GvDataGenetal |

Customer Documentation

Writing a Device Driver for the
DG/UX™ System

Writing a Device Driver for the
DG/UX™ System

093-701053-03

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701053

Copyright © Data General Corporation, 1990

Unpublished—all rights reserved under the copyright laws of the Urited States
Printed in the United States of America

Revision 03, May 1990

Licensed Material—Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE .
INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S);
AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN
PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all cases determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND
CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED
HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE
RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIM(TED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN
OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,
PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General Corporation.

AViiON, CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/386,
DASHER/LN, DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400,

ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/7800, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/40000, microECLIPSE,
microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4,
UNITE, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. NFS is a U.S.
registered trademark of Sun Microsystems, Inc. and ONC is a trademark of Sun Microsystems, Inc.
Yellow Pages is, in the United Kingdom, a trademark of British Telecommunications pic.

Writing a Device Driver for the DG/UX™ System
093-701053-03
093-701062-03 (Japan only)
Revision History: Effective with:
Original Release — April 1989 DG/UX Rel. 4.10
Second Release — June 1989 DG/UX Rel. 4.10

Third Release — March 1990 DG/UX Rel. 4.20
Fourth Release — June 1990 DG/UX Rel. 4.30

RESTRICTED RIGHTS LEGEND

Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth
in sub arag%ph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
[FAR] 52.227701 (May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive
Westboro, MA_ 01580

Preface

This is a revision of an existing manual. Technical changes from the previous version
are marked by vertical revision bars in the outside margin next to the change.

This manual describes how to write your own device driver for a DG/UX™ system

running on an AViiON™ machine. Under the AViiON architecture, drivers can be
written at two levels: an adapter driver and a device driver for devices connected to
an adapter or for units on a controller. This manual addresses both levels of driver.

Who Should Read This Manual?

Users of this document should be generally knowledgeable about operating system
design topics such as virtual memory, synchronization, mutual exclusion, locking, and
interrupts. They should also be familiar with how multiprocessor hardware can affect
these topics. In particular, driver writers should be familiar with the following:

e The AViiON machines, including their I/O architecture and the Motorola
88000 processor. The I/O architecture includes the Small Computer System
Interface (SCSI) and the Motorola VMEbus. References for these topics are
listed in the "Related Documents" section of this Preface, under the section
"Other Documents."”

Readers should also be familiar with general I/O topics such as memory-
mapped I/0, interrupt masking, and device masking. Readers should also
understand a multiprocessor environment.

e The DG/UX user-level I/O model. This model uses six basic I/O system
calls: open, close, read, write, ioctl, and select, which are described in the
Programmer’s Reference for the DG/UX™ System (Volume 1).

Readers should also be familiar with the standard UNIX® concept of
character special devices, block special devices, and the difference between
the two.

e The C programming language, because the interfaces presented in this
document are written in C.

We also assume that you have a good understanding of the hardware device or

pseudodevice for which you are writing the driver. You must know how your device
should behave when it is the target of one of the user-level I/O system calls.

093-701053 Licensed material—property of Data General Corporation iii

Manual Organization

Manual Organization

The manual is organized as follows:

Chapter 1 briefly describes the process of writing a driver and gives
an overview of the driver environment.

Chapter 2 describes how to add a driver to the DG/UX system.
This chapter also shows you how to configure your
device into the system.

Chapter 3 summarizes the functions that a driver must supply to
the kernel and also facilities that the kernel supplies to
drivers. The chapter also discusses include files and
major driver data structures.

Chapter 4 describes in detail the functions, constants, and data
structures you must supply for your driver. It also
describes the interface for both adapter and device
drivers.

Chapter 5§ describes how device drivers access their adapter
driver’s routines via a set of generic adapter manager
routines. Using the generic adapter manager routines
allows device driver code to work with any and all
adapter drivers.

Chapter 6 describes DG/UX routines that relate to process
management and timing. It describes routines that
handle eventcounters, signals, and clock operations.
Also included are descriptions of locking routines.

Chapter 7 describes DG/UX routines that relate to memory and
data management. It describes routines for allocating
and releasing memory, verifying pointers, and
manipulating buffer vectors.

Chapter 8 describes routines used for general driver functions. It
describes routines used for error handling, device
configuration, driver messaging, and accessing device
selection tables.

Appendix A provides a sample device driver, including its C code,
and master and system file entries.

iv Licensed material—property of Data General Corporation 093-701053

Manual Organization

Appendix B provides a sample adapter driver, including its C code,
and master and system file entries.

Appendix C lists standard peripherals and their default device codes,
interrupt levels, and memory-mapped /O addresses.

Appendix D provides a short glossary of terms related to writing a
device driver.

Documentation Set provides a complete list of available Data General
hardware and software documentation relevant to the
DG/UX system.

Related Documents

The following manuals and papers provide information that you may find useful. The
first group lists Data General manuals, which can be ordered using the nine-digit
ordering number shown in parentheses (see TIPS information in back of manual for
ordering instructions). The second group lists manuals and papers available from
other organizations. To obtain 2 document from another organization, contact that
organization directly.

Data General Hardware Manuals

AViiON™ 5000 and 6000 Series Systems: Programming System Control and 1I/0
Registers (014-001805)

Describes the system board architecture, including the CPU, memory

registers, I/O address decode, and bus arbitration. Discusses how to

program the system board registers for addressing, interrupts, I/O and
system board control and status.

AViiON™ 300 and 400 Series Stations: Programming System Control and 1I/O Registers
(014-001800)

Describes the workstation architecture and exp;lains how to program the
system control logic, monochrome and color graphics controller
subsystems, keyboard port, mouse port, serial and parallel ports, LAN
interface, and SCSI port.

MC88100 User’s Manual, Reduced Instruction Set Computer (RISC) (014-001809)
Describes the Motorola 88100 Central Processing Unit (CPU), including
the registers, addressing modes, internal and bus timing, and assembly-

language instruction set. This section lists the coduments currently
available for the AViiON 400 series stations.

093-701053 Licensed material—property of Data General Corporation v

Relatéd Documents

MC88200 User’s Manual, Cache/Memory Management Unit (CMMU) (014-001808)

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU),
including the CMMU registers, the cache and cache coherency, memory
management and user/supervisor space, the Processor bus (Pbus), and the
Memory bus (Mbus).

Data General Software Manuals
Installing and Managing the DG/UX™ System (093-701052)

Shows how to install and manage the DG/UX operating system on
AVIiiON hosts that will run as stand-alone, server, or client systems.
Aimed at system administrators who are familiar with the UNIX operating
system.

Programmer’s Reference for the DG/UX™ System (093-701055 and 093-701056)

Alphabetical listing of manual pages for programming commands on the
DG/UX system. This two-volume set includes information on system
calls, file formats, subroutines, and libraries.

A complete list of the manuals contained in the DG/UX documentation set is
provided at the back of this manual, in front of the TIPS information.

Other Organizations’ Documents

American National Standard for Information Systems: Small Computer System
Interface (SCSI), ANSI X3.131-1986, American National Standards Institute, New
York, NY.

The VMEbus Specification, (Revision C.1, Oct. 1985), Motorola Ccrporation,
Phoenix, AZ.

The primary method of synchronization provided by the kernel is eventcounters and
sequencers. These were first described in the paper: "Synchronization with
Eventcounts and Sequencers," David P. Reed and Rajendra K Kanodia, Proceedings
of the Sixth Symposium on Operating System Principles, Purdue University, West
Lafayette, IN, November 1977. They are also described in: "Synchronization with
Eventcounts and Sequencers,” David P. Reed and Rajendra K. Kanodia,
Communications of the ACM, Vol. 22, Number 2, February 1979, pp. 115-123.

vi Licensed material—property of Data General Corporation 093-701053

Readers, Please Note

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different
meanings. The Data General symbol and typeface conventions used in this manual
are defined in the following list. You should familiarize yourself with these
conventions before reading the manual.

This manual also presumes the following meanings for the terms "command line,"
"format line," and "syntax line." A command line is an example of a command string
that you should type verbatim; it is preceded by a system prompt and is followed by a
delimiter such as the curved arrow symbol for the New Line key. A format line
shows how to structure a command; it shows the variables that must be supplied and
the available options. A syntax line is a fragment of program code that shows how to
use a particular routine; some syntax lines contain variables.

Convention Meaning

boldface All DG/UX commands, system calls, pathnames, names of
files, directories, and manual pages also use this typeface.

constant width Syntax lines and examples of code use this font.
monospace
italic Represents variables for which you supply values; for

example, arguments to routines.

In text, italics are also used to emphasize a term that is used
for the first time.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please
feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (USA
only) or contact your local Data General sales representative.

If you have comments on this manual, please use the prepaid Comment Form that
appears at the back. We want to know what you like and dislike about this manual.

093-701053 Licensed material—property of Data General Corporaticn vii

Contacting Data General

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,
and you are within the United States or Canada, contact the Data General Service
Center by calling 1-800-DG-HELPS for toll-free telephone support. The center will
put you in touch with a member of Data General’s telephone assistance staff who can
answer your questions.

Free telephone assistance is available with your warranty and with most Data General
service options. Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday
through Friday.

For telephone assistance outside the United States or Canada, ask your Data General
sales representative for the appropriate telephone number.

End of Preface

viii Licensed material—property of Data General Corporation 093-701053

Contents

Chapter 1 — Introduction to Writing a Device Driver

85134 doTe i {25 o) « NS SRR 1-1
Changes to This Release of the Manualccciiiiiiiiiiiiiiiinin . 1-1
Overview Of ArchiteCtural ISSUES -...ccuimuineiieeiriieiirieecieeieereeenercraereennennncensnns 13
Memory-Mapped I/Oc.coimniiiiiniiiiiiniiinicccceranaees e eerena—————— 14

170 Architecture: Controllers, Adapters, and Devices ereeeneeseeencenrenennen 14
Adapter, Controller, and Device Layouts on Different Machines 1-5
Adapter Drivers and Device DIIVersccccocvieeiiiiiiiiiiiencirenerioncerennnnen. 1-6

The Adapter Managerceeoeeeiiiiiiiiiiiii i vt eeeecseeeeeeeeenns 1-8

Do You Have to Write @ New Driver? ...cccceieeiiieeiieieiineieieeeceneenencenns 19
Interrupt StHUCTUTEcoeeiiieie et e e 19
The Multiprocessor EnVironmentccoeeeiiiiiniiiiiiniieiiieiercemuneeeeeeeennnns 1-11

15 () A (VI S LTI W DTG T D) 1 4 OO 1-12
Overview of Device Driver ENVIrONMEentccceceinieenienieiireieienieeneeneeensenneene 1-14
Device Specificationsceeeiieiieeiiiiiiire e 1-14
Special Files (INOAES) ...cuuuierniiimmiiiiiiiiiiiiiiiiecereee e ee et eeeeeeeeeseeeeennes 1-16
Block Versus Character Interfacecccecieeeiuiiiiiiiiiieniiieeiiceeeeeeeenennes 1-18

1D 9175 =5 L-v 111 (o« USSP 1-18
Memory Managementcceieieeieiieiiietiriii et saa e eanaee 118
1053 5 1)) £ N 1-19
SIGNALS eienniieiieei et e e e eeaes 1-20

Chapter 2 — Adding Your Device Driver to the DG/UX

System
Adding a Master File EDtIY ...coeoviiiiiiiiiiiiiiiii ittt s e e 21
Device Descriptions: The Device Section ERtrycccceevieuiiiiniienniciinennnneen. 22
Parameters: The Keyword Section EDtIYcceeeuiicieiiiiieniiiueninneneceennieeeaneene 23
Master File Aliases: The Alias SeCtioncceeeiiiiiiiiiiiiiiiiieicrrecriacieneceans 2-5
Adding a System File EDtIY ..ccuoumiiuiiniiiiiiiiiiiiiiieiiatecenecaeneeeresseesascesnannnns 2-5
Rebuilding and Rebooting the Systemccoeiiiiiiiiiiiiiiiiiiiiiiiiiirecieceannee. 2-6
Checking the Configuration PTOCESSccuvruiiuieniaiiiuiiniiiiieiiiiiincieceiiencenecnneanes 2-7
L6703 1§ 2 PR ORI 2-7
Your Special Files ...ouuuiiimiiiiiiiiiiiiiiciiiiicrectrti et e tan e 29

Chapter 3 — Overview of Driver Facilities and Functions

InCIude FIlES .ceunieniniiiiiii ittt et e et s e e anas 31
Overview of User-supplied Device Driver Routinescccceeueeeuiiiinciencenereanneans 34
Overview of User-supplied Adapter Driver Routinescceceeeemcirrieniereaieceneenes 39
The Device Driver to Adapter Driver Interfacec..ccccoiimiiiiiieiiniininnnnaan. 39
Overview of Major Data StrUCIUIES ...ccc.ceuuiimniieeiiinniciniieeeieeeiaaaeeeeeerenseeennns 312
Device Driver Data StTUCIUTEScccuiuiiuiineuiiniiiioniineiereninernreaneenaemnaennns 3-12
Data Structures for SCSI Adapter and SCSI Device Driversc...cceuueeeee.. 314
Other Driver Facilitiesc.ciieiiiniiiiiiiiiiiiiiiiiiiii ittt et e reene e ceneeenns 3-16

093-701053 Licensed material—property of Data General Corporaticn ix

Contents

The Driver Daemon and the Generic Daemon ceeernceneeiees creeeranas 3-16
Error Reporting Facilitiesc...cceeveneeannene. ceeeereeesiernetteraeanens eeeesnrnerneens 317
Chapter 4 — User-Supplied Driver Routines
User-Supplied Device Driver Routinesccc.cccoeueveenenens ceeeneneaes S - =73
Constants and Data Structuresccccceeeereeeeeeennnn. reeernneeens R =
io_driver_routines_vector_type ceeerenteenaenae, eeenenanns e - 2
io_device_number_typeccceveuieunnnnenns teeeeeeteseiiaeteteeniratensanearns .. 43
io_device_handle_typecccciiiiniiiiiiiiiiiiiiriccct e reaeaes eneeenaes 43
io_request_info_typececcviiiiimiiiiiiiiiiiceicreeaes ererrnreaenen ... 44
io_operation_typecccceue..e. rerrieratraeet et sttt e e raas e, 4-5
io_operation_record_type SRRt 4-5
io_select_intent_typecccecceeieieniiiennieenenns cereeeareneanae, creerenreeneranes 4-6
10_buffer_VeCtOT_tYPEecceuiiiiiieiiiiiiiaiiiceti ittt reereei e c e e eeaaes 4-6
io_buffer_desCriptor_tyPe ..c...cceuuicmmiiiieniiieiiiceitiicici e eeae e 4-7
io_buffer_vector_control_typeccccceevemuiiiiiinninnnnnnne. ceereennaes ceeennen 4-8
io_channel_flags_typeccccoeiiuimiiiiiiiiiiiiii et .. 4-8
Interfaces for Device Driver Routines ereneeeenae erreenas .. 411
dev_xxXX_ANIt: ..ooiiiiiiiii e eeeene et 4-12
dev_xxx_configure:ccceieeniiiiiiniinnnns eeeeeeerneans ceerenrereeeneas ceeeeens 4-13
dev_xxx_open: erreererneenaaa eereeeenierereeenenarans R S
dev_xxx_close:ceeeennenenn. eereeearreiee e erierrreenearenas ceeretrentecitaenaes 4-18
dev_XXX_Service_interrupt:ccceceeevueiennieniieneeneans ceeeeeereeeeeaees eeee 420
dev_ox_read_Write:ociiiiiiiiiiiiceee e cerreeenneenneeen. 4222
dev_oX_Select: ..iiiiiiiiiiiii e e ceees 425
dev_ax_H0CHL: ceiiiiiiiiiii e e ceeenn 427
dev_oxx_start_io: ccceceeiiiiiiiiiiiiniennen. PR ererreerareaeneans 4-29
Kernel I/O Completion Routine Interfacec.ccoevvevveneenicnnnens cerneens 431
dev_xxx_open_dump:ccoeeeieniiiniiinnennnns e ereeeeeneenes ... 433
dev_ox_write_dump:coeiiiiiiiiiie e erereeas .. 4-35
dev_xxx_read_dump: eenerennnaeee SN eeenes ... 4-37
dev_xxx_close_dump:cccceeenninnnnnns ceereeennns ereeereeneeerrrenaaaenaas 4-38
dev_xx_powerfail: ...c.cceieiiiiiiiiie e ceeerenennaes 4-39
dev_xxx_deconfigure:ccceeeiiniiiiiiiiiiiiiiiiieeaas e ceerennees 4-40 -
dev_xxx_device_tO_Mame:ceceveerrrrivenienienienieiereieiecucenennes ceenenes . 442
dev_xxox_name_to_deviCe: ...c.cceieiiiiiiiiiiiiiiiiiiieeitneceeeeeeneneeees. 443
dev_xxx_maddmap: ceiiiiiiii e 4-45
dev_XXX_mmap: ...c.cceceveniiieninens ceeeenes Ceeenterteteereiaaes ceeeercnencnenenne 4-46
dev_XXX_munmap:ccceeeeremnnnnnns rreeteeetratertensneaetienrrenereraensrrannses 4-47
User-Supplied Adapter Driver Routinesc.cceeviuieeiiiiiiniiniiiieiiiciiieeennnens ... 448
Constants and Data Structures e creeaeeeaenes R 448
dev_scsi_adapter_routines_vectOr_typec.cceeeee... ceeevecrarnenans ceeens 4-48
dev_scsi_interface_routines_vector_typeccccecevereeieuiennnennnnes ceeeeennens 4-48
dev_scsi_adapter_unit_spec_type ceerrenneens ceereecrnennerieneenneennenennsess 449
dev_adapter_request_block_type eeeeeceererneeataeenrans eeerecnieanes 4-49
DEV_SCSI_REQUEST_FLAGS ereeerneeeneane eenns crerennennnees 4-51
dev_scsi_adapter_unit_registration_blk_typec.cce....... eenees veeen 4-52
dev_adapter_physical_request_bIK_typeccccceeieerruriuecinrincecnnenennnee. 4-53
dev_scsi_adapter_unit_options_block_type R - 1
SCSI Adapter Unit Options Block Literals reeea creereserenerassnseans 4-55
X Licensed material—property of Data General Corporation 093-701053

Contents

Interfaces for Adapter Driver Routinescccceeveerenecennnnee cereeeneenntaienns 4-56
dev_xxx_register_requester: S cereereneens cereeeeneenes 458
dev_xxx_set_unit_options: reeeesrenerraaeaeaa eerereerenceestacannes 4-59
dev_xxX_deregister_reqUeSLEr: ccceeeeemmniieriiiisiaiieeisianaaeeeannnaeanes 4-60
dev_xxx_issue_command: cereeenees eeertrereianeeeerra e aa e aenas 4-61
dev_xxx_issue_async_command: ereererertcereareeeareaaans ceceresencnne 4-62
dev_xxx_get_device_info: cerreneaeenn. ceerreenneenaans ceenaeee creenns eeee. 463
dev_xxx_issue_command_physical_mode:ccceeeene eeeereesernnnas 4-64

Chapter 5 — Managing Your Adapter From Your Device

Driver
Constants and Data Structures N 5-2
dev_scsi_adapter_configure:cooceiiiiiiiiiiii e 53
dev_scsi_adapter_device_tO_Name:cc.eeeeiiiiiiiiiiiiiiieenieeeeeneenneeaeans54
dev_scsi_adapter_name_to_deviCe:cccieeiiiniiniiiniiiiiiiiiiee e eeanns 5-5
dev_scsi_adapter_open_dump:c.cceeieiiiiiiinitiietieieeeeeeaaees RN 5-6
dev_scsi_adapter_register_requester: erreererra et e et nns 5-7
dev_scsi_adapter_set_unit_options:ceeceeeeernnnnns rrereereereneaenaas 5-8
dev_scsi_adapter_deregister_requester:ccoociiiiiiiiiiiiiiiiainnaenne. ceeeeenn 59
dev_scsi_adapter_issue_command:oceoiiiiiiiiii e 5-10
dev_scsi_adapter_issue_async_command:c....cceeel e, ceeeeeeneanes 511
dev_scsi_adapter_get_device_info:cccceiiiiiiiiiiiiiiiiiiiiine R S 2
dev_scsi_adapter_issue_command_physical_mode:coeiiiiiiinniinnnnn... 513

Chapter 6 — Process Synchronization and Timing

Synchronization Routines BN crerenee reeraeennaeaes cereearenes .. 62
Constants and Data Structurescceeceeeeeeniiennncnnnnnnne.. cereeeeeeeens ceeeeeeennans .63
vp-event_type eteieeeteenereteneenernieaanns eennaee ceerern cereeneenenns s 63
vp.add_to_ec_value: eeeeeenerneereeanans TR creeenaenns 64
vp_advance_ec: e teerateeeetetetrteeieneteaeertetneerteentanarrsaraanenasnanaras 65
vp_await_ec: ceverreteensrnnsnraenensaannas ceen ceeererennereteanns ceverenees 6-6
vp_convert_clock_value_to_ec_value:ooilll reerenees cereeceraenes 67
vp_convert_ec_value_to_clock_value:ccooooien. . crreeneeenenn. 6-8
vp_get_next_ec_valle:ccciieiiniiiiiiiiiiiiieneee e, beeeetreccacset e seenens 6-9
vp_has_event_occurred: ccecceeeiiiiiiiniinienneennnnns cereeeretireareraeaenanns 6-10
vp_increment_ec_value:cccceeeeerrieieiennennnannnn. ererreeae e tere e aaas .. 611
VP_INItialiZE_€C: .eueereiiiniiiiiee ettt e e 6-12
vp_initialize_SEQUENCEI: ...ceucevenienreinemniineietnereieetieeaeraneneanannens TR .. 613
1722 £ T« B T O U reeereercettrnerata et ear e anenaaneas 6-14
VP_tICKEI_SEQUEICET: evniirnieieieitieietttetnteeeaeeetaneeeeenaeentaeeenaneeenesanens 6-15
vp_are_ec_values_equal: ..e..eceiiiiiiiiiiiiiicie e creeeeeens 6-16
Process Signal Management ROUtINESceveninniiinniiniiiiieiiiiiiiieinieneaeans R S
Constants and Data Structures e ceeene ceeeraeeaen 6-17
pm_get_my_pid: erreeerasrtrr e erreerraneraeraanes e veeeee. 6-18
PI_ZEL_MY_PEIP: wrvrrneremnaeernnnarenertasaremimeenetoneeretetoenssereeeeocnns RN 6-19
pm_is_interrupted: ocooiiiiiiiiieeeee teeerrrieeerrera——eaneanaaes 6-20
PIMLis_terminated:ceeeeeiimiiieiiii e erveeeneneeans 6-22
pm_send_signal_by_index: eeeeeeeeateteaerreanaans eeeereseereraeanans 6-23

093-701053 Licensed material—property of Data General Corporation Xi

Contents

pm_send_signal_by_process_group: SRR ¢ 2L
pm_send_signal_by_process_id: SN eeereaeneenne oeeeneee cerreeen. 625
Lock Management Routinesceceueeeeieeniminiinniinnecenneees SR creereeennennes 6-26
Constants and Data Structures ererertnterrttaeenenaes evenes eeeererenneen. 627
Im_sequenced_lock_type BN cereernerneennes 627
Im_unsequenced _Jock_typeccccceeeeernnnnnnnnne. S, crenens R 6-27
misc_spin_lock_type creereereeraeeaaes SRR o =2
Im_initialize_sequenced_lock: crereeennas ceerenes Ceeieeneenenentennnns 6-29
Im_initialize_unsequenced_lock:ccccieiiiiiiianianee. eeeeeenienas eeerereranes 6-30
Im_obtain_sequenced_lock:ccceeeerennnnnnnnn. N 6-31
lm_obtain_sequenced_1oCk_DO_Wait:ccocereriiieiiemmmmnnneniiinicnreeennnnnene. 6-32
Im_obtain_unsequenced_lock: reeerenenens ceeeeens eeterrennneraaanes ceeeeee. 633
Im_release_sequenced JOCK:cccivniimniiiiiiiiiiiiiiiiieii e, 6-34
Im_release_unsequenced_lock: errenranes ceeteeeneneannns creerenenee. 635
misc_obtain_spin_loCK: ..eeciiiiiiiiiiiiiiiiiiiiiiciern e cceeeaa s e snaneee. 0230
misc_release_spin_lock: N Ceeeenesassenenterntannes 6-37
Clock Routines cereeernernenaaes eeeeeteereritatserattreta e trastasenentranrans 6-38
Constants and Data StTuCtuIesccececieieniemueienieecenniienieniiennenes ceeeeennee 6-39
misc_clock_value_type eeenes cersreerneraene recerratraeans reesoaseens ceeenaees 6-39
vp_establish_timeout: crrerreeeens R RUURRRURRRRR . |
vp_cancel_timeout:c........ ceeeneens eeererraeeaeaaes ceereerene R 3 ¥4
vp_specify_max_timeouts: SRR .= X |
vp_create_ClOCK_EVERL: ..c.e.iiieiiiiiiiiiiiiitieeiie et ceneerteeeeseenneeransnneaenes 6-44
vp_read_system_clock:cccceeeeininnnnnnni. teeerniieieeeeeertter b eesn e saraaaees 645
Interrupt Handling ROUNES ...ccceuriiriniimeniiiiinireiiiiiininieetrenicneninereenesennnees ... 646
Constants and Data Structures eerrreeaeenns cerernreneernnenrnneeeens. 646
uc_interrupt_enum_tyPececeeeerceecrucnennns eretecesreeruetaererasieeannas veeee.. 646
io_mask_interrupt_variety :ccocecieeiiiiiirneiiinineee, cerrerreernrenresneereneeees 648
io_unmask_interrupt_variety: S TRORPRRRRPRRRRR ..
vp_are_interrupts_disabled: erreeeteraeearearees eeranenas cevreeenn. 650
vp_disable_interrupts:ccceeiinnninnnnn. e eeeereenereaneenaaes cerernneenn. 651
vp_enable_interrupts: eeteeeeeenieieeteenee e e rnaaes cerermereiennenes 6-52

Chapter 7 — Data and Memory Management Routines

Memory Management Routines eereeeererrurrtirasasaneanasss creeeneeceeens R £7)
Constants and Data StruCturescceeeeveeeniiuiiiinieniinceniceineanees cereeeennens 7-3
Page Alignment Literalsc...........e. eerernenenannans creenenueees ceeereeerrnnns 7-3
vi_get_physical_byte_address:cccccceiiniiiiinnnann.. eeeeerenreceeenanas ceveeeees 15
vin_get_unwired_MemoOrY:c.cceceveeerncneennenniennenes cererereeeaaes ceveeeeans ceeee 76
vm_get_wired_memory: eereenneneresaaneaaraannnn ceeneneeanes ceeeeeneraeans 17
vm_map_physical_memory: ereenneee crrencraneeens ceereannnns . reecenenanes 7-8
vm_unmap_physical_memory: R eerrereererretieraaaas ceveeeeeans eeee 7-11
vm_mark_mod_and_ref_and_unwire_memory: eeeeeeeereereeernannesnsenasanes 7-13
vm_mark_ref_and_unwire_memory: eeoenenns ceveennans eeenreneseceanenenness 1-14
vm_perhaps_get_unwired_memory: SRR L b
vm_perhaps_get_wired_memory: e enaeaeas eveeees ceesncantanae .. 7-16
vm_release_unwired_MEmMOrY:ccceverireirennennnnnnnn. e eereeennns ceeereeneenss 71-17
vm_release_wired_memory:cccceeeeiieiiniiennnnns eeeeneerenetaanes crereenneenns. 7-18
vID_unwire_iemory: ceerencenee ceeenrenienes eereereresntantaeeatiaes ceererneenn eee. 7-19
VID_WIT€_MNEMOTY: .ccucercerrucrarcenenserseessenennenns ereeraneenes cecesenneernennenneens 1-20

Xii Licensed material—property of Data General Corporation 093-701053

Contents

User Data Access Validation RoOUtinesccceeeeieeeernecienenneieneniennnnenen. ceeeees 121
Constants and Data StTUCIUTESc.cceeeremierneirinireenceenienenieneeccennnseennsneees 1-21
sc_check_access_and_read_string_from_user:cccccceiieuiiiirennccnninnnnnean, 7-22
SC_CheCk_bDYte_acCCess: ..ccciveirereniinienineniieiienienncennniieceniceneseneeneeeenaneess 124
sc_read_bytes_from_USer:ccccccceicieiriimiiiceeiionreeniseensneeseeneens ceeereenens 125
sc_write_bytes_to_user: eeesseresesnssanes cererecetacassesssessssnssessnssasennns 1-20
sc_write_string_to_user: ereceerieteentieaenenanns ceereeneneraeaes crrereceninns 7-27

Buffer Vector Management Routines eeeeeettesttttastrirassantansranseanens .. 7-28
Constants and Data StrucCturescc.c.eeeeeveeenvennennneneans creveeeene ceerennereneeens 129
io_add_to_buffer_vector_position:ccccceeeee. reeeenttrireraneeaaaaaaans . 7-30
io_get_buffer_vector_io_info: e eeeeetoneeeranieeeeeeaiestarssanrarens e 7-31
io_get_buffer_vector_position:ccececiivieiinniinnnnnnaes SRR L X
io_get_buffer_vector_residual: eeereetneeneeseneannes SN 7-34
io_get_buffer_vector_byte_count: eenerrenaes SRR L 1
io_init_buffer_vector: ceennes ceeeeene ceeeereneetanesrninanes creeeenernanes 7-36
io_init_one_entry_buffer_vector: creereeencraeenas ererereeeeeens ereen 7-37
io_read_from_buffer_vector: R eteeateeserterasarananas cereraieeneeans 7-38
io_reset_buffer_vector_position:c.ceieeeieiiiiiiiiiiiiiiiiiiiiennnnne. cenrenens 7-39
io_set_buffer_vector_residual:ccocverinnnnnnne. ceveens SRR renceneenranee 740
io_write_to_buffer_vector: cereneeneas eetereeeeeraern et racenanes creeraeeeenns 741

Chapter 8 — General Driver Routines

Configuration Routines eerreeeens rerereeens eeeeene cererreens R 82
Constants and Data StruCturescccceeeeeeceeniiencereiieennnennnnns eerrreerrneeeenaae 83
fs_dev_request_type eeerencerereea et nnanes creteenteenneeeneeeaaaes 83
fs_dev_request_operation_enum_type ceeereeerieniennens cerenreacnes ceeernens .. 84
fs_dev_create_request_type S crrrereerneenreenneaennes 84
io_dev_adapt_info_type cereeenes eeeeerennaes SRR - .1
Literalsccoeivmniinniniiniiininnnnnn, ceeenes TR reeerreerneieneaa cerenerereennes &5
uc_device_class_enum_type cereeennens ceerreerneenieees eenreeeeenns ceees 86
uc_device_code_typecceceeeeniinieiiiniiininnnenenens eeeereineenerne e eraaaes 86
Integrated Device Code Literals ceenenane ceveaienennnee -
uc_reset_enum_typecceeeeeennnnens ceeeerenieienterenenanas ceeenenes ceeeeererenrenennes 87
fs_submit_dev_request:cceeeeeaene. ereeeanereneneaaaes ervrrernreerrnaae. ceneees 89
io_add_to_register_list: eerreeaea, eereeeennnaes eeereneraneraaans &10
io_allocate_device_number: ceteeetecntrrerareraerenens ceeeeeeeees ceenene ceeene 811
io_deallocate_device_number: cereeenes eeeerrenceneaas cererneeenns . 813
io_deregister_device_info: reeereratenerieeraenraaas SRR 814
io_check_device_spec: eereaeen s cerneeens crerereeeneenneeens caeenes 815
io_forget_device_spec:c.ciciiiiiiiiiiiiiiiiiieiiinennnes eeeerraeiereenereenaeaaaas 816
io_do_first_short_board_acCess:cc.ccceeveuieiieniiiieuienninreninnienienieenennnnns .. 817
io_do_first_long _board_access: ceveeeraenarenae rerteseieaeratraran s 818
io_get_device_info:c.ccieiuennnnt ceeenresattaieneaaes rerecesessessntearnnienns veeee. 819
io_map_device_number: eereraenias cereeeeiernrrnaaa, crereererceeenaes 821
io_parse_device_spec:c.ccceceneneee eeeeneranns eerreeennes eeereerereannaas e 823
io_perform_reset: teeereceenecrtaantsnnns eeeessesnenenrane eresernanas ceeeee 825
io_register_device_info:oeeiiiiiiiiil. SRR S, 826
Driver Daemon and Generic Daemon Routines ceereeneaeans creereeecenennscnnns 828
Constants and Data Structures ceeeeeenennes R ceereneenene 828
io_queue_message_to_driver_demon:ccceeeeeeennnnnnns creeeneeneennnens cenee 829

093-701053 Licensed material—property of Data General Corporation X

Contents

io_specify_max_demon_1messages:ccccceereerreriieriinnniriiieniiiieseeeainaee. 831
io_queue_message_to_generic_demon:cccccceiriiirniinicieitiieniiietaienacinans 832
io_specify_max_generic_demon_messages:ccccieieerercinniniireiceneennee. 834
Error Encoding and Logging RoUtinesccccceevveiieuieeeiinniennienciiiineneecenceenee. 835
Constants and Data Structures SRR - - ¥
SC_ENCODEL_STATUS: .oiuiiieiiitniicineinnteisteessetsosssessasssssessnsassessees 838
OIS ¢ il [o7: 20 ¢ 1< o J U RPPUPRUPRRPPRRNY . -\
Select Manager Routines eteeereeneerenaoarattaneasansanananns teeteerenanernsesresnsnesnntans 841
Constants and Data Structures e eeeetieetntaeeeeenrettarstastanesantssnnesrarane 842
io_select_cancel:c.ccoceuveninnnenee. eeeernaeas cerreeenanes SR . . X
io_select_init: PN cereneceenes eeteeenererereraeas 844
io_select_register: eererreererrira. S ceeerreeas eennnnans 845
io_select_satisfy: ..coccceriiniiiiiennnnt SN cereeane ererereernenans 846
Miscellaneous Driver Routinesc...ccoceeeeeee. ceereneienans eereesrceenieeassnensaneeess 847
Constants and Data Structures eeneeerreeennaea eeereeieeranae ceeeeee 847
fs_check_self_id:ccceuvenennnneee. eettertreeetetreetaerareastasesaeieresaesnernsrrres 848
io_hex_str_to_int: cereenene eeeererieerttentnttuetettrastaetesasetiessresesnnesrans 849
misc_format_lne:ccoiiiieiiiiiiiiiiiiiiiitcet et sseesseesneeess S50
PIML_iS_SUPET_USET: .ceuirrriienrenueirenncrnnieneenes SR . = 7.
YV 71 11 (o rereterereereraeaanens 853
Nodevice Routine Stubscccceeeuiiiriieiinniimiuiiinetiniicrnnceriieenienicneeranseanen... 854
io_nodevice_open:ceceeeuennns ererene e eeereerrnrsntraisransaaenaes ... 856
io_nodevice_close :cceeniiniiiiininnnns ST, eeeens BN 8-57
io_nodevice_read_write :ccociieninnnnns ereerereenans ceeeeeeneneneans . 858
io_nodevice_select:cccoiiiiiiiiiniiniinnns ereerrieneens eereseretseasnsensnannane veee 859
io_nodevice_joctl : eeeeeetieriiaerarraeaas ceeeneas SUURORRRRTURIRRY -) |
io_nodevice_start_jio :ceeueeees ceeeeneenans ceereeretsenteeeretenaas cerveanns ... 863
io_nodevice_configure :coiiiiiiiiiiiiiii e creerennaes 8-64
io_nodevice_deconfigure :ccoiiiiiiiiiiiiiiiiiieena, ceeererennnes ceeeennens 865
io_nodevice_name_to_device
io_nodevice_device_to_name
io_nodevice_open_dump : ccoiiiiiiieiiiiinieieneeeeeaees cererneeeareneaeeanaes .. 868
io_nodevice_write_dump : SN cerrrenerraeaa, ceeeas 869
io_nodevice_read_dump:cccccceiiiiiiiiiiinniininnnnn.. SN cereeneenans 870
io_nodevice_close_dump :cooieiiiiiiiiiiinninnnnne. eererrieireaiaseaneanns ceeeeen 871
io_nodevice_powerfail :ccoiiiiiiiiiiiiiiic e R - 2
io_nodevice_mmap:ccoceveniiiniinnnnes ceeeeeneanes ceereneanes eeeeveseoetsssnanenans &73
io_nodevice_munmap: creeneees eeretree et enn e aaas bevereeneennennanns 874
io_nodevice_maddmap: S eereereeriiereneaaeaaeaaes erereeneneraanns &75
io_nodevice_service_Interrupt:cccceeveeerirmniiieeireiencrinceieiienenns cernnes. 876

Appendix A — A Sample SCSI Device Driver

Data Definitions: dev_sd_def.hccoceuvrrerirniinnrnnnnene. S T |
Static Global Data: dev_sd_global_data.cccccoeevvciiirnrinrecerrenecrnnreennnnns A-11
Miscellaneous data: dev_sd_message_data.cccccccerucereerernceennnicnncennnnees A-12
Main Driver C Code: dev_sd_driVer.Cccceceerirrreeicannreerenerecsscsserenncnees A-12
System File Entries cereeen eeeereennereteranenas cecrenernnsrnsorsassersesaensenees A-85
Master File Entries reeeeteerrnteteennnseeasennseennnssssssssseasseesssens 280

x1v Licensed material—property of Data General Corporation 093-701053

Contents

Appendix B — A Sample SCSI| Adapter Driver

Data Definitions: dev_cisc_def.hco.cciiimiiriiiiiiiiiiiiriiiicri et B-1
Static Global Data: dev_cisc_global_data.cccccceeeeeeeceeeeeicieceeniiinnanen. B-19
Main Driver C Code: dev_ciSC_driVer.Ccoeeirmmuuiieiirereenieneeeeeeeecceeannens B-21
Adapter Management Code: dev_CiSC_IMZI.C ..ccceurruuecererceirenmunnereriereenannns B-32
Driver Utility Code: dev_ciSC_util.C ..ccuuiirniiiniiiniiiiiiiiiiiereeneeeeeereeneennens B-49
RVAITS ¢ 351 (0 2511 4 o L1 S SO B-72
Master File EntIes ..c.cuiieeiieniiiiiaiiiiniiieiieeeceanteiaetnereeetanencsnsssansnnsnns B-73

Appendix C — Standard Peripherals and Their Defaults

AViiON System I/O Defaultsc.ceeveemiiiiniiiniiiniiieiiieierenereeereeeaeeeeeeaeenens C-2
AViiON Station I/O Defaultscocoeveiriiiiiuniiiiimmiiiiiiiiineiceeeeereaereeeneeeen. C-6
SCSIIDS ceneiiiiiii ettt eea e e s aa st e esae s s et asae s s e n e e s e nanans C-7
Device Specificationsccooeieimmiieiiiiiimiiiii e C-8
Disk and Tape Command Set Compatibilitycoceeuueennnnns eeven e C-10

Appendix D — Glossary

Documentation Set

Index

093-701053 Licensed material—property of Data General Corporation Xv

Table
3-1

C-1
C-2

C4
C-5

Tables

Routine Classes and Their Include Filescccoeuiiiiniiiiininnniirnnennennnnn. 32
AViiON System I/0O Address and Interrupt Level/Vector Defaults C-2
AViiON Station I/0O Address Defaultscccceuiiiiiiiiiniiiiiiniiinneennes C-6
Default SCSITDS cuiiniiiniiiiniiie ittt et eenceneeenerrenesnecennsasonans C-7
AViiON System Device Specification Parameterscccceceevveeennes Cc-8
AViiON Station Device Specification Parametersc.cccceeeeuceenueannns C9

Licensed material—property of Data General Corporation 093-701053

Figures

Figure

11 Diagram of the AViiON System I/O Architectureccoeeeeeiiiiiiiiin, 15
12 Diagram of the AViiON Station I/O Architecturec.ccceeeeeinnnnnn.... 16
13 The Adapter/Kernel and Device/Adapter Interfacescoeeveenenennnn. 1-8

C1 AViiON System Memory-Mapped I/O Addresses and Data Width Areas C4

093-701053 Licensed material—property of Data General Corporation xvii

Chapter 1
Introduction to Writing a Device
Driver

This manual contains information you need to integrate a device driver into the -
DG/UX kernel. It details the rules and interfaces that affect the relationship between
the driver and the kernel. It describes when routines in the driver will be called, what
assumptions they must take into account, and what actions they must take. It also
describes kernel routines that the driver may call.

Introduction

This chapter provides a general overview of the DG/UX operating system
environment in which your device driver will reside. This chapter focuses on
hardware architectural issues and relevant facets of the kernel environment.

We assume that you have a working knowledge of Data General hardware and
software architecture. If you are not familiar with these topics, or if you need more
information, please refer to the manuals listed in the Preface, in the section called
"Related Documents."

You may write a device driver for either a hardware device or for a software virtual
device (called a pseudo-device). Much of this manual applies to both types of

devices. However, for pseudo-devices, information about the I/0O architecture does
not apply.

Changes to This Release of the Manual

The following list summarizes the changes documented in this release of the manual:
In Chapter 2:

Corrections to the compile command line are given in the "Rebuilding and
Rebooting the System” section.

In Chapter 3:

A note cautioning users to initialize their data has been removed. Enhancements
to the 4.30 linker (1d) now make sure that data goes to the correct section of the

093-701053 Licensed material—property of Data General Corporation 11

Changes to This Release of the Manual

program area regardless of whether or not it has been initialized.

The "Driver Daemon" section has been revised and renamed to include the new
Generic Daemon that handles I/O completion routines that may pend during
processing.

The "Error Reporting Facilities" section has been rewritten to clarify new error
reporting facilities.

In Chapter 4:

The dev_xxx_configure routine has a clarification regarding verification of the
name string parameter.

The dev_xxx_service_interrupt routine has a clarification regarcling use of the
driver and generic daemons to pass information to other processes.

Corrections and clarifications have been made to parameters in the dev_xxx_ioctl
routine.

Minor changes have been made to the io_driver_routines_vector_type
dev_adapter_request_block_type structure, the DEV_SCSI_REQUEST_FLAGS
literals, the dev_adapter_physical_request_blk_type structure, and the
sense_bytes field of the dev_scsi_adapter_unit_options_block_type structure.
Note also the change to the version field of io_driver_routines_vector_type.

Dummy interfaces have been added for the dev_xxx_read_dump,
dev_xxx_mmap, dev_xxx_munmap, and dev_xxx_maddmap operations that will
be supported in an upcoming release.

In Chapter 5:

The dev_scsi_adapter_configure routine has a parameter change.

A restriction of data transfers to even numbers of bytes with buffers starting on
even byte boundaries are noted for the dev_scsi_adapter_issue_command,
dev_scsi_adapter_issue_async_command, and
dev_scsi_adapter_issue_command_physical_mode routines.

A parameter has been changed in the dev_scsi_adapter_get_device_info routine.

In Chapter 6:

Clarifications have been added to the "Clock Routines" section on synchronous
versus asynchronous use of the clock.

In Chapter 8:

1-2

Licensed material—property of Data General Corporation 093-701053

Changes to This Release of the Manual

Minor changes have been made to the io_add_to_register_list,
io_check_device_spec, and io_parse_device_spec routines.

Two new routines, io_forget_device_spec ("Configuration Routines" section) and
io_err_log_error ("Error Encoding and Logging Routines" section) have been
added. .

Two routines for handling the Generic Daemon have been added. These
routines, io_queue_message_to_generic_demon and
io_specify_max_demon_messages, are in the "Driver Daemon and Generic
Daemon Routines" section.

Nodevice stubs have been added, io_nodevice_read_dump and
io_nodevice_maddmap ("Nodevice Routine Stubs" section). routines.

In Appendixes A and B:
New sample drivers have been provided.
In Appendix C:

A note on mapping logical A24 and A32 address space to a physical address has
been added.

The 4.30 driver interface represents the stable base interface for device drivers on the
DG/UX system. New interfaces, notably the dev_xxx_read_dump, dev_xxx_mmap,
dev_xxx_munmap, and dev_xxx_maddmap interfaces, will be added in a upcoming
release, but currently defined interfaces are intended to be final.

NOTE: In order to expand discussion on basic kernel programming topics, this
manual is scheduled to be restructured into two manuals. The new manuals,
Programming in the DG/UX™ Kernel-Level Environment and Writing a Device
Driver for the DG/UX™ System, will be available in the August 1990 time-
frame.

Overview of Architectural Issues

This manual applies to drivers for all AViiON series machines (both workstations and
systems) that are running the DG/UX operating system. In order to make drivers
independent of the architecture of the different AViiON series machines, the DG/UX
kernel handles most architecture dependencies itself. However, there are
architectural features common to all AViiON machines that are part of your driver’s
environment. This section discusses these common features as well as certain kernel
facilities that help your driver stay architecture-independent.

Throughout this manual we will refer to all AViiON series machines simply as
AViiON machines.

093-701053 Licensed material—property of Data General Corporation 13

Overview of Architectural Issues

Memory-Mapped I/0

On AViiON machines, drivers access their devices via memory-mapped I/O. This
means you will read and write to a specific area of memory that is dedicated to your
device. With memory-mapped I/O, assembly language programming becomes
unnecessary because you can access your device using simple memory reference
instructions.

For most devices, you set the device’s memory-mapped I/O address by setting
jumpers on the device itself. For devices it supplies, Data General pre-assigns and
jumpers the memory-mapped I/O addresses according to the manufacturer’s default
address (that is, the address set at the factory). However, if you add a non-standard
device or a second instance of a standard device, you will have to jumper the /O
address on your hardware. More importantly, you will have to choose an address that
is not already used by another device. Appendix C shows conventions and
restrictions for choosing a memory-mapped I/O address. Appendix C also lists
standard devices and their default addresses.

I/0 Architecture: Controllers, Adapters, and Devices

For purposes of writing device drivers, the DG/UX kernel defines three major types
(or levels) of peripheral devices: controllers, adapters and devices. Your device’s
peripheral level affects the type of driver you will write. This section discusses these
structures and their implications for device drivers.

For the rest of this manual, we will use these terms in specific ways, with specific
implications. The following list defines the terms as we will use them.

e The term adapter refers to an I/O device designed to manage an independent
secondary bus. An adapter converts signals from the primary system bus to
the secondary bus and serves as a conduit between the CPU and devices
attached to the secondary bus. An adapter can interrupt the CPU directly.
An SCSI adapter supporting an SCSI bus with SCSI devices is an example
of an adapter.

e The term controller refers to an I/O device designed to manage several lower
level peripherals, all of the same type. It controls them directly not via an
independent bus. Like adapter, controllers directly interrupt the CPU. A
line controller supporting several asynchronous I/O lines is an example of a
controller.

e The term device refers to the lower level peripherals attached to either
controllers or adapters. These lower level devices do not interrupt the CPU
directly.

For the most part, devices off controllers are simply considered to be sub-units of the

controller. On the other hand, devices off adapters (that is off a secondary
independent bus) are considered to have a degree of independence from the adapter.

14 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

Drivers for the different levels of peripherals are designed to address the different
functions at each level.

Adapter, Controller, and Device Layouts on Different Machines

The definitions of adapter, controller and device apply across AViiON machines.
However, on a particular machine, the layout of the different peripheral levels will
vary with the I/O architecture. For example, Figure 1-1 and Figure 1-2 show
adapters, controllers and devices on the AViiON 5000 series systems and the
AViiON 300 series stations, respectively. Throughout this manual, we will use the
AViiON 5000 series systems and the AViiON 300 series stations to provide concrete
examples of adapters, controllers, and devices under different I/0O architectures.

NOTE: Throughout this manual we will refer to AViiON 5000 series machines as
AViiON systems, and to AViiON 300 series machines as AViiON stations.

VME
Bus
internal VME ESDI Disk
Bus Controller
(ESD! Disk)
ESDI Disk
SCSI! Bus
CPU
SCSI Disk
SCSli
Adapter
SCSI Tape
SCSI *foo’

System Board
Figure 1-1 Diagram of the AViiON System I/O Architecture

093-701053 Licensed material—property of Data General Corporation 1-5

Overview of Architectural Issues

Internal
Bus
SCSI Bus
SCSI Disk
SCsl
CPU Adapter
SCSI Tape
SCSI ’foo’

System Board

Figure 1-2 Diagram of the AViiON Station I/O Architecture

Both the AViiON system and the AViiON station support SCSI adapters, but their
positions in the two architectures are different. In particular, note the layout of the
I/0 buses and where the SCSI adapters are attached on the two machines. The
AViiON station uses an integrated I/0 bus with a single SCSI adapter attached to
that integrated bus. The AViiON system has an integrated bus on the system board,
but it also has a VMEbus as the primary external I/O bus. On the AViiON system,
SCSI adapters attach to the VMEbus.

You need to know how your adapter/controller is attached on your target system
because architectural differences affect how your driver retrieves interrupts and the
interrupt device class to which it is assigned. For example, the I/O bus to which an
adapter is attached defines its device class. Thus, on the AViiON station, the SCSI
adapter is an integrated device, while on the AViiON system the SCSI adapter is a
VME device. We discuss these issues in the "Interrupt Structure" section of this
chapter. The next section describes the different kinds of drivers on the DG/UX
system.

Adapter Drivers and Device Drivers

The DG/UX system supports two different types of drivers: adapter drivers and
device drivers. This section explains the basics of these two types of driver. We use
SCSI peripherals as an example of adapter driver/device driver issues.

Portability of driver code is one of the DG/UX kernel’s major goals. Therefore,
whenever possible, manufacturer-specific operations are separated off from
manufacturer-independent operations. This means part of the code will be fully
portable and part will be manufacturer-specific. Such separation is particularly
possible when an interface is defined by a standard such as is the case with SCSI I/O.

1-6 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

For example, all SCSI devices off an SCSI bus follow the SCSI standard and thus are
manufacturer-independent. However, operation of each SCSI adapter is not
standard-defined, so different manufacturers’ SCSI adapters use different command
codes and sequences. From a driver’s perspective, all SCSI disks operate the same
way regardless of their manufacturer, but one has to go through a manufacturer-
specific adapter interface to operate them. In order to maximize the amount of
portable code, the DG/UX system puts manufacturer-specific SCSI adapter functions
into one driver (an adapter driver). This leaves the manufacturer-independent
functions as a fully portable driver. Thus, one SCSI disk driver (the sd device driver)
works for disks on any supported SCSI adapter.

Separation of manufacturer-specific and manufacturer-independent code is not useful
with controllers because their devices are essentially sub-units of the controller.
Hence, the controller and all its devices are handled by a single driver. This driver
accesses the controller and specifies which unit off the controller it wants to address.
Thus, controller drivers are usually specific to a particular manufacturer. For
example, the cied driver works only for Ciprico ESDI disk controllers.

The adapter drivers and device drivers both consist of a set of externally callable
routines. All drivers supply a set of 15 basic I/O routines including configure, open,
close, read, write etc. (see Chapter 3). Drivers that supply only these basic routines
are called device drivers. In addition to these 15 basic driver routines, adapter
drivers have an additional set of adapter routines.

SCSI adapter drivers and SCSI device drivers form a paired system. The kernel
passes all user I/O requests to the SCSI device driver (for example, the SCSI tape
driver st or the SCSI disk driver sd). The SCSI device driver in turn issues a request
to the SCSI adapter driver, which accesses the physical device and returns the results
to the device driver.

Generally, the kernel interfaces to the SCSI device driver, which in turn interfaces to
the SCSI adapter driver. The main exception to this rule concerns interrupts. SCSI
adapters interrupt the host, but SCSI devices do not. Therefore, it is the SCSI
adapter driver that needs to service interrupts. The adapter driver must interface to
the kernel in order to receive its interrupts.

NOTE: The kernel may also invoke the adapter driver in response to other system
needs. For example, the kernel may invoke the adapter driver’s configure
routine or its open dump routine. However, because user-level I/O goes to
the device driver, most of the adapter driver’s basic routines may be left as
stubs. For example, adapters will not generally need a read routine. Chapter
3 lists the basic driver routines that the adapter driver must supply (that is,
cannot leave as stubs).

093-701053 Licensed material—property of Data General Corporation 1-7

Overview of Architectural Issues

Figure 1-3 shows how the different drivers interface to each other and to the
hardware.

User
y
1/0 Routines Kernel 1/0 Routines
4
VME .

Controller Interrupt Service D%Si%!e
Device outine Driver
Driver

\
SCsi
Adapter je—+—
Adapter
Routines
y
Hardware Hardware

Figure 1-3 The Adapter/Kernel and Device/Adapter Interfaces

Throughout the rest of this manual we will use device driver to refer to drivers that
provide only the standard set of routines. Thus, both VME controller/unit drivers
and SCSI device drivers will be called device drivers. The term adapter driver will
refer to drivers with the additional adapter routines (which means only those drivers
intended for managing an adapter).

The Adapter Manager

The driver interface has one more major component that must be mentioned. We’ve
seen that driver portability is a major focus under the DG/UX kernel. We've also
seen that SCSI adapter drivers are specific to a particular manufacturer’s adapter
whereas SCSI device driver’s are not. Therefore, if an SCSI device driver is to work

1-8 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

with all adapter drivers, it must not have calls to a specific adapter driver in its code.
To eliminate this problem, the kernel provides a generic "adapter manager” that
routes device driver calls to the appropriate adapter driver. Thus, the device driver
calls a generic adapter routine (in the kernel’s adapter manager), passing a parameter
that indicates the adapter driver for which the call is intended. The generic adapter
routine decodes the parameter and passes the call on to the actual adapter driver.
We discuss the adapter manager routines in Chapter 5.

Do You Have to Write a New Driver?

The DG/UX system provides full System V and BSD functionality with a kernel that
supports fully symmetric multiprocessing as well as other enhancements. The
DG/UX kernel requires all drivers to conform to a set of standard interfaces. Only
drivers that follow the DG/UX interface specifications will run under the DG/UX
system.

If you buy an SCSI adapter, SCSI device, or VME controller, the hardware is likely
to be compatible (see Appendix C for a list of compatibility specifications).
Nevertheless, software drivers written for System V or BSD will not run under the
DG/UX kernel. However, this does not necessarily mean that you will have to write
a new device driver for your hardware.

As we have seen, SCSI device drivers work for all SCSI adapters, and the DG/UX
system supplies SCSI device drivers for a number of standard devices. For example,
the DG/UX SCSI disk driver, sd, and the SCSI tape driver, st, work with disks or
tapes that adhere to the basic Common Command Set plus several non-mandatory
Common Command Set commands (Appendix C lists these additional commands).
If you are adding a new device of the same family as an existing Data General-
supplied device driver, chances are you will be able to use the supplied device driver.
If you add a new type of SCSI adapter you will probably need to write an SCSI
adapter driver for it. On the other hand, you can use the existing Data General-
supplied device drivers with your new adapter driver.

In general, you will only need to write an SCSI driver: 1) if you add an SCSI adapter
of a type not already supported under the DG/UX system; or 2) if you add an SCSI
device of a type not already supported under the DG/UX system. You will need to
write a driver for a VME controller if you add a controller of a type not covered by
Data General-supplied drivers.

Interrupt Structure

Traditionally, a machine’s interrupt structure is a major cause of machine-
dependencies in device drivers. In order to make drivers machine-independent, the
DG/UX kernel hides most interrupt structure dependencies from the drivers.

Three closely related features allow drivers to remain independent of most interrupt
structure dependencies. The first feature has to do with registering interrupt

093-701053 Licensed material—property of Data General Corporation 19

Overview of Architectural Issues

handlers. If your device generates interrupts, your driver will include an interrupt
handler that will service your device’s interrupts. When a device of your driver’s type
is configured into the system, the kernel will call your driver’s configuration routine,
which will in turn call a routine to register your interrupt handler with that device.
Once the handler is registered, whenever that particular device generates an interrupt,
the kernel will pass control to your driver’s handler.

Yet, for the kernel to pass control to the right interrupt handler, it must be able to
identify which interrupt comes from the particular device. Further, in order to be
machine-independent, the driver must be able to supply interrupt information using
kernel-supplied literals instead of machine-specific values. This leads to the second
machine-independent feature — a set of interrupt identifiers that can uniquely identify
devices both across machines and regardless of particular configurations within a
particular machine.

The kernel’s approach to creating a set of such unique identifiers requires that you
supply two parameters. One parameter gives the class of interrupts and the other
gives a unique device identifier within that class. Thus, to register your interrupt
handler, you must supply a device interrupt class, a device code, and a pointer to a
device information structure that identifies your interrupt handler.

The interrupt class and device code parameters are defined as follows:
¢ Interrupt (or Device) Class

The interrupt’s class is defined by the bus on which the device is located. If
the device is attached to a Data General proprietary bus integrated on the
system board or a bus expansion slot off the system board. it belongs to the
integrated class of device interrupts. If it is attached to any bus other than
these, the device class is defined by the particular bus. For example, the
AViiON 5000 series systems support an external VME-188 bus. All devices
on this VME bus would belong to the VMEbus class of device interrupts.
The kernel supplies an enumeration type that defines device class literals.
Use these literals to specify your device’s interrupt class. See Chapter 8 for
a discussion of the device class enumeration types.

Note: A device’s class is defined by the external bus to which it is attached
and which interrupts the CPU. Thus, if a device is attached to a
secondary bus serviced by an adapter, it is the adapter’s bus that
will define the device’s class because it is the adapter that will
interrupt the host CPU. For example, SCSI devices (those on an
SCSI bus) are serviced by an SCSI adapter. On an AViiON 5000
series system, the SCSI adapter will be attached to a VME bus.
Because only the adapter interrupts the CPU, the device class for
the SCSI devices and the SCSI adapter is VMEbus.

® Device Identifiers (or Device Codes)

1-10 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

Unique device identifiers within a device class are called device codes.
Device code definitions vary with the device class.

For devices in the integrated class, the kernel supplies a set of literals for all
possible types of devices found in the integrated class. For example, you use
the literal UC_DUART_DEVICE_CODE to identify any integrated duart
device. Chapter 8 describes the device code literals for the integrated class
of devices.

For other device classes, the device code is generally defined by a unique
identifier jumpered on the board. For example, on the AViiON 5000 series
machines, controllers on the VME bus are jumpered to a particular vector
number. The bus passes this vector number to the CPU and, when the device
interrupts, it appears in the Interrupt Acknowledge register as the device
identifier. Appendix C describes conventions for the VMEbus class device
codes.

Note that your driver will be specific to a particular device class (for
example, integrated or VMEbus). Thus, you will need different drivers for
SCSI adapters in the integrated class (as on AViiON stations) and for SCSI
adapters in the VMEbus class (as on AViiON systems). Drivers dependency
on device class results from the fact that device codes are interpreted
differently in the different device interrupt classes.

When an interrupt occurs, the kernel will read the interrupt status register (IST) and
pass control to the registered interrupt service routine whose device code and device
class match the interrupt. Once it recieves cotrol, the interrupt service routine must
clear the interrupt if reading the IST did not clear it.

The final way the kernel helps you avoid architecture-specific code is by providing
interrupt handling routines that you can use to mask and unmask interrupts. Chapter
6 describes these routines.

The combination of registering interrupt handlers with interrupt identifiers and
kernel-supplied mask and unmask routines allow the bulk of your driver to be
architecture independent; it should run on any AViiON machine.

The Multiprocessor Environment

The DG/UX kernel is designed to operate symmetrically on one or more processors.
To do this, the kernel creates an abstraction of a physical processor called a virtual
processor (VP). By using a VP abstraction, the hardware implementation (actual
number of physical processors) can be made transparent to the higher levels of the
kernel. The actual physical processor is called a job processor (JP).

A given instance of the kernel will have a fixed number of VPs that is usually greater
than the number of physical processors but less than the number of processes wanting

093-701053 Licensed material—property of Data General Corporation 1-11

Overview of Architectural Issues

to execute. A two-level scheduling scheme is used to balance between processes, VPs,
and JPs. The lower level of scheduling multiplexes VPs onto physical processors so
that the VPs appear to be active entities that execute code. This short-term
scheduling is performed by the dispatcher. A higher level of scheduling multiplexes
processes onto VPs so that the processes may execute. This higher scheduling is
performed by the medium-term scheduler using the operations defined on VPs.

As you write your driver, keep in mind that it may be operating in a multiprocessor
environment. There are two important points about such an environment:

e Do not presume that the driver is the only process running at a given time.
Another process might be running on another processor and accessing
common memory. This means that synchronization and locking issues are
very important. The driver should protect (lock) access to critical data
structures because another process might seek access at the same time.
Chapter 6 describes the kernel routines that support synchronization and
locking operations.

e Driver code may be executed simultaneously on two or more different
processors. In particular, when a device interrupts on a multiprocessor
system, one of the processors is picked by the system to take the interrupt.
The driver has no control over which processor takes the interrupt. The
processor chosen for interrupts from a particular device may vary from
interrupt to interrupt. In addition, more than one processor can service an
interrupt at a time. As a result, it is possible for a controller to have two
interrupt requests serviced at the same time.

Finally, if you disable interrupts on a multiprocessor system, you do so only
for the processor that is currently running. The device may still interrupt on
another processor. As a result, base-level driver code cannot disable
interrupts to protect against collision with the driver’s own interrupt service
routine. Disabling interrupts on one processor does not guarantee that the
interrupt service routine will not access a structure at the same time on
another processor.

You can mask interrupts for the device. This prevents the device from

interrupting on all processors. Remember, however, that masking does not
guarantee that an interrupt is not already in progress.

How to Write a Device Driver

In this section, we describe the major steps involved in writing a device driver. These
steps are as follows:

1) Write I/0 routines for your device.

e The kernel requires that you supply a set of I/O routines for your
device. You supply these routines in a file called dev_xxx_driver.c,

1-12 Licensed material—property of Data General Corporation 093-701053

How to Write a Device Driver

where xxx is a two- to eight-character device mnemonic identifying
your device. The mnemonic may be composed of digits and
uppercase and lowercase letters; it is case sensitive. The first
character must be a letter. This mnemonic is also used in the
master file entry described in Step 2.

The I/O routines you supply will include such routines as open,
close, read, and write. Throughout this manual, we refer to these
routines in the following way: dev_xxx_name. For example, the
read routine for the xdev driver would be dev_xdev_read. In this
book, we use xxx as a generic driver name. Thus, our generic
driver’s read routine will be dev_xxx_read.

DG/UX 1/O is device-independent, which means that all user-
supplied I/O routines conform to a specified interface with a
standard set of parameters. The kernel calls routines at the
appropriate times (for example, read when a read operation is
requested). The interface specifications for these routines are
discussed in Chapter 4.

e The DG/UX kernel contains many routines for system-level
operations that you can call from your driver. The operations
performed range from managing memory to handling signals to
interfacing with the driver daemon. Chapters 6 through 8 describe
these routines in detail.

2) Supply master file information describing your device driver.

The basic information about all devices is contained in files called master
files. You will need to make an entry in a master file to identify your device
to the kernel. We discuss master file entries in Chapter 2.

3) Supply system file information for each controller of your device type.

The system file supplies information linking master file information to
specific instances of devices in a particular configuration. Your driver
services all xxx type devices, and you may have more than one such device
on the system. For example, a system might have two cied type disks. One
driver services all cied disks. The system file will have an entry identifying
each disk of the cied type. We discuss system file entries in Chapter 2.

4) Rebuild and reboot the system.

After the entry has been placed in a master and system file, you can use the
standard system-generation procedures. The module or modules
implementing the new driver must be separately compiled and included on
the link line when the system image is linked. In Chapter 2, we describe
how to incorporate your driver in the system build.

093-701053 Licensed material—property of Data General Corporation 1-13

QOverview of Device Driver Environment

Overview of Device Driver Environment

This section describes a number of terms and concepts that are fundamental to
writing a driver on a DG/UX system. Also, because a device driver is an integral
part of the kernel, the driver must conform to the restrictions that apply to various
parts of the kernel. We discuss some of these restrictions in this section.

Device Specifications

All devices (controllers, adapters, and devices/units off controllers and adapters)
must also have a unique software descriptor called a device specification. You will
need to provide device specifications at various times; for example, for system file
entries, for various system utilities and at boot time.

The kernel uses device specifications to link specific devices with the appropriate
device driver. Specifically, the device specification for devices your driver will
service must begin with your driver’s device mnemonic.

The kernel passes the device specification string to the driver for interpretation.
Therefore, you could write your driver to use a device specification syntax different
from that used by drivers supplied with the DG/UX system. However, for
consistency and intelligibility, we recommend that you implement your device
specification like DG/UX drivers. You can use the io_parse_device_spec routine
(described in Chapter 8) to parse a device specification according to Data General’s
conventions.

DG/UX drivers use the following device specifications syntax:
device mnemonic [@device_code] ([parameters])
where:

device mnemonic is the two- to eight-letter mnemonic used to identify the
device driver for the device. The xxx code described in Chapter 2 is your
device mnemonic. Appendix C lists the device mnemonics for Data
General-supplied device and adapter drivers.

device code is a device identifier that uniquely identifies a physical device
within its interrupt class. For devices with device codes, you enter the
device code preceded by an @ (at) sign (for example, @18). Device codes
are defined within each specific device class. However, only devices that
directly interrupt the host have device codes. Devices that do not have
device codes (such as pseudo-devices or SCSI devices off SCSI adapters)
must omit the device code field in their device specification.

1-14 Licensed material—property of Data General Corporation 093-701053

Overview of Device Driver Environment

parameters are values that provide additional information to the driver.
The parameters for the device specification depend on the type of device and
whether the device is a controller, adapter, or device (unit).

Controller/Adapter Parameters

The device specification for an adapter consists of the adapter’s name, its device
code, and a single parameter identifying which adapter is being addressed. The
device specification for a controller consists of the controller’s name, its device code,
a parameter identifying which controller is being addressed, and a second parameter
specifying which device off the controller is addressed (for example, unit #1 off the
controller).

For both controllers and adapters, the first parameter indicates which controller or
adapter is being addressed. For drivers supplied with the DG/UX system, you can
identify which controller/adapter is being addressed in either of two ways:

1) You can specify the controller/adapter by giving its base memory-mapped
/O address. For example, the first cied adapter would be cied(ffffef00) (the
cied mnemonic stands for Ciprico ESDI disk). Appendix C lists the base
addresses for drivers supplied with the DG/UX system.

2) If the controller/adapter is located at one of the standard base addresses for
a device of its type (see Appendix C), you can use the numbers zero (0) or
one (1) to indicate the first or second instance of this device. For example,
you can use cied(0) and cied(1) to specify the first and second cied
controllers. If you omit the first parameter, the driver should assume a value
of zero. Drivers supplied with the DG/UX system can deduce the base
address from this information.

NOTE: You cannot use this form if you are addressing a controller or adapter whose
base address is not a default (as shown in Appendix C).

SCSI Device Parameters

For SCSI devices, the first parameter indicates on which adapter the device is
located. You identify the adapter with its device specification as just described. For
example, device specification for the SCSI disk off the AViiON station integrated
SCSI adapter would be sd(insc(0),2).

The second parameter is the device’s SCSI ID. The SCSI ID is a bus identifier
jumpered on the device. A device’s SCSI ID must be unique on its adapter but not
across adapters. (Appendix C lists the default SCSI IDs for standard devices on the
DG/UX system.)

The device specification has a third parameter that you can use to specify a unit
number if the SCSI device is a controller with multiple units.

093-701053 Licensed material—property of Data General Corporation 1-15

Overview of Device Driver Environment

NOTE: In device specification, device codes and base addresses are interpreted as
hexadecimal numbers. You must not precede them with "0x" as is
conventional in C language programming.

The following are valid device specifications:

cied() cied disk controller with all parameters assuming their default
values. (See Appendix C for a list of default values.)

cied(0,1) Drive 1 on cied disk controller 0.

cied@77 (fifff500,0) Drive O on the cied disk controller at the non-standard base
address Oxfffff500, with the non-standard device code 0x77.

sd(cisc(1),2) The SCSI disk at SCSI ID 2, reachable through SCSI adapter 1.
st(insc(0),2) The SCSI tape at SCSI ID 2, reachable through integrated SCSI
adapter.

sd(cisc@77(fffff500,0),2)
Disk drive 2 on the cisc SCSI adapter at the non-standard base
address Oxfffff500, with the non-standard device code 0x77.

Device specifications are described in more detail in Installing and Managing the
DG/UX™ System.

Special Files (Nodes)

A user accesses a specific unit of a specific device through a device special file, also
called a node. When you open a special file, you get a file descriptor that identifies
the specific unit. The user-level code will then use this file descripter to access the
device. Special files are stored in the /dev directory.

For example, a disk special file called node_name is located in /dev/dsk. To open
the device and get a file descriptor, the user program issues the following DG/UX
system call from a C program:

int £4;
fd = open ("/dev/dsk/node_name", O_RDWR)

The kernel returns a file descriptor into fd. The user will now use fd to access the
specific device. For example,

read (fd, Buffer, 20);

causes the kernel to read from the device identified by the special file node_name. fd
points to this file, and 20 is the number of bytes to be read into the memory area

1-16 Licensed material—property of Data General Corporation 093-701053

Qverview of Device Driver Environment

denoted by Buffer.

Users can create special files with re scripts and with the mknod(1) command.
However, at configuration time, the device driver’s dev_xxx_configure routine also
creates special files from device entries given in the system file. The driver usually
uses the system file entry (device specification) as the special file’s name. Thus,
many special files will have a device specification for a name. We describe the
interface for the dev_xxx_configure routine in Chapter 4.

The file descriptor identifies a special file for a specific device. The special file must
therefore describe that device. A special file represents the following information:

e Type of I/O interface — block or character
® The major number

® The minor number

® Access rights

The major number identifies a family of devices all serviced by the same device
driver. The kernel uses the major number as an index into a table of vectors
containing pointers to each driver’s I/O routines. When the kernel recieves a user
I/O request, it identifies the correct driver routine to call using the major number and
the driver’s I/O routines vector. We discuss how to supply a major number in
Chapter 2.

The minor number is used to identify a specific unit in a particular device class. The
driver dev_xxx_configure operation calls the kernel device number manager that
allocates minor numbers for each unit and links unit-specific information to the minor
number.

When a user opens a device, the kernel sends to the driver dev_xxx_open routine the
major and minor device numbers for the opened device. The dev_xxx_open routine
then calls the io_map_device_number routine to map the major and minor numbers
to unit-specific information.

The driver can use unused bits of the allocated minor number to hold additional
information about a unit. For example, tape devices use bits in the minor number to
specify density selection on a unit. Note that special-purpose bits must be masked
out before any interaction with the device number manager.

See Installing and Managing the DG/UX™ System for more information on special
files.

093-701053 Licensed material—property of Data General Corporation 1-17

Overview of Device Driver Environment

Block Versus Character Interface

The DG/UX system supports two major types of I/O interfaces: block special
(buffered) and character special (raw). Depending on the device type, drivers can
support one or both interfaces.

The block special interface treats the device like a file. The kernel buffers input and
output to the device and controls when to do actual reading or writing. Information
that is read or written to a block device must pass through the kernel’s buffers. An
example of a block device is a buffered disk access.

The character interface treats the device as a raw device. The read or written
information is transferred directly to and from the user’s address space, bypassing the
kernel’s buffers. The device determines the correct block size and handles all data
transfers. An example of a character device is a terminal.

A driver may support either block and character access or character access only.
Most driver-supplied routines are the same for both types of access (for example, the
same dev_xxx_open routine serves both interfaces). The exception is that the
dev_xxx_start_io routine is used for block special access only.

Driver Execution

All device driver code executes as part of some user or system process running in the
kernel. A device driver has access to all of system memory and to all devices.
Kernel code is protected from write access so that access errors can be isolated more
quickly (note that this protection means a driver cannot use self-modifying code), but
no other protection is provided against a driver writing to kernel databases and/or
otherwise destroying the kernel internals.

Driver code executes on the kernel stack of the running process. The kernel stack is
of fixed size, so driver code must not nest calls too deeply. A system panic results if
a process’s kernel stack overflows. Panic codes are listed in a file in /usr/release;
your DG/UX system Release Notice discusses this file.

Because of its special status as part of the kernel, a device driver may not use the
standard C libraries or DG/UX system calls (described in Chapters 2 and 3 of the
Programmer’s Reference for the DG/UX™ System, Volume 1I).

Memory Management

Two types of kernel memory are visible to a device driver. Global kernel memory is
addressable by all processes in the system. Per-process kernel memory belongs to a
particular process and can be addressed by only that process.

You must use care in deciding whether to declare data structures in per-process
versus global kernel memory. For example, if you declare an argument to a call in

1-18 Licensed material—property of Data General Corporation 093-701053

Overview of Device Driver Environment

per-process memory, and then your process completes, the argument will be deleted
with your process. Similarly, if you declare a structure in per-process memory, it will
not be accessible by interrupt-level code because the interrupt code runs on the
currently executing kernel process which has its own per-process memory. Thus,
some arguments to device driver calls may be in per-process mernory, while other
arguments should be restricted to global memory. Note that the user process’s kernel
stack is in per-process memory.

Logical addresses do not equal physical addresses in the kernel. The addresses may
be equal in some situations, but a device driver should not depend upon this.
Chapter 7 describes kernel functions that you can use to convert from a logical
address to a physical address.

Device driver code and static data reside in wired memory so that they can be
accessed from interrupt handlers.

Interrupts

Most device driver code executes with interrupts enabled. The driver should not
manipulate the state of the interrupt enable register unless absolutely necessary. If
the driver must change the interrupt state, it should use the kernel’s interrupt
enable/disable routines (described in Chapter 6).

If your device generates hardware interrupts, the driver must supply an interrupt
service routine (interrupt handler) to service those interrupts. The interrupt service
routine will run with all interrupts disabled on the current processor (interrupts on
other processors are not affected).

The interrupt service routine must operate in a severely restricted environment. It is
expected to quickly determine what action to take (usually advancing one or more
eventcounters) and then dismiss the interrupt. It must not pend or page fault. To
avoid page faults, the service routine should not reference unwired memory. It
should also avoid calls to routines that might pend or page fault. The kernel routines
described in Chapters 6 through 8 indicate whether or not they might pend or page
fault.

Interrupts do not nest in the DG/UX system, so each interrupt handler must quickly
finish its job and return to base level. Furthermore, interrupts are handled on the
kernel stack of the currently running process; no separate interrupt stack is used.
Therefore, the interrupt service routine must limit the amount of stack space used by
it and any procedure it calls.

For VME devices, reading the Interrupt Acknowledge register acknowledges the
interrupt, and on many devices (Release-on-acknowledge devices) this action also
clears the interrupt. However, some devices require additional action to clear the
interrupt. Consult the documentation for your device to see when and how your
device stops asserting interrupts.

093-701053 Licensed material—property of Data General Corporation 1-19

Overview of Device Driver Environment

Clearing the interrupt frees the device to issue another interrupt. Because another
interrupt may be serviced by another processor, it may be handled before the first
interrupt service routine has completed.

Signals

Before a device driver waits for an indefinite amount of time for an 1/O operation to
complete (such as on a read of a user keyboard), it must prepare to receive a signal
by calling the appropriate kernel functions. If a signal should occur, the driver must
abort the operation and return an appropriate status.

For devices that do not normally require user intervention for an I/0 operation to
complete (such as a disk), signals do not have to be handled while waiting for the
device to respond. The device must, however, be timed out if it fails to respond
within a few seconds so that the calling process will not become hung indefinitely if
the device should lose power or otherwise fail.

Higher levels of the system are responsible for providing reasonable response to
signals. These higher levels may break large user requests into smaller driver-level
requests so that signals are not ignored for too long a time. For example, if a user
requests that 100 Mbytes be written to the disk, the driver may see only a succession
of 256 Kbyte requests. A device driver need not be concerned about the size of a
user’s request as long as it is making progress on the request and is not depending
upon some indefinite external event for continued progress.

End of Chapter

1-20 Licensed material—property of Data General Corporation 093-701053

Chapter 2
Adding Your Device Driver to
the DG/UX System

This chapter describes the information you will need to perform the following
operations:

® Add an entry for your device to a-master file.

® Add an entry to the system file for each new hardware device or virtual
device attached to your system.

e Rebuild the system and reboot with the new system image.
These operations correspond to steps 2, 3, and 4 of the steps listed in Chapter 1 for

adding a driver to your system. This chapter also describes ways in which you can
check whether you built your driver into the system properly.

Adding a Master File Entry

Master files are administrative files that contain default information for all supported
devices. These files hold information needed for the system configuration. Master
files are stored in the master.d directory. The main DG/UX master file is
master.d/dgux. You may want to list this file to clarify the master file entries
discussed in this chapter. Master files are discussed in the master(4) man page.

You must add an entry for the driver to a master file in master.d. The master file has
three sections to which you may want to add entries. The sections are as follows:

® Device section: holds descriptions of all devices.
® Keywords section: defines and sets all configurable parameters.
® Alias section: allows you to define aliases for master file device entries.

Within sections, entry lines consist of a number of fields separated by blanks or tabs.
Comment lines are preceded by a pound sign (#).

You must add a device description entry for your device in the device section of the
master file. You may also want to add a device alias (alias section) and/or

093-701053 Licensed material—property of Data General Corporation 21

Adding a Master File Entry

configuration parameters (keyword section), depending upon your irnplementation
needs. We discuss these entries in the next section.

NOTE: All files listed in the master.d directory are included in the configuration
process. Therefore, do not keep old or backup copies of your master file in
master.d.

Device Descriptions: The Device Section Entry

For easy management, entries in the device description section of the master file are
grouped according to type of device. For example, all types of magnetic tape devices
are listed together. (Such grouping is helpful but not necessary.)

Each device description entry contains four fields. The following diagram shows
some sample master file device description entries. Lines that start with # are
comments.

#
DISKS
#
Maximum
7 Name Major of units per Restricticn
£ Prefix Number(s) Controller Flags
-
#
cied 7 7 n
sd 6 7 n
2
xdev 10 4 n
3
2

The xdev entry above is a non-standard device we have added to the master file.
We’ll use this entry as an example to describe the fields in the device section.
Information is case sensitive.

xdev 10 4 n

xdev entry name — This field identifies a family of devices, specifically, all
devices that use the same device driver. The entry name or name prefix is a
two- to eight-letter device mnemonic. It is also used as part of the
corresponding device driver’s name, in the device specification (the device
mnemonic field) and in corresponding system file entries. The device
mnemonic uses any characters that are valid for C language filenames.

[\

-2 Licensed material—property of Data General Corporation 093-701053

Adding a Master File Entry

10 major number — The kernel uses a device’s major number as an index into
its I/O routine table. Your major number can be any positive number that is
less than 255 and that is not already in use. It is a decimal number. To
choose a number, scan all master files for major numbers already allocated.
We recommend choosing the smallest possible number, as this will keep the
size of the table small.

4 maximum units per controller — This a decimal number that specifies the
maximum number of units a controller can support.

n restrictions flag — This flag signals configuration restrictions for this device.
The flags are specified as a string of characters with the following definitions
(these options are case sensitive):

Option Meaning

o Specifies that the driver will allow only one
device of this type to be configured. For
example, the system console is defined as
being the only device of its type.

r Indicates that the device is required and
will be placed in the system whether or not
the system file specifies it. If the device is
not specified, default values will be given
for device specification values.

s This option indicates that the device is a
STREAMS device.

n No restrictions apply. Choose this option
if you do not use any of the others listed
above.

z This device may be configured either

explicitly or implicitly as part of nested
declaration of another device. For
example, "st(insc()),4)" declares "insc()"
implicitly.

Parameters: The Keyword Section Entry

If you want to create a parameter for your driver code that can be set at system
configuration time, you will need to add an entry to both the master file and system
file. For example, the pseudoterminal driver has a variable giving the number of
pseudoterminals to be configured. Most device drivers will not use the keyword
section.

093-701053 Licensed material—property of Data General Corporaticn 23

Adding a Master File Entry

The master file entry for a parameter should be placed in the keyword section. This
entry has four fields:

® The variable name. The variable name is used in the corresponding system
file entry.

® The default value for this variable. This value is used if you do not add a
corresponding system file entry to declare the variable’s actual value.

® The variable’s data type. If you don’t specify this field, the kernel uses long
integer for the data type.

e The implied value. This value is used if you add a system file entry but do
not give that entry a value. This field is optional and exists primarily to give
configuration flexibility for certain special devices such as the Network
Filesystem (ONC™/NFS®).

Some sample keyword section entries are shown below:

#

Variable Default Implied
Name Value Type Value

#

cf_sc_nodename[] "no_node" char
cf_sci_daylight_savings_kind 1 uintl6é_type
physbuf 256 uintlé_type

To add a configurable parameter, you must add both a master and a system file entry.
The system file entry should be placed in the tunable parameters section (see the
system(4) man page). For example, to change the number of physical buffers (the
physbuf master file entry), add the the following system file entry:

physbuf 150
At configuration time, the config program combines the master and system entries to
produce the file conf.c. As a result of the system file entry shown above, conf.c will
contain a constant physbuf with an updated value of 150. After configuration, you
can check conf.c to see if your variable has been properly set.

You reference your variable as an external variable by inserting a line similar to the
following in your device driver: '

extern int physbuf;

24 Licensed material—property of Data General Corporation 093-701053

Adding a Master File Entry

Master File Aliases: The Alias Section

The Alias section of the master file allows you to create aliases for your master file
entry name. You use such aliases in the system file entry to help distinguish between
different controllers of the same device. For example, the asynchronous controllers
can have 8 or 16 lines even though the same device driver and master file device
prefix are used. The asynchronous controller’s (syac) aliases might be as follows:

Alias Entry name

syac8 syac
syaclé syac

In the system file, specific 8line controllers can be referenced as follows:

syac8(1)

Adding a System File Entry

To configure the new device into the system, you must modify the system file. The
system file lists the physical devices or each instance of a pseudo-device that will be
configured into the system. It contains device configuration information, particularly
hardware I/O addresses. System file entries are described in the system(4) man page.

The system file contains two sections: the device selection section and the tunable
parameters section. We have already described how to add an entry to the tunable
parameters section to set a parameter defined in the master file (see "Parameters: The
Keyword Section”). As described, entries to this section are optional.

You must add entries to the device selection section for each physical device of your
driver’s device type. Use the device specification for this entry.

A typical set of device entries for our xdev device might be as follows:

xdev@72()
xdev@73 (££££6000,4)

Here, xdev is the entry name for the master file device description entry. The
number 72 is the device code for the first controller, and 73 is the device code of the
second controller of this particular class of device. The empty parentheses () in the
first entry indicate that the default parameters, including the default base address,
apply for this device. The second instance of the xdev device shows a non-standard
base address and a second parameter of four (4). The parameter’s meaning will be
specific to the driver’s implementation.

093-701053 Licensed material—property of Data General Corporation 25

Rebuilding and Rebooting the System

Rebuilding and Rebooting the System

You use the standard system-generation procedure, sysadm, to build a new system
image. However, before you use sysadm, you must complete the following steps:

1) Make your changes to the system file and master file as described in this

chapter. We recommend you put your master file entries into your own
master file. Create a file with you master file entries and put it in
usr/etc/master.d. You may give this file any name you want as long as it
does not match any existing file names in the master.d directory.

2) Compile your driver file dev_xxx_driver.c to create the object file

3)

4)

dev_xxx_driver.o.

If you compile using the GNU compiler that comes with the DG/UX system,
we recommend you use the following compile command line:

gcc —DSTANDAILONE —DKERNEL —D_PRODUCT_DGUX
—fno—omit-frame—-pointer
-mno—-underscores

-I/usr/src/uts/aviion dev_xxx_driver.c

If you compile using the Green Hills compiler, we recommend you use the
following compile command line:

ghcc —DSTANDALONE ~DRKERNEL -~D_PRODUCT_DGUX
-ga —X58 -X153 -—-X405

I
|

-I/usr/src/uts/aviion dev_xxx_driver.c |

If you want to avoid specifying the three defines (STANDALONE,
KERNEL and _PRODUCT_DGUX) during compilation, you can add these
to one of your source files.

Place your driver object file and any archive files you may need into the
directory /usr/src/uts/aviion/lb.

Create a file called Libs.driver_name that lists all the object files and archive

files you want included in the build. Place this file in the directory
/usr/src/uts/aviion/cf. You can get the format of this file by examining
other Libs. files.

Once you have completed these steps you are ready to build a new system. Installing
and Managing the DG/UX™ System describes how to use sysadm to build a new
kernel. The output of the build is a2 new system image that you will move to the root
directory (/).

After the new system image is ready, you can shut down the current system and

reboot

2-6

.

Licensed material—property of Data General Corporation 093-701053

|
|
l

Checking the Configuration Process

Checking the Configuration Process

To verify that your device is properly configured, check both conf.c and the special
files for your devices. We describe both of these sources below.

Conf.c

The conf.c file contains the system tables generated by the config program. You can
use these structures to verify your configuration and to determine the location of the
I/0 routines accessing your device. A partial listing of conf.c structures and variables
is given below with descriptions on how to use the information to verify proper
configuration.

Configurable Variable Section

The configurable variable section lists the variables as defined in the keyword section
of the master files and modified in the tunable parameters section of the system file.
You can check this section for the proper setting of any parameters you set. A
partial listing of this section is given below:

/*
/* Configurable Variable Section */

/* */

’/* */

char cf_sc_machine(] = "AViiON";
char cf_sc_sysname[] = "dgux"”;
char cf_sc_release[] = "4.30";
char cf_sc_version|] = "oo";
uintlé_type cf_sci_daylight_savings_time kind = 1;
uint8_type cf_sfm _max modules_per_ stream = 9;
uint32_type cf_sfm max data_message_length = 4096;
uint32_type cf_sfm max_control_message_ length = 1024;
uintlé_type cf_ps_max semaphore_sets = 10;
uintlé_type cf_ps_max_semaphores_per_set = 25;

1/0 Driver Tables

The kernel uses a device’s major number as an index into a table of driver routines
vectors. The I/O Drivers Table in conf.c listed below shows this table of routines
vectors. Note the entry for our sample xdev device in uint32e_type
of_io_device_driver_vector below. Also note the major number index listed to the
right. The major number you supplied in the system file entry should now reflect the
position of your driver in the routine vector table. Chapter 4 explains how you supply

093-701053 Licensed material—property of Data General Corporation 2-7

Checking the Configuration Process

a routines vector for you driver.

/*

/* I0 Drivers Table

/*

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type

*/
*/
*/

cfv_syscon_routines_vector;
cfv_cied routines_vector;
cfv_devtty routines_vector;
cfv_mem_ routines_vector;
cfv_1ldm routines_vector;
cfv_st_routines_vector;
cfv_syac_routines_vector;
cfv_err_routines_vector;
cfv_con_routines_vector;
cfv_xdev_routines_vector;
cfv_pcfv_routines_vector;
cfv_ptc_routines_vector;
cfv_prf_ routines_vector;
cfv_meter_ routines_vector;
cfv_nodevice_routines_vector;

uint32e_type cf_io_device_driver_vector[29] =

{

&cfv_syscon_routines_vector, /*
&cfv_sd_routines_vector, /*
&cfv_devtty routines_vector, /*
scfv_mem routines_vector, /*
&cfv_ldm routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_st_routines_vector, /*
&cfv_syac_routines_vector, /*
&cfv_err_ routines_vector, /*
&cfv_con_routines_vector, /*
&cfv_xdev_routines_vector, /*
&cfv_nodevice_routines_vector, /*
&§cfv_nodevice_routines_vector, /*
scfv_pcfv_routines_vector, /*
&cfv_ptc_routines_vector, /*
scfv_prf_ routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_meter routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_nodevice_routines_vector, /*
&cfv_nodevice_routines_vector, /*
scfv_syac_routines_vector, /*

2-8 Licensed material—property of Data General Corporation

W oo NJoOWU WK O

I I N R R S R o S N T S S
V> WK O WOONO WNNKHO

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

093-701053

Checking the Con.ﬁguraﬁon Process

&cfv_syac_routines_vector, /* 26 %/
&cfv_syac_routines_vector, /* 27 %/
&cfv_nodevice_routines_vector, /* 28 x/

}:

uint8e_type cf_dev_device_driver_ count = 29;

Configuration List

The configuration list shows all the devices configured on the system. Check for all
your system file entries.

/* */
/* Configuration List */
/* */

char * cf_init_configuration_list [] =
{
"syscon()",
"cied()",
"devtty ()",
"mem()",
"ldm()",
"st(cisc(0,0),*)",
"syac(0)",
"err()",
"con()",
"xdev(@72()",
"xdev(@73(0xff£f£f6000,4)",
"pts()",
"pte()"”,
"prf()",
"hken()",
"meter ()",
"loop()",

)i

Your Special Files

At reboot time, the system will call the dev_xxx_configure routine you supply with
your driver (we describe how to write this routine in Chapter 4). Among other
things, your dev_xxx_configure routine generates the special files that point to your
device driver (see "Special Files (Nodes)" in Chapter 1).

093-701053 Licensed material—property of Data General Corporation 29

Checking the Configuration Process

The special files are stored in /dev. You may list the files for your devices to verify
their setup. There should be a special file for each unit serviced by your driver.
The devices shown here will reflect those you specified in the system file. You
determine the special files’ names through your dev_xxx_configure routine. Listing
the special files with Is -1 will display the major and minor device numbers of each
unit, as well as the access permissions. You can also verify that appropriate special
files exist for block versus character access for a device.

End of Chapter

2-10 Licensed material—property of Data General Corporation 093-701053

Chapter 3
Overview of Driver Facilities and
Functions

This chapter describes the functions that device and adapter drivers must supply. It
defines the interface between each function and the kernel, and it describes the
operations each routine must perform. Where needed, we indicate whether a routine
or data structure applies only to an adapter driver. Unless otherwise specified,
descriptions apply to both device and adapter drivers.

NOTE: In all references below, use your own device’s prefix in place of xxx. Your
prefix is the one specified in your master file entry. :

|nc|ude Files

When writing your device driver, you will need to include a number of standard
include files and to supply two additional files of your own: dev_xxx_def.h and
dev_xxx_global_data.c. These files are described below.

® Your driver’s personal include file: dev_xxx_def.h

You create this include file to hold any constant or data structure definitions
you need for your driver.

® You driver’s data file: dev_xxx_global_data.c

For consistency between drivers, we recommend that you put your driver’s
statically allocated global data structures in a file called
dev_xxx_global_data.c. You can use dev_xxx_global_data.c to allocate any
global data structures your driver needs, but, specifically, you should use it
to allocate a cfv_xxx_routines_vector for your driver. Your
cfv_xxx_routines_vector specifies the locations of your driver functions.

CAUTION:
The kernel must find a correctly named routines vector in order
to locate your driver routines. Proper allocation of the routines
vector is crucial to your driver’s operation.

093-701053 Licensed material—property of Data General Corporation 3-1

Include Files

® General driver include files

All drivers must include the file i_io.h. This file contains most of the
constants and structures needed by any program adhering to the standard
driver interfaces. The file i_io.h is found in /usr/src/uts/aviion/ii.

In addition to i_io.h, SCSI device and adapter drivers require two additional
include files, dev_scsi_def.h and dev_scsi_adapter_def.h. Both of these files
are found in /usr/src/uts/aviion/dev.

o Include files for the kernel itself

All drivers must include three files that contain constants and data structures
used by the kernel itself. These files are c_generics.h, os_generics.h, and
architecture.h. These files are found in /usr/src/uts/aviion/ext.

e Include files for kernel-supplied routines

If you use a kernel-supplied routine, you will need to include an include file
specific to that routine’s class. The routine’s class is indicated by the first
few letters of its name. The include file for a class of routines starts with
these same few letters. For example, if you use a virtual memory ("vm")
routine, like vin_wire_memory, you must include the i_vm.h include file.
The possible include files are listed in Table 3-1 below.

Table 3-1 Routine Classes and Their Include Files

Routine Class Acronym Include File
File system fs i_fs.h

jrje) io i_io.h

Lock management Im iJdm.h
Miscellaneous misc i_misc.h
Process management pm i_pm.h
System control sc i_sc.h
Virtual memory vm i_vm.h
Virtual process vp i_vp.h
Micro-code uc i_uc.h

These files are stored in /usr/src/uts/aviion/ii. While this manual discusses
some of the constants and data structures used by the various kernel-supplied
routines, you may need to list these files to examine particular structures.

Be sure to define a literal PRODUCT_DGUX in one of your source files or
at compile time if you use any of the ii include files.

You compile the file containing your driver routines (in dev_xxx_driver.c) and global
data (in dev_xxx_global_data.c) with your dev_xxx_def.h and the appropriate system

32 Licensed material—property of Data General Corporation 093-701053

Include Files

include files to produce object files that will be linked into the system image.

093-701053 Licensed material—property of Data General Corporation 33

Overview of User-supplied Device Driver Routines

Overview of User-supplied Device Driver
Routines

All device drivers (SCSI devices and VME controllers) must supply the 15 routines
(external interfaces) listed below in the section "Required Routines." These routines
constitute the interface between a device driver and the kernel.

The kernel calls these routines as needed, generally when a user addresses an
operation to a special file that maps to the driver’s major device number.
Nevertheless, some routines don’t make sense for some drivers. For instance, a
mouse driver cannot act on a write_dump operation. In such cases, your driver must
still supply a routine of the appropriate type and have that routine return an error.

In addition to the 15 basic interface routines, some drivers may need 2 additional
routines (internal interfaces). These routines relate to servicing interrupts and
handling asynchronous I/O. The routines are used by the driver’s own routines but
the kernel may be involved in the process of invoking them.

To write a driver, you write your versions of the required routines and combine them
into a file named dev_xxx_driver.c. This file will be your driver. The internal and
external routines that your driver can have are summarized below in the section
"Required Routines."”

NOTE: In the following routines, there are important differences between device
drivers that service interrupts and those that do not. Remember, SCSI
device drivers do not service interrupts. Therefore, descriptions relevant to
interrupts do not apply to SCSI device drivers.

Required Routines

® The kernel calls the dev_xxx_init routine for every driver at system
initialization time — before configuration. dev_xxx_init allows the device
driver to perform any initialization that is necessary before any devices are
actually configured into the system. You do not necessarily need to initialize
the device itself in dev_xxx_init; this routine simply provides you with the
opportunity to set up any data structures or other operations that you might
want done prior to configuration.

e dev_xxx_configure performs operations necessary to make a peripheral of
your driver’s class accessible to the system. During configuration, the kernel
calls the driver’s dev_xxx_configure routine once for each peripheral listed in
the system file. In addition, peripherals not listed in the system file may be
configured at some other time in the life of the system. Thus,
dev_xxx_configure should be able to run at any time in the life of the system.

Because this is the first time your driver actually interfaces to the device, you

34 Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Device Driver Routines

will want to ensure that the device is alive and well. You will set up your
special files (/dev entries), and assign minor device numbers. You may also
need to query the controller to find out how many units it has, because you
will want to configure each unit on the controller.

If you are writing an SCSI device driver, you will also need to identify and
get a pointer to the adapter driver routines you will be addressing. You will
also have to make sure that your adapter has already been configured before
you can query your device. To do this you can call the kernel-supplied
routine dev_scsi_adapter_configure with your device’s device specification.
The first parameter of this device specification contains the adapter’s device
specification. dev_scsi_adapter_configure will make sure that the adapter is
configured and return the adapter’s major and minor device number.

For drivers that service interrupts, the dev_xxx_configure routine must
allocate a device information structure for the device and then register the
information in this structure. Registering links the device code with the
driver’s interrupt service routine. This link is made via a device interrupt
table (DIT). SCSI device drivers must call the adapter manager’s
dev_scsi_adapter_register_requester routine to associate their device with
their adapter.

Note that on AViiON machines, devices come up with interrupts enabled by
default.

® The kernel calls a device’s dev_xxx_open and dev_xxx_close routines when
the user opens and closes the device. The kernel calls dev_xxx_open each
time the device is opened, even if the device is already open. Similarly, the
kernel calls the dev_xxx_close function each time the device is closed.

One of dev_xxx_open’s important functions is to return a device handle that
the kernel will use later to pass to the driver’s other routines. The
dev_xxx_open routine may also do further checking of the device to ensure
that it is ready for operation (for example, that a tape is mounted, online,
and write-enabled). Finally, if the configuration routine has not initialized
the device, the dev_xxx_open routine will initialize the device and make it
ready for operation.

e The kernel calls the driver’s dev_xxx_read_write routine for any user read or
write operation that is to be handled synchronously (that is, the user process
will be pended until the I/O completes). Character special (raw) I/O is
always done synchronously. Thus, for character I/O, each user call to a
read/write system call results in the kernel calling dev_xxx_read_write.

o dev_xxx_start_io is the asynchronous counterpart of the dev_xxx_read_write.
Whenever the kernel decides not to let the process pend until the I/0O
completes, it invokes dev_xxx_start_io instead of dev_xxx_read_write.
dev_xxx_start_ijo is used for only block special I/O operations.

093-701053 Licensed material—property of Data General Corporation 35

Overview of User-supplied Device Driver Routines

For block special I/O, the kernel determines whether the request will be
processed synchronously or asynchronously (see dev_xxx_start_jo). Thus,
the kernel may call either dev_xxx_read_write or dev_xxx_start_jo. In fact,
the kernel manages block special operations such that it may not call either
of these routines in a one-to-one correspondence with the user’s read/write
system call. In other words, sometimes the kernel may have previously
buffered the data the user wants.

® The select operation is usually used for devices (such as terminals) that must
wait for an external event before I/O can proceed. Your driver’s
dev_xxx_select routine implements this operation. The kernel provides
select facilities that help a driver manage the list of events used to notify
processes awaiting a select event. We discuss the select manager facilities in
Chapter 8.

The kernel calls your dev_xxx_select routine whenever the user calls the
select system call for your driver’s device.

e The ioctl operation is used to issue control functions to a device. For
example, a user might invoke ioctl to set forms on a line printer.

The kernel calls your dev_xxx_ioctl routine whenever the user issues the ioctl
system call for your driver’s device. Note that some ioctl calls are actually
file descriptor operations and do not actually refer to any device. The kernel
will handle these calls directly and not call dev_xxx_ioctl. For example, the
kernel will handle the FIONCLEX ioctl command directly and not call
dev_xxx_ioctl.

Because control functions are specific to each device driver, you can define
your own control parameters. The kernel simply passes the parameters from
the user request to the driver’s dev_xxx_joctl routine. The kernel does not
interpret these parameters.

If you are writing a disk driver and want to implement a hardware formatter,
we recommend you use ioctl.

o The kernel calls the dev_xxx_open_dump, dev_xxx_write_dump, and
dev_xxx_close_dump routines during system panic. The
dev_xxx_open_dump function does all initialization required for the dump
device to be accessed during system panic. The dev_xxx_write_dump routine
writes data to the dump device. The dev_xxx_close_dump routine is called
to terminate the dump operation to the device.

Note that these routines are necessary only if your device will be a dump
destination. For example, a mass spectrometer driver cannot be a dump
destination.

e The dev_xxx_deconfigure routine does the opposite of the dev_xxx_configure
operation. It deallocates all resources and performs any cleanup necessary

36 Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Device Driver Routines

to completely remove a device from the system. As with
dev_xxx_configure, dev_xxx_deconfigure should be able to work at anytime
during the life of the system.

The deconfiguration routine is optional; you may support it if you wish. The
benefit of including it is that, in case of an erroneous configuration, the user
can deconfigure and then reconfigure and re-use the device. This might
occur, for example, if the user accidentally configures a tape at device code
23 when a disk is actually resident at that device code. Deconfiguration will
allow the tape to be deconfigured so the disk can be correctly configured
without re-booting the entire system.

If you do include deconfiguration, you should try to allow for future
enhancements such as repair-under-power. In repair-under-power a single
device must be deconfigured so it can be removed from the system and
repaired.

® The kernel calls the dev_xxx_powerfail routine for every driver when power
is restored to the system after a power failure (assuming that battery backup
has preserved the process and memory state such that automatic recovery
makes sense). The dev_xxx_powerfail function should be able to work
anytime after dev_xxx_init has completed, regardless of whether or not the
device is open.

The DG/UX system has not yet implemented powerfail. However, the
routine still has a place in the kernel’s table of driver routines. The driver
only has to provide a stub routine for this interface.

® You must supply dev_xxx_device_to_name and dev_xxx_name_to_device
name translation routines. These routines translate between vour devices’
names and their numbers (major and minor numbers combined). Kernel and
system administration utilities will use these routines to identify devices they
want to access. Your dev_xxx_device_to_name routine should be able to
function anytime after the device’s configuration.

NOTE: Your cfv_xxx_routines_vector includes place holders for dev_xxx_mmap,
dev_xxx_munmap, dev_xxx_maddmap, and dev_xxx_read_dump routines.
These interfaces will be operational in a later release of the DG/UX kernel.
For now, put stubs in the routines vector fields for these routines (see the
"Nodevice Routine Stubs" section in Chapter 8).

Optional Routines

In addition to the required routines described above, devices that use interrupts will
need an interrupt service routine, and drivers that perform asynchronous I/O may
need an I/O completion routine for follow-up processing.

093-701053 Licensed material—property of Data General Corporation 37

Overview of User-supplied Device Driver Routines

3-8

e The dev_xxx_service_interrupt routine processes any incoming interrupts for

your device.

You can create an I/O completion routine to complete processing for
asynchronous I/0 operations. (We’ll refer to your 1/O completion routine as
the complete_io routine.) The dev_xxx_start_io routine starts the
asynchronous request, but the follow-up processing must be handled
elsewhere. Frequently, the completion operations are too lengthy to be done
in the interrupt service routine. Most drivers handle completion by
scheduling a message to the Driver Daemon or Generic Daemon (see
Chapter 8). The message specifies a complete_io routine that the daemon
will execute.

NOTE: You can name your complete_io routine anyway you see fit. We
italicize the term complete_io to emphasize this point.

The kernel has its own I/O completion routine (hereafter called the Kernel
I/O completion routine) that the driver must invoke as part of its complete_io
routine. The driver’s dev_xxx_start_io routine receives the Kernel I/O
completion address as a field in the op_record parameter. The driver
returns control back to the higher levels of the kernel by calling the Kernel
I/O completion routine. See the dev_xxx_start_io description in Chapter 4
for discussion of "start I/O" and the kernel I/O completion routine.

Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Adapter Driver Routines

Overview of User-supplied Adapter Driver
Routines

In order to access the physical device, an SCSI device driver invokes the SCSI
adapter manager, which in turn invokes the SCSI adapter driver that controls the
specified device. Thus, most of the adapter driver routines are used to interface
between the SCSI device driver and the SCSI adapter driver. These routines are
listed below in the "The Device Driver to Adapter Driver Interface” section.

There are also two cases in which the kernel will invoke an SCSI adapter driver
routine. These routines are described in the "The Kernel to Adapter Driver
Interface” section.

The Device Driver to Adapter Driver Interface

A device driver will call the following adapter routines as needed. The data
structures referred to here are described in more detail in the "Overview of Major
Data Structures” section.

e Since SCSI devices do not interrupt the host directly, SCSI device drivers
need not register their device information structure with the kernel. Instead,
they register themselves with the adapter driver that will handle their
interrupts for them. Thus, during configuration, each SCSI device driver
calls its adapter’s dev_xxx_register_requester routine in order to identify
itself and establish a link between itself and the adapter driver.
dev_xxx_register_requester establishes the link by adding an entry with the
device’s SCSI ID and unit number to its device information structure.

e During deconfiguration, a device driver calls its adapter’s
dev_xxx_deregister_requester routine to close the link between device and
adapter drivers.

e SCSI device drivers are specific to a particular class of device. For example,
you can have an SCSI tape driver or an SCSI disk driver. Adapter drivers,
on the other hand, may handle many different types of devices (such as
tapes, disks, and printers). Device drivers use their adapter’s
dev_xxx_set_unit_options routine to set certain adapter I/O parameters to fit
their specific device. For example, a tape may need a longer timeout value
than a disk.

® When an SCSI device driver wants to send a command to its device, it must
process that request via the adapter. If the command is to be processed
synchronously, the device driver calls the adapter’s dev_xxx_issue_command
routine. If it is an asynchronous request, the device driver calls the adapter’s
dev_xxx_jissue_async_command routine. These routines send an SCSI
command to the target device via the adapter. These routines can be
invoked as a result of either user-initiated requests or internal driver needs.

093-701053 Licensed material—property of Data General Corporation 39

Overview of User-supplied Adapter Driver Routines

The device driver sends information about the request in an adapter request
block given as a parameter to dev_xxx_issue_command. The adapter request
block is a generic structure used for all adapters. The adapter driver will
return the results of the operation as a return value status. Chapter 4 lists
the possible return values for each adapter interface. Sense information
describing an error is returned in the request block’s sense buffer.

Depending on the adapter’s architecture, dev_xxx_issue_command or
dev_xxx_issue_async_command may need to transfer request information to
a structure appropriate for the particular adapter. Throughout the rest of
this manual we will refer to such structures as the adapter-specific parameter
block.

e If the system panics, the kernel enters shutdown mode and no longer
provides its usual services. If an SCSI device is a designated dump
destination, the adapter driver will have to access the device without normal
kernel support. The dev_xxx_issue_command_physical_mode routine you
supply will be used in these situations. The
dev_xxx_issue_command_physical_mode provides access to the SCSI device
when no interrupts, no locks, no eventcounters and no virtual memory are
available.

e Since an SCSI device driver registers itself with its adapter instead of with
the kernel, it will need to access its device information via the adapter
driver. The device driver calls the adapter’s dev_xxx_get_device_info routine
to get information about its device from the adapter’s device information
structure. The adapter’s dev_xxx_get_device_info routine returns the device’s
unit handle just as the io_get_info routine does for the kernel.

The Kernel-to-Adapter Driver Interfaces

From the kernel’s perspective an adapter driver is simply another driver. Itis
theoretically possible for a user to address an I/O request to the adapter as if it were
an end device. To handle this possibility, the kernel requires that adapter drivers
supply all the routines listed for device drivers.

The majority of these routines would be accessed only because of a user error.
Hence, they are really just error-returning program stubs. You can write your own
versions of these stubs or you can use the set of DG/UX "nodevice" routines listed in
Chapter 8. If you use the DG/UX routines, you will substitute a "nodevice" routine
for each routine you do not supply. For example, if you do not supply
dev_xxx_read_write, you would substitute io_nodevice_read_write in
cfv_xxx_routines_vector.

Of the required device driver routines, an adapter driver must supply four actual
routines, and the rest may be stubs. You must supply dev_xxx_configure,
dev_xxx_open_dump, dev_xxx_device_to_name and dev_xxx_name_to_device. The
device driver descriptions of these routines pertain to the adapter driver as well.

3-10 Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Adapter Driver Routines

Note that since adapter drivers service interrupts, their dev_xxx_configure routines
must allocate a device information structure for the device and then register the
information in this structure. Registering links the device code with the driver’s
interrupt service routine via the device interrupt table (DIT).

093-701053 Licensed material—property of Data General Corporation 311

Overview of Major Data Structures

Overview of Major Data Structures

Many of the major data structures your driver will need are contained in the include
file i_io.h. In this section, we describe some of the important types found in i_jo.h.
We show the actual type definitions for these structures in Chapter 4.

Device Driver Data Structures

The major structures a driver might need are as follows:

3-12

® Routines vector

The main routines vector is a table of your driver’s basic routines (the 17
required and 2 optional described for all drivers). The structure for this
routines vector type is defined in i_io.h. You allocate your driver’s main
routines vector in dev_xxx_global_data.c. The kernel accesses your driver’s
routines via its own internal table of routines vectors. It uses the device’s
major number as an index into this table.

SCSI adapter drivers have their own routines vector, which includes both the
standard and adapter-specific routines. The adapter’s routines vector type is
defined in dev_scsi_adapter_def.h

Chapter 4 shows the layout of both types of routines vectors.
Device number

Your driver uses the device number to identify a specific device before the
device has been opened. The device number is a combination of the device’s
major and minor numbers. Your dev_xxx_configure routine passes the
device number to the kernel’s fs_submit_dev_request routine to create a
special file. The kernel also passes the device number to your dev_xxx_open
routine to identify the device. After the dev_xxx_open, the user will use a
file descriptor to identify the device. The kernel identifies the device to the
driver’s routines by passing the device handle.

The dev_xxx_configure routine gets the device’s major number as a
parameter from the kernel and gets the device’s minor number by calling the
kernel’s device number io_allocate_device_number routine: (see Chapter 8).
It combines these numbers to form the device number.

Device information structure

You allocate this structure at configuration time. You create a device
information structure for each peripheral of your driver’s type listed in the
system file. It should be dynamically allocated in global wired memory.

You can define most of the contents of this structure anyway you see fit.

Licensed material—property of Data General Corporation 093-701053

Overview of Major Data Structures

However, for devices that interrupt the host, the kernel requires that the first
field of the device information structure contain a pointer to your interrupt
service routine.

® Device interrupt table

The kernel uses this table to match interrupts and interrupt service routines.
This table matches each device code with a pointer to the first field in the
driver’s device information structure. This first field contains the address of
the driver’s interrupt service routine.

When you register your device information structure, the
io_register_device_info routine copies a pointer to your device information
structure into the DIT entry for you controller using the device code as an
index. The first field of this structure points to your interrupt service
routine.

The kernel declares the device interrupt table.
® Device handle

After the device is open, the kernel passes the device handle to the driver
routines. Thus, your dev_xxx_read_write routine will get the device handle
when it is invoked. The device handle is specific to a single unit of a device.
The kernel does not interpret this field.

You are allowed to define and use the device handle as you want. It is
intended to be a pointer to an information table describing the operations
occurring on a particular device. Most drivers make the device handle point
to a unit-specific area in the device information structure. (We will presume
this implementation in the rest of this manual.)

® Buffer vector

Buffer vectors are the DG/UX kernel’s interface for data transfer. When
users make an I/O request such as a read, they specify z buffer and a
transfer byte count. The kernel allocates a buffer vector and packages the
1/O request information in this structure. Thus, the buffer vector holds a
transfer byte count and pointers to memory buffers. The kernel then passes
the buffer vector for the request to your driver routine (for example,
dev_xxx_read_write). You can manipulate the buffer vector using the kernel
routines described in Chapter 5.

Buffer vectors are specifically designed to handle buffers that span non-
contiguous memory. Non-contiguous buffers are needed for the readv and
writev operations. For simplicity, the same buffer-vectoring scheme is used
for the standard read and write operations even though they do not need
non-contiguous buffers.

093-701053 Licensed material—property of Data General Corporaticn 313

Overview of Major Data Structures

® Request information packet

For the dev_xxx_read_write routine, the kernel packages information about
the user I/O request in a request information packet. This packet contains
the device handle, the buffer vector, and a set of I/O flags that specify
restrictions on this particular operation (see Chapter 4). In addition, it
contains a device offset value, which specifies to the driver where on the
device the information transfer is to begin. For example, for a disk driver,
the offset might indicate the number of bytes from the start of the disk. The
driver can divide this number by 512 to determine the logical sector on the
disk.

® Operation record packet

The operation record packet is the same as a request information packet
except that it is used with the asynchronous dev_xxx_start_io routine and
hence has several extra fields. In addition to the same fields found in the
request information packet, the operation record packet contains: 1) a
complete_io routine field, which holds the address of the kernel’s I/O
completion routine; and 2) a link field, which allows the driver to link
requests together in an asynchronous request queue.

Data Structures for SCSI Adapter and SCSI Device
Drivers

In addition to the structures listed above, SCSI adapter and SCSI device drivers will
also use the following.

® Adapter unit specification structure

The adapter driver uses the device specification structure to save the device
specification information for each currently active device. The entry for
each active device shows the device’s SCSI ID and unit number. Unit
numbers are used for SCSI devices that are controllers with units.

® Adapter request blocks and Adapter-specific parameter block

Device drivers use adapter request blocks to pass information about their
current request to the adapter driver. The structure is a generic block of
parameters used to issue a request to the dev_xxx_issue_command and
dev_xxx_issue_async_command routines. Depending on the architecture,
before issuing the request, the adapter driver may need to transfer request
information to a structure appropriate for its particular adapter. Throughout
the rest of this manual, we refer to such structures as adapter-specific
parameter blocks.

® Orther adapter parameter blocks

3-14 Licensed material—property of Data General Corporation 093-701053

Overview of Major Data Structures

Dev_xxx_register_requester, dev_xxx_set_unit_options, and
dev_xxx_issue_command_physical_mode each have defined blocks through
which the device driver passes them information. Chapter 4 shows the
layout of these parameter blocks.

093-701053 Licensed material—property of Data General Corporation 315

Other Driver Facilities

Other Driver Facilities

In this section, we describe two driver facilities: the Driver and Generic Daemons
and the error reporting facilities. See Chapter 8 for more information on these
facilities and a description of the routines you use to interface to them.

The Driver Daemon and the Generic Daemon

Driver Daemons and Generic Daemons are classes of daemon processes that drivers
use for handling asynchronous I/0O requests. Asynchronous I/0 requests generally
require the use of an interrupt service routine. In a symmetric multiprocessing
environment, the interrupt service routine cannot be allowed to pend or to call any
routine that might pend. Thus, the interrupt service routine can perform only very
minimal operations. In most cases it will need a way to continue processing the
interrupt outside the service routine’s restricted environment. Driver Daemons and
Generic Daemons provide an appropriate way to handle this continued processing.

The two classes of daemon process have exactly the same interface and method of
operation. Each class has a global queue on which requests are placed. Requests
consist of a pointer to a routine to execute and an argument to be passed to the
routine. A daemon process will remove an entry from the request queue and call the
routine with the specified argument. More than one daemon process may be
removing requests from the same queue so that multiple requests can be executed in
parallel on a multiprocessor system. Each individual request, however, is only
executed once and by a single daemon. All the daemon processes that are working
off the same queue are in the same class.

By executing the requestor’s routine, the daemon can take the place of the requestor
in performing the device service operations such as examining the status, retrying
errors, and starting previously queued requests. Furthermore, if the driver code
determines that an asynchronous request has completed, the requestor’s I/O
completion routine (see Chapter 4) will be called, again with the daemon actually
executing the code.

The two classes of daemon differ in what kinds of operations the routine in the
request may perform. Routines in Driver Daemon requests must not perform any
operation that might have to wait for the completion of a disk I/O operation. For
example, such routines may not page fault, because servicing the page fault may
require waiting for a disk I/0 to complete. In addition, such routines must not
directly or indirectly send signals or perform terminal-related operations. . Because of
all these restrictions, the Driver Daemons will generally only be used by disk device
drivers.

On the other hand, routines in Generic Daemon requests are allowed to wait on disk
I/O, send signals, and perform terminal-related operations. The lesser restrictions
make the Generic Daemons usable by terminal-handling code and other higher level
parts of the system.

3-16 Licensed material—property of Data General Corporation 093-701053

[—— —— . —— —— — — — . S —

Other Driver Facilities

NOTE: Disk device drivers must not use the Generic Daemons because a deadlock
condition could result.

Error Reporting Facilities

Drivers can choose between two major error-reporting destinations: 1) the user-level
calling process; and 2) the system error-logging facility. Drivers do not need to
perform any special operation to report statuses back to the user-level process; the
kernel passes driver routines’ return values back to the user as a completion status
after the routine completes. Because users receive return values as statuses, we
strongly recommend you encode your driver’s unique return values according to
standard encoding procedures (see Chapter 8). Users can decode standardly encoded
statuses using the dg_ext_errno system call.

To send an error to the system error-logging facility, the driver must use the services
of the system error daemon, syslogd, and the psuedodevice, err(7). Err receives and
stores errors from kernel-level processes. Syslogd receives and stores errors from all
processes connected to the system, remote or local, user- or kernel-level. Syslogd
periodically retreives and processes the errors stored in err.

How syslogd processes errors is determined by its configuration file,
/etc/syslog.conf. For example, syslog.conf may specify that the logged errors are to
be printed out to the system console or written to a disk file, and so forth. See
logger(1), syslog(3), syslog.conf(5), and syslogd(8) for more information on the
system error daemon and how to configure error processsing.

The err psuedodevice receives and stores errors from drivers on an internal error

queue. Your driver can store error messages on this queue using the kernel-supplied
routine, io_err_log_error. Io_err_log_error is described in Chapter 8.

End of Chapter

093-701053 Licensed material—property of Data General Corporation 317

Chapter 4
User-Supplied Driver Routines

In Chapter 3, we gave you an overview of the routines that your driver should supply
to the kernel. In this chapter, we describe what each routine does, give details on
parameters and arguments, and tell you about assumptions you should make while
writing the routines.

The chapter is divided into the following major sections:
e User-Supplied Device Driver Routines
e User-Supplied Adapter Driver Routines

The device driver interfaces describe the routines you must write to build a device
driver, SCSI, or VME. The adapter driver interfaces describe routines you must
write to build an SCSI adapter driver. ‘

Each routine specification includes a "Return Values" section that lists specific return
values that the kernel can process when the routine returns. When no return value is
specified, the routine must not fail (the kernel will not process any returns or
exceptions). If the driver routine experiences an exception other than those specified
in the "Return Values" section, it can proceed in one of the following three ways:

1) It may return an exception by returning a value other than one of the
specified values. The kernel will filter this value back to the user as a
standard errno. You can either define your own values for this errno or use
values already defined by the system. Check /usr/include/sys/errno.h for a
listing of the existing errnos and their definitions. In Chapter 8 we describe
how to define an error status.

2) It may panic the system. In Chapter 8 we describe the routines used to panic
the system. Some driver routines are not allowed to panic. We indicate
whether or not a routine can panic in the "Return Values” section of the
interface description.

3) It may use the error daemon to log an error. In Chapter 8 we describe the

procedures used for error logging. If the routine decides to log the error, it
should still return an exception (errno) to the user directly.

093-701053 Licensed material—property of Data General Corporation 4-1

User-Supplied Device Driver Routines

User-Supplied Device Driver Routines

This section describes the routines and data structures you will need to create a

device driver.

Constants and Data Structures

The device driver routines you write will use the following constants and data

structures. Try to avoid dependencies on the specifics of these structures, such as
size or location of fields, since these specifics may change in later releases of the
software. The best way to avoid such dependencies is to use kernel-supplied routines
to manipulate these structures. We discuss kernel-supplied routines in Chapter 5

through Chapter 8.

The constants and data structures listed here are given for convenience only and may

change. Check the appropriate include file (for example, i_io.h for structures

beginning with the io acronym) for the exact definition of all constants and data
structures. Chapter 3 describes the various include files.

io_driver_routines_vector_type

typedef struct

{
uintl6_type
bitl6_type
status_type
void
status_type
void

status_type
status_type
void

status_type
status_type
status_type
status_type
status_type
status_type
status_type
status_type
status_type
status_type
status_type
status_type

version;

flags:;

(*open) ();
(*close)();
(*read_write) ()
(*select) ()
(*ioctl) ()
(*start_io)():
(*init)();
(*configure)();
(*deconfigure)();
(*device_to_name)();
(*name_to_device) ()
(*open_dump) () ;
(*write_dump)();
(*read_dump)();
(*close_dump) (),
(*powerfail) ()
(*mmap) () ;
(*munmap) ()
(*maddmap) () ;

} io_driver_routines_vector_type ;

4-2 Licensed material—property of Data General Corporation

093-701053

User-Supplied Device Driver Routines

Description

The kernel must have a pointer to each of your routines that will be externally visible.
You provide a vector of pointers to your driver’s routines in a routines vector
described by io_driver_routines_vector_type. You must allocate a variable of this
type for your driver in dev_xxx_global_data.c.

A version field is present to allow the system to change this structure and still be
compatible with older, user-written device drivers. The version should be one (1)
except when io_routine_vector_type is used as part of the SCSI adapter routines
vector, dev_scsi_adapter_routines_vector_type. In this latter case, the version
should be IO_DRIVER_ROUTINES_VECTOR_SCSI_ADAPTER_VERSION.

io_device_number_type

typedef struct

{
io_major_device number_ type major;
io_minor_device_number_type minor;

} io_device_number_type ;
Description

A device number is a composite of the device’s major and minor device numbers.
During configuration, the kernel calls your dev_xxx_configure routine with the
device’s major number. Your dev_xxx_configure will get the device’s minor number
(using the kernel’s io_allocate_device_number routine) and then create the device
number variable for the unit. It then uses this device number to create the special file
(node) for the specific units. The kernel also passes the device number to your
dev_xxx_open routine to identify the special file of the unit to be opened. After the
open, a file descriptor will be used to identify the unit to the user, and a device
handle will be used to identify the unit to your driver routines. The kernel will not
interpret the device number value.

io_device_handle_type

typedef opaque32_type io_device_handle_type
Description
A device handle identifies an open device to other calls to the device driver. Your
dev_xxx_open routine defines and returns the device handle when the device is

opened. The device handle becomes invalid when the device is closed.

Many drivers use a pointer to the unit-specific portion of the device information

093-701053 Licensed material—property of Data General Corporation 43

User-Supplied Device Driver Routines

structure as the device handle. However, what makes up a device handle and its
interpretation is up to each individual driver. Higher levels of the kernel that hold
device handles will not interpret their contents.

io_request_info_type

The kernel supplies a variable of this type for every I/O request system call made to
your driver.

typedef struct
{

io_operation_type op;
io_channel_flags_type flags;
io_device_handle_type device_handle;
uint32_type device_offset_extender;
uint32_type device_offset;
io_buffer_vector_type buffer_ vector;

df_self id_type self_id;

} io_request_info_type
Description

The request information package described by this type groups several related values
that are needed to specify an I/O request. The request information package fields are
as follows:

op — The operation indicated by this request. See io_operation_type for a list
of the operation types. The op request is modified by the flags field.

flags — An additional set of flags that modify the operation inclicated by the op
field. These io_channel_flags are described later in this section.

device_handle — The device handle of the device to which the request is to be
directed. The device handle must be a device handle that was returned by the
open function of the driver for the device to which this request is to be directed.

device_offset_extender — This field exists for device offsets needing more than
32 bits. This field should be zero if large offsets are not used (for example, non-
disk devices). It should be checked in disk drivers. If your disk does not
support offsets needing the extender, you should reject requests where this offset
is non-zero.

device_offset — The offset on the device where the transfer is to begin. The
interpretation of this field is defined by the driver to which the request is
directed.

buffer_vector — A buffer vector describing the main memory area that is to be
involved in the I/O operation. The addresses may be logical or physical

44 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

depending upon the operation specified in the op field.

self_id — The home system identification against which read data is to be
checked if the IO_CHECK_SELF_ID flag is TRUE.

io_operation_type

typedef bitl6_type io_operation_type

#define IO_OPERATION_READ ((bitl6_type)00000001)
#define IO_OPERATION_WRITE ((bitl6_type)00000002)
#define IO_OPERATION_RECALIBRATE ((bitl6_type)00000004)

#define IO_OPERATION_CHECK_SELF_ID ((bitl6_type)00000010)
#¢define IO_OPERATION_PHYSICAL_BUFFER ((bitl6_type)00000020)
#define IO_OPERATION_USER_BUFFER ((bitl6_type)00000040)

This type defines a bit field that describes an I/O operation to be performed. Only
one of READ, WRITE, or RECALIBRATE will be on at any one time. The
CHECK_SELF_ID flag may be present only on a READ operation. The
PHYSICAL_BUFFER flag may be present only on a READ or WRITE and indicates
that the buffer address supplied with the operation is a physical memory address
rather than a logical memory address. The USER_BUFFER flag may be present only
on a READ or WRITE and indicates that the buffer address supplied with the
operation is a user memory address rather than a kernel memory address.

io_operation_record_type

typedef struct
{

misc_queue_links_type links;
io_request_info_type ri;
io_completion_routine ptr_ type completion_routine;

} io_operation_record_type ;
Description

You use the operation record when starting an asynchronous I/O request using your
driver’s dev_xxx_start_io function. The structure is basically an extension of the
io_request_info_type that you use for synchronous requests. The extension includes
extra information that is needed to service the request in an asynchronous manner.
The operation record’s fields are as follows:

links — Space that may be used by a device driver to link this operation record

into a queue with other operation records. The driver determines the actual use
of this space.

093-701053 Licensed material—property of Data General Corporation 45

User-Supplied Device Driver Routines

ri — The request information structure that specifies the request.

completion_routine — The address of the function that should be called when
the operation denoted by this operation record is complete. This function must
conform to the I/O completion routine interface described in the "Kernel I/0
Completion Routine Interface” section.

io_select_intent_type
typedef bitl6_type io_select_intent_type ;

I0_SELECT_INTENT_READ
I0_SELECT_INTENT_ WRITE
I0_SELECT_INTENT EXCEPTION
I0_SELECT_INTENT_NONE

Description

This type describes the select options that may be specified to a device driver’s
dev_xxx_select routine. The READ, WRITE, and EXCEPTION options start a
select for the corresponding operation. You can use any combination of these three
options in a single dev_xxx_select call. IO_SELECT_INTENT_NONE is used as a
return value from io_select_cancel when no intent has been satisfied.

io_buffer_vector_type

typedef struct
{

union

{ |

io_buffer_ vector_control_type many;

io_buffer descriptor_type one;

} us

uintlé6_type descriptor_count;
uintl6_type current._descriptor;
uint32_type current._offset;
uint32_type total_remaining;

} io_buffer_ vector_type :
Description
This structure defines a buffer vector, which is a collection of individual buffer
descriptors plus an associated state. A buffer vector may be the source or destination

of a single read or write operation; the individual buffer descriptors define the
locations from which the data is being read or into which the data is being written.

4-6 Licensed material—property of Data General Corporaticn 093-701053

User-Supplied Device Driver Routines

The current position is where the next byte of data will be read fror or written to.
The current position is initialized to the first byte of the first buffer descriptor. The
current position within the buffer vector is maintained by the associated state.

The fields in this structure are as follows:

many — This structure contains a pointer to the array of buffer descriptors and
the total of the sizes of all the elements of the array. This field of the union is
used only when descriptor_count is non-zero. io_buffer_vector_control_type is
described in this section.

one — This structure contains the single buffer descriptor when the buffer vector
consists of a single descriptor. This field of the union is used only when
descriptor_count is zero. io_buffer_vector_control_type is described later in this
section.

descriptor_count — The number of entries in the many array of the
io_buffer_vector_control_type. Not all of these entries are presumed valid; the
total_size field controls the number of entries that are used. This field is used to
determine the actual amount of memory allocated to the array. If this field is
zero, then there is no memory allocated to the array and a single descriptor is
stored in the union field one.

current_descriptor — The index of the descriptor that contains the current
position. io_buffer_vector_control_type is described later in this section.

current_offset — The offset of the current position in the buffer descriptor
indexed by current_descriptor.

total_remaining — The total number of bytes remaining to be moved to or from
this buffer vector since it was initialized.

io_buffer_descriptor_type
typedef struct
;[aointer_to_any_type buffer_ptr;
uint32_type size;
} io_buffer descriptor_type

Description

This structure describes a buffer from which data is to be read or to which data is to
be written.

The fields in this structure are as follows:

buffer_ptr — Pointer to the start of the buffer.

093-701053 Licensed material—property of Data General Corporation 47

User-Supplied Device Driver Routines

size — The size of the buffer, in bytes.

io_buffer_vector_control_type

typedef struct

{

io_buffer_descriptor_ ptr_type
uint32_type

}

Description

io_buffer vector_control_type

descriptors_ptr;
total_size;

This structure is used in the many field of buffer_vector_type.

The fields in this structure are as follows:

descriptors_ptr — A pointer to an array of buffer descriptors. The array may
contain as many as UINT16_MAX entries. (See c_generics.h for the definition of
UINT16_MAX.)

total_size — The sum of the size fields in all the elements of the array buffer
descriptors.

io_channel_flags_type

typedef bit32_type io_channel flags_type

#define
#define
#define
#define
#define
#$define
#define
#define
#define
#define
#define
#define
#define
#define

Description

I0_CHANNEL_NO_FLAGS
IO_CHANNEL_READ_INTENT
10_CHANNEL_WRITE_INTENT
10_CHANNEL_EXCLUDE_WRITERS_INTENT
I0_CHANNEL_APPEND_INTENT
I0_CHANNEL_SYNC_IO
I0_CHANNEL_NO_WAIT
I0_CHANNEL_ASYNC_IO
I0_CHANNEL_NONBLOCK
I0_CHANNEL_NDELAY
I0_CHANNEL_BLOCK_SPECIAL
I0_CHANNEL_NO_RETRIES
I0_CHANNEL_NOTIFY_ IF_MANDATORY
I0_CHANNEL_NOTIFY

((bitl6_type)00000000)
((bitl6_type)00000001)
((bitl6_type)00000002)
((bitlés_type)00000004)
((bitl5_type)00000010)
((bitl5_type)00000020)
((bitl5_type)00000040)
((bitl6_type)00000100)
((bitl6_type)00000200)
((bitls_type)00000400)
((bitl6_type)00001000)
((bitl6_type)00002000)
((bitl6_type)00004000)
((bitl6_type)00010000)

When users open a device, they can open with a set of conditions. The channel flags
specify the open conditions that the user requested. These conditions are passed to
the dev_xxx_open routine. See dev_xxx_open for descriptions of the conditions.

Licensed material—property of Data General Corporation

093-701053

User-Supplied Device Driver Routines

The open options are as follows:
IO_CHANNEL_NO_FLAGS — None of the conditions described below applies.

IO_CHANNEL_READ_INTENT — The channel is opened with read intent. This
flag corresponds to the O_RDONLY or O_RDWR option on the open system
call.

IO_CHANNEL_WRITE_INTENT — The channel is opened with write intent.
This flag corresponds to the O_WRONLY or O_RDWR option on the open
system call.

IO_CHANNEL_EXCLUDE_WRITERS_INTENT — The chanrel is opened only if
there are currently no writers, and future attempts to open with write intent are
disallowed. This flag is used internally by the file system to prevent other
processes from writing to a disk it is managing.

IO_CHANNEL_APPEND_INTENT — The channel is opened with append intent.
This flag corresponds to the O_APPEND option on the open system call.

IO_CHANNEL_SYNC_IO — The channel is opened with the synchronous I/O
option. This flag corresponds to the O_SYNC option on the open system call.

IO_CHANNEL_NO_WAIT — The channel] is opened with the no-wait /O
option. This flag corresponds to the O_NDELAY or to the O_NONBLOCK

option on the open system call.

IO_CHANNEL_ASYNC_IO — The channel is opened with the asynchronous I/O
option. This flag corresponds to setting the FASYNC option with the fentl
system call.

IO_CHANNEL_NONBLOCK — The channel is opened with the O_NONBLOCK
option.

IO_CHANNEL_NDELAY — The channel is opened with the O_NDELAY
option. The driver should not look at this flag.

IO_CHANNEL_BLOCK_SPECIAL — The driver is being opened as a block
special device. This flag is used only internally.

IO_CHANNEL_NO_RETRIES — I/O performed via this channel should not be
retried if errors occur; all errors are treated as hard errors. This flag may or
may not be supported by a given device driver.

10_CHANNEL_NOTIFY_IF_MANDATORY — The kernel uses this option
internally to avoid deadlock on mandatory locks. Drivers should not use this

option.

IO_CHANNEL_NOTIFY — The driver is being opened with the O_NOCTTY

093-701053 Licensed material—property of Data General Corporation. 49

User-Supplied Device Driver Routines

open flag set. The kernel uses this option to prevent the controlling terminal
from being set.

4-10 Licensed material—property of Data General Corporation: 093-701053

User-Supplied Device Driver Routines

Interfaces for Device Driver Routines

In this section, we detail the following device driver routines, which you must supply.

093-701053

dev_xxx_init
dev_xxx_configure
dev_xxx_open
dev_xxx_close
dev_xxx_service_interrupt
dev_xxx_read_write
dev_xxx_select
dev_xxx_joctl
dev_xxx_start_io
dev_xxx_open_dump
dev_xxx_write_dump
dev_xxx_read_dump
dev_xxx_close_dump
dev_xxx_powerfail
dev_xxx_deconfigure
dev_xxx_device_to_name
dev_xxx_name_to_device
dev_xxx_maddmap
dev_xxx_mmap

dev_xxx_munmap

Licensed material—property of Data General Corporation

4-11

User-Supplied Device Driver Routines

dev_xxx_init

Syntax
void dev_xxx_init ()
Summary

This routine performs any pre-configuration initialization your driver might
need.

Parameters
None.

Description
The kernel calls the dev_xxx_init routine as part of system initialization.
dev_xxx_init gives the driver an opportunity to perform any initialization
needed before any of the driver’s devices are configured into the system.
dev_xxx_init is invoked once in the life of the system. No devices controlled
by the driver will be configured until after the dev_xxx_init routine completes.

The dev_xxx_init routine operates in a restricted environment. It may not
await or take a page fault.

Return Values
The dev_xxx_init routine does not return a status; any errors that it

encounters must result in a panic or in some method of flagging the error to
dev_xxx_configure for further processing.

4-12 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_configure

Syntax
status_type dev_xxx_configure (device_name_ptr, major_number)

char_ptr_ type device_name_ptr; /*READ ONLY%*/
io_major_device number_type major_number; /*READ ONLY*/

Summary
This routine configures a single device of the class supported by this driver.
Parameters

device_name_ptr — A pointer to the name of the device to be configured.
The name is in the form of a null-terminated string. The device name is the
name specified in the system file.

major_number — The major device number on which the device is to be
configured. This is the major number specified in the master file.

Description

This routine performs operations that make a physical device (of the class
supported by the driver) accessible to the system. The dev_xxx_configure
routine can be called anytime. If your device has system and master file
entries, it will be called by system initialization code during system boot. It is
called once for each system file entry in the system.

The dev_xxx_configure routine receives a device_name_ptr variable that
points to a device name. The name string is terminated by a null character
and has the following form:

device_mnemonic [@device_code] ([parameters])

Because each dev_xxx_configure is called for all system file entries, your
dev_xxx_configure should verify that the name string for the current call
contains its device’s name. If the name is not for one of its devices,
dev_xxx_configure should exit with a return value of
IO_ENXIO_DEVICE_NOT_RECOGNIZED.

dev_xxx_configure must initialize the device and must make the device
accessible to the kernel. Device initialization is unique to the device and to
the driver. The dev_xxx_configure routine should perform the following
functions:

093-701053 Licensed material—property of Data General Corporation 413

User-Supplied Device Driver Routines

4-14

o Allocate a device information structure. The driver uses the device
information structure to hold information relating to a specific device
(status, permissions, and so on).

While the driver can define most of this structure’s internal specifics,
the structure must contain a pointer to the driver’s interrupt service
routine (if it has one) in the first field.

In addition, if you want to use the kernel’s routines for managing a
select list (see Chapter 8), you should allocate a sclect list header in
the device information structure. The select list header type is
defined in i_io.h. You will also have to initialize this list by calling
the kernel’s io_init_select routine.

e If the device handles interrupts from the host, you must register the
device information structure using the io_register_device_info
routine. Registering the device information links the hardware device
code with the interrupt service routine given in the device
information structure.

® Define a device handle and device number by calling
io_allocate_device_number. io_allocate_device_number allocates a
minor number for the device specified and links the device number
and device handle in the kernel’s internal tables. Later you can
retrieve this information by using kernel routines for accessing device
information (see Chapter 8). The kernel will pass the device number
to your driver’s dev_xxx_open routine, but thereafter it will identify a
device to all driver routines by passing the device handle.

If the device has a controller with accessible units, you should
establish a device number and device handle for all units that users
will access.

e Create device special files. As with device numbers, you should
create special files for all the units that users will access. We
recommend that you create the special files after registering your
device information structure, because it is possible for the register
operation to fail. Chapter 8 describes kernel routines that create
device special files.

If the device has a controller, the driver usually performs any initialization
needed to bring the controller on-line here so that it can initialize the
controller’s units at open time.

If a failure occurs in any phase of the operation, dev_xxx_configure must
return the system to the state it was in before the dev_xxx_configure routine
was called. Data structures must be deallocated and the device interrupt table
slot freed.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_configure routine should be written such that it can be called
anytime during the life of the system.

Return Values
OK — The device was successfully configured.

IO_ENXIO_DEVICE_NOT_RECOGNIZED — device_name_ptr does not
specify a device in the class supported by this driver.

IO_ENXIO_DEVICE_NOT_SUPPORTED — device_name_pftr specifies a
device in the device class supported by this driver, but the particular model is

not supported.

IO_EIO_PHYSICAL_UNIT_FAILURE — A request issued to the device
controller failed with an error status.

I0_EIO_DEVICE_TIMED_OUT — The controller did not respond to a
request within a reasonable length of time.

IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED — A device is already
registered at the location specified by device_name_ptr.

093-701053 Licensed material—property of Data General Corporation 4-15

User-Supplied Device Driver Routines

dev_xxx_open

Syntax

status_type dev_xxx open (device_number, charnnel_flags,
device_handle_ptr)

io_device_number_ type device_ number; /*READ ONLY*/
io_channel_flags_type channel_flags; /*READ ONLY*/
io_device_handle ptr_type device_handle_ptr; /*WRITE ONLY*/

Summary

This routine prepares a specified device for future I/O operations. It also
adds the device to the set of devices on which I/O may be performed by this
driver.

Parameters

device_number — The major and minor device numbers of the device being
opened.

channel_flags — The set of channel flags specifying whether the device will be
open for reads, writes, or both. The channel flags also indicate whether the
open is for block or character special operation. See i_io.h for a listing of the
channel flags.

device_handle_ptr — A pointer to the location where the device handle (that
results from the open) is to be placed. If the routine does not return an OK
status, this value is undefined. The driver need not check the validity of this
pointer.

Description

4-16

The dev_xxx_open routine prepares the device for future I/O operations. The
kernel calls it whenever one of the driver’s devices is opened by a user or by
the kernel. The kernel will not call dev_xxx_open until both dev_xxx_init and
dev_xxx_configure have completed.

The DG/UX system allows multiple opens on a device, and dev_xxx_open
should manage this feature as appropriate to its device. dev._xxx_open
controls the number of outstanding opens. For example, dev_xxx_open may
impose restrictions such as requiring an exclusive open of a particular minor
device. To implement this, dev_xxx_open might return an error status if the
minor device has already been opened but not closed. Multiple
dev_xxx_opens may be in progress simultaneously on the same or different
minor device numbers.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_open routine must also control the type of open requested. The
kernel passes dev_xxx_open a set of channel flags which specify the intents
given in the higher level open call (for example, read, write or both).
dev_xxx_open may reject the open because of conflicts between the current
open intent and open intents that have already taken place or because of
conflicts with the device’s capabilities. For example, a write intent on a read-
only device must fail.

dev_xxx_open typically performs other operations to prepare the device and
ensure that it is ready for I/O. For example, it may allocate storage for and
initialize databases to hold information describing the I/O operation on the
specific unit. If the device is a real hardware device, dev_xxx_open may
query the device to verify that it is online and ready for the type of I/O
specified in the open intent. For example, it may check that there is a write
ring in the tape if write intent is specified.

dev_xxx_open must establish the device handle that the kernel will use as a
parameter in all future driver operations. It can retrieve the device handle
supplied by dev_xxx_configure by calling io_map_device_number with the
device number. If dev_xxx_open returns an OK, it must return a pointer to a
device handle in device_handle_ptr. If it returns a status other than OK, the
kernel presumes that the open failed and that the device handle will not be
used. If the open fails, the kernel will disregard the returned
device_handle_pftr argument.

Return Values

OK — The dev_xxx_open routine was successful in preparing the device for
further operations.

IO_ENXIO_UNIT_NOT_READY — The unit is not ready or online.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device
number cannot be mapped to a configured device.

IO_ENXIO_OPEN_INTENT_CONFLICTS The unit is already open and can
only be opened exclusively.

IO_ENXIO_NO_WRITE_RING — The tape was opened with write intent, but
the tape did not have a write ring (only applicable to tape devices).

I0_ENXIO_TAPE_DENSITY_NOT_SUPPORTED — The requested density is
not supported by the tape controller (only applicable to tape devices).

IO_ENXIO_CANNOT_CHANGE_TAPE_DENSITY — The requested density

is not compatible with the current density setting of the unit, and the tape is
not at the beginning of the tape (BOT) (only applicable to tape devices).

093-701053 Licensed material—property of Data General Corporation 4-17

User-Supplied Device Driver Routines

dev_xxx_close

Syntax

status_type dev_xxx_close (device_handle, channel_ flags)

io_device_handle_type device_handle; /*READ ONLY*/
io_channel_flags_type channel_flags; ,/*READ ONLY*/
Summary
This routine removes a specified device from the set of devices on which this
driver may perform I/O.
Parameters

device_handle — The device handle of the device to be closed. This handle
will be the device handle that was returned by the driver’s dev_xxx_open
routine. The driver does not need to validate this argument.

channel_flags — Flags indicating how the device was opened (read, write, or
read/write). The driver does not need to validate this argument.

Description

The dev_xxx_close routine performs operations that remove the specified
device from the set of devices on which this driver may perform I/O. It is
invoked in one-to-one correspondence to successful dev_xx_opens and
always with the same intents supplied to the open and with the device handle
returned by the open. However, if a device is opened multiple times, it will
not necessarily be closed in the same or reverse order of the opens.

Typically, dev_xxx_close performs any necessary eXit operations such as
flushing any buffers that may be present and releasing previously allocated
storage. Some devices will also have special exit requirements. For example,
a tape close would probably rewind the tape. Most drivers also use
dev_xxx_close in coordination with dev_xxx_open to manage the number of
outstanding opens.

4-18 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

Return Values
OK — The close was successful.
I0_STATUS_ERROR_ON_EARLIER_REQUEST — An error occurred on

the last asynchronous request made to the device. Since the last request was
asynchronous, this is the first opportunity to notify the interested process.

093-701053 Licensed material—property of Data General Corporation 4-19

User-Supplied Device Driver Routines

dev_xxx_service_interrupt

Syntax
void dev_xxx_service_interrupt (device_info_ptr)
dev_xxx_device_info_ptr_type device_info_ptr;/*READ ONLY*/
Summary

This routine handles interrupts from devices under the control of this driver.
It is called by the system interrupt handler.

Parameters

device_info_ptr — A pointer to the device information structure for the
interrupting device. A pointer to the dev_xxx_service_interrupt routine is the
first field in this structure. The driver may assume that this pointer is valid.

Description

The dev_xxx_service_interrupt routine performs any steps needed to service

the device at interrupt level. It operates in a restricted environment:

interrupts are disabled; no page faults may be taken; and the process must not
wait. Because of these restrictions, dev_xxx_service_interrupt should defer as
much device service as possible to a base-level process. The driver designer
should determine the proper balance between executing code at interrupt level
and at base level. |

Because dev_xxx_service_interrupt must avoid calling any routine that may |
pend, it must forgo virtually all the kernel-supplied utilities. To signal or send |
information back to other processes, the driver should use the Driver or |
Generic Daemon. You send a message to the appropriate caemon by queuing |
a message with a completion routine to the daemon’s queue. (Chapter 8 |
describes the io_queue_message_to_driver_demon and |
io_queue_message_to_generic_demon routines that you use to queue _ |
messages.) The daemon will dequeue the message and execute the completion |
routine in the daemon’s context rather than the service routine’s limited |
context.

Typically, dev_xxx_service_interrupt might do any of the following: read the
device’s status registers; advance an eventcounter for synchronous events;
send a message to the Driver or Generic Daemon for an asynchronous event;
or do a select satisfy for a select operation. If the interrupt is not cleared
automatically by reading the status register, dev_xxx_service_interrupt must
clear the interrupt before exiting.

4-20 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The pointer to the device information structure allows
dev_xxx_service_interrupt to access the device database associated with the

I/O request.

NOTE: If the device does not generate hardware interrupts, you do not need
to create this routine.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 421

User-Supplied Device Driver Routines

dev_xxx_read_write

Syntax

status_type dev_xxx_read_write (request info_ptr)

io_request_info_ptr_type request_info_ptr; /*READ ONLY*/

Summary

This routine performs a synchronous read or write of the specified device.

Parameters

request_info_ptr — A pointer to a request information structure. The
structure may be assumed to have a valid operation code, device handle, and
memory address as specified in the buffer vector. The driver must validate
the device offset and transfer count as being appropriate for the device.

The transfer count specifies the maximum number of bytes that should be
transferred. The driver determines how much data to actually transfer before
returning; in the case of an error, the amount may be less than the transfer
count. However, under no circumstances may the amount of data
transferred exceed the specified maximum.

The offset specified is a file pointer maintained by the kernel and indicates
where the read/write operation should begin. For example, on a disk, the
offset might specify where, after the start of the sector, the desired data is
located. The driver may ignore this parameter if it is not applicable to its
device — for example, if the device is character special.

The request information structure may exist in the caller’s per-process address
space. Therefore it can be accessed only when the requesting process is
running and not from the interrupt level."

Description

4-22

The dev_xxx_read_write routine performs a synchronous read or write of the
specified device, transferring data between the device and the specified
buffer. It is invoked whenever a user or kernel read or write is performed on
a character special device supported by this driver. This routine is usually
used for character special I/O, but it may also be used for block special I/O.

Multiple reads/writes of the same or different minor devices may be in
progress simultaneously. Therefore the driver should take steps to serialize
requests as needed. This usually means using locks on important data
structures.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_read_write routine should also handle any special transfer
constraints for its device. For example, a disk device might allow only those
transfer counts that are multiples of 512 bytes. dev_xxx_read_write should be
prepared to handle a self-identification check using the self-id field in the
request information structure. The kernel may set a flag requesting that the
driver validate that this self-id matches the device’s self-id as stored in data
blocks read from that device. You can use the kernel’s fs_check_self_id
routine to retrieve the self-id stored in the data (see Chapter 8).

We say that the dev_xxx_read_write routine is synchronous because when it
completes, any data that is going to be transferred to or from the buffer must
already be transferred. Because it must wait for the I/O to complete,
dev_xxx_read_write will need to set up await mechanisms such as a timeout, a
signal, or an I/O completion event. Chapter 6 describes kernel routines that
the driver may use to implement these await mechanisms.

The kernel checks access to the buffer before dev_xxx_read_write is called so
that the driver is ensured write access to the buffer for read operations and
read access to the buffer for write operations. The buffer may exist in the
caller’s per-process address space and therefore may be accessed only when
the requesting process is running.

The specified buffer is not necessarily wired in memory, and many devices
must have wired buffers. For such devices, the driver must explicitly wire the
buffer and unwire it before returning.

After the read/write, the driver should update the buffer vector pointers to
reflect the actual data transferred (which may be less than the transfer count
in cases of error). All references and updates to data contained in the
io_buffer_vector structure must be done through kernel routines. Chapter 7
describes the kernel routines used to manipulate buffer vectors.

Return Values
The dev_xxx_read_write routine must return a status indicating the success or
failure of the transfer. The definition of success or failure is determined by
the driver and need not be related to the number of bytes actually transferred.
OK — The dev_xxx_read_write routine was successful.

I0_EINVAL_ILLEGAL_REQUEST_SIZE — The requested count is not valid
for the device type.

IO_EINVAL_ILLEGAL_BUFFER_ADDRESS — The buffer was not aligned
as required by the device.

IO_EIO_DEVICE_TIMED_OUT — The device controller did not respond to
a request in a reasonable length of time.

093-701053 Licensed material—property of Data General Corporation 4-23

User-Supplied Device Driver Routines

I0_EIO_HARD_IO_ERROR — An unrecoverable I/O error occurred,
resulting from a media failure.

I0_EIO_PHYSICAL_UNIT_FAILURE — An uncorrectable error occurred
that presumably affects I/O operations to the entire physical unit.

I0_ENXIO_ILLEGAL_DEVICE_ADDRESS — The location specification for
reading/writing is invalid for the device.

IO_EINTR_INTERRUPTED_BY_SIGNAL — A signal was received while
waiting for the I/O to complete.

424 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_select

Syntax

void dev_xxx_select (device_handle, select_mode,
ec_ptr, intent_ptr)

io_device_handle_type device_handle; /*READ ONLY*/

boolean_type select_mode; /*READ ONLY*/

vp_ec_ptr_ type ec_ptr; /*READ ONLY*/

io_select_intent ptr type intent_ptr; /*READ/WRITE*/
Summary

This routine supplies information about whether the specified device is ready
to perform an I/O operation.

Parameters

device_handle — The device handle of the device that is the target of the
select operation. The device handle argument need not be validated by the
driver.

select_mode — If select_mode is TRUE, this is the start of a select
operation. If select_mode is FALSE, this is the end of a select operation.

ec_ptr — ec_ptr specifies the eventcounter to be advanced by the driver when
the particular type of select is satisfied. The driver does not need to validate
this pointer.

intent_ptr — The intent_ptr parameter points to an intent variable consisting
of a set of intent flags. The kernel calls the driver with the intent flags
showing whether the device is being selected for read, write, or exceptional
conditions or any combination of these. When the driver returns, it sets the
intent flags to show which input conditions are currently TRUE. The driver
does not need to validate this argument. The possible intent flags arc
described in the "Constants and Data Structures” section of this chapter.

Description

The dev_xxx_select routine is called in response to user-level select system
calls. It operates as follows:

® If the user is selecting a device (select_mode argument is TRUE),
and the device is ready for at least one of the incoming intents, the
driver should set the intent flags to match the device’s current state
and return. It should set the flags to FALSE for all intents that are

093-701053 Licensed material—property of Data General Corporation 425

User-Supplied Device Driver Routines

not currently ready. It should set the intent flag to TRUE if that
flag was TRUE on input and the intent is currently ready.

If none of the conditions the caller was interested in are TRUE, the
driver should add the eventcounter pointed to by ec_ptr to a list of
events maintained by the driver. Later, when one of the specified
intents becomes TRUE, the driver must advance this eventcounter.
Usually, drivers have the dev_xxx_service_interrupt routine complete
select processing via a message to the Driver or Generic Daemon.

e If the user is unselecting the device (the select_mode argument is
FALSE), the previously saved ec_ptr is discarded and any intents
that have become TRUE are reported.

Multiple selects of the same or different minor devices may be in progress
simultaneously. The dev_xxx_select routine must be able to store multiple
eventcounter names for each of the read, write, and exception selects and
advance them all when the intent becomes TRUE. Kernel routines for
managing select lists (adding and removing entries and satisfying selects) are
described in Chapter 8. The select list structure should have been allocated
and initialized earlier, usually in the dev_xxx_configure routine.

Return Values

None.

Remarks

4-26

For many devices, such as disks and tapes, dev_xxx_select will always return
TRUE because the I/O operations are so quick. dev_xxx_select is more
meaningful on character devices that depend upon external intervention. For
example, a terminal might select FALSE for writing when a user’s terminal
output is being held with Ctrl-S. Similarly, a terminal would select FALSE
for reading when the driver is waiting for the user to type something.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_ioctl

Syntax

status_type dev_xxx ioctl (device_handle, command,
parameter, return value_ptr)

io_device_handle_type device_handle; /*READ ONLY*/

bit32e_type command; /*READ ONLY*/

bit32e_type parameter; /*READ/WRITE*/

int32e_ptr_ type return_value_ptr;/*WRITE ONLY*/
Summary

This routine performs a control operation on the specified device.

Parameters

device_handle — The device handle of the device that is the target of the I/O

control operation. The device handle need not be validated by the driver.

command — A command to the device. Because commands are specific to

the driver, they must be validated by the driver.

parameter — An argument to the command. The interpretation of the

parameter is specific to the driver and the command. The parameter may be

used to transfer information between the caller and the device, in either

direction. In particular, it may be a pointer to a buffer supplied by the caller.
Because the interpretation is specific to the driver, the driver must validate

this argument.

return_value_ptr — A pointer to a return value that this routine can define

and pass the user. This additional return value increases the flexibility of

your ioctl operation by providing the user with variations on the generic return

value specified in the "Return Values” section.
Description

The dev_xxx_joctl routine performs a control operation on the specified
device based on the values of command and parameter. It is invoked in
response to a user or kernel ioctl call for one of the driver’s devices.
However, not all user ioctl calls go to dev_xxx_ioctl. Some ioctl calls are

actually file descriptor operations. These are intercepted and handled by the

kernel. The FIONCLEX operation, for example, would not reach
dev_xxx_ioctl. Multiple ioctl operations on the same or different minor
devices may be in progress simultaneously.

093-701053 Licensed material—property of Data General Corporation

4-27

User-Supplied Device Driver Routines

The kernel calls dev_xxx_ijoctl with the command and parameter arguments
given in the higher level ioctl call. The kernel will not interpret these
arguments. Thus, you can define your driver’s command arid parameter
arguments as you wish.

Because ioctl operations are so specific to each driver, the kernel validates
only the device handle argument. The driver must validate the command and
parameter arguments. It should also validate any buffer pointers for proper
access. Chapter 7 describes kernel routines you can use to validate pointers.

Return Values

The dev_xxx_ioctl routine should return a status indicating the success or
failure of the control operation. The definition of success or failure is
determined by the driver.

OK — The dev_xxx_ioctl routine was successful. No errors should be
indicated to the caller.

IO_EINVAL_COMMAND_NOT_SUPPORTED_BY_DEVICE — The
command was not supported by the driver.

IO_EFAULT_BAD_ADDRESS_IN_IOCTL — The parameter argument
specified an address that is not a valid part of the caller’s address space.

4-28 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_start_io

Syntax

status_type dev_xxx_start_io (op_record ptr)

io_operation_record ptr_type op_record_ptr; /*READ ONLY*/

Summary

This routine starts an asynchronous I/O operation on the specified device.

Parameters

op_record_ptr — A pointer to the operation record for the asynchronous
request. The operation record contains the following fields:

The device handle that is the target of the operation.
The operation to be performed; for example, read, write, or both.

The offset from which the operation is to commence. The offset is a
file pointer maintained by the kernel that indicates where the
read/write operation should begin. For example, on a disk the offset
might indicate where to start reading after the start of the sector.
The interpretation of the offset is driver-dependent.

The address of the kernel’s I/O completion routine that is to be
called by the driver’s complete_io routine when the operation
completes. The Kernel I/O completion routine follows the interface
shown in the "Kernel I/O Completion Routine Interface” section
below. Note that you pass the op_record and a completion status
back as parameters to the Kernel I/O Completion routine.

An io_buffer_vector structure that holds the transfer size and the
address of the memory buffers.

The operation record must reside in global kernel memory, so it may be
accessed by any process — not just the requestor. The driver need not
validate most of the fields of the operation record. The exceptions are the
device offset and transfer size fields. The driver may need to check these
fields to ensure that they are meaningful for the device.

Description

The dev_xxx_start_io routine is invoked only on block special devices.
Multiple dev_xxx_start_io routines on the same or different minor devices
may be in progress simultaneously.

093-701053

Licensed material—property of Data General Corporation 4-29

User-Supplied Device Driver Routines

4-30

When a user initiates a read or write operation on a block special device, the
kernel will invoke dev_xxx_start_jo to process the request asynchronously.
dev_xxx_start_io should start the operation and then exit, leaving the
completion to be handled by another routine. If dev_xxx_start_jo cannot
initiate the operation (for example, if the device is busy), it should queue the
request (usually with the Driver or Generic Daemon) to be handled later and
exit. This routine should not pend.

The dev_xxx_start_io routine is asynchronous in that when it returns, the data
transfer is not necessarily complete. The driver must therefore decide how to
finish processing once the operation is complete. The driver is relatively free
to handle completion as necessary for its own device.

The only thing the driver must do for completion is to call the kernel
completion routine supplied in the operation record. The kernel waits until
its I/O completion routine is called before expecting new data in the buffer,
modifying data in a buffer that was written, or modifying the operation record
that was passed in as an argument. Until the kernel’s I/O completion routine
is called, the kernel does not consider the operation complete.

The driver decides when to call the kernel’s I/O completion routine.
Typically, when the operation completes, the dev_xxx_service_interrupt
routine queues a message to the Driver or Generic Daemon. The message
contains a pointer to a routine for the daemon to execute. This routine might
be either the kernel’s I/O completion routine or a driver-supplied complete_io
routine that in turn calls the kernel’s I/O completion routine. In Chapter 8,
we describe the kernel routines for interacting with the Driver or Generic
Daemon.

The upcoming section called "Kernel I/O Completion Routine Interface”
describes the interface used by the kernel’s I/O completion routine. We do
not give an interface description for a driver-supplied compiete_io routine.
Such a routine is completely optional. If you want to implement such a
routine, you do not need to follow any kernel-specified interface.

The following implementation notes are relevant regardless of how completion
is implemented:

e The driver must transfer the exact amount of data specified in the
request unless there is an I/O error (in which case less data is
acceptable). Under no circumstances may the amount of data
transferred exceed the amount specified.

e It is possible that the kernel’s I/O completion routine may be called
before dev_xxx_start_io finishes. Therefore, the Driver or Generic
Daemon may actually call the kernel’s I/O completion routine before
dev_xxx_start_io returns. Thus, the kernel’s I/O completion routine
must not be called by the process that has the dev._xxx_start_io in
progress.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

e The buffer to receive the data is wired in memory. The driver may
perform logical-to-physical address translations without having to
explicitly wire the buffer. Further, the buffer must reside in global
kernel memory, so any process may access the buffer or perform the
logical-to-physical translation.

Return Values

OK — This routine always returns OK. Errors that occur on the request are
reported via the completion routine.

Kernel I/0 Completion Routine Interface
Syntax
void kernel_complete_io (op_record ptr, status)

io_operation_record_ptr_type op_record_ptr; /*READ ONLY*/
status_type status; /*READ ONLY*/

Summary

The kernel supplies a routine that adheres to this interface to perform work
necessary when an asynchronous I/O operation completes.

Parameters

op_record_ptr — A pointer to the operation record for the request that has
completed. The operation record contains fields that indicate the device
handle that is the target of the operation, the operation to be performed, the
offset on the device from which the operation is to commence, the address
of the routine that is to be called when the operation completes, an I/O
buffer vector structure that contains the size of the transfer, and the address
of the main memory buffer.

status — The completion status of the request.
Description

The kernel’s I/O completion routine performs the cleanup work necessary
when an asynchronous I/O completes. The driver calls it to indicate that the

operation is complete.

The status argument indicates the result of the asynchronous I/O operation.

093-701053 Licensed material—property of Data General Corporation 4-31

User-Supplied Device Driver Routines

Return Values

The kernel’s I/O completion routine must always succeed, therefore it does
not have a return value.

4-32 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_open_dump

Syntax
status_type dev_xxx open_dump (device_name)
char_ptr_type device_name; /*READ ONLY*/
Summary

This routine prepares one of the driver’s devices for use as the destination of
a system dump.

Parameters

device_name — A pointer to the null-terminated string identifying the device
to be opened as a dump device.

Description

A master file entry specifies the default device for a system dump, but during
the dump procedure the user is allowed to specify an alternative dump
destination. If your device is selected as the dump destination, the system
will call your dev_xxx_open_dump routine if the system panics.

The dev_xxx_open_dump routine initializes the device as a dump destination.
To do this, it must reinitialize the device’s controller (and/or units). Because
the system is in an undefined state as a result of the panic, the standard
kernel facilities will not be available for the initialization procedure. In
particular, this means that dev_xxx_open_dump must run in physical memory
— dynamically allocated memory cannot be accessed. dev._xxx_open_dump
should statically allocate its data structures in dev_xxx_global_data.c.

The dev_xxx_open_dump routine should also use busy waits when interacting
with the controller, because the standard interrupt mechanism will not be
available.

Because the dump procedure is a single-threaded process, kernel locking
mechanisms are not required and should not be used.

The dev_xxx_open_dump routine receives a device name specified by
device_name_ptr. It should verify that the device specified is of the driver’s
type. The device name is of the following form:

device_mnemonic [@device_code] ([parameters])

Finally, as with any open routine, dev_xxx_open_dump should perform any

093-701053 Licensed material—property of Data General Corporation 4-33

User-Supplied Device Driver Routines

operations necessary to ensure that the device is on-line and ready for a write
operation. For example, if the device is a tape, the tape should be on-line
and write-enabled.

NOTE: This routine must not panic, because it is invoked as part of the
panic sequence.

Return Values

434

OK — The open completed successfully.

I0_STATUS_DUMP_NOT_SUPPORTED — The device identified by the
device_name string is not supported as a dump device by this driver. Either
the device mnemonic does not match the mnemonic associated with your
driver; the device name is in an unrecognizable format; or the device specified
by device_name_ptr is supported by the driver but the device type is not a
valid dump destination device.

IO_EIO_HARD_IO_ERROR — A request to the dump destination device has
resulted in an error condition.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_write_dump

Syntax
status_type dev_xxx_write dump (buffer_ ptr, buffer_size)
pointer_to_any type buffer_ ptr; /*READ ONLY*/
uint32_type buffer_size; /*READ ONLY*/

Summary

This routine writes system dump data to the dump destination device
previously opened by dev_xxx_open_dump.

Parameters
buffer_ptr — A pointer to the buffer containing the data to be written.
buffer_size — The size of the buffer, in bytes.

Description

During a dump, the system’s panic code calls dev_xxx_write_dump to write a

single physical record of size buffer_size. The panic code will call the

dev_xxx_write_dump routine as many times as necessary to transfer all of the
dump data. You will not need to wire buffer memory or verify parameters for

this routine.

If the dump destination must use multiple volumes to hold the entire system
dump, the dev_xxx_write_dump routine should close the completed volume,

request that the operator mount a new volume, and open the new volume.

NOTE: Because the normal kernel facilities are not available, this routine

should busy-wait for the write operations to complete. The normal

system interrupt handler is not available.

Also, this routine must not panic because it is invoked as part of the

panic sequence.

093-701053 Licensed material—property of Data General Corporation

435

User-Supplied Device Driver Routines

Return Values
OK — The write operation completed normally.

IO_STATUS_TAKE_CHECKPOINT — The write operation completed
normally but was written as the first record on a volume. The system dump
code should checkpoint its current state.

IO_EIO_HARD_IO_ERROR — An unrecoverable I/O error occurred. The
system dump code should restore its state from the last checkpoint and begin
writing again from there. This error does not occur on the first record of the

volume.

4-36 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_read_dump

Syntax

status_type dev_xxx read_dump (buffer_ptr, buffer_size)

pointer_to_any_ type buffer_ ptr; /* WRITE ONLY =/
uint32_type buffer_size; /* READ ONLY */
Summary

This routine handles reading a system dump.

Parameters
buffer_ptr — A pointer to the buffer to which data is to be read.
buffer_size — The size, in bytes, of the buffer.

Description

The DG/UX system does not support this operation at this time. You should
use the appropriate io_nodevice routine stub for this routine.

Return Value
None.
Exceptions
None.
Abort Conditions
Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_READ_DUMP — An attempt was made to read
dump information from a non-existent device.

093-701053 Licensed material—property of Data General Corporation 4-37

User-Supplied Device Driver Routines

dev_xxx_close_dump

Syntax
status_type dev_xxx_close_dump ()
Summary

The routine closes the dump device previously opened by
dev_xxx_open_dump.

Parameters
None.

Description
The dev_xxx_close_dump routine is called by the system dump code when all
of the data has been written to the dump destination. dev_xxx_close_dump
should perform all the standard exit operations (for example, write End-of-file

or rewind the tape). In particular, it should close the completed volume and
inform the operator that the dump has completed.

Return Values
OK — The volume was successfully closed.

IO_EIO_HARD_IO_ERROR — An unrecoverable error occurred in closing

the volume. The operator is prompted to mount another volume, and the
system dump utility should resume operation at its last checkpoint

4-38 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_powerfail

Syntax
status_type dev_xxx_powerfail ()
Summary

This routine restarts all devices managed by this driver when power has been
restored after a power failure.

Parameters
None.

Description [

The DG/UX system does not support this operation at this time. You should |
use the appropriate io_nodevice stub for this routine.

Retnrn Values

OK — Return this value in all cases.

093-701053 Licensed material—property of Data General Corporation 4-39

User-Supplied Device Driver Routines

dev_xxx_deconfigure
Syntax
status_type dev_xxx_deconfigure (device_name_ ptr)
char_ptr type device_;name _ptr; /*READ ONLY*/
Summary
This routine deconfigures the specified device if it is in the class supported by
this driver.
Parameters

device_name_ptr — A pointer to the null-terminated string specifying the
device to be deconfigured.

Description

The dev_xxx_deconfigure routine does the opposite of the configure routine
(see dev_xxx_configure). It releases all system resources obtained to
configure the device. After dev_xxx_deconfigure has completed, the system
should be in the state it was in before the device configure routine was
executed. dev_xxx_deconfigure performs the following functions:

e Deallocates a device information structure

e Frees the minor number

® Deregisters device information

@ Releases all memory
NOTE: Device special files created by the configure operation do not have to

be removed.

dev_xxx_deconfigure receives a pointer to a device specification of the
following form:

device_mnemonic [@device_code) ([parameters])

The pointer is terminated by a null character.

440 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

Return Values

OK — The device was successfully deconfigured.

IO_ENXIO_DEVICE_NOT_RECOGNIZED — device_name_ptr does not
specify a device in the class supported by this driver. This error is returned
when the device mnemonic does not match the mnemonic associated with the

driver.

IO_EBUSY_DEVICE_HAS_OPEN_UNITS — The specified device currently
has one or more units that are open.

093-701053 Licensed material—property of Data General Corporation 441

User-Supplied Device Driver Routines

dev_xxx_device_to_name

Syntax

status_type dev_xxx_device_to_name (device_number,
name_ptr,size)

io_device number_type device number; /*READ ONLY*/

char_ptr type name_ptr; /*WRITE ONLY*/
uint32_type size; /*READ ONLY*/
Summary

This routine returns the device name associated with the specified device
number. The name is returned as a null-terminated string.

Parameters

device_number — The device number for the device whose name is desired.
The device number consists of a2 major and minor device number.

name_ptr — A pointer to where the device name is to be written. The name
will be in the form of a null-terminated string.

size — The maximum number of bytes, including the terminating null, that is
to be written to name_ptr.

Description
The dev_xxx_device_to_name routine is called by various file system utilities
to translate a device number into a device name consisting of a device code
and unit number. It returns the name in a string of the following form:

device_mnemonic [@device_code) ([parameters])

To simplify its operation, dev_xxx_device_to_name may call the kernel’s
jo_map_device_number to retrieve the device code and unit number for the
given device number.

Return Values

OK — The translation was performed successfully.

I0_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device
number is not configured.

4-42 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_name_to_device

Syntax

status_type dev_xxx_ name_to_device (device_name_ ptr,number_ ptr)

char_ptr_type device_name_ptr; /*READ ONLY*/
io_device_number_ptr_type number_ ptr; /*WRITE ONLY?*/
Summary

This routine returns the device number for the specified device name.

Parameters

device_name_ptr — A pointer to the device name that is to be translated.
The name is in the form of a null-terminated string.

number_ptr — A pointer to where the corresponding device number is to be
written. The device number consists of a major and minor device number.

Description

This routine is called by various file system atilities to translate a device name
into the major and minor device numbers that are required to access the
device. The device name specified by device_name_ptr is of the following
form:

device_mnemonic [@device_code] ([parameters])
To simplify its processing, dev_xxx_name_to_device can call the kernel’s
io_get_device_info, which returns a pointer to the device information

structure that will contain the device’s device number.

The driver should verify that the device mnemonic given in the name matches
its own mnemonic (xxx).

093-701053 Licensed material—property of Data General Corporation 443

User-Supplied Device Driver Routines

Return Values
OK — The device name was successfully translated.
I0_ENXIO_DEVICE_NOT_RECOGNIZED — The specified device is not

supported by this driver. This error is returned when the device mnemonic
does not match the mnemonic associated with the driver.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device is
supported by this driver but is not currently configured in the system.

4-44 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_maddmap

Syntax
status_type dev_xxx maddmap @)
Summary
This routine increments reference counts to memory mapped sections.
Parameters
None.
Description

The DG/UX system does not support this operation at this time. You should
use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The maddmap operation is not
supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 445

User-Supplied Device Driver Routines

dev_xxx_mmap

Syntax

status_type dev_xxx_mmap @)
Summary

This routine handles the mmap system call.
Parameter

None.
Description

The DG/UX system does not support this operation at this time. You should
use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The mmap operation is not
supported for this device.

Exceptions

None.

446 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_munmap

Syntax

status_type dev_xxx_munmap ()
Summary

This routine handles the munmap system call.
Parameters

None.
Description

The DG/UX system does not support this operation at this time. You should
use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_EINVAL_MUNMAP_NOT_SUPPORTED — The munmap operation is
not supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 447

User-Supplied Adapter Driver Routines

User-Supplied Adapter Driver Routines

This section describes the interfaces for routines you must write to build an SCSI
adapter driver. Chapter 5 describes the SCSI adapter routines that come with the
DG/UX system. You only need to write adapter routines if your application requires
changes to these routines or if you are going to add a different type of adapter board
to your system. As with user-supplied device driver routines, replace xxx with the
mnemonic for your SCSI adapter.

Constants and Data Structures

The following constants and data structures are used by SCSI device and adapter
drivers. They are found in the dev_scsi_adapter_def.h.

dev_scsi_adapter_routines_vector_type

typedef struct
{

io_driver_routines_vector_ type driver_routines;
dev_scsi_interface_routines_vector_type scsi_routines;
} dev_scsi_adapter_routines_vector_type ;
Description
This structure describes the adapter driver routines vector. Note that it contains both

the standard device driver routines vector and the additional adapter-driver-specific
routines vector.

dev_scsi_interface_routines_vector_type

typedef struct

{

uintl6_type version;

bitlé6_type flags:;

status_type (*register_requester)():
status_type (*set_unit_options) ()

void (*deregister_requester)();
status_type (*issue_command) ()

status_type (*issue_async_command)();
status_type (*get_device_info)();
status_type (*issue_command physical_mode) ()

} dev_scsi_interface routines_vector_type

448 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

Description

This type describes the adapter-driver-specific routines vector. This vector contains a
pointer to each adapter driver routine that can be called by the adapter manager. The
version field is present to allow changes to this structure while retaining compatibility
with older user written device drivers. The structure as currently defined is version 1.
The flags field is currently unused.

dev_scsi_adapter_unit_spec_type

typedef struct

{
uint8_type secsi_id;
uint8_type unit;
} dev_scsi_adapter_unit_spec_type ;
Description

This structure is used to specify a particular instance of an SCSI device on an SCSI
adapter.

The fields in this structure are as follows:
scsi_id — The SCSI ID to which the device responds on the SCSI bus.

unit — The unit number of the device.

dev_adapter_request_block_type

typedef struct

{ .
misc_queue_links_type links;

uintl6_type type;

bitl6e_type request_flags;
uint32_type reserved;
io_device_handle_type adapter_handle;
dev_scsi_cmd_blk_type scsi_cmd_blk;
dev_scsi_adapter_unit_spec_type unit_spec;
io_buffer_ vector_type buffer vector;
dev_scsi_request_sense_buffer type sense_buffer;
boolean_type sync_io;
io_operation_record_ptr_type op_record_ptr;
io_completion_routine_ ptr_ type complete_io_routine;
misc_clock_value_type request_start_time;
misc_clock_value_type total_request_busy_ time;

093-701053 Licensed material—property of Data General Corporation 449

User-Supplied Adapter Driver Routines

} dev_adapter_request_block_type;
Description

This structure is a generic parameter block that SCSI device drivers use to specify a
request to the supporting adapter driver.

The fields in this structure are as follows:

links — The queue manager uses this field to maintain the adapter request block
on the various queues on which it may be queued during processing.

type — This field defines the type of the adapter request block and hence
provides for multiple adapter request blocks. This provision has been made to
allow for new types of adapter request blocks that may be needed as new types of
adapters are added. This field must be defined. Check the
DEV_SCSI_ARB_TYPE definitions in dev_scsi_adapter_def.h for a current
listing of supported types.

request_flags — Flags field used to qualify the request. See the
DEV_SCSI_REQUEST_FLAGS definitions below for more information.

reserved — This field is reserved for future use by Data General and must always
be set to zero.

adapter_handle — The adapter driver uses this handle to map each instance of a
device to the data structures used to control it. This handle is used only by the
adapter driver. '

scsi_cmd_blk — The command block which specifies the request to be made to
the device. The SCSI command block is not interpreted by the adapter manager.

unit_spec — The device’s SCSI ID and unit number.

buffer_vector — A buffer vector describing the main memory area that is to be
involved in the I/O operation. Note that the SCSI interface manager assumes the
buffer vector contains only a single buffer descriptor.

sync_io — This is a flag field. When set, this field indicates that the request is to
be performed synchronously. If it is clear (false), the operation is performed
asynchronously.

op_record_ptr — When the operation is to be performed asynchronously, this
field contains a pointer to the original operation record that specified the request.

complete_jo_routine — When operation is to be performed asynchronously, this

field contains the address of the caller’s I/O completion routine. The I/O
completion routine will be called when the operation completes.

4-50 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

request_start_time — This field is used to save the starting time of a request for
device usage accounting. Upon request completion, the start time is subtracted
from the current time to get the total time required to process the request. This
field is not used by the SCSI interface manager; it used is only by the SCSI
device drivers.

total_request_busy_time — This field specifies the total amount of time that the
target physical device spent processing the request. Since the SCSI device drivers
have no precise knowledge of when the target device actually starts or completes

a request, this information must be obtained from the supporting SCSI interface
manager.

DEV_SCSI_REQUEST_FLAGS

The following constants define bit positions of the request flags used in the
request_flags field of an adapter request block described by
dev_adapter_request_block_type.

#define DEV_SCSI_REQUEST_ FLAGS_KERNEL_BUFFER 0x000001

This literal indicates that the data buffer address specified in the request block is a
kernel address.

#define DEV_SCSI_REQUEST FLAGS_PHYSICAL_BUFFER 0x000002

This literal indicates that the data buffer address specified in the request block is a
physical address.

#define DEV_SCSI_REQUEST_ FLAGS_SB_DONE 0x000004
This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates
that the current request is done. Sector buffering is performed by the DG/UX SCSI
disk driver to allow access to a disk that does not have standard 512-byte sectors.
#define DEV_SCSI_REQUEST_FLAGS_SB 0x000008

This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates
that sector buffering is enabled for device access.

#define DEV_SCSI_REQUEST FLAGS_SB_READ 0x0000010

This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates
that a sector buffered read is taking place.

#define DEV_SCSI_REQUEST_FLAGS_DATA_XFER_IN 0x0000020
This literal, if set, indicates that the data transfer direction is from the adapter to the

host (that is, a read). If clear, the data transfer direction is from the host to the
adapter (that is, a write). This flag is valid only if the number of bytes being

093-701053 Licensed material—property of Data General Corporation 4-51

User-Supplied Adapter Driver Routines

transferred is greater than zero.

dev_scsi_adapter_unit_registration_blk_type

typedef struct
{

io_device_number_type adapter_device_ number;
dev_scsi_adapter_unit_spec_type unit_spec;
io_device_handle_type adapter_ handle;
io_device_handle_type driver_handle;
uintl6_type max_concurrent requests;
uint32_type max_request_size;
bit8_type device_type;

} dev_scsi_adapter_unit_registration_blk_type

Description

This structure is used by an SCSI device driver to register a physical unit with the
SCSI adapter manager. Registration establishes a direct link between the device
driver and the adapter manager service routines. Registering a unit consists of the
device driver and the adapter driver exchanging information. This structure is a
simple packaging of several variables needed for the registration process.

The fields in this structure are as follows:

adapter_device_number — The major and minor device numbers of the SCSI
adapter with which the unit is being registered.

unit_spec — The SCSI ID and unit number of the device being registered.

adapter_handle — The handle that the SCSI adapter manager returns to the
device driver requesting the registration. It is passed as an argument to the
adapter driver routines to identify the physical unit that is the target of a request.

driver_handle — This is a unit handle that points to a driver-defined block of
information specific to the unit being addressed. The device driver may pass this
handle to the adapter manager when it registers the unit. The adapter manager
saves this handle and returns it to the driver when the driver calls the adapter’s
dev_xxx_get_device_info routine. The adapter manager does mnot interpret this
field.

max_concurrent_requests — The maximum number of concurrently executing
requests on the unit that the driver will allow.

max_request_size — The adapter driver uses this field to return the maximum
number of bytes transferable between the host and device in z single operation.

4-52 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

device_type — If a device is already registered with the specified SCSI ID and
unit number, the device type of the registered device is returned in this field.
Otherwise, the device type specified by device_type is recorded for the device.

dev_adapter_physical_request_blk_type

typedef struct
{

uintl6_type type;

uintl6_type reserved;

uint32_type reservedl;
dev_scsi_cmd_blk_type scsi_cmd_blk;
io_buffer vector_type buffer_vector;
dev_scsi_request_sense_buffer_type sense buffer;
dev_scsi_mode buffer type mode_select_buffer;
uintl6_type volume;
dev_scsi_adapter_unit_spec_type unit_spec;
io_device_number_type adapter_device_number;
boolean_type is_open;

boolean_type first_block_on_medium;

} dev_adapter_ physical_ request_blk_type
Description

This structure defines the information block that is used by SCSI device drivers to
specify an SCSI bus request when the system is in shutdown mode and a system
dump is in progress.

The fields in this structure are as follows:

type — This field defines the type of the adapter request block and hence
provides for multiple adapter request blocks. This provision has been made to
allow for new types of adapter request blocks that may be needed as new types of
adapters are added. This field must be defined. Check the
DEV_SCSI_ARB_TYPE definitions in dev_scsi_adapter_def.h for a current
listing of supported types.

reserved — This field is reserved for future use by Data General and must always
be set to zero.

reservedl — This field is reserved for future use by Data General and must
always be set to zero.

scsi_emd_blk — The SCSI command block, which specifies the request to be

made to the device. The SCSI command block is not interpreted by the adapter
manager.

093-701053 Licensed material—property of Data General Corporation 453

User-Supplied Adapter Driver Routines

buffer_vector — A buffer vector describing the main memory area that is to be
involved in the I/O operation. Note that the SCSI interface manager assumes the
buffer vector contains only a single buffer descriptor.

sense_buffer — Buffer to which sense information is returned if a request results
in a Check Condition status.

mode_select_buffer — Buffer to which the device’s current operating mode
information is saved.

volume — Specifies the current volume number.
unit_spec — The device’s SCSI ID and unit number.

adapter_device_number — The major and minor device number of the target
adapter.

is_open — This is a flag field. When set, it indicates that the tape has been
successfully opened as a system dump target.

first_block_on_medium — If an error occurs, this flag is used to determine
whether to prompt for a new tape or to flag the shutdown manager to restart
from the last checkpoint.

dev_scsi_adapter_unit_options_block_type

typedef struct
[.
misc_clock_value_ptr_type disconnect_timeout ptr;
misc_clock_value_ptr_ type bus request_timeout_ptr:;

uint8_type max_disconn_reconn_per_ command;
uint8_type adapter_retries;
uint8_type sense_bytes;
boolean_type synchronous_data_transfers;
boolean_type perform_request_sorting;
} dev_scsi_adapter_unit_options_block_type ;
Description

This structure is used by an SCSI device driver to specify various unit options to the
dev_xxx_set_unit_options interface of the supporting SCSI adapter driver.

The fields in this structure are as follows:
disconnect_timeout_ptr — A pointer to a "misc_clock” value. This value

determines how long the adapter driver will wait after a disconnect has occurred
before assuming that an error has taken place and that the reselect will not be

4-54 Licensed material—property of Data General Corporation 093701053

User-Supplied Adapter Driver Routines

occurring. If the timeout interval expires, a timeout error will be reported back to
the caller. A disconnect_timeout_ptr of
DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR disables disconnect timeouts

for the device.

bus_request_timeout_ptr — A pointer to a "misc_clock” value. This value
determines how long the adapter driver will wait after a bus request has been
made before assuming an error has taken place and the request is aborted. A
bus_request_timeout_ptr of DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR
disables bus request timeouts for the device.

max_disconn_reconn_per_command — The maximum number of times that the
SCSI target device can be expected to disconnect and reconnect during the
execution of a single command. This value is used by some SCSI adapter drivers
to calculate the maximum amount of time that a single request to the SCSI
adapter should take. The time value is used as a backup timeout mechanism for
SCSI adapters that manage disconnect timeouts and bus request timeouts
internally. A value of zero for this field inhibits the device from disconnecting
while a2 command is executing.

adapter_retries — The number of times the SCSI adapter driver will reissue a
request if the request results in a hard I/O error. |

sense_bytes — The number of sense bytes that will be returned from the device if |
a command to the device results in a Check Condition status.

synchronous_data_transfers — If non-zero, this flag indicates that data transfer
to/from the device should be done in SCSI synchronous mode. If this option is
selected on a device that does not support synchronous transfers, data will be
transferred in asynchronous mode with no error reported to the driver.

perform_request_sorting — If non-zero, this flag indicates that the adapter driver
should perform request sorting and ordering to provide more efficient access to
the specified device.

SCSI Adapter Unit Options Block Literals

These definitions specify various constants that apply to Set Unit Options SCSI
adapter routine.

#define DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR
((misc_clock_value_ptr_type)DEFAULT_NULL_LINK)

This timeout pointer is specified in a unit options block to disable timeouts for 2 unit.
#define DEV_SCSI_ADAPTER_MIN_TIMEOUT_VALUE

This literal defines the minimum timeout value supported by an SCSI adapter driver.
This value is in units of 1 millisecond.

093-701053 Licensed material—property of Data General Corporation 4-55

User-Supplied Adapter Driver Routines

$define DEV_SCSI_ADAPTER_MAX_TIMEOUT_ VALUE
This literal defines the maximum timeout value supported by an SCSI adapter driver.
This value is in units of milliseconds. Currently the maximum timeout interval
supported is 30 minutes.
#define DEV_SCSI_ADAPTER_MIN_ADAPTER_RETRIES

This literal defines the minimum number of adapter retries that may be specified in a
Set Unit Options block.

#define DEV_SCSI_ADAPTER MAX_ ADAPTER_RETRIES

This literal defines the maximum number of adapter retries that may be specified ina
Set Unit Options block.

#define DEV_SCSI_ADAPTER_MIN_SENSE BYTES

This literal defines the minimum number of sense bytes that may be specified in a Set
Unit Options block.

$define DEV_SCSI_ADAPTER MAX_SENSE_BYTES

This literal defines the maximum number of sense bytes that may be specified in a Set
Unit Options block.

#define DEV_SCSI_ADAPTER_MIN_DISCON_RECON

This literal defines the minimum number disconnect/reconnects per command that
may be specified in a set unit options block.

#define DEV_SCSI_ADAPTER_MAX_DISCON_RECON

This literal defines the maximum number disconnect/reconnects per command that
may may be specified in a Set Unit Options block.

Interfaces for Adapter Driver Routines

DG/UX device driver routines use adapter drivers to interface to the SCSI bus. To
write an adapter driver you must supply all the routines listed below. These routines
must conform to the interface, as described in the rest of this chapter. As with
device driver routines, substitute your own device mnemonic for the xxx shown in the
routine names in this section.

You supply the entry points to your adapter routines in your routines vector which is

defined in dev_xxx_global_data.c. SCSI device drivers obtain the vector to their
adapter driver’s routines during device configuration.

4-56 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

The adapter driver routines described in this chapter are listed below:
® dev_xxx_register_requester
e dev_xxx_set_unit_options
e dev_xxx_deregister_requester
® dev_xxx_issue_command
e dev_xxx_issue_async_command
® dev_xxx_get_device_info

® dev_xxx_issue_command_physical_mode

093-701053 Licensed material—property of Data General Corporation 4-57

User-Supplied Adapter Driver Routines

dev_xxx_register_requester

Syntax
status_type dev_xxx register_requester (rb_ptr)

dev_scsi_adapter_unit_registration_blk_ptr_type rb_ptr;
/*READ/WRITE*/

Summary

This routine associates the specified device with an SCSI adapter, thereby
establishing a link between the device driver and the adapter service routines.

Parameters
rb_ptr — A pointer to an SCSI adapter registration block.

Description
This routine adds an entry to the unit table associated with the specified SCSI
ID and unit number. The unit table entry consists of a device type specifier
and an opaque unit handle, which is meaningful only to the device driver. The

unit table entry provides a bridge between the device driver and the adapter
driver routines.

If the unit table entry specified by the SCSI ID and unit number is already
occupied, an error is returned. Also, the device type of the device occupying
the entry is returned so that the caller can distinguish between
IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED and
IO_ENXIO_DEVICE_DOES_NOT_EXIST.

Return Values
OK — The specified device was successfully registered with the adapter.

IO0_ENXIO_DEVICE_IS_ALREADY_CONFIGURED — A device is already
registered at the location specified by rb_ptr.

4-58 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_set_unit_options

Syntax

status_type dev_xxx_set_unit_options (adapter_handle,
unit_options_block_ptr)

io_device_handle_type adapter_handle; /*READ ONLY*/

dev_scsi_adapter_unit_options_block_ptr_type
unit_options_block_ptr;/*READ ONLY*/

Summary
Set the unit options of a registered device.

Parameters

adapter_handle — The device handle of the physical unit which is the target
of the set unit options operation. This handle must be the device handle that
was returned by the register-requester routine of the adapter manager.

unit_options_block_ptr — Pointer to a unit options block that specifies the
options to be selected for the unit.

Description

This routine is called to set the various unit options that describe how the
SCSI adapter driver manages a request that has been issued over the SCSI
bus to a physical unit. See the definition of the
dev_scsi_adapter_unit_options_block in the file dev_scsi_adapter_def.h for a
complete description of the unit options supported.

Return Values
OK — The requested options were selected successfully.

DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE — An illegal
option value was detected in the callers Set Unit Options Block.

IO_EIO_PHYSICAL_UNIT_FAILURE — The Set Unit Options command
issued to the adapter resulted in an error.

093-701053 Licensed material—property of Data General Corporation 4-59

User-Supplied Adapter Driver Routines

dev_xxx_deregister_requester

Syntax
void dev_xxx_deregister_requester (adapter_handle)
io_device_handle_type adapter_handle;/*READ ONLY*/
Summary

This routine terminates the link between the SCSI adapter manager and the
device referenced by adapter_handle.

Parameters
adapter_handle — The device handle of the physical unit that is to be
deregistered. This handle must be the device handle that was returned by the
register-requester routine of the adapter manager.

Description
See Summary.

Return Values

None.

4-60 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_issue_command

Syntax
status_type dev_xxx_issue_command (arb_ptr)
dev_adapter_request_block_ptr_type arb_ptr; /*READ/WRITE*/
Summary
Issue an SCSI command synchronously through the adapter to a target device.

Parameters

arb_ptr — A pointer to a generic adapter request block that holds all
information which describes the request.

Description

This routine transfers request information from the generic adapter request
block to an adapter-specific parameter block and calls the adapter driver to

execute the request.

If the request completes with a Check Condition status, sense information
from the device is automatically returned in the adapter request block.

Return Values
OK — A synchronous request completed successfully.

Other return values that you deem necessary — The receiving device drivers
should be prepared to handle these return values.

093-701053 Licensed material—property of Data General Corporation 4-61

User-Supplied Adapter Driver Routines

dev_xxx_issue_async_command

Syntax
status_type dev_xxx_issue_async_command (arb_ptr)
dev_adapter_request_block_ptr_type arb_ptr;/*READ/WRITE*/
Summary

Issue an SCSI command asynchronously through the adapter to a target
device.

Parameters

arb_ptr — A pointer to a generic adapter request block which holds all
information that decribes the request.

Description

The adapter request block is added to the asynchronous request queue and an

attempt is made to obtain the specified controller’s command list request

lock. If the lock is obtained, dev_xxx_start_async_request is called to start
the request. Control is returned to the caller as soon as the request has been
issued through the adapter to the physical unit. The Driver or Generic
Daemon handles request completion and starts the next request in the queue
if there is one.

If the command list request lock cannot be obtained, the request is left on the
request queue and the function returns immediately. The enqueued request is

started when the currently executing request and all requests ahead in the
queue have been executed.

Return Values

OK — The request was successfully started. This status does not indicate that

the request has completed successfully.

4-62 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_get_device_info

status_type dev_xxx_get_device_info (adapter_device_number,
unit_spec,
device_type,
driver_handle ptr)

io_device_number_type adapter_device_ number;/*READ ONLY*/
dev_scsi_adapter_unit_spec_type unit_spec;/*READ ONLY*/

bit8_type device_type; /*READ ONLY*/
bit32e_ptr_ type driver_handle ptr; /*WRITE ONLY*/
Summary
This routine retrieves device information associated with a specified registered
device.
Parameters

adapter_device_number — The major and minor device number of the SCSI
adapter used to access the target unit.

unit_spec — The SCSI ID and unit number of the target device.

device_type — Device type of device expected to be registered for unit
number and SCSI ID.

driver_handle_ptr — A pointer to where the device information is to be
returned.

Description
Return the opaque driver handle that was registered with the device. This
routine takes the place of io_get_device_info for SCSI devices that don’t have
DIT entries.

Return Values
OK — The opaque driver handle was successfully retrieved and returned.

TIO_ENXIO_DEVICE_IS_NOT_CONFIGURED — A device of the specified
type is not registered at the SCSI ID and unit number slot.

093-701053 Licensed material—property of Data General Corporation 4-63

User-Supplied Adapter Driver Routines

dev_xxx_issue_command_physical_mode

Syntax

status_type dev_xxx_issue_command physical mode
(request_blk_ptr)

dev_adapter_physical_request_blk_ptr_type request_blk_ptr;
/*READ/WRITE*/

Summary
Issue a physical I/O request through the SCSI adapter to a target device.

Parameters

request_blk_ptr — A pointer to a request block that holds information that
specifies the request. Note that this is a special version of the adapter request
block and is not the same as the request block used during normal system
operation.

Description

This routine is called to issue a synchronous I/O request over the SCSI bus
without the use of the normal operating system facilities. Synchronization is
done without the use of event counters or interrupts. All buffer addresses are
assumed to be physical. The system is assumed to be running a single thread
of control, so no lock mariagement is required.

Return Values

OK — A synchronous request completed successfully or an asynchronous
request was started.

DEV_STATUS_SCSI_CMD_COMPLETE_CHECK_CONDITION — The
command completed with a Check Condition status, and sense information is
available in the caller’s sense buffer.

I0_EIO_HARD_IO_ERROR — The command completed with a check
condition status, and the subsequent request sense command failed.

Other return values that you deem necessary. The receiving device drivers
should be prepared to handle these return values.

End of Chapter

4-64 Licensed material—property of Data General Corporation 093-701053

Chapter 5
Managing Your Adapter From
Your Device Driver

In hardware, an adapter controls the devices attached to it. In software, however, the
adapter driver routines are invoked by the device drivers. However, in order to keep
the device driver code from being fixed to a particular adapter driver, device drivers
interface to their adapter drivers through an adapter manager which multiplexes
device driver calls to the correct adapter driver. The adapter manager consists of a
standard set of adapter driver routines with the generic mnemonic scsi_adapter. The
device driver identifies the target adapter by passing its adapter’s device name or
device number as parameters to the adapter manager function.

This chapter describes adapter manager routines that SCSI device drivers use to
interface to their SCSI adapter drivers. It includes the following commands:

® dev_scsi_adapter_configure

® dev_scsi_adapter_device_to_name

® dev_scsi_adapter_name_to_device

® dev_scsi_adapter_open_dump

® dev_scsi_adapter_register_requester

® dev_scsi_adapter_set_unit_options

® dev_scsi_adapter_deregister_requester

® dev_scsi_adapter_issue_command

® dev_scsi_adapter_issue_async_command
® dev_scsi_adapter_get_device_info

® dev_scsi_adapter_issue_command_physical_mode

093-701053 Licensed material—property of Data General Corporation 5-1

Managing Your Adapter From Your Device Driver

Constants and Data Structures

In general, the adapter manager routines use the same data structures described for
user-supplied adapter drivers. See Chapter 4 for a discussion of these data structures.

5-2 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_configure

Syntax

status_type dev_scsi_adapter_configure (name_ptr)

char_ptr_type name_ptr; /*READ ONLY%*/
Summary
This routine locates the SCSI adapter manager specified by name_ptr and
calls its configuration routine. '
Parameters

name_ptr — Pointer to the SCSI adapter name as specified in the DG/UX
system file.

Description
This routine invokes the proper adapter manager configuration routine.
Return Values

The return value will be whatever is returned by the adapter manager
configure routine.

093-701053 Licensed material—property of Data General Corporation 53

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_device_to_name

Syntax
status_type dev_scsi_adapter_device_to_name (device_ number,
name_ptr,

size)

io_device_number_ type device_number; /*READ ONLY*/

char_ptr_type name ptr; /*READ ONLY*/
uint32_type size; /*READ ONLY*/
Summary

This routine locates the SCSI adapter manager specified by the device
number and calls its device-to-name routine.

Parameters

device_number — The device number of the SCSI adapter for which the
character string name is wanted.

name_ptr — A pointer to where the null-terminated character string name is
to be written.

size — The maximum number of bytes, including the terminating null, that is
to be written to name_ptr.

Description
This routine invokes the proper adapter manager device-to-name routine.
Return Values

The return value will be whatever is returned by the adapter manager device-
to-name routine.

54 Licensed material—property of Data General Corporatior: 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_name_to_device

Syntax

status_type dev_scsi_adapter_name_to_device (name_ptr,
device_number_ ptr)

char_ptr_type name ptr; /*READ ONLY*/
io_device_number_ptr_type device number_ ptr; /*WRITE ONLY*/

Summary

This routine locates the SCSI adapter manager specified by name_ptr and
calls its name-to-device routine.

Parameters

name_ptr — Pointer to the SCSI adapter name as specified in the DG/UX
system file.

device_number_ptr — Pointer to where the SCSI adapter major and minor
number is to be returned.

Description
This routine invokes the proper adapter manager name-to-device routine.
Return Values

The return value will be whatever is returned by the adapter manager name-
to-device routine.

093-701053 Licensed material—property of Data General Corporation 55

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_open_dump

Syntax

status_type dev_scsi_adapter_open dump (name_ptr,
major_device_ptr)

char_ptr type name_ptr; /*READ ONLY*/

io_major_device_ number_ptr type major_device ptr;
/*WRITE ONLY*/

Summary

This routine locates the SCSI adapter manager specified by name_ptr and
calls its open-dump routine.

Parameters

name_ptr — A pointer to the null-terminated character string identifying the
adapter to be opened to allow access to a dump destination device.

major_device_ptr — A pointer to where the major device number of the
driver that successfully opens the dump device is to be written.

Description
This routine invokes the proper adapter manager open-dump routine.
Return Values

The return value will be whatever is returned by the adapter manager open-
dump routine.

56 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_register_requester

Syntax
status_type dev_scsi_adapter_register_requester
(major_number,
rb_ptr)
io_major_device_number_type major_number;/*READ ONLY*/

dev_scsi_adapter_unit_registration_blk_ptr_type rb_ptr;
/*READ ONLY?*/

Summary

This routine locates the SCSI adapter manager specified by the device
pumber and calls its register-requester routine.

Parameters

major_number — The major device number of the SCSI adapter device that
the device driver is registering with.

rb_ptr — A pointer to an SCSI adapter registration block.
Description

This routine invokes the proper adapter manager register-requester routine.
Return Values

The return value will be whatever is returned by the adapter manager register-
requester routine.

093-701053 Licensed material—property of Data General Corporation 57

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_set_unit_options

Syntax

status_type dev_scsi_adapter_set_unit_options (major_number,
apter_handle,unit_options_block_ptr)

io_major_device_ number_type major_number; /*READ ONLY*/
io_device_handle_type adapter_handle; /*READ ONLY*/
dev_scsi_adapter_unit_options_block_ptr_type
unit_options_block_ptr;
/*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device
number and calls its set-unit-options routine.

Parameters

major_number — The major device number of the SCSI adapter device used
to reference the unmit that is the target of the set-unit-options operation.

adapter_handle — The device handle of the physical unit the is the target of
the set-unit-options operation. This handle must be the device handle that was
returned by the register-requester routine of the adapter manager.

unit_options_block_ptr — Pointer to a unit options block that specifies the
options to be selected for the unit.

Description
This routine invokes the proper adapter manager set-unit-options routine.

Return Values

The return value will be whatever is returned by the adapter manager set-unit-
options routine.

58 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_deregister_requester

Syntax

void dev_scsi_adapter_deregister_requester (major_number,
adapter_handle)

io_major_device_number_type major_number; /*READ ONLY*/
io_device_handle_type adapter_handle; /*READ ONLY?*/
Summary

This routine locates the SCSI adapter manager specified by the device
number and calls its deregister-requester routine.

Parameters

major_number — The major device number of the SCSI adapter device that
the unit is registered with.

adapter_handle — The device handle of the physical unit that is to be
deregistered. This handle must be the device handle that was returned by the
register-requester routine of the adapter manager.
Description
This routine invokes the proper adapter manager deregister-requester routine.
Return Values

The return value will be whatever is returned by the adapter driver’s
deregister-requester routine.

093-701053 Licensed material—property of Data General Corporation 59

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_command

Syntax
status_type dev_scsi_adapter_issue_command
(major_number,

arb_ptr)

io_majoi_device_number_type major_pumber; /*READ ONLY*/
dev_adapter_request_block_ptr_type arb_ptr /*READ ONLY*/

Summary
This routine locates the SCSI adapter manager specified by the device
number and calls its issue-command routine. The issue-command routine is
the entry point used to perform synchronous I/O through the SCSI interface.

Parameters

major_number — The major device number of the SCSI adapter device used
to reference the target device.

arb_ptr — A pointer to a generic adapter request block that holds all
information that describes the request.

Description
This routine invokes the proper adapter manager issue-command routine.
Because of certain hardware restrictions, you may transfer only an even
number of bytes when using this routine. In addition, the starting buffer

address must be aligned on an even-byte boundary. Thus, the buffer may
start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

3)-
Return Values

The return value will be whatever is returned by the adapter manager issue-
command routine.

5-10 Licensed material—property of Data General Corporatior: 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_async_command

Syntax

status_type dev_scsi_adapter_issue_async_command
(major_number,

arb_ptr)
io_major_device_number_type major_number;/*READ ONLY*/
dev_adapter_request_block_ptr_ type arb_ptr; /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device
number and calls its issue-async-command routine. The issue-async-command
routine is the entry point used to perform asynchronous I/O through the SCSI
interface.

Parameters

major_number — The major device number of the SCSI adapter device used
to reference the target device.

arb_ptr — A pointer to a generic adapter request block that holds all
information that describes the request.

Description

This routine invokes the proper adapter manager issue-async-command
routine.

Because of certain hardware restrictions, you may transfer only an even
number of bytes when using this routine. In addition, the starting buffer
address must be aligned on an even-byte boundary. Thus, the buffer may
start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

3-
Return Values

The return value will be whatever is returned by the adapter manager issue-
command routine.

093-701053 Licensed material—property of Data General Corporation 511

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_get_device_info

Syntax

status_type dev_scsi_adapter_get_device_info (name_ptr,
unit_spec,
device_type,
driver_handle_ptr)

char_ptr_type name_ptr; /*READ ONLY*/
dev_scsi_adapter_unit_spec_type unit_spec; /*READ ONLY*/
bit8_type device_type: /*READ ONLY*/

io_device_handle ptr_type driver_handle ptr;/*WRITE ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device name
and calls its get-device-info routine.

Parameters

name_ptr — A pointer to the target SCSI adapter’s name, as specified in the
DG/UX system file.

unit_spec — The SCSI ID and unit number of the target device.

device_type — Device type of device expected to be registered for unit
number and SCSI ID.

driver_handle_ptr — A pointer to where the device information is to be
returned.

Description

This routine invokes the proper adapter manager get-device-info routine.

Return Values

512

The return value will be whatever is returned by the adapter manager get-
device-info routine.

Licensed material—property of Data General Corporation 093-701053

l
l
l
|
|
I
|
l
|
l

|
|

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_command_physical_mode

Syntax
status_type dev_scsi_adapter_issue command_ physical_mode
(major_number,
request_blk_ptr)
io_major_device_number_type ajor_number; /*READ ONLY*/
dev_adapter_physical_request_blk ptr_ type request_blk_ptr;
/*READ ONLY*/
Summary

This routine locates the SCSI adapter manager specified by the device
number and calls its issue-command-physical-mode routine.

Parameters

major_number — The major device number of the SCSI adapter device used
to reference the target of the request.

request_blk_ptr — A pointer to a request block that holds information which
specifies the request.

Description

This routine invokes the proper adapter manager issue-command-physical-
mode routine.

Because of certain hardware restrictions, you may transfer only an even
number of bytes when using this routine. In addition, the starting buffer

address must be aligned on an even-byte boundary. Thus, the buffer may
start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

3).

‘Return Values

The return value will be whatever is returned by the adapter manager issue-
command-physical-mode routine.

End of Chapter

093-701053 Licensed material—property of Data General Corporation 513

Chapter 6
Process Synchronization and
Timing

This chapter describes all DG/UX kernel routines used in process management and
timing. Included are routines that handle eventcounters, signals, and clock
operations. Also included in this chapter are routines for implementing locks on
critical sections of data.

This chapter is divided into five major sections, as follows:

® Synchronization Routines — Routines used to synchronize processes using
eventcounters.

® Process Signal Management Routines — Routines used to process signals.

® Lock Management Routines — Routines used to protect critical sections of
data.

® Clock Routines — Routines used to manage the system clock.

e Interrupt Handling Routines — Routines used in handling interrupts.
Each section introduces the major features of the routines that follow. Following
each introduction is a "Constants and Data Structures” section, which lists some of

the constants and data structures used by the routines. For a full list of constants and
data structures, see the include files listed in Chapter 3.

093-701053 Licensed material—property of Data General Corporation 6-1

Synchronization Routines

Synchronization Routines

The routines in this section are used to manipulate eventcounters. Eventcounters are
used as synchronization primitives. The main synchronization operations performed
are await and advance. For more information on await and advance, sequencers, and
eventcounters, see the Communications of the ACM papers listed in the preface, in
the section called "Other Documents."

Await allows a process to wait for any of several events to be satisficd. Here an
event refers to an eventcounter and an eventcounter value. The event is said to be
satisfied when the value of the eventcounter is greater than or equal to the awaited
value. If the await call is made, and one or more of the specified events is already
satisfied, the process continues execution following the call to await. If none of the
specified events is satisfied, the process enters the awaiting state where it does not
compete for CPU resources.

The advance operation increments the value of the specified eventcounter and then
checks to see whether the new value of the incremented eventcounter causes any
events to be satisfied. If the process associated with a satisfied event is still in the
awaiting state, it is scheduled to run.

Sequencers are provided to extend the functionality of eventcounters. Sequencer
routines allow a caller to allocate unique eventcounter values for use in constructing
events.

When one of the events occurs, a process awaiting multiple events is returned an
index into the event list submitted to vp_await_ec. The index identifies the event in
the list that caused the await to be satisfied. However, the event specified by the
index is not necessarily the only event that has occurred in the list. A process may
determine which events have occurred by calling the routine vp_has_event_occurred
for each entry in the event list.

A process doing a vp_await_ec that can pend indefinitely (such as waiting for
terminal input) should not hold any locks. Doing so will inadvertently tie up a virtual
processor (VP) the entire time the process is waiting.

If you use routines from this section, you must allocate the space used by the event
and eventcounter instances (see the "Constants and Data Structures” section below).

Eventcounters are normally allocated from global memory. Event types are allocated
dynamically, as needed.

The following routines are described in this section:
® vp_add_to_ec_value
e vp_advance_ec

® vp_await_ec

6-2 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

e vp_convert_clock_value_to_ec_value
e vp_convert_ec_value_to_clock_value
e vp_get_next_ec_value

e vp_has_event_occurred

® vyp_increment_ec_value

e vp_initialize_ec

e vp_initialize_sequencer

® vp_read_ec

e vp_ticket_sequencer

e vp_are_ec_values_equal

Routines beginning with vp require the i_vp.h include file.

Constants and Data Structures

This section discusses some of the data structures used by synchronization routines.
Try to avoid dependencies on the specifics of these structures, such as size or
location of fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify
exact variable definitions in the appropriate include file (for example, check
i_vp.h for structures beginning with the vp acronym). Chapter 3 lists the
various include files.

vp_event_type

typedef struct
{
vp_ec_ptr_type name;
vp_ec_value_type value;
}
vp_event_type ;

This structure defines an event, which is an eventcounter name and an eventcounter
value. The event is said to occur or to be satisfied when the value of the
eventcounter pointed to by the name field is greater than or equal to the value

field.

093-701053 Licensed material—property of Data General Corporation 6-3

Synchronization Routines

vp_add_to_ec_value

Syntax
void vp_add_to_ec_value (ec_value_ptr, addend)

vp_ec_value_ptr_type ec_value ptr; /*READ/WRITE*/
uint32_type addend; /*READ ONLY*/

Summary

This routine adds the given value to the specified eventcounter value.

Parameters

ec_value_ptr — A pointer to the eventcounter value to be added to.

éddend — The value to be added to the eventcounter value.

Description

The specified 32-bit integer is added to the specified eventcounter value.

Return Values
None.

Exceptions
None.

Abort Conditions

None.

64 Licensed material—property of Data General Corporation

093-701053

Synchronization Routines

vp_advance_ec
Syntax

void vp_advance_ec (ec_name)

vp_ec_ptr_type ec_name; /*READ ONLY*/
Summary

This routine performs an advance (by one) on the specified eventcounter.
Any processes awaiting on the new value of the eventcounter will be notified.

Parameters
ec_name — A pointer to the eventcounter to be advanced.

Description
The eventcounter is indivisibly incremented, and any processes awaiting on
the new value are notified. If a higher priority process becomes eligible to
run as a result of the notification, it may-be rescheduled. Thus, your process
may be pre-empted if you call this routine.

Return Values
None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-5

Synchronization Routines

vp_await_ec

Syntax
void vp_await_ec (event_list, list_size, list_index ptr)
vp_event_type event_list[]; /*READ ONLY*/
int32_type list_size; /*READ ONLY*/
int32_ptr_type list_index_ptr; /*WRITE ONLY*/
Summary

This routine performs the await operation on one or more events. The calling
process will be suspended until at least one of the specified events is satisfied.

Parameters
event_list — An array of events for which the process wishes to await.
list_size — The number of elements in event_list.

list_index_ptr — A pointer to the array index (zero based) of an event that is
satisfied when the call returns.

Description
This routine causes the calling process to be suspended until any one of the
supplied events has been satisfied. If any of the events is satisfied at the time
the call is made, the process is not suspended. When the call returns, the
list_index_ptr is set to the index of an event that is satisfied, but if more than

one event is satisfied, no statement is made about which event will be
indicated by list_index_ptr.

Return Values
None.
Exceptions

None.

6-6 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_convert_clock_value_to_ec_value

Syntax

void vp_convert_clock_value_to_ec_value (clock_value ptr,
ec_value_ptr)

misc_clock_value ptr_type clock_value ptr; /*READ ONLY?*/
vp_ec_value_ptr_type ec_value ptr; /*WRITE ONLY*/

Summary

This routine converts a clock value into an eventcounter value.
Parameters

clock_value_ptr — A pointer to a clock value.

ec_value_ptr — A pointer to the location where the corresponding
eventcounter value is to be written.

Description

This routine converts a clock value into an eventcounter value. Converting
from clock value to eventcounter value requires converting the 64-bit clock
value to a 32-bit eventcounter value.

The number of bits to take from the high and low word of the clock value are

defined in i_vp.h as VP_CLOCK_TO_EC_HIGH_BITS and
VP_CLOCK_TO_EC_LOW_BITS.

Return Values
None.
Exceptions

None.

093-701053 Licensed material—property of Data General Corporation

67

Synchronization Routines

vp_convert_ec_value_to_clock_value

Syntax

void vp_convert_ec_value_to_clock_value (ec_value_ptr,
clock_value_ptr)

vp_ec_value_ptr_ type ec_value_ ptr; /*READ ONLY*/
misc_clock_value_ptr_type clock_value ptr; /*WRITE ONLY*/

Summary

This routine converts an eventcounter value into a clock value.
Parameters

ec_value_ptr — A pointer to an eventcounter value.

clock_value_ptr — A pointer to the location where the corresponding clock
value is to be written.

Description
This routine converts an eventcounter value into a clock valile. Conversion
from eventcounter value to clock value requires converting a 32-bit
eventcounter value to a 64-bit clock value.
The number of bits to assign to the high and low word of the clock value are
defined in i_vp.h as VP_CLOCK_TO_EC_HIGH_BITS and
VP_CLOCK_TO_EC_LOW_BITS.

Return Values
None.

Exceptions

None.

6-8 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_get_next_ec_value

Syntax
void vp_get_next_ec_value (ec_name, ec_value_ptr)

vp_ec_ptr_type ec_name; /*READ ONLY*/
vp_ec_value_ptr_type ec_value ptr; /*WRITE ONLY*/

Summary

This routine indivisibly reads the specified eventcounter and returns its value
plus one.

Parameters
ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location where the eventcounter value (plus
one) is to be written.

Description
The eventcounter is read indivisibly with respect to other processors and with
respect to the executing processor’s interrupt level. The value is then
incremented by one, which is equal to the value that will be reached the next
time the eventcounter is advanced.

Return Values
None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 69

Synchronization Routines

vp_has_event_occurred

Syntax
boolean_type vp_has_event_occurred (event ptr)
vp_event_ptr type event_ptr; /*READ ONLY*/
Summary
This routine determines whether the given event has occurred.
Parameters
event_ptr — A pointer to the subject event.
Return Values
TRUE — The event has been satisfied.
FALSE — The event has not yet occurred.
Exceptions

None.

6-10 Licensed material—property of Data General Corporation

093-701053

Synchronization Routines

vp_increment_ec_value
Syntax
void vp_increment_ec_value (ec_value_ptr)
vp_ec_value_ptr_type ec_value_ptr; /*READ WRITE*/
Summary

This routine increments the specified eventcounter value.
Parameters

ec_value_ptr — A pointer to the eventcounter value to be incremented.
Description

This routine simply takes the eventcounter value passed in and increments it.
Return Values

None.
Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-11

Synchronization Routines

vp_initialize_ec
Syntax

void vp_initjialize_ec (ec_name)

vp_ec_ptr_type ec_name; /*READ ONLY*/
Summary

This routine initializes an eventcounter.
Parameters
ec_name — A pointer to the eventcounter to be initialized.
Description
The eventcounter value is set to zero.
Return Values
None.
Exceptions

None.

6-12 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_initialize_sequencer

Syntax
void vp_initialize_ sequencer (seq_name)
vp_ec_ptr_type seq_name; /*READ ONLY*/
Summary

This routine initializes a sequencer.
Parameters
seq_name — A pointer to the sequencer to be initialized.
Description
The sequencer value is set to zero.
Return Values
None.
Exceptions

None.

093-701053 Licensed material—property of Data General Corporation

6-13

Synchronization Routines

vp_read_ec

Syntax
void vp_read_ec (ec_name, ec_value_ptr)
vp_ec_ptr_type ec_name; /*READ ONLY*/
vp_ec_value_ptr_ type ec_value ptr; /*WRITE ONLY*/

Summary

This routine indivisibly reads the specified eventcounter and returns the value
in the variable pointed to by ec_value_ptr.

Parameters
ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location in which the eventcounter value is
to be written.

Description

The eventcounter is read indivisibly with respect to other processors and with
respect to the executing processor’s interrupt level.

Return Values
None.
Exceptions

None.

6-14 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_ticket_sequencer

Syntax
void vp_ticket_sequencer (seq_name, seq_value_ptr)
vp_ec_ptr type seq_name; /*READ ONLY*/

vp_ec_value_ptr_ type seq _value ptr; /*WRITE ONLY*/
Summary

This routine indivisibly increments the value of the specified sequencer and
returns the new value (that is, the value after the increment).

Parameters
seq_name — A pointer to the sequencer to be ticketed.

seq_value_ptr — A pointer to the location in which the new value of the
sequencer is to be written.

Description

The sequencer value is incremented and then read as an indivisible operation.
Return Values |

None.
Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-15

Synchronization Routines

vp_are_ec_values_equal

Syntax
boolean_type vp_are_ec_values_equal (valuel ptr, value2 ptr)

vp_ec_value_ptr_type valuel ptr; /*READ ONLY*/
vp_ec_value_ptr_ type value2_ptr; /*READ ONLY*/

Summary

This routine compares two eventcounter values for equality.
Parameters

valuel_ptr — A pointer to an eventcounter value.

value2_ptr — A pointer to an eventcounter value.
Description

This routine compares two eventcounter values and returns TRUE if they are
equal.

Return Values
TRUE — The eventcounter values are equal.
FALSE — The eventcounter values are not equal.
Exceptions

None.

6-16 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

The routines in this section are used by a process to send and receive signals. The
routines pm_is_interrupted and pm_is_terminated notify the caller when process
signals are received. pm_is_interrupted reports all signals to the caller, and
pm_is_terminated reports only signals that will cause process termination.

Process Signal Management Routines

The routines provided for signal delivery allow signals to be selectively sent based on

the process index, process ID, or process group of the target process.

The routines described in this section are as follows:

pm_get_my_pid

pm_get_my_pgrp
pm_is_interrupted
pm_is_terminated
pm_send_signal_by_index
pm_send_signal_by_process_group

pm_send_signal_by_process_id

Routines beginning with pm require the i_pm.h include file.

Constants and Data Structures

No special constants or data structures are required by these routines.

093-701053

Licensed material—property of Data General Corporation

6-17

Process Signal Management Routines

pm_get_my_pid

Syntax

pm_process_id_type pm_get my_pid ()
Summary

Returns the process id of the "calling” process.
Parameters

None.
Description

See Summary.
Return Values

The current pid.

6-18 Licensed material—property of Data General Corporation

093-701053

Process Signal Management Routines

pm_get_my_pgrp

Syntax

pm_process_id_type pm_get my pgrp ()
Summary

Returns the process group of the "calling” process.
Parameters

None.
Description

See Summary.
Return Values

The process group

093-701053 Licensed material—property of Data General Corporation 6-19

Process Signal Management Routines

pm_is_interrupted

Syntax
boolean_type pm_is_interrupted (event_ptr)
vp_event_ptr_type event_ptr; /*WRITE ONLY*/
Summary
This routine handles signals during a system call.
Parameters
event_ptr — The address of a process interrupt event.
Description
This routine handles signal processing. It should be used whenever a system

call will pend the calling process until some external event occurs (that is,
pend for an arbitrary amount of time). Processing includes the following:

e Interrupting the system call.
e Terminating the process (with or without a core dump).
e Stopping the process for an arbitrary amount of time.

Only the last of these actions is contained entirely within the
pm_is_interrupted routine. The first two actions are performed in
cooperation with the caller.

Typically, you will use the following code fragment:

if (pm_is_interrupted(sevents[PROCESS_INTERRUPT]))

{
Arrange to return EINTR to the user. Exit with error EINIR.

}

vp_await_ec(events, N, &index);

Act on the event that was satisfied.

If only the PROCESS_INTERRUPT was satisfied, loop back to
pm_is_interrupted()

In the code shown above, the relevant events are those in the events[]
array in the first line. In addition, the event returned by pm_is_interrupted is
also important. If the calling process is interrupted, the system call will

6-20 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

return an error and will set errno to EINTR. Otherwise, th:e system call
pends until the calling process is interrupted or one of the relevant events has
happened.

Return Values
TRUE — A signal is presented to be handled.
FALSE — No signal is present.

[event] — event_ptr is set to an event that will occur when it is appropriate to
check for signals again.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-21

Process Signal Management Routines

pm_is_terminated

Syntax
boolean_type pm_is_terminated (event_ptr)
vp_event_ptr_type event_ptr; /*WRITE ONLY*/
Summary
This routine checks for termination signals during a system call.
Parameters
event_ptr — The address of a process interrupt event.
Description

This routine determines whether the calling process has any signals that will
cause process termination.

Return Values
TRUE — A signal is presented to be handled.

FALSE — No signal is present. event_ptr is set to an event that will occur
when it is appropriate to re-check for termination signals.

Exceptions
None.

Remarks

This call is designed for use within the kernel when a potentially long but
nevertheless finite operation is started. For example, a spacing operation on
a tape drive or an I/O request to an NFS server is essentially indefinite. In
both of these cases, the operation is guaranteed to eventually finish, perhaps
due to a timeout; but the end user may like the option of terminating the
operation mid-stream by sending the process a signal.

6-22 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

pm_send_signal_by_index

Syntax

void pm_send_signal by index (index, signal, signal_source)

sc_process_index_type index; /*READ ONLY*/

pm_signal_type signal; /*READ ONLY*/

pm_signal_ source_enum_type signal_source; /*READ ONLY?*/
Summary

If the subject process exists, this routine sends the process a signal. If the
subject process does not exist, this routine has no effect.

Parameters
index — The subject process’ index. The index is a unique identifier assigned
to each process. It is maintained in per process data and is contained in the
variable sc_my_process_index.
signal — The signal to send.
signal_source — The reason the signal is being sent.

Return Values
None.

Exceptions

. None.

Abort Conditions

None.

093-701053 Licensed material—property of Data General Corporation 623

Process Signal Management Routines

pm_send_signal_by_process_group

Syntax

status_type pm_send_signal_by_ process_group (process_group,
signal_number,
signal_source)

pm_process_id_type process_group; /*READ ONLY*/

pm_signal_type signal_number; /*READ ONLY*/

pm_signal_source_enum type signal_source; /*READ ONLY*/
Summary

This routine sends a signal to a process group.

Parameters
process_group — The process group ID of the target process.
signal_number — The signal being sent.
signal_source — The reason the signal is being sent.
Description
Send the signal signal_number to the processes whose process group ID is
process_group. The signal is sent only to processes that are not system
processes and to which the calling process has permission to send a signal.
Return Values

The following values may be returned:

PM_ESRCH_NO_SUCH_PROCESS_GROUP — No process corresponding to
those specified by process_group can be found.

PM_ESRCH_NO_PERMISSION — The calling process does not have
permission to signal the processes identified by process_group.

6-24 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

pm_send_signal_by_process_id

Syntax

status_type pm_send_signal_by_process_id (process_id,
signal_number,
signal_source)

pm_process_id_type process_id; /*READ ONLY*/

pm_signal_type signal_number; /*READ ONLY*/

pm_signal_source_enum_type signal_source; /*READ ONLY*/
Summary

This routine sends a signal to a process identified by process_id.

Parameters

process_id — The process ID of the target.
signal_number — The signal being sent.

signal_source — The reason the signal is being sent.

Description

Send the signal signal_number to the process identified by process_id. If
signal_number is PM_SIGNAL_SIGKILL, pm_send_signal_by_process_id
assumes that process_id does not identify a system process.

Return Values

The following values may be returned:

PM_ESRCH_NO_SUCH_PROCESS_ID — No process corresponding to that
specified by process_id can be found.

PM_EPERM_NO_KILL_ACCESS — The sending process does not have
permission to signal the receiving process.

093-701053 Licensed material—property of Data General Corporation 6-25

Lock Management Routines

Lock Management Routines

The kernel lock facilities are used to protect critical sections of ccde. These facilities
synchronize code paths and data structures. Because the DG/UX system runs in a
multiprocessor environment, you may not use interrupt disable to protect critical
sections. The kernel provides three types of locks: sequenced locks, unsequenced
locks, and spin locks.

Unsequenced locks provide no ordering of requesters. They require less space than
sequenced locks, and the obtain and release operations are faster than for sequenced
locks. Unsequenced locks, however, do not perform well under tight contention,
because they can cause a cascade of rescheduling. Each time an unsequenced lock is
released, all processes waiting for the lock are awakened. One process will get the
lock and all others will go back to sleep. If n processes are contending for the lock,
the first time the lock is released (n-I) processes will be rescheduled; the next time
the lock is released (n-2) will be rescheduled, and so forth. A total of n(n+1)/2
reschedulings will occur for every n contentions.

Sequenced locks grant access on a first-come-first-serve basis. They avoid the
scheduling overhead by ordering contending processes based on when they first tried
to obtain the lock. When the lock is released, only the next process in line is

awakened.

Spin locks are simple locks that cause the caller to loop if the lock cannot be
obtained immediately. They should be used only in a very restricted environment. All
code and data you reference while holding a spin lock must be wired. This is because
a page fault could cause the lock to be held for a long period of time. This situation
could deadlock the system depending on what other processes try to get the lock.
Also, any process holding a spin lock must not lose the processor on which it is
running. Finally, the caller must ensure that interrupts are disabled while a spin lock
is held.

The user of these routines is responsible for allocating the space used by the lock
instances. A lock may be created by declaring an instance of type
Im_sequenced_lock_type, Im_unsequenced_lock_type, or misc_spin_lock_type.
The routines described in this section are as follows:

e Im_initialize_sequenced_lock

e Im_initialize_unsequenced_lock

® Im_obtain_sequenced_lock

e Im_obtain_sequenced_lock_no_wait

¢ Im_obtain_unsequenced_lock

6-26 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

Im_release_sequenced_lock

e Im_release_unsequenced_lock
® misc_obtain_spin_lock

® misc_release_spin_lock

Routines beginning with Im<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>