
@y Data General

Customer Documentation

Using the Documenter’s Tool Kit

on the DG/UX” System

Using the Documenter’s Tool Kit

on the DG/UXTM System

069-701039-00

For the latest enhancements, cautions, documentation changes, and

other.information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 069-701039

All Rights Reserved

Printed in the United States of America

Revision 00, May 1989

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS

DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S);

AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN

PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other information contained

in this document without prior notice, and the reader should in all cases determine whether any such

changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS

AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE

WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND

CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST

SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME

PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED

HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST

PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION

CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN

OF THE POSSIBILITY OF SUCH DAMAGES.

DG/UX is a trademark of Data General Corporation.

DOCUMENTER’S WORKBENCH is trademark of AT&T.

PL/1 is a trademark of Digital Research

TEKTRONIX is a trademark of Tektronix

Teletype is a U.S. registered trademark of AT&T.

UNIX is a U.S. registered trademark of AT&T.

VAX is a trademark of Digital Equipment

Excerpts from Virgil’s Aeneid were borrowed from The Aeneid of Thomas Phaer and Thomas Twyne: A

Critical Edition Introducing Metrical Typography. ed. Steven Lally, New York and London: Garland

Publishing (1986).

Copyright © AT&T 1988

Copyright © Data General Corporation 1988

All Rights Reserved

Printed in the United States of America

Certain portions of this document were prepared by Data General Corporation, and the remaining portions

were prepared by AT&T.

Using the Documenter’s Tool Kit on the DG/UXTM System

069-701039-00

Effective with DG/UX, Revision 4.10

Using the Documenter’s Tool Kit on the
DG/UX System

Introduction

~The Documenter’s Tool Kit Sampler

The Macro Package mm: A Tutorial

The Formatter nroff: A Tutorial

The Preprocessor tbl: A Tutorial

The Formatter troff: A Tutoria

The Preprocessor eqn: A Tutorial

The Preprocessor pic: A Tutorial

The Preprocessor grap: A Tutorial

The Macro Package my: A Tutorial

Finishing Up _

Table of Contents __ iii

Introduction

The Documenter’s Tool Kit programs provide tools of unusual precision for

arranging and modifying text. The family of programs included in the workbench

allows you considerable control over text and a wide range of functions. Without

going through a maze of menus, you are offered a large selection of text formatting

- commands that will help you draft and revise text. You can also define and name

your own formatting commands using conventions any beginner can quickly master.

You can make your own shapes, characters, pictures, figures, and form memos

and letters and store them to be quickly and easily used for other tasks. Most impor-

tant, the Documenter’s Tool Kit programs are an integral part of DG/UX, which

allows you to write a single script to edit several files at once, check spelling, com-

municate with other computers, and develop your own tools for sophisticated text

processing. On the other hand, if you only need a few tools for writing simple memos

and other uncomplicated text processing tasks, you can use the programs that way,

too. :

A few of the Documenter’s Tool Kit system’s tools are tbl, pic, and eqn. The

table-drawing tool, tbl,

makes all sorts of tables,

and what iS

best about tbl

iS that once

you make a

table you like,

you can save it for later use.

The picture drawing tool, pic, allows

Preface V

Introduction

different
---— and

eeeetreeeveeveneveeaeve

eqn, the tool for preparing equations, enables you to present accurate mathemati-

cal notation:

These tools are sensible and comfortable to use. The mathematical notation

given above, for example, was produced from this input:

sum fram 1=0 to infinity x sub i = pi over 2

eqn allows you to describe equations as you would describe them to another person.

You will find that a brief exposure to the eqn language will enable you to use it

without referring to the tutorial.

Following a first draft, you can revise your copy with tools such as diffmk and

hyphen, and you can check the formatting requests you have used with checkmm.

When you have completed your document, you can compile a table of contents and

an index.

vi Using Documenter’s Tool Kit

Formatting Commands

To use the Documenter’s Tool Kit programs, you need only know a few basic

concepts. The primary ones you can guess by looking at the Sampler. Unlike a sim-

ple text processor, the Documenter’s Tool Kit programs enable you to specify to a

fine degree precisely what you want. You type in your text and intersperse formatting

commands that state how you'd like your document to look. One glance at the

Sampler shows the obvious difference between text lines and formatting commands

(control lines). But it is worth emphasizing: control lines begin with a dot (.), and

the dot must occupy the leftmost position on the line. Only control lines can begin

with a dot because it tells the computer that what follows on the line is not text to be

printed, but a formatting command.

There are two types of formatting commands: requests and macros. You will

learn more about these as you read the tutorials. For now, you only need to know

two things about them.

First, most request names are one or two lower-case letters, and most macro

names are one or two upper-case letters. Both requests and macros, of course, are

lines that begin with a dot.

Second, both requests and macros are “open to argument." That is, if you don’t

like the way they behave (or rather, make your text behave), you can change them.

For example, somewhere in your text you need more than the one blank line that you

get with the .sp request. You can make this happen by following the .sp request with

an argument. If you need three and a half blank lines, you would follow the .sp with

a single space and then an argument:

These lines are separated by

.sp 3.5

three and a half spaces.

The formatted version of these three input lines would look like this:

These lines are separated by

three and a half spaces.

Preface vil

Formatting Commands

Similarly, you can give a macro an argument. If you want a display of text cen-

tered in the middle of normal text, you would use the display macro .DS and follow it

with the centering argument, C. Typing

DSC

This text is centered.

.DE

will give you this:

This text is centered.

-DS and .sp will accept other arguments as well, effectively multiplying the number of
fine-tuning knobs at your disposal.

Requests and macros can be followed by comments, which are frequently used as

reminders. Like a request or macro, a comment does not appear in output. Here’s

how they look:

.if n .sp 3.5 \" if nroff is the formatter, give me three and a half inches

if t .sp 1.75 \" but if troff is the formatter, I’d like half that much

The only things separating the request from the comment are spaces and the

string \". Because the line begins with a dot, we don’t need one preceding the \"

string. The comment will be protected from machine interpretation all the same. Do

not separate comments from requests with a tab; only spaces will be recognized as

valid request or argument delimiters.

One additional formatting command will complete a basic knowledge of the

Documenter’s Tool Kit language: the escape sequence (so-called because it always

includes the escape character, or backslash: \). Like requests and macros, an escape

sequence controls all text that follows it, and some require arguments. The differ-

ences between an escape sequence and requests and macros are that an escape

sequence does not appear on a line that begins with a dot, and no space intervenes

viii Using Documenter’s Tool Kit

Formatting Commands

between it and its arguments.

The escape sequence’s advantage over the other formatting commands is its abil-

ity to get into tight places. If you want to change a single word or just one character

without affecting anything else on a line, you can target just that word or character by

preceding it with an escape sequence. Let’s say you want to print a sentence using a

bold font, but one word in the sentence needs to be in italic. You can do this by

using the escape sequence together with requests and macros. You would type the

following:

.£t B

These are bold words with an \flitalic\fB word among then.

.f£t R

The printed results would look like this:

These are bold words with an italic word among them.

That is, after you used the font request (.ft) and its argument for bold (B), you can
make an exception to bold by using the font escape sequence (\f) and its argument for

italic typeface (I).

If you have special formatting requirements that the standard library of requests,

macros, and escape sequences cannot satisfy, you can fashion your own macros and

escape sequences and save them for later use. As you will see later in this tutorial,

the conventions for doing this are easy to learn and use.

Preface ix

Line Filling

To this point you have seen before and after versions of files: the ones you type in

and the ones you see come out in print. These two versions, as you may know, are

called input and output. An important effect of processing (what happens to your

input on its way to becoming output) is that the number of lines you get out is not

always the same as the number you typed in. You know, for example, that all the

control lines will disappear and that the spaces they once occupied will vanish. The

escape sequences (and the spaces they once occupied) also will disappear when your

input is processed. Similarly, the text in your input file will be formatted, line by

line, from left to right, according to the format you specified.

This activity of filling the page with formatted text is called line filling. That is, a

line will start filling from the left-hand margin and will continue until it gets to the

right-hand margin where it will drop to the next line at the left margin, and so forth.

When each line reaches the right-hand margin a number of things will be done,

depending on your instructions. The right-hand margin will be aligned (adjustment)

unless you ask for non-adjustment (.na). Words will be hyphenated according to rules

you specify, or will not be hyphenated if that’s what you want.

The practical point to be made about line filling is that you can turn it off or on

with the requests .fi (fill) and .nf (no fill). If you would like to set up columns (or any

other configuration of words for that matter) and have them come out exactly as you

typed them in, you can request no fill mode.

For example, if you processed the following file:

nf

These are

words that

make short

lines of input. ~-

.fi

the output would look like this:

x Using Documenter’s Tool Kit

Line Filling

These are

words that

make short

lines of input.

Using the fill request, however, would cause the formatter to automatically fill each

line with as many words as will fit on it. Here is the contents of the input file:

.fi

These are

words that

make short

lines of input.

And now the formatted output:

These are words that make short lines of input.

Preface Xi

Processing Input

Once you are ready to process your input files, you name the tools you used and

your file or files, and the UNIX system will prepare them and send them to a printer.

If you are preparing correspondence-quality text, you would be working with nroff

(pronounced EN-roff) requests and escape sequences. If you were also using the mm

(memorandum macros) macros, you would need to tell nroff that you had used them.

The line you would type looks like this:

nroff ~—mm my.file

This is called a command line. ‘The minus sign (—) tells the system that mm is a

macro package it must use when it processes my.file. The system will then consult

nroff and mm to fulfill the requests, macros, and escape sequences in your text.

Once your files have been processed, you will have two versions: input and output.

Processing never affects your original input file.

The output of files that are processed with mm or nroff can be sent to any

printer. This is also known as piping the output to a printer, and is indicated in the

command line by a vertical bar (|) between the command that formats the input file

and the name of the printer.

nroff —mm my.file | printer

After entering this command line, your formatted copy will be output on the printer.

The files that are processed with mmt or troff are piped to a typesetter:

troff -—mm my.file | typesetter

Only devices capable of producing typographical copy—phototypesetters, laser

printers, or sophisticated dot-matrix printers—may be used to produce troff output.

The command line should reflect the formatting commands in your file. If you

use requests that are unique to troff in your file, you must name troff in the command

line. Think of the command line as a declaration of the activity in each file. The

rules for how you make that declaration are loose in some cases and rigid in others.

Each tutorial will list the appropriate command lines to process your text. The fol-

lowing table shows a selection of command lines to give you a feel for the rules.

xii Using Documenter’s Tool Kit

Command Lines

Processing Input

Tools used Customary syntax Alternative syntax

mm macros

nroff

nroff and mm

neqn, nroff and mm

neqn, nroff, tbl and mm

troff and mm

tbl, nroff, and mm

pic, troff, and mm

eqn, pic, troff, and mm

tbl, eqn, pic, troff and mm

grap, troff, and mm

nroff ~mm file

nroff file

nroff ~mm file

neqn file | nroff -—mm

tbl file | neqn| nroff —mm

troff —mm file

tbl file | nroff -—mm

pic file | troff —mm

pic file | eqn | troff —mm

pic file | tbl | eqn | troff -mm

grap file | pic | troff -mm

mm file

none

mm file

mm —e file

mm —e file

mmt file

mm —t file

mmt —p file

mmt ~—e —p file

mmt —e —p —t file

mmt —g file

Preface xiii

The Documenter’s Tool Kit Sampler

The variety of text processing that the Documenter’s Tool Kit software offers can

be seen in the samples that appear in the following pages. The input files shown in

screens are those you type at the terminal. Each input file is named, and the com-:

mand you would use to process each is given after its screen. On the facing page is

the processed file: the version you would get from your printer or phototypesetter.

The examples of output in this sampler were processed for a standard 8.5x11-inch

NOTE| page and have been photo-reduced to fit on the pages of this manual. As a result,

the type sizes in the output examples will not correspond to the formatting instruc-

| tions shown in the input examples.

The input files are in /usr/lib/dtk/samples. You can copy any of the files into

your own directory to use as the basis for your text processing activities. For exam-

ple, the following sequence of commands copies the first sample, nroff.letter, into the

directory /usr/yourlogin.

$ed /usr/yourlogin <RETURN>

Sep /usr/lib/dwb/samples/nroff.letter nroff.letter <RETURN>

Many printers are capable of producing most of these samples. Beginning with

the eqn.stats file, however, producing the sample outputs will require sophisticated

printers or phototypesetters that have multiple fonts and graphics capabilities.

Because of the wide variety of printers, the commands that follow the screens of

input do not name any specifically. You will have to check with your system adminis-

trator to determine the printers (and printer names) available on your system.

If you want to read more about the formatting commands used in the Sampler,

refer to the alphabetical request index or summary beginning "The nroff/troff Techni-

cal Discussion" in the Documenter’s Took Kit Technical Summary for the DG/UX Sys-

tem.

Sampler 1

Sampler

File: nroff.letter

-in +0.5i1

October 14, 1984

.sp 2

.of

John Smith

Business Computer Systems, Inc.

190 River Boulevard

Durham, NC 27707

-Sp 2

Dear Mr. Smith:

.sp 2

.fi

I would like to be considered for the position of Document Production Coordinator

with Business Computer Systems, Inc.

I have a B.A. in English and have finished course work for a Masters in English.

Currently, I am assisting Steve Foley, Production Editor with Techno-Publishing

in Jonesville.

My duties consist of proofreading documents and coordinating graphics production.

.Sp

While I enjoy my position here, I know I am ready for more challenging work and

greater responsibility.

Our shop uses a computer running UNIX Systen V.

I am confident in my potential for growth with the Technical Writing Staff

at Business Camputer Systems.

I have enclosed my resume and two letters of recommendation.

Please feel free to contact my present supervisor with any questions you may have.

I am available for an interview at any time, and I look forward to hearing from

you.

sp 2

nf

Sincerely yours,

.sp 5

John Jones

41 Stanford Drive ©

Bridgewater, NJ 08807

sp 2

Enclosures: 3 |

Command line: nroff nroff.letter | printer

2 Using Documenter’s Tool Kit

October 14, 1984

John Smith

Business Computer Systems, Inc.

190 River Boulevard

Durham, NC 27707

Dear Mr. Smith:

I would like to be considered for the position of Document

Production Coordinator with Business Computer Systems, Inc.

I have a B.A. in English and have finished course work for a

Masters in English. Currently, I am assisting Steve Foley,

Production Editor with Techno-Publishing in Jonesville. My

duties consist of proofreading documents and coordinating

graphics production.

While I enjoy my position here, I know I am ready for more

challenging work and greater responsibility. Our shop uses

a computer running UNIX System V. I am confident in my

potential for growth with the Technical Writing Staff at

Business Computer Systems. I have enclosed my resume. and

two letters of recommendation. Please feel free to contact

my present supervisor with any questions you may have. I am

available for an interview at any time, and I look forward

to hearing from you.

Sincerely yours,

John Jones

41 Stanford Drive

Bridgewater, NJ 08807

Enclosures: 3

Sampler

Sampler

3

Sampler

File: mm.report

.TL

Work Progress Report — Second Quarter 1984

.AF "Business Camputer Systems, Inc.”

.AU "W. Williams” WW XF 665414 5398 7-123 bailey!www

Mr 0 -

.HU "Writing Assignments"

.P

I started work with the Technical Writing Staff on April 16.

My writing assignments are:

-BL

.LI

Documentation for the BCS Fortran campiler

-_DL

LI

I collected materials relevant to implementing programming languages

on the UNIX*

.FS *

Trademark of AT&T

FE

system.

LE

-LI

Documentation for the Distributed Transaction Processing System (DIPS) 2.0

.DL

.LI

I reviewed DIPS requirements, outstanding complaints about DIPS, and users’

suggestions for improving DIPS documentation.

LE

. LE

.HU "Other Activities"

.P

On June 16, I went to a conference, "Writing About Camputers,” at Acme State

College.

.SG

Command line: mm —TIp mm.report | printer

4 Using Documenter’s Tool Kit

Sampler

Business Computer Systems, Inc.

subject: Work Progress Report -- date: December 4, 1985
Second Quarter 1984

from; W. Williams

XF 665414

7-123 x5398

bailey! www

Writing Assignments

I started work with the Technical Writing Staff on April 16.
My writing assignments are:

@® Documentation for the BCS Fortran compiler

- I collected materials relevant to implementing

programming languages on the UNIX* system.

® Documentation for the Distributed Transaction
Processing System (DTPS) 2.0

~ I reviewed DTPS requirements, outstanding

complaints about DTPS, and users' suggestions for

improving DTPS documentation.

Other Activities

On June 16, I went to a conference, "Writing About

Computers," at Acme State College.

W. Williams

* Trademark of AT&T

Sampler 3

Sampler

File: mm.sales

.ds HF 3 3 3 3

.ND "October 30, 1984"

TL

New York Sales Assignments

.AU "A, B. Smith"

.AF "Business Camputer Systems, Inc.”

.MT "PROPOSAL" :

.P

Pending your approval, here are the sales assignments for New York for 1985.

.HU "New York”

DS

-TS

box tab(;);

1il.

district; sales representative

Manhattan ; Smith

Westchester; Snith

Albany ; Roberts

Syracuse; Smith

Buffalo;Roberts

TE

.DE

-SG

.AV "John Johnson: Director"

-NS

B. Roberts

.NE

Command line: mm —t —TIp mm.sales | printer

6 Using Documenter’s Tool Kit

Sampler

Business Computer Systems, Inc.

subject: New York Sales Assignments date: October 30, 1984

from: A. B. Smith

PROPOSAL

Pending your approval, here are the sales assignments for

New York for 1985.

New York

Tdistrict Sales representative |
}Manhattan Smith |
[Westchester Smith |
[Albany Roberts |
|Syracuse Smith . |
[Buffalo Roberts |
|

A. B. Smith

APPROVED:

John Johnson: Director Date

Copy to

B. Roberts

Sampler 7

Sampler

File: mm.letter

.LO AT "Research Staff"

.WA "James Lorrin, Ph.D.” "Director of Research"

Business Computer Systems, Inc.

190 River Boulevard

Durham, N.C. 27707

.WE

.LO SA "Dear Dr. Snith:"

-10 CN

.IA "Fred Smith, Ph.D."

Columbia University

116th Street

New York, NY 10019

.IE

.LO SJ "Summit Research Project”

.LT BL

-P

The experiements are almost complete.

We hope to finish up work in this area soon.

The first publication has been cleared by Steve.

I have already sent it to Several journals.

I expect to hear from them soon if the paper needs

revisions.

.P

We appreciate all the help you have given us.

We look forward to collaborating with you again.

.FC "Sincerely,"

.SG JL-der

.NS 5

.NE

.NS

J. Brown

.NE

Command line: mm —TIp mm.letter | printer

8 Using Documenter’s Tool Kit

Sampler

Business Computer Systems, Inc.

190 River Boulevard

Durham, N.C. 27707

December 4, 1985

CONFIDENTIAL

Fred Smith, Ph.D.

Columbia University

116th Street

New York, NY 10019

ATTENTION: Research Staff

Dear Dr. Smith:

SUBJECT: Summit Research Project

The experiements are almost complete. We hope to finish up

work in this area soon. The first publication has been

cleared by Steve. I have already sent it to several

journals. I expect to hear from them soon if the paper
needs revisions.

We appreciate all the help you have given us. We look

forward to collaborating with you again.

Sincerely,

James Lorrin, Ph.D.

Director of Research

JL-der

Enc.

Copy to

J. Brown

Sampler 9

Sampler

File: tbl language

TS

box, center;

ccc

11.

Language<tas) Authors<tTaB>Primary Use

.sp

APL<tTaB> [BM< tap» Mathematics, Applications

Basic<tap>Dartmouth<tap>Teaching, Applications

C<TaB>BTL<Tap>Systems, Applications

COBOL<TaB>Many<tTaB>»Business Applications

Fortran<tTap>Many<tap>Scientific Applications

LISP<taBoM.1.T.<tapArtificial Intelligence

Pascal <tas>Stanford<tas>Teaching, Systems

PL/1<tTas> IBM<tTap> Applications

SNOBOL4 <TaB> AT&T < TABD Applications

TE

Command line: tbl —TX tbl.language | nroff —mm —TIp | col | printer

10 Using Documenter’s Tool Kit

| banguage Authors Primary Use

|
[APL IBM Mathematics, Applications
[Basic Dartmouth Teaching, Applications
Ic BTL Systems, Applications
| COBOL Many Business Applications
{Fortran Many Scientific Applications
| LISP M.I.T. Artificial Intelligence
[Pascal — Stanford Teaching, Systems
|PL/1 IBM Applications

AT&T Applications| SNOBOLA

Sampler

Sampier

11

Sampler

File: tbl. bridges

.TS

box, center;

css

clele

rJ1ido.

Major New York Bridges

Bridge<tas>Designer<tTas> Length

Brooklyn<tap>J. A. Roebling<tas>1595

Manhattan<taB>G. Lindenthal] <1aB>1470

Williamsburg<tap>L. L. Buck<tas>?1600

Queensborough <1s)Palmer &< TAB 1182
<raB> Hornbostel

<TAB> <TAB> 1380

Triborough<Tap>O. H. Ammann<tap> _

<TAB>? TAB? 383

Bronx Whitestone<tap>O. H. Ammann<taB>2300

Throgs Neck<Tas>O. H. Anmann<tas>1800

TE

Command line: mm —t —TIp tbl.bridges | printer

12 Using Documenter’s Tool Kit

Sampler

qT Major New York Bridges |
| Bridge Designer | Length |

[Brooklyn . J. A. Roebling [| 1595 |
[Manhattan | G. Lindenthal | 1470 |
|Williamsburg | L. L. Buck | 1600 |
[Queensborough [Palmer & | 1182 |
| | Hornbostel | |

tT | | 1380 |
|Triborough | O. H. Ammann | |
| | | 383 |
TBronx Whitestone | O. H. Ammann | 2300 =|
Throgs Neck | O. H. Ammann | 1800 7

Sampler 13

Sampler

File: tbl.pres

ad n

-TS

center box tab(;);

cssss

efefifilil

raiaiftal.]..

American Presidents

=

Name ; Party ;Term; Election-Oppnts ; Notes

T{

Gerald

R. Ford

T} ;Republican; 1974-1977 ;Never elected;T[

Became V.P. when

Agnew resigned

T)

T{

Jinmy

Carter

T} ;Democratic; 1977-1981 ;1976—Ford ; Tf

Negotiated

Camp David

treaties

T}

T{

Ronald

Reagan

T} ;Republican ;1981-;T{

1980-Carter

Anderson

1984—Mondale

T};T{

Oldest

President

T}

.TE

Command line: mm —t —Tlp tbl.pres | printer

14 Using Documenter’s Tool Kit

Sampler

American Presidents| |

| Name | Party Term Election-Oppnts Notes |

|
[Gerald R. | Republican | 1974-1977 | Never elected T Became |

{Ford | | | | V.P. when |
| | | | | Agnew |

| | | | resigned |
[Jimmy T Democratic | 1977-1981 | 19576-Ford [Negotiated |

[Carter | | | | Camp David |
| | | | | | treaties |

| |
lTRonald [Republican |] 1981- | 1980-Carter | Oldest |
{Reagan | | | Anderson | President |

1984-Mondale

Sampler 15

Sampler

File: eqn.stats

.H 1 "Measures of Central Tendency: Mean, Median and Mode"

.P

The mean is the arithmetic average for a set of scores.

The formula for camputing a mean (M) is

.sp 2

Be
M ~=" {sum fram {i7="1} ton {x sub i] } overn

TES
The median divides ranked scores into halves.

Given that the \f2median interval\fP

is the score interval that contains the n/2nd largest score when scores

are ordered by size, the formula for canputing a median (Md) is

.sp 4

.DS

-EQ

Md ~=" left (pile {Lower”real above limit”of above median”interval}

right)

+

left (pile {width”of above median above interval}

right)

left [

{(n / 2) — left (pile {Cumilative

above frequency” up\ to

above the”median”TM interval }

right)]

over { pile {frequencyTMin above median”interval} }

right]

. EN

.DE

P

The mode is the most frequently occurring score in a group of scores.

Command line: eqn eqn.stats | troff —mm | typesetter

16 Using Documenter’s Tool Kit

Sampler

|. Measures of Central Tendency: Mean, Median and Mode

The mean is the arithmetic average for.a set of scores. The formula for computing a mean (M) is

The median divides ranked scores into halves. Given that the median interval is the score interval

that contains the n/2nd largest score when scores are ordered by size, the formula for computing a

median (Md) is

Cumulative

Lower real \ {width of) | pie fedian interval
Md =. limit of +} median

median interval | interval frequency in
median intervai |

The mode is the most frequently occurring score in a group cf scores.

Sampler 17

Sampler

lile: troff.sizes

xs

.sp 4

\s36The Size \sl0of characters is useful for emphasis .

or for meeting special reading needs such as making posters or aiding those

with poor eyesight.

The range of \fIpoint sizes\fR at a \fItroff\f{R user’s disposal is potentially

quite broad.

The actual limits in each case, though, are imposed by the individual printer

supporting a UNIX system.

Like control of typeface, or font, you can control size both before and in the

middle of a line.

The modification of character size also requires that we keep an eye on the size

of vertical space between lines of text.

\fItroff\fR, characteristically, puts the control in your hands:

.sp 1

-ps 12

.vs 14

This request is for a point size of 12 and should be followed by a vertical

space of 14.

-ps 14

.vs 16

A jump to 14, though, is quite a bit larger. That means our text will look best

with a vertical space of 16.

\fI.vs\fR enables you to space these lines of large type without fear of

overlapping characters.

.ps 22

VS 24

We can also change size on a word-by-word basis like this:

Whether you want \sl0ten \sl2twelve \sl4fourteen \sl6sixteen or \s20twenty,

~ an in-line command will do anything a before-the-line command will do. -

\sLODon’t forget to return to ten point unless you want all the rest of your

text in twenty point.

Command line: troff troff.sizes | typesetter

18 Using Documenter’s Tool Kit

Sampler

| . |

I he Size of characters is useful for emphasis or for meeting special reading needs
such as making posters or aiding those with poor eyesight. The range of point sizes at a troff user’s disposal

is potentially quite broad. The actual limits in each case, though, are imposed by the individual printer

supporting a UNIX system. Like control of typeface, or font, you can control size both before and in the

middle of a line. The modification of character size also requires that we keep an eye on the size of vertical

space between lines of text. troff, characteristically, puts the control in your hands:

This request is for a point size of 12 and should be followed by a vertical space of 14. A

jump to 14, though, is quite a bit larger. That means our text will look best

with a vertical space of 16. .vs enables you to space these lines of large type

without fear of overlapping characters. We can also change

size on a word-by-word basis like this: Whether

YOU WaNt ten twelve fourteen sixteen or twenty, an in-line

command will do anything a before-the-line command

will do. Don’t forget to return to ten point unless you want all the rest of your text in twenty point.

Sampler 19

Sampler

ile: troff.fonts

xs

.sp 4

ps 14

.vs 16

.ls 2

.P

However sophisticated your printer is, \fItroff\fR can probably handle your font

control .

By placing .ft on a line by itself before the line of text you want to change

or \f before the word or words you want to change, you can modify your typography.

.ft I

This is a line of italic made with .ft I (italic).

.br

.ft B

If you prefer a heavier emphasis, use bold roman type made with .ft B (bold).

.br

.ft H

For the clean appearance of a sans serif type, use .ft H (Helvetica).

-br

.ft R

Raman is the most popular, of course.

.P

The \f allows for a finer level of control:

The individual \flitalic\fR, \fBbold\fR, or \fHHelvetica\fR word can be done

in-line.

.P

All printers were not created equal, so consult your systems manager to find what

is available.

.ps 10

.vs 12

-ls l

Command line: troff —mm troff.fonts | typesetter

20 Using Documenter’s Tool Kit

~ However sophisticated your printer is, troff can probably handle your

font control. By placing .ft on a line by itself before the line of text

you want to change or \f before the word or words you want to change,

you can modify your typography. This is a line of italic made with ft

I (italic).

If you prefer a heavier emphasis, use bold roman type made with .ft B

(bold).

For the clean appearance of a sans serif type, use .ft H (Helvetica).

Roman is the most popular, of course.

The \f allows for a finer level of control: The individual italic, bold, or

Helvetica word can be done in-line.

All printers were not created equal, so consult your systems manager to

find what is available.

Sampler

Sampler

21

Sampler

File: troff.ad

xs

.sp 2

.ce ll

.ft B

-ps 24

Growing Computer Software Campany Seeks

.sp 4 .

.fp 4 GS

.ft GS

experienced

.sp 2

\s28C Programner

.sp 5

-fp4sS

.ft B

\s24Knowledge of

.vs 30

-ps +1

\fHUNIX System V\f£P

-ps -l

A Must

.Vs

.sp 5

Opportunity For \fIRapid\fB Advancement

.sp 6

-.ps 24

\v/—-0.21/Up\v’+0.2i’beat Working Environment

-sp 4

\s20Call 012-345-6789

.sp 2

or

.sp 2

To\h’—0.33m’ok In These Pages For Further Information

.ft R

-ps 10

Command line: troff troff.ad | typesetter

22 # Using Documenter’s Tool Kit

Sampler

Growing Computer Software Company Seeks

erpertenced

(© Srogrammer

Knowledge of

UNIX System V

A Must

Opportunity For Rapid Advancement

Pheat Working Environment

Call 012-345-6789

or

Lek In These Pages For Further Information

Sampler 23

Sampler

File: troff.aeneid

-in 1.2i

.sp 3

-ps 36

.ce l

}\h/-0. Sm’ (}\h/—-0. Sm’ [}\h’—-0. Sm’ [}\h/—-0. Sen’ [}\h/-0. Sa’ { JA’ 0. Sam’ (J\h’-0. Sin’ (J

\h’-0. Sm’ { }Nh’—-0. Sm’ {}\h/—0. Sm’ (}\h’—-0. Sm’ (Nn /-0. Sim’ (}\h/—0. Sm’ (Nh -0. Sm’ \

\h’-0. Sm? { }\h’—-0. Sm’ { J\h’—-0. Sam’ (]Nh’-0. Sm’ (JN’ -0.. Sm’ (]Nh/-0. Sin’ { JN’ -0.. Sm’ (J
\h/—-0. 5m’ { }\h’—-0. 5m’ {}J\h/—0. Sm’ { J\A/—-0. Sm’ (J\h/-0.. Sm’ [J\h/—0.. Sm’ { J\-0.. Sin’ (}\

\h’-0. Sm’ {}\h’-0. Sm’ [}\h’-0. Sm’ (}\h’-0. Sim’ (\h’—0. Sm’? { J\h’-0. 5m’ { J\h’—-0. Sin’ (\
\h’-0. Sin’ { }\h’/-0. Sm’ {}J\h’—-0. Sm’ (J\h’—-0. Sim’ [J\h’—-0. Sm’ (}\h’—0.. Sm’ (J \h/—-0.. 5m’ {

.sp 2

.ce 3

.I "\s24THE ARGUMENTES OF"

.sp 1

.I "\s22the thirteene bookes of Aeneidos,"

Sp 2

.B "\sllexpressed in verse."

.sp 3

.ls 2

nf

-ps 6

.om 15

-ps 10

.br

.B

1. AENEAS, \f2in the \(first, to \f3Lyby \f2land arriueth well.\f3

2. \f2The fall of \f3Troy, \f2and wofull dole, \

y\v’/-0.5/\h’-0. 35m’\s6e\sO\h/0.35m’\v’0.5’ second booke doth tell .\f£3

3. \f2The thyrd of wandringes speakes, and father dead, and laid full low.\f3

4. \f2In fourth Queene \f3Dido \f2burmes, & \(flames of raginge loue doth show.\f3

5. \f2The fift declareth plaies, and how the \(fleete with fier was cought.\f3

6. \f2The sixt doth speake of ghosts, and howe deepe \f3Plutoes \f2reygne was sought.

7. \f2The seuenth booke, \f3Aeneas\f2 bringes vnto his fatall land.\f3

8. \f2The eight prepareth war, and power how foes for to withstand.\f3

9. \f2The ninth of battels telles, and yet the captaine is away.\f3

10. Aeneas \f2greeuous wrath \f3Mezentius, \f2in the tenth doth slay.\f3

11. \f2The eleuenth in vnequall \(fight \f£3Camilla \f2castes to ground.\f3

12. \f2The twelfth with heauenly weapons giues to \f3Tumus \f2mortall wound.\f3

13. \f2The thirteenth weds A\h’-0.35’Eneas wife, and brings him to eternall life.

Command line: troff —mm troff.aeneid | typesetter

24 Using Documenter’s Tool Kit

Sampler

%,>,%,%,%,.0,¢.% soe Oe Oe OG PO PE OE PE OE OE OE

Oe

THE ARGUMENTES OF

the thirteene bookes of Aeneidos,

expressed in verse.

1. AENEAS, in the first, to Lyby land arriueth well.

2. The fall of Troy, and wofull dole, § second booke doth tell.

3. The thyrd of wandringes speakes, and father dead, and laid full low.

4. In fourth Queene Dido burnes, & flames of raginge loue doth show.

5. The fift declareth plaies, and how the fleete with fier was cought.

6. The sixt doth speake of ghosts, and howe deepe Plutoes reygne was sought.

7, The seuenth booke, Aeneas bringes vnio his fatall land.

8. The eight prepareth war, and power how foes for to withstand.

e . The ninth of battels telles, and yet the captaine is away.

10. Aeueas greeuous wrath Mezentius, in te tenth doth slay.

11. The eleuenth in vnequall fight Camilla castes to ground.

12. The twelfth with heauenly weapons giues to Turnus mortall wound.

13. The thirteenth weds A:neas wife, and brings him to eternall life.

Sampler 25

Sampler

File: pic.forms

.P

The forms that \fIpic\fR provides are

.sp 2

ein +1i

.PS

circle "circle"; move; box "box"; move; arrow “arrow” above

.PE

-Sp 2

-PS

ellipse "ellipse"; move; line "line" above; move; arc "arc"

.PE

.in -li

-P

\fIpic\fR’s language is intuitive, so making your own fomms is not hard.

For instance, ,

you can talk to \fIpic\fR as you would to sameone drawing shapes with a pencil:

-PS

-in +0.3i

ellipse; line right; arc; arc; arc; line down li; circle; arrow right; box dashed

line right; line dotted right; arc; arrow dashed; box "There."

.PE

-in -0.31

Since you can store these instructions in special cammands, you are able to

compile a personal library of shapes, naming them whatever you like:

DS I

input_output

molecular struct

solar system

.DE

And these you can even tailor later to suit your particular needs in any document.

For instance, the following example might be used to demonstrate the concept of

- processing:

-in +0.75i

.sp 1

.PS |

box "input"; arrow; ellipse "processing"; arrow; box "output"

-PE

—.in -0.75i

Command line: pic pic.forms | troff —mm | typesetter

26 Using Documenter’s Tool Kit

Sampler

a

The forms that pic provides are

arrow
—_—_———

arc

line _)
TT ,

your own forms is not h
ncil:

ard. For instance, you can talk to pic
so makinguage is intuitive,
rawing shapes with a

pepic’s lang
id to someone das you wou

\

Le----7 J

hese instructions in special commands, you are able
 to compile a personal

Since you can store t them whatever you like:library of shapes, naming

input_output

molecular_struct

solar system r instance, the

r particular needs in any documen
t. Fo

e the concept of processing:And these you can
ev

following example mi

Sampler 27

The Macro Package mm

Introduction

Formatting the Body of Your Document

Formatting Lists (.BL, .DL, .AL) |

Formatting Footnotes (.FS, .FE)

Creating Numbered Headings (.H)

Creating Unnumbered Headings (.HU)

Displays (.DS, .DE, .DF) |

Creating Headers and Footers (.PH, .EH, .OH, .PF, .EF, .OF)

Formatting the Beginning of a Formal

Memorandum |

Titles and Authors (.TL, .AU)

The Name of Your Firm (.AF)

Choosing the Memorandum Style (.MT)

Formatting a Business Letter

Letter Type (.LT)

Addresses (.WA, .WE, .IA, .IE)

Letter Options (.LO)

Formatting the End of Your Document

Formal Closing (.FC) and Signature Block (.SG)

Approval Line (.AV)

Table of Contents

CON W bb
10

11

12

14

15

17

17

20

21

21

21

23

23

24

The Macro Package mm

Copy to Lists and Other Notations (.NS, .NE)

Moving On

ii Using Documenter’s Tool Kit

24

26

Introduction

This tutorial shows you how to use mm, a collection of macros used to format

letters, reports, memoranda, papers, manuals, and books.

You should be familiar with the following terms and tools to benefit fully from the

pages ahead:

TM You should know what a file and directory are and how to create them. See

Using the DG/UX System (069-701035).

= You should know how to use a DG/UX text editor (for example, ed or vi) to |
create and change your own documents. See Using the DG/UX Editors (069-

701036). | |

m You should know how to run programs with options and arguments. See Using
the DG/UX System (069-701035).

For a detailed description of the mm macros, refer to the chapter "mm Technical

Discussion" in the Documenter’s Tool Kit Technical Summary for the DG/UX System.

For more about the principles of text formatting, see the tutorial "The Formatter

nroff" in this manual, Using the Documenter’s Tool Kit on the DG/UX System.

You should use mm as you read through this tutorial, so that when you finish, you

will be able to format documents with mm using its defaults. For some macros, you

will be able to refine how they work with arguments. This tutorial provides several

examples of lines before and after formatting; closely compare the input lines to the

output lines to solidify your understanding of how the mm macros work.

The Macro Package mm 1

Formatting the Body of Your Document

Suppose your file named report.in contains the following lines:

.P

I started work with the

Technical Writing Staff on April 16.

My writing assignments are: .

documentation for the BCS FORTRAN Campiler

and

documentation for the Distributed

Transaction Processing System (DIPS) 2.0.

.P

My other activities this quarter were:

I went to a conference, "Writing About Camputers,"

at Acme State College,

and I canpleted a group paced course

offered by \s-lAT&T\s0O Bell Laboratories Systems Training Center,

"Overview of \s-lUNIX\sO System Intemals,”

on June 18 and 19.

To format this file, type

mm -Tip report.in > report.out

This command line formats report.in using the mm package and puts the result in a

file named report.out. The option -TIp prepares the result for a wide range of output

devices. Ask your system administrator the device name of your local printer.

The .P appearing in report.in is an mm macro that creates a new paragraph. The

dot in column one cues the formatter to the presence of a line that should be exe-__

cuted rather than printed, that is, a control line. The upper-case letter P that follows —

the dot specifies the control that you want the formatter to exert. After you use the

formatter, report.out should look something like this:

2 Using Documenter’s Tool Kit

Formatting the Body of Your Document

I started work with the Technical Writing Staff on April 16.

My writing assignments are: documentation for the BCS

FORTRAN Compiler and documentation for the Distributed

Transaction Processing System (DTPS) 2.0.

My other activities this quarter were: I went toa

conference, "Writing About Computers," at Acme State College

and I completed a group paced course offered by AT&T Bell

Laboratories Systems Training Center, "Overview of UNIX

System Internals,” on June 18 and 19.

Constraints that are imposed by your terminal or printer may put more or less
text on a given line than is shown here. The important thing to notice is that

report.out does not look the same as report.in: there’s a page number at the top,

and lines are filled out from the left-hand margin, continuing until the right-hand mar-

gin is reached. |

Notice that .P left-justifies paragraphs by default. You can give .P the argument 1
(type .P 1) to indent the first line of a paragraph five spaces. Try .P 1 to change the
paragraph style in report.out.

Formatting Lists (.BL, .DL, .AL)

Suppose that you want to list the work done for your writing assignments.

Change your file named report.in to look like this:

The Macro Package mm__ 3

Formatting the Body of Your Document

.P

I started work with the

Technical Writing Staff on April 16.

-P

My writing assignments were

.AL

-LI

documentation for the BCS FORTRAN Campiler

.DL

LI

I collected materials relevant to implementing

programming languages on the unix systen.

-LI

I met and talked with BCS FORTRAN developers.

LE

-LI

documentation for the Distributed Transaction

Processing System (DIPS) 2.0.

.DL

.LI

I reviewed DIPS requirements, outstanding complaints

about. DIPS, and users’ suggestions for improving

DIPS documentation.

LI

I attended two monthly DIPS planning meetings.

LE : |

. LE

.P

My other activities this quarter were:

I went to a conference, "Writing About Camputers,”"

at Acme State College

and I campleted a group paced course

offered by amit Bell Laboratories Systems Training Center,

"Overview of uNIx Systen Intermals,"

on June 18 and 19.0

Type

mm —Tip report.in > report.out

to put the result of formatting the modified text into a file:

4 Using Documenter’s Tool Kit

Formatting the Body of Your Document

I started work with the Technical Writing Staff on April 16.

My writing assignments were

1. documentation for the BCS FORTRAN Compiler

~ I collected materials relevant to implementing

programming languages on the UNIX system.

-— I met and talked with BCS FORTRAN developers.

2. documentation for the Distributed Transaction

Processing System (DTPS) 2.0.

- I reviewed DTPS requirements, outstanding

complaints about DTPS, and users’ suggestions for

improving DTPS documentation.

~ I attended two monthly DTPS planning meetings.

My other activities this quarter were: I went toa

conference, "Writing About Computers," at Acme State College

and I completed a group paced course offered by AT&T Bell

Laboratories Systems Training Center, "Overview of UNIX

System Internals," on June 18 and.19.

All mm lists share the same general structure: they begin with a list-initialization

macro such as .AL; they specify items with the list-item macro, .LI; and they end with

-LE, which is the list-end macro. Here’s an example of an automatically incremented

list:

The Macro Package mm _ 5

Formatting the Body of Your Document

-AL

LI

The capital of Massachusetts is Boston.

-LI

The capital of New York is Albany.

-LI

The capital of North Carolina is Raleigh.

.LE

If you were to type these lines into a file called my.file, and then typed

mm my.file

your processed file would look like this:

1. The capital of Massachusetts is Boston.

2. The capital of New York is Albany.

3. The capital of North Carolina is Raleigh.

The list-initialization macro that you choose usually determines the mark that appears

before each list-item. For example, the .AL macro produces a numbered list by

default.

The file report.in uses two types of lists: a dash list (starting with .DL) nested

inside an automatically incremented list (.AL). Before the .LE associated with .-AL

occurs, .DL and associated .LIs appear twice. Whenever the formatter encounters a

list-initialization macro, it puts everything (including other lists) on hold and attends

to that list. When the .LE that ends the first dash list appears, the formatter picks up

where it left off; notice that the list item between the dash lists becomes an automati-

cally incremented item.

6 Using Documenter’s Tool Kit

Formatting the Body of Your Document

Formatting Footnotes (.FS, .FE)

In your report, you should acknowledge that UNIX is a trademark of AT&T. To

do this, you can use a footnote.

.DL

.LI

I collected materials relevant to implementing

programming languages on the un1x* system.

FS *

Trademark of ATsT

FE

-LI

I met.and talked with BCS FORTRAN developers.

LE

NS
Two macros delimit the text of a footnote: .FS signals the beginning, and .FE sig-

nals the end. These two macros are called a macro pair, since you cannot use one

without the other. Think of a macro pair as you think of parentheses; it is incorrect

to use the open parenthesis without the close, and vice versa.

There are two ways to label a footnote in your document:

1. You can choose your own label by giving the .FS macro an argument. The

label that you use in the document should be the label you use with .FS, to

avoid confusion. In the example above, an asterisk is used as the footnote

label, producing a footnote that looks like this:

* Trademark of AT&T

The Macro Package mm /7

Formatting the Body of Your Document

2. Rather than use a label, you can number footnotes automatically with the

characters *F.

LI

I collected materials relevant to implementing

programming languages on the UNIX*F system |

.FS

Trademark of AT&T

FE

This format produces a footnote that looks like this:

1. Trademark of AT&T

if this is the first time you use *F in the document. If it’s the second time,

your footnote is |

2. Trademark of AT&T

and so on.

In the example above, an asterisk was used to label a footnote, but you can use

any label or more than one (for example .FS ***). Your document may contain both

labeled and automatically numbered footnotes. If you use *F in the document, do

not give the associated .FS macro a label, or you will get results that are hard to sort

out.

Labeled footnotes do not affect the incrementation of numbered footnotes.

NOTE

Creating Numbered Headings (.H)

There are two categories of activities described in report.in: writing assignments

and everything else. To emiphasize these categories in report.out, use section head-

ings. Use .H with an argument to create numbered section headings:

8 Usina Documenter’s Tool Kit

Formatting the Body of Your Document

-H 1 “Writing Assignments"

-P

I started work with the Technical Writing Staff on April 16.

.BL |

etc. etc.

-H 1 “Other Activities"

.BL

etc. etc. a,
The first argument to .H provides the numbered heading level and the second

argument becomes the heading text. Enclose the heading text in double quotes if it

contains spaces (for example "Second Level Heading"). For example

LT
produces headings like the following:

The Macro Package mm_ 9

Formatting the Body of Your Document

1. First

1.1 Second Level Heading

1.2 Another Second Level Heading

1.2.1 Third Level Heading

1.2.2 Another Third Level Heading (you can use up to seven levels)

2. Another First Level Heading

2.1 Second Level Heading

Creating Unnumbered Headings (.HU)

If you do not want to number your headings, you would use .HU:

.HU "Other Activities"

-HU acts the same as .H except that no heading mark is printed. When you use

-H and .HU together, .HU increments the counter for level 2:

-H 1 First

.H 2 “Second Level Heading”

.HU "First Unnumbered Heading"

.HU "Second Unnumbered Heading"

.H 2 "Second Level Heading"

produces headings like these:

10 Using Documenter’s Tool Kit

1. First

1.1 Second Level Heading

First Unnumbered Heading

Second Unnumbered Heading

1.4 Second Level Heading

Displays (.DS, .DE, .DF)

mm gives you two ways to keep text blocks together: static displays and floating

Formatting the Body of Your Document

displays. Use the macro pair .DS and .DE to delimit static displays, which appear in —

the same relative position in your output as they do in your input. You can give .DS

an argument to indent the whole display (by default approximately two spaces), as in

the following example:

DS I

FORTRAN ——- a programming language

used for scientific applications,

circuit analysis systems,

statistical packages,

and applications for engineers.

-DE

and in academia for a variety of applications, including:

produces output like this:

FORTRAN -- a programming language

used for scientific applications,

and in academia for a variety of applications, including:

circuit analysis systems,

statistical packages,

and applications for engineers.

Notice that displays leave text exactly as you typed it, unlike the paragraph macro,

The Macro Package mm 11

Formatting the Body of Your Document

which fills in the line from the lcft-hand margin to the right (unless you give .DS a

second argument; see the chapter "mm Technical Discussion" in the Documenter’s

Took Kit Technical Summary for the DG/UX System. If you use .DS C instead of .DS

I in the example above, each line of text in the display will be centered:

FORTRAN -- a programming language

used for scientific applications,

and in academia for a variety of applications, including:

circuit analysis systems,

statistical packages

and applications for engineers.

If you want to center the entire block of text, rather than each line, use .DS CB:

FORTRAN -- a programming language

used for scientific applications,

and in academia for a variety of applications, including:

circuit analysis systems,

statistical packages

and applications for engineers.

A floating display, delimited by the .DF/.DE macro pair, "floats" through the

input text to the top of the next page if there is not enough room for it on the current

page; thus text that follows a floating display in the input file might precede it in the

output file. The display text appears as you typed it, like the static display.

You cannot nest displays and footnotes, in any combination, and you cannot put

section headings within displays or footnotes.

Creating Headers and Footers (.PH, .EH, .OH, .PF,

.EF,.OF)

Another handy set of mm macros formats page headers and footers. All header

and footer macros take an argument of the form:

jet

"’left-part’center-part’right-part

This is a single argument, enclosed in double quotes and consisting of three parts,

each part surrounded by delimiters (here, single quotes). In your output, these three

parts are left-justified, centered, and right-justified. For example,

PH "“W. Williams~ Technical Writing Staff~ Page \\\\nP~ "

produces a page header like the following:

W. Williams Technical Writing Staff Page 1

12 Using Documenter’s Tool Kit

Formatting the Body of Your Document

at the top of the first page of the document. The page number changes appropriately

for pages that follow.

You might wonder how \\\\nP in the input became 1 in the formatted file. P is a

number register that contains the page number (do not confuse the number register P

with the macro .P). Specifying \\\\nP in the argument to the page header macro tells

_mm to print the contents of register P in the page header. This is not how you usu-

ally access number registers, but that’s beside the point for now. You can read about

this number register in the chapter "mm Technical Discussion" in the Documenter’s

Tool Kit Technical Summary for the DG/UX System.

If you need to use an apostrophe (’) within part of the header, use another char-

acter for the part delimiter:

"*xLetTMs put this left*This center*Let’s put this right*"

If you don’t want to specify all three parts of a header, you don’t have to. For
example, leave out the left-part and center-part like this:

_PH OU ""\\\\nPTM

If you don’t specify a page header, the page number, enclosed by hyphens,

appears in the center of your page.

The other header macros work the same way that .PH does: .EH prints a line at

the top of each even-numbered page immediately after the page header, and .OH does

the same for odd-numbered pages.

Footer macros work like header macros: use .PF for lines at the bottom of all

pages, .EF for even-numbered pages, and .OF for odd-numbered pages. If you don’t

specify a page footer, you get a blank line. You can specify headers and footers any-

where in your file; they go into effect as soon as you use the appropriate macro.

The Macro Package mm 13

Formatting the Beginning of a Formal

Memorandum

You can show the title and the author’s name at the beginning of report.in. This

style, the formal memorandum, involves a special sequence of macros at the begin-

ning of your input file:

(
Work Progress Report — Second Quarter 1984

.AF "Business Camputer Systems, Inc."

.AU "W. Williams" WW NY HDOT 1234 4-321 unix!ww

.MT 0

.P

I started work with the

Technical Writing Staff on April 16...

NO
If you use any of the formal memorandum macros above, you must use them in

the order shown to avoid a formatting error. Also, do not put any text or blank lines

before .TL, or you will get a formatting error (parameter setting macros and requests

are all right).

If at the beginning of your file you use these macros and then specify page

headers, the header that you specify appears on the second and following pages, not

the first. Page footers that you specify at the beginning of the file appear on the first

and following pages. |

The example above produces a mast for report.out:

14. Using Documenter’s Tool Kit

Formatting a Formal Memorandum

AT&T Business Computer Systems, Inc.

subject: Work Progress Report —— date: November 1, 1985

Second Quarter 1984

from: W. Williams

NY HDQT

4-321 x1234

unix! ww

I started work with the Technical Writing Staff om April 16.

Titles and Authors (.TL, .AU)

Anything after the title macro .TL appears beside the word subject: in the format-

ted report. If your paper has more than one authc-, use a separate .AU macro for

each one, for example

-AU "W. Williams" WW NY HDOP 1234 4-321 unix!ww

.AU “J. Foley" JF XF 665415 6666 7-321 machine _6!jf

_*%

.AU is followed by the author’s name (W. Wi Iliams), initials (WW), company

location (NY), department (HDQT), telephone » umber (1234), office room number

(4-321), and machine address for electronic mail (ianix!ww). If you need to, you may

specify the author’s title with .AT, which immedi at:ely follows -AU for the given

author. For example:

The Macro Package mm 15

Formatting a Formal Memorandum

AT Supervisor "Technical Writing Staff"

This title will appear in the signature block, which is discussed later.

146 Using Documenter’s Todkit

Formatting a Formal Memorandum

The Name of Your Firm (.AF)

After your name (.AU and .AT), format the name of your firm with .AF. The

default for .AF is "AT&T Bell Laboratories," which will appear when you do not use

.AF. (You can change this default by asking your system administrator to edit the file

/usr/lib/macros/strings.mm. See the chapter "mm Technical Discussion" in the

Documenter’s Tool Kit Technical Summary for the DG/UX System.) This macro puts

its argument in bold letters in the upper right-hand corner of the page.

.AU "W. Williams" WW NY HDOT 1234 4-321 unix!ww

.AT Writer "Technical Writing Staff"

.AF "Business Camputer Systems, Inc."

If you specify more than one author and more than one firm name, the last firm

that you specify appears in the upper right-hand corner of the page.

If you do not give .AF an argument, you suppress printing the name of your firm

and the labels subject: date: and from:, which are associated with formal

memoranda. However, the information you provide .TL and the other formal

memorandum macros will appear in their usual positions at the top of the page.

Choosing the Memorandum Style (.MT)

-MT specifies the formal memorandum style (versus the business letter style,

described below). If you use the formal memorandum style, you may use an areu-

ment to specify one of three types: the memorandum, the released-paper, or the

external letter. The mast above was produced with .MT 0, which corresponds to the

memorandum type. If you do not provide an argument to .MT, or if you type .MT 1,

you will produce a slightly altered memorandum type mast; MEMORANDUM FOR

FILE will appear a few lines after the last line of information about the author

(unix!ww).

The Macro Package mm 17

Formatting a Formal Memorandum

AT&T Business Computer Systems, Inc.

subject: Work Progress Report —~— date: November 1, 1985

Second Quarter 1984

from: W. Williams

NY HDQT

4-321 x1234

unix ! ww

MEMORANDUM_FOR_FILE

I started work with the Technical Writing Staff on April 16.

Thus by giving .MT different arguments, and changing nothing else, you make the

same beginning macros (.TL, .AU, etc.) generate slightly different masts for the

memorandum type. The mm technical discussion in the Documenter’s Tool Kit

Technical Summary for the DG/UX System lists all the arguments available for .MT.

You get an entirely different mast, associated with the released paper type, by

specifying .MT 4 instead of .MT 0. The released paper mast looks something like

this:

Work Progress Report —- Second Quarter 1984

W. Williams

AT&T Business Computer Systems, Inc.

I started work with the Technical Writing Staff on April 16.

18 Using Documenter’s Tool Kit

Formatting a Formal Memorandum

You can get the mast associated with the external letter type by specifying .MT 5.

The external letter mast looks something like this:

Work Progress Report -——

Second Quarter 1984

November 1, 1985

I started work with the Technical Writing Staff on April 16.

The Sampler in this guide shows memoranda laid out with formal memorandum mac-

ros, before and after formatting.

The Macro Package mm 19

Formatting a Business Letter

In contrast to the formal memorandum style produced with .MT, you can obtain

an entirely different style using a set of macros designed to produce common business

letters.

Suppose that you wanted to include information from report.in in a full-blocked

letter (the addresses, salutation, and so on, are left-justified). Instead of using the

sequence .TL, .AU, .MT, use the following lines:

.WA "W. Williams”

Business Camputer Systems, Inc.

190 River Boulevard

Durham, NC 27707

WE

.LO SA "Dear Mr. Smith:"

.IA "Bob Smith" "Personnel Chief"

Sunmit Research Canpany

38 River Road

Summit, NJ 07901

IE

LT FB

-P

I enjoyed meeting with you last Tuesday.

Here, as I promised then, is a description

of my activities with Business Computer Systems, Inc.

.P

I started work with the Technical Writing Staff on

April 16.

etc. etc. etc.

.FC "Sincerely"

-SG

20 Usina Documenter's Tool Kit

Formatting a Business Letter

Letter Type (.LT)

mm offers four types of business letters; choose one by giving .LT (the letter type

macro) an argument: |

-LT FBproduces the full-blocked type (as above)

-LT SBproduces the semi-blocked type

-LT BLproduces the blocked type

-LT SPproduces the simplified type

The chapter "mm Technical Dicussion" in the Documenter’s Tool Kit Technical Sum-

mary for the DG/UX System explains these letter types.

Addresses (.WA, .WE, .IA, .IE)

The macro pair .WA and .WE formats the writer’s address, and the pair .IA and

IE formats the "inside" or recipient’s address. You must give an argument (the

writer’s name) to the macro .WA, but with .IA, this argument is optional. You also

have the option of specifying a title (for example Personnel Chief) as a second argu-

ment to both macros.

Letter Options (.LO)

Use the letter-options macro .LO to format several common components of a

business letter; the example above prints a salutation (.LO SA "Dear Mr. Smith:") and

the line "CONFIDENTIAL" (.LO CN). You can produce other components of a

letter by giving other arguments to .LO. For example, .LO SJ prints a subject line.

SUBJECT:

If you specify the line .LO SJ "Description of Activities" for any business letter type

besides the simplified type, the line prints the following on the second line below the

salutation:

SUBJECT: Description of Activities

The Macro Package mm _ 21

Formatting a Business Letter

If you use the simplified type, this control line produces:

DESCRIPTION OF ACTIVITIES

You must use .WA and .WE, .IA and .IE, and .LT in that order, or you get a for-

matter error. Also, if you use any of these letter macros in the same file you that use

formal memorandum macros (for example, .TL or .MT), you will get confusing

results. The Sampler in this guide shows a business letter using these macros, before

and after formatting.

22 Using Documenter’s Tool Kit

Formatting the End of Your Document

Most macros to format the end of a document work with both formal memoranda

and with business letters.

Formal Closing (.FC) and Signature Block (.SG)

To close report.in with "Yours very truly," use .FC after the body of the docu-
ment. If this closing seems too formal, specify an argument to .FC for a different

closing:

.FC "Sincerely yours ,"
-G

.SG (for signature line) prints each author’s name after the formal closing; other-
wise each name appears a few spaces down from the last line of the body of the

memo. The formatter collects the author’s name from .AU (or .WA) for .SG to use.

For example, the following lines were used to specify authors above: |

.AU "W. Williams" WW NY HDOT 1234 4-321 unix!ww

.AT Writer “Technical Writing Staff" |

.AU "J. Foley" JF XF 665415 6666 7-321 machine 6!jf

.AT Supervisor “Technical Writing Staff"

Now, if you use .FC "Sincerely yours," and .SG at the end of your report (as above),

the following signature block will appear centered in the output:

The Macro Package mm = _ 23

Formatting the End of Your Document .-

Sincerely yours,

W. Williams

Writer

Technical Writing Staff

J. Foley

Supervisor

Technical Writing Staff

Three blank lines are left above each name for an author’s signature. You can use

either .FC or .SG by itself.

Approval Line (.AV)

If your memorandum requires a line for a signature signifying formal approval,

use .AV:

.AV "Todd Doe"

produces

APPROVED:

Todd Doe Date

You can use .-AV anywhere on the page, but it is most commonly used between the

signature block and the “Copy to” list.

Copy to Lists and Other Notations (.NS, .NE)

Use the macro pair .NS and .NE to print notations for lists of attachments or

"Copy to" lists after the signature block. For example:

24 Using Documenter’s Tool Kit _

Formatting the End of Your Document

.NS

J. Foley

J. Jones

W. Williams

.NE .

prints

Copy to

J. Foley

J. Jones

W. Williams

List the recipients of your document between .NS and .NE. This macro pair pro-
vides proper spacing and breaks notations properly across pages.

Use arguments to .NS to get more specific "Copy to" lists. For example:

.NS 1

Bill Taylor

-.NS 2

J. Craven

A. Greenland

.NE

produces

The Macro Package mm = = 25

Formatting the End of Your Document

Copy (with att.) to

Bill Taylor

Copy (without att.) to

J. Craven

A. Greenland

Some examples of memoranda and business letters formatted with mm appear in

the Sampler at the beginning of this User’s Guide.

Moving On

You now have a good grasp of the formatting power of mm. This tutorial was not

intended to teach you everything about mm; it was meant to sketch out enough for

you to start using mm right away. Read the chapter "mm Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System to learn the techni-

cal intricacies of mm. |

26 Using Documenter’s Tool Kit

The Formatter nroff

Introduction

Requesting Space (.sp) and Indentation (.ti, .in)

Line Filling (.nf, .fi) and Line Breaks (.br)

Hyphenation (.hy, .nh, .he, .hw)

Centering (.ce)

Justification, Unpaddable Space (.ad, na)

Setting Tabs (.ta) |

Selecting a Font (.ft)

Margins (.po), Line Length (.1)

Page Length (.pl), Page Breaks (.bp)

and Page Numbers (.pn)

Keeping Lines Together (.ne)

Defining a String (.ds)

Table of Contents

10

12

13

15

17

18

19

The Formatter nroff

Using Number Registers (.nr)

Creating a Simple Macro (.de)

Moving On

Using Documenter’s Tool Kit

21

23

26

Introduction

nroff is a text formatter for typewriter-like printers and terminals. A text for-

matter manipulates text by interpreting special commands that you place between the

lines for which you want formatted output. nroff allows you to format a variety of

documents, including letters, reports, and books. You will learn the basics of nroff

by using this tutorial, following the examples that it provides.

The prerequisites to benefit from this tutorial are as follows:

m You should know what a file and directory are and how to create them. See

Using the DG/UX System (069-701035).

m You should know how to use a text editor (for example, ed or vi). See Using

the DG/UX Editors (069-701036).

mTM Some experience with mm is helpful, but not necessary, in making the most of

this tutorial. See the tutorial "The Macro Package mm" in this manual.

requests that you can use to prepare text for phototypesetters. For details about

using nroff, refer to the "nroff Technical Discussion" in Documenter’s Tool Kit Techn-

ical Summary for the DG/UX System.

a "The Formatter troff" in this guide describes a related but more powerful set of
NOTE

—-

After reading this tutorial, you will be able to control many attributes of your for-

matted document, including the margins, indentation, hyphenation, characters per

line, and lines per page. You also will know how to use number registers, define

strings, and create simple personal macros. This tutorial provides several examples of

lines before and after formatting; closely compare the input lines to the output lines

to solidify your understanding of nroff’s workings.

The Formatter nroff 1

Requesting Space (.sp) and Indentation (.ti,
.in) OS

Suppose you have a file named file.in that contains these lines:

I’m glad I’m not a pair of ragged claws, scuttling across the floor

of seafood restaurants.

This is the last line of this paragraph.
.sp 2

.ti +5m

This is the first line of a new paragraph.

This is the second line.

This is the third line.

This is the fourth line, and so on.

Besides text, file.in contains two requests: .sp and .ti. .sp 2 requests two lines of

space between text lines, and .ti +5m requests that the next text line be indented five

ems (one em is about the width of the letter m). The dot (.) in column one alerts

nroff to the presence of a line that should be executed rather than printed, that is, a

control line. The two lower-case letters that follow this dot specify the control that

you want nroff to exert. Arguments to requests, like 2 to .sp and +5m to .ti, refine

how they work.

Requests are the simplest control lines that the Documenter’s Tool Kit offers.

Each request performs a single formatting task. Macros, in contrast, combine

requests in special ways, and thus do several formatting chores. Later in this tutorial,

you will learn how to create and use macros in addition to those that are already avail-

able with mm.

To format file.in and to put the results into a new file, type this command line:

nroff file.in > file.out

You can look at file.out on your terminal after the shell prompt returns, or you can

send file.out to a printer with

cat file.out | Ip

or send it directly with

2 Using Documenter’s Tool Kit

Requesting Space and Indentation

nroff file.in | Ip

A printed version looks like this:

I’m glad I’m not a pair of ragged claws, scuttling across the floor

of seafood restaurants. This is the last line of this paragraph.

This is the first line of a new paragraph. This is the

second line. This is the third line. This is the fourth line, and

So on.

Your printer or terminal may insert more or less text on a given line than this

example shows. The important thing to notice is that file.out does not look the same

as file.in. Using nroff, you have the power to make file.out look precisely the way

you want. You can command nroff to insert more (or fewer) blank lines or to indent

more (or fewer) spaces by changing the arguments to these two requests. Try putting

three spaces between the paragraphs, and indenting the new paragraph seven ems.

The .ti request (temporary indent) indents only the line that follows it; the second

and following lines of text return to the left margin. This request is helpful when for-

matting paragraphs. To move all output lines to the right seven spaces, use .in

instead of .ti; then the indent is more than temporary. The contents of file.in looks

like this:

(_ is flush left.
-in +7m

Notice that with the indent request, all

text lines are indented seven ems from the current left

margin.

Notice how this differs from the temporary indent request.

-in 0

Now, text is flush left again.

NS
A printed copy of file.out appears as follows:

The Formatter nroff 3

Requesting Space and Indentation

Here, text is flush left. oe

Notice that with the indent request, all text lines

are indented seven ems from the current left margin.

Notice how this differs fram the temporary indent

request.

Now, text is flush left again.

Here, you indent lines in output seven ems until you set them flush left by typing -in

0. Typing .in without an argument sets indentation where it was before you last used

.in. Initially, nroff sets indentation to 0 (flush left), so in the example above, .in

would work the same as .in 0.

Instead of resetting the indentation to 0, you may want to set it to another value.

Consider the contents of file.in:

Here, text is flush left.

-in +7m

With the indent reguest, all

text lines are indented seven ems fram the current left

margin.

-in —3m

Now, text is four ems fron the left margin (7 — 3 = 4).

\
A printed copy of file.out follows:

Here, text is flush left.

With the indent request, all text lines are indented

seven ems from the current left margin.

Now, text is four ems fram the left margin (7 — 3 = 4).

4 Using Documenter’s Tool Kit

Line Filling (.nf, .f1) and Line Breaks (.br)

Notice that the number.of lines you type in is not the number nroff puts out.

Besides interpreting control lines and making them disappear from the output, nroff

rearranges your text, filling the page with tightly formatted output.

nroff fills lines automatically. When line filling is on, words accumulate in a line

buffer until it is full, and then the buffer is flushed. file.in is as follows:

(_. that words fill a line,
regardless

of their position on the page as they are input.

nf

The "no-fill” request

turns off line filling,

making output the same as input.

fi

Line filling stays off

unless you turn it back on with the fill request.

NS
A printed copy of file.out appears as follows:

This means that words fill a line, regardless of their position on

the page as they are input.

The "no-fill" request,

turns off line filling,

making output the same as input.

Line filling stays off unless you turn it back on with the fill

request.

nroff also flushes the line buffer when it finds a line break. As you may have

noticed, .sp forces a line break and produces lines of space. The .br request also

forces a new line. Consider this version of file.in:

The Formatter nroff 5

Line Filling and Line Breaks

Lo

/ An explicit break request
.br .

starts a new line

but does not insert a line of space

between the lines of text it separates.

file.out prints as follows:

An explicit break request

starts a new line but does not insert a line of space between the

lines of text it separates. :

6 Using Documenter’s Tool Kit

Hyphenation (.hy, .nh, .hc, .hw)

Notice that when nroff fills lines, it only puts out whole, never hyphenated,

words. By default, nroff does not hyphenate. To turn on hyphenation anywhere in

your text, use .-hy. When you switch on hyphenation, you may put a hyphenation indi-

cator in a text word to specify places where the word should be hyphenated if need

be. Set this hyphenation indicator with .he. file.in looks like this:

(
-he @

How would you use the extremely long

word pneuGnono@ul tra(anicroscopic@silico@volcancdéconiosis

in a sentence?

L i,
The formatted, file.out follows:

How would you use the extremely long word pneumonoultramicroscopic—

silicovolcanoconiosis in a sentence?

From this point on, nroff interprets the character "@" as an acceptable place to put a

hyphen, if needed. After inserting the hyphen, nroff flushes the line buffer and starts

a new line. nroff hyphenates words not containing the hyphenation indicator

wherever it wants. Do not use .he without turning on hyphenation with -hy.

If you want to specify particular words to be hyphenated in a particular way, use

the request .-hw: , |

The Formatter nroff 7

Hyphenation

(
-hw anti-climax |

The resolution of the silly plot is an anticlimax. _

This director should be fired. |

Now, every time nroff finds "anticlimax" at the end of a buffer, it tries to hyphenate it

the way that you specified, not "an—ticlimax" or "anticli-max." If the word cannot fit

on the line the way you have specified it, nroff does not try to hyphenate it.

8 Using Documenter’s Tool Kit

Centering (.ce)

-ce centers as many text lines as its argument specifies. With no argument, .ce

centers one line. Here’s file.in:

nf

The centering command is effectively a "no-fill” command,

except that output lines

are centered instead of flush left.

If you use the no-fill command with

ce 4

the centering cammand, centering takes charge.

The next three lines and the line preceding are centered.

fi |

But now you have turned on line filling.

What happens to the centering?

The answer is that centering has priority over filling.

The printed version, file.out, looks like this:

The centering command is effectively a "no-fill" command,

except that the output lines

are centered instead of flush left.

If you use the no-fill command with

the centering command, centering takes charge.

The next 3 lines and the line preceding are centered.

But now you have turned on line filling.

What happens to the centering?

The answer is that centering has priority over filling.

The Formatter nroff 9

Justification, Unpaddable Space (.ad, -na)

nroff ordinarily gives you even (justified) left and right margins. (mm gives you a
ragged right margin by default.) To change margin justification, use .ad, as this ver-

sion of file.in demonstrates: |

.ad 1

Here, you’ve given the adjustment request the argument "1".

This tells nroff to justify only the left margin.

Many people prefer a ragged right margin.

.ad b

With the "b" argument, .ad justifies both left and right margins.

When there is an even right and left margin,

nroff pads the line by expanding spaces.

This may produce text alignment unpleasing to the eye.

.na

The "no adjustment" request turns right justification off (that is, the

left margin is justified, but the right margin is not).

The printed versions appear as follows:

Here, you’ve given the adjustment request the argument "1". This

tells nroff to justify only the left margin. Many people prefer a

ragged right margin. With the "b" argument, .ad justifies both

left and right margins. When there is an even right and left

margin, nroff pads the line by expanding spaces. This may

produce text alignment unpleasing to the eye. The “no adjust-—

ment” request turns right justification off (that is, the left mar-

gin is justified, but the right margin is not).

One way to adjust the right margin and maintain a line pleasing to the eye is to

specify a space that nroff cannot expand during justification. To do this, type a

backslash followed by a space, "\ " (an unpaddable space), at places nroff had pad-

ded. The backslash is an escape character; you will find out more about this below.

10 Using Documenter’s Tool Kit

Justification, Unpaddable Space

An alternative to using unpaddable spaces is to request that some seldom-used

character, such as a tilde (-), be translated into a space on output. To do this, use

the translate request

tr

(that is, dot tr space tilde space). If you find that you need a tilde later in the output,

turn it back into a tilde it by inserting this line:

ao!

tr

(dot tr space tilde tilde). Later, you may restore the tilde as an unpaddable space by

repeating .tr ~, but only after a line break or after nroff outputs the line containing the

tilde.

What do you suppose happens to the text below when you format it?

ad b

ce 2

What request wins out?

Will there be adjustment, or centering?

Remember what happened when .fi competed with .ce? Here as there, lines after

.ce are centered, despite the request for adjustment. After that, left and right mar-

gins will be adjusted until you change adjustment or until you use .na.

The Formatter nroff = 11

Setting Tabs (.ta)

nroff automatically sets tab stops every eight ens from the current indent, but you
can change these stops with .ta. Here’s file.in:

.ta 0.51 1.51 2.51 3.01

The next line contains tabs; the tab request

places the tab stops at particular places:

Here is a line with tabs.

ta 1.51 2.51 3.01 3.51

The next line also contains tabs, but the tab request places the

stops differently frem above:

Here is a line with tabs.

The file comes off the printer looking like this:

The next line contains tabs; the tab request places the tab stops

at particular places: Here is a

line with tabs. The next line also contains tabs, but the tab

request places the stops differently from above:

Here is a line with tabs.

These tab stops are left-justified, but you can set up right-justified tab stops or cen-

tered tab stops, too. For details about how to do this, refer to the chapter

“nroff/troff Technical Discussion" in the Documenter’s Took Kit Technical Summary

for the DG/UX System.

If you want to position numbers, or if you need more complicated columnar lay-

out, use tbl, which is described in the chapter "The Preprocessor tbl" in this guide.

12 Using Documenter’s Tool Kit

Selecting a Font (.ft)

nroff is frequently used with mechanical printers like daisy-wheel printers, which

produce documents by striking pre-cast characters as they turn on a wheel. Using

such a printer, nroff can provide three distinctions among fonts. It can provide a reg-

ular font by default (.ft R or \fR); it can represent an italic font by having the printer

underline (.ft I or \f1); finally, it can provide a bold version of the regular font by hav-

ing the printer back up and overstrike characters (.ft B or \fB). nroff thus under-

stands three fonts—regular, italics, and bold—even when it is used with a basic

mechanical printer. When nroff is used with a more advanced printer, such as a laser

printer or sophisticated dot matrix printer, it can provide a more pleasing version of

regular (or roman), italics, and bold:

abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPORSTUVWXYZ

abcdefghijklmnopgqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

To switch fonts, use the .ft request: .ft B for bold, .ft I for italic, and .ft R for

roman. To return to the previous font, whatever it was, use either .ft P or .ft with no

argument. Once you change fonts with .ft though, nroff uses the font that you specify

until you change fonts again.

Another way to italicize text is to use the .ul request. Depending on your printer,

-ul underlines the next input line or italicizes it. Follow .ul with an argument that

requests the number of input lines to be italicized, for example .ul 3; otherwise, only

the line that follows the request is italicized (much the same way that .ti indents only

the line that follows it).

Fonts also can be changed within a line or word with the escape sequence \f.

Consider the contents of this file:

\fBbold\fiface\fR text

A printed version looks like this:

boldface text

An escape sequence is a special in-line command that begins with the escape charac-

ter \ (backslash). This character tells nroff that what comes next is special; thus f is

interpreted as "font" instead of as the letter "f."

The Formatter nroff 13

Selecting a Font

To avoid losing the last font requested after each in-line change, restore it with

the escape sequence \fP, since nroff remembers only the last font called. For exam-

ple, in the next line, the last \fP restores the font to whatever the font was before

\fB:

\fBbold\fP\fIface\fP\fR text\fP

In this next example, the \fP restores the font to italic:

\fBbold\flface\f1 text\fP

14 Using Documenter’s Tool Kit

Margins (.po), Line Length (.1)

If you are not content with the page dimensions that nroff gives you, you can

change them. file.in looks like this:

You can change the left margin with .po, which stands for "page offset."

Here, nroff adds one inch to the existing left

.po +1i

Here’s another line of text.

Once you change the margin, any indentation is relative to the new value.

To restore the previous left margin, type .po without an argument

-po

A formatted version looks like this:

You can change the left margin with .po, which stands for “page offset."

Here, nroff adds one inch to the existing left margin to determine the new

margin.

Here’s another line of text. Once you change the margin,

any indentation is relative to the new value. To restore

the previous margin, type .po without an argument.

Even though .po may appear to do the same thing that .in does, it doesn’t. The

formatting request .in indents from the current left margin, while .po changes the

current left margin.

Look carefully at this last example. Notice that part of file.in before the second

.po is not offset three spaces on output. Remember, nroff works with line buffers,

not lines as you have typed them. After the second .po, the next buffer, not neces-

sarily the next text line, that nroff flushes is the first to obey this request.

Also notice that nroff translates the escape sequence \& into a character that

does not print. \& is useful when you want to treat a control line as text rather than

as something to be executed. Putting this non-printable sequence in columns one and

two, before the dot in a control line, nullifies the line’s control (as the last example

shows). Use \& consistently before any control sequence that you want to nullify,

The Formatter nroff 15

Margins, Line Length

regardless of its current position on a line since when you edit text, the position of

words or characters may change in unexpected ways.

The .ll request changes "line length." Here’s file.in:

-11 +3

You can change the left margin with .po, which stands for "page offset."

Here, nroff adds one inch from the existing left

margin to determine the new margin. .

.po +1li

Here’s another line of text.

If you change both the line length \f2and\fP the left margin, you get

different results than if you simply change the margin.

-Bo

The formatted version looks like this:

Change the left margin with .po, which stands for “page offset." Here, nroff

adds one inch from the existing left margin to determine the new margin.

Here’s another line of text. If you change both the line length

and the left margin, you get different results than if you simply

change the margin.

As you can see, the line length has in fact extended the right margin. Thus, to

decrease the right margin, you increase the line length with .I1.

Notice that some of the requests covered so far take alphabetic arguments

and some take numeric arguments, preceded or not by a plus or a minus sign. To

know what’s appropriate for any given request, check the "nroff/troff Technical

Discussion” in the Documenter’s Took Kit Technical Summary for the DG/UX Sys-

tem.

For now, consider the use of + and — before a number. These symbols

change the previous setting by the amount you specify, rather than by just overrid-

ing it. The distinction is important: .ll +3 makes lines three characters longer; .Il

3 makes them three characters long.

16 Using Documenter’s Tool Kit

Page Length (.pl), Page Breaks (.bp), and
Page Numbers (.pn)

Now you have control of the width of your printed page, but what about the

length? By default, nroff gives you a page 11 inches long. If you want to change the

page length, that is, change the amount of space that nroff leaves between the text

and the physical top and bottom of the page, use .pl.

pl +1i

Here, .pl has an argument that consists of a number and a letter. This letter

corresponds to a scale. If you do not specify i (which stands for inches) and simply

type .pl +1, nroff assumes that you want to increase the present page length by one

line space.

You also may specify units for .Il, .po, .in, and .ti. The default unit for .in and

-ti, as for most horizontally oriented commands, is ems. (Remember, one em is

roughly the size of the character m.) |

If you want to start a new page, use .bp, which stands for begin page. The input
file looks like this:

And so, in conclusion, and so on.

This is the last sentence of a paper.

-bp .

.ce

REFERENCES

-pn stands for "page number.” The next page, when it occurs, will have the page

number that you specify as the argument to this request. Pages that follow will also

increment from this new page number.

The Formatter nroff 17

Keeping Lines Together (.ne)

At times you will want to prevent certain lines from being split across pages. Use

-ne to tell nroff the number of lines of text that you want kept together. Here’s an

input file using .ne: | |

-nf

-ne 4

My address is:

John Snith

1956 Malcolm Road

Hametown, USA

\ J)
would print the four lines of text on the next page if there was not enough room for

all of them on the current page.

18 Using Documenter’s Tool Kit

Defining a String (.ds)

A string is a named collection of characters not including a newline character.

Once you have defined a string with .ds, you can use the string name as shorthand for

its contents. The following is file.in: "

Defining your own *(sG is convenient when

you use a particular word

or sequence of characters many times.

To define a *(sG, type .ds, then the string name, and then its

definition.

Note that *(sG is replaced by its definition, the word "string,"

throughout this paragraph when you format it.

How you interpolate a *(sG depends on

whether the *(sG name is one or two characters long.

If the *(sG is one letter long, type "*"

and then the \(*sG nane.

If the *(sG is two letters long, type "*("

and then the *(sG nane.

The processed file looks like this:

Defining your own string is convenient when you use a particular

word or sequence of characters many times. To define a string,

type .ds, then the string name, and then its definition. Note that

string is replaced by its definition, the word "string," throughout

this paragraph when you format it. How you interpolate a string

depends on whether the string name is one or two characters long.

If the string is one letter long, type "*" and then the string

name. If the string is two letters long, type "*(" and then the

string name.

Remember that a backslash tells nroff that what follows is special in some way.

Escape sequences allow in-line control of formatting, such as the interpolation of

strings. The backslash begins all escape sequences like *. The "nroff/troff Techni-

cal Discussion” in the Documenter’s Took Kit Technical Summary for the DG/UX Sys-

tem lists and describes all available escape sequences. Typing \e tells nroff to

The Formatter nroff 19

Defining a String

interpret \ as the character, backslash, not as the beginning of

an escape sequence.

If you must begin a string with blanks, define it as follows:

.ds xx " text

The double quote signals the beginning of a definition. There is no need for a trailing

quote; the end of the line ends the string.

A string may be several lines long; if nroff encounters a \ at the end of any line of

the string definition, the backslash is thrown away and the next line added to the

current one. So you can create a long string simply by using the backslash like this:

(i
is a very \.

long string

20 Using Documenter’s Tool Kit

Using Number Registers (.nr)

Number registers, like strings, can be useful in setting up a document that you can

change easily later. nroff can do arithmetic with these number registers, which hold

numeric values that control aspects of output style.

Like strings, number registers have one or two character names. They are set by

the .nr command and can be used anywhere in your input by typing \n and then the

name (for a one-character register name) or \n(and the name (for a two-character

register name).

There are many predefined number registers maintained by nroff, among them %

for the current page number; dy, mo, and yr for the current day, month, or year; and

f for the current font (which is a number from 1 to 3: 1 for roman, 2 for italic, and 3

for bold). Any of the predefined registers listed and described in the "nroff/troff

Technical Discussion" in the Documenter’s Took Kit Technical Summary for the

DG/UX System may be used in computations, but some, like .f, cannot be changed by

nr. The following example puts the page number and the current date in a page title

(.tl).

.tl “John Smith \n3~ \n(mo-\n(dy-\n(yr7

Titles are easy; the whole argument to .tl appears as the next line of output. The first

part of the argument (John Smith) appears in the left-hand corner of the page, the

second part appears centered, and the last part appears right justified, like this:

John Smith 21 5—-3-89

The Formatter nroff 21

Using Number Registers

Here’s another example using nroff number registers. file.in looks like this:

-in (\n(.14\n(.1)/2

This starts lines in the center of the page, regardless of line length.

The request subtracts the current indent (contained in the number

register \f3.i\f1) from the current line

length’ (contained in the number register \f3.1\fl),

divides the result by two, and indents by that amount.

.in |

If you do samething like this, you might want to put

indentation back to the left margin at same point.

The formatted version looks like this:

This starts lines in the center

of the page, regardless of line

length. The request subtracts

the current indent (contained in

the number register .i) from the

current line length (contained in

the number register .l), divides

the result by two, and indents by

that amount.

If you do something like this, you might want to put indentation

back to the left margin at some point.

22 Using Documenter’s Tool Kit

Creating a Simple Macro (.de)

A macro is a shorthand notation similar to a string; it names a collection of

requests. When would you want to use a macro rather than a request?

Suppose you want to format every paragraph in a document differently, some with

two spaces between them, some indented, some not. Here, it would be reasonable to

use requests, since they provide that degree of flexibility. On the other hand, if you

wanted to format paragraphs uniformly, you should use a macro. mm provides a col-

lection of pre-defined macros that you can use to format several types of documents.

However, if you do not want to use mm for some reason, you may write your own

macros.

For example, in the Sampler file nroff.letter, two requests format every para-

graph: one request puts a space between the paragraphs (.sp) and the other indents

the first line five spaces (.ti #5). To create your own macro to do the job of these

two requests, use the .de (for define) request.

You can call your paragraph formatting macro .pD (for paragraph definition).

Here is how you use .de to create .pD:

The control line .. closes the macro definition. You can define macros anywhere in

your file that you wish, but it is better to keep all macro definitions at the beginning

of your file, for easy maintenance.

After you define your macro, you can call it by name

-pD

and it does the tasks specified by the two requests that it incorporates.

The Formatter nroff 23

Creating a Simple Macro

Here is a macro that starts a new page and centers the macro’s argument at the

top of that particular page:

(_ \"new page mast
-bp \"begin a new page
.Sp 2 \"two lines of space

.ce | \"center the next line

WS
.sp 3 \"three lines of space

Inside this macro definition, the string \\$1 refers to the first argument that you give

.nM (for example, .nM REFERENCES), placing it after .ce. Thus, the argument that

you give .nM gets centered. This centered mast is placed two blank lines down from

the top of the page, and then three blank lines are put out.

You may wonder what happens to the words new page mast, and so on, inside

this macro. nroff throws anything after \" away, and then goes to the next line. nroff

recognizes \" as the beginning of a comment. (Use spaces instead of tabs to set off

comments.)

Here’s a more elaborate paragraph macro.

.de nG _ \"new paragraph

.ft R \"reman font

.Sp \"one line of space

ene 3i \"need three inches

.in 0 \"flush left

ti 46 \"indent next line six spaces

In this macro, nroff loads roman font, puts out a space, sees if there are three inches

24 Using Documenter’s Tool Kit

Creating a Simple Macro

of space left on the page (if not, it skips to the next page), sets the indent to the left

margin, and then indents the first line six spaces.

Why go to the trouble of setting the indent flush left and then indenting six

spaces? Why not simply indent six spaces? You never know where your text has

been. Earlier in your file, you may have made a request such as .in +10. The line .in

0 resets indentation and puts the following text at the current left margin. Similarly,

loading roman font is a way of ensuring that if you have forgotten to restore roman

earlier, you have set things right with this new paragraph.

Notice that these macro names consist of a lower-case letter followed by an

upper-case letter. It is good practice to stick to this pattern so that you do not

accidentally redefine an mm macro.

The Formatter nroff 25

Moving On

If you want to learn more about nroff, scan the material in the "nroff/troff Techn-

ical Discussion" in the Documenter’s Took Kit Technical Summary for the DG/UX

System and find a request that you think would be useful. Read the material, and

then experiment with the request. For example, take what you have learned from this

tutorial and explore more complicated uses of number registers and strings.

The troff tutorial in this guide explains more complicated requests and macros

you can define yourself. As mentioned before, troff is a more powerful set of

requests that provide precise phototypesetting capabilities.

26 Using Documenter’s Tool Kit

The Preprocessor tbl

Introduction

Formatting a Simple Table

Table Delimiters

Global Options and the Format Section

More About Options and Format

Text Blocks

Line Length and Column Width

Troubleshooting

An Example: Including Text Blocks in a Table

Table of Contents

11

14

15

16

Introduction

This tutorial teaches the basic principles of tbl, a program that produces simple

and complex tables. With tbl, you can align columns of numerical data, equations, or

text. You can draw horizontal or vertical lines in the table and enclose any table or

table element in a box.

The prerequisites to benefit from this tutorial are as follows:

@ You should know what a file and directory are and how to create them. See

Using the DG/UX System (069-701035).

® You should know how to use a text editor (such as ed, vi, or ex). See Using

the DG/UX Editors (069-701036).

@ You should know how to execute commands and how to use options and pipes.

See Using the DG/UX System (069-701035).

@ Your understanding of tb] would be assisted by a knowledge of the mm macro

package and of nroff or troff. See the tutorials in this manual, "The Macro

Package mm," "The Formatter nroff," and "The Formatter troff."

For a detailed description of tbl, see the "tbl Technical Discussion" in the

Documenter’s Tool Kit Technical Summary for the DG/UX System.

tbl is called a preprocessor because you use it to process a file before you use a

formatter such as nroff or troff. Like all preprocessors, tbl translates special words or

characters into control lines that nroff or troff can use to produce the final formatted

document. You may use tbl with other preprocessors, such as the equation format-

ting program eqn or the graphics formatting program pic, or with macro packages

such as mm, without duplication of function, since tb] only processes lines between

the delimiters that it recognizes.

After reading this tutorial, you will be able to prepare tables of varying degrees of

complexity, and you will be able to read the "tbl Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System. to learn more

about preparing tables.

The Preprocessor tbl 1

Formatting a Simple Table

In the following discussion, <TAB> represents pressing the tab key once. If you

have a file named new_england that contains these lines:

(.
box;

cc.

State<taB>Capital

Maine<taB> Augusta

New Hampshire<tas>Concord

Vermont <TaB>Montpelier

Massachusetts <tTaB> Boston

Rhode Island<tap>Providence

Connecticut<tTaB>Hart ford

TE

NM
typing either of these command lines

tbl] —TX new_england | nroff -mm —TIp | col > new_england.tbl

or

mm ~—t —Tlp new_england > new_england.tbl

will produce a file called new_england.tbl, which should look something like this:

State Capital

Maine Augusta

New Hampshire Concord

Vermont Montpelier

Massachusetts | Boston

Rhode Island Providence

Connecticut Hartford

2 Using Documenter’s Tool Kit

Formatting a Simple Table

The page number appears at the top of the page if you use the mm command line,

but it does not show up if you use nroff without mm. Otherwise the results should be

the same.

Do not worry about the tbl option ~TX, which is useful when you produce a table

on particular kinds of printers. The "tbl Technical Discussion" in the Documenter’s

Took Kit Technical Summary for the DG/UX System describes ~TX in detail.

If you look at the output for this and later examples on a terminal screen or a

typewriter-like printer, it might appear slightly different from this phototypeset page.

You might see more space between the lines of text and the dark horizontal line that

extends the width of the table (more about this line later), and you might notice a line

of space after the last text line. These minor differences occur because terminals and

printers produce nroff output, and this page is a product of troff, which handles spac-

ing differently.

If new_england.tbl does not look right for reasons other than spacing, you might

need to select another argument for the terminal (—T) option to nroff -mm or to mm.

Ask your system administrator what to use, consulting the mm(1) or nroff(1) manual

page in the Documenter’s Took Kit Technical Summary for the DG/UX System for a

list of the valid terminal arguments.

The Preprocessor tbl 3

Table Delimiters

The macro pair .TS and .TE delimits the section of a file that tbl interprets. With

new_england this means the entire file, but they can also delimit a part of a larger

file, such as a letter or a report that you are formatting with mm macros. For exam-

ple,

a

Here are the New England states and their capital cities.

-DS

TS

box;

cc.

State<tTaB>Capital

Maine<taB>Augusta

New Hampshire<tas>Concord

Vermont <TaB>Montpelier

Massachusetts<tTaB>Boston

Rhode Island<tas>Providence

Connecticut <TaB>Hart ford

.TE

.DE

.P

The largest of these capitals is Boston...

NS
If you include tables that are less than a page long in a document that you plan to

format with mm, it is a good idea to put each table in a display, that is, to surround

the table delimiters (.TS and .TE) with .DS (or .DF) and .DE so that a page break

does not divide the table when it is printed. The "mm Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System elaborates on pro-

ducing tables in mm documents.

4 Using Documenter’s Tool Kit

Global Options and the Format Section

After .TS you can specify global options that will affect the entire table. In

new_england, the only global option is box, which tells tbl to enclose the whole table

in a box. Suppose that you want the table to be printed in the center of the page as

well as enclosed in a box. Change the option line to look like this:

box center;

The order of global options does not matter, so center box; will do the same thing.

A semicolon (;) ends the list of global options, and tells tbl that what follows is

the format section, which specifies how each column in the table will look.

In the file new_england, the format section contains one line:

cc.

The format section consists of key letters that tell tbl how many columns there will be

and how each column is to be formatted. Here, the two columns of new_england are

centered, but if you want to left-justify the first column, you would change the format

line to look like this:

loa.

Notice that in new_england there is only one format line for all seven lines of data

or text. ‘tbl applies the last (in new_england, the only) format line in the format sec-

tion to all the remaining rows of a table. Notice that a period (.) ends the format sec-

tion; more about this later. Below is an example that shows how you can control the

format of each line in the table.

The Preprocessor tbl 5

Global Options and the Format Section

(
center box;

cc

cl

le

1il.

State<tTaB>Capital

Maine<tTaB>Augusta

New Hampshire<tras>Concord

Vermont <TaB>Montpelier

Massachusetts<TaB>Boston

Rhode Island<tas>Providence

Connecticut <tTaB>Hart ford

TE

The formatted output looks like this.

State Capital

Maine Augusta

New Hampshire Concord

Vermont Montpelier

Massachusetts Boston

Rhode Island Providence

Connecticut Hartford

As you can see, tbl centers both columns of the first data line, State<TaB>Capital,

centers the first column and left-justifies the second column of the second line, left-

justifies the first column and centers the second column of the third line, and left-

justifies both columns of the fourth and following lines.

6 Using Documenter’s Tool Kit

Global Options and the Format Section

Suppose that you wanted to change the typeface of column entries:

(.
box;

CB cB

c lI

1 cI

1 it.

State<tTaB>Capital

Maine<taB> Augusta

New Hampshire<tas>Concord

Vermont <tTaB>Montpelier

Massachusetts<tTaB>Boston

Rhode Island<tas>Providence

Connecticut<taB>Hart ford

TE

Follow a key letter by B or b for bold, or I or i for italic to change the typeface of

that column. Here is how the typeface changes above look:

State Capital

Maine Augusta

New Hampshire Concord

Vermont Montpelier

Massachusetts Boston

Rhode Island Providence

Connecticut Hartford

A period after the last key letter signifies the end cf the format section, and that text

is next.

The Preprocessor tbl 7

More About Options and Format

As the tables above illustrate, tbl looks for tabs to distinguish one column from

the next. Keeping track of manually inserted tabs in small tables like new_england is

not troublesome. You might have trouble, though, aligning columns in larger tables

that contain tabs. The table of U.S. Presidents below shows that tbl allows you to

substitute other characters for the tab.

TS

box tab(;);

ecsss

elelele

1{/ifi14i.

American Presidents

Name ; Party ; Tenn; Electiion-Opponents

Franklin D. Roosevelt ;Denocratic;1933-1945 ;1932-Hoover
i3G Thamnas

i +1936—Landon

3;;1940-Willkie

37;1944-Dewey

Harry S. Truman;Democratic; 1945-1953 ;1948-Dewey

jail Thurmond

hii Wallace

Dwight D. Eisenhower ;Republican;1953-1961 ;1952-Stevenson

i ;1956-Stevenson
TE

Notice the options line. The option tab(;) tells tbl to translate any semicolon that it

finds between the table delimiters into a tab character. Use any non-alphanumeric

character as the tab character, for example,

tab(#);

8 Usina Documenter’s Tool Kit

More About Options and Format

Also notice a heretofore unexplained key letter in the format section, the letter s.

This letter tells tbl to span the entry from the previous column across this column.

Thus in the output shown below, tbl has centered the title American Presidents

across the full table.

Notice that the format section contains bars separating key letters:

clclele

1{/1i]i]fi.

When you put bars in a format line, you tell tbl to separate columns with vertical

lines. If you put two bars between a pair of key letters, tbl separates those columns

with a vertical double line, but only if your output device has the resolution to create

it. Many printers that nroff supports do not have this resolution.

Notice too that some lines of text are separated by the underscore character:

hie Wallace

Dwight D. Eisenhower ; Republican; 1953—-1961;1952-Stevenson
ease

aed

Here, as in the new_england example, tbl translates an input line that contains only

the underscore character (_) into a single line extending the full width of the table.

When the underscore character is the only text in a column, as in the fourth column

in the line below Dwight D. Eisenhower, tbl extends the line through only that

column. Since there is no text between the semi-colons (tab characters) marking the

first, second and third columns, those columns are empty. This shows how using a

tab character instead of a tab makes table source files easier to read and change.

tbl does a similar chore when it sees the = character, creating requests for a hor-

izontal double line the width of the table or the width of the column, as appropriate.

As with the vertical double line, most printers that nroff supports do not have the

resolution to create a horizontal double line. Unless you have access to a photo-

typesetter and to troff, you probably should not use this character or the vertical dou-

ble line.

In this example, there are three manually inserted spaces between the tab charac-

ter and some column entries (for example, 33; Wallace). This insertion is cosmetic,

and entirely up to you.

Here is the table of U.S. Presidents after it has been formatted:

The Preprocessor tbl 9

More About Options and Format

American Presidents

Name Party Term Election-Opponents

Franklin D. Roosevelt | Democratic | 1933-1945 | 1932-Hoover

Thomas

1936-Landon

1940-Willkie

1944-Dewey

Harry S. Truman Democratic | 1945-1953 | 1948-Dewey

| Thurmond

Wallace

Dwight D. Eisenhower | Republican | 1953-1961 | 1952-Stevenson

1956-Stevenson

In a tbl table, you must always include a format section and text; options, of

course, are optional. To learn about the full complement of options and key letters

available, read the "tbl Technical Discussion" in the Documenter’s Took Kit Technical

Summary for the DG/UX System.

10 Using Documenter’s Tool Kit

Text Blocks

tb] makes each column slightly wider than the longest line of text that appears in

the column. In the table of Presidents, the column containing Presidents’ names was

expanded to accommodate the name Dwight D. Eisenhower, the longest name in that

column.

However, there may be times when you want to compress more than one input

line into a single column of output. You could break up a text block into separate

lines, as was done in the Election-Opponents column in the previous table. But tbl

gives you the power to fill columns more densely with the text block delimiters T{ and

T}. Suppose you wanted to add a biographical blurb to the table of Presidents.

The Preprocessor tbl 11

Text Blocks

(.
box tab(;);

csSSSS

elelelele

r{/1i]i1]1]1.

American Presidents

Name ; Party ;Temm;Election-Opponents ; Notes

T{

Franklin

D. Roosevelt

T} ;Democratic; 1933-1945 ,;T{

1932-Hoover

Thomas

.br

1936—Landon

.br

1940-Willkie

.br

1944—Dewey

T};T{

Inaugurated

the "New Deal”

and led the

nation during

World War II

T}

Do not put the text within the text block on the same line as the block-begin del-

imiter T{, and do not put any spaces or characters after this delimiter. The block-end

delimiter T} must always appear first on its line. Additional columns of text may fol-

low T} after you type a tab or tab character on the same line. If you do not specify

the line length or the column width, tbl calculates the length of the text block as a

function of the current line length, the number of columns in the table and the length

of the longest line in the text. block. Because this calculated length may be greater

than some short lines in the text block, use the .br request (see "The Formatter nroff"'

in this guide) as specified here, to ensure that input lines do not overlap on output

(for example, to ensure you do not get 1932-Hoover and Thomas on the same line).

12 Using Documenter’s Tool Kit

Text Blocks

See the last section of this tutorial for a complete example of text blocks in a

table.

The Preprocessor tbl 13

Line Length and Column Width

You can change the column width of tables if you choose. Use the nroff request

ll to set the line length. Set column width with the tbl key letter w in the format sec-

tion:

CS SSS

cleleclecle

Iw(1i) | 1 | 1 | 1 | Iw(liy.

w sets a minimum column width; if the longest line in a column is wider than the

value you specify after w, that longest line’s width overrides the value. That is, w

allows you to gain space around the text in a given column. In the format section

specified above, the first column is at least one inch wide; the second, third, and

fourth are at least as wide as the widest line of text; and the fifth is the same as the

first. If you do not specify units (for example, inches), width defaults to ens. One en

is about the width of the lower-case character n.

14 Using Documenter’s Tool Kit

Troubleshooting

If you want to check a table before printing it (using the DG/UX System), the

command line

tbl file >/dev/null

throws away the output, but prints any error messages that occur.

| The program checkmm checks whether every .TS has a matching .TE.

If you forget .TS, or accidentally delete it, the formatter treats tbl control lines as

if they were ordinary text, printing options, the format section, and text in one jum-

ble. If you forget to put .TE at the end of a table, the formatter includes all input

lines until the end of the file (or all lines it encounters until another instance of .TE is

read) in the table. That the formatter is this forgiving may lead to strange output.

Remember, global options are optional, but the format section and table text are

mandatory. If you want to format tables that are longer than one page on output,

beware of long text blocks. Text blocks that span two pages behave unpredictably. If

you require long text blocks, break them up into contiguous sub-blocks. For more

details about multi-page tables, see the "tbl Technical Discussion" in the Documenter’s

Took Kit Technical Summary for the DG/UX System.

The Preprocessor tbl 15

An Example: Including Text Blocks in a
Table

To format the table that follows, type:

tbl -TX file | nroff -mm -Tip | col

or

mm -t -TIp file

where file contains the following input. You may direct output to a file, or to a termi-

nal or printer.

16 Using Documenter’s Tool Kit

Text Blocks in a Table

input:

.TS

box tab(;);

cssss

clelelecle

ljiafiafi]1.

Postwar American Presidents

Name ; Party ;Term;Election-Oppnts ; Notes

Tf

Harry

_ §S. Truman

T} ;Democratic;1945-1953 ;T{

1948-Dewey

Thurmond

H. Wallace

T};T{

Led nation

during

Korean War

T}

Tf

Dwight

D. Eisenhower

T} ;Republ ican ; 1953-1961 ;T{

1952-Stevenson

1956-Stevenson

T};T{

Presided over

econamic boom

of the 1950s

T)

The Preprocessor tbl 17

Text Blocks in a Table

input continued:

T{

John

F. Kennedy

T} ;Democratic; 1961-1963; 1960-Nixon ;T{

Youngest man

elected to the

Presidency

T}

Tf

Lyndon

B. Johnson

T} ;Democratic; 1963-1969 ; 1964-Goldwater ;T{

Architect of the

“Great Society”

T}

Tf

Richard

M. Nixon

T} ;Republican ; 1969-1974 ;T{

1968-Humphrey

G. Wallace

.br

1972-—McGovernm

T};T{

First President

to resign

T}

T{

Gerald

R. Ford

T} ;Republican ; 1974-1977 ;Never elected;T[

Became V.P. when

Agnew resigned

T}

18 Using Documenter’s Tool Kit

Text Blocks in a Table

input continued:

T{

Jinmy

Carter

T} ;Democratic; 1977-1981 ;1976—Ford ;T{

Negotiated
Camp David

Accords

T}

T{

Ronald

Reagan

T} ;Republican ;1981-;T{

1980-Carter |

Anderson

.br

1984-Mondale

T};T{

Oldest

President

T)

-TE

The Preprocessor tbl 19

Text Blocks in a Table

output:

Postwar American Presidents

Name Party Term Election-Oppnts Notes

Harry S. Tru- | Democratic | 1945-1953 | 1948-Dewey Led nation

man Thurmond during Korean

H. Wallace War

Dwight D. Republican | 1953-1961 | 1952-Stevenson Presided over

Eisenhower 1956-Stevenson economic

boom of the

1950s

John F. Ken- | Democratic | 1961-1963 | 1960-Nixon Youngest man

nedy elected to the

Presidency

Lyndon B. |} Democratic | 1963-1969 | 1964-Goldwater | Architect of

Johnson the "Great

Society"

Richard M. Republican | 1969-1974 | 1968-Humphrey | First

Nixon , G. Wallace President to >

1972-McGovern | resign

Gerald R. Republican | 1974-1977 | Never elected Became V.P.

Ford when Agnew

resigned

Jimmy Carter | Democratic | 1977-1981 | 1976-Ford Negotiated

Camp David

Accords

Ronald Republican | 1981- 1980-Carter Oldest

Reagan | Anderson President

1984-Mondale

20 Using Documenter’s Tool Kit

The Formatter troff

Introduction

Basics

Fonts and Special Characters (.ft and \f)

Mounting Fonts (.fp)

The Font Macro

Point Size (.ps and \s)

Vertical Spacing (.vs and .Is)

Local Motions

Vertical Motion (\v) |

Horizontal Motion (\h)

Creating New Characters with Local Motion

Programming in troff

Number Registers

Traps

Conditional Acceptance of Input (.if, .ie, .el)

Table of Contents

ON

10

13

16

16

18

20

24

24

2]

30

Introduction

This tutorial is intended to give you a working knowledge of troff, the

Documenter’s Tool Kit Software formatter for typesetting text. It will, in addition,

introduce you to troff’s programmable features.

You should be familiar with the following concepts and tools to benefit fully from

the pages ahead:

You should know how to use a text editor (ed, vi, and ex are examples). See

Using the DG/UX Editors (069-701036).

@ You should know what a file and directory are and know how to manipulate

them. See Using the DG/UX System (069-701035).

@ You should be familiar with nroff, troff’s close relative. See the tutorial in this

manual, "The Formatter nroff."

m Your understanding of troff would be assisted by a knowledge of the mm

macro package though it is not essential. See the tutorial in this manual, "The

Macro Package mm."

The Formatter troff 1

Basics

The control of text you have seen with nroff takes two things for granted: first,

that the size and typeface of individual characters will not change and second, that the

final printed output will appear in neat, parallel lines of evenly spaced text, reading

from left to right.

nroff expects its output to follow the beaten paths of the typewriter carriage.

While nroff output can be printed on more advanced devices such as phototypesetters

or laser printers, it is primarily intended for simpler devices such as dot-matrix and

daisy-wheel printers. nroff retains the sort of detailed control allowed by a typewriter:

Tabs, margins, line spacing, and the rest can be set and reset. Yet, nroff offers pro-

grammable features as well.

nroff’s near relative, troff (TEE-roff), also offers a detailed control of the text.

While you still have almost all nroff’s capabilities, you also have in troff the power to

shape the characters themselves. troff frees your text from the limits of mechanical

printing and introduces it to digital typography. Characters can be enlarged or shrunk

to a variety of sizes. Text can be changed into diverse shapes by choosing from a

library of typefaces (such as Helvetica and Greek) and special characters (such as left

and right hand signs and mathematical symbols).

With its requests and escape sequences, troff closely resembles nroff. The troff

command line shown here is similar to command lines in nroff:

troff my.file | typesetter

Like nroff, troff is easy to use. But in its simple requests and escape sequences lie

considerable power and capacity for fine-tuning. troff’s range includes all of the page,

the ability to combine existing characters to make new ones, and the power to place

those characters anywhere.

2 Using Documenter’s Tool Kit

Fonts and Special Characters (.ft and \f)

Unlike nroff, which is primarily intended for producing typewriter-quality output,

troff can present its output in a variety of typefaces, or fonts. The font request, .ft,

accepts both alphabetical and numerical arguments with which to specify particular

fonts. The actual range of fonts troff will produce depends on what printer you are

using and the device programs (or drivers) supporting that printer.

You can change fonts with the request .ft, followed by an argument that names

the font. Consider these examples of input and output. First the input:

This line is italic.

-ft R

This line is roman.

And now the output:

This line is italic.

This line is roman.

The alphabetic argument—here I for italic and R for roman—mnemonically recalls the

font it specifies. The argument P means previous font and will instruct troff to print

all characters following .ft P in the font that preceded your last specification. The .ft

request with no argument is identical to .ft P, telling troff to revert to the previous

font.

The number of troff fonts is effectively increased by the request .bd (embolden).

This request will further embolden any non-bold character and make any bold charac-

ter even bolder. As with many troff requests, the fine-tuning is in your hands. .bd

requires specifications of both font and width of boldness:

.bd F W

So, if your printer does not already provide emboldened italics but does provide ital-

ics, you can devise your own with .bd. Here is the input you would use:

The Formatter troff 3

Fonts

a

.bd 2 3

.ft 2

These characters are printed in

italics that has been emboldened.

.bd 2

And here is the result:

These characters are printed in italics that have been emboldened.

You may wonder what the arguments following .bd mean. The 2 specifies the

font position at which the italic font is loaded, position two. The second argument,

3, specifies the width of the emboldening. The .bd request works by forcing the

printer to back up a specified number of units from the place where a character was

initially printed to plot it again at a slight offset. You determine that offset with the

second argument, in this case, 3. Any font, consequently, can be emboldened. Light

fonts, such as the italic fonts, can be given greater weight and prominence, and bold

fonts can be made even bolder. As the example shows, you turn off the emboldening

request by typing .bd without the second, numerical argument.

To this point you have learned how to control fonts using requests. In fact, every

possible font change can be made using requests. You may find, however, that

requests are sometimes awkward. Making several font changes in a single line or

phrase, for example, is inconvenient with a request. Therefore, troff permits you to

choose fonts in a variety of ways. Making a font change with an in-line request, or

escape sequence (so called because it contains the escape character) would be easier.

An input line such as

\fIItalic runs. \fRRoman ambles. \fBBold plods.

produces

Italic runs. Roman ambles. Bold plods.

Notice that the font escape sequence, like other escape sequences, produces no out-

put space. So if you want space, be sure to add it.

4 Using Documenter’s Tool Kit

Fonts

While not all printers offer the full catalog of fonts, all devices supporting troff

provide at least three fonts: roman, italic, and roman bold. These are frequently

mounted at the first three font positions:

1 roman

2 italic

3 roman bold

Using these numbers, you can pose a numerical argument to a font request or

escape sequence instead of an alphabetical one. The example given earlier might

have been typed as follows:

\f2Italic runs. \flRoman ambles. \f3Bold plods.

Alternatively, it might have been specified with the .ft request:

ft 2

Italic runs.

.ft 1

Raman ambles.

.ft 3

Bold plods.

What is the point of using this numerical method? It makes revision, especially

on a large scale, easier. Suppose you decided to change all your italic words to bold

and all your bold to italic after having completed a long report. You could change

your input using a text editor. On the other hand, you could leave the input alone

and simply load bold at position two and italic at position three using the .fp (font

position) request:

.fp 2B

.fp 3: I

Saving time and ensuring comprehensive precision, you’ve made the switch from bold

to italic and from italic to bold.

The Formatter troff 5

Fonts

With this ability to load fonts you can determine the default of a document’s

typefaces. If you had, for example, loaded italic at the first position, the document’s

predominant typeface would have been italic. The number of fonts at your disposal

depends on your printing device.

Mounting Fonts (.fp)

troff can mount as many fonts as your printer will allow. That is, if your printer

only permits four fonts to be present at any one time, troff will load four. But troff

also makes the printer-imposed limit somewhat painless since it gives you the capacity

for mounting more as needed. Of course, if the printer has only four fonts, troff’s

flexibility in this respect is irrelevant. You can benefit from this feature using the

request you learned in the last paragraph, the font position (.fp) request. Your selec-

tion of fonts may be quite large. For example,

R Roman

I Italic

B Bold

S Special (7 [©)

CW. Constant Width

GR Greek (a ~ 4)

H Helvetica

HB Helvetica Black

HI Helvetica Italics

As you can see, many fonts can be used in even a single paragraph. You cannot,

however, use them at random. troff is able instantly to apply whatever fonts your

typesetter has, but many typesetters have a limited number of font positions. Your

typesetter might only have four positions at which to mount fonts. In this case each

must be mounted using .fp and its appropriate argument. If the list above had been

printed on a typesetter limited to four font positions, you would have used the follow-

ing method for stating your input:

6 Using Documenter’s Tool Kit

Fonts

-fp 1 Cw

ft CW

CW Constant Width

.fp 1 GR

.ft GR

GR Greek (\(*a \(*b \(*g)

-fp 1H

.f{p 2 HB

.f{p 3 HI

.ft H

H Helvetica

.ft HB

HB Helvetica Black

.ft HI

HI Helvetica Italics

And so forth. As each new set of four fonts is about to be used, they are first

mounted. | :

It is best not to remount another font where the Special (S) font had been in any

single processing run of text. Ask your system administrator where the Special font is

mounted.

Naturally, when you are finished using a relatively rare font, it is good practice to

set things back to default:

.fp 1R

fp 2tI

.fp 3B

As you can guess from what has been said, once each font is mounted you can

invoke it by number as well as by letter(s). Courier Typewriter above, for example,

could have been specified with .ft 2 or \f2 as well as with the request, .ft CT, or the

escape sequence, \f(CT. |

What happens when you ask for a font that has not been mounted? troff will

automatically attempt to mount such a font at position 0. Because the zero position is

reserved for this dynamic arrangement, you are not permitted manual access to it as

you are to the other positions. Font position 0 cannot be used for more than one font

in a given line or diversion. |

The Formatter troff 7

Fonts

The Font Macro

In addition to using requests and escape sequences, the mm macro package also

provides macros to make font changes. These are limited to three: .R (roman), .I

(italic), and .B (bold). (The remainder of available font macros are made up of com-

binations of these.) Each, in fact, is an indirect way to use the .ft request. .R

activates .ft 1; .I activates .ft 2; etc. Each macro thus produces whatever font is

loaded at its corresponding numerical position at the time it is used. If Helvetica had

been mounted at position three, then .B would produce Helvetica, not emboldened

roman.

Other font macros are .RI, .RB, .BI, .BR, .IR, and .IB. Each, as its name sug-

gests, is a combination of the primary fonts: roman, italics, and bold. An interven-

ing space between words or characters tells the macro when to switch fonts. Here is

a typical input line:

.BI bold italic.

And now the output:

bolditalic.

Notice that the space between the words has been closed by the macro. To leave a

space or spaces, enclose the word(s) and space(s) in double quotes, for example:

.BI "bold " italic

These macros can be handy. You can use them conventionally, placing them on

the line that precedes the text you want to change. The following is input:

JL

Like .ft I, the .I macro produces italic print.

.R

And now, the output:

Like .ft I, the .I macro produces italic print.

Like the .ft I request, you need to specify the change back to roman.

These macros can also be used on the same line as the text. This usage does not

require a return to the previous font. By placing them on the same line as the text

you want to modify, you set up an automatic return by default. The input looks like

this:

8 Using Documenter’s Tool Kit

Fonts

.I "Used this way, these macros change font for one line only."

.br

The next line automatically reverts to the default font, roman.

The outputshows that the shift to italic occurs only in the line on which you place the

macro:

Used this way, these macros change font for one line only.

The next line automatically reverts to the default font, roman.

Note that the double quotes given on the input line do not appear on the output

line. This is a convention of nroff and troff macros when they appear on the text

line. If the macro is followed by a single word (a sequence of characters not inter-

rupted by white space), no double quotes are necessary. If the macro is followed by

more than one word, it is necessary to enclose the phrase with double quotes. Thus,

these mm macros are limited to one input line of contents, though the line could be

extended by wrapping it instead of pressing RETURN.

The Formatter troff 9

Point Size (.ps and \s)

The many fonts troff is capable of loading usually come in a variety of sizes,

which can be selected with the requests and escape sequences that control point size.

You control point size with the request .ps, or with the escape sequence \s, both of

which adjust the height and width of your characters. (The point size refers to the

size of the block on which the character is plotted, so individual characters are usu-

ally smaller than the measure specified.)

Like the number of fonts available from typesetter to typesetter, the range of

troff’s point sizes is device-dependent. The span of available sizes found on most

devices ranges from six point (one-twelfth of an inch) to thirty-six point (one half an

inch). But you can usually expect more. There are fifteen sizes in the following list:

6 point

7 point

8 point

9 point

10 —s point

11 ~—s point

12. point

14 point

16 point

18 point

20 point

22 point

24 point

28 point

36 point
As you can see, in the instances where a point size is skipped, you will usually get the

nearest available point size. The following, for example, is a list of illegal sizes and

their assigned replacements from a machine whose characters range from three point

to forty-eight point:

10 Using Documenter’s Tool Kit

Point Size

12 —-+3

21 — 20

23 — 22

25 — 24

27 — 26

29 — 28

31 — 30

33 — 32

35 — 34

37-38 — 36

39 — 40

41-42 —+- 40

43 —» 44

45-46 —» 44

47 — 48

49- —» 48

This reassignment of point size is typical of the system’s behavior. Rather than

quitting when it sees a command that is impossible to fulfill, troff gives you a reason-

ably close substitute. In most cases, as the present example illustrates, you get one

that is one seventy-second of an inch smaller.

The .ps request accepts only numerical arguments. You would set text in twelve

point characters as follows:

-ps 12

Twelve point is surprisingly

larger than default. point size.

-ps 10

\
KO Sf

And here is the output: |

Twelve point is surprisingly larger than default point size.

The Formatter troff 11

Point Size

Notice the symmetry. Without an accompanying request specifying a return to the

default point size (usually ten point), all succeeding text would have been set to twelve

point.

You can also specify point size with the escape sequence \s. Like the font escape

sequence, the size escape sequence is immediately followed by an argument. The

arguments themselves are identical to the ones you would use with requests. That is,

the numerical argument is identical to the point size you want:

\SLOTEN\S16SIXTEEN\S20TWENTY\S10

gives you

TrENSIXTEEN TWENTY

Again, notice the return to default: ten point. A succession of twenty point char-

acters would catch your attention but would require a good deal of page turning. You

will also notice that the escape sequence itself occupies no space on the output line.

There are circumstances in which you would not want to specify point size

literally. A given document, for example, might be destined to be printed using two

different ranges of point sizes. Let’s say one was to be printed using twelve point for

readers with poor eyesight while a second printing was to be in nine point. To

preserve proportion with each document, you might have to face a complicated edit-

ing effort. But if the point size changes you had made within each document had

been relative changes, printing one document in two different point sizes would be

easy. You accomplish relative changes using expressions instead of integers for argu-

ments:

DEFAULT \st4DEFAULT + 4 \s+4DEFAULT + 8\s-8

gives you

DEFAULT DEFAULT +4 DEFAULT + 8

The point size escape sequence, \s0, means "return to the previous point size"

and allows you to maintain a relative set of point size requests. Thus,

TEN \stONINETEEN \sOTEN

would produce

TEN NINETEEN ren

12 Using Documenter’s Too! Kit

Point Size

Vertical Spacing (.vs and .Is)

troff characteristically offers a great capacity for fine-tuning. It was expressly

designed to give you precise control over your text, and point size is no exception.

As individual characters are subject to your control, so the spacing between lines of

characters is available for your adjustment.

This companion parameter to point size is .vs, the vertical spacing request. Its

numerical argument specifies the vertical spacing, or leading, between pairs of succes-

sive lines. Usually, you set vertical spacing to be about twenty percent larger than the

character size. “Nine on eleven" (nine point characters and eleven point spacing) or

“ten on twelve" (troff’s default value) is conventional.

That is,

.ps 9

.vs llp

would give us text

that looked like this.

But if we were to change to

.ps 12

.vs 14

the result would be markedly diffcrent.

Point size and vertical spacing

change substantially the amount

of text per square inch.

.ps 6

evs 7

would really drive the point home, though.

For example, ten on twelve uses about twice

as much space as seven on eight. This is six

on seven, which is even smaller.

It certainly

gives you lots of information per page,

but decreasing point size

.ps 5

.vs 6

The Formatter troff 13

Point Size

could make your reader

believe that he or she

.ps 4

.vs 5

were going blind.

When used without arguments .ps and .vs revert to the previous value.

The command .sp is also used to get extra vertical space. It docs not set the

amount of space between all lines of characters as .vs does. Rather it specifies the

number of spaces you want at a given place in the text. Consider this usage:

_ a

/

An input line like this

sp 1

will give you one space

or two spaces

sp 2

depending on your needs.

The output appears as

An output line like this

will give you one space

or two spaces

depending on your needs.

an,

~~

Unadorned, .sp gives you one extra blank line (one vertical space, whatever .vs

has been set to). If that’s not what you want, .sp can be followed by information

about how much space to leave:

.sp 21

means "two inches of vertical space."

14 Using Documenter’s Tool Kit

Point Size

.Sp 2p

means "two points of vertical space.” Finally,

.sp 2 |

means "two vertical spaces"—two of whatever .vs is set to. (This can be made explicit

with .sp 2y.) troff also understands decimai fractions in most request arguments, so

.sp 1.51

is a space of 1.5 inches. These same types of measures (inches, points, and spaces)

can be used after .vs to define line spacing and, in fact, after most commands that

deal with physical dimensions.

In the same company with .vs and «sp is .Is (line spacing). .Is is typically used at

the beginning of a document or block of text to specify the number of vertical spaces

between successive pairs of lines. By default this number is one. The numerical

arguments it accepts determine the ratio of single blank lines per lines of text. The

argument itself is a total of space lines and text lines. Thus, .Is 2 represents the sum

of one line of space plus one line of text. .Is 3 will give you two spaces for every line

of text, and so forth. .Is is not a replacement for .sp. It sets the default value for

line spacing. .sp may still be used at any time to specify a particular line spacing.

It should be noted thai all size numbers are converted internally to "machine

units" (whose ratio to inches varies from machine to machine).

The Formatter troff 15

Local Motions

Moving further from the carriage rows of a typewriter, troff will [et you depart, at

a moment’s notice, from the place where your next character was to be struck, to a

remote part of the page. This local activity of movement is called local motions.

Although you might expect such a radical departure from the norm to require ela-

borate arrangements, local motions are done as font and point size changes are: with

a escape sequence.

Vertical Motion (\v)

Consider using vertical motion, for example, to lift and lower individual charac-

ters and words:

Down ST 4
Up the IR CAs),

The baseline (the line unchanged by vertical motion) is the linc where "Down" ts sit-

ting.

You can elevate or lower characters with one escape sequence, the \v. To move

the word "Up" downward, you simply precede it with the escape sequence together

with directions for the distance you want "Up" to travel:

\v7+17Up

This says, in effect, move down (a positive direction in the world of forward-moving

text). As you might imagine, all words following the vertical moticn escape sequence

will also be elevated or lowered at precisely the level dictated by the escape sequence.

To return to the initial vertical position, simply give the opposite escape sequence

areument: in this case \w—1’. The next word from the example, "the," is preceded

by \v’—0.5’, thus moving back half the distance from the place where "Up" was

printed. "Down'’s escape sequence, likewise, is \W—0.5’, bringing that word back to

the baseline. The input line for these words looks like this:

\v7+17Up \v7--0.57the \v7—0.57Down

We could have substituted “1” for the argument “+1°. As is often the case in troff,

arguments that increment or decrement assume "+" to be default. Only the explicit

"_" will, in the case of \v, give you upward movement.

16 Using Documenter’s Tool Kit

Local Motions

Notice that the local motions escape sequence, \v, is similar to the font and point

size escape sequences except for one thing. Unlike those near relatives, \v encloses

its argument in single quotes (apostrophes). The numerical argument you give the \v

escape sequence specifies units of .vs (whatever you set vertical spacing to). If verti-

cal spacing is set to be one inch, then \wW—1° will move the characters following it

upward a distance of one inch.

An alternative to \v are the escape sequences \u, the up escape sequence, and \d,
the down escape sequence. These do not have the range of \v, but their simplicity

comes in handy for some commonly encountered words or expressions:

Footnotes\u7\d

14\u\s610\s0\d

Trademarks\u\s6TTM\s0\d

for example, will give you

Footnotes’
14”

TrademarksTM

Notice the symmetry of troff usage. Like \v, which requires a companion escape

sequence to return to the baseline, \u and \d accompany each other: for every down

there must be an up and vice versa (unless, of course, you don’t want to return). The

exponent and trademark examples are especially interesting ones. At the center of

the activity are the characters 10 and TM waiting both to be elevated and shrunk by

the escape sequences \u and \s6, respectively. All following characters, however,

will remain elevated and reduced if 10 and TM are not followed by escape sequences

bearing values opposing the initial settings.

\s0 1s especially useful for local motions since you often do not care what the

former point size is; you simply want to return to it.

The Formatter troff 17

Local Motions

Horizontal Motion (\h)

At present, you have learned to travel the upward and downward corridors of a

page. To move freely in any direction, you need the further capability to move to the

left and right. This you can do with the escape sequence \h. Like \v, \h requires

arguments that are set off by single quotes (apostrophes) and are given with minus (—)

or plus (+) signs. The + will give you rightward movement (a positive direction in the

context of troff output); the — will give you leftward movement. As with \v, + is

default, and the omission of the + or — will be understood to be a positive, or right-

ward, movement. Consider the following examples: ‘Typing

<\h°—0. 3m >

[\h~—0. 2m7]

will give you a simple diamond and rectangle, respectively:

>

|

But

<\h°0.3mTM>

[\h70. 2m7]

will spread these companion marks apart according to your numerical argument:

<>

[]

Notice that these arguments specify measures in ems (about the width of an m in

whatever point size that applies at the time). The em is the default for the

horizontally-oriented requests and escape sequences, and these escape sequences

could have been expressed as \h’—0.3° and \h’—0.2’, respectively. The \h escape

sequence also accepts other measures including inches (in decimal fractions), picas,

and machine units.

See the "nroff/troff Technical Discussion" in the Documenter’s Took Kit Technical

NOIE| Summary for the DG/UX System for an explanation of these measures.

18 Using Documenter’s Tool Kit

Local Motions

The additional use of point size (.ps) and emboldening (.bd) will, of course, give

you variations on these themes. While the preprocessor pic enables you to draw pic-

tures, troff’s ability to combine existing characters to make new ones can also be use-

ful.

The Formatter troff 19

Creating New Characters With Local

Motion

Consider the following example, which uses characters made by both horizontal

and vertical motion:

ghost

Had yeelded vp into y aire, in middest of all the host

Aeneas valicnt victour stands, god Mauors chapion bold.

The Latines stoynisht standing, from their hartes great groanes vnfold,

And deepely from their inward thoughts reuoluing cause of care,

Their daunted minds they do let fall

Wiis Turnus in this finall fight downethrowne, his flittring

The input for the first word of this passage looks like this:

\v7 1.77 \s36V\h—0. 5m V\s0\v"—1L. 77 Hen

The thirty-six point size of the W was incremented and decremented by the \s escape

sequence. The more interesting aspect of this construction, though, is the drawing

together of the two Vs with the \h escape sequence. The second V moved back

toward the first a distance of two ems (at thirty-six point, remember) until they actu-

ally crossed and formed another character. The downward movement (\v‘1.7’) and

opposing upward movement (\v’-1.7’) was done to allow for space and to position the

character gracefully. The surrounding text was offset with the temporary indent

request .ti 0.5i moving it horizontally a half an inch to the right.

One character (it’s actually a word) that probably caught your eye is the early

English contraction for the: y . It is created using two unconventional features: hor-

izontal and vertical motion and size change. To make y , we must reduce the size of

the e and move it both slightly backwards and above the y. We determine size change

by inserting \s before the character we want to alter. Thus, ye as a line of processed

text would be accomplished by typing y\s6e as a line of input. The y appears in the

default point size, ten, and the e appears in point size six, dictated by \s6.

We determine vertical motion, similarly, with the escape sequence \y. Thus,

y\s6\v —0.5°e

will produce y.. We specify that e be moved up one-half of a unit.

20 Using Documenter’s Tool Kit

Creating New Characters With Local Motion

Finally, we want to move the e to the left.

y\s6\v —0.5\h7—0. 35m e\h7 0. 35mTM\v" 0.57\s0

produces y . Again, notice that the amount of motion following \v and \h is conven-

tionally set off by single quotes.

As you have seen throughout these tutorials, the language of nroff and troff is one

of graceful symmetry. In the example above, for every \s6, we must counterpose a

\s0 to cancel its predecessor. Otherwise, everything following the initial point size

change would be reduced to that specified change. Likewise, every \v’-0.5° must be

followed with a countervailing \v’'+0.5’, and every \h’—0.35m’* must be followed with

\h’+0.35m’. Thus, our y is formed by

y\s6\v" —0.57\h-—0. 35m e\h” 0. 35m” \v" 0.57 \s0

Such a word is obviously too cumbersome to type every time we want to produce

so brief a word as y. The solution, as the nroff tutorial shows, is to store it in a

macro or string and call it with yE or *(yE.

Finally, there are also several special-purpose troff formatting commands for local

motions. \0 is an unpaddable white space of the same width as a digit. Unpaddable

means that it will never be widened or split across a line by line justification or filling.

There is also \ (backslash blank), which is an unpaddable character the width of a

space; \|, which is half that width; \’, which is one quarter the width of a space; and

\&, which has zero width and is often used as the first character on a text line that

begins with a dot (.), which otherwise would be read as a formatting command.

The escape sequence \o used like

\o’ set of characters”

causes (up to nine) characters to be overstruck, centered on the widest. This is nice

for accents, as in

syst\o"e\ "me t\o" e\"1\o"e\" "phonique

_ which makes

systéme téléphonique

The input for the accents are \‘ and \’, or \(ga (grave accent) and \(aa (acute accent).

You can make your own overstrikes with another special convention, \z, the

zero-motion command. \zx suppresses the normal horizontal motion after printing

the single character x, so another character can be laid on top of it. Although sizes

can be changed with \o, it centers the characters on the widest, and there can be no

horizontal or vertical motions, so \z may be the only way to get what you want:

The Formatter troff 21

Creating New Characters With Local Motion

1]
is produced using the predefined troff escape sequence for making squares, \(sq.

.sp 2

\s8\z\(sq\sl4\z\ (sq\s22\ (sq

The .sp 2 is needed to leave room for the result.

As another example, an extra-heavy semi-colon that looks like

@

; instead of ; or 5

can be constructed with a big comma and a big period above it:

\st6\z,\v~—-0.25mTM .\w7 0. 25mTM\s0

—"0.25m" is an empirical constant.

A more ornate overstrike is given by the bracketing function, \b, which piles up

characters vertically, centered on the current baseline. Thus, we can get big brackets,

constructing them with piled-up smaller pieces:

*}by typing in this:

\bo\(Le\(e\ (Ub \b"\(1c\(1£TM x \b\(re\ (ri \b7\(rt\(rk\(rb7

In this case, the piled-up pieces are given in two groups on either side of the x,

each delimited with a leading \b. The first forms a large, left-hand curly bracket:

\(it, or left top of curly bracket ({)

\(dk, or left center of curly bracket (4)

\db, or left bottom of curly bracket (\)

Following the \b as they do, they all must back-up to be overstruck, forming the curly

bracket. The next group forms a left-hand square bracket:

\dc, or left ceiling of square bracket ([)

\df, or left floor of square bracket ([)

The groups to the right of the x simply form the right-hand counterparts to the left-

hand curly and square brackets. The important thing these pieces have in common is

that they are delimited by the \b with its associated single quotes and are therefore all

subject to overstriking the other members of their groups.

22 Using Documenter’s Tool Kit

Creating New Characters With Local Motion

troff also provides a convenient facility for drawing horizontal and vertical lines of

arbitrary length using arbitrary characters. \W1i° draws a line one inch long, like this:

| . The length can be followed by the character to use if the "_"

doesn’t suit you. W1i.’ will draw, for example, a one-inch line of dots:

senesceeescneseeeaees . The construction \L is analogous except that it draws a vertical line

instead of horizontal.

The Formatter troff 23

Programming in troff

In the preceding tutorials you have seen the requests, escape sequences, and mac-

ros you need to produce a wide range of text formatting features. These formatting

commands, concerned with page control, might be viewed as the surface of nroff and

troff. They stretch and diminish indents, line lengths, page lengths, tabs, and the rest

depending on the arguments you give each request or macro.

The capabilities of nroff and troff, however, go beyond interpreting and carrying

out your formatting instructions. They are able to store them, remember them, and

use them again. What is more, nroff and troff can use arithmetic to evaluate and

compute such stored information. This below-the-surface activity gives you something

truly extraordinary in text processing: formatters that you can program.

You might choose to ignore what goes on below-the-surface. This would be fine:

you might simply build your own library of macros and escape sequences and not be

troubled with the rest. If, on the other hand, you want to explore this new territory,

it is there for the taking. ,

Number Registers

You have already read about number registers in the nroff tutorial in this guide.

They are the storage places for various page values. The amount of indent, for exam-

ple, is stored in a place called the .i register. As you change the indent in the cus-

tomary way (.in +1i), the register .i also changes. You cannot change the .i register

directly; it is a read-only register (unlike various others) and changes automatically

according to the arguments you make to the indent request. Let’s see how this works.

You ask for the value of the register, whatever it is at the time, by preceding the

register name with the characters \n for one-character register names and \n(for

two-character register names. Thus, \n% would give you the value of the page

number register, %, and \n(.1 would find the value of the line length register (.1).

Because the indent register is .i, we derive its value with \n(.i. If you set the indent

to zero, the register value will be zero. A file that contains

.in 0

\n(.2

will yield an indent as far to the left as possible and the number 0. Let’s see what

happens to the .i register when we increment .in one inch. Typing

ein +11

\n(. 1

24 Using Documenter’s Tool Kit

Programming in troff

in your input file would give you the following in your output:

300

You would get the number 300, the number of basic units for the

APS-5 phototypesetter, and all succeeding text, as you can see, would

be moved over one inch from the previous left-hand margin. These

basic units reflect the one-inch indent just made plus whatever indent

is controlling this page at the time of printing. (The number of basic

units for nroff is 240; units are typesetter-dependent for troff.) Typing

a simple .in will give you the previous indent.

The fact that the value of registers is calculated in units need not interest you.

What is interesting is that you can use arithmetic to find and use valuable information

about any given page.

Imagine, for instance, that you wanted to indent a block of text a distance that

would be proportionately offset no matter what the size of the page might be. A sin-

gle, numerical incrementation naturally would pose problems. What would be

indented one-fourth of a page to the right on a small page might be indented one-sixth

the width of a larger page. Using the value of registers, however, we avoid this obsta-

cle. If we added the value of the current line length (\n(.1) to the current indent

(\n(.i) and divided the sum by four, we could find one-fourth the page width whatever

the page’s size might be.

So that this device will be easier to use, let’s define it as a macro and give it a

name that identifies its function of indenting one-fourth of a page:

.de 14

.in(\\n(.it\\n(.1)/4

This macro definition (which you would place at the beginning lines of your docu-

ment) is simply made of a request and one very long argument. The arithmetic

expression used to define the macro would have been easier to read had we used

blanks (white space) to set off the expressions elements. nroff/troff arithmetic

expressions, unfortunately, do not permit the use of white space. The parentheses

are used to ensure that the addition of both the line length and the indent will be

divided by four.

Notice the double backslashes following the macro definition. Some backslashes

between the .de request and its accompanying .. request must be protected by an

extra backslash. The extra backslash in the example above delays interpretation of

the register since the value of that register could change from the time the troff is

The Formatter troff 25

Programming in troff

copied to the time the document is printed.

The input file would look like this. (Since this example demonstrates indentation,

it has not itself been indented):

-P \

This is normal text that should be subject to current line length

and indent values.

That is, this text should be identical to the text that has

preceded it on this tutorial page.

.14

This block, however, should be indented by a distance equal to

twenty-five percent of the text preceding it. And all text

following the \f3.i4\fl macro should be similarly indented.

.in

Text following the request for the previous indent should

bring things back to normal.]

/

The output file is next:

This is normal text that should be subject to current line length and indent values.

That is, this text should be identical to the text that has preceded it on this tutorial

page.

This block, however, should be indented by a distance equal to

twenty-five percent of the text preceding it. And all text follow-

ing the .i4 macro should be similarly indented.

Text following the request for the previous indent should bring things back to normal.

These basic concepts—deriving the value of number registers and using arithmetic

to compute those values—are important and constitute two basic techniques essential

to advanced text programming. Be sure you understand them.

26 Using Documenter’s Tool Kit

Programming in troff

You will find a complete list of number registers in the "nroff/troff Technical Discus-

NOTE sion" in the Documenter’s Took Kit Technical Summary for the DG/UX System.

Traps

This tutorial will present two additional concepts that are frequently used in text

programming: testing and conditional statements. The page trap is a rudimentary way

of understanding and using both of these concepts.

The need request (.ne) is, in effect, a simple page trap. .ne followed by a number

(which represents a number of output lines) both tests data and conditionally

responds to that data. Supposing it were important to print a block of text uninter-

rupted by page breaks, you would want to find how far from the page’s bottom your

text block might be. The .ne request would conduct that test and print the block if

you had enough room or save the block for the next page if you did not. Because this

material is covered earlier in the nroff tutorial, a brief example will suffice:

ne 3

.nof

This block of text, which takes up three output lines,

cannot be separated. The ability to hold text togelner is

especially important when comparing examples or illustrating a point.

If two lines of space remain on the page, this entire block wili be printed, intact, at

the start of the following page.

The page trap is a more sophisticated version of the .ne request. Like the need

request, the page trap tests data and responds conditionally. Unlike the need request,

the page trap does more than print or fail to print.

The Formatter troff 27

Programming in troff : __

You set the page trap with the .wh (when) request. The first argument to .wh is

either zero, indicating the top of the page, or a negative number, indicating distance

from the bottom. The arguments are then followed by a request or macro you want

to begin operation when you cross the trap. Consider the examples:

.dehD \ define header

‘sp li \" space one inch

. end definition

de f0 " define footer

"bp \" break page

. \" end definition

.wh 0 hD \" set top-of-page trap -

\ .wh -li fo \" set bottan-of-page trap }

You probably wondered why the macros .-hD and .fO lacked dots in the page trap

examples. These are macros whose names are given to .wh; they are not actual

macro Calls in this instance.

Because the examples in this section will become increasingly more complex, key

lines will be followed by comments. Remember, comments preceded by .\" or “V" are

neither printed nor interpreted by the system.

The preceding example emphasizes the latitude of the trap: where you can

include one macro, by virtue of defining new macros, you can include any and every-

thing. In this case, -hD and .fO are defined simply. When you get to the header

(determined by the 0), output a one-inch space; when you get to within one inch of

the page’s bottom, break page. Notice that you are limited to one numerical argu-

ment per .wh request since these are to set page locations for springing their respec-

tive traps.

Notice that the .sp and .bp requests, which normally cause a line break, begin

with "" instead of "." to suppress the line break function. This is an important, if

complex, part of setting page traps. Often in fill mode the output line that springs the

trap is not neatly processed. Some word or part of a word might be squeezed out.

Should that temporarily stray fragment meet up with a line break while going through

a trap, it would be lost. The " character suppressing that break function thus plays

an important role in protecting such text.

28 Using Documenter’s Tool Kit

Programming in troff

For a list of requests that force a line break, see the "nroff/troff Technical Discus-

NOTE sion" in the Documenter’s Took Kit Technical Summary for the DG/UX System.

Defining macros with additional escape sequences, requests, registers, and traps

can be used to accomplish a great deal of text processing:

.de hD \" define header

“sp |0.5i

1 “""\\n(mo/\\n(dy/\\n(yr \\n87 —\"_ give date and page number

“sp 0.51

.de f0 \" define footer

“sp 0.2i

{| .ps 12 \" set title in twelve point

.ft I \" set title in italic

.ce l \" center title at the bottam of each page

Tutorial

.ps \" restore point size

ft \" restore font

.wh 0 hD \" set hD to activate at header trap

.wh ~li fo \" set fO to activate at footer trap

This header prints the date (current each day) and current page number at the

upper right hand of the page. The footer prints an essay title in italics at twelve

point, reverts to the previous font and point size and calls for the next page to be

printed. Because you can define macros to collect and print text and register values

as well as to perform requests, escape sequences, macros, you begin to see how

powerful the page trap can be. But more on traps later. Instead let’s explore testing

and conditional statements further.

The Formatter troff 29

Programming in troff

Conditional Acceptance of Input (.if, .ie, .el)

Testing and conditional activity, at this point, are nothing novel in nroff/troff.

You have seen them in the need request, which specified when text would be pro-

cessed, and in the page trap, which specified both when and what text would be pro-

cessed. The if requests (.if, .ie, .el) add one more capability to these: they decide

whether text will be processed.

The two tables below will give a rough overview of the if requests and will set out

terms from which to work. In the following, c is a one-character, built-in condition

name, ! signifies not, N is a numerical expression, u stands for basic units (a device-

dependent measure), string1 and string2 are strings delimited by any non-blank, non-

numeric character nof in the strings, and anything represents what is conditionally

accepted:

Request Form Explanation

-if c anything If condition c true, accept anything as input;

in multi-line case use \{anything \}.

-if !c anything If condition c false, accept anything.

-if N anything If expression N > 0, accept anything.

eif !N anything If expression N < 0, accept anything.

if ‘stringl‘string2’ anything | If stringI identical to string2,

accept anything.

-if ! string] ‘string2’ anything | If string] not identical to string2,

accept anything.

eie c anything If portion of if-else; all above forms (like .if).

-el anything Else portion of if-else.

The built-in condition names are:

Condition

Name True If

oO Current page number is odd

e Current page number is even

t Formatter is troff

n Formatter is nroff

30 Using Documenter’s Tool Kit

Programming in troff

If the condition c is true, then anything (requests, escape sequences, or text) is

accepted for input. Likewise, if the number N is greater than zero, anything following

the conditional expression is input. If the strings compare identically (including

motions and character size and font), anything is accepted as input. Finally, if a!

precedes the condition, number, or string comparison, the sense of the acceptance is

reversed.

Any spaces between the condition and the beginning of anything are skipped over.

The anything can be either a single input line (text, macro, or whatever) or a number

of input lines. In the multi-line case, the first line must begin with a left delimiter \{

and the last line must end with a right delimiter \}.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the reverse

sense of that state. .ie-.el pairs may be nested.

All this may seem daunting at first, but a few examples will show the .if requests

to be in fact quite tame. Perhaps the most common use of these requests is to distin-

suish between nroff and troff parameters. Often a document is destined to be format-

ted by each of these programs depending on the occasion. Preparing two different

versions would be wasteful; the .if requests allow you to prepare two sets of parame-

ters for one document. Each set automatically activates when its corresponding for-

matter is used.

The following abbreviated examples show how this is done:

ifn \(\ \" if nroff

ft R \" use roman font

.ps 10 \" use point size ten

etc. \}

if t \{\ \" if troff

.fp 1 PA ~ \" load Palatino font

.ft PA \" use Palatino font

.ps 9 \" use point size nine

etc. \]}

You undoubtedly noticed that n and t correspond to nroff and troff, respectively.

These are permanent, predefined condition names and will never change. When

using nroff to format your document, the .if request asks that parameters suitable for

The Formatter troff 31

Programming in troff

a mechanical printer be used; if troff were used, a format appropriate to digital typog-

raphy would be used.

32 Using Documenter’s Tool Kit

Programming in troff

We could have done this in a slightly more straightforward fashion:

ie t \[\ \" if. troff

.fp 1 PA \" load Palatino at position one

.ft PA \" use Palatino

.ps 9 \" use point size 9

etc.

el \{\ \" or else |

.ft R \" make roman your predaminant font

-ps 10 \" use point size ten

etc. \}

If troff is used, execute all formatting commands inside the corresponding delim-

iters. If not, then do all formatting commands within the second set of delimiters.

Since the only alternative to troff is nroff, else will always mean nroff in such a case.

Each set of .if requests has its own corresponding pair of delimiters. The delim-

iters are to unify several lines of formatting commands into a single package belonging

to its controlling .if request. Had the request .el been followed by a single request,

the delimiters would not have been necessary:

.el .ft R

(Notice that in previous examples, subsequent requests or macros on control lines do

include dots, unlike the .wh request.)

The preceding example would have been duplicated, in effect, with this even

shorter solution:

The Formatter troff 33

Programming in troff

If you were to use nroff, the .if request would be ignored, and you would get

default values (which we were assigning to nroff anyway). If you used troff, the

parameters following .if would apply.

Notice that in the above examples the opening if-statement delimiter (\{) is

trailed by a final backslash, escaping the newline character. The starting delimiter

expects to be followed by a formatting command or text. By escaping the newline,

this requirement is met.

If we had used .if requests in our previous example of page traps for headers and

footers, it might have looked something like this:

.de hD

ile \\nd>1 \{\ \. For all pages following page one do the following:

ie e .t] “3°77 \" place page number at upper left of even pages

el .t] 7773" \" place page number at upper right of odd pages

‘sp | li \} \" then space down one inch

el ‘sp | 1.25i\ \. Don’t number first page and make larger header

.wh 0 hD

Notice the nesting in this example. Inside the main if-else statement (which deter-

mined activity based on first-page and non-first-page status) was another if-else (which

determined activity based on even and odd pages). This nest of conditional state-

ments was delimited by \{\ and \}. Like n and t, e and o are predefined condition

34 Using Documenter’s Tool Kit

Programming in troff

names for even and odd pages, respectively. These too are permanent definitions.

A more realistic example of header and footer control would be the following:

3

.de hD

aft .tl“-"-—

if \\nd>1 \{\

header

troff cut marka“.3
3

‘sp |0.5i-1 \" tl base at 0.51

1) 77- 3-77 \" centered page number

. ps \" restore size

ft \" restore font

.vs \] \" restore vs

‘sp |1.0i \" space to 1.0i

.ns \" turn on no-space mode

.de f0 \"" footer

.ps 10 \" set footer/header size

.ft R \" set font

.vs 12p \" set base line spacing

-if \\n3=1 \{\

‘sp |\\n(.pu-0.5i-1 \" tl base 0.51 up

tl “7-3-7 \} \"" first page number
‘bp

.wh 0 hD \" set top-of-page trap

.wh -1li fo \" set bottam-of-page trap

This arrangement sets the size, font, and base line spacing for the header /footer

material and ultimately restores them. The material in this case is a page number at

the bottom of the first page and at the top of the remaining pages.

If you are typesetting text on a device that produces a continuous role of paper,

you must specify a cut mark at the bottom of each page. This was done above by

simply requesting that hyphens be drawn using the .tl request.

The .sps refer to absolute positions to avoid dependence on the base line spacing.

Another reason for absolute spacing in the footer is that the footer 1s invoked by

printing a line whose vertical spacing swept past the trap position by possibly as much

as the base line spacing. The no-spacing mode is turned on at the end of .-hd to

render ineffective accidental occurrences of .sp at the top of the running text.

The Formatter troff 35

Programming in troff

The above method of restoring size, font, and leading presupposes that such

requests (that set previous value) are not used in the running text. A better scheme is

to save and restore both the current and previous values for size as the following

shows:

ne >
-nr sl \\n(.s \" current size

.ps

.nr s2 \\n(.s \" previous size

etc. \" rest of footer

.de hD

Lee \" header stuff

-ps \\n(s2 \" restore previous size

-ps \\n(sl \" restore current size

/
__

Page numbers can be printed in the bottom margin by a separate macro triggered dur-

ing the footer’s page ejection:

.de DN \" bottan number

1 “7-38-77 \" centered page number

-wh —0.5i-lv bn \"tl base 0.5i up

While an exhaustive presentation of troff’s features and applications is not practi-

cal in a tutorial, its great flexibility and precision can certainly be shown. Some of

the unusual—in some cases, unique—capabilities we have not discussed are well

worth learning through the "nroff/troff Technical Discussion" in the Documenter’s

36 Using Documenter’s Tool Kit

Programming in troff

Took Kit Technical Summary for the DG/UX System.

With troff you are able to divert text into special save-areas and measure its

dimensions, placing the text according to your findings while the job is running. Once

you have placed traps, you can calculate the distance to the next trap, defining mac-

ros to behave according to that distance. You can create your own automatically

incrementing registers and set them according to textual dimensions or contextual

page behavior. In short, troff provides both a nimble text processing facility as well

as an elaborate instrument for determining the weights and measures of words.

Finally, these complementary features combine in a programming language that can

be effectively used with other tools and languages enabling you to undertake applica-

tions of considerable variety and scope.

The Formatter troff 37

The Preprocessor eqn

Introduction 1

Typesetting Equations with eqn 3

Displayed Equations (.EQ and .EN) 3

Shorthand for In-line Equations (delim) 4

Spaces and Newlines within .EQ and .EN 5

Output Spaces 6

Symbols, Special Names, Greek 6

Spaces, Again 7

Subscripts and Superscripts (sub, sup) 8

Braces for Grouping 9

Fractions (over) 10

Square Roots (sqrt) 11

Summation, Integral (sum, from, to) | 11

Diacritical Marks (dot, dotdot, hat, tilde, vec, dyad, bar, under) 12

Quoted Text 13

Lining up Equations (mark and lineup) 14

Brackets, Braces, Parentheses, Bars, and Floor/Ceiling 15

Pile (above, pile, Ipile, rpile, cpile) 16

Matrices (Icol, reol, ccol, matrix) 17

Definitions (define, ndefine, tdefine) 17

Font Changes (size, font, roman, italic, bold, fat) 18

Local Motion (back, fwd, up, down) 20

Keywords, Precedences 20

Table of Contents =i

The Preprocessor eqn

Troubleshooting

ii Using Documenter’s Tool Kit

24

Introduction

This tutorial describes how to use eqn and neqn, which enable you to present

mathematical notation. These programs are preprocessors; you use them before you

use text formatters such as nroff or troff. With eqn or neqn you specify mathematical

expressions with control lines that you can set up like a display or embed in the run-

ning text of a manuscript. This tutorial gives examples of eqn and neqn output.

The prerequisites to benefit from this tutorial are as follows:

TM You should know what a file and directory are and how to create them. See

Using the DG/UX System (069-701035).

mTM You should know how to use a text editor (such as ed or vi) to create and

change files. See Using the DG/UX Editors (069-701036).

TM You should know how to run programs with options and how to use pipes. See

Using the DG/UX System (069-701035).

m You must have a working knowledge of nroff or troff, preferably troff. See the
tutorials in this guide "The Formatter nroff" and "The Formatter troff."

m Your understanding of eqn/neqn would benefit from knowledge of the mm

macro package though it is not essential. "The Macro Package mm" gets you

started, and "The mm Macro Package: Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System explains it in

detail.

Other preprocessors that you may use with eqn/negqn are discussed in tutorials in this

NOTE} guide. You may also refer to the "nroff/troff Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System.

eqn and neqn are practically the same program. The difference is straightfor-

ward: you use neqn with nroff to produce mathematical expressions on DASI, GSI,

and Model 37 Teletype terminals. Use eqn with the phototypesetting language troff.

The results of neqn are the same as those produced by eqn, but the outcome is not as

elegant because DASI and GSI terminals do not provide the variety of characters,

sizes, and fonts that a typesetter does. Because eqn and negn are so similar, this text

uses "eqn/neqn" to refer to both programs, unless a functional distinction requires

otherwise.

The Preprocessoreqn 1

Introduction

eqn and neqn are preprocessors that translate the control lines in your file for

troff and nroff respectively. Thus, you may use eqn/negn with other preprocessors

such as the table formatting program tbl, the graphics formatting programs pic and

grap, or macro packages such as mm without duplication of function.

2 Using Documenter’s Tool Kit

Typesetting Equations with eqn

The following sections introduce you to the macros, keywords, metacharacters,

and font and point size controls needed to use eqn.

Displayed Equations (.EQ and .EN)

To tell eqn/neqn where a mathematical expression begins and ends, use the

macro pair .EQ and .EN. Thus if you have a file containing the lines

.EQ

xX=ytz

_ EN

your output will look like this

x=V+Z

The following command line uses troff to process the output:

eqn [options] [file] | troff [options] | phototypesetter

The following command line preprocesses the equation for the nroff formatter:

neqn [options] [{ file] | nroff [options] | printer

Your system administrator should know what printer name is appropriate for your

output.

The delimiters .EQ and .EN are copied untouched; they are not otherwise pro-

cessed by eqn/neqn. You must take care of things such as positioning equations on

the page yourself. The most common way to handle this is to use the mm display

macros, which allow you to center or indent text blocks. This tutorial gives tips for

using .EQ and .EN with the display delimiters in the section entitled "Troubleshoot-

ing.”

Any equation can be labeled with an arbitrary equation number, which appears at

the right margin when your file is printed. For example, the input

-FQ I (2a)

= f(y/2) + y/2
. EN

produces the output

x=f (y /2)+y /2 (2a)

The Preprocessoreqn 3

Typesetting Equations with eqn

Shorthand for In-line Equations (delim)

In a document containing mathematical notation, you should follow mathematical

conventions not just in display equations, but also in the body of the text. For exam-

ple, variable names such as x should be in italic. Although you could do this by sur-

rounding the appropriate input with .EQ and .EN, it would be a nuisance to continu-

ally repeat these delimiters.

eqn/negn provides a shorthand method for presenting short in-line expressions.

You can define two characters to mark the beginning and end of in-line expressions,

and then use them to type expressions right in the middle of text lines. To set both

the left and right characters to pound signs, for example, add the following three lines

to the beginning of your document:

EQ

delim ##

. EN

Having set these delimiters, you may use them in your text to indicate mathematical

expressions that need to be processed by eqn/neqn. For example:

Let #alpha sub i# be the primary variable, and let #beta# be zero.

Then we can show that #x sub 1# is #>=0#.

Spaces, new-lines, and so on, are significant in the text, but not inside the

eqn/neqn expression itself. More than one expression can occur in a single input

line.

Let a; be the primary variable, and let 6 be zero. Then we can show that

X41 is >0.

Adequate room should be made before and after a line containing an in-line

n

expression so that something such as S}x; does not interfere with the lines surround-

: i=l

ing it. Once pound signs, for example, have been made eqn delimiters, all instances

of them will have a special meaning.

4 Using Documenter’s Tool Kit

Typesetting Equations with eqn

To turn off the delimiters type the following lines:

-EQ

delim off

.EN

Don’t use braces, tildes, circumflexes, or double quotes as delimiters, or you will

get unwanted results. Also, you must close in-line font changes (for example, \f3)

before you begin in-line equations.

Spaces and Newlines within -EQ and .EN

Spaces and new-lines within an expression are thrown away by eqn/neqn. Thus

between .EQ and .EN, or between whatever characters you have defined as expres-

sion delimiters,

xX=VtzZ

and

x=ytz

and

x= y

+ Z

all produce the same output:

X=V+Z

The Preprocessoreqn 5

Typesetting Equations with eqn

Output Spaces

To force spaces to appear in the output, use a tilde """ for each space you want:

Pod

x=y tz

gives

K=yt+Z

You also can use a circumflex (*), which gives a space that is half the width of a tilde.

It is useful for fine-tuning. Tabs also may be used to position pieces of an expression,

but the tab stops must be set by nroff or troff.

Symbols, Special Names, and Greek

eqn/neqn knows some mathematical symbols, some mathematical names, and the

upper- and lower-case ancient Greek alphabet. For example,

EQ

xX=2 pi int sin (omega t)dt

. EN

produces

x=2n fsin(wt)dt

Here the spaces in the input are necessary so that eqn/negn can recognize int, pi, sin,

and omega as keywords that get special treatment. On output, the sin, the digit 2,

and the parentheses are each set in roman type instead of italic; pi and omega

become their Greek counterparts; and int becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A common

error is to type f(pi), for example, without leaving spaces on both sides of the pi. As

a result, eqn/negn does not recognize pi as a keyword, and it appears as f (pi)

instead of f (x).

6 Using Documenter’s Tool Kit

Typesetting Equations with eqn

You must tell eqn/neqn to look in the file /usr/pub/eqnchar for particular names

and symbols that it would not understand otherwise. To tell it to look there, use the

following command line.

eqn/neqn /usr/pub/eqnchar [file] | troff

Here is a complete list of the keywords and their corresponding symbols that are in

/usr/pub/egnchar:

ciplus a | | I square C]

citimes & langle (circle O

wig ~ rangle) blot a

—wig iwig hbar h bullet e

>wig > ppd 1 prop ox

<wig <s <-> > empty %

=wig = <=> <> member €

star ne |< + nomem ¢

bigstar * | > + cup U

=dot = ang L cap n

orsign V rang L incl -

andsign cA 3dot subset C

=del 4 thf a supset D

oppA V quarter WY, Isubset Cc

oppE = 3quarter 3/4 Isupset >

angstrom A degree 0 scrL, e

==< < ==> >

Spaces, Again

The only way that eqn/neqn can deduce that some sequence of letters might be

special is if that sequence is separated from the letters on either side of it. You can

do this by surrounding a keyword by ordinary spaces (or tabs or new-lines), as

explained in the previous section. |

You can also make special words stand out by surrounding them with tildes or cir-

cumflexes:

x="2° pi” int” sin” (~omegaTMt”)~dt

This is much the same as the last example except that the tildes not only separate the

special words like sin, omega, and so on, but they also result in real spaces in the

output, one space per tilde:

The Preprocessoreqn 7

Typesetting Equations with eqn

x =2nf sin(wt) dt

You also can separate special words with braces { } and double quotes "...",

which have special meanings, as you will see.

Subscripts and Superscripts (sub and sup)

Subscripts and superscripts are obtained with the words sub and sup.

x sup 2 + y sub k

gives

x 41 VE

eqn/negn takes care of all the size changes and vertical motions needed to make the

output look right. Like all special words, sub and sup must be surrounded by spaces;

x sub2 will give you xsub 2 instead of x2. Furthermore, a space (or a tilde) must

mark the end of text to be subscripted or superscripted. A common error is to say

something like

y = (xX sup 2)+1

which causes

y=(x2)41

instead of the intended

y=(x*)+1

Subscripted subscripts and superscripted superscripts also work:

x sub 1 sub 1

produces

Xi,

The same element of an expression can have both a subscript and a superscript if the

subscript comes first:

x sub i sup 2

becomes

x?

8 Using Documenter’s Tool Kit

Typesetting Equations with eqn

Other than in this special case, sub and sup group to the right, so

x sup y Sub z

means

not

yx,

Braces for Grouping

Normally, the end of a subscript or superscript is marked simply by a blank (or

tab or tilde). But what if the subscript or superscript is composed of elements that

have to be typed in with blanks? In that case, you can use braces ({ and }) to mark

the beginning and end of the subscript or superscript:

e sup {i omega t)

becomes

eiwt

Braces can always be used to force eqn/negn to treat something as a unit or just to

clarify your intention. Thus:

x sub {i sub 1} sup 2

becomes

x},

with braces, but

x sub i sub 1 sup 2

becomes

X;2

which is clearly different.

The Preprocessoreqn 9

Typesetting Equations with eqn

Braces can occur within braces if necessary:

e sup {i pi sup {rho +1}}

is

ein?t 1

The general rule is that anywhere you can use a single expression such as x, you can

use multiple expressions if they are enclosed in braces. eqn/negn looks after all the

details of positioning and spacing.

Always make sure you have the right number of braces. Leaving one out or

adding an extra causes eqn/negn to complain.

Occasionally you have to print braces. To do this, enclose them in double quotes

as follows: "{" will give you a literal brace.

Fractions (over)

To produce a fraction, use the word over:

atb over 2c = 1

giVeS

a+b
ar? 1

2c

The line is automatically made the right length and positioned. Braces can be

used to clarify what goes over what:

{alpha + beta} over {sin (x)}

becomes

otf
sin(x)

What happens when there is both an over and a sup in the same expression? In

such an ambiguous case, eqn/negqn interprets the sup before the over, so

~b sup 2 over pi

becomes

—b2

Rt

10 Using Documenter’s Tool Kit

Typesetting Equations with eqn

instead of

2

—b”.

The rules that decide what operation is done first in cases like this are summar-

ized below in the section, "Keywords and Precedences." When in doubt, however,

braces will make clear what goes with what.

Square Roots (sqrt)

To draw a square root, use sqrt:

sqrt atb + 1 over sqrt {ax sup 2 +bxtc}

is

ax“+bx +c

Square roots of tall quantities do not look attractive, because a root-sign big enough

to cover the quantity is too dark and heavy:

sqrt { a sup 2 over b sub 2 }

a

V bp

Big square roots are generally better written in an alternative style of mathematical

notation:

is

(a sup 2 /bd sub 2) sup half

which becomes

(a 2/b2)”

Summation and Integral (sum, from, and to)

Summations, integrals, and similar constructions are easy:

sum from i=0 to {i= inf} x sup i

produces

The Preprocessoreqn 11

Typesetting Equations with eqn

1=00

yx
1=0

Notice that the braces specify where the upper part, i=oo, begins and ends. No braces

were necessary for the lower part, i=0, because it contained no blanks. If the from

and to parts contain any blanks, you must use braces around them.

The from and to parts are both optional, but 1f both are used, from must always

precede to.

Other useful characters can replace the sum in our example:

int prod unicn = inter

become

J ri un

Since the expression before the from can be anything, even something in braces, from

and to can often be used in unexpected ways:

lim from {n — inf} x sub n =0

becomes

lim x,=0
n->OO

Diacritical Marks (dot, dotdot, hat, tilde, vec, dyad, bar,

and under)

There are several keywords that will produce diacritical marks:

x dot

x dotdot

x hat

x tilde

x vec

x dyad

x bar

x under fee bey AY] a be
The diacritical mark is placed at the correct height and centered over the letter. The

bar and under marks are made the right length for the entire construct, as in x+y +z.

12 Using Documenter’s Tool Kit

Typesetting Equations with eqn

Quoted Text

Any input enclosed in quotes ("...") is not subject to any of the font changes and

spacing adjustments normally done by eqn/neqn; therefore, you can adjust your own

spacing if needed:

italic "“sin(x)" + sin (x)

becomes

sin(x)+sin(x)

Quotes are also used to get braces and other eqn/neqn keywords printed:

"{ size alpha }"

becomes

{ size alpha }

and >

roman "{ size alpha }"

becomes

{ size alpha }

The quote construction, "", 1s often used as a place-holder when eqn/negqn needs

something to fulfill a syntactic requirement, but you don’t actually want anything in

your output. For example, to make ?Be, you can’t just type sup 2 roman Be because a

sup has to be preceded by something it can be a superscript of. Thus you must say

ene

sup 2 roman Be

To print an actual quotation mark use """. troff characters like \(bs can appear

unquoted, but something more complicated, like horizontal and vertical motions with

\h and \vy, should always be quoted.

The Preprocessor ean 13

Typesetting Equations with eqn

| To learn more about \h and W, see the "nroff/troff Technical Discussion" in the
NOTE Documenter’s Took Kit Technical Summary for the DG/UX System.

Ty

Lining up Equations (mark and lineup)

Sometimes it’s necessary to line up a series of equations at some horizontal posi-

tion, often at an equal sign. You can do this with mark and lineup.

The word mark may appear only once, at any place, in an equation. It

remembers the horizontal position whe:2 it appeared. Successive equations can con-

tain one occurrence of the word lineup. The place where lineup appears is made to

line up with the place marked by the previous mark if possible. Thus, for example,

you can say

to produce

X +y=Z

x=1

14 Using Documenter’s Tool Kit

Typesetting Equations with eqn

Brackets, Braces, Parentheses, Bars, and Floor/Ceiling

To get big brackets [], braces {}, parentheses (), and bars | | around expressions,

use the left and right keywords:

left { a over b + 1 right }

“=" left (c over d right)

+ left [e right]

becomes The resulting brackets are made big enough to cover whatever they enclose.

Other characters can be used besides these, but they are not likely to look good.

Two exceptions are the floor and ceiling characters:

left floor x over y right floor

<= left ceiling a over b right ceiling

produces

x a

y b

The right construction may be omitted: a "left something” need not have a

corresponding "right something.” If the right part is omitted, put braces around the

thing you want the left bracket to encompass. Otherwise, the resulting brackets may

be too large.

If you want to omit the left part, things are more complicated because technically

you can’t have a right without a corresponding left. Instead you have to say

left "" right)

tee Li}

for example. The left This satisfies the rules without hurt-

ing your output.

means a "left nothing.

Several warnings about brackets are in order. First, braces are typically bigger

than brackets and parentheses, because they are made up of three, five, seven, or

more pieces, while brackets can be made up of two, three, or more. Second, big left

and right parentheses often are not attractive in print.

The Preprocessoreqn 15

Typesetting Equations with eqn

Pile (above, pile, Ipile, rpile, and cpile)

pile is a general facility for making vertical piles of things. For example:

A “= left [

pile { a above b above c }

“~ pile { x above y above z }

right]

ax

by
c Zz

The elements of the pile (there can be as many as you want) are centered one above

another, at the correct height for most purposes. The keyword above is used to

separate the elements of the pile; braces are used to delimit the list. The elements of

a pile can be as complicated as needed, even containing more piles.

makes

A=

There are three other forms of pile: Ipile makes a pile in which the elements are

left-justified; rpile makes a right-justified pile; and cpile makes a centered pile, just

like pile. The vertical spacing between the pieces is somewhat larger for I-, r- and

cpiles than it is for ordinary piles.

roman sign (x)"="

left {

lpile {1 above 0 above -1}

~~ lpile

{ifTMx>0 above if"x=0 above if TMx<0}

makes

1 ifx>0

sign(x) = 40 if x=0

—1 if x<0

Notice that the brace is not part of pile’s output, but appears because the keyword |

left construction was also used in this expression. This example also shows the use of

a left brace without a matching right one.

16 Using Documenter’s Tool Kit

Typesetting Equations with eqn

Matrices (Icol, rcol, ccol, and matrix)

It is also possible to make matrices. For example, you can use the keywords

matrix and ccol like this

matrix [

ccol { x sub i above y sub i }

ccol { x sup 2 above y sup 2 }

}

to array these elements neatly like this

2
xX; x

yi y?

This produces a matrix with two centered columns. The elements of the columns are

listed, inside braces, just as for a pile, each element separated by the word above.

You can also use Icol or rcol to produce left or right adjusted columns. Each column

can be separately adjusted, and there can be as many columns as you like.

The advantage of using a matrix instead of two adjacent piles is that piles may not

line up properly if all the elements don’t have the same height. A matrix forces ele-

ments to line up because it looks at the entire structure before deciding on spacing.

A word of warning about matrices: each column must have the same number of

elements in it.

Definitions (define and ndefine)

eqn/negn provides a facility for naming a frequently-used string of characters, so

thereafter you can just type the name instead of the whole string. For example, if the

sequence

x sub i sub 1+ y sub i sub l

appears repeatedly throughout a paper, you can avoid re-typing it each time by defin-

ing it like this:

define xy ~x sub i sub 1+ y subi sub lTM

xy can now be used to stand for whatever characters occur between the single quotes

in the definition. You can use any character instead of quotes to mark the beginning

and end of the definition, so long as it doesn’t appear inside the definition.

The Preprocessoreqn 17

Typesetting Equations with eqn

Now you can use xy like this:

EQ

f(x) = xy...

. EN

and so on. Each occurrence of xy expands into its definition. Be careful to leave

spaces or their equivalent around the name when you use it, so eqn/negqn will be able

to identify the defined name as a special word.

There are several things to watch out for. First, although definitions can use pre-

vious definitions, as in

EQ

define xi ~ x subi ~

define xil ~ xi subl~TM

. EN

don’t define something in terms of itself. A common error is to type

define X ~ roman X ~

This is a guaranteed disaster since X is now defined in terms of X. If you type

define X ~ roman "X

however, the quotes prevent the second X from being read as a keyword, and every-

thing works fine.

eqn/neqn keywords can be redefined. You can make / mean over by saying

define / ~ over ~

or redefine over as / with

define over ~ /~

You can also use the keyword ndefine to define a symbol.

Font Changes (font, roman, italic, bold, and fat)

By default, equations printed with eqn/neqn use standard mathematical conven-

tions to determine which characters are in roman and which in italic. neqn constrains

equations to your printer’s capabilities.

18 Using Documenter’s Tool Kit

Typesetting Equations with eqn

Although eqn/neqn makes a valiant attempt to use aesthetically pleasing fonts, it

is not perfect. To change fonts, use roman, italic, bold and fat. Like sub and sup,

font changes affect only the element that follows them, and the expression reverts to

the normal case when it reads a blank space. Thus

bold x y

becomes

xy

and

bold X =y +

bold {alpha + beta}

gives

X=y+a+f

As always, you can use braces if you want to affect something more.complicated than

a single letter.

If you are using fonts other than roman, italic, and bold, you can say font X

where X is a one character troff name or number for the font. Since eqn/neqn

expects roman, italic, and bold, other fonts may not give as good an appearance.

The fat operation widens a font by overstriking: fat grad is V and fat {x sub

1) 1S Xj.

If an entire document is to be in a non-standard font, it would be a severe nui-

sance to have to write out a font change for each equation. Accordingly, you can set

a global font to thereafter affect all equations. At the beginning of any equation, you

might say, for instance,

EQ

gfont R

.EN

to set the font to roman thereafter. In place of R, you can use any of the troff font

names.

Generally, gfont appears at the beginning of a document, but it can also appear

throughout a document: the global font can be changed as often as needed.

The Preprocessoreqn 19

Typesetting Equations with eqn |

Local Motion (back, fwd, up, and down)

Although eqn/negn tries to get most things at the right place on the paper, it isn’t

perfect, and occasionally you need to fine-tune the output to make it just right.

Small, extra horizontal spaces can be obtained with tilde and circumflex. You can say

back n and fwd n to move small amounts horizontally. n is how far to move in

1/100’s of an em (an em is about the width of the letter m). Thus back 50 moves

back about half the width of an m. Similarly you can move things up or down with

up n and down n. As with sub or sup, a local motion affects only the next element

in the input, which can be several elements enclosed in braces.

Keywords and Precedences

If you don’t use braces, eqn/neqn does operations in the order shown in each line

in this list.

dyad vec under bar tilde hat dot dotdot

fwd back down up

fat roman italic bold

sub sup sqrt over

from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical words

are converted to roman font when encountered:

sin cos tan sinh cosh tanh arc

max min lim log In exp

Re Im and if for det

The following list shows special character sequences in their input form (left column)

and output form (right column).

>=

Hl A oul
om Hr Ill IA IVr

20 Using Documenter’s Tool Kit

Typesetting Equations with eqn

_> +

<— _—

<< | <<

>> >>

inf CO

partial 0

half Y

prime | !

approx x

nothing

cdot

times x

del V

grad V

geeey yeeey

sum y}

int J |

prod II

union U

inter N

To obtain Greek letters, simply spell them out in whatever case you want:

The Preprocessoreqn 21

Typesetting Equations with eqn

iotaDELTA A L

GAMMA Ir kappa K

LAMBDA A lambda __

OMEGA 0 mu LL

PHI nu v

PI I] omega Ww

PSI v omicron = o

SIGMA & phi ¢

THETA 6 pi T

UPSILON Yr psi yp

XI g rho 0

alpha a sigma og

beta p tau T

chi x theta 6

delta 5 upsilon vu

epsilon —« xi E

eta n zeta ¢

gamma ss

These are all the words known to eqn/neqn except for the following characters

with names:

22 Using Documenter’s Tool Kit

above

back

bar

bold

ceiling

ccol

col

cpile —

define

delim

dot

dotdot

down

dyad

fat

floor

font

from

fwd

gfont

gsize

hat

italic

Icol

left

lineup

Ipile

Ipile

mark

matrix

ndefine

over

pile

rcol

right

roman

rpile

sqrt

sub

sup

tilde

to

under

up

Typesetting Equations with eqn

The Preprocessoreqn 23

Troubleshooting

If you make a mistake in an equation, such as leaving out a brace (a common mis-

jake) or typing one too many, or typing sup with nothing before it, eqn/neqn gives

you an error message of the following form:

eqn: syntax error

file file, between lines n and n+x

where n and n+x are approximately the lines between which the trouble occurred; and

file is the name of the file in question. There are also self-explanatory messages that

arise in other circumstances. |

If you want to check the document file before printing it (on the DG/UX system)

type the following:

neqn file >/dev/null

This command line throws away the output but prints any error messages.

If you use something like dollar signs as delimiters, it is easy to forget one, which

causes trouble. The program checkmm checks for misplaced or missing dollar signs

and similar troubles.

The size of in-line expressions is limited because of an internal buffer in the for-

matter troff. If you get a message "word overflow," it means you have exceeded this

limit. If you print the equation as a displayed equation, this message usually goes

away. The message "line overflow" signifies that you have exceeded an even bigger

buffer. The only cure for this is to break the equation into two separate ones.

On a related topic, eqn/neqn does not break equations by itself; you must split

long equations across multiple lines by yourself, marking each by a separate .EQ and

-EN sequence. eqn/neqn does warn about equations that are too long to fit on one

line.

When you format equations in an mm document, you must surround the delim-

iters .EQ and .EN with the mm display macros .DS and .DE. There is an exception

to this rule; if you use .EQ and .EN only to specify the delimiters for in-line expres-

sions or to specify eqn/neqn "defines" (which are explained above), do not use .DS

and .DE. To do so causes extra blank lines to appear in the output. However, when

you use .EQ and .EN to specify delimiters for in-line equations, one line of text

before .EQ gets lost unless you take precautions. For example, suppose the docu-

ment looks like this:

24 Using Documenter’s Tool Kit

Troubleshooting

(_
-P

This is a line of text.

-EQ

delim

. EN VO
"This is a line of text" gets lost because it is not flushed from the line buffer before

the .EQ is encountered. One remedy is to insert the nroff/troff break instruction

before .EQ:

\

The Preprocessoreqn 25

The Preprocessor pic

Introduction

Basics

Direction of Motion

Control of Size and Distance

Texture

Positioning Text

Changing Default Sizes

Lines and Splines

Controlling Positions

Mapping and Naming pic’s Forms

Blocks

Variables and Expressions

11

16

18

Table of Contents

21

24

27

29

36

39

The Preprocessor pic

Macros

copy and copy...thru Facilities

Loops and Conditional Statements

Technical Discussion

Pictures

Tiemenis

Primitives

Attributes

Text

Positions and Places

Variables

Expressions

Logical Operators

Definitions

copy and copy...thru Statements.

for Loops and if Statements

Miscellany

pic Sampler

ii Using Documenter’s Tool Kit

41

43

46

48

50

51

52

52

53

54

55

55

57

57

57

58

58

59

Introduction

This tutorial is intended to give you a working knowledge of pic; the

Documenter’s Tool Kit Software tool for drawing pictures. It will aiso introduce you

to pie’s programmable features. With this knowledge you will be able to draw figures

and characters to be used in text. You will also learn how to implement advanced

features, such as loops and conditional statements, for handling drawing tasks in

sophisticated ways. Whatever uses you have for pic, your pictures will be fully

integrated in the text formatting world of troff and will be treated as part of the text in

large or small printing jobs.

For a brief technical discussion of the pic language, see the "Technical Discus-

sion” near the back of this tutorial. For a variety of pic examples, see the "pic

Sampler” immediately following the "Technical Discussion."

You should be familiar with the following concepts and tools to fully benefit from

this tutorial.

m You should know how to use a text editor (ed, vi, and ex are examples). See

Using the DG/UX Editors (069-701036).

TM® You should know what a file and directory are and know how to manipulate

them. See Using the DG/UX System (069-701035).

@ You should know how to redirect input and output using pipes. See Using the

DG/UX System (069-701035).

m You should be familiar with a DTK formatter (nroff or troff). See the tutorials

in this book that discuss nroff or troff.

@ Your understanding of pic would be assisted by a knowledge of grap though

this is not essential. To learn about grap, see "The Preprocessor grap” in this

book. .

The Preprocessor pic |. 1

Basics

pic is a simple language for drawing pictures. Since it produces typesetter-quality

text, it is used in conjunction with troff. You introduce pictures into your document

by using macros (.PS and .PE) and by inserting, between those macros, instructions

that pic understands. The format looks like this:

And the result looks like this:

this is

a box

You would process the file that contains this bit of pic with the following command

line:

pic file | troff | typesetter

You need to use troff here rather than nroff because pic requires the free motions of

digital typography to make its pictures: you, naturally, could not use a daisy-wheel

printer to produce pic’s variegated forms.

The .PS and .PE macros (pic start and pic end) mark off and define pie’s

workspace. In the area set off by these macros you use pic’s special instructions

rather than nroff or troff requests and macros. This does not mean that pic is not an

integral part of the document. On the contrary it is fully part of the troff environ-

ment in which you are developing your text. (In fact, pic makes its pictures, or

forms, by automatically writing requests and escape sequences that are given to troff

to interpret as it interprets the rest of your requests, escape sequences, and macros.)

What it does mean is that pic has its own particular language, which is more English-

oriented than are most formatting commands.

2 Using Documenter’s Tool Kit

Basics

pic offers a basic set of forms that you make by simply naming them. The follow-

ing illustration shows them in their default sizes:

line arrow
—___ —____>> box

(et) (ane) 7
These pictures were made by naming them inside the area marked off by .PS and

-PE. (Naturally, saying "box" or "ellipse" anywhere else in troff would produce merely

the letters you typed and not the forms these words are able to materialize in pic.)

The following examples of input produced the forms given above:

.PS

line “line” above; move
bi 9

arrow arrow above; move

box "box"; move

PE

.sp 1

-PS

circle "circle"; move

ellipse "ellipse"; move

arc "arc"; move

-PE

This input example is divided into two pic groups; in between each group of two is

the troff request, .sp. The point here is that, while pic generates requests and escape

sequences for troff to read, it does not itself understand troff code. You must speak

to pic in its native tongue; it will do the translating for troff. Thus, if you want to

The Preprocessor pic 3

Basics

intersperse troff requests or escape sequences, you must first get out of the pie

workspace for a moment with .PE.

Notice also in order to place text inside forms, you must follow the form’s name

with the words you want, setting them off with double quotes. Each line of words

must have its own set of quotes. If, for example, you wanted to place two lines of

words in a box like this:

This 1s not

a circle.

you would use the following input file:

-PS

box "This is not" "a circle."

.PB

Each set of quoted words occupies a separate line because each has its own set of

quotes. Don’t be fooled by these quoted words; they bear no responsibility for mak-

ing a given form:

Many of the examples above introduce ordinary English words or text into their

pictures. pic not only permits you to integrate these, but also allows you to adjust

where they appear. While there may be times you would like the option of putting an

arrow through something:

_—_Arrow—=>

it will not often be your choice. Normally, you’ll want to place words where you can

read them clearly. To place a word above a line you would follow the word with

above; a word to be placed below would be followed with below. The shot-through

4 Using Documenter’s Tool Kit

Basics

"Arrow" shown above was made with this input:

-PS

arrow right 1.251 "\sl4\f2Arrow\fl\s0"

.PE

The arrow itself points to the right and is one and a quarter inches long. The word
"Arrow" is specified to be in italic and given in fourteen points.

-PS

line “Word” above; move

line “Word” below; move

line "above" "below"

-PE

would give you

Word above

Word below

The third case, as you probably noticed, was not followed by either above or

below. Rather it was the order in which the text was given that determined its place-

ment.

These methods are easy and useful. But they are not the most precise methods

pic has to offer. In succeeding pages you will learn to navigate your way around pic’s

forms using even compass points to place text.

Note how the input examples you have seen throughout are separated from one

another. Each shape has its own set of instructions. Each stands alone on its own

line or is followed by semi-colons, a substitute for a new line. Even move must be set

off by semi-colons.

The Preprocessor pic 5

Basics

move is not a shape but might be understood as one of pic’s invisible forms.

Consider these two closely related examples. The first uses arrows, which separate

boxes:

PS

box "input"; arrow

box "\f3pic\fl and" "\f3troff\fl"; arrow

box “output” |

.PE

The second example uses space to separate boxes with the move instruction:

oN

Notice that both the arrow and the move instructions are set off by semicolons: they

each have their separate pic function and need to be segregated from the box func-

tion.

The output of these two pic diagrams demonstrates that move, though invisible,

has the same status as arrow or any other form:

pic and
input troff output

6 Using Documenter’s Tool Kit

Basics

The Preprocessor pic /7

Direction of Motion

Most pics appear in a left-to-right fashion, but you can choose other directions.

The pic instructions to move downward look like this:

.PS

down; box; arrow; ellipse; arrow; circle

.PE |

The result follows:

Once you specify a direction, the whole sequence of forms moves in that direction

until you tell pic otherwise. The following input file includes a succession of different

movements:

8 Using Documenter’s Tool Kit

Direction of Motion

-PS

down; box; arrow; ellipse; arrow; circle

right; arrow; box; arrow; ellipse; arrow; circle

up; arrow; box; arrow; ellipse; arrow; circle

left; arrow; box; arrow; ellipse; arrow; box invis "Stop!"

.PE

which would produce this:

You can also specify "mini-environments" for direction of movement. If instruc-

tions are enclosed in braces, {...}, the established direction of motion inside the

braces is isolated from the pie instructions outside. When the enclosed instructions

are finished, all motion will revert to values established before the braces. Nothing

The Preprocessor pic 9

Direction of Motion

else is restored.

10 Using Documenter’s Tool Kit

Control of Size and Distance

The forms you have seen to this point each have been given in reasonable dimen-

sions. pic tries to choose sensible measures, so that simple figures can be drawn

without much bother. That is, if you don’t mention what size you would like a partic-

ular shape to be, you will get default sizes. The following dimensions are understood

to be in inches, pic’s exclusive measure:

arcrad = 0.25 circlerad=0.25

arrowwid = 0.05 arrowht = 0.1 (arrowhead dimensions)

boxwid = 0.75 — boxht = 0.5

ellipsewid = 0.75 ellipseht = 0.5

linewid = 0.5 lineht = 0.5

movewid = 0.5 moveht = 0.5

textwid = 0 textht = 0

dashwid = 0.05 scale = 1

These are known as "variables," and provide information to their corresponding

forms. The abbreviations given here are standard pie terms: wid or width; rad or

radius; ht or height. The abbreviation and the term it stands for may be used inter-

changeably in the pic language.

But you may want to view these dimensions as just a starting place. Each form

will accept arguments to tailor its precise shape to suit your needs. For example, the

input |

-PS

box width 3 height 0.1

.PE

draws a long, flat box

| |

3 inches wide and 1/10 inch high. If you forget to include the i (indicating inches),

pic will infer what you mean since it uses no other measure. (If you prefer to state

the i, however, no space may intervene between it and its corresponding number.)

The Preprocessor pic 11

Control of Size and Distance

Changing one box does not change them all. The next box you ask for after this
flat one will look like the ones you saw earlier. You can change the default sizes for

pic’s forms, but that will be discussed later.

The attributes of height (which you can abbreviate to ht) and width (or wid) apply

to boxes, circles, ellipses, and to the head on an arrow. The attributes of radius (or

rad) and diameter (or diam) can be used for circles and arcs if they seem more

natural.

The easiest way to draw lines and arrows is to state their direction and distance

relative to wherever you are. The words up, down, left and right are all the terms

you need to get started. You simply attach them to the form you want (line, arrow,

or move) and pic will produce the result its language suggests. For example,

.PS

line up li right 2i; arrow left 2i

move left 0.1i; line <> down li “height”

PE

draws

a.
—~

height

The notation <—> indicates a two-headed arrow; use —> for a head on the right end

and <— for one on the left. Lines and arrows are, technically speaking, the same

thing; in fact, arrow is a synonym for the expression, line —>.

If you don’t put any distance after up, down, and so on, pic uses the standard dis-

tance. So

12 Using Documenter’s Tool Kit

Control of Size and Distance

-PS

line up right; line down; line down left; line up

.PE

draws the parallelogram

Should you want to change whole classes of forms, you can do this by resetting

the default measures assigned to the variables given above. For example, you could

set ellipsewid to two inches if you find the standard half inch ellipse too small:

.PS

ellipsewid = 2

ellipse

PE

would produce

You should realize, however, that by setting ellipsewid to two inches, you have also

set all succeeding ellipses in your document to two inches. Unlike the notation,

The Preprocessor pic 13

Control of Size and Distance

ellipse width 3

_

which would affect only the ellipse following it, the variable ellipsewid provides the

width information for every ellipse in the document.

Let’s make more pictures without mentioning the variable, ellipsewid. First, the

input:

circle; ellipse; circle

Now, the output:

All ellipses are two inches wide while circles are unaffected. It is prudent, therefore,

14 Using Documenter’s Tool Kit

Control of Size and Distance

to reset variables as you get ready to leave the pic workspace:

.PS

ellipsewid = 3

ellipse

ellipsewid = 0.75

.PE

The Preprocessor pic 15

Texture

As you probably gathered from the Sampler in this manual, boxes and lines may

be dotted or dashed:

eeveeeeeoerenvneeverve

eeoeseeoseaeeee ——ss on a oe

@oeoeeveenee eevee eanee

were made from

.PS

box dotted; line dotted; move; line dashed

.PE

What you may not know is that the length of these dashes and distance between dots

is also subject to your control. If there is a number after dot, the dots will be that far

apart. You can also control the size of the dashes (at least somewhat): if there is a

length after the word dashed, the dashes will be that long, and the intervening spaces

will be as close as possible to that size. So, for instance,

on ee ame ewe ae eee ee eh em oem ame ee eee eee eee eee eee eee ee ee ee

comes from the following inputs:

16 Using Documenter’s Tool Kit

Texture

.PS

line right 4.5i dashed

.PE

.PS

line right 4.5i dashed 0.25i

.PE

LPS

line right 4.5i dashed 0.5i

.PE

LPS

line right 4.5i dashed li

.PE

Circles and arcs cannot be dotted or dashed.

The Preprocessor pic 17

Positioning Text

An interesting texture—it might be called a non-texture—is invisible or simply

invis. You produce this by adding the word invis after the pic form. This is also a

particularly easy and natural way to position things in a general format:

input —— > output

This neatly balanced figure was done with

-PS

box invis "input"; arrow; box invis “output”

.PE

pic also permits you to specify text alone without an accompanying invisible form.

You must, however, retain the double quotes to distinguish text from other pic

instructions. For example, you could have given

and your result would have approximated the example that used invis:

input—oviput

As you can see, this picture suffers from a problem of placement. You need to move

18 Using Documenter’s Tool Kit

Positioning Text

the text to make it readable:

-PS

"input"; move; arrow; move; “output”

.PE

and you would get this improved result:

input —_—_—_> output

The issue of placement gets at the heart of invis’s usefulness for positioning text.

Because you can name a form and not print it, you can take advantage of the form’s

virtues discussed in the section, "Mapping and Naming pic’s Forms." That is, you can

specify a corner or other relative position with respect to the invisible form. The fol-

lowing example will not use the invis instruction, so you can see the demonstration

more Clearly:

-PS

A: bax

"This is northeast” at A.ne ljust

.PE

The second line of these instructions uses a colon to associate the letter A with a box.

The box is then referred to as A on the next line with the suffix ne (separated by a

dot). This compass point tells pic to place the quoted string to the northeast of the

named box: at A.ne:

‘This is northeast

The instruction ljust is added to ensure that the word will be left adjusted with

The Preprocessor pic 19

Positioning Text

respect to box A. But this is a taste of things that are yet to come.

pic also knows arithmetic, and you can give it expressions that you would like to

appear in a form. The instruction you would use is plot:

.PS

ellipsewid = 2

ellipse "The expression 167 mod 44"; arrow "equals" above; move; plot 167 % 44

ellipsewid = 0.75 |

.PE

Here is the result:

The expression 167 mod 44 35

20 Using Documenter’s Tool Kit

Changing Default Sizes

The "width" of an arrowhead is the distance between the widest part of the vee.

The "height" is the distance along the shaft from back of the arrowhead to the tip.

By default, arcs move in a ninety-degree motion counterclockwise from where you

are right now, and are ew changes this to clockwise. The default radius is the same

_as for circles, but you can change it with the rad attribute. It is also easy to draw arcs

between specific places; this will be described in the next section.

To put an arrowhead on an arc, use <—, —> or <—>

In each picture, unless an explicit dimension for some object is specified, you will

get the default size. You can store non-default sizes in the pic reserved word, same.

Thus, if you chose a box to be wide and shallow and wanted succeeding boxes to do

the same, you would follow the word box with the extra information same. In the set

of boxes given by

-PS

down; box ht 0.21 wid 1.51; move down 0.15i

box same; move same; box same

.PE

| |

| |

the dimensions set by the first box are used several times; similarly, the amount of

motion for the second move is the same as for the first one.

It is possible to change the default sizes of objects by assigning values to certain

pic variables. So if you want all your boxes to be long and skinny and relatively close

together, for example, use the following input.

The Preprocessor pic 21

Changing Default Sizes

.PS

boxwid = 0.11; boxht = li

movewid = 0.21

box; move; box; move; box

PE

gives

You may, if you like, enter dimensions right on the .PS line. If you want a pic-

ture four inches wide, for example, you would follow your .PS with a 4. pie will

understand you mean inches and make the whole picture four inches wide, preserving

the scale of the default picture. Let’s look at the default picture first. Here is the

input:

-PS

circle; arrow; box

.PE

And now the output:

22 Using Documenter’s Tool Kit

Changing Default Sizes

Next, let’s see the same picture blown up to a width of four inches:

-.PS 4

circle; arrow; box

.PE

will give you

pic works internally in what it thinks are inches. Setting the variable scale to
some value causes all dimensions to be scaled down according to that value. Thus,

for example, scale=2.54 causes dimensions to be interpreted as centimeters.

The number given as a width in the .PS line overrides the dimensions given in the

picture; this can be used to force a picture to a particular size even when coordinates

have been given in inches. Experience indicates that the easiest way to get a picture

of the right size is to enter its dimensions (in inches), then if necessary add a width to

the .PS line.

The Preprocessor pic 23

Lines and Splines

You have now seen seven pic forms: line, arrow, arc, circle, ellipse, box and

move. One remains. You might approximate it with the knowledge you’ve accumu-

lated. Input comprised of these familiar instructions:

-PS

line; arc; arc cw; arrow

PE

would give you an acceptable spline:

The spline tells us something useful about the pic language. The pic line, as the

preceding example demonstrates, is more than a short (or even long), straight seg-

ment. It can unfold and turn before you according to your instructions:

.PS

line right 1i then down .5i left 1i then right li

.PE

The result suggests the rambling potential of the pic line:

24 Using Documenter’s Tool Kit

Lines and Splines

As their names suggest, lines and splines are similar to one another. Had you

substituted the word spline for line in the example above:

.PS

spline right 1i then down .5i left 1i then right 1i

.PE

you would have gotten this:

The following overlay provides a graphic comparison between the two:

.PS

line dashed right 1i then down .5i left 1i then right li

spline from start of last line \

right 11 then down .5i left li then right li

-PE

The result follows:

)\«<

Long input lines can be split by ending each partial line with a backslash, escaping the

newline.

The Preprocessor pic 25

Lines and Splines

Arrowheads may only be put on the ends of a line or spline.

26 Using Documenter’s Tool Kit

Controlling Positions

You can place things anywhere you want; pic provides a variety of ways to talk

about places. As you have seen, pic accepts fairly straightforward instructions like

up, down, right, and left with line and move. Thus

-PS 2 _ # make picture two inches wide.

box ht 0.2 wid 0.2 at 0,0 "1" # draw a .2" X .2” square

move to 0.5,0 # move right 0.5

box "2" same # use same dimensions as last box

move same # use same motion as before

box "3" same

PE

draws three boxes, like this:

Notice the use of same to repeat the previous dimensions instead of reverting to

the default values. And notice the lines beginning with "#." These comment lines are

used to record your intentions in case you forget what you were drawing. They are

discarded during processing and will not print. They begin with a pound sign (#) and

end at the end of the line.

For a more precise method of charting positions, pic also uses a standard Carte-

sian coordinate system, so any point or object has an x and y position. The first

object is placed with its start at position 0,0 by default. The x,y position of a box, cir-

cle or ellipse is its geometrical center; the position of a line or motion is its beginning;

the position of an arc is the center of the corresponding circle.

Position modifiers like from, to, by, and at are followed by an x,y pair and can be

attached to boxes, circles, lines, motions, and so on to specify or modify a position.

The Preprocessor pic 27

Controlling Positions

Attributes like ht and wid and positions like at can be written out in any order.

So

box ht 0.2 wid 0.2 at 0,0

box at 0,0 wid 0.2 ht 0.2

box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less desirable.

The from and to attributes are particularly useful with arcs, to specify the begin-

ning and ending points. By default, arcs are drawn counterclockwise,

arc from 0.51,0 to 0,0.51

is the short arc, and

arc fram 0,0.51 to 0.51,0

is the long one:

If the from attribute is omitted, the arc starts where you are now and goes to the

point given by to. The radius can be increased or diminished to make flatter or

tighter arcs. To form a flat arc like this one:

you would use a radius of fifteen inches:

arc —> cw from 0,0 to 21,0 rad 151

You may not want this graph-paper level of precision, but it is nonetheless at your

disposal. Typifying the DOCUMENTER’S WORKBENCH Software family of tools, pie

puts as much control into your hands as would like to assume.

28 Using Documenter’s Tool Kit

Mapping and Naming pic’s Forms

Objects can be labelled or named so that you can talk about them later. For

example,

Box] :

... other stuff

move to Boxl

.PE

Placenames have to begin with an upper-case letter (to distinguish them from variable

names, which begin with lower-case letters). The name refers to the “center” of the

object, which is the geometric center for most things. It’s the beginning for lines and

motions.

Other combinations also work:

.PS

line from Boxl to Box2

move to Boxl up 0.1 right 0.2

move to Boxl + 0.2,0.1 # same aS previous

line to Boxl — 0.5,0

.PE

The reserved name Here may be used to record the current position of some object,

for example as

Boxl: Here

The Preprocessor pic 29

Mapping and Naming pic’s Forms

Labels can function as variables—they can be reset several times in a single pic-

ture, so a line of the form

Boxl: Boxl + 11,11

is perfectly legal.

You can also refer to previously drawn objects of each type, using the word last.

For example, if we began with the following input:

box "A"; circle "B"; box "C"

then last box refers to box C, last circle refers to circle B, and 2nd last box refers to

box A. Numbering of objects can also be done from the beginning, so boxes A and C

are Ist box and 2nd box respectively.

To cut down the need for explicit coordinates, most objects can be described

using Compass points:

B.n
B.nw B.ne

B.w B.c B.e

B.sw Bs B.se

The primary compass points may also be written as .r, .b, .1, and .t, for right,

bottom, left, and top. The box above was produced with

30 Using Documenter’s Tool Kit

Mapping and Naming pic’s Forms

.PS 1.5

B: box "B.c”

" B.e" at B.e ljust

" B.ne" at B.ne ljust

" B.se" at B.se ljust

"B.s” at B.s below

"B.n" at B.n above

"B.sw " at B.sw rjust

"B.w " at B.w rjust

"B.now " at B.nw rjust

-PE

Note the use of ljust, rjust, above, and below to adjust the positioning of the inserted

text, and note the blank space used within the double quotes to move text away from

the box’s vertical lines.

Normally, text is centered at the geometric center of the object with which it is

associated. The attribute Ijust causes the left end to be at the specified point (which

means that the text lies to the right of the specified place), and rjust puts the right

end at the place. above and below center the text one half line space in the given

direction.

You may not combine text attributes. It is illegal, for instance, to say "text" above

ljust.

Text is most often an attribute of some other object, but you can also have self-

standing text:

"this is some text” at 1,2 ljust

Lines and arrows have a start, an end, and a center in addition to corners. There
are many ways to talk about the corners of an object. Besides the compass points,

almost any sensible combination of left, right, top, bottom, upper, and lower will

work. Furthermore, if you don’t like the shorthand notation of compass points, as in

last box.ne

you can instead say

upper right of last box

The Preprocessor pic 31

Mapping and Naming pic’s Forms

A longer statement like

-PS

line from upper left of 2nd last box to bottam of 3rd last ellipse

.PE

begins to wear after a while, but it is descriptive.

It is sometimes easiest to position objects by positioning some part of one at

some part of another, for example the northwest corner of one at the southeast

corner of another. The with attribute in pic permits this kind of positioning. For

example,

-PS

box ht 0.751 wid 0.75i

box ht 0.51 wid 0.51 with .sw at last box.se

.PE

produces

Notice that the corner after with is written .sw

32 Using Documenter’s Tool Kit

Mapping and Naming pic’s Forms

As another example, consider

.PS

ellipse; ellipse with .nw at last ellipse.se

.PE

which makes

Sometimes it is desirable to have a line intersect a circle at a point which is not
one of the eight compass points that pic knows about. In such cases, the proper

visual effect can be obtained by using the attribute chop to chop off part of the line.

-PS

circle "a"

circle "b" at lst circle - (0.75i, 11)

circle "c" at 1st circle + (0.75i, —li)

line fram lst circle to 2nd circle chop

line fram lst circle to 3rd circle chop

.PE

produces

The Preprocessor pic 33

Mapping and Naming pic’s Forms

By default the line is chopped by circlerad at each end. This may be changed:

line ... chopr

chops both ends by r, and

line ... chop rl chop r2

chops the beginning by rl and the end by r2

There is one other form of positioning that is sometimes useful, to refer to a

point some fraction of the way between two other points. This can be expressed in

pic as

fraction of the way between position! and position2

fraction is any expression, and position1 and position2 are any positions. You can

abbreviate this phrase; "of the way" is optional, and the whole thing can be written

instead as

fraction < position1 , position2 >

As an example,

.PS

box

arrow right fram 1/3 of the way between last box.ne and last box.se

arrow right from 2/3 <last box.ne, last box.se>

-PE

34 Using Documenter’s Tool Kit

Mapping and Naming pic’s Forms

produces

Naturally, the distance given by fraction can be greater than 1 or less than 0.

The Preprocessor pic 35

Blocks

Any sequence of pic statements may be enclosed in brackets [...] to form a

block, which can then be treated as a single object and manipulated rather like an

ordinary box. For example, if we say

-PS

box "1"

[box "2"; arrow "3" above; box "4"] with .n at last box.s — (0,0.1)

"thing" at last [].s

-PE

we get

3

thing

Notice that last-type constructs treat blocks as a unit and don’t look inside for

objects: last box.s refers to box 1, not box 2 or 4. You can use last [] , etc., just

like last box .

Blocks have the same compass corners as boxes (determined by the bounding

box). It is also possible to position a block by placing either an absolute coordinate

(like 0,0) or an internal label (like A) at some external point, as in

[...; A:....; ...] with .A at...

Blocks join with other things like boxes do (i.e., at the center of the appropriate

side).

36 Using Documenter’s Tool Kit

Blocks

Names of variables and places within a block are local to that block, and thus do

not affect variables and places of the same name outside. You can get at the internal

place names with constructs like

last [].A

or

B.A

where B is a name attached to a block like so:

B: [... ¢ A: ...7) J

When combined with define statements (next section), blocks provide a reasonable

simulation of a procedure mechanism.

Although blocks nest, it is possible to look only one level deep with constructs

like B.A , although A may be further qualified (i.e., B.A.sw or top of B.A are legal).

The following example illustrates most of the points made above about how

blocks work.

The Preprocessor pic 37

Blocks

]

box dashed ht last [].ht+dw wid last [].widtdw at last []

-PE

Se

boxht = h; boxwid = dw

A: box

B: box

C: box

box. wid 2*boxwid "..."

D: box

Block: [

boxht = 2*dw; boxwid = 2*dw

movewid = 2*dh

A: box; move

B: box; move

C: box; move

box invis "..."

D: box

] with .t at Ptr.s — (0,h/2)

arrow from Ptr.A to Block.A.nw

arrow from Ptr.B to Block.B.nw

arrow fran Ptr.C to Block.C.nw

arrow from Ptr.D to Block.D.nw

wid 2*boxwid; move

This produces

38

——_ mm ee we on ee ee Pa

Using Documenter’s Tool Kit

Variables and Expressions

It’s generally a bad idea to write everything in absolute coordinates if you are

likely to change things. Different size pages are likely to make you wish for propor-

tional measures. pic variables enable you to change the pictures you make without

much ado.

-PS

a=0.5; b=1

box wid a ht b

ellipse wid a/2 ht 1.5%*b

move to Boxl — (a/2, b/2)

PE

Expressions may use the standard arithmetic operators +, —, *, /, and % for

adding, subtracting, multiplying, dividing, or determining a modulus. Parentheses

may be used to group operations. The logical operators ==, !=, >, <, >, <, &&,

and || are allowed as well as the assignment operator, =.

Probably the most important variables are the predefined ones for controlling the

default sizes of objects. These may be set at any time in any picture and retain their

values until reset. |

You can use the height, width, radius, and x and y coordinates of any object or

corner in an expression:

The Preprocessor pic 39

Variables and Expressions

-PS

Box] .x # the x coordinate of Boxl

Boxl.ne.y # the y coordinate of the NE comer of Boxl

Box1 .wid # the width of Boxl

Box] .ht # and its height

and last circle.rad # the radius of the 2nd last circle

.PE

Any pair of expressions enclosed in parentheses defines a position; furthermore,

such positions can be added or subtracted to yield new positions:

(xX ,y)

(%1,Y1)+(%2,¥2)

If p; and p> are positions, then (p,,p2) refers to the point (p;.x,p2.y)

40 Using Documenter’s Tool Kit

Macros

pic provides a rudimentary macro facility, the simple form of which is identical to

that in eqn:

define name X replacement text X

defines name to be the replacement text; X or any character that does not appear in

the replacement may be used as a delimiting character. Any subsequent occurrence

of name will be replaced by replacement text.

Macros with arguments are also available. The replacement text of a macro defin-

ition may contain occurrences of $1 through $9 ; these will be replaced by the

corresponding actual arguments when the macro is invoked. The invocation for a

macro with arguments is

name(argl, arg2, ...)

Non-existent arguments are replaced by null strings.

As an example, one might define a square by

-PS

define square X box ht $1 wid $1 $2 X

.PE

Then

The Preprocessor pic 41

Macros

-PS

square(li, "one" “inch")

-PE

calls for a one-inch square with the obvious label, and

calls for a square with no label:

one

inch

Coordinates like x, y may be enclosed in parentheses, as in (x,y), so they can be

included in a macro argument.

42 Using Documenter’s Tool Kit

copy and copy...thru Facilities

pic offers a facility similar to macros in that it allows you to take input from a

remote source. You use this facility with the instruction copy, which copies data

from the file you give it as an argument. Here’s how it works:

.PS

copy "file"

.PE

When pic gets to the line beginning copy, it reads the contents of the file for its data.

It ignores .PS’s and .PE’s in the remote file, so you can incorporate smaller, already

drawn pictures into larger ones.

A slight refinement of this usage is the

copy "file" thru macro-name

copies file, treating each line as an invocation of the named macro (each field being

an argument). A literal macro may be used instead of a name:

copy "file" thru X macro replacement text X

and if no file name is given, the remainder of the input until the next .PE is used. So

to plot a set of circles at points whose coordinates and radii come from a file:

The Preprocessor pic 43

copy and copy...thru Facilities

-PS

copy thru / circle rad $3 at $1,$2 /

00 .05

11.1

.PE

Here are the results:

‘The sh command executes an arbitrary DG/UX system command line:

-PS

sh X anything X

.PE

as with the macro facility, X is any character not in anything..

A last touch to the thru instruction is until:

44 Using Documenter’s Tool Kit

copy and copy...thru Facilities

-PS

copy thru macro until "string"

-PE

OT

.PS

copy file thru macro until "string"

-PE

That is, you are able to specify how much of the remote macro or remote file you

want to read as input. When pic sees string, whatever you specify it to be, pic ceases

to use macro or file as input.

The Preprocessor pic 45

Loops and Conditional Statements

pic provides an if statement and a for loop:

.PS

.ps -2

pi = atan2(0,-1) # atan2 is a pic expression.

for i = 0 to 2 * pi by 0.1 do X

"s" at i, sin(i)
wt

c ati, cos(i)

.ps +2

.PE

The processed output follows:

SSS Cc
gss88 SSss. coe’

CaS Ss
S35° Co S Cc

Cc

CoCo, nce 7S Ss

Cecececcc® SSsssssss85

The body of the loop is delimited by any character not found within it. The by clause

is optional; values may be preceded by any of the four basic arithmetic operators:

+ (addition)

_ (subtraction)

(multiplication)

/ (division)

The if statement is

if expression then X anything X else X anything X

where the else clause is optional. The expression may use the usual relational opera-

tors:

46 Using Documenter’s Tool Kit

Loops and Conditional Statements

== (equal to)

= (not equal to)

> (greater than)

>= (greater than or equal to)

< (less than)

= (less than or equal to)

&& (and)

| or)
! (not)

For example, the following pic file:

(.
for i = 0 to pi by 0.1 do X

S = sin(i)

if s> 0.8 then Ys=0.8 Y

"x" at 1/2, s/2

X

-PE

a
produces the following:

eS.
A string comparison using == or != is also permitted:

if string] = string2 then .

The Preprocessor pic 47

Technical Discussion

pic is a troff preprocessor. The command line you use to run it reflects this rela-

tionship with troff:

pic file | troff —mm | typesetter

If eqn is also present, make sure eqn follows pic in the order of processing:

pic file | eqn | troff —mm | typesetter

pic copies the .PS and .PE lines from input to output intact, except that it adds
two things on the same line as the .PS. Type:

-PS wh

in order to specify h and w as the picture’s height and width in inches.

If .PF is used instead of .PE, the position after printing is restored to where it

was before the picture started, instead of being at the bottom. (F is for "flyback.")

Any input line that begins with a period is assumed to be a troff request or macro

and is interpreted at that point. Adding vertical space (\v) or extra spaces (.sp) will

probably affect the outcome of your pictures. Point size and font changes are gen-

erally harmless, though. Consider the following file:

fo

[
-ps 24

circle radius .4 at 0,0

-ps 12

circle radius .2 at 0,0

-_ps 8

circle radius .1 at 0,0

-ps 6

circle radius .05 at 0,0

-ps 10 \" don’t forget to restore point size

.PE

NN
which produces this picture:

48 Using Documenter’s Tool Kit

Technical Discussion

pic does preserve the state of troff’s fill mode across pictures.

It is also safe to include sizes, fonts and local motions within quoted strings ("..."

) in pic, so long as whatever changes are made are unmade before exiting the string.

For example, to print text in italic two points larger:

.PS

ellipse "\s+2\fISmile!\fP\s-2"

.PE

results in the following:

This is essentially the same rule as applies in eqn.

There is a subtle problem with complicated equations inside pic pictures — they

come out wrong if eqn has to leave extra vertical space for the equation. If your

equation involves more than subscripts and superscripts, you must add to the begin-

ning of each equation the extra information "space 0". The following file:

The Preprocessor pic 49

Technical Discussion

(
boxht=0.75

arrow

box "Sspace 0 {H(amega)} over {1 — H({ amega)}$"

arrow

boxht=0.5

.PE

produces this:

H (w)

1-H (w) ©

pic output is specified in inches and is, therefore, independent of any particular

typesetter. In the rare case that you have to specify your typesetter, use the —T

option as in

pic —Taps ...

for the Autologic APS-5 phototypesetter.

Pictures

The top-level object in pic is the "picture":

picture:

-PS optional-width optional-height

element-list

.PE

If optional-width is present, the picture is made that many inches wide, regardless of

any dimensions used internally. The height is scaled in the same proportion unless

optional-height is present.

50 Using Documenter’s Tool Kit

Technical Discussion

If .PF is used instead of .PE, the position after printing is restored to what it was

upon entry.

Elements

An element-list is a list of elements; the elements are

shape attribute-list

placename : element

placename : position

variable = expression

direction

{ list of elements }

| list of elements |

for statement

if statement

copy statement

print statement

plot statement

sh X commandline X

troff-command

Specify a placename with a capital letter

followed by zero or more letters or numbers.

Specify a variable with a letter

followed by zero or more letters or numbers.

Elements in a list must be separated by newlines or semicolons; a long element

may be continued by ending the line with a backslash. Comments are introduced by a

and terminated by a newline.

Variable names begin with a lower case letter; place names begin with upper case.
Place and variable names retain their values from one picture to the next.

The current position and direction of motion are saved upon entry to a {...} block

and restored upon exit.

Elements within a block enclosed in [...] are treated as a unit; the dimensions are

determined by the extreme points of the contained objects. Names, variables, and

direction of motion within a block are local to that block.

The Preprocessor pic 51

Technical Discussion

troff-command is any line that begins with a period. Such lines are assumed to

make sense in the context where they appear; accordingly, if it doesn’t work, don’t

call.

Primitives

The primitive objects are

primitive:

box

circle

ellipse

arc

line

arrow

spline

move

text-list

arrow is a synonym for line —>.

Attributes

An attribute-list is a sequence of zero or more attributes; each attribute consists

of a keyword, perhaps followed by a value. In the following, e is an expression and

opt-e an optional expression.

attribute:

52

h(eigh)t e

rad(ius) e

up opt-e

right opt-e

from position

at position

by e, e

dotted opt-e

chop opt—e

invis

text-list

Using Documenter’s Tool Kit

wid(th) e

diam(eter) e

down opt-e

left opt-e

to position

with corner

then

dashed opt-e

—> <~— <->

same

Technical Discussion

Missing attributes and values are filled in from defaults. Not all attributes make

sense for all primitives; irrelevant ones are silently ignored. These are the currently

meaningful attributes:

box:

height, width, at, same, dotted, dashed, invis, text

circle, ellipse:

radius, diameter, height, width, at, same, invis, text

arc:

up, down, left, right, height, width, from, to, at, radius,

Invis, cw, <—, —>, <—>, text

line, arrow |

up, down, left, right, height, width, from, to, by, then, at,

same, dotted, dashed, invis, <—, —>, <—>, text

spline:

up, down, left, right, height, width, from, to, by, then, at,

same, invis, <—, —>, <—>, text

move:

up, down, left, right, to, by, same, text

text-list:

at, text-item

The attribute at implies placing the geometrical center at the specified place. For

lines, splines and arcs, height and width refer to arrowhead size.

Text

Text is normally an attribute of some primitive; by default it is placed at the

geometrical center of the object. Stand-alone text is also permitted. A text-list is a

list of text items; a text item is a quoted string optionally followed by a positioning

request:

fext-item:

... Center

..." lust

... rjust

... above

... below

If there are multiple text items for some primitive, they are centered vertically except
as qualified. Positioning requests apply to each item independently.

The Preprocessor pic 53

Technical Discussion

Text items can contain troff commands for size and font changes, local motions,

etc., but make sure that these are balanced so that the entering state is restored

before exiting.

Positions and Places

A position is ultimately an x,y coordinate pair, but it may be specified in other

ways.

position:

place

(position)

expression, expression

(position) [4 (expression, expression) |

(position) [4 expression, expression]

(placel, place2), i.e., (place1.x, place2.y)

expression < position , position >

expression [of the way] between position and position

place:

placename [corner|

corner placename

Here

corner of nth shape

nth shape [corner|

A corner is one of the eight compass points or the center or the start or end of a

primitive.

corner:

nm .e€ .w .s .ne .se .nw .sw

t .b or il

.c .start .end

Each object in a picture has an ordinal number; nth refers to this.

nth:

nth

nth last

Since pic is flexible enough to accept names like 1th and 3th, synonyms like Ist and

3st are accepted as well.

54 Using Documenter’s Tool Kit

Technical Discussion

Variables

The built-in variables and their default values are:

arcrad = 0.25 circlerad=0.25

arrowwid = 0.05 arrowht = 0.1 (arrowhead dimensions)

boxwid = 0.75 boxht = 0.5

ellipsewid = 0.75 ellipseht = 0.5

linewid = 0.5 — lineht = 0.5

movewid = 0.5 moveht = 0.5

textwid = 0 textht = 0

dashwid = 0.05 scale = 1

These may be changed at any time, and the new values remain in force from picture

to picture until changed again.

The variable textht and textwid may be set to any values to control positioning.

The width and height of the generated picture may be set independently from the .PS

line. Variables changed within "[" and "]" revert to their previous value upon exit

from the block. Dimensions are divided by scale during output.

Expressions

Expressions in pic are evaluated in floating point. All numbers representing

dimensions are taken to be in inches.

The Preprocessor pic 55

Technical Discussion

expression:

e+e

e—e

exe

e/fe

e% e (modulus)

—e

(e)
variable

number

place .x

place .y

place .ht

place .wid

place .rad

sin(e) cos(e) atan2(e,e) log(e) sqrt(e) int(e)

max(e,e) min(e,e) rand(e)

56 Using Documenter’s Tool Kit

Technical Discussion

Logical Operators

pic provides the following operators for logical evaluation:

(not)

(greater than)

(less than)

(greater than or equal to)

(less than or equal to)

(and) |

(or)
(equal to)

(not equal to)TP=RANAVTM
Definitions

The define statement is not part of the grammar.

define:

define name X replacement text X

Occurrences of $1, $2, etc., in replacement text will be replaced by the corresponding

arguments if name is invoked as

name(arg], arg2, ...)

Non-existent arguments are replaced by null strings. Replacement text may contain

newlines.

copy and copy...thru Statements

The copy statement includes data from a remote file or data immediately follow-

ing copy in the pic file:

copy "file"
copy thru macro

copy "file" thru macro
copy "file" thru macro until "string"

The macro may be either the name of a defined macro, or the body of a macro

The Preprocessor pic 5/7

Technical Discussion

enclosed in some character not part of the body. If no file is given, copy copies the

input until the next .PE.

for Loops and if Statements

The for and if statements provide for loops and decision-making:

for var=expr to expr by expr do X anything xX

if expr then X anything X else X anything X

The by and else clauses are optional. The expr in an if may use the usual relational

operators or the string tests str] == (or !=) str2.

Miscellany

The sh command executes a command line:

sh X commandline X

It is possible to plot the value of an expression:

plot expr opt-format attributes

The expr is evaluated and converted to a string (using the format specification if pro-

vided).

The state of fill or no-fill mode is preserved around a picture.

Input numbers may be expressed in E notation.

58 Using Documenter’s Tool Kit

pic Sampler

-PS

define ndblock X

box wid boxwid/2 ht boxht/2

down; box same with .t at bottom of last box; box same

Xx

boxht = .2i; boxwid = .3i; circlerad = .3i

down; box; box; box; box ht 3*boxht 7." "1" 7"

L: box; box; box invis wid 2*boxwid "hashtab:" with .e at lst box .w

right

Start: box wid .5i with .sw at Ist box.ne + (.4i,.2i) "..."

Nl: box wid .2i "nl"; Dl: box wid .3i "di"

N3: box wid .4i "n3"; D3: box wid .3i "d3"

box wid .4i "..."

N2: box wid .5i "n2"; D2: box wid .2i "d2"

arrow right fram 2nd box

ndblock

spline —> right .2i from 3rd last box then to Nl.sw + (0.05i,0)

spline —> right .3i from 2nd last box then to Dil.sw + (0.05i,0)

arrow right from last box

ndblock

spline —> right .2i from 3rd last box to N2.sw-(0.051,.21) to N2.swt(0.051,0)

spline —> right .3i from 2nd last box to D2.sw-(0.05i1,.21) to D2.swt(0.05i,0)

arrow right 2*linewid from L

ndblock

spline —> right .2i from 3rd last box to N3.sw + (0.051,0)

spline —> right .3i from 2nd last box to D3.sw + (0.051,0)

circle invis "ndblock" at last box.e + (.7i,.2i)

arrow dotted from last circle to last box chop

box invis wid 2*boxwid "ndtable:" with .e at Start.w

PE

The Preprocessor pic 59

pic Sampler

ndtable:

hashtab:

ndblock

60 Using Documenter’s Tool Kit

PS 4.8

-ps 8

boxht =.5

boxwid =.5

circlerad = .25

LA:

P:

uoR ge &§
-ps 10

arrow "source" "code"

box "lexical" "analyzer”

arrow "tokens" above

box "parser"

arrow “intermediate” "code"

box “semantic” "checker"

arrow

arrow <—> up fram top of LA

box "lexical" "corrector"

arrow <—> up from top of P

box "syntactic" “corrector”

arrow up

box "diagnostic" "message" "printer

arrow <> right from right of DvP

box "symbol" “table”

arrow from LC.ne to DMP.sw

arrow fram Sem.nw to DMP.se

arrow <—> from Sem.top to ST.bot

"

The Preprocessor pic

pic Sampler

61

pic Sampler

lexical

corrector

source lexical

code analyzer

diagnostic

message

printer

\

tokens

syntactic

corrector

62 Using Documenter’s Tool Kit

parser

_ _ symbol

table

intermediate semantic

code checker

pic Sampler

-PS 5

circle "DISK"

arrow "character" "defns"

box "Cpu" "(16-bit mini)"

{ arrow <- fram top of last box up “input " rjust }

arrow

CRT: " cr" ljust

line from CRT - 0,0.075 up 0.15 \

then right 0.5 \

then right 0.5 up 0.25 \

then down 0.5+0.15 \

then left 0.5 up 0.25 \

then left 0.5

Paper: CRT + 1.0+0.05,0

arrow from Paper + 0,0.75 to Paper — 0,0.5

{ move to start of last arrow down 0.25

{ move left 0.015; circle rad 0.05 }

{ move right 0.015; circle rad 0.05; " rollers” ljust }

}

paper" ljust at end of last arrow right 0.25 up 0.25

line left 0.2 dotted

.PE

The Preprocessor pic 63

pic Sampler

rollers
paper input

CPU

(16-bit mini)

character
CRT

64 Using Documenter’s Tool Kit

The Preprocessor grap

Introduction

Basics

Fine-tuning the Details

Combining Different Statistics

Expressing Exponential Values

Manual Drawing

Macros

copy thru

Multiple Coordinates

for Loops and if Statements

grap Sampler

Table of Contents

12

18

22

26

30

34

37

40

42

Introduction

This tutorial is intended to give you a working knowledge of grap, the

Documenter’s Tool Kit Software tool for making graphs. It will also introduce you to

grap’s programmable features. With this knowledge you will be able to represent

statistics in graphs that can be automatic or manipulated using programming features.

You will also learn how to implement features, such as loops and conditional state-

‘ments, for handling information in sophisticated ways.

You should be familiar with the following concepts and tools to benefit fully from

this tutorial.

You should know how to use a text editor (ed, vi, and ex are examples). See

Using the DG/UX Editors (069-701036).

You should know what a file and directory are and know how to manipulate

them. See Using the DG/UX System (069-701035).

You should know how to redirect input and output using pipes. See Using the

DG/UX System (069-701035).

You should be familiar with a formatter (nroff or troff). See the tutorials in

this book that discuss nroff or troff.

Your understanding of grap would be assisted by a knowledge of pic though

this is not essential. To learn about pic, see "The Preprocessor pic: A

Tutorial" in this book.

The Preprocessor grap 1

Basics

To chart lists of numbers, grap is largely automatic. It will take a list of figures

with no further information and draw a box, draw tick marks that represent the range

of values suggested by the numbers, and plot the numbers according to their values.

For more detailed tasks, its requirements are modest. In the workarea between its

.G1 and .G2, it accepts special formatting instructions stating the size of the graph

(though grap will give you a default graph size of two inches high by three inches

wide), for specifying tick mark intervals (though grap will infer these from your

numbers), for placing labels along axes, and for providing other details concerning the

eraph’s presentation. It then reads a list of numbers and plots them in conformance

with the specifications you have stated. While grap, like pic, offers sophisticated

features, such as proportional scaling, macros, a copy...thru facility, a looping facil-

ity, and the ability to evaluate conditional statements, it is also a concise and easy-to-

learn language. The following example suggests its streamlined form.

This graph of the 1984 age distribution in the United States

2 Using Documenter’s Tool Kit

Basics

Population

(in millions) 5
—

1—

l | |

0 20 40 60 80

1984 Age

_ was produced by these grap instructions:

‘coord x 0,89 y 0,5

label left "Population" "(in millions)"

label bottam "1984 Age”

draw solid

copy "pop.cp"
G2

The second line, giving coordinates, dictates the graph’s range of tick marks along

the x and y axes. The next two lines, beginning label, allow for the introduction of

text to explain the graph. Notice the language you use to enter labels: left side, bot-

tom of picture, etc. The next line calls for a solid line to be drawn, charting the

peaks and valleys of U. S. age distribution. Omitting draw solid would have given

you scattered points for each age group. Finally, copy asks that grap look for its

numbers in a file called pop.cp. The file contains two simple columns: 1) an

ordered numerical sequence of ascending ages from new-born to eighty-nine and 2)

the number of living Americans in these age groups.

The Preprocessor grap 3

Basics

The grap preprocessor works in concert with pie and troff as the following typical

grap command line illustrates:

grap file | pic | troff —mm | typesetter

grap converts all instructions between .G1 and .G2 into pic instructions; pic converts

them into input for troff; and troff processes them along with the remainder of the

file’s text and formatting commands.

Let’s see what grap does with a simple list of dates. The following is a list of ten

different years:

.Gl

1930

1943

1959

1964

1977

1985

1998

2001

2024

2026

G2

NN
Given to grap, the data is interpreted into the following graph:

4 Using Documenter’s Tool Kit

Basics

2000 — °

1950 —

grap examined the figures and determined two salient features before labeling the
x and y axes. First, it counted the number of items, and second, it found the range of
values expressed by the dates. In each case, grap decided upon sensible intervals
with which to mark the information. The dates themselves are given as a Series of
scattered plotting marks.

The following grap example is more fast-paced, graphically displaying the winning
times of Olympic runners. Here’s the graph:

The Preprocessor grap 5

Basics .

30 — °

45 — ve

oo —_7 wd =, aaa

It demonstrates the generally decreasing winning times from 54.2 seconds to 44.60

seconds. Here’s how it was done:

(.
54.2

49.4

49.2

50.0

48.2

44.60

G2

The single number on each line is the winning time in seconds for the men’s 400
meter run, from the first modern Olympic Games (1896) to the nineteenth (1980).

This file of winning times, olymp.g, would be processed as follows:

grap olymp.g | pic | troff | typesetter

6 Using Documenter’s Tool Kit

Basics

This tutorial will frequently give only the first five lines and the last line of data.

Omitted lines are indicated by "...". |

There are a couple of things especially worth noticing in the olymp.g file. First,

the coord line, present in the first example, is missing here. grap is able to adjust its

presentation of your numbers automatically into a reasonably proportioned graph.

What is more, it automatically provides the ticks along its axes, inferring them from

- your numbers. Second, without the draw solid instructions, the graph is presented

using scattered points rather than a climbing and falling line.

If the winning times represented above were contained in the file times.cp, you

could produce the same graph with the program:

.Gl

copy “times.cp”

That is, copy "times.cp" is equivalent to including the data itself between the .G1 and

.G2 macros. copy requires the file’s name to be surrounded by double quotes (just as

label requires its labels to be in double quotes.)

A variant of the file times.cp is the following file, mtimes.cp. This file contains

two columns. In effect the first column (the Olympic year) pushed over the second

column (the winning times):

1896 54.2

1900 49.4

1904 49.2

1908 50.0

1912 48.2

1980 44.6

The Preprocessor grap 7

Basics

If you plot these data with the following program:

Gl

copy "mtimes.cp"

you produce the following graph:

8 Using Documenter’s Tool Kit

Basics

45 —

1900 1920

The file’s first column, as you can see, gives the information that will be spelled out

along the x axis. Because no Olympic games were held during wartime (1916, 1940,

1944), no data for these years are included in mtimes.cp. This is reflected in the

graph by an absence of points for these x-axis values.

Because the previous data (in times.cp) had just one number per line, grap

viewed it as a time series and supplied x-values of 1, 2, 3, ... before plotting the data

as y-values. The input to the second program has two values per line, so they are

The Preprocessor grap 9

Basics

interpreted as (x, y) pairs.

Rather than a scatter plot of points, you might prefer to see the winning times

connected by a solid line. The program

G1

draw solid
Ww i ‘ . cp"

produces the graph

10 Using Documenter’s Tool Kit

Basics

50

45 —

1900 1920

|

1940 1960 1980

The Preprocessor grap 11

Fine-tuning the Details

You can make the graph more attractive by modifying its frame and adding labels:

12 Using Documenter’s Tool Kit

Fine-tuning the Details

Time

(in seconds)

45

! |

1900 1920 1940 1960 1980

Olympic 400 Meter Run: Winning Times

These details were added with the following lines:

(—

.Gl

frame invis ht 2 wid 3 left solid bot solid

label left "Time" "(in seconds)"

label bot “Olympic 400 Meter Run: Winning Times"

draw solid

copy "mtimes.cp"

.G2

The frame instruction describes the graph’s bounding box: the overall frame

(which has four sides) is invisible; its height is two inches, and its width is three

inches (no change from default sizes for height and width); and the left and bottom

sides are solid (they could have been dashed or dotted instead). The labels appear

on the left and bottom, as requested.

The Preprocessor grap 13

Fine-tuning the Details

To set the range of each axis, grap examines the data and pads both dimensions

by seven percent at each end. The coord (coordinates) line, as you saw in the open-

ing example, allows you to specify the range of one or both axes explicitly. That is, it

turns off automatic padding:

.Gl

frame invis ht 2 wid 3 left solid bot solid

label left "Time" "(in seconds)".

label bot “Olympic 400 Meter Run: Winning Times’

coord x 1894,1982 y 42, 56

draw solid

copy "“mtimes.cp”

.G2

The y-axis now ranges from 42 to 56 seconds (a little more than before), and the x-

axis from 1894 to 1982 (a little less):

14 Using Documenter’s Tool Kit

Fine-tuning the Details

55

Time -0-
(in seconds)

45

| |

1900 1920 1940 1960 1980

Olympic 400 Meter Run: Winning Times

The ticks in the preceding graphs were generated by grap’s guessing at reasonable

values. If you would rather provide your own, you may use the ticks instructions,

which come in the two varieties illustrated below:

.Gl

frame invis ht 2 wid 3 left solid bot solid

label left "Time" "(in seconds)" left .2

label bot "Olympic 400 Meter Run: Winning Times"

coord x 1894,1982 y 42, 56

ticks left out at 44 "44", 46, 48 "48", 50, 52 "52", 54

ticks bot in fram 1900 to 1980 by 20

draw solid

copy “"mtimes.cp"

G2

NS

The Preprocessor grap 15

Fine-tuning the Details

The first ticks instruction deals with the left axis: it puts the ticks facing out at

the numbers in the list. grap puts labels only at values with strings, except that when

no labels at all are given, each number serves as its own label, as in the second ticks

instruction. That line is for the bottom axis: it puts the ticks facing in at steps of 20

from 1900 to 1980. The instruction ticks off turns off all ticks. grap does its best to

place labels appropriately, but it sometimes needs your help: the left .2 clause moves

the left label 0.2 inches further left to avoid the new ticks.

16 Using Documenter’s Tool Kit

Fine-tuning the Details

52 4

Time

(in seconds) 4 _|

of

44 —

| | |

1900 1920 1940 1960 1980

Olympic 400 Meter Run: Winning Times

The Preprocessor grap 17

Combining Different Statistics

The file wtimes.cp contains the times for the women’s 400 meter race, which has

been run only since 1964:

1964 52

1968 52

1972 51.08

1976 49.29

1980 48.88

Rather than redrawing an entirely different graph in order to include the women’s

times, you can use a grap instruction. To add these times to the graph, you use the

instruction new:

.GL

frame invis ht 2 wid 3 left solid bot solid

label left "Time" "(in seconds)" left .2

label bot "Olympic 400 Meter Run: Winning Times"

coord x 1894,1982 y 42, 56

ticks left out at 44 "44", 46, 48 "48", 50, 52 "52", 54

ticks bot in fram 1900 to 1980 by 20

draw solid

copy "mtimes.cp"

new dotted

copy "wtimes.cp”

"wamen" size -3 at 1958,52

"Men" size -3 at 1915,51

.G2

The instruction, new, tells grap to end the old curve and start a new curve (which

in this case will be drawn with a dotted line):

18 Using Documenter’s Tool Kit

Combining Different Statistics

52 _ Women

Men

oomed

Time

| (in seconds) 49 _

44 —

| | | |

1900 1920 1940 1960 1980

Olympic 400 Meter Run: Winning Times

The text was placed on the graph with instructions of the form

“string” at xvalue, yvalue

The size clauses following the quoted strings tell grap to shrink the characters by
three points (absolute point sizes may also be specified). Strings are usually centered
at the specified position but can be adjusted by clauses to be illustrated shortly. Con-
sider the next graph as a brief introduction to the text adjustment feature. (Those of
you who know pic will feel at home):

The Preprocessor grap 19

Combining Different Statistics

Women

Time

(in seconds) gg _
Enc Liddell

44

| | L L

1900 1920 1940 1960 1980

Olympic 400 Meter Run: Winning Times

This version incorporates text to emphasize Eric Liddell’s 1924 gold medal perfor-

mance of 47.6 seconds. (Remember Chariots of Fire?) The graph itself is, of course,

only slightly different than the one preceding it. In fact, only two lines have been

added to the input file:

GL

frame invis ht 2 wid 3 left solid bot solid

"Men" size -3 at 1915,51

bullet at 1924,47.6

"\flEric Liddell\fR ” size 6 rjust at 1924,47.6

.

These last two lines place a dot, or bullet, at the point of Liddell’s winning time

and place his name next to the bullet. There are a few details worth noticing here.

First, markers like the bullet are not text and therefore do not require double quotes.

Second, Eric Liddell’s name is specified to be set in an italic font with the escape

sequence \f. Next, the size of the name is expressed as an absolute value, unlike its

predecessors, which were set using relative values. Finally, using the instruction

20 Using Documenter’s Tool Kit

Combining Different Statistics

rjust, Liddell’s name is adjusted to be set off slightly from the bullet. In addition,

space has been apportioned inside the double quotes.

The Preprocessor grap 21

Expressing Exponential Values

The file phone.cp records the number of telephones in the United States from

1900 to 1970:

00 1.3

011.8

02 2.3

03 2.8

04 3.3

70 120.2

The file contains two columns of information: the first column is a list of years (given

in abbreviated form); the second is a corresponding list of the number of U.S. tele-

phones in service (given in millions, truncated to the nearest hundred thousand). The

simple grap program

copy "phone.cp"

.G2

produces the following graph:

22 Using Documenter’s Tool Kit

150 +

100 —

50 —

emarned | |

20 40 60

|

80

Expressing Exponential Values

The number of telephones appears to grow exponentially. To represent that dif-
ferent magnitude of growth, you can refine the simpler, preceding graph into a slightly

more sophisticated one. Focusing on this expansion’s exponential quality, you can

use a logarithmic y-axis with which to plot the data. You do this by adding log y to

the coord instruction. What is more, you could add label changes, more ticks, and a

solid line to enhance the graph’s appearance:

.Gl

label left "Millions of" "Telephones" "(log scale)" left .5

coord x 0,70 y 1,130 log y

ticks left out at 1, 2, 5, 10, 20, 50, 100

ticks bot out at 0 "1900", 70 "1970"

ticks bot out fram 10 to 60 by 10 "“%g"

draw solid

copy "phone. cp"
.G2

_ The Preprocessor grap 23

Expressing Exponential Values

The third ticks instruction uses a string, %g, which provides a method for

presenting text in a particular format. In the example above, the string is used to

place an apostrophe before each number from 10 to 60. In effect %g represents each

number to be printed in the given range. The string, "19%g", for example, would

have produced the full, four-digit year for each entry along the x-axis. (Those readers

who use the C Programming Language will recognize %g as a printf format string.)

To suppress labels, use the empty format string (""). Finally, the graph produced by

this grap program is the following:

24 Using Documenter’s Tool Kit

Expressing Exponential Values

100 —

50 +

Millions of 20 —

Telephones

(log scale) 10 —

5

2—

1
| | | | |

1900 *10 ’20 ’30 ’40 ’50 ’60 ’70 1980

The number of telephones grew rapidly in the first decade of this century and

then settled down to an exponential growth rate interrupted only by the Great Depres-

sion. A post-war growth spurt prompted a return to the pre-Depression curve.

In the "grap Sampler," which appears in the closing pages of this tutorial, you will

see a variety of complex grap programs that also evolved from simple formats.

The Preprocessor grap 25

Manual Drawing

All the examples so far have placed data on the graph implicitly by copying a file

of numbers (either a time series with one number per line or pairs of numbers). It is

also possible to draw points and lines explicitly. Here is a graph reflecting a specific

placement of forms and text:

26 Using Documenter’s Tool Kit

80

60

40

20

/ "
Text raat above

“~~”
-

-_

an oO
-”

Manual Drawing

The grap instructions to draw on a graph are given in the following file:

The Preprocessor grap 27

Manual Drawing

la
frame ht 2 wid 2

coord x 0,100 y 0,100

grid dotted bot from 20 to 80 by 20

grid dotted left frem 20 to 80 by 20

"Text above" above at 50,50

"Text rust TM rjust at 50,50

bullet at 80,90

vtick at 80,80

box at (80,70)

times at 80, 60

circle at 50,50

circle at 50,80 radius .25

line dashed from 10,90 to 30,90

arrow from 10,70 to 30,90

draw A solid

draw B dashed delta

next A at 10,10

next B at 10,20

next A at 50,20

next A at 90,10

next B at 50,30

next B at 90,30

.G2

The way of expressing the coordinate system (at n, n) and the English-oriented

instructions (above and rjust or dashed and dotted) make grap an intelligible

language.

The grid instruction is similar to the ticks instruction except that grid lines extend

across the frame. The next two instructions plot text at specified positions. The

markers (boxes, circles, times marks, and yticks) appear centered at their named

coordinates.

The circle instruction, for instance, draws a circle whose center is the place speci-

fied by at. The circle’s size may be determined by stating the radius. The circle

above is said to be .25 because grap understands all dimensions to be in inches

though, like pic, you can scale your dimensions. If no radius is given, then the circle

will be a default size: the small circle shown at the center of the graph.

28 Using Documenter’s Tool Kit

Manual Drawing

The line and arrow instructions draw the obvious objects shown at the upper left.

The plotting characters (such as bullet) are implemented as predefined macros, but

more on that later.

This example also illustrates the combined use of the draw and next instructions.

Saying draw A solid defines the style for a connected sequence of line fragments to

be called A. Each subsequent instruction of next A at point adds point to the end of

A. There are two such sequences active in the above example (A and B); notice that

their next instructions are intermixed. Because the predefined string delta follows the

specification of B, that string is plotted at each point in the sequence.

grap has numeric variables (implemented as double-precision floating point

numbers) and a familiar assortment of arithmetic operators and mathematical func-

tions.

The Preprocessor grap 29

Macros

grap provides the same rudimentary macro facility that pic does. Consider the

following grap file:

(
.Gl

frame ht 2 wid 2

coord x 0,100 y 0,100

grid dashed bot fram 20 to 80 by 20

grid dashed left fram 20 to 80 by 20

define bsquare X "\st9\(sq\s-9" X

define lsquare X "\s—l\(sq\stl" X

bsquare at 30,30

lsquare at 70,70

.G2

\
a

Two macros, bsquare (big square) and Isquare (little square), are defined using the

troff escape sequences, \(sq and \s. The big square is incremented three point sizes.

And the little square is decremented one point size. They are then simply stated

along with their respective locations. The graph looks like this:

30 Using Documenter’s Tool Kit

80

60

40

20

Macros

' i qt q

i

PRS TS TT TT TQ

iO,
1 |

PTT TT ye
|

Pee eb ot IL

if | 1 |
!

Poet

Ll L i j

The method for defining macros is simple:

define macro X replacement text X

This definition stores the data from replacement text in the variable macro. Any char-

acter that does not appear in replacement text may be used as delimiters for replace-

ment text. Any subsequent occurrence of macro will be replaced by replacement text.

(The bsquare and Isquare statements of replacement text are surrounded by double

quotes because they are text, troff text in this case. As such they must conform to

the grap rules for presenting text and take quotes.)

The replacement text of a macro definition may contain occurrences of $1, $2,

etc.; these will be replaced by the corresponding actual arguments when the macro is

invoked. The invocation for a macro with arguments is

name (argl, arg2, ...)

Non-existent arguments are replaced by null strings.

The following grap program uses macros and arithmetic to plot crude approxima-

tions to the square and square root functions:

The Preprocessor grap 31

Macros

.Gl

frame ht 1.5 wid 1.5

define square X ($1)*($1) X
define root ! exp(log($1)/2) !

define P %

times at i, square(i); 1=i+1

circle at j, root(j}); j=jt5

%

i=l; j=l

P; P; P; P; P

.G2

Because grap has the square root function sqrt, the macro root is valuable only for

the purposes of demonstration. The delimiters used in the preceding example may

not have been obvious. X and Y will be used as delimiters in most of the remaining

examples. The preceding grap program produces the following graph:

32 Using Documenter’s Tool Kit

Macros

25 ~

20 —

15 —

10 —
5

|

10

ft |

15 20

The Preprocessor grap. 33

copy thru

To plot files that are not stored as a time series or as x, y pairs, grap has a spe-

cial mechanism. The copy instruction has a thru parameter that allows each line of a

file to be treated as though it were a macro call, with the first field serving as the first

argument, the second field serving as the second, and so forth. (Of course, using $1,

$2, etc., the order of arguments can differ from the given sequence of columns: when

given first, $2—representing the second column—would make column two equal to

argument one.) The thru instruction is the typical grap mechanism for plotting files

that are not stored as time series or as x, y pairs. Its use will be illustrated with the

file, states.cp, which contains data on the fifty states:

AK 1 401851

WY i! 469557

VT 1 511456

DE 1 594338

ND 1 652717

CA 45 23667902

The first field is the postal abbreviation of the state’s name (Alaska, Wyoming,

Vermont, ...), the second field is the number of Representatives to Congress from the

state after the 1981 reapportionment, and the third field is the population of the state

as measured in the 1980 Census. The states appear in increasing order of population.

First, the graph will be given in population, representative pairs. (In the coord

statement, log log is a synonym for log x log y.)

(.
label left "Representatives" "to Congress" left .3

label bot "Population (Millions)"

coord x .3,30 y .8,50 log log

_ define PlotState X circle at ($3/1e6,$2) X

copy "states.cp" thru PlotState

a
The copy instruction performs its usual task, reading in states.ep for its information.

34 Using Documenter’s Tool Kit

copy thru

This time, however, the file was interpreted thru the defined macro, PlotState. The

third column ($3) is divided by (/) one million (110°, written in grap exponential

notation as 1e6). Because $3 is given first, column three is the first argument for

grap’s coordinate system. The second column, $2, will be the second argument.

Here is the finished product:

The Preprocessor grap 35

copy thru

50

20 —

10 —

Representatives

to Congress 54

2 —

i -

Using circle as a plotting symbol displays overlapping points that are obscured

when the data is plotted with bullets. The representation of a state is roughly propor-

| | |

5 10 20Nw
Population (Millions)

tional to its population, except in the very small states.

36 Using Documenter’s Tool Kit

Multiple Coordinates

The next plot will use the state’s rank in population as the x-coordinate and two

different y-coordinates: population and number of representatives. Consequently, you

would use two coord instructions to define the two coordinate systems pop and rep.

You then explicitly give the coordinate system whenever you refer to a point, both in

constructing axes and plotting data.

.Gl

frame ht 1.8 wid 2.3

label left "Population" "in Millions” "(Plotted as \(bu)

label bot "Rank In Population” up .2

label right “Representatives” "(Plotted as \(sq)"

coord pop x 0,51 y .2,30 log y

coord rep x 0,51 y .3,100 log y

ticks left out at pop .3, 1, 3, 10, 30

ticks bot out at pop 1, 50

ticks right out at rep 1, 3, 10, 30, 100

thisrank=50

copy "states.cp" thru X

bullet at pop thisrank,$3/le6

square at rep thisrank,$2

thisrank=thisrank-1 |

x

.G2

n

The Preprocessor grap 37

Multiple Coordinates

The copy statement in the program uses an "immediate macro" enclosed in Xs

and thus avoids having to name a macro for this task. copying states.cp thru the

lines between Xs is functionally identical to reading the file through a defined macro.

Because the program assumes that the states are sorted in increasing order of popula-

tion, it generates thisrank internally as a grap variable. The program produces the

following graph:

38 Using Documenter’s Tool Kit

Multiple Coordinates

30 100

10 4'+ — 30

SO 3 — | Representatives
(Plotted as ©) 3 (Plotted as [_])

14

— 1

0.3 +

1 Rank In Population 50

The plotting symbols were chosen for contrast in both shape and shading. This

graph also indicates that representation is proportional to population. Once you see

this graph, though, you should realize that you don’t really need two coordinate sys-

tems: you can relate the two by dividing the population of the U.S. — about

226,000,000 — by the number of representatives — 435 — to see that each representa-

tive should count as 520,000 people. If the purpose of this graph were to tell a story

about American politics rather than to illustrate multiple coordinate systems, it would

be redrawn with a single coordinate system.

The Preprocessor grap 39

for Loops and if Statements

Many graphs plot both observed data and a function that (theoretically) describes

the data. There are many ways to draw a function in grap: a series of next instruc-

tions is tedious but works, as does writing a simple program to write a data file that is

subsequently read and plotted by the grap program. The for statement often provides

a better solution. This grap program

.Gl

frame ht 1 wid 3

draw solid

pi=atan2(0,-1)

for i from 0 to 2*pi by .1 do X next at i, sin(i) X

-G2

produces

40 Using Documenter’s Tool Kit

for Loops and if Statements

_

0.5 —

0 —

0.5 —

ommenq amend — ommend

The for statement uses the same syntax as the ticks statement, but the from

instruction can be replaced by =, (which will look more familiar to programmers). It

varies the index variable over the specified range, and for each value, executes all

statements inside the delimiter characters, which use the same rules as macro delim-

iters. It is, of course, useful for many tasks beyond plotting functions.

The if statement provides a simple mechanism for conditional execution. Ifa file

contains data on both cities and states (and lines describing states have "S" in the first

field), it could be plotted by statements like

if "$1" — "s" then X

PlotState($2,$3,$4)

X else X

PlotCity($2,$3,$4,$5,$6)

X

The else-clause is optional; delimiters use the same rules as macros and for state-

ments.

The Preprocessor grap 41

srap Sampler

Gl

frame ht 4 wid 3.2

label left "Weight" "(Pounds)" left .3

label bot "Gallons per Mile"

coord x 0,.10 y 0,5000

ticks left in fram 0 to 5000 by 1000

ticks bot in fram 0 to .10 by .02

copy "cars.cp” thru X circle at 1/$1, $2 X

.G2

NS
Excerpt from file cars.cp:

22 2930

17 3350

22 2640

17 2830

23 2070

17 3170

42 Using Documenter’s Tool Kit

Weight

(Pounds)

5000

4000

3000

2000

1000

oO

° 5 © 8

o $
@°o 0
oO

oO
oO

988°
8 ~9 9o

oO

°° oO

8 90 oO
oO

° 6° o

o0 By,
@ 20

°8 o 9g

o g°

| __| | |

0.02 0.04 0.06 0.08

Gallons per Mile

0.1

grap Sampler

The Preprocessor grap 43

grap Sampler

Excerpt from file cars.cp:

44

.GL

frame invis ht 4 wid 4

coord x 0,.10 y 0,5000

copy "cars.cp” thru X

tx=1/$1; ty=$2

bullet at tx,ty

tick bot at tx

tick left at ty

xX

ee ont

wm oft

G2

NM

Using Documenter’s Tool Kit

22

17

22

17

23

17

2930

3350

2640

2830

2070

3170

grap Sampler

The Preprocessor grap 45

grap Sampler

.Gl

frame ht 4 wid 3.2

coord x 38,85 y .8,10000 log y

label bot "U.S. Army Personnel"

label left "Thousands" left .3

draw of solid # Officers Female

draw ef dashed # Enlisted Femle

draw am dotted # Officers Male

draw en solid # Enlisted Male

copy "amy.cp" thru X
next of at $1,$3

next ef at $1,$5

next an at $1,$2

next em at $1,$4

x

copy thru % "$1 $2" size —-3 at 60,$3 % until "Xxx"

Enlisted Men 1200

Male Officers 140

Enlisted Women 12

Female Officers 2.5

XXX

.G2

46 Using Documenter’s Tool Kit

Contents of file army.cp:

40 16.9 249 1

42 190 12 2867 1

43 521 36 6358 55

44 692 47 7144 71

45 772 62 7283 90

46 240 16 1605 16

50 63 4.4 512 6.5

55 106 5.1 977 7.7

60 86 4.2 761 8.2
65 98 3.7 846 8.5

70 138 5.2 1141 11

75 85 4.5 640 37

80 76 6.8 608 58

83 80 9 606 67

grap Sampler

The Preprocessor grap 47

grap Sampler

1000 Enlisted Men

Male Officers

Thousands 100 —

10 —

Female Officers

14 a

40 50 60 70 80

U.S. Army Personnel

48 Using Documenter’s Tool Kit

grap Sampler

-EQ

delim $$

.EN

.Gl

frame ht 3 wid 4

label left "Rank in” "Population"

label bot "Population (Millions)"

label top "$log sub 2$ (Population)”

coord x .3,30 y 0,51 log x

define L % exp($1*log(2))/le6 "$1" %

ticks bot out at .5, 1, 2, 5, 10, 20

ticks left out from 10 to 50 by 10

ticks top out at L(19), L(20), L(21), L(22), L(23), L(24)

thisy=50

copy "states.cp” thru X

"$1" size -4 at ($3/le6, thisy)

thisy=thisy—l

X

line dotted from 15.3,1 to .515,50

.G2

-EQ

delim off

.EN

Excerpt from file states.cp:

AK 1 401851

WY 41 469557

VT 1 511456

DE 1 594338

ND 1 652717

CA 45 23667902

The Preprocessor grap 49

grap Sampler

log, (Population)

19 20 21 22 23 24

50 | | | | | |

RB,
MY

40 — Ban

. he WV
0. hy

Rank in as

Population

20 “Ys

10 Me

0.5 1 2 5 10 ~=— 20
Population (Millions)

50 Using Documenter’s Tool Kit

grap Sampler

(. >
frame invis ht .3 wid 4.5 bottacm solid

label bot "Populations (in Millions) of the 50 States”

coord x .3,30 y 0, 1 leg x

ticks bot out at .5, 1, 2, 5, 10, 20

ticks left off

copy "states.cp" thn X vtick at ($3/le6,.5) X

G2

NN
Excerpt from file states.cp:

AK 1 401851

WY 1 469557

VT 1 511456

DE 1 594338

ND 1 652717

CA 45 23667902

The Preprocessor grap 51

grap Sampler

Prd tdbe bd mb bad ob UU TEM Md

|

0.5 1 2 5 10 20

Populations (in Millions) of the 50 States

52 Using Documenter’s Tool Kit

grap Sampler

(.
frame invis ht 1 wid 4.5 bottam solid

label bot "Populations (in Millions) of the 50 States"

coord x .3,30 y 0,1000 log x

ticks bot out at .5, 1, 2, 5, 10, 20

tick left off

copy "states.cp" thru X "$1" size -4 at ($3/le6, 100+rand(900)) xX

NN | J
Excerpt from file states.cp:

AK 1 401851

WY i 469557

VT 1 511456

DE 1 594338

ND 1 652717

CA 45 23667902

The Preprocessor grap 53

grap Sampler

R
wy KER sc wa SA yy a TX

UT co
AK OH

Ok Wi MHL cAp MT Ip AR AZ
pe NE IWY NM Ms lr NY

INvr SDNV |, re MOA
A

NH

| | | | | i

0.5 1 2 5 10 20

Populations (in Millions) of the 50 States

54 Using Documenter’s Tool Kit

grap Sampler

.G1

ticks left off

cury=0

barht=.7

copy “newengl.cp” thru X

line fram 0,cury to ($1/le6,cury)

line fram ($1/le6,cury) to ($1/le6,cury-barht)

line from 0,cury-barht to ($1/le6,cury—barht)

"$2" ljust at 0,cury-barht/2

cury=cury—1

xX

line fram 0,0 to 0,cury+l-barht

bars=-cury

frame invis ht bars/3 wid 3

label left "New England” "States"

label bot "Population (in Millions)"

.G2

Contents of file newengl.cp:

511456 Vt.

920610 N.H.

947154 R.I.

1124660 Maine

3107576Connecticut

5737037 Massachusetts

The Preprocessor grap 55

grap Sampler

New England

States FEEMaine

Connecticut

Massachusetts | |

| |

2 4 6

Population (in Millions)

eQ-,

56 Using Documenter’s Tool Kit

grap Sampler

.G1

frame ht 4 wid 3 solid

label bot "Populations (in Millions) of the 50 States”

label left "Number" "of" "States"

ticks bot out from 0 to 25 by 5

coord x 0,25 y 0,13

copy "statepop.cp” thru X

line from $1,0 to $1,$2

line fram $1,$2 to $1+1,$2

line from $141,$2 to $141,0

xX

.G2

The Preprocessor grap 57

grap Sampler

Contents of file statepop.cp:

012

15

27

35

47

55

60

71

8 0

92

101

112

12 0

13 0

141

150

16 0

171

18 0

19 0

20 0

210

22 0

23 1

58 Using Documenter’s Tool Kit

grap Sampler

10 +

Number
of P| fy

States

Sa HA

0 | | |
0 5 10 15 20 25

Populations (in Millions) of the 50 States

The Preprocessor grap 59

grap Sampler

Contents of file statepop.cp:

60

.G1

frame invis ht 4 wid 4 bot solid left solid

label bot "Populations (in Millions) of the 50 States"

label left "Number" "of" "States" left .2

ticks bot out from 0 to 25 by 5

coord x 0,25 y 0,13

copy "statepop.cp” thru X

line dotted fram $1+.5,0 to $14+.5,$2

"\(bu" size -3 at $1+.5,$2

X

.G2

NN

012

15

27

35

47

55

6 0

71

8 0

92

101

112

12 0

13 0

141

150.

16 0

17 1

18 0

19 0

20 O

210

22 0

Using Documenter’s Tool Kit

grap Sampler

23 1

The Preprocessor grap ‘61

grap Sampler

10 —

Number e e

of

States

54+ e ° °

e ®

® e @ @

0 » ® | » ® » ® o-——® @—--@-——-@

0 5 10 15 20

Populations (in Millions) of the 50 States

62 Using Documenter’s Tool Kit

The Macro Package mv

Introduction

Some Examples

Example 1: A Simple Transparency

Example 2: A More Elaborate Transparency

The Foil Start Macros (.VS, .Vw, .Vh, .VW, .VH,

.Sw, .Sh, .SW, .SH)

The Level Macros (.A, .B, .C, .D)

Example 3: The Level Macros

Example 4: Repeated Level Marks

Other Macros

Titles (.T)

Point Sizes and Line Lengths (.S)

Global Indents (.1)

Changing Fonts (.DF)

Changing Vertical Spacing (.DV)

Underlining (.U)

Synonyms

Line Breaks

Line Filling, Adjusting, and Hyphenation

Example 5: A Complicated Transparency

Table of Contents

10

11

11

11

12

13

13

14

14

15

16

16

The Macro Package mv

Using the Preprocessors with mv

Example 6: A Transparency with Tables and an Equation

Using Constant-Width Font

Reference Material

Phototypesetter Output

Output Approximation on a Terminal

Names Reserved by my

Miscellaneous Information

Dimensional Details

The Production of Viewgraphs and Slides

General Guidelines for Using mv

The mv Sampler

ii Using Documenter’s Tool Kit

18

18

20

Introduction

my is a package of macros that format text for two types of transparencies (also

called foils): viewgraphs (in a variety of dimensions), and 35 mm slides or 2x2 super-

slides. The troffed output of the mv macros is not the transparency or slide itself, but

the text on opaque paper that will later be used to make the transparency or slide.

Because the text of the viewgraph is stored in a DG/UX system file, and the output is

on paper, you derive the additional benefit of being able to check the output, make

changes, or correct errors, before you go to the time and expense of making the final

transparency.

The prerequisites to benefit from this tutorial are as follows:

mTM You should know what a file and directory are, and know how to create them.

See Using the DG/UX System (069-701035).

TM You should know how to use text editor (ed, vi, and ex are examples). See

Using the DG/UX Editors (069-701036).

TM You should be familiar with troff. See the tutorial in this book "The Formatter

troff: A Tutorial.” Also, the "nroff/troff Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System discusses

troff in detail.

After reading this tutorial, you will be able to make transparencies in a variety of

styles, in different fonts, and with oversize titles, and you will be able to use the refer-

ence material provided later in this chapter. (See the section titled "Reference

Material.”)

The Macro Package mv | 1

Some Examples

The following two examples show you some of the macros that you can use to for-

mat text for transparencies with mv. As you look them over you will see that the

macros in the my package are much like other formatting macros you may have used:

they are named with a one or two letter upper-case string, they begin on a new line,

and the first character is always a dot (.).

The macros shown in these examples are explained in greater detail in later sec.

tions of the tutorial. The output for these two examples, and for other examples used

in this tutorial, is in the section "my Sampler."

Example 1: A Simple Transparency

Suppose you have a file named steps.in, which contains the following lines:

7 aN
/ \

“ \
The Primary Steps in Preparing Documents

.B

Planning

.B

Writing

.B

Editing

B

ae /

a
oa

ast

.VS is one of several foil-start macros. (There are no foil-end macros.) Among

other things, foil-start macros tell the typesetter what size the transparency should be.

Because it begins with .VS, this one will be 7x7 inches. .B, as we’ve seen, is a level

macro; it specifies a level of indentation and a bullet (@) to mark the text that fol-

lows.

2 Using Documenter’s Tool Kit

Some Examples

You can process the foil by typing one of the following command lines:

myt steps.in | phototypesetter

or

troff —my steps.in | phototypesetter

Ask your system administrator which phototypesetter is appropriate to process your

output.

Example 2: A More Elaborate Transparency

Suppose you wanted to make the transparency from Example 1 more elaborate:

ns

(.
There are four steps in preparing documents

.B

Planning

Cc

What documents exist?

Can they be revised?

Cc

Are new documents needed?

.B

Writing

.B

Editing

Cc

By peers and supervision

.B

Typesetting

Cc

Using UNIX DOCUMENTER’S WORKBENCH Software

The Macro Package mv 3

Some Examples

. Vw is another of the foil-start macros; it produces text that will fit on a 7x5 inch

transparency. .C specifies that another level be added beyond .B.

4 Using Documenter’s Tool Kit

The Foil Start Macros (.VS, .Vw, .Vh, .VW,
.VH, .Sw, .Sh, .SW, .SH)

Every my file must contain a foil-start macro. There are nine of them; each gen-

erates output for a different sized foil.

NOTE

Macro Name | Size of Frame Opening

and Type of Foil

-VS_-—s|.:s« 7x7: inch viewgraph or

2x2 inch super-slide

.Vw 7x5 inch viewgraph

.Vh 5x7 inch viewgraph

.VW 9x7 inch viewgraph

.VH 7x9 inch viewgraph

SW 7x5 inch 35-mm slide

oh 5x7 inch 35-mm slide

SW 9x7 inch 35-mm slide

SH 7x9 inch 35-mm slide

Note that .VW and .SW actually produce text for a 7x5.4 transparency (because

typesetter paper is commonly less than 9 inches wide). The output from these two

macros will have to be enlarged by a factor of 9/7 before they can be used to make

9x7 inch transparencies.

The first character of a foil-start macro’s name distinguishes between viewgraphs

(V) and slides (S), and the second character specifies the dimensions of the foil.

Varieties of sizes are as follows:

The Macro Package mv 3

The Foil Start Macros

square

small and wide (7x5)

small and high (5x7)

big and wide (9x7)

big and high (7x9)meren
By default, each foil-start macro puts out three right-justified lines of identifica-

tion information at the top of each foil.

The current date in the form mo/dy/yr

AT&T |

POIL n

where n is the sequence number in the current series of transparencies you are

preparing. You can change the default heading information by using three optional

arguments to the foil-start macro:

XX {n] [id] [date]

where XX stands for one of the foil-start macros, n is the foil identifier (typically a

number), id is other identifying information, such as your initials or your company

name, and date is the date. Example 6 shows the use of these options in an input

file, and the "my Sampler" shows the output for this example.

Cross-hairs (+) mark the area of a transparency that will show through the open-

ing of the cardboard frame to help you center the transparency in the frame. All foils

other than the square (.VS) also have a set of horizontal or vertical crop marks that

show how much of the transparency will be seen if it is made into a slide rather than

into a viewgraph.

6 Using Documenter’s Tool Kit

The Level Macros (.A, .B, .C, .D)

Example 3: The Level Macros

The text of this transparency explains mv’s four levels of indentation. The "my

Sampler" shows the formatted output.

The Macro Package mv 7

The Levei Macros

-Vh

.T "Foil Levels and Level Marks”

A

This is the .A level.

.B

This is the .B level,

.B

and so is this;

Cc

this is the .C level

Cc

and so is this;

-D

and this is the .D level,

-D

and so is this.

A

The large bullet, the dash, and the small bullet are the default "marks"

for levels .B, .C, and .D respectively.

However, you may arbitrarily mark these three levels:

.B 2.

like this (.B level);

CC.

like this (.C level);

.D *

like this (.D level);

.D iv.

or like this (.D level again).

-A

You cannot mark the .A level.

.B

You may include as many lines of text as you wish in any item at any

level; \f3troff\fP fills the text, but it does not adjust the margin or

hyphenate words (as with this .B level item).

troff processes text after every level macro with line filling turned on. That is, the

number of lines input do not necessarily match the number output.

8 Using Documenter’s Tool Kit

The Level Macros

Each of the foil-start macros automatically calls the -A level macro, that 1s

. Ww

There are four steps in preparing documents

and

. Vw

A

There are four steps in preparing documents

give you the same results.

-A precedes the line following it with a half-line of space. This blank half-line can

be suppressed by giving an argument to .A. In fact any argument—any character or

string of characters—will do. In the following example the character x is used as an

argument to A (though it could have been N or 22 and still would have had the same

effect):

AX

There are four steps in preparing documents

Thus, the line following .A x will not be preceded by a blank half-line.

The text that follows a .B macro is marked by a bullet, indented three spaces to

the right, and is one-half a troff vertical space (one blank line) down from the preced-

ing text. The mark that a .B macro produces can be changed, and the point size of

the mark can be changed as well, by using the arguments shown below:

.B [mark [size] |

.C level text indents farther to the right and also spaces one-half a troff vertical
space (one blank line) down from the preceding text. The default mark it produces is

a long (em) dash (—).

.C [mark [size] |

The text following a .D level-macro is marked by a small bullet, indented even

farther to the right, and begins on a new line (but no blank line precedes the text of a

-D macro.

.D [mark [size] |

The Macro Package mv 9

The Level Macros

Example 4: Repeated Level Marks

If you call the same level-macro without any intervening text, you generate a

corresponding number of marks: |

.VH

.T "Repeated Level Marks"

A

Because the .A macro has no label, repeated .A macro calls are

ignored.

A

-A

-A

-A

These are indentation level requests:

This text is back to the left margin. | /

Look at the output of this example in the "mv Sampler" section to clarify this princi-

ple: |

10 Using Documenter’s Tool Kit

Other Macros

Titles (.T)

Example 4 also shows how to use .T to create a centered title for your foil:

. VH

.T "Repeated Level Marks"

On output, the size of the text that is the argument to a .T macro is four points larger

than the prevailing point size. You must enclose the argument to .T in double quotes

if it contains blank spaces.

Point Sizes and Line Lengths (.S)

To change the point size of your text, use the .S macro.

a

A

This text is at the prevailing point size.

.S 10 .

-A

This text is at 10 point.

If you give .S a null first argument (that is, .S '""), you restore the previous point size.

The Macro Package mv__11

Other Macros

(.
The text is at the prevailing point size.

.S 10

A

This text is at 10 point.
Ss on tt

A

This text is back at the prevailing point size.

NS
A negative argument to .S (for example, —2), reduces the default point size by the

amount specified. If the argument is positive (+2), it is added to the default, and if

there is a null argument, as above, it becomes the new point size.

Change your foil’s line length by giving .S a second argument, which becomes the

prevailing length. You may specify the line length in any metric that you choose

(ems, inches, and so on). If you do not specify the metric of this second argument

and it is less than 10, troff interprets it as inches; if the second argument is greater

than 10, it is taken as troff units (see the "nroff/troff Technical Discussion" in the

Documenter’s Took Kit Technical Summary for the DG/UX System.

Global Indents (.1)

Shift the entire text (except titles) of the foil right or left with the .I macro:

.I +10 ax

The first argument specifies the amount of indentation my will use to establish a new

left margin. This argument may be signed positive or negative, indicating right or left

movement from the current left margin. If unsigned, the argument specifies a new

margin, relative to the initial default margin. If you do not specify units, mv assumes

that you mean inches (see the "nroff/troff Technical Discussion" in the Documenter’s

Took Kit Technical Summary for the DG/UX System for legal troff formatter units).

If the argument is null or omitted, mv assumes Oi (zero inches), causing troff to revert

to the initial default margin.

12 Using Documenter’s Tool Kit

Other Macros

If you specify a second argument, .I calls the .A macro before exiting. The third

argument, if you use it, is passed to the .A macro to suppress vertical spacing. Exam-

ple 5 illustrates this point.

Changing Fonts (.DF)

Helvetica Regular, mounted in position 1 on your typesetter, is the default font

for viewgraphs and slides formatted with my. You can mount additional fonts and

change the default font with the .DF macro. The arguments to the .DF macro in the

following example load roman font in position 1 (so that it becomes default), italic in

position 2, bold in position 3, and Helvetica in position 4:

DF 1lR2I3B4H

After you enter this line in your file, using the escape sequence for changing fonts

(\fn) loads the fonts you specified for each position.

.B

\flraman\f2italic\ f3bold\f4Helvetica

If you use .DF, you must use it immediately before a foil-start macro.

Using the following arguments to the .DF macro is equivalent to using mv’s

default loading of fonts:

DF 1LTH2I3B4S5S

Changing Vertical Spacing (.DV)

Change the default vertical spacing of the four level macros with .DV. my calcu-

lates vertical spacing in troff vertical units (v). This control line changes the spacing

for the .A level to .7v, spacing for the .B level to .4v, and the spacing for the .C level

to 0.

.DV .7v .4v Ov

The default setting is equivalent to the setting shown in this line:

.DV .5v .5v .5v Ov

The Macro Package mv_ 13

Other Macros

Underlining (.U)

To underline a line of text, precede it with the .U macro, like this:

.U "Documenter’s Toolkit Software"

The .U macro takes one or two arguments. The first argument is the string to be

underlined, the second, if you include it, is not underlined but concatenated to the

first argument.

Synonyms

In general, you should not intermix troff formatter requests arbitrarily with the mv

macros, because this often leads to undesirable (and sometimes surprising) results.

The my package recognizes the following upper-case text synonyms for the

corresponding lower-case troff requests.

Synonym Meaning

-AD turn on line adjustment

-BR line break

CE center the line

FI turn on line filling

-HY turn on hyphenation

NA turn off hyphenation

-NF turn off line filling

-NH turn off hyphenation

NX next file

SO switch source file

SP space

TA set tab stops

TI temporary indent

troff requests that are safe to use correspond to these upper-case synonyms. The

"nroff/troff Technical Discussion" in the Documenter’s Took Kit Technical Summary

for the DG/UX System explains in detail how the lower-case equivalents to these

upper-case synonyms work.

14 Using Documenter’s Tool Kit

Other Macros

You should use other troff formatter requests sparingly (if at all). Be particularly

careful when using requests that affect point size, indentation, page offset, line and

title lengths, and vertical spacing between lines. In cases such as these, use the .I and

.S macros instead, because they do more work for you. For example, the .S macro

changes point size and adjusts vertical spacing appropriately.

Line Breaks

The .S, .DF, .DV, and .U macros do not cause a line break. The .I macro causes

a break only if you call it with more than one argument. All other mv macros always

cause a break. The troff synonyms .AD, .BR, .CE, .FI, .NA, .NF, .SP, and .TI also

cause a break.

The Macro Package mv__ 15

Line Filling, Adjusting, and Hyphenation

By default, the mv macros turn on line filling, but they neither adjust nor hyphen-

ate lines. These defaults can, of course, be changed by using the troff synonyms for

filling, adjusting and hyphenation.

Example 5: A Complicated Transparency

The following input combines a variety of mv features, specifying a title, changing

point size and fonts, and using some of the troff synonyms. The output of this exam.

ple is in the "mv Sampler” section.

DF 1R

.VS 5 Camplex

.T "Of Bits & Bytes & Words"

.§ ~4

I3AxX

-ft I

But let your cammunication be, Yea, yea;

Nay, nay: for whatsoever is mote than these

cameth of evil.*

.ft

.I +1 a nospace

Matthew 5:37

0PH y
Binary notation has been around for a

.S +6

long

5

time.

.B

The above verse tells us to use:

.C 1) |

16 Using Documenter’s Tool Kit

Line Filling, Adjusting, and Hyphenation

Example 5 continued:

Binary notation,

.ft I

and

ft

.C 2)

Redundancy

.D \(rh

(in communicating)

.B

Binary notation is

.U not

suited for human use, contrary

to what the verse above suggests.

.- SP

.BR

* The use of this verse in the context

of binary notation is plagiarized

from C. Shannon.

/

The Macro Package mv 17

Using the Preprocessors with mv

You can use various preprocessors to typeset information that requires more

powerful formatting capabilities.

Use tbl to set up columns of data within a viewgraph or slide. The .TS and .TE

macros are not defined in the mv macro package, but are merely flags to tbl. You

can learn about tbl by reading "The Preprocessor tbl" in this User’s Guide. You can

find details about tbl in the “tbl Technical Discussion" in the Documenter’s Took Kit

Technical Summary for the DG/UX System.

Use the eqn preprocessor to typeset mathematical expressions and formulas on

transparencies. The chapter "The Preprocessor eqn" in this guide provides details

about using this preprocessor. .EQ and .EN are flags to eqn, and are not defined in

the mv macro package.

You can also use the pic and grap preprocessors with my. This guide provides

tutorials on both of them. Their delimiters are flags to their programs, and are not

defined in the mv macro package.

Example 6: A Transparency with Tables and an Equation

Here is an example of a foil containing an equation and a table:

18 Using Documenter’s Tool Kit

Using the Preprocessors with mv

.VS 6 "The Works: Output”

-EQ

delim $$

gsize 14

. EN

l0Oa

.SP

.TS

center doublebox ;

Cipt4 | Cipt4 ss

~|LLL

User’ s<rap>)Hardware

<TAB> <TAB) CTAB? _

<'TABD UNIX\ * (‘Tm<TAB>Model <taB>Serial

<TaB)System<TaB>\ <TAB>Number

OS Dev. <TAB>A<TAB>VAX< TAB? 54

SGS Dev. <TaB>B¢TaB>11/70<tap> 3275

Low-End <tan>C<1tap>11/23<1an>221

And now .. .<Tap>T'{

-NA

Sane text and an equation:

T} <taB>T{

$ zeta (S) = prod from k=1 to inf k sup -s $

.AD

T}<1aB>1.2

-Sp

TE

-EQ

delim off

gsize 10

.EN

The Macro Package mv 19

Using Constant Width Font

Your phototypesetter may have a constant width font available. Use the .DF

macro to define the font position. For example:

.DF 1R 21 3 Cw

Then, define the .CW and .CN macros to include the font change, like this:

yo ~
.NF

.ft 3

.de CN

FI

.ft 1

NN J

20 Using Documenter’s Tool Kit

Reference Material

Phototypesetter Output

Obtain typeset output with the mvt command.

mvt [options] [file ...]| phototypesetter

The file argument names a file that contains the text (and macros) to be typeset. The

options argument can be one or more of the following:

—a previews output on a terminal (other than a TEKTRONIX 4014)

-e calls eqn

~-t calls tbl

-p calls pic

-g calls grap

-Tttforats output for tty_type, where tty_type refers to a phototypesetter.

my supports the tty_type value 4014 (TEKTRONIX 4014).

-Ddditects output to device desi. my supports the dest value 4014 (TEK-

TRONIX 4014).

-z directs output to the standard output.

If you use a hyphen (—) in place of file, mvt reads the standard input (rather than

a file).

The phototypesetter argument is the device name of a printer or terminal capable

of producing phototypeset output. Your system administrator should know what

name is appropriate.

The Macro Package mv _ 21

Reference Material

Output Approximation on a Terminal

You can obtain an approximation of the typeset output with the mvt option —a.

mvt ~a | file... |

Use this option to preview the formatted text on a VDT’ screen or on a typewriter-lke

printer. It approximates the final output except that:

m You cannot see point-size changes.

@ You cannot see font changes.

@ ‘Titles that are too long appear proper.

All horizontal motions are reduced to one horizontal space to the right.

All vertical motions are reduced to one vertical space down.

For example, it will appear that lines of text following a .B, .C, or .D macro are noi

aligned properly (even though they will be in the typeset output).

Although you cannot determine alignment from this approximation, you can

observe line breaks and the amount of vertical space required by the text. If the foil

is not full, the macro package prints the number of blank lines (in the current point

size) that remain on the foil; if the foil is full, mv prints a warning. If the text over-
flows the foil, mv prints the text after the cross hairs.

Names Reserved by mv

The mv macro package uses certain names internally. All 2-character names

starting with either ")" or "]" are reserved. Experienced users of the DG/UX sys-

tem or the mv macro package may want to define strings, or write additional macros.

You cannot use names that are the same as those of the my macros, strings that are

described in this section of the tutorial, or names that are the same as troff names.

Furthermore, if you use any of the preprocessors, you also must avoid their reserved

names.

22 Using Documenter’s Tool Kit

Reference Material

Miscellaneous Information

The .S macro changes the point size and vertical spacing immediately, but a line-

length change requested with that macro does not take effect until the next level-

macro call. Specifying a third argument to the .S macro usually results in a disaster.

The *(Fm string generates a trademark symbol.

The tilde (~) is interpreted by the mv macros as an unpaddable space; that is, the

tilde may be used wherever you desire a fixed-size (non adjustable) space. To over-

ride this condition, the following line should be included in the input file:

ded

.tr

The Macro Package mv _ 23

Dimensional Details

For each size of viewgraph, the following table shows the default point size, the

maximum number of lines of text (at the default point size), and the height, width,

and aspect ratio, both nominal and actual.

Maximum Nominal Actual (TEXT)

Macro _—‘ Point Lines

(Note 1) Size (Note2) | W H AR Ww HH AR

— (Note 3) — VAR | (Note 3) — VAR

.VS 18 21 7 7 1 1 6 6.8 1.13 .88

Vw 14 19 7 5 71 1.4 6 4.8 8 1.25

.Vh 14 27 5 7 1.4 71 | 42 68 1.6 .62

.VW 14 21 7 5.4 77 13 6 5.2 87 = 1.15

.VH 18 28 7 9 1.3 77 | 6 8.8 1.5 .68

Sw 14 18 7 46 67 1:5 6 4.4 73 1.4

Sh 14 27 46 7 1.5 67 13.8 68 1.8 56

SW 14 18 7 46 67 1.5 6 4.4 73 1.4

SH 18 28 6 9 1.5 67 | 5 8.8 1.76 57

If used as viewgraphs, the .SW macro and .VW macro generated foils must be

NOIE| enlarged by a factor of 9/7.

| Maximum number of lines of text at the default point size.

W-Width in inches, H-Height in inches, AR-Aspect Ratio (H/W).

The Production of Viewgraphs and Slides

The phototypesetter produces output on mechanical paper, which is white,

opaque, photographic paper. There are several simple processes (for example, Ther-

mofax, Bruning) for making transparencies from opaque paper. Because some of

these processes involve heat, and because mechanical paper is heat sensitive, you

should first make copies of the phototypesetter output on a good-quality office copier,

and then use these copies for making your transparencies.

24 Using Documenter’s Tool Kit

Dimensional Details

Making slides is a more complicated photographic process than making view-

graphs. It is possible to make both positive (opaque letters on transparent back-

ground) and negative (transparent letters on opaque background) slides, as well as

colored-background slides, etc. It is probably best to consult a professional in cases

like these.

General Guidelines for Using mv

The most useful foil sizes are .VS and .Vw (or .Sw). This is because most pro-

jection screens are either square or wider than they are tall, and also because

the resulting foils are smaller, easier to carry, and require no enlargement

before use.

You should avoid reducing point size below the default value. Default point

size for each type of foil (Table 3) is the smallest point size that produces a foil

that is legible by an audience of more than a dozen people. If there is more

text than will comfortably fit on one foil, you should use two or more foils

instead of reducing the point size.

You should avoid numerous font changes. A foil with more than two typefaces

looks cluttered and distracts the viewer.

You should avoid underlined typeset text. Even though this package contains a

macro for underlining, you probably should not use it. Underlined typeset text

almost always looks bad; instead, use a different typeface.

The Helvetica sans-serif font is thicker and easier to read than the Times

Roman serif font normally used for typesetting. On the other hand, the Times

Roman font permits more text to be squeezed onto a foil. If you intend to use

italic and/or bold typefaces, either the Helvetica regular, italic, and medium

(which is actually a bold typeface):

.DF 1H 1] HI 3 HM

or the Times Roman regular, italic, and bold:

.DF 1R2I138B

should be mounted via the .DF macro. Bold typefaces tend to be a bit

overwhelming. Choice of fonts is primarily a matter of personal choice.

The Macro Package mv 25

Dimensional Details

26

You can use the .SP macro to insert a bit of additional white space (for

instance, .Sv or 1v) at the top of each foil (that is, increase the top margin).

Normal upper-case and lower-case text is more legible than upper-case text

only. (In smaller point sizes, however, lower-case characters may be hard to

read.) Upper-case and lower-case alphabets have evolved because they result

in more legible text. Furthermore, such text is less bulky than upper-case text

only, so you can put more information onto a foil without crowding.

You should make foils for a presentation as consistent as possible. Changing

fonts, typefaces, point sizes, etc., from foil to foil tends to distract the viewer.

While it is possible to emphasize and draw the viewer’s attention to particular

items with such changes, this works only if it is done purposefully and spar-

ingly. Overuse of these techniques is almost always counter-productive.

In summary, the dictum that "the medium is the message" does not apply to foil

making. When in doubt:

Do not change point sizes.

Do not change fonts or typefaces.

Do not underline.

Use many sparse foils rather than a few dense ones.

Use fewer words rather than more words.

Use larger point sizes rather than smaller point sizes.

Use larger top and bottom margins rather than smaller ones.

Use normal upper-case and lower-case text rather than upper-case text only.

Using Documenter’s Tool Kit

The mv Sampler

This Sampler contains the formatted output of the examples shown in this

tutorial. The output has been reduced in order to fit the page size of this guide.

The Macro Package mv 27

The my Sampler

The Primary Steps in Preparing Documents

e Planning

e Writing

e« Editing

¢« Typesetting

Example 1: A Simple Transparency

28 Using Documenter’s Tool Kit

The mv Sampler

There are four steps in preparing documents

« Planning

— What documents exist? Can they be revised?

— Are new documents needed?

¢ Writing

« Editing

— By peers and supervision

- Typesetting

— Using UNIX DOCUMENTER’S WORKBENCH Software

Example 2: A More Elaborate Transparency

The Macro Package mv _ 29

The my Sampler

Foil Levels and Level Marks

This is the .A level.

- This is the .B level,

¢ and so is this;

— this is the .C level

— and so is this;

- and this is the .D level,

- and so is this.

The large bullet, the dash, and the small

bullet are the default "marks" for levels .B, .C

and .D respectively. However, you may

arbitrarily mark these three levels:

2. like this (.B level);

c. like this (.C level);

* like this (.D level);

iv. or like this (.D level again).

You cannot mark the .A level.

« You may include as many lines of text as

you wish in any item at any level; troff will

fill the text, but it will not adjust or

hyphenate it (as with this .B level item).

Example 3: The Level Macros

30 Using Documenter’s Tool Kit

The mv Sampler

Repeated Level Marks

Because the .A macro has no label, repeated

macro calls are ignored.

These are indentation level requests:

Notice the mark.

- Notice the mark.

Notice the mark.

This text is back to the left margin.

Example 4: Repeated Level Marks

The Macro Package mv _ 31

The my Sampler

Of Bits & Bytes & Words

But let your communication be,

Yea, yea; Nay, nay: for

whatsoever is more than these

cometh of evil.*

Matthew 5:37

Binary notation has been around for a long time.

e The above verse tells us to use:

1) Binary notation, and

2) Redundancy

my (in communicating)

e Binary notation is not suited for human use,

contrary to what the verse above suggests.

* The use of this verse in the context of binary notation is

plagiarized from C. Shannon.

Example 5: A Complicated Transparency

32 Using Documenter’s Tool Kit

The mv Sampler

Hardware

Users UNIXTM Model Serial

System Number

OS Dev. A VAX 54

SGS' Dev. B 11/70 3275

Low-End C 11/23 221

And now .. Some text 1.2

and an s)= Kos

equation: k=1

Example 6: A Transparency with Tables and an Equation

The Macro Package mv 33

Finishing Up

Introduction

Checking your File

Using checkmm

Proofreading with hyphen

Revising with diffmk

Making Indices with subj, ndx, ptx,

and mptx

The Subject-List Maker: subj

Indexing Documents with ndx

Making Permuted Indices with ptx, mptx, and subj

Table of Contents

10

12

Introduction

This tutorial is intended to give you a working knowledge of checkmm, diffmk,

hyphen, ndx, ptx, and subj. When you have prepared a document draft, hyphen will

help you to proofread it. checkmm will check your macro usage for possible errors.

diffmk will make later revisions of your work more manageable. When you are satis-

fied that you have produced a polished document, subj, ndx, and ptx will help you to

make an index.

You should be familiar with the following concepts and tools to fully benefit from

this tutorial. |

You should know how to use a text editor (ed, vi, and ex are examples). See

Using the DG/UX Editors (069-701036).

You should know what a file and directory are and know how to manipulate

them. See Using the DG/UX System (069-701035).

You should know how to redirect input and output using pipes. See Using the

DG/UX System (069-701035).

You should be familiar with a DTK formatter (nroff or troff). See the tutorials

in this book that discuss nroff or troff.

You should be familiar with the mm macro package in order to understand the

explanation of checkmm. See the tutorial in this book that discusses mm.

Finishing Up 1

Checking your File

This section shows you how to check your file before it is formatted or sent to a

printer. The tools discussed here will help you catch formatting errors before you

print, saving time, paper, and computing resources.

Using checkmm

checkmm examines your file to identify potential mm usage errors. For example,

if you used .DS to start a display but forgoi to close the display with .DE, checkmm

will find the mistake. If you prepared a formai memorandum and began it with inap-

propriate requests or macros, checkmm will complain.

checkmm is easy to use: you simply type

checkmm my.file

and errors (providing you have any) will come up on your screen. If you’d like a

more permanent record of these errors, type

checkmm my.file > errors

and read the contents of the file, errors, for checkmm’s error messages.

If you have no errors checkmm will tell you so. For instance, 1f you had typed

165 lines into the file draft1 you could check it for mm-correctness as follows.

Assuming there were no mm errors, typing

checkmm draft1

would cause the following message to print across your screen:

2 Using Documenter’s Tool Kit

Checking your File

draftl:

165 lines done.

That is, "No errors."

But if you had forgotten to close a display with a .DE macro, you might have got-

ten the following message:

Araftl

-DS at line 54 within .DS

165 lines done.

In this case, checkmm read draft1, saw two .DS macros and no intervening .DE

macro, and complained that you were trying to put a display inside a display (an ille-

gal action in mm). In other words, it saw that you had forgotten to end the first

display.

This example suggests that checkmm is inclined to give you the benefit of the

doubt. It will take note of a possible error, but only when it has processed to the

point where something must be wrong will it complain. Another example of this is its

handling of formal memoranda macros.

Finishing Ups 3

Checking your File

Here are the macros you would use to begin a memo:

.ND "date"

.TL case number

Document title

.AU "Author’s name" and additional information.

.AT "Author’s title"

.MT "Memo type"

/
7

checkmm will accept the absence of unessential macros like .ND and .AT, or it will

allow you to intersperse other requests, such as those for adjusting line length or

indent, for centering text, and so on. But it will complain if you enter any of these

macros out of the order shown above. Had you, for example, entered the .ND macro

after the .TL in a file called memol, then typing

checkmm memol

would produce these results:

memol :

Beginning macro sequence error before .MT at line 6

NO
checkmm reads through to the .MT macro before deciding you’ve committed an

error; you must search upward in the iile from this point to find what caused the

actual error.

4 Using Documenter’s Tool Kit

Proofreading with hyphen

nroff and troff provide you with a fine level of control over hyphenation. You

can make precise decisions about the way words break across the boundary from the

end of one line to the beginning of the next. As the "nroff/troff Technical Discus-

sion" shows you (see the Documenter’s Took Kit Technical Summary for the DG/UX

System) you can turn on automatic hyphenation with the request .hy, you can turn off

all hyphenation with the request .nh, and/or you can specify a selective version of

automatic hyphenation with .hw. After your document is formatted, you might like to

go back and see the results, that is, see all hyphenated words with the hyphen com-

mand.

hyphen is straightforward. You simply type

hyphen out.file

and you get a list of all words that have been hyphenated in the file you named on the

command line. (Don’t forget that only formatted files reflect nroff’s or troff’s

automatic hyphenation.)

Here is another way to check your file for hyphenation:

mm —Tlp —rW72 memo! | hyphen > memo1.hy

This command line formats the file and pipes the output (in this case, a file processed

by nroff and mm, prepared for printing on the line printer, and specified to have lines

of 72 characters) through hyphen. The results are sent to a file called memol1.hy.

This last file doesn’t contain the formatted document; it contains all words in that

document that were hyphenated across a line break. To inspect the hyphenations that

will appear in the document, you must give hyphen the same formatted file that you

will send to the printer. Different formats—longer lines or fewer lines, for

example—will result in different hyphenated words. hyphen ignores hyphenated

numbers, such as phone numbers.

Finishing Up 5

Revising with diffmk

diffmk is a valuable tool for comparing successive versions of a document. It

allows you to see two things at once: the most up-to-date version of a document, and

those lines that are different from the previous version.

When you are revising a document it is good practice to copy the original and edit

the copy. Once these alterations are complete, you can see your changes against the

background of the original with diffmk. By typing

diffmk original.file revised.file diffmk.file

you form diffmk.file, based on the differences from original.file and revised.file.

Note that the first two files are not changed as a consequence of diffmk’s analysis.

When you format this diffmk’d version, using nroff or troff, a vertical bar in the

margin will identify those lines you have revised. An asterisk in the margin will indi-

cate places where lines of text have been removed. An unformatted version of

diffmk.file is identical to revised.file with the addition of .me (margin character)

requests.

6 Using Documenter’s Tool Kit

Making Indices with subj, ndx, ptx, and mptx

Replacing the tedious and error-prone manual task of making an index,

Documenter’s Tool Kit Software provides the tools, subj and ndx, for generating

indices automatically. They are easy to use and are compatible with the

Documenter’s Tool Kit formatters and macro packages. subj analyzes your text for

words that appear to be subjects, and ndx produces an index of those words and the

page numbers on which they appear.

To use these tools, you should know how to use a DG/UX text editor, and you

should be familiar with Documenter’s Tool Kit Software command lines. (See the

table at the conclusion of the "Preface.")

The Subject-List Maker: subj

subj decides. which words in your file are keywords: the ones that suggest what

your file is about. It looks for capitalized words, assuming they are proper nouns,

and for modifier-noun sequences. It also pays special attention to the words you use

in abstracts, headings, introductory paragraphs, and the topic sentence of each para-

graph. |

subj remembers these keywords and examines your document in increments of

two-sentence sections (first and second, second and third, and so forth) attempting to

tie relevant keywords together. In this way function words and phrases, such as

prepositional phrases, don’t isolate potential subjects and subject-modifiers from each

other.

Perhaps you can see already that subj has its own expectations of your writing. It

assumes that each sentence begins on a new line, so it can disregard capitalized words

that begin sentences. It assumes that you will present your text in neat and relevant

blocks of information, and that these blocks will have headings or subheadings.

Finally, it expects you to observe the classic thesis essay form: thesis sentence or

sentences at the beginning of the text and a topic sentence at the start of each para-

graph. Should you go off on a tangent or include an irrelevant name, you might have

a subject-list that better reflects a document’s problems of exposition than its real

purpose or thesis. Normally you would want to edit a subject-list before using it, but

first let’s see how to produce one.

The command line you would type to use subj is the following:

subj my.file

Supposing you wanted a subject-list of this section of the tutorial (stored in a file

Finishing Up 7

Making Indices

named tutorial), you would type

subj tutorial

which would produce the following output:

8 Using Documenter’s Tool Kit

Making Indices

attempting

command line

cammand lines

document

documenter

Documenter’s Tool Kit

editor

error-prone

examines

file

file named tutorial

following

generating indices

increments

index

keywords

making

making indices, subj ndx ptx

mptx making indices

ndx

ones

own expectations

Preface

relevant keywords

replacing

second

subj

subj supposing tables tools tutorial unix

subject—list

subject—list maker, subj

supposing

task

third

tools

tutorial

two-sentence sections

Finishing Up 9

Making Indices

Notice that it recorded both headings in full and that it focused on the opening sen-

tence, mentioning the mm tutorial. Had mm been mentioned down in the middle of a

paragraph, it would have been ignored. Thus, presenting unimportant information in

the opening paragraph of an essay or report will be given disproportionate importance

in the subject-list. (In fact, this list suggests that the file contains information about

mm. But although the file mentions mm, it is not the topic of the file, and might be

deleted from the final list.)

subj works especially well with files that contain requests and macros. Knowing

how these formatting commands are normally used, subj takes cues from text

prepared with Documenter’s Tool Kit Software that conventional text cannot offer.

This does not compromise the other criteria subj uses to choose subjects, but rather

complements them. While a subject-list might be valuable in a variety of ways, mak-

ing indices 1s probably its most useful function.

Indexing Documents with ndx

The Documenter’s Tool Kit Software index maker, ndx, reads the subject-list file,

compares the words in it to the text, and records the subjects it finds and their

corresponding page numbers. Because ndx focuses on the roots of words it finds in

the subject-list, tenses and cases of words pose no problems to it. The following is an

example of ndx at work. Notice that it uses a subject file, which you can make with

subj:

ndx subject.file "mm —Tlp —rW72 my.file" > index.file

subject.file must contain a list of subjects drawn from the text or book you’re index-

ing. You can use subj to make this list or you can select another method. It makes

no difference to ndx. Next you give the command line you would use to generate the

document you’re indexing. Enclose it in double quotes. A few things should be said

about using ndx:

m You are not actually sending anything to a printer. ndx makes a copy of the

document, which you never see, then removes it.

= Re sure to give the same command line to ndx that you use when you format

your document. ndx needs this information to make decisions about page

numbers. A command line given to ndx that differs from the command line

used to print the document will probably produce an inaccurate index.

10 Using Documenter’s Tool Kit

Making Indices

@ ndx will accept any Documenter’s Tool Kit Software formatter with or without

the mm macro package. The formatting command line must be enclosed in

double quotes.

@ ndx will not accept command line operators such as |, >, <, and &. Conse-

quently, command lines that use preprocessors (e.g., grap, pic, tbl, and eqn)

are disallowed on the ndx command line.

Should you need to index files that use one or more preprocessors, run the appropri-

ate preprocessor before indexing and formatting:

grap my.file | pic | tbl | eqn > preprocessed.file

Then give the preprocessed file to ndx:

ndx subject.file "troff —mm preprocessed.file" > index.file

Last, make sure you use the same preprocessed file when printing:

troff —mm preprocessed.file | typesetter

The file, index.file, contains the finished index complete with alphabetical topic

entries and corresponding page numbers.

Because ndx is intelligent enough to identify word-roots, you may find that it is

too permissive in certain cases. To ensure that ndx literally matches a particular

entry in your subject-list, begin the line on which the entry appears with a tilde (~):

“hyphenation

“revision

“preprocessing files

ndx will find only precise matches for these words. The tilde will not, however, iden-

tify phrases to be literally matched.

Given the brief subject list above, ndx would find “selection of hyphenated words"

to be a miss but would identify "hyphenation" as a hit. You'll notice in the last exam-

ple that each word following the tilde is designated as a literal entry. Thus, “prepro-

cessed files" would not be matched, but "files that need preprocessing" would be. ndx

has no provision for selectively isolating single words on a line. Either each word on

the line is treated as a literal entry or none of them are.

Finishing Ups 11

Making Indices

Making Permuted Indices with ptx, mptx, and subj

Besides the subject/page-number index made with ndx, Documenter’s Tool Kit

Software has commands to make another type of index: the permuted index, made

with ptx and mptx. Like a concordance, a permuted index is a catalog of keywords

taken in their immediate contexts. The index is called "permuted" because it changes

the word order, placing the keyword in the middle of the line. Index lines are

presented alphabetically by keyword.

ptx, together with its eight options, reads the file you wish to index, selects key-

words and contextual words, and prepares a file that will be processed to make the

final index. mptx is a specialized macro package that interprets the file that ptx

prepares.

The simplest statement of ptx use is as follows:

ptx my. file index.file

This gives ptx, respectively, the file you want it to read and the name of a file it can

put its output in. Next, you simply give the output from ptx to the mptx macro pack-

age and an appropriate formatter to print your permuted index:

mm —mptx index.file > permuted.index

An appropriate formatter is one that will process whatever headings, titles, or other

features you want to include with your permuted index. Remember, your permuted

index is made from a formatted document. In the preceding case, the index was pro-

cessed with mptx and mm (which invoked nroff).

ptx’s default selection of keywords is generous, and the index produced by the

above examples would probably be too large to be useful. You will probably want to

give ptx a limited subject-list before it begins its work. You might, therefore, want to

begin your session of indexing by using subj. (See the section of this tutorial that

discusses subj.)

12 Using Documenter’s Tool Kit

Making Indices

Assuming you wanted to make a permuted index of this section of the tutorial,

you would proceed as follows. First, you would make a subject-list:

subj tutorial > subj.file

An edited version of the file, subj-.file, is shown in the following figure.

(_. options
index input

input

isolates contextual words

keywords

mm

mptx

nroff

ptx

subj

subject/page-number index

NS
Then, you would use ptx with its —o option:

ptx —o subj.file tutorial tut.index

The —o option signifies "only," and is followed by an "only file." That is, only the

words in the file following —o will be used by ptx as keywords. The file, tutorial,

here is a formatted file. Once ptx has been given a subject-list, it expects to receive

a formatted file, so it can get down to the business of extracting all keywords, includ-

ing those in defined strings and defined macros.

Finishing Up 13

Making Indices

Finally, you would process the file, tut.index, to produce the permuted index

itself.

mm —mptx tut.index > permuted.index

The following is the contents of the file, permuted.index.

alphabetically by keyword.

selects keywords and isolates

wish , together with its

package dedicated to permuted

of the file that will contain the

Like a concordance, the permuted

their inmediate contexts. The

. the permuted

Besides the subject/page-number

type of index: the pemnutéed

proceed as follows.

mm, and nroff, case, the

interprets the

to make and prepares an

From here you simply feed the

to index, selects keywords and

words, to index, selects

contexts. ‘The index is of

indexfile >

to permuted index Since

package, which the final index.

you simply feed the input to the

want to include with your

is a macro package dedicated to

Inptx. Like a concordance, the

the

another type of index: the

print your

Assuming you wanted to make a

indexfile

tutindex

Index lines are presented

contextual words, to index,

eight options, reads the file you

index Since mptx is a macro

index input. the name ...

index is a catalog mptx.

index is of keywords and

index itself. . |

index made with, Documenter’s Tool Kit offers

index made with and another

index of this tutorial, you would

index was processed with mptx,

input file ...

input file that will be processed

input to the mptx macro .

isolates contextual words,

keywords and isolates contextual

keywords and their immediate

mptx is a macro package dedicated

mptx is a specialized macro

mptx macro Fram here .

permuted index. In the preceding

permuted index Since mptx

permuted index is a catalog

pemmuted index itself. ...

permuted index made with and

permuted index:

pemmuted tutorial above.)

ptx file ones ezrervreneeree ee ere

‘ptx -o subjfile tutorial

14 Using Documenter’s Tool Kit

Making Indices

The index’s keywords are the alphabetically ordered, left adjusted words at the

center. Contextual words read from left to right. Notice that the contextual phrase

may begin at the far left, or it may begin at with the keyword itself wrapping around,

on the same line, to the left. This word order depends on the syntax of the original

sentence. If the keyword occurs early in the sentence, the context is likely to wrap in

the index.

The permuted index used line adjustment (.ad) to make its contents easier to

read. The left side is right adjusted, and the right side is left adjusted.

NOTE

For a complete listing of ptx and mptx options, see their manual entries in the
Documenter’s Took Kit Technical Summary for the DG/UX System.

Finishing Up = 15

ut here and insert in binder spine pocket

(» DataGeneral UL
Jata Genera | Corporation, Westboro, Massac husetts 01580 469-781039-an

