¢y DataGeneral

Customer Documentation

Using the Command Processor

Using the Command Processor

093-000706-00

For the latest enhancements, cautions, documentation changes, and ot_her information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000706

Copyright © Data General Corporation, 1989, 1990

All Rights Reserved

Unpublished — All rights reserved under the Copyright laws of the United States
Printed in the United States of America

Rev. 00, December 1989

Licensed Material — Property of Data General Corporation

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement, which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA,

PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BaseLink,
BusiGEN, BusiPEN, BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board,
CEO DXA, CEO Light, CEO MAILI, CEO Object Office, CEO PXA, CEO Wordview, CEOwrite,
COBOL/SMART, COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/386,
DASHER/LN, DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect,
DG/DBUS, DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX,
DG/XAP, ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSE MV/2500,
ECLIPSE MV/5000, ECLIPSE MV/5500, ECLIPSE MV/7800, ECLIPSE MV/9500,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000,

ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, microECLIPSE,
microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL,

SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, WALKABOUT,
WALKABOUT/SX, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company.
NFS is a registered trademark of Sun Microsystems, Inc.
386/ix is a trademark of Interactive Systems Corporation.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at [FAR]
52.227-7013 (May 1987).

Data General Corporation

4400 Computer Drive

Westboro, MA 01580

Using the Command Processor
093-000706-00
093-000707-00 (Japan only)

Revision History: Effective with:

Original Release — December, 1989
Addendum 086-000167-00 - June, 1990 Mxdb, Rev. 1.10
(086-000169-00 Japan only)

A vertical bar in the margin of a replacement page indicates
substantive technical change from the previous revision.

Preface

This manual describes how to use the Command Processor (CP), a utility that provides the user
interface to interactive tools, such as Mxdb; that operate from a textual interface. The CP defines
command rules, checks command arguments, and offers several predefined facilities. This manual
contains both tutorial and reference information.

Using the Command Processor is intended for readers who are familiar with the AViiON™ DG/UX™
or 386/ix™ system, have programming experience, and use interactive tools such as Mxdb.

Manual Organization
Chapter 1 introduces the CP and describes how to create command lines.
Chapter 2 describes the CP utilities such as help, session logging, and execution control-flow.

Chapter 3 describes how to customize your environment by writing macros, creating and managing
realms, and changing the values of arguments.

Chapters 4-7 contain the available on-line help messages in printed form. The messages include
command descriptions and information about a variety of topics.

Reader, Please Note

Data General manuals use certain symbols and styles of type to indicate different meanings. The Data
General symbol and typeface conventions used in this manual are defined in the following list. You
should familiarize yourself with these conventions before reading the manual.

This manual presumes the following meanings for the terms “command line,” “format line,” and
“syntax line.” A command line is an example of a command string that you should type verbatim; it
is preceded by a system prompt and is followed by a delimiter such as the curved arrow symbol for
the New Line key. A format line shows how to structure a command; it shows the variables that must
be supplied and the available options. A syntax line is a fragment of program code that shows how to
use a particular routine; some syntax lines contain variables.

093-000706 Licensed Material - Property of Data General Corporation |||

Preface

Convention

Meaning

boldface

constant width/
monospace

italic

[optional]

$ and %

<, >, >>

In command lines and format lines: Indicates text (including punctuation) that
you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files, directories, and
manual pages also use this typeface.

Represents a system response on your screen.
Syntax lines also use this font.

In format lines: Represents variables for which you supply values; for example,
the names of your directories and files, your username and password, and
possible arguments to commands.

In text: Indicates a term that is defined in the manual.

In format lines: These brackets surround an optional argument. Don’t type
the brackets; they only set off what is optional. The brackets are in regular
type and should not be confused with the boldface brackets shown below.

In format lines: Indicates literal brackets that you should type. These brackets
are in boldface type and should not be confused with the regular type brackets
shown above.

In format lines and syntax lines: Means you can repeat the preceding
argument as many times as desired.

In command lines and other examples: Represent the system command
prompt symbols used for the Bourne and C shells, respectively. Note that your
system might use different symbols for the command prompts.

In command lines and other examples: Represents the New Line key, which is
the name of the key used to generate a new line. (Note that on some
keyboards this key might be called Enter or Return instead of New Line.)
Throughout this manual, a space precedes the New Line symbol; this space is
used only to improve readability — you can ignore it.

In command lines and other examples: Angle brackets distinguish a command
sequence or a keystroke (such as <Ctrl-D> and <Esc>) from surrounding
text. Note that these angle brackets are in regular type and that you do not
type them; there are, however, boldface versions of these symbols (described
below) that you do type.

In text, command lines, and other examples: These boldface symbols are
redirection operators, used for redirecting input and output. When they
appear in boldface type, they are literal characters that you should type.

Licensed Material - Property of Data General Corporation 093-000706

Preface

Contacting Data General

Manuals

® To order any Data General manual, please use the enclosed TIPS order form (USA only) or
contact your local Data General sales representative.

e If you have comments on this manual, please use the prepaid Comment Form that appears at
the back. We want to know what you like and dislike about this manual.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, and you are
within the United States or Canada, contact the Data General Service Center by calling
1-800-DG-HELPS for toll-free telephone support. The center will put you in touch with a member
of Data General’s telephone assistance staff who can answer your questions.

Free telephone assistance is available with your warranty and with most Data General service options.
Lines are open from 8:30 a.m. to 8:30 p.m., Eastern Time, Monday through Friday.

For telephone assistance outside the United States or Canada, ask your Data General sales
representative for the appropriate telephone number.

Related Documents

This section lists the documents referred to in the text of this manual.

® Using the Multi-extensible Debugger (Mxdb for DG/UX and 386/ix Systems) (093-000710)

End of Preface

093-000706 Licensed Material - Property of Data General Corporation Vv

Contents

Chapter 1 Introduction to the Command Processor

Terms and CONCEPLS . . vttt vt ittt ittt ettt e e anaees e, 1-1
(3 570 ¢ Y 7= S 1-1
Y40 '« 1-2
2 o o TS 1-2
COMMANA .« vttt e e e 1-2
Abbreviating Commands and Other Wordsot it 1-2

Creating a Command Lineottt 1-3
Entering @ Commandt e e 1-3
Required ATGUIMENTS . ..t vttt ittt 1-4
Optional ATGUIMENES . ..t v vttt ettt et e e 1-4
Keyword ArgUMENTS . ..ottt ti ittt e e et 1-4
Values by Position and Namet i i e s 1-5
Default and Implied Valuesttt i i i 1-5
Command ATZUIMENESttt vttt ettt ettt ettt enteennaeennneensenaneeaeenas 1-5
Argument Values and TYPesottt it e i e e 1-7

Continuing a Command Line i i i i i e s 1-8

Inserting COMIMENES . . o v vttt ittt ettt ettt ot e e naee e e 1-8

Capturing Command OULPULttt ettt inn e 1-8

Putting Special Characters into a Command Line i i, 1-9

Balancing Character Pairs i i e i i e 1-12

Using Backquotes Within Braces ittt 1-13

Evaluating a Series of Commandsc.iiuitttitiiiii i i i e 1-14

Chapter 2 Using Command Processor Utilities

Getting Help . ..o o it e e e e e 2-1
The help Command i i et 2-1
Command Promptingttt ittt 2-2
Invoking Command Promptingouuutti i, 2-2
Issuing Prompting Facility Commands ittt 2-3
Pushing from a Prompting Sessionuuiiiiin i 2-3
Resuming a Prompting Sessiont 2-4

Logging @ SeSSION . . .ottt e e e e 2-4

Performing CP Control Flow i et i e 2-5
Comparison with Debugger Control Flow i 2-5
Executing If Phrase Is Nonnull (c-p:if) 2-5
Executing While Phrase Is Nonnull (c-p:while)o, 2-6
Protecting Commands from Errors (Protect)vuevnt vttt ennenuns 2-6
Comparing Two CP Variables (equal) ... i 2-8
Negating @ TeSt (TIOL) .« v vt vttt et et ettt e et e e ettt e e 2-9
Doing an AND Test (and)ttt i e e i i e 2-9
Doing an OR TeSt (OF) .« ottt i ettt ettt i e et e e e 2-10

093-000706 Licensed Material — Property of Data General Corporation vii

Contents

Manipulating Phrases as SeqUENCES vttt et rnenineeeeennnneees, 2-10
Executing Commands Repeatedly (do-sequence)itiniiiiiinnnrennon., 2-11
Writing the First Word of a Phrase (first)ot 2-11
Writing the Rest of a Phrase (Fest)ouiuiuiniiiiiunint e eneananas 2-12
Writing the Last Word of a Phrase (last)otuitirininentinninennenenenennns 2-12
Write the Position of an Expression in a Phrase (position), 2-13
Write a Subphrase (SUbPhrase)ouiiuiiiiii ity 2-13
Write the Length of a Phrase (length) i 2-14

Chapter 3 Customizing Your Environment

Terms and CONCEPLS . . vttt vttt ittt ettt ettt e enniiaeens 3-1
ComMMANd ..ot e e e e e e 3-1
Built-in Commandsottt e e e e e 3-1
11 T ¢ o T 3-1
CP Variable ... vt i e e e e 3-2
551 o P 3-2
Default Value i it i e e e e e 3-2
Implied Valuet i e e e e e 3-2
Standard OULPULttt ittt et i e e i e 3-2
Error OULPUL . .ottt ittt et ettt ittt it et e 3-2
Standard INPULttt e e e e e 3-2
Include File e e e i e e e e s 3-2

WIHNG MaACIOS . . oottt ittt ettt ettt et it et e 3-3
Creating a Macro (define-macro)c..uiuiintiniinit it innennans 3-3
Returning from a Macro (FEtUIN)ottt vttt i e e e i e e 3-4
Viewing a Macro (print-command)uvt ittt e 3-4
Deleting a Macro (delete-command)oouttinittnit it e 3-5
Prompting for User Input (QUErY)ottt it 3-5
Writing a Message (WIIE) . .. v vttt ittt ittt it et e ettt it 3-6
Writing Error MesSSages (EITOT) . v oot vttt sttt it ii ittt 3-7

Creating and Managing Realmsttt e e i e e 3-7
Displaying and Setting the Current Realm (realm)o, 3-7
Creating a Realm (define-realm)ttt 3-8
Displaying and Setting the Realm Use List (realm-use-list)covvivinieivnn... 3-8
Displaying and Setting the Prompt String (prompt-string)c..oiuiiuevnenn.n. 3-9
Deleting a Realm (delete-realm)uiii vttt entenneneeneennennenneeneeaeenens 3-9

Changing an Argument’s Default Value (change-argument-value) 3-9

Creating Command Aliases (copy-command)uiiuniiniininnineineenn. 3-10

Saving Your CuStomizationsttt vttt 3-11
Writing to a File (redirect-output)ttt i, 3-11
Including a File (include)ottt e e e 3-11

Vili Licensed Material — Property of Data General Corporation 093-000706

Contents

Chapter 4 Command Processor Commands
Chapter 5 Command Processor Types
Chapter 6 Command Processor Topics

Chapter 7 Character Commands

093-000706 Licensed Material - Property of Data General Corporation ix

Contents

Tables

Table

1-1 Characters with Syntactic Meaning i i i i e i e 1-2
1-2 A Command and a Required Argumentoiuiitiiniieernneeenneennneennss 1-6
1-3 A Command, a Required Argument, and an Optional Argumentc0c0.... 1-7
1-4 A Command, a Required Argument, and a Keyword Argumentvu... 1-7
1-5 Ways to Enter Various Special Characterscoiiiiiiiiiiiiiniinnenn, 1-10
2-1 Prompting Facility Commands by Categoryoiiiiiniiiniiiineee... 2-3
3-1 Tasks and Keywords for change-argument-valueo, 3-10

X Licensed Material ~ Property of Data General Corporation 093-000706

Chapter 1
Introduction to the Command Processor

The Command Processor (CP) is a command interpreter; it is a utility that provides a uniform user
interface to interactive tools, such as Mxdb, that operate from a textual interface. With the CP, you
can dynamically create variables and tailor your working environment by creating commands (macros),
organizing commands into groups, and modifying commands.

The CP defines rules for the syntax of commands, checks the syntax and meaning of command
arguments, and offers several predefined facilities, such as help, session logging, execution
control-flow, and command set management.

This chapter discusses CP terms and concepts, and then tells how to do the following tasks:

® Create a command line

e Continue a line

e Capture command output by using backquotes
® DPut special characters in a command line

® Balance character pairs

® Use backquotes within braces

® Evaluate a series of commands

® Insert a comment

For information about the help system, see “Getting Help” in Chapter 2.

Terms and Concepts

This section defines the terms character, word, phrase, and command; it also describes how to
abbreviate commands and other words.

Character

A character is any ASCII character that you can enter from your keyboard. Table 1-1 shows the
characters that have special syntactic meaning to the CP.

093-000706 Licensed Material - Property of Data General Corporation 1—1

Introduction to the Command Processor

Table 1-1 Characters with Syntactic Meaning

Character Symbol Meaning

space Separate words in a phrase

tab <tab> Separate words in a phrase

comma , Separate phrases in a command

semicolon ; Separate commands in a line

New Line) Separate commands on different lines

colon : Connect a realm name and a command name

double quotes
single quotes

Enclose a string in quotation marks
Enclose a string in quotation marks

parentheses 0 Group characters or words
brackets (1 Group characters or words
braces {3 Group characters or words
backquote ¢ Capture command output
Word

A word is normally composed of one or more printable characters. The ordinary word characters are
as follows: letters (A-Z and a-z), digits (0-9), and the characters #$%&*+-./<=>?@\"_|-. However,
a word can contain any ASCII character (including those shown in Table 1-1), as explained later in
this chapter in the section “Putting Special Characters into a Command Line.” Grouping characters
(O, [], and {}) are considered part of the words they group together, as are any enclosed separators.

Multiple words are separated by whitespace (spaces or tabs), commas, or semicolons.

Phrase

A phrase consists of one or more words. Phrases are separated by commas.

Command

A command contains one or more phrases and is terminated by a New Line character or a semicolon.
The name of a command is normally a word but may be a phrase (see “Putting Special Characters
into a Command Line”). A command name cannot contain a colon.

Abbreviating Commands and Other Words

Commands are generally complete English words. To provide flexibility, the CP enables you to
abbreviate the names of commands, arguments, certain variables, and some argument values. Since an
abbreviation must be unique, the minimum abbreviation depends on the names against which the
abbreviation is being compared. The minimum abbreviation is determined by what commands,
variables, and macros are visible or by what arguments exist for a command or macro.

Licensed Material — Property of Data General Corporation

093-000706

Introduction to the Command Processor

A name has one or more “syllables” separated by hyphens or underscores; for instance, the command
print-command has two_ “syllables.” Names are case-insensitive, and the hyphen (-) and underscore
() are equivalent. The name you specify is resolved to a command (or other name) as follows:

1. The command and the name you specify are an exact match. For example, the specified name
“evaluate” matches the command evaluate exactly.

2. The command has the same number of “syllables” as the specified name, and each syllable
begins with the characters you specify. Thus, you could specify “eval” for the evaluate command
or “pri-com” for the print-command command.

3. The command has more syllables than the specified name has, and begins with the characters
you specify. As an example, you could use “pri” to indicate the print-command command.

s
1

Remember that any abbreviations must be unique. For instance, is not a unique abbreviation for
the include command; the if command begins with the same character. You must specify “in” for
include.

Creating a Command Line

This section explains how to create and enter a command line. It also describes the three Kinds of
arguments that a command can take, the four ways in which an argument can receive its value, and
the relationship between argument values and types.

Entering a Command

A command takes a series of arguments and performs the appropriate action. Each argument is
classified as required, optional, or keyword, and can receive its value by position, by name, by
default, or implicitly. The output is normally displayed on your screen.

The first phrase of a command starts with the command name as the first word; succeeding words are
values for required or optional arguments of the command. The rest of the phrases each start with a
comma followed by optional whitespace, then a keyword and, optionally, a value for that keyword.

To enter a command, type the command after the prompt on your screen and press the New Line
key. A prompt indicates the realm in which you are working; a realm contains a group of commands
that you can access.

Here are some sample commands that follow the default prompt for the c-p realm (c-p):

(c-p) write Here are some symbols: #$&*<>?\|-)
Here are some symbols: #3&*<>?\]|-~

(c-p) include script_file, continue)

(c-p)

Above, write and include are commands, Here are some symbols: #$&*<>?\|- and script_file are
required arguments, and continue is a keyword.

093-000706 Licensed Material — Property of Data General Corporation 1—3

Introduction to the Command Processor

Required Arguments

If an argument is required, you must specify it. You can specify the value by position (usually the
simpler method) or by keyword (if you remember the keyword but forget the order of arguments).
See the “Values by Position and Name” section for more detail.

The following one-phrase command (assign) requires two arguments, one a variable (x, for example),
and the other a phrase (“computer”):

(c-p) assign x computer)
(c-p)

Optional Arguments

You can specify an optional argument by position or keyword. If you omit an optional argument, the
CP uses the default value associated with that argument.

Following is a one-phrase command (prompt-string) with an optional argument that represents a new
prompt:

(c-p) prompt-string (Yes?))
(Yes?)

Keyword Arguments

A keyword argument cannot receive a value by position; to specify a keyword argument, you must use
the keyword. If you omit a keyword argument, the CP uses the argument’s default value. If the
argument lias an implied value, you can specify the keyword and omit the value.

Following is a command (realm-use-list) with a keyword argument name (realm, which specifies
which realm use list to display) and its value (c-p):

(c-p) realm-use-list, realm c-p)
{ { command-processor } { characters } }
(c-p)

In the next example, the realm-use-list command uses the realm keyword without specifying a value;
the implied value is the current realm (c-p in this case):

(c-p) realm-use-list, realm)
{ { command-processor } { characters } }
(c-p)

1—4 Licensed Material — Property of Data General Corporation 093-000706

Introduction to the Command Processor

Values by Position and Name
You can specify arguments by position or by name. A value by position is associated with a particular

argument because of its position in the command line. A value by name follows a keyword.

In the following assign command, the required arguments (variable and phrase) receive their values
(x and “computer”) by position:

(c-p) assign x computer)
(c-p)

In the following equivalent examples the arguments receive their values by name:

(c-p) assign, variable x, phrase computer)
(c-p)

(c-p) assign, phrase computer, variable x)
(c-p)

Default and Implied Values

Every command argument is given a value when the command is executed. Arguments that are not
given values by name or by position are given values by default. Arguments that are mentioned by
name but are given no explicit value on the command line are given values implicitly. Implied values
are often set up for keywords, so that just mentioning the keyword does something useful.

Command Arguments

Use the help command to find out what arguments a command accepts. To generate a one-line list of
arguments for a command (define-realm, for example), specify the keyword verbosity followed by
the phrases “text none” and “arguments short” in braces:

(c—p) help define-realm, verbosity { text none, arguments short })
define-realm name [use], prompt, doc
(c-p)

As shown above, the define-realm command accepts arguments in each of the three categories:
required (name), optional (use), and keyword (prompt and doc). The following example shows
argument values being specified by position:

(c-p) define-realm macros { macros command-processor })
(c-p)

This example shows argument values being specified by name:

(c—p) define-realm, name macros, use { macros c-p }, prompt (m))
(c-p)

093-000706 Licensed Material - Property of Data General Corporation 1—5

Introduction to the Command Processor

This example shows argument values being specified by default:

(c-p) define-realm macros l
(c—p)

This example shows argument values being specified implicitly:

(c-p) define-realm macros, prompt)
(c-p)

Here is a summary of command argument rules:
® Any argument can be specified by name.

® Any argument can have an implied value.

® A keyword argument cannot receive its value by position; you must use the keyword or accept the
argument’s default value.

® A required argument cannot have a default value.

To reset default and implied values, use the change-argument-value command.

The rest of this section goes into more detail about command arguments.

The following tables show possible combinations of command ¢ with required argument al, optional
argument a2, and keyword argument a3. Values assigned explicitly (by name or position) are
indicated as v1, v2, and v3. Values assigned implicitly are indicated as il, i2, and i3. Values assigned

by default are indicated as d2 and d3.

A help message for command c with arguments displayed at the “short” verbosity level (help c, v
{text none, arguments short}) would show the following:

c al [a2], a3

Table 1-2 shows all the combinations of command c¢ and its required argument (which cannot have a
default value). In the example, “def-r” is the define-realm command.

Table 1-2 Combinations of a Command and a Required Argument

How Value Is Specified

By Position By Value Default Implied
Command | c vl c, al vl Cannot have a default value | c, al
Resulting . .
Values vl, d2, d3 vl, d2, d3 No resulting values i1, d2, d3
Example def-r macros def-r, name macros Cannot have a default value | def-r, name

1-6 Licensed Material — Property of Data General Corporation 093-000706

Introduction to the Command Processor

Table 1-3 shows the combinations of command c, its required argument (v1, with a value assigned by
position), and its optional argument.

Table 1-3 Combinations of a Command, a Required Argument, and an Optional Argument

How Value Is Specified

By Position By Value Default Implied
Command | c vl v2 cvl, a2 v2 cvl cvl, a2
Resulti
V:lsuueslrIg vi, v2, d3 vi, v2, d3 vl, d2, d3 vl, i2, d3

Table 1-4 shows the combinations of command c, its required argument (v1, with a value assigned by
position), and its keyword argument (which cannot receive a value by position).

Table 1-4 Combinations of a Command, a Required Argument, and a Keyword Argument

How Value Is Specified

By Position By Value Default Implied
Command | Cannot have value by position cvl, a3 v3 cvl cvl, a3
Resultin
Values g No resulting values vl, d2, v3 vl, d2, d3 vl, d2, i3

Argument Values and Types

A type is a category of argument values accepted by the CP; each argument of a command has a
type. When you specify an argument value, that value is checked to see whether it conforms to the
syntax of the particular type. If the argument value you specify is invalid, you will receive an error
message and execution will abort instead of having the invalid value passed to the command.

For example, the first argument to Mxdb’s debugger realm’s breakpoint command is the line
argument, which is of type line-number. If you specify a decimal integer, CURRENT (the current line
number, plus or minus an optional value), LAST (the last line number, minus an optional value), or
an abbreviation of CURRENT or LAST for this argument, the CP passes the value to the command.
The line-number type accepts values matching this syntax; the command can then check whether a
specified integer is within the range of the specified module. Other values are rejected. For instance,

if you specify “breakpoint a,” you receive an error message, because “a” is not a recognized value
for a line number.

093-000706 Licensed Material ~ Property of Data General Corporation 1—7

Introduction to the Command Processor

Continuing a Command Line

To continue a command onto the next line, type a backquote and press the New Line key. The
backquote may be followed by blank space.

The CP then adds a backquote to the prompt on the continued line. Here is an example, where zoo
is the variable:

(c-p) assign zoo lion tigers and *)
(c-p) * bears)
(c-p)

Inserting Comments

You can insert comments after a command. To begin a comment, type two commas; to terminate a
comment, type a semicolon or press the New Line key.

The following example shows a comment terminated by a New Line:

(c-p) assi pi 3.14159 ,, The value of pi)
(c-p) pi)

3.14159

(c-p)

The following example shows a comment terminated by a semicolon:

(c-p) wri Current realm: ,,show realm; realm)
Current realm:

command-processor

(c-p)

All input from the comma pair through the New Line or semicolon is ignored, including a line
continuation character.

Capturing Command Output

The CP enables you to capture command output, and then insert it into a command line. To do this,
put a backquote before the command whose output you want to capture. If this command has
arguments, enclose the command and its arguments in a pair of braces.

A simple example follows:

(c-p) write The current realm is ‘{realm}.)
The current realm is command-processor.
(c-p)

1—8 Licensed Material - Property of Data General Corporation 093-000706

Introduction to the Command Processor

Here is an example using an argument and braces:

(c-p) assign x ‘{realm-use-list, realm c-p})

(c-p) x)
{ { command-processor } { characters } }

(c-p)

Note that if you type a variable name (such as x above) at the beginning of a line, that variable’s
value is displayed:

(c-p) assi name realm)
(c-p) name)

realm

(c-p)

If you precede such a variable name with a backquote, the CP resolves the variable’s value and
executes it as a command:

(c-p) ‘name)
command-processor
(c-p)

You can also capture output from multiple commands:

(c-p) assi x ‘{realm; realm-use})

(c-p) x)
command-processor
{ { command-processor } { characters } }

(c-p)

More involved instances using backquotes are covered later in this chapter in the section “Using
Backquotes Within Braces.”

Putting Special Characters into a Command Line

This section explains how to do these tasks:

® Put a syntactic character (such as a comma or space) into a command line without having the CP
treat it specially.

e Put a control character other than a tab or New Line into a command line.

Table 1-1 lists the characters that the CP interprets as having syntactic meaning. If you try to create a
CP variable containing one of these characters, you may have difficulty.

Control characters in general may pose difficulties. For example, trying to type a control character
while you are using the debugger may produce an error message.

093-000706 Licensed Material — Property of Data General Corporation 1—9

Introduction to the Command Processor

Four ways exist to put special characters into a command line:

1. Enclose (“group”) the character in braces, brackets, or parentheses.

2. Enclose (“quote”) the character in a pair of double or single quotation marks preceded by a

backquote.

3. Use a command from the characters realm for a specific character (see Chapter 7, “Character

Commands”).

4. Use the character-from-code command (see Chapter 7).

Table 1-5 shows which of the first three methods apply to various special characters. Method 4
applies to any character if you know its ASCII value.

Table 1-5 Ways to Enter Various Special Characters

Character Grouped! Quoted Character Command
space Yes Yes Yes
tab Yes Yes Yes
comma Yes Yes Yes
semicolon Yes Yes Yes
New Line Yes Yes Yes
double quote No Yes Yes
single quote No Yes Yes
brace No Yes Yes
bracket No Yes Yes
parenthesis No Yes Yes
backquote No No Yes
carriage return No Yes Yes
form feed No Yes Yes
null No Yes Yes

'Enclosed in braces, brackets, or parentheses

Restrictions for putting a character into a command line may depend on context. For example, it is

easy to create a CP variable whose value contains spaces:

(c-p) assi x Now is the time.),

(c-p) x)

Now is the time.

(c-p)

1-10

Licensed Material ~ Property of Data General Corporation

093-000706

Introduction to the Command Processor

However, you must use one of the methods from Table 1-5 to create a CP variable whose name
contains a space. For example, you can use braces as grouping characters to create a variable whose
name is the word ‘{ }":

(c-p) assi { } braces)
(c-p) {})

braces

(c-p)

If you want to create a CP variable whose value contains a comma, you can enclose the comma in
quotation marks and use a backquote:

(c-p) assi x ‘”,”phrase containing comma)

(c-p) x)

,phrase containing comma

(c-p)

You can put a literal backquote into a phrase by using the backquote command from the characters
realm:

(c-p) assi y backquote ‘{char:backquote}phrase)
(c-p)yl

backquote “phrase

(c-p)

To put control characters such as the bell (Ctrl-G) into a phrase, you must use the
character-from-code command (see Chapter 7). This example creates a CP variable that produces a
beep on most display units:

(c-p) assi beep ‘{char:char 7}Beep!)
(c-p) beep)

Beep!

(c-p)

You can create a CP variable whose name is a phrase rather than a word, though this is not
recommended (see the note below):

(c-p) define-realm test),

(c—-p) realm test),

(test) assign ‘”’do it” This is not wise., doc *).
(test)‘ ”CP variable whose name is a phrase”)
(test) ‘"do it” l

This is not wise.

(test) help, command).

Command: do it Realm: test
Summary CP variable whose name is a phrase
Arguments <none>

(test)

093-000706 Licensed Material — Property of Data General Corporation 1—1 1

Introduction to the Command Processor

NOTE: If you create a CP variable whose name contains a space, tab, or new line, you will not be
able to use that variable in the name-and-phrase argument to a do-sequence command
(described in Chapter 4); do-sequence would treat the name as multiple names.

You can put braces, brackets, and parentheses into a command with no difficulty if they are paired.
However, to use one alone you must take special action, as previously indicated in Table 1-5. The
next section discusses the rules for balancing character pairs.

Balancing Character Pairs

If a command line has a word containing a single quotation mark, double quotation mark,
parenthesis, bracket, or brace, that word normally must contain a matching character to form a pair.
To create a word containing one of these characters unpaired, you can use either of the following two
techniques shown earlier in Table 1-5:

1. Enclose the character in a pair of double or single quotation marks preceded by a backquote; or,
2. Use a command from the characters realm for a specific character.

The relevant character commands are as follows:

single-quote
double-quote
left-parenthesis
right-parenthesis
left-square-bracket
right-square-bracket
left-curly-brace
right-curly-brace

The following example creates and executes a CP variable whose name contains parentheses:

(c-p) assi abc(l) xyz)

(c-p) abc(l))
Xyz
(c-p)

The following example writes a word containing an unpaired brace:

(c-p) write ab‘” {"cd)
ab{cd
(c-p)

Here is an equivalent example using the left-curly-brace command:

(c-p) wri ab‘{characters:left-curly}cd)
ab{cd
(c-p)

1—1 2 Licensed Material - Property of Data General Corporation 093-000706

Introduction to the Command Processor

If you put an unpaired right brace, bracket, or parenthesis in a command line and do not use one of
the above methods, the CP displays an error message. If you put an unpaired left brace, bracket, or
parenthesis in a command line and do not use one of the above methods, the CP changes the prompt
until you provide the matching character. For example:

(c-p) assi bracket-stuff [)
(c-p) [line of input)
(c-p)l 112

(c-p) bracket-stuff)

[
line of input

1
(c-p)

Using Backquotes Within Braces

As described earlier, you can capture command output by putting a backquote before the command
whose output you want to capture.

However, if you use a single backquote within braces, that backquote has no special syntactic
meaning. For example:

(c-p) assi name realm)
(c-p) write {‘name}),

{ *name}

(c-p)

To execute a command within braces, use one more backquote than the number of pairs of braces.
To continue the above example:

(c-p) write {‘‘name})_
{realm}

(c-p) write {{
{{realm}}
(c-p)

66

name}})

Other paired characters, such as parentheses and square brackets, do not affect backquote resolution:

(c-p) write “([‘name])”)
"([realm])"
(c-p)

An exception to the rule for using backquotes within braces occurs within the body of a macro
definition. In this case, the CP resolves a command preceded by a backquote. For example:

(c-p) define-macro bang {phrase} {write ! ‘phrase !})
(c-p) bang two words)

! two words !

(c-p)

093-000706 Licensed Material - Property of Data General Corporation 1-13

Introduction to the Command Processor

For more information about macro definitions, see the “Writing Macros” section in Chapter 3.

Evaluating a Series of Commands

The CP evaluate command evaluates one or more commands and displays the output. Use evaluate
to capture command output that contains characters you want the CP to interpret syntactically:

(c-p) assi x *”,”verbosity {text short, arg short})

(c-p) eval { help shell “‘x })

shell Execute a sub-shell or a shell command sequence.
[command-line] '

(c-p)

In the previous example, evaluate is used after the value of x is assigned. In the next example
evaluate is used when a value is assigned to x:

(c-p) assi name realm)

(c-p) assi x ‘{eval { name }})
(c-p) x)

realm

(c-p)

You can do the same thing by using backquote evaluation:

(c-p) assi name realm)
(c-p) assi x ‘name }
(c-p) x)

realm

(c-p)

By combining evaluate with backquote evaluation, you can carry the command evaluation a step
further:

(c-p) assi name realm)

(c-p) assi x ‘{eval { ‘name }})
(c-p) x)

command-processor

(c-p)

If the argument is a command containing no captured command output, the evaluate command has
the same effect as if you omitted it:

(c-p) evaluate {realm})_
command-processor
(c-p) realm),
command-processor
(c-p)

End of Chapter

1—14 Licensed Material — Property of Data General Corporation 093-000706

Chapter 2
Using Command Processor Utilities

This chapter describes various Command Processor (CP) utilities. It tells how to do the following
tasks:

® Use the help facility, including command prompting

® Log a session

® Perform CP control flow

® Manipulate phrases as sequences

Getting Help

The CP offers two ways to use its help system: a help command and command prompting.

The help Command

The help command displays information about a command, argument, realm, or topic. To use this
command, type help after invoking the tool you are using, such as Mxdb. Then, if you want general
information, press the New Line key. If you want information about a specific command, argument,
realm, or topic, type that name after help and press the New Line key. For example, if you type
help define-realm and press the New Line key, you will see the summary portion of the
define-realm command’s help message, which defines the command and its arguments, and shows
examples:

(c-p) help define-realm),

Command: define_realm Realm: command-processor
Summary Create a new realm.
Arguments Required:
name The name for the new realm
Optional:
use A list of realms grouped using braces
Keyword:
prompt The prompt string for this realm
doc Up to three enquoted help text strings
Examples define-realm quick

def-r myrealm ,use {{myrealm c-p}}

For further help, type "help define_realm <argument name>".
(c-p)

093-000706 Licensed Material ~ Property of Data General Corporation 2—1

Using Command Processor Utilities

To get a more detailed message, add a ,verbosity argument. For example, type this command:

(debug) help define-realm, v)

You will then see the entire define-realm help message, which also elaborates the definitions and
examples.

Command Prompting

The command prompting facility helps you to enter commands interactively. Any command will
prompt you for input if you type the command followed by a comma and no argument. Command
prompting displays each argument name, one at a time, showing the default value in parentheses.

To use the default value, press the New Line key. To use another value, type the value and press
New Line. If no default is shown, the argument is required and you must enter a value.

Invoking Command Prompting

To invoke the command prompting facility for a command, type the command followed by a comma;
then press the New Line key. The comma may be preceded or followed by blank space.

For example, to get command prompting on the write command:

(c-p) write,)
Type ",help" for help.
text () =

At this point, the prompting facility is asking for a value for the text argument. To enter a value, type
the value and press the New Line key. For example:

(c-p) write,)
Type ",help" for help.
text () = computer)

You are then prompted for the remainder of the arguments. To use the defaults, press New Line for
each one.

(c-p) write,)
Type ",help" for help.
text () = computer)_
message (no) =).
no-newline (no) =)

The final line asks whether you want to execute the selections you have just made. To answer yes,
press New Line.

Execute? (Yes) =)
computer
(c-p)

2—2 Licensed Material — Property of Data General Corporation 093-000706

Using Command Processor Utilities

If you want to change one or more of your selections before you execute the command, type No and
the query process repeats. Type your new selection(s):

Execute? (Yes) = No)
text (computer) = Computers are fun.)_
message (no) =)
no-newline (no) = Yes),
Execute? (Yes) =),
Computers are fun. (c-p)

All arguments that have defaults are initialized to their default value unless you have explicitly sup-
plied another value. In the example above, the text argument initially has no default. However, the
default is set to “computer.” Thus, when you go through the prompting a second time, that value is
displayed.

Issuing Prompting Facility Commands

At any time during the prompting session you can issue a command, preceded by a comma, that will
take a particular action. The ,help command displays the available prompting facility commands
(which you may abbreviate). Table 2-1 organizes these commands by topic and task.

Table 2-1 Prompting Facility Commands by Category

Topic Task Command
Information Describe the current argument ,
Display a help message ,help
Refresh the screen ,refresh
Argument Specify a value value
Select the default value ,default
Select the implied value ,implied
Termination Abort back to the top level ,abort
Execute the command ,execute
Navigation Move back one argument ,previous

Logging a Session

To create files containing records of command line input, output, or errors during the debugging ses-
sion, use the log command.

This command line creates an input log file named login, an output log file named logout, and an
error log file named logerr:

(c-p) log, input login, output logout, error logerr)

086-000167 updates Licensed Material — Property of Data General Corporation 2—3
093-000706-00

Using Command Processor Utilities

If the files login, logout, and logerr do not exist, the log command creates them. If the files do ex-
ist, output will be appended to them.

If you want one log file that includes input, output, and errors, type a command line like this:
(c-p) log logfile)

You can also specify an absolute (complete) pathname:
(c-p) log /usr/mark/mxdb/anotherlogfile)

To create a log file overwriting any existing file, use one of these arguments: input-delete, output-de-
lete, or error-delete. This command line overwrites any existing input logfile named login:

(c-p) log, input login, input-delete)

To display the current log files, type log with no arguments:

(c-p) log)
input log files:
/usr/chris/login
output log files:
/usr/chris/logout
error log files:
/usr/chris/logerr

To turn all logging off, use the unlog command with no arguments:

(c-p) unlog)
input log files:

/usr/chris/login
output log files:

/usr/chris/logout
error log files:

/usr/chris/logerr

This command turns logging off and writes the names of the log files to the standard output. You can
also specify a filename to turn off logging to a file:

(c-p) unlog logerr)

2—4 Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00

Using Command Processor Utilities

Performing CP Control Flow

This section compares CP control flow with Mxdb debugger control flow and describes how to do
these tasks:

® Execute command(s) if a command writes a nonnull phrase

® Execute command(s) while a command writes a nonnull phrase
® Protect commands in case an error occurs

® Check whether two CP variables have the same value

® Negate a test

® Perform an AND test

® Perform an OR test

Comparison with Debugger Control Flow

This section discusses similarities and differences between Mxdb debugger control flow and Command
Processor control flow.

The general semantics of Mxdb and CP control flow are similar. The debugger and the CP both
provide if and while commands to control the flow of command execution. Each if command accepts
three arguments: a predicate, a then phrase, and an else phrase. Each while command accepts two
arguments: a predicate and a command body. The kind of values accepted by the then, else, and
body arguments are the same in the debugger and the CP.

However, the value that the predicate argument accepts is not the same. In the debugger realm, the
predicate argument accepts a language expression that evaluates to true or false as defined by the
language being used. In the command-processor realm, the predicate argument accepts and evaluates
a series of commands, each of which returns a phrase. If any of the phrases is nonnull, the predicate
is considered true.

In the c-p realm, control-flow commands capture and discard the standard output from predicate
commands. If you want to write output in a predicate command that is not discarded, used the write
command’s message argument; this writes to the error output. See “Terms and Concepts” in Chapter
3 for a discussion of standard output and error output.

Executing If Phrase Is Nonnull (c-p:if)

The Command Processor’s if command conditionally executes one or more commands. If evaluates
the predicate. If it returns a nonnull phrase, then it evaluates the then-part argument value; otherwise
it evaluates the else-part value.

This example sets x to the value of abc, if abc is nonnull:

(c-p) assign abc xyz)

(c-p) if { abc } { assign x ‘abc })
(c-p) x)

Xyz

(c-p)

093-000706 Licensed Material — Property of Data General Corporation 2_5

Using Command Processor Utilities

To evaluate an empty variable, try this example:

(c-p) assign x "”)

(c-p) if { x } {wri x is not empty}, else {wri x is empty})
X is empty

(c-p)

These commands evaluate a nonempty variable:

(c-p) assign x abc)_

(c-p) if { x } {wri x is not empty}, else {wri x is empty})
X is not empty

(c-p)

Executing While Phrase Is Nonnull (c-p:while)

The Command Processor’s while command executes one or more commands while a predicate is
nonnull. While evaluates the predicate; if the predicate writes a nonnull phrase, while evaluates the

body and repeats.

The following example sets a CP variable, and then displays and shortens the value of the variable
while it is nonnull:

(c-p) assignxabc)
(c-p) while {x} {wri X is ”‘x”; assign x ‘{rest ‘x}})
x is "a b c"

X is "b c"
X is llcll
(c-p)

See Chapter 4 for a description of the rest command.

Protecting Commands from Errors (protect)

The protect command executes commands in a protected region and, optionally, commands specified
as cleanup actions. This command is useful if you want to recover reliably from potential errors that
may occur in the protected region. You can have cleanup actions execute unconditionally or only
when an error occurs; the cleanup actions execute after the main body of commands.

2—6 Licensed Material - Property of Data General Corporation 093-000706

Using Command Processor Utilities

An example of the protect command follows:

(c-p) assign var “"”)

(c-p) protect {write 1; if {var} {error E}, else {write 2}; write 3})
(c-p)‘ ,cleanup {write 4})

1

2

3

4

(c-p) assign var test)

(c-p) protect {write 1; if {var} {error E}, else {write 2}; write 3}, cleanup {write 4})
1

Error: E

4

(c-p)

If you specify the errors-only keyword, you can capture any error output in a CP variable. If you are
writing a macro (see “Writing Macros” in Chapter 3), you can suppress error messages. In many situ-
ations, an error may occur that affects what actions the macro takes.

Following is an example of an error message captured in a CP variable:

(c-p) define-macro capture-error {obj} {assi an-error °)

(c-p) {‘ ‘{protect {eval ‘obj}, errors-only }})

(c-p) capture-error .z)

(c-p) an-error)

Error: °.z”° is not a visible command, macro or variable.
(c-p)

If you rebind the error stream as above, errors in CP flow control commands will not be written to
you in the context of error protection. Since the CP if and while commands capture and discard the
standard output of their predicate phrase to determine whether the predicate is null or nonnull, error
output is discarded, but any errors will affect the flow of control in the execution environment.

The following examples show error output being suppressed while an error controls the flow. The ex-
amples show what happens in three cases:

® The CP variable *junk* exists and is nonnull.

(c-p) assign *junk* stuff)

(c-p) protect {write *junk*, no-newline; if {*junk*} {)

(c-p) {{ write *” is not”, no-newline}, else {write ‘” is”, no-newline}; write ‘” null.”} °)
(c-p)‘ ,clean { write ‘” does not exist.” }, errors-only)

junk is not null.

(c-p)

086-000167 updates Licensed Material — Property of Data General Corporation 2—7
093-000706-00

Using Command Processor Ultilities

® The CP variable *junk* exists and is null.

(c-p) assign *junk* ‘"7)

(c-p) protect {write *junk*, no-newline; if {*junk*} {)

(c-p) {{ write *” is not”, no-newline}, else {write ‘” is”, no-newline}; write *” null.”} *)_
(c-p) ¢ ,clean { write ‘” does not exist.” }, errors-only)

junk is null.

(c-p)

® The CP variable *junk* does not exist (see Chapter 4 for a description of delete-command).

(c-p) delete-command *junk*)

(c-p) protect {write *junk*, no-newline; if {*junk*} {)

(c-p) {{ write ‘" is not”, no-newline}, else {write ‘” is”, no-newline}; write *’ null.”})
(c-p)* ,clean { write ‘” does not exist.” }, errors-only)

junk does not exist.

(c-p)

32

Comparing Two CP Variables (equal)

The equal command determines whether two arguments are equal, and then writes a phrase to the
standard output. If the arguments are equal, “true” is written. If the arguments are not equal, a null
string (‘””) is written. Equal is useful as a predicate evaluator for the c-p:if command.

Comparisons are case insensitive unless equal’s case-sensitive argument has a “yes” value. Case in-
sensitivity includes considering the hyphen (-) and underscore () to be equivalent.

The following example assigns a value to CP variables x and y, and then compares them:

(c-p) assi x foo)

(c-p) assiy foo)

(c-p) if { eq ‘x ‘y } { write same })
same

(c-p)

The next example resets the value of y and compares x and y again:

(c-p) assi y bar)_
(c-p) if { equ ‘x ‘y } { write equal })
(c-p)

The following example demonstrates case insensitivity:

(c-p) assi x foo-bar)

(c-p) assi y Foo Bar)

(c-p) if { equ ‘x ‘y } { write yes })
yes

(c-p)

2"8 Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00

Using Command Processor Utilities

Here are two examples that use the case-sensitive argument:

(c-p) if { equ Foo_Bar foo-bar, cas } { wri yes } { wri no})
no
(c-p)

(c-p) if { equal ‘x ‘X, cas } { wri Yes'”,” indeed. })
Yes, indeed.
(c-p)

Note that when a comparison involves the output of commands, case sensitivity applies to the values
being output into the command line, not to the names of the commands producing the output.
Command names (including CP variables) are always case insensitive.

Negating a Test (not)
The not command negates a value and writes the negated value to the standard output. Not converts

“»» (the null string) into “true” and everything else into the null string. The following example negates
a null string:

(C-p) not 69999)
true
(c-p)

The next example negates a nonnull string:

(c-p) not ‘{ not " })
(c-p)

The following example uses the not command with other commands:

(c-p) if {not ‘{equal foo bar}} {write hello})
hello
(c-p)

Doing an AND Test (and)

To do an AND test, use the and command.

(c-p) assi x one)

(c-p) assiy two)

(c-p) if { and {x} {y} } { write x and y })
x and y

(c-p)

(c-p) assi x one)

(C'p) aSSi y 699 l

(c-p) if { and {x} {y} } { write x and y })
(c-p)

093-000706 Licensed Material — Property of Data General Corporation 2_9

Using Command Processor Utilities

Doing an OR Test (or)

To do an OR test, use the or command. Two examples follow:

You can do an exclusive OR test with the if command. Two examples follow:

(c-p) assi x "7)

(c-p) assi y two)

(c-p) if {or {x} {y} } { write xory })
X ory

(c-p)

(c-p) assi x "")

(c-p) assiy ")

(c-p) if { or {x} {y} } { write x or y})
(c-p)

(c-p) assi x “””)

(c-p) assiy two)

(c-p) if {if {x} {not ‘y}; if {y} {not ‘x}} {wr x xor y})
X XOor Yy

(c-p)

(c-p) assi x one),

(c-p) assiy two).

(c-p) if { if {x} {not ‘y}; if {y} {not ‘x}} {wr x xor y})
(c-p)

Manipulating Phrases as Sequences

This section discusses commands that manipulate phrases as sequences: do-sequence, first, rest, last,

position, subphrase, and length. The tasks you can perform with them are as follows:

Execute a command repeatedly (do-sequence)

Write the first word of a phrase (first)

Write all but the first word of a phrase (rest)

Write the last word of a phrase (last)

Write the position of an expression in a phrase (position)
Write a subphrase (subphrase)

Write the length of a phrase (length)

2—1 0 Licensed Material — Property of Data General Corporation

093-000706

Using Command Processor Utilities

Executing Commands Repeatedly (do-sequence)

The do-sequence command executes a command repeatedly. The command has two required argu-
ments: name-and-phrase and body. Do-sequence executes the body once for each word in the
phrase with the specified name bound to the nth word on the nth iteration. If the phrase is the null
string, do-sequence does nothing.

The following examples show different uses of do-sequence:

(c-p) assign list all good boys)

(c-p) do-sequence {x list} {write .. x .. })
list ..

(c-p) do-sequence {x ‘list} {write .. 'x .. })

. all good boys ..

(c-p) do-sequence {x ‘‘list} {write .. x .. })

. all ..

. good ..

. boys ..

(c-p)

If you want to eliminate the space after the x value, you must enclose x with braces:

(c-p) do-sequence {x ‘list} {write .. {x}.. })
..all good boys..

The next example shows how to use do-sequence to set variables AA through JJ to 1 to 10:

(c-p) debug:define-variable j 0)

(c-p) do {x AABBCCDDEEFFGGHHIIJJ}),
(c-p) ‘¢ { debug:as j j+1; as ‘x ‘{debug:eval j} })

(c-p) AA)

1

(c-p)

Writing the First Word of a Phrase (first)

The first command writes the first word of a phrase. This is useful in macros (see “Writing Macros”
in Chapter 3). If you use the character keyword, first writes the first character of a phrase.

Following is a simple example:

(c-p) firstabc)
a
(c-p)

This example uses the character keyword:

(c-p) first abc def, character l
a
(c-p)

086-000167 updates Licensed Material — Property of Data General Corporation 2-11
093-000706-00

Using Command Processor Utilities

In the next two examples the first word contains spaces:

(c-p) first {ab}cd)
{ab}
(c-p)

(c-p) first foo(bar) baz)_
foo(bar)
(c-p)

The following two examples use first with other commands (including rest, described below):

(c-p) assign x now is the time)

(c-p) write ”*{first ‘x} ‘{rest ‘x} ...”)
"now is the time ..."

(c-p)

(c-p) write ”‘{rest ‘x} ‘{first ‘x} ?”)
"is the time now 2"
(c-p)

Writing the Rest of a Phrase (rest)
The rest command writes all but the first word of a phrase. Following is a simple example:
(c-p) restabc)

b c
(c-p)

Here are two more examples:

(c-p) rest {ab}cd)
c d
(c-p)

(c-p) rest foo(bar) baz)
baz
(c-p)

Writing the Last Word of a Phrase (last)
The last command writes the last word of a phrase. This is useful in macros (see “Writing Macros” in
Chapter 3). If you use the character keyword, last writes the last character of a phrase.

Following is a simple example:

(c-p) lastabc)
c
(c-p)

2-1 2 Licensed Material — Property of Data General Corporation 086-000167 updates
093-000706-00

Using Command Processor Utilities

This example uses the character keyword:

(c-p) last abc def, character)
f

(c-p)
In the next example the last word contains spaces:

(c-p) lastab {cd})
{cd}
(c-p)

Write the Position of an Expression in a Phrase (position)

The position command writes the numeric position (starting with position 0) of the first character in a
phrase that matches a specified regular expression. See Chapter 6 for a discussion of regular
expressions.

In this example, a CP variable x is assigned a pathname for a file, my_inventory_file. The position
command then returns the numeric position of and number of characters in my_inventory_file:

(c-p) assign x /somedir/otherdir/my_inventory_file)
(c-p) position my_inventory_file ‘x)

18 17

(c-p)

Write a Subphrase (subphrase)

Use the subphrase command to write part of a phrase. If you use the character keyword, subphrase
writes the specified number of characters from a phrase.

The following example continues the example from the position command. If you just want the
filename my_inventory_file instead of the entire pathname to be contained in a CP variable (here,
file), use the assign and subphrase commands:

(c-p) assign file ‘{subphrase 18 17 ‘x, character} l
(c-p) file)

my_inventory_file

(c-p)

093-000706 Licensed Material - Property of Data General Corporation 2-13

Using Command Processor Utilities

Write the Length of a Phrase (length)

The length command calculates the size of a phrase (in words, by default), which is useful when you
are lining up formatted output. If you use the character keyword, length writes the length of the

phrase in characters.

In the following example, the CP variables varl and var?2 receive values. Then, length writes the size
(in characters) of the two variables:

(c-p) assign varl 987654321)

(c-p) assign var2 32)

(c-p) length ‘varl, character; length ‘var2, character)
9

2

(c-p)

End of Chapter

2—1 4 Licensed Material - Property of Data General Corporation 093-000706

Chapter 3
Customizing Your Environment

This chapter describes how you can customize your environment. After defining terms and concepts,
the chapter tells how to do the following tasks:

® Write a macro

® Create and manage realms

e Change an argument’s default and implied values
® Create command aliases

® Save your customizations

Terms and Concepts

This section defines several terms that relate to customizing the environment.

Command

A command is a keyword that tells the CP what to do. Commands can occur at the beginning of a
line or following a semicolon. The CP recognizes three kinds of entities as commands: built-in
commands, macros, and CP variables.

When you execute a command, there is no visible difference among the various types of commands.
This regularity lets you concentrate on the task you are doing instead of learning a different syntax for
each kind of command. One exception to this regularity is that you cannot write a macro to
permanently set the current realm; a macro is executed in the realm in which it is defined and then
returns to the realm from which it was invoked. A macro can, however, set the current realm for the
remainder of the macro’s execution.

Built-in Commands

Built-in commands are part of the standard environment. Normally, for most common tasks you will
invoke built-in commands directly. For more complicated tasks you can use the built-in commands as
building blocks to create macros.

Macro

A macro is a collection of commands saved as a single unit for later invocation. Macros are especially
useful if you have a complex invocation of a series of commands that you use repeatedly.

093-000706 Licensed Material — Propert<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>