
instantiate - a ie sn as ses i.

Customer Documentation

Writing a Device Driver for the

DG/UXTM System

A Vii Oo N*
PRODUCT LINE

Writing a Device Driver for the

DG/UXTM System

093-701053-03

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 093-701053

Copyright © Data General Corporation, 1990

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 03, May 1990

Licensed Material—Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS

DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE .

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S);

AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN

PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information

contained in this document without prior notice, and the reader should in all cases determine whether any

such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE

WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND

CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME

PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION

CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000,

PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General Corporation.

AViiON, CEO Connection, CEO Connection/LAN, DASHER/One, DASHER/286, DASHER/386,

DASHER/LN, DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/'1400,

ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/7800, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/40000, microECLIPSE,

microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4,

UNITE, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. NFS is a U.S.

registered trademark of Sun Microsystems, Inc. and ONC 1s a trademark of Sun Microsystems, Inc.

Yellow Pages is, in the United Kingdom, a trademark of British Telecommunications plc.

Writing a Device Driver for the DG/UXTM System

093-701053-03

093-701062-03 (Japan only)

Revision History: Effective with:

Original Release — April 1989 DG/UX Rel. 4.10
Second Release — June 1989 DG/UX Rel. 4.10
Third Release — March 1990 DG/UX Rel. 4.20
Fourth Release — June 1990 DG/UX Rel. 4.30

RESTRICTED RIGHTS LEGEND

Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph Se) of the Rights in Technical Data and Computer Software clause at
[FAR] 52.227-7013 (May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive
Westboro, MA_ 01580

Preface

This is a revision of an existing manual. Technical changes from the previous version

are marked by vertical revision bars in the outside margin next to the change.

This manual describes how to write your own device driver for a DG/UXTM system

running on an AViiONTM machine. Under the AViiON architecture, drivers can be

written at two levels: an adapter driver and a device driver for devices connected to

an adapter or for units on a controller. This manual addresses both levels of driver.

Who Should Read This Manual?

Users of this document should be generally knowledgeable about operating system

design topics such as virtual memory, synchronization, mutual exclusion, locking, and

interrupts. They should also be familiar with how multiprocessor hardware can affect

these topics. In particular, driver writers should be familiar with the following:

@ The AViiON machines, including their I/O architecture and the Motorola

88000 processor. The I/O architecture includes the Small Computer System

Interface (SCSI) and the Motorola VMEbus. References for these topics are

listed in the "Related Documents” section of this Preface, under the section

"Other Documents."

Readers should also be familiar with general I/O topics such as memory-

mapped I/O, interrupt masking, and device masking. Readers should also

understand a multiprocessor environment.

e The DG/UX user-level I/O model. This model uses six basic I/O system

calls: open, close, read, write, ioctl, and select, which are described in the

Programmer’s Reference for the DG/UXTM System (Volume 1).

Readers should also be familiar with the standard UNIX® concept of

character special devices, block special devices, and the difference between

the two.

@ The C programming language, because the interfaces presented in this

document are written in C.

We also assume that you have a good understanding of the hardware device or

pseudodevice for which you are writing the driver. You must know how your device

should behave when it is the target of one of the user-level I/O system calls.

093-701053 Licensed material—property of Data General Corporation iil

Manual Organization

Manual Organization

The manual is organized as follows:

Chapter 1 briefly describes the process of writing a driver and gives

an overview of the driver environment.

Chapter 2 describes how to add a driver to the DG/UX system.

This chapter also shows you how to configure your

device into the system.

Chapter 3 summarizes the functions that a driver must supply to

the kernel and also facilities that the kernel supplies to

drivers. The chapter also discusses include files and

major driver data structures.

Chapter 4 describes in detail the functions, constants, and data

structures you must supply for your driver. It also

describes the interface for both adapter and device

drivers.

Chapter 5 describes how device drivers access their adapter

driver’s routines via a set of generic adapter manager

routines. Using the generic adapter manager routines

allows device driver code to work with ary and all

adapter drivers.

Chapter 6 describes DG/UX routines that relate to process

management and timing. It describes routines that

handle eventcounters, signals, and clock operations.

Also included are descriptions of locking routines.

Chapter 7 describes DG/UX routines that relate to memory and

data management. It describes routines for allocating

and releasing memory, verifying pointers, and

manipulating buffer vectors.

Chapter 8 describes routines used for general driver functions. It

describes routines used for error handling, device

configuration, driver messaging, and accessing device

selection tables.

Appendix A provides a sample device driver, including its C code,

and master and system file entries.

IV Licensed material—property of Data General Corporation 093-701053

Manual Organization

Appendix B provides a sample adapter driver, including its C code,

and master and system file entries.

Appendix C lists standard peripherals and their default device codes,

interrupt levels, and memory-mapped J/O addresses.

Appendix D provides a short glossary of terms related to writing a

device driver.

Documentation Set _ provides a complete list of available Data General

hardware and software documentation relevant to the

DG/UX system.

Related Documents

The following manuals and papers provide information that you may find useful. The

first group lists Data General manuals, which can be ordered using the nine-digit

ordering number shown in parentheses (see TIPS information in back of manual for

ordering instructions). The second group lists manuals and papers available from

other organizations. To obtain a document from another organization, contact that

organization directly.

Data General Hardware Manuals

AViiONTM 5000 and 6000 Series Systems: Programming System Control and I/O

Registers (014-001805)

Describes the system board architecture, including the CPU, memory

registers, I/O address decode, and bus arbitration. Discusses how to

program the system board registers for addressing, interrupts, I/O and

system board control and status.

AViiONTM 300 and 400 Series Stations: Programming System Control and I/O Registers

(014-001800)

Describes the workstation architecture and exp;lains how to program the

system control logic, monochrome and color graphics controller

subsystems, keyboard port, mouse port, serial and parallel ports, LAN

interface, and SCSI port.

MC88100 User’s Manual, Reduced Instruction Set Computer (RISC) (014-001809)

Describes the Motorola 88100 Central Processing Unit (CPU), including

the registers, addressing modes, internal and bus timing, and assembly-

language instruction set. This section lists the coduments currently

available for the AViiON 400 series stations.

093-701053 Licensed material—property of Data General Corporation Vv

Related Documents

MC88&200 User’s Manual, Cache/Memory Management Unit (CMMU) (014-001808)

Describes the Motorola 88200 Cache/Memory Management Unit (CMMU),

including the CMMU registers, the cache and cache coherency, memory

management and user/supervisor space, the Processor bus (Pbus), and the

Memory bus (Mbus).

Data General Software Manuals

Installing and Managing the DG/UXTM System (093-701052)

Shows how to install and manage the DG/UX operating system on

AVIiON hosts that will run as stand-alone, server, or client systems.

Aimed at system administrators who are familiar with the UNIX operating

system.

Programmer’s Reference for the DG/UXTM System (093-701055 and 093-701056)

Alphabetical listing of manual pages for programming commands on the

DG/UX system. This two-volume set includes information on system

calls, file formats, subroutines, and libraries.

A complete list of the manuals contained in the DG/UX documentation set is

provided at the back of this manual, in front of the TIPS information.

Other Organizations’ Documents

American National Standard for Information Systems: Small Computer System

Interface (SCSI), ANSI X3.131-1986, American National Standards Institute, New

York, NY.

The VMEbus Specification, (Revision C.1, Oct. 1985), Motorola Corporation,

Phoenix, AZ.

The primary method of synchronization provided by the kernel is eventcounters and

sequencers. These were first described in the paper: “Synchronization with

Eventcounts and Sequencers,” David P. Reed and Rajendra K Kanodia, Proceedings

of the Sixth Symposium on Operating System Principles, Purdue University, West

Lafayette, IN, November 1977. They are also described in: "Synchronization with

Eventcounts and Sequencers,” David P. Reed and Rajendra K. Kanodia,

Communications of the ACM, Vol. 22, Number 2, February 1979, pp. 115-123.

V1 Licensed material—property of Data General Corporation 093-701053

Readers, Please Note

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different

meanings. The Data General symbol and typeface conventions used in this manual

are defined in the following list. You should familiarize yourself with these

conventions before reading the manual.

This manual also presumes the following meanings for the terms "command line,"

"format line,” and "syntax line." A command line is an example of a command string

that you should type verbatim; it is preceded by a system prompt and is followed by a

delimiter such as the curved arrow symbol for the New Line key. A format line

shows how to structure a command; it shows the variables that must be supplied and

the available options. A syntax line is a fragment of program code that shows how to

use a particular routine; some syntax lines contain variables.

Convention Meaning

boldface All DG/UX commands, system calls, pathnames, names of

files, directories, and manual pages also use this typeface.

constant width Syntax lines and examples of code use this font.

monospace

italic Represents variables for which you supply values; for

example, arguments to routines.

In text, italics are also used to emphasize a term that is used

for the first time.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please

feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (USA

only) or contact your local Data General sales representative.

If you have comments on this manual, please use the prepaid Comment Form that

appears at the back. We want to know what you like and dislike about this manual.

093-701053 Licensed material—property of Data General Corporation Vil

Contacting Data General

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system,

and you are within the United States or Canada, contact the Data General Service

Center by calling 1-800-DG-HELPS for toll-free telephone support. The center will

put you in touch with a member of Data General’s telephone assistance staff who can

answer your questions.

Free telephone assistance is available with your warranty and with most Data General

service options. Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday

through Friday.

For telephone assistance outside the United States or Canada, ask your Data General

sales representative for the appropriate telephone number.

End of Preface

Vill Licensed material—property of Data General Corporation 093-701053

Contents

Chapter 1 — Introduction to Writing a Device Driver

TMtroduction cc cece esecec ccc nccscnccesccnctecescesenceeccsensececsceesecscececessecseecsesenes 1-1

Changes to This Release of the Manuaalccccecscnssecectccsescececscecsecscssees 1-1

Overview of Architectural Issuescececscecececeececeeseees decsceccececececeecsceees 1-3

Memory-Mapped T/O 2.0... ce ceccececeeececececeeeececeeesoes benececcecssececcecsceees 14

I/O Architecture: Controllers, Adapters, and Devices beetescccecsascscececeees 14

Adapter, Controller, and Device Layouts on Different Machines 1-5

Adapter Drivers and Device Drivers0ss008 de eecncesecscccescseeeees 1-6

The Adapter Managerccccecececeececseesseeteeeees be esescecescecscscsceeees 1-8

Do You Have to Write a New Driver? ccc ccceceeuscscncssecececscscececes 1-9

Interrupt Structurec sce cence ec ececececcncscececececscscscsceuscscncescecescescececess 1-9

The Multiprocessor Environmentcsccscececcccsccectcncesceccecsceesecceces 1-11

How to Write a Device Driverccceccsccececcccectccscscecencececccsccscesecsoneeess 1-12

Overview of Device Driver Environment:ccscsccscecesaccenscecsscececesssceees 1-14

Device Specificationscceceeeccecececcecccncncscscscecsencesecssesseceeessssoseees 1-14

Special Files (NOdeS)ccccecscccececececscscecessccscecscecccescececcccecsceceeces 1-16

Block Versus Character Interfacecccecescececscccecscecccecececcscscscecece 1-18

Driver Executioncecceeececcscccceccscecencecscessncesesssccscecscccececeseesseesese 1-18

Memory Managementcceccecscenccescccsccoscnsscecscnenencncessseecsssasescecs 1-18

IMterruptsccnseecescccecescncesceccccecscscescscsereees tateeteecscecescecceseeececeesees 1-19

SIQGMA]S 2... .. cece e ee eeceeceencececeesesescreeceeecessccsescecsensceeceeseesescesescecaseseesones 1-20

Chapter 2 — Adding Your Device Driver to the DG/UX

System

Adding a Master File Entrycecesceccccccccsccccccssscccscecccececccescscescsceees 2-1

Device Descriptions: The Device Section Entrycccccescescecsccscecsceecs 2-2

Parameters: The Keyword Section Entryccccscecscececcscecscecscscscecees 2-3

Master File Aliases: The Alias Section cc cececececcneecnceeneecscseeeesesces 2-5

Adding a System File Entry cece cece cceeececececsceccececececescesecescnsecesesees 2-5

Rebuilding and Rebooting the System ccc eceececececececencceccccecesecesscerenes 2-6

Checking the Configuration Processcesceccscocescecccscsccsccsescscsscscscocesosees 2-7

COME.C 2... cece cee ececsceencesceeeccec ences cncsnsecseesescnssseasssesecececssecessesecesesenesees 2-7

Your Special Files 2.0... cece cece eccecc nes rec ec ccecessnccececececesssecscesssesscsescees 2-9

Chapter 3 — Overview of Driver Facilities and Functions

Include Files 2.2.2.2... . ccc cece ecco ce nce e ecw scene cee tecencececcencseceserssesessceceesenseeesoenes 3-1

Overview of User-supplied Device Driver Routines ccc ceceecsceeececeeeeeees 3-4

Overview of User-supplied Adapter Driver Routinesceccececsceceeeeeeees 3-9

The Device Driver to Adapter Driver Interface 2.2.0.0... ccc se ececeececeneecees 3-9

Overview of Major Data Structures cece sees ecececsecececenecccecececececesececes 3-12

Device Driver Data Structures 00s cece eceeeccncecscenencuccscncececceceesereces 3-12

Data Structures for SCSI Adapter and SCSI Device Drivers 3-14

Other Driver Facilities cc. cccecece ec ececencccecescneececectecsceces veseesseesceesceeeeees 3-16

093-701053 Licensed material—property of Data General Corporation 1X

Contents

The Driver Daemon and the Generic Daemonsccsceuesesscccececseees 3-16

Error Reporting Facilitiesc.ccccccscsccecscscsccceccecscscesceusssssscecesceones 3-17

Chapter 4 — User-Supplied Driver Routines

User-Supplied Device Driver Routinescccsesesscececececsctecesecnsecesessseeeses 4-2

Constants and Data Structurescccececsecececeecececscsscecsesescecceseonscseees 4-2

1O_CFIVET_TOULINES_VECTOF_TYPeceececscscsce cece ececceesceeeeseecesesseseseees 4-2

LO_GEVICE_NUMDEF_CYPC se cece ceceeeccencececececescecensscoccrescesseccssseesees 4-3

io_device_handle_type cee ceeeecsscececessccececeeesccesccessssscecesceseseees 4-3

LO_TEQUEST_IN[O_TYPE eee ece ce eeeceecececececscecsceceecessceectesceceseseoneseees 4-4

JO_LOPEFatiON_tyPe 22.0... eee cee ceceecneeeeeccecsnceeeceseeeesccecereesceseesssesacens 4-5

LO_LOPETAtION_TECOTFG_IYPE 2.0.0... cece ee cece ececececeee ec eee nescence nescecenseseeeenens 4-5

JO_Select_inteNt_tyPe cee cece cececececeecececeececoeccnc cece rsesescescssseseees 4-6

10_Duffer_Vector_tyPpe cece cece eceecececeteceeeeceecnceceeceeereececescenesessens 4-6

10_buffer_descriptor_type--eeceececececeeeee cree esc sceccnserensecescescesenees 4-7

10_buffer_vector_CcontroL typececcecscececec sce eeec ese seccreecsceccsceeeesens 4-8

io_Channel flags type:.cesceceecssccscsccecsccecscceeecesscersseccecsesceeseseees 4-8

Interfaces for Device Driver Routinesceecescecscceecceseecsescecessesoes 4-11

GEV_XXK_UMITS oe eee ce cece cece ce ec eee nsec nce etenescecenesceneesescsceceseesceseoes 4-12

GEV_XXX_COMFIGUTE: oo... e eee ec eecec ec eeneenencneneeseneeeenecceceseesceeees 4-13

GEV_XXX_OPED: ones eee ee ceceec ec cceececc sce nceescescscncecesccecscesssssescosesssoens 4-16

6 (AY 0.0 GIL 0) | 0) :\ pu 4-18

GEV_XXX_SEFVICE_INTETTUPt: — sees ee cece ceecec even ec ee sceeeccesesceeeerecesseees 4-20

GEV_XXX_TEAG_WTITE: oes cece te ecece ee ecc reece eecenecescencceescsceescoecceseees 4-22

(6 (1b 0.0 GE) (-) eee 4-25

GEV_XXX_TOCH: oo. ec ee cence ne eccececeecececscscecceceecscesceesecsceneesessees 4-27

GEV_XXX StAItlO> oo... ce cee eee ceecec ec ecncncncsceenescscescesecesneesseceseees 4-29

Kernel I/O Completion Routine Interfacec.eeceeeeeeeeecececeeees 4-31

GEV_XXX_OPEN_CUMP: 2.2... eee ete ceeece et eeteecec cece ecnccecseccecenereeessees 4-33

GEV_XXX_WYITE_GUMP: oo... eee ee cee cence cece ecnc eee ecececceceeserscesceseeceeues 4-35

GEV_XXX_read_duMp: oo... ec eeeceeteeceteecec ews eecccsccescessccceeccsseess 4-37

GEV_XXX_ C]OSE_GUMP: 2.0... cece cece eee ce ee tence cece econ ens enecccecescscseesenseeees 4-38

Gev_xxx_powerfail: cece cece cee eeeececncecccncerescscceesceccesceccnsesceeees 4-39

Gev_xxx deconfigure: ee ce eceeecec eee ccreceeeceecncsenceccrsscescseeseees 4-40 -

GEV_XXX_CEVICE_TO_NAME: esc e cece cece wen ce nce cc eee e scenes scensseecncesscsosees 4-42

GEV_XXX_MAME_fO_CEVICE: 2... .. eect e eee ceetee cece eee scence ensceseeeceescees . 4-43

Gev_xxx maddmap: oo... cee ce ceeee ees eceececcceeecetcaecteccceeeteeseecceees 4-45

GEV_XXX_MMAP: oo. e ssc ee ce teee ete eccncccenceccereccecccnsreceeeseessesscssonseeses 4-46

CGEV_XXX_MUNMAP: oo. cece cece eee ecececeer ccc ccececceceeescescecccesensescsesceeses 4-47

User-Supplied Adapter Driver Routinescccecssccceerecccceccecsescessceceeees 4-48

Constants and Data Structurescce cee cece cece ec eee ec scence ec eceeeeecoeesees 4-48

dev_scsi_adapter_routines_vectOr_typececsceccece cc ecccecceceeecesees 4-48

dev_scsi_interface_routines_VeCtOr_tyPeccesescccecsccecsceceneceeees 4-48

dev_scsi_adapter_umit_Spec_tyPpecececececceeccnecccccecccencenescoeees 4-49

dev_adapter_request_DIOCk_typeccsceceseecceccccceccececcecconcensens 4-49

DEV_SCSIREQUEST_FLAGS.cccccecsscccececccencccecscccesccceasess 4-51

dev_scsi_adapter_unit_registration_DIk_typecssceceeeseeseecseeeeeees 4-52

dev_adapter_physical_request_bDlk_typeccscescececccceescscceceecseees 4-53

dev_scsi_adapter_unit_options_DlOCK_typescceceesecsccecececeeeees 4-54

SCSI Adapter Unit Options Block Literalsccsceesesececeeeee eens 4-55

Licensed material—property of Data General Corporation 093-701053

Contents

Interfaces for Adapter Driver Routines000- sesecccescccsccecceceecs 4-56

GeV_XXK_FeGISLET_TEQUESTET: 2... eee ec eecete ee receeecnecceccscscesescsccocees 4-58

GeV_XXX_Set_UMIt_OPHONS: — eee cece teeter ecsccctecscncsceeecscscocsceencees 4-59

Gev_XXX_deregister_TeQuester: —eececesseceecnsccesenececcrsececceceenenees 4-60

GeV_XXX_ISSUC_COMMANG: oo... ce eee ec eee e cer eccccencncnceeceecncsecensoeees 4-61

ev_XXX_iSSUC_ASYMNC_COMMAN: oo... eect ec eee ececeerenceeeecscccececeencenes 4-62

dev_xxx_get_device_imfo:e cscs cece ee eeeerecceceecersccecreceseseeseceeeees 4-63

dev_xxx_issue_command_physical_ mode:ccsccececeecceeececceences 4-64

Chapter 5 — Managing Your Adapter From Your Device
Driver

Constants and Data Structures cece ccceceeecececteescncecesccecsccecceceeeeeees 5-2

dev_scsi_adapter_comfigure: cee scceceeeecenccececeececececscceesscccceeseceesecees 5-3

dev_scsi_adapter_device_to_mMame: — cece eecesececeececeseececesceccecececeeeeeseces 5-4

dev_scsi_adapter_maMe_to_device: es ee eee cecececeeeecececececeececececceceecenees 5-5

dev_scsi_adapter_OpeD_Gump: —........... eee seceeceecececccescecsensserssssenscsecesceseees 5-6

dev_scsi_adapter_register_reQuester: —cececececeecececcscscecceccseccencecceceees 5-7

dev_scsi_adapter_set_unit_Optioms:s.sseseccecececsececececsccccececsceeceeeenees 5-8

dev_scsi_adapter_deregister_requester:scecececnecececsceesccnceceseeececeeees 5-9

dev_scsi_adapter_issue_COMMAand: .0....... esse ee eeceececeececeetercecesseecececeees 5-10

dev_scsi_adapter_issue_asymc_COMMAaNd: — cc secscsecececeseesccecececceecenees 5-11

dev_scsi_adapter_get_device_info: sees ec seeeseeceececneecescscnsceseeeeees 5-12

dev_scsi_adapter_issue_command_physical_ mode:ccesceesececeeceneees 5-13

Chapter 6 — Process Synchronization and Timing

Synchronization Routinescsceseeecsseecscecececsscecsceeeeeee seecescesscecececcesceees 6-2

Constants and Data Structures cs cece eeeceee eee ee eee ees pecececceseseecescesceees 6-3

VP_CVEDE_LYPCsccecececcececencccceceeceececececscerseseeees se necececccescecceecesees 6-3

Vp_add_to_Lec_value:cscececeeecececec eer eeeeeeeeeceeeceees becceecscceecceccecceeees 6-4

VP_AdVANCE_EC: oc .e ee ececeeee cece eect ecececececececececececesesseees peececccecsceeccescceeece 6-5

VP_AWAIt_CC: — see e cece ececererencecencecececeecenceceseeeecseeerenes se ecececccscveccecseecees 6-6

vp_convert_clock_value_to_ec_value: esc ee scene eeeeee pe ncececscccsccssccescoes 6-7

vp_convert_ec_value_to_clock_value:csceeceseeeeeees sececececccenccsseecesees 6-8

Vp_get_mext_ec_value: 2... cece cece cece cee nceeececeecerencees peenceccsccescceesccocess 6-9

Vp_has_event_Occurred: 2... seco cece ce ceceesecececececececseccecsscecesecscsassecesensecees 6-10

Vp_increment_ec_vValue: secs ceeseceec ee cecececceesccescescacereccessceeceecececeoeees 6-11

VP_imitialiZe_CC: oo. see eee ee ceec ee ee ec eececeececececeenececeseneseeceeescsesseeseecerasenenes 6-12

VP_imitialize_S€QUENCEr:ccecesceeceeceecesceccescescceesceeceeescesesseeeeceeeeees 6-13
VP_TCAd_€C: oo. .e ee ceeceeeecscecccrececececenccecececenecacscsecsscsseeesesseseesceeeeereceaeees 6-14

VP_ticket_SEQUEMCET: 2... esse cece ecece cent ec ec eceerenecececscnececssescescecececenoneees 6-15

VP_are_eC_Values_equal: —cccecsscecscececsceceeceescetseceesecsecescsseeseoeseeees 6-16

Process Signal Management Routinescccececcecseceecceccecsscesececeeeeceenees 6-17

Constants and Data Structurescececeseseccecceccccccccscescscerecesescecees 6-17

PM Get MY_Pid:cceesecceccecececeeersececssesseceeeessessseceeeseassesassenenoseeees 6-18

PM_GEtL_MY_PQTP:ceceeceecesececececceceeccecsccececeeeerseesceseeersessseasseseseeoneees 6-19

PMLiS_interTUPtEd: 20... sees ee cece cece eceececeeeecetsecneceeserereeneeseeeceececeeeeeees 6-20

PM_is_termimated: eee cee eeeeeecesceeceeteecceseseneeeesseeesseasereseeneees 6-22

pm_send_signal by_index: 20... ...cececeececececeececerecsersseecceceeceereseeecseneeeeeees 6-23

093-701053 Licensed material—property of Data General Corporation xi

Contents

pm_send_signal_by_proceSS_gTOUP: —csececccecoececesceccecnscessscscseescecens 6-24

pm_send_signal by_process_id:ccceecseceecessceceseenceceuceecscrecseesceeses 6-25

Lock Management Routinescccecesceescnsceccscccesecscecsocsesnsscsececeressceeens 6-26

Constants and Data Structurescceccccececececscscccescccsceuescscsceccesescsees 6-27

Im_sequenced_lOCK_typescccccececscssecssecccccscseceucroesesseseseeseees 6-27

Im_unsequenced_lOCk_typecccccccececeecececescececeusccesecceseescesees 6-27

MISC_SPiN_JOCK_tyPe0..cececscscscccceccsccscecsensesccceseceusseescesecaescseess 6-28

Im_initialize_sequenced_lOck: cc ceccceececee cece ce cerececscscuecsrscscesesseseees 6-29

Im_initialize_unsequenced_JOck:c ees ce ee ceseeeeececencecescuccecscccseeeoneeees 6-30

Im_obtain_sequenced_lock: — cs eeceececececcecececcccceeessceeeeuscessccesseessecees 6-31

Im_obtain_sequenced_lOck_mO_Wait: — eee eecesececscceeceeceueesceecseeecseseees 6-32

Im_obtain_unsequenced_lock: see eee ete cese cece eetececeeceuscesscecereseeeeees 6-33

Im_release_sequenced_JOck:ceeee ce eeecec ec eeeeencececseceuencsceceesseseeeees 6-34

Im_release_unsequencCed_lOCk: — sees ees ereccececeeceeeececcuccceseceeeeseoeeees 6-35

MiSC_Obtain_SPIM_JOCK: — eee cece eecece cece ec sceececescccecsceescueseseseesseeseeees 6-36

Misc_release_SPin_lOCK: —esececsccecscecsceccsceccecccsescscscuscecsccsssecsoseees 6-37

Clock Routimessececsecscecsceccccecscscscscecescccssescecsssceseoees secsescecescscscsees 6-38

Constants and Data Structurescececececesceeeececeeeees seascscscescscsceees 6-39

MiISC_CIOCK_VA]UE_TYPE ec cece cee eceeceecscecscccececscsees sea cececcccscsscees 6-39

Vp_establish timeout:cccsceeccecscecececsccceseevecensesseoses senesecccccecscceres 6-41

VP_CANCEL_tIMEOUl: oo... sees eee ce cece tees cec eee ccscectaceseceeesecees seccececoccecesseees 6-42

Vp_Specify_maxX_tiMEOUts:cescescecsccesesceeessccesscescsscerescescssecessessens 6-43

Vp_create_ClOCkK_eVent: —c see scecscnc ce cerenceecnsccceccrsesecerseccsssecseesceeres 6-44

Vp_read_systeM_ clock:cescscececescscescececceceseccecessesecersecesceceseececeess 6-45

Interrupt Handling Routinesccscscsececcceseceeeesesocerecseeecerecccscecesesecesees 6-46

Constants and Data Structurescccececececeececcececscceccneecsescesscesecsees 6-46

UC_INEFTUPt_CNUM_TYPe 2.0.2... cece cecececeerercccnreececeseerscsescssessseceeees 6-46

1O_MaSk_interrupt_VaTlety 2.10.0... cece eeeececececevecccseesscecscscsescscecnsccssoseeee 6-48

1O_UNMASK_INTETTUPT_VAFICTY: sss eee eee eecen scene ereccscecescesenssseseeseneeses 6-49

Vp_are_interrupts_ disabled: cc seeseeccecececcececcescecccessecesecaecsseceees 6-50

Vp_disable_interrupts:cssceeecccsccscccecceessecsccacecesccsesseesescecesscenseees 6-51

Vp_emable_interrupts:cececececcescscccececsccsececcscecsscscscsescccsrenscseeseees 6-52

Chapter 7 — Data and Memory Management Routines

Memory Management Routinescccecccceccccscccccccccsccecccscneccccecccccssccsosees 7-2

Constants and Data Structures cc cece cc cecee eens ececescsuerecscescceesessscees 7-3

Page Alignment Literalscccceecesceceeoceeeeeceeeees beencseccceccerscesces 7-3

vin_get_physical_byte_address:cceeeeescecsecerseeeseceoeees heeeeccscccecescscoees 7-5

VIN_Get_UMWIFEd_MEMOTY:eceeececececceceencceeeceeveseoeees senecsccescccesccscess 7-6

VML_gGet_WiFEd_MeCMOTY: — sce cceceececcecesccnscccscceccscececees besscseccccccscoeceecs 7-7

Vm_map_physical_ MeMory:csceceece ere ceeecceescecesesees seencencccceccescceces 7-8

Vm_unMap_physical MEMOTY: —ececeeeececececeeececccnccecsrccscscsaeececeseees 7-11

vm_mark_mod_and_ref_and_umwire_MeMory: —ceceneocsccerenccececeees 7-13

vm_mark_ref_amd_umwire_MeMOry: —c sce ceeeececcscenccccecescsscsccscoscewcsnces 7-14

vin_perhaps_ get_unwireG_MeMOry: —s.cecseecscecersccccscecevccceccscsceeceeees 7-15

vin_perhaps_get_wired_MeMoOry:sccecscecsecececsescsceceteecsesececessceseees 7-16

Vin_Telease_UNWired_MEMOTY:ec ee eececeececesctececsececeseeteesscscscececseceees 7-17

Vm_release_Wired_MEMOTY: —cececceccceccccerscecsccecececscetcccecessereesecseres 7-18

VML_UNWIFE_MEMOTY: 2.0... cececeece cree ececncecetecscccsececsccscescscetesecsscserececeseees 7-19

VIN_WITE_MEMOLY: oo... sceeseeccscocececccencncceccceccscsesacscnssecccsetscsecscssesseceesees 7-20

Xi Licensed material—property of Data General Corporation 093-701053

Contents

User Data Access Validation Routinesceccceccceccvccccscccscecsecsccceceeoees 7-21

Constants and Data Structurescccccsccessccccccccsscsccccecccsccscesssecsseees 7-21

sc_check_access_and_read_string_from_uUSeP: —c.scsseccsscecesecccccscecscesees 7-22

SC_ChecCk_byte_access: —csceccesvccccccccccvccccvccccccccccccecsscccssescessessessseees 7-24

Sc_read_bytes_from_user:cscccccnccccccsececceccceecececs se seescscscscccescesces 7-25

SC_LWTIte€_DYtES_tO_USET: — eee tence nce ccc cece ccenccnccseccscecerevceccescecececeseess 7-26

SC_WYTItE_StFIMG_tO_USET: 0... ese e cece ece nec ece eee ccecceeecesceeees be sceccscccsceccscoeeee 7-27

Buffer Vector Management Routinesceceeessceeesscoeees senececescsrsccccsceees 7-28

Constants and Data Structuresccccccececerccscscccsceeecuecccceeceescesccseeees 7-29

io_add_to_buffer_vectOr_positionm: — ec ceceeecceecseceseueeeesceceeeeceeeeeeees 7-30

10_get_buffer_vectOrio_infO: cc teeeeecececccencecceecusccscesececeeececesees 7-31

io_get_buffer_vectOr_poSition: ce eccecececereceececeeecuseceecececseceeessoess 7-33

io_get_buffer_vector_residual:c ce seeeecoeeceeerecccceencuencecececeeeeseceeeens 7-34

io_get_buffer_vector_byte_COUMt:s cece ce cececeeenecececnecceseeceeseecncesenes 7-35

1O_imit_buffer_VeCtOr:ccecececscsceccecscncecscecccscceecncscusececsessesceceeesoees 7-36

i0_init_one_entry_buffer_Vector:cccececcecsecscececececrcecscsescosesceresenes 7-37

10_read_from_buffer_VectOr: —cccceccscccceccsececcccccnccececseccececeecscecessceees 7-38

io_reset_buffer_VeCtOr_POSItiON: —c se eececscsecsrecscsceeerececeeeresceceeceeees 7-39

io_set_buffer_vector_residtial:cceeceseccecccccnccesccccncecceccececescsescccsens 7-40

1O_WTite_to_buffer_VectOr: —cceececc cece ececececcecscececcscececcecscesecseseesseoees 7-41

Chapter 8 — General Driver Routines

Configuration Routinescecececescoesecececccceceesccscsceccesenrecsstecceseesecceseoers 8-2

Constants and Data Structurescccececeececescceeecscecerecscsececsscccssescnees 8-3

fs_GeV_Tequest_tyPecececececeeeencceeseccecsseeeceeeeees dececececccsceecscscees 8-3

fs_dev_request_operation_eMUmM_tyPe€ceceeeeeeeees secececccccccvscsecscees 8-4

fs_dev_create_request_typecccceceeesescecececeeeees se scccsceceseceeeeeseees 8-4

10_dev_adapt_info_typescssecccsvsccrscsceeeeeeeees dececccscseecceccsseeees 8-5

Literalsccccceceecccccccccescecscceccescccescscescscsecceceees pantececscccscccsccsees 8-5

UC_deVice_ClasS_CNUM_tyPEececeeececececececceeeeccsseuscseccceceseesesenseees 8-6

UC_AEVICE_COGE_TYPE sc cece see eeeccec ec eccncececececeeceueececsccssecsceceesoss 8-6

Integrated Device Code Literalssccecsccsscccceucccccscecescececseeenes 8-7

UC_TESET_EMUM_ TYPE 2.2.0... e ee cceeceeco cece ec encecnecerecceccensasecescecseeeeecseeses 8-7

fs_submit_dev_request:scccscceccecesscccsccectecsscceecusesscccceesscecersceees 8-9

10_add_to_register_list: cece ce ce cee eee teeec occ cc eceecnceccnsesceeceseceseneeseeeecs 8-10

10_allocate_device_MUMDEL: — ses. ss ceee ccc cccecc cen ccccecccccceseccssececssescccseseses &11

10_deallocate_device_DUMDEL: — ce eceecece eee ccccecccccncsccecscceceseecececsees 8-13

10_deregister_device_infO: 2.2... ssc cee ccccccecc nce eccncnceccncecccceesccescecsceceseecs 8-14

10_Check_device_sSPec:sceseeccccccccccccscccecccsccescccccesesesecesececessecsceees 8-15

10_forget_device_SPeC: ... 0... cee ee scence scene eeeees seseccncsecencscscncceccescocesscsseeses 8-16

i0_do_first_short_board_access: —scececeseccecccccececccrececsceccceeecececeeeces 8-17

i0_do_first_long_board_access: cece cee ceteeeecescceecsceccecessececececceeseeeeees 8-18

TO_Get_GeVice_iNfO: 2.2... ceceeceecececec secre ecccncceccerecscncsececeseerscesescecseeeees 8-19

LO_Map_device_MUMDET: ees cece cere ccereccccecsececcccececesceeecscesescecsceeees 8-2]

1O_PAarSe_CeVICE_SPCC: 1.2.2... ee cene sce ececcnceesceccecenscceerccetaretecscecetercereceeeees 8-23

VO_PCTfOTM_TeSEt: 2... eee e ce cce cree ence cece cc ccencescnsececescncereneneecsecessceceseeees 8-25

1O_Tegister_Gevice_iMfO: eee ceeecceconcncececscscceeccceceterecseeceseseceesereecs 8-26

Driver Daemon and Generic Daemon RoutimeScceceseccceccscececeececes 8-28

Constants and Data Structuresccceecscececsceecececeecresescccccseseesseeees 8-28

10_queue_message_tO_driver_eMOn:cccesceceeececcecereceececeeseseeeeseaes 8-29

093-701053 Licensed material—property of Data General Corporation Xl

Contents

io_specify_max_GeMON_ MESSAGES:seeecoreccsscsccccccercecccccescscccscscecesces &31

1O_QueUe_MeSSage_tO_GeEMEriC_CEMOD:cceceessecececonccccescscscenccscscscees 8-32

io_specify_max_generic_GeMON_ MESSAGES: 0.2... seco eeeeceeescecececesceceesceseees 8-34

Error Encoding and Logging Routinesc.cccsscsssscssceccececsesscscscecseceeees 8-35

Constants and Data Structurescccsceccscsscceccccsccncsescssessceccssesesceees 8-37

SC_NO_ERRNDO ccc ccseccsccccscsccscscccesccscscscscecsessececscssesscessceesenes 8-37

SCLENCODE_STATUS: ou... ccc ee cceccccececcceeccsccecenccnseeccncssscsscescececseces 8-38

FO_CTT_JOQ_€LTOT: —......eceeesecececcsscececceccsccscncsccescsecsceeessasescsceccsssecsessseeees 8-39

Select Manager Routinesccsececececcceceececscsccescesescoenscscecescesccececscssoses 8-41

Constants and Data Structuresc.ccececcsececcecscetscsececcsceecsccececssecees 8-42

LO_SELECT_CANCE]: oo. eset e cee ceeceeee ects ecceccceeecscscncscesceceeeseccscsesescesseesesenes 843

LO_SC]ECT_AMIt: 6... keke cece eee ecececececcececeeseencencecscnceceeescncsecsscsceseceseseseesees 8-44

JO_SCIECT_TEGISUET: 2... eee eee eee eee ee te eec esc nsceceecceseeeceenceseccecscsceeecessocsesenes 8-45

IO_SE]ECT_SAatiSfY: — eee eect cece cece nce ee ec ee eee escecececncseenceeceeccnssescsseecesecsees 8-46

Miscellaneous Driver Routimesccccscecceccncscecceccesecescencscssssccscesesesces 8-47

Constants and Data Structures cece ce cecceececcccescescencscnscsscecencsceeoes 8-47

Fs_ChECK_Selfid: oe... cece sence cc ecccvescecccnescceeserecsscsccseesiecsececescneseees 8-48

1O_EX_StF_TO_LIMt: oc. eect ete cece ere tccecese ec ecnceceeecececescscsescsciecscseseeseeesees 8-49

MISC_fOrMat_MINe: 2... ces ceeeecectceceececescecescescssceessoscsseseesceuscscsscesseeesees 8-50

PM_IS_SUPET_USET: 2... .e see ceeecsecce en ecececceececncscescesssccsceeseesscusresceseeeeerses 8-52

SC_PAMIC: ese sees eee nnc enc ece cece cscsssccncescecccncecccsesescescesessessenss peceseeccecosesoes &53

Nodevice Routine Stubscccccsececscecscsccecccescscnscnceccescecccsscctensceecscscsenees 8-54

LO_NOGEVICE_OPEN: oo. ese seececeecscesceecscecesceccacescescecssccesceccceecereseencccsceseeees 8-56

LO_NOGEVICE_CIOSE 2... cess cet ee eece nce ecececeee eee eececeecnccecenecccncenenseescscneseees 8-57

LO_NOGEVICE_TEAG_WTItE 2 oe. cece cee ee nce ce enc ececncescnececescnscscesecevasensecess 8-58

LO_NOGEVICE_SE]ECE: oo... eee eee ec cece eco cenevececeecescccccececcescnc eset scscerenseeceesecess 8-59

LO_NOCEVICE_IOCT] 2 oe e tees cece ec eeeeececececcececcncecesceceeescsccssensaceseceeees 8-61

JO_MNOGEVICE_StATt_iO 2eceeceecscsceccscecceccncenecsceceescecseensseesecscscoesseseseees 8-63

1O_NOAeVICE_CONFISUTE > settee cece ccc eetsececccecerecneeceescecesscsscceseceeseeees 8-64

1O_NOAeVice_deconfigure 2cecesecsesseececccesscccecoeecscsecesssseecesecesseeees 8-65

10_NOdeVICE_MAME_tO_GEVICE 2... esse cecece eee ecersceescencecesceesscsscceesceseseese 8-66

1O_NOdeVICE_CEVICE_TO_NAME + ese cecececcecececscecescsccscescnscscscencsncsesesess 8-67

1O_NOAEVICE_OPEN_GUMP 2 ou... cece eececesscssececeesescececececscneesesccseeseeeeeeseeees 8-68

1O_NOAeVICE_WTite_CUMP ou... cece cee eee eeee ec ecececc nce ececscnsecerenseeseceeseseeees 8-69

1O_NOdeVice_Tead_GUMP: cece ees ee cece cee sceeeenscnecscescncscceesecesceceesees 8-70

10_NOdeVice_ClOSE_GUMP +... ces ee ee ceee ne ece eee eecncccececseescec enue: sevessececececeess 8-71

i0_NOdevice_powerfail 2 sce ceeeeceeece ce eceeecsceccncecccceccnsenccesenseasseeses 8-72

LO_NOGEVICE_IMMAP: —.... see ceseeeceee ce cce cece en eccccccescecsecececesceesseceeeseneereees &-73

1O_NOGEVICE_MUNMAP:sscsescoceccecccccceccccccrsceecereccacenccosiscsccencscsecseses 8-74

10_nOdevice_maddmap:cceeccceresscececcecccccscesseascneeeees secsceccecceeceoess 8-75

1O_NOGEVICE_SEFVICE_INTETTUPt: — eee s eee eee cece eetec ees ceesece cece recescecceceeseeees 8-76

Appendix A — A Sample SCSI Device Driver

Data Definitions: dev_sdidef.bcscccececesereceoes seeececcsevesccccscsccscesees A-l

Static Global Data: dev_sd_global_data.cccscsessesccecsecsccecsceeeseees A-11

Miscellaneous data: dev_sd_message_data.cccscccccscsecscscscsonccceseesens A-12

Main Driver C Code: dev_sd_driver.ccscssccsccseccsceceresescsscscscscscsees A-12

System File Entriesccsecsecsesscesccscsccscecsccseevssccscccscsscesossseseesees A-85

Master File Entriescccccscscsccscccscccsccccecsssscssccssccescssscssscscssesceeees A-86

XIV Licensed material—property of Data General Corporation 093-701053

Contents

Appendix B — A Sample SCSI Adapter Driver

Data Definitions: dev_cisc_def.bcecececececececcsnccesececececscscsccececeoees B-1

Static Global Data: dev_cisc_global_data.cccscceecceecesceecsseceeececees B-19

Main Driver C Code: dev_cisc_driver.ccccccsececesceccececcecscsscecceceees B-21

Adapter Management Code: dev_cisc_mgr.cceeceeeccceccoecsereeeeeeseees B-32

Driver Utility Code: deviciscutil.cccececececcccccscecceccccncacecscecscncnces B~49

System File Entriesccccecscccscceccececncecececscnccesccecscecececscesecseceuees B-72

Master File EntrieSccceccccescncccccsccccceccacccccccecectecsccscceccscecescencs B-73

Appendix C — Standard Peripherals and Their Defaults

AVIION System I/O Defaults ...0........ cee cecececececececececececececcececececscsccececeerens C-2

AViiON Station /O Defaults 2.0.0... ee ceeeececeececcecececeececcscceccececessceceeeeees C-6

SCSI IDS ou... cece eeececeeeceneceecsscsececeececsceessesescsceecscescecssesseeceeeeesseseeseeesaes C-7

Device Specificationsccecsecseeecceeeceeccncececececscscecececsessececesscscseseeeeeees C-8

Disk and Tape Command Set Compatibility 2.0.0.0... eee es eee cee ec ec eceeceeeees C-10

Appendix D — Glossary

Documentation Set

index

093-701053 Licensed material—property of Data General Corporation XV

Table

3-1

C-1

C-2

C-3

C4

C-5

Tables

Routine Classes and Their Include Files ccc cee cececsecscececereeceeees 3-2

AViiON System I/O Address and Interrupt Level/Vector Defaults C-2

AViiON Station I/O Address Defaults ccc ccececececeeneecececeeees C4

Default SCSI IDS ccc ccscenescccececccececscsceccececcaccecsccecececseceeneeees C-7

AViiON System Device Specification Parametersccesseseeeeees C-8

AViiON Station Device Specification Parameterscceceeseceeees C-9

Licensed material—property of Data General Corporation 093-701053

Figure

1-1

1-2

1-3

C-1

Figures

Diagram of the AViiON System I/O Architectureccceceeceeee enone 1-5

Diagram of the AViiON Station I/O Architectureccecceeeseeeeees 14

The Adapter/Kernel and Device/Adapter Interfacesscceeceeeees 1-8

AViiON System Memory-Mapped I/O Addresses and Data Width Areas C-4

093-701053 Licensed material—property of Data General Corporation XVil

Chapter 1

Introduction to Writing a Device

Driver

This manual contains information you need to integrate a device driver into the —

DG/UX kernel. It details the rules and interfaces that affect the relationship between

the driver and the kernel. It describes when routines in the driver will be called, what

assumptions they must take into account, and what actions they must take. It also

describes kernel routines that the driver may call.

Introduction

This chapter provides a general overview of the DG/UX operating system

environment in which your device driver will reside. This chapter focuses on

hardware architectural issues and relevant facets of the kernel environment.

We assume that you have a working knowledge of Data General hardware and

software architecture. If you are not familiar with these topics, or if you need more

information, please refer to the manuals listed in the Preface, in the section called

"Related Documents.”

You may write a device driver for either a hardware device or for a software virtual

device (called a pseudo-device). Much of this manual applies to both types of

devices. However, for pseudo-devices, information about the I/O architecture does

not apply.

Changes to This Release of the Manual

The following list summarizes the changes documented in this release of the manual:

In Chapter 2:

Corrections to the compile command line are given in the "Rebuilding and

Rebooting the System” section.

In Chapter 3:

A note cautioning users to initialize their data has been removed. Enhancements

to the 4.30 linker (Id) now make sure that data goes to the correct section of the

093-701053 Licensed material—property of Data General Corporation 1-1

Changes to This Release of the Manual

program area regardless of whether or not it has been initializecl.

The "Driver Daemon" section has been revised and renamed to include the new

Generic Daemon that handles I/O completion routines that mav pend during

processing.

The “Error Reporting Facilities" section has been rewritten to clarify new error

reporting facilities.

In Chapter 4:

The dev_xxx_configure routine has a clarification regarding verification of the

name string parameter.

The dey_xxx_service_interrupt routine has a clarification regarding use of the

driver and generic daemons to pass information to other processes.

Corrections and clarifications have been made to parameters in the dev_xxx_ioctl

routine.

Minor changes have been made to the io_driver_routines_vector_type

dev_adapter_request_block_type structure, the DEV_SCSLREQUEST_FLAGS

literals, the dev_adapter_physical_request_blk_type structure, and the

sense_bytes field of the dev_scsi_adapter_unit_options_block_type structure.

Note also the change to the version field of io_driver_routines_.vector_type.

Dummy interfaces have been added for the dev_xxx_read_dum),

dev_xxx_mmap, dev_xxx_munmap, and dev_xxx_maddmap operations that will

be supported in an upcoming release.

In Chapter 5:

The dev_scsi_adapter_configure routine has a parameter change.

A restriction of data transfers to even numbers of bytes with buffers starting on

even byte boundaries are noted for the dev_scsi_adapter_issue,_command,

dev_scsi_adapter_issue_async_command, and

dey_scsi_adapter_issue_command_physical_mode routines.

A parameter has been changed in the dev_scsi_adapter_get_device_info routine.

In Chapter 6:

Clarifications have been added to the "Clock Routines” section on synchronous

versus asynchronous use of the clock.

In Chapter 8:

1-2 Licensed material—property of Data General Corporation 093-701053

Changes to This Release of the Manual

Minor changes have been made to the io_add_to_register_list,

io_check_device_spec, and io_parse_device_spec routines.

Two new routines, io_forget_device_spec ("Configuration Routines” section) and

io_err_log_error ("Error Encoding and Logging Routines” section) have been

added.

Two routines for handling the Generic Daemon have been added. These

routines, io_queue_message_to_generic_demon and

io_specify_max_demon_messages, are in the "Driver Daemon and Generic

Daemon Routines" section.

Nodevice stubs have been added, io_nodevice_read_dump and

io_nodevice_maddmap ("“Nodevice Routine Stubs” section). routines.

In Appendixes A and B:

New sample drivers have been provided.

In Appendix C:

A note on mapping logical A24 and A32 address space to a physical address has

been added.

The 4.30 driver interface represents the stable base interface for device drivers on the

DG/UX system. New interfaces, notably the dev_xxx_read_dump, dev_xxx_mmap,

dev_xxx_munmap, and dev_xxx_maddmap interfaces, will be added in a upcoming

release, but currently defined interfaces are intended to be final.

NOTE: In order to expand discussion on basic kernel programming topics, this

manual is scheduled to be restructured into two manuals. The new manuals,

Programming in the DG/UXTM Kernel-Level Environment and Writing a Device

Driver for the DG/UXTM System, will be available in the August 1990 time-

frame.

Overview of Architectural Issues

This manual applies to drivers for all AViiON series machines (both workstations and

systems) that are running the DG/UX operating system. In order to make drivers

independent of the architecture of the different AViON series machines, the DG/UX

kernel handles most architecture dependencies itself. However, there are

architectural features common to all AViiON machines that are part of your driver’s

environment. This section discusses these common features as well as certain kernel

facilities that help your driver stay architecture-independent.

Throughout this manual we will refer to all AVION series machines simply as

AVuON machines.

093-701053 Licensed material—property of Data General Corporation 1-3

ee ee te Cee Se

Overview of Architectural Issues

Memory-Mapped I/O

On AViiON machines, drivers access their devices via memory-mapped I/O. This

means you will read and write to a specific area of memory that is dedicated to your

device. With memory-mapped I/O, assembly language programming becomes

unnecessary because you can access your device using simple memory reference

instructions.

For most devices, you set the device’s memory-mapped I/O address by setting

jumpers on the device itself. For devices it supplies, Data General pre-assigns and

jumpers the memory-mapped I/O addresses according to the manufacturer’s default

address (that is, the address set at the factory). However, if you add a non-standard

device or a second instance of a standard device, you will have to jumper the /O

address on your hardware. More importantly, you will have to choose an address that

is not already used by another device. Appendix C shows conventions and

restrictions for choosing a memory-mapped I/O address. Appendix C also lists

standard devices and their default addresses.

[/O Architecture: Controllers, Adapters, and Devices

For purposes of writing device drivers, the DG/UX kernel defines three major types

(or levels) of peripheral devices: controllers, adapters and devices. Your device’s

peripheral level affects the type of driver you will write. This section discusses these

structures and their implications for device drivers.

For the rest of this manual, we will use these terms in specific ways, with specific

implications. The following list defines the terms as we will use then.

e@ The term adapter refers to an I/O device designed to manage an independent

secondary bus. An adapter converts signals from the primary system bus to

the secondary bus and serves as a conduit between the CPU and devices

attached to the secondary bus. An adapter can interrupt the CPU directly.

An SCSI adapter supporting an SCSI bus with SCSI devices is an example

of an adapter.

e@ The term controller refers to an I/O device designed to manage several lower

level peripherals, all of the same type. It controls them directly not via an

independent bus. Like adapter, controllers directly interrupt the CPU. A

line controller supporting several asynchronous I/O lines is an example of a

controller.

@ The term device refers to the lower level peripherals attached to either

controllers or adapters. These lower level devices do not interrupt the CPU

directly. |

For the most part, devices off controllers are simply considered to be sub-units of the

controller. On the other hand, devices off adapters (that is off a secondary

independent bus) are considered to have a degree of independence from the adapter.

1-4 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

Drivers for the different levels of peripherals are designed to address the different

functions at each level.

Adapter, Controller, and Device Layouts on Different Machines

The definitions of adapter, controller and device apply across AVION machines.

However, on a particular machine, the layout of the different peripheral levels will

vary with the I/O architecture. For example, Figure 1-1 and Figure 1-2 show

adapters, controllers and devices on the AViiON 5000 series systems and the

AViiON 300 series stations, respectively. Throughout this manual, we will use the

AViiON 5000 series systems and the AViiON 300 series stations to provide concrete

examples of adapters, controllers, and devices under different I/O architectures.

NOTE: Throughout this manual we will refer to AViiON 5000 series machines as

AViiON systems, and to AViiON 300 series machines as AViiON stations.

VME

Bus

Internal VME ESDI Disk

Bus poet §$Controlier

(ESD! Disk)

ESDI Disk

SCS! Bus

CPU

po SCS! Disk

SCSI

Adapter

jens SCSI Tape

pond SCS) FOO’

System Board

Figure 1-1 Diagram of the AVIION System I/O Architecture

093-701053 Licensed material—property of Data General Corporation 1-5

Overview of Architectural Issues

Internal

Bus

SCSI Bus

p——— SCSI Disk

SCSI

CPU Adapter

SCSI Tape

pom SCS! ’f00’

system Board

Figure 1-2 Diagram of the AViiON Station I/O Architecture

Both the AViiON system and the AViiON station support SCSI adapters, but their

positions in the two architectures are different. In particular, note the layout of the

I/O buses and where the SCSI adapters are attached on the two machines. The

AViiON station uses an integrated I/O bus with a single SCSI adapter attached to

that integrated bus. The AViiON system has an integrated bus on the system board,

but it also has a VMEbus as the primary external I/O bus. On the AViiON system,

SCSI adapters attach to the VMEbus.

You need to know how your adapter/controller is attached on your target system

because architectural differences affect how your driver retrieves interrupts and the

interrupt device class to which it is assigned. For example, the I/O bus to which an

adapter is attached defines its device class. Thus, on the AViiON station, the SCSI

adapter is an integrated device, while on the AViiON system the SCSI adapter is a

VME device. We discuss these issues in the "Interrupt Structure" section of this

chapter. The next section describes the different kinds of drivers on the DG/UX

system.

Adapter Drivers and Device Drivers

The DG/UX system supports two different types of drivers: adapter drivers and

device drivers. This section explains the basics of these two types of driver. We use

SCSI peripherals as an example of adapter driver/device driver issues.

Portability of driver code is one of the DG/UX kernel’s major goals. Therefore,

whenever possible, manufacturer-specific operations are separated off from

manufacturer-independent operations. This means part of the code will be fully

portable and part will be manufacturer-specific. Such separation is particularly

possible when an interface is defined by a standard such as is the case with SCSI I/O.

1-6 Licensed material—property of Data Genera] Corporation 093-701053

Overview of Architectural Issues

For example, all SCSI devices off an SCSI bus follow the SCSI standard and thus are

manufacturer-independent. However, operation of each SCSI adapter is not

standard-defined, so different manufacturers’ SCSI adapters use different command

codes and sequences. From a driver’s perspective, all SCSI disks operate the same

way regardless of their manufacturer, but one has to go through a manufacturer-

specific adapter interface to operate them. In order to maximize the amount of

portable code, the DG/UX system puts manufacturer-specific SCSI adapter functions

into one driver (an adapter driver). This leaves the manufacturer-independent

functions as a fully portable driver. Thus, one SCSI disk driver (the sd device driver)

works for disks on any supported SCSI adapter.

Separation of manufacturer-specific and manufacturer-independent code is not useful

with controllers because their devices are essentially sub-units of the controller.

Hence, the controller and all its devices are handled by a single driver. This driver

accesses the controller and specifies which unit off the controller it wants to address.

Thus, controller drivers are usually specific to a particular manufacturer. For

example, the cied driver works only for Ciprico ESDI disk controllers.

The adapter drivers and device drivers both consist of a set of externally callable

routines. All drivers supply a set of 15 basic I/O routines including configure, open,

close, read, write etc. (see Chapter 3). Drivers that supply only these basic routines

are called device drivers. In addition to these 15 basic driver routines, adapter

drivers have an additional set of adapter routines.

SCSI adapter drivers and SCSI device drivers form a paired system. The kernel

passes all user I/O requests to the SCSI device driver (for example, the SCSI tape

driver st or the SCSI disk driver sd). The SCSI device driver in turn issues a request

to the SCSI adapter driver, which accesses the physical device and returns the results

to the device driver.

Generally, the kernel interfaces to the SCSI device driver, which in turn interfaces to

the SCSI adapter driver. The main exception to this rule concerns interrupts. SCSI

adapters interrupt the host, but SCSI devices do not. Therefore, it is the SCSI

adapter driver that needs to service interrupts. The adapter driver must interface to

the kernel in order to receive its interrupts.

NOTE: The kernel may also invoke the adapter driver in response to other system

needs. For example, the kernel may invoke the adapter driver’s configure

routine or its open dump routine. However, because user-level I/O goes to

the device driver, most of the adapter driver’s basic routines may be left as

stubs. For example, adapters will not generally need a read routine. Chapter

3 lists the basic driver routines that the adapter driver must supply (that is,

cannot leave as stubs).

093-701053 Licensed material—property of Data General Corporation 1-7

Overview of Architectural Issues

Figure 1-3 shows how the different drivers interface to each other and to the

hardware.

User

I/O Routines Kernel I/O Routines

f

VME .Controller Interrupt Service bevel
Device outine Driver
Driver

A

SCSI
Adapter ——————

Adapter
Routines

Hardware Hardware

Figure 1-3 The Adapter/Kernel and Device/Adapter Interfaces

Throughout the rest of this manual we will use device driver to refer to drivers that

provide only the standard set of routines. Thus, both VME controller/unit drivers

and SCSI device drivers will be called device drivers. The term adapter driver will

refer to drivers with the additional adapter routines (which means only those drivers

intended for managing an adapter).

The Adapter Manager

The driver interface has one more major component that must be mentioned. We’ve

seen that driver portability is a major focus under the DG/UX kernel. We've also

seen that SCSI adapter drivers are specific to a particular manufacturer’s adapter

whereas SCSI device driver’s are not. Therefore, if an SCSI device driver is to work

1-8 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

with all adapter drivers, it must not have calls to a specific adapter driver in its code.

To eliminate this problem, the kernel provides a generic "adapter manager” that

routes device driver calls to the appropriate adapter driver. Thus, the device driver

calls a generic adapter routine (in the kernel’s adapter manager), passing a parameter

that indicates the adapter driver for which the call is intended. The generic adapter

routine decodes the parameter and passes the call on to the actual adapter driver.

We discuss the adapter manager routines in Chapter 5.

Do You Have to Write a New Driver?

The DG/UX system provides full System V and BSD functionality with a kernel that

supports fully symmetric multiprocessing as well as other enhancements. The

DG/UX kernel requires all drivers to conform to a set of standard interfaces. Only

drivers that follow the DG/UX interface specifications will run under the DG/UX

system.

If you buy an SCSI adapter, SCSI device, or VME controller, the hardware is likely

to be compatible (see Appendix C for a list of compatibility specifications).

Nevertheless, software drivers written for System V or BSD will not run under the

DG/UX kernel. However, this does not necessarily mean that you will have to write

a new device driver for your hardware.

As we have seen, SCSI device drivers work for all SCSI adapters, and the DG/UX

system supplies SCSI device drivers for a number of standard devices. For example,

the DG/UX SCSI disk driver, sd, and the SCSI tape driver, st, work with disks or

tapes that adhere to the basic Common Command Set plus several non-mandatory

Common Command Set commands (Appendix C lists these additional commands).

If you are adding a new device of the same family as an existing Data General-

supplied device driver, chances are you will be able to use the supplied device driver.

If you add a new type of SCSI adapter you will probably need to write an SCSI

adapter driver for it. On the other hand, you can use the existing Data General-

supplied device drivers with your new adapter driver.

In general, you will only need to write an SCSI driver: 1) if you add an SCSI adapter

of a type not already supported under the DG/UX system; or 2) if you add an SCSI

device of a type not already supported under the DG/UX system. You will need to

write a driver for a VME controller if you add a controller of a tvpe not covered by

Data General-supplied drivers.

Interrupt Structure

Traditionally, a machine’s interrupt structure is a major cause of machine-

dependencies in device drivers. In order to make drivers machine-independent, the

DG/UX kernel hides most interrupt structure dependencies from the drivers.

Three closely related features allow drivers to remain independent of most interrupt

structure dependencies. The first feature has to do with registering interrupt

093-701053 Licensed material—property of Data General Corporation 1-9

Overview of Architectural Issues

handlers. If your device generates interrupts, your driver will include an interrupt

handler that will service your device’s interrupts. When a device of your driver’s type

is configured into the system, the kernel will call your driver’s configuration routine,

which will in turn call a routine to register your interrupt handler with that device.

Once the handler is registered, whenever that particular device generates an interrupt,

the kernel will pass control to your driver’s handler.

Yet, for the kernel to pass control to the right interrupt handler, it must be able to

identify which interrupt comes from the particular device. Further, in order to be

machine-independent, the driver must be able to supply interrupt information using

kernel-supplied literals instead of machine-specific values. This leads to the second

machine-independent feature — a set of interrupt identifiers that can uniquely identify

devices both across machines and regardless of particular configurations within a

particular machine.

The kernel’s approach to creating a set of such unique identifiers requires that you

supply two parameters. One parameter gives the class of interrupts and the other

gives a unique device identifier within that class. Thus, to register your interrupt

handler, you must supply a device interrupt class, a device code, and a pointer to a

device information structure that identifies your interrupt handler.

The interrupt class and device code parameters are defined as follows:

@ Interrupt (or Device) Class

The interrupt’s class is defined by the bus on which the device is located. If

the device is attached to a Data General proprietary bus integrated on the

system board or a bus expansion slot off the system board, it belongs to the

integrated class of device interrupts. If it is attached to any bus other than

these, the device class is defined by the particular bus. For example, the

AViiON 5000 series systems support an external VME-188 bus. All devices

on this VME bus would belong to the VMEbus class of device interrupts.

The kernel supplies an enumeration type that defines device class literals.

Use these literals to specify your device’s interrupt class. See Chapter 8 for

a discussion of the device class enumeration types.

Note: <A device’s class is defined by the external bus to which it is attached

and which interrupts the CPU. Thus, if a device is attached to a

secondary bus serviced by an adapter, it is the adapter’s bus that

will define the device’s class because it is the adapter that will

interrupt the host CPU. For example, SCSI devices (those on an

SCSI bus) are serviced by an SCSI adapter. On an AVuiON 5000

series system, the SCSI adapter will be attached to a VME bus.

Because only the adapter interrupts the CPU, the device class for

the SCSI devices and the SCSI adapter is VMEbus.

@ Device Identifiers (or Device Codes)

1-10 Licensed material—property of Data General Corporation 093-701053

Overview of Architectural Issues

Unique device identifiers within a device class are called device codes.

Device code definitions vary with the device class.

For devices in the integrated class, the kernel supplies a set of literals for all

possible types of devices found in the integrated class. For example, you use

the literal UC_DUART_DEVICE_CODE to identify any integrated duart

device. Chapter 8 describes the device code literals for the integrated class

of devices.

For other device classes, the device code is generally defined by a unique

identifier jumpered on the board. For example, on the AViiON 5000 series

machines, controllers on the VME bus are jumpered to a particular vector

number. The bus passes this vector number to the CPU and, when the device

interrupts, it appears in the Interrupt Acknowledge register as the device

identifier. Appendix C describes conventions for the VMEbus class device

codes.

Note that your driver will be specific to a particular device class (for

example, integrated or VMEbus). Thus, you will need different drivers for

SCSI adapters in the integrated class (as on AViiON stations) and for SCSI

adapters in the VMEbus class (as on AViiON systems). Drivers dependency

on device class results from the fact that device codes are interpreted

differently in the different device interrupt classes.

When an interrupt occurs, the kernel will read the interrupt status register (IST) and

pass control to the registered interrupt service routine whose device code and device

class match the interrupt. Once it recieves cotrol, the interrupt service routine must

clear the interrupt if reading the IST did not clear it.

The final way the kernel helps you avoid architecture-specific code is by providing

interrupt handling routines that you can use to mask and unmask interrupts. Chapter

6 describes these routines.

The combination of registering interrupt handlers with interrupt identifiers and

kernel-supplied mask and unmask routines allow the bulk of your driver to be

architecture independent; it should run on any AVON machine.

The Multiprocessor Environment

The DG/UX kernel is designed to operate symmetrically on one or more processors.

To do this, the kernel creates an abstraction of a physical processor called a virtual

processor (VP). By using a VP abstraction, the hardware implementation (actual

number of physical processors) can be made transparent to the higher levels of the

kernel. The actual physical processor is called a job processor (JP).

A given instance of the kernel will have a fixed number of VPs that is usually greater

than the number of physical processors but less than the number of processes wanting

093-701053 Licensed material—property of Data General Corporation 1-11

Overview of Architectural Issues

to execute. A two-level scheduling scheme is used to balance between processes, VPs,

and JPs. The lower level of scheduling multiplexes VPs onto physical processors so

that the VPs appear to be active entities that execute code. This short-term

scheduling is performed by the dispatcher. A higher level of scheduling multiplexes

processes onto VPs so that the processes may execute. This higher scheduling is

performed by the medium-term scheduler using the operations defined on VPs.

As you write your driver, keep in mind that it may be operating in a multiprocessor

environment. There are two important points about such an environment:

e Do not presume that the driver is the only process running at a given time.

Another process might be running on another processor ancl accessing

common memory. This means that synchronization and locking issues are

very important. The driver should protect (lock) access to critical data

structures because another process might seek access at the same time.

Chapter 6 describes the kernel routines that support synchronization and

locking operations.

@ Driver code may be executed simultaneously on two or more different

processors. In particular, when a device interrupts on a multiprocessor

system, one of the processors is picked by the system to take the interrupt.

The driver has no control over which processor takes the interrupt. The

processor chosen for interrupts from a particular device may vary from

interrupt to interrupt. In addition, more than one processor can service an

interrupt at atime. As a result, it is possible for a controller to have two

interrupt requests serviced at the same time.

Finally, if you disable interrupts on a multiprocessor system, you do so only

for the processor that is currently running. The device may still interrupt on

another processor. As a result, base-level driver code cannot disable

interrupts to protect against collision with the driver’s own interrupt service

routine. Disabling interrupts on one processor does not guarantee that the

interrupt service routine will not access a structure at the same time on

another processor.

You can mask interrupts for the device. This prevents the device from

interrupting on all processors. Remember, however, that masking does not

guarantee that an interrupt is not already in progress.

How to Write a Device Driver

In this section, we describe the major steps involved in writing a device driver. These

steps are as follows:

1) Write I/O routines for your device.

@ The kernel requires that you supply a set of I/O routines for your

device. You supply these routines in a file called dev_xxx_driver.c,

1-12 Licensed material—property of Data General Corporation 093-701053

How to Write a Device Driver

where xxx is a two- to eight-character device mnemonic identifying

your device. The mnemonic may be composed of digits and

uppercase and lowercase letters; it is case sensitive. The first

character must be a letter. This mnemonic is also used in the

master file entry described in Step 2.

The I/O routines you supply will include such routines as open,

close, read, and write. Throughout this manual, we refer to these

routines in the following way: dev_xxx_name. For example, the

read routine for the xdev driver would be dev_xdev_read. In this

book, we use xxx as a generic driver name. Thus, our generic

driver’s read routine will be dev_xxx_read.

DG/UX I/O is device-independent, which means that all user-

supplied I/O routines conform to a specified interface with a

standard set of parameters. The kernel calls routines at the

appropriate times (for example, read when a read operation is

requested). The interface specifications for these routines are

discussed in Chapter 4.

@ The DG/UX kernel contains many routines for system-level

operations that you can call from your driver. The operations

performed range from managing memory to handling signals to

interfacing with the driver daemon. Chapters 6 through 8 describe

these routines in detail.

2) Supply master file information describing your device driver.

The basic information about all devices is contained in files called master

files. You will need to make an entry in a master file to identify your device

to the kernel. We discuss master file entries in Chapter 2.

3) Supply system file information for each controller of your device type.

The system file supplies information linking master file information to

specific instances of devices in a particular configuration. Your driver

services all xxx type devices, and you may have more than one such device

on the system. For example, a system might have two cied type disks. One

driver services all cied disks. The system file will have an entry identifying

each disk of the cied type. We discuss system file entries in Chapter 2.

4) Rebuild and reboot the system.

After the entry has been placed in a master and system file, you can use the

standard system-generation procedures. The module or modules

implementing the new driver must be separately compiled and included on

the link line when the system image is linked. In Chapter 2, we describe

how to incorporate your driver in the system build.

093-701053 Licensed material—property of Data General Corporation 1-13

Overview of Device Driver Environment

Overview of Device Driver Environment

This section describes a number of terms and concepts that are fundamental to

writing a driver on a DG/UX system. Also, because a device driver is an integral

part of the kernel, the driver must conform to the restrictions that apply to various

parts of the kernel. We discuss some of these restrictions in this section.

Device Specifications

All devices (controllers, adapters, and devices/units off controllers and adapters)

must also have a unique software descriptor called a device specification. You will

need to provide device specifications at various times; for example, for system file

entries, for various system utilities and at boot time.

The kernel uses device specifications to link specific devices with the appropriate

device driver. Specifically, the device specification for devices your driver will

service must begin with your driver’s device mnemonic.

The kernel passes the device specification string to the driver for interpretation.

Therefore, you could write your driver to use a device specification syntax different

from that used by drivers supplied with the DG/UX system. However, for

consistency and intelligibility, we recommend that you implement your device

specification like DG/UX drivers. You can use the io_parse_device_spec routine

(described in Chapter 8) to parse a device specification according to Data General’s

conventions.

DG/UX drivers use the following device specifications syntax:

device mnemonic [@device_code] ([parameters])

where:

device mnemonic is the two- to eight-letter mnemonic used to identify the

device driver for the device. The xxx code described in Chapter 2 is your

device mnemonic. Appendix C lists the device mnemonics for Data

General-supplied device and adapter drivers.

device code is a device identifier that uniquely identifies a physical device

within its interrupt class. For devices with device codes, you enter the

device code preceded by an @ (at) sign (for example, @18). Device codes

are defined within each specific device class. However, only devices that

directly interrupt the host have device codes. Devices that do not have

device codes (such as pseudo-devices or SCSI devices off SCSI adapters)

must omit the device code field in their device specification.

1-14 Licensed material—property of Data General Corporation 093-701053

parameters are values that provide additional information to the driver.

Overview of Device Driver Environment

The parameters for the device specification depend on the type of device and

whether the device is a controller, adapter, or device (unit).

Controller/Adapter Parameters

The device specification for an adapter consists of the adapter’s name, its device

code, and a single parameter identifying which adapter is being addressed. The

device specification for a controller consists of the controller’s name, its device code,

a parameter identifying which controller is being addressed, and a second parameter

specifying which device off the controller is addressed (for example, unit #1 off the

controller).

For both controllers and adapters, the first parameter indicates which controller or

adapter is being addressed. For drivers supplied with the DG/UX system, you can

identify which controller/adapter is being addressed in either of two ways:

1) You can specify the controller/adapter by giving its base memory-mapped

I/O address. For example, the first cied adapter would be cied(ffffef00) (the

cied mnemonic stands for Ciprico ESDI disk). Appendix C lists the base

addresses for drivers supplied with the DG/UX system.

2) If the controller/adapter is located at one of the standard base addresses for

a device of its type (see Appendix C), you can use the numbers zero (0) or

one (1) to indicate the first or second instance of this device. For example,

you can use cied(0) and cied(1) to specify the first and second cied

controllers. If you omit the first parameter, the driver should assume a value

of zero. Drivers supplied with the DG/UX system can deduce the base

address from this information.

NOTE: You cannot use this form if you are addressing a controller or adapter whose

base address is not a default (as shown in Appendix C).

SCSI Device Parameters

For SCSI devices, the first parameter indicates on which adapter the device is

located. You identify the adapter with its device specification as just described. For

example, device specification for the SCSI disk off the AViiON station integrated

SCSI adapter would be sd(insc(0),2).

The second parameter is the device’s SCSI ID. The SCSI ID is a bus identifier

jumpered on the device. A device’s SCSI ID must be unique on its adapter but not

across adapters. (Appendix C lists the default SCSI IDs for standard devices on the

DG/UX system.)

The device specification has a third parameter that you can use to specify a unit

number if the SCSI device is a controller with multiple units.

093-701053 Licensed material—property of Data General Corporation 1-15

Overview of Device Driver Environment

NOTE: In device specification, device codes and base addresses are interpreted as

hexadecimal numbers. You must not precede them with "Ox" as 1s

conventional in C language programming.

The following are valid device specifications:

cied() cied disk controller with all parameters assuming their default

values. (See Appendix C for a list of default values.)

cied (0,1) Drive 1 on cied disk controller 0.

cied@77 (fffff500,0) Drive 0 on the cied disk controller at the non-standard base

address Oxfffff500, with the non-standard device code 0x77.

sd(cisc(1),2) The SCSI disk at SCSI ID 2, reachable through SCSI adapter 1.

st(insc(0),2) The SCSI tape at SCSI ID 2, reachable through integrated SCSI

adapter.

sd(cisc@77 (fffff500,0),2)

Disk drive 2 on the cisc SCSI adapter at the non-standard base

address Oxfffff500, with the non-standard device code 0x77.

Device specifications are described in more detail in Installing and Managing the

DG/UXTM System.

Special Files (Nodes)

A user accesses a specific unit of a specific device through a device special file, also

called a node. When you open a special file, you get a file descriptor that identifies

the specific unit. The user-level code will then use this file descriptor to access the

device. Special files are stored in the /dev directory.

For example, a disk special file called node_name is located in /dev/dsk. To open

the device and get a file descriptor, the user program issues the following DG/UX

system call from a C program:

int fd;

fd = open ("/dev/dsk/node_name", O_RDWR)

The kernel returns a file descriptor into fd. The user will now use fd to access the

specific device. For example,

read (fd, Buffer, 20);

causes the kernel to read from the device identified by the special file node_name. fd

points to this file, and 20 is the number of bytes to be read into the memory area

1-16 Licensed material—property of Data General Corporation 093-701053

Overview of Device Driver Environment

denoted by Buffer.

Users can create special files with re scripts and with the mknod(1) command.

However, at configuration time, the device driver’s dev_xxx_configure routine also

creates special files from device entries given in the system file. The driver usually

uses the system file entry (device specification) as the special file’s name. Thus,

many special files will have a device specification for a name. We describe the

interface for the dev_xxx_configure routine in Chapter 4.

The file descriptor identifies a special file for a specific device. The special file must

therefore describe that device. A special file represents the following information:

@ Type of I/O interface — block or character

@ The major number

e The minor number

e Access rights

The major number identifies a family of devices all serviced by the same device

driver. The kernel uses the major number as an index into a table of vectors

containing pointers to each driver’s I/O routines. When the kernel recieves a user

I/O request, it identifies the correct driver routine to call using the major number and

the driver’s I/O routines vector. We discuss how to supply a major number in

Chapter 2.

The minor number is used to identify a specific unit in a particular device class. The

driver dev_xxx_configure operation calls the kernel device number manager that

allocates minor numbers for each unit and links unit-specific information to the minor

number.

When a user opens a device, the kernel sends to the driver dev_xxx_open routine the

major and minor device numbers for the opened device. The dev_xxx_open routine

then calls the io_map_device_number routine to map the major and minor numbers

to unit-specific information.

The driver can use unused bits of the allocated minor number to hold additional

information about a unit. For example, tape devices use bits in the minor number to

specify density selection on a unit. Note that special-purpose bits must be masked

out before any interaction with the device number manager.

See Installing and Managing the DG/UXTM System for more information on special

files.

093-701053 Licensed material—property of Data General Corporation 1-17

Overview of Device Driver Environment

Block Versus Character Interface

The DG/UX system supports two major types of I/O interfaces: block special

(buffered) and character special (raw). Depending on the device type, drivers can

support one or both interfaces.

The block special interface treats the device like a file. The kernel buffers input and

output to the device and controls when to do actual reading or writing. Information

that is read or written to a block device must pass through the kernel’s buffers. An

example of a block device is a buffered disk access.

The character interface treats the device as a raw device. The read or written

information is transferred directly to and from the user’s address space, bypassing the

kernel’s buffers. The device determines the correct block size and handles all data

transfers. An example of a character device is a terminal.

A driver may support either block and character access or character access only.

Most driver-supplied routines are the same for both types of access (for example, the

same dev_xxx_open routine serves both interfaces). The exception is that the

dev_xxx_start_io routine is used for block special access only.

Driver Execution

All device driver code executes as part of some user or system process running in the

kernel. A device driver has access to all of system memory and to all devices.

Kernel code is protected from write access so that access errors can. be isolated more

quickly (note that this protection means a driver cannot use self-modifying code), but

no other protection is provided against a driver writing to kernel databases and/or

otherwise destroying the kernel internals.

Driver code executes on the kernel stack of the running process. The kernel stack is

of fixed size, so driver code must not nest calls too deeply. A system panic results if

a process’s kernel stack overflows. Panic codes are listed in a file in /usr/release;

your DG/UX system Release Notice discusses this file.

Because of its special status as part of the kernel, a device driver may not use the

standard C libraries or DG/UX system calls (described in Chapters 2 and 3 of the

Programmer’s Reference for the DG/UXTM System, Volume 1).

Memory Management

Two types of kernel memory are visible to a device driver. Global kernel memory 1s

addressable by all processes in the system. Per-process kernel memory belongs to a

particular process and can be addressed by only that process.

You must use care in deciding whether to declare data structures in per-process

versus global kernel memory. For example, if you declare an argument to a call in

1-18 Licensed material—property of Data General Corporation 093-701053

Overview of Device Driver Environment

per-process memory, and then your process completes, the argument will be deleted

with your process. Similarly, if you declare a structure in per-process memory, it will

not be accessible by interrupt-level code because the interrupt code runs on the
currently executing kernel process which has its own per-process memory. Thus,

some arguments to device driver calls may be in per-process mernory, while other

arguments should be restricted to global memory. Note that the user process’s kernel

stack is in per-process memory.

Logical addresses do not equal physical addresses in the kernel. The addresses may

be equal in some situations, but a device driver should not depend upon this.

Chapter 7 describes kernel functions that you can use to convert from a logical

address to a physical address.

Device driver code and static data reside in wired memory so that they can be

accessed from interrupt handlers.

Interrupts

Most device driver code executes with interrupts enabled. The driver should not

manipulate the state of the interrupt enable register unless absolutely necessary. If

the driver must change the interrupt state, it should use the kernel’s interrupt

enable/disable routines (described in Chapter 6).

If your device generates hardware interrupts, the driver must supply an interrupt

service routine (interrupt handler) to service those interrupts. The interrupt service

routine will run with all interrupts disabled on the current processor (interrupts on

other processors are not affected).

The interrupt service routine must operate in a severely restricted environment. It 1s

expected to quickly determine what action to take (usually advancing one or more

eventcounters) and then dismiss the interrupt. It must not pend or page fault. To

avoid page faults, the service routine should not reference unwired memory. It

should also avoid calls to routines that might pend or page fault. The kernel routines

described in Chapters 6 through 8 indicate whether or not they mught pend or page

fault.

Interrupts do not nest in the DG/UX system, so each interrupt handler must quickly

finish its job and return to base level. Furthermore, interrupts are handled on the

kernel stack of the currently running process; no separate interrupt stack is used.

Therefore, the interrupt service routine must limit the amount of stack space used by

it and any procedure it calls.

For VME devices, reading the Interrupt Acknowledge register acknowledges the

interrupt, and on many devices (Release-on-acknowledge devices) this action also

clears the interrupt. However, some devices require additional action to clear the

interrupt. Consult the documentation for your device to see when and how your

device stops asserting interrupts.

093-701053 Licensed material—property of Data General Corporation 1-19

Overview of Device Driver Environment

Clearing the interrupt frees the device to issue another interrupt. Because another

interrupt may be serviced by another processor, it may be handled before the first

interrupt service routine has completed.

Signals

Before a device driver waits for an indefinite amount of time for an J/O operation to

complete (such as on a read of a user keyboard), it must prepare to receive a signal

by calling the appropriate kernel functions. If a signal should occur, the driver must

abort the operation and return an appropriate status.

For devices that do not normally require user intervention for an I/O operation to

complete (such as a disk), signals do not have to be handled while waiting for the

device to respond. The device must, however, be timed out if it fails to respond

within a few seconds so that the calling process will not become hung indefinitely if

the device should lose power or otherwise fail.

Higher levels of the system are responsible for providing reasonable response to

signals. These higher levels may break large user requests into smaller driver-level

requests so that signals are not ignored for too long a time. For example, if a user

requests that 100 Mbytes be written to the disk, the driver may see only a succession

of 256 Kbyte requests. A device driver need not be concerned about the size of a

user’s request as long as it is making progress on the request and is not depending

upon some indefinite external event for continued progress.

End of Chapter

1-20 Licensed material—property of Data General Corporation 093-701053

Chapter 2

Adding Your Device Driver to

the DG/UX System

This chapter describes the information you will need to perform the following

operations:

e Add an entry for your device to a-master file.

e Add an entry to the system file for each new hardware device or virtual

device attached to your system.

@ Rebuild the system and reboot with the new system image.

These operations correspond to steps 2, 5, and 4 of the steps listed in Chapter 1 for

adding a driver to your system. This chapter also describes ways in which you can

check whether you built your driver into the system properly.

Adding a Master File Entry

Master files are administrative files that contain default information for all supported

devices. These files hold information needed for the system configuration. Master

files are stored in the master.d directory. The main DG/UX master file is

master.d/dgux. You may want to list this file to clarify the master file entries

discussed in this chapter. Master files are discussed in the master(4) man page.

You must add an entry for the driver to a master file in master.d. The master file has

three sections to which you may want to add entries. The sections are as follows:

@ Device section: holds descriptions of all devices.

@ Keywords section: defines and sets all configurable parameters.

@ Alias section: allows you to define aliases for master file device entries.

Within sections, entry lines consist of a number of fields separated by blanks or tabs.

Comment lines are preceded by a pound sign (#).

You must add a device description entry for your device in the device section of the

master file. You may also want to add a device alias (alias section) and/or

093-701053 Licensed material—property of Data General Corporation 2-1

Adding a Master File Entry

configuration parameters (keyword section), depending upon your irnplementation

needs. We discuss these entries in the next section.

NOTE: All files listed in the master.d directory are included in the configuration

process. Therefore, do not keep old or backup copies of your master file in

master.d.

Device Descriptions: The Device Section Entry

For easy management, entries in the device description section of the master file are

grouped according to type of device. For example, all types of magnetic tape devices

are listed together. (Such grouping is helpful but not necessary.)

Each device description entry contains four fields. The following diagram shows

some sample master file device description entries. Lines that start with # are

comments.

= -—

= DISKS

z

Maximum

+ Name Major of units per Restriction

$ Prefix Number(s) Controller Flags
Bae

=

cied 7 7 n

sd 6 7 n

xdev 10 4 n

&

The xdev entry above is a non-standard device we have added to the master file.

We'll use this entry as an example to describe the fields in the device section.

Information is case sensitive.

xdev 10 4 n

xdev §_ entry name — This field identifies a family of devices, specifically, all

devices that use the same device driver. The entry name or name prefix is a

two- to eight-letter device mnemonic. It is also used as part of the

corresponding device driver’s name, in the device specification (the device

mnemonic field) and in corresponding system file entries. The device

mnemonic uses any characters that are valid for C language filenames.

to-2 Licensed material—property of Data General Corporation 093-701053

Adding a Master File Entry

10 major number — The kernel uses a device’s major number as an index into

its I/O routine table. Your major number can be any positive number that is

less than 255 and that is not already in use. It is a decimal number. To

choose a number, scan all master files for major numbers already allocated.

We recommend choosing the smallest possible number, as this will keep the

size of the table small.

4 maximum units per controller — This a decimal number that specifies the

maximum number of units a controller can support.

n restrictions flag — This flag signals configuration restrictions for this device.

The flags are specified as a string of characters with the following definitions

(these options are case sensitive):

Option Meaning

O Specifies that the driver will allow only one

device of this type to be configured. For

example, the system console is defined as

being the only device of its type.

r Indicates that the device is required and

will be placed in the system whether or not

the system file specifies it. If the device is

not specified, default values will be given

for device specification values.

S This option indicates that the device is a

STREAMS device.

n No restrictions apply. Choose this option

if you do not use any of the others listed

above.

Zz This device may be configured either

explicitly or mmplicitly as part of nested

declaration of another device. For

example, “st(insc()),4)" declares “insc()"

implicitly.

Parameters: The Keyword Section Entry

If you want to create a parameter for your driver code that can be set at system

configuration time, you will need to add an entry to both the master file and system

file. For example, the pseudoterminal driver has a variable giving the number of

pseudoterminals to be configured. Most device drivers will not use the keyword

section.

093-701053 Licensed material—property of Data General Corporation 2-3

Adding a Master File Entry

The master file entry for a parameter should be placed in the keyword section. This

entry has four fields:

@ The variable name. The variable name is used in the corresponding system

file entry.

@ The default value for this variable. This value is used if you do not add a

corresponding system file entry to declare the variable’s actual value.

@ The variable’s data type. If you don’t specify this field, the kernel uses long

integer for the data type.

@ The implied value. This value is used if you add a system file entry but do

not give that entry a value. This field is optional and exists primarily to give

configuration flexibility for certain special devices such as the Network

Filesystem (ONC TM/NFS®).

Some sample keyword section entries are shown below:

#

Variable Default Implied

Name Value Type Value
mom a ay a cm a a ee eee eee ee cee

#

cf _sc_nodename[] “no_node" char

cf sci_daylight_savings_kind 1 uintl16_ type

physbuf 256 uintl16_ type

To add a configurable parameter, you must add both a master and a system file entry.

The system file entry should be placed in the tunable parameters section (see the

system(4) man page). For example, to change the number of physical buffers (the

physbuf master file entry), add the the following system file entry:

physbuf 150

At configuration time, the config program combines the master and system entries to

produce the file conf.c. As a result of the system file entry shown above, conf.c will

contain a constant physbuf with an updated value of 150. After configuration, you

can check conf.c to see if your variable has been properly set.

You reference your variable as an external variable by inserting a line similar to the

following in your device driver: |

extern int physbuf;

2-4 Licensed material—property of Data General Corporation 093-701053

Adding a Master File Entry

Master File Aliases: The Alias Section

The Alias section of the master file allows you to create aliases for your master file

entry name. You use such aliases in the system file entry to help distinguish between

different controllers of the same device. For example, the asynchronous controllers

can have 8 or 16 lines even though the same device driver and master file device

prefix are used. The asynchronous controller’s (syac) aliases might be as follows:

Alias Entry name

syac8 syac

syacl6 syac

In the system file, specific 8-line controllers can be referenced as follows:

syac8(1)

Adding a System File Entry

To configure the new device into the system, you must modify the system file. The

system file lists the physical devices or each instance of a pseudo-device that will be

configured into the system. It contains device configuration information, particularly

hardware I/O addresses. System file entries are described in the system(4) man page.

The system file contains two sections: the device selection section and the tunable

parameters section. We have already described how to add an entry to the tunable

parameters section to set a parameter defined in the master file (see "Parameters: The

Keyword Section"). As described, entries to this section are optional.

You must add entries to the device selection section for each physical device of your

driver’s device type. Use the device specification for this entry.

A typical set of device entries for our xdev device might be as follows:

xdev@72()

xdev@73(f£f££6000,4)

Here, xdev is the entry name for the master file device description entry. The

number 72 is the device code for the first controller, and 73 is the device code of the

second controller of this particular class of device. The empty parentheses () in the

first entry indicate that the default parameters, including the default base address,

apply for this device. The second instance of the xdev device shows a non-standard

base address and a second parameter of four (4). The parameter’s meaning will be

specific to the driver’s implementation.

093-701053 Licensed material—property of Data General Corporation 2-5

Rebuilding and Rebooting the System

Rebuilding and Rebooting the System

You use the standard system-generation procedure, sysadm, to build a new system

image. However, before you use sysadm, you must complete the following steps:

1) Make your changes to the system file and master file as described in this

chapter. We recommend you put your master file entries into your own

master file. Create a file with you master file entries and put it in

usr/etc/master.d. You may give this file any name you want as long as it

does not match any existing file names in the master.d directory.

2) Compile your driver file dev_xxx_driver.c to create the object file

dev_xxx_driver.o.

If you compile using the GNU compiler that comes with the DG/UX system,

we recommend you use the following compile command line: |

gcc -DSTANDALONE -DKERNEL -D_ PRODUCT DGUX |

-fno—-omit-—frame-pointer |

-mno-underscores |

-I/usr/sre/uts/aviion dev_xxx_driver.c |

If you compile using the Green Hills compiler, we recommend you use the |

following compile command line: |

ghcc -DSTANDALONE -DKERNEL ~D PRODUCT DGUX |
-ga ~X58 -X153 -x405 |

~I/usr/src/uts/aviion dev_xxx_driver.c |

If you want to avoid specifying the three defines (STANDALONE,

KERNEL and _PRODUCT_DGUX) during compilation, you can add these |

to one of your source files. |

3) Place your driver object file and any archive files you may need into the

directory /usr/src/uts/aviion/Ib.

4) Create a file called Libs.driver_name that lists all the object files and archive

files you want included in the build. Place this file in the directory

/usr/src/uts/aviion/cf. You can get the format of this file by examining

other Libs. files.

Once you have completed these steps you are ready to build a new system. Installing

and Managing the DG/UXTM System describes how to use sysadm to build a new

kernel. The output of the build is a new system image that you will move to the root

directory (/).

After the new system image is ready, you can shut down the current system and

reboot.

2-6 Licensed material—property of Data General Corporation 093-701053

Checking the Configuration Process

Checking the Configuration Process

To verify that your device is properly configured, check both conf.c and the special

files for your devices. We describe both of these sources below.

Conf.c

The conf.c file contains the system tables generated by the config program. You can

use these structures to verify your configuration and to determine the location of the

I/O routines accessing your device. A partial listing of conf.c structures and variables

is given below with descriptions on how to use the information to verify proper

configuration.

Configurable Variable Section

The configurable variable section lists the variables as defined in the keyword section

of the master files and modified in the tunable parameters section of the system file.

You can check this section for the proper setting of any parameters you set. A

partial listing of this section is given below:

/*

/* Configurable Variable Section */

/* */

/* */
char cf _sc_machine[] = “AViiON” ;

char cf _sc_sysnane[] = "dgux";

char cf _sc_release[] = "4.30";

char cf sc_version[] = "00";

uintl6 type cf sci_daylight_savings_time_kind = 1;

uint8 type cf sfm_max_modules per_stream = 9;

uint32_ type cf sfim_max data_message_length = 4096;

uint32_type cf _sfm_max_control_message_length = 1024;

uintl16_type cf ps_max_semaphore_sets = 10;

uintl6 type cf ps max semaphores per set = 25;

1/O Driver Tables

The kernel uses a device’s major number as an index into a table of driver routines

vectors. The I/O Drivers Table in conf.c listed below shows this table of routines

vectors. Note the entry for our sample xdev device in uint32e_type

cf_io_device_driver_vector below. Also note the major number index listed to the

right. The major number you supplied in the system file entry should now reflect the

position of your driver in the routine vector table. Chapter 4 explains how you supply

093-701053 Licensed material—property of Data General Corporation 2-/

Checking the Configuration Process

a routines vector for you driver.

/*

/* IO Drivers Table

/*

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

extern

uint32e_ type

uint32e type

ulnt32e_type

uint32e_ type

ulnt32e_type

uint32e type

uint32e type

uint32e type

uint32e type

uint32e type

uint32e_type

uint32e type

uint32e type

ulnt32e_ type

uint32e_ type

*/

*/

*/

cfiv_syscon_routines_vector;

cfv_cied_routines_vector;

cfiv_devtty routines vector;

cfv_mem routines_vector;

cfv_ldm routines vector;

cfv_st_routines_vector;

cfv_syac_routines_vector;

cfv_err_routines_vector;

cfv_con_routines_vector;

cfiv_xdev_routines_vector;

cfiv_pcfv_routines vector;

cfv_ptc_routines vector;

cfv_prf routines vector;

cfv_meter routines vector;

cfv_nodevice_ routines vector;

uint32e type cf_io device _driver_vector[29] =

{

&cfiv_syscon_routines_ vector,

&cfiv_sd_routines vector,

&civ_devtty_routines_ vector,

&cfiv_mem routines vector,

&cfv_ldm routines vector,

&cfiv_nodevice_routines_vector,

&cfv_st_routines vector,

&cfiv_syac_routines_vector,

&cfv_err_ routines vector,

&cfiv_con_routines vector,

&civ_xdev_routines vector,

&cfv_nodevice_routines vector,

&cfv_nodevice_routines vector,

&cfiv_pcfv_routines_ vector,

&cfiv_ptc_routines_ vector,

&cfv_prf routines_vector,

&cfiv_nodevice_routines_ vector,

&cfv_meter routines vector,

&cfv_nodevice_routines_vector,

&cfv_nodevice_routines_vector,

&cfv_nodevice_routines_vector,

&cfv_nodevice_routines_vector,

&civ_nodevice_routines vector,

&cfv_nodevice_ routines vector,

&cf£v_syac_routines_vector,

2-8 Licensed material—property of Data General Corporation

/*

J*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

ow ON HD UP WD EH ©

NNNNNNKFPRPHP EP HP HPP Be UPWNHH OW DONA S&WNHH O

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

093-701053

Checking the Configuration Process

&cfiv_syac_routines vector, J*® 26 */

&cfiv_syac_ routines vector, J* 27 */

&cfv_nodevice_routines_vector, f*® 28 */

};

uint8e_type cf _dev_device_driver_ count = 29;

Configuration List

The configuration list shows all the devices configured on the system. Check for all

your system file entries.

/* */

/* Configuration List */

/* */

char * cf_init configuration_list [] =

{

"syscon()",

“cied()",

“devtty()",

“mem()",

"1am()",
"st(cisc(0,0),*)",

"syac(0)",

"err()",

"con()",
"xdev@72()",

"xdev@73(OxfffFff6000,4)",

"pts()",

“pte()",

“prf()",
"hken()",

“meter()",

"Loop()",

};

Your Special Files

At reboot time, the system will call the dev_xxx configure routine you supply with

your driver (we describe how to write this routine in Chapter 4). Among other

things, your dev_xxx_configure routine generates the special files that point to your

device driver (see "Special Files (Nodes)" in Chapter 1).

093-701053 Licensed material—property of Data General Corporation 2-9

Checking the Configuration Process

The special files are stored in /dev. You may list the files for your clevices to verify

their setup. There should be a special file for each unit serviced by your driver.

The devices shown here will reflect those you specified in the system file. You

determine the special files’ names through your dev_xxx_configure routine. Listing

the special files with Is -] will display the major and minor device numbers of each

unit, as well as the access permissions. You can also verify that appropriate special

files exist for block versus character access for a device.

End of Chapter

2-10 Licensed material—property of Data General Corporation 093-701053

Chapter 3

Overview of Driver Facilities and

Functions

This chapter describes the functions that device and adapter drivers must supply. It

defines the interface between each function and the kernel, and it describes the

operations each routine must perform. Where needed, we indicate whether a routine

or data structure applies only to an adapter driver. Unless otherwise specified,

descriptions apply to both device and adapter drivers.

NOTE: In all references below, use your own device’s prefix in place of xxx. Your

prefix is the one specified in your master file entry.

Include Files

When writing your device driver, you will need to include a number of standard

include files and to supply two additional files of your own: dev_xxx_def.h and

dev_xxx_global_data.c. These files are described below.

@ Your driver’s personal include file: dev_xxx_def.h

You create this include file to hold any constant or data structure definitions

you need for your driver.

@ You driver’s data file: dev_xxx_global_data.c

For consistency between drivers, we recommend that you put your driver’s

statically allocated global data structures in a file called

dev_xxx_global_data.c. You can use dev_xxx_global_data.c to allocate any

global data structures your driver needs, but, specifically, you should use it

to allocate a cfv_xxx_routines_vector for your driver. Your

cfv_xxx_routines_vector specifies the locations of your driver functions.

CAUTION:

The kernel must find a correctly named routines vector in order

to locate your driver routines. Proper allocation of the routines

vector is crucial to your driver’s operation.

093-701053 Licensed material—property of Data General Corporation 3-1

Include Files

e General driver include files

All drivers must include the file i_io.h. This file contains most of the

constants and structures needed by any program adhering to the standard

driver interfaces. The file io.h is found in /usr/src/uts/aviion/ii.

In addition to i_Lio.h, SCSI device and adapter drivers require two additional

include files, dev_scsi_def.h and dev_scsi_adapter_def.h. Both of these files

are found in /usr/src/uts/aviion/dev.

® Include files for the kernel itself

All drivers must include three files that contain constants and data structures

used by the kernel itself. These files are c_generics.h, os_generics.h, and

architecture.h. These files are found in /usr/src/uts/aviion/ext.

® Include files for kernel-supplied routines

If you use a kernel-supplied routine, you will need to include an include file

specific to that routine’s class. The routine’s class is indicated by the first

few letters of its name. The include file for a class of routines starts with

these same few letters. For example, if you use a virtual memory ("vm"

routine, like vm_wire_memory, you must include the i_vm.h include file.

The possible include files are listed in Table 3-1 below.

Table 3-1 Routine Classes and Their Include Files

Routine Class Acronym _ Include File

File system fs ifs.h

VO 10 i_io.h

Lock management Im i_Jm.h

Miscellaneous misc i_misc.b.

Process management pm i_pm.h

System control sc i_sc.h

Virtual memory vm i_vm.h

Virtual process vp i_vp-h

Micro-code uc i_uc.h

These files are stored in /usr/sre/uts/aviion/ii. While this manual discusses

some of the constants and data structures used by the various kernel-supplied

routines, you may need to list these files to examine particular structures.

Be sure to define a literal PRODUCT_DGUxX in one of your source files or

at compile time if you use any of the ii include files.

You compile the file containing your driver routines (in dev_xxx_driver.c) and global

data (in dev_xxx_global_data.c) with your dev_xxx_def.h and the appropriate system

3-2 Licensed material—property of Data General Corporation 093-701053

Include Files

include files to produce object files that will be linked into the system image.

093-701053 Licensed material—property of Data General Corporation 3-3

Overview of User-supplied Device Driver Routines

Overview of User-supplied Device Driver

Routines

All device drivers (SCSI devices and VME controllers) must supply the 15 routines

(external interfaces) listed below in the section “Required Routines." These routines

constitute the interface between a device driver and the kernel.

The kernel calls these routines as needed, generally when a user addresses an

operation to a special file that maps to the driver’s major device number.

Nevertheless, some routines don’t make sense for some drivers. For instance, a

mouse driver cannot act on a write_dump operation. In such cases, your driver must

still supply a routine of the appropriate type and have that routine return an error.

In addition to the 15 basic interface routines, some drivers may need 2 additional

routines (internal interfaces). These routines relate to servicing interrupts and

handling asynchronous I/O. The routines are used by the driver’s own routines but

the kernel may be involved in the process of invoking them.

To write a driver, you write your versions of the required routines and combine them

into a file named dev_xxx_driver.c. This file will be your driver. The internal and

external routines that your driver can have are summarized below in the section

“Required Routines.”

NOTE: In the following routines, there are important differences between device

drivers that service interrupts and those that do not. Remember, SCSI

device drivers do not service interrupts. Therefore, descriptions relevant to

interrupts do not apply to SCSI device drivers.

Required Routines

@ The kernel calls the dev_xxx_init routine for every driver at system

initialization time — before configuration. dev_xxx_init allows the device

driver to perform any initialization that is necessary before any devices are

actually configured into the system. You do not necessarily need to initialize

the device itself in dev_xxx_init; this routine simply provides you with the

opportunity to set up any data structures or other operations that you might

want done prior to configuration.

@ dev_xxx_configure performs operations necessary to make a peripheral of

your driver’s class accessible to the system. During configuration, the kernel

calls the driver’s dev_xxx_configure routine once for each peripheral listed in

the system file. In addition, peripherals not listed in the system file may be

configured at some other time im the life of the system. Thus,

dev_xxx_configure should be able to run at any time in the life of the system.

Because this is the first time your driver actually interfaces to the device, you

3-4 Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Device Driver Routines

will want to ensure that the device is alive and well. You will set up your

special files (/dev entries), and assign minor device numbers. You may also

need to query the controller to find out how many units it has, because you

will want to configure each unit on the controller.

If you are writing an SCSI device driver, you will also need to identify and

get a pointer to the adapter driver routines you will be addressing. You will

also have to make sure that your adapter has already been configured before

you can query your device. To do this you can call the kernel-supplied

routine dev_scsi_adapter_configure with your device’s device specification.

The first parameter of this device specification contains the adapter’s device

specification. dev_scsi_adapter_configure will make sure that the adapter is

configured and return the adapter’s major and minor device number.

For drivers that service interrupts, the dev_xxx_configure routine must

allocate a device information structure for the device and then register the

information in this structure. Registering links the device code with the

driver’s interrupt service routine. This link is made via a device interrupt

table (DIT). SCSI device drivers must call the adapter manager’s

dev_scsi_adapter_register_requester routine to associate their device with

their adapter.

Note that on AViiON machines, devices come up with interrupts enabled by

default.

@ The kernel calls a device’s dev_xxx_open and dev_xxx_close routines when

the user opens and closes the device. The kernel calls dev_xxx_open each

time the device is opened, even if the device is already open. Similarly, the

kernel calls the dev_xxx_close function each time the device is closed.

One of dev_xxx_open’s important functions is to return a device handle that

the kernel will use later to pass to the driver’s other routines. The

devy_xxx_open routine may also do further checking of the device to ensure

that it is ready for operation (for example, that a tape is mounted, online,

and write-enabled). Finally, if the configuration routine has not initialized

the device, the dev_xxx_open routine will initialize the device and make it

ready for operation.

@ The kernel calls the driver’s dev_xxx_read_write routine for any user read or

write operation that is to be handled synchronously (that is, the user process

will be pended until the I/O completes). Character special (raw) I/O is

always done synchronously. Thus, for character I/O, each user call to a

read/write system call results in the kernel calling dev_xxx_read_write.

@ dev_xxx_start_io is the asynchronous counterpart of the dev_xxx_read_write.

Whenever the kernel decides not to let the process pend until the I/O

completes, it invokes dev_xxx_start_io instead of dev_xxx_read_write.

dev_xxx_start_io is used for only block special I/O operations.

093-701053 Licensed material—property of Data General Corporation 3-5

Overview of User-supplied Device Driver Routines

For block special I/O, the kernel determines whether the request will be

processed synchronously or asynchronously (see dev_xxx_start_io). Thus,

the kernel may call either dev_xxx_read_write or dev_xxx_start_io. In fact,

the kernel manages block special operations such that it may not call either

of these routines in a one-to-one correspondence with the user’s read/write

system call. In other words, sometimes the kernel may have previously

buffered the data the user wants.

@ The select operation is usually used for devices (such as terminals) that must

wait for an external event before I/O can proceed. Your driver’s

dev_xxx_select routine implements this operation. The kernel provides

select facilities that help a driver manage the list of events used to notify

processes awaiting a select event. We discuss the select manager facilities in

Chapter 8.

The kernel calls your dev_xxx_select routine whenever the user calls the

select system call for your driver’s device.

@ The ioctl operation is used to issue control functions to a device. For

example, a user might invoke ioctl to set forms on a line printer.

The kernel calls your dev_xxx_ioctl routine whenever the user issues the ioctl

system call for your driver’s device. Note that some ioctl calls are actually

file descriptor operations and do not actually refer to any device. The kernel

will handle these calls directly and not call dev_xxx_ioctl. For example, the

kernel will handle the FIONCLEX ioctl command directly and not call

dev_xxx_ioctl.

Because control functions are specific to each device driver, you can define

your own control parameters. The kernel simply passes the parameters from

the user request to the driver’s dev_xxx_ioctl routine. The kernel does not

interpret these parameters.

If you are writing a disk driver and want to implement a hardware formatter,

we recommend you use ioctl.

@ The kernel calls the dev_xxx_open_dump, dev_xxx_write_dump, and

dev_xxx_close_dump routines during system panic. The

dev_xxx_open_dump function does all initialization required for the dump

device to be accessed during system panic. The dev_xxx_write_dump routine

writes data to the dump device. The dev_xxx_close_dump routine is called

to terminate the dump operation to the device.

Note that these routines are necessary only if your device will be a dump

destination. For example, a mass spectrometer driver cannot be a dump

destination.

@ The dev_xxx_deconfigure routine does the opposite of the dev_xxx_configure

operation. It deallocates all resources and performs any cleanup necessary

3-6 Licensed material—property of Data General Corporation 093-701053

NOTE:

Overview of User-supplied Device Driver Routines

to completely remove a device from the system. As with

dev_xxx_configure, dev_xxx_deconfigure should be able to work at anytime

during the life of the system.

The deconfiguration routine is optional; you may support it if you wish. The

benefit of including it is that, in case of an erroneous configuration, the user

can deconfigure and then reconfigure and re-use the device. This might

occur, for example, if the user accidentally configures a tape at device code

23 when a disk is actually resident at that device code. Deconfiguration will

allow the tape to be deconfigured so the disk can be correctly configured

without re-booting the entire system.

If you do include deconfiguration, you should try to allow for future

enhancements such as repair-under-power. In repair-under-power a single

device must be deconfigured so it can be removed from the system and

repaired.

The kernel calls the dev_xxx_powerfail routine for every driver when power

is restored to the system after a power failure (assuming that battery backup

has preserved the process and memory state such that automatic recovery

makes sense). The dev_xxx_powerfail function should be able to work

anytime after dev_xxx_init has completed, regardless of whether or not the

device is open.

The DG/UX system has not yet implemented powerfail. However, the

routine still has a place in the kernel’s table of driver routines. The driver

only has to provide a stub routine for this interface.

You must supply dev_xxx_device_to_name and dev_xxx_name_to_device

name translation routines. These routines translate between your devices’

names and their numbers (major and minor numbers combined). Kernel and

system administration utilities will use these routines to identify devices they

want to access. Your dev_xxx_device_to_name routine should be able to

function anytime after the device’s configuration.

Your cfvy_xxx_routines_vector includes place holders for dev_xxx_mmap,

dev_xxx_munmap, dev_xxx_maddmap, and dev_xxx_read_dump routines.

These interfaces will be operational in a later release of the DG/UX kernel.

For now, put stubs in the routines vector fields for these routines (see the

"Nodevice Routine Stubs” section in Chapter 8).

Optional Routines

In addition to the required routines described above, devices that use interrupts will

need an interrupt service routine, and drivers that perform asynchronous I/O may

need an I/O completion routine for follow-up processing.

093-701053 Licensed material—property of Data General Corporation 3-7

Se EE Ee eR ee

Overview of User-supplied Device Driver Routines

3-8

@ The dev_xxx_service_interrupt routine processes any incoming interrupts for

your device.

You can create an I/O completion routine to complete processing for

asynchronous I/O operations. (We’ll refer to your I/O completion routine as

the complete_io routine.) The dev_xxx_start_io routine starts the

asynchronous request, but the follow-up processing must be handled

elsewhere. Frequently, the completion operations are too lengthy to be done

in the interrupt service routine. Most drivers handle completion by

scheduling a message to the Driver Daemon or Generic Daemon (see

Chapter 8). The message specifies a complete_io routine that the daemon

will execute.

NOTE: You can name your complete_io routine anyway you see fit. We

italicize the term complete_io to emphasize this pount.

The kernel has its own I/O completion routine (hereafter called the Kernel

I/O completion routine) that the driver must invoke as part of its complete_io

routine. The driver’s dev_xxx_start_io routine receives the Kernel I/O

completion address as a field in the op_record parameter. The driver

returns control back to the higher levels of the kernel by calling the Kernel

I/O completion routine. See the dev_xxx_start_io description in Chapter 4

for discussion of “start I/O" and the kernel I/O completion routine.

Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Adapter Driver Routines

Overview of User-supplied Adapter Driver

Routines

In order to access the physical device, an SCSI device driver invokes the SCSI

adapter manager, which in turn invokes the SCSI adapter driver that controls the

specified device. Thus, most of the adapter driver routines are used to interface

between the SCSI device driver and the SCSI adapter driver. These routines are

listed below in the "The Device Driver to Adapter Driver Interface” section.

There are also two cases in which the kernel will invoke an SCSI adapter driver

routine. These routines are described in the "The Kernel to Adapter Driver

Interface” section.

The Device Driver to Adapter Driver Interface

A device driver will call the following adapter routines as needed. The data

structures referred to here are described in more detail in the "Overview of Major

Data Structures” section.

e Since SCSI devices do not interrupt the host directly, SCSI device drivers

need not register their device information structure with the kernel. Instead,

they register themselves with the adapter driver that will handle their

interrupts for them. Thus, during configuration, each SCSI device driver

calls its adapter’s dev_xxx_register_requester routine in order to identify

itself and establish a link between itself and the adapter driver.

dev_xxx_register_requester establishes the link by adding an entry with the

device’s SCSI ID and unit number to its device information structure.

@ During deconfiguration, a device driver calls its adapter’s

dey_xxx_deregister_requester routine to close the link between device and

adapter drivers.

e SCSI device drivers are specific to a particular class of device. For example,

you can have an SCSI tape driver or an SCSI disk driver. Adapter drivers,

on the other hand, may handle many different types of devices (such as

tapes, disks, and printers). Device drivers use their adapter’s

dev_xxx_set_unit_options routine to set certain adapter I/O parameters to fit

their specific device. For example, a tape may need a longer timeout value

than a disk.

@ When an SCSI device driver wants to send a command to its device, it must

process that request via the adapter. If the command is to be processed

synchronously, the device driver calls the adapter’s dev_xxx_issue_command

routine. If it is an asynchronous request, the device driver calls the adapter’s

dey_xxx_issue_async_command routine. These routines send an SCSI

command to the target device via the adapter. These routines can be

invoked as a result of either user-initiated requests or internal driver needs.

093-701053 Licensed material—property of Data General Corporation 3-9

Overview of User-supplied Adapter Driver Routines

The device driver sends information about the request in an adapter request

block given as a parameter to dev_xxx_issue_command. The adapter request

block is a generic structure used for all adapters. The adapter driver will

return the results of the operation as a return value status. Chapter 4 lists

the possible return values for each adapter interface. Sense information

describing an error is returned in the request block’s sense buffer.

Depending on the adapter’s architecture, dev_xxx_issue_command or

dev_xxx_issue_async_command may need to transfer request information to

a structure appropriate for the particular adapter. Throughout the rest of

this manual we will refer to such structures as the adapter-specific parameter

block.

e If the system panics, the kernel enters shutdown mode and no longer

provides its usual services. If an SCSI device is a designated dump

destination, the adapter driver will have to access the device without normal

kernel support. The dev_xxx_issue_command_physical_mode routine you

supply will be used in these situations. The

dev_xxx_issue_command_physical_mode provides access to the SCSI device

when no interrupts, no locks, no eventcounters and no virtual memory are

available.

@ Since an SCSI device driver registers itself with its adapter instead of with

the kernel, it will need to access its device information via the adapter

driver. The device driver calls the adapter’s dev_xxx_get_device_info routine

to get information about its device from the adapter’s device information

structure. The adapter’s devy_xxx_get_device_info routine returns the device’s

unit handle just as the io_get_info routine does for the kernel.

The Kernel-to-Adapter Driver Interfaces

From the kernel’s perspective an adapter driver is simply another driver. It is

theoretically possible for a user to address an I/O request to the adapter as if it were

an end device. To handle this possibility, the kernel requires that adapter drivers

supply all the routines listed for device drivers.

The majority of these routines would be accessed only because of a user error.

Hence, they are really just error-returning program stubs. You can write your own

versions of these stubs or you can use the set of DG/UX “nodevice” routines listed in

Chapter 8. If you use the DG/UX routines, you will substitute a "nodevice” routine

for each routine you do not supply. For example, if you do not supply

dev_xxx_read_write, you would substitute io_nodevice_read_write in

cfv_xxx_routines_vector.

Of the required device driver routines, an adapter driver must supply four actual

routines, and the rest may be stubs. You must supply dev_xxx_configure,

dev_xxx_open_dump, dev_xxx_device_to_name and dev_xxx_name_to_device. The

device driver descriptions of these routines pertain to the adapter driver as well.

3-10 Licensed material—property of Data General Corporation 093-701053

Overview of User-supplied Adapter Driver Routines

Note that since adapter drivers service interrupts, their dev_xxx_configure routines

must allocate a device information structure for the device and then register the

information in this structure. Registering links the device code with the driver’s

interrupt service routine via the device interrupt table (DIT).

093-701053 Licensed material—property of Data General Corporation 3-11

Overview of Major Data Structures

Overview of Major Data Structures

Many of the major data structures your driver will need are contained in the include

file Lio.h. In this section, we describe some of the important types found in iLio.h.

We show the actual type definitions for these structures in Chapter 4.

Device Driver Data Structures

The major structures a driver might need are as follows:

3-12

@ Routines vector

The main routines vector is a table of your driver’s basic routines (the 17

required and 2 optional described for all drivers). The structure for this

routines vector type is defined in Lio.h. You allocate your driver’s main

routines vector in dev_xxx_global_data.c. The kernel accesses your driver’s

routines via its own internal table of routines vectors. It uses the device’s

major number as an index into this table.

SCSI adapter drivers have their own routines vector, which includes both the

standard and adapter-specific routines. The adapter’s routines vector type is

defined in dey_scsi_adapter_def.h

Chapter 4 shows the layout of both types of routines vectors.

Device number

Your driver uses the device number to identify a specific device before the

device has been opened. The device number is a combination of the device’s

major and minor numbers. Your dev_xxx_configure routine passes the

device number to the kernel’s fs_submit_dev_request routine to create a

special file. The kernel also passes the device number to your dev_xxx_open

routine to identify the device. After the dev_xxx_open, the user will use a

file descriptor to identify the device. The kernel identifies the device to the

driver’s routines by passing the device handle.

The dev_xxx_configure routine gets the device’s major nuniber as a

parameter from the kernel and gets the device’s minor number by calling the

kernel’s device number io_allocate_device_number routine (see Chapter 8).

It combines these numbers to form the device number.

Device information structure

You allocate this structure at configuration time. You create a device

information structure for each peripheral of your driver’s type listed in the

system file. It should be dynamically allocated in global wired memory.

You can define most of the contents of this structure anyway you see fit.

Licensed material—property of Data General Corporation 093-701053

Overview of Major Data Structures

However, for devices that interrupt the host, the kernel requires that the first

field of the device information structure contain a pointer to your interrupt

service routine.

@ Device interrupt table

The kernel uses this table to match interrupts and interrupt service routines.

This table matches each device code with a pointer to the first field in the

driver’s device information structure. This first field contains the address of

the driver’s interrupt service routine.

When you register your device information structure, the

io_register_device_info routine copies a pointer to your device information

structure into the DIT entry for you controller using the device code as an

index. The first field of this structure points to your interrupt service

routine.

The kernel declares the device interrupt table.

@ Device handle

After the device is open, the kernel passes the device handle to the driver

routines. Thus, your dev_xxx_read_write routine will get the device handle

when it is invoked. The device handle is specific to a single unit of a device.

The kernel does not interpret this field.

You are allowed to define and use the device handle as you want. It is

intended to be a pointer to an information table describing the operations

occurring on a particular device. Most drivers make the device handle point

to a unit-specific area in the device information structure. (We will presume

this implementation in the rest of this manual.)

@ Buffer vector

Buffer vectors are the DG/UX kernel’s interface for data transfer. When

users make an I/O request such as a read, they specify a buffer and a

transfer byte count. The kernel allocates a buffer vector and packages the

I/O request information in this structure. Thus, the buffer vector holds a

transfer byte count and pointers to memory buffers. The kernel then passes

the buffer vector for the request to your driver routine (for example,

devy_xxx_read_write). You can manipulate the buffer vector using the kernel

routines described in Chapter 5.

Buffer vectors are specifically designed to handle buffers that span non-

contiguous memory. Non-contiguous buffers are needed for the readv and

writev operations. For simplicity, the same buffer-vectoring scheme is used

for the standard read and write operations even though they do not need

non-contiguous buffers.

093-701053 Licensed material—property of Data General Corporation 3-13

Overview of Major Data Structures

© Request information packet

For the dev_xxx_read_write routine, the kernel packages information about

the user I/O request in a request information packet. This packet contains

the device handle, the buffer vector, and a set of I/O flags that specify

restrictions on this particular operation (see Chapter 4). In addition, it

contains a device offset value, which specifies to the driver where on the

device the information transfer is to begin. For example, for a disk driver,

the offset might indicate the number of bytes from the start of the disk. The

driver can divide this number by 512 to determine the logical sector on the

disk.

Operation record packet

The operation record packet is the same as a request information packet

except that it is used with the asynchronous dev_xxx_start_io routine and

hence has several extra fields. In addition to the same fields found in the

request information packet, the operation record packet contains: 1) a

complete_io routine field, which holds the address of the kernel’s /O

completion routine; and 2) a link field, which allows the driver to link

requests together in an asynchronous request queue.

Data Structures for SCSI Adapter and SCSI Device

Drivers

In addition to the structures listed above, SCSI adapter and SCSI device drivers will

also use the following.

3-14

e@ Adapter unit specification structure

The adapter driver uses the device specification structure to save the device

specification information for each currently active device. ‘The entry for

each active device shows the device’s SCSI ID and unit number. Unit

numbers are used for SCSI devices that are controllers with units.

@ Adapter request blocks and Adapter-specific parameter block

Device drivers use adapter request blocks to pass information about their

current request to the adapter driver. The structure is a generic block of

parameters used to issue a request to the dev_xxx_issue_command and

dev_xxx_issue_async_command routines. Depending on the architecture,

before issuing the request, the adapter driver may need to transfer request

information to a structure appropriate for its particular adapter. Throughout

the rest of this manual, we refer to such structures as adapter-specific

parameter blocks.

@ Other adapter parameter blocks

Licensed material—property of Data General Corporation 093-701053

093-701053

Overview of Major Data Structures

Dev_xxx_register_requester, dev_xxx_set_unit_options, and

dev_xxx_issue_command_physical_mode each have defined blocks through

which the device driver passes them information. Chapter 4 shows the

layout of these parameter blocks.

Licensed material—property of Data General Corporation 3-15

Other Driver Facilities

Other Driver Facilities

In this section, we describe two driver facilities: the Driver and Generic Daemons

and the error reporting facilities. See Chapter 8 for more information on these

facilities and a description of the routines you use to interface to them.

The Driver Daemon and the Generic Daemon

Driver Daemons and Generic Daemons are classes of daemon processes that drivers

use for handling asynchronous I/O requests. Asynchronous I/O requests generally

require the use of an interrupt service routine. In a symmetric multiprocessing

environment, the interrupt service routine cannot be allowed to pend or to call any

routine that might pend. Thus, the interrupt service routine can perform only very

minimal operations. In most cases it will need a way to continue processing the

interrupt outside the service routine’s restricted environment. Driver Daemons and

Generic Daemons provide an appropriate way to handle this continued processing.

The two classes of daemon process have exactly the same interface and method of

operation. Each class has a global queue on which requests are placed. Requests

consist of a pointer to a routine to execute and an argument to be passed to the

routine. A daemon process will remove an entry from the request queue and call the

routine with the specified argument. More than one daemon process may be

removing requests from the same queue so that multiple requests can be executed in

parallel on a multiprocessor system. Each individual request, however, is only

executed once and by a single daemon. All the daemon processes that are working

off the same queue are in the same class.

By executing the requestor’s routine, the daemon can take the place of the requestor

in performing the device service operations such as examining the status, retrying

errors, and starting previously queued requests. Furthermore, if the driver code

determines that an asynchronous request has completed, the requestor’s I/O

completion routine (see Chapter 4) will be called, again with the daemon actually

executing the code.

The two classes of daemon differ in what kinds of operations the routine in the

request may perform. Routines in Driver Daemon requests must not perform any

operation that might have to wait for the completion of a disk I/O operation. For

example, such routines may not page fault, because servicing the page fault may

require waiting for a disk I/O to complete. In addition, such routines must not

directly or indirectly send signals or perform terminal-related operations. Because of

all these restrictions, the Driver Daemons will generally only be used by disk device

drivers.

On the other hand, routines in Generic Daemon requests are allowed to wait on disk

I/O, send signals, and perform terminal-related operations. The lesser restrictions

make the Generic Daemons usable by terminal-handling code and other higher level

parts of the system.

3-16 Licensed material—property of Data General Corporation 093-701053

ed CUED CEE EES ee ee ee Ome

Other Driver Facilities

NOTE: Disk device drivers must not use the Generic Daemons because a deadlock

Error

condition could result.

Reporting Facilities

Drivers can choose between two major error-reporting destinations: 1) the user-level

calling process; and 2) the system error-logging facility. Drivers do not need to

perform any special operation to report statuses back to the user-level process; the

kernel passes driver routines’ return values back to the user as a completion status

after the routine completes. Because users receive return values as statuses, we

strongly recommend you encode your driver’s unique return values according to

standard encoding procedures (see Chapter 8). Users can decode standardly encoded

statuses using the dg_ext_errno system call.

To send an error to the system error-logging facility, the driver must use the services

of the system error daemon, syslogd, and the psuedodevice, err(7). Err receives and

stores errors from kernel-level processes. Syslogd receives and stores errors from all

processes connected to the system, remote or local, user- or kernel-level. Syslogd

periodically retreives and processes the errors stored in err.

How syslogd processes errors is determined by its configuration file,

/etc/syslog.conf. For example, syslog.conf may specify that the logged errors are to

be printed out to the system console or written to a disk file, and so forth. See

logger(1), syslog(3), syslog.conf(5), and syslogd(8) for more information on the

system error daemon and how to configure error processsing.

The err psuedodevice receives and stores errors from drivers on an internal error

queue. Your driver can store error messages on this queue using the kernel-supplied

routine, io_err_log_error. Io_err_log_error is described in Chapter 8.

093-701053

End of Chapter

Licensed material—property of Data General Corporation 3-17

Chapter 4

User-Supplied Driver Routines

In Chapter 3, we gave you an overview of the routines that your driver should supply

to the kernel. In this chapter, we describe what each routine does, give details on

parameters and arguments, and tell you about assumptions you should make while

writing the routines.

The chapter is divided into the following major sections:

@ User-Supplied Device Driver Routines

@ User-Supplied Adapter Driver Routines

The device driver interfaces describe the routines you must write to build a device

driver, SCSI, or VME. The adapter driver interfaces describe routines you must

write to build an SCSI adapter driver. :

Each routine specification includes a "Return Values” section that lists specific return

values that the kernel can process when the routine returns. When no return value is

specified, the routine must not fail (the kernel will not process any returns or

exceptions). If the driver routine experiences an exception other than those specified

in the "Return Values" section, it can proceed in one of the following three ways:

1) It may return an exception by returning a value other than one of the

specified values. The kernel will filter this value back to the user as a

standard errno. You can either define your own values for this errno or use

values already defined by the system. Check /usr/include/sys/errno.h for a

listing of the existing errnos and their definitions. In Chapter 8 we describe

how to define an error status.

2) It may panic the system. In Chapter 8 we describe the routines used to panic

the system. Some driver routines are not allowed to panic. We indicate

whether or not a routine can panic in the "Return Values” section of the

interface description.

3) It may use the error daemon to log an error. In Chapter 8 we describe the

procedures used for error logging. If the routine decides to log the error, it

should still return an exception (errno) to the user directly.

093-701053 Licensed material—property of Data General Corporation | 4-1

User-Supplied Device Driver Routines

User-Supplied Device Driver Routines

This section describes the routines and data structures you will need to create a

device driver.

Constants and Data Structures

The device driver routines you write will use the following constants and data

structures. Try to avoid dependencies on the specifics of these structures, such as

size or location of fields, since these specifics may change in later releases of the

software. The best way to avoid such dependencies is to use kernel-supplied routines

to manipulate these structures. We discuss kernel-supplied routines in Chapter 5

through Chapter 8.

The constants and data structures listed here are given for convenience only and may

change. Check the appropriate include file (for example, i_io-h for structures

beginning with the io acronym) for the exact definition of all constants and data

structures. Chapter 3 describes the various include files.

io_driver_routines_vector_type

typedef struct

{

uintl1l6_ type version;

bitl16 type flags;

status_type

void

status_type

void

status_type

status_type

void

status_type

status_type

status_type

status_type

status_type

status_type

status_type

status_type

status_type

status_ type

status_type

status_type

(*open) ();

(*close)();

(*read_write)();

(*select)();

(*Loctl)();

(*start_10)();

(*init)();
(*configure) ();

(*deconfigure)();

(*device_ to name)();

(*name_to device)();

(*open_dump) ();
(*write_dump)();

(*read_dump)();

(*close_dump)();

(*powerfail)();

(*mmap)();

(*munmap)();

(*maddmap) ();

} io_driver_ routines _vector_type ;

Licensed material—property of Data General Corporation 093-701053

—_——e Cnc Gee ese

User-Supplied Device Driver Routines

Description

The kernel must have a pointer to each of your routines that will be externally visible.

You provide a vector of pointers to your driver’s routines in a routines vector

described by io_driver_routines_vector_type. You must allocate a variable of this

type for your driver in dev_xxx_global_data.c.

A version field is present to allow the system to change this structure and still be

compatible with older, user-written device drivers. The version should be one (1)

except when io_routine_vector_type is used as part of the SCSI adapter routines

vector, dev_scsi_adapter_routines_vector_type. In this latter case, the version

should be IO. DRIVER_ROUTINES_VECTOR_SCSLADAPTER_VERSION.

io_device_number_type

typedef struct

{

io major_device_number type major;

io minor_device_number type minor;

} io_device_number type ;

Description

A device number is a composite of the device’s major and minor device numbers.

During configuration, the kernel calls your dev_xxx_configure routine with the

device’s major number. Your dev_xxx_configure will get the device’s minor number

(using the kernel’s io_allocate_device_number routine) and then create the device

number variable for the unit. It then uses this device number to create the special file

(node) for the specific units. The kernel also passes the device number to your

dev_xxx_open routine to identify the special file of the unit to be opened. After the

open, a file descriptor will be used to identify the unit to the user, and a device

handle will be used to identify the unit to your driver routines. The kernel will not

interpret the device number value.

io_device_handle_type

typedef opaque32_type io _device_handle type =;

Description

A device handle identifies an open device to other calls to the device driver. Your

dev_xxx_open routine defines and returns the device handle when the device is

opened. The device handle becomes invalid when the device is closed.

Many drivers use a pointer to the unit-specific portion of the device information

093-701053 Licensed material—property of Data General Corporation 4-3

User-Supplied Device Driver Routines

structure as the device handle. However, what makes up a device handle and its

interpretation is up to each individual driver. Higher levels of the kernel that hold

device handles will not interpret their contents.

io_request_info_type

The kernel supplies a variable of this type for every I/O request system call made to

your driver.

typedef struct

{

io operation_type Op;

io_channel_ flags_type flags;

io_device_handle type device_handle;

uint32_type device_offset_extender;

uint32_type device_offset;

io_ buffer _vector_type buffer vector;

df self_id_ type self id;

} io_request_info_type ;

Description

The request information package described by this type groups several related values

that are needed to specify an I/O request. The request information package fields are

as follows:

op — The operation indicated by this request. See io_operation_type for a list

of the operation types. The op request is modified by the flags field.

flags — An additional set of flags that modify the operation inclicated by the op

field. These io_channel_flags are described later in this section.

device_handle — The device handle of the device to which the request is to be
directed. The device handle must be a device handle that was returned by the

open function of the driver for the device to which this request is to be directed.

device_offset_extender — This field exists for device offsets needing more than

32 bits. This field should be zero if large offsets are not used (for example, non-

disk devices). It should be checked in disk drivers. If your disk does not

support offsets needing the extender, you should reject requests where this offset

is non-zero. |

device_offset — The offset on the device where the transfer is to begin. The

interpretation of this field is defined by the driver to which the request is

directed.

buffer_vector — A buffer vector describing the main memory area that is to be

involved in the I/O operation. The addresses may be logical or physical

4-4 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

depending upon the operation specified in the op field.

self_id — The home system identification against which read data is to be

checked if the IO_.CHECK_SELF_ID flag is TRUE.

io_operation_type

typedef bitl16 type io _operation_ type ;

#define IO OPERATION_READ ((bit16_type)00000001)

#define IO OPERATION WRITE ((bit16_type) 00000002)

#define IO OPERATION_RECALIBRATE ((bit16 type) 00000004)

#define IO OPERATION_CHECK SELF ID ((bit16_type) 00000010)

#define IO OPERATION _PHYSICAL BUFFER ((bit16_type) 00000020)

#define IO OPERATION_USER_BUFFER ((bit16 type)00000040)

This type defines a bit field that describes an I/O operation to be performed. Only

one of READ, WRITE, or RECALIBRATE will be on at any one time. The

CHECK_SELF_ID flag may be present only on a READ operation. The

PHYSICAL_BUFFER flag may be present only on a READ or WRITE and indicates

that the buffer address supplied with the operation is a physical memory address

rather than a logical memory address. The USER_BUFFER flag may be present only

on a READ or WRITE and indicates that the buffer address supplied with the

operation is a user memory address rather than a kernel memory address.

io_operation_record_type

typedef struct

{

misc_queue_ links type links; |

io _request_info_type ri;

io_ completion _routine_ptr_type completion_routine;

} io_operation_record type ;

Description

You use the operation record when starting an asynchronous I/O request using your

driver’s dev_xxx_start_io function. The structure is basically an extension of the

io_request_info_type that you use for synchronous requests. The extension includes

extra information that is needed to service the request in an asynchronous manner.

The operation record’s fields are as follows:

links — Space that may be used by a device driver to link this operation record

into a queue with other operation records. The driver determines the actual use

of this space.

093-701053 Licensed material—property of Data General Corporation 45

User-Supplied Device Driver Routines

ri — The request information structure that specifies the request.

completion_routine — The address of the function that should be called when

the operation denoted by this operation record is complete. This function must

conform to the I/O completion routine interface described in the "Kernel I/O

Completion Routine Interface” section.

io_select_intent_type

typedef bit16 type io_select_intent_type ,;

IO SELECT _INTENT_READ

IO SELECT INTENT WRITE

IO SELECT _INTENT_EXCEPTION

IO SELECT INTENT NONE

Description

This type describes the select options that may be specified to a device driver’s

dey_xxx_select routine. The READ, WRITE, and EXCEPTION options start a

select for the corresponding operation. You can use any combination of these three

options in a single dev_xxx_select call. IO.SELECT_LINTENT_NONE is used as a

return value from io_select_cancel when no intent has been satisfied.

io_buffer_vector_type

typedef struct

{

union

{

io_buffer_vector_control_type many ;
io_buffer_descriptor_type one;

} u;

uintl16 type descriptor_count;

uinti6_ type current descriptor;

uint32_ type current._offset;

uint32_type total_xremaining;

} io _buffer_vector_type ;

Description

This structure defines a buffer vector, which is a collection of individual buffer

descriptors plus an associated state. A buffer vector may be the source or destination

of a single read or write operation; the individual buffer descriptors define the

locations from which the data is being read or into which the data is being written.

4-6 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The current position is where the next byte of data will be read from or written to.

The current position is initialized to the first byte of the first buffer descriptor. The

current position within the buffer vector is maintained by the associated state.

The fields in this structure are as follows:

many — This structure contains a pointer to the array of buffer descriptors and

the total of the sizes of all the elements of the array. This field of the union is

used only when descriptor_count is non-zero. io_buffer_vector_control_type is

described in this section.

one — This structure contains the single buffer descriptor when the buffer vector

consists of a single descriptor. This field of the union is used only when

descriptor_count is zero. io_buffer_vector_control_type is described later in this

section.

descriptor_count — The number of entries in the many array of the

io_buffer_vector_control_type. Not all of these entries are presumed valid; the

total_size field controls the number of entries that are used. This field is used to

determine the actual amount of memory allocated to the array. If this field is

zero, then there is no memory allocated to the array and a single descriptor is

stored in the union field one.

current_descriptor — The index of the descriptor that contains the current

position. io_buffer_vector_control_type is described later in this section.

current_offset — The offset of the current position in the buffer descriptor

indexed by current_descriptor.

total_remaining — The total number of bytes remaining to be moved to or from

this buffer vector since it was initialized.

io_buffer_descriptor_type

typedef struct

pointer to any type buffer_ptr;
uint32_type size;

} io_buffer_descriptor_type ;

Description

This structure describes a buffer from which data is to be read or to which data is to

be written.

The fields in this structure are as follows:

buffer_ptr — Pointer to the start of the buffer.

093-701053 Licensed material—property of Data General Corporation 4-7

User-Supplied Device Driver Routines

size — The size of the buffer, in bytes.

io_buffer_vector_control_type

typedef struct

{

io_buffer_descriptor_ptr_type

uint32_ type

} io_buffer_vector_control_type ;

Description

descriptors_ptr;

total size;

This structure is used in the many field of buffer_vector_type.

The fields in this structure are as follows:

descriptors_ptr — A pointer to an array of buffer descriptors. The array may

contain as many as UINT16_MAX entries. (See c_generics.h for the definition of

UINT16_MAX.)

total_size — The sum of the size fields in all the elements of the array buffer

descriptors.

io_channel_flags_type

typedef bit32_ type io_channel flags_type ;

#define IO CHANNEL _NO_FLAGS

#define IO_ CHANNEL READ INTENT

#define 10 CHANNEL WRITE INTENT

#define 10 CHANNEL EXCLUDE WRITERS INTENT

#define IO_CHANNEL APPEND_INTENT

#define IO CHANNEL_SYNC_I0O

#define IO CHANNEL _NO_ WAIT

#define IO CHANNEL ASYNC_IO

#define IO CHANNEL NONBLOCK

#define IO _CHANNEL NDELAY

#define | I0 CHANNEL BLOCK SPECIAL

#define |§I0 CHANNEL _NO_RETRIES

#define IO CHANNEL NOTIFY _IF_MANDATORY

#define IO CHANNEL NOTIFY

Description

((bit1i6_type)00000000)

((bit16_type) 00000001)

((bit16 type) 00000002)

((bit16_type)00000004)

((bit16 type) 00000010)

((bit16 type) 00000020)

((bit16 type)00000040)

((bit16 type)00000100)

((bit16 type) 00000200)

((bit16 type) 00000400)

((bit16 type)00001000)

((bit16 type) 00002000)

((bit16 type)00004000)

((bit16_ type) 00010000)

When users open a device, they can open with a set of conditions. The channel flags

specify the open conditions that the user requested. These conditions are passed to

the devy_xxx_open routine. See dev_xxx_open for descriptions of the conditions.

4-8 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The open options are as follows:

1O0_CHANNEL_NO_FLAGS — None of the conditions described below applies.

I1O_CHANNEL_READ_INTENT — The channel is opened with read intent. This

flag corresponds to the O_RDONLY or O_RDWR option on the open system

call.

IO_CHANNEL_WRITE_INTENT — The channel is opened with write intent.

This flag corresponds to the O_.WRONLY or O_RDWR option on the open

system call.

I1O_CHANNEL_EXCLUDE_WRITERS_INTENT — The channel is opened only if

there are currently no writers, and future attempts to open with write intent are

disallowed. This flag is used internally by the file system to prevent other

processes from writing to a disk it is managing.

1O_CHANNEL_APPEND_INTENT — The channel is opened with append intent.

This flag corresponds to the O_APPEND option on the open system call.

IO_CHANNEL_SYNC_IO — The channel is opened with the synchronous I/O

option. This flag corresponds to the O_SYNC option on the open system call.

1O_CHANNEL_NO_WAIT — The channel is opened with the no-wait I/O

option. This flag corresponds to the O_.NDELAY or to the O_NONBLOCK

option on the open system call.

IO_CHANNEL_ASYNC_IO — The channel is opened with the asynchronous I/O

option. This flag corresponds to setting the FASYNC option with the fentl

system call.

IO_CHANNEL_NONBLOCK — The channel is opened with the O.NONBLOCK

option.

1O_CHANNEL_NDELAY — The channel is opened with the O.LNDELAY

option. The driver should not look at this flag.

IO_CHANNEL_BLOCK_SPECIAL — The driver is being opened as a block

special device. This flag is used only internally.

IO_CHANNEL_NO_RETRIES — I/O performed via this channel should not be

retried if errors occur; all errors are treated as hard errors. This flag may or

may not be supported by a given device driver.

1O0_CHANNEL_NOTIFY_IF_MANDATORY — The kernel uses this option

internally to avoid deadlock on mandatory locks. Drivers should not use this

option.

IO_CHANNEL_NOTIFY — The driver is being opened with the OLNOCTTY

093-701053 Licensed material—property of Data General Corporation 4-9

User-Supplied Device Driver Routines

open flag set. The kernel uses this option to prevent the controlling terminal

from being set.

4-10 Licensed material—property of Data General Corporation: 093-701053

User-Supplied Device Driver Routines

interfaces for Device Driver Routines

In this section, we detail the following device driver routines, which you must supply.

@ dev_xxx_init

@ dev_xxx_configure

@ dev_xxx_open

@ dev_xxx_close

@ dev_xxx_service_interrupt

@ dev_xxx_read_write

@ dev_xxx_select

® dev_xxx_ioctl

@ dev_xxx_start_io

@ dev_xxx_open_dump

@ dev_xxx_write_dump

@® dev_xxx_read_dump

e dev_xxx_close_dump

@® dev_xxx_powerfail

@ dev_xxx_deconfigure

@® dev_xxx_device_to_name

@® dev_xxx_name_to_device

@ dev_xxx_maddmap

@® dev_xxx_mmap

@ dev_xxx_munmap

093-701053 Licensed material—property of Data General Corporation 4-11

User-Supplied Device Driver Routines

dev_xxx_init

Syntax

void dev_xxx init ()

Summary

This routine performs any pre-configuration initialization your driver might

need.

Parameters

None.

Description

The kernel calls the dev_xxx_init routine as part of system initialization.

dev_xxx_init gives the driver an opportunity to perform any initialization

needed before any of the driver’s devices are configured into the system.

dev_xxx_init is invoked once in the life of the system. No devices controlled

by the driver will be configured until after the dev_xxx_init routine completes.

The devy_xxx_init routine operates in a restricted environment. It may not

await or take a page fault.

Return Values

The dev_xxx_init routine does not return a status; any errors that it

encounters must result in a panic or in some method of flagging the error to

dev_xxx_configure for further processing. :

4-12 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_configure

Syntax

status type dev_xxx_configure (device_name ptr, major_number)

char ptr_type device_name ptr; /*READ ONLY*/

io major_device_number type major_number; /*READ ONLY*/

Summary

This routine configures a single device of the class supported by this driver.

Parameters

device_name_ptr — A pointer to the name of the device to be configured.

The name is in the form of a null-terminated string. The device name is the

name specified in the system file.

major_number — The major device number on which the device is to be

configured. This is the major number specified in the master file.

Description

This routine performs operations that make a physical device (of the class

supported by the driver) accessible to the system. The dev_xxx_configure

routine can be called anytime. If your device has system and master file

entries, it will be called by system initialization code during system boot. It is

called once for each system file entry in the system.

The dev_xxx_configure routine receives a device_name_ptr variable that

points to a device name. The name string is terminated by a null character

and has the following form:

device_mnemonic [@device_code] ([parameters})

Because each dev_xxx_configure is called for all system file entries, your

dev_xxx_configure should verify that the name string for the current call

contains its device’s name. If the name 1s not for one of its devices,

dev_xxx_configure should exit with a return value of

IO_ENXIO_DEVICE_NOT_RECOGNIZED.

dev_xxx_configure must initialize the device and must make the device

accessible to the kernel. Device initialization is unique to the device and to

the driver. The dev_xxx_configure routine should perform the following

functions:

093-701053 Licensed material—property of Data General Corporation 4-13

User-Supplied Device Driver Routines

4-14

e Allocate a device information structure. The driver uses the device

information structure to hold information relating to a specific device

(status, permissions, and so on).

While the driver can define most of this structure’s internal specifics,

the structure must contain a pointer to the driver’s interrupt service

routine (if it has one) in the first field.

In addition, if you want to use the kernel’s routines for managing a

select list (see Chapter 8), you should allocate a select list header in

the device information structure. The select list header type is

defined in i_io.h. You will also have to initialize this list by calling

the kernel’s io_init_select routine.

e If the device handles interrupts from the host, you must register the

device information structure using the io_register_device_info

routine. Registering the device information links the hardware device

code with the interrupt service routine given in the device

information structure.

@ Define a device handle and device number by calling

io_allocate_device_number. io_allocate_device_number allocates a

minor number for the device specified and links the device number

and device handle in the kernel’s internal tables. Later you can

retrieve this information by using kernel routines for accessing device

information (see Chapter 8). The kernel will pass the device number

to your driver’s dev_xxx_open routine, but thereafter it will identify a

device to all driver routines by passing the device handle.

If the device has a controller with accessible units, you should

establish a device number and device handle for all units that users

will access.

@ Create device special files. As with device numbers, you should

create special files for all the units that users will access. We

recommend that you create the special files after registering your

device information structure, because it is possible for the register

operation to fail. Chapter 8 describes kernel routines that create

device special files.

If the device has a controller, the driver usually performs any initialization

needed to bring the controller on-line here so that it can initialize the

controller’s units at open time.

If a failure occurs in any phase of the operation, dev_xxx_.configure must

return the system to the state it was in before the dev_xxx_configure routine

was called. Data structures must be deallocated and the clevice interrupt table

slot freed.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_configure routine should be written such that it can be called

anytime during the life of the system.

Return Values

OK — The device was successfully configured.

IO_ENXIO_DEVICE_NOT_RECOGNIZED — device_name_ptr does not

specify a device in the class supported by this driver.

IO_ENXIO_DEVICE_NOT_SUPPORTED — device_name._ptr specifies a

device in the device class supported by this driver, but the particular model is

not supported.

IO_EIO_PHYSICAL_UNIT_FAILURE — A request issued to the device

controller failed with an error status.

IO_EIO_DEVICE_TIMED_OUT — The controller did not respond to a

request within a reasonable length of time. |

1O0_ENXIO_DEVICE_IS_ALREADY_CONFIGURED — A device is already |

registered at the location specified by device_name_ptr.

093-701053 Licensed material—property of Data General Corporation 4-15

User-Supplied Device Driver Routines

dev_xxx_open

Syntax

status_type dev_xxx_open (device_number, channel flags,

device_ handle ptr)

io device_number_type device_number; /*READ ONLY*/

io channel flags_type channel flags; /*READ ONLY*/

io device _handle_ptr_type device_handle ptr; /*WRITE ONLY*/

Summary

This routine prepares a specified device for future I/O operations. It also

adds the device to the set of devices on which I/O may be performed by this

driver.

Parameters

device_number — The major and minor device numbers of the device being

opened.

channel_flags — The set of channel flags specifying whether the device will be

open for reads, writes, or both. The channel flags also indicate whether the

open is for block or character special operation. See i_io-h for a listing of the

channel flags.

device_handle_ptr — A pointer to the location where the device handle (that

results from the open) is to be placed. If the routine does not return an OK

status, this value is undefined. The driver need not check the validity of this

pointer.

Description

4-16

The dev_xxx_open routine prepares the device for future I/O operations. The

kernel calls it whenever one of the driver’s devices is opened by a user or by

the kernel. The kernel will not call dev_xxx_open until both dev_xxx_init and

dev_xxx_configure have completed.

The DG/UX system allows multiple opens on a device, and dev_xxx_open

should manage this feature as appropriate to its device. dev,xxx_open

controls the number of outstanding opens. For example, dev_xxx_open may

impose restrictions such as requiring an exclusive open of a particular minor

device. To implement this, dev_xxx_open might return an error status if the

minor device has already been opened but not closed. Multiple

dev_xxx_opens may be in progress simultaneously on the same or different

minor device numbers.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_open routine must also control the type of open requested. The

kernel passes dev_xxx_open a set of channel flags which specify the intents

given in the higher level open call (for example, read, write or both).

dev_xxx_open may reject the open because of conflicts between the current

open intent and open intents that have already taken place or because of

conflicts with the device’s capabilities. For example, a write intent on a read-

only device must fail.

dev_xxx_open typically performs other operations to prepare the device and

ensure that it is ready for /O. For example, it may allocate storage for and

initialize databases to hold information describing the I/O operation on the

specific unit. If the device is a real hardware device, dev_xxx_open may

query the device to verify that it is online and ready for the type of I/O

specified in the open intent. For example, it may check that there is a write

ring in the tape if write intent is specified.

dev_xxx_open must establish the device handle that the kernel will use as a

parameter in all future driver operations. It can retrieve the device handle

supplied by dev_xxx_configure by calling io_map_device_number with the

device number. If dev_xxx_open returns an OK, it must return a pointer to a

device handle in device_handle_ptr. If it returns a status other than OK, the

kernel presumes that the open failed and that the device handle will not be

used. If the open fails, the kernel will disregard the returned

device_handle_ptr argument.

Return Values

OK — The dev_xxx_open routine was successful in preparing the device for

further operations.

IO_ENXIO_UNIT_NOT_READY — The unit is not ready or online.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device

number cannot be mapped to a configured device.

IO_ENXIO_OPEN_INTENT_CONEFLICTS The unit is already open and can

only be opened exclusively.

10_ENXIO_NO_WRITE_RING — The tape was opened with write intent, but
the tape did not have a write ring (only applicable to tape devices).

IO_ENXIO_TAPE_DENSITY_NOT_SUPPORTED — The requested density is

not supported by the tape controller (only applicable to tape devices).

IO_ENXIO_CANNOT_CHANGE_TAPE_DENSITY — The requested density

is not compatible with the current density setting of the unit, and the tape is

not at the beginning of the tape (BOT) (only applicable to tape devices).

093-701053 Licensed material—property of Data General Corporation 4-17

User-Supplied Device Driver Routines

dev_xxx_close

Syntax

status_type dev_xxx_close (device_handle, channel_flags)

io device_handle type device_handle; /*READ ONLY*/

io channel flags_type channel flags; /*READ ONLY*/

Summary

This routine removes a specified device from the set of devices on which this

driver may perform I/O.

Parameters

device_handle — The device handle of the device to be closed. This handle

will be the device handle that was returned by the driver’s dev_xxx_open

routine. The driver does not need to validate this argument.

channel_flags — Flags indicating how the device was opened (read, write, or

read/write). The driver does not need to validate this argument.

Description

The dev_xxx_close routine performs operations that remove the specified

device from the set of devices on which this driver may perform I/O. It is

invoked in one-to-one correspondence to successful dev_xxx_opens and

always with the same intents supplied to the open and with the device handle

returned by the open. However, if a device is opened multiple times, it will

not necessarily be closed in the same or reverse order of the opens.

Typically, dev_xxx_close performs any necessary exit operations such as

flushing any buffers that may be present and releasing previously allocated

storage. Some devices will also have special exit requirements. For example,

a tape close would probably rewind the tape. Most drivers also use

dev_xxx_close in coordination with dev_xxx_open to manage the number of

outstanding opens.

4-18 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

Return Values

OK — The close was successful.

10_STATUS_ERROR_ON_EARLIER_REQUEST — An error occurred on

the last asynchronous request made to the device. Since the last request was

asynchronous, this is the first opportunity to notify the interested process.

093-701053 Licensed material—property of Data General Corporation 4-19

User-Supplied Device Driver Routines

dev_xxx_service_interrupt

Syntax

void dev_xxx_service interrupt (device_info_ptr)

dev_xxx_device_info_ptr_type device info _ptr;/*READ ONLY*/

Summary

This routine handles interrupts from devices under the control of this driver.
It is called by the system interrupt handler.

Parameters

device_info_ptr — A pointer to the device information structure for the

interrupting device. A pointer to the dev_xxx_service_interrupt routine is the

first field in this structure. The driver may assume that this pointer is valid.

Description

The dev_xxx_service_interrupt routine performs any steps needed to service

the device at interrupt level. It operates in a restricted environment:

interrupts are disabled; no page faults may be taken; and the process must not

wait. Because of these restrictions, dev_xxx_service_interrupt should defer as

much device service as possible to a base-level process. The driver designer

should determine the proper balance between executing code at interrupt level

and at base level. |

Because dev_xxx_service_interrupt must avoid calling any routine that may |

pend, it must forgo virtually all the kernel-supplied utilities. To signal or send |

information back to other processes, the driver should use the Driver or |

Generic Daemon. You send a message to the appropriate daemon by queuing |
a message with a completion routine to the daemon’s queue. (Chapter 8 |

describes the io_queue_message_to_driver_demon and |

io_queue_message_to_generic_demon routines that you use to queue |

messages.) The daemon will dequeue the message and execute the completion |
routine in the daemon’s context rather than the service routine’s limited |

context.

Typically, dev_xxx_service_interrupt might do any of the following: read the

device’s status registers; advance an eventcounter for synchronous events;

send a message to the Driver or Generic Daemon for an asynchronous event;

or do a select satisfy for a select operation. If the interrupt is not cleared

automatically by reading the status register, dev_xxx_service_interrupt must

clear the interrupt before exiting.

4-20 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The pointer to the device information structure allows

devy_xxx_service_interrupt to access the device database associated with the

I/O request.

NOTE: If the device does not generate hardware interrupts, you do not need

to create this routine.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 4-21

User-Supplied Device Driver Routines

dev_xxx_read_write

Syntax

status type dev_xxx_read_write (request_info_ptr)

io_request_info_ptr_type request_info ptr; /*READ ONLY*/

Summary

This routine performs a synchronous read or write of the specified device.

Parameters

request_info_ptr — A pointer to a request information structure. The

structure may be assumed to have a valid operation code, device handle, and

memory address as specified in the buffer vector. The driver must validate

the device offset and transfer count as being appropriate for the device.

The transfer count specifies the maximum number of bytes that should be

transferred. The driver determines how much data to actually transfer before

returning; in the case of an error, the amount may be less than the transfer

count. However, under no circumstances may the amount of data

transferred exceed the specified maximum.

The offset specified is a file pointer maintained by the kernel and indicates

where the read/write operation should begin. For example, on a disk, the

offset might specify where, after the start of the sector, the desired data is

located. The driver may ignore this parameter if it is not applicable to its

device — for example, if the device is character special.

The request information structure may exist in the caller’s per-process address

space. Therefore it can be accessed only when the requesting process is

running and not from the interrupt level."

Description

4-22

The dev_xxx_read_write routine performs a synchronous read or write of the

specified device, transferring data between the device and the specified

buffer. It is invoked whenever a user or kernel read or write is performed on

a character special device supported by this driver. This routine is usually

used for character special I/O, but it may also be used for block special I/O.

Multiple reads/writes of the same or different minor devices may be in

progress simultaneously. Therefore the driver should take steps to serialize

requests as needed. This usually means using locks on important data

structures.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

The dev_xxx_read_write routine should also handle any special transfer

constraints for its device. For example, a disk device might allow only those

transfer counts that are multiples of 512 bytes. dev_xxx_read_write should be

prepared to handle a self-identification check using the self-id field in the

request information structure. The kernel may set a flag requesting that the

driver validate that this self-id matches the device’s self-id as stored in data

blocks read from that device. You can use the kernel’s fs_check_self_id

routine to retrieve the self-id stored in the data (see Chapter 8).

We say that the dev_xxx_read_write routine is synchronous because when it

completes, any data that is going to be transferred to or from the buffer must

already be transferred. Because it must wait for the I/O to complete,

dey_xxx_read_write will need to set up await mechanisms such as a timeout, a

signal, or an I/O completion event. Chapter 6 describes kernel routines that

the driver may use to implement these await mechanisms.

The kernel checks access to the buffer before dev_xxx_read_write is called so

that the driver is ensured write access to the buffer for read operations and

read access to the buffer for write operations. The buffer may exist in the

caller’s per-process address space and therefore may be accessed only when

the requesting process is running.

The specified buffer is not necessarily wired in memory, and many devices

must have wired buffers. For such devices, the driver must explicitly wire the

buffer and unwire it before returning.

After the read/write, the driver should update the buffer vector pointers to

reflect the actual data transferred (which may be less than the transfer count

in cases of error). All references and updates to data contained in the

io_buffer_vector structure must be done through kernel routines. Chapter 7

describes the kernel routines used to manipulate buffer vectors.

Return Values

The dev_xxx_read_write routine must return a status indicating the success or

failure of the transfer. The definition of success or failure is determined by

the driver and need not be related to the number of bytes actually transferred.

OK — The dev_xxx_read_write routine was successful.

1O_EINVAL_ILLEGAL_REQUEST_SIZE — The requested count is not valid

for the device type.

IO_EINVAL_ILLEGAL_BUFFER_ADDRESS — The buffer was not aligned

as required by the device.

IO_EIO_DEVICE_TIMED_OUT — The device controller did not respond to

a request in a reasonable length of time.

093-701053 Licensed material—property of Data General Corporation 4-23

User-Supplied Device Driver Routines

IO_EIO_HARD_IO_ERROR — An unrecoverable I/O error occurred,

resulting from a media failure.

IO_EIO_PHYSICAL_UNIT_FAILURE — An uncorrectable error occurred

that presumably affects I/O operations to the entire physical unit.

IO_ENXIO_ILLEGAL_DEVICE_ADDRESS — The location specification for

reading/writing is invalid for the device.

IO_EINTR_INTERRUPTED_BY_SIGNAL — A signal was received while

waiting for the I/O to complete.

4-24 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_select

Syntax

void dev_xxx_select (device_handle, select_mode,

ec ptr, intent_ptr)

io _device_handle_type device handle; /*READ ONLY*/

boolean type select mode; /*READ ONLY*/

vp_ec_ptr_type ec ptr; /*READ ONLY*/

io select _intent_ptr_type intent ptr; / *READ/WRITE*/

Summary

This routine supplies information about whether the specified device is ready

to perform an I/O operation.

Parameters

device_handle — The device handle of the device that is the target of the

select operation. The device handle argument need not be validated by the

driver.

select_mode — If select_mode is TRUE, this is the start of a select

operation. If select_mode is FALSE, this is the end of a select operation.

ec_ptr — ec_ptr specifies the eventcounter to be advanced by the driver when

the particular type of select is satisfied. The driver does not need to validate

this pointer.

intent_ptr — The intent_ptr parameter points to an intent variable consisting

of a set of intent flags. The kernel calls the driver with the intent flags

showing whether the device is being selected for read, write, or exceptional

conditions or any combination of these. When the driver returns, it sets the

intent flags to show which input conditions are currently TRUE. The driver

does not need to validate this argument. The possible intent flags arc

described in the "Constants and Data Structures" section of this chapter.

Description

The dev_xxx_select routine is called in response to user-level select system

calls. It operates as follows:

e Ifthe user is selecting a device (select_mode argument is TRUE),

and the device is ready for at least one of the incoming intents, the

driver should set the intent flags to match the device’s current state

and return. It should set the flags to FALSE for all intents that are

093-701053 Licensed material—property of Data General Corporation 4-25

User-Supplied Device Driver Routines

not currently ready. It should set the intent flag to TRUE if that

flag was TRUE on input and the intent is currently ready.

If none of the conditions the caller was interested in are TRUE, the

driver should add the eventcounter pointed to by ec_ptr to a list of

events maintained by the driver. Later, when one of the specified

intents becomes TRUE, the driver must advance this eventcounter.

Usually, drivers have the dev_xxx_service_interrupt routine complete

select processing via a message to the Driver or Generic Daemon.

e If the user is unselecting the device (the select_mode argument is

FALSE), the previously saved ec_ptr is discarded and any intents

that have become TRUE are reported.

Multiple selects of the same or different minor devices may be in progress

simultaneously. The dev_xxx_select routine must be able to store multiple

eventcounter names for each of the read, write, and exception selects and

advance them all when the intent becomes TRUE. Kernel routines for

managing select lists (adding and removing entries and satisfying selects) are

described in Chapter 8. The select list structure should have been allocated

and initialized earlier, usually in the dev_xxx_configure routine.

Return Values

None.

Remarks

For many devices, such as disks and tapes, dev_xxx_select will always return

TRUE because the I/O operations are so quick. dev_xxx_select is more

meaningful on character devices that depend upon external intervention. For

example, a terminal might select FALSE for writing when a user’s terminal

output is being held with Ctrl-S. Similarly, a terminal would select FALSE

for reading when the driver is waiting for the user to type something.

4-26 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_ioctl

Syntax

status_type dev_xxx_ioctl (device_handle, command,

parameter, return_value_ptr)

io device_handle_ type device_handle; /*READ ONLY*/

bit32e type command; /*READ ONLY*/

bit32e_type parameter; / *READ/WRITE*/

int32e_ ptr_type return value_ptr;/*WRITE ONLY*/

Summary

This routine performs a control operation on the specified clevice.

Parameters

device_handle — The device handle of the device that is the target of the I/O

control operation. The device handle need not be validated by the driver.

command — A command to the device. Because commands are specific to

the driver, they must be validated by the driver.

parameter — An argument to the command. The interpretation of the

parameter is specific to the driver and the command. The parameter may be

used to transfer information between the caller and the device, in either

direction. In particular, it may be a pointer to a buffer supplied by the caller.

Because the interpretation is specific to the driver, the driver must validate

this argument.

return_value_ptr — A pointer to a return value that this routine can define

and pass the user. This additional return value increases the flexibility of

your ioctl operation by providing the user with variations on the generic return

value specified in the "Return Values” section.

Description

The dev_xxx_ioctl routine performs a control operation on the specified

device based on the values of command and parameter. It is invoked in

response to a user or kernel ioctl call for one of the driver’s devices.

However, not all user ioctl calls go to dev_xxx_ioctl. Some ioctl calls are

actually file descriptor operations. These are intercepted and handled by the

kernel. The FIONCLEX operation, for example, would not reach

dev_xxx_ioctl. Multiple ioctl operations on the same or different minor

devices may be in progress simultaneously.

093-701053 Licensed material—property of Data General Corporation 4-27

User-Supplied Device Driver Routines

The kernel calls dev_xxx_ioctl with the command and parameter arguments

given in the higher level ioctl call. The kernel will not interpret these

arguments. Thus, you can define your driver’s command arid parameter

arguments as you wish.

Because ioctl] operations are so specific to each driver, the kernel validates

only the device handle argument. The driver must validate the command and

parameter arguments. It should also validate any buffer pointers for proper

access. Chapter 7 describes kernel routines you can use to validate pointers.

Return Values

The dev_xxx_ioctl routine should return a status indicating the success or

failure of the control operation. The definition of success or failure is

determined by the driver.

OK — The dey_xxx_ioctl routine was successful. No errors should be

indicated to the caller.

IO_EINVAL_COMMAND_NOT_SUPPORTED_BY_DEVICE — The

command was not supported by the driver.

IO_EFAULT_BAD_ADDRESS_IN_IOCTL — The parameter argument

specified an address that is not a valid part of the caller’s address space.

4-28 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_Start_io

Syntax

status type dev_xxx_start_io (op_record_ptr)

io operation_record_ptr_type op_record_ptr; /*READ ONLY*/

Summary

This routine starts an asynchronous I/O operation on the specified device.

Parameters

op_record_ptr — A pointer to the operation record for the asynchronous

request. The operation record contains the following fields:

The device handle that is the target of the operation.

The operation to be performed; for example, reac, write, or both.

The offset from which the operation is to commence. The offset is a

file pointer maintained by the kernel that indicates where the

read/write operation should begin. For example, on a disk the offset

might indicate where to start reading after the start of the sector.

The interpretation of the offset is driver-dependent.

The address of the kernel’s I/O completion routine that is to be

called by the driver’s complete_io routine when the operation

completes. The Kernel I/O completion routine follows the interface

shown in the "Kernel I/O Completion Routine Interface" section

below. Note that you pass the op_record and a completion status

back as parameters to the Kernel I/O Completion routine.

An io_buffer_vector structure that holds the transfer size and the

address of the memory buffers.

The operation record must reside in global kernel memory, so it may be

accessed by any process — not just the requestor. The driver need not

validate most of the fields of the operation record. The exceptions are the

device offset and transfer size fields. The driver may need to check these

fields to ensure that they are meaningful for the device.

Description

The dev_xxx_start_io routine is invoked only on block special devices.

Multiple dev_xxx_start_io routines on the same or different minor devices

may be in progress simultaneously.

093-701053 Licensed material—property of Data General Corporation 4-29

User-Supplied Device Driver Routines

4-30

When a user initiates a read or write operation on a block special device, the

kernel will invoke dev_xxx_start_io to process the request asynchronously.

dev_xxx_start_io should start the operation and then exit, leaving the

completion to be handled by another routine. If dev_xxx_start_io cannot

initiate the operation (for example, if the device is busy), it should queue the

request (usually with the Driver or Generic Daemon) to be handled later and

exit. This routine should not pend.

The dey_xxx_start_io routine is asynchronous in that when it returns, the data

transfer is not necessarily complete. The driver must therefore decide how to

finish processing once the operation is complete. The driver is relatively free

to handle completion as necessary for its own device.

The only thing the driver must do for completion is to call the kernel

completion routine supplied in the operation record. The kernel waits until

its I/O completion routine is called before expecting new data in the buffer,

modifying data in a buffer that was written, or modifying the operation record

that was passed in as an argument. Until the kernel’s I/O completion routine

is called, the kernel does not consider the operation complete.

The driver decides when to call the kernel’s I/O completion routine.

Typically, when the operation completes, the dev_xxx_service_interrupt

routine queues a message to the Driver or Generic Daemon. The message

contains a pointer to a routine for the daemon to execute. This routine might

be either the kernel’s I/O completion routine or a driver-supplied complete_io

routine that in turn calls the kernel’s I/O completion routine. In Chapter 8,

we describe the kernel routines for interacting with the Driver or Generic

Daemon.

The upcoming section called "Kernel I/O Completion Routine Interface"

describes the interface used by the kernel’s I/O completion routine. We do

not give an interface description for a driver-supplied complete_io routine.

Such a routine is completely optional. If you want to implement such a

routine, you do not need to follow any kernel-specified interface.

The following implementation notes are relevant regardless of how completion

is implemented:

e@ The driver must transfer the exact amount of data specified in the

request unless there is an I/O error (in which case less data is

acceptable). Under no circumstances may the amount of data

transferred exceed the amount specified.

@ It is possible that the kernel’s I/O completion routine may be called

before dev_xxx_start_io finishes. Therefore, the Driver or Generic

Daemon may actually call the kernel’s I/O completion routine before

dev_xxx_start_io returns. Thus, the kernel’s I/O completion routine

must not be called by the process that has the dev,_xxx_start_io in

progress.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

e@ The buffer to receive the data is wired in memory. The driver may

perform logical-to-physical address translations without having to

explicitly wire the buffer. Further, the buffer must reside in global

kernel memory, so any process may access the buffer or perform the

logical-to-physical translation.

Return Values

OK — This routine always returns OK. Errors that occur on the request are

reported via the completion routine.

Kernel I/O Completion Routine Interface

Syntax

void kernel_complete_io (op_record_ptr, status)

io_operation_record_ptr_type op_record_ptr; /*READ ONLY*/

status_type status; /*READ ONLY*/

Summary

The kernel supplies a routine that adheres to this interface to perform work

necessary when an asynchronous I/O operation completes.

Parameters

op_record_ptr — A pointer to the operation record for the request that has

completed. The operation record contains fields that indicate the device

handle that is the target of the operation, the operation to be performed, the

offset on the device from which the operation is to commence, the address

of the routine that is to be called when the operation completes, an I/O

buffer vector structure that contains the size of the transfer, and the address

of the main memory buffer.

status — The completion status of the request.

Description

The kernel’s I/O completion routine performs the cleanup work necessary

when an asynchronous I/O completes. The driver calls it to indicate that the

operation is complete.

The status argument indicates the result of the asynchronous I/O operation.

093-701053 Licensed material—property of Data General Corporation 4-31

User-Supplied Device Driver Routines

Return Values

The kernel’s I/O completion routine must always succeed, therefore it does

not have a return value. |

4-32 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_open_dump

Syntax

status type dev_xxx_open_ dump (device_name)

char _ptr_type device _ name; /*READ ONLY*/

Summary

This routine prepares one of the driver’s devices for use as the destination of

a system dump.

Parameters

device_name — A pointer to the null-terminated string identifying the device

to be opened as a dump device.

Description

A master file entry specifies the default device for a system dump, but during

the dump procedure the user is allowed to specify an alternative dump

destination. If your device is selected as the dump destination, the system

will call your dev_xxx_open_dump routine if the system panics.

The dev_xxx_open_dump routine initializes the device as a dump destination.

To do this, it must reinitialize the device’s controller (and/or units). Because

the system is in an undefined state as a result of the panic, the standard

kernel facilities will not be available for the initialization procedure. In

particular, this means that dev_xxx_open_dump must run in physical memory

— dynamically allocated memory cannot be accessed. dev._xxx_open_dump

should statically allocate its data structures in dev_xxx_global_data.c.

The dev_xxx_open_dump routine should also use busy waits when interacting

with the controller, because the standard interrupt mechanism will not be

available.

Because the dump procedure is a single-threaded process, kernel locking

mechanisms are not required and should not be used.

The devy_xxx_open_dump routine receives a device name specified by

device_name_ptr. It should verify that the device specified is of the driver’s

type. The device name is of the following form:

device_mnemonic [@device_code] ([parameters])

Finally, as with any open routine, dev_xxx_open_dump should perform any

093-701053 Licensed materiai—property of Data General Corporation 4-33

User-Supplied Device Driver Routines

operations necessary to ensure that the device is on-line and ready for a write

operation. For example, if the device is a tape, the tape should be on-line

and write-enabled.

NOTE: This routine must not panic, because it is invoked as part of the

panic sequence.

Return Values

OK — The open completed successfully.

I0_STATUS_DUMP_NOT_SUPPORTED — The device identified by the

device_name string is not supported as a dump device by this driver. Either

the device mnemonic does not match the mnemonic associated with your

driver; the device name is in an unrecognizable format; or the device specified

by device_name_ptr is supported by the driver but the device type is not a

valid dump destination device.

I0O_EIO_HARD_IO_ERROR — A request to the dump destination device has

resulted in an error condition.

4-34 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_write_dump

Syntax

status_type dev_xxx_write_dump (buffer ptr, buffer_size)

pointer to any type buffer ptr; /*READ ONLY*/

uint32_type buffer size; /*READ ONLY*/

Summary

This routine writes system dump data to the dump destination device

previously opened by dev_xxx_open_dump.

Parameters

buffer_ptr — A pointer to the buffer containing the data to be written.

buffer_size — The size of the buffer, in bytes.

Description

During a dump, the system’s panic code calls dev_xxx_write_dump to write a

single physical record of size buffer_size. The panic code will call the

devy_xxx_write_dump routine as many times as necessary to transfer all of the

dump data. You will not need to wire buffer memory or verify parameters for

this routine.

If the dump destination must use multiple volumes to hold the entire system

dump, the dev_xxx_write_dump routine should close the completed volume,

request that the operator mount a new volume, and open the new volume.

NOTE: Because the normal kernel facilities are not available, this routine

should busy-wait for the write operations to complete. The normal

system interrupt handler is not available.

Also, this routine must not panic because it is invoked as part of the

panic sequence.

093-701053 Licensed material—property of Data General Corporation 4-35

User-Supplied Device Driver Routines

Return Values

OK — The write operation completed normally.

IO_STATUS_TAKE_CHECKPOINT — The write operation completed

normally but was written as the first record on a volume. The system dump

code should checkpoint its current state.

1O_EIO_HARD_IO_ERROR — An unrecoverable I/O error occurred. The

system dump code should restore its state from the last checkpoint and begin

writing again from there. This error does not occur on the first record of the

volume.

4-36 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_read_dump

Syntax

status_type dev_xxx_read dump (buffer_ptr, buffer_size)

pointer to any type buffer ptr; /* WRITE ONLY */

uint32_type buffer size; /* READ ONLY */

Summary

This routine handles reading a system dump.

Parameters

buffer_ptr — A pointer to the buffer to which data is to be read.

buffer_size — The size, in bytes, of the buffer.

Description

The DG/UX system does not support this operation at this time. You should

use the appropriate io_nodevice routine stub for this routine.

Return Value

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_READ_DUMP — An attempt was made to read

dump information from a non-existent device.

093-701053 Licensed material—property of Data General Corporation 4-37

User-Supplied Device Driver Routines

dev_xxx_close_dump

Syntax

status type dev_xxx_close_dump ()

Summary

The routine closes the dump device previously opened by

dey_xxx_open_dump.

Parameters

None.

Description

The dev_xxx_close_dump routine is called by the system dump code when all

of the data has been written to the dump destination. dev_xxx_close_dump

should perform all the standard exit operations (for example, write End-of-file

or rewind the tape). In particular, it should close the completed volume and

inform the operator that the dump has completed.

Return Values

OK — The volume was successfully closed.

IO_EIO_HARD_TIO_ERROR — An unrecoverable error occurred in closing

the volume. The operator is prompted to mount another volume, and the

system dump utility should resume operation at its last checkpoint

4-38 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_powerfail

Syntax

status_type dev_xxx_powerfail ()

Summary

This routine restarts all devices managed by this driver when power has been

restored after a power failure.

Parameters

None.

Description |

The DG/UX system does not support this operation at this time. You should |

use the appropriate io_nodevice stub for this routine.

Return Values

OK — Return this value in all cases.

093-701053 Licensed material—property of Data General Corporation: 4-39

User-Supplied Device Driver Routines

dev_xxx_deconfigure

Syntax

status type dev_xxx_deconfigure (device_name_ptr)

char ptr_type device name ptr; /*READ ONLY*/

Summary

This routine deconfigures the specified device if it is in the class supported by

this driver.

Parameters

device_name_ptr — A pointer to the null-terminated string specifying the

device to be deconfigured.

Description

The dev_xxx_deconfigure routine does the opposite of the configure routine

(see dev_xxx_configure). It releases all system resources obtained to

configure the device. After dev_xxx_deconfigure has completed, the system

should be in the state it was in before the device configure routine was

executed. dev_xxx_deconfigure performs the following functions:

@ Deallocates a device information structure

e Frees the minor number

@ Deregisters device information

@ Releases all memory

NOTE: Device special files created by the configure operation do not have to

be removed.

dev_xxx_deconfigure receives a pointer to a device specification of the

following form:

device_mnemonic [@device_code] ([parameters])

The pointer is terminated by a null character.

4-40 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

Return Values

OK — The device was successfully deconfigured.

IO_ENXIO_DEVICE_NOT_RECOGNIZED — device_name_ptr does not

specify a device in the class supported by this driver. This error is returned

when the device mnemonic does not match the mnemonic associated with the

driver.

10_EBUSY_DEVICE_HAS_OPEN_UNITS — The specified device currently

has one or more units that are open.

093-701053 Licensed material—property of Data General Corporation 4-41

User-Supplied Device Driver Routines

dev_xxx_device_to_name

Syntax

status type dev_xxx device_to_name (device_number,

name ptr,size)

io _device_number_ type device number; /*READ ONLY*/
char ptr_type name ptr; /*WRITE ONLY*/

uint32_type size; /*READ ONLY*/

Summary

This routine returns the device name associated with the specified device

number. The name is returned as a null-terminated string.

Parameters

device_number — The device number for the device whose name is desired.

The device number consists of a major and minor device number.

name_ptr — A pointer to where the device name is to be written. The name

will be in the form of a null-terminated string.

size — The maximum number of bytes, including the terminating null, that is

to be written to name_ptr.

Description

The dev_xxx_device_to_name routine is called by various file system utilities

to translate a device number into a device name consisting of a device code

and unit number. It returns the name in a string of the following form:

device_mnemonic [@device_code] ([parameters])

To simplify its operation, dev_xxx_device_to_name may call the kernel’s

io_map_device_number to retrieve the device code and unit number for the

given device number.

Return Values

4-42

OK — The translation was performed successfully.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device

number is not configured.

Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_name_to_device

Syntax

status type dev_xxx_name_to_ device (device_name_ptr,number_ ptr)

char ptr_type device_name ptr; /*READ ONLY*/

io _device_number ptr_type number ptr; /*WRITE ONLY*/

Summary

This routine returns the device number for the specified device name.

Parameters

device_name_ptr — A pointer to the device name that is to be translated.

The name is in the form of a null-terminated string.

number_ptr — A pointer to where the corresponding device number is to be

written. The device number consists of a major and minor device number.

Description

This routine is called by various file system utilities to translate a device name

into the major and minor device numbers that are required to access the

device. The device name specified by device_name_ptr is of the following

form:

device_mnemonic [@device_code] ([parameters])

To simplify its processing, dev_xxx_name_to_device can call the kernel’s

io_get_device_info, which returns a pointer to the device information

structure that will contain the device’s device number.

The driver should verify that the device mnemonic given in the name matches

its own mnemonic (xxx).

093-701053 Licensed material—property of Data General Corporation 4-43

User-Supplied Device Driver Routines

Return Values

OK — The device name was successfully translated.

IO_ENXIO_DEVICE_NOT_RECOGNIZED — The specified device is not

supported by this driver. This error is returned when the device mnemonic

does not match the mnemonic associated with the driver.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The specified device is

supported by this driver but is not currently configured in the system.

4-44 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_maddmap

Syntax

status_type dev_xxx_maddmap ()

Summary

This routine increments reference counts to memory mapped sections.

Parameters

None.

Description

The DG/UX system does not support this operation at this time. You should

use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The maddmap operation is not

supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 4-45

User-Supplied Device Driver Routines

dev_xxx_mmap

Syntax

status_type dev_xxx_mmap ()

Summary

This routine handles the mmap system call.

Parameter

None.

Description

The DG/UX system does not support this operation at this time. You should

use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The mmap operation is not

supported for this device. |

Exceptions

None.

4-46 Licensed material—property of Data General Corporation 093-701053

User-Supplied Device Driver Routines

dev_xxx_munmap

Syntax

status_type dev_xxx_munmap ()

Summary

This routine handles the munmap system call.

Parameters

None.

Description

The DG/UX system does not support this operation at this time. You should

use the appropriate io_nodevice routine stub for this routine.

Return Value

IO_LEINVAL_MUNMAP_NOT_SUPPORTED — The munmap operation is

not supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 4-47

User-Supplied Adapter Driver Routines

User-Supplied Adapter Driver Routines

This section describes the interfaces for routines you must write to build an SCSI

adapter driver. Chapter 5 describes the SCSI adapter routines that come with the

DG/UX system. You only need to write adapter routines if your application requires

changes to these routines or if you are going to add a different type of adapter board

to your system. As with user-supplied device driver routines, replace xxx with the

mnemonic for your SCSI adapter.

Constants and Data Structures

The following constants and data structures are used by SCSI device and adapter

drivers. They are found in the dev_scsi_adapter_def.h.

dev_scsi_adapter_routines_vector_type

typedef struct

{

io_driver_routines_vector_type | driver routines;

dev_scsi_interface_routines_vector_type scsi_routines;

} dev_scsi_adapter_routines vector_type ;

Description

This structure describes the adapter driver routines vector. Note that it contains both

the standard device driver routines vector and the additional adapter-driver-specific

routines vector.

dev_scsi_interface_routines_vector_type

typedef struct

{

uint16_ type version;

bit16_type flags;

status_type (*register_ requester) ();

status_type (*set_unit_ options) ();

void (*deregister_ requester) ();

status_type (*issue_command) ();

status type (*issue_async_command) ();

status_type (*get_device_info)();

status_type (*issue_command_physical._mode)();

} dev_scsi_interface_routines vector type ;

4-48 Licensed material—property of Data General Corporation: 093-701053

User-Supplied Adapter Driver Routines

Description

This type describes the adapter-driver-specific routines vector. This vector contains a

pointer to each adapter driver routine that can be called by the adapter manager. The

version field is present to allow changes to this structure while retaining compatibility

with older user written device drivers. The structure as currently defined is version 1.

The flags field is currently unused.

dev_scsi_adapter_unit_spec_type

typedef struct

{

uint8_ type scsi_id;

uint8 type unit;

} dev_scsi_adapter_ unit _spec_type ,;

Description

This structure is used to specify a particular instance of an SCSI device on an SCSI

adapter.

The fields in this structure are as follows:

scsi_id — The SCSI ID to which the device responds on the SCSI bus.

unit — The unit number of the device.

dev_adapter_request_block_type

typedef struct

{ .

misc_queue_links type links;

uintl6 type type;

bitl6e_type request_flags;

uint32_type reserved;

io_device handle type adapter_handle;

dev_scsi_cmd_ bik _ type scsi_cmd blk;

dev_scsi_adapter_unit_spec_type unit_spec;

io buffer vector_type buffer vector;

dev_scsi_request_sense_buffer_type sense_buffer;

boolean_type sync_io;

io_operation_record_ptr_type op_record ptr;

io completion routine_ptr_type complete_io routine;

misc_clock_value_type request_start_time;

misc_clock_ value_type total request_busy time;

093-701053 Licensed material—property of Data General Corporation 4-49

eR GR SRD CUD CmTREREERS CATED REED GREENS SEE GED GESTENRS Ge GE EE CE ee

User-Supplied Adapter Driver Routines

} dev_adapter request_block_type;

Description

This structure is a generic parameter block that SCSI device drivers use to specify a

request to the supporting adapter driver.

The fields in this structure are as follows:

links — The queue manager uses this field to maintain the adapter request block

on the various queues on which it may be queued during processing.

type — This field defines the type of the adapter request block and hence

provides for multiple adapter request blocks. This provision has been made to

allow for new types of adapter request blocks that may be needed as new types of

adapters are added. This field must be defined. Check the

DEV_SCSLARB_TYPE definitions in dev_scsi_adapter_def.h for a current

listing of supported types.

request_flags — Flags field used to qualify the request. See the

DEV_SCSLREQUEST_FLAGS definitions below for more information.

reserved — This field is reserved for future use by Data General and must always

be set to zero.

adapter_handle — The adapter driver uses this handle to map each instance of a

device to the data structures used to control it. This handle iis used only by the

adapter driver. :

scsi_cmd_blk — The command block which specifies the request to be made to

the device. The SCSI command block is not interpreted by the adapter manager.

unit_spec — The device’s SCSI ID and unit number.

buffer_vector — A buffer vector describing the main memory area that is to be

involved in the I/O operation. Note that the SCSI interface manager assumes the

buffer vector contains only a single buffer descriptor.

sync_io — This is a flag field. When set, this field indicates that the request is to

be performed synchronously. If it is clear (false), the operation is performed

asynchronously.

op_record_ptr — When the operation is to be performed asynchronously, this

field contains a pointer to the original operation record that specified the request.

complete_io_routine — When operation is to be performed asynchronously, this

field contains the address of the caller’s I/O completion routine. The I/O

completion routine will be called when the operation completes.

4-50 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

request_start_time — This field is used to save the starting time of a request for

device usage accounting. Upon request completion, the start time is subtracted

from the current time to get the total time required to process the request. This

field is not used by the SCSI interface manager; it used is only by the SCSI

device drivers.

total_request_busy_time — This field specifies the total amount of time that the

target physical device spent processing the request. Since the SCSI device drivers

have no precise knowledge of when the target device actually starts or completes

a request, this information must be obtained from the supporting SCSI interface

manager.

DEV_SCSI_REQUEST_FLAGS

The following constants define bit positions of the request flags usec in the

request_flags field of an adapter request block described by

dev_adapter_request_block_type.

#define DEV_SCSI_REQUEST_FLAGS KERNEL BUFFER 0x000001

This literal indicates that the data buffer address specified in the request block is a

kernel address.

#define DEV_SCSI_REQUEST FLAGS PHYSICAL BUFFER 0x000002

This literal indicates that the data buffer address specified in the request block is a

physical address.

#define DEV_SCSI_REQUEST FLAGS SB DONE 0x000004

This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates

that the current request is done. Sector buffering is performed by the DG/UX SCSI

disk driver to allow access to a disk that does not have standard 512-byte sectors.

#define DEV_SCSI_ REQUEST FLAGS SB 0x000008

This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates

that sector buffering is enabled for device access.

#define DEV_SCSI_REQUEST FLAGS SB READ 0x0000010

This literal is used by the DG/UX sector-buffering mechanism. When set, it indicates

that a sector buffered read is taking place.

#define DEV_SCSI_REQUEST FLAGS DATA XFER_IN 0x0000020

This literal, if set, indicates that the data transfer direction is from the adapter to the

host (that is, a read). If clear, the data transfer direction is from the host to the

adapter (that is, a write). This flag is valid only if the number of bytes being

093-701053 Licensed material—property of Data General Corporation 4-51

User-Supplied Adapter Driver Routines

transferred is greater than zero.

dev_scsi_adapter_unit_registration_blk_type

typedef struct

{

io device_number type adapter device_number;

dev_scsi_adapter_unit_spec_type unit_spec;

io _device_handle type adapter handle;

io _device_handle type driver handle;

uintl16 type max concurrent requests;

uint32 type max request size;

bit8 type device type;

} dev_scsi_adapter_unit_registration_blk_type ;

Description

This structure is used by an SCSI device driver to register a physical unit with the

SCSI adapter manager. Registration establishes a direct link between the device

driver and the adapter manager service routines. Registering a unit consists of the

device driver and the adapter driver exchanging information. This structure is a

simple packaging of several variables needed for the registration process.

The fields in this structure are as follows:

adapter_device_number — The major and minor device numbers of the SCSI

adapter with which the unit is being registered.

unit_spec — The SCSI ID and unit number of the device being registered.

adapter_handle — The handle that the SCSI adapter manager returns to the

device driver requesting the registration. It is passed as an argument to the

adapter driver routines to identify the physical unit that is the target of a request.

driver_handle — This is a unit handle that points to a driver-defined block of

information specific to the unit being addressed. The device driver may pass this

handle to the adapter manager when it registers the unit. The adapter manager

saves this handle and returns it to the driver when the driver calls the adapter’s

dev_xxx_get_device_info routine. The adapter manager does not interpret this

field.

max_concurrent_requests — The maximum number of concurrently executing

requests on the unit that the driver will allow.

max_request_size — The adapter driver uses this field to return the maximum

number of bytes transferable between the host and device in a single operation.

4-52 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

device_type — If a device is already registered with the specified SCSI ID and

unit number, the device type of the registered device is returned in this field.

Otherwise, the device type specified by device_type is recordecl for the device.

dev_adapter_physical_request_blk_type

typedef struct

{

uintl16 type type;

uint16 type reserved;

uint32_ type reservedi;

dev_scsi_cmd_ bik type scsi_cmd blk;

io_buffer_vector_type buffer vector;

dev_scsi_request_sense_buffer_type sense_buffer;

dev_scsi_mode_ buffer type mode_ select buffer;

uintl16_ type volume;

dev_scsi_adapter unit spec type unit spec;

io _device_number type adapter device_number;

boolean _ type is_open;

boolean type first_block_on_mediun;

} dev_adapter_ physical request_blk_ type ,;

Description

This structure defines the information block that is used by SCSI device drivers to

specify an SCSI bus request when the system is in shutdown mode and a system

dump is in progress.

The fields in this structure are as follows:

type — This field defines the type of the adapter request block and hence

provides for multiple adapter request blocks. This provision has been made to

allow for new types of adapter request blocks that may be needled as new types of

adapters are added. This field must be defined. Check the

DEV_SCSLARB_TYPE definitions in dev_scsi_adapter_def.h for a current

listing of supported types.

reserved — This field is reserved for future use by Data General and must always

be set to zero.

reserved1 — This field is reserved for future use by Data General and must

always be set to zero.

scsi_cmd_blk — The SCS] command block, which specifies the request to be

made to the device. The SCSI command block is not interpreted by the adapter

manager.

093-701053 Licensed material—property of Data General Corporation 4-53

User-Supplied Adapter Driver Routines

buffer_vector — A buffer vector describing the main memory area that is to be

involved in the I/O operation. Note that the SCSI interface manager assumes the

buffer vector contains only a single buffer descriptor.

sense_buffer — Buffer to which sense information is returned if a request results

in a Check Condition status.

mode_select_buffer — Buffer to which the device’s current operating mode

information is saved.

volume — Specifies the current volume number.

unit_spec — The device’s SCSI ID and unit number.

adapter_device_number — The major and minor device number of the target

adapter.

is_open — This is a flag field. When set, it indicates that the tape has been

successfully opened as a system dump target.

first_block_on_medium — If an error occurs, this flag is used to determine

whether to prompt for a new tape or to flag the shutdown manager to restart

from the last checkpoint.

dev_scsi_adapter_unit_options_block_type

typedef struct

{ .

misc_clock_value_ptr_type disconnect_timeout ptr;

misc _ clock _value_ptr_type bus_request_timeout_ptr;

uints type max _disconn_reconn_per_ command;

uint8 type adapter retries;

uints type sense_bytes;

boolean type synchronous data _ transfers;

boolean type perform_request_sorting;

} dev_scsi_adapter_unit_options_block_type =;

Description

This structure is used by an SCSI device driver to specify various unit options to the

dev_xxx_set_unit_options interface of the supporting SCSI adapter driver.

The fields in this structure are as follows:

disconnect_timeout_ptr — A pointer to a "misc_clock” value. This value

determines how long the adapter driver will wait after a disconnect has occurred

before assuming that an error has taken place and that the reselect will not be

4-54 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

occurring. If the timeout interval expires, a timeout error will be reported back to

the caller. A disconnect_timeout_ptr of

DEV_SCSLADAPTER_NULL_TIMEOUT_PTR disables disconnect timeouts

for the device.

bus_request_timeout_ptr — A pointer to a "misc_clock" value. This value

determines how long the adapter driver will wait after a bus request has been

made before assuming an error has taken place and the request is aborted. A

bus_request_timeout_ptr of DEV_SCSLADAPTER_NULL_TIMEOUT_PTR

disables bus request timeouts for the device.

max_disconn_reconn_per_command — The maximum number of times that the

SCSI target device can be expected to disconnect and reconnect during the

execution of a single command. This value is used by some SCSI adapter drivers

to calculate the maximum amount of time that a single request to the SCSI

adapter should take. The time value is used as a backup timeout mechanism for

SCSI adapters that manage disconnect timeouts and bus request timeouts

internally. A value of zero for this field inhibits the device from disconnecting

while a command is executing.

adapter_retries — The number of times the SCSI adapter driver will reissue a

request if the request results in a hard I/O error. |

sense_bytes — The number of sense bytes that will be returned from the device if |

a command to the device results in a Check Condition status.

synchronous, data_transfers — If non-zero, this flag indicates that data transfer

to/from the device should be done in SCSI synchronous mode. If this option is

selected on a device that does not support synchronous transfers, data will be

transferred in asynchronous mode with no error reported to the driver.

perform_request_sorting — If non-zero, this flag indicates that the adapter driver

should perform request sorting and ordering to provide more efficient access to

the specified device.

SCSI Adapter Unit Options Block Literals

These definitions specify various constants that apply to Set Unit Options SCSI

adapter routine.

#define DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR

((misc_clock_value_ptr_type) DEFAULT_NULL_LINK)

This timeout pointer is specified in a unit options block to disable timeouts for a unit.

#define DEV_SCSI_ADAPTER_MIN_TIMEOUT_VALUE

This literal defines the minimum timeout value supported by an SCSI adapter driver.

This value is in units of 1 millisecond.

093-701053 Licensed material—property of Data General Corporation 4-55

User-Supplied Adapter Driver Routines

#define DEV_SCSI_ADAPTER_MAX TIMEOUT VALUE

This literal defines the maximum timeout value supported by an SCSI adapter driver.

This value is in units of milliseconds. Currently the maximum timeout interval

supported is 30 minutes.

#define DEV_SCSI_ADAPTER_MIN ADAPTER RETRIES

This literal defines the minimum number of adapter retries that may be specified in a

Set Unit Options block.

#define DEV_SCSI_ADAPTER MAX ADAPTER RETRIES

This literal defines the maximum number of adapter retries that may be specified in a

Set Unit Options block.

#define DEV_SCSI_ADAPTER_MIN SENSE _BYTES

This literal defines the minimum number of sense bytes that may be specified in a Set

Unit Options block.

#define DEV_SCSI_ADAPTER_MAX SENSE_BYTES

This literal defines the maximum number of sense bytes that may be specified in a Set

Unit Options block.

#define DEV_SCSI_ADAPTER_MIN_DISCON_RECON

This literal defines the minimum number disconnect/reconnects per command that

may be specified in a set unit options block.

#define DEV_SCSI_ADAPTER_MAX DISCON_RECON

This literal defines the maximum number disconnect/reconnects per command that

may may be specified in a Set Unit Options block.

Interfaces for Adapter Driver Routines

DG/UX device driver routines use adapter drivers to interface to the SCSI bus. To

write an adapter driver you must supply all the routines listed below. These routines

must conform to the interface, as described in the rest of this chapter. As with

device driver routines, substitute your own device mnemonic for the xxx shown in the

routine names in this section.

You supply the entry points to your adapter routines in your routines vector which is

defined in dev_xxx_global_data.c. SCSI device drivers obtain the vector to their

adapter driver’s routines during device configuration.

4-56 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

The adapter driver routines described in this chapter are listed below:

@ dev_xxx_register_requester

@® dev_xxx_set_unit_options

@ dev_xxx_deregister_requester

@® dev_xxx_issue_command

@ dev_xxx_issue_async_command

@ dev_xxx_get_device_info

@® dev_xxx_issue_command_physical_mode

093-701053 Licensed material—property of Data General Corporation 4-57

User-Supplied Adapter Driver Routines

dev_xxx_register_requester

Syntax

status_type dev_xxx_register_requester (rb_ptr)

dev_scsi_adapter_unit_registration_blk_ptr_type rb_ptr;

/*READ/WRITE*/

Summary

This routine associates the specified device with an SCSI adapter, thereby

establishing a link between the device driver and the adapter service routines.

Parameters

rb_ptr — A pointer to an SCSI adapter registration block.

Description

This routine adds an entry to the unit table associated with the specified SCSI

ID and unit number. The unit table entry consists of a device type specifier

and an opaque unit handle, which is meaningful only to the device driver. The

unit table entry provides a bridge between the device driver and the adapter

driver routines.

If the unit table entry specified by the SCSI ID and unit number is already

occupied, an error is returned. Also, the device type of the device occupying

the entry is returned so that the caller can distinguish between

IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED and

IO_ENXIO_DEVICE_DOES_NOT_EXIST.

Return Values

OK — The specified device was successfully registered with the adapter.

IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED — A device is already

registered at the location specified by rb_ptr.

4-58 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_set_unit_options

Syntax

status type dev_xxx_set_unit_options (adapter_handle,

unit _options_block_ptr)

io device_handle type adapter_handle; /*READ ONLY*/

dev_scsi_adapter_unit_options_block_ptr_type

unit options_block_ptr;/*READ ONLY*/

Summary

Set the unit options of a registered device.

Parameters

adapter_handle — The device handle of the physical unit which is the target

of the set unit options operation. This handle must be the device handle that

was returned by the register-requester routine of the adapter manager.

unit_options_block_ptr — Pointer to a unit options block that specifies the

options to be selected for the unit.

Description

This routine is called to set the various unit options that describe how the

SCSI adapter driver manages a request that has been issued over the SCSI

bus to a physical unit. See the definition of the

dev_scsi_adapter_unit_options_block in the file dev_scsi_adapter_def.h for a

complete description of the unit options supported.

Return Values

OK — The requested options were selected successfully.

DEV_STATUS_SCSLILLEGAL_UNIT_OPTIONS_VALUE — An illegal

option value was detected in the callers Set Unit Options Block.

IO_EIO_PHYSICAL_UNIT_FAILURE — The Set Unit Options command

issued to the adapter resulted in an error.

093-701053 Licensed material—property of Data General Corporation 4-59

User-Supplied Adapter Driver Routines

dev_xxx_deregister_requester

Syntax

void dev_xxx_deregister_requester (adapter_handle)

io _device_handle type adapter handle;/*READ ONLY*/

Summary

This routine terminates the link between the SCSI adapter manager and the

device referenced by adapter_handle.

Parameters

adapter_handle — The device handle of the physical unit that is to be

deregistered. This handle must be the device handle that was returned by the

register-requester routine of the adapter manager.

Description

See Summary.

Return Values

None.

4-60 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_issue_command

Syntax

status_type dev_xxx_issue_command (arb_ptr)

dev_adapter_request_block_ptr_type arb_ptr; /*READ/WRITE*/

Summary

Issue an SCSI command synchronously through the adapter to a target device.

Parameters

arb_ptr — A pointer to a generic adapter request block that holds all

information which describes the request.

Description

This routine transfers request information from the generic adapter request

block to an adapter-specific parameter block and calls the adapter driver to

execute the request.

If the request completes with a Check Condition status, sense information

from the device is automatically returned in the adapter request block.

Return Values

OK — A synchronous request completed successfully.

Other return values that you deem necessary — The receiving device drivers

should be prepared to handle these return values.

093-701053 Licensed material—property of Data General Corporation 4-61

User-Supplied Adapter Driver Routines

dev_xxx_issue_async_command

Syntax

status type dev_xxx_issue_async_command (arb_ptr)

dev_adapter_request_block_ptr_type arb_ptr;/*READ/WRITE*/

Summary

Issue an SCSI command asynchronously through the adapter to a target

device.

Parameters

arb_ptr — A pointer to a generic adapter request block which holds all

information that decribes the request.

Description

The adapter request block is added to the asynchronous request queue and an

attempt is made to obtain the specified controller’s command list request

lock. If the lock is obtained, dev_xxx_start_async_request is called to start

the request. Control is returned to the caller as soon as the request has been

issued through the adapter to the physical unit. The Driver or Generic

Daemon handles request completion and starts the next request in the queue

if there is one.

If the command list request lock cannot be obtained, the request is left on the

request queue and the function returns immediately. The enqueued request is

started when the currently executing request and all requests ahead in the

queue have been executed.

Return Values

OK — The request was successfully started. This status does not indicate that

the request has completed successfully.

4-62 Licensed material—property of Data General Corporation 093-701053

User-Supplied Adapter Driver Routines

dev_xxx_get_device_info

Syntax

status_type dev_xxx_get_device_info (adapter_device_number,

unit_spec,

device type,

driver _ handle ptr)

io device_number type adapter_device_number;/*READ ONLY*/

dev_scsi_adapter_unit_spec_type unit_spec;/*READ ONLY*/

bits type device_type; /*READ ONLY*/

bit32e ptr_type driver handle ptr; /*WRITE ONLY*/

Summary

This routine retrieves device information associated with a specified registered

device.

Parameters

adapter_device_number — The major and minor device number of the SCSI

adapter used to access the target unit.

unit_spec — The SCSI ID and unit number of the target device.

device_type — Device type of device expected to be registered for unit

number and SCSI ID.

driver_handle_ptr — A pointer to where the device information is to be

returned.

Description

Return the opaque driver handle that was registered with the device. This

routine takes the place of io_get_device_info for SCSI devices that don’t have

DIT entries.

Return Values

OK — The opaque driver handle was successfully retrieved and returned.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — A device of the specified

type is not registered at the SCSI ID and unit number slot.

093-701053 Licensed material—property of Data General Corporation 4-63

User-Supplied Adapter Driver Routines

dev_xxx_issue_command_physical_mode

Syntax

status_type dev_xxx_issue_command_physical_mode

(request_blk_ptr)

dev_adapter_physical_request_blk_ ptr_type request_blk_ptr;

/*READ/WRITE*/

Summary

Issue a physical I/O request through the SCSI adapter to a target device.

Parameters

request_blk_ptr — A pointer to a request block that holds information that

specifies the request. Note that this is a special version of the adapter request

block and is not the same as the request block used during normal system

operation.

Description

This routine is called to issue a synchronous I/O request over the SCSI bus

without the use of the normal operating system facilities. Synchronization is

done without the use of event counters or interrupts. All buifer addresses are

assumed to be physical. The system is assumed to be running a single thread

of control, so no lock mariagement is required.

Return Values

OK — A synchronous request completed successfully or an asynchronous

request was started.

DEV_STATUS_SCSL.CMD_COMPLETE_CHECK_CONDITION — The

command completed with a Check Condition status, and sense information is

available in the caller’s sense buffer.

IO_EIO_HARD_IO_ERROR — The command completed with a check

condition status, and the subsequent request sense command failed.

Other return values that you deem necessary. The receiving device drivers

should be prepared to handle these return values.

End of Chapter

4-64 Licensed material—property of Data General Corporation 093-701053

Chapter 5

Managing Your Adapter From

Your Device Driver

In hardware, an adapter controls the devices attached to it. In software, however, the

adapter driver routines are invoked by the device drivers. However, in order to keep

the device driver code from being fixed to a particular adapter driver, device drivers

interface to their adapter drivers through an adapter manager which multiplexes

device driver calls to the correct adapter driver. The adapter manager consists of a

standard set of adapter driver routines with the generic mnemonic scsi_adapter. The

device driver identifies the target adapter by passing its adapter’s device name or

device number as parameters to the adapter manager function.

This chapter describes adapter manager routines that SCSI device drivers use to

interface to their SCSI adapter drivers. It includes the following commands:

@ dev_scsi_adapter_configure

@ dev_scsi_adapter_device_to_name

@ dev_scsi_adapter_name_to_device

@ dey_scsi_adapter_open_dump

@ dev_scsi_adapter_register_requester

@® devy_scsi_adapter_set_unit_options

@ dev_scsi_adapter_deregister_requester

® dev_scsi_adapter_issue_command

@ dev_scsi_adapter_issue_async_command

® dev_scsi_adapter_get_device_info

@ dev_scsi_adapter_issue_command_physical_mode

093-701053 Licensed material—property of Data General Corporation 5-1

Managing Your Adapter From Your Device Driver

Constants and Data Structures

In general, the adapter manager routines use the same data structures described for

user-supplied adapter drivers. See Chapter 4 for a discussion of these data structures.

5-2 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_configure

Syntax

status_type dev_scsi_adapter_ configure (name_ptr)

char ptr_type name ptr; /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by name_ptr and

calls its configuration routine. :

Parameters

name_ptr — Pointer to the SCSI adapter name as specified in the DG/UX

system file.

Description

This routine invokes the proper adapter manager configuration routine.

Return Values

The return value will be whatever is returned by the adapter manager

configure routine.

093-701053 Licensed material—property of Data General Corporation 5-3

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_device_to_name

Syntax

status type dev_scsi_adapter_device_to_name (device_number,

name ptr,

size)

io_device_number_ type device_number; /*READ ONLY*/

char ptr_type name ptr; /*READ ONLY*/

uint32_ type size; /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its device-to-name routine.

Parameters

device_number — The device number of the SCSI adapter for which the

character string name is wanted.

name_ptr — A pointer to where the null-terminated character string name is

to be written.

size — The maximum number of bytes, including the terminating null, that is

to be written to name_ptr.

Description

This routine invokes the proper adapter manager device-to-name routine.

Return Values

5-4

The return value will be whatever is returned by the adapter manager device-

to-name routine.

Licensed material—property of Data General Corporation. 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_name_to_device

Syntax

status _type dev_scsi_adapter_name_to_device (name ptr,

device _number ptr)

char ptr_type name ptr; /*READ ONLY*/

io device_number_ptr_type device_number_ptr; /*WRITE ONLY*/

Summary

This routine locates the SCSI adapter manager specified by name_ptr and

calls its name-to-device routine.

Parameters

name_ptr — Pointer to the SCSI adapter name as specified in the DG/UX

system file.

device_number_ptr — Pointer to where the SCSI adapter major and minor

number is to be returned.

Description

This routine invokes the proper adapter manager name-to-device routine.

Return Values

The return value will be whatever is returned by the adapter manager name-

to-device routine.

093-701053 Licensed material—property of Data General Corporation 5-5

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_open_dump

Syntax

status type dev_scsi_adapter_open_dump (name _ptr,

major device ptr)

char ptr_type name ptr; /*READ ONLY*/

io major_device_number_ptr_type major_device_ptr;

/*WRITE ONLY*/

Summary

This routine locates the SCSI adapter manager specified by name_ptr and

calls its open-dump routine.

Parameters

name_ptr — A pointer to the null-terminated character string identifying the

adapter to be opened to allow access to a dump destination device.

major_device_ptr — A pointer to where the major device number of the

driver that successfully opens the dump device is to be written.

Description

This routine invokes the proper adapter manager open-dump routine.

Return Values

The return value will be whatever is returned by the adapter manager open-

dump routine.

5-6 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_register_requester

Syntax

status_type dev_scsi_adapter_register_requester

(major_number,

rb_ptr)

io major_device_number_ type major_number;/*READ ONLY*/

dev_scsi_adapter_unit_registration_blk_ptr_type rb_ptr;

/*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its register-requester routine.

Parameters

major_number — The major device number of the SCSI adapter device that

the device driver is registering with.

rb_ptr — A pointer to an SCSI adapter registration block.

Description

This routine invokes the proper adapter manager register-requester routine.

Return Values

The return value will be whatever is returned by the adapter manager register-

requester routine.

093-701053 Licensed material—property of Data General Corporation 5-7

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_set_unit_options

Syntax

status type dev_scsi_adapter_set_unit_options (major_number,

apter_ handle,unit_options_block_ptr)

io major_device_number_type major number; /*READ ONLY*/

io _device_handle type adapter _ handle; /*READ ONLY*/

dev_scsi_adapter_unit_options_block_ptr_type

unit options_block_ptr;

/*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its set-unit-options routine.

Parameters

major_number — The major device number of the SCSI adapter device used

to reference the unit that is the target of the set-unit-options operation.

adapter_handle — The device handle of the physical unit the is the target of

the set-unit-options operation. This handle must be the device handle that was

returned by the register-requester routine of the adapter manager.

unit_options_block_ptr — Pointer to a unit options block that specifies the

options to be selected for the unit.

Description

This routine invokes the proper adapter manager set-unit-options routine.

Return Values

The return value will be whatever is returned by the adapter manager set-unit-

options routine.

5-8 Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_deregister_requester

Syntax

void dev_scsi_adapter_deregister_requester (major_number,

adapter handle)

io_major_device_number type major_number; /*READ ONLY*/

io device_handle_ type adapter_handle; /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its deregister-requester routine.

Parameters

major_number — The major device number of the SCSI adapter device that

the unit is registered with.

adapter_handle — The device handle of the physical unit that is to be

deregistered. This handle must be the device handle that was returned by the

register-requester routine of the adapter manager.

Description

This routine invokes the proper adapter manager deregister-requester routine.

Return Values

The return value will be whatever is returned by the adapter driver’s

deregister-requester routine.

093-701053 Licensed material—property of Data General Corporation. 5-9

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_command

Syntax

status type dev_scsi_adapter_issue_command

(major_number,

arb ptr)

io major_device_number_type major _ number; /*READ ONLY*/
dev_adapter_request_block_ptr_type arb_ptr /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its issue-command routine. The issue-command routine is

the entry point used to perform synchronous I/O through the SCSI interface.

Parameters

major_number — The major device number of the SCSI adapter device used

to reference the target device.

arb_ptr — A pointer to a generic adapter request block that holds all

information that describes the request.

Description

This routine invokes the proper adapter manager issue-command routine.

Because of certain hardware restrictions, you may transfer only an even

number of bytes when using this routine. In addition, the starting buffer

address must be aligned on an even-byte boundary. Thus, the buffer may

start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

(3).

Return Values

The return value will be whatever is returned by the adapter manager issue-

command routine.

5-10 Licensed material—property of Data General Corporatior: 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_async_command

Syntax

status_type dev_scsi_adapter_issue_async_command

(major_number,

arb ptr)

io major_device_number type major_number;/*READ ONLY*/

dev_adapter_request_block_ptr_type arb_ptr; /*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its issue-async-command routine. The issue-async-command

routine is the entry point used to perform asynchronous I/O through the SCSI

interface.

Parameters

major_number — The major device number of the SCSI adapter device used

to reference the target device.

arb_ptr — A pointer to a generic adapter request block that holds all

information that describes the request.

Description

This routine invokes the proper adapter manager issue-async-command

routine.

Because of certain hardware restrictions, you may transfer only an even

number of bytes when using this routine. In addition, the starting buffer

address must be aligned on an even-byte boundary. Thus, the buffer may

start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

(3).

Return Values

The return value will be whatever is returned by the adapter manager issue-

command routine.

093-701053 Licensed material—property of Data General Corporation 5-11

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_get_device_info

Syntax

status type dev_scsi_adapter_get_device_info (name_ptr,

unit_spec,

device type,

driver_handle ptr)

char_ptr_type name ptr; /*READ ONLY*/

dev_scsi_adapter_unit_spec_type unit_spec; /*READ ONLY*/

bit8 type device_type; /*READ ONLY*/

|
|
|
|
|
|
|
|
|io_device_handle ptr_type driver _ handle ptr;/*WRITE ONLY*/

Summary |

This routine locates the SCSI adapter manager specified by the device name |

and calls its get-device-info routine. |

Parameters |

name_ptr — A pointer to the target SCSI adapter’s name, as specified in the |

DG/UX system file.

unit_spec — The SCSI ID and unit number of the target device.

device_type — Device type of device expected to be registered for unit

number and SCSI ID.

driver_handle_ptr — A pointer to where the device information is to be

returned.

Description

This routine invokes the proper adapter manager get-device-info routine.

Return Values

5-12

The return value will be whatever is returned by the adapter manager get-

device-info routine.

Licensed material—property of Data General Corporation 093-701053

Managing Your Adapter From Your Device Driver

dev_scsi_adapter_issue_command_physical_mode

Syntax

status type dev_scsi_adapter_issue_command_physical_mode

(major_number,

request_blk_ptr)

io major_device_number type ajor_number; /*READ ONLY*/

dev_adapter_ physical request_blk_ptr_type request_blk_ptr;.

/*READ ONLY*/

Summary

This routine locates the SCSI adapter manager specified by the device

number and calls its issue-command-physical-mode routine.

Parameters

major_number — The major device number of the SCSI adapter device used

to reference the target of the request.

request_blk_ptr — A pointer to a request block that holds information which

specifies the request.

Description

This routine invokes the proper adapter manager issue-command-physical-

mode routine.

Because of certain hardware restrictions, you may transfer only an even

number of bytes when using this routine. In addition, the starting buffer

address must be aligned on an even-byte boundary. Thus, the buffer may

start on byte zero (0) or two (2) of a word, but not on bytes one (1) or three

(3).

‘Return Values

The return value will be whatever is returned by the adapter manager issue-

command-physical-mode routine.

End of Chapter

093-701053 Licensed material—property of Data General Corporation 5-13

———9 ee ee eee

Chapter 6

Process Synchronization and

Timing

This chapter describes all DG/UX kernel routines used in process management and

timing. Included are routines that handle eventcounters, signals, and clock

operations. Also included in this chapter are routines for implementing locks on

critical sections of data.

This chapter is divided into five major sections, as follows:

@ Synchronization Routines — Routines used to synchronize processes using

eventcounters.

® Process Signal Management Routines — Routines used to process signals.

® Lock Management Routines — Routines used to protect critical sections of

data.

@ Clock Routines — Routines used to manage the system clock.

® Interrupt Handling Routines — Routines used in handling interrupts.

Each section introduces the major features of the routines that follow. Following

each introduction is a “Constants and Data Structures” section, which lists some of

the constants and data structures used by the routines. For a full list of constants and

data structures, see the include files listed in Chapter 3.

093-701053 Licensed material—property of Data General Corporation 6-1

Synchronization Routines

Synchronization Routines

The routines in this section are used to manipulate eventcounters. Eventcounters are

used as synchronization primitives. The main synchronization operations performed

are await and advance. For more information on await and advance, sequencers, and

eventcounters, see the Communications of the ACM papers listed in the preface, in

the section called “Other Documents."

Await allows a process to wait for any of several events to be satisfied. Here an

event refers to an eventcounter and an eventcounter value. The event is said to be

satisfied when the value of the eventcounter is greater than or equal to the awaited

value. If the await call is made, and one or more of the specified events is already

satisfied, the process continues execution following the call to await. If none of the

specified events is satisfied, the process enters the awaiting state where it does not

compete for CPU resources.

The advance operation increments the value of the specified eventcounter and then

checks to see whether the new value of the incremented eventcounter causes any

events to be satisfied. If the process associated with a satisfied event is still in the

awaiting state, it is scheduled to run.

Sequencers are provided to extend the functionality of eventcounters. Sequencer

routines allow a caller to allocate unique eventcounter values for use in constructing

events.

When one of the events occurs, a process awaiting multiple events is returned an

index into the event list submitted to vp_await_ec. The index identifies the event in

the list that caused the await to be satisfied. However, the event specified by the

index is not necessarily the only event that has occurred in the list. A process may

determine which events have occurred by calling the routine vp_has_event_occurred

for each entry in the event list.

A process doing a vp_await_ec that can pend indefinitely (such as waiting for

terminal input) should not hold any locks. Doing so will inadvertently tie up a virtual

processor (VP) the entire time the process is waiting.

If you use routines from this section, you must allocate the space used by the event

and eventcounter instances (see the "Constants and Data Structures” section below).

Eventcounters are normally allocated from global memory. Event types are allocated

dynamically, as needed.

The following routines are described in this section:

®@ vp_add_to_ec_value

@ vp_advance_ec

@ vp_await_ec

6-2 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

® vp_convert_clock_value_to_ec_value

@ vp_convert_ec_value_to_clock_value

@ vp_get_next_ec_value

@® vp_has_event_occurred

® vp_increment_ec_value

@ vp_initialize_ec

® vp_initialize_sequencer

@® vp_read_ec

® vp_ticket_sequencer

® vp_are_ec_values_equal

Routines beginning with vp require the i_vp.h include file.

Constants and Data Structures

This section discusses some of the data structures used by synchronization routines.

Try to avoid dependencies on the specifics of these structures, such as size or

location of fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_vp-h for structures beginning with the vp acronym). Chapter 3 lists the

various include files.

vp_event_type

typedef struct

{

vp_ec_ptr_type name;

vp_ec_ value_type value;

}

vp_event_type ;

This structure defines an event, which is an eventcounter name and an eventcounter

value. The event is said to occur or to be satisfied when the value of the

eventcounter pointed to by the name field is greater than or equal to the value

field.

093-701053 Licensed material—property of Data General Corporation 6-3

Synchronization Routines

vp_add_to_ec_value

Syntax

void vp_add_to_ec_value (ec_value_ptr, addend)

vp_ec_value_ptr_type ec_value_ptr; /*READ/WRITE*/

uint32_type addend; /*READ ONLY*/

Summary

This routine adds the given value to the specified eventcounter value.

Parameters

ec_value_ptr — A pointer to the eventcounter value to be added to.

addend — The value to be added to the eventcounter value.

Description

The specified 32-bit integer is added to the specified eventcounter value.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

6-4 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_advance_ec

Syntax

void vp_advance_ec (ec_name)

vp_ec_ ptr_type ec_name; /*READ ONLY*/

Summary

This routine performs an advance (by one) on the specified eventcounter.

Any processes awaiting on the new value of the eventcounter will be notified.

Parameters

ec_name — A pointer to the eventcounter to be advanced.

Description

The eventcounter is indivisibly incremented, and any processes awaiting on

the new value are notified. If a higher priority process becomes eligible to

run as a result of the notification, it may-be rescheduled. Thus, your process

may be pre-empted if you call this routine.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-5

Synchronization Routines

vVp_await_ec

Syntax

void vp_await_ec (event_list, list_size, list_index_ptr)

vp_event_type event _list[]; /*READ ONLY*/

int32_ type list_size; /*READ ONLY*/

int32 ptr_type list_index_ptr; /*WRITE ONLY*/

Summary

This routine performs the await operation on one or more events. The calling

process will be suspended until at least one of the specified events is satisfied.

Parameters

event_list — An array of events for which the process wishes to await.

list_size — The number of elements in event_list.

list_index_ptr — A pointer to the array index (zero based) of an event that is

satisfied when the call returns.

Description

This routine causes the calling process to be suspended until any one of the

supplied events has been satisfied. If any of the events is satisfied at the time

the call is made, the process is not suspended. When the call returns, the

list_index_ptr is set to the index of an event that is satisfied, but if more than

one event is satisfied, no statement is made about which event will be

indicated by list_index_ptr.

Return Values

None.

Exceptions

None.

6-6 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_convert_clock_value_to_ec_value

Syntax

void vp_convert_clock_value_to_ec value (clock_value_ptr,

ec_value_ptr)

misc_clock_value_ptr_type clock_value_ptr; //*READ ONLY*/

vp_ec value_ptr_type ec_value_ptr; /*WRITE ONLY*/

Summary

This routine converts a clock value into an eventcounter value.

Parameters

clock_value_ptr — A pointer to a clock value.

ec_value_ptr — A pointer to the location where the corresponding

eventcounter value is to be written.

Description

This routine converts a clock value into an eventcounter value. Converting

from clock value to eventcounter value requires converting the 64-bit clock

value to a 32-bit eventcounter value.

The number of bits to take from the high and low word of the clock value are

defined in i_vp.h as VP_CLOCK_TO_EC_HIGH_BITS and

VP_CLOCK_TO_EC_LOW_BITS.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-7

Synchronization Routines

vp_convert_ec_value_to_clock_value

Syntax

void vp_convert_ec_value_to_clock_value (ec_value_ptr,

clock_value_ptr)

vp_ec value_ptr_type ec value _ptr; /*READ ONLY*/

misc_clock_value_ptr_type clock_value_ptr; /*WRITE ONLY*/

Summary

This routine converts an eventcounter value into a clock value.

Parameters

ec_value_ptr — A pointer to an eventcounter value.

clock_value_ptr — A pointer to the location where the corresponding clock

value is to be written.

Description

This routine converts an eventcounter value into a clock value. Conversion
from eventcounter value to clock value requires converting a 32-bit

eventcounter value to a 64-bit clock value.

The number of bits to assign to the high and low word of the clock value are

defined in i_vp.h as VP_CLOCK_TO_EC_HIGH_BITS and

VP_CLOCK_TO_EC_LOW_BITS.

Return Values

None.

Exceptions

None.

6-8 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_get_next_ec_value

Syntax

void vp_get_next_ec_value (ec_name, ec_value_ptr)

vp_ec ptr_type ec_name; /*READ ONLY*/

vp_ec_value_ptr_type ec_value ptr; /*WRITE ONLY*/

Summary

This routine indivisibly reads the specified eventcounter and returns its value

plus one.

Parameters

ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location where the eventcounter value (plus

one) is to be written.

Description

The eventcounter is read indivisibly with respect to other processors and with

respect to the executing processor’s interrupt level. The value is then

incremented by one, which is equal to the value that will be reached the next

time the eventcounter is advanced.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-9

Synchronization Routines

vp_has_event_occurred

Syntax

boolean type vp_has_event_occurred (event_ptr)

vp_event_ptr_type event_ptr; /*READ ONLY*/

Summary

This routine determines whether the given event has occurred.

Parameters

event_ptr — A pointer to the subject event.

Return Values

TRUE — The event has been satisfied.

FALSE — The event has not yet occurred.

Exceptions

None.

6-10 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_increment_ec_value

Syntax

void vp_increment_ec_value (ec_value_ptr)

vp_ec_value_ptr_type ec_value_ptr; /*READ WRITE*/

Summary

This routine increments the specified eventcounter value.

Parameters

ec_value_ptr — A pointer to the eventcounter value to be incremented.

Description

This routine simply takes the eventcounter value passed in and increments it.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-11

Synchronization Routines

vp-_initialize_ec

Syntax

void vp_initialize_ec (ec_name)

vp_ec_ptr_type ec_name; /*READ ONLY*/

Summary

This routine initializes an eventcounter.

Parameters

ec_name — A pointer to the eventcounter to be initialized.

Description

The eventcounter value is set to zero.

Return Values

None.

Exceptions

None.

6-12 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_initialize_sequencer

Syntax

void vp_initialize_sequencer (seq_name)

vp_ec ptr_type seq_name; /*READ ONLY*/

Summary

This routine initializes a sequencer.

Parameters

seq_name — A pointer to the sequencer to be initialized.

Description

The sequencer value is set to zero.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-13

Synchronization Routines

vp_read_ec

Syntax

void vp_read_ec (ec_name, ec_value_ptr)

vp_ec_ptr_type ec_name; /*READ ONLY*/

vp_ec_value_ptr_type ec_value ptr; /*WRITE ONLY*/

Summary

This routine indivisibly reads the specified eventcounter and returns the value

in the variable pointed to by ec_value_ptr.

Parameters

ec_name — A pointer to the eventcounter to be read.

ec_value_ptr — A pointer to the location in which the eventcounter value is

to be written.

Description

The eventcounter is read indivisibly with respect to other processors and with

respect to the executing processor’s interrupt level.

Return Values

None.

Exceptions

None.

6-14 Licensed material—property of Data General Corporation 093-701053

Synchronization Routines

vp_ticket_sequencer

Syntax

void vp_ticket_sequencer (seq_name, seq_value_ptr)

vp_ec_ptr_type seq_name; /*READ ONLY*/

vp_ec_ value_ptr_type seq_value_ptr; /*WRITE ONLY*/

Summary

This routine indivisibly increments the value of the specified sequencer and

returns the new value (that is, the value after the increment).

Parameters

seq_name — A pointer to the sequencer to be ticketed.

seg_value_ptr — A pointer to the location in which the new value of the

sequencer is to be written.

Description

The sequencer value is incremented and then read as an indivisible operation.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-15

Synchronization Routines

vp_are_ec_values_equal

Syntax

boolean type vp_are_ec_values_equal (valuel_ptr, value2_ptr)

vp_ec_value_ptr_type valuel_ptr; /*READ ONLY*/

vp_ec_value_ptr_type value2_ptr; 7 *READ ONILY*/

Summary

This routine compares two eventcounter values for equality.

Parameters

valuel_ptr — A pointer to an eventcounter value.

value2_ptr — A pointer to an eventcounter value.

Description

This routine compares two eventcounter values and returns TRUE if they are

equal.

Return Values

TRUE — The eventcounter values are equal.

FALSE — The eventcounter values are not equal.

Exceptions

None.

6-16 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

Process Signal Management Routines

The routines in this section are used by a process to send and receive signals. The

routines pm_is_interrupted and pm_is_terminated notify the caller when process

signals are received. pm_is_interrupted reports all signals to the caller, and

pm_is_terminated reports only signals that will cause process termination.

The routines provided for signal delivery allow signals to be selectively sent based on

the process index, process ID, or process group of the target process.

The routines described in this section are as follows:

@ pm_get_my_pid

© pm_get_my_pgrp

@® pm_is_interrupted

@ pm_is_terminated

@ pm_send_signal_by_index

@ pm_send_signal_by_process_group

@® pm_send_signal_by_process_id

Routines beginning with pm require the i_pm.h include file.

Constants and Data Structures

No special constants or data structures are required by these routines.

093-701053 Licensed material—property of Data General Corporation 6-17

Process Signal Management Routines

pm_get_my_pid

Syntax

pm _process_id type pm_get_my pid ()

Summary

Returns the process id of the "calling" process.

Parameters

None.

Description

See Summary.

Return Values

The current pid.

6-18 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

pm_get_my_pgrp

Syntax

pm_process_id_ type pm_get_my_pgrp ()

Summary

Returns the process group of the “calling” process.

Parameters

None.

Description

See Summary.

Return Values

The process group

093-701053 Licensed material—property of Data General Corporation 6-19

Process Signal Management Routines

pm_is_interrupted

Syntax

boolean type pm_is_interrupted (event_ptr)

vp_event_ptr_type event_ptr; /*WRITE ONLY*/

Summary

This routine handles signals during a system call.

Parameters

event_ptr — The address of a process interrupt event.

Description

This routine handles signal processing. It should be used whenever a system

call will pend the calling process until some external event occurs (that is,

pend for an arbitrary amount of time). Processing includes the following:

e Interrupting the system call.

e Terminating the process (with or without a core dump).

e Stopping the process for an arbitrary amount of time.

Only the last of these actions is contained entirely within the

pm_is_interrupted routine. The first two actions are performed in

cooperation with the caller.

Typically, you will use the following code fragment:

if (pm_is_interrupted(&events [PROCESS_INTERRUPT]))

{

Arrange to return EINTR to the user. Exit with error EINTR.

}

Vp_await_ec(events, N, &index);

Act on the event that was satisfied.

If only the PROCESS_INTERRUPT was satisfied, loop back to

pm_is_interrupted()

In the code shown above, the relevant events are those in the events []

array in the first line. In addition, the event returned by pm_is_interrupted is

also important. If the calling process is interrupted, the system call will

6-20 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

return an error and will set errno to EINTR. Otherwise, the system call

pends until the calling process is interrupted or one of the relevant events has

happened.

Return Values

TRUE — A signal is presented to be handled.

FALSE — No signal is present.

[event] — event_ptr is set to an event that will occur when it is appropriate to

check for signals again.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-21

Process Signal Management Routines

pm_is_terminated

Syntax

boolean type pm_is_terminated (event_ptr)

vp_event_ptr_type event_ptr; /*WRITE ONLY*/

Summary

This routine checks for termination signals during a system call.

Parameters

event_ptr — The address of a process interrupt event.

Description

This routine determines whether the calling process has any signals that will

cause process termination.

Return Values

TRUE — A signal is presented to be handled.

FALSE — No signal is present. event_ptr is set to an event that will occur

when it is appropriate to re-check for termination signals.

Exceptions

None.

Remarks

This call is designed for use within the kernel when a potentially long but

nevertheless finite operation is started. For example, a spacing operation on

a tape drive or an I/O request to an NFS server is essentially indefinite. In

both of these cases, the operation is guaranteed to eventually finish, perhaps

due to a timeout; but the end user may like the option of terminating the

operation mid-stream by sending the process a signal.

6-22 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

pm_send_signal_by_index

void pm_send_signal_by index (index, signal, signal_source)

sc_process_index type index; /*READ ONLY*/

pm_Signal_type Signal; /*READ ONLY*/

pm_Signal_source_enum_ type Signal_source; /*READ ONLY*/

Summary

If the subject process exists, this routine sends the process a signal. If the

subject process does not exist, this routine has no effect.

Parameters

index — The subject process’ index. The index is a unique identifier assigned

to each process. It is maintained in per process data and is contained in the

variable sc_my_process_index.

signal — The signal to send.

signal_source — The reason the signal is being sent.

Return Values

None.

Exceptions

. None.

Abort Conditions

None.

093-701053 Licensed material—property of Data General Corporation 6-23

Process Signal Management Routines

pm_send_signal_by_process_group

Syntax

status_type pm_send_ signal_by process_group (process group,

Signal number,

Signal_ source)

pm_process_id type process_group; /*READ ONLY*/

pm_signal type Signal_number; /*READ ONLY*/

pm signal source_enum type Signal_source; /*READ ONLY*/

Summary

This routine sends a signal to a process group.

Parameters

process_group — The process group ID of the target process.

signal_number — The signal being sent.

signal_source — The reason the signal is being sent.

Description

Send the signal signal_number to the processes whose process group ID is

process_group. The signal is sent only to processes that are not system

processes and to which the calling process has permission to send a signal.

Return Values

The following values may be returned:

PM_ESRCH_NO_SUCH_PROCESS_GROUP — No process corresponding to

those specified by process_group can be found.

PM_ESRCH_NO_PERMISSION — The calling process does not have

permission to signal the processes identified by process_group.

6-24 Licensed material—property of Data General Corporation 093-701053

Process Signal Management Routines

pm_send_signal_by_process_id

Syntax

status_type pm_send_signal_by process_id (process_id,

Signal_number,

signal_source)

pm_process_id_ type process id; /*READ ONLY*/

pm_signal_type signal_number; /*READ ONLY*/

pm_signal_source_enum type signal_source; /*READ ONLY*/

Summary

This routine sends a signal to a process identified by process_id.

Parameters

process_id — The process ID of the target.

signal_number — The signal being sent.

signal_source — The reason the signal is being sent.

Description

Send the signal signal_ number to the process identified by process_id. If

signal_number is PM_SIGNAL_SIGKILL, pm_send_signal_by_process_id

assumes that process_id does not identify a system process.

Return Values

The following values may be returned:

PM_ESRCH_NO_SUCH_PROCESS_ID — No process corresponding to that

specified by process_id can be found.

PM_EPERM_NO_KILL_ACCESS — The sending process does not have

permission to signal the receiving process.

093-701053 Licensed material—property of Data General Corporation 6-25

Lock Management Routines

Lock Management Routines

The kernel lock facilities are used to protect critical sections of code. These facilities

synchronize code paths and data structures. Because the DG/UX system runs in a

multiprocessor environment, you may not use interrupt disable to protect critical

sections. The kernel provides three types of locks: sequenced locks, unsequenced

locks, and spin locks.

Unsequenced locks provide no ordering of requesters. They require less space than

sequenced locks, and the obtain and release operations are faster than for sequenced

locks. Unsequenced locks, however, do not perform well under tight contention,

because they can cause a cascade of rescheduling. Each time an unsequenced lock is

released, all processes waiting for the lock are awakened. One process will get the

lock and all others will go back to sleep. If” processes are contending for the lock,

the first time the lock is released (n-I) processes will be rescheduled; the next time

the lock is released (n-2) will be rescheduled, and so forth. A total of n(n+I)/2

reschedulings will occur for every ” contentions.

Sequenced locks grant access on a first-come-first-serve basis. They avoid the

scheduling overhead by ordering contending processes based on when they first tried

to obtain the lock. When the lock is released, only the next process in line is

awakened. |

Spin locks are simple locks that cause the caller to loop if the lock cannot be

obtained immediately. They should be used only in a very restricted environment. All

code and data you reference while holding a spin lock must be wired. This is because

a page fault could cause the lock to be held for a long period of time. This situation

could deadlock the system depending on what other processes try to get the lock.

Also, any process holding a spin lock must not lose the processor on which it is

running. Finally, the caller must ensure that interrupts are disabled.while a spin lock

is held. |

The user of these routines is responsible for allocating the space used by the lock

instances. A lock may be created by declaring an instance of type

Im_sequenced_lock_type, Im_unsequenced_lock_type, or misc_spin_lock_type.

The routines described in this section are as follows:

@ Im_initialize_sequenced_lock

® Im_initialize_unsequenced_lock

© Im_obtain_sequenced_lock

® Im_obtain_sequenced_lock_no_wait

@ Im_obtain_unsequenced_lock

6-26 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

im_release_sequenced_lock

® im_release_unsequenced_lock

® misc_obtain_spin_lock

® misc_release_spin_lock

Routines beginning with Im and misc require the i.lm.h and i_misc.h include files,

respectively.

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_Im.h for structures beginning with the lm acronym). Chapter 3 lists the

various include files.

Im_sequenced_lock_type

typedef struct

Im resource counter type re;

} im_sequenced_lock_type ;

Description

This type is a sequenced lock. A sequenced lock may be created by simply declaring

an instance of this type. The user of the lock is responsible for allocating the space

occupied by the lock instance and reclaiming that space when the lock is destroyed.

A sequenced lock is simply a resource counter that has an initial value of one.

Im_unsequenced_lock_type

typedef struct

{

093-701053 Licensed material—property of Data General Corporation 6-27

Lock Management Routines

vp_unsequenced_lock_type lock;

} 1lm_unsequenced_lock_type ;

Description

This type is an unsequenced lock. An unsequenced lock may be created by simply
declaring an instance of this type. The user of the lock is responsible for allocating

the space occupied by the lock instance and reclaiming that space when the lock is

destroyed.

misc_spin_lock_type

typedef bit32e_type misc_spin_lock_type ;

Description

This type defines a spin lock. The spin lock actually uses only the low bit of the 32.
The lock is considered held when the low order bit is 1, and is considered not held

otherwise.

6-28 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

Im_initialize_sequenced_lock

Syntax

void 1m initialize_sequenced_lock (lock_ptr)

lm _sequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine initializes a sequenced lock.

Parameters

lock_ptr — A pointer to the lock to be initialized.

Description

This routine initializes a sequenced lock. None of the obtain or release

operations should be performed on a lock until it has been initialized by this

routine.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-29

Lock Management Routines

Im_initialize_unsequenced_lock

Syntax

void lm initialize_unsequenced_lock (lock_ptr)

lm unsequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine initializes an unsequenced lock.

Parameters

lock_ptr — A pointer to the lock to be initialized.

Description

This routine initializes an unsequenced lock. None of the obtain or release

operations should be performed on a lock until it has been initialized by this

routine. .

Return Values

None.

Exceptions

None.

6-30 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

Im_obtain_sequenced_lock

Syntax

void lm obtain_sequenced_lock(lock_ptr)

lm sequenced lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine obtains the specified lock.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-31

Lock Management Routines

Im_obtain_sequenced_lock_no_wait

Syntax

void lm obtain_sequenced_lock_no_wait (lock_ptr)

lm_sequenced_lock_ptr_type lock_ptr; /*read/write*/

Summary

This routine obtains the specified lock. The calling process is not pended if

the lock is not immediately available. A boolean is returned, which indicates

whether the lock was obtained.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Description

See Summary.

Return Values

TRUE — The lock was obtained.

FALSE — The lock was not obtained.

Exceptions

None.

6-32 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

Im_obtain_unsequenced_lock

Syntax

void lm obtain_unsequenced_lock(lock_ptr)

lm unsequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine obtains the specified lock.

NOTE: The calling process will be pended if the lock is not immediately

available.

Parameters

lock_ptr — A pointer to the lock to be obtained.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-33

Lock Management Routines

Im_release_sequenced_lock

Syntax

void lm release_sequenced_lock(lock_ptr)

lm sequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine releases the specified lock. If other processes are waiting for the

lock to become available, the next one in sequence will be awakened.

Parameters

lock_ptr — A pointer to the lock that is to be released.

Return Values

None.

Exceptions

None.

6-34 Licensed material—property of Data General Corporation 093-701053

Lock Management Koutines

Im_release_unsequenced_lock

Syntax

void im release_unsequenced_lock(lock_ptr)

lm unsequenced_lock_ptr_type lock_ptr; /*WRITE ONLY*/

Summary

This routine releases the specified lock. If other processes are waiting for the

lock to become available, all waiting processes will be awakened and one will

be given the lock.

Parameters

lock_ptr — A pointer to the lock that is to be released.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-35

Lock Management Routines

misc_obtain_spin_lock

Syntax

void misc_obtain_spin_lock (lock _ptr)

misc_spin_lock_ptr_type lock_ptr; /*READ/WRITE* /

Summary

This routine obtains a spin lock. If the lock is not immediately available, the

process will loop until it becomes available.

Parameters

lock_ptr — A pointer to the spin lock that is to be obtained.

misc_obtain_spin_lock assumes that lock_ptr is a word pointer to a word-

aligned structure.

Description

An attempt is made to obtain the lock. If the lock is already held, the code

loops until the lock is obtained. Spin locks are the only locks that can be

obtained at interrupt level. :

Return Values

None.

Exceptions

None.

6-36 Licensed material—property of Data General Corporation 093-701053

Lock Management Routines

misc_release_spin_lock

Syntax

void misc release_spin_lock (lock_ptr)

misc _spin_lock_ptr_type lock_ptr; /*READ/WRITE*/

Summary

This routine releases a spin lock.

Parameters

lock_ptr — A pointer to the spin lock that is to be released.

Semantics

The high-order bit of the lock word is cleared.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

093-701053 Licensed material—property of Data General Corporation 6-37

Clock Routines

Clock Routines

The system clock is a 64-bit logical counter that increments at a fixed rate in real

time. The counter is given value zero at system boot time. System clock values are

continuous and monotonically increasing. Continuous means that the value of the

system clock is not changed even if the external time-of-day is changed. Therefore,

you can use the system clock to do interval timing without having to worry about its

value changing during the interval.

External time-of-day is computed as an offset relative to the system clock. The offset

is set initially when the system is booted. The current time-of-day is obtained by

reading the system clock and adding the offset. If the time-of-day is changed while

the system is running, only the offset is changed. Because time-of-day is calculated

from an offset, interval calculations (such as process run time) based on the system

clock will remain valid even if time-of-day is changed. However, if the time-of-day is

changed while the system is running, externally visible time-stamps set by the system

(such as the time-last-modified on a file) may be anomalous.

The DG/UX system provides timeout services for doing asynchronous processing.

Routines are provided to both establish and cancel timeouts. Timeouts are identified

by a timeout ID that is returned by the establish call. You must supply this ID in

order to cancel the timeout. You must cancel a timeout when it is no longer needed,

regardless of whether or not it has started.

If you are doing synchronous processing, you will connect to the clock via a clock

event. The vp_create_clock_event will allow you to establish a clock event. See the

“Synchronization Routines” section of this chapter for other routines you will need to

service the clock event you establish. |

The routines described in this section are as follows:

@ vp_establish_timeout

@® vp_cancel_timeout

@ vp_specify_max_timeouts

® vp_create_clock_event

® vp_read_system_clock

Routines beginning with vp require the i_vp-h include file.

6-38 Licensed material—property of Data General Corporatior 093-701053

Clock Routines

Constants and Data Structures

This section describes the format of system clock values and the general clock value

constants that may be needed by other subsystems. These constants are allocated in

global memory, and the data types are defined in i.misc.h. Pointers to the constants

are passed to the clock management routines to specify time values. Generally useful

values are defined in this section; if a subsystem has a need for a special clock value,

it may define the value itself.

Try to avoid dependencies on the specifics of these structures, such as size or

location of fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_misc.h for structures beginning with the misc acronym). Chapter 3 lists the

various include files.

misc_clock_value_type

typedef struct

{

uint32e_type high;

uint32e_ type low;

}

misc clock_value_type

Description

This type describes a value that the system clock can have. The clock value is treated

as a 64-bit signed integer with time values contained in the bottom 63 bits. (The bits

are numbered such that bit 63 is the most-significant bit, and bit 0 is the least

significant bit with bit 32 representing one second.) Actual resolution of timing may

vary but will be accurate to at least 10 milliseconds.

You may use the following defined constants in your driver. They are defined in

i_misc.h.

misc_five_minutes

misc_one_hundred_seconds

misc_one_minute

misc_ten_seconds

misc_five_seconds

misc_three_seconds

misc_two_seconds

misc_one_second

misc_one_half_second

093-701053 Licensed material—property of Data General Corporation 6-39

Clock Routines

misc_two_hundred_fifty_milliseconds

misc_two_hundred_milliseconds

misc_ten_milliseconds

6-40 Licensed material—property of Data General Corporation 093-701053

Clock Routines

vp_establish_timeout

Syntax

opaque32_ type vp_establish_ timeout (time ptr, routine_ptr,

argument)

misc _clock_value_ptr_ type time ptr; /*READ ONLY*/

vp_timeout_routine_ptr_type routine ptr; /*READ ONLY*/

bit32e type argument; /*READ ONLY*/

Summary

This routine establishes a timeout. The timeout will occur time_ptr time from

the current time, and then the specified routine will be called with the

specified argument.

Parameters

time_ptr — A pointer to a clock value indicating the amount of real time that

is to elapse before the timeout occurs. Use the clock constants in the

“Constants and Data Structures” section for increment values.

routine_ptr — A pointer to a routine that is to be called by the I/O daemon

when the timeout occurs.

argument — A 32-bit value that is to be passed to the timeout routine as an

argument.

Return Values

timeout_id — The return value is an opaque 32-bit identifier for the timeout.

This value may be used only as an argument to vp_cancel_timeout.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-41

Clock Routines

vp_cancel_timeout

Syntax

void vp_cancel]_ timeout (timeout_id)

opaque32_ type timeout_id; /*READ ONLY*/

Summary

This routine cancels a previously established timeout.

Parameters

timeout_id — The timeout_id of the timeout to be cancelled. This value was

returned by the vp_establish_timeout routine.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

6-42 Licensed material—property of Data General Corporation 093-701053

Clock Routines

vp_specify_max_timeouts

Syntax

void vp_specify max_timeouts (count)

uint32_ type count; /*READ ONLY*/

Summary

This routine reserves space for the specified number of timeouts. A device

driver should call it to reserve space for the maximum number of timeouts it

will ever have in effect simultaneously.

Parameters

count — The number of timeouts for which to reserve space.

Description

Space is reserved for the specified number of timeouts. The space must be

reserved before any timeouts are established. This routine will presumably be

called several times, once by each driver in the system, as part of its

initialization.

The amount of space reserved for timeouts cannot be reduced. Therefore you

should try not to ask for more space than you will need during the life of the

system.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-43

Clock Routines

vp_create_clock_event

Syntax

void vp_create_clock_event (event_ptr, increment_ptr)

vp_event_ptr_type event ptr; /*WRITE ONLY*/

misc_clock_value_ptr_type increment_ptr; /*READ ONLY*/

Summary

This routine sets up a clock event for a specified (increment_ptr) time in the

future.

Parameters

event_ptr — A pointer to the event that is to be set up.

increment_ptr — A pointer to a clock value that is to be added to the current

system time. Use the clock constants in the “Constants and Data Structures"

section for increment values.

Description

event_ptr is set to an event. The value of the eventcounter is set to make the

event occur at current time plus the increment. See the "Synchronization

Routines” section of this chapter for other routines used in servicing the

event. For example, you may want to use vp_await_ec to await the

occurrence of this event. You do this by specifying the event in vp_await_ec’s

event list.

Return Values

None.

Exceptions

None.

6-44 Licensed material—property of Data General Corporation 093-701053

Clock Routines

vp_read_system_clock

Syntax

void vp_read_system_clock (current_time_ptr)

misc _clock_value_ptr_type current_time_ptr; /*READ ONLY*/

Summary

The current value of the system clock is returned.

Parameters

current_time_ptr — A pointer to where the current value of the system clock

is to be written.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-45

Interrupt Handling Routines

Interrupt Handling Routines

This section describes routines you use to handle interrupts, including the masking,

enabling, disabling, and servicing interrupts.

In order to make efficient use of the multiprocessor environment, the masking

routines perform stacking of mask requests. This means that the kernel maintains a

count for each mask bit, and the actual hardware mask is changed only on transitions

of the count between zero and one.

The routines described in this section are as follows:

@ io_mask_interrupt_variety

e io_unmask_interrupt_variety

® vp_are_interrupts_disabled

@ vp_disable_interrupts

@ vp_enable_interrupts

Routines beginning with vp and io require the i_vp.h and i_io-h include files,

respectively.

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, because these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_uc.h for structures beginning with the uc acronym). Chapter 3 lists the

various include files.

uc_interrupt_enum_type

typedef enum

{

Uc_System_Alarm Clock_Interrupt = 0,

Uc_Keyboard_ Interrupt = 1,

Uc_Parallel Port_Interrupt = 2,

Uc_Ethernet_Interrupt = 3,

6-46 Licensed material—property of Data General Corporation 093-701053

Uc_SCSI_Interrupt =

Uc_Duart_Interrupt=

Uc_Graphics_ Device_Interrupt

Uc_Level_1_ VME Interrupt

Uc_Level_2_ VME Interrupt

Uc_Level_3_VME_ Interrupt

Uc_Level_4 VME Interrupt

Uc_Level_5 VME Interrupt

Uc_Level_6_ VME Interrupt

Uc_Level_7_VME_ Interrupt

Uc_Dma_Terminal Count_Interrupt

Uc_System_Console_ Interrupt

Uc_Interrupt_Enum_ Last =

} uc_interrupt_enum_ type

Description

This type is used to describe the type (or variety) of interrupt to be masked or

e

es

Interrupt Handling Routines

1i,

12,

13,

14,

15,

16,

unmasked. Note that this type does not define all interrupts, but only those for which

non-standard drivers may be written.

093-701053 Licensed material—property of Data General Corporation 6-47

Interrupt Handling Routines

io_mask_interrupt_variety

Syntax

void io _mask_interrupt_variety (interrupt_variety)

uc_interrupt_enum type interrupt_variety; /*READ ONLY*/

Summary

This routine masks a variety of interrupt specified in interrupt_variety.

Parameters

interrupt_variety — The type of interrupt to be masked. Any device that uses

the interrupt variety to interrupt the system is effectively masked.

Description

This routine masks interrupts for a device with the interrupt type given in

interrupt_variety. Any devices that use the interrupt variety to interrupt the

system are effectively masked. If there are multiple processors, the interrupt

is disabled for all processors. It also nests mask and unmask requests.

The routine uses a mask depth associated with the specified device to nest

interrupts. This routine increments the mask depth, and if the new value is

one, the hardware is updated to reflect a change in the mask.

You may call this routine from base level or from interrupt level. It

remembers and correctly restores the state of the interrupt enable flag.

Return Values

None.

Exceptions

None.

Abort Conditions

6-48

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_MASK_INTERRUPT — Either the mask depth

associated with the specified device has become larger than it should, or the

interrupt variety is illegal. The former must be due to incorrect pairing of the

mask and unmask functions by the caller.

Licensed material—property of Data General Corporation 093-701053

Interrupt Handling Routines

io_unmask_interrupt_variety

Syntax

void io_unmask_interrupt_variety (interrupt_variety)

uc_interrupt_enum_ type interrupt_variety; /*READ ONLY*/

Summary

This routine unmasks a variety of interrupt specified in interrupt_variety.

Parameters

interrupt_variety — The type of interrupt to be unmasked. Any device that

uses this interrupt variety is effectively unmasked.

Description

This routine unmasks interrupts for a device with the interrupt type given in

interrupt_variety. Any devices that use the interrupt variety to interrupt the

system are effectively unmasked. If there are multiple processors, the

interrupt is enabled for all processors. The routine nests mask and unmask

requests.

The routine uses a mask depth associated with the specified device to nest

interrupts. This routine decrements the mask depth, and if the new value is

0, the hardware is updated to reflect a change in the mask.

You may call this routine from base level or from interrupt level. It

remembers and correctly restores the state of the interrupt enable flag.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_UNMASK_INTERRUPT — Either the device’s mask

depth is equal to zero, or the interrupt variety is illegal. The former must be

due to incorrect pairing of the mask and unmask function calls.

093-701053 Licensed material—property of Data General Corporation 6-49

Interrupt Handling Routines

vp_are_interrupts_disabled

Syntax

bool vp_are_ interrupts disabled ()

Summary

This routine returns TRUE if interrupts are disabled in the calling processor.

Parameters

None.

Return Values

TRUE — Interrupts are disabled in the calling processor.

FALSE — Interrupts are enabled in the calling processor.

Exceptions

None.

6-50 Licensed material—property of Data General Corporation 093-701053

Interrupt Handling Routines

vp_disable_interrupts

Syntax

void vp_disable_ interrupts ()

Summary

This routine disables interrupts in the calling processor.

Parameters

None.

Description

Interrupts are disabled and the interrupt disable depth count is decremented.

An interrupt disable depth count is maintained so that calls to this routine

and vp_enable_interrupts will nest properly.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 6-51

Interrupt Handling Routines

vp_enable_interrupts

Syntax

void vp_enable interrupts ()

Summary

This routine counters a previous call to disable interrupts in the calling

processor. Interrupts are enabled if the disable depth is returned to zero.

Parameters

None.

Description

Multiple disable interrupt calls are tracked by the disable count depth. This

routine counteracts one disable call by decrementing the disable depth count.

The interrupt disable depth count is decremented. If this decrement restores

the count to its initial value, interrupts are enabled.

Return Values

None.

Exceptions

None.

End of Chapter

6-52 Licensed material—property of Data General Corporation 093-701053

Chapter 7

Data and Memory Management

Routines

This chapter describes the kernel memory and data management routines that your

driver can call. Included are routines for verifying pointers to data buffers,

manipulating buffer vectors, and allocating and releasing memory.

The chapter is divided into three major sections:

@ Memory Management Routines — Routines for allocating and releasing

wired and unwired memory in the global kernel address space.

® User Data Access Validation Routines — Routines used for accessing user

address space. These routines are used to validate user-supplied pointers

and copy data to or from user memory.

e Buffer Vector Management Routines — Routines for managing user data

buffers for the readv, read, write, and writeyv system calls.

Each section introduces the major features of the routines that follow. Following

each introduction is a "Constants and Data Structures" section that lists some of the

constants and data structures used by the routines. For a full listing of constants and

data structures, see the include files listed in Chapter 3.

093-701053 Licensed material—property of Data General Corporation 7-1

Memory Management Routines

Memory Management Routines

Memory management routines are provided for allocating and releasing wired and

unwired memory in the global kernel address space.

There are two types of allocation routines for wired and unwired memory: standard

and perhaps. The standard and perhaps allocation routines are essentially the same.

The difference is that vm_get_wired/unwired_memory will panic if memory cannot be

allocated, whereas vm_perhaps_get_wired/unwired_memory will return an error

indication. Memory allocation fails because internal allocation limits have been

exceeded; because these limits may be lower for the perhaps versions, the perhaps

versions may fail when the standard versions would not.

Memory must always be released as the same type (wired or unwired) and size as

obtained. If unwired memory is obtained and then wired, it must be unwired before

being released and must be released as unwired memory.

The wire and unwire operations affect both the memory itself and any page tables

needed to reference the memory. Hence, one is guaranteed that the physical frames

assigned to wired memory will not change and that no page faults will occur on wired

memory. The wire and unwire operations nest so that multiple calls on the same

memory do not interfere.

Calls to wire memory may be nested. After memory has been wired, subsequent wire

requests result in the incrementing of a wired count for the memory. Unwire calls

decrement the wired count. Memory becomes unwired when the count is

decremented to zero.

The routines described in this section are as follows:

® vm_get_physical_byte_address

® vm_get_unwired_memory

® vm_get_wired_memory

@ vm_map_physical_memory

@® vm_unmap_physical_memory

@® vm_mark_mod_and_ref_and_unwire_memory

@® vm_mark_ref_and_unwire_memory

@ vm_perhaps_get_unwired_memory

@ vm_perhaps_get_wired_memory

7-2 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

® vm_release_unwired_memory

® vm_release_wired_memory

® vm_unwire_memory

@® vyvm_wire_memory

Routines beginning with vm require the i_vm.h include file.

Constants and Data Structures

This section discusses the literals used to specify data alignment in calls to

vm_get_wired_memory and vm_get_unwired_memory.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_vm.h for structures beginning with the vm acronym). Chapter 3 lists the

various include files.

Page Alignment Literals

After memory has been aligned, you cannot ask for a quantity smaller than the

specified alignment. You cannot ask for page alignment for less than one page,

except in the case of VM_DEFAULT_ALIGNMENT_NO_PAGE..CROSS (shown

below).

VM_PAGE_ALIGNED

This constant will request page alignment. Don’t use this alignment when
VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS is sufficient, because

it will result in wasted space.

VM_DOUBLE_WORD_ALIGNED

This constant will request double word alignment (64-bit).

VM_WORD_ ALIGNED

This constant will request word alignment (32-bit).

VM_BYTE_ALIGNED

This constant will request byte alignment.

093-701053 Licensed material—property of Data General Corporation 7-3

Memory Management Routines

VM_DEFAULT_ALIGNMENT

This constant represents the most efficient alignment for use when allocating

strings and structures. The default is double word alignment (64-bit) because,

in most cases, the system deals with double word alignment most efficiently.

Use this constant whenever possible.

VM_DEFAULT_ ALIGNMENT _NO_PAGE_CROSS

This constant represents an alignment that is guaranteed not to cross a page

boundary and will be default-aligned. Allocations that use this alignment are

restricted to one page or less.

VM_INVALID_ MEMORY PTR

This constant will be returned by vm_perhaps_get_wired_memory and

vm_perhaps_get_unwired_memory when the memory allocation fails.

7-4 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_get_physical_byte_address

Syntax

void vm_get_physical_byte address (logical_address,

is_user_address,

physical address ptr)

byte_address_type logical_address; /*READ ONLY*/

boolean type is_user_address; /*READ ONLY*/

byte address type * physical_address_ptr; /*WRITE ONLY*/

Summary

This function returns the physical address that corresponds to the given

logical byte address.

Parameters

logical_address — The logical address for which a physical address is needed.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address.

If FALSE, it is a kernel address.

physical_address_ptr — A pointer to the physical address corresponding to

the given logical address, filled by this routine. If the logical address was

invalid, this address will be VMU_INVALID_PHYSICAL_ADDRESS_PTR.

Description

See Summary.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-5

Memory Management Routines

vm_get_unwired_memory

Syntax

pointer to any type vm_get_unwired_memory (bytes, alignment)

uint32_type bytes; /*READ ONLY*/

uint32_ type alignment; /*READ ONLY*/

Summary

This routine allocates unwired memory from available address space.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alignment parameter are defined in i_vm.h.

Description

This routine allocates unwired memory on the alignment specified by the user.

The amount of memory allocated is specified by the bytes parameter. If the

allocation fails, the system panics.

Return Values

memory_ptr — The routine returns a byte pointer to the allocated space.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

VM_PANIC_GET_UNWIRED_MEMORY — The requested memory could

not be allocated.

7-6 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_get_wired_memory

Syntax

pointer _to_any type vm_get_wired_memory (bytes, alignment)

uint32_type bytes; /*READ ONLY*/

uint32_ type alignment; /*READ ONLY*/

Summary

This routine allocates wired memory from available address space.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alignment parameter are defined in i_vm.h.

Description

This routine allocates wired memory on the alignment specified by the user.

The amount of memory allocated is specified by the bytes parameter. If the

allocation fails, the system panics.

Return Values

memory_ptr — The routine returns a byte pointer to the allocated space.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

VM_PANIC_GET_WIRED_MEMORY — The requested memory could not

be allocated.

093-701053 Licensed material—property of Data General Corporation 7-7

Memory Management Routines

vm_map_physical_memory

Syntax

status_type vm_map physical_memory (logical_addr,

physical_addr,

num bytes,

access_mode,

sharing,

control flags)

byte_address_type logical addr; /*READ ONLY*/

byte_address_type physical _ addr; /*READ ONLY*/

uint32_type num bytes; /*READ ONLY*/

bit32_type access mode; /*READ ONLY*/

int32_ type sharing; /*READ ONLY*/

bit32_ type control flags; /*READ ONLY*/

Summary

This routine supports the mmap(2) system call.

Parameters

7-8

logical_addr — The first logical address in a contiguous block of num_bytes
to be mapped to physical_addr. This address must be on a page boundary.

physical_addr — The first physical address in a contiguous block of

num_bytes to which the logical_addr will be mapped. This address also must

be on a page boundary.

num_bytes — The total number of bytes to be mapped, which must be an

integral multiple of the logical page size.

access_mode — This is the bitwise OR of all appropriate access modes. It

may contain any of PROT_READ, PROT_WRITE, and/or PROT_EXEC,

from sys/mman.h. No checking will be performed as to the appropriateness

of the specified modes, and it is assumed that privilege violations will not

occur, or be enforced by higher level routines.

‘sharing — Under the current implementation, this must be MAP_SHARED.

MAP_PRIVATE is not yet supported though it is specified as an option.

control_flags — This is a bit-field used to send special control information.

One bit is used for cache control. This bit-field may include information for

inhibiting caching which should be passed on to the page table entries of the

mapped physical memory. A second bit is used to specify whether the passed

logical address is to be in the user or kernel address space. The remaining bits

Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

are reserved for later expansion.

The following list describes the bit positions of the currently supported flags:

Bit 0 — This flag specifies whether user or kernel address space is to be

used. Use VM_MMAP_IS_KERNEL_ADDRESS_SPACE_MASK to

specify kernel addresses; otherwise, user addresses are assumed by

default. (Bit 0 is the lowest order bit.)

Bit 1 — This flag specifies whether to write through or inhibit caching.

Use VM_MMAP_WRITE_THROUGH_MASK to specify write-through

caching on architectures that support it; otherwise, by default, no caching

(cache inhibiting) is assumed.

Bits 2-31 — All other bits are unused and reserved for expansion.

Description

This routine will support the mmap(2) system call. It provides the kernel data

structure modifications to map an area of a process’s address space to real

physical memory. Basically, this is done by searching for a contiguous region

of a process’s data area and setting pointers to the appropriate physical

memory frame.

It may be called by either user or kernel processes; that is, the passed

logical_addr may be either a kernel or user address. A bit im the

control_flags parameter controls this distinction. The logical_addr passed,

offset by num_bytes, must be part of the current address space before this

call is made. Kernel processes should have already allocated unwired

memory, while users should valloc() the appropriate range before making the

mapping call.

The range addresses to be mapped must have referred to an existing region of

a process’s data area, or else an error will result. Any existing data that was

addressed in this range will be discarded. No other explicit cleanup is needed

for an address space that has been mapped. If the process that called

mmap(2) exits, its mapped region will be implicitly unmapped by the exit

path. Likewise, if the process calls any version of exec(2), the mapped region

will also be implicitly unmapped before the new program begins to execute.

Finally, in the case of a fork(2), the new child will implicitly inherit the

parent’s mapped address space.

Return Values

OK — All frames were mapped successfully.

VM_EINVAL_MMAP_UNSUPPORTED — This error will be returned if the

093-701053 Licensed material—property of Data Genera] Corporation 7-9

Memory Management Routines

parameter sharing is set to MAP_PRIVATE; currently, only MAP_SHARING

is supported. The function will abort before any modifications are made.

VM_EINVAL_MMAP_BYTES_NOT_MULTIPLE — This error code will be

returned if the parameter num_bytes is not an integral multiple (greater than

zero) of the size of a physical page. The function will abort before any

modifications are made.

VM_EINVAL_MMAP_BAD_ADDR_BOUNDARY — This error code will be

returned if either of the address parameters, physical_addr or logical_addr, is

not aligned on a page boundary. The function will abort before any

modifications are made.

VM_EINVAL_MMAP_SPACE_UNALLOCATED — This error will occur

when the logical_addr is not already a part of the current process’s address

space. The function will abort before any modifications are made.

VM_EINVAL_MMAP_ADDRESS_NOT_DATA — This error will be returned

when the logical_addr is not a part of the calling process’s data area. Only

regions of a process’s address space of the data variety will be accepted for

mapping. The function will abort before any modifications are made.

VM_EINVAL_MMAP_BAD_REGION — This error will be returned in

several circumstances when the range of addresses to be mapped is

inappropriate. The following are specific examples of this: when logical_addr

offset by the num_bytes is greater than the maximum address (4G); or when

the region of addresses to be mapped, logical_addr to

logical_addr+num_bytes, does not fit in the size of the process’s current data

area; or when logical_addr cannot be located in any address area. The

function will abort before any modifications are made.

VM_EINVAL_MMAP_ALREADY_MAPPED — This error will be returned

when any data contained within the passed range of addresses (logical_addr

through logical_addr+num_bytes) is already mapped. A region of a process’s

data area can be remapped, but only if an explicit munmap(2) is done before

the remap attempt. The function will abort, and this error will return before

any modifications are made.

Abort Conditions

None.

7-10 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_unmap_physical_memory

Syntax

status_type vm_unmap physical memory (logical_addr,

num bytes,

control flags)

byte _ address type logical_addr; /*READ ONLY*/

uilnt32_type num bytes; /*READ ONLY*/

bit32_type control flags; /*READ ONLY*/

Summary

This routine will support the munmap(2) system call.

Parameters

logical_addr — The first logical address in a contiguous block of num_bytes

to be unmapped. This address must be on a page boundary.

num_bytes — The total number of bytes to be unmapped. This does not

necessarily have to be identical to the number that were mapped originally;

however, it must be an integral multiple of the logical page size.

control_flags — This is a bit-field used to send special control information. A

bit is necessary to specify whether the passed logical address is to be in the

user or kernel address space. The remaining bits may be used later, and are

reserved for expandability. The following list describes the bit positions of

the currently supported flags:

Bit 0 — This flag specifies whether to use user or kernel address space.

Use VM_MUNMAP_IS_KERNEL_ADDRESS_SPACE..MASK to specify

kernel addresses; otherwise, user addresses are assumed by default. Bit 0

is the lowest order bit.

Bits 1-31 — Ali other bits are unused and reserved for expansion.

Description

This routine will support the munmap(2) system call. It will unmap an area of

a process’s address space to which was previously mapped by mmap(2). Only

previously mapped areas can be unmapped. Upon unmapping, the

appropriate address space will be reset to be non-resident but will still be a

valid area of the data area.

093-701053 Licensed material—property of Data General Corporation 7-11

Memory Management Routines

It may be called by either user or kernel processes and still work properly;

that is, the passed logical_addr may be either a kernel or user address. A bit

in the parameter control_flags will be used to make this distinction.

Return Values

OK — All frames were unmapped successfully.

VM_EINVAL_MUNMAP_BYTES_NOT_MULTIPLE — This error code will

be returned if the parameter num_bytes is not an integral multiple of the

physical page size. The function will abort before any modifications are

made.

VM_EINVAL_MUNMAP_BAD_ADDR_BOUNDARY — This error code will

be returned if the address parameter, logical_addr, is not aligned on a page

boundary. The function will abort before any modifications are made.

VM_EINVAL_MUNMAP._BAD_REGION — This error code will be returned

when several situations occur: if the range of addresses to unmap

(logical_addr through logical_addr+num_bytes) is not entirely valid; if the

starting address cannot be found in the process’s data area; or if the address

range overflows beyond the 4G upper limit.

VM_EINVAL_MUNMAP_DATA_NOT_MAPPED — This error will occur if

an attempt is made to unmap any portion of an address space that has not

been previously mapped. Only previously mapped regions may be unmapped.

Abort Conditions

None.

Licensed material—property of Data General Corporation 093-701053

Memory Management Routines.

vm_mark_mod_and_ref_and_unwire_memory

Syntax

void vm_mark_mod_and ref_and_unwire_memory (start_address,

is_user_address,

bytes _to unwire)

pointer_to_any type start_address; /* READ ONLY */

boolean type is_user_address; /*READ ONLY*/

uint32_type bytes to_unwire; /* READ ONLY */

Summary

This routine marks the frames indicated as having been referenced and

modified, and then unwires the frames.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired. The value in start_address is rounded down to a page boundary.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is _user_address is TRUE, the address is a user address.

If FALSE, it is a kernel address.

Ibytes_to_unwire — The number of bytes to be unwired.

Description

This routine marks frames as having been referenced and modified and then

unwires them. It starts at start_address (rounded down to a page boundary),

goes for bytes_to_unwire number of bytes and rounds up to a page boundary.

Memory needs to be marked as modified if it has been wired and then used as

an I/O buffer. I/O uses direct memory access, which does not cause the

frame to be marked as modified automatically. Therefore, this routine will

set the modified bit explicitly.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 7-13

Memory Management Routines

vm_mark_ref_and_unwire_memory

Syntax

void vm_mark_ref_and_unwire_memory (start_address,

is_user_address,

bytes_to_unwire)

pointer to_any type start_address; /*READ ONLY*/

boolean_type is_user_address; /*READ ONLY*/

uint32_ type bytes_to_unwire; /*READ ONLY*/

Summary

This routine marks the indicated frames as having been referenced and then

unwires them.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address.

If FALSE, it is a kernel address.

bytes_to_unwire — The number of bytes to be unwired.

Description

This routine marks the frames as having been referenced and then unwires

them. It starts at start_address (rounded down to a page boundary), goes for

bytes_to_unwire number of bytes and rounds up to a page boundary.

Memory needs to be marked as referenced if it has been wired and then used

as an I/O buffer. I/O uses direct memory access, which does not cause the

frame to be marked as referenced automatically. Therefore, this routine will

set the referenced bit explicitly.

Return Values

7-14

None.

Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_perhaps_get_unwired_memory

Syntax

pointer to _any type vm_perhaps_get_unwired_memory (bytes,

alignment)

uint32_ type bytes; /*READ ONLY*/

uint32_ type alignment; /*READ ONLY*/

Summary

This routine allocates unwired memory.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alignment parameter are defined in i_vm.h.

Description

Memory is allocated from unwired memory on the alignment specified by the

user. The amount of memory allocated is specified by the bytes parameter.

Return Values

memory_ptr — The memory was allocated successfully.

VM_INVALID_. MEMORY_PTR — The memory could not be allocated.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-15

Memory Management Routines

vm_perhaps_get_wired_memory

Syntax

pointer _to_any type vm_perhaps_get_wired_memory (bytes,

alignment)

uint32 type bytes; /*READ ONLY*/

uint32_ type alignment; /*READ ONILY*/

Summary

This routine allocates wired memory.

Parameters

bytes — The number of bytes to be allocated; bytes must be a positive value.

alignment — The byte alignment of the allocated space. Constants for the

alionment parameter are defined in i_vm.h.

Description

Memory is allocated from wired memory on the alignment specified by the

user. The amount of memory to be allocated is specified by the bytes

parameter.

Return Values

memory_ptr — The memory was allocated successfully.

VM_INVALID_MEMORY_PTR — The memory could not be allocated.

Exceptions

None.

7-16 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_release_unwired_memory

Syntax

void wvm_release_unwired_memory (memory ptr, bytes)

pointer _to_ any type memory ptr; /*READ ONLY*/

uint32_ type bytes; /*READ ONLY*/

Summary

This routine releases unwired memory that was previously obtained via a

vm_get_unwired_memory or vm_perhaps_get_unwired_memory call.

Parameters

memory_ptr — A byte pointer to the start of the memory to be released.

memory_ptr must be the same pointer that was returned by the

vm_get_unwired_memory or vm_perhaps_get_uwired_memory call when

memory was originally requested.

bytes — The number of bytes to be released. bytes must be the same number

of bytes as given to the vm_get_unwired_memory Or

vm_perhaps_get_unwired_memory call when memory was originally

requested.

Description

This routine releases the given number of bytes of unwired memory, starting

at the given byte address. This memory must have been obtained via a

vm_get_unwired_memory or vm_perhaps_get_unwired_memory call.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-17

Memory Management Routines

vm_release_wired_memory

Syntax

void vm_release_wired_memory (memory _ptr, bytes)

pointer to_any type memory _ ptr; /*READ ONLY*/

uint32 type bytes; /*READ ONLY*/

Summary

This routine releases wired memory that was previously obtained via a

vm_get_wired_memory or vm_perhaps_get_wired_memory Call.

Parameters

memory_ptr — A byte pointer to the start of the memory that is to be

released. memory_ptr must contain the same pointer that was returned by

the vm_get_wired_memory or the vm_perhaps_get_wired_memory call when

memory was originally requested.

bytes — The number of bytes to be released. bytes must be the same number

of bytes as requested in the vm_get_wired_memory or

vm_perhaps_get_wired_memory call when memory was originally requested.

Description

This routine releases the given number of bytes of wired memory, starting at

the given byte address. This memory must have been obtained via a

vm_get_wired_memory or vm_perhaps_get_wired_memory call.

Return Values

None.

Exceptions

None.

7-18 Licensed material—property of Data General Corporation 093-701053

Memory Management Routines

vm_unwire_memory

Syntax

void vm_unwire_memory (start_address,

is_user_address,

bytes _to_unwire)

pointer to_any type start_address; /*READ ONLY*/

boolean type is_user_address; /*READ ONLY*/

uint32 type bytes _to_unwire; /*READ ONLY*/

Summary

This routine unwires the memory indicated by start_address for the number

of bytes indicated by bytes_to_unwire.

Parameters

start_address — The byte address indicating the start of the memory to be

unwired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address.

If FALSE, it is a kernel address.

bytes_to_unwire — The number of bytes to be unwired.

Description

This routine unwires the memory indicated by start_address for the number

of bytes indicated by bytes_to_unwire. Unwiring is done only on blocks of a

complete page. Therefore, if start_address is not the start of a page,

ym_unwire_memory starts at the next lowest page boundary. Similarly, if

bytes_to_unwire does not end on a page boundary, unwiring continues into

the next higher page boundary.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 7-19

Memory Management Routines

vm_wire_memory

Syntax

status type vm_wire_ memory (start_address,is_user_address,

bytes_to wire)

pointer to_any type start_address; /*READ ONLY*/

boolean _ type is_user_address; /*READ ONLY*/

uint32_type bytes _to_wire; /*READ ONLY*/

Summary

This routine wires the memory indicated by start_address for the number of

bytes indicated by bytes_to_wire.

Parameters

start_address — The byte address indicating the start of the memory to be

wired.

is_user_address — Indicates whether the logical address specified is a user or

kernel address. If is_user_address is TRUE, the address is a user address.

If FALSE, it is a kernel address.

bytes_to_wire — The number of bytes to be wired.

Description

This routine wires the memory indicated by start_address for the number of

bytes indicated by bytes_to_wire. Wiring is done only on blocks of a

complete page. Therefore, if start_address is not the start of a page,

vm_wire_memory starts at the next lowest page boundary. Similarly, if

bytes_to_wire does not end on a page boundary, wiring continues into the

next higher page boundary.

Return Values

7-20

OK — The memory was successfully wired.

[other error statuses] — A hard I/O error occurred that prevented a page from

being brought in. The specific list of possible errors is too long to give here.

You can decode any status returned here using the error status decoding

methods described in Chapter 8.

Licensed material—property of Data General Corporation 093-701053

User Data Access Validation Routines

User Data Access Validation Routines

Routines in this section are used to validate user-supplied memory addresses or to

transfer data between user memory and kernel memory.

For most I/O operations, the kernel will validate user-specified buffers before

performing the operation. However, the kernel cannot validate user-specified buffers

for an ioctl operation because ioctl packets may contain buffer pointers embedded in

the packet. Therefore, the driver must validate user buffers itself for ioctl operations.

The routines in this section perform read, write, and execute access checking. These

checks verify that the buffer memory has permissions appropriate for the requested

operation (for example, read permission is granted for a write operation).

The routines described in this section are as follows:

@ sc_check_access_and_read_string_from_user

® sc_check_byte_access

@® sc_read_bytes_from_user

® sc_write_bytes_to_user

® sc_write_string_to_user

Routines beginning with se require the i_sc.h include file.

Constants and Data Structures

No special constants or data structures are required for these routines.

093-701053 Licensed material—property of Data General Corporation 7-21

User Data Access Validation Routines

sc_check_access_and_read_string_from_user

Syntax

status _type sc_check_access_and_read_string_from_user

(buffer _ptr_ptr, dest_ptr, count_ptr)

pointer to any ptr_type buffer _ptr_ ptr; /*READ ONLY*/

pointer _to_any type dest_ptr; /*WRITE ONLY*/

uint32_ ptr_type count_ptr; / *READ/WRITE*/

Summary

This routine checks the user address space starting at buffer_ptr_ptr for

count bytes, or through the terminating null, to verify that read access is

available for the entire string. The string is also copied into the destination

buffer.

Parameters

buffer_ptr_ptr — A pointer to the byte pointer that marks the start of the

string for which access is to be checked.

dest_ptr — A pointer to the kernel buffer into which the string is to be

copied.

count_ptr — On input, a pointer to the maximum size, in bytes, of the string,

including the terminating null. On output, the size of the string copied into

the kernel buffer, including the terminating null.

Return Values

7-22

OK — Read access is available for the entire string. The string has been

copied to the destination with a terminating null.

SC_EFAULT_STRING_TOO_LONG — Read access is available for the

maximum size of the string, but there is no terminating null in that length.

The contents of the destination are undefined.

SC_EFAULT_NO_READ_ACCESS — Read access is available for less than

the maximum size of the string, and no terminating null was found in the area

to which read access was available. The contents of the destination are

undefined.

[other error statuses} — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any

Licensed material—property of Data General Corporation 093-701053

User Data Access Validation Routines

status returned here using the error status decoding methods described in

Chapter 8.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-23

User Data Access Validation Routines

sc_check_byte_access

status_type sc_check_byte_ access (buffer_ptr_ptr,

count,access)

pointer to any ptr_type buffer_ptr ptr; /*READ/WRITE*/

uint32_type count; /*READ ONLY*/

sc_access_mode_type access; /*READ ONLY*/

Summary

This routine checks the user address space starting at buffer_ptr_ptr for

count bytes to verify that access access is available for the entire area.

Parameters

buffer_ptr_ptr — A pointer to the byte pointer that marks the start of the

area for which access is to be checked.

count — The size, in bytes, of the area to be checked.

access — The access modes to be checked.

Return Values

OK — The requested access is available for the entire area.

SC_EFAULT_NO_ACCESS — One or more bytes of the specified area do

not have the required access.

Exceptions

None.

7-24 Licensed material—property of Data General Corporation 093-701053

User Data Access Validation Routines

sc_read_bytes_from_user

Syntax

status type sc_read_bytes from_user (source_ptr,

dest_ptr, count)

pointer to_any type source_ptr; /*READ ONLY*/

pointer to_any type dest_ptr; /*READ ONLY*/

uint32_ type count; /*READ ONLY*/

Summary

This routine moves the specified number of bytes from the user’s address

space to the kernel address space.

Parameters

source_ptr — A pointer to the location in the user’s address space from

which the data is to be moved.

dest_ptr — A pointer to the location in the kernel address space to which the

data is to be moved.

count — The number of bytes to be moved.

Description

The specified number of bytes are moved from the source to the destination.

Access should be checked before reading.

Return Values

OK — The bytes were successfully read from the user address space into

kernel address space.

[other error statuses} — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any

status returned here using the error status decoding methods described in

Chapter 8.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-25

User Data Access Validation Routines

sc_write_bytes_to_user

Syntax

status type sc_write_bytes_to_user (source_ptr,

dest _ptr, count)

pointer_to_any type source _ptr; /*READ ONLY*/

pointer to any type dest_ptr; /*READ ONLY*/

uint32_type count; /*READ ONLY*/

Summary

This routine moves the specified number of bytes from the kernel address

space to the user’s address space.

Parameters

source_ptr — A pointer to the location in the kernel address space from

which the data is to be moved.

dest_ptr — A pointer to the location in the user address space to which the

data is to be moved.

count — The number of bytes to be moved.

Description

The specified number of bytes are moved from the source to the destination.

This routine assumes that access has already been checked.

Return Values

OK — The bytes were successfully written to the user’s address space.

[other error statuses — The bytes could not be written because of an error.

The specific list of possible errors is too long to give here. You can decode

any status returned here using the error status decoding methods described in

Chapter 8.

Exceptions

7-26

None.

Licensed material—property of Data General Corporation 093-701053

User Data Access Validation Routines

sc_write_string_to_user

Syntax

status type sc_write_string_to_user (source ptr, dest_ptr)

pointer to_any type source_ptr; /*READ ONLY*/

pointer to_any_ type dest_ptr; /*READ ONLY*/

Summary

This routine moves bytes from the kernel address space to the user’s address

space up to and including the first null byte in the source string.

Parameters

source_ptr — A pointer to the location in the kernel address space from

which the data is to be moved.

dest_ptr — A pointer to the location in the user address space to which the

data is to be moved.

Description

Bytes are moved from the source to the destination until a null byte is found

in the source. The null is transferred to the destination. This routine

assumes that access has already been checked.

Return Values

OK — The bytes were successfully written to the user’s address space.

[other error statuses — The bytes could not be written because of an error.

The specific list of possible errors is too long to give here. You can decode

any status returned here using the error status decoding methods described in

Chapter 8.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-27

Buffer Vector Management Routines

Buffer Vector Management Routines

This section describes routines you can use to manage buffer vectors. Buffer vectors

are data structures used to package user data buffers specified by the read, readv,

write, and writev system calls. The "v" system calls (readv and writev) require such

non-contiguous buffer space, and buffer vectors allow a buffer area to be spread

across non-contiguous memory.

While the read and write system calls do not use non-contiguous buffers, they still use

the buffer vector interface. These system calls will have a buffer vector array with

only one entry (see io_init_one_entry_buffer_vector).

A buffer vector consists of a collection of individual buffer descriptors with

associated state variables. Each buffer descriptor consists of a buffer pointer and a

buffer size. A buffer vector may be either the source of a read or the destination of a

write operation; the individual buffer descriptors define the locations from which the

data is being read or into which the data is being written.

The current position within the buffer vector is maintained by the associated state

variable. The current position defines where the next byte of data will be read from

or written to. The current position is initialized to the first byte of the first buffer

descriptor.

The routines described in this section are as follows:

® io_add_to_buffer_vector_position

@ io_get_buffer_vector_io_info

@ io_get_buffer_vector_position

® io_get_buffer_vector_residual

@ io_get_buffer_vector_byte_count

® io_init_buffer_vector

® io_init_one_entry_buffer_vector

® io_read_from_buffer_vector

® io_reset_buffer_vector_position

@ io_set_buffer_vector_residual

® io_write_to_buffer_vector

Routines beginning with io require the i_io.h include file.

7-28 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

Constants and Data Structures

See Chapter 4 for a description of io_buffer_vector_type and other data structures

used with buffer vectors.

093-701053 Licensed material—property of Data General Corporation 7-29

Buffer Vector Management Routines

io_add_to_buffer_vector_position

Syntax

void io_add_to_ buffer _vector_position

(buffer vector_ptr, count)

io buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

int32 type count; /*READ ONLY*/

Summary

This routine adds the given count to the current position associated with the

given buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose current position is

to be changed.

count — The number of bytes to be added to the current buffer position.

Description

This routine adds the given count to the current position associated with the

given buffer vector. The amount added may be positive or negative. If the

new value of the current position would be less than zero or greater than the

byte count associated with the buffer vector, the result is undefined. Note

that changing the current position changes the residual count by implication,

so that the relationship between the current position plus residual count and

the overall byte count remains true.

Return Values

None.

Exceptions

None.

7-30 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

io_get_buffer_vector_io_info

Syntax

void io _get_buffer_vector_io_info (buffer_vector_ptr,

buffer _ptr_ ptr, count_ptr)

io buffer_vector_ptr_type buffer_vector_ptr;/*READ ONLY*/

pointer to_any ptr_type buffer ptr ptr; /*WRITE ONLY*/

uint32_ptr_type count _ptr; /*WRITE ONLY*/

Summary

This routine takes the current buffer descriptor and returns the buffer pointer

and the number of contiguous bytes left in the buffer from that pointer.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose I/O information is

to be returned.

buffer_ptr_ptr — A pointer to where the buffer pointer at the current

position is to be returned.

count_ptr — A pointer to where the number of contiguous bytes starting at

the current position is to be returned. This returned value will always be

greater than zero.

Description

This routine returns the actual buffer pointer and contiguous byte count

associated with that position so that direct access I/O operations can be

performed on the buffer.

Drivers can use this routine to produce the same effect as

io_read_bytes_from_buffer_vector or io_write_bytes_to_buffer_vector, but

with the transfer going directly between the device and the buffer vector

instead of through an intermediate memory buffer. To do this, the driver

successively gets the I/O information for the current position, performs direct

access I/O, and updates the current position with

io_add_to_buffer_vector_position.

NOTE: This routine must not be called when the buffer vector residual is

zero, as the returned count is defined to always be strictly greater

than zero.

093-701053 Licensed material—property of Data General Corporation 7-31

Buffer Vector Management Routines

Return Values

None.

Exceptions

None.

7-32 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

io_get_buffer_vector_position

Syntax

uint32_ type io_get_buffer_vector_position

(buffer vector_ptr)

io buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the current position of the specified buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the current

position is to be retrieved.

Return Values

[position] — The current position associated with the given buffer vector.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-33

Buffer Vector Management Routines

io_get_buffer_vector_residual

Syntax

uint32_ type io _get_buffer_vector_residual (buffer_vector_ptr)

io buffer_vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the number of bytes remaining in the specified buffer vector.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the residual

byte count is to be retrieved.

Description

This routine gets the number of bytes remaining in the specified buffer vector.

This residual count is always equal to the byte count of the buffer vector

minus the current position. The buffer_vector_ptr is assurned to be valid.

Return Values

count — The residual bytes associated with the given buffer vector.

Exceptions

None.

7-34 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

io_get_buffer_vector_byte_count

Syntax

uint32_ type io _get_buffer_vector_byte_count

(buffer _vector_ptr)

io buffer _vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine gets the byte count for the specified buffer vector. This count is

the number of bytes of data that this vector can hold.

Parameters

buffer_vector_ptr — A pointer to the buffer vector from which the byte count

is to be retrieved.

Description

This routine gets the byte count for the specified buffer vector. This count is

the number of bytes of data that this vector can hold. The buffer_vector_ptr

is assumed to be valid.

Return Values

count — The byte count associated with the given buffer vector.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-35

Buffer Vector Management Routines

10_init_ buffer_vector

Syntax

void io init buffer _vector (buffer vector_ptz, total_size,

buffer descriptors, count)

1o_buffer_vector_ptr_type buffer _vector_ptr;/*READ/WRITE*/

uint32_ type total _ size; /*READ ONLY*/

io_buffer_ descriptor _ptr_type

buffer descriptors; /*READ ONLY*/

uintl6 type | | count ; /*READ ONLY*/

Summary

This routine is used to initialize a buffer vector.

Parameters

buffer_vector_ptr — The buffer vector to be initialized.

total_size — The sum of sizes from the buffer descriptors.

buffer_descriptors — Pointer to the array of buffer descriptors to be

associated with the buffer vector.

count — The number of entries in the buffer_descriptors array.

Description

This routine is used to initialize a buffer vector. The buffer_vector_ptr is

assumed to be valid.

Return Values

None.

Exceptions

None.

7-36 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

io_init_one_entry_buffer_vector

Syntax

void io init_one_entry_buffer_ vector (buffer_vector_ptr,

buffer ptr, size)

io buffer_vector_ptr_type buffer _vector_ptr;/*READ/WRITE*/

pointer to_any type . buffer ptr; /*READ ONLY*/

uint32_type size; /*READ ONLY*/

Summary

This routine is used to initialize a buffer vector that will have only one entry

in the buffer_descriptors array. |

Parameters

buffer_vector_ptr — The buffer vector to initialize.

buffer_ptr — A pointer to the buffer that is to be the sole entry in the

buffer_descriptors array.

size — The size, in bytes, of the sole entry in the buffer_descriptor array.

Description

This routine is called if a buffer vector structure is being created with a single

buffer descriptor entry. Using this routine to initialize a single entry buffer

vector allows optimizations to be performed in buffer vector management.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-37

Buffer Vector Management Routines

io_read_from_buffer_vector

Syntax

status_type io_read_from_buffer_vector (buffer_vector_ptr,

buffer ptr, count_ptr)

io buffer _vector_ptr_type buffer _vector_ptr; /*READ/WRITE*/

pointer to_any type buffer ptr; / *READ/WRITE*/

uint32_ptr_type count _ptr; / *READ/WRITE*/

Summary

This routine is used to read data from the buffer vector into the specified

buffer.

Parameters

buffer_vector_ptr — Pointer to the buffer vector from which data is to be

read.

buffer_ptr — Pointer to where data from the buffer vector is to be placed.

count_ptr — On entry, the number of bytes to move. On exit, the actual

number of bytes moved.

Description

Data is moved into the specified buffer starting at the current position of the

specified buffer vector until all the data in the buffer vector has been

exhausted or until count_ptr bytes have been moved. count_ptr is set to the

actual number of bytes moved.

Return Values

OK — The bytes were successfully written to the buffer area.

[other error statuses] — The bytes could not be read because of an error. The

specific list of possible errors is too long to give here. You can decode any

status returned here using the error status decoding methods described in

Chapter 8.

Exceptions

None.

7-38 Licensed material—property of Data General Corporation 093-701053

Buffer Vector Management Routines

io_reset_buffer_vector_position

Syntax

void io _reset_buffer_vector_position (buffer_vector_ptr)

io buffer _vector_ptr_type buffer_vector_ptr; /*READ ONLY*/

Summary

This routine resets the current position of the buffer vector to zero.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose position is to be

reset to zero.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 7-39

Buffer Vector Management Routines

io_set_buffer_vector_residual

Syntax

void io_set_buffer_vector_residual (buffer_vector_ptr, count)

io_ buffer _vector_ptr_type buffer_vector_ptr;/*READ ONLY*/

uint32_type count; /*READ ONLY*/

Summary

This routine sets the number of bytes remaining in the specified buffer vector.

The current position is unchanged.

Parameters

buffer_vector_ptr — A pointer to the buffer vector whose residual byte count

is to be set.

count — The value to which to set the residual.

Description

Because the residual is always equal to the total size minus the current

position, and the current position is unchanged by this routine, this routine

changes the total size by implication.

Return Values

None.

Exceptions

None.

7-40 Licensed material—property of Data General Corporation: 093-701053

Buffer Vector Management Routines

io_write_to_buffer_vector

Syntax

status_type io_write_to_buffer_vector (buffer_ptr,

buffer vector_ptr, count_ptr)

pointer _to_any type buffer ptr; /*READ ONLY*/

io buffer_vector_ptr_type buffer_vector_ptr; / *READ/WRITE*/

uint32 ptr_type count_ptr; / *READ/WRITE*/

Summary

This routine is used to write data from the specified buffer into the buffer

vector.

Parameters

buffer_ptr — Pointer to the buffer from which data is to be read.

buffer_vector_ptr — Pointer to the buffer vector to which data is to be

written.

count_ptr — On entry, the number of bytes to be moved. On exit, the actual

number of bytes moved.

Description

Data is moved into the buffer vector. The transfer starts at the beginning of

the specified buffer and goes until the end of the buffer vector has been

reached or until count_ptr bytes have been moved. count_ptr is set to the

actual number of bytes moved.

Return Values

OK — The bytes were successfully written to the buffer area.

[other error statuses] — An error terminated the write operation. The list of

possible errors is too long to give here. You can decode any status returned

here using the status decoding methods described in Chapter 8.

Exceptions

None.

End of Chapter

093-701053 Licensed material—property of Data General Corporation 7-41

Chapter 8

General Driver Routines

This chapter describes the DG/UX kernel routines used for a variety of driver

operations, including error handling, set up/configuration, sending messages to the

driver daemon, and accessing device selection tables.

The chapter is divided into the following sections:

® Configuration Routines — Routines used when you configure or deconfigure

a device.

@ Driver Daemon and Generic Daemon Routines — Routines that help you

service asynchronous I/O requests. You must process such requests through

the kernel facilities. The Driver Daemon and Generic Daemon are the

kernel processes used to handle asynchronous I/O requests for all drivers.

e Error Encoding and Logging Routines — Routines used to create system-

compatible statuses for your device.

e@ Select Manager Routines — Routines used in conjunction with your

dev_xxx_select routine. The select manager facilities help administer

multiple outstanding I/O requests for a single device.

@ Miscellaneous Driver Routines — Other general routines used in driver

operations.

@ Nodevice Routine Stubs — Routine stubs used to handle erroneous I/O

calls.

Each section introduces the major features of the routines that follow. Following

each introduction is a “Constants and Data Structures” section which lists some of the

constants and data structures used by the DG/UX routines. For a full list of

constants and data structures, see the include files listed in Chapter 3.

093-701053 Licensed material—property of Data General Corporation 8-1

Configuration Routines

Configuration Routines

This section describes routines your that driver’s dev_xxx_configure and

dev_xxx_deconfigure routines can use to configure/deconfgure a device and its units.

The system build process creates a list of devices to be configured from the entries in

the system file. At boot time, the system initialization code scans this list and

invokes the driver’s dev_xxx_configure routine for each device of the driver’s type in

that list. The initialization code passes dev_xxx_configure the device code for the

device in the standard format shown below:

device_mnemonic [@device_code] ([parameters])

You can use io_parse_device_spec to separate the different fields in this format.

The routines described in this section are as follows:

Routines beginning with fs and io require the i_fs.h and i_io.h include files,

fs_submit_dev_request

io_add_to_register_list

io_allocate_device_number

io_deallocate_device_number

io_deregister_device_info

io_check_device_spec

io_forget_device_spec

io_do_first_short_board_access

io_do_first_long_board_access

io_get_device_info

io_map_device_number

io_parse_device_spec

io_perform_reset

io_register_device_info

respectively.

8-2 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

Constants and Data Structures

The routines in this section use the following constants and data structures. Try to

avoid dependencies on the specifics of these structures, such as size or location of

fields, since these specifics may change in later releases of the software.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_fs.h for structures beginning with the fs acronym). Chapter 3 lists the

various include files.

fs_dev_request_type

typedef struct

{

fs dev_request_operation_enum_type operation;

char type dirname[33];

char type filename[33];

union f{

fs dev_create_request_type create;

}

Op;

}

fs_ dev_request_type;

Description

This structure contains the information required to change a node in /dev.

The fields in this structure are as follows:

operation — The type of operation requested; for example, delete, or create.

dirname — The directory in which the node should reside. This name will be

appended to /dev/. For example, set dirname to “rdsk" to create a node in

/dev/rdsk. If you don’t want the node in a directory under /dev, set dirname [0]

to FS_NULL_CHAR.

filename — The filename of the node.

op — The information necessary for the operation requested.

093-701053 Licensed material—property of Data General Corporation &3

Configuration Routines

fs_dev_request_operation_enum_type

typedef enum

{

Fs Dev_Request_Operation_ Create,

Fs Dev_Request_Operation_Delete

}

fs_dev_request_operation_enum type ,;

Description

This enum type contains the valid operations supported by the /dev manager.

The fields in this structure are as follows:

Fs_Dev_Request_Operation_Create — Request to create a node in /dev. See

fs_dev_create_request_type.

Fs_Dev_Request_Operation_Delete — Request to delete a node from /dev.

fs_dev_create_request_type

typedef struct

{

io_device_number type device;

af file _ mode type mode_ bits;

}

fs_dev_create_request type ,

Description

This structure contains the information required by the adapter driver to create a

node in /dev.

The fields in this structure are as follows:

device — The device number of the node.

mode_bits — The initial mode bits of the node. This includes the file type

information.

8-4 Licensed material—property of Data General Corporation. 093-701053

Configuration Routines

io_dev_adapt_info_type

typedef struct

{

char ptr_type name;

char ptr type device_code;

char ptr type params[IO_DEV_ADAPT MAX PARAMS];

} io dev_adapt_info_type ,;

This structure provides a method to pass data back from the

i_io_parse_dev_adapt_spec routine.

The fields in this structure are as follows:

name — A pointer to the null terminated string of a device or adapter name.

device_code — A pointer to the null terminated string of a device code.

params — An array of pointers to null terminated strings for each of the

parameters.

Literals

The following IO_.DEV_ADAPT values define constants relating to the construction

of both device and adapter specification strings.

#define IO DEV_ADAPT MAX PARAMS((int16_type)3)

This liter defines the maximum number of parameters that may be specified in either

a device or adapter specification string. This controls the size of the

IO_DEV_ADAPT_INFO structures params element size.

#define IO_DEV_ADAPT MAX SPEC_SIZE((int32_type) 256)

This literal specifies the maximum string length of a device or adapter specification,

including the terminating null character.

#define IO DEV_ADAPT DEVICE _CODE_DELIMITER((char_type)’@’)

This literal specifies the character that must prefix the sequence of characters of the

device code of either a device or adapter specification.

#define IO _DEV_ADAPT START PARAMS DELIMITER ((char type)’(’)

This literal specifies the character that must prefix the sequence of characters of the

parameters of either a device or adapter specification.

093-701053 Licensed material—property of Data General Corporation 8-5

Configuration Routines

#define IO _DEV_ADAPT_END_ PARAMS DELIMITER((char _type)’)’)

This literal specifies the character that must suffix the sequence of characters of the

parameters of either a device or adapter specification.

#define IO _DEV_ADAPT PARAMS DELIMITER ((char _type)’,’)

This literal specifies the character that must separate parameter components of either

a device or adapter specification.

uc_device_class_enum_type

typedef enum

{

Uc_Integrated_Device_Class = 0,

Uc_Vmebus_Device_Class = 1,

Uc_Invalid_Device_Class = 2,

} uc_device_class_enum_type ;

Description

This type describes the classes of devices supported by the DG/UX kernel. A device

is uniquely identified by its interrupt class and device code.

As new classes of device are supported this type definition will change. Check the

i_uc.h (in /usr/sre/uts/aviion/ii) include file for the latest supported classes.

uc_device_code_type

typedef uint32 type uc_device_code_type ;

Description

This type is used to describe a device code, which, along with its associated device

class, is used to identify an I/O device.

Device codes must be unique within a class, but the same value device code can be

found in multiple classes. Thus, device codes are fit to the device class to which they

apply.

The device codes for integrated devices are pre-defined and will be the same across

all architectures. Note that there is no association between the pre-defined integrated

device codes and physical hardware. The kernel will map the pre-assigned device

code to the device interrupt on a given machine.

8-6 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

VME188 class devices do not have pre-assigned device codes because the VME

interrupt vector mechanism allows devices to be set up to use any valid VME vector.

In the VME188 class, the device code is the value of the VME vector. It is up to

drivers to register device information specifying the appropriate VME vector to the

kernel. When a VME class interrupt occurs, the kernel will return the VME vector

of the interrupting device.

Integrated Device Code Literals

This section defines the values for the integrated device type preassigned device

codes. The values below apply for all machine architectures. During driver

initialization, a device’s driver links its device code with an interrupt handler by

registering the device. Use the following literals as the device codes for integrated

class devices:

UC_SYSTEM_ERROR_DEVICE_CODE

UC_SYSTEM_TIMER_DEVICE_CODE

UC_KEYBOARD_DEVICE_CODE

UC_DUART_DEVICE_CODE

UC_PARALLEL_PORT_DEVICE_CODE

UC_ETHERNET DEVICE _CODE

UC_SCSI_DEVICE_CODE

UC_DMA TERMINAL COUNT_DEVICE_CODE

UC_GRAPHICS_CARD_DEVICE_CODE

UC_CROSS_INTERRUPT_DEVICE_CODE

UC_PER_JP_TIMER_DEVICE_CODE

UC_DUART_TIMER_DEVICE_CODE

UC_SIGHP_DEVICE_CODE

UC_LOCATION_MONITOR_DEVICE_CODE

UC_POWER_FAIL_DEVICE_CODE

uc_reset_enum_type

typedef enum

{

Uc_Reset_Scsi = 0,

Uc_Reset_Ethernet = 1,

Uc_Reset_Asynce = 2,

Uc_Reset_Keyboard = 3,

Uc_Reset_Vme = 4,

} uc_reset_enum type ;

Description

This enumeration describes the various reset types available. These resets are all for

093-701053 Licensed material—property of Data General Corporation &-7

Configuration Routines

integrated class devices. Resets of non-integrated class devices are not supported.

An enumeration is provided for any reset supported by any architecture.

The possible members of this type are as follows:

Uc_Reset_Scsi — Reset the SCSI integrated device.

Uc_Reset_Ethernet — Reset the Ethernet integrated device.

Uc_Reset_Async — Reset the Asynchronous integrated ports, such as DUARTS.

Uc_Reset_Vme — Reset the VME bus.

8-8 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

fs_submit_dev_request

Syntax

void fs_submit_dev_request (dev_request_ptr)

fs dev_request_ptr_type dev_request_ptr; /*READ ONLY*/

Summary

This routine is used to submit a request to create or delete a /dev entry. If

the root is not mounted, then the request will not be performed until the root

is mounted.

Parameters

dev_request_ptr — A pointer to the necessary information to manipulate a

/dev entry. For the create operation, this information includes the file’s major

and minor device numbers, mode bits, type (block or character), containing
directory (for example, ".” or "rdsk") and the filename of the new file (for
example, “tty05"). For the delete operation, only the filename and containing

directory fields are required.

Description

A request to manipulate a /dev entry is accepted. The request will be

processed immediately if the root has been mounted. Otherwise, the request

is added to a queue for later processing.

Retarn Value

None.

093-701053 Licensed material—property of Data General Corporation 8-9

Configuration Routines

io_add_to_register_list

Syntax

void io_add to register_list (device_number)

io device_number type device _number; /*READ ONLY*/

Summary

This routine adds the specified device to the list of disks that may be

implicitly registered as part of system initialization. This routine is optional

and is used only with disks.

Parameters

device_number — Device number of the disk to be registered.

Description

Implicitly registered disks are known to the file system without being

specifically mounted. The specified device is added to a linked list of device

numbers.

Return Value

None.

Exceptions

None.

8-10 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

i0_allocate_device_number

Syntax

status _type io_allocate_device_number (major, handle,

| unit, minor_ptr)

io major _device_number type major; /*READ ONLY*/

bit32e type handle; /*READ ONLY*/

uintl6 type unit; /*READ ONLY*/

io_minor_device_number ptr_type minor_ptr; /*WRITE ONLY*/

Summary

This routine assigns the device a minor device number. The major device

number identifies the family of devices to which the device belongs.

Parameters

major — The device’s major device number.

handle — The device handle which identifies the device to its driver.

unit — The unit number that identifies the device to its controller.

minor_ptr — A pointer to the location where the allocated minor device

number is returned.

Description

The file system maintains a minor device number table for each family of

devices as identified by a major device number. If no units of the specified

type have been previously configured, the minor device number table address

will be null. In this case, a minor device number table is allocated and its

address is entered into io_device_number_map.

This routine searches the minor device number table for the first unused slot.

The offset of the first unused slot in the table is assigned as the minor device

number of the unit. The given device handle and unit number are stored in

the minor number table entry to provide a mapping from minor number to

device handle and unit number.

If no slots in the minor device number table are available, a new table, twice

as large as the existing table, is allocated. The existing table is copied into the

new table and deallocated. This procedure is repeated each time the minor

device number table becomes full, until the table grows to contain

MAX_MINOR_NUMBER_TABLE_ENTRIES entries. At this point, the error

093-701053 Licensed material—property of Data General Corporation 8-11

Configuration Routines

IO_ENXIO_ALL_MINOR_NUMBERS_IN_USE is returned on subsequent

minor number allocation requests.

Retarn Value

OK — No errors were discovered, so all returned arguments are valid.

10_ENXIO_ALL_MINOR_NUMBERS_IN_USE — The minor device number
table for this major device number contains no unused slots and has grown to

the maximum size.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_MAJOR_NUMBER_EXCEEDS_MAX — The major device

number argument exceeds the maximum specified by

cf_io_device_driver_count (see conf.c).

8-12 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

io_deallocate_device_number

Syntax

void io deallocate_device_number (device_number)

io_device_number type device_number; /*READ ONLY*/

Summary

This routine terminates the association between the device and its minor

device number.

Parameters

device_number — Contains the major and minor device numbers of the

device being deconfigured.

Description

The minor device number table is found using the major number. The table

is indexed by the given minor number, and the device handle field of the table

entry is set to null. A null entry in the device handle field of a minor device

table entry indicates that the entry is inactive and may be reused.

Return Value

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

I0_PANIC_MAJOR_NUMBER_EXCEEDS_MAX — The major device

number argument exceeds the maximum specified by

cfL_io_device_driver_count in conf.c.

IO_PANIC_DEVICE_IS_NOT_CONFIGURED — An active entry in the

minor device number table does not exist at the offset specified by the minor

device number argument.

093-701053 Licensed material—property of Data General Corporation &13

Configuration Routines

io_deregister_device_info

Syntax

void io _deregister_device_info (dev_code, dev_class)

io device_code_type dev_code; /*READ ONLY*/

uc_device_class_enum_type dev_class; /*READ ONLY*/

Summary

This routine deregisters the device by removing its current interrupt handler

and device information structure from the DIT.

Parameters

dev_code — device code for which the current interrupt handler is to be

disassociated.

dev_class — device class tor which the current interrupt handler is to be

disassociated.

Description

This routine reverses the effect of io_register_device_info. It deregisters the

device by removing its current interrupt handler and device information

structure from the DIT. After this call completes, future interrupts on the

specified device code will be directed to the system supplied "nodevice"

interrupt handler. If you make this call on a device code that does not

currently have an interrupt handler, a panic will occur.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine may invoke the sc_panic routine with the following error code:

IO_PANIC_ILLEGAL_DEREGISTER_DEVICE_INFO — An attempt was

made to deregister a device on a device code that did not have information

registered.

8-14 Liéensed material—property of Data General Corporation 093-701053

Configuration Routines

io_check_device_spec

Syntax

status_type io_check_device_spec (device_address,

device_code)

opaque _ptr_type device_address; /*READ ONLY*/

io_device_code_type device_code; /*READ ONLY*/

Summary

This routine checks that the address and device code specified for the device

are not already in use.

Parameters

device_address — The address of the primary registers for the device.

device_code — The device code for the device.

Description

This routine checks that the address and device code specified for the device

are not already in use. Such address and device code validation will not

prevent overlap of registers or RAM areas. It does help avoid the most

common user errors in device specification. Only the first address for a

device is checked.

Return Values

_. OK — The address and device code are not already in use.

IO_LENXIO_DEVICE_IS_ALREADY_CONFIGURED — The address or

device code are already in use.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation $15

Configuration Routines

io_forget_device_spec

Syntax

status_type io_forget_device_spec (device_address,

device code)

opaque_ptr_ type device_address; /* READ ONLY */

io_device_code type device_code; /* READ ONLY */

Summary

Release (that is, forget) a device specification that was claimed as the result

of a previous call to the io_check_device_spec routine.

Parameters

device_address — The address of the primary registers for the device.

device_code — The device code for the device.

Description

When a device is deconfigured, the device_address claimed for the device

must be freed by calling this routine. If you do not free the device address,

calls to io_check_device_spec using this device address will fail.

Return Values

OK — The address/device code pair is freed.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — The address/device code to

be freed were not found.

Exceptions

None.

8-16 Licensed material—property of Data General Corporation: 093-701053

Configuration Routines

io_do_first_short_board_access

Syntax

status_type io_do_first_short_board_access (register_ptr,

register_contents_ ptr,

write_to_ register)

bitl6e_ ptr_type register_ptr; / *READ/WRITE*/

bitlée_ptr_type register_contents_ ptr; /*READ/WRITE*/

boolean type write_to_register; /*READ ONLY*/

Summary

This routine tests for the existence of the board at a particular memory-

mapped I/O address. Use this routine for boards with short (16-bit) registers.

Parameters

register_ptr — A pointer to the register on the board to be accessed.

register_contents_ptr — A pointer a one-word read/write buffer. For a write

operation, the contents of this buffer will be written to the register. For a

read operation, the data read from the register will be stored in this buffer.

write_to_register — A boolean indicating whether the operation is read or

write. When it is TRUE, the routine writes to the register. When it is

FALSE, the routine reads from the register.

Description

Do the first access to a board register such that if a board is not present, the

system will not hang or panic. The board should not be accessed again if

IO_ENXIO_DEVICE_DOES_NOT_EXIST is returned. This routine

assumes that the register is a short register.

Return Values

OK — The register was accessed successfully.

IO0_ENXIO_DEVICE_DOES_NOT_EXIST — The board is not accessible.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-17

Configuration Routines

io_do_first_long_board_access

Syntax

status type io do first_long_board_access (register_ptr,

register contents ptr,

write to register)

bit32e_ptr_type register_ptr; /*READ/WRITE*/

bit32e_ptr_type register_contents ptr; /*READ/WRITE*/

boolean type write_to register; /*READ ONLY*/

Summary

This routine tests for the existence of the board at a particular memory-

mapped I/O address. Use this routine for boards with long (32-bit) registers.

Parameters

register_ptr — A pointer to the register on the board to be accessed.

register_contents_ptr — A pointer to the contents of the given register. On

input, if write_to_register is TRUE, this value will be written to the register.

On output, when write_to_register is FALSE, this value will be the value read

from the register.

write_to_register — A boolean indicating, when TRUE, to write to the

register. Otherwise a read will be done.

Description

Do the first access to a long board register such that if a board is not present,

the system will not hang or panic. The board should not be accessed again if

IO_ENXIO_DEVICE_DOES_NOT_EXIST is returned. This routine

assumes that the register is a long register.

Return Values

OK — The register was accessed successfully.

IO_ENXIO_DEVICE_DOES_NOT_EXIST — The board is not accessible.

Exceptions

&18

None.

Licensed material—property of Data General Corporation 093-701053

Configuration Routines

io_get_device_info

Syntax

status_type io_get_device_info (dev_code, dev_class,

interrupt_handler,

dit_entry_ptr)

io _device_code_type dev_code; /*READ ONLY*/

uc_device_class_ enum_type dev_class; /*READ ONLY*/

io_service_interrupt_routine_ptr_type

interrupt_handler;/*READ ONLY*/

word address _ptr_type dit_entry ptr; /*WRITE ONLY*/

Summary

This routine retrieves the device information pointer associated with the

device specified by the device code and device class.

Parameters

dev_code — The device code of the device for which the device information

pointer is to be retrieved.

dev_class — The device class of the device for which class the device

information pointer is to be retrieved.

interrupt_handler — The service interrupt routine pointer stored at the

beginning of the device information structure. This argument is used to

ensure that the device information pointer returned by this routine really does

belong to the requestor.

dit_entry_ptr — A pointer to where the device information pointer is to be

returned.

Description

The device information pointer registered with the specified device is

retrieved. If the specified device code has no device information registered to

it, or if the service interrupt routine pointer in the device information

structure does not match the service interrupt routine pointer supplied as an

argument to this call, then an error status is returned and the returned device

information pointer is undefined.

093-701053 Licensed material—property of Data General Corporation 8-19

Configuration Routines

Return Value

OK — The device information pointer was successfully returned.

I0_ENXIO_DEVICE_CODE_OUT_OF_RANGE — The supplied device code

is not supported on this system.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — No device information

pointer was found for the device code or the device code does not belong to

the requestor.

Exceptions

None.

8-20 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

io_map_device_number

Syntax

status type io_map_device_number (device_number,

handle ptr, unit_ptr)

io device_number_type device_number; /*READ ONLY*/

bit32e_ptr_type handle ptr; /*WRITE ONLY*/

uintl16_ptr_type unit_ptr; /*WRITE ONLY*/

Summary

This routine translates major and minor device numbers to device handle and

unit number.

Parameters

device_number — Contains the major and minor device numbers of the

device.

handle_ptr — Pointer to the location where the device handle is returned.

unit_ptr — Pointer to the location where the unit number is returned.

Description

The system’s io_device_number_map table is indexed by the given major

device number to obtain the location of the minor device number table for

this family of devices. The minor device number table is then indexed by the

given minor number, and the device handle and unit are extracted and

returned.

This routine is typically called by a driver’s dev_xxx_open routine to map the

major and minor device numbers to a specific device.

Return Value

OK — No errors occurred.

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — An active entry in the

minor device number table does not exist at the offset specified by the minor

device number argument.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation &21

Configuration Routines

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_MAJOR_NUMBER_EXCEEDS_MAX — The major device

number argument exceeds the maximum specified by

cf_io_device_driver_count.

8-22 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

io_parse_device_spec

Syntax

boolean type io _parse_device_spec (spec ptr,

dev_adapt_info_ptr,

spec _size_ ptr)

char _ptr_type spec ptr; / *READ-WRITE*/

io _dev_adapt info _ptr_type dev_adapt_info ptr;/*WRITE ONLY*/

int32_ ptr_type spec_size_ptr; /*WRITE ONLY*/

Summary

Parse the device or adapter specification string for the positions of all

specification components.

Parameters

spec_ptr — Pointer to a null terminated device or adapter specification string.

dev_adapt_info_ptr — Pointer to a structure where the pointers to the parsed

string are to be returned.

spec_size_ptr — Pointer to the location where the length of the parsed

device/adapter specification is returned. This location remains unchanged on

error. |

Description |

This routine parses a device or adapter specification string (null terminated) |

into components. The components parsed for are: the device/adapter name, _|

device code, and up to IOL.DEV_ADAPT_MAX_PARAMS parameters. The |
parse leaves the original string intact. If a given component was not present, |

its pointer will point to a null character. Upon successful parsing, the length, |

in bytes, of the parsed specification will be returned in spec_size_ptr.

At a minimum the device/adapter specification must consist of a sequence of

characters followed by an open and a close parenthesis. If a device code is

present it must be prefixed with an

IO_DEV_ADAPT_DEVICE_CODE_DELIMITER (at-sign, @), consist of

two characters, and occupy the space immediately in front of the open

parenthesis. Any number of parameters up to

IO_DEV_ADAPT_MAX_PARAMS may be present, but they must be

separated by commas. For more detailed information about the device and

adapter specification, refer to Chapter 1. If the parsing fails, then all

information within the dev_adapt_info structure must be assumed to be

invalid.

093-701053 Licensed material—property of Data General Corporation 8-23

Configuration Routines

Return Values

TRUE — The specification was successfully parsed.

FALSE — The parsing failed and the state of the spec_ptr string and the

dev_adapt_info_ptr structure elements are unknown.

8-24 Licensed material—property of Data General Corporation 093-701053

Configuration Routines

io_perform_reset

Syntax

void io_perform_reset (reset_variety)

uc_reset_enum type reset _type; /*READ ONLY*/

Summary

This routine performs the specified type of reset.

Parameters

reset_variety — An enumeration specifying which type of reset is to be done.

Description

This routine performs the specified type of reset. It uses the clock and await

mechanisms, so it should not be used in an environment where this is not

possible (for example, during shutdown or after reset).

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO_PANIC_BAD_RESET_TYPE — The parameter passed is not recognizable.

093-701053 Licensed material—property of Data General Corporation 8-25

Configuration Routines

io_register_device_info

Syntax

status type io_register_device_info (dev_code,dev_class,

info_ptrx)

io_device_code_type dev_code; /*READ ONLY*/

uc_device_class_enum_type dev_class; /*READ ONLY*/

word address_type info_ptr; /*READ ONLY*/

Summary

This routine associates a pointer given in info_ptr with the device specified by

the device code and device class. This process establishes an interrupt handler

for the given device code.

Parameters

dev_code — The device code of the device with which a device information

structure is to be associated.

dev_class — The device class of the device with which a device information

structure is to be associated.

info_ptr — A pointer to the device information structure to be associated

with the specified device code. The device information structure must

contain a pointer to an interrupt handler as the first field. This interrupt

handler becomes the handler for interrupts from the specified device code.

Description

This routine creates an entry in the appropriate device class device interrupt

table (DIT) for the device code. If the slot in the DIT is already occupied or

if the device code is larger than the maximum device code supported on this

system, then an error is returned and the association between the device code

and device information structure is NOT established.

Return Value

8-26

OK — The device_info was successfully registered.

10_ENXIO_DEVICE_CODE_OUT_OF_RANGE — The supplied device code

is not supported on this system. The device_info is not registered.

IO_ENXIO_DEVICE_CODE_ALREADY_ASSIGNED — An attempt was

made to configure a device on a device code that is already assigned.

Licensed material—property of Data General Corporation: 093-701053

Configuration Routines

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-27

Driver Daemon and Generic Daemon Routines

Driver Daemon and Generic Daemon

Routines

This section describes the routines you can call to interact with either the Driver

Daemon or the Generic Daemon. Both daemons are processes that are permanently

bound to a kernel virtual processor (VP) and are responsible for helping to service

asynchronous I/O requests for all devices.

The routines described in this section are as follows:

® io_queue_message_to_driver_demon

® io_specify_max_demon_messages

® io_queue_message_to_generic_demon

® io_specify_max_generic_demon_messages

Routines beginning with io require the i_io.h include files.

Constants and Data Structures

No special constants or data structures are required by the routines in this section.

8-28 Licensed material—property of Data General Corporation 093-701053

Driver Daemon and Generic Daemon Routines

io_queue_message_to_driver_demon

Syntax

vp_ec_ptr_type io_queue_message_to_driver_demon

(completion routine ptr, data, do_advance)

io completion_routine_ptr_type completion_routine_ptr;

/*READ ONLY*/

bit32e_ type data; /*READ ONLY*/

boolean type do_advance;/*READ ONLY*/

Summary

This routine queues a message to the Driver Daemon.

Parameters

completion_routine_ptr — A pointer to the value to go in the

completion_routine field of the message. When the Driver Daemon dequeues

this message, it will call the routine pointed to by the completion_routine_ptr

field.

data — The value to go in the data field of the message. The Driver Daemon

will use this value as a parameter when it calls the routine pointed to by

completion_routine_ptr.

do_advance — A boolean indicating whether to advance the Driver Daemon

eventcounter. See Description below.

Description

This routine queues a message to the I/O Driver Daemon. A free message is

allocated from the Driver Daemon free list, filled in with the arguments given,

and queued to the I/O Driver Daemon queue.

If do_advance is TRUE and the queue is empty, the null eventcounter pointer

and the daemon eventcounter will be advanced by one.

If do_advance is FALSE, the daemon eventcounter is not advanced under

any circumstances. Rather, if the message queued is the only message in the

queue, the address of the daemon eventcounter is returned. Otherwise, the

null eventcounter pointer is returned.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 8-29

Driver Daemon and Generic Daemon Routines

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_DEMON_FREE_LIST_EMPTY — A free message could not be

allocated from the Driver Daemon free list when needed. A device driver has

used more messages than the number of messages it requested to be allocated

for the daemon. See io_specify_max_demon_messages.

Remarks

The do_advance boolean is needed to handle timeouts. When a driver’s

timeout routine queues a message to the daemon, the eventcounter must not

be advanced because the await table lock is already held by the await table

routine that found the timeout entry. Instead, the eventcounter address is

passed all the way back to the await table code, which will perform the

advance when the await table is unlocked.

8-30 Licensed material—property of Data General Corporation 093-701053

Driver Daemon and Generic Daemon Routines

io_specify_max_demon_messages

Syntax

void io_specify_max_demon_ messages (count)

uint32 type count; /*READ ONLY*/

Summary

This routine defines the maximum number of messages that the calling driver

can have in the daemon’s queue simultaneously.

Parameters

count — The maximum number of messages. The count parameter must be a

positive integer; it is not possible to reduce the maximum number of

messages.

Description

This routine allocates space for the specified number of messages and adds

them to the daemon’s free queue. It must be called by each device driver

before that driver sends a message to the daemon. A given driver may make

this call more than once if the maximum number of messages grows. The

maximum number of messages may not be reduced.

In general, the maximum number of messages a driver will need depends on

the number of devices it must service and on the way the driver handles and

clears interrupts from those devices.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation §31

Driver Daemon and Generic Daemon Routines

io_queue_message_to_generic_demon

Syntax

Vp_ec_ptr_type io _queue _message_to_generic_ demon

(complet:ion_routine_ ptr,

data, do_advance)

io_completion_routine_ptr_type

completion_routine_ptr;/*READ ONLY*/

bit32e type data; /*READ ONLY*/

boolean type do_advance; /*READ ONLY*/

Summary

This routine queues a message to the Generic Daemon.

Parameters

completion_routine_ptr — The value to go in the completion_routine field of

the message.

data — The value to go in the data field of the message.

do_advance — A boolean indicating whether to advance the generic daemon

eventcounter. See "Description" below.

Description

This routine queues a message to the Generic Daemon. A. free message is

allocated from the Generic Daemon free list, is filled in with the arguments

given, and queued to the Generic Daemon queue.

If the do_advance boolean is TRUE, the return value will be the null

eventcounter pointer and the Generic Daemon eventcounter will be advanced

if the message queue is the only message in the queue.

If the do_advance boolean is FALSE, the Generic Daemon eventcounter is

not advanced under any circumstances. Rather, if the message queued is the

only message in the queue, the address of the demon eventcounter is

returned. Otherwise, the null eventcounter pointer is returned.

Return Values

None.

8-32 Licensed material—property of Data General Corporation 093-701053

Driver Daemon and Generic Daemon Routines

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO0_PANIC_GENERIC_DEMON_FREE_LIST_EMPTY — A free message

could not be allocated from the Generic Daemon free list when needed. The

device driver has used more messages than the number of messages it

requested to be allocated for the daemon.

093-701053 Licensed material—property of Data General Corporation 8-33

Driver Daemon and Generic Daemon Routines

io_specify_max_generic_demon_messages

Syntax

void 1o_specify max generic_demon_ messages (count)

uint32_ type count; /*READ ONLY*/

Summary |

This routine informs the Generic Daemon of the maximum number of

messages that the calling driver will have in the daemon’s queue.

Parameters

count — The maximum number of messages. This value must be a positive

integer. Once count has been set you can add to but not reduce the

maximum number of messages.

Description

This routine allocates space for the specified number of messages and adds

them to the Generic Daemon’s free queue. It must be called by each device

driver before that driver sends a message to the Generic Daemon. A given

driver may make this call more than once if the maximum number of

messages grows. However, the maximum number of messages may not be

reduced.

In general, the maximum number of messages a driver will need depends on

the number of devices it must service and on the way the driver handles and

clears interrupts from those devices.

Return Values

None.

Exceptions

None.

8-34 Licensed material—property of Data General Corporation 093-701053

Error Encoding and Logging Routines

Error Encoding and Logging Routines

This section describes a macro you can use to create system-compatible error |

numbers for your device’s errors and a routine you can use to log errors to the system |

error facility. |

You use the io_err_log_error routine to queue your driver’s error messages on the |

psuedodevice err(7) until they can be retrieved by the system error daemon and

written to system error log. You pass your message to io_err_log_error in the form |

of a printf string with a format parameter and accompanying variables.

The error encoding macro helps you integrate system compatible errnos into your

status codes. Compatible errnos can be passed all the way back to the user level. In

normal processing, once a status is sent to the user-level, the errno is extracted from

the status and returned to the user.

To create a status containing an errno, use the following convention:

SS_EEEE_DDDDDD

Here, SS is a two- to four-letter subsystem name; your device driver will use "DEV."

EEEE is the full name of the errno to be returned to the user; use standard errnos

found in errno.h. DDDDDD is a description of the state that caused the status to be

returned. An example of a status code is as follows:

IO_EIO_DEVICE_TIMED_OUT

If you do not want to use the status to return an errno to the user, pass

SC_NO_ERRNO to this macro. Higher levels of code will deal with the status before

it gets back to the user.

Whenever possible, use I/O statuses already defined in dev_status_codes.h. For

statuses that you will handle within your driver, use DEV as the subsystem,

SC_NO_ERRNO as the errno, and a higher sequence number than the last used in

dev_status_codes.h. The DEV_ENCODE macro in dev_status_codes.h will set up

the status for you correctly. dev_status_codes.h is in aviion/dev.

Note that the convention through the rest of the kernel is to use STATUS instead of

the EEEE errno when no errno is used. For example,

IO_STATUS_REQUEST_STILL_IN_PROGRESS will not return a status to the

user. An example of how to create a new status for your device is as follows:

#define DEV_STATUS_FOO_DEVICE_IN_BAR_STATE DEV_ENCODE(SC_NO_ERRNO, 0107)

The routines described in this section are as follows: |

@ SC_ENCODE_STATUS |

093-701053 Licensed material—property of Data General Corporation 8-35

Error Encoding and Logging Routines

@ io_err_log_error

Routines beginning with se require the i_sc.h include file and those beginning with io

require i_io.h.

8-36 Licensed material—property of Data General Corporation 093-701053

Error Encoding and Logging Routines

Constants and Data Structures

This section defines the "no error” constant.

NOTE: Because constants and data structures are subject to change, you must verify

exact variable definitions in the appropriate include file (for example, check

i_sc.h for structures beginning with the se acronym). Chapter 3 lists the

various include files.

SC_NO_ERRNO

#define SC_NO_ERRNO 0

Use this value to indicate that the status does not contain an errno value.

093-701053 Licensed material—property of Data General Corporation 8-37

Error Encoding and Logging Routines

SC_ENCODE_STATUS

Syntax

#define SC_ENCODE_STATUS (subsystem_id, errno, sequence)

(status_type)((subsystem_id << 18) + (errno << 9) + sequence))

Summary

This macro constructs a status value from the subsystem ID for a subsystem,

the errno to be inserted into the status, and a sequence number to distinguish

multiple statuses with the same subsystem ID. |

Parameters | | | |

subsystem_id — The subsystem ID for the subsystem. |

errno — The errno that is to be inserted into the status. The value of errno |

must be less than or equal to 511. |

sequence — A sequence number to distinguish multiple statuses with the |

same subsystem ID. The sequence number must have a value between 1 and |

511. |

Description |

The status is constructed so the sequence number occupies bits 0-8, the errno

occupies bits 9-17, and the subsystem ID occupies bits 18-26. Bits 27-31 are

unused and set to 0. The errno parameter specifies the errno value that will

be returned to the user. To get the subsystem ID and sequence numbers, the

user should call the dg_ext_errno system call.

Return Value

status — The newly encoded status.

$38 Licensed material—property of Data General Corporation 093-701053

Error Encoding and Logging Routines

io_err_log_error

Syntax

boolean _type io_err_log_error (priority, format,

value_00,value_01,value_02,

value_03,value_04,value_05,

value_06,value_07,value_08,

value_09,value_10,value_11,

value_12,value_13,value_14,

value_15,value_16,value_17)

uint32e type priority; /* READ ONLY */

char ptr_type format; /* READ ONLY */

bit32e type value_00; /* READ ONLY */

bit32e type value_01; /* READ ONLY */

bit32e type value_02; /* READ ONLY */

bit32e type value_03; /* READ ONLY */

bit32e_ type value 04; /* READ ONLY */

bit32e type value_05; /* READ ONLY */

bit32e type value_06; /* READ ONLY */

bit32e_type value_07; /* READ ONLY */

bit32e_ type value_08; /* READ ONLY */

bit32e type value_09; /* READ ONLY */

bit32e_ type value_10; /* READ ONLY #*/

bit32e type value_1i; /* READ ONLY */

bit32e type value_12; /* READ ONLY */

bit32e type value_13; /* READ ONLY */

bit32e type value_14; /* READ ONLY */

bit32e type value_15; /* READ ONLY */

bit32e_type value_16; /* READ ONLY */

bit32e_ type value_17; /* READ ONLY */

Summary

If an error queue element is available on the free queue, the indicated

message is formatted and copied into it, and the element is placed on the

ready queue.

Parameters

priority — The priority of this error message. See syslog.h for priority

definitions.

format — A printf format string that specifies the format to be used for the

message.

093-701053 Licensed material—property of Data General Corporation 8-39

wee ee ee eet, Gs sees

ee EE TE ED EE CED SEED GUNES CEES GESeEmEe ComTUNe GemEEET CEE GD SED GE SRE eS ooo

Error Encoding and Logging Routines

value_00-17 — The parameters to be substituted into the printf string format.

Description

If the error daemon syslogd has not opened the err pseudodevice, the

message is formatted and printed on the console. If an empty record is

available, the priority number and the message are formatted into it. Long

messages are truncated. The formatted record is placed on the ready queue,

and the event counter is advanced. If there are no available records, the

message is ignored.

Return Values

TRUE — If an error queue element was available.

FALSE — If no error queue element was available.

8-40 Licensed material—property of Data General Corporation 093-701053

Select Manager Routines

Select Manager Routines

The "select" operations allow multiple users to wait for I/O from a device without

directly suspending. The kernel’s select routines (select manager) help your driver

manage select operations by maintaining lists of outstanding select operations for each

device.

The select manager has the following routines and features:

For each device, the select manager keeps a list of the processes interested

in I/O events on that device. During initialization you allocate a data

structure of type io_select_list_type for each physical device. This structure

will hold the list of processes (select list) interested in I/O events on that

device.

Initialize each select list by calling io_select_init before the list is used in any

other select manager call.

When a user makes a select request, control will be passed to the driver’s

dev_xxx_select. If the select operation cannot be completed immediately,

then the driver should place the request on the select list for the device by

calling io_select_register. This routine will put an entry in the select list for

the device with the intent (type of I/O) of the select and a pointer to the

process’s select eventcounter.

When an I/O event occurs on the device (for example, the driver receives

data, learns the device is ready for writing, or discovers an exceptional

condition on a device), the driver should call io_select_satisfy with the

pertinent information. This will advance the eventcounters of the processes

that are interested in that particular sort of event. Note that

io_select_satisfy leaves the process’s entry on the select list.

After io_select_satisfy finishes, control will return to the driver’s

dev_xxx_select as a result of the event. If appropriate, dev_xxx_select can

then remove the calling process from the select list by calling

io_select_cancel.

CAUTION:

093-701053

It is essential that you note the following items:

It is important that only one thread of control access a given select list at

atime. The kernel select manager routines do not lock the select list

structures; therefore, the device driver should lock this structure so that

multiple threads cannot access the select lists.

Io_select_satisfy will frequently be called from an interrupt service

routine. If you call it from a service routine, be sure to mask out the

device’s interrupts before you call other routines with its select list. If

Licensed material—property of Data General Corporation 8-41

Select Manager Routines

you don’t, the interrupt level may encounter a halfway processed list.

The following routines are described in this section:

® io_select_cancel

® io_select_init

@ io_select_register

® io_select_satisfy

Routines beginning with io require the i_io.h include file.

Constants and Data Structures

See Chapter 4 for a definition of io_select_intent_type.

8-42 Licensed material—property of Data General Corporation 093-701053

Select Manager Routines

io_select_cancel

Syntax

io select_intent_type io_select_cancel (select_list_ptr,

ec _ ptr)

io select_list_ptr_type select_list_ptr; /*WRITE ONLY*/

vp_ec_ptr_type ec ptr; /*READ ONLY*/

Summary

This routine removes the process identified by ec_ptr from the select list.

Parameters

select_list_ptr — A pointer to a select list.

ec_ptr — A pointer to a process’s select eventcounter.

Return Values

The type of select intent satisfied (or none).

093-701053 Licensed material—property of Data General Corporation 8-43

Select Manager Routines

io_select_init

Syntax

void io select_init (select_list_ptr)

io _select_list_ptr_type select_list_ptr;

Summary

This routine initializes the given select list.

Parameters

select_list_ptr — A pointer to a select list.

Return Values

None.

/*WRITE ONLY*/

8-44 Licensed material—property of Data General Corporation 093-701053

Select Manager Routines

io_select_register

Syntax

void io_select_register (select_list_ptr, intent, ec_ptr)

io_ select list_ptr_type select_list_ptr; /*READ/WRITE/*

1o_select_intent_type intent; /*READ ONLY*/

vp_ec_ ptr_type ec ptr; /*READ ONLY*/

Summary

This routine registers a select with the given intent and eventcounter on the

given select list.

Parameters

select_list_ptr — A pointer to a select list.

intent — The intent of the select.

ec_ptr — A pointer to the select eventcounter of the selecting process.

Description

See the “Constants and Data Structures” section for a list of defines for

intent.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 8-45

Select Manager Routines

io_select_satisfy

Syntax

void io _select_satisfy (select_list_ptr, intent)

io _select_list_ptr_type select_list_ptr; /*WRITE ONLY*/

io select_intent_type intent; /*®READ ONLY*/

Summary

This routine searches the given select list for processes interested in the given

L/O event. The select eventcounters for those processes are advanced.

Parameters

select_list_ptr — A pointer to a select list.

intent — The type of select to satisfy.

Return Values

None.

8-46 Licensed material—property of Data General Corporation 093-701053

Miscellaneous Driver Routines

Miscellaneous Driver Routines

The following routines described in this section are:

@ fs_check_self_id

@ io_hex_str_to_int

@ misc_format_line

® pm_is_super_user

@ sc_panic

Routines beginning with fs, misc, pm, sc, and io require the i_fs.h, i_misc.h, i.pm.h,

i_sc.h, and i_io.h include files, respectively.

Constants and Data Structures

There are no special constants or data structures required for these routines.

093-701053 Licensed material—property of Data General Corporation 8-47

Miscellaneous Driver Routines

fs_check_self_id

Syntax

boolean type fs_ check_self_id (blocks_ptr, self_id_ptr,

count_ptr)

pointer to any type blocks_ptr; /*READ ONLY*/

df self id ptr_type self_id_ptr; /*READ ONLY*/

uint32_ptr_type count _ptr; /*READ/WRITE*/

Summary

This routine checks the self-ID for the given set of blocks.

Parameters

blocks_ptr — Pointer to the beginning of the first block to be checked.

self_id_ptr — Pointer to the self-ID that the first block is expected to have.

count_ptr — On input, the number of bytes to be checked. On output, the

number of bytes that checked out OK. On both input and output, count_pfr

must be a multiple of the block size, though this is not checked.

Description

A self-ID is an identifying number used to identify different non-data disk

blocks used in disk administration (for example, header blocks). For each

block, this routine checks its self-ID against the prototype self-ID. If any

block fails, FALSE is returned along with the number of bytes that passed the

check. If all blocks pass, then TRUE is returned along with the number of

bytes that were checked.

Return Value

TRUE — All blocks were successfully checked.

FALSE — At least one block failed a self-ID check.

Licensed material—property of Data General Corporation 093-701053

Miscellaneous Driver Routines

io_hex_str_to_int

Syntax

boolean _type io_ hex str_to_int (str_ptr, int_value_ptr)

char _ptr_type str_ptr; /*READ ONLY*/

uint32_ptr_type int_value_ptr; /*WRITE ONLY*/

Summary

Return the integer value of the null terminated hexadecimal string at str_ptr.

Parameters

str_ptr — A pointer to the beginning of the string to convert.

int_value_ptr — Pointer to location where the integer value is to be returned.

Description

Scan a string str_ptr consisting only of the characters ’0’ - °9’, ’a’ -’P, and ’A’

- °F’, and terminated with a null character, returning its unsigned 32-bit value

at int_value_ptr. If any other characters are encountered or the value exceeds

what can be expressed in a 32-bit unsigned value then int_value_ptr 1s

unchanged and an error is returned.

Return Values

FALSE — Successful conversion occurred.

TRUE — The string conversion failed.

093-701053 Licensed material—property of Data General Corporation 8-49

Miscellaneous Driver Routines

misc_format_line

Syntax

uint32_ type misc_format_line

(result_buf, rb_size, format,

char ptr_type

uint32_type

char ptr_type

bit32e_ type

bit32e type

bit32e_type

bit32e_type

bit32e_type

bit32e_ type

bit32e_type

bit32e_ type

bit32e_type

bit32e_ type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e_type

bit32e type

bit32e_type

bit32e_type

bit32e_type

Summary

8-50

result_buf;

rb_size;

format;

value_00;

value_01;

value_02;

value_03;

value_04;

value_05;

value_06;

value_07;

value_08;

value_09;

value_10;

value_11;

value_12;

value_13;

value_14;

value_15;

value_16;

value_17;

value_18;

value_19;

value_00,

value_03,

value_06,

value_09,

value_12,

value_15,

value_18,

value_01,

value_04,

value_07,

value_10,

value_13,

value_16,

value_19)

/*WRITE ONLY*/

/ *READ

/ *READ

/*READ

/*READ

/ *READ

/ *READ

/ *READ

/*READ

/ *READ

/ *READ

/*READ

/*READ

/ *READ

/*READ

/ *READ

/ *READ

/ *READ

/*READ

/ *READ

/ *READ

/ *READ

/ *READ

ONLY*/

ONLY*/

ONLY* /

ONLY*/

ONLY*/

ONLY * /

ONLY* /

ONLY* /

ONLY* /

ONLY */

ONLY* /

ONLY*/

ONLY * /

ONLY* /

ONLY* /

ONLY* /

ONLY*/

ONLY* /

ONLY* /

ONLY* /

ONLY * /

ONLY* /

value_02

value_05

value_08

value_il

value_14

value_17

This routine provides limited sprintf(3) functionality; it formats output and

performs value substitutions. It formats a line, creating a string by

substituting values according to field descriptors. The field descriptors in the

input format are a subset of the field descriptors that the standard library

routine printf provides. Currently provided are %c, %s, %d, %o, %x, Yu and

the ability to specify field length and zero padding.

Licensed material—property of Data General Corporation. 093-701053

Miscellaneous Driver Routines

Parameters

result_buf — Resulting formatted output placed here.

rb_size — Size of the buffer.

format — The format string. This format string is the same as those used in

printf.

value_00...value_19 — Place holder for 0 to 19 format substitution values.

Use value_00 for the first value, value_01 for the second value, etc.

Return Values

None.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-51

Miscellaneous Driver Routines

pm_is_super_user

Syntax

boolean type pm_is_super_user ()

Summary

This routine determines whether the calling process has superuser permission.

If so, it notifies the kernel that the process has used superuser permission so

it can be recorded for accounting information.

Parameters

None.

Return Value

TRUE — Caller is superuser.

FALSE — Caller is not superuser.

Exceptions

None.

Abort Conditions

None.

8-52 Licensed material—property of Data General Corporation 093-701053

Miscellaneous Driver Routines

sc_panic

Syntax

void sc_panic (panic code)

sc_panic_code_type panic_code; /*READ ONLY*/

Summary

This routine is the panic routine that you call when serious errors or

inconsistencies are detected. A panic message is written to the system

console, and the emergency shutdown sequence is entered.

Parameters

panic_code — A value identifying the cause of the panic. This value will be

written to the system console along with the panic message. Non-standard

devices should use a panic code between 0 and 511 decimal to avoid collision

with existing system panic codes.

Description

The panic lock is obtained to ensure that only one processor enters the panic

and emergency shutdown code. If any other processors are running, they are

stopped. The routine sc_write_line is called to write the panic message to the

system console and the emergency shutdown routine is entered.

Return Values

None.

Exceptions

None.

Abort Conditions

None.

093-701053 Licensed material—property of Data General Corporation 8-53

Nodevice Routine Stubs

Nodevice Routine Stubs

You can call the routines listed below anytime your driver does not process the I/O

operation indicated in the routine’s name. For example, if your device cannot be

used as a dump device, you can use the io_nodevice_open_dump routine instead of

supplying your own open dump stub. The routines in this section generally return at

least an error and, in some cases, a panic. Before you use one of these routines,

make sure its error return is acceptable and appropriate for your device.

The routines supplied support both block and character operations so they can serve

as stubs for both types of requests. The following routines are described in this

section:

8-54

io_nodevice_open

io_nodevice_close

io_nodevice_read_write

io_nodevice_select

io_nodevice_ioctl

io_nodevice_start_io

io_nodevice_configure

io_nodevice_deconfigure

io_nodevice_name_to_device

io_nodevice_device_to_name

io_nodevice_open_dump

io_nodevice_write_dump

io_nodevice_read_dump

io_nodevice_close_dump

io_nodevice_powerfail

io_nodevice_mmap

io_nodevice_munmap

io_nodevice_maddmap

Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

® io_nodevice_service_interrupt

093-701053 Licensed material—property of Data General Corporation &55

Nodevice Routine Stubs

io_nodevice_open

Syntax

status_type io_nodevice_open (device_number, channel flags,

device_handle ptr)

io _device_number_ type device_number; /*READ ONLY*/

io_ channel flags_type channel flags; /*READ ONLY*/

io device_handle ptr_type device_handle ptr; /*WRITE ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to

open a non-existent device.

Parameters

device_number — The major and minor device number from the special file

that is being opened.

channel_flags — A set of flags specifying whether the I/O to the device will

be reads, writes, or both.

device_handle_ptr — A pointer to the location where the device handle is to

be returned. Because io_nodevice_open always fails, no device handle is ever

returned.

Description

This routine returns a status indicating that the device does not exist.

Retarn Value

IO_ENXIO_DEVICE_DOES_NOT_EXIST — This value is always returned.

Exceptions

8-56

None.

Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_close

Syntax

status type io_nodevice_close (device_handle, channel flags)

io device_handle type device_handle; /*READ ONLY*/

io channel flags_type channel_flags; /*READ ONLY*/

Summary

This.routine is a stub for handling erroneous I/O operations. Either the

driver does not support this operation or the device does not exist. Calling

this routine will cause a system fatal error.

Parameters

device_ handle — The device handle for the device that is being closed.

channel_flags — The flags with which the device was opened.

Description

Panic is invoked.

Return Values

None.

Exceptions

None.

Abort Conditions

This routine always panics with the following panic code:

IO0_PANIC_NODEVICE_CLOSE — An attempt was made to close a major

device number for which no driver exists.

093-701053 Licensed material—property of Data General Corporation 8-57

Nodevice Routine Stubs

io_nodevice_read_write

Syntax

status_type io nodevice_read_ write (request_info_ptr)

io _request_info_ptr_type request_info ptr; /*READ ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Ejther the

driver does not support this operation or the device does not exist. Calling

this routine will cause a system fatal error.

Parameters

request_info_ptr — A pointer to a packet containing the information

necessary to specify a read or write request.

Description

Panic is invoked.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic is always called with the following panic code:

IO_PANIC_NODEVICE_READ_WRITE — An attempt was made to do a

read or write operation on a major device number for which no driver exists.

8-58 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_select

Syntax

void io_nodevice_select (device_handle, select,

ec ptr, intent_ptr)

io device_handle type device_handle; /*READ ONLY*/

boolean _ type select; /*READ ONLY*/

vp_ec_ptr_ type ec ptr; /*READ ONLY*/

io select_intent_ptr_type intent_ptr; /*READ WRITE*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the

_ driver does not support this operation or the device does not exist. Calling

this routine will cause a system fatal error.

Parameters

device_handle — The device handle of the device that is the target of select.

This handle must be a device handle that was returned by the open routine of

this driver.

select — If TRUE, this is the start of a select operation; conditions that are

not immediately TRUE should be recorded so that the eventcounter can be

advanced when they become TRUE. If FALSE, this is the end of a select

operation; any previously remembered conditions should be forgotten.

ec_ptr — Specifies the eventcounter to be advanced by the driver when the

select is satisfied if it is not immediately satisfied.

intent_ptr — On input, intent_ptr specifies whether a select is to be instituted

for a combination of read, write, or exceptional conditions.

Description

Panic is invoked.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation 8-59

Nodevice Routine Stubs

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_SELECT — An attempt was made to do a select

operation on a device for which no driver exists.

8-60 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_ioctl

Syntax

status type io_nodevice_ioctl (device_handle, command,

parameter, return_value_ptr)

io _device_handle_type device handle; /*READ ONLY*/

bit32e_ type command; /*READ ONLY*/

bit32e type parameter; /*READ/WRITE*®/

int32e_ ptr_type parameter; /*WRITE ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the

driver does not support this operation or the device does not exist. Calling

this routine will cause a system fatal error.

Parameters

device_handle — The device handle of the device that is the target of the I/O

control operation.

command — A command to the device. The interpretation of the command

is specific to the driver.

parameter — An argument to the command. The interpretation of the

parameter is specific to the driver and the command. The parameter may be

used to transfer information in either direction between the caller and the

device. In particular, it may be a pointer to a buffer supplied by the caller.

return_value_ptr — A pointer to the value to be returned to the user.

Description

This routine causes a system panic.

Return Values

None.

093-701053 Licensed material—property of Data General Corporation $61

Nodevice Routine Stubs

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_IOCTL — An attempt was made to do an ioctl

operation on a device for which no driver exists.

8-62 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_start_io

Syntax

status type io_nodevice_start_io (op_record_ptr)

io_operation_record_ptr_type op_record_ptr; /*READ ONLY*/

Summary

This routine is a stub for handling erroneous I/O operations. Either the

driver does not support this operation or the device does not exist. Calling

this routine will cause a system fatal error.

Parameters

op_record_ptr — A pointer to the operation record for the asynchronous

request. The operation record contains fields indicating the minor device that

is the target of the operation, the operation to be performed, the offset on the

device from which the operation is to commence, the size of the transfer, the

address of the main memory buffer, and the address of the routine that is to

be called when the operation completes. |

Description

This routine causes a system panic.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic is always invoked with the following panic code:

IO_PANIC_NODEVICE_START_IO — An attempt was made to do an

start_io operation on a device for which no driver exists.

093-701053 Licensed material—property of Data General Corporation 8-63

Nodevice Routine Stubs

io_nodevice_configure

Syntax

status_type io_nodevice_configure (device_name ptr,

major_number)

char _ptr_type device _ name ptr;/*READ ONLY*/

io _major_device_number type major_number; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to

configure a non-existent device.

Parameters

device_name_ptr — A pointer to the character string name of the device to

be configured.

major_number — The major device number on which the device is to be

configured.

Description

This routine always returns an error.

Return Value

IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

Abort Conditions

None.

8-64 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_deconfigure

Syntax

status_type io _nodevice_deconfigure (device_name_ptr)

char ptr_type device_name ptr; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an atternpt is made to

deconfigure a non-existent device.

Parameters

device_name_ptr — A pointer to the null-terminated string specifying the

device to be deconfigured.

Description

This routine always returns an error.

Return Value

IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-65

Nodevice Routine Stubs

io_nodevice_name_to_device

Syntax

status_type io_nodevice_name_to_device (device_name_ ptr,

number ptr)

char ptr_type device_name ptr;/*READ ONLY*/

io _device_number ptr_type number ptr; /*WRITE ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to do

name-to-device conversion on a non-existent device.

Parameters

device_name_ptr — A pointer to the null-terminated device name that is to

be translated.

number_ptr — A pointer to where the corresponding device number is to be

written.

Description

This routine always returns an error.

Return Value

IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED — This status is always

returned.

Exceptions

None.

8-66 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_device_to_name

Syntax

status_type io_nodevice_device_to_name

io _device_number type device_number;

char ptr_ type name ptr;

uint32_ type size;

Summary

(device_number,

name ptr, size)

/*READ ONLY*/

/*WRITE ONLY*/

/*READ ONLY*/

This routine is a stub routine that returns an error if an attempt is made to do

device-to-name conversion on a non-existent device.

Parameters

device_number — The device number to be translated into a device name

character string.

name_ptr — A pointer to where the null-terminated character string name is

to be written.

size — The maximum number of bytes, including the terminating null, that 1s

to be written to name_ptr.

Description

This routine always returns an error.

Return Value

IO_ENXIO_DEVICE_IS_NOT_CONFIGURED — This status is always

returned.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-67

Nodevice Routine Stubs

io_nodevice_open_dump

Syntax

status_type io nodevice_open_dump (device _name)

char ptr_type device_name; /*READ ONLY*/

Summary

This routine is a stub routine that returns an error if an attempt is made to

dump to a non-existent device or to a device that does not support dumps.

Parameters

device_name — The character string name of the device to which the dump is

being written.

Description

This routine always returns an error.

Retarn Value

IO_STATUS_DUMP_NOT_SUPPORTED — This status indicates that the

device does not support dumps. This status is always returned.

Exceptions

None.

Abort Conditions

None. This routine must not panic because it is invoked as part of the panic

sequence.

8-68 Licensed material—property of Data General Corporation: 093-701053

Nodevice Routine Stubs

io_nodevice_write_dump

Syntax

status_type io_nodevice_write_dump (buffer_ptr, buffer_size)

pointer to any type buffer_ptr; /*READ ONLY*/

uint32_ type buffer size; /*READ ONLY*/

Summary

This routine is a stub for handling devices that do not exist. It is a system

fatal error to call this routine.

Parameters

buffer_ptr — A pointer to the buffer of data to be written to the system

dump.

buffer_size — The size, in bytes, of the buffer.

Description

This routine should never be called because io_nodevice_open_dump always

fails.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_WRITE_DUMP — An attempt was made to write

dump information to a non-existent device.

093-701053 Licensed material—property of Data General Corporation 8-69

Nodevice Routine Stubs

io_nodevice_read_dump

Syntax

status_type io_nodevice_read_ dump (buffer _ptr, buffer size)

pointer _to_any type buffer ptr; /* WRITE ONLY */

uint32_ type buffer size; /* READ ONLY */

Summary

This function is a stub for handling devices that do not exist. It is a system

fatal error to call this function.

Parameters

buffer_ptr — A pointer to the buffer to which data is to be read.

buffer_size — The size, in bytes, of the buffer.

Description

This function should never be called because io_nodevice_open_dump always

fails.

Return Value

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error codes:

IO_PANIC_NODEVICE_READ_DUMP — An attempt was made to read

dump information from a non-existent device.

&-70 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_close_dump

Syntax

status type io _nodevice_close_dump ()

Summary

This routine is a stub for handling devices that do not exist. It is a system

fatal error to call this routine.

Parameters

None.

Description

This routine should never be called because io_nodevice_open_dump always

fails.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO0_PANIC_NODEVICE_CLOSE_DUMP — An attempt was made to close a

non-existent dump device.

093-701053 Licensed material—property of Data General Corporation 8-71

Nodevice Routine Stubs

io_nodevice_powerfail

Syntax

status_type io _nodevice_powerfail ()

Summary

This routine is a stub routine that simply returns OK, because there is nothing

to do in order to perform powerfail restart on nodevice.

Parameters

None.

Description

The status OK is returned.

Return Value

OK — This value is always returned.

Exceptions

None.

Abort Conditions

None.

8-72 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

i0_nodevice_mmap

Syntax

status_type io_nodevice_mmap ()

Summary

This routine is a stub for handling the mmap system call. The errno

EINVAL is returned.

Parameter

None.

Description

This routine always returns an error.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The mmap operation is not

supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-73

Nodevice Routine Stubs

io_nodevice_munmap

Syntax

status type io _nodevice_munmap - ()

Summary

This routine is a stub for handling the munmap system call. The errno

EINVAL is returned.

Parameters

None.

Description

This routine always returns an error.

Return Value

IO_EINVAL._.MUNMAP_NOT_SUPPORTED — The munmap operation is

not supported for this device.

Exceptions

None.

8-74 Licensed material—property of Data General Corporation 093-701053

Nodevice Routine Stubs

io_nodevice_maddmap

Syntax

status_type io nodevice_maddmap ()

Summary

This function is a stub for incrementing reference counts to memory mapped

sections. The errno EINVAL is returned.

Parameters

None.

Description

EINVAL is returned.

Return Value

IO_EINVAL_MMAP_NOT_SUPPORTED — The maddmap operation is not

supported for this device.

Exceptions

None.

093-701053 Licensed material—property of Data General Corporation 8-75

Nodevice Routine Stubs

io_nodevice_service_interrupt

Syntax

void io_nodevice_service_interrupt (device_code, device_class)

io device_code_type device_code; /*READ ONLY*/

uc_device_class_enum_type device_class; /*READ ONLY*/

Summary

This routine handles unexpected interrupts from devices that are not

configured into the kernel.

Parameters

device_code — The device code of the interrupting device.

device_class — The device class of the interrupting device.

Description

This routine runs at interrupt level. It handles interrupts from devices that

are not configured and, therefore, which should not be generating interrupts.

This routine does not obey the standard interface for service interrupt

routines. Because it must service interrupts from all devices, it uses a device

code as the argument instead of a device information structure pointer.

Return Values

None.

Exceptions

None.

Abort Conditions

Panic may be invoked with the following error code:

IO_PANIC_NODEVICE_INTERRUPT_OVERRUN — Too many unexpected

interrupts were received in too short a time. This panic probably indicates

the existence of a hardware problem that is generating spurious interrupts.

End of Chapter

8-76 Licensed material—property of Data General Corporation. 093-701053

Appendix A

A Sample SCSI Device Driver

This appendix gives sample code for a disk driver. We include the type definitions,

global data definitions, driver supplied I/O routines, an example system file and an

example master file. For this example, xxx is replaced by sd.

NOTE: The code provided here is only a sample. It is not guaranteed to be either

complete or operational.

Data Definitions: dev_sd_def.h

[xe *

[* dev_sd_def.h «/

[*> */

/*.Contents[=

/* DEV_SD_STANDARD_SECTOR_SIZE ~-- subsystem

/* DEV_SD_DEFAULT_SCSI_ID -- subsystem

/* DEV_SD_DEVICE_TYPES_SUPPORTED —- subsystem

/* DEV_SD_DEFAULT_UNIT_NUMBER -- subsystem

/* DEV_SD_MAX BUFFERED _CONCURRENT_UNIT_REQUESTS -- subsystem

/* DEV_SD_MAX_CONCURRENT_UNIT_REQUESTS -- subsystem
/* DEV_SD MAX INQUIRY_RETRIES -~- subsystem

/* DEV_SD_NULL_UNIT_INFO PTR —- subsystem

/* DEV_SD_NULL_BUFFER_PTR -- subsystem

/* DEV_SD_NULL_ADAPTER_HANDLE -~ subsystem

/* DEV_SD_FLOPPY_INQUIRY_CONFIG_INFO_OFFSET -— subsystem
/* DEV_SD_FLOPPY_INQUIRY_CONFIG_5_25 — subsystem

/* DEV_SD_FLOPPY_INQUIRY_ CONFIG MIXED —- subsystem

/* DEV_SD_ FLOPPY INQUIRY CONFIG _INFO_SIZE —~ subsystem
/* DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR”) subsystem
/* DEV_SD FLOPPY MEDIUM_TYPE_5 25INCH 96TPI_13262BPR_MIXED”)subsystem

/* DEV_SD_ FLOPPY _5 25INCH_1200KB_TRANSFER_RATE -- subsystem
/* DEV_SD_FLOPPY_5 25INCH_1200KB_SECTORS_PER_TRACK -- subsystem
/* DEV_SD_FLOPPY_5 25INCH_1200KB_NUMBER_OF_CYLINDERS -- subsystem

/* DEV_SD_FLOPPY_S_25INCH_1200KB_STEP_PULSES_PER_CYLINDERTM)subsystem
/* DEV_SD_FLOPPY_DEFPLAULT_WRITE_PRECOMPENSATION_VALUE)subsystem
/* DEV_SD_FLOPPY_MEDIUM_TYPE_96_135TPI_7958BPR —- subsystem

/* DEV_SD_FLOPPY_720KB_TRANSFER_RATE —- subsystem

/* DEV_SD_FLOPPY_720KB_SECTORS_PER_TRACK -- subsystem

/* DEV_SD_FLOPPY_720KB_NUMBER_OF_CYLINDERS —- subsystem

/* DEV_SD_FLOPPY_720KB_STEP_PULSES_PER_CYLINDER —- subsystem

/* DEV_SD_FLOPPY_5_25INCH_360KB_TRANSFER_RATE -—- subsystem

/* DEV_SD_FLOPPY_ 5 25INCH_360KB_SECTORS_PER_TRACK -- subsystem
/* DEV_SD_FLOPPY 5 251NCH_360KB_NUMBER_OF_CYLINDERS -- subsystem

/* DEV_SD_FLOPPY_5 25INCH_360KB_STEP_PULSES_PER_CYLINDER")subsystem
/* DEV_SD_FLOPPY_MEDIUM_TYPE_3_SOINCH_135TPI_15916BPR")subsystem
/* DEV_SD_FLOPPY_3 SOINCH_1440KB_TRANSFER_RATE -- subsystem
/* DEV_SD_FLOPPY_3_ 50INCH_1440KB_SECTORS_PER_TRACK -- subsystem

/* DEV_SD_ FLOPPY 3 50INCH_1440KB_NUMBER_OF_CYLINDERS")subsystem
/* DEV_SD_FLOPPY_3_SOINCH_1440KB_STEP_PULSES_PER_CYLINDER"TM) subsystem
/* DEV_SD_FLOPPY_MODE_SELECT_TEST_ SECTOR -- subsystem

093-701053 Licensed material—property of Data General Corporation A-1

A Sample SCSI Device Driver

/* dev_sd_unit_info_type -- subsystem

/® dev_sd_unit_info_ptr_type -- subsystem

/* daev_sd_worm_optimem_mode_buffer_type -—- subsystem

/* dev_sd_worm_optimem_mode_buffer_ptr_type -- subsystem

/* DEV_SD_DISK_TYPE_RIGID -- subsystem

/* DEV_SD_DISK_TYPE_FLOPPY -- subsystem

/* DEV_SD_DISK_TYPE_ERASABLE_OPTICAL -- subsystem

/* DEV_SD_DISK_TYPE_WORM ~~ subsystem

/* DEV_SD_DISK_TYPE_READ_ONLY -—- subsystem

/* .Description

/* This module contains definitions that support the SD (SCSI disk)

/* class disk device driver, which is in module dev_sd_driver.c.

/* All of the definitions herein describe host-side only data

/* structures that are used by the driver to keep track of the

/* state of the disk and outstanding requests, and are subject

/* to change as the driver changes.
/*

/*

/* SCSI disk literals.
/*

#¢define DEV_SD_STANDARD_SECTOR_SIZE ((uintl6é_type)0x00000200)
/*

* This value is the number of bytes per sector on a SCSI disk. It

* is used to convert the byte count in an I/O request into a sector

* count to give to the disk controller.

*/

define DEV_SD_DEFAULT_SCSI_ID ((uint16_type)0x00000000)
x

* The default SCSI id that is used to identify a disk if a SCSI id

x is not present in a device specification.
x

x/

#define DEV_SD_DEFAULT_UNIT_NUMBER ((uintl6_type)0x00000000)
x

* The default unit number that is used to identify a disk if a unit

x number is not present in a device specification.

*/

#define DEV_SD_MAX_BUFFERED_CONCURRENT_UNIT_REQUESTS 0x00000001

/*
* The maximum number of requests that can be executing

* concurrently on a single SCSI disk unit when disk request

* buffering is being performed.

*/

#define DEV_SD_MAX_ CONCURRENT_UNIT_REQUESTS 0x00000020
/*

* The maximum number of requests that can be executing

* concurrently on a single SCSI disk unit. Although SCSI

* disks can only process on request at a time, the SCSI interface

* to the disk can queue up multiple requests and optimize ‘the

* way that the requests are actually issued to the disk.

*/

#define DEV_SD_MAX_INQUIRY_RETRIES 0x00000002
x

* The maximum number of times that the SCSI Inquiry command is
* retried during the disk configure operation before deciding

* that a device is not present at the LUN.

*/

#define DEV_SD_DEVICE_TYPES_SUPPORTED ((bit8e_type)
x

* The set of SCSI devices that are supported by the SD driver.

*/

#define DEV_SD_NULL_UNIT_INFO_PTR ((dev_sd@_unit_info_ptr_ type)DEFAULT_NULL_LINK)
*

}

* A null SCSI disk unit information table pointer. It is used to

A-2 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

* identify unallocated unit information table entries.

*/

#define DEV_SD_NULL_BUFFER_PTR ((pointer_to_any_type) DEFAULT_NULL_LINK)
x

* A null buffer pointer used in the adapter request block

* buffer vector when no data buffer is required.

*/

#define DEV_SD_NULL_ADAPTER_HANDLE

((i0_device_handle_type)DEFAULT_NULL_LINK)
x

* A null adapter handle, used as a place holder in the unit

* information structure.

*/

/*.Literal_Section[=

i TEAC FC-1 Configuration Literals.

(+ Description
/*

/* These constants are used to interpret inquiry data returned

/* from the TEAC FC-1 SCSI to floppy (SA450) adapter card.

/* Inquiry data describes the floppy unit configuration

/* present on an adapter card. The product information bytes

/* of the inquiry buffer indicate which combination of the

/* F, G, and H jumpers are set on the card. If the product

/* information bytes contain "GF" then the G and F jumpers
/* are installed indicating that LUNs 0-3, if present, will

/* be 5.25 inch floppy units (supporting 1.2 Mb, .720 Mb, .360 Mb

/* formatted capacities). If the product information bytes contain

/* “HF” then the H and F jumpers are installed indicating a mixed

/* configuration. LUNs 0 and 1, if present, will be 3.5 inch

/* floppy units (supporting 1.44 Mb and .760 Mb formatted capacities).

/* LUNs 2 and 3, if present, will be 5.25 inch floppy units.

#define DEV_SD_FLOPPY_INQUIRY_CONFIG_INFO_OFFSET 0x0014
x

* Offset in the vendor unique byte array to the product information

* data (jumper settings).
x / ,

#define DEV_SD_FLOPPY_INQUIRY_CONFIG_5_25 "GF

/* :
* Jumper setting which indicates that LUNs 0-3, if present, will
* be 5.25 inch floppy units.

x/

#define DEV_SD_FLOPPY_INQUIRY_CONFIG_MIXED "HF
/*

* Jumper setting which indicates that LUNs 0-1, if present, will
* be 3.5 inch floppy units and LUNs 2-3, if present will be

* 5.25 inch floppy units.

*/

#define DEV_SD_FLOPPY_INQUIRY_CONFIG_INFO_SIZE ((uint32_type)2)
/*

* Size in bytes of the config information used in the product

* information part of the inquiry buffer.

*/

/*.Literal_Section[=
/*®

/* SCSI 1.2 Mbyte (formatted) 5.25 inch floppy disk literals.
/*

/* .Description
/*

/* These constants are used to perform mode sense/select operations

/* on a 1.2 Mbyte 5.25 inch floppy. To set the floppy disk controller

/* to the correct mode to access a floppy of this type, a mode

/* sense is first done to get a template for the mode select

/* operation. Mode values that are not fixed for all 5.25 inch

/® floppies are defined here and used to set the controller

093-701053 Licensed material—property of Data General Corporation A-3

A Sample SCSI Device Driver

/* to the mode that matches the medium type.
/*

#define DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR ((uint8_type)0x00084)
/*

* Medium type code used in a mode sense/select header

* to specify a 1.2 Mbyte 5.25 inch floppy.

*/
#define DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR_MIXED ((uint8_type)0x00088)

/*

* Medium type code used in a mode sense/select header

* to specify a 1.2 Mbyte 5.25 inch floppy when the sa450 adapter
* card is jumpered for a mixed configuration of 3.5 and 5.25 inch

* units. The sa450 card is jumpered for a 3.5 inch configuration

* when the unit types are mixed. As a result, the card will not
* allow DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR to be
* selected as the medium type. The work around for this is to
* set the medium type to 3.5 inch 1.44 Mb, forcing the sa45(0 card
* to set the disk parameters according to the flexible disk drive
* geometry paramters specified with the mode select command.

*/

#define DEV_SD_FLOPPY_5_25INCH_1200KB_TRANSFER_RATE ((uint16_ type) 0x0001f4)
/*

* Transfer rate value used in a mode select command

* for a 1200 Kbyte 5.25 inch floppy.

*/

#define DEV_SD_FLOPPY_5_25INCH_1200KB_SECTORS_PER_TRACK ((uint8 type) 0x0000Ff)
/*®

* The number of sectors per track on a 1.2 Mbyte 5.25 inch

* floppy.

*/

#define DEV_SD_FLOPPY_5_25INCH_1200KB_NUMBER_OF_CYLINDERS ((uintl6_type)0x00050)
/*

* Number of cylinders on a 5.25 inch 1.2 Mbyte floppy.

*/

#define DEV_SD_FLOPPY_5_25INCH_1200KB_STEP_PULSES_PER_CYLINDER ((uint8_type) 0x00001)
/*

* Step pulses per cylinder value used in a mode select command
* of a 5.25 inch 1.2 Mbyte floppy.

*/

#define DEV_SD_FLOPPY_DEFLAULT_WRITE_PRECOMPENSATION_VALUE ((uint8_type)0x00002)
x

* Write precompensation value used for all floppy
x medium types.

%/

/*.Literal_Section[=
/*

/* SCSI 720 Kbyte (formatted) floppy disk literals.
/*

/*.Description
/*

/* These constants are used to perform mode sense/select operat:ions
/* on a 720 Kbyte inch floppy. To set the floppy disk controller
/* to the correct mode to access a floppy of this type, a mode
/* sense is first done to get a template for the mode select
/* operation. Mode values that are not fixed for all 720 Kbyte
/*® floppies are defined here and used to set the controller
/* to the mode that matches the medium type. Note that identical
/* mode select values are used for 3.50 and 5.25 inch 720 Kbyte

/* floppies.

#define DEV_SD_FLOPPY_MEDIUM_TYPE_96_135TPI_7958BPR ((uint8_ type) 0x00080)
/*

* Medium type code used in a mode sense/select header

* to specify a 720K 5.25 inch, 720K 3.50 inch, or 360K 5.25
* inch floppy.

A-4 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

*/

#define DEV_SD_FLOPPY_720KB_TRANSFER_RATE (({uintl6_type)0x000fa)
x

* Transfer rate value used in a mode select command
* for a 720 Kbyte floppy.

*/

#define DEV_SD_FLOPPY_720KB_SECTORS_PER_TRACK ((uint8 type) 0x00009)
/*

* Number of sectors per track on a 720 Kbyte floppy.

*/

#define DEV_SD_FLOPPY_720KB_NUMBER_OF_CYLINDERS ((uintl6_type)0x00050)
x

* Number of cylinders on a 5.25 inch 720 Kbyte floppy.

*/

#define DEV_SD_FLOPPY_720KB_STEP_PULSES_PER_CYLINDER ((uint8_type)0x00001)
x

* Step pulses per cylinder value used in a mode select command

* of a 720 Kbyte floppy.

*/

/* .Literal_Section [=

i SCSI 360 Kbyte (formatted) 5.25 inch floppy disk literals.
ds Description
/*

/* These constants are used to perform mode sense/select operations
/* on a 360 Kbyte 5.25 inch floppy. To set the floppy disk controller
/* to the correct mode to access a floppy of this type, a mode

/* sense is first done to get a template for the mode select

/* operation. Mode values that are not fixed for all 5.25 inch
/* floppies are defined here and used to set the controller

/* to the mode that matches the medium type.

#define DEV_SD_FLOPPY_5_25INCH_360KB_TRANSFER_RATE ((uintl6_type)0x000fa)
/ x

* Transfer rate value used in a mode select command
* for a 360 Kbyte floppy.

=/

#define DEV_SD_FLOPPY_5 25INCH_360KB_SECTORS_PER_TRACK ((uint&_type)0x0009)
/*

* Number of sectors per track on a 5.25 inch 360 Kbyte floppy.

*/

#define DEV_SD_FLOPPY_5_25INCH_360KB_NUMBER_OF_CYLINDERS ((uintl6_type)0x00028)
/*

* Number of cylinders on a 5.25 inch 360 Kbyte floppy.

*/

#define DEV_SD_FLOPPY_5S 25INCH_360KB_STEP_PULSES_PER_CYLINDER ((uint8_type) 0x00002)
®

* Step pulses per cylinder value used in a mode select command

* of a 5.25 inch 360 Kbyte floppy.

*/

/* .Literal_Section [=

bn SCSI 1.44 Mbyte (formatted) 3.5 inch floppy disk literals.
is Description
/*

/*® These constants are used to perform mode sense/select operations
/* on a 1.44 Mbyte 3.5 inch floppy. To set the floppy disk controller
/* to the correct mode to access a floppy of this type, a mode
/* sense is first done to get a template for the mode select

/* operation. Mode values that are not fixed for all 3.5 inch
/*® floppies are defined here and used to set the controller

/* to the mode that matches the medium type.

093-701053 Licensed material—property of Data General Corporation A-5

A Sample SCSI Device Driver

/*

define DEV_SD_FLOPPY_MEDIUM_TYPE_3_S50INCH_135TPI_15916BPR ((uint8_type)0x00088)
/*

* Medium type code used in a mode sense/select header

* to specify a 1.44 Mbyte 3.50 inch floppy.

*/

#define DEV_SD_FLOPPY_3_50INCH_1440KB_TRANSFER_RATE ((uintl6_type)0x0001f4)
/*

x Transfer rate value used in a mode select command

* for a 1440 Kbyte 3.50 inch floppy.

*/

#define DEV_SD_FLOPPY_3_50INCH_1440KB_SECTORS_PER_TRACK

((uint8 type) 0x00012)
x

* Number of sectors per track on a 3.5 inch 1.44 Mbyte floppy.

*/

#define DEV_SD_FLOPPY_3_50INCH_1440KB_NUMBER_OF_CYLINDERS ((uintl6_ type) 0x00050)
/*

* Number of cylinders on a 3.50 inch 1.44 Mbyte floppy.

*/

#define DEV_SD_FLOPPY_3_50INCH_1440KB_STEP_PULSES_PER_CYLINDER ((uint8_type)0x00001)
/*

* Step pulses per cylinder value used in a mode select command

* of a 3.50 inch 1.4 Mbyte floppy.

*/

/*.Literal_Section[=

Ms Floppy Mode Select Test Literais.

(«Description
/*

/* These constants are used to determine empirically whether

/* the operation mode selected on a floppy unit actually
/* matches the medium type currently inserted in the device.

/* A trial and error method is used to make the determination.
/* A mode is selected and an access to the device is attempted to

/* see if the medium can be successfully accessed. If the access

/* fails another mode is tried.

/* This driver supports only double sided floppies with 96 tpi

/* capacity. 48 tpi formatted floppies are made from 96 tpi
/* floppies by skipping the odd numbered tracks. The following
/* floppy densities are supported by the TEAC floppy units:

/* Double Density - 7958 bits/rad (720 Kb formatted at 96 tpi
/* ox 360 Kb formatted at 48 tpi).

/* High Capacity ~ 13262 bits/rad (1.2 Mb formatted).

/* High Density -— 15916 bits/rad (1.44 Mb formatted).

/* The medium type specified when a floppy disk is formatted
/* determines the recording method used to layout the disk sectors.
/* In general, floppies supporting higher densities may be formatted
/* to a lower density format. However, low density floppies are
/* not physically capable of supporting high density formats.

/* A seek and read operation is done to determine if the selected
/* mode matches the formatted medium type inserted. Based on the
/* operation mode selected, the controller expects the specified
/* sector being read to exist on a particular track. If the sector
/* isn’t where it should be, an error is returned and we know we

/* selected the wrong mode. Take as an example a 720 Kb formatted
/* floppy inserted with a mode select issued for a 1.2 Mb formatted
/* floppy. The 720 Kb floppy supports 9 (decimal) sectors per track
/* times 2 sides -> 18 sectors per track. The 1.2 MB floppy supports
/* 15 (decimal) sectors per track times 2 sides -> 30 sectors per
/*® track. If we try to read sector 20 the controller thinks the
/*® floppy is 1.2 Mb and expects to find sector 20 in track 0 so the
/* operation will fail.

A-6 Licensed material—property of Data General Corporation 093-701053

residual data will exist on the

track is examined.

by the following:

1.2 Mb and 760 Kb floppies.

supported.

#define DEV_SD_FLOPPY_MODE_SELECT_TEST_SECTOR
/*

A Sample SCSI Device Driver

Testing between 720 Kb 96 tpi formatted floppies and 360 Kb 48

tpi formatted floppies should be done only on even numbered tracks.

48 tpi floppies are produced by skipping odd numbered tracks.

a 48 tpi floppy is formatted from a previously used 96 tpi floppy,

If

odd tracks and make the floppy

appear to the controller to be a 96 tpi floppy if an odd numbered

The sector number used to test for the correct mode was determined

It must be small enough to be common to all fioppy types.

It must be big enough so that no overlap exists between

medium types (e.g. sector 34 will exist on track 1 of both

It must be on an even numbered track for all medium types

0x00dc

x Sector number to seek to and read to determine if the operating

* parameters (mode select) of the controller match the currently

* inserted medium. See above for description of how this sector

* number was selected.

*/

. Section [=

-type */

typedef struct

{
io_interleave_lock_type

misc_queue_header_type

dev_scsi_adapter_unit_spec_type

uint32_type

uintl6_ type

uintl6 type

uintl6 type

misc_queue_header_ type

io_device_number_type

1o_device_number_type

i1o_device_handle_type

dev_sd_request_sense_buffer_type

dev_scsi_inquiry_buffer_type

lm_unsequenced_lock_type

misc_counter_type

misc_counter_type

misc_counter_ type

misc counter type

misc_clock_value_type

misc_clock_value_type

uintl6 type

uint32_ type

boolean type

SCSI Disk Driver Data Structures.

request_lock;

arb_free_queue;

unit spec;

max_request_size;

open _ count;

writer_count;

exclude_writers_ count;

async _request_queue;

device_number;

adapter_device_number;

adapter_handle;

sense_buffer;

inquiry_buffer;

unit _lock;

read_block_count;

write_block_count;

read_request_count ;

write_request_count;

total_busy_time;

total _response_time;

sector_size;

sector_count;

inhibit_error_logging;

uintl6_ type disk_type;

/*%< «/

} dev_sd_unit_info_type ;

/*> x/

/* .Description{[=
/*

/* This data structure contains all of the per-unit information for

/* a physical disk drive that is under the jurisdiction of the SD

/* driver. For the purposes of the SD driver, “unit” refers to a
/*® complete physical disk drive and has exactly the same meaning

/* as it does in the CPU-to-controller interface.
/*

/* .Members
/*®

093-701053 Licensed material—property of Data General Corporation A-7

A Sample SCSI Device Driver

request_lock -- This lock controls access to the unit

for the purposes of doing I/O to the unit. The lock must

be obtained before performing any I/O operations. This lock

is a special interleave lock that allows synchronous and

asynchronous requests to be queued and processed in roughly

the order that the requests are made.

arb free_queue ~- Queue of free adapter request blocks.

Adapter request blocks are used to isuue request through

the SCSI interface to a target device.

unit_spec -- The SCSI id and unit number of the device

controlled by this data structure.

max_request_size ~~ The largest single request size that the

SCSI interface will support.

open count -- The number of opens that are currently
outstanding on this unit.

writer _count -- The number of opens for writing that

are currently outstanding on this unit.

exclude_writers_count -- The number of times the unit is

currently open with EXCLUDE_WRITERS intent. When this field is

non-zero, the unit may not be opened with WRITE intent. The

field is incremented in ‘open’ and decremented in ‘close’

depending on the open intent.

async_request_queue -~ The queue header for the queue of

asynchronous requests that could not be immediately serviced by

the unit. When the unit becomes free, requests are removed

from this queue and assigned to the unit.

device _number -—- The major and minor device numbers of the

disk unit.

adapter_device_number -- The major and minor device numbers

of the SCSI adpater which supports the disk unit.

adapter handle -- An opaque handle returned by the

unit registration function which is used by the SCSI

interface to identify the device controlled by this data

structure.

sense_buffer -- Buffer used to store sense data returned

from the unit.

inquiry_buffer -- Inquiry data saved from device

configuration.

unit _lock -- Lock used to insure serialized base level

access to some members of this data structure. This lock

is used by both the synchronous and asynchronous execution

paths and should be held for only very brief access times

(i.e. the I/O demon should not be kept waiting).

read_block_count -- The number of 512 byte blocks read

from this unit since the system was booted.

write_block_ count -- The number of 512 byte blocks written

to this unit since the system was booted.

read_request_count -- The number of read requests

handled by this unit since the system was booted.

write_request_count -~- The number of write requests

handled by this unit since the system was booted.

total_busy_time -- The total amount of time this unit has

been busy since the system was booted.

total_response_time -- The total amount of time

that requests spent waiting in the driver for I/O to complete. This

time includes driver overhead as well as device processing time.

A-8 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*

/* sector_size -- Size in bytes of each sector on the

/* disk.

/*

/* sector count -- The total number of host accessible

/* sectors on the disk.
/*

/* inhibit_error_logging -- Flag, when set indicates

/* that error logging for the device controlled by this

/* data structure should be disabled. This option is used

/* during mode selection of some device types. A mode is

/*® selected and an I/O operation is attempted to determine

/* if the mode was correct. An I/O error occurs if the mode

/* 1s not correct and another mode is tried. In this case,

/* we don’t want to log the error.
/*

/*.type */ :
{*S x/

typedef dev_sd_unit_info_ type * dev_sd_unit_info_ptr type ;

/*> = /

/*.Description[=
/*

/* A pointer to a SCSI disk unit info structure.
/*

/*.type */

typedef struct

bit8e_ type reservedl;

bit8e_type reserved2;

skip_type reserved3 7;

field type enable blank_check : 1;

bit8e_type blik_desc_len;

field _type enable physical_read : 1;

field_type delay_error_reporting : 1;

field_type enable _sector_relocation 1;

field type disable_seek_immediate : 1;

skip_type reserved4 4;

field type disable_retry_times : 1;

field type error_detection_level 1;

skip_type reserved5 : 1;

field _type disable_error_detection_and_correction : 1;

field_type parity_enable : 1;

field type enable diagnostics : 1;

skip_type reserved6 l;

skip_type reserved7 1;

[*< x/
} dev_sd_worm_optimem_mode_buffer_type ;

[*> */

/*. Description [=
/ ®

/* This structure defines a Mode Sense/Select buffer used by the

/*® Optimem 1000 Write Once Read Multiple (WORM) device to report/select

/*® device mode parameters. This format for Mode Sense/Select is

/*® vendor unique.
/ x

/* .Members
/ x

/* reservedl -- Not used, must be zero.
/ x

/* xreserved2 -- Not used, must be zero.
/ x

/* reserved3 -- Not used, must be zero.
/ x

/* enable blank check -- Flag, when set, indicates

/* that the driver should report an error if a write is

/* attempted at a block that has already been written to.
/ x

093-701053 Licensed material—property of Data General Corporation A-9

A Sample SCSI Device Driver

/* bik_desc_len -- The length of the block descriptor in
/* bytes. The Optimem does not use a block descriptor so this

/* value is always zero.

/* enable _physical_read -- Flag, when set, allows the disk
/* controller to read disks whose address fields have been written

/* in physical format. When zero, normal logical address translation

/* done.

/* delay_error_reporting -- Flag, when set, inhibits the drive

/* from reporting read errors until until the read operation has

/* completed. When zero, the driver reports errors normally.

/* enable_sector_relocation -- Flag, when set, causes the

/* controller to relocate defective sectors when using the Write

/* And Verify command. Normal six byte write commands are not

/* affected by this bit. This bit takes precedence over the Enable

/* Sector Relocation jumper on the controller board.
/*

/* disable_seek_immediate -- Flag, when set, causes Seek commands

/* to be of the non-immediate type, no sure what this means.
/*

/* reserved4 -- Not used, must be zero.
/*

/* disable_retry_times -- Flag, when set, causes controller retry

/* operations to be disabled. When zero, the controller automatically

/* performs up to five retries before reporting an error.

/* error _detection_level -- Flag, when set, causes the controller

/* to report a Check Condition status with a Sense Key Medium Error

/* whenever an error cannot be corrected by the front end processor

/* of the controller.
/*

/* reserved5 -- Not used, must be zero.
/*

/* disable_error_detection_and correction -- Flag, when set,

/* causes the controller to perform a read or write operation without

/*® error correction. Note that sectors written with DEDAC are of a

/* different format than in the ordinary mode of operation.

/* parity_enable -- Flag, when set, enables controller parity

/* checking of incoming data. When clear, parity checking is d:isabled.

/* This field takes precedence over the Parity Check jumper on the

/® controller board.
/*

/* enable diagnostics -- Flag, when set, enables the use of

/* group 7 diagnostics commands.
/*

/* reserved6 -~ Not used, must be zero.
/*

/* reserved7 -- Not used, must be zero.
/*

/*.type */

typedef dev_sd_worm_optimem_mode_buffer_type *

[%< */

dev_sd_worm_optimem_mode_buffer_ptr_ type ;

/*> */

/* .Description[=
/*

/* A pointer to an Optimem Write Once Read Many mode select buffer.
/*

/* .Literal Section [=
/*

/* SCSI disk type literals.
/*

#define DEV_SD_DISK_TYPE_RIGID ((uintl6_type)0x00000)

#define DEV_SD_DISK_TYPE_FLOPPY ((uintl6_type)0x00001)

#define DEV_SD_DISK_TYPE_ERASABLE_OPTICAL ((uintl6 type) 0x00002)

A-10 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

#define DEV_SD_DISK_TYPE_WORM ((uintl6_type)0x00003)

#define DEV_SD_DISK_TYPE_READ_ONLY ((uintl6_type)0x00004)

Static Global Data: dev_sd_global_data.c

1*< x/

/* dev_sd_global_data.c =/

[*> */

/* .Contents [=
/*

/* cfv_sd_routines_ vector -- exported

/* dev_sd_open_lock -- subsystem

/* .Description

/* This module contains global data for the SCSI disk driver (SD).

/*< */
WIRED

io_driver_routines_vector_type cfv_sd_routines_vector =
/*> a/

{
1, /* Version 1 of this structure */

0, /* Flags -- currently unused */

dev_sd_open,

dev_sd_close,

dev_sd_read_write,

dev_sd_select,

dev_sd_ioctl,

dev_sd_start_io,

dev_sd_init,

dev_sd_configure,

dev_sd_deconfigure,

dev_sd_device_to_name,

dev_sd_name_to_device,

io_nodevice_open_dump,

io_nodevice_write_dump,

io_nodevice_read_dump,

io_nodevice_close_dump,

io_nodevice_powerfail,

10o_nodevice_mmap,

1o_nodevice_munmap,

io_nodevice_maddmap

};

/* .Description[

/*® This variable contains pointers to each of the externally

/* referencable functions provided by this device driver. The

/* driver is accessed by higher levels of the kernel by

/* indirecting through these pointers.

/* .Vaxriable */

[*< */
UNWIRED

lm_unsequenced_lock_type dev_sd_open_lock = {0};

/*> */

/* .Description[=
/*

/* This lock protects all operations that involve configuring/

/* deconfiguring, opening/closing, and mapping device numbers

/* for devices under the juristiction of this driver.
/*

093-701053 Licensed material—property of Data General Corporation A-11

A Sample SCSI Device Driver

Miscellaneous data: dev_sd_message_data.c

[*K< x /

/* dev_sd_message_data.c = /

[*>? x/

/*.Contents [=
/*

/* dev_sd_hard_error_message -- subsystem

/* dev_sd_soft_error_message -- subsystem
/*

/* .Description

/*® This module contains the text of messages from the sd()
/* device driver that may be logged to the error logger.
/* They are collected here in a single module so they may be easily
/* changed for languages other than English and so their allocation

/* in memory can be specially managed.

/*.variable */

[*¢ x/

WIRED

char dev_sd_hard_error_message {] =

/*> *

"Disk device at SCSI ID %d, unit %d encountered a hard error at

block $d with status = %o0;

/*.Description [=
/*

/* The message that is output when the sd() device encounters

/* a hard media error.
/*

/*.variable */

1/*S x/

WIRED

char dev_sd_soft_error_message {} =

/*> x/

"Disk device at SCSI ID %d, unit %d encountered a soft error at block %d0;

/* .Description [=
/*

/* The message that is output when the sd() device encounters

/*® a soft media error.

Main Driver C Code: dev_sd_driver.c

[2% */
/* dev_sd_driver.c x/

/*> */

/*.Contents [=

/* dev_sd_open -- subsystem

/* dev_sd_close -- subsystem

/* dev_sd_read_write -- subsystem

/* dev_sd_select -- subsystem

/* dev_sd_ioctl -- subsystem

/* dev_sd_start_io -- subsystem

/* dev_sd_init -- subsystem

/* @ev_sd_configure -- subsystem

/* adev_sd_deconfigure -- subsystem

A-12 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* dev_sd_name_to_device -- subsystem

/* dev_sd_device_to_name -- subsystem

[* .

/* dev_sd_parse_device_name -- internal

/* dev_sd_complete_io -- internal

/* dev_sd_start_asyne_request -- internal

/* dev_sd_start_sync_request -- internal

/* dev_sd_evaluate_sense_info -- internal

/* dev_sd_log_error -- internal

/* dev_sd_init _rigid_disk_unit -- internal
/* dev_sd_init_floppy_disk_unit -- internal

/* dev_sd_init_worm_disk_unit -- interral
/* dev_sd_init_optical_disk_unit -- internal
/* dev_sd_sense_unit_mode -- internal

/* dev_sd_select_unit_mode -- internal

/* dev_sd_test_mode_select -- internal
/* dev_sd_control_medium_removal ~-- internal

/* dev_sd_read_disk_capacity -~ internal

/* dev_sesi_get_bytes_requested -- internal

/* dev_sd_determine_disk_type -- internal

/* dev_sd_complete_asynec_sb_io -- internal
/*

/* .Description
/*

/* This module is the main part of the device driver for the
/[* set of disks which communicate with the host system

/* through a SCSI (Small Computer System Interface) I/O bus

/* interface. Definitions that support this module are in

/* dev_sd_def.h and dev_scsi_def.h.

/* The SCSI disk driver supports all SCSI disks which implement:

/* the ANSI SCSI-1 Specification (X3.131-1986) mandatory

/* commands and the optional Inquiry command. The Inquiry

/*® command is required for self-configuration to work.

/* This device driver obeys the Standard Driver Interface

/* for the DG/UX kernel.

/*.function */

i */
UNWIRED

status_type dev_sd_open (device_number, channel_flags, device_handle_ ptr)

i? */

1o_device_number type device_number ; /* READ ONLY */
io_channel_ flags_type channel _ flags; /* READ ONLY */
1o_device_handle ptr_type device_handle ptr; /* WRITE ONLY */

/*.Summary [=
/*

/* This function prepares a SCSI disk device (sd) for further I/0
/* operations and places the specified device number in the set. for
/*® which further operations will be valid.
/*

/*.Parameters

/*

/* device _number -- The major and minor device numbers from the

/* special file that is being opened.
/*

/* channel flags -- The set of channel flags specifying the
/* type of access requested on the device.
/®

/* device_handle_ ptr -- A pointer to the location where the

/* device handle is to be returned.
/®

/*.Functional_Description
/®

/*® The device number is mapped to a physical disk unit and the
/* unit is tested for on-line and ready. If the unit has never

/*® been opened or formatted by a DG/UX system, a mode selection
/* is done to put the unit in the correct operating mode. The
/* selected modes are saved on the disk so they become the default

/* modes for the life of the disk.

093-701053 Licensed material—property of Data General Corporation A-13

A Sample SCSI Device Driver

/*® Once the unit is initialized (either because we did it

/® or because it was already done), we check for open intent

/* conflicts. If there are no conflicts, the open count of the

/*® unit iS incremented and the device handle is returned.
/*

/*.Return_ Value
/*

/* OK -~- The unit was successfully opened. Any necessary

/* initializations were successfully performed.
/*

/* DEV_ENXIO_DEVICE_IS_NOT_CONFIGURED -- The speicfied device

/* number could not be mapped to a physical device.

/* IO_ENXIO_UNIT_NOT_READY -- The disk unit is not ready and

/* on-line.

/* I0_E1O_PHYSICAL_UNIT_FAILURE -- The disk is not responding

/* to any commands. This indicates that either the device is not

/* really present at the specified SCSI id or the device is broken.

/* IO_ENXIO_DEVICE NOT SUPPORTED -- A disk has been encountered

/* with characteristics such that it cannot be supported by this

/* driver.

/* .Exceptions

/* None.

/*.Abort_Conditions

/* None.

uintl6_ type i;

status_type status;

dev_sd_unit info ptr type ulp;

dev_adapter_request_block_ptr_type arb_ptr;

uintl6_type unit;

dev_sd_read_capacity_buffer_type capacity_buffer;

dev_scsi_test_unit_ready_cmd_blk ptr_ type scsi_cmd_blk_ ptr;

uintl6_type disk_type;

/*.iImplementation[=

/* Obtain the SCSI disk open lock. The open lock insures that

/* Simultaneous opens of the same device do not occur. The lock

/* also insures that the device will not be deconfigured

/*® during the open operation.
/*

/*® First we check that the given device number corresponds to
/* a configured device, and in the process get a pointer to the

/* unit information structure for use throughout the rest of

/* the function.
/®

/*.End)= =/

lm_obtain_unsequenced_lock(&dev_sd_open_lock);

status = io_map_ device_number(device_ number, (bit32e_ptr_type)&uip, &unit);

if (status != OK)

{
goto done;

}

/*.Implementation_Continued[{=
/*

/*® Obtain the unit request lock, build a test unit ready command

/*® block and issue it to the target device. If this is the first

/* command issued to the device after the SCSI bus reset other than

/* the Inquiry command, the test unit ready will fail with a Check

/* Condition status. The sense information will indicate that the

/* unit attention flag for the unit is on. The attempted execution

/* of the test unit ready command clears this condition and the

A-14 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*® command is reissued to determine if the unit is ready. If the

/* device does not respond that it is ready after the second try,

/* return the error.
/®

/*.End)=

for (i = 0; i < 2; i++)

{
io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc_dequeue_from_head(&éuip~>arb_free_queue,

(misc_queue_links_ptr_type *)&arb_ptr);

scsi_cmd_blk ptr = (dev_scsi_test_unit_ready_cmd_blk_ptr_type)
&arb_ptr->scsi_cmd_blk;

sesi_cmd_blik_ptr->op_code = DEV_SCSI_CMD_TEST_UNIT_READY;

scsi_cemd_blk_ptr->lun = arb_ptr->unit_spec.unit;

sesi_cmd_blk_ptr->reservedl = 0;

scsi_emd_blk_ptr->reserved2 = 0;

scsi_cmd_blk_ptr->vendor_unigque = 0;

sesi_cmd_blk_ptr->reserved3 = 0;

sesi_cmd_blk_ptr->link = FALSE;

scsi_emd_blk_ptr->flag = FALSE;

arb _ptr->request_flags = (bitl6e_type)0;

io_init_one_entry_buffer_vector(é&arb_ptr->buffer_vector,
DEV_SD_NULL_BUFFER_PTR,

(uint32_type)0);

status = dev_sd_start_sync_request(uip, arb_ptr);

misc_enqueue_at_tail(&uip->arb_free_queue, &arb_ptr->links);
if (io_assign_next_interleave_waiter(&uip->request_lock))

dev_sd_start_async_request(uip);

io_release_interleave_lock(&uip->request_lock) ;

if (status == OK)

{
break;

}

}
if (status != OK)

/*.Implementation_Continued [=

{
goto done;

*/

/*

/* Determine the device type and perform any initialization

/*® that is required on the unit.
x

/*.End)=

status = dev_sd_determine_disk_type(uip, &disk_type);

uip->disk_type = disk_type;

if ((status == OK) && (uip->open_count == 0))

switch (disk_type)

{
case DEV_SD_DISK_TYPE_RIGID:

status = dev_sd_init_rigid_disk_unit(uip);

break;

case DEV_SD_DISK_TYPE_FLOPPY:

status = dev_sd_init_floppy_disk_unit(uip);
break;

case DEV_SD_DISK_TYPE_WORM:

status = dev_sd_init_worm_disk_unit(uip);

break;

case DEV_SD_DISK_TYPE_ERASABLE_OPTICAL:

case DEV_SD_DISK_TYPE_READ_ONLY:

Status = dev_sd_init_optical_disk_unit(uip);

break;

093-701053 Licensed material—property of Data General Corporation

*/

A-15

A Sample SCSI Device Driver

if (status != OK)

{
goto done;

}

/*.Implementation_Continued {=

/* If the disk unit is not currently open, issue a read capacity

/* command to get the sector size of the currently inserted mediun.

/* Set the allowable number of concurrent requests to the value

/* appropriate for the sector size. If disk request buffering

/* must be done (i.e. sector size > 512 bytes), only one request

/* can be processed at a time. If open count is zero, we are safe

/* to initialize the interleave lock. If open_count is not zero,

/* the concurrent request count should already be correct.

/*.End)= x /

if (uip->open_count == 0)

status = dev_sd_read_disk_capacity(uip, é&capacity_ buffer);

if (status == OK)

{
uip->sector_size = (uintl6é_type)capacity buffer.block_len;

uip->sector_count = capacity _buffer.highest_block_address+l;

if (uip->sector_size > DEV_SD_STANDARD_SECTOR_SIZE)

{
io_initialize_interleave_lock(&uip—>request_lock,

(uintl6_type)DEV_SD_MAX_BUFFERED_CONCURRENT_UNIT_REQUESTS) ;

}
else

io_initialize_interleave_lock(&uip->request_lock,

(uintl6_type)DEV_SD_MAX CONCURRENT_UNIT_REQUESTS) ;

}

}
else

goto done;

}
}

/*.Implementation_ Continued [=

/* Having verified that the hardware is working, we check for

/* conflicts with EXCLUDE_WRITERS intent. If there are no

/* conflicts we increment the open count.

/*.End)= =/

if (channel_flags & IO_CHANNEL_WRITE_INTENT)

it (uip->»exclude_writers_count != 0)
status = IO_EBUSY_OPEN_INTENT_CONFLICTS;

goto done;

}

if (channel_flags & IO_CHANNEL_EXCLUDE_WRITERS_INTENT)
if (uip->writer_count != 0)

status = IO_EBUSY_OPEN_INTENT_CONFLICTS;

goto done;

xdevice_ handle ptr = (i0_device_handle_type)uip;

ulp-~open_count++;

if (channel flags & IO_CHANNEL_WRITE_INTENT)

{
uip->writer_countt+;

}
if (channel_flags & IO_CHANNEL_EXCLUDE_WRITERS_INTENT)

{

A-16 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

uip—>exclude_writers_count++;

}

/*.Implementation_Continued [=
/*

/* Finally, disable removal of the device until the close

/* operation is performed.
/*

/*.Endj=
x /

dev_sd_control_medium_removal(uip, TRUE);

done:

lm_release_unsequenced_lock(&dev_sd_open_lock) ;

return (Status);

}

/*.function */

ae */
UNWIRED

status_type dev_sd_close (device_handle, channel_flags)

[Ronn */

i0o_device_handle_ type device_handle;/* READ ONLY */

i10o_channel_ flags_type channel flags;/* READ ONLY */

/*.Summary [=
/®

/* This function performs the inverse of the open operation.
/*®

/*.Parameters

/*

/* device_handle -- The device handle of the device that is

/® to be closed. This value must be a device handle that was

/*® returned by a successful call to dev_sd_open.
/®

/* channel flags -- The channel flags with which the device

/*® was opened.
/*

/*.Functional_ Description
/*

/*® The open count of the specified device is decremented. If the

/* channel flags specified any of the write intents, then we update

/*® the write intent management variables.
/*®

/*.Return_ Value
/®

/* OK -- Close was successful.
/*

/* Exceptions
/*®

/* None.

/*

/* .Abort_Conditions
/*®

/* None.
/*

{

dev_sd_unit_ info_ptr_type ulp;

/*.Implementation[=

/* Close performs the reverse of the open operation in
/* Managing the writer_count, exclude_writers flag and allowing

/® medium removal. The open_lock must be held to protect against
/* simultaneous open operations.

/*.End)= */

093-701053 Licensed material—property of Data General Corporation A-17

A Sample SCSI Device Driver

uip = (dev_sd_unit_info_ptr_type)device_handle;

dev_sd_control_medium_removal(uip, FALSE);

lm_obtain_unsequenced_lock(&dev_sd_open_lock);

if (channel _ flags & IO_CHANNEL_EXCLUDE_WRITERS_INTENT)

uip-»exclude_writers_count-—;

if (channel. flags & IO_CHANNEL_WRITE_INTENT)
bip->writer_count--,

uip-dopen_count--;
lm_release_unsequenced_lock(&dev_sd_open_lock);

return (OK) ;

}

/*.function */

[*< */
WIRED

status_type dev_sd_read_write (request_info_ptr)

/*> */

ic_request_info_ptr_typerequest_info_ptr; /* READ ONLY */

/*.Summary [=
/*

{* This function performs a synchronous I/O operation on a SCSI

/* class disk (sd).
/*

/*.Parameters
/*

/* xrequest_info_ptr -- A pointer to the structure specifying

/* the operation to be performed, the device, the device address,

/* the memory buffer address, and the length of the data

/* transfer for the operation.

/*.Functional_ Description

/* This function performs a synchronous I/O operation on a SD

/* class disk. It allocates a generic adapter request block,

/% which contains the information about a request, fills it in,

/* and then issues the request through the supporting SCSI adapter

/* to the disk. The function then waits until the request

/* completes, whereupon it checks the result statuses and returns

/* an indication of the success or failure of the operation.

/* If the size of the caller’s request is larger than the disk

/* interface can handle, this function breaks the request into

/* several smaller requests and returns only when the entire

/* request has completed or an error occurs. Both hard and

/* soft errors are logged to the error log device. No direct:
/* indication of soft errors is given to the caller.
/*

/* Additionally, this function checks to see whether the disk

/* sector size is greater than 512-bytes/sector. If so, a

/* buffer is allocated which is a multiple of the sector size.

/* If the request is a read, a read is issued, and the requested

/*® data is selected from the buffer when the read finishes. If

/* the request is a write, a read is first issued, the data is

/® written into the sector buffer, and then the write is issued.

/* .Return_Value

/* OK -- The operation completed successfully.

/* IO_EINVAL ILLEGAL _REQUEST_SIZE ~- The buffer vector

/* contained a descriptor with a size that was not a multiple of

/* the disk sector size.

A-18 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* IO_EINVAL_ILLEGAL_BUFFER_ADDRESS -- The buffer vector
/* contained an address that was not on an even byte boundary.

/* IO_ENXIO_ILLEGAL_DEVICE_ADDRESS -- The byte granular

/* device address is not a multiple of the disk sector size,
/* in which case no data is transferred, or the request extended
/* past the end of the disk media, in which case the buffer
/* vector indicates the number of bytes actually transferred.

/* In the latter case, all data up to the end of the disk will
/* NOT necessarily be transferred. The end of the disk cannot be
/* determined by reading off the end.

/* .Exceptions

/*® None.

/* .Abort_Conditions

/* Panic may be invoked with the following error codes:

/* DEV_PANIC_SD_UNKNOWN_OPERATION -- An unknown operation was
/* specified in the "op" field of the request_info record. This is
/* an internal software error.
/*

{

status_type status;

dev_sd_unit_info_ptr_type ulp;
misc_clock_value_type driver_entry_time;

mise_clock_value_type cur_time;
dev_adapter_request_block_ptr_type arb_ptr;

io_buffer_vector_ptr_type buffer _vector_ptr;
uint32_type current_size;

byte_address_type current buffer ptr;

uint32_type current_device_address;
uint32_type bytes_transferred;

misc _clock_value_type busy_time;

dev_scsi_read_write_cmd_blk_ptr_typescsi_rw_cmd_blk_ptr;

dev_scsi_write_verify_cmd_blk_ptr_type sesi_write_verify_cmd_blk_ptr;

uint32 type current_device_offset;

boolean_type sector_buffering;
boolean_type sector_buffer_ allocated;

pointer _to_any_ type sector _buffer_ptr;

uint32_type sector_buffer_size;
pointer _to_any type sector_buffer_position_ptr;

uint32_type allocated_size;

/*.Implementation[=
/*

/* This function consists of a main outer loop that breaks up
/* what may be a request for a very large number of bytes into
/* pieces that are within the capacity of the driver. The
/* capacity of the driver is limited to the maximum request size
/* supported by the DMA interface and on the number of pages of
/* the requestors’s buffer we are willing to have wired at one time.

/* The current system time is recorded upon entry into this function
/* for system activity reporting.

/*.End)= x/

status = OK;

vp_read_system_clock(&driver_entry_time) ;

uip = (dev_sd_unit_info_ptr_type) (request_info_ptr->device_handle) ;
MISC_CLOCK_VALUE_SET_TO_ZERO(&busy_time) ;

current_device_offset = request_info_ptr->device_offset;

if((current_device_offset % DEV_SD_STANDARD_SECTOR_SIZE) != 0)

{
return(IO_ENXIO_ ILLEGAL _DEVICE_ADDRESS) ;

}

sector_buffer_allocated = FALSE;

buffer _vector_ptr = &request_info_ptr->buffer_vector;

093-701053 Licensed material—property of Data General Corporation A-19

A Sample SCSI Device Driver

while((io_get_buffer_vector_residual(buffer_vector_ptr) != 0) && (status == OK))

/*

/*

/*

/*

/*

/*

/*

/*

/*®

/*

/*

/*

/*

A-20

.Implementation_Continued [=

. Implementation_Continued [=

.Implementation_Continued [=

current _device_address = current_device_offset / uip—>sector_size;

For each piece of the request, we first wire the requestor’s

buffer into memory. Then we must construct a generic

adapter request block to communicate our request through

the supporting SCSI adapter to the disk.

.End] | */

1o_get_buffer_vector_io_info(buffer_vector_ptr,

écurrent_buffer_ptr,

¤t_size);

((current_size % DEV_SD_STANDARD_SECTOR_SIZE) != 0)

status = IO_EINVAL_ILLEGAL_REQUEST_SIZE;

break;

}

if (ODD_BYTE_ADDRESS(current_buffer_ptr))

{
status = IO_EINVAL_ILLEGAL BUFFER_ADDRESS;

break;

}

current_size = MINIMUM(current_size, uip->max_request_size);

if (request_info_ptr->op & IO_OPERATION_USER_BUFFER)

{
status = vm_wire_memory(current_buffer_ptr, TRUE, current__size);

if (status != OK)

{
break;

}

}

Determine if sector buffering is necessary. It may be

necessary if the disk sector size is not 512. Even then,

sector buffering is only required if 1) the data is not

aligned on a sector boundary, or 2) the amount of data to

transfer is not a multiple of the sector size.

-End}= x/

sector_buffering = FALSE;

if (uip->sector_size != DEV_SD_STANDARD_SECTOR_SIZE)

{
if (current_device_offset % uip->sector_size != 0)

{ .
sector_buffering = TRUE;

}
if (current_size % uip->sector_size != 0)

sector_buffering = TRUE;

}

}

if (!sector_buffering)

Sector buffering is not required. Process the request

normally.

Now obtain the unit request lock and fill in the adapter

request block with request information. The unit request

lock must be held to insure that an adapter request block is

Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* available.

/* The rezero unit command is the SCSI equivalent of the

/* recalibrate command. Some disk models deviate from recalibrate

/* in that the heads are positioned to logical block address zero

/* instead of physical cylinder zero. This should not cause

/* problems since SCSI disks automaticaliy recalibrate when

/* a seek error occurs.

/* The no retries option IO_CHANNEL_NO_RETRIES is currently not

/* supported because it requires a mode selection operation

/* which could affect other disk users. To support this option,

/* a more complicated unit locking scheme would be needed.

/* .Endj= */

io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc_dequeue_from_head(&uip-~>arb_free_queue,

(misc_queue_links_ptr_type *)é&arb_ ptr);

if ((uip-~>disk_type == DEV_SD_DISK_TYPE_ERASABLE_OPTICAL)

(uip-~>disk_type == DEV_SD_DISK_TYPE_WORM))

&& (request_info_ptr->op & IO_OPERATION_WRITE))
{

sesi_write_verify_cemd_blk_ptr =

(dev_scsi_write_verify_cmd_blk_ptr_type)&arb_ptr->scsi_cemd_blk;

sesi_write_verify_cmd_blk_ptr->op_code = DEV_SCSI_CMD_WRITE_VERIFY;

sesi_write_verify_cmd_blk_ptr->lun = arb _ptr->unit_spec.unit;

sesi_write_verify cmd_blk_ptr->reservedl = 0;

secsi_write_verify_cmd_blk_ptr->relative_addr = FALSE;

scsi_write_verify_cmd_blk_ptr->logical_block_addr_high =

(uintl6_type)((current_device_address >> 16) & Oxffff);

scsi_write_verify_cmd_blk_ptr->logical_block_addr_low =

(uintl6_ type) (current_device_address & Oxffff);

sesi_write_verify cmd_blk_ptr->reserved2 = 0;

sesi_write_verify_cmd_blk_ptr->transfer_length_high = 0;

scsi_write_verify_cmd_blk_ptr->transfer_length_low = current_size /

ulp->sector_size;

sesi_write_verify_cmd_blk_ptr->reserved3 = 0;

sesi_write_verify_cmd_blk_ptr->erase_control = FALSE;

scsi_write_verify_cmd_blk_ptr->reserved4 = 0;

scsi_write_verify_cmd_blk_ptr->link = FALSE;

scsi_write_verify_cmd_blk_ptr->flag = FALSE;

}
else

{
if (request_info_ptr->op & (IO_OPERATION_READ | IO_OPERATION_WRITE))

{
scsi_rw_emd_blk_ptr = (dev_scsi_read write_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

if (request_info_ptr->op & IO_OPERATION_READ)

scsi_rw_cmd_blk_ptr->op_code = DEV_SCSI_CMD_READ;

}
else

{
scsi_rw_coemd_blk_ptr->op_code = DEV_SCSI_CMD WRITE;

}
scsi_rw_emd_blk_ptr->lun = arb_ptr->unit_spec.unit;

secsi_rw_cemd_blk_ptr->logical_block_address = current_device_address;

scsi_rw_cemd_blk_ptr->transfer_length = current:_size /

uip->sector_size;

scsi_rw_cmd_blk_ptr->vendor_unique = 0;

scsSi_rw_cmd_blk_ptr->reservedl = 0;

scsi_rw_cmd_blk_ptr->link = FALSE;

scsi_rw_cemd_blk_ptr->flag = FALSE;

}
else

s¢_panic(DEV_PANIC_SD_UNKNOWN_OPERATION) ;

}

}

io_init_one_entry_buffer_vector(ésarb_ptr->buffer_vector,
current_buffer ptr,

093-701053 Licensed material—property of Data General Corporation A-21

A Sample SCSI Device Driver

. Implementation_Continued[=

. Implementation_Continued [=

.Implementation_Continued [=

current_size)j;

if (!(request_info_ptr->op & IO_OPERATION_USER_BUFFER))

irb_ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER;
else

{
arb ptr->request_flags = (bitl6e_type)0;

}

Update the disk usage accounting variables used by sar and
dg_sys_info(). Increment the number of read/write reques‘:s and
blocks read/written on this unit. If the request is coming
through the raw I/O interface (rdsk, rpsk), increment
physical read or write counters. Note that if the operation
is block-special, the buffer manager increments the block_read
and block_write variables.

.Endj= «/

if (request_info_ptr->op & IO_OPERATION_READ)

{
misc_increment(&uip->read_request_count) ;

misc_increment_by_value(&uip->read_block_count,

(int32e_type) (current_size/DF_BYTES_PIER_BLOCK));

if ('{request_info_ptr->flags & IO_CHANNEL_BLOCK_SPECIAL))

{
misc_increment(&sc_sys_info.physical_read_request_count) ;

}
}

else

{
misc_increment(&uip-—>write_request_count) ;

misc_increment_by_value(&uip->write_block_count,

(int32e_type) (current_size/DF_BYTES_PIER_BLOCK));

if (!(request_info_ptr->flags & IO_CHANNEL_BLOCK_SPECIAL))

misc_increment(&sc_sys_info.physical_write_request_count) ;

}

}

Start the request. We will not return from

dev_sd_start_sync_request until the request has completed.

.Endje=
* /

status = dev_sd_start_synce_request(uip, arb_ptr);

bytes transferred =

io_get_buffer_vector_position(éarb_ptr—>buffer_vector) ;

io_add_to_buffer_vector_position(buffer_vector_ptr,

(int32_type)bytes_ transferred) ;

} /* end if !sector_buffering */

else

{

Sector buffering is required.

If a sector buffer has not been allocated, then allocate one.

First, determine the size of the buffer needed. The buffer

should be as at least as large as the current request size

and should be an integral of the disk sector size.

.End]= x/

sector _buffer_size = uip-—>sector_size;

if (current_size > DEV_SD_STANDARD_SECTOR_SI1ZE)

A-22 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

{
sector_buffer_size = sector_buffer_size + ((current_size /

uip—>sector_size)

/*.Implementation_Continued {=

* uip->sector_size) + ulip->sector_size;

}

if (!sector_buffer_allocated)

{
sector_buffer_ptr = vm_get_wired_memory(sector_buffer_size,

VM_DEFAULT_ALIGNMENT) ;

allocated_size = sector_buffer_size;

sector_buffer_allocated = TRUE;

/*

/*® Determine the position within the sector buffer of the

/*® transfer data.
x

/*.End]= "/

/*.Implementation_Continued[=

sector_buffer_position_ptr = sector_buffer_ptr +

(current_device_offset % uip->sector_size);

/®

/*® Do a read.
/®

/* .Endj= */

/*.Implementation_Continued [=

io_sync_obtain_interleave_lock(&uip->request_lock) ;
misc_dequeue_from_head(&uip->»arb_free_queue,

(misc_queue_links ptr_type *)é&arb_ptr);

scsi_rw_emd_blk_ ptr = (dev_scsi_read_write_cmd_blk_ptr_type)
&arb_ptr->scsi_cmd_blk;

scsi_rw_cmd_blk_ptr->op_code = DEV_SCSI_CMD_READ;

sesi_rw_cmd_blk_ptr->lun = arb_ptr->unit_spec.unit;

scsi_rw_cmd_blk_ptr->logical_block_address = current_device_address;
scesi_rw_cemd_blk_ptr->transfer_length = sector_buffer_size /

uip—>sector_size;

scsi_rw_cmd_blk_ptr->vendor_unigque = 0;
sesi_rw_cmd_blk_ptr->reservedl = 0;

scesi_rw_cmd_blk_ptr->link = FALSE;

scsi_rw_emd_blk_ptr->flag = FALSE;

arb ptr—->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER;

io_init_one_entry_buffer_vector(éarb_ptr->buffer_vector,
sector_buffer_ptr,

sector_buffer_size);

status = dev_sd_start_sync_request(uip, arb_ptr);

bytes transferred =

io_get_buffer_vector_position(&arb_ptr->buffer_vector);

misc_increment (&uip-—>read_request_count) ;

misc_increment_by_value(&uip->read_block_count,
(int32e_type) (sector_buffer_size/DF_BYTES_ PER_BLOCK));

if ('(request_info_ptr->flags & IO_CHANNEL_BLOCK_SPECIAL))

{
misc_increment(&sc_sys_info. physical_read_request_count) ;

/*

/* Check to see if the data buffer is a kernel buffer. If so,
/* we have to switch to kernel address space.
/*

/* .EnGd)= */

/*.Implementation_Continued [=
/*

if (!(reguest_info_ptr-op & IO_OPERATION_USER_BUFFER))

se_begin_kernel_access();

If the operation is a write, update the sector buffer and

093-701053 Licensed material—property of Data General Corporation A-23

A Sample SCSI Device Driver

/* ado the write. Otherwise, just copy the requested data to

/* the input buffer.
/*

/* .End]= */

if (request_info_ptr->op & IO_OPERATION_WRITE)

io_read_from_buffer_vector(buffer_vector_ptr,
sector_buffer_position_ptr,

¤t_size);

if ((uip->disk_type == DEV_SD_DISK_TYPE_ERASABLE_OPTICAL)

(uip->disk_type == DEV_SD_DISK_TYPE_WORM))

sesi_write_verify_cmd_blik_ptr =

(dev_sesi_write_verify_cmd_blk_ptr_type) sarb_ptr->scsi_cmd_blk;
sesi_write_verify_cmd_blk_ptr->op_code = DEV_SCSI_CMD_WRITE_VERIFY;

scesi_write_verify_cmd_blk_ptr->lun = arb_ptr->unit_spec.unit;
sesi_write_verify_cmd_blk_ptr->reservedl = 0;

sesi_write_verify_cmd_blk_ptr->relative_addr = FALSE;
scesi_write_verify_cmd_blk_ptr—>logical_block_addr_high =

(uintl6_type) ((current_device_address >> 16) & Oxffff);

sesi_write_verify_cmd_blk_ptr->logical_block_addr_liow =

(uintl6 type) (current_device_address & Oxffff);

sesi_write_verify_cmd_blik_ptr->reserved2 = 0;

sesi_write_verify_cmd_bik_ptr->transfer_length_high = 0;

scesi_write_verify_cmd_blk_ptr->transfer_length_low =
sector_buffer_size / uip->sector_size;

sesi_write_verify_cmd_blk_ptr->reserved3 = 0;

sesi_write_verify_cmd_blk_ptr->erase_control = FALSE;

scsi_write_verify_cmd_blk_ptr->reserved4 = 0;

sesi_write_verify_cmd_blk_ptr->link = FALSE;

sesi_write_verify_cemd_blk_ptr->flag = FALSE;

}
else

scsi_rw_cemd_blk_ptr = (dev_scsi_read_write_cmd_blk_ptr_type)
&arb_ptr->scsi_cmd_blk;

sesi_rw_emd_blk_ptr->op_code = DEV_SCSI_CMD_WRITE;

sesi_rw_omd_blk_ptr->lun = arb_ptr->unit_spec.unit;

scesi_rw_cemd_blk_ptr->logical_block_address =
current _device_address;

sesi_rw_emd_blk_ptr->transfer_length = sector_buffer_size /
uip—>sector_size;

sesi_rw_emd_blk_ptr->vendor_unigque = 0;

sesi_rw_emd_blk_ptr->reservedl = 0;

sesi_rw_emd_blk_ptr->link = FALSE;

sesi_rw_cmd_blk_ptr->flag = FALSE;

}

arb _ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER;

io_init_one_entry_buffer_vector(&arb_ptr->buffer_vector,
sector_buffer_ptr,

sector_buffer_size);

status = dev_sd_start_sync_request(uip, arb_ptr);

bytes transferred =

io_get_buffer_vector_position(&arb_ptr->buffer_vector);

misc_increment (&uip->write_request_count) ;

misc_increment_by_value(&uip->write_block_count,

(int32e_type) (sector_buffer_size/DF_FBYTES_PER_BLOCK));

if (!(request_info_ptr->flags & IO_CHANNEL_BLOCK_SPECIAL))

{
misc_increment(&sc_sys_info.physical_write_request_count) ;

}
else

{
io_write_to_buffer_vector(sector_buffer_position_ptr,

buffer_vector_ptr, ¤t_size);

}

/*.Implementation_Continued [=
/*

/* Return to user space if necessary.

A-24 Licensed material—property of Data General Corporation 093-701053

/*

A Sample SCSI Device Driver

/*.End)= */

/*.Implementation_Continued [=
/*

/*

. Implementation_Continued [=

. Implementation_Continued [=

if (!(request_info_ptr->op & IO_OPERATION_USER_BUFFER))

sc_end_kernel_access();

}

} /* end else sector_buffering */

If a sector buffer was allocated, release the memory.

.End]= x/

(sector_buffer_allocated)

{
vm_release_wired_memory(sector_buffer_ptr, allocated_size) ;

}

One way or anther we have finished processing this request.

Update the fields indicating the amount of data that was

transferred, and unwire the caller’s buffer if we wired it

earlier. We then go back around the main ‘while’ loop to

see if more data needs to be transferred to completely

satsify the original request. If an error occurred on

this portion of the caller’s request, the non-OK status

will kick us out of the ‘while’ loop and return the non-OK

status.

-End]= n/

MISC_CLOCK_VALUE_ADD(&arb_ptr->total_request_busy_ time, &busy_t:ime) ;

misc_enqueue_at_tail(&uip->arb_free_queue, s&arb_ptr->links);

if (io_assign_next_interleave_waiter(&uip->request_lock))

dev_sd_start_async_request(uip);

io_release_interleave_lock(&uip—>request_lock);

if (request_info_ptr->op & IO_OPERATION_USER_BUFFER)
{ .

if (request_info_ptr->op & IO_OPERATION_READ)

{
vm_mark_mod_and_ref_and_unwire_memory (

current _buffer_ ptr, TRUE, current_size);

}
else

{
vm_mark_ref_and_unwire_memory (

current_buffer_ptr, TRUE, current_size);

}

}

current_device_address += current_size;

if (request_info_ptr->op & IO _OPERATION_CHECK_SELF_ID)

if (!fs_check_self_id(current_buffer_ptr,

&request_info_ptr->self_id,
¤t_size))

status = IO EINVAL_BAD_SELF_ID;
}

} /* End while */

Calculate the response and busy times required to process this

093-701053 Licensed material—property of Data General Corporation A-25

A Sample SCSI Device Driver

/* request and add them to the totals for the unit. The unit lock

/* is held while the total is updated to protect against simultaneous

/* access.

x

/*.End)=
ef

vp_read_system_clock(&cur_time) ;

MISC_CLOCK_VALUE_SUBTRACT(&driver_entry_time, &cur_time);
1m_obtain_unsequenced_lock(é&uip—>unit_lock) ;

MISC_CLOCK_VALUE_ADD(&cur_time, &uip-—>total_response_time) ;

MISC_CLOCK_VALUE_ADD(&busy_time, &uip->total_busy_ time);
1Im_release_unsequenced_lock(éuip~>unit_lock);

return(status);

}

/*.function */

BQ eee x/

WIRED

void dev_sd_select (device_handle, select, ec_ptr, intent_ptr)

[* maaan /

io_device_handle_ type device_handle; /* READ ONLY */

boolean_type select; /* READ ONLY */

vp_ec_ptr_type ec ptr; /* READ ONLY */

io_select_intent_ptr_type intent_ptr; 7/* READ WRITE */

/*.Summary [=

/* Indicate whether the specified disk is ready to perform I/O.

/*.Parameters

/* aevice_handle -- The device handle of the device that is

/* the target of select. This handle must be a device handle that

/* was returned by the open function of this driver.

/* select -- If TRUE, this is the start of a select operation
/* and conditions that are not immediately TRUE should be

/* recorded so that the eventcounter can be advanced when they

/* become TRUE. If FALSE, this is the end of a select operation

/* and any previously remembered conditions should be forgotten.

/* ec_ptr -- Specifies the eventcounter to be advanced

/* by the driver when the select is satisfied if it is not

/* immediately satisfied.

/* intent_ptr -- On input, specifies whether a select

/* is to be instituted for a combination of read, write, or

/* exceptional conditions. On output, specifies the subset of
/* the input conditions that are currently TRUE.

/*.Functional_ Description

/* Since disks always respond very quickly, this function

/* always returns TRUE when selecting for READ or WRITE. Since

/® there are never any exceptions to report via the driver

/* interface, this function always returns FALSE when selecting

/* for EXCEPTION.
/*

/*.Return_Value
/*

/* None.
/*®

/*.Exceptions
/*

/* None.
/*®

/*.Abort_Conditions
/*

/* None.

/*

A-26 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

{

*intent ptr &= IO_SELECT_INTENT_READ | I0_SELECT_INTENT_WRITE;

}

/*.function */

[* 6a aa */
WIRED

status_type dev_sd_ioctl (device_handle,

[8 rn */
command,

parameter,

return_value_ptr)

io_device_handle type device_handle; /* READ ONLY */

bit32e_type command ; /* READ ONLY *%/

bit32e_type parameter; /* READ/WRITE */

bit32e_ptr_type return _value_ptr; /* WRITE ONLY */

/*.Summary [=
/*

/* This function performs SD disk specific ‘ioctl’ commands.
/*

/*.Parameters

/*

/* device_handle -- The device handle of the device that is

/* the target of the ioctl operation. This value must be a device

/* handle that was returned by a successful call to dev_sd_open.
/*

/* command -- A command to the device. The

/* interpretation of the command is specific to the driver.
/*

/* parameter -~ An argument to the command. The

/* interpretation of the parameter is specific to the driver and

/* the command. The parameter may be used to transfer information
/* in either direction between the caller and the device. In

/* particular it may be a pointer to a buffer supplied by the

/* caller.

/* return_value_ptr -- A pointer to the value to be returned

/* to the user.
/*®

/*.Functional_Description
/*

/* The SD disk ioctl command provides an entry point for issuing
/* the following commands to the device.

/* The DSKIOCGET command, which returns information about
/* the physical characteristics of the disk unit.

/* The DSKIOC_GENERIC_SCSI command provides a generic interface

/* to a SCSI device. When invoked through this driver it provides
/* direct (unrestricted) access to SCSI device.

/* This command interprets “parameter” as a pointer to type
/* "dev_scsi_generic_parm_ptr_type", which provides the SCSI
/* command buffer, a buffer for status and sense data,

/* the memory buffer address, and the number of byte to be
/* transferred by the operation.

/* This function provides synchronous operations on a SD
/* Class device. The unit information block of the target is
/* filled in from the “parameter” data; appropriate access to
/* any 1/O buffer is verified and the buffer is wired.
/* The command is then issued through the supporting SCSI adapter.
/* The function then waits until the request

/* completes, checks the result statuses and returns

/*® an indication of the success or failure of the operation.

/* When a “CHECK CONDITION" status is received from the device
/* the sense key and additional sense key are returned.
/*

/* The DSKIOC_READ_DISK_LABEL command reads the DG/UX disk

/*® label from block zero of the disk.

/* Th DSKIOC_WRITE_DISK_LABEL command writes a DG/UX disk

093-701053 Licensed material—property of Data Seneral Corporation A-27

A Sample SCSI Device Driver

/* label to block zero of the disk.

/* The DSKIOCUSAGE command returns sar disk activity

/* information for the specified disk unit.

/*.-Return_Value

/* OK -- The ioctl] command completed normally.

/* IO_EINVAL_COMMAND_NOT_SUPPORTED_BY_DEVICE —— The ioctl

/* was not one that is ~ supported _ by the SD driver.

/* IO_EINVAL_ILLEGAL_REQUEST_SIZE -- The I/O

/* request “exceeded the maximum request size (determined by the maximun

/* amount of memory that’s recommended to be wired by the driver.

/*.Exceptions

/* None.

/*.Abort_Conditions

/* None.

{
status_type status;

gdev_sd_unit_info_ptr_type ulp;

dev_adapter request_block_ptr_type arb_ptr;

struct dskget dskget;

dev_scsi_read_write_cmd_blk_ptr_typescsi_rw_cemd_blk_ptr;

dev_ scsi_ _emd _blk_ptr_ type sesi_gen_cmd_ptr;
dev_ scesi _generic_parm_ptr_ type sesi_gen_parm_ptr;
dev_scsi_generic_cmd_blk_type local_scesi_gen_cmd;

int32_type data_buffer _pyte_ size;
ulnt32_type data_bytes | transferred;
uint8e_type sense_keys [3];

boolean _type input_requested;

pointer_to_any type user_data_ptr;

df_physical_disk_label_block_ptr_type disk_label_ptr;

struct dskusage dskusage ;

/*.Implementation[=
/*

/* Determine the command type and process the command.

/
/*.End)= x/

status = OK;

uip = (dev_sd_unit_info_ptr_type)device_handle;

switch(command)

{
case DSKIOCGET:

/*.Implementation_Continued[*=
/*

/* The command is DSKIOCGET, return disk parameters to the

/* caller.
/*

/* .End)= */

dskget.total_sectors = uip->sector_count;

dskget. bytes per. sector = uip—>sector_size;
dskget.controller_id = 0;

status = sc_check “access ((word_ address ptr_type)¶meter,
usizeof(struct dskget), SC_WRITE_ACCESS) ;

if (status == OK)

{
status = sc_write_bytes_to_user((pointer_to_any_type)&#dskget,

(pointer_to_any_type) (word_address_type) parameter,

usizeof(struct dskget));

A-28 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

break;

case DSKIOC_GENERIC_SCSI:

scsi_gen_parm_ptr = (dev_scsi_generic_parm_ptr_type)parameter;

/*.Implementation_Continued [=
/*

/* Validate user buffers and copy contents into kernel address space.
/*

/*.End)= */

sc_read_bytes_from_user((pointer_to_any_type) &scsi_gen_parm_ptr—->cmd,
(pointer _to_any_type)&local_scsi_gen_cmd,

usizeof (dev_scsi_generic_cmd_blk_type));

se_read_bytes_from_user(

(pointer_to_any_type)&scsi_gen_parm_ptr->data_ptr,
(pointer _to_ any _type)&user_data_ptr,

usizeof(pointer_to_any_type));

/*.Implementation_Continued [=

/*® When the request is for data transfer (i.e.

/*® user_data_ptr is not NULL) the sense of
/*® <data_buffer_byte_size> provides the direction of the data

/* transfer: a negative value indicates an input operation and
/* positive indicates output. Thus obviating any need to

/* translate the SCSI command to determine whether to mark

/* the page frame(s) as been modified or merely referenced when

/* unwiring the user’s i/o buffer after a dma operation.

/* .Endj= «/

if (user_data_ptr != 0)

sc_read_bytes_from_user(

(pointer_to_any_type)&scsi_gen_parm_ptr->data_size,

(pointer _to_any_type)&data_buffer_byte_size,

usizeof(int32_type));

if (data_buffer_byte_size < 0)

{
input_requested = TRUE;

data_buffer_byte_size = -data_buffer_byte_ size;

}
else

{
input_requested = FALSE;

}

if (data_buffer_byte_size > uip->max_request_size)

{
status = IO EINVAL ILLEGAL _REQUEST_SIZE;

break;

}

status = sc_check_access((word_address_ptr_type)éuser_data_ptr,

(uint32_type)data_buffer_byte size,

SC_READ_ACCESS|SC_WRITE_ACCESS) ;
if (status != OK)

{
break ;

vm_wire_memory(user_data_ptr,

TRUE,

(uint32_type)data_buffer_byte_size);

}
else

user_data_ptr = DEV_SD_NULL_BUFFER_PTR;

data_buffer byte_size = 0;

}
if (status == OK)

io_sync_obtain_interleave_lock({ &uip-—>request_lock) ;

093-701053 Licensed material—property of Data General Corporation A-29

A Sample SCSI Device Driver

misc_dequeue_from_head(&uip->arb_free_queue,

(misc_queue_links_ptr_type *)éarb_ptr);

scsi_gen_cmd_ptr = (dev_scsi_cmd_blk_ptr_type)

&arb_ptr->scesi_cemd_blk;

local_scsi_gen_cmd.lun = arb_ptr->unit_spec.unit;

misc_byte_copy((byte_address_type)&local_scsi_gen_emd,

(pointer _to_any_type)scsi_gen_cmd_ptr,

(uint32_type)sizeof(dev_scsi_cmd_blk_type));

arb _ptr->request_flags = (bitl6e_type)0;

io_init_one_entry_buffer_vector(&arb_ptr->buffer_vector,

user_data_ptr,

(uint32_type)data_buffer_byte_sivze);

status = dev_sd_start_sync_request(uip, arb_ptr);
data_bytes transferred = io_get_buffer_vector_position (

&arb ptr->buffer_vector);

misc_enqueue_at_tail(&uip->arb_free_queue, é&arb_ptr->links);
if (io_assign_next_interleave_waiter(&uip—>request_lock))

dev_sd_start_asyne_request(uip);

}
io_release_interleave_lock(&uip->request_lock) ;

sc_write_bytes_to_user(

(pointer_to_any_type)&data_bytes transferred,
(pointer_to_any_type) &scsi_gen_parm_ptr->data_size,

(uint32_type)sizeof(uint32_type));
if (status == OK)

{
sense_keys[0]= (uint8e_type) 0;

sense_keys[1]= (uint8e_type)0;

sense_keys[2]= (uint8e_type) 0;

}
else

{
sense_keys[0jJ= (uint8e_type)status;

sense_keys[1]=

(uint8e_type)arb_ptr->sense_buffer.sense_key;

sense_keys[2]=

arb_ptr->sense_buffer.additional_sense_byte_5;

}
sc_write_bytes_to_user((pointer_to_any_type)sense_keys,

(pointer _to_any_type)&scsi_gen_parm_ptr->status,

(uint32_type)sizeof(sense_keys));

}

if (user_data_ptr != 0 && input_requested)

{
vm_mark_mod_and_ref_and_unwire_memory(user_data_ptr,

TRUE, (uint32_type)data_buffer_byte_size) ;

}
else if (user_data_ptr != 0)

{
vm_mark_ref_and_unwire_memory(user_data_ptr,

TRUE, (uint32_type)data_buffer_byte_size);

}
break;

case DSKIOC_READ_ DISK_LABEL:

case DSKIOC_WRITE_DISK_LABEL:

/*.Implementation_Continued [=
/*

The request is to read/write the disk label. Get the open lock

the the label can’t be changed while we are accessing it.

Allocate memory for the local disk label and determine the
operation type requested.

If the operation is a disk label write, make sure that we are

the only process that has the disk unit open and read the

label from user address space into our local buffer.
x

/*.End)= */

lm_obtain_unsequenced_lock(&dev_sd_open_lock) ;

A-30 Licensed material—property of Data General Corporation 093-701053

/*.Implementation_Continued[=
/®

/*®

/*

/*

/®

/*®

/*

/*

/*

/*

/*®

/* -End]=

A Sample SCSI Device Driver

disk_label_ptr = (df_physical_disk_label_block_ptr_type)

vm_get_wired_memory ((uint32_type)uip->sector_size,

VM_DEFAULT_ALIGNMENT) ;

if (command == DSKIOC_WRITE_DISK_LABEL)

{
if (uip->open_count != 1)

status = IO _EBUSY_DEVICE_HAS OPEN_UNITS;

goto disk_label_op_ failed;

status = sc_check_access_and_read_bytes_from_user(

(word _address_ptr_type)¶meter,

(pointer _to_any type)disk_label ptr,

usizeof(df_physical_disk_label_block_type));

if (status != OK)

{
goto disk_label_op_ failed;

}

}

Allocate a SCSI adapter parameter block and build a read/write

command block.

-End)=

. Implementation_Continued [=

*/

io_sync_obtain_interleave_lock(&uip-—>request_lock);

misc_dequeue_from_head(&uip->arb_free_queue,

(misc_queuve_links ptr_type *)éarb_ptr);

scsi_rw_cmd_blk_ ptr = (dev_scsi_read_write_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

scsi_rw_cmd_blk_ptr->lun = uip->unit_spec.unit;

scesi_rw_cemd_blk_ptr->logical_block_address = 0;

scsi_rw_cmd_blk_ptr->transfer_length = 1;

scsi_rw_cmd_blk_ptr->vendor_unique = 0;

scsi_rw_cmd_blk_ptr->reservedl = 0;

sesi_rw_cemd_blk_ptr->link = FALSE;

sesi_rw_emd_blk_ptr->flag = FALSE; .

arb ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER ;

io_init_one_entry_buffer_vector(é&arb_ptr->buffer_vector,

(pointer _to_any type)disk_label_ptr,

(uint32_type)uip->sector_size);

if (command == DSKIOC_READ_DISK_LABEL).

The request is to read the label. Call start_synce_request

to perform the read operation. If the read completes with

a good status, copy the label out to user space.

093-701053

*/

scsi_rw_cemd_blk_ptr->op_code = DEV_SCSI_CMD_ READ;

status = dev_sd_start_sync_request(uip, arb ptr);

misc_enqueue_at_tail(&uip->arb_free_queue, &arb_ptr->links);

if (io_assign_next_interleave_waiter(&uip->request_lock))

{
dev_sd_start_asyne_request(uip);

io_release_interleave_lock(&uip->request_lock);

if (status == OK)

status = sc_check_access((word_address_ptr_type)¶meter,

usizeof(df_physical_disk_label_block_type),

SC_WRITE_ACCESS) ;

if (status == OK)

{
status = sc_write_bytes_to_user(

(pointer_to_any type)disk_label_ ptr,

(pointer_to_any type)parameter,

usizeof(df_physical_disk_label_block_type));

Licensed material—property of Data General Corporation _ A-31

A Sample SCSI Device Driver

}
else

/*.Implementation Continued [=
/*

/* The request is to write the label. Note that the caller’s

/* label has already been copied from user space. Call
/* start_syne_request to perform the write operation.
/*

/* .End)= */

scsi_rw_cemd_blk_ptr->op_code = DEV_SCSI_CMD_WRITE;

status = dev_sd_start_sync_request(uip, arb_ptr);

misc_enqueue_at_tail(&uip->arb_free_queue, &arb_ptr->links);

if (io_assign_next_interleave_waiter(&suip—>request_lock))

dev_sd_start_async_request(uip);

io_release_interleave_lock(&uip->request_lock) ;

}

/*.Implementation_Continued[=
/*

/* Release the memory used as a local container for the disk label
/* and release the disk open lock.
/*

/*.End)]= x/

disk_label_op_failed:

vm_release_wired_memory((pointer_to_any_type)disk_label_ptr,

(uint32_type)uip-~>sector_size) ;

lm_release_unsequenced_lock(&dev_sd_open_lock) ;

break;

case DSKIOCUSAGE:

/*.Implementation_Continued[=
/*

/* The request is for sar type disk activity information. Pill in
/* a local dskusage structure and copy it out to the callers

/* buffer. Start by getting the various counters. These can

/* be copied out atomically and don’t require any locks.
/*

/* .End)= */

misc_get_value(&uip->read_block_count, &dskusage.read_block_count) ;

misc_get_value(&uip->write_block_count, &dskusage.write_bl.ock_count) ;

misc_get_value(é&uip->read_request_count, &dskusage.read_request_count) ;

misc_get_value(&uip->write_request_count, &dskusage.write_request_count) ;

/*.iImplementation_Continued[=

/7* Now get the total response and total busy times for the unit.

/* The unit lock is is required to insure exclusive access.

/* .En@)= . */

lm_obtain_unsequenced_lock(&uip—>unit_lock) ;

misc_clock_value_to_timeval (&uip->total_response_time,
&dskusage.response_time) ;

misc_clock_value_to_timeval (&uip->total_busy_ time,

&dskusage.busy_time) ;

im _release_unsequenced_lock(&uip—>unit_lock) ;

/*.Implementation_Continued[=

/* Verify the callers access to the supplied dskusage structure

/* and copy out the information.

/*.End)=
a/

status = sc_check_access((word_address_ptr_type) ¶meter,

usizeof(struct dskusage), SC_WRITE_ACCESS) ;

if (status == OK)

{

A-32 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

status = sc_write_bytes_to_user((pointer_to_any type) &dskusage,

(pointer _to_any_type)(word_address_type)parameter,

usizeof(struct dskusage));

}
preak;

default:

status = IO_EINVAL_COMMAND_NOT_SUPPORTED_BY_DEVICE;

break;

}

*return_value_ptr = ((status == OK) ? 0: -1);
/* sc_write_bytes_to_user(((status == OK) ? 0: -l),

return value_ptr, sizeof(uint32_type)); */

return(status);

}

/*.function */

[*$----------- */

WIRED

status type dev_sd_start_io (op_record_ptr)
[* enor */

io_operation_record_ptr_type op_record ptr;/* READ ONLY */

/*.Summary [=
/*

/* This function starts an asynchronous read or write operation
/* on the specified device.

/*.Parameters

/* op_record_ptr -- A pointer to the operation record for

/* the asynchronous request. The operation record contains fields
/* indicating the device handle of the device that is the target

/*® of the operation, the operation to be performed, the offset on
/* the device from which the operation is to commence, the size of
/*® the transfer, the address of the main memory buffer, and the
/* addressof the function that is to be called when the operation
/* completes.

/*.Functional_ Description

/* This function attempts to obtain the specified unit’s request
/* lock. If the lock is obtained, dev_sd_start_asynce_request is
/* called to start the request. Control is returned to the

/* caller as soon as the request has been issued through the

/* supporting adapter to the disk unit. The I/O daemon handles
/* request completion and starts the next request in the queue

/* if there is one.

/* If the unit request lock cannot be obtained, the request is
/* added to the unit request queue and the function returns
/* immediately. The enqueuved request is started when the
/* currently executing request and all requests ahead in the
/* queue have been executed.
/*

/*.Return_Value
/*

/* OK -- The request was successfully started. This status
/* does not indicate that the request has completed successfully.

/*.Exceptions
/*

/* None.

/*®

/* .Abort_Conditions
/*

/* None.

/*

{

dev_sd_unit_info_ptr_type uip;

093-701053 Licensed material—property of Data General Corporation A-33

A Sample SCSI Device Driver

/*.Implementation[=

J*® We queue the asynchronous request and then check to see if
/* we can get the unit request lock. If we can’t get a lock,
/* we increment the number of waiters in the current asynchronous

/* batch and return immediately. The request will be started when
/*® the unit becomes free.

/* Note that the request had to be queued before we checked if
/* the unit was free. If unit becomes free immediately after the

/* check, the request must be in the queue so that it can be

/* started by the process which just completed a request.

/* If the unit is immediately available, then we proceed to start
/* a request by calling a common asynchronous start routine. Note

/* that while we are guaranteed to be able to dequeue a request
/* if the unit is available, it may not be the same request we queued

/* at the beginning of the routine because other requests may have
/*® been queued in the interim.

/* Dev_sd_start_asyne_request always returns a good status.
/* Any errors that occur in starting the request must be reported
/* via the completion routine because the process that actually
/* calls dev_sd_start_asyne_request may not be the process that

/* originated the request.

/* .Endj= x /

uip = (dev_sd_unit_info_ptr_type)op_record_ptr->ri.device_handle;

misc_enqueue_at_tail(é&uip->async_request_queue, &op_record_ptr->links);

if (io_asyne_obtain_interleave_lock(&uip->request_lock))

dev_sd_start_async_request(uip);

1o_release_interleave_lock(6uip~request_lock) ;

return (OK);

}

/*.function */

[*6~~-———-*/
INITIALIZATION

void dev_sd_init ()

[* >= */

/*.Summary [=
/*

/*® This function performs pre-configuration initialization
/* required for the sd driver at system boot-time.

/* .Parameters

/* None.

/*.FPunctional_ Description

/* See Summary.

/* .Return_Value

/* None.

/* Exceptions

/* None.

lm_initialize_unsequenced_lock(&dev_sd_open_lock) ;

}

A-34 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*.function */

/*é */
UNWIRED

status_type dev_sd_configure (device_name_ptr, major_number)

/*> */

char_ptr_type device_name ptr;/* READ ONLY */

io_major_device_number_type major_number ; /* READ ONLY */

/*.Summary (=
/*

/* This function configures the specified device if it is a

/*® SCSI disk device.
/*

/* .Parameters

/*

/* device_name ptr -- A pointer to the character string name

/*® of the device to be configured.
/*

/* major_number -- The major device number on which the
/* device is to be configured.
/*

/*.Functional_ Description
/*

/* This function configures the specified device if it is a SCSI

/* disk device. Configuration includes allocation and initialization
/* of controlling data structures, configuration of supporting
/* SCSI adapter, SCSI disk device initialization, minor device

/* number allocation, and creation of the appropriate /dev entries.

/* Dev_sd_parse_device_name is called to extract a device mnemonic,
/* SCSI adapter name, SCSI adapter address, SCSI adapter number,

/* SCSI id and unit number from the name string specified by
/* <device_name ptr>. The name string speicfied by <device_name_ptr>

/* is of the form:

/* sd(<SCSI adapter mnemonic>(<SCSI adapter address>),SCSI id).

/* The device mnemonic must be "sd" for the device to belong to
/*® this driver. The SCSI adapter name and address are used as the
/* name string to call the supporting adapter’s configure routine.
/* Adapter address may be specified as an adapter number which
/* corresponds to the adapter’s bus position relative to
/* other adapters present. The SCSI id identifies the disk devices
/* location on the SCSI bus. A SCSI id of “*" indicates that all
/* disk devices on the bus should be configured. The unit number
/* field is ignored since all units at the specified SCSI id are
/* configured.
/*

/* .Return_Value
/*

/® OK -- The device was successfully configured.
/*

/* DEV_ENXIO_ADAPTER_CONFIG_FAILED —- The SCSI adapter which
/* supports the specified disk could not be configured.

/* IO_ENXIO_DEVICE_DOES_NOT_EXIST -- No disks were found
/* on the SCSI bus.

/* IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED -— All disks found
/* on the bus were already configured.

/* IO_ENXIO_ALL_MINOR_NUMBERS_IN_USE -- The call to allocate
/* a minor device number for a disk unit failed.
/*

/* Return values for dev_sd_parse_device_name.
/*

{
status_type status;

uint8 type unit;

char_type adapter_name[IO_DEV_ADAPT_MAX SPEC_SIZE];
uint8 type scsi_id;

dev_sd_unit_info_ptr_type uip;

093-701053 Licensed material—property of Data General Corporation A-35

A Sample SCSI Device Driver

uintl6_type disk_type;

dev_adapter_request_block_ptr_type arb_ptr;

vp_event_type delay_event;

int32_type result_index;

fs_dev_request_type dev_entry_info;
uint32_type length;

uint32_type 1;

uint32_type k

dev_sd_unit_info_ptr_type uip_table[DEV_SCSI_MAX_SCSI_IDS] [DEV_SCSI_MAX_UNITS] ;

dev_sd_unit_info_ptr_type uips_to_free[DEV_SCSI_MAX_UNITS] ;

i1o_device_number_type adapter_device_number;

boolean type : configure_all_disks;

boolean_type disk_found;

boolean_type disk_found_and_registered;

dev_scsi_adapter_unit_registration_blk_type unit_reg_blk;

dev_scsi_adapter_unit_options_block_type unit_opt_blk;

dev_scsi_inguiry_cmd_blk_ptr_type sesi_emd_blk_ptr;

/*.Implementation [=

/* Parse the device name to see if the specified device belongs

/* to this driver. Dev_sd_parse_device_name takes the adapter

/* address information provided and returns the adapter address

/*® and adapter number. Adapter number corresponds to the adapter’s

/* bus position relative to other adapters present and

/* is assigned as the adapter’s minor device number.

/* Io_sd_parse_device_name also converts SCSI id "e" to
/* DEV_SCSI_ID_ALL.

/*.Endj= “/

status = dev_sd_parse_device_name(device_name_ ptr,

adapter_name,

&scsi_id,

&unit);

if (status != OK)

{
goto done;

}

/* .Implementation_Continued [=
/*

/* Call dev_scsi_adapter_configure to configure the supporting
/* SCSI adapter if it has not already been configured. If the
/* adapter has already been configured the status

/* IO_ENXIO_DEVICE_CODE_ALREADY_ASSIGNED is returned and we

/* interpret this as an OK status.
x/

/*.Endj= /

status = dev_scsi_adapter_configure(adapter_name) ;

if ((status != OK) && (status != IO_ENXIO_DEVICE_CODE_ALREADY_ASSIGNED))
{
goto done;

}

/*.Implementation_Continued [=
x

/* Call the adapter name to device routine to get the device

/* number of the adapter. The device number identifies the class
/*® of adapter and a particular instance of an adapter of the class.
x/

/*.Endj]= 2/

status = dev_scsi_adapter_name_to_device(adapter_name,
&adapter_ device_number) ;

if (status != OK)

goto done;

/*.Implementation_Continued [=
/*®

/*

A-36 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* Call the adapter “device to name” routine to get the
/* complete adapter specification which will be used to

/* create the /dev entries.
/*

/*.End)= x/

status = dev_scsi_adapter_device_to_name(

adapter_device_number,

adapter_name,

(ulnt32_type)IO_DEV_ADAPT_MAX SPEC_SIZE) ;

if (status != OK)

{
goto done;

}

/*.Implementation_Continued[=
/*

/* If <device_name _ptr> specified that all SCSI disks on the
/* bus should be configured then we will attempt to configure

/* all possible disk units at all possible SCSI ids.
x/

/*.End)= */

configure_all_disks = FALSE;

if (scsi_id == DEV_SCSI_ID_ALL)

{
configure_all_disks = TRUE;

scsi_id = 0;

}

/*.Implementation_Continued [=
/*

/* Initialize to uip table. The uip table is used to keep
/*® track of which disk units are sucessfully configured.
x/

/*.End)= */

for (i = 0; i < DEV_SCSI_MAX_SCSI_IDS; i++)

tor (k = 0; k < DEV_SCSI_MAX UNITS; k++)

vip_table[i] [k] = DEV_SD_NULL_UNIT_INFO_PTR;

}

/*.Implementation Continued [=

/* Get the SCSI disk open lock and configure the requested
/* devices. The open lock is used globally to synchronize
/*® all configure, deconfigure, and open operations done on
/* SCSI disks.

/* Initialize the “uips_to_ free” table to null. There are
/* several places in the configuration process where something
/* can go wrong and we need to back out of the configuration of a
/* unit. The “uips_to_free” table is used to keep track of which
/* unit configurations failed so that the cleanup can be done in
/® one place instead of duplicating the cleanup code in every
/*® failure path.

/* .Endj= */

disk_found = FALSE;

disk_found_and registered = FALSE;

lm_obtain_unsequenced_lock(&dev_sd_open_lock) ;

for (i= 0; i < DEV_SCSI_MAX_SCSI_IDS; i++)

{
if (i != sesi_id)

{
continue;

j

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

{
uips to _free{unit] = DEV_SD_NULL_UNIT_INFO_PTR;

093-701053 Licensed material—property of Data General Corporation A-37

A Sample SCSI Device Driver

}

/*.Implementation_Continued [=
/*

/*® Determine if one or more disk units are at the current SC5I

/* id.
/*

/* For each possible unit at the SCSI id a unit information structure

/* is allocated and registered with the supporting adapter. The

/* adapter registration routine does the following:

/* Checks if a device has already been registered at

/* the specified SCSI id and unit number.

/* Allocates an adapter specific parameter block for
/* the unit. A pointer to the parameter block is saved

/* in the adapter bus table which maps adapter number,

/® scsi id, and unit number to parameter block and unit

/* information structure.

/* Note that the structure is alloctated with no page cross.

/* The inguiry buffer within this structure may be used
/* for a DMA operation by the SCSI adapter.

/* Returns the maximum number of bytes that can be

/* transferred through the disk interface in a single
/* operation.

/* A SCSI inquiry command is performed on each unit. If the unit
/* does not identify itself as a disk, the unit information
/* structure is deregistered and deallocated. Otherwise, if the
/* unit is a @disk, its unit information block is initialized.

/* The SCSI adapter driver’s set unit options routine is called for
/* each unit. This function is called to specify request timeout
/* and retry count values.

/* If the inquiry command fails, we delay ten milliseconds and
/* xretry the command. Up to DEV_SCSI_MAX_RETRIES_AFTER_RESET delays
/* and retries are performed before giving up because some devices
/* require time to settle after a bus reset before they can :respond
/* to commands. The adpater configure routine-resets the SCSI bus
/* the first time it is.

/*.Endj= */

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

{
uip = (dev_sd_unit_info_ptr_type)vm_get_wired_memory (

usizeof(dev_sd_unit_info_type),

VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS) ;

uip->adapter_device_number = adapter _device_number;

misc_initialize_ queue(éuip-—>%arb_free_queue) ;
uip->unit_spec.scsi_id = scsi_id;

uip->unit_spec.unit = unit;

misc_initialize_queue(&uip->»async_request_queue) ;

io_initialize_interleave_lock(&uip->request_lock,

(uintl6_type)DEV_SD_MAX_CONCURRENT_UNIT_REQUESTS) ;

/*.Implementation_Continued[=
/*

/*® Attempt to register with the SCSI interface. If a device

/* is already registered for the SCSI id and unit number,

/* release the resources allocated for the configuration.
x/

/*.Endj)= =/

uip-Sadapter_handle = DEV_SD_NULL_ADAPTER_HANDLE ;

unit_reg_blk.adapter_device_number = adapter_device_number;
unit_reg_blk.unit_spec.scsi_id = scsi_id;

unit _reg blk.unit_spec.unit = unit;

unit_reg_blk.driver_handle = (io_device_handle_type)uip;
unit reg blk.device_type = DEV_SD_DEVICE_TYPES_SUPPORTED;

unit_reg_blk.max_concurrent_requests =

(uintl6_type)DEV_SD_MAX_ CONCURRENT _UNIT_REQUESTS ;

A-38 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

status = dev_scsi_adapter_register_requester(
adapter_device_number.major,

S&unit_reg_ bik);

if (status != OK)

{
uips to_free[unit] = uip;

uip_table[{scsi_id] [unit] = DEV_SD_NULL_UNIT_INFO_PTR;

if (unit_reg_blk.device_type & DEV_SD_DEVICE_TYPES_ SUPPORTED)

{
disk_found = TRUE;

continue;

J

{
break;

}
}

uip->adapter handle = unit_reg_blk.adapter_handle;

uip->max_request_size = unit_reg_blk.max_request_size;

else

/* .Implementation_Continued[=

/* Allocate memory for the SCSI adapter request blocks,

/* initialize them, and enqueue them to the free queue for
/* the unit.

/* .End)= =/

for (k = 0; k < DEV_SD_MAX_CONCURRENT_UNIT_REQUESTS; k++)

{
arb ptr = (dev_adapter_request_block_ptr_type)

vm_get_wired_ memory (

usizeof (dev_adapter_request_block_type),

VM_DEFAULT_ALIGNMENT) ;

arb _ptr->type = DEV_SCSI_ARB_TYPE_SCSI_I;

arb ptr->unit_spec.scsi_id = scsi_id;

arb_ptr->unit_spec.unit = unit;

arb _ptr->adapter_ handle = unit_reg_blk.adapter_handle;
(void)misc_enqueue_at_tail(&uip-—>arb_free_queue,

&arb_ptr->links);

}

/* .Implementation_Continued[=

/* Do the inquiry command to determine if a disk device
/* exists at the current SCSI id and unit number. Note that
/* we will use the default unit options (timeout, retries, ...)

/* to perform the inquiry. Note that the default unit options

/*® for the SCSI interface are used to perform the inquiry.
/*

/* The inquiry command is the first command issued to the

/* target device. For various reasons (i.e. first command after
/* reset, syne negotiation attempted on first command ...)
/* some devices misbehave on the first command. As a result,

/* we retry the inguiry command a couple of times as long
/* as the command does not timeout. A timeout indicates that

/* there is no device out present to accept the command.

/*-End)]= =/

io_synce_obtain_interleave_lock(&uip->request_lock) ;
misc _dequeue_from_head(&uip->arb_free_queue,

(misec_queue_links_ptr_type *)&arb_ptr);

for (k = 0; k < DEV_SCSI_MAX_RETRIES_AFTER_RESET; k++)

{
scsi_cmd_blk_ptr = (dev_scsi_inquiry_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

scsi_cmd_blk_ptr->op_code = DEV_SCSI_CMD_INQUIRY;

scsi_cmd_blk_ptr->lun = unit;

scsi_cemd_blk_ptr->reservedl = 0;

scsi_cmd_blk_ptr->reserved2 = 0;

sesi_cmd_blk_ptr->reserved3 = 0;

scsi_emd_blk_ptr->alloc_len = usizeof(dev_scsi_inquiry_buffer_type) ;

scsi_cmd_blk_ptr->vendor_unique = 0;

scsi_emd_blk_ptr->reserved4 = 0;

093-701053 Licensed material—property of Data General Corporation A-39

A Sample SCSI Device Driver

secsi_cmd_ blk ptr->link = FALSE;

scsi_cmd_blk_ptr->flag = FALSE;

arb_ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER ;

io_init_one_entry_buffer_vector(

&arb_ptr->buffer_vector,

(pointer_to_any_type)éuip-—>inquiry_buffer’,

(uint32_type)scsi_cmd_blk_ ptr->alloc_len);

status = dev_sd_start_sync_request(uip, arb_ptr);

if (status == OK)

{
if (!((1 << uip-~>inguiry_buffer.device_type) &

DEV_SD_DEVICE_TYPES_SUPPORTED))

status = IO_ENXIO_DEVICE_NOT_SUPPORTED;

}

}
if (status == OK)

{
break;

}
if ((status == IO_ENXIO_UNIT_NOT_READY) || (status ==

IO_EIO_PHYSICAL_UNIT_FAILURE))

{
/*.Implementation__Continued [=

/* If the unit is telling us that it is not ready, delay

/* for a second to give it time to recover from the last

/* request (i.e. SCSI bus reset, sync negotiation).
x

/*.End)= */

vp_create_clock_event(&delay_ event, &misc_one_second) ;

vp_await_ec(&delay event, (int32_type)l, &result_index);

}
}

misc_enqueue_at_tail(&uip->%arb_free_queue, é&arb_ptr—>links);

if (io_assign_next_interleave_waiter(&uip->request_lock))

dev_sd_start_asynce_request(uip);

}
io_release_interleave_lock(&uip->request_lock) ;

/*.Implementation_Continued [=
x

/® If the inquiry command failed, update the uips_to_free table

/*® so that all resources associated with the unit will be

/* released.
x/

/* .End)= */

if (status != OK)

{
uips_to_free[unit] = uip;
uip_table[sesi_id] [unit] = DEV_SD_NULL_UNIT_INFO_PTR;

if (status == IO_EIO_DEVICE_TIMED OUT)

/*.Implementation_Continued [=
x

/* We only expect a timeout to occur on an inguiry if no

/* units are present at a SCSI id. As a result, if a
/* timeout is detected here we don’t bother to check for
/* any more units at the SCSI id. Doing this shortens the
/* time it takes to auto-configure the disks.

x

/*.End)= =/

break;

else

{
continue;

}

/*.Implementation_Continued [=

A-40 Licensed material—property of Data General Corporation 093-701053

/*

/*

/*

/*.Implementation_Continued[=

A Sample SCSI Device Driver

A @isk was found at the current unit number and SCSI id.

Complete the initialization of the uip. and record that a

disk was actually found.

-End)= x/

disk_found_and_registered = TRUE;

uip_ table[scsi_ id] {unit] = uip;
uip->device_number.major = major_number;

uip->open_count = 0;

uip-writer_count = 0;

uip->exclude_writers_count = 0;

uip->inhibit_ error_logging = FALSE;

uip->sector_size = DEV_SD_STANDARD_SECTOR_SIZE;

lm_initialize _unsequenced_ lock (&uip—>unit_ lock);
misc_initialize_counter(é&uip-—>read_block_count, (int32e_type)0);

misc_ initialize counter(&uip->write_ block _count, (int32e_type)0);
misc_ initialize counter(suip->read_request_count, (int32e_type)0);

misc _ initialize _ counter (&uip->write_ request_count, (int32e_type)0);
MISC _| CLOCK _ VALUE_SET_TO_ZERO(&uip->total_response_ time);
MISC _ CLOCK __ VALUE_ SET_ TO ZERO(&uip->total_busy_ time);

} /* End of unit for loop */

/*

J/® Set the unit options for each disk unit that was found.

/* The timeouts selected for the device are based on the

/* device type. A relatively short timeout is used for

/* conventional hard disks since they respond very quickly.

/* A longer timeout value is needed for slower direct access

/* devices like floppies, WORMS, and CD-ROMS. For now,

/* fifteen seconds seems to be enough time for the slower

/* devices. However, just to be extra safe we allow thirty

/* seconds.
/* :

/* Unit options are set only after all the inguiries at the

/* SCSI id have been done. This is done because some SCSI

/* interfaces do not allow options for units to be set

/* individually. A set_unit_options request for a particular

/* unit applies to all units at the SCSI id. The set_unit_options

/* must be done after all the inguiries so that we don’t set a

/* large timeout for all luns before all the units have been

/*® querried.
/*

/*.End]= x/

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

{
uip = uip_table[scsi_id] [unit];

if (uip != DEV_SD_NULL_UNIT_INFO_PTR)

unit _opt_blk.sense_bytes =~ usizeof(
dev_scsi_request_sense_buffer_type);

status = dev_sd_determine disk_type(uip, &disk_type);

if ((status == OK) && (disk_type == DEV_SD_DISK_TYPE_RIGID))

{
unit_opt_blk.bus_request_timeout_ptr = &mise_two_seconds;
unit_opt_blk.disconnect_timeout_ptr = &misc_five_seconds;

else

unit _opt_blk.bus_request_timeout_ptr = émisc_fifteen_seconds;
unit _opt_blk.disconnect_timeout_ptr = émisc_fifteen_seconds;

unit_opt_blk.max_disconn_reconn_per_command = 4;

unit _opt_bik. adapter__ retries = 3;
unit_opt_blk.synchronous_data_transfers = FALSE;
unit_opt_ blk.perform_request_ sorting = TRUE;

status = dev_scsi_adapter_set_unit_options(

adapter _device_ number. major,
uip->adapter_. handle,

093-701053 Licensed material—property of Data General Corporation A-41

A Sample SCSI Device Driver

&unit_opt_blk);

if (status != OK)

uip_table[scsi_id] {unit} = DEV_SD_NULL_UNIT_INFO_PTR;

uips_to_free[unit] = uip;

}

}

/*.Implementation_Continued [=

/* Allocate the minor device numbers for all the disk units located
/* at the current SCSI id. If an error occurs during minor number

/* allocation, back out by releasing all minor numbers allocated
/* for devices at the current SCSI id.

/*.Endj= */

for (unit = 0; unit < DEV_SCSI_MAX UNITS; unit++)

be (uip_table[scsi_id] [unit] == DEV_SD_NULL_UNIT_INFO_PTR)
continue;

status = io_allocate_device_number(

major_number,

(bit32e_type)uip_table[scsi_id] [unit],

unit,

&ulp_table[scsi_id] [unit] —->device_number.minor) ;

1f (status != OK)

{
while (unit != 0)

unit--;

if (uip_table[scesi_id] [unit] != DEV_SD_NULL_UNIT_INFO_PTR)

uip table[scsi_id] [unit] = DEV_SD_NULL_UNIT_INFO_PTR;

uips to _freef[unit] = uip;

}

goto config_next_scsi_id;

}

/*x.Implementation_ Continued [=
/*

/* Add the disks found at the current SCSI id to the list of

/* disks to be implicitly registered as part of system

/* initialization.
/*

/* .End)= */

for (unit = C; unit < DEV_SCSI_MAX UNITS; unit++)

{
if (uip_table[scsi_id] [unit] != DEV_SD_NULL_UNIT_INFO_PTR)

{
1o_add_to_register_list(uip_table[scsi_id] {unit]->device_number) ;

}
}

/*.Implementation_ Continued [=
/*

/* Create appropriate /dev/pdsk and /dev/rpdsk entries for the

/* units at this SCSI id. We create block and character

/* special entries with permissions set to 0640.
. Y/

/*.End)= x/

dev_entry_info.operation = Fs_Dev_Request_Operation_Create;

length = usizeof(dev_entry_info.dirname) ;

misc_string_copy("“pdsk”", dev_entry_info.dirname, é&length);

dev_entry_info.op.create.mode_bits = S_IFBLK | S_IRUSR | S_IWUSR;
for (k=0; k <= 1; k++)

{
for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

A-42 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

{
if (uip_table[scsi_id] [unit] #= DEV_SD_NULL_UNIT_INFO_PTR)

{
continue;

dev_entry_info.op.create.device = uip_table[scsi_id] {unit]->
device_number;

misc_format_line(dev_entry_info. filename,
usizeof(dev_entry_info. filename),

"sd(ts,%d,%d)",
(bit32e_type)adapter_name,

(bit32e_type)scsi_id,

(bit32e_type)unit);

fs_submit_dev_request(&dev_entry_info);

length = usizeof (dev_entry_info.dirname) ;

misc_string_copy("rpdsk”, dev_entry_info.dirname, s&length);

dev_entry_info.op.create.mode_bits = S_IFCHR | S_IRUSR | S_IWUSR;

}

config _next_scsi_id:

/*.Implementation_Continued [=
/*

/* Perform cleanup of unit information structures for units

/* which could not be configured.
/*

/*.End)=
=/

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

uip = uips_to_free[unit];

if (uip == DEV_SD_NULL_UNIT_INFO_PTR)

{
continue;

}
if (uip->adapter_handle != DEV_SD_NULL_ADAPTER_HANDIE)

{
dev_scsi_adapter_deregister_requester (

adapter_device_number.major,

uip~>adapter_handle) ;

misc_dequeue_from_head(&suip~>arb_free_queue,
(misc_queue_links_ptr_type *)éarb_ptr);

while ((misc_queue_links_ptr_type)arb_ptr !=

MISC_QUEUE_NULL_LINKS_PTR)

{

vm_release_wired_memory((pointer_to_any_type)arb_ptr,
usizeof(*arb_ptr));

misc_dequeue_from_head(éuip->arb_free_queue,
(misc_queue_links_ptr_type *)&éarb_ptr);

}
vm_release_wired_memory((pointer_to_any_type)uip, usizeof(*uip));

}

if (configure_all_disks)

scsi_id++;

}

} /* End SCSI ID for loop */

lm_release_unsequenced_lock(&dev_sd_open_lock) ;

/*.Implementation_Continued [=
/*®

/®

/*

/*

/*

/*®

/*

/*®

/*®

Report an error only if no disks were configured. Search the

local uip table to see if any disks were configured. If the

table is empty, one of three possible errors have occurred :

IO_ENXIO_DEVICE_DOES_NOT_EXIST — No disk devices were

found at the requested SCSI bus locations.

IO_ENXIO_DEVICE_ALREADY_CONFIGURED - All disks devices

found at the requested SCSI bus locations were already

093-701053 Licensed material—property of Data General Corporation A-43

A Sample SCSI Device Driver

/* configured.

/* IO_ENXIO_ALL_MINOR_NUMBERS_IN_USE - One or more

/* configurable disks were found but minor numbers

/*® could not be allocated for them.

/*.Enaj= */

status = IO_ENXIO_DEVICE_DOES_NOT_EXIST; _

for (scsi_id = 0; sesi_id < DEV_SCSI_MAX_SCSI_IDS; scsi_id++)

{
for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unitt+)

if (uip_table[scsi_id] [unit] != DEV_SD_NULL_UNIT_INFO_PTR)

status = OK;

}
}

}
1f (status '!= OK)

{
if (disk_found)

{
if (disk_found_and_ registered)

{
status = IO_ENXIO_ALL_MINOR_NUMBERS_IN_USE;
}

else

{
status = IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED;

}

}
done:

return(status);

}

/*.function */

/*6 */
UNWIRED

status_type dev_sd_deconfigure (device_name_ ptr)

/*> */

char_ptr_type device_name ptr;/* READ ONLY */

/*.Summary [=
/*

/* This function deconfigures the specified device if it is a

/* SCSI disk device.
/*

/*.Parameters
J/*

/* @evice_name_ ptr -- A pointer to the null-terminated string
/* specifying the device to be deconfigured.
x

/*.Funetional_Description
/*

/* This function deconfigures all units associated with the specified

/* device if it is a SCSI disk device. The minor device numbers

/* assigned to the units are made available for reuse. The device

/* is deregistered with the SCSI adapter manager and all memory

/* used to control the device is released.

/* ,
/* .Return_Value
/*

/* OK -- The device was successfully deconfigured.
/*

/* IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED -~ The given

/* device specification was not the name of a SCSI disk device.

/* IO _EBUSY_DEVICE_HAS OPEN_UNITS -- The device could
/* not be deconfigured because one or more units are still

A-44 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*® open.
/*

/*.Exceptions
/*

/* None.

/*

{

status type status;

uint8 type unit;

uint8_ type scesi_id;

dev_sd_unit_info_ptr_type uip_table[DEV_SCSI_MAX_UNITS];

dev_sd_unit_info_ptr_type ulp;

char_type adapter_name[IO_DEV_ADAPT_MAX_SPEC_SIZE} ;

io_device_number type adapter_device_number;

dev_scsi_adapter_unit_spec_type unit_spec;

dev_adapter_request_block_ptr_type arb_ptr;

/*.Implementation[=
/*

/* Parse the device name to see if it belongs to this driver.

/* If not, return the error.
x

/*.End}= */

status = dev_sd_parse_device_name(device_name_ ptr,
adapter_name,

&scsi_id,

&unit);

if (status != OK)

{
return(status) ;

/* .Implementation_Continued [=

/* Get the SCSI disk open lock so that no other operations can

/* be performed on the device while it is being deconfigured.

/* Call scsi adapter name_to_device routine to get the supporting
/* SCSI adapter’s device number.

/* .End]= x /

lm_obtain_unsequenced_lock(&dev_sd_open_lock);
status = dev_scsi_adapter_name_to_device(adapter_name,

&adapter_device_number) ;

if (status != OK)

{
goto done;

}

/*.Implementation_Continued[=
/*

/* Find all the disk units at the specified SCSI id. If any one

/* of the units is still open, abort the deconfigure and return

/* the error.
x

/*.Endj]= «/

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)
{
uip_table{unit] = DEV_SD_NULL_UNIT_INFO_PTR;

status = dev_scsi_adapter_get_device_info(

adapter_name,

unit_spec,

DEV_SD_DEVICE_TYPES_SUPPORTED,

(io_device_handle_ptr_type)suip);

if (status == OK)

{
uip_tablef{unit] = uip;

if (uip->open_count != 0)

093-701053 Licensed material—property of Data General Corporation A-45

A Sample SCSI Device Driver

status = IO_EBUSY_DEVICE_HAS_OPEN_UNITS;

goto done;

}

}

/*.Implementation_Continued[=
/*

/* For each unit found, give back the memory used for the adapter

/* request blocks and unit information structure. Also, deallocate

/*® the device number used for the unit.
x/

/* .End)= */

for (unit = 0; unit < DEV_SCSI_MAX_UNITS; unit++)

{
if (uip_table[unit] != DEV_SD_NULL_UNIT_INFO_PTR)

{
dev_scsi_adapter_deregister_requester(adapter_device_number.major,

uip-~>adapter_ handle);

misc _dequeue_from_head(&éuip->arb_free_queue,

(mise_gueue_links ptr_type *)é&arb_ptr);

while ((misc_queue_links_ptr_type)arb_ptr !=

MISC_QUEDE_NULL_LINKS_PTR)

{
vm_release_wired_memory((pointer_to_any_type)arb_ptr,

usizeof(*arb_ptr));

misc_dequeue_from_head(&uip->arb_free_queue,

(mise_queue_links_ptr_type *)&arb_ptr);

io_deallocate_device_number(uip->device_number) ;

vm_release wired _memory((pointer_to_any_type)uip, usizeof(*uip));

}
J

done:

lm_release_unsequenced_lock(&dev_sd_open_lock) ;
return(status);

/*.function */

[*< */
UNWIRED

status_type dev_sd_name_to_ device (device_name_ ptr, number ptr)

/*> */

char _ptr_type device_name_ ptr;/* READ ONLY */
io_device_number_ ptr_type number ptr;/* WRITE ONLY */

/*.Summary [=
/*

/* This function translates the specified device_name into a
/* device number, if <device_name_ptr> names a configured
/* SCSI disk.
/*

/7* .Parameters

/*

/* device_name_ptr -- A pointer to the null-terminated device

/* name that is to be translated.
/*

/* number _ptr -- A pointer to where the corresponding
/® device number is to be written.

/*.Functional Description

/* See Summary.

/* .Return_Value

/* OK -- The device name was successfully translated.

/* Return values from dev_sd_parse_device_name.

/* Return values from the supporting adapter’s get_device_info routine.

A-46 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*

/* .Exceptions
/*

/* None.

/*

{

status_type status;

char_type adapter_name[IO_DEV_ADAPT_MAX_SPEC_SIZE] ;

i0_device_number_ type adapter _device_number;

dev_scsi_adapter_unit_spec_type unit _spec;

dev_sd_unit_info_ptr_type uip_ ptr;

/*.Implementation[=
/*

/*® Parse the device name to see if it belongs to this driver.

/* If so, validate that the SCSI id specifies a unique SCSI

/* bus location.
/*

/* .End)TM= x/

status = OK;

status = dev_sd_parse_device_name(device_name_ptr,

adapter_name,

&unit_spec.scsi_id,

gunit_spec.unit);

if (status != OK)

goto name_not_recognized;

}
if (unit_spec.scsi_id == DEV_SCSI_ID_ALL)

{
status = I0_ENXIO_DEVICE_NAME_NOT_ RECOGNIZED;
goto name_not_recognized;

}

/* .Implementation_Continued [=
/*

/* Get the SCSI disk open lock so the device cannot be deconfigured
/* while we are mapping device name to number. Call scsi adapter
/* name _to device routine to get the supporting SCSI adapter’s
/* device number.
x/

/* .End]= */

lm_obtain_unsequenced_lock(é&dev_sd_open_lock) ;
status = dev_scsi_adapter_name_to_device(adapter_name,

&adapter_device_number) ;

if (status != OK)

{
goto error_release_lock;

}

/*.Implementation_Continued [=

/* Call the supporting SCSI adapter’s get_device_info routine
/* to get a pointer to the physical disk’s unit information
/* structure. If the unit information structure pointer is
/* successfully returned, get the disk unit’s device number
/® and return it to the caller.

/* .End)= = /

status = dev_scesi_adapter_get_device_info(

adapter name,

unit_spec,

DEV_SD_DEVICE_TYPES_SUPPORTED,

(io_device_handle ptr_type)&uip_ptr);

if (status == OK)

{
*number ptr = uip_ptr->device_number;

}

093-701053 Licensed material—property of Data General Corporation A-47

A Sample SCSI Device Driver

error_release_lock:

lm_release_unsequenced_lock(&dev_sd_open_lock) ;

name _not_recognized:

return(status);

}

/7/*.function */

[*6¢ x/

UNWIRED

status_type dev_sd_device_to_name (device_number, name_ptr, size)

[*> */

io_device_number_type device_number;/* READ ONLY */

char_ptr_type name _ ptr; /* WRITE ONLY */

uint32_type size; /* READ ONLY */

/*.Summary [=
/*

/* This function returns the character string name associated with
/* the specified device number.
/*

/*.Parameters

/*

/* device_number -- The device number for which is the

/* character string name is wanted.
/*

/* name_ptr -- A pointer to where the null-terminated

/* character string name is to be written.
/*

/* size -- The maximum number of bytes, including the terminating
/* null, that is to be written to <name_ptr>.
/*

/*.Functional_ Description
/*

/* The given device number is mapped to a SCSI id, SCSI adapter and

/*® unit number, and a string of the form
/*

/*® sd(<SCSI adapter mnemonic>@<device code>(<SCSI adapter address>),
/*® <SCSI id>, <unit number>)
/*

/* is returned.
/*

/* .Return_Value
/*

/* OK -- The translation was performed successfully.
/*

/* IO_ENXIO_DEVICE_IS_NOT_CONFIGURED -- The specified

/* device number is not configured.
/*

/* .Exceptions
/*

/* None.
/*

{

status_type status;

dev_sd_unit_info_ptr_type uip;
char_type adapter_name [IO_DEV_ADAPT_MAX_ SPEC_SIZE];

uintl6_type unit;

/*.Implementation [=
/*

/* Get the SCSI disk open lock and map the specified device

/* number to a unit information structure.
x

/*.Endj= x/

lm_obtain_unsequenced_lock(&dev_sd_open_lock) ;

status = io_map device_number(device_number, (bit32e_ptr_type)&uip, sunit);
if (status != OK)

{
goto done;

A-48 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

}

/*.Implementation_Continued [=
/*

/* Call the supporting adapter’s "device to name” routine to
/* get the complete adapter specification.
«/

/* .End]= */

status = dev_scsi_adapter_device_to_name(

uip->adapter_device_number,

adapter _name,

(uint32_type)IO_DEV_ADAPT_MAX SPEC_SIZE);

/*.Implementation_Continued [=
/*

/* Produce a formatted device name from information in the disk
/* uip and the adapter spec.
x

/* .End)= */

if (status == OK)

{
misc_format_line(name_ptr,

size,

"sd(%s,%d,%d)",
(bit32e_type)adapter_name,

(bit32e_type)uip—>unit_spec.scsi_id,

(bit32e_type)unit);

J
done:

lm_release_unsequenced_lock(&dev_sd_open_lock) ;

return(status);

}

/*.function */

[*< */
WIRED

status_type dev_sd_parse_device_name (device_spec_ptr,
adapter_name ptr,

scsi_id_ptr,

unit ptr)

[*> */

char_ptr_type device_spec_ptr; /7* READ ONLY */
char_ptr_type adapter_name_ ptr; /* WRITE ONLY */
uint8 ptr type scsi_id ptr; /* WRITE ONLY */
uint8_ptr_type unit_ptr; /* WRITE ONLY */

/*.Summary [=
/*

/* This function parses the specified device name, determines
/* whether it is the name of a scsi disk device, and if so, returns

/* the parsed information about the device.

/*.Parameters

/* device_spec_ptr ~- A pointer to the null-terminated
/* character string identifying the device spec to be parsed.

/* adapter_name_ ptr -- A pointer to where the SCSI adapter
/* name which is embedded in <device_name_ptr> is to be returned.

/* scsi_id_ptr -- A pointer to where the SCSI id from
/* <device_name_ptr> is to be returned.

/* unit_ptr —- A pointer to where the unit number from
/* <device_name ptr> is to be returned.
/*

/*.Functional_Description
/*

/* See Summary.

/*

093-701053 Licensed material—property of Data General Corporation A-49

A Sample SCSI Device Driver

/*.Return_Value
/ x

/* OK -- The device was successfully configured.
x

/* IO0_ENXIO_ DEVICE _NAME_NOT_RECOGNIZED -- The given

/* device specification was not the name of a SCSI disk device.
/ x

/* .Exceptions
/ x

/* None.

/*

{

status_type status;

uint32_ type hex number ;

1o_dev_adapt_info type adapter_info;

int32_type spec_size;

/*.Implementation[=
/*

/* Call the generic parse device spec routine to
/* break the device spec into its components.
/[*®

/*®.En@j*= =/

status = OK;

if (tio _parse_device_spec(device_spec_ptr, &adapter_info, &spec size))

{
status = IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED;

goto done;

}

/*.Implementation_Continued [=
/*

/* See if the device mnemonic returned by the parse device

/* spec routine matches the mnemonic that specifies a

/*® device under the juristiction of this driver. If not,

/* return the error.
/*

/*.End)= */

if (misc_string_compare((byte_address_type)adapter_info.name,
Oo s a" ,

(uint32_type)IO_DEV_ADAPT_MAX_SPEC_SIZE) != 0)

{
status = IO_ENXIO_DEVICE_NAME_NOT_ RECOGNIZED;

goto done;

/*.Implementation_Continued [=
/*

/* Copy the scsi adapter spec parameter to <adapter_name_ptr>.

/* If no adpater was specified, return an error.
x

/*.End)=
=/

if (*adapter_info.params[0] == ’ ’)

Status = IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED;

goto done;

spec_size = IO_DEV_ADAPT_MAX_SPEC_SIZE;

(void)misc_string_copy((pointer_to_any_type)adapter_info.params[0],
(pointer_to_any_type)adapter_name ptr,

(uint32_ptr_type) &spec_size);

/*.Implementation_Continued [=

/® Return the SCSI id of the disks device. If a SCSI id was not

/* specified, use the default. If SCSI id is specified as ’*’,

/* return the id code which indicates that all SCSI disks in

[* the system are being named.

A-50 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* .Endj= s/

if (*adapter_info.params[l] == ’ ‘)

*sesi_id_ptr = DEV_SD_DEFAULT_SCSI_ID;

else if (*adapter_info.params[1l] == ‘*’)

*sesi_id _ptr = DEV_SCSI_ID_ALL;

else

if (io_hex_str_to_int(adapter_info.params[1l],
&hex_number))

status = IO_ENXIO_DEVICE_NAME NOT RECOGNIZED;

goto done;

}
*scesi_id_ptr = (uint8_type)hex_number;

}

/*.Implementation_Continued [=

/* Return the unit number of the disk device. If a unit number

/* was not specified, return the default unit number of zero.

/* Note that the unit number is assumed to be in the third
/* parameter field of the device spec. The memo "Device
/* Specifications for Industry Standard Machines" defines this
/*® field to be a file number. However, since file number does
/* not apply to disk device configuration, this field is used
/*® to specify the unit number of the device. In the future,
/*® a fourth parameter to the device spec may be added to

/* specifiy the unit number.

/*.Enda)= %/

if (*adapter_info.params[2] == ’ “”)

tunit ptr = DEV_SD_DEFAULT_UNIT_NUMBER;

}
else

if (io_hex_str_to_int(adapter_info.params[2],
&hex number))

{
status = IO _ENXIO_DEVICE_NAME NOT _RECOGNIZED;

}
*unit ptr = (uint8_type)hex_number;

}

done:

return(status) ;

}

/*.function */

1*6 */
WIRED

void dev_sd_complete_io (data, status)

/*> */

bit32e_type data; /* READ ONLY */
status_type status;

/*.Summary [=
/*

/* This function handles the completion of asynchronous requests
/* that have been completed by the disk controller.

/*.Parameters

/* data -- The 32 bits of data that was in the message
/* given to the driver demon.

093-701053 Licensed material—property of Data General Corporation A-51

A Sample SCSI Device Driver

/*.Functional_Description

/* This function handles the completion of asynchronous I/O

/* requests. The completion status of the I/O operation is

/* determined. Additional information about the request status

/* is obtained from sense information returned by the unit if

/* necessary.

/* Also, if the request indicates that sector buffering is in

/* progress, this function calls dev_sd_complete_async_sb_io

/*® to determine the proper action to take.

/* When the result of the operation is determined, this function

/* calls the “complete_io” function specified in the operation
/® record. This is an upeall to notify the requestor that the

/* asynchronous operation is now complete.

/* .Return_Value

/* OK -- The operation completed successfully.

/* Return values from dev_sd_evaluate_sense_info.

/* .Exceptions

/* None.

/*.Abort_Conditions

/* None.

dev_adapter_request_block_ptr_type arb_ptr;

1o_operation_record_ptr_type op_record ptr;

dev_sd_unit_info_ptr_type ulp;

uint32_type bytes requested;

pointer_to_any_type buffer_ptr;

misc_clock_value_type busy_time;

misc_clock_value_type cur_time;

boolean_type done;

/*.Implementation[=

/* An asynchronous I/O request has just completed. If the

/* completion status indicates that the command completed

/* with a check condition status, the sense information is

/* evaluated.

/*.Endj= */

arb ptr = (dev_adapter_request_block_ptr_type)data;

op_record_ ptr = arb_ptr->op_record_ptr;

uip = (dev_sd_unit_info_ptr_type) (op_record_ptr->ri.device_handle) ;

if (status == DEV_STATUS_SCSI_CMD_COMPLETE_CHECK_CONDITION)

/*.Implementation_Continued [=
/*

/* Sense information has been delivered. The sense information

/* is interpreted and the appropriate status is returned to

/* the caller.
/*

x

/*
/* .End)=

x/

status = dev_sd_evaluate_sense_info(uip, arb_ptr);

if (status == DEV_SCSI_SENSE_KEY_RECOVERED_ERROR)

{
status = OK;

}
done = TRUE;

}

A-52 Licensed material—property of Data General Corporation 093-701053

if

A Sample SCSI Device Driver

(status == OK)

{

io_get_buffer_vector_io_info(é&o0p_record_ptr->ri.buffer_vector,

&buffer_ptr,

&bytes requested) ;

if (arb_ptr->request_flags & DEV_SCSI_REQUEST_FLAGS_SB)

{
status = dev_sd_complete_async_sb_io(arb_ ptr, &done);

}

if (op_record_ptr->ri.op & IO_OPERATION_CHECK _SELF_ID)

{
if (!:fs_check_self_id(buffer_ptr,

&0p_record_ptr~->ri.self_id,

&bytes_requested))

{
status = I0_ EINVAL _BAD_SELF_ID;

}

}

}
else if (status == DEV_EIO_SD_UNIT_ATTENTION_ON)

/*.
/*

/*

/*

/*

/*

Implementation_Continued [=

Map any none exported statuses to something the buffer

manager will understand.

-End]j= a /

status = IO_EIO PHYSICAL UNIT_FAILURE;

done = TRUE;

}

.Implementation_Continued [=

Return the adapter request block to the free queue, release the

unit request lock, and get the next asynchronous request started

if there is one. Note that after we release the lock we must

not reference the adapter request block any more.

-Endj= “/

(done)

{
if (status == OK)

io_add_to buffer _vector_position(&op_record_ptr->ri.buffer_vector,

(int32_type)bytes_requested) ;

}
misc _enqueue_at _tail(&uip->arb_free_queue, é&arb_ptr->links);

if (io_assign_next_interleave_waiter(&uip-—>request_lock))

dev_sd_start_asyne_request(uip) ;

}

. Implementation_Continued [=

One way or another, we are finished processing this request.

Calculate the response and busy times required to process this
request and add them to the totals for the unit. The unit
lock is held while the total is updated to protect against

Simultaneous updates.

Upcall the completion routine for this request, passing the

original operation record and the status.

.End)= x/

vp_read_system_clock(&cur_time) ;

MISC_CLOCK_VALUE_SUBTRACT(&arb_ptr-%asynce_request_start _time, &cur_time);

lm_ obtain _unsequenced_ lock (&uip-—>unit_lock) ;
MISC_| CLOCK_VALUE_ADD(&cur_time, &uip->total_response_time) ;
MISC_CLOCK_ VALUE _ADD(&busy_time, &uip->total_busy_time);

093-701053 Licensed material—property of Data General Corporation A-53

A Sample SCSI Device Driver

lm_release_unsequenced_lock(&uip->unit_lock) ;

(*(op_record_ptr-—>completion_routine))(op_record_ptr, status);

return;

}

/*.function */

[< */

WIRED

void dev_sd_start_asynce_request (ulp)

/*> */

dev_sd_unit_info_ptr_type uip; /* READ ONLY *%/

/*.Summary [=
/*

/* Start an asynchronous I/O request.
/*

/* .Parameters

/*

/* uip -- A pointer to the unit info structure for the

/* device on which an asynchronous request is to be started.
/*

/* .Functional_Description
/*

/* An operation record is removed from the head of the async queue

/*® and the unit’s adpater request block is filled in with request

/* information. A timeout value is established, and then the command

/* is issued through the supporting SCSI adapter to the disk unit

/* to start the request.

/* Also, this function checks to see whether the sector size of

/* the disk is greater then 512-bytes/sector. If so, a buffer

/* is allocated which is a multiple of the sector size. This
/* buffer becomes the actual io buffer. dev_sd_complete will
/* then determine what needs to be done with this data.
/*

/*.Return_Value
/*

/* None.
/*

/* .Exceptions
/*

/* ‘None.

/*

{

io_operation_record_ptr_type op_record_ ptr;
dev_adapter_request_block_ptr_type arb_ptr;

pointer _to_any type buffer_ptr;
uint32_type count ;

dev_scsi_read_write_cmd_bik_ptr_type scesi_rw_cemd_blk_ptr;
dev_scsi_write_verify_cmd_blk_ptr_type sesi_write_verify_cmd_blk_ptr;
uint32_type sector_buffer_size;
ulnt32_type logical_bliock_addr;

/*.Implementation [=

/* We start by filling in the adapter request block with
/* information from the operation record. Note that the buffer

/* must be in global kernel memory because eventually it is
/* mapped to physical pages in memory. The buffer may NOT be

/* in per-process memory because the process executing this code
/* may not be the same that originally made the request.

/* The number of read/write requests and number of blocks

/* read/written are updated for system activity reporting.

/* .Endj= */

misc_dequeue_from_head(&uip->arb_free_queue,

A-54 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

(misc_queue_links_ ptr _type *)&arb_ptr);

vp_read_system_clock(&arb_ptr->asynce_request_start_time);

misc_dequeue_from_head(&uip->async_request_queue,
(misec_queue_links_ptr_type *)&op_record_ptr);

io_get_buffer_vector_io_info(&o0p_record_ptr->ri.buffer_vector,

&buffer ptr,

&count) ;

arb _ptr->op_record_ptr = op_record_ ptr;

/*.Implementation_ Continued [=

/* Determine if sector buffering is necessary. It may be
/* necessary if the disk sector size is not 512. Even then,
/* sector buffering is only required if 1) the data is not
/*® aligned on a sector boundary, or 2) the amount of data to

/*® transfer is not a multiple of the sector size.

/*.Endj= */

arb_ptr->request_flags = 0;

if (uip->sector_size != DEV_SD_STANDARD_SECTOR_SIZE)

. (op_record_ptr->ri.device_offset % uip->sector_size != 0)

arb_ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_SB;

if (count % uip->sector_size != 0)

i rb ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_SB;
; }

/*.Implementation_Continued [=
/*

/* If sector buffering is necessary, allocated a new buffer.
/*

/*.End)]= */

if (arb_ptr->request_flags & DEV_SCSI_REQUEST_FLAGS_SB)

{

sector_buffer_size = uip-—>sector_size;

if (count > DEV_SD_STANDARD_SECTOR_SIZE)

sector_buffer_size = sector_buffer_size + ((count / uip->sector_size)

* uip->sector_size) + uip~>sector_size;

}

buffer_ptr = vm_get_wired_memory(sector_buffer_size, VM_DEFAULT_ALIGNMENT) ;

count = sector_buffer_size;

/*.Implementation_Continued [=
/*®

/* Set up the request to do a read. If the original request
/® is a read, indicate in the request flags that the request

/* is done upon completion.
/*

/* .Endj= */

sesi_rw_emd_blk_ptr = (dev_scsi_read_write_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

scesi_rw_cemd_blk_ptr->op_code = DEV_SCSI_CMD_READ;

scsi_rw_cemd_blk_ptr->lun = uip-—>unit_spec.unit;
sesi_rw_emd_blk_ptr->logical_block_address =

op_record_ptr->ri.device_offset /

uip-—>sector_size;

scsi_rw_cmd_blk_ptr->transfer_length = count / uip->sector_size;

scsi_rw_cmd_blk_ptr->vendor_unique = 0;

scsi_rw_cemd_blk_ptr->reservedl = 0;

sesi_rw_cemd_blk_ptr->link = FALSE;

sesi_rw_emd_blk_ptr->flag = FALSE;

093-701053 Licensed material—property of Data General Corporation A-55

A Sample SCSI Device Driver

if (op_record_ptr->ri.op == IO_OPERATION_READ)

{
arb_ptr->request_flags |= DEV_SCSI_REQUEST_FLAGS_SB_READ +

DEV_SCSI_REQUEST_FLAGS_SB_DONE;

}

misc _increment(&uip->read_request_count) ;

misc_increment_by_value(é&uip—>read_block_count,

}
else

{

/* .Implementation_Continued [=

(int32e_ type) (count /DF_ BYTES_PER_BLOCK));

No sector buffering is required. Process the request

normally. First, determine if we should set up to do a

write and verify. We currently only do this for optical

disks.

/* .End)= «/

if (((uip->disk_type == DEV_SD_DISK_TYPE_ERASABLE_OPTICAL) ||
(uip->disk_type == DEV_SD_ . DISK_ TYPE _WORM)) &&
(op_record_ptr->ri.op & I0_! OPERATION | WRITE))

scsi_write_verify_cmd _blk_ptr =

(dev_scesi_write_verify_cmd_blk_ptr_type) &arb_ptr->scesi_cmd_blk;
scsi_write_ verify_ emd_blk_ptr->op_code = DEV_SCSI_CMD_ WRITE _VERIFY;
secsi_write_verify_cmd_blk_ptr->lun = arb ptr—>unit_spec.unit;
scesi_write_verify_cmd_blk_ptr->reserved1 =- 0;
sesi_write_verify_cmd_blk_ptr->relative_addr = FALSE;
logical_ block_addr = op_record_ptr->ri.device_offset / uip->sector_size;
scsi_write _verify_ emad_blk_ptr->logical_bliock_. addr_high =

(uintl6_type) ((logical_block_. addr>> 16) & Oxffff);
sesi_write_verify_cmd_blk_ptr->logical_ block_ addr_low =

(uintl6 type) (logical_| block_ addr & Oxffff);
scsi_write_verify_cmd_blk_ptr->reserved2 = 0;

scsi_write_verify_cmd_blk_ptr->transfer_length_high = 0;

secsi_write_verify_cmd_blk_ptr->transfer_length_low = count /
uip->sector_size;

scsi_write_verify_cmd_blk_ptr->reserved3 = 0;

sesi_write_verify_cmd_blk_ptr->erase_control = FALSE;

sesi_write_verify_cmd_blk_ptr->reserved4 = 0;

scsi_write_verify_cmd_blk_ptr->link = FALSE;

sesi_write_verify_cmd_blk ptr->flag = FALSE;

misc_increment(&uip—>read_request_count) ;

misc _increment_by_value(&uip->read_block_count,
(int32e_type) (count/DF_BYTES_PER_BLOCK));

}
else

A-56

{
scsi_rw_cmd_blk_ptr = (dev_scsi_read_write_cmd_blk_ptr_type)

&arb_ptr->scsi_ ‘cmd_| blk;
if (op_record_ptr->ri.op == I0_ OPERATION | READ)

{
sesi_rw_cemd_blk_ptr->op_code = DEV_SCSI_CMD_READ;
misc_increment(&uip->read_request_count) ;

misc_increment_by_value(&suip-~>read_block_count,
(int32e_type) (count/DF_BYTES_PER_BLO(CK));

}
else

{
scsi_rw_cemd_blk_ptr—>op_code = DEV_SCSI_CMD_WRITE;
misc_increment(&uip->write_request_count);

misc_increment_by_value(&uip->write_block_count,
(int32e_type) (count/DF_BYTES_PER_BLOCK));

3
secsi_rw_emd_blk_ptr->lun = uip->unit_spec.unit;
scsi_rw_cmd_blk_ ptr->logical_block_address =

Oop. record ptr->ri. device_offset /
uip->sector_ size;

scsi_rw_cmd_blk_ptr->transfer_length = count / uip-—>sector_size;

sesi_rw_cmd_blk_ptr->vendor_unigque = 0;

scsi_rw_emd_blk_ptr—>reservedl = 0;

Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

sesi_rw_cemd_blk_ptr->link = FALSE;

scsi_rw_cemd_blk_ptr->flag = FALSE;

}

}

arb _ptr->request_flags | = DEV_SCSI_REQUEST_FLAGS KERNEL_BUFFER;
io_init_one_entry_buffer_vector(&arb_ptr->buffer_vector,

buffer_ptr,

count);

arb _ptr->sync_io = FALSE;

arb _ptr->op_record_ptr = op_record_ptr;

arb _ptr->complete_io_routine = dev_sd_complete_io;

/*.Implementation_Continued [=
/*

/* Issue the command to the supporting adapter. Any status

/* information generated by the request will be processed by

/* the driver complete I/O routine.
x

/* .Endj= */

(void)dev_scsi_adapter_issue_async_command(uip->adapter_device_number.major,
arb_ptr);

}

/*.function */

/*< */
WIRED

status_type dev_sd_start_syne_request (uip, arb_ptr)

/*> */

dev_sd_unit_info_ptr_type ulp; /* READ ONLY */
dev_adapter_request_block_ptr_type arb ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Issue an adapter request block (command) to the supporting
/* adapter and return the status of the operation.
/*

/* .Parameters
/*

/* uip -- A pointer to the unit information structure of
/* the device that is the target of the synchronous request.
/*

/* arb ptr -~ A pointer to the adapter request block which
/* specifies the request.

/* .Functional Description

/* This function dispatches through the supporting adapter’s
/* routines vector to execute the requested command on the
/* target device. If the command terminates with a Check

/* Condition status, the Request Sense information is
/* interpreted and the appropriate status is returned to the
/* caller.

/* .Assumptions

/* This function assumes that the unit request lock is held
/* by the caller.

/* .Return_Value

/* OK -- The synchronous operation completed successfully.

/* Return values from dev_sd_evaluate_sense_info.

/* .Exceptions

/* None.

status_type status;

093-701053 Licensed material—property of Data General Corporation A-57

A Sample SCSI Device Driver

/*.Implementation[=

/* Issue the request to the supporting SCSI adapter. If the

/* request completes with a Check Condition status, call the

/*® evaluate sense info routine to interpret the sense information.

/* Signal delivery is disabled for the call to the supporting

/* adapter manager so the disk request cannot be

/* terminated. Disk requests should always be allowed to
/* complete or timeout. Since the adapter manager does not

/* make any distinction between disks and other device types,
/* Signal delivery is disabied here.

/* .End]= x/

arb _ptr->sync_io = TRUE;

pm_disable_signal_delivery();

status = dev_scesi_adapter_issue_command(uip->adapter_device_number.major,
arb ptr);

pm_enable_signal_delivery();

if (status == DEV_STATUS_SCSI_CMD COMPLETE_CHECK CONDITION)

status = dev_sd_evaluate_sense_info(uip, arb_ptr);

}

return(status);

}

/*.function */

/*¢ x /

WIRED

status_type dev_sd_evaluate_sense_info (uip, arb_ptr)

/*> */

dev_sd_unit_info_ptr_type ulp; /* READ ONLY */

dev_adapter_request_block_ptr_type arb_ptr; /* READ ONLY */

/*.Summary [=
/*

/® Evaluate data returned from a Request Sense command.
/*

/*.Parameters
/*

/* uip -- A pointer to the unit information structure of
/* the device that returned sense information.
/®

/* axrb_ptr -- A pointer to the adapter request block which
/* specifies a request that completed with a check condition status.

/*.Functional_Description

/*® This function is called to interpret sense information returned
/* from a request to a device. Sense information is returned by
/* the supporting SCSI adapter whenever a request completes with
/*® a Check Condition status. A Check Condition status indicates
/* that an error, exception, or abnormal condition has occurred
/* during command execution. Basically, the sense data error code
/*® is mapped to a DG/UX status code and the error logger is called
/* if appropriate.

/*.Return_Value

/* IO_ENXIO_UNIT_NOT_READY -- The specified unit is not

/* responding to commands.

/* IO_EIO_HARD_IO_ERROR -- A hard I/O occurred in trying to
/* read or write to the disk. A retries were performed but to no
/* avail. The number of retries performed depends on the mode
/* settings of the device.

/* IO_EIO_PHYSICAL_UNIT_FAILURE -- A nonrecoverable hardware
/* error occurred while the command was being executed.

/* IO_ENXIO_ILLEGAL_DEVICE_ADDRESS -- The sum of the disk

A-58 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* address and the number of blocks to be transferred was larger

/* than the largest disk address on the specified unit.

/* IO_EIO_SD_UNIT_ATTENTION_ON -- The command to the unit

/* failed because of a Unit Attention condition.

/* IO_ENXIO_NO_WRITE_RING -- A write operation was attempted

/* on a write only device.
/*

/*.Exceptions
/*

/* None.

/*

/* .Abort_Conditions
/*

/* None.

/*

{

status_type status;

dev_sd_request_sense_buffer_ptr_type disk_sense_buffer_ptr;

/*.Implementation[=
/*®

/* Get the sense key from the buffer containing the sense
/* data and take the appropriate action.
x

/*.End)= */

status = OK;

switch (arb_ptr->sense_buffer.sense_key)

case DEV_SCSI_SENSE_KEY_NOT_READY:

/* .Implementation_Continued [=
/*

/* The addressed logical unit cannot be accessed. Either it

/* has been turned off or it just stopped working.
/*

/*.Endj= */
status = IO_ENXIO_UNIT_NOT_READY;

break;

case DEV_SCSI_SENSE_KEY_RECOVERED_ERROR:

/*.Implementation_Continued [=
/*

/* The command completed successfully with some recovery

/* action performed by the disk controller. Recovery

/® action includes retries and application of ecc
/* correction. The error is logged with the error logger
/® and a good status is returned.
/*

/*.End])= */
if (!uip->inhibit_error_logging)

dev_sd_log_error(arb_ptr, OK);

}
break;

case DEV_SCSI_SENSE_KEY_MEDIUM_ERROR:

/*.Implementation_Continued [=
/*

/® The command terminated with a nonrecoverable error
/* condition caused by a flaw in the medium or by an

/* error in the recorded data. The error I0_EIO_HARD_ERROR

/* is returned so that the file system will remap the
/*® offending disk block. The number of bytes transferred

/® by the drive does not include any data from the bad

/* block. The error is logged with the error logger.
x

/*.End)= «/
status = IO_EIO_HARD_IO_ERROR;

if (!uip->inhibit_error_logging)

dev_sd_log_error(arb_ptr, status);

093-701053 Licensed material—property of Data General Corporation A-59

A Sample SCSI Device Driver

/*

/*

/*

/*

/*

/*.Implementation_Continued [=
/*

/*

/*

. Implementation_Continued [=

j
break;

case DEV_SCSI_SENSE_KEY_HARDWARE_ERROR:

A nonrecoverable hardware error (e.g. controller failure,
device failure, parity error, etc.) was detected while the

target device was performing the command. Log the error

and return IO_EIO_PHYSICAL UNIT_FAILURE.

.End)= x/

status = IO_EIO_PHYSICAL_UNIT_FAILURE;

if (!uip->inhibit_error_logging)

dev_sd_log_error(arb_ptr, status);

}
break;

case DEV_SCSI_SENSE_KEY_ILLEGAL_REQUEST:

case DEV_SCSI_SENSE_KEY_BLANK_CHECK:

.Implementation_Continued [=

An illegal parameter was detected in the command block.
The original request specified an offset or size that
the device can’t handle, return the error.

-Endj= «/

. Implementation Continued [=

status = IO_ENXIO_ILLEGAL_DEVICE_ADDRESS;

break;

case DEV_SCSI_SENSE_KEY_UNIT_ATTENTION:

The unit attenion flag of the device is on. The unit
attention flag is set for any of the following reasons:

The unit has been reset by a SCIS bus reset.

A

A

-E

mode select has been issued which may affect
the parameters of another initiator.

removable medium has been changed.

Unit attention remains on until the drive returns a Check

Condition status for a command sent from the initiator.
The command resulting in the Check Condition status is not
performed. Only the Inquiry and the Request Sense commands
can be performed while unit attention is on. Inquiry
executes normally and preserves the unit attenion
condition. Request Sense reports unit attention and
clears it.

Examine the error code from the sense buffer. If a

medium change occurred, return the medium change error.
Otherwise report unit attention.

ndj=
2/

disk_sense_buffer_ptr = (dev_sd_request_sense_buffer_ptr_type)
&arb_ptr->sense_buffer;

if (disk_sense_buffer_ptr->%error_code ==

DEV_SCSI_SENSE_ERR_CODE_MEDIUM_CHANGE)

{
status = IO_EIO_MEDIUM_CHANGE_OCCURRED;

}
else

{
status = DEV_EIO_SD_UNIT_ATTENTION_ON;

}
break;

case DEV_SCSI_SENSE_KEY_DATA_PROTECT:

A write operation has been attempted on a device that is
write protected.

A-60 Licensed material—property of Data General Corporation | 093-701053

A Sample SCSI Device Driver

/*

/*.Endj= x /
status = IO_ENXIO_NO_ WRITE_RING;

break;

default:

/*.Implementation_Continued[e
/*

/* No other command interpretation or execution errors are
/* anticipated. If any occur, flag a physical unit failure.
x/

/* -Endj= =/
status = IO_EIO PHYSICAL _UNIT_FAILURE ;

break;

}

return(status) ;

}

/*.function */

/*< */
WIRED

void dev_sd_log_error (arb_ptr, op_status)

/*> */

dev_adapter_request_block_ptr_type arb_ptr; /* READ ONLY */
status_type op_status; /* READ ONLY */

/*.Summary [=
/*

/* This function reports a SCSI disk I/O error to the error logger
/* pseudo-device.
/*

/*.Parameters

/*

/* arb_ptr -- A pointer to the adapter request block
/*® which contains the command that caused the error.
/*

/* op_status —- The status from the operation that will

/*® be returned to the originator of the operation.

/*.Functional_ Description

/* The necessary values are assembled from the request block
/® and passed to the error logger.

/* .Return_Value

/* None.

/* .Exceptions
/*

/* None.

/*

{
dev_scsi_read_write_cmd_blk_ptr_typescsi_rw_ptr;

scesi_rw_ptr = (dev_sesi_read_write_cmd_blk_ptr_type)
&arb ptr->scsi_cmd_blk;

/*.Implementation [=

/* If the op status == OK, then the error is logged as a soft error.
/* Otherwise, the hard error message is logged with the sense key
/* that describes the error.

/* The error logger returns a boolean indicating whether an error
/* queue element was available for the message to be posted. This
/* boolean is ignored since it is considered very unlikely that
/* the queue is full and hence not worth the added complexity of
/* insuring that the error is posted.

/*.Endj= */

093-701053 Licensed material—property of Data General Corporation A-61

A Sample SCSI Device Driver

if (op_status == OK)

{
(void)io_err_log_error((uint32e_type)LOG_ NOTICE,

dev_sd_soft_error_message,

(bit32e_type)arb_ptr->unit_spec.scsi_id,

(bit32e_type)arb_ptr->unit_spec.unit,

(bit32e_type)scsi_rw_ptr->logical_block_address) ;

}.
else

{
(void)io_err_log_error((uint32e_type)LOG_WARNING,

dev_sd_hard_error_message,

(bit32e_type)arb_ptr->unit_spec.scsi_id,

(bit32e_type)arb_ptr->unit_spec.unit,

(bit32e_type)scsi_rw_ptr->logical_block_address,

(bit32e_type)op_status);

}

return;

}

/*.function */

[*< */

WIRED

status_type dev_sd_init_rigid_disk_unit (uip)

/*> */

dev_sd_unit_info_ptr_type uip; /* READ/WRITE */

/*.Summary [=
/*

/* Initialize a rigid disk unit.
/*

/*.Parameters

/*

/* uip -- A pointer to the unit information structure of
/* the disk device which is the target of the initialization
/* operation.

/*.Functional_ Description

/* This function is called to initialize a rigid disk unit.
/* Initialization consists of setting the unit to operate

/*® in the desired mode.
/*

/*.Return_Value
/*

/*® OK -- The unit initialization was successful.
/*

/* IO_ENXIO_DEVICE_NOT_SUPPORTED -- The modes desired
/* for the device could not be selected.
/*

status_type status;

dev_scesi_da_mode_buffer_type mode_buffer;
dev_scsi_da_mode_buffer_error_param_page_ptr_type error_page_ptr;

/*.Implementation[=
/*

/*® Read the current error recovery parameters from the disk to
/* determine if they are set the way are set the way we want

/* them. The following settings are desired:

/* Disabled Automatic Write Reallocation Enabled (AWRE)
/* and Automatic Read Reallocation Enabled (ARRE) so

/* that automatic reassigning (remapping) of bad blocks
/* is disabled. Bad block remapping is handled through
/* the DG/UX file system. See the URB memo "Disk Format
/* and Error Recovery”, 19 August 1988 for a discussion
/* of the motivation for managing bad blocks through

A-62 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* operating system software.

/* If the unit has never been formatted, our attempt to read

/*® the error recovery page will fail. If the read successful and

/* the mode settings are not correct, a mode select is done.

/* Doing the selection the causes the unit’s current error recovery

/*% parameters to be updated.

/* The defaults are taken for all other mode selection parameters.

/* See disk model specific documentation for a complete description

/* of all selectable parameters and their default values.

/* Note - selection of error recovery parameters does not

/*® generate a Unit Attention condition. Unit Attention is

/* generated when the Direct-Access Format Parameters or

/* the Disk Driver Geometry Parameters are modified.

/*.Endj= =/

status = dev_sd_sense_unit_mode(uip,

DEV_SCSI_MODE_SENSE_ERROR_RECOVERY_PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

émode_buffer);

if (status == OK)

{
error _page_ptr = (dev_scsi_da_mode_buffer_error_param_page_ptr_type)

&mode_buffer. page;

if ((error_page_ptr->arre != PALSE) ||
(error_page_ptr->%awre != FALSE))

/*.Implementation_Continued [=
x

/* Clear arre and awre. Note that all reserved fields and mode

/* sense fields that do no apply to mode select must be
/* zeroed out. The devices don’t always clear the reserved
/* fields on the mode sense but are sensitive to nonzero values

/® on the mode select.

/*.End)=
*/

error_page_ptr->arre = FALSE;

error_page_ptr- oawre = FALSE;

error_page_ptr->param_savable = FALSE;

error_page_ptr->reservedl = 0;

mode_buffer.header.reservedl = 0;

mode_buffer.header.reserved2 = 0;

mode_buffer.blk_descriptor.reserved_must_be_zero = 0;
status = dev_sd_select_unit_mode(uip, &mode_buffer);

if (status != OK)

{
status = IO_ENXIO_DEVICE_NOT_ SUPPORTED;

}
}

return(status);

/*.function */

[*¢ */
UNWIRED

status_type dev_sd_init floppy_disk_unit (uip)
/*> */

dev_sd_unit_info_ptr_type uip; /* READ/WRITE */

/*.Summary [=
/*

/® Initialize a floppy disk unit.
/*

/*.Parameters
/*

/* uip —-- A pointer to the unit information structure of

/* the @isk device which is the target of the initialization

/* operation.

093-701053 Licensed material—property of Data General Corporation A-63

A Sample SCSI Device Driver

/*

/*.Functional_Description
/*

/* This function is called to initialize a floppy disk unit.
/*® Initialization consists of setting the unit to operate
/*® in a mode that is compatible with the currently inserted
/* medium. Format information (mode sense) is not readable from
/* the floppy disk unit itself. As a result, the driver must
/*® determine the correct mode settings through trial and error.
/* Modes for a standard medium type are selected and an attempt
/* is made to access the medium. If the access fails, another
/* mode is tried. This procedure is repeated until one of the
/* mode selects works or all supported modes have been tried.
/*

/* Currently this driver supports the following floppy medium

/* types:
/*

/* 5.25 inch 1.2 Mbyte (formatted) floppy
/*® 5.25 inch .720 Mbyte (formatted) floppy

/* 5.25 inch .360 Mbyte (formatted) floppy
/* 3.50 inch 1.44 Mbyte (formatted) floppy
/*® 3.50 inch .720 Mbyte (formatted) floppy

/* Note that the .360 Mbyte floppy is meant to be used
/* with a 48 TPI drive. The 5.25 inch floppy unit that

/* this driver supports is a 96 TPI drive, but is capable
/*® of reading/writing 48 TPI data. However, the heads
/* on a 48 TPI unit are bigger than a 96 TPI unit’s
/* heads. The 96 TPI unit uses a narrower track. As a result,
/* a 48 TPI unit may have trouble reading data written by
/* a 96 TPI unit.
/*

/*.Return_Value
/*®

/* OK -— The unit initialization was successful.
/*®

/* DEV_EIO_UNIT_NOT_FORMATTED -- Mode information could
/* not be read from the device. This usually means that the

[* device has never been formatted.

/* IO_ENXIO_ DEVICE_NOT_SUPPORTED -- The modes desired
/* for the device could not be selected.
/*

status_type status;

boolean_type mixed_config;
dev_scsi_da_mode_buffer_type mode_buffer;
dev_scsi_da_mode_buffer_flexible_disk_geometry_page_ptr_type geom_page_ptr;

/*.Implementation[=

/* Set the floppy controller to the correct mode. Since the floppy
/* may have just been inserted and its format may differ from the
/* current controller settings, we must set the controller to
/* the mode that matches the floppy format.

/* The error recovery page is left at the default since
/* Disabled Automatic Write Reallocation Enabled (AWRE) and
/*® Automatic Read Reallocation Enabled (ARRE) do not apply
/* to floppy. See dev_sd_init_rigid_disk_unit for a description
/* of the desired error recovery options.

/* First read the disk geometry page to get a template for the
/* mode select buffer.

/* .Endj=
x/

status = dev_sd_sense_unit_mode(uip,
DEV_SCSI_MODE_SENSE_FLEXIBLE_DISK_GEOMETRY_PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

&mode_buffer) ;

if (status != OK)

{
goto done;

A-64 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

}

/*.Implementation_Continued [=
/*

/* Fill in the mode buffer header, block descriptor, and flexible

/* disk geometry parameter page with any values which are common

/* to all medium types.
x/

/* .End)= x/

mode_buffer.header.reservedl = 0;

mode _ buffer. header.reserved2 = 0;

mode_buffer.blk_descriptor.num_logical_blks_msb

mode __ buffer.blk_descriptor.num_logical_blks “mid
mode __ buffer.blk_descriptor.num_logical_blks_ _l1sb
mode_buffer.blk_descriptor.num_logical_blks_ _1lsb i ooo°o we Ne Ne Ne
mode_buffer.blk_descriptor.logical_blk_len_msb = ((uip->sector_size

& DEV_SCSI_CMD COUNT _| HIGH_8 BIT MASK) >>
DEV_SCSI _CMD_ COUNT _ HIGH__ 8 BIT SHIFT) ;

mode_buffer.blk_descriptor. logical_ blk_ len mid = ~((uip->sector_. size
& DEV_SCSI_CMD | COUNT _| MID_8 BIT_MASK) >>
DEV_SCSI_CMD_ COUNT | MID_ 8 BIT SHIFT) ;

mode_buffer.blk_descriptor. logical _ blk_ len msb = uip->sector_ size
& DEV_SCSTI_CMD | COUNT _| LOW_8_BIT_MASK;

geom_page_ptr = (dev_scesi_da_mode_buffer_flexible_disk_geometry_page_ptr_type)
&mode_buffer.page;

geom_page_ptr->reservedi = 0;

geom_page_ptr->data_bytes_per_physical_sector_high = ((uip->sector_size &
DEV_SCSI_CMD_COUNT_MID_8 BIT_MASK) >>

DEV_SCSTI CMD | COUNT_MID_8 BIT SHIFT);
geom_page_ptr—->data_ bytes per physical_. sector_low = uip->sector_size

& DEV_SCSI_CMD_COUNT_LOW_8 _BIT_MASK;

geom_page_ptr->write_precompensation_value =

DEV_SD_FLOPPY_DEFLAULT_WRITE_PRECOMPENSATION_VALUE;

geom_page_ptr->reserved4

geom_page_ptr->reserved5

geom_page_ptr—->reserved6

geom_page_ptr->reserved7 ean oe %e MeOooo o,
/*.Implementation_Continued [=
/*

[* Determine the type of configuration present on the

/* adapter card by examining the inquiry buffer. The configuration

/* will be one of the following:
/*

/* All 5.25 inch units (LUNs 0-3) where present.
/*

/* All 3.5 inch units (LUNs 0-1) where present.
/*

/* A mixture wiht 3.5 inch units at LUNs 0-1 and 5.25

/* units at LUNS 2-3.

/* See dev_sd_def.h for a complete description of how the

/* configuration is determined from the inquiry data.

/* If the adapter card is jumpered to an unknown or unsupported
/* configuration return the error.

/*.End)= */

if (misc_string_compare((byte_address_type) &uip->inguiry_buffer.
vendor_unique[DEV_SD_FLOPPY_INQUIRY_CONFIG_ INFO) OFFSET] ,

DEV_SD_FPLOPPY_INQUIRY_' CONFIG_ 5.25,
(uLnt32 _type)DEV_. SD_FLOPPY_ INQUIRY. CONFIG_INFO_ SIZE) == 0)

{
mixed_config = FALSE;

}

else if (misc_string_compare((byte_address_ type) &uip-—>inguiry_buffer.

093-701053 Licensed material—property of Data General Corporation A-65

A Sample SCSI Device Driver

vendor_unique[DEV_SD_FLOPPY_INQUIRY_CONFIG_INFO_OFFSET],

DEV_SD_FLOPPY_INQUIRY_CONFIG_MIXED,

(uint32_type)DEV_SD_FLOPPY_INQUIRY_CONFIG_INFO_SIZE) == 0)

mixed config = TRUE;

}
else

{
status = IO_ENXIO_DEVICE_NOT_SUPPORTED;

goto done;

}

/*.iImplementation_Continued [=

/* Now fill in the values for the flexible disk geometry page,

/* first assuming a 5.25 inch 1.2 Mbyte floppy. We only modify
/* the fields that are changable and vary between medium types.

/* Note that it is not possible to have a mixed configuration

/* with a 5.25 inch 1.2 Mbyte floppy at unit number 0 or 1.

/* See dev_sd_def.h for a detailed description of how the

/® 1.2 Mbyte 5.25 floppy is selected on a mixed configuration.

/*.End]= */

if ((!mixed_config) || (mixed_config && uip->unit_spec.unit > 1))

if (mixed_config)

mode_buffer.header.medium_type =

DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR_MIXED;

}
else

mode_buffer.header.medium_type =

DEV_SD_FLOPPY_MEDIUM_TYPE_5_25INCH_96TPI_13262BPR;

}
geom_page_ptr->transfer_rate_high =

((DEV_SD_FLOPPY_5_25INCH_1200KB_TRANSFER_RATE

& DEV_SCSI_CMD_COUNT_MID_8_BIT_MASK) >>

DEV_SCSI_CMD_COUNT_MID_8_BIT_SHIFT) ;

geom_page_ptr->transfer_rate_low =

DEV_SD_FLOPPY_5_25INCH_1200KB_TRANSFER_RATE

& DEV_SCSI_CMD COUNT_LOW_8 BIT_MASK;

geom_page_ptr->sectors_per_track =

DEV_SD_FLOPPY_5_25INCH_1200KB_SECTORS_PER_TRACK;

geom_page_ptr->number_of_cylinders_high =

((DEV_SD_FLOPPY_5_25INCH_1200KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD_COUNT_MID_8_BIT_MASK) >>

DEV_SCSI_CMD COUNT_MID_8_BIT_SHIFT);

geom_page_ptr—->number_of_cylinders_low =

DEV_SD_FLOPPY_5_25INCH_1200KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD_COUNT_LOW_8_BIT_MASK;

geom_page_ptr->step_pulses_per_cylinder =

DEV_SD_FLOPPY_5_25INCH_1200KB_STEP_PULSES_PER_CYLINDER;

/*.Implementation_Continued [=

/* Do the mode select. If the mode mode select succeeds,

/* attempt to access the disk to see if the mode select

/* parameters match the currently inserted medium. If

/* the mode select failed, try selecting a different

7* medium type.

/*.Endj= */

status = dev_sd_select_unit_mode(uip, &mode_buffer) ;

1f (status == OK)

status = dev_sd_test_mode_select(uip);

if (status == OK)

A-66 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

goto done;

}

}

/*.Implementation Continued [=
/*

/* The medium is not a 5.25 inch 1.2 Mb floppy, do a mode select

/* for a 5.25 inch .360 Mbyte (formatted) floppy.
/*

/* .End)= a/

mode_buffer.header.medium_type = DEV_SD_FLOPPY_MEDIUM_TYPE_96_135TPI_7958BPR;

geom_page_ptr->transfer_rate_high =

((DEV_SD_FLOPPY_5_25INCH_360KB_TRANSFER_RATE

& DEV_SCSI_CMD_COUNT_MID_8_BIT_MASK) >>

DEV_SCSI_CMD_COUNT_MID_8 BIT_SHIFT);

geom_page_ptr->transfer_rate_low =

DEV_SD_FLOPPY_5_25INCH_360KB_TRANSFER_RATE

& DEV_SCSI_CMD COUNT_LOW_8 BIT_MASK;

geom_page_ptr->sectors_per_track =

DEV_SD_FLOPPY_5_25INCH_360KB_SECTORS_PER_TRACK;

geom_page_ptr->number_of_cylinders_high =
((DEV_SD_FLOPPY_5S_25INCH_360KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_| CMD_COUNT_: MID 8. BIT_MASK) >>
DEV_SCSI_CMD_COUNT_MID_8 -BIT_SHIFT);

geom_page_ptr->number_of_cylinders_low =

DEV_SD_FLOPPY_5_25INCH_360KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD COUNT_LOW_8_BIT_MASK;

geom_page_ptr->step_pulses_per_cylinder =

DEV_SD_FLOPPY_5_25INCH_360KB_STEP_PULSES_PER_CYLINDER;

/*.Implementation_Continued [=
/*®

/* Do the mode select. If the mode mode select succeeds,
/* attempt to access the disk to see if the mode select

/*® parameters match the currently inserted medium. If
/* the mode select failed, try selecting a different
/* medium type.
/*

/*

/* .End)= */

status = dev_sd_select_unit_mode(uip, smode_buffer) ;
if (status == OK)

{
status = dev_sd_test_mode_select({uip);

if (status == OK)

{
goto done;

}

/*.Implementation_Continued[=
/*

/* The access failed. Do a mode select for a 3.5 inch

/* 1.44 Mbyte (formatted) floppy.
/*

/*.Endj= «/

mode_buffer.header.medium_type =

DEV_SD_FLOPPY_MEDIUM_TYPE_3_ 5OINCH_135TPI_15916BPR;

geom_page_ptr->transfer_rate_high =

((DEV_SD_FLOPPY_3_S0OINCH_1440KB_TRANSFER_RATE

& DEV_ SCSI_CMD_COUNT_MID_ 8 _BIT_MASK) >>
DEV _ SCSI _CMD_ COUNT _ MID_ 8. BIT _SHIFT);

geom_page_ptr->transfer_rate_low =

093-701053 Licensed material—property of Data General Corporation A-67

A Sample SCSI Device Driver

DEV_SD_FLOPPY_3_50INCH_1440KB_TRANSFER_RATE

& DEV_SCSI_CMD COUNT_LOW_8 BIT MASK;

geom_page_ptr->sectors_per_track =

DEV_SD_FLOPPY_3_50INCH_1440KB_ SECTORS _PER_TRACK;

geom_page_ptr-—>number_of_cylinders_ high =

((DEV_SD_FLOPPY_3_S0INCH_1440KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD_COUNT_MID_8_BIT_MASK) >>

DEV_SCSI_CMD_COUNT_MID_8_ BIT_SHIFT);

geom_page_ptr->number_of_cylinders_low =

DEV_SD_FLOPPY_3_50INCH_1440KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD COUNT_LOW_8_BIT_MASK;

geom_page_ptr->step_pulses_ per cylinder =

DEV_SD_FLOPPY_3_50INCH_1440KB_STEP_PULSES_PER_CYLINDER;

/*.Implementation_ Continued [=

/*® Do the mode select. If the mode mode select succeeds,

/* attempt to access the disk to see if the mode select

/* parameters match the currently inserted medium. If

/* the mode select failed, try selecting a different

/* medium type.

/* .End)= */

status = dev_sd_select_unit_mode(uip, &mode_buffer);

if (status == OK)

status = dev_sd_test_mode_select(uip);

if (status == OK)

{
goto done;

}

/* .Implementation_Continued [=
/*

/* The access failed. Finally, do a mode select for a .720 Mbyte
/*® floppy. Note that the mode selection parameters are the

/*® same for 5.25 and 3.50 inch .720 Mbyte floppies.
/*

/* .End]= =/

mode_buffer.header.medium_type = DEV_SD_FLOPPY_MEDIUM_TYPE_96_135TPI_7958BPR;

geom_page_ptr->transfer_rate_high = ((DEV_SD_FLOPPY_720KB_TRANSFER_RATE

& DEV_SCSI_CMD COUNT_MID 8 BIT MASK) >>

DEV_SCSI_CMD_COUNT_MID_8 BIT_SHIFT) ;

geom_page_ptr->transfer_rate_low =

DEV_SD_FLOPPY_720KB_TRANSFER_RATE

& DEV_SCSI_CMD COUNT_LOW_8 BIT _MASK;

geom_page_ptr->sectors_per_ track = DEV_SD_FLOPPY_720KB_SECTORS_PER_TRACK;

geom_page_ptr->number_of_cylinders_high =

((DEV_SD_FLOPPY_720KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD COUNT_MID_8_BIT_MASK) >>

DEV_SCSI_CMD _COUNT_MID_8 BIT SHIFT);

geom_page_ptr->number_of_cylinders_low =

DEV_SD_FLOPPY_720KB_NUMBER_OF_CYLINDERS

& DEV_SCSI_CMD_COUNT_LOW_8 BIT MASK;

geom_page_ptr—>step_pulses_per_cylinder =

DEV_SD_FLOPPY_720KB_STEP_PULSES_PER_CYLINDER;

/*.Implementation_Continued [=

/* Do the mode select. If the mode mode select succeeds,

/*® attempt to access the disk to see if the mode select
/* parameters match the currently inserted medium. If
/* the mode select failed, try selecting a different
/* medium type.

A-68 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/*.Endj]= «/

status = dev_sd_select_unit_mode(uip, émode_buffer);

if (status == OK)

{
status = dev_sd_test_mode_select(uip);

if (status == OK)

goto done;

}

}

/*.Implementation_Continued [=

/® xxzxaexzzs NOTE — If none of the mode select operations were

/* successful, the floppy disk is probably not formatted. For

/* now, we return a good status if the disk has not been

/* hardware formatted so that the ioctl command DSKIOC_GENERIC_SCSI

/* can be used to format the disk. Eventually DSKIOC_GENERIC_ SCSI

/* is going to be moved to the SCSI adapter driver, and an error

/* will be return here if the floppy cannot be accessed.

/* .End)=
x/

Status = OK;

done:

return(status);

}

/*.function */

[*S = /

UNWIRED

status_type dev_sd_init_worm_disk_unit (uip)
/*> =/

dev_sd_unit info_ptr_type uip; /* READ/WRITE */

/*.Summary [=
/*

/* Initialize a Write Once Read Many optical disk unit.
/*®

/*.Parameters
/*®

/* uip —-- A pointer to the unit information structure of

/* the disk device which is the target of the initialization
/* operation.

/* .Functional_ Description

/* This function is called to initialize a WORM optical disk

/* unit. Initialization consists of setting the unit to operate
/* in the desired mode.
/*

/*.Return_Value
/*

/* OK -- The unit initialization was successful.
/*

/* IO_ENXIO_DEVICE_NOT_SUPPORTED -—- Either the mode sense
/* or mode select failed indicating that the target did accept
/* or understand the mode requested.

/® Return values from dev_sd_sense_unit_mode.

{
status_type status;

dev_scsi_da_mode_buffer_type mode_buffer;
dev_scsi_da_mode_buffer_error_param_page_ptr_type error_page_ptr;

dev_scsi_da_mode_buffer_error_param_page_ptr_type select_error_page_ptr;
dev_scsi_worm_mode_header_ptr_type mode_header_ptr;
dev_sd_worm_optimem_ mode_buffer_ptr_type optimem_mode_buffer_ptr;

/*.Implementation[=

093-701053 Licensed material—property of Data General Corporation A-69

A Sample SCSI Device Driver

/* Read the current error recovery parameters from the unit to

/* get a template for the mode select operation. The

/* enable_blank_check flag is set in the mode select header
/* so that an error will be returned if a write is attempted t:o

/* a block that has already been written to. Also, Automatic Write
/* Reallocation Enabled (AWRE) and Automatic Read Reallocation
/* Enabled (ARRE) are enabled so that automatic reassigning
/* (remapping) of bad blocks is done. Since the WORM is a write

/* once device, bad block remapping can not be managed by the

/* usual file system facilities.

/* The defaults are taken for all other mode selection paramet:ers.

/* See model specific documentation for a complete description
/* of all selectable parameters and their default values.

/* Note that one of the WORM devices that we support, the Optimem
/* 1000, has a vendor unique mode select buffer format and must
/* be handled as a special case. The ANSI SCSI standard specifies
/* that mode sense/select information is specified by a mode
/* select header followed by a block descriptor followed by a
/* parameter page. The Optimem 1000 simply uses a hybrid versi.on
/* of the mode sense/select header. The Optimem 1000 format
/* is recognized if the page returned by the device does not

/* identify itself as an Error Recovery Page.

/*.End)= */

status = dev_sd_sense_unit_mode(uip,

DEV_SCSI_MODE_SENSE_ERROR_RECOVERY_ PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

&mode_buffer);

if (status != OK)

{
goto done;

}

/*.Implementation_ Continued [=
/*

/* Get a pointer to Error Recovery Paramter Page. If the device
/* did not return a block descriptor with the mode select data,

/* the Error Recovery Parameter Page will be at the offset

/* usually occupied by the block descriptor.
x/

/*.End)= */

if (mode_buffer-.header.blk_desc_len != 0)

/*.Implementation_Continued[=
/*

/* A block descriptor was returned, get the page from the usual
/* place in the mode buffer.
x/

/*.Endj]= =/

error_page_ptr = (dev_scsi_da_mode_buffer_error_param_page_ptr_type)
émode_buffer.page;

}
else

/*.Implementation_Continued [=
/*

/* A block descriptor was not returned, get the page from the
/* position in the mode buffer usually occupied by the block
/* descriptor.
x

/* .End)= */

error _page_ptr = (dev_scsi_da_mode_buffer_error_param_page_ptr_type)
émode_buffer.blk_descriptor;

}

/*.Implementation_Continued [=
x

/* If the page code field of the Error Recovery Page does not:

A-70 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* specify DEV_SCSI_MODE SENSE_ERROR_RECOVERY_PAGE, assume that

/* the device is an Optimem 1000. The Optimem 1000 uses a vendor

/* unigue mode buffer format.

/*.Endj= */

if (error_page_ptr->page_code == DEV_SCSI_MODE_SENSE_ERROR_RECOVERY_PAGE)

{
/*.Implementation_Continued [=

/* The page is in the ANSI SCSI format, turn on the desired bits.

/* At least one WORM vendor (toshiba) returns a block descriptor

/* in the mode sense but does not accept one in the mode select.

/® As a result, we never use one in the mode select (it’s not

/* needed). Because tnere is no block descriptor, the mode select

/* buffer must be built where the block descriptor normally is

7* in the mode buffer.

/*.End)= */

select_error_page_ptr = (dev_scsi_da_mode_buffer_error_param_page_ptr_type)

&mode_buffer.blk_descriptor;

*select_error_page_ptr = *error_page_ptr;

select_error_page_ptr->arre = TRUE;

select_error_page_ptr->awre = TRUE;

select_error_page_ptr->param_savable = FALSE;

select_error_page_ptr—->reservedl = 0;

mode_buffer.header.reservedi = 0;

mode _buffer-.header.reserved2 = 0;

}
else

/*.Implementation_Continued [=
*

/* The device is an Optimem 1000 WORM, use its vendor unique moce
/* buffer to turn on sector relocation.
/*

/*.Endj)= =/

optimem_mode_buffer_ptr = (dev_sd_worm_optimem_mode_buffer_ptr_type)
smode_buffer;

optimem_mode_buffer_ptr—->enable_sector_relocation = TRUE;
optimem_ mode_buffer_ptr->blk_dese_len = 0;

optimem_mode_buffer_ptr-—>enable_physical_read = FALSE;

optimem_mode_buffer_ptr->delay_error_reporting = FALSE;

optimem_mode_buffer_ptr->disable_seek_immediate = FALSE;

optimem_mode_buffer_ptr->reserved4 = 0;

optimem_mode_buffer_ptr->disable_retry_ times = FALSE;

optimem_mode_buffer_ptr->error_detection_level = FALSE;
optimem_mode_buffer_ptr->reserved5 = 0;

optimem_mode_buffer_ptr->disable_error_detection_and_correction = FALSE;
optimem_mode_buffer_ptr->parity_enable = TRUE;

optimem_mode_buffer_ptr->enable_diagnostics = FALSE;
optimem_mode_buffer_ptr->reserved6 = 0;

optimem_mode_buffer_ptr->reserved7 = 0;

}

/*.iImplementation_Continued [=
/*

/*® Set the fields that are common to the Optimem device and
/* ANSI SCSI compliant and issue the mode select command to

/* the device.
x/

/*.Endj= x /

mode_header ptr = (dev_scsi_worm_mode_header_ptr_type)

&mode_buffer.header;

mode_header_ptr->blk_desc_len = 0;

mode_header_ptr->enable_blank_check = TRUE;

mode_header_ptr->reservedl = 0;

mode_header_ptr->reserved2 = 0;

mode_header_ptr->reserved3 = 0;

(void)dev_sd_select_unit_mode(uip, é&mode_buffer) ;

/*.Implementation_Continued [=

093~701053 Licensed material—property of Data General Corporation A-71

A Sample SCSI Device Driver

/® The mode select may fail for a number of reasons:

/* The currently inserted medium may not have been

/* formatted to support the desired options.

/* The Optimem 1000 rejects all mode select requests

/*® after the first successful one. A SCSI bus reset must

/* precede each subsequent mode select.

/* This driver allows access to the device if the mode select
/* fails as long as the mode sense buffer indicates that

/* the Blank Check option is enabled. Blank Check prevents the
/* user from inserting a previously written to medium and

/* destroying the data by attempting to write to it.

/* A mode sense operation is done to insure that either

/* the mode select of the Blank Check worked or the

/* device already has Blank Check on. If Blank Check is not

/* enabled the error IO_ENXIO_DEVICE_NOT_SUPPORTED is returned.

/* .Bndj= */

status = dev_sd_sense_unit_mode(uip,

DEV_SCSI_MODE_SENSE_ERROR_RECOVERY_PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

&mode_buffer) ;

if (status == OK)

mode_header ptr = (dev_scsi_worm_mode_header_ptr_type)

&mode_buffer.header;

if (!mode_header_ptr->enable_ blank_check)

{ .
Status = IO_ENXIO_DEVICE_NOT_SUPPORTED;

}

}

done:

return(status);

}

/*.function */

/*< */
UNWIRED

status type dev_sd_init_optical_disk_unit (uip)
/*> */

dev_sd_unit_info ptr type uip; /* READ/WRITE */

/*.Sumnmary [=
/*

/* Initialize a optical disk unit.
/*

/*.Parameters
/®

/* uip -- A pointer to the unit information structure of

/® the disk device which is the target of the initialization

/* operation.

/*.Functional Description

/* This function is called to initialize a optical disk unit.

/* Initialization consists of setting the unit to operate

/* in the desired mode.
/*

/* .Return_Value
/*

/* OK -- The unit initialization was successful.
/*

/* Return values for dev_sd_start_sync_request.

/*

status_type status;

A-72 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

dev_scsi_da_mode_buffer_type mode_buffer;
dev_scsi_da_mode_buffer_error_param_page_ptr_type error_page_ptr;

/*.Implementation[=

/*® If the disk is an erasable optical disk, set the awre bit
/* in the error recovery parameters page. This will allow the
/* controller to do automatic bad block remapping when write

/* and verifies fail.

/* .End}= «/

status = OK;

if (uip->disk_type == DEV_SD_DISK_TYPE_ERASABLE_OPTICAL)

{
status = dev_sd_sense_unit_mode(uip,

DEV_SCSI_MODE_SENSE_ERROR_RECOVERY_PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

&mode_buffer) ;

if (status == OK)

{
error _page_ptr = (dev_scsi_da_mode_buffer_error_param_page_ptr_type)

&mode_buffer. page;

/*.Implementation_Continued [=
/*

/* Set awre. Note that all reserved fields and mode
/* sense fields that do no apply to mode select must be

/* zeroed out. The devices don’t always clear the reserved
/* fields on the mode sense but are sensitive to nonzero values
/* on the mode select.
x

/* .End)= */

error _page_ptr-Sawre = TRUE;

error_page_ptr->param_savable = FALSE;

error_page_ptr->reservedl = 0;

mode_buffer.header.reservedl = 0;

mode_buffer.header.reserved2 = 0;

mode_buffer.blk_descriptor.reserved_must_be_ zero = 0;
status = dev_sd_select_unit_mode(uip, &mode_buffer);

if (status != OK)

{
status = IO _ENXIO_DEVICE_NOT_SUPPORTED;

}

}

return(status);

}

/*.function */

[* */
WIRED

status type dev_sd_sense_unit_mode (uip,
page_code,

page_control,

mode_buffer_ ptr)

[*> =/

dev_sd_unit_info ptr_type ulp; /* READ/WRITE */
bit8e_type page_code; /* READ ONLY */
bit8e_type page_control;/* READ ONLY */

dev_scsi_da_mode_buffer_ptr_type mode_buffer_ptr; /* WRITE ONLY */

/*.Summary [=
/*

/* Get an operating mode parameter page of a specified disk unit.
/*

/* .Parameters

/*

/*® uip -- A pointer to the unit information structure of

/* the disk device which is the target of the operation.
/*

093-701053 Licensed material—property of Data General Corporation A-73

A Sample SCSI Device Driver

/* page_code -- Specifies the type of mode information (page

/* type) requested.
/*®

/* page_code -- Specifies the type of page values to be

/* returned: current, changeable, default, or saved.
/*

/* mode_buffer_ptr -- A pointer to the data buffer which

/* the mode information is to be returned in.

/*.Functional_ Description

/* This function performs a mode sense command on the specified

/* unit and returns the mode information in the supplied buffer.

/* This function allows a single page of mode information to be

/* read.
/*

/*.Return_Value
/*®

/* OK -- The mode select operation was successful.
/*

/* Return values from dev_sd_start_sync_request.
/*

status_type status;

dev_adapter_request_block_ptr_type arb_ptr;

dev_scsi_da_mode_sense_cmd_blk_ptr_type mode_sense_emd_blk_ptr;

/*-implementation[=
/*

/* Obtain the unit request lock and allocate an adapter request

/* block.
/*

/* .Endj= */

io_sync_obtain_interleave_lock(&uip—>request_lock);

misc dequeue_from_head(&uip->»arb_free_queue,

(misc_queue_links_ptr_type *)&éarb_ptr);

/*.Implementation_ Continued [=
/*

/*® Build the SCSI command block needed to request the mode

/* information.
ps

/* .Endj)= x /

mode_sense_cmd_blk_ptr = (dev_scsi_da_mode_sense_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

mode_sense_cemd_blk_ptr->op_code = DEV_SCSI_CMD_MODE_SENSE;

mode_sense_cmd_blk_ptr->lun = uip->unit_spec-.unit;

mode_sense_cmd_blk_ptr->reservedi = 0;

mode_sense_cmd_blk_ptr->page_control = page_control;

mode_sense_cmd_blk_ptr-—>page_code = page_code;
mode_sense_emd_blk_ptr->reserved2 = 0;

mode_sense_cmd_blk_ptr—>alloc_len = usizeof(dev_scsi_da_mode_buffer_type) ;

mode_sense_cmd_blk_ptr->vendor_unique = 0;

mode_sense_cemd_blk_ptr->reserved3 = 0;

mode_sense_cmd_blk_ptr->link = 0;

mode_sense_cmd_blk_ptr->flag = 0;

/*.Implementation_Continued [=
/*

/* Complete the adapter request block and issue the request.

/* Return the status of the operation to the caller.
b/

/*.Endj)= x/

arb _ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER;

io_init_one_entry_buffer_vector(éarb_ptr->buffer_vector,

(pointer _to_any_type)mode_buffer_ptr,

usizeof (dev_scesi_da_mode_buffer_type));

A-74 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

status = dev_sd_start_sync_request(uip, arb_ptr);

misc_enqueue_at_tail(&uip-—>arb_free_queue, &arb_ptr->links) ;

if (io_assign_next_interleave_waiter(&éuip—>request_lock))

dev_sd_start_async_request(uip);

}
io_release_interleave_lock(&uip-—>request_lock) ;

return(status);

}

/*.function */

/*¢ */
WIRED

status_type dev_sd_select_unit_mode (uip, mode_buffer_ptr)

/*> */

dev_sd_unit_info_ptr_type ulp; /* READ/WRITE */

dev_scsi_da_mode_buffer_ptr_type mode_buffer_ptr; /* READ ONLY */

/*.Sumnary [=
/*

/* Set an operating mode parameter page on a specified disk unit.
/*

/* .Parameters
/*

/* uip -- A pointer to the unit information structure of

/* the disk device which is the target of the operation.
/*

/* mode_buffer_ ptr -~- A pointer to the data buffer which

/* contains the mode information that is to be selected.

/*.Functional_Description

/* This function performs a mode select command on the specified

/* unit. The mode select updates the current operating mode of the

/® ubpit. This function allows a single page of mode information

/*® to be selected. The page type is specified in the data specified

/*® by <mode_buffer_ptr>.
/*

/* .Return_Value
/*

/* OK -- The mode select operation was successful.
/*

/* Return values from dev_sd_start_syne_request.
/*®

status_type status;

dev_adapter_request_block_ptr_type arb_ptr;

dev_scsi_da_mode_select_emd_bik_ptr_type mode_select_cmd_blk_ptr;

/* Implementation [=
/*®

/* Obtain the unit request lock and allocate an adapter request

/* block.
x

/*.End)=
=/

io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc_dequeuve_from_head(&uip->arb_free_queue,
(misc_queue_links_ptr_type *)éarb_ptr);

/*.Implementation_Continued [=
/*

/* Build the SCSI command block needed to select the requested

/* mode.
/*

/*.EnG)*= =/

mode_select_cmd_blk_ptr = (dev_scsi_da_mode_select_cmd_blk_ptr_type)
&arb_ ptr->scsi_cemd_blk;

mode_select_cmd_bik_ptr->op_code = DEV_SCSI_CMD_MODE_SELECT;

mode_select_emd_blk_ptr->lun = uip->unit_spec.unit;

mode_select_cmd_blk_ptr->reservedl = 0;

093-701053 Licensed material—property of Data General Corporation A-75

A Sample SCSI Device Driver

mode_select_cmd_blk_ptr->save_mode_params = 0;

mode _ ~ select_ _emd _blk_ptr->reserved2 = 0;
mode _ - select_ _emd _blk_ptr->param_ list_ len =

~usizeof(dev_sesi_mode_header_type) +

mode _pbuffer_ptr->header. blk_desc_len +
DEV_SCSI_MODE_BUFFER_PAGE_ PAGE _HEADER_ SIZE +
mode buffer _ptr->page. page_ header. page_length;

mode_select_cmd_blk_ptr->vendor_unigue = 0;

mode_ select_ _emd_blk_ptr->reserved3 = 0;
mode_select_ ~emd_blk_ptr->link = 0;

mode_select_ ~emd_blk_ptr->flag = 0;

/*.Implementation_Continued [=
/*

/* Complete the adapter request block and issue the request.

/*® Return the status of the operation to the caller.

/*
/*.Endj= */

arb_ptr—->request_ flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER ;

io_init_one_entry_buffer _vector (
&arb ptr->buffer_ vector,

(pointer_to_any_type)mode_buffer_ptr,

(uint32_type)mode_select_cmd_blk_ptr->param_list_len);

status = dev_sd_start_sync_request(uip, arb_ptr);

misc enqueue _ at ~tail(é&uip—>arb_ free_queue, &arb_ptr->links);
if (io_assign_next_interleave_waiter(&uip->request_lock))

dev_sd_start_async_request(uip);

}
io_release_interleave_lock(&uip-—>request_lock) ;

return(status) ;

/*.function */

/*< */
WIRED

status_type dev_sd_test_mode_select (uip)

/*> */

dev_sd_unit_info_ptr_type uip; /* READ/WRITE */

/*.Summary [=
/*

/* Test a disk unit for accessibility after a mode select
/* operation.
/*

/*.Parameters
/*

/* uip -- A pointer to the unit information structure of
/* the disk device which is the target of the initialization
/* operation.

/*.Functional_ Description

/* This function is called to insure that the correct modes
/* have been selected on a disk unit. Some types of disk
/* units support multiple medium types. The disk driver
/* must set the disk controller to the mode that matches the
/* current medium type before it can access the disk. In
/* some cases, the disk driver must determine the medium type
/* through trial and error. This function is called to verify

/*® that the disk controller mode settings match the medium
/* type.

/* .Return_Value

/* OK -- Access to the medium was successful.

/* Return values from dev_sd_start_synce_request.

{
status_type status;

A-76 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

dev_scsi_read_write_cmd_blk_ptr_type scesi_rw_cemd_blk_ptr;

pointer _to_any_ type read_buffer_ptr;

dev_adapter_request_block_ptr_type arb_ptr;

/*.Implementation[=
/*

/* Allocate a buffer to receive data in. Dequeue a generic

/* adapter request block.
x/

/* .End)= =/

read_buffer_ptr = vm_get_wired_memory((uint32_type)uip—>sector_size*2,
VM_DEFAULT_ALIGNMENT) ;

io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc_dequeue_from_head(&uip->arb_free_queue,

(misc_queue_links_ptr_type *)é&arb_ptr);

/*.Implementation_ Continued [=
/*

/* Build a SCSI read command. We will attempt to read two

/* blocks at an offset that is guaranteed to fail if the mode
/* selected does not match the inserted medium. See dev_sd_def.h
/* for a complete description of how this offset was selected.
x/

/* .End)= */

scsi_rw_emd_blk_ptr = (dev_scsi_read_write_cmd_blk_ptr_type)
&arb_ptr->scsi_emd_ blk;

scsi_rw_cemd_bik_ptr->op_code = DEV_SCSI_CMD_ READ;

sesi_rw_emd_blk_ptr->lun = uip->unit_spec.unit;
sesi_rw_emd_blk_ptr->logical_biock_address =

DEV_SD_FLOPPY_MODE_SELECT_TEST_SECTOR;

scesi_rw_emd_blk_ptr->transfer_length = 2;

scsi_rw_cmd_blk_ptr->vendor_unique = 0;

scesi_rw_cmd_blk_ptr->reservedl = 0;

sesi_rw_emdad_blk_ptr->link = FALSE;

sesi_rw_emd_blk_ptr->flag = FALSE;

arb_ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER ;

io_init_one_entry_buffer_vector(é&arb_ptr->buffer_vector,
(pointer_to_any_ type)read_buffer ptr,

{uint32_type)uip->sector_size*2) ;

/* .Implementation_Continued [=
/*

/* Make the request, release the buffer memory and return the

/* status of the request. Error logging is turned off for the

/* request since an error in this code path is expected

/* as part of trail and error mode selection.
x/

/* .End)= " */

uip->inhibit error_logging = TRUE;

status = dev_sd_start_synce_request(uip, arb_ptr);

misc_enqueue_at_tail(&uip-—>arb_free_queue, &arb_ptr->links);

if (io_assign_next_interleave_waiter(&uip-—>request_lock))

dev_sd_start_asynce_request(uip) ;

io release interleave lock(suip->request_lock) ;
uip-—>inhibit_error_logging = FALSE;

vm_release_wired_memory(read_buffer_ptr, (uint32_type)uip—>sector_size*2) ;

return(status);

}

/*.function */

/*< x/

WIRED

void dev_sd_control_medium_removal (uip, iohibit _removal_flag)

[*> */

093-701053 Licensed material—property of Data General Corporation A-77

A Sample SCSI Device Driver

dev_sd_unit_info_ptr_type ulp; /* READ/WRITE */
boolean_type inhibit_removal_flag; 7* READ ONLY */

/*.Summary [=
/*

/* Enable or disable removal of the medium on a removable medium
/* device.
/*

/*.Parameters

/*

/* uip -- A pointer to the unit information structure of

/* the disk device which is the target of the command.
/*

/* inhibit_removal_flag -- Boolean, if TRUE, medium removal is
/* disabled for the device. If false, medium removal is enabled.
/*

/*.Functional Description
/*

/* A SCSI Prevent/Allow Medium Removal command is issued to the

/* target device. <inhibit_removal_flag> indicates whether medium

/* removal is to be allowed or inhibited. If <inhibit_removal_flag>
/* is TRUE, the medium eject button on the device is disabled. If
/* <inhibit_removal_flag> is FALSE, the eject button is enabled.

/*.Return_Value
/*

/* None.

/*

/*.Remarks
/*

/* This function is used on direct access removable medium devices

/* to prevent the user from removing the medium while a file system

/* on the device is active (mounted). This function is a no-op

/* if issued on a device that does not support the Prevent/Allow

/*® Medium Removal command.

@ev_scsi_control_medium_removal_cmd_blk_ptr_type sesi_cmd_blk_ptr;

dev_adapter_request_block_ptr_type arb_ptr;

/*.Implementation [=
/*

/* Allocate a generic adapter request block to use in issuing

/* the command.
/*

/* .Endj= */

io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc_dequeue_from_head(&uip->arb_free_queue,

(misc_queue_links_ ptr_type *)&arb_ptr);

/*.Implementation Continued [=
/*

/* Build a SCSI Prevent/Allow Medium Removal command. Use the

/* calllers control flag to set the prohibit flag in the

/* command biock.
x/

/* .End)= */

scsi_cmd_blk_ptr = (dev_scsi_control_medium_removal_cmd_blk_ptr_type)

&arb_ptr->scesi_cemd_blk;

scsi_cmd_blk_ptr->op_code = DEV_SCSI_CMD_CONTROL_MEDIUM_REMOVAL ;

scsi_cmd_blk_ptr->lun = uip->unit_spec.unit;

scsi_cemd_blk_ptr->reservedl = 0;

secsi_cemd_blk_ptr->reserved2 = 0;

scsi_cmd_blk_ptr->reserved3 = 0;

scesi_cemd_blk_ptr->prohibit = inhibit_removal_filag;

scsi_cemd_blk_ptr->vendor_unique = 0;

scsi_cmd_blk_ptr->reserved4 = 0;

scsi_cmd_blk_ptr->link = FALSE;

scsi_cmd_blk_ptr->flag = FALSE;

arb_ptr->request_flags = (bitl6e_type)0;

A-78 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

io_init_one_entry_buffer_vector(é&arb_ptr->buffer_vector,
DEV_SD_NULL_BUFFER_PTR,

(uint32 _type)0);

/*.Implementation_Continued [=
/*

/* Issue the request to the target device. Ignore any status

/* generated. If the command failed we assume it failed because

/*® the device does not support the command (i.e. non-removable
/* medium device). After the command completes, release all

/* resources used to execute the command.
x/

/* .Endj= */

(void)dev_sd_start_sync_request(uip, arb_ptr);

misc_enqueue_at_tail(&uip->arb_free_queue, é&arb_ptr->links) ;
if (io_assign_next_interleave_waiter(&uip—>request_lock))

dev_sd_start_asynec_request(uip);

io_release_interleave_lock(&uip->request_lock) ;

return;

/*.function */

[*S x/

UNWIRED

status_type dev_sd_read_disk_capacity (uip, capacity_buffer_ptr)

[*> */

dev_sd_unit_info_ptr_type ulp; /* READ/WRITE */
dev_sd_read_capacity_buffer_ptr_type capacity_buffer_ptr; /* WRITE ONLY */

/*.Summary [=
/*

/* Read capacity of a disk unit.
/®

/*.Parameters
/*

/* uip ~- A pointer to the unit information structure of

/* the disk device which is the target of the read capacity
/* operation.

/* capacity_buffer_ptr -- A pointer to the buffer to which
/* the capacity information is to be written.

/*.Functional_Description

/* This function is called to issue a SCSI Read Capacity command
/* to a disk unit and return capacity information to the buffer
/* specified by <capacity_buffer_ptr>.
/*

/*.Return_Value
/*

/® OK -~ The read capacity operation was successful.
/*

/® Return values for dev_sd_start_sync_request.
/*

{
status_type status;

dev_adapter_request_block_ptr_type arb_ptr;

dev_sd_read_capacity_cmd_blk_ptr_type scesi_cmd_blk_ptr;

/*.Implementation[*=
/*

/*® Build a read capacity command and issue it to the target
/* device.
x

/* .Endj= */

io_sync_obtain_interleave_lock(&uip->request_lock) ;

misc _dequeue_ from _ head (é&uip->arb_free_queue,

093-701053 Licensed material—property of Data General Corporation A-79

A Sample SCSI Device Driver

(mise_queue_links ptr_type *)&arb_ptr);

scsi_cmd_blk_ptr = (dev_sd_read_capacity_cmd_blk_ptr_type)

&arb_ptr->scsi_cmd_blk;

secsi_cemd_blk_ptr->op_code = DEV_SCSI_CMD_READ_ CAPACITY;

scsi_cmd_blk_ptr->lun = arb_ptr->unit_spec.unit;

sesi_cmd_blk_ptr—>reservedl = 0;

sesi_cmd_blk_ptr->relative_addr = FALSE;

scsi_cemd_blk_ptr->logical_block_addr_high = 0;

sesi_cmd_blk_ptr->logical_block_addr_low = 0;

sesi_cmd_blk_ptr->reserved2 = 0;

sesi_cemd_blk_ptr->reserved3 = 0;

sesi_cmd_blk_ptr->vendor_uniguel = 0;

scsi_cemd_blk_ptr->reserved4 = 0;

sesi_cmd_ blk_ptr->pmi = FALSE;

scsi_cmd_blk_ptr->vendor_unique2 = 0;

scsi_emd_blk_ptr->reserved5 = 0;

sesi_cmd_blk_ptr->flag = FALSE;

secsi_cmd_blk_ptr->link = FALSE;

arb _ptr->request_flags = DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER ;

io_init_one_entry_buffer_vector(&sarb_ptr->buffer_vector,

(pointer _to_any_ type)capacity_buffer_ptr,

usizeof (dev_sd_read_capacity_buffer_type));

status = dev_sd_start_synec_request(ulip, arb_ptr);

/*.Implementation_Continued{=
/*

/* Free all resources used to issue the command and return the
/* Status of the operation.
x/

/* .End)= */

misc_enqueue_at_tail(&uip—>arb_free_queue, &arb_ptr->links);
if (io_assign_next_interleave_waiter(é&uip->request_lock))

dev_sd_start_async_request(uip);

}
io_release_interleave_lock(&uip->request_lock) ;

return(status);

}

/*.function */

/*< */
WIRED

uint32_type dev_scsi_get_bytes_requested (cmd)

[*> x/

dev_scsi_generic_cmd_ptr_type emd ; /* READ ONLY */

/*.Sumnary [=
/*

/* Convert commands data buffer size to bytes.
/*®

/*.Parameters
/*

/* ema -~ A pointer to the generic command block structure

/* containing the command code and data size information.
/*

/*.Functional_Description
/*

/* This function is called to interpret the length designator field
/* of the SCSI command block based of the command type.

/*® The unit and translation of special value of the data length (byte 4)

/*® field is not consistent between commands, this function converts the

/* each length to bytes.

/* .Return_Value

/* The maximun number of bytes to by provided or expected

/* by the command initiator.
/*

/* .Exceptions
/*

/* None.
/*

A-80 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

/* .Abort_ Conditions
/*

/* None

/*

{
uint32_type num_bytes;

uint32_type bytes_per_sector;

uint32_type size;

/*.Implementation [=
/®

/® Convert length according to command type.

/® NOTE: bytes-per-sector log2(number-of-bytes) - 7

/* EX: bytes-per-sector = 1 ==>represents 256 bytes/sector
/*®

/*.End)=
%/

size = (uint32_type)cmd->alloc_len;

Switch (cmd->op_code)

{
case DEV_SCSI_CMD_REQUEST_SENSE:

if(size == 0)

num_bytes = 4;

else

num_bytes = size;

}
break;

case DEV_SCSI_CMD_INQUIRY:

case DEV_SCSI_CMD MODE_SELECT:

case DEV_SCSI_CMD_MODE_SENSE:

if(size == 0)

num_ bytes = 0;

else

num bytes = size;

}
break;

case DEV_SCSI_CMD_READ:

case DEV_SCSI_CMD WRITE:

if(size == 0)

num_bytes = 0;

else

{
bytes _per_ sector = (uint32_type)cmd->log2_bytes_sector;

pum_bytes = size * (1 << (bytes_per sector + 7));

break;

default:

num_bytes = 0;

}

return(num_bytes) ;

}

/*.function */

{*< s/
UNWIRED

status_type dev_sd_determine_disk_type (uip, disk_type_ptr)
/*> =/

dev_sd_unit_info_ptr_type uip; /* READ ONLY */
uintl6_ptr_type disk_type_ptr; /* WRITE ONLY */

093-701053 Licensed material—property of Data General Corporation A-81

A Sample SCSI Device Driver

/*.Sumnary [=

/* Determine the type of a disk (i.e. rigid, floppy, erasable
/* optical, etc).
/*

/*.Parameters

/*

/* uip ~~ A pointer to the unit information structure of

/* the disk.
/*

/* disk_type_ptr -~- A pointer to where the disk type is to

/* be returned.

/*.Functional_Description

/* This function determines the type of a disk, using information

/* found in the inquiry buffer and mode sense buffer. It assumes

/* that an inguiry has already been performed, and that the ulp

/* contains a pointer to the inquiry buffer.

/*.Return_Value

/* OK -- The type of the disk was determined successfully.

/* Any error returned by dev_sd_sense_unit_mode.
/*

/* I0_ENXIO_DEVICE_NOT_SUPPORTED -- The type of the disk

/* could not be determined from the information given.
/*

{

uint8 type device_type;

dev_scsi_da_mode_buffer_type mode_buffer;

uint32_type status;

/* .Implementation [=
/*

/* Get the device type from the inquiry buffer. Use this to

/* narrow down the disk type.
/* ,

/*-End)=
=/

status = OK;

device_type = uip->inquiry_buffer.device_type;

switch (device_type)

case DEV_SCSI_DEVICE_DIRECT_ACCESS:

if (uip->inguiry_buffer.removable_medium)

/*.Implementation [=

/* The disk is either a floppy or an erasable optical disk.

/* It is necessary to do a mode sense to determine which type

/* it is. If the medium type is 0, then the disk is an

/* erasable optical disk; otherwise, it is a floppy.
/* .End)= . =/

status = dev_sd_sense_unit_mode(uip,
DEV_SCSI_MODE_SENSE_VENDOR_UNIQUE_PAGE,

DEV_SCSI_MODE_SENSE_CURRENT_VALUES,

&mode_buffer) ;

if (status == OK)

if (mode_buffer.header.medium_type == 0)

{
*disk_type_ ptr = DEV_SD_DISK_TYPE_ERASABLE_OPTICAL;

}
else

{
zdisk_type_ptr = DEV_SD_DISK_TYPE_FLOPPY;

A-82 Licensed material—property of Data General Corporation

A Sample SCSI Device Driver

}
else

{ .
*disk_type_ptr = DEV_SD DISK_TYPE_RIGID;

}
break;

case DEV_SCSI_DEVICE_WRITE_ONCE_READ MULTIPLE:

*disk_type_ptr = DEV_SD_DISK_TYPE_WORM;

break;

case DEV_SCSI_DEVICE_DIRECT_ACCESS_READ_ONLY:

=sdisk_type_ptr = DEV_SD_DISK_TYPE_READ_ONLY;

break;

default:

status = IO_ENXIO_DEVICE_NOT_SUPPORTED;

break;

}

return(status) ;

}

/*.function */

[*< */
WIRED

status_type dev_sd_complete_async_sb_io (arb_ptr, done_ptr)

/*> */

dev_adapter_request_block_ptr_type arb_ptr;/* READ/WRITE */

boolean _ptr_type done_ptr;/* READ/WRITE */

/*.Summary [=
/*

/* Determines the proper actions to take when an io completes
/* which is part of a sector buffered io. Sector buffering is
/* used when the disk sector size is greater than 512-bytes/

/* sector.
/*

/*.Parameters
/*

/* arb _ptr -- A pointer to an adapter request block.
/* done_ptr -- A pointer to a boolean flag which indicates
/* whether the sector buffered io is completely finished.
x

‘Functional Description
/®

/*® This function determines the proper actions to take, based
/* on the values of the request flags in the adapter request

/* block, when an io completes which is part of a sector

/* buffered io. If the flags indicate that the request is
/* done, then if the operation was a read, the data is transferred
/* from the sector buffer to the original io buffer. The

/* memory for the buffer is then released. If the original
/* operation is a write, the original buffer is copied into
/* the sector buffer, and a new asynchronous io is started.

/* .Return_Value

/*® OK — /*

{

io_operation_record_ptr_type op_record_ ptr;

dev_sd_unit_info_ptr_type ulp;
dev_scsi_read_write_cmd_blk_ptr_type sesi_rw_cemd_blk_ptr;
dev_sesi_write_verify_cmd_blk_ptr_type sesi_write_verify_cmd_blk_ptr;
pointer _to any type sector _buffer_ptr;
uint32_type sector_buffer_size;
pointer_to_any_type io_buffer_ptr;

uint32_type io_buffer_size;

pointer_to_ any type sector _buffer_position_ptr;

093-701053 Licensed material—property of Data General Corporation A-83

A Sample SCSI Device Driver

uint32_type logical_block_addr;

/*.Implementation[=
/*

/* Set up the required structures and get the necessary buffer

/* info.
x/

/* .Endj}= =/

op_record ptr = arb_ptr->op_record_ptr;

uip = (dev_sd_unit_info_ptr_type) (op_record_ptr->ri.device_handle) ;

io_reset_buffer_vector_position(&arb_ptr->buffer_vector) ;

io_get_buffer_vector_io_info(&arb_ptr->buffer_vector,
§or_buffer_ptr,

§or_buffer_size);

io_get_buffer vector_io_info(&o0p_record_ptr->ri.buffer_vector,
&io_buffer_ptr,

&10_buffer_size);

xdone_ ptr = FALSE;

/*.Implementation[=
x

/* If the request is done, determine if the original request

/® was a read. If so, copy the requested data into the

/* original buffer. Then, release the memory for the buffer.
x/

/* .End)= */

if (arb_ptr->request_flags & DEV_SCSI_REQUEST_FLAGS_SB_DONE)

{
if (arb_ptr->request_flags & DEV_SCSI_REQUEST_FLAGS_SB_READ)

sector_buffer_position_ptr = sector_buffer_ptr +
(op_record_ptr->ri.device_offset %

uip->sector_size);

misc_byte_copy(sector_buffer_position_ptr,
io_buffer_ptr,

io_buffer_size);

j

vm_release_wired_memory(sector_buffer_ptr, sector_buffer_size);
done ptr = TRUE;

}
else

{

/* .Implementation [=
/®

/* Set up to do an asyncchronous write. First, copy the
/* original buffer into the sector buffer. Then, do the
/* write.
/*®

/* .End)= */

sector_buffer_position_ptr = sector_buffer_ptr +
(op_record_ptr->rri.device_offset %

uip->sector_size) ;

misc_byte_copy(io_buffer_ptr,

sector_buffer_position_ptr,

io_buffer_size);

if ((uip->disk_type == DEV_SD_DISK_TYPE_ERASABLE_OPTICAL)

|| (uip->disk_type == DEV_SD_DISK_TYPE_WORM))

{
scesi_write_verify_cmd_blk_ptr =

(dev_scsi_write_verify_cmd_blk_ptr_type) s&arb_ptr->scesi_emd_blk;
sesi_write_verify_cmd_blk_ptr->op_code = DEV_SCSI_CMD_WRITE_VERIFY;

sesi_write_verify_cmd_blk_ptr->lun = arb_ptr->unit_spec.unit;
sesi_write_verify_cmd_blk_ptr->reservedl = 0;

A-&4 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Device Driver

sesi_write_verify_cemd_blk_ptr->relative_addr = FALSE;

logical_block_addr = op_record_ptr->ri.device_offset / uip~>sector_size;

secsi_write_verify_cmd_blk_ptr->logical_block_addr_high =
(uintl6_type)((logical_block_addr>> 16) «& Oxffff);

scsi_write_verify_cmd_blk_ptr->logical_ block_ addr_low =
(uintlé6é_ type) (logical_ block_ “addr & Oxffff);

sesi_write_verify_cmd_bik_ptr->reserved2 = 0;

scesi_write_verify_cmd_blk_ptr->transfer_ length__ high = 0;
sesi_write_verify_cmd_blk_ptr->trarsfer_length_low = sector_buffer_ size /

uip->sector_ size;

scesi_write_verify_cmd_blk_ptr-—>reserved3 = 0;
sesi_write_verify_cmd_blk_ptr->erase_control = FALSE;

scsi_write_verify_cmd_blk_ptr->reserved4 = 0;
scesi_write_verify_cmd_blk_ptr->link = FALSE;

scsi_write_verify_cmd_blk_ptr->flag = FALSE;

7 3
else

{
scesi_rw_cmd_blk_ptr = (dev_scesi_read_write_cmd_blk_ptr_type)

é&arb_ptr->scsi_cmd_blk;

scsi_rw_emd_blk_ptr->op_code = DEV_SCSI_CMD_ WRITE;
scsi_rw_emd_blk_ptr->lun = uip->unit_spec.unit;
sesi_rw_emd_blk_ptr->logical_block_address =

op_record_ptr->ri.device_offset /

ulip—>sector_size;

scsi_rw_cmd_blk_ptr->transfer_length = sector_buffer_size /
uip->sector_size;

secsi_rw_emd_blk_ptr->vendor_unique = 0;

scsi_rw_emd_blk_ptr->reservedl = 0;

s¢esi_rw_cmd_blk_ptr->link = FALSE;

scsi_rw_cmd_blk_ptr->flag = FALSE;

}

misc_increment(&uip->write_request_count);

misc_increment_by_value(éuip-—>write_block_count,
(int32e_type) (sector_buffer_size/DF_BYTES_PER_BLOCK));

arb_ptr->request_flags |= DEV_SCSI_REQUEST_FLAGS_SB_DONE;
arb_ptr->sync_io = FALSE;

arb _ptr->op_ record_ptr = op record ptr;

arb ptr->complete_io_routine = dev_sd_complete_io;

/*.Implementation_Continued [=

/* Issue the command to the supporting adapter. Any status
/* information generated by the request will be processed by
/® the driver complete I/O routine.

/*.End)= =/

(void)dev_scsi_adapter_issue_async_command (
uip->adapter_device_number.major,

arb_ptr);

}

return (OK);

System File Entries

This section shows a partial listing of a system file showing the sd driver’s entry.

#

System file

$

drivers

sd(cise(),90)

hken()

loop({)

093-701053 Licensed material—property of Data General Corporation A-85

A Sample SCSI Device Driver

#syac()

prf()
meter ()

Master File Entries

The following section shows a partial listing of the master file:

#

Disks:

#

#

#

Maximum

Name Major of units per Restriction

Prefix Number (S) Controller Flags
ee ee a ED OR Cee AD ee HN OE

#

sd 6 7 n

cird 7 7 D

End of Appendix

A-86 Licensed material—property of Data General Corporation 093-7010S3

Appendix B

A Sample SCSI Adapter Driver

This appendix gives the sample code for an SCSI adapter driver. We include the type

definitions, global data definitions, driver supplied I/O routines, an example system

file, and an example master file. For this example, xxx is replaced by cisc.

NOTE: The code provided here is only a sample. It is not guaranteed to be either

complete or operational.

Data Definitions: dev_cisc_def.h

[*< */
/* dev_cisc_def-h */

/*> *

/*.Contents [=
/*

/* DEV_CISC_SCSI_TARGET_ID -- subsystem

/* DEV_CISC_SCSI_HOST_ID -~- subsystem

/* DEV_CISC_SCSI_HOST_UNIT -- subsystem

/* DEV_CISC_STATUS_REGISTER_MASK -- subsystem

/* DEV_CISC_STATUS_READY_AFTER_RESET -- subsystem

/* DEV_CISC_PRIMARY_DEVICE_CODE_DEFAULT -—- subsystem

/* DEV_CISC_SECONDARY_DEVICE_CODE_DEFAULT -- subsystem

/* DEV_CISC_PRIMARY_ADDRESS_DEFAULT -- subsystem

DEV_CISC_SECONDARY_ADDRESS_DEFAULT -- subsystem

DEV_CISC_MAX_ADAPTERS ~~ subsystem

DEV_CISC_MAX_REQUEST_SIZE -~- subsystem

DEV_CISC_MAX PARAM BLOCKS -—- subsystem

DEV_CISC_MAX STATUS BLOCKS —- subsystem

DEV_CISC_MAX SCATTER _GATHER_BLOCKS -- subsystem

DEV_CISC_MAX CONCURRENT_REQUESTS -- subsystem

DEV_CISC_ISR_POSITION_VME_INTERRUPT_LEVEL_2 —- subsystem

DEV_CISC_INTERRUPT_LEVEL —- subsystem

DEV_CISC_UNIT_OPTIONS_TIMEOUT_DISABLE -—- subsystem
DEV CISC _UNIT_ OPTIONS _SELECT_TIMEOUT —- subsystem

DEV_ CISC UNIT OPTIONS _DEFAULT_DISCON_TIMEOUT -- subsystem

DEV_CISC_SCATTER_GATHER_TERMINAL_LINK -—— subsystem

DEV_CISC_CMD_START_LIST —- subsystem

DEV_CISC_CMD_STOP_LIST -—- subsystem

DEV_CISC_CMD_IDENTIFY -- subsystem

DEV_CISC_CMD_GET_BOARD_STATUS -- subsystem

DEV_CISC_CMD_ SET CONTROLLER_OPTIONS —- subsystem

DEV_CISC_CMD_SET_UNIT_OPTIONS -- subsystem

DEV_CISC_CMD_SELF_TEST -- subsystem

DEV_CISC_SELF_TEST_STATIC_RAM_TEST -- subsystem

DEV_CISC_SELF_TEST_PROM_TEST -- subsystem

DEV_CISC_RETRY_CONTROL_NONE -- subsystem

DEV_CISC_RETRY_CONTROL_INT -- subsystem

DEV_CISC_RETRY_CONTROL_ISB ~~ subsystem

DEV_CISC_RETRY_CONTROL_RPE -- subsystem

DEV_CISC_RETRY_CONTROL_RCE -- subsystem

DEV_CISC_RETRY_CONTROL_RBE -~- subsystem

DEV_CISC_RETRY_CONTROL_NONE -- subsystem

093-701053 Licensed material—property of Data General Corporation B-1

A Sample SCSI Adapter Driver

DEV_CISC_UNIT_FLAGS_IDI -- subsystem

DEV_CISC_UNIT_FLAGS_SYN -- subsystem

DEV_CISC_UNIT_FLAGS_IAT -- subsystem

DEV_CISC_UNIT_FLAGS_COM -- subsystem

DEV_CISC_UNIT_FLAGS_SOR —— subsystem

DEV_ ~CISC_ UNIT_ FLAGS_ISE -- subsystem
DEV_CISC_ PARAM _ BLK_FLAGS_NONE -- subsystem
DEV_CISC_ PARAM_BLK_ FLAGS __ ~§GO -- subsystem
DEV_CISC_PARAM BLK _FLAGS_DIR -- subsystem

DEV_CISC_PARAM_BLK_FLAGS_DAT -- subsystem

DEV_CISC_PARAM_BLK_FLAGS_IRS -- subsystem

DEV_CISC_PARAM_BLK_FLAGS_ISC -- subsystem

DEV_CISC_PARAM_BLK_FLAGS_DBV -—- subsystem

DEV_ CIsc_STATUS_BLK_ ERROR_ NO_ERROR -- subsystem
DEV_| CISc_ STATUS_BLK_ ~BRROR_BUS_TIMEOUT -—- subsystem
DEV_ ~CISC_STATUS_ _BLK_ ERROR _ ~ SELECT _ TIMEOUT -- subsystem
DEV _ _CISC_ STATUS _ _BLK_ ERROR _ “DISCONNECT _ TIMEOUT -- subsystem
DEV_! CISC. ~ STATUS __ BLK _ ~ERROR__ “BAD__ SCSI_STATUS -- subsystem
DEV_ CISC. OPTIONS _| THROTTLE _| TRANSFER _ COUNT -~- subsystem
DEV_. CISC _OPTIONS_ _ THROTTLE _ _BYTE_ COUNT -- subsystem
dev_ _cisc_param_ block _type -- subsystem
dev_cisc_param_block_ptr_type -- subsystem

DEV_CISC_REQUEST_SENSE_DATA_SIZE -- subsystem

dev_ cisc_status_block_type -- subsystem
dev_ cise status block _ptr_ type -- subsystem
dev__ cisc_ ~command_list_type —- subsystem
dev__ cisc_ ~ command _ list_type -- subsystem
dev_ cisc_ ~command_list_ptr_type -- subsystem
dev_| cis¢c_set_up_cmd_list_pb_type -- subsystem
dev_ cisc_set_up_cmd_list_pb_ptr_type -- subsystem

dev_ cisc_run_ diagnostics _pb_type -- subsystem
dev_ cisc_run _diagnostics_pb_ptr_ type -- subsystem
dev_ cisc_set_unit_options_pb_ type -- subsystem

dev_ cisc_ unit _options_ pb ptr_type -- subsystem
dev_ cisc __general_ options_pb_type -- subsystem
dev_ cisc_general_options_pb_ptr_type -- subsystem
dev_ cisc_identify_pb_type -- subsystem
dev_ cisc_identify_pb_ptr_type -- subsystem

dev_ cisc_type_0_pb_type -- subsystem
dev_ cisc_type_0_pb_ptr_type -- subsystem
dev_ cisc_device_info_type -- subsystem
dev_ cisc_ "device info _ptr_ type -- subsystem
dev_ cisc_ ~unit_ table _entry_type -- subsystem
dev_ cisc_unit_ “table entry_ptr_type -- subsystem

dev_ cisc_unit_ “table_type -~ subsystem
dev_. cisc_unit _table_ptr_ type -- subsystem
dev_ cisc _request_ blk_type -- subsystem
dev_ cisc_request_blk_ptr_type -- subsystem

dev_ cisc_scatter_gather_blk_type -- subsystem
dev_ cisc_ ~seatter_gather_blk_ptr_type -- subsystem

dev _cise_physical_ device_info_type -~- subsystem
"dev_cisc_physical_ device _info_ptr_type -- subsystem

.Description

This module contains definitions that support the Ciprico

Rimfire 3500 Host SCSI bus adapter driver modules.

Some of the definitions herein describe host~-side only data

structures that are used by the driver to keep track of the

state of the outstanding requests, and are subject to change

as the driver changes. Other definitions describe

the host-controller Ciprico Rimfire 3500 interface and as

such are understood by the Ciprico controller. These

definitions should obviously not be changed.

.Literal_Section[=

Miscellaneous CISC literals.

#define DEV_CISC_SCSI_TARGET_ID ((uint8e_type) Oxff)
®

* The SCSI id value that is used when a general board command is

B-2 Licensed material—property of Data General Corporation 093-701053

A ‘Sample SCSI Adapter Driver

* issued to the cise controller.

*/

#define DEV_CISC_SCSI_HOST_ID ((uint8e_type)0x0007)
/*

* The SCSI id that is reserved for the host system on the cisc SCSI

* interface.

*/

#define DEV_CISC_SCSI_HOST_UNIT ((uint8e_type) 0x0000)
/*

* The unit number that is used to access the cisc unit table

* entry reservced for the host systen.

*/

#define DEV_CISC_STATUS_REGISTER_MASK ((bit32e_type)0x03ff)
/*

* Mask used to extract the board type and status from the

* Ciprico 3500 Board Status Register.

*/

#define DEV_CISC_STATUS_READY_AFTER_RESET ((bit32e_type)0x0202)
/*

* Masked Board Status Register value that indicates the board is

* a Rimfire 3500 and the board is ready to accept commands.

*/

#define DEV_CISC_PRIMARY_DEVICE_CODE_DEFAULT 0x0028
x

x The default VME interrupt vector (device code) that is used for

* a Rimfire 3500 if a device code is not present in a device spec.

*/

#define DEV_CISC_SECONDARY_DEVICE_CODE_DEFAULT 0x0029
/*

* The default VME interrupt vector (device code) that is used for

* a Rimfire 3500 if a device code is not present in a device spec
* but the controller resides at the secondary control register

* address.

*/

#tdefine DEV_CISC_PRIMARY_ADDRESS_DEFAULT Oxfff££300
/*

* The default control register starting address that is used for

* a Rimfire 3500 if a control register starting address is not

* present in a device spec.
x

*/
#define DEV_CISC_SECONDARY_ADDRESS_DEFAULT Oxfffff500

x

* The default control register starting address that is used for
x the second Rimfire 3500 controller in a system if a starting
* address is not present in a device spec.

*/

#define DEV_CISC_MAX ADAPTERS 0x0003
/*

* The maximum number of Rimfire 3500 SCSI adapters that are

* supported in a single system configuration.

*/

#define DEV_CISC_MAX_ REQUEST_SIZE 0x8000

/*
. * The maximum request size in bytes that can be specified in

* a single Rimfire 3500 I/O operation. This size is limited

* to the number of bytes the kernel is willing to allow a user

* to have wired and not by a physical restriction in the controller.

*/

#define DEV_CISC_MAX PARAM BLOCKS ((uintl6_type)0x0040)
x

* The number of Ciprico parameter blocks allocated for a Ciprico

* Rimfire 3500 controller.

*/

093-701053 Licensed material—property of Data General Corporation B-3

A Sample SCSI Adapter Driver

#define DEV_CISC_MAX_STATUS_BLOCKS 2*DEV_CISC_MAX PARAM BLOCKS
/*®

x The number of Ciprico status blocks allocated for a Ciprico

Rimfire 3500 controller. Two status block are allocated for each

parameter block. Execution of a single parameter block may result

in multiple status blocks being used. As a result, more status

blocks than parameter blocks are needed.“% 4 0
*/

#define DEV_CISC_MAX_SCATTER_GATHER_BLOCKS

DEV_CISC_MAX_PARAM BLOCKS*((DEV_CISC_MAX REQUEST_SIZE/32768)+1)
/*

The number of scatter gather blocks allocated for a Ciprico Rimfire
3500 controller. Enough blocks are allocated so that the maximum

data transfer size can be specified by each parameter block

Simultaneously. 32K bytes can be specified by each scatter gather

block. If a 32K buffer is not page aligned, 2 scatter gather arrays

are required to perform the transfer.%* HH HM
*/

#define DEV_CISC_MAX_CONCURRENT_REQUESTS ((uintl6_type)

DEV_CISC_MAX_PARAM_ BLOCKS-1)
/*

* The maximum number of requests (parameter blocks) that the ESDI/SMD

* disk driver allows to be concurrently issued to the disk controller.

* Note that this number must be one less than the actual number of

* parameter blocks in the command list. This is required for the command

* list circular queue mechanism to work correctly. We must prevent the

* index from rolling over and making “list full” appear to be “list empty”.

*/

#define DEV_CISC_ISR_POSITION_VME_INTERRUPT_LEVEL_2 ((uintl6_type)0x0006)

/*
* The bit number in the Interrupt Status Register which corresponds

* to VME devices set at interrupt level 2.

*/

#define DEV_CISC_INTERRUPT_LEVEL ((uintl16_type)0x00002)
/*

* The interrupt level used by the cisc controller.

*/

#define DEV_CISC_UNIT_OPTIONS TIMEOUT_DISABLE ((uintl6_type)0x000000)
/*

* Value used in the Set Unit Options parameter block to disable

* timeouts.

*/

#define DEV_CISC_UNIT_OPTIONS_SELECT TIMEOUT ((uintl16_type)0x0000fa)
/*

* Value used in the Set Unit Options parameter block to request

* a select timeout of 250 milliseconds. This field is specified in

* units of milliseconds.

*/

#define DEV_CISC_UNIT_OPTIONS_DEFAULT_DISCON_TIMEOUT ((uintl6_type)0x00014)
/[*

* Default value used in in the Set Unit Options parameter block

x disconnect timeout field (2 seconds). This field is specified in

x units of .1 seconds.

*/

#define DEV_CISC_SCATTER_GATHER_TERMINAL_LINK ((dev_cise_scattei:_gather_blk_ptr_type) Oxfffffrfs
/*

* Used in "next sg" field of a scatter/gather array to indicate that
* no other arrays are in the chain.
x

*/

#define DEV_CISC_SYNC_SUPPORT_FIRMWARE_REVISION ((uint8e_type)i11)
/7*

* Controllers with a firmware revision greater than or equal to this

* value are assumed to support the SCSI synchronous data transfer

* protocol.

B-4 Licensed material—property of Data General Corporation: 093-701053

A Sample SCSI Adapter Driver

*/

/* .Literal_Section[=
/*

/* CISC command codes. See the Rimfire 3500 Product Specification
/* for a complete description of these commands.
/*

#define DEV_CISC_CMD_START_LIST ((uint8e_type) 0x0001)

#define DEV_CISC_CMD STOP_LIST ((uint8e_type)0x0002)

#define DEV_CISC_CMD_IDENTIFY ((uint8e_type)0x0005)
#define DEV_CISC_CMD_GET_BOARD_STATS ((uint8e_type)0x0006)

#define DEV_CISC_CMD SET _CONTROLLER_OPTIONS ((uint8e_type)0x0007)

#define DEV_CISC_CMD_SET_UNIT_OPTIONS ((uint8e_type) 0x0008)

#define DEV_CISC_CMD_SELF_TEST ((uint8e_type)0x0009)

#define DEV_CISC_SELF_TEST_STATIC_RAM_TEST ((bit8e_type)0x0001)
#define DEV_CISC_SELF_TEST_PROM_TEST ((bit8e_type) 0x0002)

/*.Literal_Section[=
/*

/* CISC Retry Control Definitions.
/*

/* .Description
/*

/* These constants define the selectable options in the Retry

/* Control byte of a Ciprico Rimfire 3500 Unit Options
/* parameter block. The Retry Control options tell the controller
/* which types of errors to retry and how to report retries

/* to the host.
/*

#define DEV_CISC_RETRY_CONTROL_NONE ((bit8e_type)0x0000)
/*®

* This retry control constant is used if none of

* the options are being selected. |

*/

#define DEV_CISC_RETRY_CONTROL_INT ((bit8e_type)0x0001)
/*

* Issue interrupt bit - if set, tells the controller to issue an

* interrupt for each retry performed.

*/

#define DEV_CISC_RETRY_CONTROL_ISB ((bit8e_type)0x0002)
/*

* Issue Status Block bit, if set, tells the controller to issue a

* status block for each retry performed.

*/

#define DEV_CISC_RETRY_CONTROL_RPE ((bit8e_type)0x0004)
/*

* Retry parity errors bit - if set, tells the controller to

* retry parity errors.

*/

#define DEV_CISC_RETRY_CONTROL_RCE ((bit8e_type)0x0008)
x

* Retry command errors bit - if set, tells the controller to

* retry command errors (SCSI device-reported errors)

*/

#define DEV_CISC_RETRY_CONTROL_RBE ((bit8e_type) 0x0010)
/*

* Retry SCSI bus errors bit - if set, telis the controller

* to retry SCSI bus errors (e.g. selection timeouts).

*/

#define DEV_CISC_RETRY_CONTROL_NONE ((bit8e_type)0x0000)
/*

* This retry control constant is used if none of

* the options are being selected.

*/

/*.Literal_Section[=
/*

093-701053 Licensed material—property of Data General Corporation B-5

A Sample SCSI Adapter Driver

/* CISC Unit Flags Definitions.
/*

/* .Description
/*®

/* These constants define the selectable options in the Unit
/* Flags field of a Ciprico Rimfire 3500 Unit Options
/* parameter block. The Unit Flags allow selection of various

/* modes of data transfer between the unit and the Ciprico
/* controller.
/*

#define DEV_CISC_UNIT_FLAGS_IDI ((bit8e_type) 0x0001)
/*

* Inihibit disconnect bit - if set, prevents a device from

* disconnecting while a command is taking place.

*/

#define DEV_CISC_UNIT_FLAGS SYN ((bit8e_type) 0x0002)
/*

* Synchronous transfer bit - if set, enables SCSI synchronous
* data transfers to the device.

*/

#define DEV_CISC_UNIT_FLAGS_IAT ((bit8e_type)0x0004)
/*

* Inhibit assert attenion bit - if set, causes the adapter

* to refrain from asserting the ATN signal when selecting
* the device. This option is used with targets that
* do not respond or can’t handle ATN.

*/

#define DEV_CISC_UNIT_FLAGS_SOR ((bit8e_type)0x0008)
/*

* Sort Commands bit - if set, enables command sorting for
* SCSI disk commands.

*/

#define DEV_CISC_UNIT_FLAGS_COM ((bit8e_type) 0x0008)
/*

* Command Combining bit - if set, enables command combining for
* SCSI disk commands.
2

#define DEV_CISC_UNIT_FLAGS_ISE
/®

* Ignore SCSI Soft Errors bit - if set, SCSI soft errors
* (Error Class.7, Sense Key 1) will not be retries.

((bit8e_type) 0x0020)

*/

/*.Literal_Section[{=
/ x

/* CISC Parameter Block Flag Definitions. See the Rimfire 3500
/* Product Specification for a complete description of these flags.
/*

#define DEV_CISC_PARAM_ BLK_FLAGS_NONE ((bit8e_type)0x0000)

#define DEV_CISC_PARAM BLK FLAGS SGO ((bit8e_type)0x0001)

#define DEV_CISC_PARAM BLK_FLAGS_DIR ((bit8e_type)0x0002)

#define DEV_CISC_PARAM BLK_FLAGS_DAT ((bit8e_type)0x0004)

#define DEV_CISC_PARAM BLK_FLAGS_ IRS ((bit8e_type)0x0008)

#define DEV_CISC_PARAM BLK_FLAGS_ISC ((bit8e_type)0x0040)

#define DEV_CISC_PARAM_BLK_FLAGS_DBV ((bit8e_type) 0x0080)

/*.Literal_Section[=
/*

/*

/*

/*

/*

#define

CISC Status Block Error Code Definitions. See the Rimfire 3500
Product Specification for a complete description of these error

codes.

((bit8e_type) 0x0000)DEV_CISC_STATUS_BLK_ERROR_NO_ERROR

((bit8e_type) 0x0014)#define

#define

#define

#define

DEV_CISC_STATUS_BLK_ERROR_BUS_TIMEOUT

DEV_CISC_STATUS_BLK_ERROR_SELECT_TIMEOUT

DEV_CISC_STATUS_BLK_ERROR_DISCONNECT_TIMEOUT

DEV_CISC_STATUS_BLK_ERROR_BAD_SCSI_STATUS

((bit8e_type) 0x001E)

((bit8e_type) O0x001F)

((bit8e_type) 0x0023)

Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/*.Literal_Section[{=
/*

/* CISC Controller Options Definitions. See the Rimfire 3500
/* Product Specification for a complete description of these options.
/*

tdefine DEV_CISC_OPTIONS_THROTTLE_TRANSFER_COUNT ((uint8e_type)0x0000)

#define DEV_CISC_OPTIONS_THROTTLE_BYTE_COUNT ((uint8e_type)0x0001)

/*.Section[=
/*®

/* Ciprico Rimfire 3500 Data Structures.
/*

/*.type */

typedef struct

{
uint32e_type param_blk_id;

uint8e_type reserved_1l_must_be_ zero;

bit8e_type flags;

uint8e_type address_modifier;

uint8e_type target_id;
uint32e_type vme_memory_address;
uint32e_type transfer_count;

dev_scsi_cmd_blk_type secsi_cemd_blk;

[*¢ */

} dev_cisc_param_block_type i

/*> */

/* .Description[=

/* This is the standard command descriptor (parameter) block
/*® used when sending a command to Ciprico Rimfire 3500 controller.
/* See the Rimfire 3500 Product Specification for a complete description
/* of the members of this structure.

/*.type */

typedef dev_cisc_param_block_type *

/*é =f

dev_cisc_param_block_ptr_type ;

/*> x/

/*.Description[=
/*

/* A pointer to a parameter block.
/*

define DEV_CISC_REQUEST_SENSE_DATA_SIZE ((uint32_type)0x0008)

/*
.

* The number of bytes of request sense data that are returned
* ina single cise status block.

*/

/*.type */

typedef struct

{
uint32e_type command_id;

skip_type reserved_1]_must_be_ zero : 8;

bit8e_type sesi_status;

bit8e_type error_code;

bit8e_type flags;

byte8e_type sense_data[DEV_CISC_REQUEST_SENSE_DATA_SIZE] ;

[*s */

} dev_cisc_status_block_type ;

/*> s/

093-701053 Licensed material—property of Data General Corporaton B-7

A Sample SCSI Adapter Driver

/*.Description{=
/*

/* This type defines the status block returned by a Ciprico

/* Rimfire 3500 controller. See the Rimfire 3500 Product Specification

/* for a complete description of the members of this structure.
a

f*.type */

typedef dev_cisc_status_block_type *

{*¢ ‘2 /

dev_cisc_status_block_ptr_type ;

/*> =/

/*.Deseription[=

/*

/* A pointer to a status block.

/*

/*.type */

tvpedef struct

i

ulint32e_tvpe command_id;

uint8e_type firmware_revision;

uint8e_type engineering revision;

bit8e_type error_code;

bit8e_type flags;

skip_type reserved_l]_must_be zero : 7;

field type floppy_disk_option_present_flag;

uint8e_type day;

uint8e_type month ;

uint8e_type year;

uint32Z2e_type reserved _2_ must_be_ zero;

/*< x/
} @Gev_cisc_identify_status_block_type ;

/*> */

/*.Description[=
/®

/* This type defines the status block returned by a Ciprico

/* Rimfire 3500 controller in response to the identify command.

/® See the Rimfire 3500 Product Specification for a complete

/* description of the members of this structure.
/*

/*®.ctype */

typedef dev_cisc_identify status _block_type *

{*®S x/

dev_cisc_identify_status_block_ptr_type

/*> =

/*.Description{=
/®

/* A pointer to an identify status block.
/*

/*.type */

typedef struct

uint32e type param_blk_in_index;
uint32e_ type param_blk_out_index;

ulnt32e_type status_blk_in_ index;

uilnt32e type status_blk_out_index;
uint32e_type param_blk_area_size;
uint32e_type status_bik_area_size;

uint32e_type reserved_1l1_must_be_ zero;

ulat32e_ type reserved _2_must_be zero;

dev_cisc_param_block_type param_blk[DEV_CISC_MAX_PARAM_BLOCKS] ;

B-8 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

dev_cisc_status_block_type status_blk [DEV_CISC_MAX_ STATUS_BLOCKS] ;

[®< =/

} dev_cisc_command_list_type i
/*®> *

/* .Deseription [=
/*

/* This type defines a command list into which commands descriptors
/* (parameter blocks) are placed and status blocks retrieved.

/* The queues of param/status blocks are maintained by in and
/* out indices. The param_block_in_ index is the first free

/* entry on the gueue. The param_block_out_index should be

/* modified on
/*

/*.Members
/*

/* reserved_n must_be zero --

/* Reserved by Ciprico, must be zero. The first six of these

/* are the high 16 bits of a 32-bit quantity. Since the

/*® indices for the array will never go above 2**16, the

/* high-order word is not used.
/*

/* param_block_in_index --

/* The first free entry on the circular list of parameter blocks.
/* If this value is egual to param_block_out_index, all parameter

/* blocks are free. If this value is equal to one less than

/* param_block_out_index, there are no free parameter blocks.

/* The controller will not alter this index.
/*

/* param_block_out_index --

/*® The first in-use entry on the circular list of parameter blocks.

/* If this value is equal to param_block_out_index, there are

/*® no free parameter blocks. This value is NOT to be changed

/® by the os, only by the controller.
/*

/* status_block_in_ index --

/* The first free entry on the circular list of status blocks.

/*® If this value is equal to param_block_out_index, all status
/* blocks are free. If this value is equal to one less than

/* status, there are no free status blocks.

/* This value is NOT to be changed by the os, only by the controller.
/*®

/* status_block_out_index -——-

/* The first in-use entry on the circular list of status blocks.

/* If this value is equal to status_block_out_index, there are

/* no free status blocks.

/* The controller will not alter this index.
/*

/*

/*.type */

typedef dev_cisc_command_list_type *

[2 = /

dev_cisc_command list_ptr_type ;

[*> «/

/* .Description[=
/*

/* A pointer to a command list.
/*

/*.type */

typedef struct

{
uint32e_type param_block_id;

uintl6e_type reserved_l1_must_be zero;

uint8e_type address_modifier;

uint8e_type target_id;

uint32e_type command_list_ptr;

uintl6e_type reserved_2_must_be_ zero;

uint8e_type interrupt_level ;

093-701053 Licensed material—property of Data General Corporation B-9

A Sample SCSI Adapter Driver

uint8e_type interrupt_vector;

uint8e_type command ;

skip_type reserved_3_must_be zero : 24;

uint32e_type reserved_4 must_be zero;

uint32e_type reserved_5 must_be_ zero;

/*®¢ =/

} dev_cisc_set_up_cmd_list_pb_type i
/*®> */

/* .Description[=
/*

/* This structure defines a Ciprico Rimfire 3500 Start Command List

/*® parameter block. See the Rimfire 3500 Product Specification for
/* a complete description of the members of this structure.
/*

/*.type */

typedef dev_cisc_set_up_cmd_list_pb_type *

[*< */

dev_cisc_set_up_cmd_list_pb_ptr_type ;

/*>--—4 */

/* .Description[=
/*

/* A pointer to a start-command-list type.
/*

/*.type */

typedef struct

{
uint32e_type | param_block_id;

field_type reserved_l_must_be zero : 24;
uint8e_typ target_id;
uint32e_type reserved_2_must_be_ zero;

uint32e_type reserved_3_must_be_ zero;
ulnt8e_type command ;

bit8e_type test_flags;
uintl6e_type reserved_4 must_be zero;
uint32e_type reserved_5_must_be_ zero;

uint32e_type reserved_6_must_be zero;

/*< */
} dev_cisc_run_diagnostics_pb_type ;
/*> *

/* .Description[=
/*

/* This structure defines a Ciprico Rimfire 3500 Run Diagnostics
/* parameter block. See the Rimfire 3500 Product Specification for

/* a complete description of the members of this structure.
/*

/*

typedef dev_cisc_run_diagnostics_pb_ type *

1*< =/

dev_cisc_run_ diagnostics_pb_ptr_type i
/*> */

/*.Description [=
/*

/* A pointer to a run-diagnostics param block.
/*

/*.type */

typedef struct

{
uint32e_type param _block_id;

uintl6e_type disconnect_timeout ;

uint8e_type unit_id;

B-10 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

uint8e_type target_id;

uintl6e_type select_timeout;

ulnt8e_type retry_control;

uint8e_type retry_limit;

bitl6e_type reserved_1;

uint8e_type sense_bytes;

uint8e_type unit_flags;

uint8e_type command ;

field_type reserved_2 : 24;

uint32e_ type reserved_3;

uint32e_type reserved_4;

/*< */
} dev_cisc_set_unit_options_pb_type ;

/*> */

/* .Description[=
x

/® This structure defines a Ciprico Rimfire 3500 Set Unit Options

/* parameter block. See the Rimfire 3500 Product Specification for

/* a complete description of the members of this structure.
x/

/*

typedef dev_cisc_set_unit_options_pb_type *

/*< */
dev_cisc_unit_options_pb_ptr_type ;

/*> */

/*.Description([=
x

/* A pointer to a Set Unit Options param block.
/*

/*.type */

typedef struct

{
uint32e_type param_block_id;

skip_type reserved_1_must_be_ zero : 5;

field type block_mode_flag : 1;

field type parity_check_ flag : 1;

field_type allow_disconnect_flag : 1;

field type throttle _type : 1;

field_type throttle_count : 7;

uint8e_type host_id;

uint8e_type target_id; .

uint32e_type reserved_2_must_be_ zero;

uint32e_type reserved_3_must_be_ zero;

uint8e_type command ;

skip_type reserved_4 must_be zero : 24;

uint32e_type reserved_5 must_be_ zero;

uint32e_type reserved_6_must_be_ zero;

[*< =/
} dev_cisc_general_options_pb_type i

/*®> *

/* .Description [=
/*

/* This structure defines a Ciprico Rimfire 3500 General Options

/* parameter block. See the Rimfire 3500 Product Specification for

/* a complete description of the members of this structure.
/*

/*

/*.type */

typedef dev_cisc_general_options_pb_type *

/*< =/

dev_cise_general_options_pb_ptr_type 3

[*> a/

093-701053 Licensed material—property of Data General Corporation B-11

A Sample SCSI Adapter Driver

/* .Description[=
/*

/* A pointer to a general options param block.
/*

/*.type */

typedef struct

uint32e_type param_block_id;
skip_type reserved_1_must_be_zero : 24;

uint8e_type target_id;

uint32e_type reserved_2_must_be_ zero;

ulint32e_type reserved_3_must_be_zero;

ulnt8e_type command ;

skip_type reserved_4 must_be_ zero : 24;

ulint32e_type reserved_5 must_be_ zero;

uint32e_type reserved_6_must_be_zero;

[*< */
} dev_cisc_identify pb type i

/*> */

/*.Description[=
/*

/* This structure defines a Ciprico Rimfire 3500 Identify command

/* parameter block. See the Rimfire 3500 Product Specification for
/* a complete description of the members of this structure.
/*

/*

/*.type */

typedef dev_cisc_identify_pb_type *

[*¢ =/

dev_cisc_identify_pb_ptr_type i

[*> */

/*.Description[=
/*

/* A pointer to a general options param block.
/*

/* .type */

typedef struct

{
dev_cisc_param_block_type std_param_block;
uintl6e_type reserved_1_must_be_zero;

uint8e_type interrupt_level;
uint8e_type interrupt_vector;

uint32e_type reserved_2_must_be_zero;
dev_cisc_status_block_type status_block;

[2¢ =/

} dev_cisc_type_0_pb_type ;

/*> */

/* .Description [=
/*

/* A type zero parameter block. Type zero parameter blocks
/* are used to issue command without the use of the command list

/* facilities. See the Rimfire 3500 Product Specification for

/* a complete description of the members of this structure.
/*

/*

/* .Members
/*

/* std_param_block --

/* A standard parameter block is embedded in a type zero

/* parameter block.
/*

/* reserved_1_must_be_zero -—

/* Reserved by Ciprico. Must be zero.
/*

B-12 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* interrupt_level --

/* The interrupt level to be used when an interrupt is posted

/* on the command’s completion. If zero, interrupts are

/*® disabled. Other valid values are 1-7, those being the

/* permissable VME interrupt levels.
/*

/7* interrupt_vector -—

/* The interrupt vector to be returned when an interrupt is

/* acknowledged on the command’s completion. This should

/* be the controller’s vector number.
/*

/* reserved_2_must_be_zero —~

/*® Reserved by Ciprico. Must be zero.
/*

/* status_block --

/*® A status block is embedded in a type zero

/* parameter block.
/*

/* .type */

typedef dev_cisc_type_O_pb_type *

[*¢ =/

dev_cisc_type_0_pb_ptr_type i

/*> =/

/* .Description [=
/*

/* A pointer to a type zero parameter block.
x

/*.type */

typedef struct

{
io_service_interrupt_routine_ptr_type service_interrupt_routine_ptr;

io_interleave_lock_type request_lock;

misc_queue_header_type asynce_request_queue;

misc _queue_header_type request_blk_queue;
misc_gqueue_header_type scatter_gather_blk_queue;

misc _spin_lock_type controller_lock;

dev_ciprico_register_ptr_type cisc_reg_ptr;

dev_cisc_command_list_type emd list;

struct dev_cisc_unit_table_entry_tag * ute_ptr;

uint8e_type interrupt_level;

io_device_code_type device_code;

io_device_number type device_number;

bitl6e_type vme_address_modifier;

boolean_type sync_scsi_supported;

[*¢ */
} dev_cisc_device_info_type ;

/*> */

/* .Description [=

/* This data structure contains all of the per-device information
/* for a Ciprico Rimfire 3500 controller that is under the

/* jurisdiction of the CISC device driver modules.

/* Dev_cisc_device_info_type must be smaller than a page because

/* the command_list structure contained within is accessed by the
/* Ciprico controller. The command_list location is specified

/* to the controller by a single physical address. A

/® dev_cisc_device_info_type is allocated with the specification
/* that it not cross a page boundary.

/* .Members

/* service_interrupt_routine_ptr -- This pointer identifies

/*® the routine that is called by the system interrupt handler to

/* service interrupts for this controller. THIS FIELD MUST BE
/* THE FIRST FIELD IN THE STRUCTURE AS IT IS ASSUMED SUCH BY THE
/* SYSTEM INTERRUPT HANDLER.
/*

093-701053 Licensed material—property of Data General Corporation B-13

A Sample SCSI Adapter Driver

request_lock -- Controls access to the parameter blocks

in the command list. The lock may be held concurrently as many

times as there are entries in the request_blk_queue.

asyne_request_queue -—- The queue header for the queue of
asynchronous requests that could not immediately be assigned a
parameter block from the command list. As request blocks are

freed up, requests are removed from this queue and assigned a
request block.

request_blk_queue -- This structure is the queue header
for the queue of free request blocks. These request blocks are
assigned to incoming I/O requests and are put back on the

free queue when the request has been completely serviced. The
number of request blocks allocated corresponds directly to the
number of Ciprico parameter blocks allocated in the command list
parameter block array.

scatter _gather_blk_queue -- The queue header for the queue
of free scatter gather blocks. Scatter gather blocks are allocated
from the free queue on a per-request basis to specify all
information needed by the controller to perform DMA. Scatter gather
blocks are returned to the free queue after a request has
completed.

controller lock -- This spin lock is obtained to insure
exclusive access to some of the data structures in the
dev_cisc_device_info_type structure. A spin lock must be used

instead of the standard sequenced lock because Ciprico controller
interrupts are cleared by the time the cisc interrupt service
routine is called. The interrupt service routine can’t simply
return and assume the interrupt will remain posted if the
controller lock can’t be obtained.

cisc_reg_ptr -- A pointer to the control space in system

memory which is used to communicate with the Ciprico controller.

The address of the control space is determined by jumpers on
the board. If a control space address specified in the DG/Ux
System file for the controller, it must match the address
jumpered on the board.

emd_list -- A Ciprico Rimfire 3500 command list structure.
The command list consists of an array of parameter blocks, an
array of status block, and a set of indices which specifiy the

state of each array. Once controller initialization has been

done, all commands to the controller are issued through this

structure. In addition, the controller reports all request status

information through this structure. Note that this structure must

not cross a page boundry since it is accessed by the controller.

As a result, the device info structure is allocated with the
"no page cross" specification.

ute_ptr —— Unit table entry reserved for the
the SCSI interface. Used during controller initialization

so that common support functions can be used.

interrupt_level -- The VME interrupt priority for the
Ciprico controller. The interrupt level specifies which bit of the

eight VME bits in the system interrupt status register will be set

when Ciprico controller requests a host interrupt. The interrupt
level is assigned by software. The Ciprico controller is told
what interrupt level to use when it is configured. The interrupt
level assigned to the Ciprico 3500 is DEV_CISC_INTERRUPT_LEVEL.

Interrupt level assignments for DG/UX are based on 88k memo #129,

“VME Device Specifications”.

device _code -- The VME interrupt vector for the Ciprico

controller. The interrupt vector identifies a particular device

amoung devices that interrupt at the same level. The interrupt

vector of the interrupting device with the lowest vector is

returned when a VME acknowledge is done at a particular level.

The interrupt vector number is used by the system interrupt handler

to index the Device Interrupt Table. The interrupt vector is assigned

by software. The Ciprico controller is told what interrupt vector

to use when it is configured. The interrupt level assigned to the

B-14 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* Ciprico 3500 is determined by the device specification entered in
/* the DG/UX System file. Default interrupt vector assignments for
/* DG/UX are based on 88k memo #129, “VME Device Specifications”.
/*

/* device_number -- The major and minor device number

/* of this Ciprico Rimfire 3500 controller.
/*

/* wme_address_modifier -- The vme address modifier used to

/* perform dma through the controller. Either Extended Supervisory
/* Block Transfer or Extended Supervisory Data Access is used.
/* If the machine architecture supports block mode vme, Extencied
/* Supervisory Block Transfer is used. Otherwise Extended Supervisory

/* Data Access is used. Uc_get_config_info is called to determine

/* what the machine supports.

/*

/* sync_scsi_supported -- The controller was determined to

/* be at a firmware revision level that allows use of synchronous SCSI.
/*

/*.type */

typedef dev_cise_device_info_type *

[*¢ =/

dev_cisc_device_info_ptr_type ;
/*> x

/*.Description{[=
/*

/* A pointer to a cise device information structure.
z

/*.type */

typedef struct dev_cisc_unit_table_entry_tag

{
boolean_type in_use;

dev_scsi_adapter_unit_spec_type unit spec;

dev_cisc_device_info_ptr_type dip;

bit32e_type driver_handle;
bit8e_type device_type;
misc_clock_value_type controller dead timeout;

misc_clock_value_type start_busy_time;
misc_counter_type outstanding request_count;

[* */
} dev_cisc_unit_table_entry_type ;

/*> x/

/* .Description [=
/*

/*®

/* This structure defines an entry in a cisc unit table. The
/* unit table is used map between a SCSI device and the SCSI
/* interface used to access the device.
/*

/*.Members
/*

/* in_use -- Flag, when set indicates that a device is
/* currently registered at this entry in the unit table.

/*
/* upit_spec -- The SCSI id and unit number of the device
/* registered at the entry.
/*®

/* dip -—- A pointer to the device information structure
/* used to control the cisc interface that is used to
/* to reference the device.
/*

/* ariver_handle -- An opaque handle that the device

/* driver registers with the SCSI interface. The handle
/*® is returned to the driver by the get_device_info
/* function.
/*

/* unit_options_ blk -- The unit options block which

/* describes the various device control parameters of the device
/* registered at this table entry.

093-701053 Licensed material—property of Data General Corporation B-15

A Sample SCSI Adapter Driver

/*®

/* device_type -- Specifies the class of device which is
/* registered at this entry. The device class is obtained from
/* the inquiry buffer returned from the device during device

/* configuration.
/*®

/* controller _dead_timeout -~ Maximum amount of time to
/* wait for a request to complete before assuming that the

/* controller has failed. The ciprico controller has its own
/* internal timeout mechanism. This timeout is used as a backup
/* in case the controller fails.

/* start_busy_time -- The system time when the disk unit
/* last went from the idle to the active state. This field is
/* used to collect system activity data. See urb memo 052
/* for a complete description of how system activity data is
/* collected for intelligent disk controllers.
/®

/* outstanding _request_count ~- The number of requests that
/* have been issued to the disk unit that are still outstancling.
/® This counter is used to determine when the disk unit tog¢gles
/* between the idle and busy states.
/*

/*.type */

typedef dev_cisc_unit_table_entry_type *

[s */

dev_cisc_unit_table_entry_ptr_type j;

/*> */

/*.Description[=
/*

/* A pointer to a cise unit table entry.
/*

/*.type */

typedef dev_cisc_unit_table_entry_type

[2S x/

dev_cisc_unit_table_type [(DEV_SCSI_MAX_SCSI_IDS] [DEV_SCSI_MAX_UNITS}] ;

/*> */

/* .Description [=
/*®

/*

/* An cise unit table. The unit table is indexed by SCSI id and
/*® unit number of a device. It is used to map between a device
/% and its SCSI interface.
/*

/*

/*.type */

typedef dev_cisc_unit_table_type *

/*< x /

dev_cisc_unit_table_ptr_type ;

/*> */

/* .Description [=
/*

/*

/* A pointer to a cise unit table.
/*

/*.type */

typedef struct

{
mise_queue_links_type links;
dev_adapter_request_block_ptr_type arb_ptr;

dev_cise_status_block_type status_blk_array([2];
uint8 type status_blk_index;

misc_queue_header_type used_scatter_gat-her_queue;

B-16 Licensed material—property of Data General Corporation. 093-701053

A Sample SCSI Adapter Driver

vp_ec_type sync_io_ec;

dev_cisc_device_info_ptr_type dip;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

dev_cisc_param_block_type param_block;
uint8 type retries started;

uint8 type retries acknowledged;

opaque32_type async_timeout_id;

misc_clock_value_ptr_type async_timeout_ptr;

misc_clock_value_type total request_busy_time;

boolean _type request_aborted;

boolean type request_timed_out;

boolean_ type async_request_handled;

boolean type sync_io;

[*6 x/
} dev_cisc_request_blk_type =;

[*> */

/* .Description[=

/* This structure is the per I/O request data structure that contains

/* all of the information necessary to issue a request through the

/* the Ciprico SCSI interface, over the SCSI bus and maintain the

/* request through all the steps of execution.

/* A fixed number of request blocks are allocated to manage devices

/* on the SCSI bus. The number allocated is based on the maximum number

/* of simultaneous requests that the interface/device can handle.

/* When an I/O request is initiated by a SCSI device driver, a request

/* block is allocated in the CISC manager from the request block free

/* queue associated with the device’s Ciprico controller. When the

/*® request completes, the request block is put back on the free queue.

/* .Members

/* links -~ This field is used by the queue manager to maintain

/* the request block on the various queues it may end up on as it

/* is being processed.

/* arb_ptr -- A pointer to the generic adapter request block

/*® passed down by the calling SCSI device driver. The adapter request

/*® block specifies the request to be made to a SCSI device.

/* status_blk_array -- Array of Ciprico status blocks returned

/* upon request completion. At least one request block is returned for
/* each request. Two are returned if the request completes with a

/% Check Condition status and sense information is returned.
/*

/* status_blk_index -- Index into the status block array,

/* indicates the currnet position in the array.
/*®

/* used_scatter_gather_queue -- List of scatter gather arrays

/* used to perform a DMA transfer on the current request. The list
/* is maintained so that the arrays can be returned to the free

/* queue upon request completion.
/*®

/* sync_io_ec -- Event counter used by the CISC mananger to

/* synchronize with the Ciprico interface while waiting for an I/0

/*® event.

/* dip -- A pointer to the device information structure of
/* the Ciprico controller that the request block is being
/* executed on.

/* ute_ptr -- A pointer to the unit table entry for the

/* device that is the target of the request.
{/*

/* param_block -- Ciprico paramter block that is built to
/* issue the request specified by this request block.
/*

/* retries_ started -- The number of retry interrupts that
/* were received while the request was being processed.
/*

/* retries_acknowledged -- The number of retries that base

/* level code woke up and noticed. Base level acknowledges retries

093-701053 Licensed material—property of Data General Corporation B-17

A Sample SCSI Adapter Driver

/* when it wakes up after a timeout. If a timeout occurs and
/* retries started is less than retries_ acknowledged, base level
/* increments retries_acknowledged and goes back to sleep. If
/*® a timeout occurs and retries_started is equal to

/* retries_acknowledged, base level performs timeout processing for

/* the request.

/* async_timeout_id -- Variable to hold the timeout ID returned

/* by the timeout manager. The timeout manager is used to implement

/* timeouts on asynchronous requests.

/* async_timeout_ptr -- Pointer to a clock value which

/* specifies the timeout value for an asynchronous request.

/* total_request_busy_time -- The total amount of time that

/* the target device spent processing the current request

/* specified by this request block.

/* request_aborted -- Boolean, when TRUE indicates that the

/* request specified by this request block has been terminated

/* by a process termination signal.

/* request_timed_out -~- Boolean, when TRUE indicates that the

/* hardware request issued on behalf of this request block has

/* timed out.

/* asyne_request_handled -- Used in asyne timeout processing.

/* This flag indicates whether the real interrupt has already been
/* received for the current outstanding hardware request made on behalf
/* of this request block. The flag is used to prevent a timeout
/* from queueing a message to the driver demon for a request that has
/* already gotten a real interrupt.

/* synec_io -- Boolean, when TRUE indicates that the request
/* specified by this request block is a synchronous I/O request.
/* When sync_io is FALSE, the request is asynchronous.

/*.type */

typedef dev_cisc_request_blk_type *

[*S¢ */
dev_cisc_request_blik_ptr_type ;

/®> */

/* .Description{[e=
/*

/* A pointer to a cise request block.
/*

/*.type */

typedef struct

{

misc_queue_links_type links;
dev_ciprico_scatter_gather_header_type header;

[*< a /

} dev_cisc_scatter_gather_blk_type ;
/*> */

/* .Description{[=
/*

/* This structure defines a scatter gather queue element. It is used

/* to link Ciprico scatter gather arrays into the various queues
/® used to manage them.
/*

/* .Members
/*®

/* links -- Link field used by the Queue Manager to maintain
/* the scatter gather block in a queue.
/*

/* header -- Scatter gather array used to specify a DMA

/* operation.
/*

B-18 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/*.type */

typedef dev_cisc_scatter_gather_blk_type *

1% = /

dev_cisc_scatter_gather_blk_ptr_type ;

/*> «/

/* .Description[=
/*

/* A pointer to a scatter gather block.
/*

/*.type */

typedef struct

{
dev_ciprico_register_ptr_type cise_reg ptr;

dev_cisc_type_0O_ pb type. type_0O_param_blk;
bitlée_type vme_address_ modifier;

{*< x /

} dev_cisc_physical_device_info_type ;
/*> /

/* .Description [=

/* This data structure is used to access and control the Ciprico
/* Rimfire 3500 interface when the system is in shutdown mode.
/*

/* .Members
/*

/* cise_reg_ptr -- A pointer the start of the cise control

/* register structure.
/*

/* type_O_param_blk -- A Ciprico 3500 type 0 parameter block

/* used to issue requests to devices on the SCSI bus.
/*®

/* wme_address_ modifier -- The vme address modifier used to
/* perform dma through the controller. Either Extended Supervisory
/* Block Transfer or Extended Supervisory Data Access is used.
/* If the machine architecture supports block mode vme, Extended
/* Supervisory Block Transfer is used. Otherwise Extended Supervisory
/* Data Access is used. Uc_get_config_info is called to determine
/* what the machine supports.

/*.type */

typedef dev_cisc_physical_device_info_type *

[6 «/

dev_cisc_physical_device_info_ptr_type i
/*> ® /

/* .Description[=

/*
.

/* A pointer to a cise physical device information structure.
/*

Static Global Data: dev_cisc_global_data.c

[*< */
/* dev_cisc_global_data.c x/

/*> */

/*.Contents[=
/*

/* dev_cisec_open_lock -- subsystem

/* cfv_cisc_routines_vector -- exported

/* dev_cisc_physical_dip -- subsystem
/*

093-701053 Licensed material—property of Data General Corporation B-19

A Sample SCSI Adapter Driver

/*

/* .Description
/*

/* This module contains global data for the Ciprico Rimfire 3500

/* device driver. The Ciprico Rimfire 3500 is a SCSI host bus

/* adapter.
/*

/*.variable */

/*< */
UNWIRED

lm_unsequenced_lock_type dev_cisc_open_lock = (0};.

/*> */

/* .Description[=
/*

/* This locks protects all operations that involve

/* configuring/deconfiguring, opening/closing, and mapping device

/* numbers for devices under the jurisdiction of this driver.
/*

/*.variable */
[8 a/

WIRED

dev_scsi_adapter_routines_vector_type efv_cisc_routines_vector =
/*> a/

{
{l, /* Version 1 of this structure */

0, /* Flags -- currently unused */

10_nodevice_open,

io_nodevice_close,

10_nodevice_read_write,

1o0_nodevice_select,

10_nodevice_ioctl,

10_nodevice_start_io,

dev_cisc_init,

dev_cisc_configure,

io_nodevice_deconfigure,

dev_cisc_device_to_name,

dev_cisc_name_to_device,

dev_cisc_open_dump,

lo_nodevice_write_dump,

io_nodevice_read_dump,

io_nodevice_close_dump,

io_nodevice_powerfail,

10_nodevice_mmap,

1o_nodevice_munmap,

1o_nodevice_maddmap},

{l, /* Version 1 of this structure */

0, /* Flags -- currently unused */

dev_cisc_register_requester,

dev_cisc_set_unit_options,

dev_cisc_deregister_requester,

dev_cisc_issue_command,

dev_cisce_issue_asyne_command,

dev_cise_get_device_info,

dev_cisc_issue_command_physical_mode}

};

/* .Description[(=
/*

/* This variable contains pointers to each of the externally
/* referencable functions provided by this device driver. Note

/* that since this is a SCSI adapter driver, it contains a set

/* SCSI interface routines in addition to the standard device

/* driver interfaces that are used by higher levels of the kernel.
/* The SCSI interface routines are used by SCSI device drivers to
/* issue requests through this driver to the SCSI bus.
/*

/*.variable */

[*< */
WIRED

uint32_ type dev_cisc_physical_dip [60] =

/[*> */

B-20 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* .Description[=

/* This array is allocated for global storage for use as the cisc
/* device information table when the system is in shutdown mode and
/* the Ciprico Rimfire 3500 is being used to interface to the

/*® system dump destination.

Main Driver C Code: dev_cisc_driver.c

[tS */

/* dev_cisc_driver.c x/

J/*®> */

/*.Contents [=
/*

/* dev_cise_configure -- subsystem

/* dev_cise_name_to_device -- subsystem

/* dev_cise_device_to_name -- subsystem

/* dev_cise_parse_device_name -- internal

/* dev_cise_init ~-- subsystem

/* dev_cisc_open_dump -- subsystem
/*®

/* .Description
/*

/*® This module is the main part of the device driver for
/* Ciprico Rimfire 3500 Host SCSI bus adapter used in the

/* Topgun I/O architecture. The driver interfaces provided

/* here are used by the SCSI device drivers which require

/*® support from the adapter.

/* Currently, direct user access to these interfaces is not

/* supported. However, the interfaces could be easily expanded,

/* to allow users to open the adapter and issue requests to it.

/* For example, the user may wish to open the adapter and

/* issue an ioctl command which returns a list of devices
/*® on the SCSI bus.

/*.function */

/*< x/ -

UNWIRED

status_type dev_cisc_configure (device_spec_ptr, major_number)

/*> */

char_ptr_type device_spec_ptr; /7* READ ONLY */

io_major_device_number_type major_number ; 7*® READ ONLY */

/*.Summary [=
/®

f* This function configures the specified device if it is a

/* Ciprico SCSI Adapter device.
/*

/*.Parameters

/*

/* a@evice_spec_ptr -- A pointer to the character string name

/* of the device to be configured.
/*

/*® major_number -- The major device number on which the

/*® device is to be configured.
/*

/*.Functional_Description
/*

/* This function configures the specified device if it is a Ciprico

093-701053 Licensed material—property of Data General Corporation B-21

A Sample SCSI Adapter Driver

/* SCSI Adapter device. Configuration includes allocation and
/*® initialization of controlling data structures, device registration
/* in the system device interrupt table, device initializaition.

/* Dev_cisc_parse_device_name is called to extract the adapter
/* control register address and interrupt vector from the

/* name string specified by <device_spec_ptr>. The name string
/* speicfied by <device_spec_ptr>

/* is of the form:

/* cisc@<interrupt vector>(<SCSI adapter address>).

/* .Return_Value

/* OK -- The device was successfully configured.

/* Return values from dev_cisc_parse_device_name.

/* Return values from io_register_device_info.

/* Return values from dev_cisc_reset.
/*

{

status_type status;

dev_cise_device_info_ ptr_type dip;

10o_device_code_type device_code;

uint32e type adapter_address;

uintl6 type i;

dev_cisc_scatter_gather_blk_ptr_type seatter_gather_blk_ ptr;

dev_cisc_unit_table_ptr_type unit _table_ptr;

dev_cisc_unit_table_ entry ptr_type ute_ptr;

uintl6_ type unit;

uintl6_type sesi_id;

dev_cisc_request_blk_ptr_type request_blk_ptr;

dev_cisc_request_blk_ptr_type request_blk_memory;

bit32e_type dummy_container;

/* .Implementation [=

/* First, if the device name is not a cisc device name with the
/* proper syntax, return an error. If the device name is OK,
/* then we get the device code and the adapter address from

/* the name.

/* -End]= */

status = dev_cisc_parse_device_name(device_spec_ptr,

&adapter_address,

&device_code);

if (status != OK)

{
goto done;

}

/* .Implementation_Continued [=
x

/* Allocate and initialize the device info for the new cisc
/* device. The device info structure must not cross a page

/* boundary because it contains the parameter and status

/* blocks which are used to communicate with the controller.
x/

/* .End)= */

dip = (dev_cisce_device_info_ptr_type) vm_get_wired_memory (

usizeof(dev_cisc_device_info_type),

VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS) ;

dip->service_interrupt_routine_ptr = (io_service_interrupt_routine_ptr_type)

dev_cisc_service_interrupt;

dip->device_code = device_code;

dip->interrupt_level = DEV_CISC_INTERRUPT_LEVEL;

dip->cisc_reg_ptr = (dev_ciprico_register_ptr_type)adapter_address;

dip->device_number.major = major_number;

io_initialize_interleave_lock(&dip->request_lock,

B-22 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

DEV_CISC_MAX_CONCURRENT_REQUESTS) ;

misc _initialize_queue(&dip—>async_request_queue) ;

misc_initialize_queue(&dip->scatter_gather_blk_queue) ;

misc_initialize_queue(&dip->request_blk_queue) ;

dip->controller_lock = MISC_SPIN_LOCK_INITIAL_VALUE;

/*.Implementation_Continued[=
/*

/* Allocate and initialize the scatter/gather arrays to be used

/* to do DMA and enqueue them at the dip scatter/gather queue.
x

/* .End)= x/

for (i = 0; i < DEV_CISC_MAX SCATTER_GATHER_BLOCKS; i++)

{
scatter_gather_blk_ptr = (dev_cisc_scatter_gather_bik_ptr_type)

vm_get_wired_memory(usizeof(dev_cisc_scatter_gather_blk_type),
VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS) ;

misc_zero_fill((pointer_to_any_type)scatter_gather_blk_ptr,
usizeof(dev_cisc_scatter_gather_blk_type));

(void)misc_enqueue_at_tail(&dip->scatter_gather_blk_queue,
&scatter_gather_blk_ptr->links);

}

/*.Implementation_Continued [=
/*

/* Allocate and initialize the controller request blocks for the
/* controller and enqueue them at the dip request block queue.
/*

/*.End)]=
x/

request_blk_memory = (dev_cisc_request_blk_ptr_type)
vm_get_wired_memory (DEV_CISC_MAX_PARAM_BLOCKS*

usizeof(dev_cisce_request_blk_type),

VM_DEFADLT_ALIGNMENT) ;

request_blk_ ptr = request_blk_memory;

for (i = 0; i < DEV_CISC_MAX_PARAM BLOCKS; i++)

{
misc_initialize_queue(&request_blk_ptr->used_scatter_gather_queue) ;
vp_initialize_ec(&request_blk_ptr->sync_io_ec);

request_blk_ptr->dip = dip;

(void)misc_enqueue_at_tail(&dip->request_blk_queue,

é&request_blk_ptr->links);

request_blk_ptr++;

}

/*.Implementation_Continued[=

/* Mask interrupt for the device to initialize the controller.
/* Now claim the device code for use by this device. If the device
/* code is already in use, exit via the error path and the configure
/* operation fails. If the registration succeeds, allocate space
/* in the timeout and demon message queues. Also enable interrupts

/* for the device.

/* At this point we must get the cisc open lock to protect against
/* a deconfigure operation while we are configuring the device.

/* .End]=
=/

lm_obtain_unsequenced_lock(&dev_cisc_open_lock) ;
io_mask_interrupt_variety(Uc_Level_2_VME_Interrupt);
status = io_register_device_info(device_code, Uc_Vmel88_Device_Class,

(word_address_type)dip);

if (status != OK)

{
status = OK;

io_unmask_interrupt_variety(Uc_Level_2_VME_Interrupt) ;

goto config failed_release_mem;

/*.Implementation_Continued [=

/* Make sure the specified controller address is not already
/* in use by a previously configured device.

093-701053 Licensed material—property of Data General Corporation B-23

A Sample SCSI Adapter Driver

/*

/*.Endj= : */

status = io_check_device_spec((opaque_ptr_type)adapter_address, device_code) ;

if (status != OK)

{
io_unmask_interrupt_variety(Uc_Level_2_VME_Interrupt);

goto config_failed_release_mem;

}

/*.Implementation_Continued [=

/* Perform a lazy_wire read of the adapter board status register.
/* If this returns IO_ENXIO_DEVICE_NOT_PRESENT, then the adapter
/* is not present. We use the lazy_wire evaluation to prevent the
/* system from hanging due to access of a non-existent address
/* space.

/*.End)= =/

status = io_do first_long_board_access(

&Gip->cise_reg_ptr->controller_status,

&dummy_ container,

FALSE);

if (status != OK)

{
goto config_failed_board_not_ present;

}

/* .Implementation_Continued [=
/*

/* Reserve space in the I/O demon message queue for the

/* maximum possible number of simultaneous asynchronous requests.
/*

/* .Endj= */

io_specify_max_demon_messages((uint32_type)DEV_CISC_MAX_CONCURRENT_REQUESTS) ;

vp_specify_max_timeouts((uint32_type)DEV_CISC_MAX CONCURRENT_REQUESTS) ;

/* .Implementation_Continued [=
/*

/* Unmask device interrupts for the cise controller.
/*

/* .Endj= ‘ x/

io_unmask_interrupt_variety(Uc_Level_2_VME_Interrupt) ;

/*.Implementation_Continued [=
/*

/* Allocate and initailize an adapter unit table. Assign the
/* unit table entry at [MAX_SCSI_ID[MAX_UNIT] to the controller.
/*

/* -End]= */

unit_table ptr = (dev_cisc_unit_table_ptr_type)

vm_get_wired_memory(usizeof(dev_cisc_unit_table_type),

VM_DEFAULT_ALIGNMENT) ;

for (scesi_id = 0; sesi_id < DEV_SCSI_MAX_SCSI_IDS; scsi_id++)

{
for (unit = 0; unit < DEV_SCSI_MAX UNITS; unit++)

{
ute_ptr = (dev_cisc_unit_table_entry_ptr_type)

&((*unit_table_ptr) [scsi_id]} [unit]);

ute_ptr->in_ use = FALSE;

ute_ptr->unit_spec.scsi_id = scesi_id;

ute_ptr-—Dunit_spec.unit = unit;

ute_ptr->dip = dip;

ute_ptr->controller_dead_timeout = misc_ten_seconds;

misc_initialize_counter(é&ute_ptr- outstanding request_count,
(int32e_type)0);

}
}

dip->ute_ptr = ute_ptr;

B-24 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/*.Implementation_Continued [=
/*

/* Allocate a minor device number for the adapter. A pointer to

/* to the unit table is saved in the device table entry. The minor

/*® device number is used to distinguish between adapters in

/* a multi-adapter configuration.
/*

/*.End)= x/

dip-—>device_number.major = major_number;

status = io _allocate_device_number (

major_number,

(bit32e_type)unit_table_ptr,

(uintl6 type)0,

&dip->device_number.minor) ;

if (status != OK)

{
goto config_failed_deregister_device_info;

}

/*.Implementation_Continued [=

/* Get the appropriate vme address modifier to use for dma

/* transfers from the uc subsystem. Uc_is_feature_present will

/* indicate whether the system supports block mode. If the

/® system supports block mode we use the Extended Supervisory

/* Block Transfer address modifier. Otherwise we use Extended

/* Supervisory Data Access address modifier.

/* .End)=
«/

if (uc_is_feature_present(Uc_Feature_VME_Block_Transfer))

{
dip->vme_address_modifier = DEV_CIPRICO_VME_ADDR_MOD_SUP_BLK_32;

}
else

{
dip->vme_address_modifier = DEV_CIPRICO_VME_ADDR_MOD_SUP_32;

}

/*.Implementation_Continued [=

/* Do a reset of the ciprico controller. The reset function
/* will perform all controller initialization required. If the
/® reset fails, deregister the device and deallocate the device

/* info structure.

/*.Endj= */

status = dev_cisc_reset(dip) ;

if (status != OK)

{
goto config failed _deallocate_device_number;

/*.iImplementation_Continued [=
/*

/* If the SCSI controller doesn’t support sync, log a warning.
x/

/*.End)]= x/

if (!dip->sync_scesi_supported)

{
(void)io_ err_log_error((uint32e_type)LOG_WARNING,

Firmware in SCSI controller

(bit32e_type)device_spec_ptr);

lm_release_unsequenced_lock(&dev_cisc_open_lock) ;

done:

return(status) ;

config _failed_deallocate_device_number:

io_deallocate_device_number(dip->device_number) ;

093-701053 Licensed material—property of Data General Corporation B-25

A Sample SCSI Adapter Driver

config _failed_deregister_device_info:

vm_release_wired_memory((pointer_to_any_type)unit_table_ptr,
usizeof(dev_cisc_unit table_type));

config failed_board_not_present:

io_deregister_device_info(dip->device_code,Uc_Vmel88_Device_Class) ;
config failed_release_mem:

lm_release_unsequenced_lock(&dev_cisc_open_lock) ;

misc_dequeue_from_head(&dip->scatter_gather_blk_queue,
(misc_queue_links_ptr_type *)&scatter_gather_blk_ptr);

while ((misc_queue_links_ptr_type)scatter_gather_blk_ptr !=

MISC_QUEUE_NULL_LINKS_PTR)

vm_release_wired_memory((pointer_to_any _type)scatter_gather_blk_ptr,
usizeof(*scatter_gather_blk_ptr));

misc_dequeue_from_head(&dip->scatter_gather_blk_queue,
(misc_queue_links_ptr_type *)&scatter_gather_blk_ptr);

}
vm_release_wired_memory((pointer_to_any_type)dip, usizeof(*dip));

vm_release_wired_memory((pointer_to_any type) request_blk_memory,
DEV_CISC_MAX PARAM _BLOCKS*

usizeof (dev_cisc_request_blk_type));

return(status);

}

/*.function */

[*< */
UNWIRED

status_type dev_cisc_name_to_device (device_name ptr, device_number_ptr)
/*> */

char_ptr_type device_name_ptr;/* READ ONLY */
io_device_number ptr_type device_number_ptr;/* WRITE ONLY */

/* .Summary [=
/*

/*® This function translates the specified device name into a
/* device number, if <device_name> names a configured cisc device.

/*.Parameters

/* device_name ptr -- A pointer to the null-terminated device
/* name that is to be translated.
/*

/* device_number ptr -- A pointer to where the corresponding
/*

/*.Functional_Description
/*

/* See Summary.
/*

/* .Return_Value
/*

/* OK -~ The device name was successfully translated.

/* Return values from dev_cisc_parse_device_name.

/* Return values from io_get_device_info.
/*

{
status_type status;

dev_cisc_device_info_ptr_type dip;
uint32e_type adapter_address;

io_device_code_type adapter _device_code;

/*.Implementation[=
/*

/* Parse the device name to see if it belongs to this driver.
/* If so, get a pointer to the device information structure
/* for the device.
/*

/* .End)= */

status = OK;

status = dev_cisc_parse_device_name(device_name_ptr,
é&adapter_ address,

B-26 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

&adapter_device_code);

if (status != OK)

{
goto done;

lm_obtain_unsequenced_lock(&dev_cisc_open_lock);

status = io _get_device_info(adapter_device_code, Uc_Vme188_Device_Class,
dev_cise_service_interrupt, (word_address_ptr_type)&édip);

if (status == OK)

/*.Implementation_Continued [=
/*

/* Return the device number for the SCSI adapter.
/*

*device_number ptr = dip->device_number;

Im_release_unsequenced_lock(&dev_cisc_open_lock) ;

done:

return(status);

}

/7*.function */

/*8 */
UNWIRED .

status_type dev_cisc_device_to_name (device_number, name_ptr, size)
/*> */

io_device_number_ type device_number; /* READ ONLY */
char_ptr_type | name_ptr; /* WRITE ONLY */

uint32_type size; /* READ ONLY */

/*.Summary [=
/*

/* This function returns the character string name associated with

/* the specified device number.
/*

/7*.Parameters

/*

/* device_number —- The device number for which is the

/* character string name is wanted.
/*

/* name_ptr —— A pointer to where the null-terminated

/* character string name is to be written.
/*

/* size — The maximum number of bytes, including the terminating

/* null, that is to be written to <name_ptr>.
/*

/*.Functional_ Description
/*

/* The given device number is mapped to a device code and
/* unit number, and a string of the form
/*

/* cisc@<device_code>(<device registers ptr>)
/*

/* is returned.
/*

/*.Return_Value

/* |
/* OK — The translation was performed successfully.
/*

/* IO_ENXIO_DEVICE_IS_NOT_ CONFIGURED -- The specified
/* device number is not configured.
/*

/* .Exceptions
/*

/* None.
/*®

{

status_type status;

093-701053 Licensed material—property of Data General Corporation B-27

A Sample SCSI Adapter Driver

dev_cisc_unit_table_ptr_type unit_table ptr;
dev_cisc_device_info_ptr_type dip;

uintl6_type unit;

lm_obtain_unsequenced_lock(&dev_cisc_open_lock);

status = io_map device_number(device_number,
(bit32e_ptr_type)éunit_table_ ptr,

&unit);

dip = (*unit_table_ ptr) [DEV_CISC_SCSI_HOST_ID] [DEV_CISC_SCSI_HOST UNIT] .dip;
if (status == OK)

{
misc_format_line(name_ptr, size, “cisc@%x(%x)",

(bit32e_type)dip->device_code,

(bit32e_type)dip->cise_reg ptr);

}
lm_release_unsequenced_lock(&dev_cisc_open_lock) ;

return(status);

}

/*.function */

[*¢ */
WIRED

status_type dev_cisc_parse_device_name (device_spec_ptr,
adapter_address_ptr,

device_code_ptr)

/*> */

char_ptr_type device_spec_ptr; /* READ ONLY x/

uint32_ptr_type adapter address ptr; /* WRITE ONLY
io_device_code_ptr_type device_code_ptr;/* WRITE ONLY */

/*.Summary [=
/*

/* This function parses the specified device spec, determines
/* whether it is the name of a ciprico scsi controller, and if so,

/* returns the parsed information about the device.
/*

/* .Parameters

/*

/* device_spec_ptr -- A pointer to the device specification.
/*

/* adatper_address_ptr -~ A pointer to where the adapter
/* control registers starting address is to be returned.

/* device_code_ptr -- A pointer to where the adapter

/* device code is to be returned. The device code is really the
/* the interrupt vector of the adapter.

/*.Functional Description

/* See Summary.

/* ..Return_Value

/* OK -- The device was successfully configured.

/* IO_ENXIO_DEVICE_NOT_RECOGNIZED -- The given device name was

/* not the name of a Ciprico SCSI controller.

/*.Exceptions

/* None.

status_type status;

io_dev_adapt_info_type adapter info;

int32_type spec_size;

B-28 Licensed material—property of Data General Corporation

*/

093-701053

A Sample SCSI Adapter Driver

/*.Implementation[=
/*

/*® Call the generic parse device spec routine to

/* break the device spec into its components.
/*

/* .End)=
*/

status = OK;

if (!io_parse_device_spec(device_spec_ptr, &adapter_info, &spec_size))

status = IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED;

goto done;

/*.Implementation_Continued [=
/*

/* See if the device mnemonic returned by the parse device

/* spec routine matches the mnemonic that specifies a

/* device under the juristiction of this driver. If not,

/* return the error.
x/

/* .Endj= */

if (misc_string_compare((byte_address_type)adapter_info.name,
cisc ,

(uint32_type)IO_DEV_ADAPT_MAX_SPEC_SIZE) != 0)

{
status = IO_ENXIO_DEVICE_NAME NOT_RECOGNIZED;

goto done;

}

/*.Implementation_ Continued [=
/*

/*® Get the adapter address from the first parameter returned.

/* If an actual address was specified, convert it from ascii

/*® to a hex number. If no adapter address was specified, use

/* the primary default value.
x/

/*.End)=
*/

if (misc_string_compare((byte_address_type)adapter_info.params[0],

4

(uint32_type)IO_DEV_ADAPT_MAX_SPEC_SIZE) == 0)

{
xadapter_address_ptr = DEV_CISC_PRIMARY_ADDRESS_DEFAULT;

else if (misc_string_compare((byte_address_type)adapter_info.params[0],
0",

(uint32_type)IO_DEV_ADAPT_MAX_SPEC_SIZE) == 0)

{
*adapter_address_ptr = DEV_CISC_PRIMARY_ADDRESS_DEFAULT;

}
else if (misc_string_compare((byte_address_type)adapter_info.params[0],

1",
(uint32_type)IO_DEV_ADAPT_ MAX SPEC_SIZE) == 0)

{
*adapter_address_ptr = DEV_CISC_SECONDARY_ADDRESS_DEFAULT;

}
else

if (io_hex_str_to_int(adapter_info.params[0j,
adapter_address_ ptr))

{
status = IO_ENXIO_DEVICE_NAME_NOT_RECOGNIZED;

goto done;

}

}

/*.Implementation_Continued [=
/*

/* Get the device code of the adapter.

/* If no device code is specified, return the default.
2/

/*.End)=
=/

093-701053 Licensed material—property of Data General Corporation B-29

A Sample SCSI Adapter Driver

if (adapter_info.device_code == IO_INVALID_DEVICE_CODE)

{
if (*ad@apter_address_ ptr == DEV_CISC_SECONDARY_ADDRESS_DEFAULT)

{
*device code_ptr = DEV_CISC_SECONDARY_DEVICE_CODE_DEFAULT;

}
else

{
xdevice_code_ptr = DEV_CISC_PRIMARY_DEVICE_CODE_DEFAULT;

}
J

else

{
*device_code_ptr = adapter_info.device_code;

done:

return(status);

}

/*.function */

x keen nnn tf

INITIALIZATION

void dev_cisc_init ()

[*>—————=——*/

/*.Summary [=
x

/* Perform preconfiguration initialization at for the cise driver

/* at system boot-time.
/*®

/*.Parameters
/*

/* None.
x

/*.Functional_ Description
/*®

/* See summary.

/*

/*.Return_Value
/*

/* None.
/*®

{

lm_initialize_unsequenced_lock(&dev_cisc_open_lock) ;

}

/*.function */

/*< */
WIRED

status_type dev_cisc_open_dump (device_name_ptr)

[*> */

char_ptr_type device_name_ ptr; /* READ ONLY */

/*.Summary [=
/*

/* This function opens the Ciprico SCSI adapter device for use as

/* the interface to the destination of a system dump.
/*

/* .Parameters
/*

/* device_name_ptr -- A pointer to the null-terminated

/* character string identifying the device to be opened as

/* a dump device.
/*

/* .Functional_ Description
/*

/* This function initializes the Ciprico SCSI interface so

/* that a system dump can be written through the adapter to a

B-30 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* device on the SCSI bus. For a detailed description of the

/* Ciprico initialization, see the routine dev_cisc_configure.
/*

/*.Return_Value
x

/* OK -- The open completed successfully.
x

/* IO_STATUS_DUMP_NOT_SUPPORTED -- The device identified

/* by the device_name string is not a device that is supported

/* as a dump device by this driver.
/*

{

status_type status;

dev_cisc_physical_device_info_ptr_type dip;
uint32_type 1;

dev_ciprico_register_ptr_type adapter _address;

1o_device_code_type adapter_device_code;

bit32e_type controller_status;

dev_cisc_general_options_pb_ptr_type general_options pb_ptr;

/*.Implementation[=
/*

/*® Parse the specified device name and see if the device is

/* an Ciprico SCSI adapter.
x/

/*.Endj= «/

status = dev_cisc_parse_device_name(device_name ptr,
(uint32_ptr_type)&adapter_address,

&adapter device_code);

if (status != OK)

{
status = IO_STATUS_DUMP_NOT_SUPPORTED;

goto done;

}

/*.Implementation_Continued [=
/*

/* Initialize the “physical” device information structure.
x/

/*.End)= */

dip = (dev_cisc_physical_device_info_ptr_type)dev_cisc_physical_dip;
dip->cise_reg_ptr = adapter_address;

/*.Implementation_Continued [=

/* Get the appropriate vme address modifier to use for dma

/* transfers from the uc subsystem. Uc_is_ feature_present will

/* indicate whether the system supports block mode. If the

/* system supports block mode we use the Extended Supervisory
/* Block Transfer address modifier. Otherwise we use Extended

/* Supervisory Data Access address modifier.

/*.End]= */

if (uc_is_feature_present (Uc_Feature_VME_Block_Transfer))

dip->vme_address_modifier = DEV_CIPRICO_VME_ADDR_MOD_SUP_BLK_32;

else

{
dip->vme_address_modifier = DEV_CIPRICO_VME_ADDR_MOD_SUP_32;

}

/*.Implementation_Continued [=
/*

/* Do a reset of the cise chip, delay for a couple of seconds to

/* allow the reset to complete, then check the status register

/*® for on-line and ready. The delay is done in pieces since

/* sc_busy_wait cannot handle very large integers.
/*

093-701053 Licensed material—property of Data General Corporation: B-31

A Sample SCSI Adapter Driver

/*.End}= : “/

dip->cisc_reg_ptr->controller_reset = (bit32e_type)TRUE;

for (i=0; 1<1000; i++)

{
sc_busy_wait_microseconds((uint32e_type)5000);

}

controller_status = dip->cisc_reg_ptr->controller status;

controller_status &= (bit32e_type)DEV_CISC_STATUS_REGISTER_MASK;

if (controller_status != DEV_CISC_STATUS_READY_AFTER_RESET)

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

goto done;

}

/*.implementation_Continued [=
/*

/* Set up the controller general options. After the general

/* options have been set up, the controller is ready to

/* accept commands.
x/

/*.Endj= =/

general_options pb ptr = (dev_cisc_general_options_pb_ptr_type)

&dip->type_0_ param_blk;

general_options_pb_ptr->param_block_id = (uint32e_type)dip;

general_options_pb_ptr->block_mode_flag = FALSE;

general_options_pb_ptr->parity_check_flag = FALSE;

general _ options pb_ptr->allow_disconnect_flag = FALSE;

general_options_pb_ptr->throttle_type = 1;

general_options_pb_ptr->throttle_count = 31;

general _options_pb_ptr->host_id = DEV_CISC_SCSI_HOST_ID;

general _options_pb_ptr->target_id = DEV_ CISC_SCSI _TARGET iD;
general_options_pb_ptr->command = DEV_! CISC_ CMD -SET_CONTROLLER OPTIONS;
general_options_pb_ptr->reserved_1l _must_| be_ zero ;
general _options_pb_ptr->reserved_2 _must_ be _ Zero
general options pb ptr->reserved_3_must_be_ zero
general_options_pb_ ptr->reserved_4 must_be_zero

general_options_pb_ptr->reserved_5_must_be_zero

general options_pb_ptr->reserved_ 6 _must__ _be_ zero
status = dev_cisc_send_type_0 ~end_physical_ “mode(dip);

?

,

;

7

’

0

0

0
0:

0:

0;

P

done:

return(status);

Adapter Management Code: dev_cisc_mor.c

/*< */
/* dev_cisc_mgr.c x/

[*> */

/*.Contents [=
/*

/* dev_cisc_reset —— subsystem

/* dev_cisce_service_interrupt -- subsystem

/* dev_cise_start_command_list_request -- subsystem

/* dev_cisc_await_sync_ event —— subsystem

/* dev_cisc_lock_controller -~ subsystem

/* dev_cisc_unlock_controller —- subsystem
/* dev_cisc_service_async_timeout -- subsystem

/* dev_cisc_send_type_0_cmd_physical_mode -- subsystem
/*

/* .Description
/*

/* This module manages the Ciprico Rimfire 3500 SCSI Host Bus
/* Adapter (CISC). The Rimfire 3500 is used to interface the

/* VME bus on Topgun class computers to a SCSI I/O bus.

B-32 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* The Rimfire 3500 provides a relatively high level SCSI bus
/* interface. The host system issues requests through parameter
/* blocks which are placed in a command queue. The parameter

/*® blocks contain a device specification, a SCSI command block,
/* and a data buffer specification. The Rimfire 3500 fetches
/* requests from the command queue, and upon request
/*® completion enqueues a status block to a status block queue.

/* A single host interrupt is generated when a command completes
/* and a status block is ready for interpretation.

/* Device drivers make SCSI device requests by means of parameter
/*® blocks which are submitted to the SCSI Adapter Manager. The
/* SCSI Adapter Manager dispatches to one of adapter interface
/* routines in the module dev_cisc_util. Dev_cisc_util translates
/* the generic request into a cisc request and submits the
/* request to this module which is responsible for interactions
/* with the Ciprico Rimfire 3500 hardware. Functions in this

/* module make no interpretation of SCSI commands and have no

/* knowledge of target device types.

/* For more information on the Topgun SCSI implementation and SCSI
/* in general, refer to the following documents:

/* Topgun System Board Design Specification (Revision 0.2)
/* Ciprico Rimfire 3500 Product Specification

/* Motorola VMEbus Specification (Revision C.1)

/* ANSI SCSI~-1 Specification (X3.131-1986)
/*®

/*®

/*.function */

/*6 */
WIRED

status_type dev_cisc_reset (dip)

/*> */

dev_cisc_device_info_ptr_type dip; /* READ/WRITE */

/*.Summary [=
/*

/* Reset and initialize Ciprico Rimfire 3500 SCSI adapter.
/*

/*.Parameters

/*

/* dip -- A pointer to the device information structure of

/* the cisc SCSI adapter. .
/*®

/*.Functional Description
/*

/* This function does all initailization required to get the

/* Ciprico Rimfire 3500 SCSI adapter into normal operating mode

/* during system initialization or after a board reset has

/* occurred.

/*

/*.Return_Value
/*®

/* OK -~- The specified adapter was successfully initialized.
/*®

/* IO_EIO_PHYSICAL_UNIT_FAILURE -—- The adapter initialization

/* failed.

f{

status_type status;

bit32e_type controller status;

vp_event_type events [2];

int32_type result_index;
dev_cisc_type_0 pb ptr _type type _ 0 param _bik_ptr;

dev_cisc_set_up_cmd_list_pb_ptr_type set_up_cmd_ list_pb ptr;

dev_cise_run_ diagnostics_pb_ ptr_type run_diagnostics_pb_ ptr;
dev_cisc_request_blk_ptr_type request_blk_ptr;

dev_cisc_general_options_pb_ptr_type general _options_pb_ ptr;

dev_cisc_identify pb ptr_type identify _pb ptr;

uint32e_type physical_address;

093-701053 Licensed material—property of Data General Corporation B-33

A Sample SCSI Adapter Driver

uintl6é type sesi_id;

dev_cisc_identify_status_block_ptr_type identify_status_blk_ptr;
dev_cisc_unit_options_pb_ptr_type unit_options pb ptr;

/*.Implementation [=

/* Set the reset bit in the Rimfire 3500 reset port and wait

/* for two seconds for the reset to complete. After three

/* seconds the Rimfire status port should indicate that the

/* board is ready to accpet commands. If the board isn’t ready,

/*® return the error.

/*-End]= */

status = OK;

dip->cisc_reg_ptr->controller_reset = (bit32e_type) TRUE;

vp_create_clock_event(&events[0], &misc_three_seconds);

vp_await_ec(events, (int32_type)1l, &result_index) ;

controller _status = dip->cisc_reg_ptr->controller_status;

controller status &= DEV_CISC_STATUS_REGISTER_MASK;

if (controller_status != DEV_CISC_STATUS_READY_AFTER_RESET)

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

goto reset_failed;

/* -Implementation_Continued [=

/* Do all the setup necessary to use the Ciprico command list

/* mechanism. We will issue the start command list command

/* in a type zero parameter block structure to get the command

/* list stuff working. All subsequent commands to the controller
/* will be issued through the command list mechanism. Start by

/* initializing the command list structure.

/*.End)= */

dip->emd_list.param_blk_in index = 0;

dip->emd_list.param_blk_out_index = 0;

dip->cmd_list.status_blk_in_index = 0;

dip->emd_list.status_blk_out_index = 0;

dip->cmd_list.param_blk_area_size = DEV_CISC_MAX_PARAM_BLOCKS;

@ip->cemd_list.status_blk_area_size = DEV_CISC_MAX_STATUS_BLOCKS;

dip->cemd_list.reserved_l_must_be_ zero = 0;

dip->cemd_list.reserved_2_ must_be_zero = 0;

/*.Implementation_ Continued [=

/* Allocate and initialize a type zero parameter block which will

/*® be used to issue the start command command. The parameter block

/* must not cross a page boundry since it is accessed by the

/* controller.

/* .Endj= =/

type_O_param_blk_ptr = (dev_cisc_type 0 pb ptr_type)

vm_get_wired_memory(usizeof(dev_cisc_type_0_pb_type),

VM_DEFAULT_ALIGNMENT_NO_PAGE_CROSS) ;

misc_zero_ fill({(pointer_to_any type)type_0O_ param _blk_ptr,

usizeof(dev_cisc_type_0_pb_type));

/* Implementation _Continued [=
/*

/* Fill in the Start Command List parameter block.
x/

/*.EndjJ= a/

set_up_cmad_list_pb_ ptr = (dev_cisc_set_up_cmd_list_pb_ptr_type)

&type_0O param_blk_ptr->std_param_block;

set_up_cmd_list_pb_ptr->address_modifier = dip->vme_address_modifier;

set_up_cmd_ list_pb ptr->command = DEV_CISC_CMD_START_LIST;

set_up_cmd_list_pb_ptr->target_id = DEV_CISC_SCSI_TARGET_ID;

vm_get_physical_address(

(word_address_type)&dip->cmd_list,

FALSE,

B-34 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

(word_address_ptr_type) &set_up_cemd_list_pb_ptr->command_list_ptr);

set_up_comd_list_pb_ptr->interrupt_level = dip->interrupt_level;

set_up_comd_list_pb_ptr->interrupt_vector = dip->device_code;

/*.Implementation_Continued[=

/* Tell the controller about the location of the parameter block

/* by loading the address buffer port with data transfer control

/* information and the physical address of the parameter block.

/* The address buffer port consists of three 16 bit words. Three

/* consecutive writes to the base address of the address buffer

/* port allows each word to be loaded with data.

/* .End]= */

dip~>cisc_reg_ptr->address_buffer =

DEV_CIPRICO_ADDRESS_BUFFER_SET_CONTROL_BITS |
dip->vme_address_modifier;

vm_get_physical_address (

(word_address_type)type_0_param_blk_ptr,

FALSE,

(word_address_ptr_type) &physical_address) ;

dip->cisc_reg_ptr->address_buffer = (bit32e_type)physical_address >> 16;

dip->cisc_reg_ptr->address_buffer = (bit32e_type)physical_address & OxFFFF ;

/*.Implementation_Continued[=

/* Start command execution by writing a zero to the channel

/* attention register. Zero indicates that this is a type

/* zero command. Give the command one second to complete. If

/* it doesn’t complete in one second or completes with an

/* error, return the status.

/*.Endj]= x/

type_0O_param_blk_ptr->interrupt_level = 0;

type_0_param_blk_ptr->interrupt_vector = 0;

dip->cisc_reg_ptr->channel_attention = 0;

vp_create_clock_event(sevents[0], &misc_two_seconds) ;

vp_await_ec(events, (int32_type)l, sresult_index) ;

if ((!(type_O_param_blk_ptr->status_block.flags &

DEV_CIPRICO_COMMAND_COMPLETE_STATUS_FLAG))

(type_O_param_ blk_ptr->status_block.flags & DEV_CIPRICO_ERROF_STATUS_FLAG))

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

} .

vm_release_wired_memory((pointer_to_any_type)type_0_param_blk_ptr,

usizeof(dev_cisc_type_0_pb_ type));

if (status != OK)

{
goto reset_failed;

}

/*.Implementation_Continued [=
/*

/* Dequeue a request block and set up a command to run the

/* controller diagnostics. From this point on, all commands will

/* be issued through the command list mechanism. If the diagnostics

/* fail, return the error.
/*

/*.End)= */

misc_dequeue_from_head(&dip->request_blk_queue,

(misc_queue_links_ptr_type *)&request_blk_ptr);

request_blk_ptr->sync_io = TRUE;

request_blk_ptr->ute_ptr = dip->ute_ptr;

run_diagnostics_pb ptr = (dev_cisc_run_diagnostics_pb_ptr_type)
®uest_blk_ptr->param_block;

run_diagnostics_pb_ptr->param_block_id = (uint32e_type)request_bl.k_ptr;

run_diagnostics_pb_ptr->target_id = DEV_CISC_SCSI_TARGET_1ID;

run_diagnostics_pb_ptr->command = DEV_CISC_CMD_SELF_TEST;

run_diagnostics_pb_ptr->test_flags =

(DEV_CISC_SELF_TEST_STATIC_RAM_ TEST & DEV_CISC_SELF_TEST_PROM_TEST) ;

093-701053 Licensed material—property of Data General Corporation B-35

A Sample SCSI Adapter Driver

run_diagnostics_pb_ptr->reserved_1_must_be_zero

run_diagnostics_pb_ptr->reserved_2_must_be_zero

run _diagnostics_pb_ptr->reserved_3_must_be_zero

run_diagnostics_pb_ptr->reserved_4_must_be_zero

run_diagnostics_pb_ptr->reserved_5_must_be_zero

run_diagnostics_pb_ptr->reserved_6_must_be_zero oooo0o°o we Me Me Me Me Ne
events[0].name = &request_blk_ptr-—>sync_io_ec;
vp_get_next_ec_value(&srequest_blk_ptr->sync_io_ec, s&events[0] .value);
dev_cisc_start_command_list_request(request_blk_ptr);

dev_cisc_await_sync_event(request_blk_ptr,

é&events [0],

&misc_ten seconds);

if ({request_blk_ptr-—>request_aborted) |
(request_blk_ptr->request_timed_out)

(request_blk_ptr->status_blik_array[0].flags &

DEV_CIPRICO_ERROR_STATUS_FLAG))

{
status = IO_EIO_ PHYSICAL _UNIT_FAILURE;

goto reset_failed_release_parameter_blk;

/*.Implementation_Continued[=

/*® Initialize the controller options. See the Ciprico Rimfire
/* 3500 Product Specification manual for a complete description
/* of the controller options available. We will use the same
/* request block allocated to run the diagnostics.

/*.Endj)= «/

general_options_pb_ptr = (dev_cisc_general_options_pb_ptr_type)
&request_blk_ptr->param_block;

general _ options _pb_ptr->param_block_id = (uint32e_type)request_bl.k_ptr;

if (dip->vme_address_ modifier == DEV_CIPRICO_VME_ADDR_MOD_SUP_BLK_32)
{
general_options_pb_ptr->block_mode_flag = TRUE;

}
else

{
general_options_pb ptr->block_mode_flag = FALSE;

}
general_options_pb_ ptr->parity_check_flag = FALSE;
general_options_pb_ptr->allow_disconnect_flag = TRUE;

general _options_pb ptr->throttle_type = 1;

general_options_pb_ptr->throttle_count = 31;

general_options_pb_ptr->host_id = DEV_CISC_SCSI_HOST_ID;
general_options_pb_ptr->target_id = DEV_CISC_SCSI_TARGET_ID;

general_options_pb_ptr->command = DEV_CISC_CMD_SET_CONTROLLER_OPTIONS ;
general options pb ptr->reserved_1_must_be_zero = 0;

general_options_pb_ptr->reserved_2_must_be_zero =

general_options_pb_ptr->reserved_3_must_be_zero

general _options_pb ptr->reserved_4 must_be_zero
general_options_pb_ptr->reserved_5_must_be_zero

general_ options _pb_ptr->reserved_6_must_be_zero nna a O000°0
.

;

:

;

.

;

i

;

events[0].name = srequest_blk_ptr->sync_io_ec;

request_blk_ptr->sync_io = TRUE;

request_blk_ptr->ute_ptr = dip->ute_ptr;

vp_get_next_ec_value(&request_blk_ptr->sync_io_ec, éevents[0] .value);

dev_cisc_start_command_list_request(request_blk_ptr);
dev_cisc_await_sync_event(request_blk_ptr,

&events[0],

&misc_ten_seconds) ;

if (request_blik_ptr->request_aborted

request_blk_ptr->request_timed_out | |
(request_blk_ptr->status_blk_array[0].flags &

DEV_CIPRICO_ERROR_STATUS_FLAG))

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

goto reset_failed_release_parameter_blk;

}

/*.Implementation_Continued [=
/*

B-36 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* Get the firmware revision level. Use the level value to

/* @etermine if SCSI synchronous data transfers are supported.
x/ .

/*.End)=
x /

identify_pb ptr = (dev_cisc_identify_pb_ptr_type) &request_blk_ ptr->param_block;
identify pb ptr->param_block_id = (uint32e_type)request_blk_ptr;

identify_pb ptr->target_id = DEV_CISC_SCSI_TARGET_ID;

identify pb ptr->command = DEV_CISC_CMD_IDENTIFY;

identify pb ptr->reserved_l]_must_be_zero = 0;

identify _pb_ptr->reserved_2_must_be_zero ;

identify_pb_ptr->reserved_3_must_be_zero

identify _pb_ptr->reserved_4_must_be_zero

identify_pb_ptr->reserved_5_must_be_zero

identify_pb_ ptr->reserved_6_must_be_zero

0;

0;

0;

0;

0;

events[0].name = s&request_blk_ptr->synce_io_ec;

request_blk_ptr->sync_io = TRUE;

request_blk_ ptr->ute_ptr = dip->ute_ptr;

vp_get_next_ec_value(&request_blk_ptr-—>sync_io_ec, &events [0] .value) ;

dev_cisc_start_command_list_request(request_blk_ptr);

dev_cisc_await_sync_event(request_blk_ptr,

sevents [0],

émisc_ten_seconds) ;

identify_status_blk_ptr = (dev_cisc_identify_status_block_ptr_type)

request_blk_ptr->status_blk_array;

if (request_blk_ptr->request_aborted | |
request_blk_ptr->request_timed_out

(identify_status_bik_ptr->flags & DEV_CIPRICO_ERROR_STATUS_FLAG))

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;
goto reset_failed_release_parameter_blk;

}

if (identify_status_blk_ptr->firmware_revision >=

| DEV_CISC_SYNC_SUPPORT_FIRMWARE_REVISION)

{
dip->sync_scsi_supported = TRUE;

|

else

{
dip->sync_scsi_supported = FALSE;

}

/*.Implementation_Continued [=
/*

/* Set the unit options for each possible unit on the SCSI bus

/* to some initial values. Note that the options are set on a

/* per SCSI ID basis, i.e. options for each unit at a

/* particular SCSI ID cannot be set individually.
x/

/* .Endj = x /

unit_options_pb ptr = (dev_cisc_unit_options_pb_ptr_type)

&request_blk_ptr->param_block;

unit_options_pb_ptr->param_block_id = (uint32e_type)request_blk_ptr;

unit_options_pb_ptr->disconnect_timeout =

: DEV_CISC_UNIT_OPTIONS_DEFAULT_DISCON_TIMEOUT;

unit_options_pb_ptr->target_id = DEV_CISC_SCSI_TARGET_ID;

unit _options_pb_ptr->select_timeout = DEV_CISC_UNIT_OPTIONS_SELECT_TIMEOUT;

unit_options_pb ptr->retry_control = 0;

unit_options_pb ptr->retry_limit = 0;

unit_options_ pb ptr->reserved_l = 0;
unit_options_ pb ptr->sense_bytes = DEV_CISC_REQUEST_SENSE_DATA_SIZE;

if (dip->sync_scsi_supported)

{
unit_options_pb_ptr->unit_flags = DEV_CISC_UNIT_FLAGS_SYN;

}
else

{
unit_options_pb ptr->unit_flags = 0;

}
unit_options_pb_ptr->command = DEV_CISC_CMD_SET_UNIT_OPTIONS;

093-701053 Licensed material—property of Data General Corporation B-37

A Sample SCSI Adapter Driver

unit_options_pb_ptr->reserved_2 = 0;

unit_options_pb ptr->reserved_3 = 0;

unit _options_pb_ptr->reserved_4 = 0;

events[0].name = &request_blk_ptr->sync_io_ec;

request_blk_ptr->sync_io = TRUE;

request_blk_ptr->ute_ptr = dip->ute_ptr;

for (sesi_id = 0; sesi_id < DEV_SCSI_MAX_SCSI_IDS; scsi_id++)

{
if (sesi_id == DEV_CISC_SCSI_HOST_ID)

{
continue;

unit _options_pb_ ptr->unit_id = scsi_id;

vp_get_next_ec_value(&request_blk_ptr->sync_io_ec, &events[0] .value) ;

dev_cisc_start_command_list_request(request_blk_ptr);

dev_cisc_await_sync_event(request_blk_ptr,

&events[0],

&émisc_ten_seconds) ;

if (request_blk_ptr->request_aborted

request_blk_ ptr->request_timed_out | |
(identify _status_blk_ptr->oflags & DEV_CIPRICO_ERROR_STATUS_FLAG))}

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

break;

}
}

reset_failed_release_parameter_blk:

misc_enqueue_at_tail(&dip->request_blk_queue, &request_blk_ptr->links);

reset _failed:

return(status);

}

/x.function */

[*®S< x /

WIRED

void dev_cisc_service_interrupt (dip)

/[*> x/

dev_cisc_device_info_ptr_type dip; /* READ/WRITE */

/*.Summary [=
/*®

/* This function services interrupts issued by a Ciprico Rimfire
/* 3500 SCSI adapter. It is called from the system interrupt

/* handler. .

/*.Parameters

/* dip -- A pointer to the device information structure of

/* the interrupting cisc SCSI adapter.

/*.Functional_ Description

/* Each pending status block is extracted from the command list and

/* the status information is evaluated.

/* status information is copied into the original request block

/* (the status block id is the request block pointer).

/* If the request was issued synchronously, the awaiting process is
/* awakened via the ec in the request block. Asynchronous requests

/* are completed through the I/O demon. After the status bliock has

/* been saved, the out pointer for the status list updated.

/* Note that the interrupt is cleared by the vme acknowledge before

/* this routine is called. As a result, a spin lock must be used to
/* lock the data structures which manage the controller.
/*

/*.Return_Value
/*

/* None.
/*

{
dev_cisc_status_block_ptr_type status_blk_ptr;

B-38 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

dev_cisc_request_blk_ptr_type request_blk_ptr;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

misc_clock_value_type cur_time;

misc_clock_value_type current time;
bit8e_type status_flags;

/*. Implementation [=
/*

/* Get the controller lock so that the status block section of
/* the command list can be accessed exclusively.
/*

/* .End)= : */

dev_cisc_lock_controller(dip, FALSE) ;

/*.Implementation_Continued[=

/* Remove all pending status blocks from the queue and examine
/*® the request status. Depending on how the unit options were

/* set and whether any errors occurred during command execution,
/* one or more status blocks are returned for each request. Status

/* blocks are returned for each retry and when the command completes.
/* Sense information is returned in the status block when a retry

/* interrupt occurs and when a command completes with an error.

/* Eight bytes of sense information can be returned in each

/* status block. Multiple status blocks are returned if more
/* than eight bytes of sense information were requested. This
/* driver supports a maximum of sixteen bytes of sense data (two
/* status blocks). If more than two status blocks are generated for
/* a command, only the last two are saved because they indicate
/* the actual completion status of the command.

/* If the status block indicates that this is a retry interrupt,
/* the retry count in the request block is incremented. Base level
/* is not directly notified of retries. However if base level
/t times out, it looks at the retry count to determine if it
/* should wait some more. Status blocks resulting from command

/* errors that are going to be retried are not saved.

/* Base level is directly notified of an I/O event only when

/* the status block indicates that the command has completed. If
/* the command has completed but the request specified by the
/* Status block has been aborted by a process termination signal,
/* the request block is returned to the free queue with no base

/* level notification.

/* The action taken with each status block depends on _the state of
/* Command Complete, Continued, Retry, and Error bits in the flags
/* field of the status block. The Continued bit is set only when
/* a retry is reported and more than eight bytes of sense data

/* are returned. The Continued bit is on in the second status
/* block of the pair used to report the retry. No matter how many
/* status blocks are generated for a particular command, the

/* Command Complete flag will only be set in the very last status

/* block. See the Ciprico Rimfire 3500 Product Specification for
/* a general description of the meaning and interpretation of

/* status block flags. A couple of observed examples are included
/* here for clarification:

/* With the unit options set so that 3 retries would be

/* be performed and 16 bytes of sense information returned,

/* a hard error resulted in 3 interrupts being generated with

/* a total of 8 status blocks. The flags field of the 8
/* respective status blocks contained the following: 0x60,
/* 0x64, Ox60, 0x64, 0x60, 0x64, Ox40, OxCO. The error field

/* of each of these status blocks was 0x23.
/7* With the unit options set so that 3 retries would be

/* be performed and 8 bytes of sense information returned,

/® a hard error resulted in 3 interrupts being generated with

/® a total of 4 status blocks. The flags field of the 4
/*® respective status blocks contained the following: 0x60,
/* 0x60, 0x60, 0x60, OxCO. The error field of each of these

/*® status blocks was 0x23.

093-701053 Licensed material—property of Data General Corporation B-39

A Sample SCSI Adapter Driver

x

/*.End)= */

while (dip->cmd_list.status_blk_in_ index != dip->cmd_list.status_blk_out_index)

{
status_blk_ptr = &dip->cmd_list.status_blk

{[dip->cmd_list.status_blk_out_index] ;

dev_cisc_physical_dip[{0] = (uint32_type)status_blk_ptr;
regquest_blk_ ptr = (dev_cisc_request_blk_ptr_type)status_blk_ptr->command_id;

status_flags = status_blk_ptr->flags;

if (status_flags & DEV_CIPRICO_COMMAND_COMPLETE_STATUS_FLAG)

/*.Implementation_Continued [=
/*

/* The command complete bit is set, perform completion processing.
/*

/* .End)= 2/

request_blk_ptr->status_blk_array [request_blk_ptr->status_blk_index++]

= *status blk _ ptr;

/* .Implementation_Continued [=

/* Record the total amount of time that the target device spent
/* processing the request. Note that the start time is not

/*® necessarily the starting time of this particular request but
/* is the time when the disk went from idle to active. This
/* does not really matter since all the timings will even
/* out as requests complete. Further, system activity

/* evaluation is not done at a per-request granularity.

/* .End)= */

vp_read_system_clock(¤t_time) ;
cur_time = current_time;

ute_ptr = request_blk_ptr->ute_ptr;

misc_decrement(é&ute_ptr—->outstanding request_count) ;
MISC_CLOCK_VALUE_SUBTRACT(&ute_ptr->start_busy_time, &cur_time);
MISC_CLOCK_VALUE_ASSIGN(&cur_time,

&érequest_blk_ptr->total_request_busy_time) ;

MISC_CLOCK_VALUE_ASSIGN(¤t_time, &s&ute_ptr—->start_busy_time);

/* .Implementation_Continued [=

/* If Command Complete is set but the request has been aborted,
/* enqueue a request to the I/O demon to release all resources

/* associated with the request. Note that a request can’t be
/7* aborted if DMA is being done, so there are no scatter gather
/* arrays to be returned to the free queue.

/* .End)= */

if (request_blk_ptr—->request_aborted)

{
(void)io_queue_message_to_driver_demon (

dev_cisc_complete_aborted_request,

(bit32e_type)request_blk_ptr,

TRUE);

}

/*.Implementation_Continued[=
/*

/* The command has completed and base level is still interested, do
/* the notification.
/*

/* .End)= */

else

{
if (request_blk_ptr->syne_io)

{
vp_advance_ec(&request_blk_ptr->sync_io_ec);

}
else

B-40 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

(void)io_queue_message_to_driver_demon (

dev_cisc_complete_io,

(bit32e_type)request_blk_ptr,

TRUE);

else

/* .Implementation_Continued [=

/* The Command Complete flag is not set. Either a retry is being

/* performed or this is the first status block of a pair reporting

/* command complete with an error. In either case, set the status

/* block index to zero and save the status information. Status

/* information previously received for the command is over-written.

/* However, the over-written information is no longer relevant.

/* If the Retry flag is on and the Continued Status block flag is
/* off, advance the retry count so that the timeout path will

/* take the retry into account. A retry status block with

/* Continued flag on is the second status block of a pair sent

/* for retry notification. Hence the retry count is incremented
/* only when the first of the pair is received.

/*.End)= */

request_blk_ptr->status_blk_index = 0;

request_blk_ptr->status_blk_array[request_blk_ptr->status_blk_index++]
= *status_blk_ptr;

if ((status_flags & DEV_CIPRICO_RETRY_REQUIRED_STATUS_FLAG) &&

'(status_flags & DEV_CIPRICO_CONTINUED_BLOCK_STATUS_FLAG))

request_blk_ptr->retries_started++;

}

/*.Implementation_Continued [=
/*®

/* Update the index into the status block queue. If the index exceeds
/* the last element in the list, reset it to the first element.
/*

/* .Endj= %/

dip->cmd_list.status_blk_out_index++;

if (dip->emd_list.status_blk_out_index >= .

dip->cmd_list.status_blk_area_size)

{
dip->emd_list.status_blk_out_index %=

dip-—>cemd_list.status_blk_area_size;

}

}

dev_cisc_unlock_controller(dip, FALSE);

return;

}

/*.function */

{*®< x /

WIRED

void dev_cisc_start_command_list_request (request_blk_ptr)

/*> *

dev_cisc_request_blk_ptr_type request_blk_ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Start a command list request.
/*

/*.Parameters

/*

/* request_blk_ptr -- A pointer to a request block that

/? specifies a Ciprico Rimfire 3500 request.

093-701053 Licensed material—property of Data General Corporation B-41

A Sample SCSI Adapter Driver

/*

/*.Functional_ Description
/*

/* This function notifies the controller that a parameter block
/*® in the command list structure is ready for execution.
/*

/*.Return_Value
/*

/* None.

/*

uintl6e_type param_blk_in_ index;

dev_cisc_param_block_ptr_type param_blk_ptr;
dev_cisc_device_info ptr_type dip;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

/*.Implementation[=
/*

/* Initialize the request block retry counters and the various
/* request status flags.
/*

/* .Endj]= « /

dip = request_blk_ptr->dip;

request_blk_ptr->status_blk_index = 0;

request_blk_ptr->retries_started = 0;

request_blk_ptr->retries_acknowledged = 0;

request_blk_ptr->request_aborted = FALSE;

request_blk_ptr->async_request_handled = FALSE;

request_blk_ptr->request_timed_out = FALSE;

ute_ptr = request_blk_ptr->ute_ptr;

/*.Implementation_Continued {=
/*

/* Get the controller lock and allocate a parameter block from
/* the command list. Copy the Ciprico parameter block from the

/* request block to the parameter block allocated from the command
/* list. The request interleave lock that had to be obtained to get
/* to this function guarantees us that at least one command list

/* parameter block is available.
/*

/* Update the parameter block in index so that the controller
/*® will know where to start looking for the parameter block.

/* Set the controller channel attention flag to nota ty the
/* controller of the parameter block.
/*

/* If the target unit is currently idle, the current time is
/* saved as the start_busy_time.
/*

/* .End) = «/

dev_cisc_lock_controller(dip, TRUE);

param_ blk ptr = &dip-—>cemd_list.param_blk[(dip->cemd_list.param_blk_in_index] ;
*param_ blk ptr = request_blk_ptr->param_block;

param_blk_in_ index = dip->cmd_list.param_blk_in_index + 1;

if (param_blk_in_index >= dip->cmd_list.param_blk_area_size)

{
param_blk_in_ index %= dip->cmd_list.param_blk_area_size;

dip->emd_list.param_blk_in_ index = param_blk_in index;

if (misc_is_zero_and_increment(é&ute_ptr- outstanding request_count))

{
vp_read_system_clock(&ute_ptr->start_busy_time) ;

}
dip->cisc_reg_ptr->channel_attention = 1;
dev_cise_unlock_controller(request_blk_ptr->dip, TRUE);
return;

}

/*.function */

[*< */

B-42 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

WIRED

void dev_cisc_await_sync_event (request_blk_ptr,
completion_event_ptr,

timeout_ptr)

/®> x /

dev_cisc_request_blik_ptr_type request_blk_ptr; /*® READ ONLY */

vp_event_ptr_type completion_event_ptr; /* READ ONLY */

misc_clock_value_ptr_type timeout_ptr; /* READ ONLY */

/*.Summary (=
/*

/* Wait for command complete, timeout, or termination signal.
/*

/*.Parameters

/*

/* rvequest_blk_ptr -- A pointer to the cisc request block

/* which is being used to execute the command.
/*

/* completion_event_ptr -- A pointer to an event structure which

/* specifies when the command will be considered complete.
/*

/* timeout_ptr -- A pointer to a clock value which specifies

/* the amount of the command has to complete before it is

/* considered "timed-out”.

/*.Functional_ Description

/* This function pends and waits until an operation completes,

/* a timeout occurs, or the operation is interrupted by a

/* signal. If a timeout occurs and no controller retries have

/* been done, the cise adpater is reset and a timeout error is

/* recorded. If the operation is interrupted by a terminated signal,

/* the request block is marked as aborted and the error flag is

/* set in the request block.

/*.Assumptions

/* This function assumes that the operation associated with the

/* event has been started and that the caller’s event structure

/* contains a current ec value which will be realized if the

/* operation completes.

/* This function also assumes that signal delivery has been disabled
/* by the caller if it is not appropriate for the operation to

/* be terminated by a signal.

/*.Return_Value

/* None.

/*.Remarks

/* The Ciprico 3500 manages timeouts internally. The timeout

/* processing done here is used as a backup in case the
/* controller fails. If the timeout we set up here expires,
/* the controller is considered dead and it is reset to

/* insure that further communication with the host is not

/* attempted. After the reset, the SCSI devices under the

/* jurisdiction of the controller are inaccessible to the host.

/* This method of recovery is rather severe but there no

/* graceful way to recover if we timeout waiting on the controller.
/* The Ciprico interface does not provide a way to check a

/* command’s execution status. Further, there is no way to abort
/* an individual command once it has been entered into the
/*® active command list.
/*

vp_event_type events [3];

int32_type result_index;

/*.Implementation[=
x

/* Set up the timeout event, then pend and wait for one of the

093-701053 Licensed material—property of Data General Corporation B-43

A Sample SCSI Adapter Driver

/* three events to occur.
/*

/*® If the command is terminated or times-out, the controller

/* lock is held while the appropriate action is taken. The

/* controller lock insures that the command complete interrupt

/* won’t come in while we are processing the error.
/*

/* .End)]= */

events[0] = *completion_event_ptr;

do

/*.Implementation_Continued [=

{
vp_create_clock_event(&events[{1], timeout_ptr);

do

{
if (pm_is_terminated(&events[2]))

dev_cisc_lock_controller(request_blk_ptr->dip, TRUE};

if (‘vp_has_event_occurred(&events[0]))

request_blk_ptr->request_aborted = TRUE;

}
dev_cisc_unlock_controller(request_blk_ptr->dip, TRUE);

goto done;

vVp_await_ec(events, (int32_type)3, &result_index) ;

while ((result_index == 2) && !vp_has_event_occurred(&events[0]) &&

'vp_has_ event_occurred(&events[1]}));

if ((result_index == 1) && !vp_has_event_occurred(é&events [0}))

dev_cisc_lock_controller(request_blk_ptr->dip, TRUE);

if (!vp_has_event_occurred(&events[0]))

/*

/* The command has timed-out. If a controller retry is being

/* performed, loop around and wait some more. Otherwise, reset

/* the adapter and return the error.
/*

/* .Endj=
=/

if (request_blk_ptr->retries_started !=

request_blk_ptr->retries_acknowledged)

request_blk_ptr->retries_acknowledged++;

else

request_blk_ptr->dip->cisc_reg_ptr->controller_reset =

(bit32e_type) TRUE;

request_blk_ptr->request_timed_out = TRUE;

} }

dev_cisc_unlock_controller(request_blk_ptr->dip, TRUE);

}
else /* The completion event was satisfied */

break;

}
}

while (!request_blk_ptr->request_timed_out) ;

done:

return;

}

/*.function */

/*é */
WIRED

void dev_cisc_lock_controller (dip, base_level)

/*> */

B-44 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

dev_cisc_device_info_ptr_type dip; /* READ ONLY */

boolean_type base_level; /* READ ONLY */

/* .Summary [=
/*

/* This function locks the cise data structures for single threaded

/* access.

/*

/*.Parameters

/*

/* @ip -- A pointer to a device information structure

/* associated with the cisc SCSI adapter to be locked.
/*

/* base_level -- Boolean variable, when true, indicates

/* that this function was called from base level.
/*

/* .Functional_Description
/*

/* The controller lock is obtained to insure exclusive access

/* to the data structures used to control the cise adapter.

/* Since the controller lock is a spin lock, cise adapter

/* interrupts are disabled while the lock is held to reduce

/* the possibility that the cisc will interrupt and busy-wait

/* for the lock.
/*®

/* If the request to lock the controller is coming from a base

/* level code path, interrupts are disabled on the current

/* processor. Interrupt are disabled to insure that the

/* executing process is not descheduled while holding the spin lock
/*

/* Note that it is possible for an interrupt to come in before

/* we have a chance to mask the device. If this happens, either
/*® this code path or the interrupt code path is going to busy-wait

/* for the lock. This type of collision is not expected to occur

/* frequently so for simplicity it is allowed. Base level

/* locks the controller only in an error path when a requesting

/* process has been terminated or a request has timed-out. Further,

/* simultaneous interrupts from the same device on different

/* processors should occur very infrequently.
/*

/*.Return_Value
/*

/* None.

/*

io_mask_interrupt_variety(Uc_Level_2_VME_Interrupt);

if (base_level)

vp_disable_interrupts();

}
misc_obtain_spin_lock(&dip—>controller_lock) ;
return;

}

/*.function */

/*< */
WIRED

void dev_cisc_unlock_controller (dip, base_level)

/*> */

dev_cisc_device_info_ptr_type dip; /* READ ONLY */

boolean_type base_level; /* READ ONLY */

/*.Summary [=
/*

/* Release the cise controller lock.
/*

/*.Parameters
/*

/* dip -- A pointer to a device information structure

/® associated with the cise SCSI adapter to be unlocked.

093-701053 Licensed material—property of Data General Corporation B-45

A Sample SCSI Adapter Driver

/*

/* base_level -- Boolean variable, when true, indicates

/* that this function was called from base level.
/*

/*.Functional Description
/*

/* This function releases the controller lock, enables interrupts

/* on the current processor if we are executing at base level, and
/* enables interrupts from the cisc controller.
/*®

/*.Return_ Value
/*®

/* None.
/*®

misc_release_spin_lock(&dip->controller_lock);

if (base_level)

vp_enable_interrupts();

io_unmask_interrupt_variety(Uc_Level_2_VME_Interrupt) ;

return;

}

/*.function */

[*¢ */
WIRED

vp_ec_ptr_type dev_cisc_service_async_ timeout (request_blk_ptr)

[*> */

dev_cisc_request_blk_ptr_type request_blk_ptr; 7* READ ONLY */

/*.Summary [=
/*®

/* This function services timeouts of asynchronous cisc requests.
/* It is called by the VP subsystem timeout manager when a
/* previously established timeout occurs.

/*.Parameters

/* request_blk_ptr -- A pointer to the cisc request block

/* that has timed out.

/*.Functional_ Description

/* The cise manager establishes a timeout by calling the VP

/* supplied timeout manager with a time interval, a pointer

/* to this function, and the request block pointer as arguments.

/* If the time specified elapses before the timeout is cancelled,
/* this function is called with the request block pointer as

/* an argument.

/* If a timeout has truly occurred, this function resets the
/* cise adapter and places a message in the driver demon’s message
/* queue, simulating the action of the interrupt service routine.
/*® The cisc complete_io function will be called by the demon to
/* complete the processing of the request. See the remarks in

/* the function dev_cisc_await_sync_event for a discussion of
/* why the adapter is reset after a timeout.

/*.Remarks

/* Remember that this function runs with interrupts disabled! It

/* must be very careful about what functions it calls.

/*.Return_Value

/* None.

/* .Exceptions

B-46 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* None.

/*

{

vp_ec_ptr_type ec_ptr;

/*.Implementation [=

/* We first get the controller lock and check the state of the

/* ‘request_handled’ flag in the request block. If it is set,

/* the real interrupt occurred while we were getting to this

/* handler and we should therefore do nothing.

/* -Endj= x /

ec_ptr = VP_NULL_EC_PTR;

dev_cisc_lock_controller(request_blk_ptr->dip, TRUE);

if (!request_blk_ptr->async_request_handled)

{
/*.Implementation_Continued [=
/*

/* The command complete interrupt for the request has not come in.

/* Check to see if any retries have been done by the controller.

/* If a retry has been started, restart the timeout and return

/* to the waiting state.
/*

/*.End)*=
*/

if (request_blk_ptr->retries_started !=
request_blk_ptr->retries_acknowledged)

{
request_blik_ptr->retries_acknowledged++;

request_blk_ptr->async_timeout_id =

vp_establish_timeout (request_blk_ptr->async_timeout_ptr,

dev_cisc_service_async_timeout,

(bit32e_type)request_blk_ptr);

else

/*.iImplementation_Continued [=

/* The command complete interrupt for the request has not come in

/* and there are no outstanding retries in progress. Reset the

/* adapter and put a message in the I/O demon queue so the

/% cise complete I/O routine will be called to process the timeout.

/*.End)]= s/

request_blk_ptr->async_request_handled = TRUE;

request_blk_ptr->request_timed_out = TRUE;

request_blk_ptr->dip->cisc_reg_ptr->controller_reset =
(bit32e_type)TRUE;

ec_ptr = io_queue_message_to_driver_demon (

dev_cisc_complete_io,

(bit32e_type)request_blk_ptr,

FALSE);

}

dev_cisc_unlock_controller(request_blk_ptr->dip, TRUE);

return(ec_ptr);

/*.function */

[*< */
WIRED

status_type dev_cisc_send_type_0_cmd_physical_mode (dip)
/*> */

dev_cisc_physical_device_info_ptr_type dip; /* READ/WRITE */

/*.Summary [=
x

/* Perform a "physcial” Ciprico Rimfire 3500 operation.

093-701053 Licensed material—property of Data General Corporation B-47

A Sample SCSI Adapter Driver

/*

/*.Parameters

/*

/* dip -- A pointer to the device information structure

/* for the Ciprico Rimfire 3500 SCSI adapter. Note that this
/* is a special version of the dip and is not the same as the
/* dip used during normal system operation.

/*.Functional_Description

/* This function is called to execute a Ciprico Rimfire 3500

/* command without the use of the normal operating system

/* facilities. Synchronization is done without the use of

/* event counters or interrupts. All buffer addresses are

/* assummed to be physical. The system is assumed to be

/* running a single thread of control so no lock management is
/* required.

/* This function was originally developed to serve as the CISC
/* prototype driver before vm, lock management, and interrupt handling
/* were implemented on the 88k. They are now used to perform system

/* dumps when the system is in shutdown mode. In the future, they may
/* used by diagnostics software to access devices on the SCSI bus.

/*.Return_Value

/* OK -- A normal completion event was detected.

/* IO_EIO_PHYSICAL_UNIT_FAILURE -- The controller did
/* not respond within the timeout interval.
/*

{

status_type status;

dev_cisc_type_0_pb_ptr_type param_blk_ptr;

uint32_type timeout;

/*.Implementation [=
/*

/* Clear the status portion of the type 0 parameter block.
/*

/*.End)= =/

status = OK;

param_blk_ ptr = &dip->type_0_param_blk;
param_blk_ptr->status_block.command_id =

param_blk_ ptr->status_block.error_code =

param_blk_ptr->status_block.flags = 0;

param_blk_ptr->reserved_1_must_be_zero =

param_blk_ptr->reserved_2_must_be_zero =

o Me

oo oo
*

mM. we

/*.Implementation_Continued[=

/* Load the address buffer port with data transfer control
/* information and the physical address of the parameter block.
/* The address buffer port consists of three 16 bit words. Three
/*® consecutive writes to the base address of the address buffe:r
/* port allows each word to be loaded with data.

/*.Endj= «/

dip->cisc_reg_ptr->address_buffer =

DEV_CIPRICO_ADDRESS_BUFFER_SET_CONTROL_BITS |
dip->vme_address_modifier;

dip->cisc_reg_ ptr->»address_buffer = (bit32e_type)param_blk_ptr >> 16;
dip->cisc_reg_ptr->address_buffer = (bit32e_type)param_blk_ptr & OxFFFF;

/*.Implementation_Continued [=
/*

/* Start command execution by writing a zero to the channel
/* attention register. Zero indicates that this is a type

/* zero command. Busy-wait for the command complete bit to

/* to come on in the status block flags field. If the

/* operation does not complete in 120 seconds, timeout and

B~48 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* return the error.
/*

/*.End)= x /

param_blk_ptr->interrupt_level = 0;

param_blk_ptr->interrupt_vector = 0;

dip->cisc_reg_ptr->channel_attention = 0;

timeout = 120*1000;

do {f{

timeout-—;

if (timeout == 0)

{
status = IO_EIO_PHYSICAL_UNIT_FAILURE;

break;

}
sc_busy_wait_microseconds((uint32e_type)1000);

} while(!(param_blk_ptr->status_block.flags &
DEV_CIPRICO_COMMAND COMPLETE_STATUS_FLAG));

return(status);

}

Driver Utility Code: dev_cisc_util.c

[*6 */
/* dev_cisc_util.c =f

[*> */

/*.Contents[=
/*

/* dev_cise_register_requester -- subsystem

/* dev_cisc_set_unit_options -- subsystem

/* dev_cisec_deregister_requester -- subsystem

/* dev_cisc_issue_command ~-- subsystem

/* dev_cisc_issue_asyne_command -- subsystem

/* dev_cisc_get_device_info -- subsystem

/* dev_cisc_complete_io -- subsystem

/* dev_cisc_issue_command_physical_mode -- subsystem
/* dev_cisc_start_async_request -- internal

/* G@ev_cisc_build_command_list_request -- internal
/* dev_cisce_check_status -- internal

/* dev_cisc_build_scatter_gather_arrays -- internal
/* dev_cisc_build_single_buffer -- internal

/* dev_cisc_free_scatter_gather_arrays -- internal

/* dev_cisc_complete_aborted_request -- subsystem
/*

/*.Description
/*

/* The functions in this module provide the interface between
/* the SCSI device drivers and the cisc manager. The cisc
/* manager controls the Ciprico Rimfire 3500 Host SCSI bus
/* adapter which is used to interface to the SCSI bus on
/*® Topgun class computers. The SCSI device drivers have no
/* knowledge of SCSI bus interfaces and issue requests to
/* SCSI devices by means of generic parameter blocks. The
/* functions in this module convert the generic requests to

/* a format used by the cisc manager and dispatch the
/* requests to the cisc manager.

/*® Since SCSI bus interfaces vary between system architectures,
/* multiple SCSI bus interface managers exist within DG/UX. Each
/* SCSI bus interface manager must provide a standard SCSI device
/* @river interface which conforms to the one implemented here.
/* The standard driver interface allows the SCSI drivers to work
/* on the various architectures without modification.

/* The entry points to the functions in this module are packaged
/* in a routines vector defined in dev_scsi_adapter_def.h. ScCsI
/* device drivers obtain pointers to the routines vector during
/* device configuration.

093-701053 Licensed material—property of Data General Corporation B-49

A Sample SCSI Adapter Driver

/*

/*.function */

[*< */

UNWIRED

status type dev_cisc_register_requester (rb_ptr)

/*> */

dev_scesi_adapter_unit_registration_blk_ptr_type rb_ptr; /* READ/WRITE */

/* .Summary [=
/*

/* This function associates the specified device with a cisc
/* SCSI adapter, thereby establishing a link between the device

/* a@river and the adapter service routines.

/* .Parameters

/* rb_ptr -- A pointer to a scsi adapter registration block.

/* .Functional Description

/* This function adds an entry to the unit table associated with

/* the specified scsi id and unit number. The unit table entry
/* consists of a device type specifier and an opaque unit handle
/* which is meaningful only to the device driver. The unit table

/* entry provides a bridge between the device driver and the cisc
/* management routines.

/* If the unit table entry specified by the SCSI id and unit

/* number is already occupied, an error is returned. Also the

/* device type of the device occupying the entry is returned
/* so that the caller can distinguish betweeen

/* I0_ENXIO_DEVICE_IS_ALREADY_CONFIGURED and

/* I0_ENXIO_DEVICE_DOES_NOT_EXIST.
/*

/* .Return_Value
/*

/* OK -- The specified device was successfully registered
/* with the cisc adapter.
/*®

/* IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED -- A device is

/* already registered at the location specified by
/* <rb_ptr>.
/*

/* Return values from io_map_ device_number.
/*

status_type status;

dev_cisc_unit_table_ptr_type unit_table_ ptr;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

uintl6_type unit;

/* .Implementation[=

/* Get the cise open lock to insure that we have exclusive
/* access to the cise unit table data structures. Translate

/* adapter major and minor number to a specific adapter unit
/* table.

/* .End)= =/

status = OK;

lm_obtain_unsequenced_lock(&dev_cisc_open_lock) ;
status = io_map_device_number(rb_ptr->adapter_device_number,

(bit32e_ptr_type)é&unit_table_ ptr,

&unit);

if (status != OK)

goto done;

/*.Implementation_Continued [=
/*

B-50 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/* Using the scsi id and unit number from the registration

/* packet, get the unit table entry for the device being

/* registered. If a device is already registered for the

/* entry, return the error. Otherwise, mark the entry as in

/* use and return the adapter handle.

/* .End)= */

ute_ptr = &((*unit_table_ ptr) [rb_ptr->unit_spec.scsi_id]

[rb _ptr—>unit_spec.unit]);

if (ute_ptr->in_use)

rb_ptr->device_type = ute_ptr->device_type;

status = IO_ENXIO_DEVICE_IS_ALREADY_CONFIGURED;

}
else

{
ute_ptr->in_use = TRUE;

ute_ptr->driver_handle = rb_ptr->driver_handle;

ute_ptr->device_type = rb_ptr->device_type;

misc_initialize_counter(&sute_ptr->outstanding_request_count,

(int32e_type)0);

rb_ptr->max_request_size = DEV_CISC_MAX_REQUEST_SIZE;

rb_ptr->adapter_handle = (io_device_handle type)ute_ptr;

j
done:

lm_release_unsequenced_lock(&dev_cisc_open_lock) ;
return(status);

}

/*.function */

/*< */
UNWIRED

status_type dev_cisc_set_unit_options (adapter_handle,
unit_options_block_ptr)

/*> x/

io_device_handle_type adapter_handle; /* READ ONLY */

dev_scesi_adapter_unit_options_block_ptr_type unit_options_ block ptr;
/* READ ONLY */

/*.Summary [=
/*

/* Set the unit options of a registered device.
/*

/*.Parameters
/*

/* adapter_handle -- The device handle of the physical unit

/* the is the target of the set unit options operation. This handle

/* must be the device handle that was returned by the
/* register_requester routine of the adapter manager.

/* unit_options_ block_ptr -- Pointer to a unit options block

/* which specifies the options to be selected for the unit.
/*

/*.Functional_Description
/*

/* This function is called to set the various unit options which
/* describe how the SCSI adatper driver manages a request that has

/* been issued over the SCSI bus to a physical unit. See the
/* definition of the dev_scsi_adapter_unit_options_block in the file

/* dev_scsi_adapter_def.h for a complete description of the unit
/* options supported.
/*

/*.Return_Value
/*

/* OK -- The requested options were selected successfully.
/*

/* DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE -~- An illegal
/* option value was detected in the callers Set Unit Options
/* Block.

/* IO_EIO_PHYSICAL_UNIT_FAILURE -- The Set Unit Options
/® command issued to the Ciprico controller resulted in an

093-701053 Licensed material—property of Data General Corporation B-51

A Sample SCSI Adapter Driver

/* error.

/®

{

status_type status;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

struct timeval timeout_timeval;

long timeout_in_milliseconds;

uintl6_ type disconnect_timeout;

dev_cisc_unit_options_pb_ptr_type unit _options_pb_ ptr;

dev_cisc_device_info_ptr_type dip;
vp_event_type request_completion_event;

dev_adapter_request_block_type arb;
dev_cisc_request_blk_ptr_type request_blk_ptr;

/*.Implementation[=
/*

/* Get the cise open lock and convert the adapter handie to
/* a unit table entry for the device.
/*

/*.End]= =/

status = OK;

lm_obtain_unsequenced_lock(&dev_cisc_open_lock);

ute_ptr = (dev_cisc_unit_table_entry_ptr_type)adapter_handle;

/*.Implementation_Continued [=

/*® The Ciprico controller handles disconnect timeouts
/* automatically. We just have to tell it what the timeout
/* value is. The disconnect timeout value in the Ciprico set

/® unit options parameter block is specified in units of .1
/*® seconds. Convert the disconnect timeout value from the caller’s
/* unit options block to milliseconds, verify that the timeout
/* is in a range supported by interface, and then conver the
/* timeout value to .1 seconds units.

/* If disconnect timeout value pointer in the caller’s set unit
/* options block is DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR, disconnect
/* timeouts are disabled for the device

/*.End]= a/

if (unit_options_block_ptr->disconnect_timeout_ptr !=
DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR)

misc_clock_value_to_timeval (

unit_options_block_ptr->disconnect_timeout_ptr,

&timeout_timeval) ;

misc_timeval_to_milliseconds(&timeout_timeval, &timeout_in_milliseconds) ;

if ((timeout_in_ milliseconds < DEV_SCSI_ADAPTER_MIN_TIMEOUT_VALUE)

(timeout_in milliseconds > DEV_SCSI_ADAPTER_MAX_TIMEOUT_VALUE))

status = DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE;

goto done;

}
disconnect_timeout = timeout_in_milliseconds/100;

}
else

{
disconnect_timeout = DEV_CISC_UNIT_OPTIONS_TIMEOUT_DISABLE;

}

/*.Implementation_Continued [=

/*® Validate the caller’s bus request timeout. If bus request

/* timeout value pointer in the caller’s set unit options block

/* is DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR, no timeout is used.

/* The Ciprico controller manages timeouts internally, the

/* bus request timeout value is used as a backup timeout

/* mechanism in case the Ciprico controller fails.

/* .Endj= =/

B-52 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

if (unit_options_block_ptr->bus_request_timeout_ptr !=

DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR)

misc_clock_value_to_timeval (
unit _options_ block_ptr->bus_request_timeout_ptr,

é&timeout_timeval);

misc_timeval_to_milliseconds(&timeout_timeval, &timeout_in_milliseconds) ;

if ~((timeout_in milliseconds < DEV_SCSI_ADAPTER_MIN_TIMEOUT_VALUE) | |
(timeout_in_milliseconds > DEV_SCSI_ADAPTER_MAX_TIMEOUT_VALUE))

{
status = DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE ;

goto done;

}

}

/*.Implementation_Continued [=
/*

/* Verify that the adapter retries field of the caller’s set

/* unit options block is within the supported range. If it
/* is not, return an error status.
/*

/* .End)= */

if ((unit._options_block_ptr->adapter_retries <
DEV_SCSI_ADAPTER_MIN_ADAPTER_RETRIES) | |
(unit _options block_ptr->adapter_retries >

DEV_SCSI_ADAPTER_MAX ADAPTER_RETRIES))

{
status = DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE;

goto done;

/*.Implementation_Continued [=
/*

/* Verify that the sense bytes field of the caller’s set

/* unit options block is within the supported range. If it
/* is not, return an error status.
/*

/* .End)= */

if (nee eond block ptr_rcenee byte < DEV_SCSI_ADAPTER_MIN_SENSE_BYTES)
| (unit_options_block_ptr->sense_bytes > DEV_SCSI_ADAPTER_MAX_SENSE_BYTES))

{ |
status = DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE; *
goto done;

/*.Implementation_Continued [=

/* Verify that the maximum disconnect/reconnect per request field
/* of the caller’s set unit options block is within the supported
/* range. If it is not, return an error status.
/*

/*.End)]=
x/

if ((unit_options_block_ptr->max_disconn_reconn_per_command <

DEV_SCSI_ADAPTER_MIN_DISCON_RECON)

(unit _options_block_ptr->max_disconn_reconn_per_command >
DEV_SCSI_ADAPTER_MAX_DISCON_RECON))

{
status = DEV_STATUS_SCSI_ILLEGAL_UNIT_OPTIONS_VALUE;

goto done;

/*.Implementation_Continued [=

/* Calculate the timeout value that will be used to determine

/* if the Ciprico controller has failed. This timeout is
/* managed by the driver and is used as a backup in case the

/* Ciprico stops working. The timeout is calculated as:

/* (disconnect timeout value + active bus request timeout) X

/* maximum number of disconnect/reconnect cycles per command.

/*.Endj= */

093-701053 Licensed material—property of Data General Corporation B-53

A Sample SCSI Adapter Driver

if ((unit_options_block_ptr->disconnect_timeout_ptr ==

DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR)

(unit_options_block_ptr->bus_request_timeout_ptr ==

DEV_SCSI_ADAPTER_NULL_TIMEOUT_PTR))

{
/*.Implementation_Continued [=

ye If timeouts are to be disabled at the device, disable them
/* driver timeouts as well.

‘eEnd]= x /

ute_ptr->controller_dead_timeout = misc_maximum_clock_value;

else if (unit_options_block_ptr-—>max_disconn_reconn_per_command == 0)

/*.Implementation_Continued [=
/*

/* If disconnect/reconnect is disabled for the device, the driver
/[* timeout becomes the bus request timeout value.
/*

/* .End]= * /

ute_ptr->controller_dead_timeout =

*sunit_options_block_ptr->bus_request_timeout_ptr;

}
else

ute_ptr->controller _dead_timeout =

eunit options_block_ptr->disconnect_timeout_ptr;

MISC_CLOCK_VALUE_ADD(unit_options_block_ptr->bus_request_timeout_ptr,
&ute_ptr->controller dead_timeout) ;

MISC_CLOCK_VALUE_MULTIPLY((uint32_type)

unit_options_ block_ptr—->max_disconn_reconn_per_command,
&ute_ptr->controller _dead_timeout) ;

}

/*.Implementation_Continued [=
x

/* Obtain the request lock to insure that a request block is
/* available. Dequeue a request block and set up a parameter

/* block to set the options for the unit.

/* Since the command is issued through the general adapter
/* request mechanism, we need a local adapter request block
/* to specify the command. .

/* The cise retry control bits are set so that a status block is
/*® generated for each retry. This is done so that the timeout

/® path can informed of retries.

/* .Endj= */

dip = ute_ptr->dip;

io_sync_obtain_interleave_lock(&dip->request_lock) ;

misc_dequeue_from_head(&dip->request_blk_queue,

(misc_queue_links_ptr_type *)&request_blk_ptr);

request_blk_ptr->sync_io = TRUE;

io_init_one_entry_buffer_vector(

&arb.buffer_vector,

(pointer to_any_type)DEFAULT_NULL_LINK,

(uint32_type)0);

arb.request_flags = 0;

arb.unit_spec = ute_ptr->unit_spec;

request_blk_ptr->arb_ptr = é&arb;

request_blk_ptr->ute_ptr = ute_ptr;

unit_options_ pb ptr = (dev_cisc_unit_options_pb_ptr_type)
&request_blk_ptr->param_block;

unit_options_pb_ptr->param_block_id = (uint3Ze_type)request_blk_ptr;
unit _options_pb ptr->disconnect_timeout = disconnect_timeout;
unit _options_pb ptr->unit_id = ute_ptr->unit_spec.scsi_id;
unit_options_pb_ ptr->target_id = DEV_CISC_SCSI_TARGET_ID;

unit_options_ pb ptr->select_timeout = DEV_CISC_UNIT_OPTIONS_SELECT_TIMEOUT;
unit _options_pb ptr->retry_control = DEV_CISC_RETRY_CONTROL_RCE

B-54 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

DEV_CISC_RETRY_CONTROL_INT | DEV_CISC_RETRY_CONTROL_ISB;

unit_options_pb_ptr->retry_limit = unit_options_block_ptr->adapter_retries;
unit _options_pb_ptr->reserved_1 = 0;

unit _options_pb_ ptr->sense_bytes = unit_options_block_ptr->sense_bytes;

if (unit_options_block_ptr->perform_request_sorting)

unit _options_pb_ptr->unit_flags = DEV_CISC_UNIT_FLAGS_SOR;

else

f
unit_options_ pb ptr->unit_flags = 0;

if (unit_options_block_ptr->max_disconn_reconn_per_command == Q)

{
unit_options_pb ptr->unit_flags |= DEV_CISC_UNIT_FLAGS_IDI;

}
if (dip->sync_scsi_supported)

{
unit_options_pb_ptr->unit_flags |= DEV_CISC_UNIT_FLAGS_SYN;

}
unit _options_pb ptr->command = DEV_CISC_CMD_SET_UNIT_OPTIONS;

unit options pb _ptr->reserved_2 = 0;

unit options pb _ptr->reserved_3 = 0;

unit_options_pb_ptr->reserved_4 = 0;

/*.Implementation_Continued [=
/*

/* Set up to pend and wait for the request to complete, start

/* the request, then wait for the request to complete.
x

/* .End)=
*/

request_completion_event.name = &request_blk_ptr—->sync_io_ec;

vp_get_next_ec_value(&request_blk_ptr—>sync_io_ec,

&request_completion_event.value);

dev_cisc_start_command_list_request(request_blk_ptr);

dev_cisc_await_sync_event(request_blk_ptr,
&request_completion_event,

&misc_three_seconds);

/*.Implementation_Continued [=
/*

/* The Set Unit Options request has completed. Call the

/* check_status routine to see if any errors occurred. Note

/* that the request block will be deallocated and the interleave

/* lock will be reassigned by the check_status function.
/*

/* .End]= */

status = dev_cisc_check_status(request_blk_ptr);

io_release_interleave_lock(&dip~>request_lock);

/*.Implementation_Continued [=
/*

/* Release the open lock and return the status of the

/* set unit options operation.
x

/*-.Endj]= x/

done:

im_release_unsequenced_lock(&dev_cisc_open_lock) ;

return(status);

}

/*.function */

JS */

UNWIRED

void @ev_cisec_deregister_requester (adapter_handle)

/*> */

io_device_handle_type adapter_handie; /* REAID ONLY */

/*.Summary [=

093-701053 Licensed material—property of Data General Corporation B-55

A Sample SCSI Adapter Driver

/* This function terminates the link between the cisc SCSI adapter
/* manager and the device referenced by <adapter_handle>.

/*.Parameters

/* adapter _handle -~- The device handle of the physical unit
/* that is to be deregistered. This handle must be the device handle
/* that was returned by the register_requester routine of the

/* adapter manager.

/*.Functional Description

/* See Summary.

/* .Return_Value

/* None.

dev_cisc_unit_table_entry_ptr_type ute_ptr;

/*.Implementation[=
/*

/* Get the cise open lock and free the unit table entry for

/* the device.
/*

/*.End)=

lm_obtain_unsequenced_lock(&dev_cisc_open_lock) ;

ute_ptr = (dev_cise_unit_table_entry_ptr_type)adapter_handle;
ute_ptr->in_use = FALSE;

lm_release_unsequenced_lock(&dev_cisc_open_lock) ;
return;

}

/*.function */

/*< */
WIRED

status_type dev_cisc_issue_command (arb_ptr)

/*> */

dev_adapter_request_block_ptr_type arb_ptr;/* READ/WRITE */

*/

/*.Sumnary [
/*

/* Issue a SCSI command synchronously through the adapter to a

/* target device.
/*

/*.Parameters

/*

/* arb_ptr -- A pointer to a generic adapter request block
/*® that holds all information which decribes the request.
x

‘+ Functional Description
/*

/* This function transfers request information from the generic
/® adapter request block to the cise specific parameter
/* block and calls the cisc manager to execute the request.

/* If the request completes with a Check Condition Status, sense
/* information from the device is automatically returned in the
/* adapter request block.

/*.Return_Value

/* OK -- A synchronous request completed successfully.

/* Return values from dev_cisc_check_status.

B-56 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

dev_cisc_unit_tablie_entry_ptr_type ute_ptr;

dev_cise device_info_ptr_type dip;

dev_cisc_request_blk_ptr_type request_blk_ptr;

vp_event_type request_completion_event;

status_type status;

/*.Implementation [=
/*

/* Get a pointer to the device information structure and get

/* the controller request lock.
*

/*.Endj= =/

ute_ptr = (dev_cisc_unit_table_entry_ptr_type)arb_ptr->adapter_handle;

dip = ute_ptr->dip;

io_sync_obtain_interleave_lock(&dip~>request_lock) ;

/*.Implementation_Continued [=
/*®

/*® Allocate a request block and build a Ciprico Rimfire 3500

/* parameter block.
x/

/*.End)= «/

misc_dequeue_from_head(&dip->request_blk_queue,
(misc_queue_links_ ptr_type *)&request_blk_ptr);

request_blk_ptr->arb_ptr = arb_ptr;

request_blk_ptr->ute_ptr = ute_ptr;

reguest_blk_ptr->sync_io = TRUE;

dev_cisc_build_command_list_request(request_blk_ptr) ;

/*.Implementation_Continued [=
/*

/* Set up to pend for command completion, start the command,
/* then pend and wait for the command to complete.
x/

/*.Endj)=
=/

request_completion_event.name = &request_blk_ptr->sync_io_ec;
vp_get_next_ec_value(&request_blk_ptr->synce_io_ec,

&request_completion_event. value);

dev_cisc_start_command_list_request(request_blk_ptr);
dev_cisc_await_synce_event(

request_blk_ptr,

&request_completion_event,

&ute_ptr->controller_dead timeout) ;

/*.Implementation_Continued[=
/*

/* The command list request has completed. Do the request completion
/*® processing and examine the status block returned. Note that
/*® request block will be deallocated and the interleave lock
/* will be reassigned by the check_status function.
/*

/*.End)= x/

status = dev_cisec check_status(request_blk_ptr);
io_release_interleave_lock(&dip->request_lock) ;

return(status);

/®. function */

/*%< x /

WIRED

status_type dev_cisc_issue_asyne_command (arb_ptr)

[*> */

dev_adapter_request_block_ptr_type arb_ptr;/* READ/WRITE */

/*.Summary [=
/*

/*® Issue a SCSI command asynchronously through the adapter to a

/* target device.

093-701053 Licensed material—property of Data General Corporation B-57

A Sample SCSI Adapter Driver

/*®

/*.Parameters

/*

/* arb_ptr -- A pointer to a generic adapter request block

/* that holds all information which decribes the request.
*x

‘s Punctional. Description
/*

/* The adapter request block is added to the asynchronous request

/* queue and an attempt is made to obtain the specified controller’s

/* command list request lock. If the lock is obtained,

/* dev_cise_start_async_request is called to start the request.

/* Control is returned to the caller as soon as the request has

/* been issued through the adapter to the physical unit. The I/¢c

/* daemon handles request completion and starts the next request

/* in the queue if there is one.

/* If the command list request lock cannot be obtained, the request

/* left on the request queue and the function returns immediately.

/*® The enqueued request is started when the currently executing
/* request and all requests ahead in the queue have been executed.

/* Note that the requested block must be enqueued before we
/* attempt to obtain the request lock. If the request lock becomes
/* free immediately after the check, the request must be in the
/* queue so that it can be started by the process which just
/* completed a request.
/*®

/*.Return Value
/*

/* OK -- The request was successfully started. This status
/* does not indicate that the request has completed successfully.
/*

{

dev_cisc_unit_table_ entry_ptr_type ute_ptr;

dev_cisc_device_info_ptr_type dip;

/*.Implementation [=
/*

/* Add the adapter request block to the asynchronous request

/* queue. If the request lock can be obtained, start the
/* request. Otherwise, return immediately.
x/

/*.End)]= x/

ute_ptr = (dev_cisc_unit_table_entry_ptr_type)arb_ptr—->adapter_handle;
dip = ute_ptr->dip;

misc _enqueue_at_tail(&dip-—>asyne_request_queue, &arb_ptr->links);
if (io_async_obtain_interleave_lock(&dip->request_lock))

dev_cisc_start_async_request(dip);

io_release_interleave_lock(&dip->request_lock) ;

return (OK);

/7*.function */

[*¢ */

UNWIRED

status_type dev_cisc_get_device_info (adapter_device_number,
unit_spec,

device_type,

driver_handle_ ptr)

[*> */

i0_device_number_ type adapter_device_number; /* READ ONLY */
dev_scsi_adapter_unit_spec_type unit_spec; /* READ ONLY */
bit8 type device_type; /* READ ONLY */
bit32e_ptr_type driver_handle ptr; 7* WRITE ONLY */

/*.Summary [=
/*

/* This function retrieves device information associated with

B-58 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/® specified registered device.
/®

/*.Parameters
/*

/* adapter _device_number -- The major and minor device

/® number of the SCSI adapter used to access the target unit.
/*

/* unit_spec -- The SCSI id and unit number of the
/*® target device.
/*

/* device_type -~ Device type of device expected to be

/*® registered for unit number and SCSI id.
/*

/* driver_handle_ptr -- A pointer to where the device

/* information is to be returned.
/*

/*.Functional_Description
/*

/* Return the opaque driver handle that was registered with the

/* device. This function takes the place of io_get_device_infe

/* for SCSI devices which don’t have DIT entries.
/*

/* .Return_Value
/*

/* OK -~ The opaque driver handle was successfully retrieved

/* and returned.
/*

/* Return values from io_map device_number.
/®

/* IO_ENXIO_DEVICE_IS_ NOT_CONFIGURED -—- A device of the

/* specified type is not registered at the SCSI id and unit

/* number slot.
/*

{

status_type status;

dev_cisc_unit_table_ptr_type unit_table ptr;
dev_cisc_unit_table_entry_ptr_type ute_ptr;

uintl6_ type unit;

/* .Implementation [=

/*® Get the cisc open lock to insure that we have exclusive

/* access to the cise unit table data structures. Translate
/* adapter major and minor number to a specific adapter unit

/* table.

/* .Endj= */

im_obtain_unsequenced_lock(&dev_cisc_open_lock) ;
status = io_map_device_number(adapter_device_number,

(bit32e_ptr_type)&unit_table ptr,

G&upnit);

if (status != OK)

{
goto done;

/*.Implementation_Continued [=
/*®

/* Using the scsi id and unit number arguments, get the unit

/* table entry for the device being referenced. Extract the

/® driver handle from the unit table entry and return it to

/* the caller.
x

/*.End)= x/

ute_ptr = &((*unit_table_ ptr) {unit_spec.scsi_id]
{unit_spec.unit]);

if (!ute_ptr->in_use)

status = IO_ENXIO_DEVICE_IS_NOT_CONFIGURED;

}
else if (!(ute_ptr->device_type & device_type))

{

093-701053 Licensed material—property of Data General Corporation B-59

A Sample SCSI Adapter Driver

status = IO_ENXIO_DEVICE_IS_NOT_ CONFIGURED;

else

sdriver_ handle ptr = ute_ptr->driver_handle;

done:

lm_release_unsequenced_lock(&dev_cisc_open_lock) ;
return(status);

/*.function */

[*< */
WIRED

void dev_cisc_complete_io (data)

[*> */

bit32e_type data; /* READ ONLY */

/*.Summary [=
/*®

/* This function handles the completion of asynchronous requests
/% that have been completed by the cisc controller.
/*

/* .Parameters
/*

/* data -- The 32 bits of data that was in the message

/* given to the driver demon.
/*

/*.Functional_Description
/*

/* This function handles the completion of asynchronous I/O requests.

/® It calls the common status_check routine to determine the
/* results of the request.

/* When the result of the operation is determined, this function
/* calls the “complete_io" function specified in the original
/* SCSI adpater request block. This is an upcall to notify the
/* requestor that the asynchronous operation is now complete.
/*

/*.Return_Value
/*®

/* Return values from dev_cisc_check_status. .
/®

/*.Exceptions
/*

/* None.
/*

/*.Abort_Conditions
/*

/* None.
/*

{
status_type status;

dev_adapter_request_block_ptr_type arb_ptr;

dev_cisc_request_blk_ptr_type request_blk_ptr;

/*.Implementation[=

/* The command list request has completed. First cancel the
/* timeout so we don’t continue to tie up space in the timeout:
/* table. Examine the status returned and take the appropriate
/* action. Note that request block will be deallocated and the
/* interleave lock will be released by the check_status function.

/* .End)= */

request_blk_ptr = (dev_cisc_request_blk_ptr_type)data;
vp_cancel_ timeout (request_blk_ptr->asyne_timeout_id);
arb ptr = request_blk_ptr->arb_ptr;

status = dev_cisc_check_status(request_blk_ptr);

/*.Implementation_Continued [=

B-60 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/*

/* Upcall the orignal caller’s complete I/O routine.
x/

/*.End]=
x/

(*(arb_ptr->complete_io_routine))(arb_ptr, status);

return;

}

7/*.function */

/*< x/

WIRED

status_type dev_cisc_issue_command_physical_mode (request_blk_ptr)

/*> */

dev_adapter_physical_request_blk_ptr_type request_blk_ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Issue a "physical" I/O request through the SCSI adapter to a

/* target device.

/*.Parameters

/* request_blik_ptr -- A pointer to a request block that holds

/* information which specifies the request. Note that this is a

/* special version of the adapter request block and is not the

/* same as the request block used during normal system operation.

/* .Functional_ Description

/* This function is called to issue a synchronous I/O request over

/* the SCSI bus without the use of the normal operating system

/* facilities. Synchronization is done without the use of

/* event counters or interrupts. All buffer addresses are asswnmed

/* to be physical. The system is assumed to be running a single

/* thread of control so no lock management is required.
/*

/* .Return_Value
/*

/* OK -- A synchronous request completed successfully or

/* an asynchronous request was started.
/*

/* DEV_STATUS_SCSI_CMD_COMPLETE_CHECK_CONDITION -~ The

/* command completed with a check condition status and sense

/* information is available in the caller’s sense buffer.

/* DEV_STATUS_SCSI_DEVICE_IS_BUSY -- The

/* command completed with a busy status indicating the device

/* is probably performing it’s power-on/reset initialization.

/* IO0_EIO_HARD_IO_ERROR -- The command completed with a

/* check condition status and the subsequent request sense

/* command failed.

/* Return values from dev_cisc_issue_type_0_cmd_physical_mode.

status_type status;

dev_cisc_type_0_pb_ptr_type param_blk_ptr;

dev_cisc_physical_device_info_ptr_type dip;

bit8e_type scsi_status;

/*.Implementation {=

/* Issue the request to the adapter manager. If the request

/* fails with a check condition status, copy sense information

/* from the status block into the request block.

/* Note that the ciprico 3500 will span contiguous physical

/* pages on a dma transfer, so scatter gather is not

/* required if the request is for more than a page.

093-701053 Licensed material—property of Data General Corporation B-61

A Sample SCSI Adapter Driver

/*

/* .Endj= =/

dip = (dev_cisc_physical_device_info_ptr_type)dev_cise_physical_dip;
param_blk_ptr = &dip->type_0_param_blk;

param_blk_ptr->std_param_block.flags = (bit8e_type)0;

io_get_buffer_vector_io_info(

&request_blk_ptr->buffer_vector,

(pointer _to_any ptr_type)éparam_blk_ptr->std_param_block.vme_memory_address,
¶m_blk_ptr—>std_param_block.transfer_count);

param_blk_ptr->std_param_block.address_modifier = dip->vme_address_modifier;
param blk ptr->std_param_block.target_id = request_blk_ptr->unit_spec.scsi_id;
param _blk_ptr->std_param_block.scsi_emd_blk = request_blk_ptr->scsi_cmd_blk;

status = dev_cisc_send_type_0_cmd_physical_mode(dip);

if (status == OK)

{
sesi_status = param_blk_ptr->status_block.scsi_status;
sesi_status >>= DEV_SCSI_STATUS_BYTE_SHIFT;

scsi_status &= DEV_SCSI_STATUS_BYTE_MASK;

if (sesi_status == DEV_SCSI_STATUS_BUSY)

{
status = DEV_STATUS_SCSI_DEVICE_IS_BUSY;

else if (sesi_status != 0)

{
misc_byte_copy (

(pointer to_any_type)param_blk_ptr->status_block.sense_data,

(pointer to_any_type)&request_blk_ptr->sense_buffer,
DEV_CISC_REQUEST_SENSE_DATA_SIZE);

status = DEV_STATUS_SCSI_CMD_COMPLETE_CHECK_CONDITION;

}

}

return (status);

/*.function */

/*< x/

WIRED

void dev_cise_start_asyne_request (dip)

/*> */

dev_cisc_device_info_ptr_type dip; /* READ ONLY */

/*.Summary {=
/*®

/* This function fills in the request block for an asynchronous
/*® I/O request and sends it to the through the Ciprico SCSI interface
/* to the specified physical unit.
/*

/*.Parameters
/*

/* dip -—- A pointer to the device info structure of the
/* cise controller on which an asynchronous request is to be started.
x

‘a .Functional_Deseription
/*

/* An adapter request block is removed from the head of the async
/* queue and a request block is removed from the request block free
/* queue. The request block is filled in with the information from the
/* adapter request block and is initialized to indicate an asynchronous
/* request.

/*.Return_Value

/* None.

/* .Exceptions

/* None.

B-62 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

dev_adapter_request_block_ptr_type arb_ptr;
dev_cisc_request_bik_ptr_type request_blk_ptr;

dev_cisc_unit_table_entry_ptr_type ute_ptr;

/*.Implementation [=

i Get the next generic adapter request block from the queue.

(+ End] */
misc _dequeue_from_head(&dip~>async_request_queue,

(misc_queue_links_ptr_type *)&arb_ptr);

/*.Implementation_Continued[=
/*

/* Allocate a controller request block and build a Ciprico

/* Rimfire 3500 parameter block.
/*®

/*.End)= x/

misc_dequeue_from_head(&dip->request_blk_queue,
(misc_queue_links_ptr_type *)&request_blk_ptr);

request_blk_ptr->arb_ptr = arb_ptr;

request_blk_ ptr->sync_io = FALSE;

dev_cisc_build_command_list_request(request_blk_ptr);

/*.Implementation_Continued [=
/*

/* Start the async timeout with the vp timeout manager.
/*

/*.Endj= x/

ute_ptr = (dev_cisc_unit_table_entry_ptr_type)arb_ptr->adapter_handle;

request_blk_ptr->async_timeout_ptr = &ute_ptr—>controller_dead_timeout;
request_blk_ptr->ute_ptr = ute_ptr;

request_blk_ptr->async_timeout_id =

vp_establish_timeout (request_bik_ptr->async_timeout_ptr,
dev_cisc_service_async_timeout,,

{(bit32e_type)request_blk_ptr);

/*.Implementation_Continued [=
x

/* Start the command and return immediately. The I/O demon will

/* perform request completion processing.
x/

/* .End)= : */

dev_cisc_start_command_list_request(request_blk_ptr);

return;

}

/*«x.function */

[*< */

WIRED

void dev_cisc_build_command_list_request (request_blk_ptr)
/*> =

dev_cisc_request_blk_ptr_type request_blk_ptr; /* READ/WRITE */

/*. Summary [= :
/*

/* Build a Ciprico Rimfire 3500 request block.
/*

/*.Parameters
/*

/* request_blk_ptr -- A pointer to a request block that holds

/* information which specifies the I/O request.
/*

/*.Functional_ Description
/*

/* A Ciprico Rimfire 3500 parameter block is constructed from

/* information in original caller’s generic adapter request

/* block. If the request is going to require DMA between the

093-701053 Licensed material—property of Data General Corporation B-63

A Sample SCSI Adapter Driver

/* host and controller, scatter gather array are allocated and

/* set up.

/* Process signal delivery is disabled for the current process

/* if the request requires DMA and the request is synchronous.

/*® DMA requests cannot be aborted because there is no way to

/? tell the Ciprico controller to abort a request once it has

/* started. If a DMA request is aborted, we can’t just return

/* to the caller like is done with non-DMA requests because

/* the controller is going to read/write data to the user’s

/[*% buffer.
/*

/*

/*.Return_Value
/*

/* None.

/*

{

dev_cisc_param_block_ptr_type param _ blk_ptr;

dev_adapter_request_block_ptr_type arb_ptr;

/*.Implementation[#=
/*

/* Fill the parameter block in with information needed to

/* specify the request.
/*

/*.End)= */

param_blk_ptr = &request_blk_ptr->param_block;

param_blk_ptr->param_bik_id = (uint32e_type)request_blk_ptr;

param_blk_ptr->reserved_1l_must_be_ zero = 0;

arb_ptr = request_blk_ptr->arb_ptr;

/*.Implementation_Continued [=

/* If the adapter request block specifies a data transfer,
/* build the scatter gather arrays needed and disable signal
/* delivery.

/* If the command is an INQUIRY command, perform the command
/* without using sceatter/gather. The Ciprico firmware can’t

/* do scatter/gather on this command when synchronous SCSI

/* is used, and since the non scatter gather operation is likely to be a

/* little more efficient for this command, don’t bother to see

/* if this controller is actually using synchronous SCSI.

/*.End)= */

if (io_get_buffer_vector_byte_count(sSarb_ptr->buffer_vector) != 9)

{
if (arb_ptr->scsi_cmd_blk.op_code == DEV_SCSI_CMD_INQUIRY)

{
dev_cisc_build_single_buffer(request_blk_ptr, param_blk_ptr);

}

{
dev_cisc_build_scatter_gather_arrays(request_blk_ptr, param_blk_ptr);

else

}
if (request_blk_ptr->arb_ptr->sync_io)

{
pm_disable_signal_delivery();

}
}

else

{
param_blk_ptr->flags = (bit8e_type)0;
} .

param_blk_ptr->target_id = arb_ptr->unit_spec.scsi_id;
param_blk_ptr->sesi_cmd_blk = arb_ptr->scsi_cmd_blk;
return;

}

/*.function */

B-64 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

[2% x/

WIRED

status_type dev_cisc_check_status (request_blk_ptr)

[*> */

dev_cisc_request_blk_ptr_type request_blk_ ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Perform command list request completion processing.
/*®

/*.Parameters

/*

/* request_blk_ptr -- A pointer to a request block that holds
/* information which specifies the I/O request that has completed.

/*.Functional Description

/* This function is called to perform the following command
/* completion processing:

/* Deallocate the scatter/gather arrays used to perform DMA.

/* Interpret the completion status of the request and take

/* the appropriate action.

/* Release the command list request lock and get the next

/* asynchronous request started if there is one.

/* .Return_Value

/* OK -- The command executed successfully with no errors

/* or exceptions.

/* DEV_STATUS_SCSI_CMD_COMPLETE_CHECK_CONDITION -- The

/* command completed with a Check Condition status and sense

/* information has been returned.

/* IO_ENXIO_UNIT_NOT_READY -- The device was busy and could
/* not accept the command.

/* I0_EIO_PHYSICAL_UNIT_FAILURE -- An unexpected and

/* unrecoverable error occured during command execution.

/* IO_EINTR_INTERRUPTED_BY_SIGNAL -- A process termination
/* signal was received while waiting for command completion.

/* IO_EIO_DEVICE_TIMED_OUT -- The timeout interval

/* expired while waiting for command completion.
/*

{
status_type status;

bit8e_type error_code;

bit8e_type : scsi_status;

ulnt8 type status_blk_index;

dev_adapter_request_block_ptr_type arb_ptr;

ulnt32_type byte_count;

dev_cisc_status_block_ptr_type status_blk_ptr;

pointer_to_any_ type sense_buffer_ptr;

/*.Implementation[=
x

/* Release any scatter/gather arrays that were used to process
/* the request. If the request was synchronous with DMA,
/* turn signal delivery back on.

/* If the command was an INQUIRY, no scatter/gather array is involved.

/* If DMA was performed, the caller’s buffer vector is updated

/* to reflect the data transfer. Note that there is no way

/* to verify with the hardware how much data was actually
/* transferred. As a result, we always return the number of bytes
/* requested as the number of bytes transferred. Presumably,

093-701053 Licensed material—property of Data General Corporation B-65

A Sample SCSI Adapter Driver

/* if an error occurred during the transfer, the caller will

/* be able to determine how much data was actually transferred by

/* examining the Request Sense buffer.
/*

/*.End)= */

arb ptr = request_blk_ptr->arb_ptr;

byte_count = io_get_buffer_vector_byte_count(&arb_ptr->buffer_vector);

if (byte_count != 0)

{
if (arb_ptr->scsi_cmd_blk.op_code != DEV_SCSI_CMD_INQUIRY)

{
dev_cisc_free_scatter_gather_arrays(request_blk_ptr) ;

if (request_blk_ptr->arb_ptr->sync_io)

{
pm_enable_ signal_delivery();

}
io_add_to_buffer_vector_position(&arb_ptr->buffer_vector,

(int32_type)byte_count);

}

/*.Implementation_Continued[=
/*

/* Update the adapter request block with the total amount of

/* time that the target device spent on the request.
x

/*.End)= */

arb _ptr->total_request_busy_time = request_blk_ptr->total_request_busy_time;

/*.Implementation_ Continued [=

/* If the request timed out release all resources held and return

/* the status. If the request was aborted, just return the status,

/* the asyne path will release the associated resources when the

/* controller completes the request.

/*.End)= =/

if (request_blk_ptr->request_timed_out)

status = IO_EIO_DEVICE_TIMED_OUT;
else if (request_blk_ptr->request_aborted)

return (IO_EINTR_INTERRUPTED_BY_SIGNAL);

else

/*.Implementation_Continued[=
/*

/* The request was not aborted or timed out, get the error code

/* from the cise status block interpret it. The interrupt service

/* routine always increments the status block index after saving

/* a status block so the index is one greater than the actual number

/* saved.
/*®

/*.Endj= =/

status_blk_index = request_blk_ptr->status_blk_index - 1;
status_blk_ ptr = srequest_blk_ptr->status_blk_array[status_b1.k_index] ;

error_code = status_blk_ptr-—>error_code;

if (error_code == DEV_CISC_STATUS_BLK_ERROR_NO_ERROR)

{
status = OK;

}
else if ((error_code == DEV_CISC_STATUS_BLK_ERROR_BUS_TIMEOUT) | |

(error _code == DEV_CISC_STATUS_BLK_ERROR_SELECT_TIMEOUT)
(error_code == DEV_CISC_STATUS_BLK_ERROR_DISCONNECT_TIMEOUT))

{
status = IO_EIO_DEVICE_TIMED_OUT;

}
else if (error_code == DEV_CISC_STATUS_BLK_ERROR_BAD_SCSI_STATUS)

{

B-66 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

/*.Implementation Continued [=

/* The SCSI device reported a command completion status that
/* was something other than GOOD (0). Get the SCSI completion

/* status of the request and interpret it. If the command completed
/* with.a Check Condition status copy the sense information into the

/* caller’s request packet.

/* .End}= */

sesi_status = status_blk_ptr->scsi_status;
scsi_status >>= DEV_SCSI_STATUS_BYTE_SHIFT;

scsi_status &= DEV_SCSI_STATUS_BYTE_MASK;

switch (scsi_status)

{
case DEV_SCSI_STATUS_GOOD_STATUS:

Status = OK;.

break;

case DEV_SCSI_STATUS_CHECK_CONDITION:

/*.Implementation_Continued [=
/*

/* The command completed with a Check Condition status.
/* Copy the sense data in the caller’s request sense buffer.

/* If the unit was set up to send more than eight bytes of

/* sense data, we should have received two status blocks
/* with eight bytes each.
/*

/* .End)= x /

status = DEV_STATUS_SCSI_CMD COMPLETE_CHECK_ CONDITION;

sense_buffer_ptr = (pointer _to_any_ type)

&arb_ ptr->sense_buffer;

misc_byte_copy((pointer _to_any type)

request_blk_ptr->status_blk_array[0].sense_data,

sense_buffer_ptr,

DEV_CISC_REQUEST_SENSE_DATA_SIZE) ;

if (status_blk_index != 0)

{
misc_byte_copy((pointer_to_any_ type)

request_blk_ptr->status_blk_array[1].sense_ data,

(pointer_to_any type) ((uint32_type)sense_buffer_ptr
+ DEV_CISC_REQUEST_SENSE_DATA_SIZE),

DEV_CISC_REQUEST_SENSE_DATA_SIZE) ;

}
break;

case DEV_SCSI_STATUS_BUSY: |

status = IO _ENXIO_UNIT_NOT_READY;

break;

default:

status = IO_EIO_PHYSICAL_UNIT_FAILURE;

break;

}
}

{
Status = IO_EIO_PHYSICAL_UNIT_ FAILURE;

else

}

/*.Implementation_Continued[=
/*

/*® Return the request block to the free queue and release the

/* command list request lock. If there is an asynchronous request
/* waiting on the queue, get the request started.
/*

/* .Endj= x/

(void)misc_enqueue_at_tail(&request_blk_ptr->dip->request_blk_queue,

&request_blk_ptr->links);

if (io_assign_next_interleave_waiter(&érequest_bilk_ptr->dip->request_lock))

dev_cisc_start_async_request(request_blk_ptr->dip);

return(status);

}

093-701053 Licensed material—property of Data General Corporation B-67

A Sample SCSI Adapter Driver

/*.function */

[*6--- «/

WIRED

void dev_cisc_build_scatter_gather_arrays (request_blk_ptr, param_bik_ptr)

/*> */

dev_cisc_request_blk_ptr_type request_blk_ptr; /* READ/WRITE */
dev_cisc_param_block_ptr_type param_blk_ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Set up the scatter/gather arrays required to perform DMA through

/* the cisc.
/*

/*.Parameters

/*

/* request_blk_ptr -- A pointer to a request block that holds
/* information which specifies the I/O request.
/*

/* param_blk_ptr -- A pointer to the Ciprico Rimfire 3500
/* parameter block that is being used to issue the I/O request
/* to the controller.
/*

/*.Functional Description
/*

/* This function allocates the scatter/gather arrays needed to

/* specify an I/O operation and fills them in with the required

/* information. A queue of the scatter/gather arrays used for
/* the transfer is maintained so that they can be returned to

/* the free pool after the operation has completed.
/*®

/*.Return_ Value

f*
/* None.

/*

{

dev_adapter_request_block_ptr_type arb_ptr;

boolean_type is_user_buffer;
dev_cise_scatter_gather_blk_ptr_typescatter_gather_blk_ptr;

dev_cise_scatter_gather_blk_ptr_type previous_scatter_gather_blk_ptr;

uint32e_type physical_address;

pointer_to_any_type buffer_ptr;

uint32_type buffer_end;
uint32_type page;

uint32_type data_length,;

/*.iImplementation [=
/*

/* Set up the scatter/gather arrays needed to specifiy the
/* host physical pages that data is to be transferred to/from.

/* One array entry is required for each physical page that is
/* to be referenced. Each arrray can specify up to 8 physical

/* pages in host memory.
/*

/*.8nd)= */

arb ptr = request_blk_ptr->arb_ptr;

if (arb_ptr->regquest_flags & DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER)

{
is_user_buffer = FALSE;

}
else

{
is_user_buffer = TRUE;

}
param_blk_ptr->flags = DEV_CISC_PARAM_BLK_FLAGS_SGO;

param blk ptr->address_ modifier = request_blk_ptr->dip->vme_address_modifier;

io_get_buffer_vector_io_info(&arb_ptr->buffer_vector,
&buffer_ptr,

¶m_blk_ptr->transfer_count) ;

buffer_end = (uint32_type)buffer_ptr + param_blk_ptr->transfer_count;

B-68 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

previous_scatter_gather_blk_ptr = DEV_CISC_SCATTER_GATHER_TERMINAL_LINK;
while ((uint32_type)buffer_ptr < buffer_end)

{
misc_dequeuve_from_head(&request_blk_ptr->dip->scatter_gather_blk_queue,

(misc_queue_links_ptr_type *)&scatter_gather_blk_ptr) ;

vm_get_physical_byte_address((pointer_to_any_type)
&scatter_gather_blk_ptr->header,

FALSE,

(byte_address_ptr_type)&physical_address) ;

if ((byte_address_type)physical_address ==

VM_INVALID_PHYSICAL_ADDRESS_PTR)

{
sc_panic(DEV_PANIC_ADDRESS_TRANSLATION_FAILED) ;

}

if (previous_scatter_gather_blk_ptr ==

DEV_CISC_SCATTER_GATHER_TERMINAL_LINK)

param_blk_ptr->vme_memory_address = physical_address;

else

{
previous_scatter_gather_blk_ptr->header.next_sg_header =

physical_address;

(void)misc_enqueue_at_tail(&request_blk_ptr->used_scatter_gather_queue,

&scatter_gather_blk_ptr->links);

previous_scatter_gather_blk_ptr = scatter_gather_blk_ptr;

for (page = 0; ((page < DEV_CIPRICO_MAX_SCATTER_GATHER_ARRAY_ENTRIES) &&

((uint32_type)buffer_ptr < buffer_end)); page+t)

{
data_length = NUM_BYTES_PER_PAGE — ((uint32_type)buffer_ptr &

PAGE_OFFSET_MASK); |

data_length = MINIMUM(data_length, (buffer_end - (bit32e_type)

buffer_ptr));

scatter_gather_blk_ptr->header.sg_desc[page] .address_modifier =
request_blk_ptr->dip-—>vme_address_modifier;

vm_get_physical_byte_address((pointer_to_any_type)buffer_ptr,
is_user_buffer,

(byte_address_ptr_type)&physical_address) ;

if ((byte_address_type)physical_address ==

VM_INVALID_PHYSICAL_ADDRESS_PTR)

{
sc_panic(DEV_PANIC_ADDRESS_TRANSLATION_FAILED) ;

}
scatter_gather_blk_ptr->header.sg_desc [page] .data_address =

physical_address;

seatter_gather_blk_ptr->header.sg_desc[page] .data_length = data_length;

buffer _ptr = (pointer_to_any_type) ((uint32_type)buffer_ptr +

data_length);

}

}

/*.Implementation_Continued[=

/* If the current scatter/gather array has not been completely

/* used, mark the first free entry to indicate the end of

/* data. Also, terminate the scatter/gather array chain by

/* putting DEV_CIPRICO_SCATTER_GATHER_TERMINAL_LINK in the

/* link field of the last scatter/gather array used.

/*.End)=
a/

if (page < DEV_CIPRICO_MAX_SCATTER_GATHER_ARRAY_ENTRIES)
{ .

scatter_gather_blk_ptr->header.sg_desc[page] .data_length = 0;

}
seatter_gather_blk_ptr->header.next_sg_header = (uint32e_type)

DEV_CISC_SCATTER_GATHER_TERMINAL_LINK;

return;

j

/*.function */

093-701053 Licensed material—property of Data General Corporation B-69

A Sample SCSI Adapter Driver

[** */
WIRED

void dev_cisc_build_single_buffer (request_blk_ptr, param _blk_ptr)

/*> */

dev_cisc_request_blk_ptr_type request_blk_ptr; /* READ/WRITE */
dev_cisc_param_block_ptr_type param_blk_ptzi; /* READ/WRITE */

/*.Summary [=
/*

/* Set up for DMA to a single data buffer, i.e. a non scatter/gather
/* DMA operation.

/*.Parameters

/* xvequest_blk_ptr -- A pointer to a request block that holds
/* information which specifies the I/O request.

/* param_blk_ptr -- A pointer to the Ciprico Rimfire 3500
/* parameter block that is being used to issue the I/O request

/* to the controller.

/*.Functional Description

/* The physical address of the data buffer the flags controlling
/* the operation, are set up in the command parameter block.

/* .Remarks

/* The caller must assure that the data buffer doesn’t cross a page
/* boundary.
/*

/*.Return_Value
/*

/* None.

/*

{
dev_adapter request_block_ptr_type arb_ptr;

boolean_type is_user_buffer;

uint32e_type physical address;
pointer _to_any type buffer_ptr;

/*.Implementation[=

/* Get an arb pointer, and see if the buffer is in user or kernel
/* space.

/* Get the buffer logical location and length, and translate
/* the address to a physical location.

/* Set up the parameter block.
x

/*.End)= */

arb ptr = request_blk_ptr- arb _ptr;

if (arb_ptr->request_flags & DEV_SCSI_REQUEST_FLAGS_KERNEL_BUFFER)

is user buffer = FALSE;
bise
is_user_puffer = TRUE;

io_get_buffer_vector_io_info(&arb_ptr->buffer_vector,
ébuffer_ptr,

¶m_blk_ptr->transfer_count);

vm_get_physical_byte_address((pointer_to_any_type)buffer_ptr,
is_user_buffer,

(byte_address_ptr_type) &physical_address) ;

if ((byte_address_type)physical_address ==
VM_INVALID_PHYSICAL_ADDRESS_PTR)

{
sc_panic(DEV_PANIC_ADDRESS_TRANSLATION_FAILED) ;

B-70 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

}

param _blk_ptr->flags = DEV_CISC_PARAM_BLK_FLAGS_NONE ;

param _blk_ptr->address_modifier = request_blk_ptr->dip~—>vme_address_modifier;

param_blk_ptr—->vme_memory_address = physical_address;

return;

}

/*.function */

[*¢ */
WIRED

void dev_cisc_free_scatter_gather_arrays (request_blk_ptr)

/*> *

dev_cisc_regquest_blk_ptr_type request_bik_ptr; /* READ/WRITE */

/*.Summary [=
/*

/* Deallocate scatter/gather arrays used to perform DMA through

/* the cisc.

/*.Parameters

/* request_blk_ptr -- A pointer to a request block that holds
/* information which specifies the I/O request.

/*.Functional_ Description
/®

/* This function returns the scatter/gather arrays used to

/*® specfiy an I/O operation to the free pool.
/®

/* .Return_Value
/*®

/* None.

/*

dev_cisc_scatter_gather_blk_ptr_typescatter_gather_blk_ptr;

/*.Implementation[=
/*®

/® Dequeue scatter/gather arrays from the "used" queue and
/* return them to the "free" until a null queue element is
/*® dequeued from retured from the queue manager.
x/

/*.End)= %/

while (TRUE)

{
misc_dequeue_from_head(&request_blk_ptr—>used_scatter_gather_queue,

(misc_queue_links_ptr_type *)&scatter_gather_blk_ptr);

if ((misc_queue_links_ptr_type)scatter_gather_blk_ptr ==
MISC_QUEUE_NULL_LINKS_PTR)

break;

(void)misc_engqueue_at_tail(&request_blk_ptr->dip->scatter_gather_blk_queue,
&scatter_gather_blk_ptr->links);

}
return;

}

/*.function */

[2K x/

WIRED

void dev_cisc_complete_aborted_request (data)
/*> */

bit32e_type data; /* READ ONLY */

/*.Summary [=
/*

093-701053 Licensed material—property of Data General Corporation B-71

A Sample SCSI Adapter Driver

/* This function handles the completion of an aborted synchronous
/* request that has been completed by the cisc controller.
/*®

/*.Parameters

/*

/* data —- The 32 bits of data that was in the message
/* given to the driver demon.
x

‘s Punctional Description
/*®

/* This function handles the completion of aborted synchronous 1/0
/* requests. The ciprico controller cannot be told to abort commands.
/* If a process executing a synchronous command receives a process
/* termination signal, this driver returns to the caller immediately
/* and completes the execution of the command through the I/O demon.
/* Synchronous requests that do not require dma may be aborted. All
/* other requests (async, sync with dma) are allowed to complete
/* regardless of what signals are received.

/*.Return_Value

/* None.

/*.Exceptions

/* None.

/*.Abort_Conditions

/* None.

dev_cisc_request_blk_ptr_type request_blk_ptr;

/*.Implementation [=

/* The controller has completed an aborted synchronous command.

/® Return the request block to the free queue and release the

/* command list request lock. If there is an asynchronous request
/*® waiting on the queue, get the request started.

/* .End)= */

request_blk_ptr = (dev_cisc_request_blk_ptr_type)data;
(void)misce_enqueue_at_tail(&srequest_blk_ptr->dip->request_blk_queue,

&request_blk_ptr->links);

if (io_assign_next_interleave_waiter(&srequest_blk_ptr-—>dip->request_lock))

dev_cise_start_async_request(request_blk_ptr->dip);

}

return;

System File Entries

This section shows a partial listing of a system file with the cise adapter driver used as

part of the sd entry..

$

System file

$

drivers

sd(cisc¢c(),0)

hken()

loop()
#syac()

prf()
meter ()

B-72 Licensed material—property of Data General Corporation 093-701053

A Sample SCSI Adapter Driver

Master File Entries

The following section shows a partial listing of the master file:

#

Adapters:

Your system must have at least one scsi adapter.

#

$

inse 1 7 z

cisc 5 7 Zz

#

#

End of Appendix

093-701053 Licensed material—property of Data General Corporation. B-73

Appendix C

Standard Peripherals and Their

Defaults

This appendix lists the default values for memory-mapped I/O addresses, interrupt

levels, interrupt vectors, and SCSI IDs for AViiON system and AViiON station

devices. It also describes the conventions for selecting default values for these

variables on your new device.

093-701053 Licensed material—property of Data General Corporation C-1

AViiON System I/O Defaults

AViiON System I/O Defaults

Table C-1 shows the device mnemonic for various standard devices with their default

memory mapped I/O address, interrupt level, and interrupt vector for an AViiON

system.

Table C-1 AViiON System I/O Address and Interrupt Level/Vector Defaults

Device Base Address (in Interrupt | Description

bytes) Level

and

Vector

cied(0) a16-Oxffffef00 (512) 2 / 0x18 1st Ciprico ESDI Disk Controller

cied(1) a16-Oxfffff100 (512) 2 / 0x19 2nd "

cied(2) al6-Oxfffffb00 (512) 2/0x1A | 3rd "

cied(3) a16-Oxfffffd00 (512) 2 / 0Ox1B 4th "

cimd(0) * | al6-Oxffffef00 (512) 2 / 0x18 1st Ciprico SMD Disk Controller

cird(0) * al6-Oxffffef00 (512) 2 / 0x18 ist Ciprico ESDI or SMD Disk

Controller

cisc(0) a16-Oxfffff300 (512) 2 / 0x28 1st Ciprico SCSI Adapter

cisc(1) al6-Oxff£ff500 (512) 2 / 0x29 2nd "

cisc(2) al6-Oxfffff700 (512) 2/O0x2A | 2nd "

cisc(3) a16-Oxfffff900 (512) 2 / Ox2B 2nd "

hken(0)** | a16-Oxffff4000 (4K) 3 / 0x15 1st Hawk LAN (A16 address)

a32-0x55900000(512K) (A32 address)

hken(1)** | a16-Oxffff5000 (4K) 3 / 0x10 2nd Hawk LAN (A16 address)

a32-0x55980000(512K) (A32, address)

sdcp(0) a32-0x55b00000 (4K) 3 / 0x50 1st Systech Synchronous

Controller

sdcp(1) a32-0x55b10000 (4K) 3 / Ox51 2nd “

syac(0) a32-0x60000000 (128K) | 4 / 0x60 1st Systech Asynchronous

Controller |

syac(1) a32-0x60020000 (128K) | 4 / 0x61 2nd "

syac(2) a32-0x60040000 (128K) | 4 / 0x62 3rd _"

syac(3) a32-0x60060000 (128K) | 4 / 0x63 4th "

syac(4) a32-0x60080000 (128K) | 4 / 0x64 Sth "

NOTE: * cimd (SMD disk) and cied (ESDI disk) devices share the same default
interrupt vectors and base addresses. The default values for the first and

second instances of each type are shown under the cied entries above. The

C-2 Licensed material—property of Data General Corporation 093-701053

AViiON System I/O Defaults

cird driver handles either SMD (cimd) or ESDI (cied) devices. Therefore,

cird nodes use the default values shown under cied above. If you have both

SMD and ESDI devices, use the cird mnemonic and treat the two types of

disks as first and second instances of a cird device.

NOTE: ** Some devices, such as the Hawk LAN, require two I/O address areas.

The following conventions and restrictions apply to selecting your memory-mapped

I/O address, interrupt level, and interrupt vector:

® The al6 and a32 notes in the Base Address column indicate in which VME

data width address space this address falls. Addresses of the al6, a24, and

a32 data width areas are fixed by the kernel. Figure C-1 shows the location

of these areas.

093-701053 Licensed material—property of Data General Corporation C-3

AViON System I/O Defaults

64 Kb

4 Mb

Utility Space A16

12 Mb A302

16 Mb

| A24

*980 Mb A32
Note: Not to scale;
low A382 should be

much larger

Cannot be used

for VME space

«— Oxfffftfff

<— Oxffff0000

«<— QOxffcO0000

<— 0xff000000

<«<— 0xfe000000

<— Logical address
corresponding to highest

physical address

0

Figure C-1 AViiON System Memory-Mapped I/O Addresses and Data Width Areas

C4

e@ In Table C-1 the parentheses following each base address show the number |

of bytes that the device uses. The base address plus the number of bytes |

equals the entire memory area reserved for the device.

@ To select your base memory-mapped I/O address, you simply find an

unreserved area of memory in the correct data width area. We recommend

that you use the highest data width area possible to maximize device speed.

Licensed material—property of Data General Corporation 093-701053

AViiON System I/O Defaults

Thus, use Extended Addressing (a32) mode if possible and Standard

Addressing (a24) mode as the first alternative. Use Short Addressing (a16)

mode only if your device does not support any higher data width. |

NOTE: |

The a24 and a32 logical address space is used by the DG/UX kernel. |

Therefore, if you are using a memory mapped address in a24 or a32, |

you must map the a24/a32 physical address you want to another |

logical address. You do this using mv_get_unwired_memory to geta_ |

logical address and then using vym_map_physical_memory to map |

this address to the desired physical address.

e@ In setting your VME address modifiers, always use the Supervisory mode.

@® On DG/UX systems, the standard interrupt levels for different devices are as

follows: .

2 for disks

3 for networks

4 for terminal controllers

2 for SCSI adapters

We recommend that you follow these defaults if you have one of the devices

listed above. If you have a non-standard device, you may choose whichever

interrupt level you want. Bear in mind that when you mask your device, you

will be masking all others using the same interrupt level.

@ The VME vector number uniquely identifies a controller or adapter for the

whole VME bus. As with I/O addresses, vector numbers for Data General-

supplied devices are pre-assigned and usually come correctly jumpered from

the factory or are set by driver software. Unlike memory-mapped I/O

addresses, the vector numbers of some devices can be set by the device

driver at configuration time.

On the AViiON system, you can select VME vector numbers from 0 through

255. To get a vector number for your device, simply refer to Table C-1 and

select an unused vector number less than 255.

093-701053 Licensed material—property of Data General Corporation C-5

AViiON Station I/O Defaults

AViiON Station I/O Defaults

Table C-2 shows the device mnemonics for various standard devices with their default

memory-mapped I/O address.

Table C-2 AViiON Station I/O Address Defaults

Mnemonic | Base Address (bytes) | Description

- N/A Power Fail

- N/A | Parity Error

- N/A Z8536 C10 Interrupt

kbd Oxfff82800 (1K) Keyboard

duart Oxfff82000 (255) DUART

] Oxfff82400 (1K) Parallel Port

inen Oxfff8c000 (4K) Ethernet Controller

insc Oxfff8a000 (4K) SCSI Controller

- N/A DMA Terminal Count Reached

- N/A DMA Write Protect Error

- N/A DMA Valid Bit

Oxff£89000 (4K) Graphics

- N/A Software Interrupt

The following conventions and restrictions apply to selecting your memory-mapped

I/O address.

@ The parentheses following each base address show the number of bytes that

the device uses. The base address plus the number of bytes equals the entire

memory area reserved for the device.

@ To select your base memory-mapped I/O address, you simply find an
unreserved area of memory in the correct data width area, if appropriate for
your machine.

C-6 Licensed material—property of Data General Corporation 093-701053

SCSI IDs

Table C-3 shows the default SCSI IDs for various standard devices. These values are

suggested defaults, not requirements. The kernel will allow an SCSI device to be

configured at any SCSI ID between 0 and 6.

Table C-3 Default SCSI IDs

Device SCSI ID

Disk 0

Disk 1

Disk 2

Disk 3

Tape 0

Tape 1

Tape 2

Reserved NENT [DTN [es 1S

SCSI IDs

If your system contains a cartridge tape, set the first instance of the tape to SCSI ID

4.

093-701053 Licensed material—property of Data General Corporation C-7

Device Specifications

of optional parameters. The device name identifies the type of controller; the

parameters provide additional information required to fully specify the device.

Device Specifications

A device specification contains a device driver name followed by a parenthesized list

Table C-4 shows the device names and parameters used in device specification on the

AViiON System.

Table C-4 AViiON System Device Specification Parameters

Device Description ist Parm. 2nd Parm. 3rd

| Parm.

VME Devices

cied Ciprico ESDI controller number unit number N/A

disk or specification (decimal)

cimd Ciprico SMD controller number unit number N/A

disk or specification (decimal)

cird Ciprico ESDI controller number unit number N/A

or SMD disk or specification (decimal)

hken Interphase controller number host Ethernet | N/A

Hawk Ethernet or specification address

sdcp Systech synch controller number line N/A

board or specification

syac Systech host adapter’s device line N/A

adapter specification

SCSI Devices

sd SCSI disk adapter’s device SCSI ID unit #

specification

st SCSI tape adapter’s device SCSI ID file

specification

cisc Ciprico SCSI controller number N/A N/A

adapter or specification

C-8 Licensed material—property of Data General Corporation 093-701053

Device Specifications

Table C-5 AVION Station Device Specification Parameters

NOTE: N/A = reserved parameter that is taken to be zero.

NOTE: Ethernet device drivers use the “host" parameters during diskless booting.

By convention, most device names are four characters. For DG/UX drivers, the first

two letters of the device mnemonics are generally two letters from the manufacturer’s

name (for example, ci for Ciprico) or manufacturer’s trade name for the device (for

example, eg for Eagle). The second two letters indicate the type of device. For

example, ed is used for ESDI disk and en for ethernet. Thus, the Ciprico ESDI disk

mnemonic is cied.

While you can give your device any unique mnemonic, for consistency we recommend

that you follow similar naming conventions.

The parameter values are all zero-based. Therefore, cied(1,3) specifies the fourth

drive of the second Ciprico ESDI controller in the system. The only drive on a

system’s only ESDI controller would be cied(0,0).

Parameters supply any information that may be required for a particular type of

device. Default values are used if a parameter is nul] or missing, such as the first

parameter in the specification abed(,1) or the second and subsequent parameters in

abcd(0). The defaults are interpreted by the device driver itself.

By convention, all numerical parameters default to zero. An asterisk as a parameter

represents all possible values for the parameter and is meaningful only in a few

contexts. As with the defaults, the asterisk is interpreted by the driver.

093-701053 Licensed material—property of Data General Corporation C-9

Device Description 1st Parm. 2nd Parm. ord
: Parm.

Integrated Bus Devices

inen integrated N/A host Ethernet | N/A
Ethernet address

SCSI Devices

sd SCSI disk adapter’s device SCSI ID unit #

specification (insc)

st SCSI tape adapter’s device SCSI ID file

specification (insc)

insc integrated SCSI | N/A N/A N/A

adapter

Disk and Tape Command Set Compatibility

Disk and Tape Command Set Compatibility

In order for a tape device to be compatible with the DG/UX SCSI tape driver (st), it

must conform to the ANSI SCSI-1 Command Set specification (X3.131- 1986). In

addition, it must also support the following commands listed as optional in the ANSI

specification

@ Inquiry Command

e@ Space Command

® Test Unit Ready Command

@ Mode Sense/Select Commands

In order for a disk device to be compatible with the DG/UX SCSI disk driver (sd), it

must conform to the ANSI SCSI-1 Command Set specification (X3.131- 1986). In

addition, it must also support the following commands listed as optional in the ANSI

specification

® Inquiry Command

@ Mode Sense/Select Commands

@ Present/Allow Medium Removal Commands

@ Read Capacity Command

@ Test Unit Ready Command

End of Appendix

C-10 Licensed material—property of Data General Corporation 093-701053

Appendix D

Glossary

Device handle

The area defined by the driver that is beyond the interrupt service routine

pointer.

Device Interrupt Table (DIT)

A list of addresses for each possible device code. When an interrupt occurs,

the pointers in this table channel control to the correct interrupt service

routine.

Device information structure

A structure that holds information relating to a specific device. The

information can include timer values, unit numbers, block addresses, status,

and word counts.

ESDI

An acronym for Enhanced Small Device Interface; the ANSI defined

standard for computer and peripheral interconnection for magnetic and

optical disks. :

Host memory

Your main system’s memory, which is not a part of a device controller (see

Local memory).

Job processor (JP)

The actual physical processor (see virtual processor).

Jumper

A connecting switch that is manually set on a printed circuit board. For

example, you will use jumpers to set your board’s device code for CPU

interrupts of a peripheral.

Kernel address space

Address space that requires Supervisory Access Privileges to access. This

space is accessible to the kernel and not, as a rule, to user processes.

Local memory

Local memory is the memory in an intelligent board. This memory is a part

of and is located on a controller board.

093-701053 Licensed material—property of Data General Corporation D-1

Glossary

Logical addresses

Logical addresses are the addresses that you see. They span the logical

address space which is 4 gigabytes on AViiON machines. These addresses

are mapped to physical addresses (by the system).

Medium Term Scheduler (MTS)

The Medium Term Scheduler schedules processes onto the virtual

processors, so that the processes can execute.

Page

A page refers to an area of 4096 bytes of memory. Generally this is

considered to be a piece of logical address space.

Page frame

A page frame is the physical area on which a page is loaded or mapped; a

page frame has a physical address.

Page Table Entry (PTE)

The Page Table Entry is a list of pages used to translate logical addresses

into physical addresses.

Physical addresses

Physical addresses refer to unmapped, absolute addresses. Physical

addresses are sometimes referred to as hardware addresses.

SCSI

An acronym for Small Computer System Interface, which is an ANSI

defined standard for computer and peripheral interconnection. It is a

standard used where low-cost I/O interfacing is necessary.

Wired memory

Wired memory is memory that cannot be paged out to disk (see wired page).

Wired page

A wired page is a page that is bound to a page frame. Wired pages cannot

be paged out to disk until they are unbound from the frame (unwired).

Unwired memory

Unwired memory is memory that can be paged out to disk. A page fault

must occur before the memory can be accessed after it has been paged out to

disk.

User address space

User address space refers to memory accessible to the owning user process.

The kernel can also access this memory, but in general, other user processes

cannot.

D-2 Licensed material—property of Data General Corporation 093-701053

Glossary

Virtual processor (VP)

An emulation of a physical processor, not the actual processor (see job

processor (JP)).

End of Appendix

093-701053 Licensed material—property of Data General Corporation D-3

Documentation Set

This section lists documents relevant to the AVuiON product line. The titles of Data

General manuals are followed by nine-digit numbers used for ordering; you can order

any of these manuals via mail or telephone (see the TIPS Order Form in the back of

this manual). Following the list of Data General manuals are relevant documents

published by other organizations (no ordering information is provided). Documents

specifically referred to in the text of this manual are also listed in the “Related

Documents” section of the Preface. 880pen Binary Compatibility Standard (069-

701043)

Specifies a Binary Compatibility Standard (BCS).

88open Object Compatibility Standard (069-701044)

Specifies an Object Compatibility Standard (OCS) for operating systems based

on Motorola MC88100 as well as future related microprocessors. Provides for

portability of application-level software at the linkable level by specifying

interfaces between the object file and the operating system libraries.

C: A Reference Manual (069-100226)

Describes lexical structure, the preprocessor, declarations, types, expressions,

statements, functions, programs, and the run-time libraries.

Documenter’s Tool Kit Technical Summary for the DG/ UxTM Systern (069-701041)

Provides technical details about the tools supplied with the Documenter’s Tool

Kit; specifically, the mm macroinstruction package, the tbl text processor, and

the nroff/troff formatter.

Green Hills Software User’s Manual C-88000 (069-100230)

Describes the differences in the C programming language when run on an 88000

system.

Green Hills Software User’s Manual Fortran-88000 (069-100232)

Describes differences in the FORTRAN programming language when run on

an 88000 system.

093-701053 Licensed material—property of Data General Corporation Docset-1

Green Hills Software User’s Manual Pascal-88000 (069-100231)

Describes differences in the Pascal programming language when run on an

88000 system.

IEEE Standard Portable Operating System Interface for Computer Environments

(POSIX.1) (069-701045)

Specifies a POSIX standard.

Installing and Managing the DG/UXTM System (093-701052)

Shows how to install and manage the DG/UX operating system on AViiON

hosts that will run as stand-alone, server, or client systems. Aimed at system

administrators who are familiar with the UNIX operating system.

Learning the UNIX® Operating System (069-701042)

Helps beginners learn UNLX fundamentals through a step-by-step tutorial.

(UNIX is a U.S. registered trademark of American Telephone and Telegraph

Company.)

Managing NFS® and Its Facilities on the DG/UXTM System (093-701049)

Shows how to install, manage, and use the DG/UX ONC"TM/NFS product.

Contains information on the Network File System (NFS), the Yellow Pages

(YP), Remote Procedure Calls (RPC), and External Data Representation

(XDR). (NFS is a U.S. registered trademark of Sun Microsystems, Inc. ONC

is a trademark of Sun Microsystems, Inc.)

OSF/MotifTM Application Environment Specification (069-100326)

Specifies the interfaces that support the development of portable programs for

OSF/Motif platforms.

OSF/MotrifTM Programmer's Guide (069-100324)

A guide to programming using the various components of the OSF/Motif

environment: the toolkit, window manager, and user interface language.

OSF/MotifTM Style Guide (069-100323)

Provides a framework for behavior specifications to guide application

developers, widget developers, and window manager developers in the design

of new products consistent with Presentation Manager and the OSF/Motif user

interface.

Docset-2 Licensed material—property of Data General Corporation 093-701053

Porting Applications to the DG/UXTM System (069-701059)

Describes how to port UNIX application programs to the DG/UX system.

POSIX.1 Conformance Document (069-701078)

Gives definitions and general requirements for conforming to the IEEE

POSIX.1 standard.

Programmer’s Reference for the DG/UXTM System (093-701055 and (193-701056)

Alphabetical listing of manual pages for programming commands on the

DG/UX system. This two-volume set includes information on system calls, file

formats, subroutines, and libraries.

Programmer’s Reference for the X.25 Provider Interface on the DG/UXTM System

(093-701082)

Describes how to use the data structures and messages of the X.25 Provider

Interface in application programs.

Programming in the DG/UXTM System Application Environment (093-701076)

Discusses libraries, interprocess communications, programming interface,

common object file format, and other programming-related topics.

Programming with TCP/IP on the DG/UXTM System (093-701024)

Describes how to program with the TCP and IP protocols and UDP interfaces.

Setting Up and Managing PAD on the DG/UXTM System (093-701073)

Tells you how to set up and manage the Packet Assembler/Disassembler

(PAD) for AViiON Systems package. Also contains manual pages for the

PAD package.

Setting Up and Managing TCP/IP on the DG/UXTM System (093-701051)

Explains how to prepare for the installation of Data General’s TCP/IP

(DG/UX) package on AViiON computer systems. Contains information on

tailoring the software for your site, managing the system, and troubleshooting

system problems.

Setting Up and Managing X.25 on the DG/UXTM System (093-701071)

This manual is for X.25 wide area network system administrators. It describes

how to set up and manage the X.25 for AViiON Systems software. It also

contains manual pages for the X.25 package.

093-7010S3 Licensed material—property of Data General Corporation. Docset-3

STREAMS Primer for the DG/UXTM System (069-701033)

Defines STREAMS, a set of tools for developing DG/UX system

communications services; explains how to build a stream; and discusses

user-level and kernel-level functions.

STREAMS Programmer’s Guide for the DG/UXTM System (069-701034)

Describes the development methods and design philosophy of STREAMS.

System Manager’s Reference for the DG/UXTM System (093-701050)

Contains an alphabetical listing of manual pages for commands relating to

system administration or operation.

User’s Reference for the DG/UXTM System (093-701054)

Contains an alphabetical listing of manual pages for commands relating to

general system operation.

Using API LU0,1,2,3 for AViiONTM Systems (093-000679)

Explains how to use the application program interface (API) for Logical Unit

(LU) types 0, 1, 2, and 3 of IBM’s System Network Architecture (SNA).

Using API LU6.2 for AViiONTM Systems (093-000680)

Explains how to use the application program interface (API) ifor Logical Unit

(LU) type 6.2 of IBM’s System Network Architecture (SNA).

Using PAD on the DG/UXTM System (069-701079)

Describes the user interface to the X.25 Packet Assembler/Disassembler

(PAD) for AViiON Systems package.

Using SNA 3270 for AViiONTM Systems (093-000677)

Explains how to use the 3278 display and 3287 printer emulation capabilities

within a multi-user environment.

Using SNA for AViiONTM Systems (093-000676)

Explains how to activate the SNA link to the host, establish node processes,

and create configurations.

Docset-4 Licensed material—property of Data General Corporation 093-701053

Using SNA/RJE for AViiONTM Systems (093-000678)

Explains how to use the 3776 emulation capabilities to submit jobs to and

receive output from the host.

Using TCP/IP on the DG/UXTM System (093-701023)

Introduces Data General’s implementation of the TCP/IP family of protocols

and describes how to use the package.

Using the DG/UXTM Editors (069-701036)

Describes the text editors vi and ed, the batch editor sed, and the command

line editor editread.

Using the DG/UXTM Kernel Debugger (093-701075)

Explains how to use the DG/UX kernel debugger to analyze the state of the

kernel’s internal data structures and the state of the underlying hardware’s

registers and memory.

Using the DG/UXTM Software Development Tools (093-701078)

Discusses programming support tools (awk, nawk, lex, yacc, id, lint, and as),

archiving, the C language, and SCCS.

Using the DG/UXTM System (069-701035)

Describes the DG/UX system and its major features, including mailx, the C

shell, the Bourne shell, and the filing system.

Using the Documenter’s Tool Kit on : the DG/UXTM System (060-701039)
Provides a series of tutorials about the tools included in the Documenter’s Tool

Kit package. Describes the mm and mv macroinstruction packages; the tbl,

eqn, pic, and grap preprocessors; the tools checkmm, diffmk, hyphen, ndx,

and subj, and the nroff/troff formatter.

Writing a Device Driver for the DG/UXTM System (093-701053)

Describes how to write a device driver for a DG/UX system running on an

AViiON computer. Describes the drivers written to address specific devices or

adapters that manage secondary bus access to specific devices.

xlib Programming Manual (069-100227)

093-701053 Licensed material—property of Data General Corporation Docset-5

Explains programming concepts and techniques for the X library, which is the

lowest level programming interface to the X Window System.

xlib Reference Manual (069-100228)

Provides a programmer’s reference to the X library, including information

about functions, event types, macroinstructions, and structures.

X Window System User’s Guide (069-100229)

Explains the X Window System and common client applications, and describes

how to customize the X environment.

To obtain any of the following documents, contact the indicated organization directly.

AIC-6250 High-Performance Protocol Chip data sheet (Adaptec)

Brooktree® Product Databook (Brooktree Corporation)

Local Area Controller Am7990 (LANCE) Technical Manual (Advance Micro

Devices)

Memory Products Databook (SGS-Thompson Microelectronics)

Microprocessor Data Manual (Signetics)

The VMEbus Specification (Motorola)

uPD72120 Advanced Graphics Display Controller User ’s Manual (NEC, Inc.)

28536 Z-CIP/Z8536 CIO Counter/Timer and Parallel I/O Unit (Zilog, Inc.)

Docset-6 Licensed material—property of Data General Corporation 093-701053

Index

Note: Boldfaced page numbers (e.g.,

1-5) indicate definitions of terms or

other key information.

A

Adapter request block 3-14

Adapter-specific parameter block 3-10,

3-14

Adding configurable parameters 2-4

Aliases 2-5

B

Buffer descriptors 4-7

Buffer vectors 3-13, 7-28

Building a new system image 2-6

C

Conf.c 2-4, 2-7

Config program 2-7

Configuration list 2-9

Constants and data structures

for buffer vectors 7-29

for eventcounters 6-3

for system clock values 6-39

for wired and unwired memory 7-3

include file for 3-1

Creating a dev entry 8&9

D

dev_scsi_adapter_configure 5-3
dev_scsi_adapter_deregister_requester

5-9

dev_scsi_adapter_device_to_name 5-4

dev_scsi_adapter_get_device_info 5-12

dev_scsi_adapter_issue_async_command

5-11

dev_scsi_adapter_issue_command 5-10

093-701053 Licensed material—property of Data General Corporation

dev_scsi_adapter_issue_command_physical

_mode 5-13

dev_scsi_adapter_name_to_device 5-5

dev_scsi_adapter_open_dump 5-6

dev_scsi_adapter_register_requester 5-7

dev_scsi_adapter_set_unit_options 5-8

dev_xxx_close 4-18

dev_xxx_close_.dump 4-38

dev_xxx_configure 1-17, 4-13

dev_xxx_deconfigure 440

dev_xxx_def.h 3-1

dev_xxx_deregister_requester 4-60

dev_xxx_driver.c 3-4

dev_xxx_get_device_info 4-63

dev_xxx_global_data.c 3-1

dev_xxx_init 4-12

dev_xxx_issue_async_command 4462

dev_xxx_issue_command 461

dev_xxx_issue_command_physical_mode
4-64

dev_xxx_maddmap 4-45

dev_xx_mmap 4-46

dev_xxx_munmap 447

dev_xxx_name 4-43

dev_xxx_open 1-17, 4-16

dev_xxx_open_dump 4-33

dev_xxx_read_dump 4-37

dev_xxx_read_write 4-22

dev_xxx_register_requester 4-58

dev_xxx_select 425

dev_xxx_service_interrupt 4-20

dev_xxx_set_unit_options 4-59

dev_xxx_start_io 4-29

dev_xxx_write_dump 4-35

Device

adding to list of disks 810

Device code

format of 82

Device handle 3-13, 4-3, 4-14, 3-21, D-1

Device information structure 3-5, 3-11,

3-12, D-1

Device Interrupt Table (DIT) 3-13, D-1

Index-1

Device numbers 3-12

Device specification structure 3-14

DG/UX system call

ioctl 3-6, 7-21

open 1-16

read 3-6, 7-1, 7-28

readv 7-1, 7-28

select 3-6

write 3-6, 7-1, 7-28

writev 7-1, 7-28

Driver Daemon 3-17

number of messages 831

queuing a message to &29

E

Encoding

error statuses 8-35

err 3-17

Error Daemon 3-17

Errors

encoding 3-17, 835

logging 3-17

system error file 3-17

user-level 3-17

ESDI D-1

Eventcounter 6-2, 8-41

converting into clock value 6-8

name 6-3

reading 6-9, 6-14

value 6-3

Events

defining 6-3

FE

fs_check_self_id 848

fs_submit_dev_request 89

G

Generic Daemon 3-17

H

Host memory D-1

I/O interfaces

block 1-18

character 1-18

I/O request

asynchronous 4-5

information 44

I/O routines 1-12

Include files 3-1, 3-2

Interfaces

close 3-5, 4-18

close_dump 3-6, 4-38

-complete_io 3-8, 4-31

configure 3-4, 4-13

deconfigure 3-6, 440

device_to_name 3-7

init 3-4, 4-12

loctl 3-6

name_to_device 3-7, 4-43

open 3-5, 4-16

open_dump 3-6, 4-33

powerfail 3-7

read_write 3-5, 4-22

select 3-6, 4-25

service_interrupt 3-8, 4-20

start_io 3-5, 3-8, 4-29

write_dump 3-6, 4-35

Interrupt handler 1-19, 3-17

Interrupts 1-19, 3-17

disabling 6-51

enabling 6-52

handling 6-46

in a multiprocessor system 1-12

io_add_to_buffer_vector_position 7-30

io_add_to_register_list 8-10

io_allocate_device_number 8-11

io_buffer_vector_controLtype 48

io_buffer_vector_type 4-6

io_check_device_spec 8-15

io_deallocate_device. number 8-13

io_deregister_device_info 814

io_do_first_long_board_access 8-18

io_do_first_short_board_access 8-17

io_err_log_error 8-39

io_forget_device_spec 8-16

io_get_buffer_vector._byte_count 7-35

io_get_buffer_vector_io_info 7-31

io_get_buffer_vector_position 7-33

io_get_buffer_vector._residual 7-34

Index-2 Licensed material—property of Data General Corporation 093-701053

io_get_device_info &19

io_hex_str_to_int 849

io_init_buffer_vector 7-36

io_init_one_entry_buffer_vector 7-37

i0_map_device_number &21

io_mask_interrupt_variety 648

io_nodevice_madd.nap 875

i0_nodevice_mmap 8-73

io_nodevice_munmap 8-74

io_nodevice_read_dump 8-70

i0_parse_device_spec 8-23

io_perform_reset 825

10_queue_message_to_driver_demon

8-29

io_queue_message_to_generic_demon

8-32

io_read_from_buffer_vector 7-38

io_register_device_info 826

io_reset_buffer_vector_position 7-39

i0_select_cancel 843

i0_select_init 844

io_select_register 845

io_select_satisfy 846

io_set_buffer_vector_residual 7-40

io_specify_max_demon_messages 831

i0_specify_max_generic_demon_messages

8-34

io_unmask_interrupt_variety 6-49

i0_write_to_buffer_vector 7-41

ioctl 7-21

J

Job processor (JP) 1-11, D-1

Jumper D-1

K

Kernel address space D-1

Kernel completion routine 4-30

Kernel I/O completion routine 4-31

L

Im_initialize_sequenced_lock 6-29

Im_initialize_unsequenced_lock 6-30

im_obtain_sequenced_lock 631

lm_obtain_sequenced_lock_no_wait

632

093-701053 Licensed material—property of Data General Corporation

Im_obtain_unsequenced_lock 6-33

Im_release_sequenced_lock 6-34

Im_release_unsequenced_lock 6-35

Im_sequenced_lock_type 6-27

Im_unsequenced_lock_type 6-27

Local memory D-1

Locks 6-26

initializing 6-29, 6-30

releasing 6-35

sequenced 6-26

spin 6-26

unsequenced 6-26

Logical addresses D-2

M

Major number 1-17, 2-3, 4-3, 821

Master file 1-13, 2-1

alias section 2-1, 2-5

device section 2-1, 2-2

keyword section 2-3

keywords section 2-1

Medium Term Scheduler (MTS) D-2

Memory

allocating 7-2

global kernel 1-18

per-process kernel 1-18

releasing 7-2

unwired 7-2, 7-6, 7-15, 7-17, 7-19

wired 7-2, 7-7, 7-16, 7-18, 7-20

Minor number 1-17, +3, 414, 821

assigning 8-11

misc_format_line 8-50

misc_obtain_spin_lock 6-36

misc_release_spin_lock 6-37

misc_spin_lock_type 6-28

Modes

changing &3

Multiprocessors 1-12

N

Nodes 1-16

major number 1-17

minor number 1-17

Index-3

O Routines (cont.)

dev_xxx_issue_commiand 461

open 1-16 dev_xxx_issue_commiand_physical_mode
Operation record packet 3-14 4-64 ~ P

dev_xxx_maddmap 445

p dev.xoxx_mmap 446

dev_xxx_munmap 4-47

Page D-2 dev_xxx_read_dump 437
Page faults 1-19 ;

dev_xxx_register_requester 4-58
Page frame D-2 .

dev_xxx_set_unit_options 4-59
Page Table Entry (PTE) D-2 .

fs_check_self_id 848
Panic &53 .

. fs_submit_dev_request 8-9
Physical addresses D-2 . og

i0_add_to_buffer_vector_position
pmget_my_pgrp 6-19 7.30
pm_get_my_pid 6-18

pm_is_interrupted 6-20

pm_is_super_user 8-52

pm_is_terminated 6-22

pm_send_signal_by_index 6-23

pm_send_signal_by_process_id 6-25

i0_add_to_register_list 8-10

io_allocate_device_number 8-11

io_check_device_spec 8-15

io_deallocate_device_number &-13

io_deregister_device_info 8-14

io_do_first_long_board_access 8-18

He ee ea Process -2rOUP 6-24 io_do-_first_short_board_access 8-17
driver-supplied 4-3 i0_err_log_error 8-39

io_forget_device_spec 8-16

i0_get_buffer_vector_byte_count 7-35

R io_get_buffer_vector_io_info 7-31

io_get_buffer_vector_position 7-33
read 7-1, 7-28 . wr |
Rebuilding the system 2-6 io_get_buffer_vector_residual 7-34

Registering device information 4-14 io_get_device_int ° S19
R . . io_init_buffer_vector 7-36
equest information packet 3-14 - ee

Routines io_init_one_entry_buffer_vector 7-37

dev_scsi_adapter_configure 5-3 toma poe S21
dev_scsi_adapter_der ister_re uester io_mask_interrupt_variety 6-48

"5.9 pier_cereg} q io_nodevice_maddmap 8-75

dev_scsi_adapter_device_to_name 5-4 o-nocevice mm ap 4: 7 4
dev_scsi_adapter_get_device_info 5-12 P

. : io_nodevice_read_dump 8-70
dev_scsi_adapt ue_async_command . .

Si_adaprter ss ¢—-cormman io_queue_message_to_driver_demon
5-11

dev_scsi_adapter_issue_command 6-29 .
$-10 ~ i0_queue_message_to_generic_demon

dev_scsi_adapter_issue_command_physical io eo om buffer vector 7-38
_mode 5-13 —tead_from_butter_

io_register_device_info 8-26

io_reset_buffer_vector_position 7-39

10_select_cancel 83

io_selectinit 8-44

io_select_register 8-45

io_select_satisfy 86

io_set_buffer_vector_residual 7-40

io_specify_max_demon_messages 831

dev_scsi_adapter_name_to_device 5-5

dev_scsi_adapter_open_dump 5-6

dev_scsi_adapter_register_requester

5-7

dev_scsi_adapter_set_unit_options 5-8

dev_xxx_deregister_requester 4-60

dev_xxx_get_device_info 4-63

dev_xxx_issue_async_command 4-62

Index-4 Licensed material—property of Data General Corporation 093-701053

093-701053

Routines (cont.)

io_specify_max_generic_demon_messages

8-34

io_unmask_interrupt_variety 6-49

io_write_to_buffer_vector 7-41

Im_initialize_sequenced_lock 6-29

lm_initialize_unsequenced_lock 6-30

Im_obtain_sequenced_lock 6-31

lm_obtain_sequenced_lock_no_wait

6-32

Im_obtain_unsequenced_lock 6-33

Im_release_sequenced_lock 6-34

Im_release_unsequenced_lock 6-35

Im_sequenced_lock_type 6-27

Im_unsequenced_lock_type 6-27

misc_format_line 850

misc_obtain_spin_lock 6-36

misc_release_spin_lock 6-37

misc_spin_lock_type 6-28

pm_get_my_pgrp 6-19

pm_get_my_pid 6-18

pm_is_interrupted 6-20

pm_is_super_user 8-52

pm_is_terminated 6-22

pm_send_signal_by_index 6-23

pm_send_signal_by_process_id 6-25

pm_signal_by_process_group 6-24

sc_check_access_and_read_string_from

user 7-22

sc_check_byte_access 7-24

sc_panic 8-53

sc_read_bytes_from_user 7-25

sc_write_bytes_to_user 7-26

sc_write_string_to_user 7-27

vin_get_unwired_memory 7-6

vin_get_wired_memory 7-7

vm_mark_mod_and_ref_and_unwire

_memory 7-13

vim_mark_ref_and_unwire_memory

7-14

vm_perhaps_get_unwired_memory

7-15

vm_perhaps_get_wired_memory 7-16

vm_release_unwired_memory 7-17

vin_release_wired_memory 7-18

vm_unwire_memory 7-19

vm_wire_memory 7-20

vp_add_to_ec_value 64

vp_advance_ec 6-5

Licensed material—property of Data General Corporation

Routines (cont.)

vp_are_ec_values_equal 6-16

vp_are_interrupts_disabled 6-50

vp_await_ec 66

vp_cancel_timeout 6-42

vp_convert_clock_value_to_ec_value

6-7

vp_convert_ec_value_to_clock_value

6-8

vp_create_clock_event 6-44

vp_disable_interrupts 6-51

vp_enable_interrupts 6-52

vp_establish_timeout 641

vp_get_next_ec_value 6-9

vp_has_event_occurred 6-10

vp_increment_ec_value 6-11

vp_initialize_ec 6-12

vp_initialize_sequencer 6-13

vp_read_ec 6-14

vp_read_system_clock 6-45

vp_specify_max_timeouts 6-43

vp_ticket_sequencer 6-15

Routines vector 3-12

S

sc_check_access_and_read_string_from

_user 7-22

sc_check_byte_access 7-24

SCLENCODE_STATUS 838

sc_panic 8&53

sc_read_bytes_from_user 7-25

sc_write_bytes_to_user 7-26

sc_write_string_to_user 7-27

SCSI D-2

SCSI ID 1-15

SCSI unit numbers 1-15

select 3-6

Select list 846

initializing 8-44

registering a select 8-45

removing processes from 8-43

Select manager 841

Signals 1-20, 6-17

handling 6-20

termination 6-22

Special files 1-16, 2-9

Status encoding 835

Statuses 3-17

Index-5

Superuser permission &-52

Synchronization 6-2

sysadm 2-6

Syslog.conf 3-17

Syslogd 3-17

System clock

managing 6-38

returning value of 6-45

System error file

syslog.conf 3-17

System file 1-13, 2-5

device selection section 2-5

tunable parameters section 2-5

T

Timeout

cancelling 642

establishing 6-41

U

Unit numbers 1-15

Unwired memory D-2

allocating 7-6, 7-15

releasing 7-17

User address space D-2

V

Virtual processor (VP) 1-11, 62, $28,

D-3

vin_get_physical_byte_address 7-5

vm_get_unwired_memory 7-6

vin_get_wired_memory 7-7

vm_map_physical_memory 7-8

vp_are_interrupts_disabled 6-50

vp_await_ec 6-6

vp_cancel_timeout 6-42

vp_convert_clock_value_to_ec_value 6-7

vp_convert_ec_value_to_clock_value 6-8

vp_create_clock_event 6-44

vp_disable_interrupts 6-51

vp_enable_interrupts 6-52

vp_establish_timeout 6-41

vp_get_next_ec_value 6-9

vp_has_event_occurred 6-10

vp_increment_ec_value 6-11

vp_initialize_ec 6-12

vp-_initialize_sequencer 6-13

vp_read_ec 6-14

vp_read_system_clock 6-45

vp_specify_max_timeouts 6-43

vp_ticket_sequencer 6-15

W

Wired memory D-2

allocating 7-7, 7-16

releasing 7-18

Wired page D-2

write 7-1, 7-28

vm_mark_mod_and_ref_and_unwire

_memory 7-13

vm_mark_ref_and_unwire_memory 7-14

vm_perhaps_get_unwired_memory 7-15

vm_perhaps_get_wired_memory 7-16

vin_release_unwired_memory 7-17

vin_release_wired_memory 7-18

vin_unmap_physical_memory 7-11

vm_unwire_memory 7-19

vm_wire_memory 7-20

vp_add_to_ec_value 64

vp_advance_ec 6-5

vp_are_ec_values_equal 6-16

Index-6 Licensed material—property of Data General Corporation 093-701053

Send your order form with payment to: Data General Corporation

ATIN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order —- Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order —- Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00)

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9 . Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS (155

4400 Computer Drive

Westboro, MA 01581 - 9973

BILE TOL ee an SESHIP TO tNo oO. Boxes = Com

COMPANY NAME COMPANY NAME

ATIN: ATIN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) = Ext.

A FEES HIPPING:@2HANDLING# #224 | B EVOLUME:DISCOUNTS: ORDER TOTAL

0 UPS ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 - $149.99 0% Tax E # See B

5-10 Items $ 8.00 $150 - $499.99 10% =| oe sioe Te SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% | fs applicable) ~ -
41-200 Items $ 30.00 vour local *
200+ Items $100.00 Shipping and +

Check for faster delivery handling - See A

Additional be d ined f
Shipment and added to your bill TOTAL — See ©
C: UPS Blue Label (2 day shipping)

© Red Label (overnight shipping)

Ch ee PAY MENT EMETHO Dee THANK YOU FOR YOUR ORDER

[Purchase Order Attached ($50 minimum)

P.O. number is ssi. (INClUde Fhardcopy P.O.) PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
[Check or Money Order Enclosed PLEASE ALLOW 2 WEEKS FOR DELIVERY.

2 Visa O MasterCard ($20 minimum on credit cards) NO REFUNDS NO RETURNS.

Account Number Expiration Date * Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains

| | {| | | | | | | | | | | | fT LU] a place of business, which covers all 50 states. Please include
our local taxes when determining the total vaiue of your order.

you are uncertain about the correct tax amount, please call

508-870-1600.

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed. }

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data
by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CL! Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a
period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided
it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC's sole obligation and liability for defective media. This limited media warranty does not apply if the media has been
damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT

NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION
ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from ary such

use and | and my company (Customer) hold Data General completely harmiess therefrom.

Writing a

Device

Driver for

the DG/UXTM

System

093-701053-03 rrr rer rr err errr rr error re
Cut here and insert in binder spine pocket

@» Data General
Data General Corporation, Westboro, Massachusetts 01580

