¢y DataGeneral

Customer Documentation

Using the DG/UX" Editors

Using the DG/UX™ Editors

069-701036-01

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 069-701036

Copyright © Data General Corporation, 1989, 1990
All Rights Reserved

Printed in the United States of America

Revision 01, February 1990

NOTICE

Data General Corporation (DGC) has prepared this document for use by DGC
personnel, customers and prospective customers. The information contained herein
shall not be reproduced in whole or in part without DGC’s prior written approval.

DGC reserves the right to make changes in the specifications and other information
contained in this document without prior notice, and the reader should in all cases
consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFTWARE
CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACT
BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN
IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE
KNOWN OF THE POSSIBLIITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT,
PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation.

AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BusiGEN, BusiPEN,
BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board, CEO DXA,
CEO Light, CEO MAILI, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART,
COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/386, DASHER/LN,
DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,
ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSEMYV/2500,
ECLIPSE MV/7800, ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000,
ECLIPSE MV/20000, ECLIPSE MYV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000,
GDC/2400, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE,
SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE,
and XODIAC are trademarks of Data General Corporation.

AT&T is a U.S. registered trademark of American Telephone & Telegraph Company. UNIX
is a U.S. registered trademark of American Telephone & Telegraph Company. DEC is a
trademark of Digital Equipment Corporation. NFS is a U.S. registered trademark of Sun
Microsystems, Inc. Yellow Pages, in the United Kingdom, is a trademark of British
Telecommunications plc.

Using the DG/UX™ Editors
069-701036-01
069-701065-01 (Japan only)

Revision History: Effective with:

Original Release — June 1989 DG/UX Release 4.10
Second Release — February 1990 DG/UX Release 4.20

Preface

This manual tells you how to use the editors that come with the DG/UX™ operating
system. To use this manual, you should have experience using a computer operating
system; while extensive knowledge of a UNIX® system is not necessary for using an
editor, you should have some familiarity with the UNIX system. Each of the four
editors is distinct from the other, and your application for an editor will determine
the one you choose. For instance, editread is a command line editor; it allows you to
edit commands issued from the shell. Both vi and ed are text editors; vi is a full-
screen editor, and ed is a line editor. With vi you can move the cursor to another
location in the file and operate on the desired lines; in ed, you issue commands in the
command line to affect the file. Finally, sed is a batch editor that you use for globally
editing multiple files.

Manual Organization

A description of each chapter follows.

Using the Command-Line Editor (editread): Chapter 1
Editread is an optional interface that you can invoke for editing command lines. The
editread facility can be used with DG/UX system programs.

Using the Full-Screen Editor (vi): Chapter 2

Vi is a full-screen editor that gives you a full range of cursor motion through your file
to display the desired text in a window. Vi provides tools for appending text,
inserting text, opening lines, deleting text, modifying text, and moving text. You can
use editing commands to work with characters, words, lines, sentences, and
paragraphs.

Using the Line Editor (ed): Chapter 3

Ed is a line editor that is quite versatile because it can be used with any type of
terminal including hardcopy terminals. Not only can you use ed commands
interactively, but you can also use them non-interactively in shell scripts.

Using the Batch Editor (sed): Chapter 4

Sed enables you to perform global editing operations on one or more files. The
major difference between the batch editor and the full-screen and line editors is that
editing changes with sed are written to standard output rather than to the file itself.
In this way, you can review dramatic, global changes before altering your source file.
Other advantages of sed are its speed, its performance of multiple editing commands
in one pass, and its use on a pipeline.

069-701036 Licensed material—property of copyright holder(s) ii

Readers, Please Note

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different
meanings. The Data General symbol and typeface conventions used in this manual
are defined in the following list. You should familiarize yourself with these
conventions before reading the manual.

This manual also presumes the following meanings for the terms "command line,"
"format line," and "syntax line." A command line is an example of a command string
that you should type verbatim; it is preceded by a system prompt and is followed by a
delimiter such as the curved arrow symbol for the New Line key. A format line
shows how to structure a command; it shows the variables that must be supplied and
the available options. A syntax line is a fragment of program code that shows how to
use a particular routine; some syntax lines contain variables.

Convention Meaning

boldface In command lines and format lines: Indicates text (including
punctuation) that you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files,
directories, and manual pages also use this typeface.

constant width/ Represents a system response on your screen.
monospace
Syntax lines also use this font.

italic In format lines: Represents variables for which you supply
values; for example, the names of your directories and files,
your username and password, and possible arguments to
commands.

[optional) In format lines: These brackets surround an optional
argument. Don’t type the brackets; they only set off what is
optional. The brackets are in regular type and should not be
confused with the boldface brackets shown below.

[] In format lines: Indicates literal brackets that you should
type. These brackets are in boldface type and should not be
confused with the regular type brackets shown above.

In format lines and syntax lines: Means you can repeat the
preceding argument as many times as desired.

iv Licensed material—property of copyright holder(s) 069-701036

$ and %

<, >, >>

Readers, Please Note

In command lines and other examples: Represent the system
command prompt symbols used for the Bourne and C shells,
respectively. Note that your system might use different
symbols for the command prompts.

In command lines and other examples: Represents the New
Line key, which is the name of the key used to generate a new
line. (Note that on some keyboards this key might be called
Enter or Return instead of New Line.) Throughout this
manual, a space precedes the New Line symbol; this space is
used only to improve readability — you can ignore it.

In command lines and other examples: Angle brackets
distinguish a command sequence or a keystroke (such as
<Ctrl-D>, <Esc>, and <3dw>) from surrounding text.
Note that these angle brackets are in regular type and that you
do not type them; there are, however, boldface versions of
these symbols (described below) that you do type.

In text, command lines, and other examples: These boldface
symbols are redirection operators, used for redirecting input
and output. When they appear in boldface type, they are
literal characters that you should type.

In command lines and other examples: Represents the
cursor, which indicates your current typing position on the
screen.

Contacting Data General

To order any Data General manual, use the TIPS Order Form at the back of this
manual or call a Data General sales representative.

If you have hardware or software problems, please call or write the nearest Data

General Office.

If you have comments on this manual, please use the prepaid Customer
Documentation Comment Form that appears after the Index of this book. We would
appreciate hearing what you like and dislike about this manual.

069-701036

End of Preface

Licensed material—property of copyright holder(s) v

Contents

Chapter 1 — Using the Command Line Editor: editread

What Is HiStOry?oooiriiiiiiiiiiiiiiiiiiiiiii e 11
Invoking editread for the First Timeccccoieiiuiiiiiiiiiiiiiiiiiiiii e eeieeeeeeee 11
Viewing editread’s Default Valuescccooeevviuiiiiiiiiiiiiiiiiiiiiiniinneneen, 12
Assigning Values to editread FUnctionscocceeeuiiiniiiiiiniiniiiiiiiiierieennennees 15
Changing editread Values Interactivelyc.cccceeviuiiiiniiinieiniiinniiinicennnenn. 1-6
Assigning Values to the EDITREAD Environment Variable 1-7
Assigning Values in the .editreadrc Fileccccccoeviiiiiiiiiiiiiiiiiiiinnnnnn. 1-8
Your Line Discipline and editreadcccoooviuiiiiiiiiiiiniiiiiiiiiini e, 1-8
Disabling editreadcccoviiiiiiiiiiiiiiiiiiiii e e 1-8
Defining Cursor Control KeYsccccvieuiiiuniiiuiiinirieiieiiriiieiiieeieenineeeeesneens 19
Moving the Cursor Rightccoiiuiiiiiiiiiiiiiiiiiiiiiic e 19
Moving the Cursor Leftcciiiiiiiiiiiiiiiiiiiiiiie e 1-10
Moving the Cursor to the End of the Lineccc.coviiniiiiiiiniiiiniiiinnennnn, 1-10
Retrieving the Previous Line and Putting the Cursor at the End 1-11
Returning the Cursor to the Beginning of the Linecoocoviuviiiiiiiiinne, 1-11
Moving the Cursor Forward One Wordcccceeuiiieeerernieierenrineenrenennenns 1-11
Moving the Cursor Backward One Wordc.cccoeeviiiniiiiiiinniinnneeniennnnne. 1-12
Defining Line Editing Keyscoccviiiiiiiiiiiiiiiiiiiiiiiiincisice e eeaeees 1-12
Erasing a Character Backwardcoooiiiiiniiiiiiiiniiiiniiniiccnnceenene 1-13
Erasing @ WOTdceveiiiiiiiiiiiiiiiiiee ittt enreneeeeesenseeensensnnsnsansensnes 1-13
Deleting from the Cursor to the End of the Lineccocovvvveeeniiniiiinnnnnen. 1-13
Deleting an Entire Lineccvviuiiiiiiiiiiiiiiiiiiiiiiii i iiccracennsenneee 1-14
Inserting Text Within a Linec..coocvviiiiniiiiiiniiniiiininie, 1-14
Inserting Text With a Leading Spacecoocevviiiiiiiniiiniiiiniinicinn, 1-14
Defining History Keysccoviuiiiieiiiiiiiiiiiiiiiiiiiiei ettt ee s eeeea e 1-15
Differences Between editread and C Shell Historycccceviiuiinniiinniinnnnn. 1-15
Recalling a History Eventcoccoveeiiiiiiiiiiniiiiiiiicn e 1-16
Scanning the History Listcccccvoviiiiiiiiiiiiiiiiiiiinii i 117
Moving Up the History Listc.ccooiiiiiiiiiiiiiiiiiiiiiiiiiii e 1-17
Moving Down the History Listcccccoviiviiiiiiiiiiiiiiiiniinii e, 1-18
Setting the Maximum History Lengthccoccciiiiiiiiiiiiiiniiniinnninn 1-18
Setting the History Display Lengthccccoovvviiiiiiiiiiiiiiinan 1-19
Writing the History List to a Fileccooviiiiiiiiiiiiiiiiiiiininiinan, 1-19
Reading a File Containing a History Listccccevviiiiiiiiiiiiiiniiinnnnnn. 1-20
Defining Process Control Keysccceviiiiiiiiiiiiiiiiiiniiiinii i 1-20
The End-of-File Key (Log Out and End Input)cccvviiuniiiiniiiinnnninnnnn. 121
The Interrupt K€yoooviiiiiiiiiiiiiiiiii e 1-21
The Quit Keycovviiiniiiiiiiiiiiiiiiiii 121
The Suspend KeYccevivviiniiiiiiiiiiiniiiiiiiiii e 1-22
Defining Miscellaneous Keyscovveuiiiiiiiiiiiiniiiiiiiiiiiiiinnnicecaneaes 1-22
Displaying the History Promptccceveuviiiiiiiiiiiiiiniiincnneen, 1-22
Refreshing the Current Command Line Displaycccooeviiiniiiiniiiinniinnnn, 1-23
Enabling Verbatim Modeccccviuiiinniiiiiiiiiiiiiinii e, 1-23
Displaying Terminal TYPeccevvuviiiiiiiiniiiiiiiiiiiiiii e, 1-24

vi Licensed material—property of copyright holder(s) 069-701036

Contents

Chapter 2 — Using the Full-Screen Editor: vi

The Working BUuffercccccoviiiiiiiiiiiiiiiiiiiiinii e 2-1
HoOW Vi OPEratesoeiuiiiuniiuiiiiiuiiuiiiiiiiiiuiiutiiieiieirriuiitieeaceesaesaseaeens 22
Defining a Terminal for Vicoccvviiviiiiiiiiiiiiiiiiiiiiii e, 24
Differences Among Terminals Used with Viccooovuiiiiiiiiiiiiiiiiii. 24
The Syntax of a vi Commandcceevviiiniiiiiiiiiiiiiiin 2-5
TeXt ODJECES .ovuuiinniiniiiiiiiiiiiiiiiiiiiir et r e a e aa e e eaas 2-6
L0311 £ 101 - ST 2-6
A« N 27
Space-Delimited Wordccoviuviiiiiiiiiiiiiiiiiiinin e 2-7

7 1 1 2-8
SENLENCE ..uuivniiiiiiiiiiiiiiiiiiii e 2-8
Paragraphcveiiniiiiiiiii e 29
Screen WIndOWceuiieiiiiiiiiiiiiiiiiiiiii e 29

1 1 <N 2-10
How vi Relates to the Document Formatter: DTKcccoooiiiiiiiiiiiiiini. 2-10
Setting Up vi OPtIONScceviiuiiiiiiiiiiiiiiiiiiiiiiii i aneanees 2-11
Useful Tips While USING Vi ...ceuvvivniiiiiiiiiiiiiiiiiiiii i, 2-12
Undoing a Command () ...c..uvevuuerernnirennnreeneereniereeenerrenesrensrermierernesens 2-13
Refreshing Your Screen (Ctrl-L)cooevviiiniiiiiiiiiniiiiiiiiniiiiiicenieees 2-13
Periodically Saving the Working Buffer (:W)ccccoeivuiiiiiiiiiiiiiiinienennnnnns 2-13
Quitting vi (ZZ, :Wq, :q, :q!) ceeeeeiiiiiiiiiii e 2-13
INVOKING Vi vivvivniiiiiiiiiiiiiiiii i 2-14
Vi Editing Operationsccccviiuiieiiiniiniiiniiiiiiiiiiiiei et e eeneenees 2-17
Entering TeXt ...ccovvviiiiiiiiiiiiiiiiiiii e e 2-18
Moving the CUISOTciiviiiiiiiiiiiiiiiiiiiiiii s eae s 2-18
Moving the Cursor by a Charactercceevviviiiniiiiiiinniiiiiiiiinneennnn. 2-19
Moving the Cursor by @ Linecccevviiniiniiiiiiiiiiiinniiiiiiiiic e 2-20
Moving the Cursor Within a Linec..cooeuviuiiiiiiiiiinniiiiiiincnn 2-22
Moving the Cursor to the End or Beginning of a Lineccoceevennennees 2-22

Moving the Cursor to a Specific Character on a Lineccoocuvvennnes 2-23

Moving the Cursor to a Specific Column on a Line (n])oovvvvnennennnne. 2-25

Moving the Cursor by @ Wordccccvviiiiiiiiiiiiiiiiniinin e 2-26
Moving the Cursor by a Sentenceccceeviiiiiiiiiiiiniiiiniiiinii 227
Moving the Cursor by a Paragraphc.cccoveviiiiininiiiiniiiiiininninnnnnenee, 2-28
Moving the Cursor Within the Current Windowccccocoviiiiiiniinieninan.e. 2-29
Moving the Cursor Outside the Current Windowc.ccoeevveviiiiniinieninnan.e. 2-31
Moving the Cursor to a Relative Line (+, =) ..cccvvrvuveeniinieiniiinnienrennnee 2-31

Moving the Cursor to a Specific Linec...coveuviinieniiiiiiniiiniiiiininn. 2-32
Scrolling and Paging Text Through the Current Windowc..coeeuunee 2-32

Moving the Cursor to a Marked Locationccccceeuiiniiniinniiniennnnnnen. 2-34
Appending TeXtooeuiiiiiiiiiiiiiiiiiii e 2-36
Inserting TeXtccouuiiiiiiiiiiiiiiiiii e 2-37
Opening a New Line for TeXtccoeuiiiniiiiiiiiiiiiiiiiiiiiiiicceinn e eaas 2-38
Deleting TeXt ..u.cvuiiuniiniiuniiiiiiiiiiii ettt e e st st ene e e e e 2-39
Deleting Characters at the Cursor and to the Rightccccveeiiiniiniinine.e. 2-40
Deleting Characters to the Left of the Cursorccooeeveuiiniieiiiniiiieennannee. 2-40
Deleting WOordsccviuniiiiiiiiiiiiiiiiiiiiiii it eaaes 2-40
Deleting Space-Delimited WOrdscccovuviiniiiiiiniiiniiniiininenn 2-41
Deleting from the Beginning of a Lineccccccoviiiiiiiiiiiiiiiiiiiiini, 2-41

069-701036 Licensed material—property of copyright holder(s) vii

Contents

Deleting to the End of a Linecccovvvinviniiniiniiiniiiiiniiiiiineneaeens 241
Deleting Entire Linesccooeuiiuiiuiiiniiniiniiiiiiiiiiiini e sescceeensnnnes 242
Deleting to the Beginning of a Sentenceccccccvvvvniiiiiiiiiiiniiiniiinnninnnn. 242
Deleting to the End of a Sentencec.cevviivniiiiiiiiiiiiiiinniinnininnennnn, 2-43
Deleting to the Beginning of a Paragraphccocoiiiiiiiiiniiiiiiiiniiinninnee.. 243
Deleting to the End of a Paragraphcccccciviiiiiiiiiiiniiiniiiiinninnn 2-44
Marking Text for Deletioncc.ccuviiiiiiiiiiiiiiiiiiiiiiii e, 2-44
Recovering Deleted Linescccevvuvienieniiiiiniiiniinniiiiiiieiiiiesiineieensinnen, 2-46
Replacing TEXE ...cucvuieiiuiiiiiiiiiiiiiiiiiiiiiririrt st saa st s es e seaeseneannnas 2-47
Replacing @ Charactercooeuvviuiiiniiiiniiiiiiiiirinii e 247
Replacing Multiple Characterscoeeeviiiiiniiuiiuiiiiiiiiiiinenneenreiineenenes 248
Changing TeXtcccciiuiiiiiiiiiiiiiiiiiiiiiii ittt st e seesesaanses 249
Substituting Charactersccovevviuiiiiiiiiiiiiiiiiiiiii e, 2-51
Changing WOrdScccceiiiiniiiiiiiiiiiiiiiiiiiiiiiie e eascascraestasennes 2-51
Changing Space-Delimited Wordsccccuvvvuiiiiiiiiiiiiiiiiniiiiiiiniiiinninnnn, 2-52
Changing all Characters in the Current Linecccccvviuiiuiiniieiiiiiinnnnnnnns 2-52
Changing to the End of a Linecccccviiiiiiiiiiiiiiiiiiiiiinee 2-53
Changing to the Beginning of a Sentencec..ccovvviviiiiiiiiniiiniiniiennnnnee. 2-54
Changing to the End of a Sentenceccooevviiniiiiiiiiiiiiiiiiiiinnennen, 2-55
Changing to the Beginning of a Paragraphcccooeiviiiiiiiiiiiniiiiiinninnn, 2-56
Changing from the Cursor to the End of a Paragraphc..cccoceviniiunnnnien. 2-57
Changing Marked TeXtccevviuiiuiiuiiiiiiiiiiiiiiiiiiri e e 2-58
MovIng TeXt ..ovvniiiiiiiiiiie i 2-59
Using Registers for Storing TeXtccoiviuiiiiiiiiiiiiiiiiiiiiiiinieen, 2-60
The Delete Commandscccceviiuiiiiiiiiiiiiiiiiiii e 2-61
The Yank Commandsccceevuiiiiiiiiiiiniiiiiiiiiiii e 2-62
The Put Commandscooeuiiiiiiiiiiiiiiiiiiiniiii e 2-63
Examples of the Delete-and-Put and the Yank-and-Put Operations 2-64
Deleting and Putting TeXtccovvuiiiiiiiiiiiiiiiiiiiiiiiiii e, 2-65
Yanking and Putting from an Alphabetic Registercc.coveuviennnneee. 2-66
Searching for Patterns in Last Line Modeccovveviiiniiiiiiiiiiiiiiiniiniinninne, 2-69
Metacharacters Used in a vi Pattern Searchccc.ocvviiiiiiiiiiiiiiniiinienn 2-71
Searching and Substituting Patternsccoooviiiiiiiiiiiiiininn e, 2-71
The AdAressccceviiiiiiiiiiiiiiiii e 2-72

Search Patterns and Replacement Stringsc..ccevvviiiiiiieniinnnninnnen. 2-74
Substituting in the Current Lin€cccovviiiiiviiiiiiiiiineinninnnnnn., 2-75
Substituting in the Entire Buffer (%)cccoovviieiiiiiniiiinniiiiiiiiiinnnnnnen. 2-76

Global Substitution in a Single Line (8)cc.oceevuveereniiiiniieinniiennnnnennnn. 2-76
Confirming Substitutions (C)eceuerereirerruireiiiireiiereiiererierenireeenen. 2-76
Advanced SubStitutionccoveviiiiiiiiiniiiiiiiii e 2-77
Manipulating Files in Last Line Modecoooviiiniiiiiiiiiiiiiiniiiiniineeeens 2-82
Commands to Write Filesccocviuiiniiiiiiiiiiiiiiiiiiin i 2-83
Commands to Read Filescccccvvuviiiiiiiiiiiiiiiiiiiiiiiiiiniencancanes 2-84
Commands to Edit the Buffercccocoiiiiiiiiiii 2-87
Searching for a Tag in Other Filescoooiviiiiiiiiiiiiiii, 293
Commands to Exit to the Shellcccoovviiiiiiiiiiiiiiiiiiii e 293
Setting Up Your vi Environmentcoccovivviniiniiiniiiiiiiiiiiiniinneeeeieenes 2-95
How t0o Set OPHONS ..vviiiiiiniiiiiiiiiiiiiii st eaeee 2-95
Where to Set OPtiONSoviviiiiiiiiiiiiiiiiii e e e 296
EXINIT Variableccocuvviuiiiiiiiiiiiiiiiiiiiiiiiciiii i ceieveneee 296

XIC FIle woiiniiiiiiiiiiiii i 2-97

viii Licensed material—property of copyright holder(s) 069-701036

Contents

Last Line Modecccviruiiiiiiuiiiiiiiiinieiiiiiinieiiceniaseseeassansans 298
Displaying the Current Options Setccocvvviuiiiniiiiiiiiiiiiiiniiinnanen, 298
The OPHONS ...ucivuniiiniiiiiiiiiiiiii e s e aae e 2-100

Editing Optionscccovveiieiiiiiiniiiiiiiiiiiii it 2-101

Programming and Debugging Optionsc..coevvniieiiiniiiiiiniiniinnnee. 2-106

Options for Slow Terminalsccoceuviiniiiiiiiiiiiiiiiiininn, 2-108

§DJ N QL0 71 T) 1 PR 2-110

Writing and Using Macroscccevuvviiniiiiiiiiniiiniiiiiiiieieenncresscnnsennsees 2-111
Where to Set Up Macrosc.c.evieuiiiiiiiiniiiiiiiiiiiiriincineianereneeanes 2-111
Using KeY Mapsccuviiuiiiiniiiiiiiiiiiiiiiiii i cta et snnassnnens 2-112
Assigning Nested Macro Mapscceeviiuiiiniiiiiiiiiiiiiniinieiinnieeenee. 2-115
Deleting a Key Mapccuuviiiiiiiiiiiiiiiiiniiiiiiirriicccii e cannseeenes 2-116
Abbreviation MacCIocccueviiiiiiiiiiiiiiiiiii e 2-116

Deleting Abbreviation Macroscccceeeviiiiiiiiiiniiiinciinniinnnn, 2-118

Undoing the Effect of @ Macrocccevvviuiiiiiiiiiiiiniiniiicniieniennnns 2-118

MiSCEllaneousccuviiuiiiiiiiiiiiiiiiii e 2-119
Transposing Charactersecceeviiiiiiiiiuiiiiiiiiiniiiiiiieeniereneeseeraneens 2-119
Repeating the Previous Commandcoceviiiiiiiiiiiiiiiiiinniiininnn, 2-119
Joining LIiNesc..oeviiiiiiiiiiiiiiiiiiii e 2-120
Clearing and Refreshing the Terminal Windowccceeevvviinirivenniennnneen. 2-121
Changing Casesceevuuiiiiiiiiiiiiiiiii e 2-121
Getting Current Editing Informationccoeovviiiiniiiiniiiiiiiiniinneinn. 2-122
Error RECOVETY ...cvuiviiiuniiniiniiiiiiiiiiniiiiii it sas e e e 2-122

Undoing the Previous Commandccceeiuiiiiinniinniiinniiiniinenne.. 2-122

Recovering Lost Filesccoocuviiiiiiiiiiiiiiiiiiiiiiiiniiiniinencaneaee 2-124

Recovering a File from the Shellcooiviiiiiiiiiiiiniiiiiiinae 2-124

Trouble Saving File in a vi Sessionccooouvviiiiiiiiiiiininn 2-125

Chapter 3 — Using the Line Editor: ed

Invoking €dcovviiiiiiiiiiiiiii 32
General Format of ed Commandsccoovviiiiiiiiiiiiniiniiinncneenee 34
Line Addressingccccoviiiiiiiiiiiiiiiiiiiiii 34
Numerical AdAressesccovveiiiuiiiiiiiiiiiiiiiiii e 35
Symbolic Addressescccevivuiiiiiiiiiiiiiiiii 3-6
Current LINE ..o.iviiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiin i cirsissasses s sasasasanes 3-6

Last LIN€ .euvuveniiiiiiiiiiiiiiiiii e 37

AL LINES .oenininiiniiiiieiiii ittt ettt e ca e e e e eaeaaenens 3-7

Current Line through the Last Lineccoccvveiiiiiiiniiiiiniiniinninin. 3-7
Relative Addressesooeevvviviuiiiiiiiiiiiiiiiiiiii i 3-8
Character String Addressesccoveviiiuiiiniiiiniiiiiniii e eanes 39
Specifying a Range of Linescccvviuviiiiiniiiniiiiniiiniinn i 311
Global Searchesc..ccviiviiiiiiiiiiiiiiiiiiii 312
Displaying TeXtocuvieiiiiiiiiiiiiiiiiiiiiiiiiiiii s e 3-14
Displaying Text Alone (P)ceveerirmuiiiiiiiiiiiiiiiiiiiiniierii e 3-14
Displaying Text with Line Addresses (1)oeeevvuerreinnirereneiriienieiiinneeenn. 3-15
Entering TeXtccoviiiiiiiiiiiiiiiiiiiiiii e 3-16
Appending Text (2) ...c.ooeveviiiiiiniiiiiiiiiiiiiii e 3-16
Inserting TeXt (1) ..ccovernrernirimiiiiiiiiiiiiiei e e ean s eaa s eanees 3-18
Changing TeXt (€) ...ccevvrveirimmmiiiiiiiiiiiiiiiiii it eearia e e eeaes 3-19
Deleting TEXt ...cuieiiniiniiiiiiiiiiiiii ettt s an e 3-20

069-701036 Licensed material—property of copyright holder(s) ix

Contents

Deleting Lines (d)eeiiieeeniiiiiiiiiiiiiiiiie et eeeineeeeereee s e e raaae e 320
Undoing the Previous Command (1)ceeeeuniiieniiieniiiiniiriieineinneeenn. 321
Deleting in Text Input Mode (Ctrl-U and Del)ccceuvviiiiimiiiiiiiennnnieenne. 3-22
Substituting TEXt (S) .eeeueereerrnuieereeiruiieeeretrniereerenerrerrnseeeeemmmsessseerenssssseeeens 3-23
Current LiNecocovuuiiiiiiiiiniiiiiiiiii it essaa e 3-24
Single Line Other than the Current Linec...cceceviiuniiiiniriinninieennieeennn. 3-24
Range of LNEScccuuuiiiiiiiiiiniiiiiiiiiiiiiincii ettt eene e caa s eanae s eees 3-25
Global SubSHIUONS () +eevvvvvuerierirunierieiiiereriiieererrieeseeereneesererranneesaens 3-26
Metacharacters for Pattern Matchingcccocuvvieiiiiniinniiiniiinniiencniinnnen, 3-28
Rearranging TeXtccvvviiiiiiiiiiiiiiiiiiiiiiiiii e ceaaa e aes 3-33
Moving Lines (M) ...cceueiiiruiirimnuiiiiuerernneermueeensrennereeneereenesesnsessensnsesees 333
CopYIng LiINes (1) ..oeevueiiiruiriiiniiiiiiiriiinereeenereteererseeeesseeeensesserseesersnssees 335
Joining Contiguous Lines (j)cccveviiimiiriiiiiiiiiiiiiniiiiriienciiee e 3-37
USING Other FIIESccuviuniiiiiiiiiiiiiiiiiiiiniertiieeinerieeteernessnesennssrsesssnesennssnasnas 3-37
Reading in @ File (1) ce..vviveeiiiiiniiiiiiiiiiiiieci et eeeee e s eena e 3-38
Writing Lines to @ File (W)cooviiiiiiiiiiiiiiieeieiie e ecrene e 3-38
Saving the Buffer Contents in a File (W)cccooovieiiiiiiiiiiniiiiiiiinininnnnn, 3-39
QUItNEG €d (Q) overrrnnniiiiiiieiiii ittt et e e e e erra e eeee 340
Other Useful Commands and Informationc.ccccuueveiiiiiinninriiiiieinnnenennenee. 341
Prompting (P) ...oveieiumiiiiiiiiiiiiiiiiicee ettt e 341
Help Commands (h)ccoeoiiiiiiiiiiiiiiiiiniineiiereie e eeeiiesetieeeeeneeeens 342
Displaying Nonprinting Characters (1)cceeerueiriieiirinirrieneeeeineeeennenns 3-44
Displaying and Changing the Current Filename (f)cccocvveueriinniniennnnnen. 345
Escaping to the Shell (1) ...cooviuiiiiiiiiiiriiie et 345
Recovering from System INterruptsc.ceeveiniiiniiiniiiniieieriineierieeeennne 3-46

Chapter 4 — Using the Batch Editor: sed

How sed Processes INPULc..vvuiiiniiniiiiiiiiiiiiniii e ce s eneens 4-1
The sed Command FOrmatccoviiuiiiiiiiiiiiiiiiiiiiiiii e 4-1
A Sed Command Line Versus @ SCIPLoceeveuriuiieiiiiiineenriieeiirieeeeeeirenesenneenns 4-2
Addressing Input LiNesc.oveeuiiiiiiiiniiiniiiiiiiiiiiirereieeii et eenneesaesennnes 4-2
Sed Editing Operationsc.ceiieviiiniiiuiiiiiiiiiiiiiiiireiiieeeeieeeiretneeensessnsennns 4-4
Using Blank Lines in a sed SCIiptccoovvviiiiiiiiiiiiiiiiiiiiiiiniecieee, 4-5
Using Comments in a sed SCrpt (#)cceuveeeniriiiniiiiiiiiiiiiereiiieeiiieeeeiieeenns 4-5
Sample Input Filecccoviiiiiiiiiiiiiiiiiiiiiiiii i eaaee 4-6
Printing Addressed Line (P) ...ceeeeeerueeeniriunrenremieeneerieetiereeeernerernerensennnne 4-6
Numbering Lines (=) ...ccuoviiiuiiiiimiiiiiiiiiiieerirei et eeei s eerae s eenae s 4-7
Appending TeXt (2) ...ccuuvrereniiiiiiiriiiirriiie et erireernaeeetanseeereeennns 4-7
Inserting Text (1)cceeveiimmiiiiiiiiiiiieii et ee et e ea e 4-8
Changing TeXt (C) .eeuueeeuureiuniriiiuireiiretueretiee et e et eeeieeeennneereneeennnnanes 49
Deleting Text (d) ...cceuueiiiniiiiiniiiiiiieeiiin e et eere e eraaeeeenaes 4-11
Substituting TeXt (S) ..ceuveruireuiriuiiiiiiriiireiieerretieteereetterennertesernesernssraes 4-11
Simple Substitution (, P) «veeeeerverrrrmrerrierrrrireiiiereiireetieereneerraneeenns 4-12
Substituting the nth Occurrence of a Pattern (n)c...ccevuvvrivniiinnnnneee. 4-13

Writing the Substitution to a File (W) «....ccoeveiiiiiiiiiiiiiiiii, 4-13
Advanced Substitutionccceveeiiiniiiiiiiiiii e, 4-14

Writing Standard Output to a File (W)ccovvviiiiiiiiiiiiiiiiiiiiiiiiii e, 4-15
Reading Text from a File (I) ...covvvviiiiiiiiiiiiiiiiiieiiiineciii e 4-16
Quitting after the First Pattern Match (q)coovviiiiiiiiiiiiiiiiiiinii, 4-17
Displaying Nonprintable Control Characters in Standard Output (1) 4-18

X Licensed material—property of copyright holder(s) 069-701036

Contents

Converting Strings of Equal Length () ...coooevvruiiiiiiminiiiiimiiiiiniiniiiiinnnnn, 4-19
Using Control Structures: Advancedc.ccceveeiereeinninieiininniisiireusisiesen 4-19
Grouping with Braces ({}) ...ccceeveerniriiiiiiminiiiiiiiinnienienireci e 4-20
Simple Branching to Label (b)cccccevviiiiiiiiiiiiiiiiiiiiniiiicenias 4-21
Conditional Branching to Label (t)cccooeiiiiuniiiiiiiiiiiiiiinneiiiiin 4-22
Pattern Matching Across Lines (N)cccoovievniiiiiiiniiiiiiininniiiicneniin 4-24

Appendix A — Regular Expressions

Basic Set of Regular EXpressionsccccovviiviiiiiiiiiiiiiiiniinniiiinnenin e A-2
The Caret (%) and Dollar Sign ($)cccoeeiriiimiiiiiiiiiiiniii e, A-2
The Period (1) ceeueiiiiiemiiiiiiiiiiiiii ittt e A3
The ASLEriSK (¥) tevuuiiirniiiiiiiiiiiiiiiriiererieerenie e taeeeteaesetansetansseassassenens A4
The Backslash () ..cooeuiiiiiiiiiiiiiiiiiiie et A-5
The Brackets ([]) «eveeereerermiriiiiiiiiiiieiienirierienieiernertnscaserneseesssennns A-6

Extended Set of Regular EXpressionsccccevviiuiiuiiiiiiiiininniiniinniinnnn A-7
The Escaped Parentheses (\(\)) «.coevuiiiininiiiiiiiiiiniiiiiiiccei e, A-7
The Ampersand (&)ooceeeveiiiiiiiiiiiiiiii e e A-8
The Escaped Angle Brackets (\< \>) ...cccovviiiiiiiniiiiiiiiiniiiniiinnnnninnn, A-8
The Escaped Braces (\{ \}) coovriiiiiiiiiiiiiiiiiiiiicciicci e, A-9

Index

069-701036 Licensed material—property of copyright holder(s) xi

Table
11

2-1
2-2
2-3
24
2-5
2-6

2-8

29

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
221
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41

xii

Tables

Summary of editread Functions and Valuescccccceevviiiiiniiiinniinnn. 14
Vi Editing Operationscceeeeuuiivuiiiuniiiiiiiniiiinieiiieinneeerenenn 2-5
Vi Editing Options Set for Examples in This Chapterc.ccceuun.e.. 2-12
Vi Command-Line OPtONScovevuiiiuniiiiiiiiniieiiierireeierinireerenenenns 2-15
Commands to Move the Cursor by a Characterccoeevuvinnrinnnene. 2-19
Commands to Move the Cursor by a Linecccoeevuvinniiiniiinniiinnnn. 2-20
Commands to Move the Cursor to the Beginning or End of a Line 2-22
Commands to Move the Cursor to a Specific Characterc.......... 2-24
Commands to Move the Cursor by a Wordcccoeeuviiniiiiiiniiinnnn. 2-26
Commands to Move the Cursor by a Sentencecc.ccceevvvrinnrennnnees 2-27
Commands to Move the Cursor by a Paragraphc..ccoovviuiiininnneen. 2-28
Commands to Move the Cursor Within the Current Window 2-29
Commands to Move the Cursor to a Relative Lineccceeevueennnnen. 231
Commands to Move the Cursor to a Specific Linecceoevuvinnnenn. 232
Commands to Scroll and Page Textcccceeviuiiiiiiniiiiiiciiniinciinrennneen. 2-33
Commands to Append Textccecuviimiriniiiiiiniiiiiiiiiiiiiieeeieenneen, 2-36
Commands to INSert TeXtoocuviiiiuiiiiiiiiiiiiiiiii e, 2-37
Commands to Open a New Lineccccvvviiiniiiiiiniieiiiiiniiniiciicennnn, 2-38
Commands to Delete TeXtccoviiiiiiiiiiiiiiiiiniinii i 2-39
Commands to Replace TeXtovevuriniiiiniieiniiiiieiireierriereneerenees 2-47
Commands to Change TexXtcoceeuviiuiiiiiiiiiiiiiiiiiiiiiieenae 2-50
Named Registers for Deleted and Yanked Textc.cccoevevnnvinniinnnnnen. 2-60
Commands to Yank TexXtcc.oviuviiniiiiiiniiiiiiiiiiiiniiini e, 2-62
Commands to Put TeXtcccooeeviiiiiiiiiiiiiiiiiiiiiiiii i, 2-64
Examples of Delete-and-Put and Yank-and-Put Operations 2-64
Commands to Search for the Next Occurrence of a Pattern 2-69
Metacharacters Used in a vi Pattern Searchccooveuiiiiiiinniiinn. 21
Addressing Methodscoovviiiiiiiiiiiiiiiiiii e 2-73
Substitute OPHONScvviiiiiiiviiiiiiiiiiiii e 2-74
Advanced Substitution Operatorsc..cceveuvveiiiniiuniiiiiinriniininn. 2-78
Commands to Write the Buffer to a Disk Filec..c.ccceeviiinieniennnne. 2-83
Commands to Read a File to the Current Bufferccco.cocoeeiiniie 2-85
Commands to Edit the Bufferccoeveiiiiiiiiiiiiniiiiinnn 2-88
Commands to Search for a Tag in Other Filesccocooiiiiiiiiiiiiinnnnns. 293
Commands to Exit to the Shellccooiiiiiiiiiiiiiiiiiin 2-94
Editing Optionscoveeiiiiiiiiiiiiniiiiiiiii e eaee 2-101
Programming and Debugging Optionsccccevviiiiiniiiiiiiniiiniiinnn. 2-106
Options for Slow Terminalscooouiiiiiiiiiiiiiiiiii, 2-108
DTEK OPHODS ..vvvieniinniiniiniiiniiiiiiiiiiiiiceeeeaeieeaereesennreneennne 2-110
mm Macro Set Commandsceeeeieiiiiiiiiiiiiiiir e, 2-111
Escaping Control Codes in Macrosccocevevnvinnieniiniinininieniinienn 2-113
Undo Commandsceeeeuiiniiniiniiiieiiiiiiiii e 2-123
Summary of ed Commandsccooeiviiviiiiiiniiii 33

Licensed material—property of copyright holder(s) 069-701036

32
33
34

3-6
3-7
3-8

3-10
3-11

41
42
43

A-1
A-2
A3
A-4
A5
A-6
A-7
A-8
A9
A-10

069-701036

Tables

Summary of Line Address Syntaxccooiiiiiiiiiiiiiiiiniiinneinnnenn, 35
Summary of Global Search Commandsccceeiiiiiiiiiiiiniiiiiinnennn. 3-12
Summary of Commands for Displaying Textcccccoeuiiiiiiiiiiiiinnnnnn, 3-14
Sample Addresses for Displaying TexXtccceeiiiiiiiiiiiiiiiiniiiiiniennnn, 3-15
Summary of Commands for Creating Textccccoevrriiiiiriinnienannnnn. 3-16
Summary of Commands for Deleting Textccceeeiriiniiiiiiininnnnnnnnn. 320
Summary of Pattern-matching Charactersccccoeeeerrirniiiirininnnnnnnn. 3-28
Summary of Commands for Moving Textcceviiiiiiiiiiniiiiiniinnn, 333
Summary of Commands for Manipulating Filesc....ccoooiiiiiiiin, 3-37
Summary of Other Useful Commandscooeeuiviiniiininiiiiiniiinninn, 341
Addressing Methodsccoeeviiiiiiiiiiiiiiiiiiiiiin 4-3
Sed Editing Commandsc.cceeiiiiiiiiiiiiiiiieeiiiieini e 4-4
Substitute OPHONSvviuiiiiiiiiiiiiiiiireiieiie e eaaaee 4-12
Regular-Expression Metacharacterscccoeveriiiiiiiiiiiniinniiinneninnnnn A2
The Caret (*) and Dollar Sign ($) in Regular Expressions A-3
The Period (.) in Regular EXpressionsccccceuveviiiuiienneiiiinnninninennnn. A-3
The Asterisk (*) in Regular EXpressionsccooccvvviiniiiiiiiiiinnnennnn. A4
The Backslash (\) in Regular EXpressionsccoccoviiuiiiiiiiiiiiiiiinnnn, A-5
The Square Brackets ([]) in Regular Expressionscccoeeiiennnnnnn.. A-6
Extended Regular-Expression Syntaxccc.cceeeiveieiniiiiniiiiniiinennnnnn, A7
The Escaped Angle Brackets (\< \>) in Regular Expressions A-8
Variations of Escaped Braces (\{ \}) ...cccovermiiiimiiiiiiiiiiiiniiiiniininn, A9
The Escaped Braces (\{ \}) in Regular Expressionsccc.cccceuuuunne.. A-9

Licensed material—property of copyright holder(s) xiii

Figure
1-1
21

2-2
2-3

Xiv

Figures

Editread Configuration Displayccccccoviiviiiiiiiiiiiniiiniiin. 12
Excerpt of a Sample Windowccoeviiiiiiiiiiiiiiiiiniiiniiiane 2-10
TYPICal SCTEEN ...cuuvivniiiiiiiiiiiiiiiiiiiinie e 2-16
Typical Editing Options Displayccc.ccooiiiiiiiiiiiininiiiiniiiiiiiininnnn, 2-99
Steps for Pattern Matching Across Linescccooiviviiiiiiiiiiiinnnnn, 4-25

Licensed material—property of copyright holder(s) 069-701036

Chapter 1
Using the Command Line Editor:
editread

The command line editor, called editread, is an optional interface that you can invoke
for editing command lines that you enter from the shell. Furthermore, editread offers
a history facility that saves your previously typed commands for later recall and
execution. This history facility offers the same basic function as the C shell’s history;
however, they are different in some important ways, which are discussed in the
section "Using History."

NOTE: Programmers—you can also use editread with other DG/UX system
programs, such as mxdb and crash. Refer to the Using the Multi-eXtensible
DeBugger (mxdb) for information on mxdb, and the System Manager’s
Reference for the DG/UX™ System for information on crash.

What Is History?

The history facility automatically captures and saves a list of the commands you type
and execute on a command line. It can save only a certain number of commands, but
you can determine that number, up to 500 in a single session. If you find yourself
typing repeatedly the same command (or a variation), you could economize on
keystrokes by using history. History’s recall and repeat facility lets you recall a
previous command to re-execute. Additionally, you can recall a command and edit it
with editread editing keys before re-executing it or you can save the current history as
a file and execute the file as a shell script.

Invoking editread for the First Time

The editread facility is initially turned off. To enable it and accept the default
settings, follow these procedures:

1) In your home directory, create an empty file and name it .editreadrc. An
example of creating an empty file named .editreadrc with the cat command
follows:

$ cat > .editreadrc)
<Ctrl-D>

069-701036 Licensed material—property of copyright holder(s) 1-1

Invoking editread for the First Time

A file named editreadre.proto is provided in /usr/lib on your system as a
model of a .editreadrc file. You may choose to copy this file, renaming it as
.editreadrc, in your home directory.

2) Verify the existence of the file by listing it:

$ Is —a .editreadrc »

The editread facility is now in effect for new shells or mxdb or crash
processes, but not for the current shell.

Viewing editread’s Default Values

To read a quick summary of the editread default values, type the following command

from the shell:

$ Ctrl-R

Figure 1-1 shows an editread configuration display.

f

CURSOR CONTROL

PROCESS CONTROL

eof =
intr =
quit =

-

susp =

EDITREA AD

LINE EDITING

backward =~ insert = "n
forward =" insert_space = OFF
goto_end = "e erase = DEL
goto_end_ov = word_erase ="
home = "a kill = "u
left = LEFT delete_end = "k
right = RIGHT

CONFIGURING EDITREAD

enable = ON
reconfig = "r

CONFIGURATION DISPLA

HISTORY

hist_display =
hist_save =
hist_recall =
hist_scan =
hist_up =
hist_down =

MISCELLANEOUS

prompt =
refresh =
verbatim =

term =

23
100
ESC

up
DOWN

OFF

vt100

Notice that the caret (") in this configuration display represents the Ctrl key.

Figure 1-1 Editread Configuration Display

Licensed material—property of copyright holder(s)

069-701036

Viewing editread’s Default Values

Six categories of functions are identified in the editread configuration display:

Cursor control.

Line editing.
History.

Process control.
Configuring editread.

Miscellaneous.

Within each category for each function, you will see a keyword that represents the
function on the left (such as "backward"); to the right is the current value assigned to
the function. A value can be represented as:

Control key sequence; (Ctrl-X), where X is another key such as an
alphabetic or numeric key.

Single key; such as "RIGHT," "LEFT," "UP," and "DOWN," which
correspond to the arrow keys: rightarrow (—), leftarrow (+), uparrow (1),
and downarrow (}) on the cursor motion keypad. Also, the at sign (@) and
the pound sign (#) are single keys.

String value; such as the type of terminal you are using.
Number va'ue; such as history display length.

ON or OFF condition; ON enables a function, and OFF disables a function.
An unassigned function is considered off.

No setting means that the function is disabled (or unassigned), but you can

assign a key sequence or single key value to it. To disable a function, assign
the OFF value.

Table 1-1 summarizes the editread functions and default values:

NOTE: In the following table, the Ctrl key is used to represent the caret (7).

069-701036

Licensed material—property of copyright holder(s) 1-3

Viewing editread’s Default Values

Table 1-1 Summary of editread Functions and Values

14

Keyword Description Default
Editread Configuration

enable Turns editread off or on. ON
reconfig Displays the current editread values and concludes Ctrl-R

a redefinition of a single function or multiple

functions.

Cursor Control

right Moves the cursor one position to the right. rightarrow
left Moves the cursor one position to the left. leftarrow
goto_end Moves the cursor to the end of the line. Ctrl-E
goto_end_ov Recalls the previous line and moves the cursor to unassigned

the end of it.
home Returns the cursor to the beginning of the line. Ctrl-A
forward Moves the cursor to the beginning of the next Ctrl-F

word.
backward Moves the cursor backward to the space after the Ctrl-B

previous word.

Line Editing

erase Erases a character one position to the left of the Del

cursor.
word_erase Deletes the current word. Ctrl-T
delete_end Deletes from the cursor position to the end of the Ctrl-K

line.
kill Erases the entire line. Ctrl-U
insert Enables and disables insert mode. Ctrl-N
insert_space When insert mode is in effect, a leading space OFF

always appears when inserting characters to the left

of the cursor.

History

hist_recall Displays the history list. Esc
hist_scan Searches through history list for pattern matches. Ctrl-P
hist_up Recalls the previous command in history. uparrow
hist_down Recalls the next command in the history list. downarrow
hist_save Sets the maximum number of commands to be 100

saved in history.
hist_display Sets the number of commands to be displayed at 23

one time on your screen when you press <Esc>.

(continued)
Licensed material—property of copyright holder(s) 069-701036

Viewing editread’s Default Values

Table 1-1 Summary of editread Functions and Values

Keyword Description Default
History (continued)
write_hist Is not a function you can configure, but a write_hist file<Ctrl-R>
command you can use to write history commands
to a file.
read_hist Is not a function you can configure, but a read_hist file<Ctrl-R>
command you can use to read a file containing a
history list into the current history list.
Process Control
eof Sets the end-of-file character. Ctrl-D
intr Sets the interrupt key. Del
quit Sets the quit key. Ctrl-\
susp Sets the suspend key. Ctrl-Z
Miscellaneous
prompt Precedes the shell prompt symbol with the current OFF
history number.
refresh Refreshes the current line. unassigned
verbatim Nullifies (escapes) the meaning of an editread Ctrl-V
value.
term Identifies your terminal type. vt100

(concluded)

Assigning Values to editread Functions

You can assign values to functions in these places:

e The current program (sh, csh, mxdb, or crash).

o The EDITREAD environment variable.

e The .editreadre file in your current directory.

® The .editreadre file in your home directory.

If any editread function is assigned interactively in the current program, it is in effect
only for the current program,; it is not exported to child processes or other shells.
Also, when you log out of the system, the assigned functions are dismissed. (See the

next section for information on assigning values interactively.)

Each time you log in to your system or create a new shell, the system retrieves
editread values using this initialization sequence:

1) If the EDITREAD environment variable is set, it is used to enable editread in
new programs that are created. This environment variable is in effect only
for the current session (until you log out of the system), unless you choose to

069-701036

Licensed material—property of copyright holder(s) 1-5

Assigning Values to editread Functions

set the EDITREAD environment variable in the appropriate setup file:
.profile for the Bourne shell, and .login for the C shell. If the EDITREAD
environment variable exists, the .editreadre files in your current directory
and your home directory are ignored.

2) If no EDITREAD variable is set, but you have a .editreadre file in your
current directory, the file will be used to enable editread each time you log in
to the system or create a new shell. If you have a .editreadrec file in your
home directory, it will be ignored.

3) If there is no .editreadrec file in your current directory, then the .editreadre
file in your home directory is used to enable editread.

Changing editread Values Interactively

When you change editread values interactively, the changed values will be in effect
only until you leave the program or you log out of the system. The default values
from your .editreadrc file or the EDITREAD environment variable will be restored
automatically for subsequent sessions. An advantage to setting a value interactively is
that the change becomes effective immediately without your having to start a new
process (logging out is one way to start a new shell), which is required when you
assign values in a .editreadrc file or to the EDITREAD environment variable. A
value set interactively overrides the same value set either in a .editreadrc file or the
EDITREAD environment variable.

You can reconfigure editread functions interactively using this command format:
function keyword= value [function keyword=value 1<Ctrl-R>

You can make single or multiple function assignments per line, which is terminated by
Ctrl-R. Examples of assigning new values to the functions follow:

$ erase = "?<Ctrl-R>
$ intr="c hist_recall="z prompt=OFF<Ctrl-R>
$ hist_display = 12 reconfig=f1<Ctrl-R>

In the first line, the erase character function is assigned to Ctrl-?, which is the Del
key. In the second line, the interrupt function is assigned to Ctrl-C, history recall to
Ctrl-Z, and the history prompt is off. In the last line, the history display depth is set
to 12 commands and the reconfiguration key is changed from Ctrl-R to the F1
function key. Any number of spaces can be inserted for readability. At least one
space must separate a value from the next function, however. In this example,
several spaces precede the function name on the line.

1-6 Licensed material—property of copyright holder(s) 069-701036

Assigning Values to editread Functions

If one function has two values, for example,

erase = 7
erase -

the last assignment will take effect, overwriting the previous assignment. To find out
whether your assignment took effect, view the current configuration settings with the
Ctrl-R command and to try out the function.

If two functions have the same value, for example,

erase = 7
delete_end = ~?

only the first assignment will take effect, and the alternate assignment will not. No
error will be indicated. Only trial and error will show which one is successful.

Assigning Values to the EDITREAD Environment
Variable

From the shell, you can assign values to the environment variable EDITREAD.
Examples follow:

Bourne shell:

$ EDITREAD=’prompt = ON goto_end = OFF goto_end_ov = "a’)
$ export EDITREAD >

C shell:
% setenv EDITREAD ’prompt = ON goto_end = OFF goto_end_ov = "a’)
NOTE: For Bourne Shell Users, no spaces can separate the equal sign from the
single quotation mark and the EDITREAD variable name. Your function
assignments can occupy multiple lines; just be sure to terminate each line by
pressing the New Line key. Regardless of the number of lines occupied, the
assignments are enclosed by a pair of single quotation marks (’ ’). The

closing quotation mark terminates your input.

To verify the current values assigned to the EDITREAD environment variable, type
this command:

$ envo

The current values will be displayed.

069-701036 Licensed material—property of copyright holder(s) 1-7

Assigning Values to editread Functions

Assigning Values in the .editreadrc File

Using an editor or the cat command, you can edit the .editreadrc file in your home
directory. An example of how to assign values to editread functions in the .editreadre
file follows:

$ cat > .editreadrc)

erase = "?)

intr = “c¢ hist_recall = Esc prompt = ON
hist_disp=12 reconfig=fl >

<Ctrl-D>

You must end each line in the .editreadre file by pressing the New Line key. You can
edit the .editreadrc file using any editor. The functions that you do not specify will
assume the default values (which you can see by using the Ctrl-R command for the
display of the current configuration). To make your changes take effect, you will
have to log out of, then back in to the system.

Your Line Discipline and editread

By default, the line-editing and control keys defined in the editread facility are copied
from your terminal’s line discipline. As an alternative, you may choose to redefine
some or all keys in your .profile file (or .login file for C shell users) and those key
definitions will be exported to editread. As an example, editread and your terminal
are set up to use Del as the erase key and Ctrl-U as the delete line key. If you
redefine a function in the editread facility, you should make a corresponding change
to your line discipline. Editread and your line discipline should be in agreement.
Refer to Using the DG/UX™ System for more information on setting your line
discipline.

Disabling editread

By default, editread is enabled, or on. This function is useful if you choose to disable
editread either temporarily during a session or permanently. For example, you may
want to use editread when running specific programs in the Bourne shell; however,
you may prefer to use the C shell without editread.
The syntax for changing this function follows:

enable=value<Ctrl-R>
An example follows:

$ enable=OFF<Ctrl-R>

This example disables editread for the current shell.

% enable=OFF<Ctrl-R>

1-8 Licensed material—property of copyright holder(s) 069-701036

Disabling editread

To disable editread for all subshells and other programs, you can assign the OFF
value to the enable function in the EDITREAD environment variable. An example
follows:

Bourne shell:

$ EDITREAD=’enable=off)
$ export EDITREAD >

C shell:

% setenv EDITREAD ’enable=OFF’)
To disable editread permanently, you would have to delete the .editreadrc file and
remove the EDITREAD environment variable, or set enable=off in the .editreadrc

file or in the EDITREAD environment variable in the appropriate setup file, which is
Jogin for C shell users, and .profile for Bourne shell users.

Defining Cursor Control Keys

The cursor control functions are:
® Moving the cursor right.
® Moving the cursor left.
® Moving the cursor to the end of the line.
® Retrieving the previous line and putting the cursor at the end.
® Returning the cursor to the beginning of the line.
® Moving the cursor forward one word.

¢ Moving the cursor backward one word.

Moving the Cursor Right

By default, you can use the rightarrow key (—) in the cursor motion keypad to
advance the cursor right. This is a nondestructive right move; you can move the
cursor over existing text without erasing it. If the cursor reaches the end of the line,
the cursor remains stationary and the terminal beeps.

The syntax for changing this function follows:

right=value<Ctrl-R>

An example follows:

069-701036 Licensed material—property of copyright holder(s) 19

Defining Cursor Control Keys

$ right="U<Ctrl-R>

This example reassigns Ctrl-U to the move-cursor-right function.

Moving the Cursor Left
By default, you can use the leftarrow key (+) in the cursor motion keypad to back up
the cursor. This is a nondestructive left move; you can move the cursor over existing
text without erasing it. If the cursor reaches the beginning of the line, the cursor
remains stationary and the terminal beeps.
The syntax for changing this function follows:

left=value<Ctrl-R>
An example follows:

$ left="U<Ctrl-R>

This example reassigns Ctrl-U to the move-cursor-left function.

Moving the Cursor to the End of the Line

By default, you can use the Ctrl-E key to cursor to the end of the line, the position
following the final character.

The syntax for changing this function follows:
goto_end=value<Ctrl-R>

An example follows:
$ goto_end="U<Ctrl-R>

This example reassigns Ctrl-U to the goto_end function.

1-10 Licensed material—property of copyright holder(s) 069-701036

Defining Cursor Control Keys

Retrieving the Previous Line and Putting the Cursor at
the End

This function appends the rest of the previous event from history and puts the cursor
at the end of the line. By default, this function is unassigned; to enable it, you can
assign the function to a desired key.
The syntax for changing this function follows:

goto_end_ov=value<Ctrl-R>
An example follows:

$ goto_end_ov="U<Ctrl-R>

This example reassigns Ctrl-U to the goto_end_ov function. The following example
shows the behavior of goto_end_ov.

$ c¢d /usr/della »

$ Is<Ctrl-G>
ls fusr/della[|

Returning the Cursor to the Beginning of the Line

By default, you can use the Ctrl-A key to move the cursor to the first position in the
line.

The syntax for changing this function follows:
home=value<Ctrl-R>

An example follows:
$ home="U<Ctrl-R>

This example reassigns Ctrl-U to the home function.

Moving the Cursor Forward One Word

By default, you can use the Ctrl-F key to move the cursor forward to the first
character of the next word. If there is no text on the current line after the cursor
when you press Ctrl-F, the corresponding word (the word at the cursor position in the
previous line) is recalled to the screen, and the cursor is advanced to the end of that
word in the line. A word is one or more characters surrounded by white space.

069-701036 Licensed material—property of copyright holder(s) 1-11

Defining Cursor Control Keys

The syntax for changing this function follows:

forward=value<Ctrl-R>

An example follows:

$ forward="U<Ctrl-R>

This example reassigns Ctrl-U to the forward function.

Moving the Cursor Backward One Word

By default, you can use the Ctrl-B key to move the cursor backward to the space after
the last character in the previous word. If there is no remaining text on the screen,
the cursor goes to the first position. If the cursor is already in the first position of a
line, the terminal beeps.

The syntax for changing this function follows:

backward=value<Ctrl-R>

An example follows:

$ backward="U<Ctrl-R>

This example reassigns Ctrl-U to the backward function.

Defining Line Editing Keys

The line-editing functions are:

1-12

Erasing a character backward.

Erasing a word.

Deleting from the cursor to the end of the line.
Killing (deleting) an entire line.

Inserting text within a line.

Inserting text with a leading space.

Licensed material—property of copyright holder(s)

069-701036

Defining Line Editing Keys

Erasing a Character Backward
By default, you can use the Del key to erase the character one position to the left of
the cursor. If you press this key repeatedly, characters to the left of the cursor will
be erased continuously in a backward direction. If the cursor reaches the beginning
of the line, the cursor remains stationary and the terminal beeps.
The syntax for changing this function follows:

erase=value<Ctrl-R>
An example follows:

$ erase="U<Ctrl-R>

This example reassigns Ctrl-U to the erase function.

Erasing a Word

By default, you can use the Ctrl-T key to erase a word or partial word starting at the
cursor position through the end of the word.

The syntax for changing this function follows:
work_erase=value<Ctrl-R>

An example follows:
$ word_erase="U<Ctrl-R>

This example reassigns Ctrl-U to the word_erase function.

Deleting from the Cursor to the End of the Line

By default, you can use the Ctrl-K to delete all text from the current cursor position
to the end of the line.

The syntax for changing this function follows:
delete_end=value<Ctrl-R> .

An example follows:
$ delete_end="U<Ctrl-R>

This example reassigns Ctrl-U to the delete_end function.

069-701036 Licensed material—property of copyright holder(s) 1-13

Defining Line Editing Keys

Deleting an Entire Line

By default, you can use the Ctrl-U key to erase the entire line. The kill character for
editread is the same kill character in the shell. The kill characters for editread and
the shell should be the same.
The syntax for changing this function follows:

kill=value<Ctrl-R>
An example follows:

$ kill="H<Ctrl-R>

This example reassigns Ctrl-H to the kill function.

Inserting Text Within a Line

By default, you can use the Ctrl-N key to turn on insert mode. To edit a line using
insert, you can press Ctrl-N at the desired position to begin inserting text. Characters
you type are inserted to the left of the cursor. When you finish inserting text, press
Ctrl-N again to turn off insert mode and continue normal text entry. Other editread
functions (such as left, right, or home) are also in effect in insert mode. You can
move the cursor within the line and insert text where desired.

The syntax for changing this function follows:
insert=value<Ctrl-R>

An example follows:
$ insert="U<Ctrl-R>

This example reassigns Ctrl-U to the insert function.

Inserting Text With a Leading Space

By default, the insert_space function is off. This function is related to the insert
mode function (refer to the previous section on insert mode). Insert mode must be
active before this function will be effective. When both functions are on, a leading
space will precede the characters that you type to the left of the cursor. The leading
space is removed from the line when you deactivate insert mode with Ctrl-N. The
function is off by default; to enable it, turn it on. If you are using a slow terminal,
this function may slow down your system response.

1-14 Licensed material—property of copyright holder(s) 069-701036

Defining Line Editing Keys

The syntax for changing this function follows:

insert_space=value<Ctrl-R>

An example follows:

$ insert_space=ON<Ctrl-R>

This example enables the insert_space function.

Defining History Keys

A major feature of editread is its history facility, which may be particularly useful for

Bourne shell users. If, however, you are a C shell user, you may prefer to use the

history facility in editread rather than in the C shell.

Differences Between editread and C Shell History

The major differences between the editread and C shell history facilities is the

method of recalling and editing history events. (Refer to Using the DG/UX™ System
for more information on the C shell history facility.)

In the editread facility, you can use the arrow keys to scan up and down through the
history list to retrieve the desired item. In the C shell, you can invoke an event using

an exclamation point (!) and the item’s absolute or relative number or a unique

pattern.

In the editread facility, you can edit events using the editing keys. In the C shell, you
can use a set of editing commands to access specific items in the event and perform
substitutions.

The editread history functions are:

069-701036

Recalling a history event.

Scanning the history list.

Moving up the history list.

Moving down the history list.
Setting the maximum history length.
Setting the history display length.

Writing the history list to a file.

Licensed material—property of copyright holder(s)

1-15

Defining History Keys

® Reading a file containing a current history list.

Recalling a History Event

The history recall function searches for the history event number or the most recent
history event that matches the regular expression that you provide and places it on the
command line as the current event. You initiate the search by pressing the Escape
key. If there is no match, your terminal beeps. If you press the Escape key with no
argument, the history list (whose length is defined by the history display length
function covered in a later section) is displayed. You use regular expression syntax
for setting up search patterns. Refer to Appendix A in this manual for information
on regular-expression pattern matching.

When you recall a history event and edit it using the line-editing commands, you will
be editing the current item instead of changing history. Once you terminate a current
item with a New Line, the item is entered in history and will not change.
The syntax for this function follows:

hist_recall=value<Ctrl-R>
An example follows:

$ hist_recall=r<Ctrl-R>

This example reassigns the r key to the hist_recall function.

The history list that you recall with the Escape key follows:

$ <Esc>
12 pwd
13 1s -1
14 cd bin
15 cat test
16 1ls test

17 cat rdiffmark
18 vi rdiffmark
19 cp delblanks rdiffmark
20 rm rdiffmark
$ 21$%

The history prompt has been enabled for the display of this history list (refer to the
section, "Displaying the History Prompt," later in this chapter for more information).

From the command line, you can issue the following command to recall a previous
event from the history list:

$ 21$ cp<Esc>

19 cp delblanks rdiffmark
$ 21$

1-16 Licensed material—property of copyright holder(s) 069-701036

Defining History Keys

Using regular-expression pattern matching, you request the display of the most recent
command in the history list that begins with ¢p. You terminate a history recall
command with the Escape key. Event 19 is recalled as the current event.

Scanning the History List

By default, you can use the Ctrl-P key to terminate a regular expression when
scanning a history list. The history scan function is similar to the history recall
function, except that all pattern matches (rather than just the most recent match) and
associated prompt number (if the prompt function is on) are displayed. In the
following example, using regular-expression pattern matching, you request the display
of all commands in the history list that begin (") with a ¢. You terminate this
command with Ctrl-P.

The syntax for changing this function follows:
hist_scan=value<Ctrl-R>
An example follows:
$ hist_scan="U<Ctrl-R>
This example reassigns Ctrl-U to the hist_scan function.
An example of its default use follows.
$21 “e<Ctrl-P>
19 cp delblanks rdiffmark
17 cat rdiffmark
15 cat test
14 cd bin
$21

All of these events begin with the letter c.

Moving Up the History List

By default, you can use the uparrow (1) key to move up the history list. This
command recalls the previous command from the history list and displays it as the
current line. Each successive press of the uparrow key causes the previous command
from the history list to be displayed on the command line. You can cycle through the
history list (from most to least recent command) by repeatedly pressing the uparrow
key. When you reach the oldest command in the history list, pressing the uparrow
key again will display the current command line (the most recent command).

069-701036 Licensed material—property of copyright holder(s) 1-17

Defining History Keys

The syntax for changing this function follows: |
hist_up=value<Ctrl-R> |
An example follows: |
$ hist_up="U<Ctrl-R> l

This example reassigns Ctrl-U to the hist_up function.

Moving Down the History List

By default, you can use the downarrow (]) key to move down the history list. It

recalls the next command from the history list and displays it as the current line.

Each successive press of the downarrow key causes the next command in the history

list to be displayed on the command line. You can cycle through the history list

(from least to most recent command) by repeatedly pressing the downarrow key.

When you reach the most recent command in the history list, pressing the downarrow
key again will repeat the search through the list starting at the oldest command. |

The syntax for changing this function follows: |
hist_down=value<Ctrl-R> |
An example follows: |
$ hist_down="U<Ctrl-R> |

This example reassigns Ctrl-U to the hist_down function.

Setting the Maximum History Length

The history save function sets the maximum number of history items to be saved
during a single session (while you are logged in). The minimum value is 1; the
maximum 500. This function is assigned the value 100 by default. To change the
value, assign the function to a legal number. You should select an economical history
length because the longer the list, the slower your system will respond when displaying
history.

If you set your history length to 15, as you type your 16th command on the command
line, it is recorded as event 16 in the history list and event 1 is deleted; thus a
constant list of 15 events is maintained. |

The syntax for changing this function follows: |

hist_save=value<Ctrl-R> |

1-18 Licensed material—property of copyright holder(s) 069-701036

Defining History Keys

An example follows: |
$ hist_save=15<Ctrl-R> |

This example sets the hist_save function to 15.

Setting the History Display Length

By default, the history display length is 23. Regardless of the maximum number of

history items saved, you can choose the number of commands in history to be

displayed each time you press the Escape key. The minimum value is 0; the

maximum is the value of the history length function (see the previous section).

You should select a history display length that does not exceed the size of your

screen. If your history display length exceeds a screen, the remaining portion will

scroll up and off the screen. |

The syntax for changing this function follows: |
hist_display=value<Ctrl-R> |

An example follows: l

$ hist_display=10<Ctrl-R> |

This example sets the hist_display function to 10.

Writing the History List to a File

The write_hist command writes the entire history list to a file, which you can use as

you wish. For example, if you are writing a shell script interactively, after you have

debugged the commands, you may want to save them in a file that you can run as an

executable shell script. |

The syntax follows: |
write_hist filename<Ctrl-R> |

An example follows: |

$ write_hist historyfile<Ctrl-R> |

This example writes the current history list to a file named historyfile.

069-701036 Licensed material—property of copyright holder(s) 1-19

Defining History Keys

Reading a File Containing a History List

Often, you will use the same set of commands when you start mxdb or crash. It is
easier to save a set of commands in a file, using the write_hist command (previous
section), and then read them in for the next session using the read_hist command.
With a history list intact, you can then retrieve or edit the desired command for
reexecution without having to retype the commands from scratch.

This command reads a file containing command lines (which you can create with an
editor or by writing the history list to a file) and appends it to the current history list.
These commands are not executed, they are just appended to history.

To confirm a successful read operation, you can press the Escape key and see your
updated history list displayed on the screen.

If you inadvertently name an incorrect file to be read, an error message is displayed.
The syntax for the read_hist command follows.

read_hist filename<Ctrl-R>
An example follows:

$ read_hist historyfile<Ctrl-R>

This example causes the file named historyfile to be read into the current history list.

Defining Process Control Keys

The process control commands are designed to interrupt the execution of a process.
The process control keys are:

e End-of-file (such as to log out or to end input).

e Interrupt (terminate a process).

® Quit.

e Suspend.
Each of the process control functions is set to your terminal’s settings by default.
The settings you make through editread should be consistent with those set by your
terminal. If there is a discrepancy, while editread is in effect, the values you set in

editread will override the terminal default settings. Consult your system administrator
for information on default terminal settings at your site.

1-20 Licensed material—property of copyright holder(s) 069-701036

Defining Process Control Keys

The End-of-File Key (Log Out and End Input)

By default, you can use the Ctrl-D key to set the end-of-file (log out or end input)
control character.

The syntax for changing this function follows:
eof=value<Ctrl-R>

An example follows:
$ eof="U<Ctrl-R>

This example reassigns Ctrl-U to the eof function.

The Interrupt Key
You can use the Ctrl-C key to set the interrupt key, which terminates a process.
The syntax for changing this function follows:
intr=value<Ctrl-R>
An example follows:
$ intr="U<Ctrl-R>

This example reassigns Ctrl-U to the intr function.

The Quit Key

By default, you can use the Ctrl-\ key to set the quit signal key, which terminates the
process but saves an image of memory in a file named core in your current directory,
which can be analyzed.
The syntax for changing this function follows:

quit=value<Ctrl-R>
An example follows:

$ quit="U<Ctrl-R>

This example reassigns Ctrl-U to the quit function.

069-701036 Licensed material—property of copyright holder(s) 1-21

Defining Process Control Keys

The Suspend Key
The suspend function is useful for interrupting a normal program process. By
default, this function is unassigned in the Bourne shell but is set in the C shell. It is
useful for suspending processes (refer to Using the DG/UX™ System for this
information).
The syntax for changing this function follows:

susp=value<Ctrl-R>
An example follows:

$ susp="U<Ctrl-R>

This example reassigns Ctrl-U to the susp function.

Defining Miscellaneous Keys

This group contains four functions not categorized elsewhere. These functions are:
® Displaying the history prompt.
e Refreshing the current command line display.
e Enabling verbatim mode.

e Displaying the terminal type.

Displaying the History Prompt
This function is turned off by default; to enable it, assign it the on value. Each
command you enter from the shell or other program is automatically preceded by a
history prompt number, letting you know the current history number of the command
you are entering.
The syntax for changing this function follows:

prompt=value<Ctrl-R>
An example follows:

$ prompt=ON<Ctrl-R>

This example enables the prompt function.

An example of the display of the history number follows:

1-22 Licensed material—property of copyright holder(s) 069-701036

Defining Miscellaneous Keys

$ 328
This function is particularly useful for scanning the history list. The desired
command and its corresponding history list number are echoed to the command line

each time you press a scan key (the t or | keys, by default) to move up or down the
history list.

Refreshing the Current Command Line Display
By default, the refresh function is unassigned. If your screen becomes littered with
spurious marks, which can result from modem "noise" or broadcast messages, you can
redraw the current command line on the line below the one you were working on by
using the key to which you assign the refresh function.
The syntax for changing this function follows:

refresh=value<Ctrl-R>
An example follows:

$ refresh="U<Ctrl-R>

This example reassigns Ctrl-U to the refresh function.

Enabling Verbatim Mode
By default, you can use the Ctrl-V key to escape the interpreted meaning of an
expression, which presents the literal expression on the screen. For example, if you
type Ctrl-T at the shell prompt, it is interpreted as an editread command to delete a
word. If, however, you want to type the literal expression “t, without interpretation
by editread, you must precede it with the keystroke Ctrl-V.
The syntax for changing this function follows:

verbatim=value<Ctrl-R>
An example follows:

$ verbatim="U<Ctrl-R>
This example reassigns Ctrl-U to the verbatim function.

An example of using the default function follows.

<Ctrl-U> <Ctrl-T>

069-701036 Licensed material—property of copyright holder(s) 1-23

Defining Miscellaneous Keys

You will see:

“t

Displaying Terminal Type

Your terminal type is typically defined in your setup file; .profile for the Bourne shell,
and .login for the C shell. You assign your terminal type to the environment variable
TERM. Regardless of where your terminal is defined, that assignment must also be
reflected in editread. The easiest way to check your current terminal type is to enter
this command:

$ echo $TERM)
vt100

In this example, vt100 was reported as the terminal type. If you have any questions
about your current terminal type, check with your system administrator.

The syntax for changing this function follows:
term=value<Ctrl-R>

An example follows:
$ term=d215<Ctrl-R>

This example reassigns d215 to the term function.

End of Chapter

1-24 Licensed material—property of copyright holder(s) 069-701036

Chapter 2
Using the Full-Screen Editor: vi

Vi, pronounced "vee-eye," is an interactive, visually oriented full-screen editor. Your
terminal screen behaves as a window through which you view a portion of a file. The
vi editor has commands to move the cursor in recognized units (such as a character,
word, line, sentence, and paragraph) and to perform various editing operations. A
combination of the cursor movement and editing commands lets you identify the text
for display in the current window and define the text for editing (such as deleting
several sentences or changing several words). This regularity in command syntax
helps you to remember and apply the commands.

The first several sections of this chapter (through "Vi Editing Operations") give an
orientation to vi; the rest of the chapter gives a detailed description of the vi editing
operations and provides examples of user input and the results produced.

This chapter is not intended as a tutorial; however, you may want to try out the
examples as you go. If you already know the DG/UX system or another UNIX
system, you may choose to read carefully the first part of the chapter up through "Vi
Editing Operations," and then seek out topics that interest you.

The Working Buffer

When you type text into a file or edit an existing file, you are actually working on a
copy of the original disk file that is placed in a temporary workspace called the
working buffer. The permanent file remains unchanged until you issue a command to
overwrite the permanent disk file with the contents of the working buffer. When you
create a new file, vi will not create it until you actually issue a command to write the
working buffer to the file.

If your computer system crashes, the contents of your buffer space may be lost (there
are, however, some ways to recover from errors). To prevent this occurrence, you
are advised to make periodic saves of your working buffer. Alternatively, you may
choose to dismiss all changes made to the current working buffer, thereby keeping the
original disk file intact. To perform periodic saves or to dismiss the contents of the
work buffer, you can issue specific commands through last line mode, which is
discussed in the next section.

069-701036 Licensed material—property of copyright holder(s) 2-1

How vi Operates

How vi Operates

Vi operates in three modes:
e Input.
e Command.

o Last line.

Input Mode and Command Modes

While in input mode, vi accepts your input as text, which is displayed as you type it.
To perform any operation besides entering text (such as moving the cursor and
making editing corrections), you have to change vi to command mode. While in
command mode, vi interprets your input as commands, executing each command as
you type it. Your commands are not displayed on the screen.

When you begin an editing session in vi, command mode is the default. Start vi using
the following command:

$ vitest)

The first key you press will be interpreted as a command. To begin entering text, you |
must first issue a command that allows you to enter text. The command is not
displayed. Enter this command to append text to a new file: |

a |
Then, without pressing the space bar first, enter the text, shown as follows. |

The night was dark and dreary > |
when I decided to sit down and) |
write a letter to my friend.[] |

Finally, use the Escape key to change from input mode to command mode.

In the previous example, you invoked vi, named file test, and used the a command to
indicate that you wanted to append (or enter) text in a file. Note that the a command
is not displayed on the screen. Then, you typed three lines of text, the first two lines
are terminated by pressing the New Liné key. Finally, you pressed the Escape key to
end input mode to return to command mode. When you pressed the Escape key, the
cursor moved back a column position, over the period.

If you press the Escape key while in command mode, your terminal will beep in

response. On some terminals, the screen will flash rather than beep. Pressing the
Escape key repeatedly does not affect your file.

2-2 Licensed material—property of copyright holder(s) 069-701036

How vi Operates

Last Line Mode

A third mode offered in vi is last line mode, which provides an extended set of
editing commands. In command mode, you can escape to last line mode temporarily
by typing a colon (:). The character you type will be echoed as a prompt on the
bottom line of the screen, typically line 24. The colon means that the command you
type will affect the file in a forward direction. In addition, you can escape to last line
mode using a question mark (?), which means that the command you type will affect
the file in a backward direction.

The following four sections in this manual cover the types of functions you can
perform from last line mode:

e Searching for patterns in last line mode
® Manipulating files in last line mode
e Setting up your vi environment
® Writing and using macros
Assuming that vi is in command mode (you’ve already pressed the Escape key), let’s
say that you want to search for the literal pattern, "dreary," in the following text.
The night was dark and dreary
when I decided to sit down and
write a letter to my friend[.]
From the cursor position, you want to search in a backward direction, which you
signify with the question mark (?), for the word, "dreary." You can type ? without
first preceding it with :, which signifies last line mode. You end the command by
pressing the New Line key.

?dreary)

The cursor will be positioned automatically on the first character of the pattern, as
follows.

The night was dark and [dlreary
when I decided to sit down and

write a letter to my friend.

Refer to the later section "Quitting vi" for instructions on closing a file.

069-701036 Licensed material—property of copyright holder(s) 23

Defining a Terminal for vi

Defining a Terminal for vi

Vi is designed to operate with a variety of terminal types; therefore, before using vi,
you must tell vi the type of terminal you have. Your system administrator probably
will have taken care of this matter for you. Your terminal is defined in the TERM
environment variable or in your setup file—.profile for Bourne shell users and .login
for C shell users. The appropriate setup file must be located in your home directory.
Refer to Appendix A in Using the DG/UX™ System for information on setting up
your terminal.

Differences Among Terminals Used with vi

The editing examples in this chapter assume certain keyboard conventions such as the
use of the New Line key and the Del (Delete) key. Some terminals have a CR
(Carriage Return) key instead of a New Line key. On these terminals, you should use
the Carriage Return. If these keys don’t work, you may need to check your line
discipline, which is discussed in Using the DG/UX™ System. Consult with your
system administrator if you have problems.

Also, this chapter assumes that your terminal provides "new" operations such as
insert and delete characters and lines, which allow vi to keep the screen completely
up-to-date. The examples of terminal output in this chapter may appear somewhat
different from the results produced on your terminal screen. A few differences are as
follows.

® On some terminals, text that you append and insert may appear to overwrite
existing text. The existing text will reappear as soon as you press the Escape
key to return vi to command mode. Setting the redraw option (in last line
mode) will cause your editing action to take effect immediately, thus
preventing the appearance of overwriting. Setting the redraw option is
covered in a later section "Setting Up Your vi Environment."

® Another trait of some terminals is the appearance of at (@) signs in the first
column of the screen that results from line deletions. Setting the redraw
option also prevents the display of delete symbols. If, however, you do not
set the redraw option, to get rid of these symbols and close up the remaining
lines, you can type Ctrl-R, which refreshes the screen.

e Furthermore, on some terminals, pressing the Escape key repeatedly causes
your terminal to beep. The same action on other terminals will cause a brief
flash (this is a visual beep) if you set the flash option. Neither response is
necessarily considered an error.

2-4 Licensed material—property of copyright holder(s) 069-701036

The Syntax of a vi Command

The Syntax of a vi Command

To perform an editing function from vi command mode, you issue a short command,
which defines precisely the operation to be performed. Each command follows this
syntax:

[number lediting-command] text-object]

where:

number is the number of text objects you wish to operate on; using a number depends
on the command being performed.

editing-command causes a specific operation to be performed on the text, such as to
append, delete, or change text. Table 2-1 identifies the editing operations performed
on text objects:

Table 2-1 Vi Editing Operations

Editing Operation Description

Scroll full screen forward Moves the display one full screen forward (or up).

Scroll full screen backward | Moves the display one full screen backward (or down).

Scroll half-screen up Moves the display one-half screen up (or forward).

Scroll half-screen down Moves the display one-half screen down (or
backward).

Append Adds text to the right of the cursor.

Insert Allows text to be inserted to the left of the cursor.

Open line Inserts a blank line at the cursor position.

Delete Erases a pre-defined range of text to the right or left
of the cursor.

Replace Overwrites text with new text to the right of the
cursor.

Change Substitutes a pre-defined text string for a pre-defined
range of text to the right or left of the cursor.

Yank (move) Moves a specified range of text to the right or left of
the cursor.

Put Places a specified range of text to the right or left of
the cursor.

Mark Delimits a boundary of text to be yanked, changed, or
deleted.

Each of these editing operations is described thoroughly in this chapter.

text-object is the range of text you want to operate on; using a text object depends on
the command being performed.

069-701036 Licensed material—property of copyright holder(s) 2-5

The Syntax of a vi Command

NOTE: No spaces occur between command items. Also, commands are case
sensitive; you should use the command in the exact case it is presented in.
Whether or not to use a number or a text-object depends on the particular
command. Each command is terminated by pressing a New Line (or Carriage
Return) key.

Text Objects

When you work on files containing large bodies of text, it may be advantageous to
treat text as units (such as a word, sentence, or paragraph) rather than individual
characters. Vi recognizes a set of text objects that you can use to identify the specific
text on which an editing function will operate. They are:

® Character.

e Word.

® Space-delimited word.

e Line.

e Sentence.

® Paragraph.

o Screen window.

® Mark.

Character

A character is a single byte — a letter, number, punctuation mark, or a
nondisplayable control sequence such as a tab (represented either by pressing the Tab
key or Ctrl-I). Examples of characters follow:

a
0

A

Tab space bar

2-6 Licensed material—property of copyright holder(s) 069-701036

Text Objects

Word

A word is a group of adjacent characters bounded on both sides by any combination
of these items: punctuation, space, tab, number, or a new-line. A single punctuation
mark counts as a single word; multiple punctuation marks (with no intervening space)
also count as a single word. Examples of words follow:

Words Number of Words

man 1
man.

man).

man). He

man). He "
man). He said,
(a young man). He said, "How are you, son?"

O W NN

[
(&}

Space-Delimited Word

A space-delimited word is the same as a word except that it includes adjacent
punctuation. Space-delimited words are separated by one or more of these items:
space, tab, or new-line. Examples of space-delimited word follow:

Space-Delimited Word Number of Space-
Delimited Words
man 1
man. 1
man). 1
man). He 2
man). He " 3
man). He said, " 4
(a young man). He said, "How are you, son?" 9

069-701036 Licensed material—property of copyright holder(s) 2-7

Text Objects

Line

A line is a group of characters including spaces and punctuation that ends with a
new-line. A line is not necessarily a single, physical line on your terminal screen. A
line can span several physical lines by wrapping. Only a deliberate press of the New
Line key will terminate a line. Examples of lines follow:

Lines Total Number
of Lines
Paychecks are here! 3

Where are they? Jackson 9
Page, noted for his

industry and ambition,

was awarded the "Most Valuable
Staffer" award on Monday, 2

The preceding example shows a total of three lines.

Sentence

A sentence is a group of characters ending with final punctuation and two spaces.
Final punctuation includes a period (.), question mark (?), and exclamation point (?).
If a sentence coincidentally ends at the end of a line (no continuation to the next
line), the new-line following punctuation implies a sentence. Spacing twice is not
necessary in this case. Examples of sentences follow:

Sentence Number of
Sentences
Paychecks are here! Where are they? 2 1
Paychecks are here! Where are they? 2 2
Paychecks? Where? I want mine. 9 3
Jackson Page, noted for his industry 1

and ambition, was awarded the "Most
Valuable Staffer" award on Monday,

2-8 Licensed material—property of copyright holder(s) 069-701036

Text Objects

Paragraph

A paragraph is a group of characters bounded on both sides by one or more blank
lines. Examples of paragraphs follow:

Paragraphs Number of
Paragraphs
Paychecks are here! 1
Paychecks are here! 1

Where are they?
Jackson Page, noted for
his industry and ambition

Paychecks are here! 3
Where are they?

Jackson Page, noted for his
industry and ambition

Screen Window

The screen is defined as the text displayed within the current window. The default
number of lines per screen is one less than the number of lines on your terminal
display (23 typically), plus a last line which is the status line. The screen window is a
predefined number of lines on the screen that certain editing operations treat as a
unit. Window size can be altered through the window size option, which is covered in
the section "Setting Up Your vi Environment" in this chapter. The window can be as
large as the screen less the status line.

069-701036 Licensed material—property of copyright holder(s) 29

Text Objects

Figure 2-1 shows an example of a window.

a A

1 This is the first line, which is also known as home.

12 This is the middle line.

23 This is the last line.
24 This is the status line.

g _J

Figure 2-1 Excerpt of a Sample Window

Each number in the previous example represents the number of that line on the
screen. The numbers do not actually appear on the screen, however.

Mark

A mark saves an exact location in a file. In command mode, you position the cursor
at the desired location and use a command to save that position in a mark register.
There is no visual mark in your file. To position the cursor at the mark at some later
time, you can direct the cursor to move to the marked location by referencing the
mark register. You can have as many as 26 locations marked in a file.

How vi Relates to the Document
Formatter: DTK

Vi is neither a text formatting program nor a text processing program; it doesn’t
perform right justification, nor does it center text, provide a variety of fonts, or
identify section heads. It was, however, designed for use with a document formatting
program package called the Documenter’s Tool Kit, DTK for short, which can be
ordered as a separate software product.

There are some features in vi that are specifically relevant to DTK users. For
example, in addition to the previously discussed set of vi text objects, there is also a
section object that refers to the beginning of a section and the end of a section, both
with respect to the current cursor position. A section is a unit of text that is labelled
with a section header. The section text object is bounded by the section delimiter
commands recognized by the DTK programs nroff and troff.

Furthermore, nroff and troff recognize a set of paragraph delimiter commands, which
are the beginning and ending of a paragraph. DTK offers several varieties of
document production oriented command sets that you can use to format and produce
your documents. DTK supports the mm macro set. Refer to the DTK package of
documentation (see the Preface for the titles) for more information on the DTK

2-10 Licensed material—property of copyright holder(s) 069-701036

How vi Relates to the Document Formatter: DTK

commands, and refer to the section "Setting Up Your vi Environment" later in this
chapter for more information about recognized mm commands.

Setting Up vi Options

You can set editor options to customize your editing environment to suit your tastes.
A subset of useful options is described here that may be beneficial for your work in
vi. The examples of the editing operations shown in this chapter assume the setup of
these options. A full list of all possible options is given in the section "Setting Up
Your vi Environment," later in this chapter.

There are three methods for setting these options. Each method specifies how long
the option will remain in effect.

o EXINIT environment variable.

e _exrc file.

® Last line mode.
The EXINIT environment variable remains in effect for a single log-in session (until
you log out). The .exre file is initialized each time you log in and for each subshell or

new shell generated. The options set in last line mode remain in effect only for the
current editing session (until you exit vi).

Setting the EXINIT environment variable is shown here. For information on the
alternate methods, refer to the section "Setting Up your vi Environment," later in this
chapter.

From the shell, you will assign the values contained within single quotation marks to
the environment variable EXINIT. (More information on environment variables is
given in Using the DG/UX™ System).

Bourne shell:

$ EXINIT=’set wn=10 smd redraw report=1’ 5
$ export EXINIT o

C shell:

% setenv EXINIT ’set wm=10 smd redraw report=1’ o
For the Bourne shell, you assign selected values to the EXINIT variable. A pair of
single quotation marks (*) surround the values. The variable is then exported to the
environment with the export command. When making the assignment, make sure
there are no spaces around the equal sign (=).
For the C shell, you set the same values to the variable, EXINIT. However, you use

one command, setenv, to assign the values to the variable and export the variable to
the environment.

069-701036 Licensed material—property of copyright holder(s) 2-11

Setting Up vi Options

To verify your settings, you can type the following command:

$ envo
EXINIT=set wm=10 smd redraw report=1

They will be in effect automatically only for the current log-in session.
Table 2-2 describes each of these options:

Table 2-2 Vi Editing Options Set for Examples in This Chapter

Option Effect Value

wrapmargin | Performs automatic new line at a wm=10
defined column position from the right
side of the screen.

showmode | Displays message in status line smd
indicating mode of operation.

redraw Redraws screen to show insertion of redraw
text and movement of existing text to
the right.

report Reports statistics in status line for all report=1
editing operations affecting one or
more lines.

Useful Tips While Using vi

If you choose to try out some of these commands as you read about them in this
chapter, you may make a few mistakes or you may decide to exit vi for a while.
These four functions may be helpful to you during your vi work. They are:

® Undoing a command.

® Redrawing (or refreshing) your screen.

® Periodically saving the working buffer.

® Quitting vi.

These topics are discussed in detail in the following sections.

2-12 Licensed material—property of copyright holder(s) 069-701036

Useful Tips While Using vi

Undoing a Command (u)

If you type a command that produces a result you do not like or you prematurely
press a key that causes an undesired command to execute, you can recover with these
simple keystrokes:

From command mode, type the u command to undo the effect produced by the
previous command.

Your original text will be restored to what it was before you issued the command.
You can press this key repeatedly to restore and undo only the preceding command;
this key acts like a toggle switch.

Refreshing Your Screen (Ctrl-L)

If your screen gets littered with spurious marks, which can result from modem
"noise," or broadcast messages, you can refresh your screen in command mode by
pressing Ctrl-L.

Vi will erase the marks from your screen and refresh the screen eliminating
extraneous characters.

Periodically Saving the Working Buffer (:w)

You should perform periodic saves of the working buffer during a vi work session as a
precautionary measure against system crashes. Here’s what you can do:

e From command mode, press the colon (:) key to invoke last line mode. You
will see this keystroke echoed on the status line of the screen.

e Type the w command and press the New Line key.
Your working buffer will be saved in the filename specified when you
invoked vi (if the filename already exists, its original contents are

overwritten). The cursor will return to its previous position on the screen.
Refer to "Commands to Write Files" for a list of variations on this command.

Quitting vi (22, :wq, :q, :q!)

After you have tried some vi commands, you may decide to quit your session for a
while. The easiest ways to quit vi and save the contents of the file are shown as
follows:

From command mode, to save the current buffer and quit vi, type ZZ.

e In last line mode, you can also type the :wq command and press the New
Line key.

069-701036 Licensed material—property of copyright holder(s) 2-13

Useful Tips While Using vi

e If you have made no changes to the current buffer, quit vi by typing the :q
command and pressing the New Line key. If changes were made, vi issues a
warning message that there was no write since the last change.

e Alternatively, in last line mode, you can quit the session without saving the
buffer contents using :q! and pressing the New Line key.

A copy of your edited text is saved in a file with the name you assigned when you
initialized vi. Your editing session with vi is terminated and you are free to use your
terminal and the system in some other way.

A full list of methods for writing files is given in the section "Manipulating Files in
Last Line Mode," later in this chapter.

Invoking vi

To invoke the editor vi, from the shell, you type the following command and supply a
filename. Vi will create a file with the assigned name if it doesn’t already exist. If a
file with the assigned name already exists, vi will open it for editing. The filename
you choose must follow standard DG/UX system file-naming conventions (refer to
Using the DG/UX™ System for information on filenames).

vi [options | filename

Table 2-3 defines the options.

2-14 Licensed material—property of copyright holder(s) 069-701036

Invoking vi

Table 2-3 Vi Command-Line Options

Command

Description

view argument

vi

vi filename

vi + filename

vi line-num filename

vi +/pattern filename

vi —r filename

vi =t label

vi =1 filename

vi =wn filename

vi filenamel filename?2 ...

You can substitute view for all vi commands to specify
a read-only mode.

Edits an empty buffer.

Edits an existing file, starting at line 1, or creates one
with filename if it doesn’t exist.

Edits an existing file, starting at the last line.

Edits an existing file, starting at a specific line
number.

Edits an existing file, starting at the first line
containing the specified pattern (refer to Appendix A
for information on regular expression pattern-
matching).

Edits several existing files in sequence. Starts with
line 1 in the first file. When you finish editing a file,
go to the next file by pressing the Escape key, :n (for
next), and the New Line key

Lists a summary of file(s) being edited that were
automatically saved as a result of a system crash.

Recovers a specific file that was in the working buffer
prior to a system crash. As many as 12 lines or parts
of lines may have been lost. Use this command from
the directory containing the file being edited.

If you have a file named tags (which contains lines in
the format label file/string), vi clears the working
buffer to edit file, and positions the cursor on the line
containing string. Refer to the section on producing
and using a tags file in Using the DG/UX™ System.

Turns on the lisp option (see the section on "Setting
Up Your vi Environment") in the current vi work
session.

Sets the screen window size to n lines, overriding the
default which can be set using the window option (see
the section titled "Setting Up Your vi Environment").

Figure 2-2 shows a typical screen that appears after you press the New Line key.

069-701036

Licensed material—property of copyright holder(s)

2-15

Invoking vi

4)

"filename" [New file] J

N

Figure 2-2 Typical Screen

The screen contains three important items:

Cursor ([])
The cursor symbol on the top line shows the point at which you can type input. Your
cursor symbol may appear differently.

Tilde (7)

All other lines are marked with a tilde, the symbol designating lines past the end of
the file. When you create an empty file, you will see the appearance of tildes on the
left side of the screen.

Status line ("filename" [New filel)

Vi displays the status line on the bottom line of the screen — line 24 on most
terminals. It contains information about the status of the working buffer, such as a
message to alert you to the input mode status and error messages. From this line,
you also issue commands in last line mode.

2-16 Licensed material—property of copyright holder(s) 069-701036

Vi Editing Operations

Vi Editing Operations

The rest of this chapter covers entering text in input mode and editing text in

command mode. The major topics are:

069-701036

Entering text.
Moving the cursor.
Appending text.

Inserting text.

Opening a new line in text.

Deleting text.
Replacing text.
Changing text.
Moving text.
Marking text.

Searching for patterns.

Manipulating files in last line mode.

Setting up your vi environment.

Writing and using macros.

Performing other miscellaneous tasks.

Licensed material—property of copyright holder(s)

2-17

Entering Text

Entering Text

Here’s how you enter text. From command mode, you first need to give a command
to signify that you want to enter text. In this case, you decide to "append" text with
the a command after which you type your text. After you finish entering text, press
the Escape key to signal and end of append mode. Remember that commands
entered in command mode are not visible on the screen. An example follows:

Enter the a command for append mode.

Then, type this text:

Suddenly, we spotted whales in the distance. Daniel saw
them first. "Hey look! Here come the whales!" he cried ?
excitedly.[]

Then, press the Escape key to end entry mode.

If you make a mistake while entering text, the easiest way to erase a character you
just typed is to press the Del key. Each time you press the Del key, the character
that you back over is deleted. If the Del key does not operate, your terminal may use
another character delete key (refer to Using the DG/UX™ System for information on
selecting a line discipline). You may want to consult your system administrator for
help.

Assuming that you set the automatic wrapmargin option, your text will break at the
closest space-delimited word when it reaches the right margin. A new-line character
is automatically appended to the end of each line when the cursor wraps. If you did
not set this option, you will need to press the New Line key at the conclusion of each
line. You should avoid ending a line with a space as some vi commands may produce
unexpected results if they encounter a space at the end of a line.

Also, if the showmode option is set (refer to Table 2-35), the "APPEND MODE"
message is displayed on the right side of the status line to let you know that vi is
accepting your keystrokes as text input. When you press the Escape key to terminate
input mode, this message disappears from the screen.

Moving the Cursor

With vi in command mode, you can position the cursor anywhere in the current
working buffer. Vi accomplishes this by moving the cursor right and left on a line, up
and down between lines, and backward and forward within the current window and
the entire working buffer. As the cursor approaches the end of a line, it will
normally wrap to the beginning of the next line. If you move the cursor backward to
the beginning of the line, it will wrap to the end of the previous line.

You can also move the cursor through the working buffer by text object units —

character, word, space-delimited word, line, sentence, and paragraph. You can also
move through multiple text objects by preceding the cursor command with a number.

2-18 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Each of these cursor movements is discussed:

® By a character.

® By aline.

® Within a line.

® By a word and space-delimited word.

® By a sentence.

® By a paragraph.

® Within the current screen window.

e From line to line (nondisplayed portion of file).
Vi must be in command mode before you can use the cursor commands. Once vi is
in command mode, you can use any number of cursor commands to position the
cursor in the working buffer (and your screen). When you type any of these
commands, you will not see their literal appearance. Each keystroke will be

interpreted as an instruction to move the cursor. You will see the effect it produces,
such as moving the cursor right, one position at a time.

Moving the Cursor by a Character

Table 2-4 lists the basic character cursor movement commands.

Table 2-4 Commands to Move the Cursor by a Character

Command | Definition

lor — Moves the cursor one character (or multiple characters) to the
right.

h or + Moves the cursor one character (or multiple characters) to the
left.

Each of these commands can be preceded by a number to indicate the number of
characters you want to move the cursor. Examples of moving the cursor by the
character are given in the following examples. Sample text follows:

Suddenly we spottf[e]d the whales.

When you use the 1 command, the cursor moves one character to the right, as
follows:

069-701036 Licensed material—property of copyright holder(s) 2-19

Moving the Cursor

Suddenly we spotte[d] the whales.

When you use the 5h command, the cursor moves five characters to the left, as
follows:

Suddenly we s[plotted the whales.

To accomplish the same character movements, you can use the space bar or
rightarrow key (—) to move the cursor to the right. To move the cursor to the left,
you can use the Ctrl-H or the leftarrow (+) key. You can also precede each
command with a number to move the cursor multiple character positions.

The maximum number of characters you can specify is restricted by the line length.
If the number of characters you specify (e.g., (88—)) exceeds the boundaries of the
screen, the cursor goes to the end of the line. If the cursor is already at the end of
the line, your terminal will beep and the cursor will remain stationary.

NOTE: On some terminal keyboards, you can press and hold the given cursor
movement keys to produce a repeated cursor movement. If your terminal
has a Repeat key, you may have to press and hold the cursor key with the
Repeat key.

Moving the Cursor by a Line

You press the New Line key to move the cursor to the beginning of a new line and
you use one of the following commands to move the cursor to the same column
position in other lines. Table 2-5 lists the commands to move the cursor by the line:

Table 2-5 Commands to Move the Cursor by a Line

Command | Definition

j Moves cursor down one line or multiple lines, staying in same column.

Moves cursor up one line or multiple lines, staying in same column.

Each of these commands can be preceded by a number to indicate the number of
lines you want to move the cursor.

NOTE: The j command also maps to the down arrow (}) key. For Data General
terminals in DG mode and the C shell only, however, the | key also maps to
the Suspend key Ctrl-Z, which suspends temporarily the current vi session.
If you use the n| command to move the cursor, you will suspend vi operation
unless you have mapped the suspend function to some other key or have the
novice option set (see a later section "Setting Up Your vi Environment" for
more information about this option). Refer to Using the DG/UX™ System
for information about line disciplines, and Chapter 1 in this manual for
information on redefining process control keys.

Examples of moving the cursor by the line are given using the following sample text:

2-20 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Suddenly, we spotted whales in
the dis[tlance. Daniel was the first to see them.
"Hey look! Here come the whales!" he cried excitedly.

When you use the j command, the cursor moves one line down, with the cursor
remaining in the same column position, as follows:

Suddenly, we spotted whales in
the distance. Daniel was the first to see them.
"Hey lo[olk! Here come the whales!" he cried excitedly.

NOTE: The uparrow (1) and downarrow (|) keys can also be used to position the
cursor up and down.

When you use the 2k command, the cursor moves from its previous position up two
lines as follows:

Suddenl[y], we spotted whales in
the distance. Daniel was the first to see them.
"Hey look! Here come the whales!" he cried excitedly.

From the cursor position, (if there is no character in the same column of the line
above or below), shown as follows,

Suddenly, we spotted whales in
the distance. Daniel was the first to see them.
"Hey look! Here come the whales!" he cried excite[d]ly.

when you use the k command, the cursor will move to the nearest column that does
contain a character shown as follows:

Suddenly, we spotted whales in
the distance. Daniel was the first to see them[]
"Hey look!" Here come the whales!" he cried excitedly.

You can also move the cursor to a line that is not currently displayed on the screen.
If the specified line exists (the cursor is on line 25 and you ask for 24 lines above the
current line 24k), the screen will scroll until the desired line is within view.
Alternatively, if you request a line that exceeds the size of the working buffer (you
ask for 100j and there are only 25 more lines beneath the current line), the terminal
will beep and the cursor will remain stationary.

069-701036 Licensed material—property of copyright holder(s) 2-21

Moving the Cursor

Moving the Cursor Within a Line

There are three methods to move the cursor within a line:
® To the beginning or end of the line.
e To a specific character in the line.

® To a specific column in the line.

Moving the Cursor to the End or Beginning of a Line

Table 2-6 lists the three commands to move the cursor to the beginning or end of the
line:

Table 2-6 Commands to Move the Cursor to the Beginning or End of a Line

Command | Definition

$ Puts the cursor on the last character of a line.
0 Puts the cursor on the first character of a line.

N

Puts the cursor on the first nonblank character of a line.

The following examples show the movement of the cursor produced by each of these
three commands.

To the End of a Line ($)

The following example shows how to move the cursor to the end of the line. The
sample text follows:

Go to the [elnd of the line!
When you use the $ command, the cursor goes to the end of the line as follows:

Go to the end of the line[T]

2-22 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

To the Beginning of a Line (0)

The following example shows how to move the cursor to the beginning of the line.
The sample text follows:

Go to the begi[nlning of the line!
When you use the 0 command, the cursor goes to the beginning of the line as follows:

[Glo to the beginning of the line!

To the First Nonblank Character of a Line (")

In some cases the beginning of the line may contain one or more spaces. The 0
command would move the cursor to the beginning of the line to a blank position. To
move the cursor to the first nonblank character, skipping over blanks, you would use
the ~ command instead. The sample text follows:

Go to the first character
of the line
that is [nJot blank!

When you use the * command, the cursor goes to the first nonblank character as
follows:

Go to the first character
of the line
[Elhat is not blank!

Moving the Cursor to a Specific Character on a Line

Another way of positioning the cursor on a line is to search for a specific character
on the current line. If you look for something that doesn’t exist, your terminal will
beep and the cursor will remain stationary. Character searches are case-sensitive
unless you set the ignorecase option (refer to "Setting Up Your vi Environment" for
more information).

069-701036 Licensed material—property of copyright holder(s) 2-23

Moving the Cursor

Table 2-7 lists the ways to move the cursor to a specific character within a line.

Table 2-7 Commands to Move the Cursor to a Specific Character

Command | Definition

fx Moves the cursor to the right to the specific character x.

Fx Moves the cursor to the left to the specific character x.

tx Moves the cursor to the right, just to the left of the specific character
x.

Tx Moves the cursor to the left, just to the right of the specific character
x.

Repeats the previous operation in the same direction. The ;
command recalls the previous command and repeats it.

e

, Repeats the previous operation in the opposite direction. The ,
command recalls the previous command and executes the
complementary command (the one that searches in the opposite
direction).

Each of these commands can be preceded by a number to indicate the number of
characters you want to move the cursor.

The sample text follows:
[Glo forward to the letter A on this line.

When you use the fA command, vi searches to the right for the first occurrence of the
letter "A" on the current line as follows:

Go forward to the letter on this line.
More sample text follows:
[Glo forward to just left of the letter i on this line.

When you use the ti command, the cursor moves to the left of the first occurrence of
the letter "i" in the current line, as follows:

Go forward to just left of the letter[]i on this line.
With the cursor positioned as follows:

Go backward to the letter k on[flhis line.

2-24 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

when you use the Fk command, the cursor moves left to the previous occurrence of
the letter "k" in the current line.

Go backward to the letter [k] on this line.

From the cursor position, when you use the ; command, vi repeats the most recent
character search command as follows:

Go bac[klward to the letter k on this line.

Moving the Cursor to a Specific Column on a Line (n|)

Columns are specified with an absolute number. This command is helpful when
moving the cursor directly to a known column position in a table, form, or program.
Column positioning is requested using this syntax:

n|
where:
n is a column number.
This command moves the cursor right or left to the specified column number n.
Also, column specification is absolute. It is not relative to the cursor’s current
position.
In the following example, the cursor is in column 8:

Go forw[a]rd to column 20 in this line.

To move the cursor to absolute column 20, you would use the 20| command to
produce the following result:

Go forward to colum[n] 20 in this line.
This command moves the cursor forward and backward in a line. Keep in mind that
your maximum cursor movement is restricted by the length of the line. If you request

a column position that exceeds the line length, the cursor will go to the end of the
line.

069-701036 Licensed material—property of copyright holder(s) 2-25

Moving the Cursor

Moving the Cursor by a Word

Table 2-8 lists the commands that move the cursor by the word:

Table 2-8 Commands to Move the Cursor by a Word

Command

Definition

Moves the cursor forward to the first character in the next word. You
may type w as many times as you want to reach the word you want.

Moves the cursor forward to the first character in the next space-
delimited word.

If the cursor is positioned on the first character of a word, moves the
cursor backward to the first character of the previous word. If the
cursor is not positioned on the first character of a word, moves the
cursor to the beginning of the current word. This command is the
opposite of the w command.

This command is the same as the b command except that it applies to
space-delimited words.

If the cursor is positioned on the end character of a word, moves the
cursor forward to the end character of the next word. If the cursor is
not positioned on the end character of a word, moves the cursor to
the end character of the current word. This command is the
counterpart to the w command.

This command is the same as the e command except that it applies to
space-delimited words.

Each of these commands can be preceded by a number to indicate the number of
words (or space-delimited words) you want to move the cursor. Sample text follow:

He as[kled, "What is the time?"

By using the w command, the cursor moves to the next word, which is a comma, as

follows:

He asked[,] "What is the time?"

By using the 3W command, the cursor moves to the first character in the third space-
delimited word, as follows:

He asked, "What is [tlhe time?"

By using the b command, the cursor moves back to the first character in the previous

word.

2-26

Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

He asked, "What [i]s the time?"

By using the 3B command, the cursor moves to the first character of the third space-
delimited word in a backwards direction, as follows:

[Hle asked, "What is the time?"

By using the e command, the cursor moves to the final character in the next word, as
follows:
H[e] asked, "What is the time?"

By using the 3E command, the cursor moves to the final character in the third space-
delimited word, as follows: The word "He" is counted as one of three space-delimited
words.

He asked, "What i[s] the time?"

Moving the Cursor by a Sentence

Table 2-9 lists the commands to move the cursor by the sentence:

Table 2-9 Commands to Move the Cursor by a Sentence

Command | Definition

(Moves the cursor to the beginning of the previous sentence. If the
cursor is located within the paragraph, the cursor moves to the
beginning of the current paragraph.

) Moves the cursor to the beginning of the next sentence.

You can precede each of these commands with a number to indicate the number of
sentences you want to move the cursor.

The following examples show moving the cursor a sentence at a time. Sample text
follows:

Suddenly we spotted [wlhales in the
distance. Daniel was the first to see them.

When you use the (command, the cursor moves to the beginning of the previous
sentence, as follows:

[SJuddenly we spotted whales in the
distance. Daniel was the first to see them.

When you use the) command, the cursor moves to the beginning of the next
sentence, as follows:

069-701036 Licensed material—property of copyright holder(s) 2-27

Moving the Cursor

Suddenly we spotted whales in the
distance. [Dlaniel was the first to see them.

Moving the Cursor by a Paragraph

Table 2-10 lists the commands to move the cursor by the paragraph:

Table 2-10 Commands to Move the Cursor by a Paragraph

Command | Definition

{ Moves the cursor to the beginning of the previous paragraph. If the
cursor is located within a paragraph, the cursor will move to the
beginning of the current paragraph.

} Moves the cursor to the beginning of the next paragraph.

Each of these commands can be preceded by a number to indicate the number of
paragraphs you want to move the cursor. The following examples show moving the
cursor by the paragraph. Sample text follows:

Suddenly, we spotted whales in the
distance. [Dlaniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

When you use the { command, the cursor moves to the beginning of the current
paragraph, as follows:

O

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

When you use the } command, the cursor moves to the beginning of the next
paragraph.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

O

"Hey look! Here come the whales!" he cried excitedly.

2-28 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Moving the Cursor Within the Current Window

The current window is another name for the visible portion of the working buffer (the
part that you do not scroll up or down). Within the current window, you can move
the cursor to the first non-blank character of the top, middle, or last lines. If one of
these lines is blank, the cursor goes to the first position of the blank line. Table 2-11
specifies the commands that you can use to position the cursor on the top, middle, or
last lines.

Table 2-11 Commands to Move the Cursor Within the Current Window

Command | Definition

H Moves the cursor to the first nonblank character of the first line on
the screen; moves the cursor to the first column if the first line is
blank.

M Moves the cursor to the first nonblank character of the middle line on
the screen; moves the cursor to the first column if the middle line is
blank.

L Moves the cursor to the first nonblank character of the last line on
the screen; moves the cursor to the first column if the last line is
blank.

Examples of using these commands to position the cursor on the home, middle, and
last lines assume a 23-line screen display. Sample text follows.

[SJuddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.
Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

By using the M command, the cursor moves to the first position of the middle of the
current window, shown as follows.

069-701036 Licensed material—property of copyright holder(s) 2-29

Moving the Cursor

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

[MHey look! Here come the whales!" he cried excitedly.
Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

By using the L command, the cursor moves to the beginning of the last line of the
current window, shown as follows.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.
Never had he witnessed such a sight. They were swift, powerful,

[alnd also graceful. The herd moved as one.

You can precede the L command with a number to indicate a line position before the
last line in the current window such as 3L.

By using the H command, the cursor moves to the home (row 1, column 1) position,
shown as follows.

[Sluddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.
Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

You can also precede the H command with a number to indicate some line position
after the first line in the current window such as 3H.

2-30 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Moving the Cursor Outside the Current Window

This group of commands enables you to move the cursor to parts of the working
buffer that are not in the current window. Four methods are available for locating
lines.

® Requesting a relative line.

® Requesting a specific line.

e Scrolling.

e Paging.

Moving the Cursor to a Relative Line (+, -)

An alternative to moving the cursor by the line is to specify a relative number of lines
in a positive (+) or negative (—) direction from the current cursor position. When the
line is located, the cursor is put in the first nonblank character position in the line.
Table 2-12 lists the commands that moves the cursor to a relative line:

Table 2-12 Commands to Move the Cursor to a Relative Line

Command | Definition

n+ The screen scrolls down in a positive (4) or forward direction by n
lines. The cursor moves to the first nonblank position on the given
line.

n— The screen scrolls in a negative (—) or backward direction by # lines.

The cursor moves to the first nonblank position on the given line.

The n+ command can also be expressed without using the plus (+) sign.
Examples follow:

13+ The cursor moves down 13 lines.
130 The cursor moves down 13 lines.
13— The cursor moves up 13 lines.

For lines not located in the current window, the screen will shift up or down to reveal
the wanted lines. If, however, you tried to move the window up to a nonexistent line
(such as backwards 100 lines, expressed as 100-, in a 50-line file), the cursor would
remain on the current line and the terminal would beep.

069-701036 Licensed material—property of copyright holder(s) 2-31

Moving the Cursor

Moving the Cursor to a Specific Line

Table 2-13 lists the commands used for positioning the cursor on an absolute line
number:

Table 2-13 Commands to Move the Cursor to a Specific Line

Command | Definition

nG The cursor goes to line n where n represents the absolute line number
you specified. If that line is not currently on the screen, the window
will shift so that the desired line is displayed.

G The cursor goes to final line in the working buffer and the window will
shift so that the desired line is displayed on the screen.

You can find out the absolute line numbers by setting the number (nu) option from
last line mode (this information is given in the section on "Setting Up Your vi
Environment" later in this chapter). After you set the numbering option, each line in
your file is preceded by an absolute line number. If, for example, you want to
position the cursor on line 150 in your file, from command mode you would issue the
150G command and the portion of the file containing the specified file is positioned
within the current window. The cursor is positioned in the first column of line 150.
To remove line numbers from your file, in last line mode, you can issue the nonu
command.

Scrolling and Paging Text Through the Current Window

There are two ways you can display text that is not visible in the current window.

Scrolling Rolls one-half a screen of text (11 lines by default) up or down in the
buffer. Scrolling is best used when you want to read text continuously as
one line at a time is sent to the screen.

Paging Redraws the screen; shifting a complete page of text (23 lines by default)
up or down in the buffer. Paging is faster than scrolling (depending on
the baud rate and the screen size), but you do not see the context of the
current screen as you do with scrolling.

The amount of text scrolled or paged is relative to the window size and the scroll size
(for scrolling only). The window and scroll options can be set to customize window
and scroll size (refer to the section "Setting Up Your vi Environment" later in this
chapter).

Table 2-14 lists four commands that allow you to scroll and page the text in a file:

2-32 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Table 2-14 Commands to Scroll and Page Text

Command | Definition

Ctrl-D Scrolls down one-half a screen of text (by default), revealing text that
is below the current window. If the current window is defined as 23
lines, then scroll size will be 11 by default.

Ctrl-U Scrolls up one-half a screen of text (by default), revealing text that is
above the current window. If the current window is defined as 23
lines, then scroll size will be 11 by default.

Ctrl-B Pages up a full screen (23 lines by default), revealing text that is above
the current window. Two lines are skipped between each screen for
faster movement.

Ctrl-F Pages down a full screen (23 lines by default), revealing text that is
below the current window. Two lines from the previous screen are
also displayed in the new screenful for continuity when reading
forward.

When scrolling and paging, if there are not enough lines in the file to satisfy a
scrolling or paging request, you will get what there is. If there are no more lines,
your terminal will beep. If, for example, you’re toward the bottom of a file and vi
cannot scroll forward a full screen, the available lines will be moved to the current
window, and tildes (7) will occupy the first columns of the empty lines to show the
end-of-file. If the bottom of the file was already positioned in the current window and
you tried to move a screen forward again, the screen would remain the same and the
terminal would beep.

By default, a window contains 23 lines. The following sample text shows the current
window with line numbers appearing in the left side of the screen.

NOTE: You can number your lines automatically by using the number editing option
in last line mode (see the section "Setting Up Your vi Environment").

1 The kayaker pointed
2 the nose of his boat

22 downstream. His name
23 was Mike.

By using the Ctrl-F command to page forward, you will cause the next page (22 lines)
of undisplayed text to be presented in the current window. For continuity, however,
there is a two-line overlap. Instead of seeing lines 2345, you will see lines 22—44.
The cursor can be positioned anywhere on the current screen.

069-701036 Licensed material—property of copyright holder(s) 2-33

Moving the Cursor

22 [dlownstream. His name
23 was Mike.

43 Close call!
44 He paddled hard to avoid

Notice the two-line overlap.

By using the Ctrl-D command to scroll one-half screen up-(moving in a backward
direction), you would return one-half of the previous screen of text to the current
window. One-half screen equals 11 lines.

9

10

11 He was preparing for

12 what he thought to be a simple rapid.

19 []

20

21

22 downstream. His name
23 was Mike,

24 He knew no fear.

30 Quick recovery!
31 He resolved to be more careful.

Your next scroll or page actions will be relative to the current cursor position.

Moving the Cursor to a Marked Location

Using marks, you can flag significant areas in your file and save them in mark
registers. After you mark a location with the mark command, you can then return
the cursor to it automatically by specifying the register’s name.
The mark command format follows:

mregister-name

where:

m stands for "mark." You place the cursor at the position you want to mark, and then
issue the m command.

2-34 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

register-name is the storage location to which you assign the marked position. You
assign the location to a register that you name with a single letter, a through z.

The go-to-mark command format follows:
position-commandregister-name
where:
position-command can be either of the following:
¢ (backquote) goes to the exact cursor position saved.
* (single quote) goes to the first nonblank position on the line containing the mark.

register-name is the marked location to which you assigned the marked position. You
can use as many as 26 register names (a through z) per editing session.

The contents of the used registers are cleared when you quit vi.
Sample text follows.

Ski the summit

Ski 4 of the world’s greatest ski areas on

1 1ift package ——- 8 different mountains -——
256 trails ——— 53 lifts -—— Located where
our airlines can take you!

What next[?]

By using the ma command, you can mark the current cursor position. This command
marks the cursor’s position at the question mark (?) and assigns the mark to register

a.

Using the ’a command from any file location, you can return the cursor to the first
position in the marked line, as follows.

[Wlhat next?
Using the ‘a command from any file location, you can return the cursor to the exact
marked location. This command (a single backquote) positions the cursor at the
exact location marked.

What next[?]

NOTE: Storing a mark in a register with the m command overwrites that register’s
current contents.

069-701036 Licensed material—property of copyright holder(s) 2-35

Appending Text

Appending Text

The append commands put vi in input mode and place the text you type after the
current character (the cursor position) or at the end of the current line. Table 2-15
lists two commands you can use to append text.

Table 2-15 Commands to Append Text

Command | Definition

a Appends text after the cursor position.

A Appends text at the end of the current line.

Before you can actually append any text, you must type one of the append commands,
which puts vi in input mode. The key point to remember is that entry begins after the
cursor.
Sample text follows:
Daniel saw the[Jwhale spout.
Using the a command enables you to append text. In this sample text, you would
type the a command immediately followed by the text "white" and then press the
space bar to append the word "white" to "the". The "APPEND MODE" message will be
displayed in the status line. After you finish appending text, you press the Escape
key to return to command mode, and the message is removed from the status line.
The result appears as follows.
Daniel saw the white[Jwhale spout.
If you had used the A command, the text would have been appended as follows:
Daniel saw the whale spout.white []
For either append command, with the cursor positioned at the end of a line, you can

also press the New Line key once to start a new line of text, or multiple times to
generate multiple blank lines.

2-36 Licensed material—property of copyright holder(s) 069-701036

Inserting Text

Inserting Text

The insert commands put vi in input mode and place the text you type before the
current character or at the beginning of the current line. Table 2-16 lists commands
for inserting text.

Table 2-16 Commands to Insert Text

Command | Definition

i Inserts text before the cursor.

I Inserts text at the beginning of the current line.

Append and insert modes may appear the same but they are slightly different. The
difference is that with insert mode, text entry begins before the cursor, not after. For
example, assume the cursor is positioned as follows:

Daniel saw the[Jwhale spout.

Using the i command enables you to insert text. In this sample text, you would type
the i command, press the space bar, and type the text white to insert the word
"white" before "whale". The "INSERT MODE" message will be displayed in the status
line. After you finish appending text, you press the Escape key to return to command
mode, and the message is removed from the status line.

The result appears as follows.
Daniel saw the whit[e] whale spout.

If the I command had been used, the text would have been inserted as follows:

whit[e]paniel saw the whale spout.
NOTE: There is a space before the "w" in "white".

For both insert commands, with the cursor positioned at the end of the current line,
you can also generate blank lines by pressing the New Line key any number of times.
After you have inserted text, to return to the command mode of vi, press the Escape
key.

When entering text using the insert or append commands, you may not know when to
press the space bar to get the desired leading or trailing space for the new text. After
you press the Escape key to end input mode, you may see that your spacing was off.
If so, you can use the u command and try again or use the text deletion and insertion
commands to correct the error. Since the a and i commands require that you use
different spacing, you may want to get into the habit of using one or the other
exclusively.

069-701036 Licensed material—property of copyright holder(s) 2-37

Opening a New Line for Text

Opening a New Line for Text

Rather than adding text within a line of text, you may want to generate a completely
new line between two existing lines. Table 2-17 lists two ways to open a blank line for
text entry.

Table 2-17 Commands to Open a New Line

Command | Definition

o Creates a blank line below the current line.

(o] Creates a blank line above the current line.

The open commands create a blank line directly above or below the current line, and
positions the cursor in the first column ready for text in input mode. Sample text
follows:

Daniel saw the whale spout.
Daniel saw the white[Jwhale spout.
Daniel ate shark for dinner.

Using the o command enables you to open a line (below the line containing the
cursor) for typing new text. In this sample text, you would type the o command
followed immediately by the text It looked like a geyser. to open the new line and
enter new text. The "OPEN MODE" message will be displayed in the status line. After
you finish opening a line for new text, you press the Escape key to return to
command mode, and the message is removed from the status line.

The result appears as follows.

Daniel saw the whale spout.
Daniel saw the white whale spout.
It looked like a geyser[.]

Daniel ate shark for dinner.

If you had used the O command instead of the o command, this result would be
produced:

Daniel saw the whale spout.

It looked like a geyser[.]

Daniel saw the white whale spout.
Daniel ate shark for dinner.

The new text was entered on the line above (instead of below) the line containing the |
cursor.

2-38 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting Text

Table 2-18 lists the commands you can use to delete text.

Table 2-18 Commands to Delete Text

Command | Definition

X Deletes a single character (or multiple characters) at the cursor
position and then moves the cursor to the right; a shortcut for dl.

X Deletes a single character (or multiple characters) starting at one
position to the left of the cursor; a shortcut for dh.

dw Deletes a single word (or multiple words) starting at the cursor
position.

dw Deletes a single space-delimited word (or multiple space-delimited
words) starting at the cursor position.

do Deletes characters from (but not including) the cursor position to the
beginning of the line.

D Deletes all characters starting at the cursor position to the end of the
current line.

ds$ Another form of the D command; however, it takes a number for
deleting multiple lines.

dd Deletes an entire line (where the cursor is positioned) or multiple
lines.

d(Deletes from the cursor position (but not including the cursor
position) to the beginning of a single sentence or multiple sentences.

d) Deletes from the cursor position to the end of a single sentence (or
multiple sentences).

a{ Deletes from the cursor position (but not including the cursor
position) to the beginning of a single paragraph (or multiple
paragraphs).

d} Deletes from the cursor position to the end of a single paragraph (or
multiple paragraphs).

dposreg Deletes from the cursor position to the position of the mark saved in
the named register.

For most of the delete commands, you can precede the command with a number to
indicate the number of text objects to be deleted. Three delete commands that do
not take numbers are: d0 , D, and dposreg. You can use a number for the first two
commands, but it will have no effect.

Each delete command is demonstrated in the next sections.

069-701036

Licensed material—property of copyright holder(s) 2-39

Deleting Text

Deleting Characters at the Cursor and to the Right

The x command deletes a single character at the cursor position and then moves the
cursor to the right. Sample text follows.

The first [a]nnual research review will be at Hayes Hall.

By using the x command, you can delete one character marked by the cursor, shown
as follows.

The first [njnual research review will be at Hayes Hall.
More sample text follows.
The first [alnnual research review will be at Hayes Hall.

By using the 7x command, you can delete seven characters to the right of (and
including) the cursor, shown as follows.

The first [rlesearch review will be at Hayes Hall.

Deleting Characters to the Left of the Cursor

The X command deletes a single character starting at one position to the left of the
cursor. Sample text follows.

The first [rlesearch review will be at Hayes Hall.

By using the 7X command, you can delete seven characters to the left of (and
including) the cursor, shown as follows.

The [r]Jesearch review will be at Hayes Hall.

Deleting Words

The dw command deletes a single word starting at the cursor position. Sample text
follows.

[Tlhe semi-annual research review will be at Hayes Hall.

By using the 5dw command, you can delete five words to the right of (and including)
the cursor, shown as follows.

[xleview will be at Hayes Hall.

Notice that the word "semi—annual" is counted as three words.

2-40 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting Space-Delimited Words

The dW command deletes a single space-delimited word starting at the cursor
position. Sample text follows.

[Tlhe semi-annual research review will be at Hayes Hall.

By using the 5dW command, you can delete five space-delimited words to the right of
(and including) the cursor, shown as follows.

[ble at Hayes Hall.

Notice that the word "semi-annual" is counted as one space-delimited word.

Deleting from the Beginning of a Line

The d0 command deletes characters from (but not including) the cursor position to
the beginning of the line. Sample text follows:

The first semi—-annual research [rleview will be at Hayes Hall.

By using the d0 command, you can delete all text between the beginning of a line to
the current cursor position, shown as follows.

[xleview will be at Hayes Hall.

Deleting to the End of a Line

The D command deletes all characters starting at the cursor position to the end of the
line. Sample text follows.

The first semi-annual research review [w]ill be at Hayes Hall.

By using the D command, you can delete all text between the current cursor position
to the end of the line, shown as follows.

The first semi-annual research review[|

NOTE: Use of the d$ command to delete to the end of the line performs the same
function.

069-701036 Licensed material—property of copyright holder(s) 2-41

Deleting Text

Deleting Entire Lines

The dd command deletes an entire line (where the cursor is positioned). Sample text
follows.

[Olne panelist will present her ideas on circuit design
concepts.

This panel discussion

will begin promptly at 2 pm. Graduate students

are encouraged to attend.

By using the 3dd command, you can delete three entire lines, starting from the
current line (marked by the cursor), shown as follows.

[w]lill begin promptly at 2 pm. Graduate students
are encouraged to attend.

You will see the message "3 lines deleted" in the status line assuming that the
report option (last line mode) is set to 3 or less. See the section on "Setting Up Your
vi Environment" later in this chapter for more information.

Deleting to the Beginning of a Sentence

The d(command deletes from the cursor position (but not including) the cursor
position) to the beginning of a sentence. Sample text follows.

One panelist will present her ideas on circuit design
concepts. This panel discussion

will begin promptly at 2 [plm. Graduate students

are encouraged to attend.

By using the 2d(command, you can delete two sentences, starting from the current
cursor position moving left to the beginning of the second sentence, shown as follows.

[pPln. Graduate students
are encouraged to attend.

You will see the message "4 lines deleted" in the status line, assuming the report

option (last line mode) is set to 4 or less. See the section on "Setting Up Your vi
Environment" later in this chapter for more information.

2-42 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting to the End of a Sentence

The d) command deletes from the cursor position to the end of a sentence. Sample
text follows.

One panelist will present her ideas on circuit design
concepts.

This panel discussion

will begin promptly at 2 [plm. Graduate students

are encouraged to attend.

By using the 2d) command, you can delete two sentences, starting from the cursor
position moving right through the end of the second sentence, shown as follows.

One panelist will present her ideas on circuit design
concepts.
This panel discussion
will begin promptly at 2[]
You will see the message "3 more lines" in the status line assuming the report (last

line mode) option is set to 3 or less. See the section on "Setting Up Your vi
Environment" later in this chapter for more information.

Deleting to the Beginning of a Paragraph

The d{ command deletes from the cursor position (but not including the cursor
position) to the beginning of a paragraph. Sample text follows.

One panelist will present her ideas on circuit

design concepts. This panel discussion will begin promptly
at 2 pm. Graduate students are encouraged to attend.

A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the 2d{ command, you can delete from the cursor position moving left
through the beginning of the second paragraph, shown as follows.

[Wlorkshop will be in the Commons Room afterwards.
She will also tour the circuit design lab.
You will see the message, "6 lines deleted," in the status line assuming the

report option (last line mode) is set to 6 or less. See the section on "Setting Up Your
vi Environment" later in this chapter for more information.

069-701036 Licensed material—property of copyright holder(s) 2-43

Deleting Text

Deleting to the End of a Paragraph

The d} command deletes from the cursor position to the end of a paragraph. Sample
text follows.

One panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly
at 2 pm. Graduate students are encouraged to attend.

A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the 2d} command, you can delete from the cursor position moving right
through the end of two paragraphs, shown as follows.

One panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly
at 2 pm. Graduate students are encouraged to attend.

You will see the message "3 lines deleted" in the status line assuming the report

option (last line mode) is set to 4 or less. See the section on "Setting Up Your vi
Environment" later in this chapter for more information.

Marking Text for Deletion

With the mark command, you can delete text that extends from a specific mark
(whose location is saved in a register) to the cursor position.

You put the cursor at the location you want to mark and save that location in a mark
register using this command format:

mregister-name
where:
m represents "mark."

register-name identifies the register in which the marked location is saved. Valid
register names are a through z.

2-44 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

You can delete text from the mark to the cursor position using a delete command in
the following form.

dpositionregister
where:

d represents the delete command; it removes text from the current line to the mark
saved in the named register.

position refers to either of two symbols used to mark the end boundary for deletion.
¢ (backquote) marks the exact cursor position.
* (single quote) marks the line the cursor is on.

register identifies the register containing the appropriate mark. Valid register names
are a through z and A through Z.

Sample text follows.
One panelist will present her ideas on circuit
design concepts. The panel discussion will begin promptly
at 2 pm. Graduate students are encouraged to attend.
A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the mz command, you can mark the cursor position and store the position in
register z.

Let’s say you wanted to delete text from the mark to the first line (beginning with
"One".) You would position the cursor on the "0" in "One", shown as follows.

[Olne panelist will present her ideas on circuit
design concepts. The panel discussion will begin promptly
at 2 pm. Graduate students are encouraged to attend.
A workshop will be in the Commons Room afterwards.
She will also tour the circuit design lab.
Using the d‘z command, you can delete from the cursor position to the mark.
The result appears as follows.

al]

She will also tour the circuit design lab.

069-701036 Licensed material—property of copyright holder(s) 2-45

Deleting Text

Using the d’z command, you can delete from the mark through the entire marked
line, shown as follows.

O

She will also tour the circuit design lab.

Recovering Deleted Lines

Sometimes, through a hasty action or an inadvertent mistake, you can delete lines
that can’t be recovered with the u or U commands. You could have committed this
mistake about five commands ago, for example. Vi offers-an error recovery
mechanism to retrieve a deletion if it occurred within the last nine editing commands.
Vi has nine number registers used for storing the last nine text deletions performed
with a delete command (and also the delete-and-put command). Refer to the section
on "Moving Text" later in this chapter for more information on the delete-and-put
command. The delete-text registers are numbered from 1 through 9. The line-
recover command takes this form:

"nput-command
where:
the double quotation mark (") symbolizes a named register.
n is a register number (1-9).
put-command is either p (put after the cursor) or P (put before the cursor).

With the cursor on the position at which you want the lost lines restored, you would
type the command. If you can’t remember the correct value for n, you might start
with 1 and work your way back to 9. An example of the quick way to do this is:

nlp
u.
u.
u.
u.

You are starting at the register 1. If it retrieves unwanted text, you can type an undo
command (u) followed by a dot command (.). The dot will increment the register by 1
and repeat the command. You can type (or repeat) up to eight u. commands as
needed to get to the desired text. You can retrieve no more than the nine most
recent delete operations.

2-46 Licensed material—property of copyright holder(s) 069-701036

Replacing Text

Replacing Text

The replace commands cause the new text you type to overwrite (or replace) existing
text. Table 2-19 lists two commands to replace text.

Table 2-19 Commands to Replace Text

Command | Definition

nr Causes the next character you type to overwrite the character at the
cursor position (or multiple characters beginning at the cursor). After
you type that character, vi automatically returns to command mode.
You do not have to press the Escape key.

R Starting at the cursor position, overwrites existing text until you press
the Escape key to return vi to command mode. If the end of the line
is reached, this command will append the additional input as new text.

You can precede the r command with a number to indicate the number of characters
to be overwritten.

Replacing a Character

The r command cause the next character you type to overwrite the character at the
cursor position. Sample text follows.

There are more than 75 ou[e]door Olympic events.
Using the r command enables you to replace text. In this sample text, you would type
the r command followed immediately by the letter t to replace the character "e" with
"t". The "REPLACE 1 CHAR" message is displayed in the status line when you use the
r command. It is removed when you type the replacement character.
The result appears as follows.

There are more than 75 ou[t]Jdoor Olympic events.

The cursor is stationary, and command mode remains in effect.

In addition to replacing a single character, you can also replace n adjacent characters
with n instances of the same character.

Sample text follows.
Spectators numbering [1]J00000 are expected to attend.

Using the 6r9 command, you can replace "100000" with "999999" (or replace the six
numbers "100000" with six instances of the digit "9"). The "REPLACE WITH 1 CHAR"

069-701036 Licensed material—property of copyright holder(s) 2-47

Replacing Text

message is displayed in the status line when you use the r command, and it is
removed when you type the replacement character.

The result appears as follows.
Spectators numbering 99999[9] are expected to attend.

Command mode is still in effect.

Replacing Multiple Characters

The R command overwrites existing text starting at the cursor position and ending
when you press the Escape key to return to command mode. Sample text follows.

Spectators [nJumbering 999999 are expected to attend.

Using the R command enables you to replace multiple characters. In this sample
text, you would type the R command followed immediately by the text rose to their
feet to applaud to replace "numbering 999999 are expected". The R command
replaces multiple characters until you press the Escape key to terminate entry mode,
returning vi to command mode. The message "REPLACE MODE" is displayed in the
status line after you type R and while you type the replacement text. After you have
completed entering text, you press the Escape key to return to command mode, and
the message is removed from the status line.

The result appears as follows.
Spectators rose to their feet to applau[d] to attend.
Notice that the old text "to attend" remains on the screen. To get rid of unwanted
text, you should use a delete command. (See the section on "Deleting Text" in this
chapter for more information.)
Remember that you are overwriting on the current line only. If your new text exceeds
the boundaries of the old text from the current line, the excess text entered is
appended. This means that you will not overwrite existing text. The following
example illustrates the use of append following overwriting. Sample text follows.
Spectators [Jnumbering 999999 are expected to attend.
The Olympic Committee began work on the festival years ago.
In this sample text, you would type the R command followed immediately by the text

jammed into the arena for the gymnastics event. to replace the existing text and
append to the end of text.

248 Licensed material—property of copyright holder(s) 069-701036

Replacing Text

The result appears as follows.

Spectators jammed into the arena for the gymnastics event, which
featured the defending champion[}]

The Olympic Committee began work on the festival years ago.

Text on the current line was completely overwritten; however, the text exceeding the
current line was appended. Notice that the subsequent text was not overwritten.

Changing Text

The change commands replace existing text with new text. The new text does not
have to occupy the same amount of space as the old text. The change command will
mark the specified amount of text to be changed by placing a dollar sign ($) on the
final character in the range and put vi in input mode. After you finish entering the
new text, you can press the Escape key to return vi to command mode. If the
changed text exceeds the text area marked for change, additional text will be inserted.
If the changed text occupies less space than the text area marked for change, when
you press the Escape key, the old text is deleted and the excess space is squeezed.

069-701036 Licensed material—property of copyright holder(s) 2-49

Changing Text

Table 2-20 lists the change commands:

Table 2-20 Commands to Change Text

Command | Definition

s Substitutes the current character (or multiple characters, starting with
the current character) for another character(s). Input mode is
terminated by pressing the Escape key.

cl Same as ns.

cw Changes a single word (including a fragment) or multiple words to
new text.

cW Changes a single space-delimited word (including a fragment) or

multiple blank- delimited words to new text.

cc Changes all characters in the current line (or multiple lines) beginning
with the current line to new text.

S Same as ncc.

Changes the remaining characters in the current line from the cursor
to the end of the line (or multiple lines) to new text.

c$ Same as nC.

c0 Changes the characters in the current line from the cursor to the
beginning of the line (or multiple lines) to new text.

c(Changes from the cursor position (but not including the cursor) to the
beginning of a single sentence (or multiple sentences) to new text.

9] Changes from the cursor position to the end of a single sentence (or
multiple sentences) to new text.

c{ Changes from the cursor position (but not including the cursor) to the
beginning of a single paragraph (or multiple paragraphs) to new text.

c} Changes from the cursor position to the end of a single paragraph (or
multiple paragraphs) to new text.

cposreg Change<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>