyright holders) 3-479

‘sigsetops(3C) DG/UX 5.4 sigsetops(3C)

NAME

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - manipu-

late sets of signals.

SYNOPSIS

#include <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);

int sigaddset (sigset_t *set, int signo);

int sigdelset (sigset_t *set, int signo);

int sigismember (sigset_t *set, int signo);

DESCRIPTION

These functions manipulate sigser_t data types, representing the set of signals sup-

ported by the implementation.

sigemptyset initializes the set pointed to by set to exclude all signals defined by the

system.

sigfillset initializes the set pointed to by set to include all signals defined by the

system.

sigaddset adds the individual signal specified by the value of signo to the set
pointed to by ser.

sigdelset deletes the individual signal specified by the value of signo from the set
pointed to by set.

sigismember checks whether the signal specified by the value of signo is a member

of the set pointed to by set.

Any object of type sigset_r must be initialized by applying either sigemptyset or

sigfillset before applying any other operation.

sigaddset, sigdelset and sigismember will fail if the following is true:

EINVAL The value of the signo argument is not a valid signal number.

sigfillset will fail if the following is true:

EFAULT The set argument specifies an invalid address.

SEE ALSO

sigaction(2), sigprocmask(2), sigpending(2), sigsuspend(2), signal(5).

DIAGNOSTICS

Upon successful completion, the sigismember function returns a value of one if the

specified signal is a member of the specified set, or a value of zero if it is not. Upon

successful completion, the other functions return a value of zero. Otherwise a value

of -1 is returned and errno is set to indicate the error.

3-480 Licensed material—property of copyright hoider(s) 093-701056

sinh(3M) DG/UX 5.4 sinh(SM)

NAME

sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh — hyperbolic

functions

SYNOPSIS

ce [flag ...] file ... 1m [library ...]

#include <math.h>

double sinh (double x);

float sinhf (float x);

double cosh (double x);

float coshf (float x);

double tanh (double x);

float tanhf (float x);

double asinh (double x);

double acosh (double x);

double atanh (double x);

DESCRIPTION

sinh, cosh, and tanh and the single-precision versions sinhf, coshf, and

tanhf return, respectively, the hyberbolic sine, cosine, and tangent of their argu-

ment.

asinh, acosh, and atanh return, respectively, the inverse hyperolic sine, cosine,

and tangent of their argument.

SEE ALSO

matherr(3M).

DIAGNOSTICS

sinh, sinhf, cosh, and coshf return HUGE (and sinh and sinhf may return

-HUGE for negative x) when the correct value would overflow and set errno to

’ ERANGE.

acosh returns NaN and sets errno to EDOM when the argument x is less than 1. A

message indicating DOMAIN error is printed on the standard error output.

atanh returns NaN and sets errno to EDOM if |x| >1. If |x| = 1, a message indi-

cating SING error is printed on the standard error output; if | x| > 1 the message will

indicate DOMAIN error. |

Except when the -Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the —Xa or —Xc compilation

options are used, HUGE_VAL is returned instead of HUGE and no error messages are

_ printed.

093-701056 Licensed material—property of copyright holder(s) 3-481

sleep(3C) DG/UX 5.4 sieep(3C)

NAME

sleep — suspend execution for interval

SYNOPSIS

#include <unistd.h>

unsigned sleep (unsigned seconds) ;

DESCRIPTION

The current process is suspended from execution for the number of seconds specified

by the argument. The actual suspension time may be less than that requested because

any caught signal will terminate the sleep following execution of that signal’s catch-

ing routine. Also, the suspension time may be longer than requested by an arbitrary

amount because of the scheduling of other activity in the system. The value returned

by sleep will be the “unslept” amount (the requested time minus the time actually

slept) in case the caller had an alarm set to go off earlier than the end of the

requested sleep time, or premature arousal because of another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some

other signal) occurs. The previous state of the alarm signal is saved and restored.

The calling program may have set up an alarm signal before calling sleep. If the

sleep time exceeds the time until such alarm signal, the process sleeps only until the

alarm signal would have occurred. The caller’s alarm catch routine is executed just

before the sleep routine returns. But if the sleep time is less than the time till

such alarm, the prior alarm time is reset to go off at the same time it would have

without the intervening sleep.

SEE ALSO

alarm(2), pause(2), signal(2), wait(2).

EXAMPLE

/* Program test for the sleep() function */

#include <stdio.h>

#include <unistd.h>

unsigned int hold;

Main() {

printf£("“How long a nap (in seconds) ?\n");

scanf("%d", &hold);

sleep(hold);

printf("I’m awake again.\n");

}

If you execute the program test, and answer its query with 5, it pauses for 5 seconds,

then generates the following:

I’m awake again.

3-482 Licensed material—property of copyright hoider(s) 093-701056

sputl(SX)

NAME

DG/UX 5.4 sputi(3X)

sputl, sgetl — access long integer data in a machine-independent fashion

SYNOPSIS

cc [flag ...] file ... -11d [library ...]

#include <ldfcn.h>

void sputl (long value, char sbuffer);

long sgetl (const char +*buffer);

DESCRIPTION

sputl takes the four bytes of the long integer value and places them in memory start-

ing at the address pointed to by buffer. The ordering of the bytes is the same across

all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by buffer

and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of stor-

ing long numeric data in a file in binary form without conversion to characters.

A program that uses these functions must be loaded with the object-file access rou-

tine library libld.a.

SEE ALSO

093-701056

a641(3C), 13t01(3C).

Licensed materiai—property of copyright holder(s) 3-483

ssignal(3C) DG/UX 5.4 ssignal(3C)

NAME

ssignal, gsignal - software signals

SYNOPSIS

#include <signal.h>

int (*ssignal (int sig, int (*action) (int))) (int);

int gsignal (int sig); -

DESCRIPTION

ssignal and gsignal implement a software facility similar to signal(2). This

facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive
range 1 through 17. A call to ssignal associates a procedure, action, with the

software signal sig; the software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which

an action is to be established. The second argument defines the action; it is either the

name of a (user-defined) action function or one of the manifest constants SIG_DFL

(default) or SIG_IGN (ignore). ssignal returns the action previously established
for that signal type; if no action has been established or the signal number is illegal,

ssignal returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to

SIG_DFL and the action function is entered with argument sig. gsignal

returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no

other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no

other action.

If sig has an illegal value or no action was ever specified for sig, gsignal

returns the value 0 and takes no other action.

SEE ALSO

signal(2), sigset(2), raise(3C).

3-484 Licensed material—property of copyright holder(s) 093-701056

stdio(3s) DG/UX 6.4 stdlo(3S)

NAME

stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>

FILE «stdin, xstdout, «stderr;

DESCRIPTION

The 3S entries in this manual constitute an efficient, user-level I/O buffering scheme.

The in-line macros getc(3S) and putc(3S) handle characters quickly. The macros

_ getchar and putchar, and the higher-level routines fgetc, fgets, fprintf, fputc, fputs,

fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use or act as if they

use gefc and putc; they can be freely intermixed.

A file with associated buffering is called a stream [see intro(3)] and is declared to

be a pointer to a defined type FILEETI. fopen creates certain descriptive data for

a stream and returns a pointer to designate the stream in all further transactions.

Normally, there are three open streams with constant pointers declared in the

<stdio.h> header file and associated with the standard open files:

stdin standard input file

stdout standard output file

stderr standard error file

The following symbolic values in <unistd.h> define the file descriptors that will be

associated with the C-language stdin, stdout and stderr when the application is started:

STDIN_FILENO Standard input value, stdin. It has the value of 0.

STDOUT _FILENO Standard output value, stdout. It has the value of 1.

STDERR_FILENO Standard error value, stderr. It has the value of 2.

A constant null designates a null pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer

functions that deal with streams (see the individual descriptions for details). |

An integer constant BUFSIZ specifies the size of the buffers used by the particular

- implementation.

An integer constant FILENAME_MAX specifies the size needed for an array of char

large enough to hold the longest file name string that the implementation guarantees

can be opened.

An integer constant FOPEN_MAX specifies the minimum number of files that the

implementation guarantees can be open simultaneously. Note that no more than 255

files may be opened via fopen, and only file descriptors 0 through 255 are valid.

Any program that uses this package must include the header file of pertinent macro

definitions, as follows:

#include <stdio.h>

The functions and constants for all 3S entries in this manual are declared in the

header file and need no further declaration. The constants and the following "func-

tions” are implemented as macros. Don’t redeclare these names: getc, getchar,

putc, putchar, ferror, feof, clearerr, and fileno.

There are also function versions of getc, getchar, putc, putchar, ferror,

feof, clearerr, and fileno.

093-701056 Licensed materiai—property of copyright holder(s) 3-485

stdio(3S) DG/UX 5.4 stdio(3S)

Output streams, with the exception of the standard error stream stderr, are by

default buffered if the output refers to a file and line-buffered if the output refers to a

terminal. The standard error output stream stderr is by default unbuffered, but use

of freopen [see fopen(3S)] will cause it to become buffered or line-buffered.

When an output stream is unbuffered, information is queued for writing on the desti-

nation file or terminal as soon as written; when it is buffered, many characters are

saved up and written as a block. When it is

line-buffered, each line of output is queued for writing on the destination terminal as

soon as the line is completed (that is, as soon as a new-line character is written or ter-

minal input is requested). setbuf or setvbuf [both described in setbuf(3S)]
may be used to change the stream’s buffering strategy.

SEE ALSO

open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S),

cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S),

getc(3S), gets(3S), popen(3S), print£(3S), pute(3S), puts(3S), scanf(3S),

setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

3-486

Invalid stream pointers will usually cause problems, possibly including program termi-

nation. The description for each function lists its possible error conditions.

Licensed material—property of copyright holder(s) 093-701056

stdipo(3C) DG/UX 6.4 stdipe(SC)

NAME

stdipe; ftok - standard interprocess communication package

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

key_t ftok(const char «path, int id);

DESCRIPTION

All interprocess communication facilities require the user to supply a key to be used

by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess

communication identifiers. One suggested method for forming a key is to use the

ftok subroutine described below. Another way to compose keys is to include the

project ID in the most significant byte and to use the remaining portion as a sequence

number.

There are many other ways to form keys, but it is necessary for each system to define

standards for forming them. If some standard is not adhered to, it will be possible

for unrelated processes to unintentionally interfere with each other’s operation. It is

still possible to interface intentionally. Therefore, it is strongly suggested that the

most significant byte of a key in some sense refer to a project so that keys do not

conflict across a given system.

£tok returns a key based on path and id that is usable in subsequent msgget,

semget, and shmget system calls. path must be the path name of an existing file

that is accessible to the process. id is a character that uniquely identifies a project.

Note that ftok will return the same key for linked files when called with the same id

and that it will return different keys when called with the same file name but different

ids. .

SEE ALSO

intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS |

NOTES

093-701056

ftok returns (key _t) ~1 if path does-not exist or if it is not accessible to the pro-

cess.

If the file whose path is passed to ftok is removed when keys still refer to the file,

future calls to ftok with the same path and id will return an error. If the same file is

recreated, then ftok is likely to return a different key than it did the original time it

was called.

Licensed material—property of copyright holder(s) 3-487

str(3G) DG/UX 5.4 str(3G)

NAME

str: strfind, strrspn, strtrns — string manipulations

SYNOPSIS

ce [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int strfind (const char *asl, const char #as2);

char *«strrspn (const char «string, const char +tc);

char * strtrns (const char «str, const char «old, const char xnew,

char *result);

DESCRIPTION

strfind returns the offset of the second string, as2, if it is a substring of string as/.

strrspn returns a pointer to the first character in the string to be trimmed (all char-

acters from the first character to the end of string are in tc).

strtrns transforms str and copies it into result. Any character that appears in old
is replaced with the character in the same position in new. The mew result is returned.

EXAMPLES

/* find pointer to substring "hello" in asl +/

i = strfind(asl, “hello"),

/* trim junk from end of string «/

s2 = strrspn(sl, "«?#$%");

*S2 = /\0’;

/* transform lower case to upper case «/

al(] = "abcdefghijklmnopqrstuvwxyz"; °
a2([] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

s2 = strtrns(sl, al, a2, s2);

SEE ALSO

string(3C).

DIAGNOSTICS

If the second string is not a substring of the first string strfind returns -1.

3-488 Licensed materiali—property of copyright hoider(s) 093-701056

strecpy(3G) DG/UX 5.4 strecpy(3G)

NAME

strecpy: streadd, strceadd, strecpy — copy strings, compressing or expanding

escape codes

SYNOPSIS

ce [flag ...] file ... -lgen [library ...]

#include <libgen.h> | |

char «strcecpy (char +output, const char *input);

char *strcadd (char +output, const char s*input);

char *«strecpy (char *xoutput, const char «input, const char

xexceptions) ;

char *streadd (char *output, const char *input, const char

xexceptions) ;

DESCRIPTION

strcecpy copies the input string, up to a null byte, to the output string, compressing

the C-language escape sequences (for example, \n, \001) to the equivalent charac-

ter. A null byte is appended to the output. The output argument must point to a

space big enough to accommodate the result. If it is as big as the space pointed to by

input it is guaranteed to be big enough. strecpy returns the output argument.

strcadd is identical to strecpy, except that it returns the pointer to the null byte

that terminates the output. |

strecpy copies the input string, up to a null byte, to the output string, expanding

non-graphic characters to their equivalent C-language escape sequences (for example,

\n, \001). The output argument must point to a space big enough to accommodate

_ the result; four times the space pointed to by input is guaranteed to be big enough

(each character could become \ and 3 digits). Characters in the exceptions string are

not expanded. The exceptions argument may be zero, meaning all non-graphic charac-

ters are expanded. strecpy returns the output argument

streadd is identical to strecpy, except that it returns the pointer to the null byte

that terminates the output.

EXAMPLES

/* expand all but newline and tab «/

strecpy(output, input, "“\n\t");

/* concatenate and compress several strings *«/

cp = strceadd(output, inputl);

cp = strcadd(cp, input2);

cp = strcadd(cp, input3);

SEE ALSO |

093-701056

string(3C), str(3G).

Licensed material—property of copyright holder(s) 3-489

strcoll(3C) DG/UX 5.4 strcoll(3C)

NAME

strcoll - string collation

SYNOPSIS

#include <string.h>

int strcoll (const char «sl, const char *s2);

DESCRIPTION a
strcoll returns an integer greater than, equal to, or less than zero in direct correla-

tion to whether string s/ is greater than, equal to, or less than the string s2. The com-

parison is based on strings interpreted as appropriate to the program’s locale for

category LC_COLLATE [see setlocale(3C)].

Both strcoll and strxfrm provide for locale-specific string sorting. strcoll is

intended for applications in which the number of comparisons per string is small.

When strings are to be compared a number of times, strxfrm is a more appropriate

utility because the transformation process occurs only once.

FILES

/usr/lib/locale/LC_COLLATE LC_COLLATE database for locale.

SEE ALSO

setlocale(3C), string(3C), strxfrm(3C), environ(5).

colltb1(1M) in the System Administrator’s Reference Manual.

3-490 Licensed material—property of copyright holder(s) 093-701056

strerror(3C) DG/UX 8.4 strerror(SC)

NAME

strerror — get error message string

SYNOPSIS

#include <string.h>

char *«strerror (int errnum);

DESCRIPTION :

strerror maps the error number in evrnum to an error message string, and returns a

pointer to that string. strerror uses the same set of error messages as perror.

The returned string should not be overwritten.

SEE ALSO

perror(3C).

EXAMPLE

The following program prints an error message corresponding to the generic UNIX

I/O message.

/* Program test for the strerror() function */

#include <errno.h>

#include <stdio.h>

char *strerror();

Main() {

printf("Error message is: %s\n", strerror(EIO));

return 0;

)

A call to this program generates the output

Error message is: Error E10(5) — Error in input/ouput.

_ FILES.

/usr/lib/locale/locale/LC_MESSAGES/uxsyserr — message catalog.

SEE ALSO |

perror(3C).

093-701056 Licensed material—property of copyright holder(s) 3-491

stritime(SC) DG/UX 5.4 strftime(3C)

NAME

strftime, cftime, ascftime — convert date and time to string

SYNOPSIS

#include <time.h>

size_t «strftime (char *s, size_t maxsize, const char «format,

const struct tm *timeptr);

int cftime (char «s, char *format, const time_t *clock);

int ascftime (char *s, const char *format, const struct tm

*timeptr) ;

DESCRIPTION

strftime, ascftime, and cftime place characters into the array pointed to by s

as controlled by the string pointed to by format. The format string consists of zero or

more directives and ordinary characters. All ordinary characters (including the ter-

minating null character) are copied unchanged into the array. For strftime, no

more than maxsize characters are placed into the array.

If format is (char +)0, then the locale’s default format is used. For strftime the

default format is the same as "%c", for cftime and ascftime the default format is

the same as "%C". cftime and ascftime first try to use the value of the environ-

ment variable CFTIME, and if that is undefined or empty, the default format is used.

Each directive is replaced by appropriate characters as described in the following list.

The appropriate characters are determined by the LC_TIME category of the program’s

locale and by the values contained in the structure pointed to by timeptr for

strftime and ascftime, and by the time represented by clock for cftime.

%% same as %

ta locale’s abbreviated weekday name

A locale’s full weekday name

tb locale’s abbreviated month name

%B locale’s full month name

$c locale’s appropriate date and time representation

tC locale’s date and time representation as produced by date(1)

d day of month (01 - 31)

%D date as %m/%d/%y

te day of month (1-31; single digits are preceded by a blank)

th locale’s abbreviated month name.

$H hour (00 - 23)

$I hour (01 - 12)

$5 day number of year (001 - 366)

$m month number (01 - 12)

$M minute (00 - 59)

$n same as \n

p locale’s equivalent of either AM or PM

$x time as %1:%M:%S [AM|PM]

&R time as %H:%M

%S seconds (00 - 61), allows for leap seconds

$t insert a tab

$T time as %H:%M:%S

%U week number of year (00 - 53), Sunday is the first day of week 1

3-492 Licensed material—property of copyright holder(s) 093-701056

stritime(3C) DG/UX 8.4 - strftime(3C)

&w weekday number (0 - 6), Sunday = 0

2W week number of year (00 - 53), Monday is the first day of week 1

$x locale’s appropriate date representation

$X locale’s appropriate time representation

ty year within century (00 - 99)

tY year as ccyy (e.g. 1986)

$Z time zone name or no characters if no time zone exists —

The difference between %U and %W lies in which day is counted as the first of the

week. Week number 01 is the first week in January starting with a Sunday for %vU or

a Monday for %W. Week number 00 contains those days before the first Sunday or

Monday in January for %U and %W, respectively.

If the total number of resulting characters including the terminating null character is

not more than maxsize, strftime, cftime and ascftime return the number of

characters placed into the array pointed to by s not including the terminating null

character. Otherwise, zero is returned and the contents of the array are indeter-

minate. cftime and ascftime return the number of characters placed into the

array pointed to by s not including the terminating null character.

Selecting the Output’s Language

By default, the output of strftime, cftime, and ascftime appear in the

language defined by the "C" locale. This is basically English as spoken in the United

States, but technically is different from the "En_US" locale. The user can request

that the output of strftime, cftime or ascftime be in a specific language by set-

ting the locale for category LC_TIME or LC_ALL with setlocale.

Timezone

The timezone is taken from the environment variable TZ [see ctime(3C) and

environ(5) for a description of TZ]. |

EXAMPLES

The example illustrates the use of strftime. It shows what the string in str would

look like if the structure pointed to by #mptr contains the values corresponding to

Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b $d %j", tmptr)

This results in str containing “Thursday Aug 28 240”.

FILES

/usr/lib/locale/language/LC_ TIME — file containing locale specific date and time

information

SEE ALSO

ctime(3C), getenv(3C), setlocale(3C), strftime(4), timezone(4),

environ(5).

NOTE

cftime and ascftime are obsolete. strftime should be used instead.

093-701056 Licensed material—property of copyright hoider(s) 3-493

string(3C) DG/UX 5.4 | string(3C)

NAME

string: strceat, strdup, strncat, strcmp, strncmp, strepy, strncpy,

strlen, strcehr, strrchr, strpbrk, strspn, strespn, strtok, strstr -

string operations :

SYNOPSIS

#include <string.h>

char *strcat (char *sl, const char +*#s2);

char *strdup (const char *sl);

char *strncat (char *sl, const char *s2, size_t n);

int stremp (const char *sl, const char *s2);

int strnemp (const char *sl, const char *s2, size_t n);

char «strcpy (char *sl1, const char *s2);

char *strncpy (char *sl, const char *s2, size_t n);

size_t strlen (const char *s);

char *strchr (const char *s, int c);

char *strrchr (const char *«s, int c);

char «strpbrk (const char *sl, const char *s2);

size_t strspn (const char *sl, const char *s2);

size_t strespn (const char *sl, const char +#s2);

char *strtok (char *sl, const char *s2);

char «strstr (const char *sl, const char *s2);

DESCRIPTION

The arguments s, s1, and s2 point to strings (arrays of characters terminated by a null

character). The functions streat, strncat, strepy, strnepy, and strtok.

all alter s1. These functions do not check for overflow of the array pointed to by s/J.

strceat appends a copy of string s2, including the terminating null character, to the

end of strings. strncat appends at most n characters. Each returns a pointer to

the null-terminated result. The initial character of s2 overrides the null character at

the end of si.

strcmp compares its arguments and returns an integer less than, equal to, or greater

than 0, based upon whether s/ is lexicographically less than, equal to, or greater than

s2. strncmp makes the same comparison but looks at at most m characters. Char-

acters following a null character are not compared.

strcpy copies string s2 to sZ including the terminating null character, stopping after

the null character has been copied. strnepy copies exactly n characters, truncating

s2 or adding null characters to si if necessary. The result will not be null-terminated

if the length of s2 is n or more. Each function returns sJ.

strdup returns a pointer to a new string which is a duplicate of the string pointed to

by sl. The space for the new string is obtained using malloc(3C). If the new string

can not be created, a NULL pointer is returned.

strlen returns the number of characters in s, not including the terminating null

character.

3-494 Licensed material—property of copyright holder(s) 093-701056

string(3C) - DG/UX 8.4 string(3C)

strchr (or strrchr) returns a pointer to the first (last) occurrence of c (converted

to a char) in string s, or a NULL pointer if c does not occur in the string. The null

character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string s1 of any character from

string s2, or a NULL pointer if no character from s2 exists in sl.

strspn (or strespn) returns the length of the initial segment of string sl which

consists entirely of characters from (not from) string s2.

strtok considers the string s] to consist of a sequence of zero or more text tokens

separated by spans of one or more characters from the separator string s2. The first

call (with pointer s/ specified) returns a pointer to the first character of the first _

token, and will have written a null character into s] immediately following the

returned token. The function keeps track of its position in the string between separate

calls, so that subsequent calls (which must be made with the first argument a NULL

pointer) will work through the string sJ immediately following that token. In this way

subsequent calls will work through the string sZ until no tokens remain. The separa-

tor string s2 may be different from call to call. When no token remains in sJ, a

NULL pointer is returned.

strstr locates the first occurrence in string s1 of the sequence of characters (exclud-

ing the terminating null character) in string s2. strstr returns a pointer to the

located string, or a null pointer if the string is not found. If s2 points to a string with

zero length (i.e., the string ""), the function returns s/.

SEE ALSO

ffs(3C), malloc(3C), setlocale(3C), str(3G), strxfrm(3C).

NOTES

All of these functions assume the default locale “C.”’ For some locales, strxfrm

should be applied to the strings before they are passed to the functions.

093-701056 Licensed material—property of copyright holder(s) 3-495

strsave(3C) DG/UX 5.4 | strsave(3C)

NAME

strsave, strnsave — allocate area large enough to hold string and move string into

it~

SYNOPSIS

char *stving, *newstring, *strsave(const char *);

newstring = strsave(string) ;

char *string, *newstring, *strnsave(const char *, int);

int n;

newstring = strnsave(string, n);

string A byte pointer to a character string.
newstring A byte pointer to the area allocated to receive a copy of the string.
n The maximum number of characters to copy.

DESCRIPTION

The strsave function allocates with malloc an area large enough to hold a speci-
fied string and moves a copy of the string into the area. It then returns a pointer to
the area.

The strsave and strnsave functions are the same except that with strnsave
you specify a maximum number of bytes to copy. The include files string.h and
strings .h define these functions.

Return Value

Each function returns a pointer to the allocated area. Each returns a null if it cannot
allocate the area.

EXAMPLES

/* Program testl for the strsave() function */

#include <string.h> :

#include <stdio.h>

char *newloc, *strsave(const char *);

int i = 1; |

mMain(arge, argv)

int argc;

char *argv[];

{

while (i < argc) {

newloc = strsave(argv[i]);

printf("\tStored argv[%d] at %o.\n", i, newloc);

printf ("argv[%d] = ~%s’\n", i, newloc);

1++;

}

return 0;

}

A call to the program test1 with the arguments

Save these strings.

3-496 Licensed material—property of copyright holder(s) 093-701056

streave(3C) DG/UX 5.4

generates the output

Stored argv[1] at 34003540370.

argv({1] = “Save’

Stored argv[2] at 34003540410.

argv[{2] = “these’

Stored argv[3] at 34003540430.

argv[3] = ‘strings.’

The locations vary with execution.

/* Program test2 for the strnsave() function */

#include <string.h>

#include <stdio.h>

#define MAX 80

char *newloc, *strnsave(const char *, int);

int i= 1;

main(arge, argv)

int argc;

char *argv[];

{

while (i < argc) {

newloc = strnsave(argv[{i], MAX);

printf("Stored argv[(%d] at %0.0, i, newloc);

printf("“argv[%d] = ~%s’0, i, newloc);

1++;

}

return 0;

}

A call to the program test2 with the arguments

Find some addresses.

generates the output

Stored argv[{1] at 34003703644,

argv({1] = ~Find’

Stored argv[2] at 34003677500.

argv[2] = ~some’

Stored argv[3] at 34003677344.

argv[3] = “addresses. ’

The locations vary with execution.

‘SEE ALSO

malloc(3C), strdup(3C).

093-701056 Licensed material—property of copyright hoider(s)

strsave(3C)

3-497

strtod(3C) DG/UX 5.4 strtod(3C)

NAME

strtod, atof, — convert string to double-precision number

SYNOPSIS

#include <stdlib.h> |

double strtod (const char *«nptr, char *sendptr);

double atof (const char «nptr);

DESCRIPTION

strtod returns as a double-precision floating-point number the value represented by

the character string pointed to by mptr. The string is scanned up to the first unrecog-

nized character. "

strtod recognizes an optional string of ‘“‘white-space’’ characters [as defined by

isspace in ctype(3C)], then an optional sign, then a string of digits optionally con-

taining a decimal point character, then an optional exponent part including an e or E

followed by an optional sign, followed by an integer.

If the value of endptr is not (char +**)NULL, a pointer to the character terminating

the scan is returned in the location pointed to by endptr. If no number can be

formed, sendptr is set to nptr, and zero is returned.

atof(nptr) is equivalent to:

strtod(nptr, (char **)NULL).

SEE ALSO

ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS

3-498

If the correct value would cause overflow, +HUGE is returned (according to the sign

of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to

ERANGE.

When the -Xc or ~—Xa compilation options are used, HUGE_VAL is returned instead

of HUGE.

Licensed material—property of copyright hoider(s) 093-701056

strtol(3C) DG/UX 5.4 strtol(SC)

NAME

strtol, strtoul, atol, atoi — convert string to integer

SYNOPSIS

#include <stdlib.h>

long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (const char «str, char *+#ptr, int base);

long atol (const char *str);

int atoi (const char str);

DESCRIPTION

strtol returns as a long integer the value represented by the character string pointed

to by str. The string is scanned up to the first character inconsistent with the base.

Leading “white-space” characters [as defined by isspace in ctype(3C)] are

ignored.

If the value of pir is not (char +**)NULL, a pointer to the character terminating the

scan is returned in the location pointed to by prr. If no integer can be formed, that

location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.

After an optional leading sign, leading zeros are ignored, and “Ox” or “OX” is ignored

if base is 16. -

If base is zero, the string itself determines the base as follows: After an optional lead-

ing sign a leading zero indicates octal conversion, and a leading “Ox” or “OX” hexade-

cimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an

explicit cast.

If the value represented by str would cause overflow, LONG_MAX or LONG_MIN is

returned (according to the sign of the value), and errno is set to the value, ERANGE.

strtoul is similar to strtol except that strtoul returns as an unsigned long

integer the value represented by str. If the value represented by str would cause over-

flow, ULONG_MAX is returned, and errno is set to the value, ERANGE.

Except for behavior on error, atol(str) is equivalent to: strtol(str, (char

**)NULL, 10).

Except for behavior on error, atoi(str) is equivalent to: (int) strtol(str,

(char **)NULL, 10).

DIAGNOSTICS

If strtol is given a base greater than 36, it returns 0 and sets errno to EINVAL.

SEE ALSO

ctype(3C), scanf(3S), strtod(3C).

NOTES

strtol no longer accepts values greater than LONG_MAX as valid input. Use

strtoul instead.

093-701056 Licensed material—property of copyright holder(s) 3-499

strxfrm(3C) DG/UX 5.4 strxfrm(3C)

NAME

strxfrm - string transformation

SYNOPSIS

#include <string.h>

size_t strxfrm (char *sl, const char +*s2, size_t n);

DESCRIPTION

strxfrm transforms the string s2 and places the resulting string into the array s/.

The transformation is such that if stremp is applied to two transformed strings, it

will return the same result as strcoll applied to the same two original strings. The

transformation is based on the program’s locale for category LC_COLLATE [see

setlocale(3C)].

No more than 7 bytes will be placed into the resulting array pointed to by s1, includ-

ing the terminating null byte. If n is 0, then si is permitted to be a null pointer. If

copying takes place between objects that overlap, the behavior is undefined.

strxfrm returns the length of the transformed string (not including the terminating

null byte). If the value returned is n or more, the contents of the array sJ are indeter-

minate.

EXAMPLE

The value of the following expression is the size of the array needed to hold the

transformation of the string pointed to by s.

FILES

/usr/lib/locale/locale/LC_COLLATE

| LC_COLLATE database for locale.

SEE ALSO

colltb1(1M) in the System Administrator’s Reference Manual.

setlocale(3C), strceoll(3C), string(3C), environ(5).

DIAGNOSTICS .

On failure, strxfrm returns (size_t) -1.

3-500 Licensed material—property of copyright holder(s) 093-701056

swab(3C) DG/UX 8.4 swab(3C)

NAME

swab — swap bytes

SYNOPSIS

#include <stdlib.h>

void swab (const char «from, char +to, int nbytes) ;

DESCRIPTION

swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging

adjacent even and odd bytes. mbytes should be even and non-negative. If nbytes is

odd and positive, swab uses nbytes—1 instead. If nbytes is negative, swab does noth-

ing.

SEE ALSO

beopy(3C).

093-701056 Licensed material—property of copyright hoider(s) 3-501

swapcontext(3C) DG/UX 5.4 swapcontext(3C)

NAME

swapcontext — manipulate user contexts

SYNOPSIS

#include <ucontext.h>

int swapcontext (ucontext_t soucp, ucontext_t s*ucp);

DESCRIPTION

This function is useful for implementing user-level context switching between multiple
threads of control within a process. :

swapcontext saves the current context in the context structure pointed to by oucp

and sets the context to the context structure pointed to by ucp.

This function will fail if either of the following is true:

ENOMEM ucp does not have enough stack left to complete the operation.

EFAULT ucp or oucp points to an invalid address.

SEE ALSO

exit(2), getcontext(2), sigaction(2), sigprocmask(2), ucontext(5).

DIAGNOSTICS

On successful completion, swapcontext return a value of zero. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

NOTES

The size of the ucontext_t structure may change in future releases. To remain
binary compatible, users must always use getcontext to create new instances of
them.

3-502 Licensed material—property of copyright holder(s) 093-701056

sysiog(3C) DG/UX 6.4 sysiog(3C)

NAME

_ syslog, openlog, closelog, setlogmask - control system log

SYNOPSIS

#include <syslog.h>

openlog(ident, logopt, facility)
char *ident;

syslog(level, message, parameters ...)

char *message ;

closelog()

setlogmask(maskpri)

DESCRIPTION

syslog arranges to write message onto the system log maintained by syslogd(1M).

The message is tagged with a priority level. The message looks like a print£(3C)

string except that %m is replaced by the current error message (collected from

errno). A trailing new-line is added if needed. This message will be read by

syslogd(1M) and written to the system console, log files, or forwarded to syslogd

on another host as appropriate.

Priorities are encoded as a facility and a level. The facility describes the part of the

system generating the message. The level is selected from an ordered list:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a

corrupted system database.

LOG_CRIT Critical conditions such as hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but should possibly be

. handled specially.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when
debugging a program.

093-701056

If syslog cannot pass the message to syslogd, it will attempt to write the message

on /dev/console if the LOG_CONS option is set (see below).

If special processing is needed, openlog can be called to initialize the log file. The

parameter ident is a string that is prepended to every message. Logopt is a bit field

indicating logging options. Current values for logopt are:

LOG_PID log the process id with each message: useful for identifying

instantiations of servers (daemons).

LOG_CONS Force writing messages to the console if unable to send it to

syslogd. This option is safe to use in server processes that

have no controlling terminal since syslog will fork before

opening the console.

LOG_NDELAY Open the connection to syslogd immediately. Normally the

open is delayed until the first message is logged. Useful for pro-

grams that need to manage the order in which file descriptors

Licensed material—property of copyright holder(s) 3-503

sysiog(3C) DG/UX 5.4 sysiog(3C)

are allocated.

LOG_NOWAIT Do not wait for child processes forked to log messages on the

console. This option should be used by processes that enable

notification of child termination via SIGCHLD, as syslog

may otherwise block waiting for a child whose exit status has

already been collected.

The facility parameter encodes a default facility to be assigned to all messages that do

not have an explicit facility encoded:

LOG_KERN Messages generated by the kernel. These cannot be generated

. by any user processes.

LOG_USER Messages generated by random user processes. This is the

default facility identifier if none is specified.

LOG_MAIL The mail system.

LOG_DAEMON _ System servers, such as ftpd(1M), etc.

LOG_AUTH The authorization system: login(1), su(1), etc.

LOG_LPR The line printer spooling system: 1p(1), etc.

LOG_LOCALO Reserved for local use. Similarly for LOG_LOCAL 1! through

LOG_LOCAL/7.

Closelog can be used to close the log file.

Setlogmask sets the log priority mask to maskpri and returns the previous mask.

Calls to syslog with a priority not set in maskpri are rejected. The mask for an

individual priority pri is calculated by the macro LOG_MASK(pri); the mask for all

priorities up to and including toppri is given by the macro LOG_UPTO(toppri). The

default allows all priorities to be logged.

EXAMPLES

syslog(LOG_ALERT, "who: internal error 23");

openlog("ftpd", LOG_PID, LOG_DAEMON);

setlogmask(LOG_UPTO(LOG_ERR));

syslog(/LOG_INFO, “Connection from host %d", CallingHost);

syslog(:LOG_INFO|LOG_LOCAL2Z, “foobar error: %m");

SEE ALSO

logger(1), syslogd(1M), syslog. conf(5).

3-504 Licensed material—property of copyright holder(s) 093-701056

system(3S) DG/UX 8.4 system(3S)

NAME

system — issue a shell command

SYNOPSIS
#include <stdlib.h>

int system (const char *string) ;

DESCRIPTION

system causes the string to be given to the shell [see sh(1)] as input, as if the string

had been typed as a command at a terminal. The current process waits until the shell

has completed, then returns the exit status of the shell in the format specified by

waitpid.

If string is a NULL pointer, system checks if /sbin/sh exists and is executable. If
/sbin/sh is available, system returns non-zero; otherwise it returns zero.

system fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under execu-

tion by a single user would be exceeded.

EINTR system was interupted by a signal.

ENOMEM The new process requires more memory than is allowed by the system-

imposed maximum MAXMEM.

SEE ALSO

exec(2), waitpid(3C).

sh(1) in the User’s Reference Manual.

DIAGNOSTICS

system forks to create a child process that in turn calls exec to execute /sbin/sh.

This shell then executes string. If the fork or exec fails, system returns a value of -1

and sets errno.

093-701056 Licensed material—property of copyright holder(s) 3-505

sysv3_cuserid(3S) DG/UX 5.4 sysv3_cuserid(3S)

-NAME

sysv3_cuserid — get character login name of the user

SYNOPSIS

#include <stdio.h>

char *sysv3_cuserid (s)

char #5;

DESCRIPTION

The function sysv3_cuserid generates a character-string representation for the

login name of the owner of the current process. If s is a NULL pointer, this

representation is generated in an internal static area, the address of which is returned.

Otherwise, s is assumed to point to an array of at least L_cuserid characters; the

representation is left in this array. The constant L_cuserid is defined in the

<stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, sysv3_cuserid returns a NULL pointer; if s is

not a NULL pointer, a null character (\0) will be placed at s/0/.

SEE ALSO

cuserid(3S), getlogin(3C), getpwent(3C).

3-506 Licensed material—property of copyright holder(s) 093-701056

tLaccept(3N) DG/UX &.4 t_accept(SN)

NAME

t_accept — accept a connect request

SYNOPSIS

#include <tiuser.h>

int t_accept (int fd, int resfd, struct t_call +*call);

DESCRIPTION

This function is issued by a transport user to accept a connect request. fd identifies

the local transport endpoint where the connect indication arrived, resfd specifies

the local transport endpoint where the connection is to be established, and call

contains information required by the transport provider to complete the connection.

_ call points to a t_call structure that contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

netbuf is described in intro(3). In call, addr is the address of the caller, opt

indicates any protocol-specific parameters associated with the connection, udata

points to any user data to be returned to the caller, and sequence is the value

returned by t_listen that uniquely associates the response with a previously

received connect indication.

A transport user may accept a connection on either the same, or on a different, local

transport endpoint from the one on which the connect indication arrived. If the same

endpoint is specified (i.e., resfd=fd), the connection can be accepted unless the

following condition is true: The user has received other indications on that endpoint

but has not responded to them (with t_accept or t_snddis). For this condition,

t_accept will fail and set t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint must be

bound to a protocol address and must be in the T_IDLE state [see t_getstate(3N)]

before the t_accept is issued.

- For both types of endpoints, t_accept will fail and set t_errno to TLOOK if there

are indications (e.g., a connect or disconnect) waiting to be received on that end-

point.

The values of parameters specified by opt and the syntax of those values are proto-

col specific. The udata argument enables the called transport user to send user data

to the caller and the amount of user data must not exceed the limits supported by the

transport provider as returned in the connect field of the info argument of

t_open or t_getinfo. If the len [see netbuf in intro(3)] field of udata is

zero, no data will be sent to the caller.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

093-701056

point, or the user is illegally accepting a connection on the same

transport endpoint on which the connect indication arrived.

[TOUTSTATE] The function was issued in the wrong sequence on the transport

endpoint referenced by fd, or the transport endpoint referred to

by resfd is not in the T_IDLE state.

Licensed material—property of copyright hoider(s) 3-507

tLaccept(3N)

[TACCES]

[{TBADOPT]

[TBADDATA]

(TBADSEQ]

[TLOOK]

(TNOTSUPPORT]

[TSYSERR]

SEE ALSO

DG/UX 5.4 taccept(3N)

The user does not have permission to accept a connection on the

responding transport endpoint or use the specified options.

The specified options were in an incorrect format or contained

illegal information.

The amount of user data specified was not within the bounds

allowed by the transport provider.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport endpoint

referenced by fd and requires immediate attention.

This function is not supported by the underlying transport pro-

vider.

A system error has occurred during execution of this function.

intro(3), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N),

t_revconnect(3N).

UNLX System V Network Programmer’s Guide.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is

returned and t_errno is set to indicate the error.

3-508 Licensed material—property of copyright hoider(s) 093-701056

talloc(3N) DG/UX 6.4 tLalloc(3N)

NAME

t_alloc - allocate a library structure

SYNOPSIS

#include <tiuser.h>

char *t_alloc(fd, struct_type, fields)

int fd;

int struct type;

int fields;

DESCRIPTION

The t_alloc function dynamically allocates memory for the various transport func-

tion argument structures as specified below. This function will allocate memory for

the specified structure, and will also allocate memory for buffers referenced by the

structure.

The structure to allocate is specified by struct_type, and can be one of the follow-

ing:

T_ BIND struct t_bind

T CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or

more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type

struct netbuf. netbuf is described in intro(3). For each field of this type,

the user may specify that the buffer for that field should be allocated as well. The

fields argument specifies this option, where the argument is the bitwise-OR of any

of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata, or t_uderr

structures.

T OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr

structures. :

T_UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

TALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the buffer

associated with the field, and initialize the buf pointer and maxlen [see netbuf in

intro(3) for description of buf and maxlen] field accordingly. The length of the

buffer allocated will be based on the same size information that is returned to the

user on t_open and t_getinfo. Thus, fd must refer to the transport endpoint

through which the newly allocated structure will be passed, so that the appropriate

size information can be accessed. If the size value associated with any specified field

is -1 or -2 (see t_open or t_getinfo), t_alloc will be unable to determine the

size of the buffer to allocate and will fail, setting t_errno to TSYSERR and errno

093-701056 Licensed material—property of copyright holder(s) 3-509

t_alloc(3N) DG/UX 5.4 t_alloc(3N)

to EINVAL. For any field not specified in fields, buf will be set to NULL and

maxlen will be set to zero.

Use of t_alloc to allocate structures will help ensure the compatibility of user pro-

grams with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_free(3N), t_getinfo(3N), t_open(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

On successful completion, t_alloc returns a pointer to the newly allocated struc-

ture. On failure, NULL is returned.

3-51 0 Licensed material—property of copyright hoider(s) 093-701056

tbind(3N) DG/UX 5.4 t_bind(SN)

NAME

t_bind - bind an address to a transport endpoint

SYNOPSIS

#include <tiuser.h>

int t_bind (fd, req, ret)

int fd;

struct t_bind *req;

struct t_bind *ret;

DESCRIPTION

This function associates a protocol address with the transport endpoint specified by

fd and activates that transport endpoint. In connection mode, the transport provider

may begin accepting or requesting connections on the transport endpoint. In connec-

tionless mode, the transport user may send or receive data units through the transport

endpoint.

The req and ret arguments point to a t_bind structure containing the following

members:

struct netbuf addr;

unsigned qlen;

netbuf is described in intro(3). The addr field of the t_bind structure specifies

a protocol address and the qlen field is used to indicate the maximum number of

outstanding connect indications.

req is used to request that an address, represented by the netbuf structure, be

bound to the given transport endpoint. len [see netbuf in intro(3); also for

buf and maxlen| specifies the number of bytes in the address and buf points to the

address buffer. maxlen has no meaning for the req argument. On return, ret

contains the address that the transport provider actually bound to the transport end-

point; this may be different from the address specified by the user in req. In ret,

the user specifies maxlen, which is the maximum size of the address buffer, and

buf, which points to the buffer where the address is to be placed. On return, len

specifies the number of bytes in the bound address and buf points to the bound

address. If maxlen is not large enough to hold the returned address, an error will

result.

If the requested address is not available, or if no address is specified in req (the

len field of addr in req is zero) the transport provider may assign an appropriate

address to be bound, and will return that address in the addr field of ret. The user

can compare the addresses in req and ret to determine whether the transport pro-

vider bound the transport endpoint to a different address than that requested.

req may be NULL if the user does not wish to specify an address to be bound. Here,

the value of qlen is assumed to be zero, and the transport provider must assign an

address to the transport endpoint. Similarly, ret may be NULL if the user does not

care what address was bound by the provider and is not interested in the negotiated

value of qlen. It is valid to set req and ret to NULL for the same call, in which

case the provider chooses the address to bind to the transport endpoint and does not

return that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It

specifies the number of outstanding connect indications the transport provider should

support for the given transport endpoint. An outstanding connect indication is one

that has been passed to the transport user by the transport provider. A value of

093-701056 Licensed material—property of copyright holder(s) 3-51 1

t_bind(3N) DG/UX 5.4 t_bind(SN)

qlen greater than zero is only meaningful when issued by a passive transport user that
expects other users to call it. The vaiue of qlen will be negotiated by the transport
provider and may be changed if the transport provider cannot support the specified
number of outstanding connect indications. On return, the qlen field in ret will
contain the negotiated value.

This function allows more than one transport endpoint to be bound to the same pro-
tocol address (however, the transport provider must support this capability also), but
it is not allowable to bind more than one protocol address to the same transport end-
point. If a user binds more than one transport endpoint to the same protocol
address, only one endpoint can be used to listen for connect indications associated
with that protocol address. In other words, only one t_bind for a given protocol

. address may specify a value of qlen greater than zero. In this way, the transport
provider can identify which transport endpoint should be notified of an incoming con-
nect indication. If a user attempts to bind a protocol address to a second transport
endpoint with a value of qlen greater than zero, the transport provider will assign
another address to be bound to that endpoint. If a user accepts a connection on the
transport endpoint that is being used as the listening endpoint, the bound protocol
address will be found to be busy for the duration of that connection. No other tran-
sport endpoints may be bound for listening while that initial listening endpoint is in
the data transfer phase. This will prevent more than one transport endpoint bound to
the same protocol address from accepting connect indications.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-
point.

[TOUTSTATE] The function was issued in the wrong sequence.

[TBADADDR] The specified protocol address was in an incorrect format or
contained illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified address.

[TBUFOVFLW] The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The provider’s
state will change to T_IDLE and the information to be returned

in ret will be discarded.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), topen(3N), t_optmgmt(3N), t_unbind(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_bind returns 0 on success and —1 on failure and t_errno is set to indicate the

error.

3-51 2 Licensed material—property of copyright holder(s) 093-701056

t_close(3N) DG/UX 5.4 tclose(3N)

NAME

t_close — close a transport endpoint

SYNOPSIS

#include <tiuser.h>

int t_close(fd)

int fd;

DESCRIPTION

The t_close function informs the transport provider that the user is finished with
the transport endpoint specified by fd, and frees any local library resources associ-
ated with the endpoint. In addition, t_close closes the file associated with the tran-
sport endpoint.

t_close should be called from the T_UNBND state [see t_getstate(3N)]. How-

ever, this function does not check state information, so it may be called from any
State to close a transport endpoint. If this occurs, the local library resources associ-

ated with the endpoint will be freed automatically. In addition, close(2) will be
issued for that file descriptor; the close will be abortive if no other process has that
file open, and will break any transport connection that may be associated with that
endpoint.

On failure, t_errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

SEE ALSO

t_getstate(3N), t.open(3N), tLunbind(3N).

UNIX System V Network Programmer's Guide.

DIAGNOSTICS

093-701056

t_close returns 0 on success and -1 on failure and t_errno is set to indicate the

error.

Licensed material—property of copyright holder(s) 3-51 3

t_connect(3N) DG/UX 5.4 t_connect(3N)

NAME

t_connect -— establish a connection with another transport user

SYNOPSIS

#include <tiuser.h>

int t_connect(fd, sndcall, revcall)

int fd;

struct t_call *sndcall;

struct t_call *revceall;

DESCRIPTION

This function enables a transport user to request a connection to the specified desti-

nation transport user. fd identifies the local transport endpoint where communica-

tion will be established, while sndcall and revcall point to a t_call1 structure

that contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

sndcall specifies information needed by the transport provider to establish a con-

nection and rcevcall specifies information that is associated with the newly esta-

blished connection.

netbuf is described in intro(3). In sndcall, addr specifies the protocol address

of the destination transport user, opt presents any protocol-specific information that

might be needed by the transport provider, udata points to optional user data that

may be passed to the destination transport user during connection establishment, and

sequence has no meaning for this function. °

On return in reveall, addr returns the protocol address associated with the

responding transport endpoint, opt presents any protocol-specific information asso-

ciated with the connection, udata points to optional user data that may be returned

by the destination transport user during connection establishment, and sequence has

no meaning for this function.

The opt argument implies no structure on the options that may be passed to the

transport provider. The transport provider is free to specify the structure of any

options passed to it. These options are specific to the underlying protocol of the

transport provider. The user may choose not to negotiate protocol options by setting

the len field of opt to zero. In this case, the provider may use default options.

The udata argument enables the caller to pass user data to the destination transport

user and receive user data from the destination user during connection establishment.

However, the amount of user data must not exceed the limits supported by the tran-

sport provider as returned in the connect field of the info argument of

t_open(3N) or t_getinfo(3N). If the len [see netbuf in intro(3)] field of

udata is zero in sndcall, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of revcall1 will be updated to reflect

values associated with the connection. Thus, the maxlen [see netbuf in intro(3)]

field of each argument must be set before issuing this function to indicate the max-

imum size of the buffer for each. However, revcall may be NULL, in which case

‘no information is given to the user on return from t_connect.

3-51 4 Licensed material—property of copyright holder(s) 093-701056

t.eonnect(3N) DG/UX 5.4. t.connect(3N)

By default, t_connect executes in synchronous mode, and will wait for the destina-

tion user’s response before returning control to the local user. A successful return

(i.e., return value of zero) indicates that the requested connection has been esta-

blished. However, if O_NDELAY or O_NONBLOCK is set (via t_open or fentl),

t_connect executes in asynchronous mode. In this case, the call will not wait for

the remote user’s response, but will return control immediately to the local user and

return -1 with t_errno set to TNODATA to indicate that the connection has not yet

been established. In this way, the function simply initiates the connection establish-

ment procedure by sending a connect request to:the destination transport user.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TNODATA]

[TBADADDR]

[TBADOPT]

[TBADDATA]

[ACCES]

eo

{ TBUFOVFLW]

{TLOOK]

[TNOTSUPPORT]

(TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a transport end-

point.

The function was issued in the wrong sequence.

O_NDELAY or O_NONBLOCK was set, so the function successfully

initiated the connection establishment procedure, but did not

wait for a response from the remote user.

The specified protocol address was in an incorrect format or

contained illegal information.

The specified protocol options were in an incorrect format or

contained illegal information.

The amount of user data specified was not within the bounds

allowed by the transport provider.

The user does not have permission to use the specified address

or options.

The number of bytes allocated for an incoming argument is not

sufficient to store the value of that argument. If executed in syn-

chronous mode, the provider’s state, as seen by the user,

changes to T_DATAXFER, and the connect indication information

to be returned in rcevcall is discarded.

An asynchronous event has occurred on this transport endpoint

and requires immediate attention.

This function is not supported by the underlying transport pro-

vider.

A system error has occurred during execution of this function.

intro(3), t_accept(3N), t_getinfo(3N), t_listen(3N), t_open(3N),

t_optmgmt(3N), t_rcvconnect(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_connect returns 0 on success and —1 on failure and t_errno is set to indicate the

error.

093-701056 Licensed material—property of copyright holder(s) 3-51 5

tlerror(3N) DG/UX 5.4 tLerror(3N)

NAME

t_error — produce error message

SYNOPSIS

#include <tiuser.h)>

void t_error(errmsg)

char *errmsg;

extern int t_errno;

extern char *t_errlist[];

extern int t_nerr;

DESCRIPTION

t_error produces a message on the standard error output which describes the last

error encountered during a call to a transport function. The argument string errmsg

is a user-supplied error message that gives context to the error.

t_error prints the user-supplied error message followed by a colon and the standard

transport function error message for the current value contained in t_errno. If

t_errno is TSYSERR, t_error will also print the standard error message for the

current value contained in errno [see intro(2)].

t_errlist is the array of message strings, to allow user message formatting.

t_errno can be used as an index into this array to retrieve the error message string

(without a terminating newline). +t_nerr is the maximum index value for the

t_errlist array. |

t_errno is set when an error occurs and is not cleared on subsequent successful

calls.

EXAMPLE

If a t_connect function fails on transport endpoint £d2 because a bad address was

given, the following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address format

where “t_connect failed on fd2”’ tells the user which function failed on which tran-

sport endpoint, and “Incorrect transport address format” identifies the specific error

that occurred.

SEE ALSO

3-516

t_alloc(3N).

UNIX System V Network Programmer’s Guide.

Licensed material—property of copyright holder(s) 093-701056

tfree(3N) DG/UX 5.4 t_free(SN)

NAME

t_free -— free a library structure

SYNOPSIS

#include <tiuser.h>

int t_free(ptr, struct_type)

char *ptr;

int struct _type;

DESCRIPTION

The t_free function frees memory previously allocated by t_alloc. This function

will free memory for the specified structure, and will also free memory for buffers

referenced by the structure.

ptr points to one of the six structure types described for t_alloc, and

struct_type identifies the type of that structure, which can be one of the following:

T BIND struct t_bind

T CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is used as an argument to one or more transport func-

tions. .

t_free will check the addr, opt, and udata fields of the given structure (as

appropriate), and free the buffers pointed to by the buf field of the netbuf [see

intro(3)] structure. If buf is NULL, t_free will not attempt to free memory.

After all buffers are freed, t_free will free the memory associated with the struc-

ture pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of

memory that was not previously allocated by t_alloc.

On failure, t_errno may be set to the following:

(TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_alloc(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_free returns 0 on success and —1 on failure and t_errno is set to indicate the

error. |

093-701056 Licensed material—property of copyright hoider(s) 3-51 7

tgetinfo(3N)

NAME

DG/UX 5.4 tgetinfo(3N)

t_getinfo - get protocol-specific service information

SYNOPSIS

#finclude <tiuser.h>

int t_getinfo(fd, info)

int fd;

struct t_info *info;

DESCRIPTION . |

This function returns the current characteristics of the underlying transport protocol

associated with file descriptor fd. The info structure is used to return the same

information returned by t_open. This function enables a transport user to access

this information during any phase of communication.

This argument points to a t_info structure, which contains the following members:

long

long

long

long

long

long

long

addr; /* max size of the transport protocol address */

options;/* max number of bytes of protocol-specific options */

tsdu; /* max size of a transport service data unit (TSDU) */

etsdu; /* max size of an expedited transport service data unit (ETSDU) */

connect; /* max amount of data allowed on connection establishment functions */

discon; /* max amount of data allowed on t_snddis and t_revdis functions */

servtype ;/* service type supported by the transport provider */

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size of a

transport protocol address; a value of —1 specifies that there is no

- limit on the address size; and a value of —2 specifies that the transport

provider does not provide user access to transport protocol addresses.

options A value greater than or equal to zero indicates the maximum number

tsdu

of bytes of protocol-specific options supported by the provider; a

value of —1 specifies that there is no limit on the option size; and a

value of -2 specifies that the transport provider does not support

user-settable options.

A value greater than zero specifies the maximum size of a transport

service data unit (TSDU); a value of zero specifies that the transport

provider does not support the concept of TSDU, although it does sup-

port the sending of a data stream with no logical boundaries preserved

across a connection; a value of —1 specifies that there is no limit on

the size of a TSDU; and a value of -2 specifies that the transfer of

normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited

transport service data unit (ETSDU); a value of zero specifies that the

transport provider does not support the concept of ETSDU, although it

does support the sending of an expedited data stream with no logical

boundaries preserved across a connection; a value of —1 specifies that

there is no limit on the size of an ETSDU; and a value of —2 specifies

that the transfer of expedited data is not supported by the transport

provider.

connect A value greater than or equal to zero specifies the maximum amount

3-518

of data that may be associated with connection establishment

Licensed material—property of copyright hoider(s) 093-701056

t.getinfo(3N)

discon

servtype

DG/UX 5.4 tgetinfo(SN)

functions; a value of -1 specifies that there is no limit on the amount

of data sent during connection establishment; and a value of —2 speci-

fies that the transport provider does not al'ow data to be sent with

connection establishment functions.

A value greater than or equal to zero specifies the maximum amount

of data that may be associated with the t_snddis and t_rcevdis

functions; a value of —1 specifies that there is no limit on the amount

of data sent with these abortive release functions; and a value of —2

specifies that the transport provider does not allow data to be sent

with the abortive release functions.

This field specifies the service type supported by the transport pro-

vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be

accessed to determine how large the buffers must be to hold each piece of informa-

tion. Alternatively, the t_alloc function may be used to allocate these buffers. An

error will result if a transport user exceeds the allowed data size on any function. The

value of each field may change as a result of option negotiation, and t_getinfo

enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following values on return: _

T COTS

T COTS ORD

T CLTS

The transport provider supports a connection-mode service but does

not support the optional orderly release facility.

The transport provider supports a connection-mode service with the

optional orderly release facility.

The transport provider supports a connectionless-mode service. For

this service type, t_open will return —2 for etsdu, connect, and

discon.

On failure, t_errno may be set to one of the following:

(TBADF]

([TSYSERR]

SEE ALSO

t_open(3N).

The specified file descriptor does not refer to a transport endpoint.

A system error has occurred during execution of this function.

UNIX System V Network Programmer's Guide.

DIAGNOSTICS

t_getinfo returns 0 on success and —1 on failure and t_errno is set to indicate the

error.

093-701056 Licensed material—property of copyright holder(s) 3-5 1 9

t_getstate(3N) DG/UX 5.4 tgetstate(3N)

NAME

t_getstate -— get the current state

SYNOPSIS

#include <tiuser.h)>

int t_getstate(fd)

int fd;

DESCRIPTION

The t_getstate function returns the current state of the provider associated with
the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TSTATECHNG] The transport provider is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this function.

- SEE ALSO

t_open(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_getstate returns the current state on successful completion and -1 on failure and

t_errno Is set to indicate the error. The current state may be one of the following:

T_UNBND unbound

T IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly release indication)

T INREL incoming orderly release (waiting for an orderly release request) |

If the provider is undergoing a state transition when t_getstate is called, the func-

tion will fail.

3-520 Licensed material—property of copyright holder(s) 093-701056

tlisten(3N) DG/UX 8.4 tlisten(SN)

NAME

t_listen — listen for a connect request

SYNOPSIS

#include <tiuser.h>

int t_listen(fd, call)

int fd;

struct t_call «call;

DESCRIPTION

This function listens for a connect request from a calling transport user. fd identi-
fies the local transport endpoint where connect indications arrive, and on return,
call contains information describing the connect indication. call points to a

t_call structure, which contains the following members:

struct netbuf addr;

truct netbuf opt;

struct netbuf udata;

int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address of

the calling transport user, opt returns protocol-specific parameters associated with
the connect request, udata returns any user data sent.by the caller on the connect
request, and sequence is a number that uniquely identifies the returned connect

indication. The value of sequence enables the user to listen for multiple connect
indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call, the
maxlen [see netbuf in intro(3)] field of each must be set before issuing
t_listen to indicate the maximum size of the buffer for each.

By default, t_listen executes in synchronous mode and waits for a connect indica-

tion to arrive before returning to the user. However, if 0 NDELAY or 0 NONBLOCK
is set (via t_open or fcntl), t_listen executes asynchronously, reducing to a

poll for existing connect indications. If none are available, it returns —1 and sets

- t_errno to TNODATA.

093-701056

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

(TBUFOVFLW] The number of bytes allocated for an incoming argument is not

sufficient to store the value of that argument. The provider’s

state, as seen by the user, changes to T_INCON, and the con-

nect indication information to be returned in call is dis-

carded.

[TNODATA] O_NDELAY or O_NONBLOCK was set, but no connect indications

had been queued.

[TLOOK] An asynchronous event has occurred on this transport endpoint

and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

Licensed material—property of copyright holder(s) 3-521

tisten(3N) | _ DG/UX §.4 tlisten(3N)

CAVEATS

If a user issues t_listen in synchronous mode on a transport endpoint that was not
bound for listening (i.e., qlen was zero on t_bind), the call will wait forever
because no connect indications will arrive on that endpoint.

SEE ALSO

intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_revconnect(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_listen returns 0 on success and -1 on failure and t_errno is set to indicate the

error.

3-522 Licensed material—property of copyright holder(s) 093-701056

tlook(3N) DG/UX 8.4 t_Jook(SN)

NAME

t_look - look at the current event on a transport endpoint

SYNOPSIS

#include <tiuser.h>

int t_look(fd)

int fd;

DESCRIPTION

This function returns the current event on the transport endpoint specified by fd.

This function enables a transport provider to notify a transport user of an asynchro-

nous event when the user is issuing functions in synchronous mode. Certain events

require immediate notification of the user and are indicated by a specific error,

TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodically

for asynchronous events.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

t_open(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

Upon success, t_look returns a value that indicates which of the allowable events

has occurred, or returns zero if no event exists. One of the following events is

returned:

T LISTEN connection indication received

T CONNECT connect confirmation received

T DATA normal data received

- ‘T_EXDATA expedited data received

T DISCONNECT disconnect received

T_UDERR | datagram error indication

T_ORDREL orderly release indication

On failure, -1 is returned and t_errno is set to indicate the error.

093-701056 Licensed material—property of copyright holder(s) 3-523

t_open(3N) DG/UX 5.4 tLopen(3N)

NAME

t_open — establish a transport endpoint

SYNOPSIS

#include <tiuser.h>

#include <fcntl.h>

int t_open (char path, int oflag, struct t_info xinfo);

DESCRIPTION |

3-524

t_open must be called as the first step in the initialization of a transport endpoint.

This function establishes a transport endpoint by opening a UNIX file that identifies a

particular transport provider (i.e., transport protocol) and returning a file descriptor

that identifies that endpoint. For example, opening the file /dev/iso_cots identi-

fies an OSI connection-oriented transport layer protocol as the transport provider.

path points to the path name of the file to open, and oflag identifies any open flags

[as in open(2)]. oflag may be constructed from O_NDELAY or O_NONBLOCK OR-

ed with O_RDWR. These flags are defined in the header file <fcentl.h>. t_open

returns a file descriptor that will be used by all subsequent functions to identify the

particular local transport endpoint.

This function also returns various default characteristics of the underlying transport

protocol by setting fields in the t_info structure. This argument points to a

t_info which contains the following members:

long addr; /* max size of the transport protocol address */

long options;/* max number of bytes of protocol-specific options */

long tsdu; /* max size of a transport service data unit (TSDU) */

long etsdu; /* max size of an expedited transport service data unit (ETSDU) */

long connect; /* max amount of data allowed on connection establishment functions */

long discon; /* max amount of data allowed on t_snddis and t_rcvdis functions */

long servtype;/* service type supported by the transport provider */

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size of a

transport protocol address; a value of —1 specifies that there is no

limit on the address size; and a value of -2 specifies that the transport

provider does not provide user access to transport protocol addresses.

options A value greater than or equal to zero indicates the maximum number

of bytes of protocol-specific options supported by the provider; a

value of —1 specifies that there is no limit on the option size; and a

value of —2 specifies that the transport provider does not support

user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport

service data unit (TSDU); a value of zero specifies that the transport

provider does not support the concept of TSDU, although it does sup-

port the sending of a data stream with no logical boundaries preserved

across a connection; a value of —1 specifies that there is no limit on

the size of a TSDU; and a value of —2 specifies that the transfer of

normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited

transport service data unit (ETSDU); a value of zero specifies that the

transport provider does not support the concept of ETSDU, although it

Licensed material—property of copyright holder(s) 093-701056

t.open(SN)

connect

discon

servtype

DG/UX §.4 topen(SN)

does support the sending of an expedited data stream with no logical

boundaries preserved across a connection; a value of —1 specifies that

there is no limit on the size of an ETSDU; and a value of -2 «vecifies

that the transfer of expedited data is not supported by the transport

provider.

A value greater than or equal to zero specifies the maximum amount

of data that may be associated with connection establishment func-

tions; a value of -1 specifies that there is no limit on the amount of

data sent during connection establishment; and a value of -2 specifies

that the transport provider does not allow data to be sent with connec-

tion establishment functions.

A value greater than or equal to zero specifies the maximum amount

of data that may be associated with the t_snddis and t_revdis

functions; a value of -1 specifies that there is no limit on the amount

of data sent with these abortive release functions; and a value of -—2

specifies that the transport provider does not allow data to be sent

with the abortive release functions.

This field specifies the service type supported by the transport pro-

vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be

accessed to determine how large the buffers must be to hold each piece of informa-

tion. Alternatively, the t_alloc function may be used to allocate these buffers. An

error will result if a transport user exceeds the allowed data size on any function.

The servtype field of info may specify one of the following values on return:

T COTS The transport provider supports a connection-mode service but does

not support the optional orderly release facility.

T_ COTS ORD The transport provider supports a connection-mode service with the

T CLTS

optional orderly release facility.

The transport provider supports a connectionless-mode service. For

this service type, t_open will return -—2 for etsdu, connect, and

discon.

A single transport endpoint may support only one of the above services at one time.

If info is set tou by the transport user, no protocol information is returned by

t_open.

On failure, t_errno may be set to the following:

[TSYSERR]

[TBADFLAG]

SEE ALSO

open(2).

A system error has occurred during execution of this function.

An invalid flag is specified.

UNLX System V Network Programmer’s Guide.

DIAGNOSTICS

t_open returns a valid file descriptor on success and -1 on failure and t_errno is

set to indicate the error.

093-701056 Licensed material—property of copyright hoider(s) 3-525

toptmgmt(3N) DG/UX 5.4 toptmgmt(3N)

NAME

t_optmgmt — manage options for a transport endpoint

SYNOPSIS

#include <tiuser.h>

int t_optmgmt (int fd, struct t_optmgmt *req, struct t_optmgmt *ret);

DESCRIPTION

The t_optmgmt function enables a transport user to retrieve, verify, or negotiate

protocol options with the transport provider. fd identifies a bound transport end-

point. |

The req and ret arguments point to a t_optmgmt structure containing the follow-

ing members:

struct netbuf opt;

long flags;

The opt field identifies protocol options and the flags field is used to specify the

action to take with those options.

The options are represented by a netbuf [see intro(3); also for len, buf, and

maxlen] structure in a manner similar to the address in t_bind. req is used to

request a specific action of the provider and to send options to the provider. len

specifies the number of bytes in the options, buf points to the options buffer, and

_ maxlen has no meaning for the req argument. The transport provider may return

options and flag values to the user through ret. For ret, maxlen specifies the

maximum size of the options buffer and buf points to the buffer where the options

are to be placed. On return, len specifies the number of bytes of options returned.

maxlen has no meaning for the req argument, but must be set in the ret argument

to specify the maximum number of bytes the options buffer can hold. The actual

structure and content of the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T NEGOTIATE This action enables the user to negotiate the values of the options

specified in req with the transport provider. The provider will

evaluate the requested options and negotiate the values, returning the

negotiated values through ret.

T_ CHECK This action enables the user to verify whether the options specified in

req are supported by the transport provider. On return, the flags

field of ret will have either T_ SUCCESS or T_FAILURE set to indi-

cate to the user whether the options are supported. These flags are

only meaningful for the T_CHECK request.

T DEFAULT This action enables a user to retrieve the default options supported

by the transport provider into the opt field of ret. In req, the

len field of opt must be zero and the buf field may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt may block due to

flow control constraints. The function will not complete until the transport provider

has processed all previously sent data units.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

3-526 Licensed material—property of copyright hoider(s) 093-701056

t.optmgmt(SN)

[TOUTSTATE]

(TACCES]

[TBADOPT]

(TBADFLAG]

(TBUFOVFLW]

(TSYSERR]

SEE ALSO

DG/UX 6.4 tLoptmgmt(3N)

The function was issued in the wrong sequence.

The user does not have permission to negotiate the specified

options.

The specified protocol options were in an incorrect format or

contained illegal information.

An invalid flag was specified. |

The number of bytes allowed for an incoming argument is not

sufficient to store the value of that argument. The information

to be returned in ret will be discarded.

A system error has occurred during execution of this function.

intro(3), t_getinfo(3N), t_open(3N).

UNLX System V Network Programmer’s Guide.

DIAGNOSTICS

t_optmgmt returns 0 on success and —1 on failure and t_errno is set to indicate the

error.

093-701056 Licensed material—property of copyright holder(s) 3-527

trev(3N) DG/UX 5.4 | trev(3N)

NAME

t_rev — receive data or expedited data sent over a connection

SYNOPSIS

int t_rev (int fd, char «buf, unsigned nbytes, int *flags);

DESCRIPTION

This function receives either normal or expedited data. fd identifies the local tran-
sport endpoint through which data will arrive, buf points to a receive buffer where
user data will be placed, and nbytes specifies the size of the receive buffer. flags
may be set on return from t_rev and specifies optional flags as described below.

By default, t_rcev operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O_NDELAY or 0_NONBLOCK is set (via
t_open or fentl), t_rev will execute in asynchronous mode and will fail if no data
is available. (See TNODATA below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more
data and the current transport service data unit (TSDU) or expedited transport service
data unit (ETSDU) must be received in multiple t_rcv calls. Each t_rev with the
T_MORE flag set indicates that another t_rcv must follow to get more data for the
current TSDU. The end of the TSDU is identified by the return of a t_rcv call with

the T_MORE flag not set. If the transport provider does not support the concept of a
TSDU as indicated in the info argument on return from t_open or t_getinfo, the
T_MORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T EXPEDITED is set in flags. If
the number of bytes of expedited data exceeds nbytes, t_rev will set
T_EXPEDITED and T_MORE on return from the initial call. Subsequent calls to

retrieve the remaining ETSDU will have T_EXPEDITED set on return. The end of the
ETSDU is identified by the return of a t_rcv call with the T_MORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed. Only
after the full ETSDU has been retrieved (T_MORE not set) will the remainder of the
TSDU be available to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TNODATA] O_NDELAY or O_NONBLOCK was set, but no data is currently

available from the transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint

and requires immediate attention.

[INOTSUPPORT] _ This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO .

t_open(3N), t_snd(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

On successful completion, t_rev returns the number of bytes received, and it
returns —1 on failure and t_errno is set to indicate the error.

3-528 Licensed material—property of copyright holder(s) 093-701056

treveonnect(3N) DG/UX 6.4 trevconnect(3N)

NAME

t_revconnect — receive the confirmation from a connect request

SYNOPSIS

#include <tiuser.h>

int t_rcevconnect (int fd, struct t_call «call);

DESCRIPTION

This function enables a calling transport user to determine the status of a previously
sent connect request and is used in conjunction with t_connect to establish a con-

nection in asynchronous mode. The connection will be established on successful

completion of this function.

fd identifies the local transport endpoint where communication will be established,
and call contains information associated with the newly established connection.

call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address

associated with the responding transport endpoint, opt presents any protocol-specific
information associated with the connection, udata points to optional user data that
may be returned by the destination transport user during connection establishment,

and sequence has no meaning for this function.

The maxlen [see netbuf in intro(3)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each. However,

call may be NULL, in which case no information is given to the user on return from

t_revconnect. By default, t_rcvconnect executes in synchronous mode and

waits for the connection to be established before returning. On return, the addr,

opt, and udata fields reflect values associated with the connection.

If O_NDELAY or O_NONBLOCK is set (via t_open or fentl), t_revconnect exe-
cutes in asynchronous mode, and reduces to a poll for existing connect confirmations.

_ If none are available, t_rcvconnect fails and returns immediately without waiting

093-701056

for the connection to be established. (See TNODATA below.) +t _revconnect must
be re-issued at a later time to complete the connection establishment phase and

retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-
point.

[TBUFOVFLW] The number of bytes allocated for an incoming argument is not

sufficient to store the value of that argument and the connect

information to be returned in call will be discarded. The

provider’s state, as seen by the user, will be changed to

DATAXFER.

[TNODATA] O_NDELAY or O_NONBLOCK was set, but a connect confirmation

has not yet arrived.

[TLOOK] An asynchronous event has occurred on this transport connec-

tion and requires immediate attention.

Licensed material—property of copyright holder(s) 3-529

trevconnect(3N) DG/UX 5.4 trevconnect(3N)

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] _ A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_listen(3N),

t_open(3N).

UNIX System V Network Programmer's Guide.

DIAGNOSTICS

t_revconnect returns 0 on success and -1 on failure and t_errno is set to indicate

the error.

3-530 Licensed material—property of copyright holder(s) 093-701056

trevdis(3N) DG/UX 5.4 trevdis(SN)

NAME

t_revdis — retrieve information from disconnect

SYNOPSIS

#include <tiuser.h>

t_revdis (int fd, struct t_discon *discon) ;

DESCRIPTION |

This function is used to identify the cause of a disconnect, and to retrieve any user

data sent with the disconnect. fd identifies the local transport endpoint where the

connection existed, and discon points to a t_discon structure containing the fol-

lowing members:

struct netbuf udata;

int reason;

int sequence;

netbuf is described in intro(3). reason specifies the reason for the disconnect

through a protocol-dependent reason code, udata identifies any user data that was

sent with the disconnect, and sequence may identify an outstanding connect indica-

tion with which the disconnect is associated. sequence is only meaningful when

t_revdis is issued by a passive transport user who has executed one or more

t_listen functions and is processing the resulting connect indications. If a discon-

nect indication occurs, sequence can be used to identify which of the outstanding

connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value

of reason or sequence, discon may be NULL and any user data associated with

the disconnect will be discarded. However, if a user has retrieved more than one out-
standing connect indication (via t_listen) and discon is NULL, the user will be

unable to identify which connect indication the disconnect is associated with.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer toa transport end-
point.

[TNODIS] No disconnect indication currently exists on the specified tran-

sport endpoint.

[TBUFOVFLW] The number of bytes allocated for incoming data is not suffi-
cient to store the data. The provider’s state, as seen by the

user, will change to T_IDLE, and the disconnect indication

information to be returned in discon will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

093-701056 Licensed material—property of copyright holder(s) 3-531

t_revdis(3N) DG/UX 5.4 t_revdis(3N)

SEE ALSO

intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N).

UNIX System V Network Programmer's Guide.

DIAGNOSTICS

t_revdis returns 0 on success and ~1 on failure and t_errno is set to indicate the

error.

3-532 Licensed material—property of copyright holder(s) 093-701056

trovrel(3N) DG/UX 8.4 trovrei(3N)

NAME

t_revrel — acknowledge receipt of an orderly release indication

SYNOPSIS

#include <tiuser.h>

t_revrel (int fd);

DESCRIPTION

This function is used to acknowledge receipt of an orderly release indication. fd

identifies the local transport endpoint where the connection exists. After receipt of
this indication, the user should not attempt to receive more data because such an
attempt will block forever. However, the user may continue to send data over the

connection if t_sndrel has not been issued by the user.

This function is an optional service of the transport provider, and is only supported if

the transport provider returned service type T_COTS_ORD on t_open or

t_getinfo.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TNOREL] No orderly release indication currently exists on the specified

transport endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint

and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-
vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

t_open(3N), t_sndrel(3N).

UNIX System V Network Programmer's Guide.

DIAGNOSTICS

t_rcevrel returns 0 on success and —1 on failure t_errno is set to indicate the

error.

093-701056 Licensed material—property of copyright holder(s) 3-533

trevudata(3N) DG/UX 5.4 trevudata(3N)

NAME

t_rcevudata —- receive a data unit

SYNOPSIS

#include <tiuser.h>

int t_revudata (int fd, struct t_unitdata sunitdata, int «flags);

DESCRIPTION

This function is used in connectionless mode to receive a data unit from another tran-

sport user. fd identifies the local transport endpoint through which data will be

received, unitdata holds information associated with the received data unit, and

flags is set on return to indicate that the complete data unit was not received.

unitdata pomts toa t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The maxlen [see netbuf in intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit, and
udata specifies the user data that was received.

By default, t_rcvudata operates in synchronous mode and will wait for a data unit
to arrive if none is currently available. However, if O_NDELAY or O_NONBLOCK is set
(via t_open or fentl), t_rcvudata will execute in asynchronous mode and will
fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the
current data unit, the buffer will be filled and T_MORE will be set in flags on return

to indicate that another t_rcvudata should be issued to retrieve the rest of the data

unit. Subsequent t_revudata call(s) will return zero for the length of the address
and options until the full data unit has been received.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TNODATA] O_NDELAY or O_NONBLOCK was set, but no data units are

currently available from the transport provider.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol

address or options is not sufficient to store the information.

The unit data information to be returned in unitdata will be

discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint

and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-
vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_rcvuderr(3N), t_sndudata(3N). |

UNIX System V Network Programmer’s Guide.

3-534 Licensed material—property of copyright holder(s) 093-701056

t_rovudata(3N) DG/UX 8.4 t_rovudata(SN)

DIAGNOSTICS

t_revudata returns 0 on successful completion and -1 on failure and t_errno is

set to indicate the error.

093-701056 Licensed material—property of copyright hoider(s) 3-535

tyrevuderr(3N) DG/UX 5.4 t.revuderr(3N)

NAME

t_revuderr — receive a unit data error indication

SYNOPSIS

#include <tiuser.h>

int t_revuderr (int fd, struct t_uderr suderr);

DESCRIPTION

This function is used in connectionless mode to receive information concerning an

error on a previously sent data unit, and should be issued only after a unit data error

indication. It informs the transport user that a data unit with a specific destination

address and protocol options produced an error. fd identifies the local transport

endpoint through which the error report will be received, and uderr points to a

t_uderr structure containing the following members:

struct netbuf addr;

struct netbuf opt;

long error;

netbuf is described in intro(3). The maxlen [see netbuf in intro(3)] field of

addr and opt must be set before issuing this function to indicate the maximum size

of the buffer for each.

On return from this call, the addr structure specifies the destination protocol

address of the erroneous data unit, the opt structure identifies protocol-specific

options that were associated with the data unit, and error ‘Specifies a protocol-

dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may

be set to NULL and t_revuderr will simply clear the error indication without

reporting any information to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TNOUDERR] No unit data error indication currently exists on the specified

transport endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address

or options is not sufficient to store the information. The unit data

error information to be returned in uderr will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_revudata(3N), t_sndudata(3N).

_ UNIX System V Network Programmer's Guide.

DIAGNOSTICS

t_rcevuderr returns 0 on successful completion and -1 on failure and t_errno is

set to indicate the error.

3-536 Licensed material—property of copyright holder(s) 093-701056

tend(SN) DG/UX 6.4 tend(3N)

NAME

t_snd — send data or expedited data over a connection

SYNOPSIS

#include <tiuser‘h>

int t_snd (int fd, char «buf, unsigned nbytes, int flags);

DESCRIPTION

This function is used to send either normal or expedited data. fd identifies the local

transport endpoint over which data should be sent, buf points to the user data,

nbytes specifies the number of bytes of user data to be sent, and flags specifies

any optional flags described below.

By default, t_snd operates in synchronous mode and may wait if flow control res-

trictions prevent the data from being accepted by the local transport provider at the

time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via t_open or

fentl), t_snd will execute in asynchronous mode, and will fail immediately if there

are flow control restrictions.

Even when there are no flow control restrictions, t_snd will wait if STREAMS inter-

nal resources are not available, regardless of the state of O_NDELAY or O_NONBLOCK.

On successful completion, t_snd returns the number of bytes accepted by the tran-

sport provider. Normally this will equal the number of bytes specified in nbytes.

However, if O_NDELAY or O_NONBLOCK is set, it is possible that only part of the data

will be accepted by the transport provider. In this case, t_snd will set T_MORE for

the data that was sent (see below) and will return a value less than nbytes. If

nbytes is zero and sending of zero bytes is not supported by the underlying transport

provider, t_snd() will return —1 with t_errno set to TBADDATA. A return value

of zero indicates that the request to send a zero-length data message was sent to the

provider.

If T_EXPEDITED is set in flags, the data will be sent as expedited data, and will be

subject to the interpretations of the transport provider.

If T_MORE is set in flags, or is set as described above, an indication is sent to the

_ transport provider that the transport service data unit (TSDU) or expedited transport

service data unit (ETSDU) is being sent through multiple t_snd calls. Each t_snd

with the T_MORE flag set indicates that another t_snd will follow with more data for

the current TSDU. The end of the TSDU (or ETSDU) is identified by a t_snd call —

with the T_MORE flag not set. Use of T_MORE enables a user to break up large logi-

cal data units without losing the boundaries of those units at the other end of the con-

nection. The flag implies nothing about how the data is packaged for transfer below

the transport interface. If the transport provider does not support the concept of a

TSDU as indicated in the info argument on return from t_open or t_getinfo, the

T_MORE flag is not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider

as returned by t_open or t_getinfo. If the size is exceeded, a TSYSERR with sys-

tem error EPROTO will occur. However, the t_snd may not fail because EPROTO

errors may not be reported immediately. In this case, a subsequent call that accesses

the transport endpoint will fail with the associated TSYSERR.

If t_snd is issued from the T_IDLE state, the provider may silently discard the data.

If t_snd is issued from any state other than T_DATAXFER, T_INREL or T_ IDLE,

the provider will generate a TSYSERR with system error EPROTO (which may be

reported in the manner described above).

093-701056 Licensed material—property of copyright holder(s) 3-537

tend(SN) DG/UX 5.4 tsnd(3N)

On failure, t_errno may be set to one of the following:

(TBADF]

(TFLOW]

[TNOTSUPPORT]

[TSYSERR]

[TBADDATA]

SEE ALSO

The specified file descriptor does not refer to a transport end-

point.

O_NDELAY or O_NONBLOCK was set, but the flow control

mechanism prevented the transport provider from accepting

data at this time.

This function is not supported by the underlying transport pro-

vider.

A system error [see intro(2)] has been detected during execu-

tion of this function.

nbytes is zero and sending zero bytes is not supported by the

transport provider.

t_open(3N), t_rev(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

On successful completion, t_snd returns the number of bytes accepted by the tran-

sport provider, and it returns -1 on failure and t_errno is set to indicate the error.

3-538 Licensed material—property of copyright holder(s) 093-701056

tsnddis(SN) DG/UX 5.4 tsnddis(SN)

NAME

t_snddis — send user-initiated disconnect request

SYNOPSIS

#include <tiuser.h>

int t_snddis (int fd, struct t_call «call):

DESCRIPTION

This function is used to initiate an abortive release on an already established connec-
tion or to reject a connect request. fd identifies the local transport endpoint of the
connection, and call specifies information associated with the abortive release.

call points to a t_call structure that contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to identify

uniquely the rejected connect indication to the transport provider. The addr and
opt fields of call are ignored. In all other cases, call need only be used when
data is being sent with the disconnect request. The addr, opt, and sequence
fields of the t_call structure are ignored. If the user doés not wish to send data to
the remote user, the value of call may be NULL.

udata specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned in the

discon field of the info argument of t_open or t_getinfo. Ifthe len field of
udata is zero, no data will be sent to the remote user.

On failure, t_errno may be set to one of the following:

(TBADF] The specified file descriptor does not refer to a transport end-
point.

[TOUTSTATE] The function was issued in the wrong sequence. The transport
provider’s outgoing queue may be flushed, so data may be lost.

[TBADDATA] The amount of user data specified was not within the bounds
allowed by the transport provider. The transport provider’s out-
going queue will be flushed, so data may be lost.

[TBADSEQ] An invalid sequence number was specified, or a NULL call struc-
ture was specified when rejecting a connect request. The tran-

sport provider’s outgoing queue will be flushed, so data may be

lost.

[TLOOK] An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

[INOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

intro(3), t_connect(3N), t_getinfo(3N), t_listen(3N), t_open(3N).

093-701056 Licensed material—property of copyright holder(s) 3-539

t_snddis(3N) DG/UX 5.4 t.snddis(3N)

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS |

t_snddis returns 0 on success and -1 on failure and t_errno is set to indicate the

error.

3-540 Licensed material—property of copyright hoider(s) 093-701056

t_sndrel(3N) . DG/UX 5.4 t_sndrei(3N)

NAME

t_sndrel — initiate an orderly release

SYNOPSIS

#include <tiuser.h>

int t_sndrel (int fd);

DESCRIPTION

This function is used to initiate an orderly release of a transport connection and indi-
cates to the transport provider that the transport user has no more data to send. fd

identifies the local transport endpoint where the connection exists. After issuing

t_sndrel, the user may not send any more data over the connection. However, a

user may continue to receive data if an orderly release indication has not been

received.

This function is an optional service of the transport provider, and is only supported if

the transport provider returned service type T_COTS ORD on t_open or

t_getinfo.

If t_sndrel is issued from an invalid state, the provider will generate an EPROTO
protocol error; however, this error may not occur until a subsequent reference to the

transport endpoint.

On failure, t_errno may be set to one of the following: —

[TBADF] The specified file descriptor does not refer to a transport end-

point. |

[TFLOW] O_NDELAY or O_NONBLOCK was set, but the flow control

mechanism prevented the transport provider from accepting the

function at this time.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

t_open(3N), t_revrel(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

093-701056

t_sndrel returns 0 on success and —1 on failure and t_errno is set to indicate the

error.

Licensed material—property of copyright holder(s) 3-541

t_sndudata(3N) DG/UX 5.4 t_sndudata(3N)

NAME

t_sndudata — send a data unit

SYNOPSIS

#include <tiuser.h>

int t_sndudata (int fd, struct t_unitdata s*unitdata) ;

DESCRIPTION

This function is used in connectionless mode to send a data unit to another transport

user. fd identifies the local transport endpoint through which data will be sent, and

unitdata points toa t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

netbuf is described in intro(3). In unitdata, addr specifies the protocol

address of the destination user, opt identifies protocol-specific options that the user

wants associated with this request, and udata specifies the user data to be sent. The

user may choose not to specify what protocol options are associated with the transfer

by setting the len field of opt to zero. In this case, the provider may use default

options.

If the len field of udata is zero, and the sending of zero bytes is not supported by

the underlying transport provider, t_sndudata will return -1 with t_errno set to

TBADDATA. |

By default, t_sndudata operates in synchronous mode and may wait if flow control

restrictions prevent the data from being accepted by the local transport provider at

the time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via

t_open or fentl), t_sndudata will execute in asynchronous mode and will fail

under such conditions.

If t_sndudata is issued from an invalid state, or if the amount of data specified in

udata exceeds the TSDU size as returned in the tsdu field of the info argument of

t_open or t_getinfo, the provider will generate an EPROTO protocol error. (See

TSYSERR below.) If the state is invalid, this error may not occur until a subsequent
reference is made to the transport endpoint.

On failure, t_errno may be set to one of the following:

[TBADF] | The specified file descriptor does not refer to a transport end-
point.

[TFLOW] O_NDELAY or O_NONBLOCK was set, but the flow control mechan-

ism prevented the transport provider from accepting data at this

time.

[TNOTSUPPORT] This function is not supported by the underlying transport pro-

vider. -

[TSYSERR] A system error has occurred during execution of this function.

[TBADDATA] nbytes is zero and sending zero bytes is not supported by the
transport provider.

SEE ALSO

intro(3), t_revudata(3N), t_revuderr(3N).

UNIX System V Network Programmer’s Guide.

3-542 Licensed material—property of copyright holder(s) 093-701056

t_sndudata(3N) DG/UX 8.4 t_sndudata(SN)

DIAGNOSTICS

t_sndudata returns 0 on successful completion and —1 on failure t_errno is set to

indicate the error.

093-701056 Licensed material—property of copyright holder(s) 3-543

tsyne(3N) DG/UX 5.4 tsyne(3N)

NAME

t_sync — synchronize transport library

SYNOPSIS

#include <tiuser.h>

int t_sync (int fd);

DESCRIPTION

For the transport endpoint specified by fd, t_sync synchronizes the data structures

managed by the transport library with information from the underlying transport pro-

vider. In doing so, it can convert a raw file descriptor [obtained via open(2),

dup(2), or as a result of a fork(2) and exec(2)] to an initialized transport endpoint,

assuming that file descriptor referenced .a transport provider. This function also

allows two cooperating processes to synchronize their interaction with a transport pro-

vider.

For example, if a process forks a new process and issues an exec, the new process

must issue a t_sync to build the private library data structure associated with a tran-

sport endpoint and to synchronize the data structure with the relevant provider infor-

mation.

It is important to remember that the transport provider treats all users of a transport

endpoint as a single user. If multiple processes are using the same endpoint, they

should coordinate their activities so as not to violate the state of the provider.

t_syne returns the current state of the provider to the user, thereby enabling the

user to verify the state before taking further action. This coordination is only valid

among cooperating processes; it is possible that a process or an incoming event could

change the provider’s state after a t_sync is issued.

If the provider is undergoing a state transition when t_sync is called, the function

will fail. |

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport end-

point.

[TSTATECHNG] The transport provider is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

dup(2), exec(2), fork(2), open(2).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

t_sync returns the state of the transport provider on successful completion and -1 on

failure and t_errno is set to indicate the error. The state returned may be one of

the following:

T_UNBND unbound

T IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_ DATAXFER data transfer

3-544 Licensed material—property of copyright holder(s) 093-701056

tsyne(SN)

T_OUTREL

T INREL

093-701056

DG/UX 5.4 tsyne(SN)

outgoing orderly release (waiting for an orderly release indica-

_ tion)

incoming orderly release (waiting for an orderly release request)

Licensed material—property of copyright holder(s) 3-545

t_unbind(3N)
DG/UX 5.4

t_unbind(3N)

NAME

t_unbind — disable a transport endpoint

SYNOPSIS

#include <tiuser.h>

int t_unbind (int fd);

DESCRIPTION

The t_unbind function disables the transport endpoint specified by fd which waspreviously bound by t_bind(3N). On completion of this call, no further data orevents destined for this transport endpoint will be accepted by the transport provider.
On failure, t_errno may be set to one of the following:

{[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TOUTSTATE] The function was issued in the wrong sequence.

[TLOOK] An asynchronous event has occurred on this transport endpoint.
[TSYSERR] A system error has occurred during execution of this function.

SEE ALSO

t_bind(3N).

UNIX System V Network Programmer’s Guide.

DIAGNOSTICS

3-546

t_unbind returns 0 on success and

error.

~1 on failure and t_errno is set to indicate the

Licensed material—property of copyright holder(s)
093-701056

teflush(3C) DG/UX 5.4 toflush(3C)

NAME

teflush: tcsendbreak, tcdrain, tcflush, tcflow - control data transmission

SYNOPSIS

#include <termios.h>

int tcsendbreak (fildes, duration)

int fildes;

int duration;

int tcdrain (fildes)

int fildes;

int tcflush (fildes, queue_selector)

int fildes;

int queue_selector;

int tcflow (fildes, action)

int fildes;

int action;

DESCRIPTION

If the terminal is using asynchronous serial data transmission, the tcsendbreak()

function shall cause transmission of a continuous stream of.zero-valued bits for a

specific duration. If duration is zero, it shall cause transmission of zero-valued bits

for at least 0.25 seconds, and not more that 0.5 seconds. If duration is not zero, it

shall send zero-valued bits for an implementation-defined period of time.

If the terminal is not using asynchronous serial data transmission, it is

implementation-defined whether the tcsendbreak() function sends data to generate

a break condition (as defined by the implementation) or returns without taking any

action.

The tcdrain() function shall wait until all output written to the object referred to by

_ fildes has been transmitted.

093-701056

The tcflush() function shall discard data written to the object referred to by fildes

but not transmitted, or data received but not read, depending on the value of

queue_selector:

(1) If queue_selector is TCIFLUSH, it shall flush data received but not read.

(2) If queue_selector is TCOFLUSH, it shall flush data written but not

transmitted.

(3) If queue_selector is TCIOFLUSH, it shall flush both data received but not
read, and data written but not transmitted.

The tcflow() function shall suspend transmission or reception of data on the object

referred to by fildes, depending on the value of action:

_(1) If action is TCOOFF,, it shall suspend output.

(2) If action is TCOON, it shall restart suspended output.

(3) If action is TCIOFF, the system shall transmit a STOP character, which is

intended to cause the terminal device to stop transmitting data to the system.

Licensed material—property of copyright holder(s) 3-547

teflush(3C) DG/UX 5.4 teflush(3C)

(4) If action is TCION, the system shall transmit a START character, which

is intended to cause the terminal device to start transmitting data to the sys-

tem.

The symbolic constants for the values of queue_selector and action are defined in

<termios.h>.

The default on open of a terminal file is that neither its input nor its output is

suspended.

RETURNS

Upon successful completion, a value of zero is returned. Otherwise, a value of ~1 is

returned and errno is set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the tcsendbreak() function shall return -1

and set errno to the corresponding value:

[EBADF]

The fildes argument is not a valid file descriptor.

[ENOTTY]

The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcdrain() function shall return -1 and

set errno to the corresponding value:

(EBADF]

The fildes argument is not a valid file descriptor.

[EINTR]

A signal interrupted the tcdrain() function.

[ENOTTY]

The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflush() function shall return -1 and

set errno to the corresponding value:

[EBADF]

The fildes argument is not a valid file descriptor.

[EINVAL]

| The queue_selector argument is not a proper value.

[ENOTTY]

The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflow() function shall return —1 and

set errno to the corresponding value:

[EBADF]

The fildes argument is not a valid file descriptor.

[EINVAL]

The action argument is not a proper value.

[ENOTTY]
The file associated with fildes is not a terminal.

SEE ALSO

tesetattr(3C), <termios.h>.

3-548 Licensed material—property of copyright holder(s) 093-701056

teflush(3C) DG/UX 6.4 teflush(3C)

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence.

STANDARDS

If the duration argument to the tcsendbreak() function is not zero, the function

will send zero-valued bits for duration microseconds.

When tcsendbreak() is invoked on a pseudo-terminal device file, no data will be

sent unless the pseudo-terminal is in packet mode. See pty(7) for details.

093-701056 Licensed material—property of copyright holder(s) 3-549

tegetpgrp(3C) DG/UX 5.4 tegetpgrp(3C)

NAME

tegetpgrp -— get foreground process group ID

SYNOPSIS |

#include <sys/types.h>

pid_t tcgetpgrp (fildes)

int fildes;

DESCRIPTION

If {_POSIX_JOB_CONTROL} is defined:

(1) The tcgetpgrp() function shall return the value of the process group ID

of the foreground process group associated with the terminal.

(2) The tegetpgrp() function is allowed from a process that is a member of

a background process group; however, the information may be subsequently

changed by a process that is a member of a foreground process group.

Otherwise:

The implementation shall either support the tcgetpgrp() function as

described above, or the tcgetpgrp() call shall fail.

RETURNS

Upon successful completion, tcgetpgrp() returns the process group ID of the fore-

ground process group associated with the terminal. Otherwise, a-value of -1 is

returned and errno is set to indicate the error.

DIAGNOSTICS
If any of the following conditions occur, the tegetpsrp() function shall return - -1
and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

| [ENOSYS] The tcgetpgrp() function is not supported in this implementation.

[ENOTTY] The calling process does not have a controlling terminal or the file is

not the controlling terminal.

SEE ALSO

setpgid(2), setsid(2), tesetpgrp(3C).

COPYRIGHTS

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-

tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-

cal and Electronics Engineers, Inc., with the permission of the IEEE Standards

Department. To purchase IEEE Standards, call 800/678-TEEE.
In the event of a discrepancy between the electronic and the original printed version,

the original version takes precedence. |

STANDARDS

The tcgetpgrp() function is fully supported, regardless of whether

—~POSIX_JOB_CONTROL is defined.

3-550 Licensed material—property of copyright hoider(s) 093-701056

tesetattr(3C) DG/UX 5.4 tesetattr(3C)

NAME

tcegetattr, tcsetattr — get and set state

SYNOPSIS

#include <termios.h>

int tcgetattr (fildes, termios_p)

int fildes;

struct termios s«termlos_p;

int tcsetattr (fildes, optional_actions, termios_p)

int fildes, optional_actions;

struct termios +xtermios_p;

DESCRIPTION

The tcgetattr() function shall get the parameters associated with the object

referred to by fildes and store them in the termios structure referenced by termios_p.

This function is allowed from a background process; however, the terminal attributes

may be subsequently changed by a foreground process.

The tcsetattr() function shall set the parameters associated with the terminal

(unless support is required from the underlying hardware that is not available) from

the termios structure referenced by termios_p as follows:

(1) If optional_actions is TCSANOW, the change shall occur immediately.

(2) If optional_actions is TCSADRAIN, the change shall occur after all out-

put written to fildes has been transmitted. This function should be used when

changing parameters that affect output.

(3) If optional_actions is TCSAFLUSH, the change shall occur after all out-

put written to the object referred to by fildes has been transmitted, and all

input that has been received but not read shall be discarded before the change

1s made.

The symbolic constants for the values of optional_actions are defined in

<termios.h>.

RETURNS

Upon successful completion, a value of zero is returned. Otherwise, a value of —1 is

returned and errno is set to indicate the error.

DIAGNOSTICS

If any of the following conditions occur, the tcgetattr() function shall return -1

and set errno to the corresponding value:

[EBADF]

The fildes argument is not a valid file descriptor.

[ENOTTY]

The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcsetattr() function shall return —1

and set errno to the corresponding value:

[EBADF]

The fildes argument is not a valid file descriptor.

[EINVAL]
The optional_actions argument is not a proper value, or an attempt was made

093-701056 Licensed material—property of copyright hoider(s) 3-551

tesetattr(3C) DG/UX 5.4 tcesetattr(3C)

to change an attribute represented in the termios structure to an unsupported
value.

[ENOTTY]

The file associated with fildes is not a terminal.

SEE ALSO

tceflush(3C), tcsetpgrp(3C), <termios.h>.

COPYRIGHTS

3-552

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating Sys-
tem Interface for Computer Environment, copyright © 1988 by the Institute of Electri-
cal and Electronics Engineers, Inc., with the permission of the IEEE Standards
Department. To purchase IEEE Standards, call 800/678-IEEE.

In the event of a discrepancy between the electronic and the original printed version,
the original version takes precedence.

Licensed material—property of copyright hoider(s) 093-701056

tesetpgrp(3C) DG/UX 8.4 tesetpgrp(3C)

NAME

tcsetpgrp — set terminal foreground process group id

SYNOPSIS

#include <unistd.h>

int tcsetpgrp (int fildes, pid_t pgid)

DESCRIPTION |

tesetpgrp sets the foreground process group ID of the terminal specified by fildes to

pgid. The file associated with fildes must be the controlling terminal of the calling
process and the controlling terminal must be currently associated with the session of

the calling process. The value of pgid must match a process group ID of a process in
the same session as the calling process.

tcsetpgrp fails if one or more of the following is true:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The fildes argument is a terminal that does not support tcsetpgrp,
or pgid is not a valid process group ID.

ENOTTY The calling process does not have a controlling terminal, or the file is
not the controlling terminal, or the controlling terminal is no longer

associated with the session of the calling process.

EPERM pgid does not match the process group ID of an existing process in
the same session as the calling process.

SEE ALSO

tcsetpgrp(3C), tcsetsid(3C).

termio(7) in the System Administrator’s Reference Manual.

DIAGNOSTICS

Upon successful completion, tcsetpgrp returns a value of 0. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

NQ2.7N1NKR lleansad matarial—nroparty of copvriaht holdaer/e) 2.552

termcap(3X) DG/UX 5.4 termcap(3X)

NAME

termcap: tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal

independent operation routines

SYNOPSIS

char PC;

char *BC;

char *UP;

short ospeed;

tgetent(bp, name)

char *bp, *name;

tgetnum(id)

char *id;

tgetflag(id)

char “id;

char *

tgetstr(id, area)

char *id, **area;

char *

tgoto(cm, destcol, destline)

char *cn;

int destcol, destline;

tputs(cp, affent, outc)

register char *cp;

int affcnt;

int (*outc)();

DESCRIPTION

3-554

These functions extract and use routines from the terminal capability data base

termcap(5). These are obsolete low level routines; see terminfo(4) for an

equivalent but more modern package, and curses(3X) for a higher level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp should be a

character buffer of size 1024 and must be retained through all subsequent calls to tget-

num, tgetflag, and tgetstr. tgetent returns —1 if it cannot open the termcap file, 0 if the

terminal name given does not have an entry, and 1 if all goes well.

tgetent looks in the environment for a TERMCAP variable. If it is found, and its value

does not begin with a slash, and the terminal type name is the same as the environ-

ment string TERM, the TERMCAP string is used instead of reading the termcap file. If

it does begin with a slash, the string is used as a path name rather than /etc/termcap.

This can speed up entry into programs that call tgetent; it will also help you debug

new terminal descriptions or to make one for your terminal if you can’t write the file

/etc/termcap.

tgemum gets the numeric value of capability id, returning —1 if is not given for the ter-

minal. rgetflag returns 1 if the specified capability is present in the terminal’s entry, 0

if it is not. tgetstr gets the string value of capability id, placing it in the buffer at

*area, and advancing the area pointer. It decodes the abbreviations for this field

described in termcap(5), except for cursor addressing and padding information.

tgoto returns a cursor addressing string decoded from cm to go to column destcol in

line destline. It uses the external variables UP (from the up capability) and BC (if be

Licensed material—property of copyright holder(s) 093-701056

termcap(3X) DG/UX 5.4 termcap(3X)

is given rather than bs) if necessary to avoid placing \n, \r, ~D, “H, or ~@ in the

returned string.

Programs which call tgoto should be sure to turn off tab expansion into spaces in the

terminal driver since tgoto may now output a tab. Note that programs using termcap

should turn off tab expansion anyway since some terminals use the tab character (I)

for other functions. If a % sequence is given which is not understood, then tgoto

returns "OOPS".

tputs decodes the leading padding information of the string cp; affcnt is the number of

lines affected by the operation, or 1 if this is not applicable. outc is a routine that is

called with each character in turn. The external variable ospeed should contain the

output speed of the terminal as encoded by ioctl (2) The external variable PC should

contain a pad character to be used (from the pce capability) if a null (~@) is inap-

propriate.

FILES

/lib/libtermcap.a ~ltermcap library

/etc/termcap terminal information data base

SEE ALSO

NQ2.7N1NSR

curses(3X), terminfo(4), termcap(5).

captoinfo(1M), infocmp(1M) in the System Manager’s Reference for the DG/UX

System. :

Licensed materialt—property of copyright hoider(s) 3-555

termios(3C) DG/UX 5.4 termios(SC)

NAME

termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush,

tcflow, cfgetospeed, cfgetispeed, cfsetispeed, cfsetospeed,

tegetpgrp, tcsetpgrp, tcgetsid — general terminal interface

SYNOPSIS

#include <termios.h>

int tcgetattr(int fildes, struct termios *termios _p);

int tcsetattr(int fildes, int optional actions,

const struct termios *termios_p);

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes) ;

int tcflush(int fildes, int queue_selector) ;

int tcflow(int fildes, int action);

speed _t cfgetospeed(struct termios *termios p);

int cfsetospeed(const struct termios *termios_p, speed_t speed);

speed _t cfgetispeed(struct termios *termios p); |

int cfsetispeed(const struct termios *termios_p, speed _t speed);

#include <sys/types.h>

#include <termios.h>

pid t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION

These functions describe a general terminal interface for controlling asynchronous

communications ports. A more detailed overview of the terminal interface can be

found in termio(7), which also describes an ioct1(2) interface that provides the

same functionality. However, the function interface described here is the preferred

user interface.

Many of the functions described here have a termios_p argument that is a pointer to a

termios structure. This structure contains the following members:

tcflag t c_iflag; /7* input modes */

tceflag t c_oflag; 7* output modes */

tcflag t c_ cflag; /* control modes */

tcflag t c_lflag; /* local modes */

cc_t c_cc[NCCS]; /* control chars */

These structure members are described in detail in termio(7).

Get and Set Terminal Attributes

The tcgetattr function gets the parameters associated with the object referred by

fildes and stores them in the termios structure referenced by termios_p. This func-

tion may be invoked from a background process; however, the terminal attributes

may be subsequently changed by a foreground process.

3-556 Licensed material—property of copyright holder(s) 093-701056

termios(3C) DG/UX 5.4 termios(3C)

The tcsetattr function sets the parameters associated with the terminal (unless

support is required from the underlying hardware that is not available) from the ter-

mios structure referenced by termios_p as follows:

If optional_actions is TCSANOW, the change occurs immediately.
If optional_actions is TCSADRAIN, the change occurs after all output written

to fildes has been transmitted. This function should be used when changing

parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written

to the object referred by fildes has been transmitted, and all input that has

been received but not read is discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in

<termios.h>.

Line Control

If the terminal is using asynchronous serial data transmission, the tcsendbreak

function causes transmission of a continuous stream of zero-valued bits for a specific

duration. If duration is zero, it causes transmission of zero-valued bits for at least

0.25 seconds, and not more than 0.5 seconds. If duration is not zero, it behaves in a

way similar to tcdrain.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak

function sends data to generate a break condition or returns without taking any

action.

The tcdrain function waits until all output written to the object referred to by fildes

has been transmitted.

The tcflush function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of

queue_selector:

If queue_selector is TCIFLUSH, it flushes data received but not read.

If queue_selector is TCOFLUSH, it flushes data written but not transmitted.

If queue_selector is TCIOFLUSH, it flushes both data received but not read,

and data written but not transmitted.

The tcflow function suspends transmission or reception of data on the object

referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.

If action is TCOON, it restarts suspended output.

If action if TCIOFF, the system transmits a STOP character, which causes the

terminal device to stop transmitting data to the system.

If action is TCION, the system transmits a START character, which causes the

terminal device to start transmitting data to the system.

Get and Set Baud Rate

The baud rate functions get and set the values of the input and output baud rates in

the termios structure. The effects on the terminal device described below do not

become effective until the tcsetattr function is successfully called.

The input and output baud rates are stored in the termios structure. The values

shown in the table are supported. The names in this table are defined in

naa_7ninge Licansed material—nproperty of coovriacht holder(s) 3.557

termios(3C) DG/UX 5.4 | termios(3C)

<termios.h>.

. Name _ Description Name Description

BO Hang up B600 _ 600 baud

B50 50 baud B1200 1200 baud

B75 75 baud B1800 1800 baud

B110 110 baud B2400 2400 baud

B134 134.5 baud B4800 4800 baud

B1i50 150 baud B9600 9600 baud

B200 200 baud B19200 19200 baud

B300 300 baud B38400 38400 baud

cfgetospeed gets the output baud rate and stores it in the termios structure

pointed to by termios_p. |

cfsetospeed sets the output baud rate stored in the termios structure pointed to

by termios_p to speed. The zero baud rate, BO, is used to terminate the connection.

If BO is specified, the modem control lines are no longer be asserted. Normally, this

disconnects the line.

cfgetispeed gets the input baud rate and stores it in the termios structure

pointed to by termios_p.

cfsetispeed sets the input baud rate stored in the termios structure pointed to by

termios_p to speed. If the input baud rate is set to zero, the input baud rate is speci-

fied by the value of the output baud rate. Both cfsetispeed and cfsetospeed

return a value of zero if successful and —1 to indicate an error. Attempts to set

unsupported baud rates are ignored. This refers both to changes to baud rates not

supported by the hardware, and to changes setting the input and output baud rates to

different values if the hardware does not support this.

Get and Set Terminal Foreground Process Group ID

tcsetpgrp sets the foreground process group ID of the terminal specified by fildes to

pgid. The file associated with fildes must be the controlling terminal of the calling

process and the controlling terminal must be currently associated with the session of

the calling process. pgid must match a process group ID of a process in the same ses-

sion as the calling process.

tegetpgrp returns the foreground process group ID of the terminal specified by

fildes. tcgetpgrp is allowed from a process that is a member of a background pro-

cess group; however, the information may be subsequently changed by a process that

is a member of a foreground process group.

Get Terminal Session ID

tcgetsid returns the session ID of the terminal specified by fildes.

DIAGNOSTICS

On success, tcgetpgrp returns the process group ID of the foreground process

group associated with the specified terminal. Otherwise, it returns —1 and sets

errno to indicate the error.

‘On success, tegetsid returns the session ID associated with the specified terminal.

Otherwise, it returns -1 and sets errno to indicate the error.

On success, all other functions return a value of 0. Otherwise, they return —1 and set

errno to indicate the error.

All of the functions fail if one of more of the following is true:

3-558 Licensed materiai—property of copyright holder(s) 093-701056

termios(3C) | DG/UX 5.4 termios(3C)

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

tesetattr also fails if the following is true:

EINVAL The optional_actions argument is not a proper value, or an attempt

was made to change an attribute represented in the termios struc-

ture to an unsupported value.

tcsendbreak also fails if the following is true:

EINVAL The device does not support the tcsendbreak function.
tcdrain also fails if one or more of the following is true:

EINTR | A signal interrupted the tcdrain function.

EINVAL The device does not support the tcdrain function.

tcflush also fails if the following is true:

EINVAL The device does not support the tcflush function or the

queue_selector argument is not a proper value.

tcflow also fails if the following is true:

EINVAL The device does not support the tcflow function or the action argu-

ment is not a proper value.

tcgetpgrp also fails if the following is true:

ENOTTY the calling process does not have a controlling terminal, or fildes

does not refer to the controlling terminal.

tcsetpgrp also fails if the following is true:

EINVAL pgid is not a valid process group ID .

ENOTTY the calling process does not have a controlling terminal, or fildes

does not refer to the controlling terminal, or the controlling terminal

is no longer associated with the session of the calling process.

EPERM pgid does not match the process group of an existing process in the

same session as the calling process.

tcgetsid also fails if the following is true:

EACCES fildes is a terminal that is not allocated to a session.

SEE ALSO

093-701056

setsid(2), setpgid(2), termio(7).

Licensed material—property of copyright holder(s) 3-559

tmpfile(3S) — DG/UX 5.4 tmpfile(3S)

NAME

tmpfile — create a temporary file

SYNOPSIS |

#include <stdio.h>

FILE «tmpfile (void);

DESCRIPTION

tmpfile creates a temporary file using a name generated by the tmpnam routine and

returns a corresponding FILE pointer. If the file cannot be opened, a NULL pointer

is returned. The file is automatically deleted when the process using it terminates or
when the file is closed. The file is opened for update ("w+").

SEE ALSO

creat(2), open(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
stdio(3S), tmpnam(3S).

3-560 Licensed material—property of copyright hoider(s) 093-701056

tmpnam(3S) DG/UX 5.4 ' tmpnam(3S)

NAME

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char «xtmpnam (char *«s);

char +tempnam (const char «dir, const char «pfx);

DESCRIPTION

These functions generate file names that can safely be used for a temporary file.

tmpnam always generates a file name using the path-prefix defined as P_tmpdir in

the <stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal

static area and returns a pointer to that area. The next call to tmpnam will destroy
the contents of the area. If s is not NULL, it is assumed to be the address of an array
of at least L_tmpnam bytes, where L_tmpnanm is a constant defined in <stdio.h>;

tmpnanm places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The argument dir

points to the name of the directory in which the file is to be created. If dir is NULL

or points to a string that is not a name for an appropriate directory, the path-prefix

defined as P_tmpdir in the <stdio.h> header file is used. If that directory is not

accessible, /tmp will be used as a last resort. This entire sequence can be up-staged

by providing an environment variable TMPDIR in the user’s environment, whose value

is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter

sequences in their names. Use the pfx argument for this. This argument may be

NULL or point to a string of up to five characters to be used as the first few characters

of the temporary-file name.

tempnam uses malloc to get space for the constructed file name, and returns a

pointer to this area. Thus, any pointer value returned from tempnam may serve as

an argument to free [see malloc(3C)]. If tempnam cannot return the expected

. result for any reason—e.g., malloc failed—or none of the above mentioned attempts

to find an appropriate directory was successful, a NULL pointer will be returned.

tempnan fails if there is not enough space.

FILES

p_tmpdir and /var/tmp

SEE ALSO :

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

NOTES

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only in

the sense that they reside in a directory intended for temporary use, and their names

are unique. It is the user’s responsibility to remove the file when its use is ended.

If called more than TMP_MAX (defined in stdio.h) times in a single process, these

functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some

other process to create a file with the same name. This can never happen if that

other process is using these functions or mktemp and the file names are chosen to

render duplication by other means unlikely.

093-701056 Licensed material—property of copyright holder(s) 3-561

trig(3M) DG/UX 8.4 trig(3M)

NAME

trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan,

atanf, atan2, atan2f — trigonometric functions

SYNOPSIS

ce [flag ...] file ... —1m [library ...]

ce -O -Ksd [flag ...] file -d sfm [library ...]

#include <math.h>

double sin (double x);

float sinf (float x);

double cos (double x);

float cosf (float x);

double tan (double x);

float tanf (float x);

double asin (double x);

float asinf (float x);

double acos (double x);

float acosf (float x);

double atan (double x);

float atanf (float x);

double atan2 (double y, double x);

float atan2f (float y, float x);

DESCRIPTION

sin, cos, and tan and the single-precision versions sinf, cosf, and tanf

return, respectively, the sine, cosine, and tangent of their argument, x, measured in

radians.

In the following paragraphs, 7 represents pi.

asin and asinf return the arcsine of x, in the range (—1/2,+2/2].

acos and acosf return the arccosine of x, in the range [0,+z].

atan and atanf return the arctangent of x, in the range (~2/2,+2/2).

atan2 and atan2f return the arctangent of y/x, in the range (—7,+7], using the signs

of both arguments to determine the quadrant of the return value.

SEE ALSO

matherr(3M).

DIAGNOSTICS

If the magnitude of the argument of asin, asinf, acos, or acosf is greater than

1, or if both arguments of atan2 or atan2f are 0, 0 is returned and errno is set to

EDOM. In addition, a message indicating DOMAIN error is printed on the standard

error output.

Except when the -Xc compilation option is used, these error-handling procedures

may be changed with the function matherr. When the -Xa or -Xc compilation

options are used, no error messages are printed.

3-562 Licensed material—property of copyright hoider(s) 093-701056

tsearch(3C) DEUX 8.4 tsearch(3C)

NAME

tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS

#include <search.h>

void s«xtsearch (const void «key, void **rootp, int (s*compar)

(const void *, const void *));

void «tfind (const void «key, void * const *rootp, int (*compar)

(const void *, const void +#));

void «xtdelete (const void «key, void **rootp, int (*compar)

(const void *, const void +*));

void twalk (void *root, void(*action) (void *, VISIT, int));

DESCRIPTION

tsearch, tfind, tdelete, and twalk are routines for manipulating binary search

trees. They are generalized from Knuth (6.2.2) Algorithms T and D.

Each node of these trees contains a pointer to a datum supplied by the user. These

routines manipulate trees without any knowledge of the data these pointers point to.

You will need to supply two routines of your own (described later in this section) that

understand the data: one for comparing two data, and another for acting on each

datum during a traversal of the tree. Pointers to these routines are passed as parame-

ters to tsearch, tfind, tdelete, and twalk.

All but twalk return pointers to nodes; everthing about the structure of a node is

hidden except that its first element is the pointer to the node’s datum, so that

*((char **) node)

can be used as if it were a pointer to the node’s datum.

You must provide storage for a pointer, root, that these routines use to keep track

of the root of the tree. It should be initialized to NULL before any routines are

called.

tsearch is used to build and access the tree. key is a pointer to a datum to be

accessed or stored. If a datum already in the tree is equal to *key (as determined by

the user-supplied comparison routine), a pointer to its node is returned. Otherwise a

node containing key is inserted into the tree, and a pointer to the new node is

returned; this returned pointer will point to key, so that

key == *((char **) returned)

Only the pointer key is copied, so the calling routine must store what key points to.

You must provide the root pointer, *rootp.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to its

node if found. However if it is not found, tfind will return a NULL pointer. The

arguments for tfind are the same as for tsearch. |

tdelete searches for a datum in the tree and deletes its node if found. If the datum

was not found, NULL is returned. If the datum not found, a pointer to the node’s

parent is returned. The arguments for tdelete are the same as for tsearch.

twalk traverses the tree. root points to the root of the tree to be traversed. (Any

node in the tree may be used as the root for a walk beneath that node.) action is a

a Fy FLA

tsearch(3C) DG/UX 5.4 tsearch(3C)

pointer to the user-supplied action routine that will be invoked at each node. This

user-supplied comparison routine is as follows:

compar(datumlp, datum2p)

char *datumlp;

char *datum2p;

The user-supplied comparison routine above returns an integer that is less than, equal

to, or greater than 0, according to whether the datum pointed to by datum1p should

be considered less than, equal to, or greater than the datum pointed to by datum2p.

The comparison function need not compare every byte, so arbitrary information may

be contained in each datum in addition to the values being compared.

The user-supplied action routine is as follows:

void action(node, order, level)

char *node;

VISIT order;

The user-supplied action routine above is called each time a node is encountered dur-

ing a traversal of the tree. node is a pointer to the datum for the node; thus, if the

call tsearch(key, rootp, compar) created the node, then key == *((char **) node).

The enumeration VISIT is defined in <search.h>.

Order is leaf if the node is a leaf; if the node is not a leaf, order is preorder the
first time the node is encountered, postorder the second, and endorder the third time.

Level is the level of the node in the tree, with the root being level zero.

EXAMPLES

3-564

#Include <string.h>

#Include <search.h>

#Include <stdio.h>

struct datum [{ /*pointers to these are stored */

- char *string; */in the tree*/

int length;

); |

char string_space [10000]; /* space to store stings */

struct datum data [500]; /* data to store */

char *root = NULL; /* this points to root */

main()

{

char *strptr = string_space;

struct datum *datumptr = data;

void print _datum(), twalk();

int i = 0, compare_data();

char *tsearch();

while (gets(strptr) != NULL && it+ < 500) [{

/* set datum */

datumptr ->string = strptr;

datumptr ->length strlen(strptr);

Licensed material—property of copyright holder(s) 093-701056

tsearch(3C) DG/UX 5.4 tsearch(3C)

/* put datum into the tree */

tsearch((char *) datumptr, &root, compare data) ;

/* adjust pointers so we don’t overwrite tree*/

strptr =+ datumptr->length + 1;

datumptr+t;

}

twalk(root, print _datum);

}
/t

This routine compares two data, based on an alphabetical

ordering of the string field.

*/
int

compare _data(datuml, datum2)

char *datuml, *datum2;

{

return(stremp(((struct datum *) datuml)-—>string,

(((struct datum *) datum2)->string;

}
/*

This routine prints out a datum the first time

twalk encounters it.

*/
void

print_datum(datum, order, level)

char *datun;

VISIT order;

int level;

{

if (order == preorder || order == leaf) [{

printf ("string = %20s, length = %d0

((struct datum *) *((char **) datum))->string,

((struct datum *) *((char **) datum))->length;

}

SEE ALSO

bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available to create

a new node.

A NULL pointer is returned by tsearch, tfind, and tdelete if rootp (which should be

&root) is NULL.

If the datum is found both tsearch and tfind return a pointer to its node. If not, tfind

returns NULL, and tsearch returns a pointer to the inserted datum’s node, such that

key == *((char **) returned)

NOTES

The root argument to twalk is one level of indirection less than the rootp argu-

ments to tsearch and tdelete.

093-701056 Licensed material—property of copyright hoider(s) 3-565

tsearch(3C) DG/UX 5.4 tsearch(3C)

3-566

There are two nomenclatures that refer to the order in which tree nodes are visited.

tsearch uses preorder, postorder and endorder to refer respectively to visiting a node

before any of its children, after its left child and before its right, and after both its

children. The alternate nomenclature uses preorder, inorder, and postorder to refer

to the same visits. This could result in some confusion over the meaning of postorder.

There are two cases in which tsearch and tfind return a NULL pointer. The

first case is relatively normal: tsearch cannot allocate more space, or tfind did

not find the datum. The second case, that rootp is NULL, is not normal and

should never occur unless tsearch and tfind have been called incorrectly.

tsearch, tfind, and tdelete return pointers to nodes, not pointers to data; the

caller must dereference and cast the node pointer to get a datum pointer.

If the calling function alters the pointer to the root, results are unpredictable.

Licensed materiali—property of copyright holder(s) 093-701056

ttyname(3C) DG/UX 5.4 ttyname (3C)

NAME

ttyname, isatty — find name of a terminal

SYNOPSIS

#include <stdlib.h>

char «ttyname (int fildes);

int isatty (int fildes);

DESCRIPTION

ttyname returns a pointer to a string containing the null-terminated path name of the

terminal device associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES

/dev/*«

DIAGNOSTICS

ttyname returns a NULL pointer if fildes does not describe a terminal device in

directory /dev.

SEE ALSO

ttyslot(3C).

NOTES :

The return value points to static data whose content is overwritten by each call.

093-701056 Licensed material—property of copyright holder(s) 3-567

ttysiot(3C) DG/UX 5.4 ttyslot(3C)

NAME

ttyslot — find the slot in the utmp file of the current user

SYNOPSIS

#include <stdlib.h>

int ttyslot (void);

DESCRIPTION

ttyslot returns the index of the current user’s entry in the /var/adm/utmp file.
The returned index is accomplished by scanning files in /dev for the name of the ter-
minal associated with the standard input, the standard output, or the standard error
output (0, 1, or 2).

FILES

/var/adm/utmp

SEE ALSO

getut(3C), ttyname(3C).

DIAGNOSTICS

A value of —1 is returned if an error was encountered while searching for the terminal
name or if none of the above file descriptors are associated with a terminal device.

3-568 Licensed material—property of copyright holders) 093-701056

ungetc(3S) DG/UX 5.4 ungetc(3S)

NAME

ungetc — push character back onto input stream

SYNOPSIS

#include <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION

ungetc inserts the character specified by c (converted to an unsigned char) into
the buffer associated with an input stream [see intro(3)]. That character, c, will be
returned by the next getc(3S) call on that stream. ungetc returns c, and leaves
the file corresponding to stream unchanged. A successful call to ungetc clears the
EOF indicator for stream.

Four bytes of pushback are guaranteed.

The value of the file position indicator for stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were pushed
back.

If c equals EOF, ungetc does nothing to the buffer and returns EOF,

fseek, rewind [both described on fseek(3S)], and fsetpos erase the memory of
inserted characters for the stream on which they are applied.

SEE ALSO

fseek(3S), fsetpos(3C), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

093-701056

ungetc returns EOF if it cannot insert the character.

Licensed material—property of copyright holder(s) 3-569

ungetwe(SW) DG/UX 5.4 ungetwe(3W)

NAME

ungetwe — push wchar_t character back into input stream

SYNOPSIS

#include <stdio.h>

#include <widec.h>

int ungetwe(wchar_tc, FILE +*stream);

DESCRIPTION (international Functions)

ungetwe() inserts the wchar_t character c into the buffer associated with the input

stream. That character, c, will be returned by the next gerwe call on that stream.

ungetwc() returns c.

One character of pushback is guaranteed, provided something has already been read

from the stream and the stream is actually buffered.

Ifc equals (wchar_t) EOF, ungetwc() does nothing to the buffer and returns

EOF.

fseek() erases all memory of inserted characters.

DIAGNOSTICS

ungetwc() returns EOF if it cannot insert a wchar_t character.

SEE ALSO |

getwe(3W), widec(3W).

fseek(3S), setbuf(3S), stdio(3S).

3-570 Licensed material—property of copyright hoider(s) 093-701056

unlockpt(3C) DG/UX 5.4 unlockpt(3SC)

NAME

unlockpt — unlock a pseudo-terminal master/slave pair

SYNOPSIS

int unlockpt(int fildes);

DESCRIPTION

The function unlockpt() clears a lock flag associated with the slave pseudo-terminal

device associated with its master pseudo-terminal counterpart so that the slave

pseudo-terminal device can be opened. fildes is a file descriptor returned from a suc-

cessful open of a master pseudo-terminal device.

RETURN VALUE

Upon successful completion, the function unlockpt() returns 0; otherwise it returns

-1. A failure may occur if fildes is not an open file descriptor or is not associated

with a master pseudo-terminal device.

SEE ALSO

open(2)

grantpt(3C), ptsname(3C)

in the Programmer’s Guide: STREAMS.

093-701056 Licensed material—property of copyright holder(s) 3-571

viimit(3C) DG/UX 5.4 viimit(3C)

NAME

vlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION

Limits the consumption by the current process and each process it creates to not indi-
vidually exceed value on the specified resource. If value is specified as -1, then the
current limit is returned and the limit is unchanged. The resources which are

currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised.

Only the super-user may remove the noraise restriction.

LIM_CPU Maximum number of cpu-seconds to be used by each process

LIM_FSIZE Size of the largest single file that can be created

LIM_DATA Maximum growth beyond the end of program text of the data+stack

region via sbrk(2)

LIM_STACK Maximum size of the automatically-extended stack region

LIM_CORE Size of the largest core dump that may be created.

LIM_MAXRSS Soft limit for the amount of physical memory (in bytes) to be given to

the program. This information is specified for the system’s benefit;

if memory is tight, the system will prefer to take memory from

processes that are exceeding their declared LIM_-MAXRSS.

Because specifications from this call are stored in the per-process information, this

system call must be executed directly by the shell if it is to affect all future processes

created by the shell; limit is thus a built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be

exceeded in the normal way; a break call fails if the data space limit is reached, or the

process is killed when the stack limit is reached (since the stack cannot be extended,

there is no way to send a signal).

A file I/O operation that would violate file-size limits during creation will cause a sig-
nal SIGXFSZ to be generated. This signal normally terminates the process, but may

be caught. When the CPU time limit is exceeded, a signal SIGXCPU is sent to the

offending process; to allow the process time to handle the signal, it adds five seconds

to the CPU time limit.

SEE ALSO

esh(1).

BUGS

If LIM_NORAISE is set, then no grace should be given when the CPU time limit is

exceeded. .

There should be limit and unlimit commands in sh(1) as well as in csh.

3-572 Licensed material--property of copyright holder(s) 093-701056

vprintf(3S) DG/UX 5.4 vprintf(3S)

NAME

vprintf, vfprintf, vsprintf — print formatted output of a variable argument list

SYNOPSIS ‘

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf (FILE *siream, const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

DESCRIPTION

vprintf, vfprintf and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by the <stdarg.h>
header file.

The <stdarg.h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The argu-
ment ap to the vprint family of routines is of type va_list. This argument is used
with the <stdarg.h> header file macros va_start, va_arg and va_end [see
va_start, va_arg, and va_end in stdarg(5)]. The EXAMPLE section below
shows their use with vprintf.

EXAMPLE

The following demonstrates how vfprintf could be used to write an error rou-
tine:

#include <stdio.h>

#include <stdarg.h>

/*

* error should be called like

* error(function_name, format, argl, ...);
*/

void error(char *function_name, char *format, ...)

{

va_list ap;

va_start(ap, format);

/* print out name of function causing error */

(void) fprintf(stderr, "ERR in %s: ", function_name);

va_arg(ap, char*); :

/* print out remainder of message */

(void) vfprintf(stderr, format, ap);

va_end(ap);

(void) abort;

}

SEE ALSO

printf£(3S), stdarg(5).

DIAGNOSTICS

vprintf and vfprintf return the number of characters transmitted, or return —1
if an error was encountered.

RAR PREAH
ii A mf tained nan isiaslat 4 F79rw me ate

vprintf (SW) DG/UX 5.4 vprintf(3W)

NAME

vprintf, vfprintf, vsprintf — print formatted output of a variable argument list

SYNOPSIS

#include <stdio.h>

#include <stdarg.h>

#include <widec.h>

int vprintf (const char «format, va_list ap);

int vfprintf (FILE «stream, const char «format, va_list ap);

int vsprintf (char *5, const char sformat, va_list ap);

DESCRIPTION (International Functions)

vprintf(), vfprint(), and vsprintf() are the same as printf(),

fprintf(), and sprintf() respectively, except that instead of being called with a

variable number of arguments, they are called with an argument list as defined by the

<stdarg.h> header file.

we and ws are the new conversion specifications for wchar_t character control.

Both we and ws may be used in all three functions.

we The wchar_t character arg is transformed into EUC, and then printed. Ifa

field width is specified and the transformed EUC has fewer bytes than the

field width, it will by padded to the given width. A precision specification is

ignored, if specified.

ws The arg is taken to be a wchar_t string and the wchar_t characters from

the string are transformed into EUC, and printed until a wchar_t null char-

acter is encountered or the number of bytes indicated by the precision specifi-

cation is printed. If the precision specification is missing, it is taken to be

infinite, and all wchar_t characters up to the first wchar_t null character

are transformed into EUC and printed. If a field width is specified and the

transformed EUC have fewer bytes than the field width, they are padded to

the given width.

The ASCII space character (0x20) is used as a padding characters.

SEE ALSO

3-574

printf(3W), scanf(3W), stdio(3S), vprintf(3S), widec(3W), stdarg(5).

Licensed material—property of copyright holder(s) 093-701056

vscanf(3S) DG/UX &.4 vscanf(3S)

NAME

SYNOP

vscanf, vfscanf, vsscanf — convert formatted input using varargs argument list

SIS

#include <stdio.h>

#include <varargs.h>

int vscanf (format, ap)

char sformat;

va_list ap;

int vfscanf (stream, format, ap)

FILE «stream;

char +format;

va_list ap;

int vsscanf (Ss, format, ap)

char +S, +format;

va_list ap;

DESCRIPTION

Vscanf, vfscanf, and vsscanf are the same as scanf, fscanf, and sscanf

respectively, except that instead of being called with a variable number of arguments,

they are called with an argument list as defined by varargs(5).

SEE ALSO

093-701056

scanf(3S), varargs(5).

Licensed material—property of copyright holder(s) 3-575

vtimes(3C) DG/UX 5.4 vtimes(3C)

NAME

vtimes — get information about resource usage

SYNOPSIS
vtimes(par_vm, chvm)

struct vtimes *par.vm, *ch_vm;

DESCRIPTION

vtimes returns accounting information for the current process and for the terminated

child processes of the current process. par_vm, ch_vm, or both may be 0, in which
case only the information for non-zero pointers is returned.

After the call, each buffer contains information as defined by the contents of the
include file /usr/include/sys/vtimes.h: .

struct vtimes {

int vm_utime; /* user time (*HZ) */

int vm_stime; /* system time (*HZ) */

/* divide next two by utimetstime to get averages */

unsigned vm_idsrss; /* integral of dts rss */

unsigned vm_ixrss; /* integral of text rss */

int vm_maxrss; /7* maximum rss */

int vm_majflt; /* major page faults */

int vm_minfilt; /* minor page faults */

int vm_nswap; /* number of swaps */

int vm_inblk; /* block reads */

int vm_oublk; /* block writes */

}e

The vm_utime and vm_stime fields give the user and system time, respectively, in

100ths of a second. The vm_idrss and vm_ixrss measure memory usage. They
are computed by integrating the number of memory pages in use over CPU time.

They are reported as though computed discretely, adding the current memory usage
(in 2048 byte pages) each time the clock ticks.

For example, if a process used five main memory pages over one CPU-second for its
data and stack, then vm_idsrss would have the value 5*100, where
vm_utime+vm_stime would be the 100. vm_idsrss integrates data and stack seg-

ment usage, while vm_ixrss integrates text segment usage. vm_maxrss reports the

maximum instantaneous sum of the text+datatstack core-resident page count.

The vm_majflt field gives the number of page faults that resulted in disk activity;
the vm_minflt field gives the number of page faults incurred in simulation of refer-
ence bits; vm_nswap is the number of swaps that occurred. The number of file sys-
tem input/output events are reported in vm_inblk and vm_oublk. These numbers

account only for real I/O; data supplied by the caching mechanism is charged only to

the first process to read or write the data.

SEE ALSO

time(2), wait3(2), ftime(3C).

3-576 Licensed material—property of copyright holder(s) 093-701056

weonv(3W) DG/UX 5.4 weonv(3W)

NAME

wceonv: towupper, towlower - translate characters

SYNOPSIS

#include <ctype.h>

#include <widec.h>

#include <wctype.h>

wcehar_t towupper(wchar t C);

wchar_t towlower(wchar t Cc);

DESCRIPTION

If the argument to towupper() represents a lower-case letter of the ASCII or supple-

mentary code sets, the result is the corresponding upper-case letter. If the argument

to towlower() represents an upper-case letter of the ASCII or supplementary code

sets, the result is the corresponding lower-case letter.

In the case of all other arguments, the return value in unchanged. The table which is

used for translation is generated by wchrtbl (1M).

SEE ALSO

wehrtbl(1M), ctype(3C), wetype(3W).

093-701056 Licensed material—property of copyright holder(s) 3-577

wotype (SW) DG/UX 5.4 wetype(3W)

NAME

wetype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnun,

iswspace, iswpunct, iswprint, iswgraph, iswentrl, iswascii, isphono-

gram, isideogram, isenglish, isnumber, isspecial — classify ASCII and

supplemetary code set characters

SYNOPSIS

#include <ctype.h>

#include <widec.h>

#include <wctype.h>

int iswalpha(wchar_t Cc);

DESCRIPTION

These functions classify character-coded wchar_t values by table lookup. Each is a

predicate returning nonzero for true, zero for false. The lookup table is generated by

wehrtbl (1M). Each of these functions operates on both ASCII and supplementary

code sets unless otherwise indicated.

iswalpha(c) c is an English letter.

iswupper(c) c is an English upper-case letter.

iswlower(c) c is an English lower-case letter.

iswdigit(c) cis a digit [0-9].

iswxdigit(c) c is a hexadecimal digit [0-9], [A-F] or [a-f].

iswalnum(c) c is an alphanumeric (letter or digit).

iswspace(c) c is a space character or a tab, carriage return, new line, vertical

tab or form-feed.

iswpunct(c) c is a punctuation character (neither control nor alphanumeric).

iswprint(c) c 1S a printing character including space.

iswgraph(c) c is a printing character, like iswprint() except false for space.

iswentrl(c) c is a delete character (0177), an ordinary control character (less

than 040) or other control character of a supplementary code

Set.

iswascii(c) c is an ASCII character code less than 0200.

isphonogram(c) c is a phonogram in a supplementary code set.

isideogram(c) c is an ideogram in a supplementary code set.

isenglish(c) c is an English letters in a supplementary code set.

isnumber(C) c is a digit of a supplementary code set.

isspecial(c) cis a special character in a supplementary code set.

SEE ALSO

wehrtbl(1M).

ctype(3C) in the System V Release 4.0 Programmer’s Reference Manual.

3-578 Licensed materiali—property of copyright holder(s) 093-701056

widec(3W)

NAME

widec — multibyte character I/O routines

SYNOPSIS

#Hinclude <stdio.h>

#include <widec.h>

DESCRIPTION (International Functions)

DG/UX 5.4 widec(3W)

The functions that the multibyte character library provides for wchar_t string opera-

tions correspond to those provided by the stdio(3S) as shown in the figure below:

character based byte based func- _ character and byte

function tion based

character I/O getwe getc

getwchar getchar

fgetwe fgetc

ungetwec ungetc

putwe putc

putwchar putchar

fputwe fputc

string I/O getws gets

fgetws fgets

putws puts .

fputws fputs

formatted I/O printf

fprintf

sprintf

vprintf

vfprintf

vsprintf

scanf

fscanf

sscanf

The character based input and output routines provides the ability to work in units of

a characters instead of bytes. C programs using these routines can handle any charac-

ter, from any of the four EUC code sets as the same size by using the wchar t

representation. |

getwc() returns a value of type wchar_t, which corresponds to the EUC represen-

tation of a character read from the input stream. getwc() uses the cswidth

parameter in the character class table to determin the width of the character in its

EUC form.

putwc() transforms a wchar_t character into the EUC, and writes it to the named

output stream. putwc() also uses the cswidth parameter for determining the

_ widths of characters in EUC. .

The macros getwchar() and putwchar(); the functions fgetwe(), fputwc(),

getws(), fgetws(), putws() and fputws(); and the format specifications twc

and %tws of the functions printf(), fprintf(), sprintf(), vprintf(),

vfprintf(), vsprintf(), scanf(), fscanf(), and sscanf(); act as if they

had made successive calls to either getwce() or putwe().

Licensed materialt—property of copyright holder(s) 3-579

widec(3W) | DG/UX 5.4 widec(3W)

The character based routines use the existing byte based routines internally, so the

buffering scheme is the same.

Any program that uses these routines must include the following header files:

#include <stdio.h>

#include <widec.h>

SEE ALSO

3-580

getwc(3W), getws(3W), mbchar(3W), mbstring(3W), printf£(3W),
putwe(3W), putws(3W), scanf(3W), ungetwe(3W), vprintf£(3W),
wstring(3W).

open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S),
popen(3S), printf(3S), scanf(3S), setbuf£(3S), stdio(3S), system(3S),
tmpfile(3S), tmpnam(3S).

Licensed material—property of copyright holder(s) 093-701056

wstring(SW) DG/UX 6.4 wstring(SW)

NAME

wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr, wsrchr,

wspbrk, wsspn, wscspn, wstok, wstostr, strtows - wchar_t string operations and
type transformation

SYNOPSIS

#include <widec.h>

wehar_t *wscat(wchar_t «sl, wchar_t +*s2);

wehar_t *wsncat(wchar_t +*sl, wchar_t *s2, int”);

int wscemp(wchar_t +sl, wehar_t +*s2);

int wsnemp(wchar_t «sl, wchar_t «*s2, int n);

wehar_t *wscpy(wchar_t «sl, wehar_t *s2);

wchar_t *wsncpy(wchar_t «sl, wehar_t «52, int);

int wslen(wchar_t #5);

wehar_t *wschr(wchar_t *s, intc);

wchar_t *wsrchr(wchar_t «s, int c);

wehar_t *wspbrk(wchar_t «sl, wchar_t «s2);

int wsspn(wchar_t *sl, wchar_t +52);

int wscspn(wchar_t +*sl, wchar_t «5s2);

wcehar_t *wstok(wchar_t +51, wcehar_t +52);

char *wstostr(char +#sl, wehar_t «52);

wchar_t *strtows(wchar_t «sl, char +*52);

DESCRIPTION (International Functions)

The arguments s1, s2 and s point to wchar_t strings (that is, arrays of wchar_t
characters terminated by a wchar_t null character). The functions wscat(),

wsncat(), wscpy() and wsncpy() all modify sJ. These functions do not check

for an overflow condition of the array pointed to by s/.

wscat() appends a copy of the wchar_t string s2 to the end of the wchar_t string

sil. wsncat() appends at most m wchar_t characters. Each function returns s/.

wscmp() compares its arguments and returns an integer less than, equal to, or greater

than 0, depending on whether sJ is less than, equal to, or greater than 52.

wsnemp() makes the same comparison but looks at most nm wchar_t characters.

wscpy() copies wchar_t string s2 to s1, stopping after the wchar_t null character

has been copied. wsncpy() copies exactly n wchar_t characters, truncating s2 or
adding wchar_t null characters to s1, if necessary. The result will not be wchar_t
null-terminated if the length of s2 is n or more. Each function returns s/.

wslen() returns the number of wchar_t characters in s, not includng the termnat-

ing wchar_t null character.

wschr() [wsrchr()] returns a pointer to the first [last] occurrence of wchar_t

character c in wchar_t string s, or a null pointer, if c does not occur in the string.

The wchar_t null character terminating a string is considered to be part of the
string.

N92.7N1N56 Licansed material-—oroperty of copvriaht hoider(s) 2.524

wstring(SW) DG/UX 5.4 wstring(SW)

wspbrk() returns a pointer to the first occurrence in wchar_t string s] of any

wchar _t character from wchar_t string s2, or a null pointer if there is no wchar_t

character from s2 in sl.

wsspn() [wscspn()] returns the length of the initial segment of wchar_t string sJ,

which consists [does not consist] entirely of wchar_t characters from wchar_t

string s2.

wstok() considers the wchar_t string s] to consist of a sequence of zero or more

text tokens, separated by spans of one or more wchar_t characters from the separa-

tor wchar t string s2. The first call (with the pointer sJ specified) returns a pointer

to the first wchar_t character of the first token, and writes a wchar_t null charac-

ter into sJ immediately following the returned token. The function keeps track of its

position in the wchar_t string between separate calls, so that subsequent calls

(which must be made with the first argument a null pointer) will progress through the

wchar_t string s/ immediately following that token. Similarly, subsequent calls will

progress through the wchar_t string s/ until no tokens remain. The wchar_t

separator string s2 may be different from call to call. A null pointer is returned when

no token remains in sl.

wstostr() transforms wchar_t characters in wchar_t string s2 into EUC, and

transfers them to character string s1, stopping after the wchar_t null character has

been processed. |

strtows() transforms EUC in character string s2 into the wchar_t characters, and

transfers those to wchar_t string si, stopping after the null character has been pro-

cessed.

‘DIAGNOSTICS |
On success, wstostr() and strtows() return si. If an illegal byte sequence is

detected, a null pointer is returned and EILSEQ Is set to errno.

SEE ALSO

3-582

malloc(3C), malloc(3X), widec(3W).

Licensed material—property of copyright hoider(s) 093-701056

xdr(SN)

NAME

DG/UX 5.4 xdr(3N)

xdr_array, xdr_bool, xdr_bytes, xdr_char, xdr_destroy, xdr_double,

xdr_int, xdr_long, xdrmem_create, xdr_opaque, xdr_pointer,

xdrrec_ create, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord,

xdr_reference, xdr_setpos, xdr_short, xdrstdio_create, xdr_string,

_xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short, xdr_union,

xdr_vector, xdr_void, xdr_wrapstring - library routines for external data

representation

SYNOPSIS AND DESCRIPTION

093-701056

The XDR library has filter routines for strings (null-terminated arrays of bytes), struc-

tures, unions, arrays, and the basic C language data types. These routines, allow C

programmers to describe arbitrary data structures in a machine-independent fashion.

XDR routines a are direction-independent; that is the same routines are called to seri-

alize data to, or deserialize data from, an XDR stream. XDR streams are created by

the use of the xdr*_create() functions, and then the pointer to these streams are

passed to many of the other XDR functions.

Data for remote procedure calls are transmitted using these routines.

#include <rpc/rpc.h>

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)

XDR *xdrs;

char **arrp;

u_int *sizep, maxsize, elsize;

xdrproc_t elproc;

A filter primitive that translates between variable-length arrays and their

corresponding external representations. The parameter arrp is the address of

the pointer to the array, while sizep is the address of the element count of the

array; this element count cannot exceed maxsize. The parameter elsize is the

sizeof each of the array’s elements, and elproc is an XDR filter that translates

between the array elements’ C form, and their external representation. This

routine returns one if it succeeds, zero otherwise. °

xdr_bool(xdrs, bp)

XDR *xdrs;

bool _t *bp;

A filter primitive that translates between booleans (C integers) and their

external representations. When encoding data, this filter produces values of

either one or zero. This routine returns one if it succeeds, zero otherwise.

xdr_bytes(xdrs, sp, sizep, maxsize)

XDR *xdrs;

char **sp;

u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their exter-

nal representations. The parameter sp is the address of the string pointer.

The length of the string is located at address sizep; strings cannot be longer

than maxsize. This routine returns one if it succeeds, zero otherwise.

Licensed material—property of copyright holder(s) 3-583

xdr(3N)

3-584

DG/UX 5.4 xdir(3N)

xdr_char(xdrs, cp)

XDR *xdrs;

char *cp;

A filter primitive that translates between C characters and their external

representations. This routine returns one if it succeeds, zero otherwise.

Note: encoded characters are not packed, and occupy 4 bytes each. For

arrays of characters, it is worthwhile to consider xdr_bytes(),

xdr_opaque() or xdr_string().

void

xdr_destroy(xdrs)

XDR *xdrs;

A macro that invokes the destroy routine associated with the XDR stream,

xdrs. Destruction usually involves freeing private data structures associated

with the stream. Using xdrs after invoking xdr_destroy() is undefined.

xdr_double(xdrs, dp)

XDR *xdrs;

double *dp;

A filter primitive that translates between C double precision numbers and

_ their external representations. This routine returns one if it succeeds, zero

otherwise.

xdr_enum(xdrs, ep)

XDR *xdrs;

enum t *ep;

A filter primitive that translates between C enums (actually integers) and

their external representations. This routine returns one if it succeeds, zero

otherwise.

xdr_float(xdrs, fp)

XDR *xdrs;

float. *fp;

A filter primitive that translates between C floats and their external

representations. This routine returns one if it succeeds, zero otherwise.

void

xdr_free(proc, objp)

xdrproc_t proc;

char *objp;

Generic freeing routine. The first argument is the XDR routine for the object

being freed. The second argument is a pointer to the object itself. Note: the

pointer passed to this routine is not freed, but what it points to is freed

(recursively).

Licensed material—property of copyright holder(s) 093-701056

xdr(3N)

093-701056

DG/UX 5.4 xdr(3N)

u_int

xdr_getpos(xdrs)

XDR *xdrs;

A macro that invokes the get-position routine associated with the XDR

stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream instances

need not guarantee this.

long *

xdr_inline(xdrs, len)

XDR *xdrs;

int len;

A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream’s
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long *.

Warning: xdr_inline() may return NULL (0) if it cannot allocate a con-

tiguous piece of a buffer. Therefore the behavior may vary among stream

instances; it exists for the sake of efficiency.

xdr_int(xdrs, ip)

XDR *xdrs;

int *ip;

A filter primitive that translates between C integers and their external

representations. This routine returns one if it succeeds, zero otherwise. -

xdr_long(xdrs, lp)

XDR *xdrs;

long *lp;

A filter primitive that translates between C long integers and their external

representations. This routine returns one if it succeeds, zero otherwise.

void

xdrmem_ create(xdrs, addr, size, op)

XDR *xdrs;

char *addr;

u_int size;

enum xdr_op op; |

This routine initializes the XDR stream object pointed to by xdrs. The

stream’s data is‘written to, or read from, a chunk of memory at location addr

whose length is no more than size bytes long. The op determines the direc-

tion of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Licensed material—property of copyright holder(s) 3-585

| xdr(3N)

3-586

DG/UX 8.4 xdr(3N)

xdr_opaque(xdrs, cp, cnt)

XDR *xdrs;

char *cp;

u_int cnt;

A filter primitive that translates between fixed size opaque data and its exter-

nal representation. The parameter cp is the address of the opaque object,

and cnt is its size in bytes. This routine returns one if it succeeds, zero other-

wise.

xdr_pointer(xdrs, objpp, objsize, xdrobj)

XDR *xdrs;

char **objpp;

u_int objsize;

xdrproc_t xdrobj;

Like xdr_reference() except that it serializes NULL pointers, whereas

xdr_reference() does not. Thus, xdr_pointer() can represent recur-

sive data structures, such as binary trees or linked lists.

void

xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)

XDR *xdrs;

u_int sendsize, recvsize;

char *handle;

int (*readit) (), (*writeit) ();

This routine initializes the XDR stream object pointed to by xdrs. The

stream’s data is written to a buffer of size sendsize; a value of zero indicates

the system should use a suitable default. The stream’s data is read from a

buffer of size recvsize; it too can be set to a suitable default by passing a zero

value. When a stream’s output buffer is full, writeit is called. Similarly, when

a stream’s input buffer is empty, readit is called. The behavior of these two

routines is similar to the system calls read and write, except that handle is

passed to the former routines as the first parameter. Note: the XDR stream’s

op field must be set by the caller.

Warning: this XDR stream implements an intermediate record stream. There-

fore there are additional bytes in the stream to provide record boundary infor-

mation.

xdrrec_endofrecord(xdrs, sendnow)

XDR *xdrs;

int sendnovw;

This routine can be invoked only on streams created by xdrrec_create().

The data in the output buffer is marked as a completed record, and the out-

put buffer is optionally written out if sendnow is non-zero. This routine

returns one if it succeeds, zero otherwise.

Licensed material—property of copyright holder(s) 093-701056

xdr(3N) DG/UX 5.4 xdr(3N)

xdrrec_eof(xdrs)

XDR *xdrs;

int empty;

This routine can be invoked only on streams created by xdrrec_create().

After consuming the rest of the current record in the stream, this routine

returns one if the stream has no more input, zero otherwise.

xdrrec_skiprecord(xdrs)

XDR *xdrs;

This routine can be invoked only on streams created by xdrrec_create().

It tells the XDR implementation that the rest of the current record in the

stream’s input buffer should be discarded. This routine returns one if it

succeeds, zero otherwise.

xdr_reference(xdrs, pp, size, proc)

XDR *xdrs;

char **pp;

u_int size;

xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp

is the address of the pointer; size is the sizeof the structure that *pp points to;

and proc is an XDR procedure that filters the structure between its C form

and its external representation. This routine returns one if it succeeds, zero

otherwise.

Warning: this routine does not understand NULL pointers. Use

xdr_pointer() imstead.

xdr_setpos(xdrs, pos)

XDR *xdrs;

u_int pos;

A macro that invokes the set position routine associated ‘with the XDR stream

xdrs. The parameter pos is a position value obtained from xdr_getpos().

This routine returns one if the XDR stream could be repositioned, and zero

otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this rou-

tine may fail with one type of stream and succeed with another.

xdr_short(xdrs, SP)

XDR *xdrs;

short *sp;

A filter primitive that translates between C short integers and their external

representations. This routine returns one if it succeeds, zero otherwise.

Aan PAARL !icanead matarial—pronperty of copvriaht holder(e) 2.5287

xdr(3N) DG/UX 5.4 xdr(3N)

void

xdrstdio_create(xdrs, file, op)

XDR *xdrs;

FILE *file;

enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the Standard 1/0 stream file. The

parameter op determines the direction of the XDR stream (either

XDR_ENCODE, XDR_DECODE, OF XDR_FREE).

Warning: the destroy routine associated with such XDR streams calls

fflush() on the file stream, but never fclose().

xdr_string(xdrs, sp, maxsize)

XDR

*xdrs;

char **sp;

u_int maxsize;

A filter primitive that translates between C strings and their corresponding

external representations. Strings cannot be longer than maxsize. Note: sp is

the address of the string’s pointer. This routine returns one if it succeeds,
zero otherwise. |

xdr_u_char(xdrs, ucp)

XDR *xdrs;

unsigned char *ucp;

A filter primitive that translates between unsigned C€ characters and their

external representations. This routine returns one if it succeeds, zero other-

wise.

xdr_u_int(xdrs, up)

XDR *xdrs;

unsigned *up;

A filter primitive that translates between C unsigned integers and their

external representations. This routine returns one if it succeeds, zero other-

wise.

xdr_u_long(xdrs, ulp)

XDR *xdrs;

unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and

their external representations. This routine returns one if it succeeds, zero

otherwise. : :

xdr_u_short(xdrs, usp)

XDR *xdrs;

unsigned short *usp;

A filter primitive that translates between C unsigned short integers and

their external representations. This routine returns one if it succeeds, zero

otherwise.

3-588 Licensed material—property of copyright holder(s) 093-701056

xdr(SN) DG/UX 5.4 xdr(3N)

xdr_union(xdrs, dscmp, unp, choices, dfault)

XDR *xdrs;

int *dscmp;

char *unp;

struct xdr_discrim *choices;

bool_t (*defaultarm) (); /* may equal NULL */

A filter primitive that translates between a discriminated C union and its
corresponding external representation. It first translates the discriminant of
the union located at dscmp. This discriminant is always an enum_t. Next
the union located at unp is translated. The parameter choices is a pointer to
an array of xdr_discrim() structures. Each structure contains an ordered
pair of [value,proc]. If the union’s discriminant is equal to the associated
value, then the proc is called to translate the union. The end of the
xdr_discrim() structure array is denoted by a routine of value NULL. If

the discriminant is not found in the choices array, then the defaultarm pro-
cedure is called (if it is not NULL). Returns one if it succeeds, zero other-
wise.

xdr_vector(xdrs, arrp, size, elsize, elproc)

XDR *xdrs;

char *arrp;

u_int size, elsize;

xdrproc_t elproc;

A filter primitive that translates between fixed-length arrays and their
corresponding external representations. The parameter arrp is the address of
the pointer to the array, while size is is the element count of the array. The
parameter elsize is the sizeof each of the array’s elements, and elproc is an

XDR filter that translates between the array elements’ C form, and their exter-
nal representation. This routine returns one if it succeeds, zero otherwise.

xdr_void()

This routine always returns one. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

xdr_wrapstring(xdrs, sp)

XDR *xdrs;

char **sp;

A primitive that calls xdr_string(xdrs, sp, MAX.UNSIGNED");” where
MAX.UNSIGNED is the maximum value of an unsigned integer.

xdr_wrapstring() is handy because the RPC package passes a maximum of

two XDR routines as parameters, and xdr_string(), one of the most fre-

quently used primitives, requires three. Returns one if it succeeds, zero oth-
erwise.

SEE ALSO

rpc(3N).

093-701056 Licensed materiai—property of copyright holder(s) 3-589

ypeint(3N) DG/UX 5.4 ypcint(3N)

NAME

ypcelnt, yp_get_default_domain, yp_bind, yp_unbind, yp match,

yp_first, yp_next, yp all, yp_order, yp_master, yperr_string,

ypprot_err — Network Information Service client interface

SYNOPSIS AND DESCRIPTION

3-590

This package of functions provides an interface to the Network Information Service

(NIS) network lookup service. The package can be loaded from the standard library,

/usr/lib/libc.a. Refer to ypfiles(5) and ypserv(8) for an overview of the

Network Information Service, including the definitions of map and domain, and a

description of the various servers, databases, and commands that comprise the NIS.

All input parameters names begin with in. Output parameters begin with our. Out-

put parameters of type char ** should be addresses of uninitialized character

pointers. Memory is allocated by the NIS client package using malloc(3C), and may

be freed if the user code has no continuing need for it. For each outkey and outval,

two extra bytes of memory are allocated at the end that contain NEWLINE and NULL,

respectively, but these two bytes are not reflected in outkeylen or outvallen. indomain

and inmap strings must be non-NULL and NULL-terminated. String parameters which

are accompanied by a count parameter may not be NULL, but may point to NULL

strings, with the count parameter indicating this. Counted strings need not be NULL-

terminated.

All functions in this package of type int return 0 if they succeed, and a failure code

(YPERR_xxxx) otherwise. Failure codes are described under DIAGNOSTICS below.

yp_bind (indomain);

char *indomain;

To use the NIS services, the client process must be bound to a NIS server that

serves the appropriate domain using yp_bind(). Binding need not be done

explicitly by user code; this is done automatically whenever a NIS lookup

function is called. yp _bind() can be called directly for processes that

make use of a backup strategy (for example, a local file) in cases when NIS

__ services are not available.

void

yp_unbind (indomain)

char *indomain;

Each binding allocates (uses up) one client process socket descriptor; each

bound domain costs one socket descriptor. However, multiple requests to the

same domain use that same descriptor. yp _unbind() is available at the

client interface for processes that explicitly manage their socket descriptors

while accessing multiple domains. The call to yp_unbind() make the

domain unbound, and free all per-process and per-node resources used to

bind it.

If an RPC failure results upon use of a binding, that domain will be unbound

automatically. At that point, the ypclnt layer will retry forever or until the

operation succeeds, provided that ypbind is running, and either

a) the client process cannot bind a server for the proper domain, or

b) RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound

ypserv process returns any answer (success or failure), the ypclnt layer will

Licensed material—property of copyright holder(s) 093-701056

ypcint(SN) DG/UX 5.4 ypeint(SN)

093-701056

return control to the user code, either with an error code, or a success code

and any results.

yp_get_default_domain (outdomain);

char **outdomain;

The NIS lookup calls require a map name and a domain name, at minimum.

It is assumed that the client process knows the name of the map of interest.

Client processes should fetch the node’s default domain by calling

yp_get_default_domain(), and use the returned outdomain as the

indomain parameter to successive NIS calls.

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen)

char *indomain;

char *inmap;

Char *inkey;

int inkeylen;

char **outval;

int *outvallen;

yp_match() returns the value associated with a passed key. This key must

be exact; no pattern matching is available.

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen)

char *indomain;

char *inmap;

char **outkey;

int *outkeylen;

char **outval;

int *outvallen;

yp_first() returns the first key-value pair from the named map in the

named domain.

yp_next(indomain, inmap, inkey, inkeylen, outkey, outkeylen,

outval, outvallen); |

char *indomain;

char *inmap;

char *inkey;

int inkeylen;

char **outkey;

int *outkeylen;

char **outval;

int *outvallen;

yp_next() returns the next key-value pair in a named map. The inkey

parameter should be the outkey returned from an initial call to yp_first()

(to get the second key-value pair) or the one returned from the nth call to

yp_next() (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc-

ture of the NIS map being processing; there is no relation in retrieval order to

either the lexical order within any original (non-NIS) data base, or to any

obvious numerical sorting order on the keys, values, or key-value pairs. The

only ordering guarantee made is that if the yp first () function is called on

a particular map, and then the yp_next() function is repeatedly called on

the same map at the same server until the call fails with a reason of

Licensed material—property of copyright holder(s) 3-591

ypcint(3N) DG/UX 5.4 ypcint(3N)

YPERR_NOMORE, every entry in the data base will be seen exactly once.

Further, if the same sequence of operations is performed on the same map at

the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for the
domain to become unbound, then bound once again (perhaps to a different

server) while a client is running. This can cause a break in one of the

enumeration rules; specific entries may be seen twice by the client, or not at

all. This approach protects the client from error messages that would other-

wise be returned in the midst of the enumeration. The next paragraph

describes a better solution to enumerating all entries in a map.

yp_all(indomain, inmap, incallback) ;

char *indomain;

char *inmap;

struct ypall_callback incallback;

3-592

yp_all() provides a way to transfer an entire map from server to client in a

single request using TCP (rather than UDP as with other functions in this

package). The entire transaction take place as a single RPC request and

response. You can use yp_all() just like any other NIS procedure, identify

the map in the normal manner, and supply the name of a function which will

be called to process each key-value pair within the map. You return from the

call to yp_all() only when the transaction is completed (successfully or

unsuccessfully), or your foreach function decides that it does not want to see

any more key-value pairs.

The third parameter to yp_all() is

struct ypall_ callback *incallback {

int (*foreach)();

char *data;

};

The function foreach is called -

foreach(instatus, inkey, inkeylen, inval, invallen, indata);

int instatus;

char *inkey;

int inkeylen;

char *inval;

int invalllen;

char *indata;

The instatus parameter will hold one of the return status values defined in

<rpesvc/yp_prot.h> — either |, 12, or am error code. (See

ypprot_err(), below, for a function which converts a NIS protocol error

code to a ypcint layer error code.)

The key and value parameters are somewhat different than defined in the

synopsis section above. First, the memory pointed to by the inkey and inval

parameters is private to the yp_all() function, and is overwritten with the

arrival of each new key-value pair. It is the responsibility of the foreach

function to do something useful with the contents of that memory, but it does

not own the memory itself. Key and value objects presented to the foreach

function look exactly as they do in the server’s map — if they were not

NEWLINE-terminated or NULL-terminated in the map, they will not be here

either.

Licensed material—property of copyright hoider(s) 093-701056

ypcint(SN) DG/UX 5.4 ypcint(3N)

FILES

The indata parameter is the contents of the incallback->data element

passed to yp_all(). The data element of the callback structure may be

_ used to share state information between the foreach function and the main-
line code. Its use is optional, and no part of the NIS client package inspects

its contents — cast it to something useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to indicate that it

wants to be called again for further received key-value pairs, or non-zero to

stop the flow of key-value pairs. If foreach returns a non-zero value, it is

not called again; the functional value of yp_all() is then 0.

yp_Order(indomain, inmap, outorder) ;

char *indomain;

char *inmap;

int *outorder;

yp_order() returns the order number for a map.

yp_master(indomain, inmap, outname) ;

char *indomain; .

char *inmap;

char **outname;

yp_master() returns the machine name of the master NIS server for a map.

char *yperr_string(incode)

int incode;

yperr_string() returns a pointer to an error message string that is NULL-

terminated but contains no period or NEWLINE.

ypprot_err (incode)

unsigned int incode;

ypprot_err() takes a NIS protocol error code as input, and returns a ypclnt

layer error code, which may be used in turn as an input to

yperr_string().

/usr/include/rpcsvc/ypcelnt.h

/usr/include/rpcsvc/yp_prot.h

fusr/lib/libc.a

DIAGNOSTICS

093-701056

All integer functions return 0 if the requested operation is successful, or one of the
following errors if the operation fails.

#define YPERR_BADARGS

1 /* args to function are

#define YPERR_RPC

2 /* RPC failure - domain

#define YPERR_DOMAIN

3 /* can’t bind to server

#define YPERR_MAP

4 /* no such map in

#define YPERR_KEY

. 5 /* no such key in

Licensed material—property of copyright holder(s) 3-593

ypcint(SN)

SEE ALSO

DG/UX 5.4 ypcint(3N)

#define YPERR_YPERR

6 /* internal yp server or

#define YPERR_RESRC

7 /* resource allocation failure */

#define YPERR_.NOMORE

8 /* no more records in

#define YPERR_PMAP

9 /* can’t communicate with portmapper

#define YPERR_YPBIND

10 /* can’t communicate with ypbind

#define YPERR_YPSERV

11 /* can’t communicate with ypserv

#define YYPERR_.NODOM

12 /* local domain name not

#define YPERR_BADDBf{R
13 /* yp database is bad

#define YPERR_VERS{R

14 /* yp version mismatch */

#define YPERR_ACCESS

15 /* access violation */

#define YPERR_BUSY

16 /* database busy */

malloc(3C), ypupdate(3N), ypfiles(5), ypserv(8).

3-594

End of Chapter

Licensed material—property of copyright holder(s) 093-701056

Index

Note: Boldfaced page numbers (e.g., 1-5)

indicate definitions of terms or other key

information.

A

a641(3C) 3-9

abort(3C) 3-10

abs(3C) 3-11

addseverity(3C) 3-12

assert(3X) 3-13

atexit(3C) 3-14

basename(3G) 3-15

bemp(3C) 3-16

bcopy(3C) 3-17

berk_regex(3C) 3-18

berk_signal(3C) 3-19

bessel(3M) 3-21

bgets(3G) 3-22

bsearch(3C) 3-23

bufsplit(3G) 3-25

byteorder(3N) 3-26

bzero(3C) 3-27

Cc

catgets(3C) 3-28

catopen(3C) 3-29

cfsetospeed(3C) 3-31

clock(3C) 3-33

conv(3C) 3-34

copylist(3G) 3-35

crypt(3C) 3-36

crypt(3X) 3-37

ctermid(3S) 3-39

ctime(3C) 3-40

ctype(3C) 3-43

curs_addch(3X) 3-45

curs_addchstr(3X) 3-47, 3-48

curs_addstr(3X) 3-49

093-701056 Licensed material—property of copyright holder(s)

curs_addwch(3X) 3-50

curs_addwchstr(3X) 3-51

curs_attr(3X) 3-52

curs_beep(3X) 3-54

curs_bkgd(3X) 3-55

curs_border(3X) 3-56 —

curs_clear(3X) 3-57

curs_color(3X) 3-58

curs_delch(3X) 3-60

curs_deleteln(3X) 3-61

curs_getch(3X) 3-62

curs_getstr(3X) 3-66

curs_getwch(3X) 3-67

curs_getwstr(3X) 3-71

curs_getyx(3X) 3-72

curs_inch(3X) 3-73

curs_inchstr(3X) 3-74

curs_initscr(3X) 3-75

curs_inopts(3X) 3-77

curs_insch(3X) 3-80

curs_insstr(3X) 3-81

curs_instr(3X) 3-82

curs_inswch(3X) 3-83

curs_inswstr(3X) 3-84

curs_inwch(3X) 3-85

curs_inwchstr(3X) 3-86

curs_inwstr(3X) 3-87

curs_kernel(3X) 3-88

curs_move(3X) 3-90

curs_outopts(3X) 3-91

curs_overlay(3X) 3-93

curs_pad(3X) 3-94

curs_printw(3X) 3-96

curs_refresh(3X) 3-97

curs_scanw(3X) 3-99

curs_scr_dump(3X). 3-100

curs_scroll(3X) 3-101

curs_slk(3X) 3-102

curs_termattrs(3X) 3-104

curs_termcap(3X) 3-106

curs_terminfo(3X) 3-107

curs_touch(3X) 3-110

curs_util(3X) 3-111

curs_window(3X) 3-113

Index-1

ypecint(SN)

curses(3X) 3-115

cuserid(3S) 3-125

D

dbm(3X) 3-126

dg_flock(3C) 3-128

dg_seek(3C) 3-130

dial(3C) 3-131

directory(3X) 3-133

dirname(3G) 3-135

div(3C) 3-136

doconfig(3N) 3-137

Documention

AViON and DG/UX, Guide to RD-1

related RD-1

drand48(3C) 3-139

-drem(3M) 3-141

ecvt(3C) 3-142

elf(3E) 3-143

elf_begin(3E) 3-147

elf_cntl(3E) 3-152

elf_end(3E) 3-153

elf_error(3E) 3-154

elf_fill(3E) 3-155

elf_flag(3E) 3-156

elf_fsize(3E) 3-158

elf._getarhdr(3E) 3-159

elf_getarsym(3E) 3-160

elf_getbase(3E) 3-161

elf_getdata(3E) 3-162

elf. getehdr(3E) 3-166

elf_getident(3E) 3-167

elf_getphdr(3E) 3-168

elf_getscn(3E) 3-169

elf_getshdr(3E) 3-171

elf_hash(3E) 3-172

elf_kind(3E) 3-173

elf_next(3E) 3-174

elf_rand(3E) 3-175

elf_rawfile(3E) 3-176

elf_strptr(3E) 3-177

elf_update(3E) 3-178

elf_version(3E) 3-181

elf_xlate(3E) 3-182

end(3C) 3-184

erf(3M) 3-185

Index-2

DG/UX 5.4

Licensed material—property of copyright holder(s)

~ ypeint(3N)

ethers(3N) 3-186

exp(3M) 3-188

exportent(3C) 3-190

extended_perror(3C) 3-192

extended_strerror(3C) 3-194

F

fattach(3C) 3-195

fclose(3S) 3-196

fdetach(3C) 3-197

ferror(3S) 3-198

ffs(3C) 3-199

floor(3M) 3-200

fmtmsg(3C) 3-201

fopen(3S) 3-205

form_cursor(3X) 3-207

form_data(3X) 3-208

form_driver(3X) 3-209

form_field(3X) 3-211

form_field_attributes(3X) 3-212

form_field_buffer(3X) 3-213

form_field_info(3X) 3-214

form_field_just(3X) 3-215

form_field_new(3X) 3-216

form_field_opts(3X) 3-217

form_field_userptr(3X) 3-218

form_field_validation(3X) 3-219

form_fieldtype(3X) 3-220

form_hook(3X) 3-222

form_new(3X) 3-223

form_new_page(3X) 3-224

form_opts(3X) 3-225

form_page(3X) 3-226

form_post(3X) 3-227

form_userptr(3X) 3-228

form_win(3X) 3-229

forms(3X) 3-230

fpgetround(3C) 3-233

fread(3S) 3-235

frexp(3C) 3-236

fseek(3S) 3-238

ftime(3C) 3-239

ftw(3C) 3-240

G

gamma(3M) 3-242

getc(3S) 3-243

getcwd(3C) 3-244

093-701056

ypcint(3N)

getdate(3C) 3-245

getenv(3C) 3-248

getfsent(3C) 3-249

getgrent(3C) 3-250

gethostent(3N) 3-252

getlogin(3C) 3-254

getmntent(3C) 3-255

getnetconfig(3N) 3-256

getnetent(3N) 3-258

getnetgrent(3N) 3-260

getnetpath(3N) 3-261

getopt(3C) 3-262

getpass(3C) 3-264

getprotoent(3N) 3-265

getpw(3C) 3-266

getpwent(3C) 3-267

getrpcent(3N) 3-269

getrpcport(3R) 3-270

gets(3S) 3-271

getservent(3N) 3-272

getspent(3C) 3-274

getsubopt(3C) 3-276

gettxt(3C) 3-279

getut(3C) 3-281.

getwc(3W) 3-283

getwd(3C) 3-284

getwidth(3W) 3-285

getws(3W) 3-286

gmatch(3G) 3-287

grantpt(3C) 3-288

H

hsearch(3C) 3-289

hypot(3M) 3-291

ieeefp(3C) 3-292

index(3C) 3-293

inet(3N) 3-295

initgroups(3C) 3-297

insque(3C) 3-298

intro(3) 3-2

intro(3N) 3-8

isalphanum(3C) 3-299 _
isastream(3C) 3-300

isencrypt(3G) 3-301

ishex(3C) 3-302

isnan(3C) 3-303

093-701056

DG/UX 5.4 ypcint(3N)

itoa(3C) 3-304

J

jobs(3C) 3-305

L

3tol(3C) 3-310

Idahread(3X) 3-311

Idclose(3X) 3-312

Idfhread(3X) 3-313

Idgetname(3X) 3-314

Idlread(3X) 3-315

Idiseek(3X) 3-316

Idohseek(3X) 3-317

Idopen(3X) 3-318

Idrseek(3X) 3-320

Idshread(3X) 3-321

Idsseek(3X) 3-322

Idtbindex(3X) 3-323

Idtbread(3X) 3-324

Idtbseek(3X) 3-325

Line control 3-547

localeconv(3C) 3-326

lockf{(3C) 3-329

logname(3X) 3-331

Isearch(3C) 3-332

M

main(3C) 3-334

malloc(3C) 3-336

malloc(3X) 3-338

matherr(3M) 3-340

mbchar(3C) 3-343

mbchar(3W) 3-345

mbstring(3C) 3-346

mbstring(3W) 3-347

memory(3C) 3-348

menu_attributes(3X) 3-349

menu_cursor(3X) 3-350

menu_driver(3X) 3-351

menu_format(3X) 3-353

menu_hook(3X) 3-354

menu_item_current(3X) 3-355

menu_item_name(3X) 3-356

menu_item_new(3X) 3-357

menu_item_opts(3X) 3-358

menu_item_userptr(3X) 3-359

Licensed material—property of copyright holder(s) Index-3

ypcint(SN)

menu_item_value(3X) 3-360

menu_item_visible(3X) 3-361

menu_items(3X) 3-362

menu_mark(3X) 3-363

menu_new(3X) 3-364

menu_opts(3X) 3-365

menu_pattern(3X) 3-366

menu_post(3X) 3-367

menu_userptr(3X) 3-368

menu_win(3X) 3-369

menus(3X) 3-370

mkdirp(3G) 3-373

mkfifo(3C) 3-374

mkstemp(3C) 3-375

mktemp(3C) 3-376

mlock(3C) 3-377

mlockall(3C) 3-378

monitor(3C) 3-379

mp(3X) 3-381

msync(3C) 3-383

N

ndbm(3C) 3-384

netdir(3N) 3-386

Networking functions, see xdr(3N)

nl_langinfo(3C) 3-390

nlist(3C) 3-391

nlsgetcall(3N) 3-392

nlsprovider(3N) 3-393

nisrequest(3N) 3-394

p

p2open(3G) 3-395

panel_above(3X) 3-397

panel_move(3X) 3-398

panel_new(3X) 3-399

panel_show(3X) 3-400

panel_top(3X) 3-401

panel_update(3X) 3-402

panel_userptr(3X) 3-403

panel_window(3X) 3-404

panels(3X) 3-405

pathfind(3G) 3-406

perror(3C) 3-407

popen(3S) 3-408

printf(3S) 3-410

printf(3W) 3-415

psignal(3C) 3-416

DG/UX 5.4 ypcint(3N)

ptsname(3C) 3-417

putc(3S) 3-418

putenv(3C) 3-419

putpwent(3C) 3-420

puts(3S) 3-421

putspent(3C) 3-422

putwc(3W) 3-423

putws(3W) 3-424

Q

qsort(3C) 3-425

R

raise(3C) 3-426

rand(3C) 3-427

random(3C) 3-428

rcmd(3X) 3-430

re_comp(3C) 3-18

re_exec(3C) 3-18

realpath(3C) 3-431

regemp(3G) 3-432

regemp(3X) 3-434

regex(3C) 3-18

regexpr(3G) 3-437

Related documents RD-1

remove(3C) 3-440

remque(3C) 3-441

resolver(3C) 3-443

rexec(3X) 3-445

rindex(3C) 3-446

rpc(3N) 3-448

rtime(3N) 3-464

Ss

scandir(3C) 3-465

scanf(3S) 3-466

scanf(3W) 3-470

setbuf(3S) 3-472

setbuffer(3C) 3-473

setimp(3C) 3-474

setlinebuf(3C) 3-476

setlocale(3C) 3-477

signal(3C) 3-19

sigsetimp(3C) 3-479

sigsetops(3C) 3-480

sinh(3M) 3-481

sleep(3C) 3-482

Index-4 Licensed material—property of copyright holder(s) 093-701056

ypcint(3N)

sputlh(3X) 3-483

ssignal(3C) 3-484

stdio(3S) 3-485

stdipc(3C) 3-487

str(3G) 3-488

strecpy(3G) 3-489

strcoll(3C) 3-490

strerror(3C) 3-491

strftime(3C) 3-492

string(3C) 3-494

strsave(3C) 3-496

strtod(3C) 3-498

strtol(3C) 3-499

strxfrm(3C) 3-500

swab(3C) 3-501

swapcontext(3C) 3-502

syslog(3C) 3-503

system(3S) 3-505

sysv3_cuserid(3S) 3-506

T

t_accept(3N) 3-507

t_alloc(3N) 3-509

t_bind(3N) 3-511

t_close(3N) 3-513

t_connect(3N) 3-514

t_error(3N) 3-516

t_free(3N) 3-517

t_getinfo(3N) 3-518

t_getstate(3N) 3-520

t_listen(3N) 3-521

tlook(3N) 3-523

t.open(3N) 3-524

t_optmgmt(3N) 3-526

t.rcv(3N) 3-528

t_rcvconnect(3N) 3-529

t_revdis(3N) 3-531

t_rcvrel(3N) 3-533

t_rcvudata(3N) 3-534

t_rcvuderr(3N) 3-536

t.snd(3N) 3-537

t_snddis(3N) 3-539

t_sndrel(3N) 3-541

t_sndudata(3N) 3-542

t_sync(3N) 3-544

t_unbind(3N) 3-546

tcflush(3C) 3-547

tcgetpgrp(3C) 3-550

tcsetattr(3C) 3-551

tcsetpgrp(3C) 3-553

093-701056

DG/UX 5.4 ypcint(3N)

termcap(3X) 3-554

termios(3C) 3-556

tmpfile(3S) 3-560

tmpnam(3S) 3-561

trig(3M) 3-562

tsearch(3C) 3-563

ttyname(3C) 3-567

ttyslot(3C) 3-568

U

ungetc(3S) 3-569

ungetwc(3W) 3-570

unlockpt(3C) 3-571

Vv

viimit(3C) 3-572

vprintf{(3S) 3-573

vprintf(3W) 3-574

vscanf(3S) 3-575

vtimes(3C) 3-576

WwW

weonv(3W) 3-577

wetype(3W) 3-578

widec(3W) 3-579

wstring(3W) 3-581

X

xdr(3N) 3-583

Y

ypclnt(3N) 3-590

Licensed material—property of copyright holder(s) Iindex-5

Related Documents

The following list of related manuals gives titles of Data General manuals followed by nine-

digit numbers used for ordering. You can order any of these manuals via mail or telephone

(see the TIPS Order Form in the back of this manual).

For a complete list of AViiON® and DG/UXTM manuals, see the Guide to AViiON® and

DG/UXTM Documentation (069-701085). The on-line version of this manual found in

/usr/release/doc_guide contains the most current list.

Data General Software Manuals

User’s Manuals

User's Reference for the DG/UXTM System

Contains an alphabetical listing of manual pages for commands relating to general system

operation. Ordering Number — 093-701054

Using the DG/UXTM Editors

Describes the text editors vi and ed, the batch editor sed, and the command line editor edi-

tread. Ordering Number — 069-701036

Using the DG/UXTM System

Describes the DG/UX system and its major features, including the C and Bourne shells, typi-
cal user commands, the file system, and communications facilities such as mailx. Ordering

Number — 069-701035

Installation and Administration Manuals

System Manager’s Reference for the DG/UXTM System

Contains an alphabetical listing of manual pages for commands relating to system administra-

tion or operation. Ordering Number — 093-701050

093-701056 Licensed material—property of copyright holder(s) RD- 1

.. ypeint(3N) DG/UX 5.4 : ypcint(3N)

Programming Manuals

Porting and Developing Applications on the DG/UXTM System

A compendium of useful information for experienced programmers developing or porting

applications to the DG/UXTM system. It includes information on how to: set up your environ-

ment, use the software development tools, compile and link programs, port to the windowing

environment, and build BCS applications. It also describes available debuggers and the vari-

ous industry standards the DG/UX system supports. Ordering Number — 069-701059

Programmer's Guide: ANSI C and Programming Support Tools (UNIX System V Release 4)

Describes the standard tools of the UNIX program development environment including com-

piling, linking, debugging, and analysis and revision control. An accompanying supplement,

Supplement for Programmer's Guide: ANSI C and Programming Support Tools (086-000180)

describes the DG/UX system enhancements and differences. Ordering Number —

093-701104

Programmer's Guide: Systems Services and Application Packaging Tools (UNIX System V

Release 4)

Describes standard programming procedures and interfaces available to the C application

developer in the UNIX environment. Topics include interprocess communications, memory

management, file and record locking and application packaging. Note: Chapters 5 and 9 of

this Prentice Hall manual discuss topics that do not apply to the DG/UX system. Ordering

Number — 093-701103

Programmer's Reference for the DG/UXTM System, (Volume 1)

Alphabetical listing of manual pages for DG/UX programming commands and system calls.

This is part of a three-volume set. Ordering Number — 093-701055

Programmer's Reference for the DG/UXTM System, (Volume 3)

Alphabetical listing of manual pages for DG/UX file formats, miscellaneous features, and

networking protocols. Part of a three-volume set, this volume contains the table of contents

and index (contents (0) and index (0)) for man pages. Ordering Number — 093-701102

Writing a Standard Device Driver for the DG/UXTM System

Describes how to write a device driver for a DG/UX system running on an AViiON com-

puter. Describes the drivers written to address specific devices or adapters that manage

secondary bus access to specific devices. Information on kernel-level programming in the

DG/UX system and descriptions of important kernel-level utility routines are found in Pro-

gramming in the DG/UXTM Kernel Environment (093-701083). Ordering Number — 093-701053

End of Related Documents

RD-2 Licensed material—property of copyright holder(s) 093-701056

O ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G1i55

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and
refer to the following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS
4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20% |

TERMS AND CONDITIONS
5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

Smee.

Wie ee

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

SOOO OOOO SO OL EL NS ole elena atete ete teeta ate e ete ety ate atatenetatate tates tetetetet ean tgt Ott ton te 86 68 OF Me #8 ee ee Oe ose 8 re eee nweee eee eee ata tg alert atatet att nten at aaa etal etatet ene t esate tse eteen eget gis lente et tect Ome Oe te ee ee ee tee ee 8 a ltt prev re + ee ee ene ee ane a eee te bee eater et eaten Ole eater ete esOa et ee eaten ere eet a te ene nee rte e a ene alee ee eater ete rena stat era lets

| (Agrees to terms & conditions on reverse side)
ore en tnt ee att Oct elerseocere

Hoare erator etetet etree atete etetete sete Pavel ete ata tate tet ete anes e888 et ee Oe eee eee ee eee ORE TEES OTE SE ee we

cetera tate te tate etatate ate te hate ete e eats Dateteretatens‘atetanete te eterete Waletahcrshetet ener sere ed eae se tete te eed ern wes alee eta ete etd ate tete states a ee ats tee te ete Aare ee eee TE eT ete eters ete ete te
ore ete ca reece teerseee em telat ee
0 ae oe ac ee ue ar eters

eran eta t eel et atesert oat etot a et eter ets:ona eae a aaa eee

COMPANY NAME COMPANY NAME

ATTN: ATIN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) = Ext.

ORDER TOTAL

Less Discount

Shae jh HANDET BE:VOLUME: DISCOUNTS

0 Na ABD Order Amount Save
1-4 Items - $ 5.00

$0 - $149.99 0%
5-10 Iterns $ 8.00 $150 - $499.99 10% Tax Exempt #
11-40 Items $ 10.00 Over $500.00 20% or sales | ax

(if applicable)
41-200 Items $ 30.00

200+ Items $100.00

Check for faster delivery

Additional charge to be determined at time of
shipment and added to your bill.

O UPS Blue Label (2 day shipping)

© Red Label (overnight sh

Account Number Expiration Date

LLU TTT TTT Ey OTT

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

508-870-1600.

See 8

SUB TOTAL

Your local* +

sales tax

Shipping and +
handling - See A

TOTAL - See C

THANK YOU FOR YOUR ORDER

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains
a place of business, which covers all 50 states. Please include
our local taxes when determining the tota! value of your order.
f you are uncertain about the correct tax amount, please call

Lor. 202.
Rév. 8/67

DATA GENERAL CORPORATION .

=CHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, uniess Customer provides written proof of exernption.

3. DATA AND PROPRIETARY RIGHTS .

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shi

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all
designs, engineering details and other data pertaining to the products described in such publication. Licensed software
materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Custome
and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any dat¢
by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media. provided by DGC to the Customer under this Agreement, against physical defects for
period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provide
it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and
DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been
damaged by accident, abuse or misuse.

S. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO
LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT
EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.
THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY
DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABL
FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT
NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR
DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILIT
THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION
ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational
Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict
law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties
with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and
understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and
conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or
additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)
Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific t:
a particular revision of the product. Consequently user programs or systems based on this information and material may be
revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes r
representations as to the utility of this information and materia! beyond the current revision level which is the subject of the
manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any su
use and | and my company (Customer) hold Data General completely harmiess therefrom.

Cut here and insert in binder spine pocket

@» Data General
Data General Corporation, Westboro, Massachusetts 01580

