
dy DataGeneral

Customer Documentation

Using the DG/UX Editors

Using the DG/UXTM Editors

069-701036-01

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 069-701036

Copyright © Data General Corporation, 1989, 1990

All Rights Reserved

Printed in the United States of America

Revision 01, February 1990

NOTICE

Data General Corporation (DGC) has prepared this document for use by DGC

personnel, customers and prospective customers. The information contained herein

shall not be reproduced in whole or in part without DGC’s prior written approval.

DGC reserves the right to make changes in the specifications and other information

contained in this document without prior notice, and the reader should in all cases

consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC

HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFTWARE

CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACT

BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR

OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT

INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING

CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR

PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED

TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO

ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL,

INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER

(INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR

RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN

IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE

KNOWN OF THE POSSIBLUTY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,

ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT,

PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation.

AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BusiGEN, BusiPEN,

BusiTEXT, CEO Connection, CEO Connection/LAN, CEO Drawing Board, CEO DXA,

CEO Light, CEO MAILI, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART,

COMPUCALC, CSMAGIC, DASHER/One, DASHER/286, DASHER/386, DASHER/LN,

DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,

DG/Fontstyles, DG/GATE, DG/GEO, DG/HEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,

ECLIPSE MV/1000, ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSEMV/2500,

ECLIPSE MV/7800, ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/18000,

ECLIPSE MV/20000, ECLIPSE MV/40000, FORMA-TEXT, GATEKEEPER, GDC/1000,

GDC/2400, microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE,

SPARE MAIL, SUPPORT MANAGER, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE,

and XODIAC are trademarks of Data General Corporation.

AT&T is a U.S. registered trademark of American Telephone & Telegraph Company. UNIX

is a U.S. registered trademark of American Telephone & Telegraph Company. DEC is a

trademark of Digital Equipment Corporation. NFS is a U.S. registered trademark of Sun

Microsystems, Inc. Yellow Pages, in the United Kingdom, is a trademark of British

Telecommunications plc.

Using the DG/UXTM Editors

069-701036-01

069-701065-01 (Japan only)

Revision History: Effective with:

Original Release — June 1989 DG/UX Release 4.10

Second Release — February 1990 DG/UX Release 4.20

Preface

This manual tells you how to use the editors that come with the DG/UXTM operating

system. To use this manual, you should have experience using a computer operating

system; while extensive knowledge of a UNIX® system is not necessary for using an

editor, you should have some familiarity with the UNIX system. Each of the four

editors is distinct from the other, and your application for an editor will determine

the one you choose. For instance, editread is a command line editor; it allows you to

edit commands issued from the shell. Both vi and ed are text editors; vi is a full-

screen editor, and ed is a line editor. With vi you can move the cursor to another

location in the file and operate on the desired lines; in ed, you issue commands in the

command line to affect the file. Finally, sed is a batch editor that you use for globally

editing multiple files.

Manual Organization

A description of each chapter follows.

Using the Command-Line Editor (editread): Chapter 1

Editread is an optional interface that you can invoke for editing command lines. The

editread facility can be used with DG/UX system programs.

Using the Full-Screen Editor (vi): Chapter 2

Vi is a full-screen editor that gives you a full range of cursor motion through your file

to display the desired text in a window. Vi provides tools for appending text,

inserting text, opening lines, deleting text, modifying text, and moving text. You can

use editing commands to work with characters, words, lines, sentences, and

paragraphs.

Using the Line Editor (ed): Chapter 3

Ed is a line editor that is quite versatile because it can be used with any type of

terminal including hardcopy terminals. Not only can you use ed commands

interactively, but you can also use them non-interactively in shell scripts.

Using the Batch Editor (sed): Chapter 4

Sed enables you to perform global editing operations on one or more files. The

major difference between the batch editor and the full-screen and line editors is that

editing changes with sed are written to standard output rather than to the file itself.

In this way, you can review dramatic, global changes before altering your source file.

Other advantages of sed are its speed, its performance of multiple editing commands

in One pass, and its use on a pipeline.

069-701036 Licensed material—property of copyright holder(s) ill

Readers, Please Note

Readers, Please Note

Data General manuals use certain symbols and styles of type to indicate different

meanings. The Data General symbol and typeface conventions used in this manual

are defined in the following list. You should familiarize yourself with these

conventions before reading the manual.

This manual also presumes the following meanings for the terms "command line,"

“format line," and "syntax line." A command line is an example of a command string

that you should type verbatim; it is preceded by a system prompt and is followed by a

delimiter such as the curved arrow symbol for the New Line key. A format line

shows how to structure a command; it shows the variables that must be supplied and

the available options. A syntax line is a fragment of program code that shows how to

use a particular routine; some syntax lines contain variables.

Convention Meaning

boldface In command lines and format lines: Indicates text (including

punctuation) that you type verbatim from your keyboard.

All DG/UX commands, pathnames, and names of files,

directories, and manual pages also use this typeface.

constant width/ Represents a system response on your screen.

monospace

Syntax lines also use this font.

italic In format lines: Represents variables for which you supply

values; for example, the names of your directories and files,

your username and password, and possible arguments to

commands.

[optional] In format lines: These brackets surround an optional

argument. Don’t type the brackets; they only set off what is

optional. The brackets are in regular type and should not be

confused with the boldface brackets shown below.

[] In format lines: Indicates literal brackets that you should

type. These brackets are in boldface type and should not be

confused with the regular type brackets shown above.

In format lines and syntax lines: Means you can repeat the

preceding argument as many times as desired.

1V Licensed material—property of copyright holder(s) 069-701036

S$ and %

<,>,>>

Readers, Please Note

In command lines and other examples: Represent the system

command prompt symbols used for the Bourne and C shells,

respectively. Note that your system might use different

symbols for the command prompts.

In command lines and other examples: Represents the New

Line key, which is the name of the key used to generate a new

line. (Note that on some keyboards this key might be called

Enter or Return instead of New Line.) Throughout this

manual, a space precedes the New Line symbol; this space is

used only to improve readability — you can ignore it.

In command lines and other examples: Angle brackets

distinguish a command sequence or a keystroke (such as

<Ctrl-D>, <Ese>, and <3dw>) from surrounding text.

Note that these angle brackets are in regular type and that you

do not type them; there are, however, boldface versions of

these symbols (described below) that you do type.

In text, command lines, and other examples: These boldface

symbols are redirection operators, used for redirecting input

and output. When they appear in boldface type, they are

literal characters that you should type.

In command lines and other examples: Represents the

cursor, which indicates your current typing position on the

screen.

Contacting Data General

To order any Data General manual, use the TIPS Order Form at the back of this

manual or call a Data General sales representative.

If you have hardware or software problems, please call or write the nearest Data

General Office.

If you have comments on this manual, please use the prepaid Customer

Documentation Comment Form that appears after the Index of this book. We would

appreciate hearing what you like and dislike about this manual.

069-701036

End of Preface

Licensed material—property of copyright holder(s) V

Contents

Chapter 1 — Using the Command Line Editor: editread

What Is History? cece cece ce ec eee scecencececeecscenesessseeeeessseaeeseeeseceaeeeeseseeeees 1-1

Invoking editread for the First Timeccccececessscececeeeececencecsacssecesseseeees 1-1

Viewing editread’s Default Values cc cececcccececececencsceaencecenescsceaesceceseceees 1-2

Assigning Values to editread FUnCtiomsccccccecsscecencecescencecesceceeencesseenes 1-5

Changing editread Values Interactivelyccccececscescecencececsceeeaeeeeees 1-6

Assigning Values to the EDITREAD Environment Variable 1-7

Assigning Values in the .editreadrc Fileccccccccscecenceccececencececeececeaces 1-8

Your Line Discipline and editread 2.0.0.0... ce cecececececeececeeecsceceeesceeeeeaeeeeees 1-8

Disabling editreadccccccceccecenceneecececenceeeeseacesenseeessesensesenseceaseseneeseaeers 1-8

Defining Cursor Control Keysccecescececeneececencececencncsceaenssceaeaenseseaesesees 1-9

Moving the Cursor Rightccceccscececeneececesceceeeaeececssenseesesaeneeseneaeeees 1-9

Moving the Cursor Leftcccccecececeecececencececeaeeeeceeescsceeesseessseaensees 1-10

Moving the Cursor to the End of the Line cece ececseeecececeseececeeees 1-10

Retrieving the Previous Line and Putting the Cursor at the End 1-11

Returning the Cursor to the Beginning of the Limececececeeeceeeeees 1-11

Moving the Cursor Forward Ome Wordcccecscscecsceceecectcscscscsceasaees 1-11

Moving the Cursor Backward One Wordcccccscececeeescececscscsceceesaes 1-12

Defining Line Editing Keysccccecescececenceceecncececeeecscsaeeseeeasecseeaeaeeeeees 1-12

Erasing a Character Backwardccccececencecececcecececeecsceeeesseseesssseseess 1-13

Erasing & WOTcccccecesc csc enc enc encencenceeceaceccesesseaseaeesseseeseeseaeeeeeseaenes 1-13

Deleting from the Cursor to the End of the Line cece cc ec eens eeee ones 1-13

Deleting an Entire Lime cece ecececeececenencececeeeececeeeessceasseeeseeseasees 1-14

Inserting Text Within a Line ccc cc ccecceceeeceeencecenceaesceenceaseceaeaeees 1-14

Inserting Text With a Leading Space cece ec eceeeec eee eeenceeeesseeenones 1-14

Defining History Keysccccecescecenceceeceesscenceaesseaeeseaeeseeseeesseenseseaseeeees 1-15

Differences Between editread and C Shell Historyc cece cesses seen ee 1-15

Recalling a History Eventcccceceeeeceeeececeeeceseeeeeeeeseeeeneeeeseeeeseeees 1-16

Scanning the History List cece sees ecececeeseeecereeeeecsseeseseecsesesseseeees 1-17

Moving Up the History List eee cece eee nc eee cenc ence encceecessseneeeaeseees 1-17

Moving Down the History List cece eee sce ec eee eeceeeeeceseeecescesceeceesees 1-18

Setting the Maximum History Length cece eeeee eee ene ee eeeeeeeeeeseeees 1-18

Setting the History Display Length cece eee ce sense ence ee eeceneeeceeeeees 1-19

Writing the History List to a File 20... eee ce ee ee eteeeee ree eereeeeeeeseeeeeeees 1-19

Reading a File Containing a History List ccc eceee ese eceeeeeeeeeeceeeeees 1-20

Defining Process Control Keysccceceeeecececeecncececcececeeeesecesenssseseseceeeees 1-20

The End-of-File Key (Log Out and End Input) «0.0.00... ce ceeeeeceeeeeeeeeees 1-21

The Interrupt Key cece cece ec ece ec eee eee eceeeneeeeeesensscnscseeeseessnseaeeenes 1-21

The Quit Key oo... ccc ceccccecc ese eceec scene encneeneeeeeseneeseeseseneesensseeneeseseseseeeees 1-21

The Suspend Keyccccesceseeceseeceececencencecensecenseseeseceessceeeesensessseeeees 1-22

Defining Miscellaneous Keyscecceececeeccecencesccseecesceeeenesaeesesssnceseseueees 1-22

Displaying the History Promptccccecececcscscececeeseeeeeeseeeeessseeeseeees 1-22

Refreshing the Current Command Line Displayceceseeeeeeeeeeeeoees 1-23

Enabling Verbatim Modecccecceee eee eceecenceeecesceesencsceeessecsesesseeenss 1-23

Displaying Terminal Typecccceececeeceeceececeeceecensesceceseceseecssecesueees 1-24

V1 Licensed material—property of copyright holder(s) 069-701036

Contents

Chapter 2 — Using the Full-Screen Editor: vi

The Working Bufferc ccc cccceceeceeeecencnceseeececeeceeesescsceseesesssesecesseeseseaees 2-1

HOW Vi Operatesc cece ccs eceececencecencseeseecessssenseeeeescsceesssenseessseesessessseeseeees 2-2

Defining a Termimal for Vicccceccesceecencesccccecescccseceseescesssesesceccssesseseeess 2-4

Differences Among Terminals Used with Viccceceesececesceececeecsccscsseeceeees 2-4

The Syntax of a vi COMMANA cece cese eee sceeeececenceceescesesceeessescsassceeesenees 2-5

6 > <a ©) 9) (-[o) «ner 2-6

Charactercccccecececscecscececscncecensececseeseeseesceeeesssesseesssceeceesseseseaseeeenenens 2-6

WOT oo... ecceceec eee ec scene ee eeeeceeeneeceeceeeeseeeeeeeeeee eset ee eneeeeeeeeeeeseeeeaeeeenseeeeeeeee 2-7

Space-Delimited Wordccccccessceeeecencecseceseeeeeseeseeseseeeseeessseeeeeseenes 2-7

| 1 2-8

SENLENCE 20... . cece ec ececeecececsceeeneececeeeneeeeeseneeeesesseseesseeeesesseeeesteeeeeeseaeeeeeees 2-8

Paragraphcccceccecencecencecceceseeesensenseneeeseeseessseeeeeseeseeseeseeseaeeseeeeeeenes 2-9

Screen Windowcccccscecencscseeeeceeesencsesseeessseeeseesseessesesseseeneeesseeeeeeees 2-9

YE. 2-10

How vi Relates to the Document Formatter: DTK cece ce ee ee ee ee ee ee 2-10

Setting Up vi Optionsccceccesssesseeeeseseseneeseeseeeeseeeeeceeeeeseeeeeeeeeeseeeeeeeees 2-11

Useful Tips While Using Viccccececeee sence ec eeeceneeeneeeeeeseeeeesesseeeseseeeeseenees 2-12

Undoing a Command (U)cceccecececeecececeeesceececaseececeseseneeseeceseseseees 2-13

Refreshing Your Screen (Ctrl-L)ccccccscscseceececscnsencncneesescnceseseesesens 2-13

Periodically Saving the Working Buffer (:W)ccccscecececsceceeeececeesceees 2-13

Quitting Vi (ZZ, :W, :q, :G!)cccececscseseecsccececncssceeecncneeseseesessceeseseeseeeees 2-13

InVOKING V1 21.0... ce ecece ee ececeee nc eee een e nce neeeeeeeeeeseneenses eee eeeeeeeeeeeseeeeseeeeeenseeeeeeeeees 2-14

Vi Editing Operationsccccccesesceceececeecenceeesceeeesaesceceeseeeeeenseasesenseseneees 2-17

Entering Textcccccccececeecececenc snes enceencensenseceseeeseeeseeeeseaeeseeeseeeeeessaensees 2-18

Moving the Cursorcccccececececeseecsceceereceecesseseseseseeeeseceessssceneeseeeeseeenseeees 2-18

Moving the Cursor by a Characterccccccecececececeecececeecseeeceseaeeeseeaes 2-19

Moving the Cursor by a Line ccc ecc cece ec ec eee ececeeceeeeceseeeencenseeeeeeees 2-20

Moving the Cursor Within a Lineccccescececeeceeeeeceeeeceeceeeesencsaeesenees 2-22

Moving the Cursor to the End or Beginning of a Limec.000 2-22

Moving the Cursor to a Specific Character on a Limecccecee ees 2-23

Moving the Cursor to a Specific Column on a Line (n))ceeeee 2-25

Moving the Cursor by a Wordcce cece ec ececeeeeeecneneeeceeseeneeseeeneeeeeeseeaes 2-26

Moving the Cursor by a Sentencec ee cececececeeececeeeeeceeeeecncseeseeneeen 2-27

Moving the Cursor by a Paragraphccccccccceceeecesceesceesceesceeccesseeeceees 2-28

Moving the Cursor Within the Current Windowccecceeeeeeceeeeeceees 2-29

Moving the Cursor Outside the Current Windowcceceeeeesceeceeeeeees 2-31

Moving the Cursor to a Relative Line (+, -)ccccecescecececenceeeeeeeees 2-31

Moving the Cursor to a Specific Linec cece eee e cece ec eeeneceeeeeeeees 2-32

Scrolling and Paging Text Through the Current Window66 2-32

Moving the Cursor to a Marked Locationcececceeeeee eee eeeeeeeeeees 2-34

Appending Textccccccesesceceeeeceeeneeeeneneeeeee eens eeeneeeeeeeeeeenssseeeeeeeeeeneneees 2-36

Inserting Textccccceceecesesc eee eceeeecenceneeens eee eseeeeeseeeseaeeseeeeeeseesenseseaeeeees 2-37

Opening a New Line for Textc cece ce cc ececeeeececeeeecececescecenseseaeessaesenensees 2-38

Deleting Textcccscecccceceecencescencescencescesseeceacteeseeessestsseseees see eeceeceeseeeeees 2-39

Deleting Characters at the Cursor and to the Right eee ce ee ee eens 2-40

Deleting Characters to the Left of the Cursor cece cece eee ec eee eeeeneeees 2-40

Deleting Words Lene e cece ecoencnece ea eneenecneceeoeen ssa eeccesasseeseessatenseeese 2-40

Deleting Space-Delimited Wordsccceceseee scence ececenceeecteeseeeesceeeees 2-41

Deleting from the Beginning of a LINE 2.2.00... cc ece ce ece eee enceeeeceaeeeeseeees 2-41

069-701036 Licensed material—property of copyright holder(s) Vil

Contents

Deleting to the End of a Lime cc cece cc eccecenceccenceectececcencecctecessenees 2-41

Deleting Entire Linescccececeecececsceccnceeseecsceeeessescsceaeessssceesasesess 2-42

Deleting to the Beginning of a Sentenceccecececececsceseecscsceeeaeeeeees 2-42

Deleting to the End of a Sentence cece ceceteeseeecececseecscscsseeeaseeeess 2-43

Deleting to the Beginning of a Paragraph ccc ccececececencececsceeeeeaceees 2-43

Deleting to the End of a Paragraphccceccececcscencecsectcescescseescesceaees 2-44

Marking Text for Deletionccccceceseceseceececscncececncsescecssescecseneeaees 2-44

Recovering Deleted Linescecsssssscscscsesscsscssscsssccssssscsssesaseceees 2-46

Replacing Textccccececscececeseecsceceeeseecsceeesessecneeeeeseensesesseseeseneseseseseseees 2-47

Replacing a Characterccccceceecscscescscscececesccesessscsseaessscsesesessseeeees 2-47

Replacing Multiple Characterscccceccesscsccetscsccncscecescsccnssceesecsseaees 2-48

Changing Textccccccccsessccececececeneccsesesesesseeseeeseeesseseseeseeesssseasesseeeseseees 2-49

Substituting Characterscccesssessecscsceccecscscecscsesseacesecssssesssesssseeenes 2-51

Changing Wordscsccesesecescecscececscscnceceesesescscessessscsseeeesceeseeaseees 2-51

Changing Space-Delimited Wordscccccecscecscecscccecscscsscececesesesecaeas 2-52

Changing all Characters in the Current Linecccccceceececeeeecseeeeecees 2-52

Changing to the End of a Lime 2.0... cece cee eec scene ececeececeacecseeectceaeecees 2-53

Changing to the Beginning of a Sentence cece cece ec ecesceceeeeeeeeaeecees 2-54

Changing to the End of a Sentence cc cccceseecsceceececenesceasecsceaeeeees 2-55

Changing to the Beginning of a Paragraphcccececcececeecscencececeaeecees 2-56

Changing from the Cursor to the End of a Paragraphcceceeeeceeeees 2-57

Changing Marked Textcccecesceceeeecenenceceeeeescseencsescessseeseseeeesesseees 2-58

Moving Textccecessecsececsneeceeeeeeeeeseseeeeeeene eee eeeeeeeenseeeeeeeeeaeneeeseeeeeeeeeaee 2-59

Using Registers for Storing Textcccceceecececscscececenccesceceeeseseseseeaeas 2-60

The Delete Commandscccccceececececencecnceeececeseeseseesseasesseseseeeseenees 2-61

The Yank Commandccccecscescscencececcscsceensssscesescessscesssseeeseseas 2-62

The Put Commandsccccececeeceecseceneecescecescenesseessseecesesaesseesseesseanes 2-63

Examples of the Delete-and-Put and the Yank-and-Put Operations 2-64

Deleting and Putting Text cc cccccecececeeeeecenesceceescenseeseeeeeaseeeens 2-65

Yanking and Putting from an Alphabetic Register ce eceee ences 2-66

Searching for Patterns in Last Line Mode sae eeeeececeeeeeseeeeeseeeeees 2-69

Metacharacters Used in a vi Pattern Searchc cee ccececeececeeeeceeeeeeeees 2-71

Searching and Substituting Patterns 2.0.0.0... cece cecececeseeeeceeeceeeeesceeeeeseeenes 2-71

The Addressccccecescecescescecenceecnsenceeseeeeseaeeesaseceseesseeeeseaseeeeeeees 2-72

Search Patterns and Replacement Stringsccccececeececeececeeeeeeees 2-74

Substituting in the Current Linecc ccc cee ece eee e ccc eeceeeseseceescesaeeeees 2-75

Substituting in the Entire Buffer (%) cece ccscsceencececscececeseceseneees 2-76

Global Substitution in a Single Line (2)cececececececececeeeeseececeees 2-76

Confirming Substitutions (C)ccccccececececececececececececececeeeeaeceseess 2-76

Advanced Substitution cece cee ce ete ece nce ecenenceeceeeeseeeesseeseeeeeees 2-77

Manipulating Files in Last Line Mode cece cc eceececeececeeceaeseencencscenceaeees 2-82

Commands to Write Filesccccsccescececececeecececececeeeeesescsseceeeseeseeaeas 2-83

Commands to Read Files ce ccsseeececececereececscscscscescnsscsceneesesesseees 2-84

Commands to Edit the Bufferc cece ceceeeec ec ececseeceeeecsceeeeenseeseeeeeeas 2-87

Searching for a Tag in Other Files cece cece eeseeeeenceeeeeeeseseeeseseeeeeee 2-93

Commands to Exit to the Shellccc cc cccceceecececcsceceeeesscescecessseseeacesees 2-93

Setting Up Your vi Environmentccccecsceececcececesencscsccscecescscessssesensnees 2-95

How to Set Options cc eecceeeeceteeceeencseeseeeecenenesseeeseeeesseeeeeseeenseeees 2-95

Where to Set Optionscececec cece eeeecececeeececeeeesceceeeeeeeeneeoecesseeenensees 2-96

EXINIT Variable ccc cceccceececececencecececeeeeceseeececeaeesececeeseenenceees 2-96

FOXIC FIle oo. cece ec ece cece eee ec enc eceneec enc enseeeeeeeeeeeseeeeseeeesenseeseeeeseaeeeenes 2-97

Vill Licensed material—property of copyright holder(s) 069-701036

Contents

11S a Coan (06 (2-98

Displaying the Current Options Set ccc cececececeececececeececscscsessesenceae 2-98

The Optionsccccececencecscescsceceseecscesencsseceeesesceeeeessseseseenesseseseeeeees 2-100

Editing Optionsc.ccececsececcecscescscescensscecesescescscesesseesseseeeeeesees 2-101

Programming and Debugging ODPtionscccececescsececeececsceseeeesees 2-106

Options for Slow Terminalsccecececscscecscscscsccnsceecssscescessoees 2-108

DTK Oftiomscccececcecsccncecececescscensseeceesaseesesceasssecsaseeaseseseenes 2-110

Writing and Using Macrosccccececsececsccccscsceseesscsceasesscsceesssscsssaseeeeasees 2-111

Where to Set Up Macroceccccssececsceececcncecscecsceecsssasaessesessssesaneees 2-111

Using Key Mapsccccecsccscsceccsescscsscecsencesscnseeessscsascesesscsseaeanenes 2-112

Assigning Nested Macro Mapsc.cecsscscscescscsescscenessssseessssesessseaeeees 2-115

Deleting a Key Mapcccececscesscsecncsesescseeceeseseesensesseseseseeseeseseseeees 2-116

Abbreviation Macrocccecececscecsccccncscscececenescesesensesecssneseessesseseseees 2-116

Deleting Abbreviation Macrocccccececeneceececscecesescecscscssesescees 2-118

Undoing the Effect of a Macro 20... eee cece see ecececeeceeeeecsceecsesenenes 2-118

MUSCe]]AameOusceceseesececeececeeenesceceneneeseeeessceaseseseseeeneeeeeeeeseseceeeeenenee 2-119

Transposing Charactersccccecscscececscecesescesessesesencececeseseesssaseesseees 2-119

Repeating the Previous Commandcccecececscssceeecsceecscecscececsoeasaees 2-119

Joining Lines cc eceeeeeceececereeescnceceeecneeeeseseseeeseseeeeeeeeeseesecnseeeseenens 2-120

Clearing and Refreshing the Terminal Windowssssesssscscscseeeees 2-121

Changing Casesccccecscececensscsceceescecsssssscssessessecsseaeeeeseeesaeseeseeesanas 2-121

Getting Current Editing Informationccccsececececececeeeseececsesceeeeees 2-122

Error R€COVELYccececcececceccnceceeeeeeessececesescenesceeesseseseeeessceeseeesenees 2-122

Undoing the Previous Command.ccccccceecececeececscsceeeeesesetenones 2-122

Recovering Lost Filescccceccscsececeecenceseeceesessenctaesseesseenseereees 2-124

Recovering a File from the Shellc.ccc cece ececeececeneeceseseneeeeeeeees 2-124

Trouble Saving File in a vi SeSsionccececececeecsceceeeecscscsenceseeees 2-125

Chapter 3 — Using the Line Editor: ed

TnVOKINg Cd oo... sce ce sce eeeereeeeeee none ee eeeeeneee eens eee eee eeeeeeeee eens sees eeeeeeeeeeeeeeeenees 3-2

General Format of ed Commandsccccecseeececeececesceeeecsceececesesceseeenseeeees 3-4

Line Addressingcececesssescseeeeceeeeeeeneeeesneeeeeeeenseeeeeeseeeeeeeeeeeeeneceeeeeeeens 3-4

Numerical Addressesccccccecescecenesceecscescecesenceneseesescencsssaeesesseeneseees 3-5

Symbolic Addressesceccecececcecececeecececescecsceceeecseensesssseseeeeteseseees 3-6

Current Line ccc cece cece ence eee cece ence cee nne eee eeeeeeeseeeeeneseesseeeeneseeenes 3-6

Last Lime 2.0... cece tee eec ete ecc ence eee ne ene eneeenseneeeeeseeee ees eneeeseneeseseseeseeene 3-7

7a 1 00h 3-7

Current Line through the Last Lime cece cece eee nc eee neeeeeeeees 3-7

Relative Addressesccceccececcecceceecencenceecenseceeceseenseceecesescecseseeseeeeeees 3-8

Character String Addressesccccesecescececescscsceensecsceasnsececesseeceersseeees 3-9

Specifying a Range Of Linesc cece cee ce ee ecenceceneeeeeeneeeeeeeeeecessesceeeseees 3-11

Global Searchesccccccecececenceceeeneecscenceceeenceeecesensecssessesecneeseseseeeenes 3-12

Displaying Textccccececcecsceceeceeeeeeececseeeseeseneeeesseeneeeenseeeseeseseeeseeeeseseees 3-14

Displaying Text Alone (p)cccecsecececeececeensceceeectcsceceseesesenseeeseeeess 3-14

Displaying Text with Line Addresses (11)cscescsececsceceectccscnsessetceeens 3-15

Entering Textccccccececeecececeeenceceeceeneeeeeeseeneeeeeeeseseeeseeeeeneeeeeseeeseeeeneeeees 3-16

Appending Text (a)ccccccecscecececeeecesecscecececscsseesaseeesesens seeeeceeeeeeeees 3-16

Inserting Text (i)ccccececcecececncnccecececesnsnceseeececeseesscsseeeeeesensaeeeeoeeeens 3-18

Changing Text (C)cececcccecsceccecececseeecececececnenceeeeenenseececssesaseseeseeenenees 3-19

Deleting Textcccccececc eee nceeeeeec cece eneeeeeeeeceeeesesseseseneeeeseeseeeeesseneeeeseeens 3-20

069-701036 Licensed material—property of copyright holder(s) 1X

Contents

Deleting Lines (d) cc cececcecsscscscscececscsececscescscesseascsseecesaseesssascesees 3-20

Undoing the Previous Command (U)ccecessesscesescncscscscscsescseseeeseees 3-21

Deleting in Text Input Mode (Ctrl-U and Del) ccc eececeeceeeeceeeeeeees 3-22

Substituting Text (S)ccccccecscsscecsececscscecscceeecseceeecscsscecsseecsceeescsseecseees 3-23

Current Lime ce ceccecececeecececscnecsceencecscseesseascscsenenencaseessenesosceseseees 3-24

Single Line Other than the Current Linec.cccececececsceeseeseececsceceens 3-24

Range of Lines Lene eneneenceecenseecenceesesseeeeeesaesaeesseeeeseseeseaseeees 3-25

Global Substitutions (2)cccecscsscecscecececsecececsceeescssescsceeescsescasenens 3-26

Metacharacters for Pattern Matchingcccececescesscscsceceseeesceceseseeees 3-28

Rearranging Textccccccccsscccsescssscscscscscsencssseseeaessessssesassssseeeeseeseseseseenes 3-33

Moving Lines (1m)ccccscscsececececscsececececscsesescsececesseecseseeeeeescsesesscsens 3-33

Copying Lines (t)ccccsscsscsececsecscececeecscsececseecessesssescesseesceecseeeees 3-35

Joining Contiguous Lines (j)ceccecscecscecscsecececscecncetecececnseseeseceeeees 3-37

Using Other Filesccccssscscscecescececeescecessececceeceseessceseeseceassceseceseesess 3-37

Reading in a File (1)cceccececsscecscescscscecscscncscncscasessssasceseteseeseesesees 3-38

Writing Lines to a File (W)csccscsscscscecececscsseececssessscaseneesesescoeseeaes 3-38

Saving the Buffer Contents in a File (W)cecsceececesececeececesoecseeeceeees 3-39

Quitting Cd (q)csceececscsscececscncneeecececscncneeeeceesceseseeecseceseseeeeeesecsenees 3-40

Other Useful Commands and Informationcccececeecececscseeeencncsceseeeees 3-41

Prompting (P)ccccsccscsccecscsececscscecsececesseecececsecscesseossseesseceseeceeneees 3-41

Help Commands (h)cccecscsscecsceecscnceececscncseceeseeeesseoesesascscsseeeeeaes 3-42

Displaying Nonprinting Characters (1)cccecscsecececececscecscecsceeececeees 3-44

Displaying and Changing the Current Filename (f)ceceeeeees ssesesese S45

Escaping to the Shell (!) cc ceececsecsececsececsscecseesceseecssescesessesceeesceeeeees 3-45

Recovering from System Interruptscccescecececcececencscscseescscsceacesees 3-46

Chapter 4 — Using the Batch Editor: sed

How sed Processes Inputcccceececececececeeeececscsceeeneecnssesseeesesesseeeeeeenees 4-1

The sed Command Formatccccecececsnencscececenencnceceeensscnceensseseeseeeaeaeess 4-1

A Sed Command Line Versus a Scriptccccecececececncecececectcneecesaseeseoeeeens 4-2

Addressing Input Linescececececeeeeeececeeeeencnceencnsncnsesscnseseeesssesasaeeeesenaes 4-2

Sed Editing Operationscccceeeeeseececeeseeececececececesseesseascesnseseeesesensaseseees 4-4

Using Blank Lines in a sed Scriptccee cece ceeecececeeeceeeecscececsceenessseeees 4-5

Using Comments in a sed Script (#)cccccecsessceceececscseescescecscasenensenenes 4-5

S700 0) Come 69 010 9 | (4-6

Printing Addressed Line (p)cccscscececeecscecececencecesecsceasaseesssseseeeeeees 4-6

Numbering Lines (=)ccccccecscscsccscececscecscneceaeeeesesenesessesesenceeasesosenenes 4-7

Appending Text (a)cccccccececscscscnceessssnencnenencscnseessseneesesesesesasaeeeoeenaes 4-7

Inserting Text (1)ccecececececscscneeceescnencececeenencseeeeeeesesssensesesneasesaeoeaes 4-8

Changing Text (C)ccccecececececececececececscececececesesececesecesscesececseseeeeseeesaeas 4-9

Deleting Text (d)ccccccccecececececesencecececenenceseceeeaseseseseseseeteeseseneeseees 4-11

Substituting Text (S)cccececcesecscscsccecscecscscecscnssecesseeensnsesesesesseesseeeens 4-11

Simple Substitution (2, P):sccecsecscscsccececscseoecscseescsessescsseseseees 4-12

Substituting the nth Occurrence of a Pattern (Nn) ce ceeeesececeeeeeeees 4-13

Writing the Substitution to a File (W)cceceeeceecececeeeeceeeeeeeeaeeees 4-13

Advanced Substitutioncccccecececscececececeeeceeecceceeeceeseseneneseseeeas 4-14

Writing Standard Output to a File (W) eee cece ee eceeceee ec eceeeeeeeeeeeeees 4-15

Reading Text from a File (1)ceccececececececeecececececeenceeecscncseseeeneeeaes 4-16

Quitting after the First Pattern Match (q)ccsececesssececececsencscecsceeeees 4-17

Displaying Nonprintable Control Characters in Standard Output (I) 4-18

x Licensed material—property of copyright holder(s) 069-701036

Contents

Converting Strings of Equal Length (y)cccscscsesscecscecsececscsceseneeees 4-19

Using Control Structures: Advancedccccscscsecsccscesesccescecesceccscecseeesoes 4-19

Grouping with Braces ({})cccscscececscsesececscncecsceasescscesscseesessesesseees 4-20

Simple Branching to Label (D)cecccesssescscececececeecececsescssscecsesesceees 4-21

Conditional Branching to Label (t)ccccececscececececscececscscscscseseeeees 4-22

Pattern Matching Across Lines (N)cccscsscecscsscecsccsescssascecescecscescssescasoes 4-24

Appendix A — Regular Expressions

Basic Set of Regular Expressionsccccssescssscecscscececsseseseeeseeesesseesesesens A-2

The Caret (*) and Dollar Sign ($)ccecsccecsscsccscscescesescesescosesscesoneees A-2

The Period (.)cccecscsccecscecscecscscncecscscscneesescscsseseesessecesesssasssseseseeeees A-3

The Asterisk (*)cccecscsscecscncnecscscscncascsceseeeecscseececeecscnseseeseseesesesseees A-4

The Backslash (\)cscsscscscsccececscscsscscncccscecseesessseescsseeossssasessoeseses A-5

The Brackets ([])cccsscesscsccscscscscesscssescscesssescesssescssesessssesseseeseseess A-6

Extended Set of Regular Expressionsccecscscscececeeescsescsceecscesessesseesees A-7

The Escaped Parentheses (\(\))cscscesecscssccscscsescseccseseecesecscssesaeoes A-7

The Ampersand (&)ccccccscecsscscecscncscececaeeececsscesecsecscseosensseesosesaes A-8

The Escaped Angle Brackets (\< \>) oo... cece ceceececeececeeceeeecesceeeeeesceseeeees A-8

The Escaped Braces (\{ \})cccsscecscsscececscscecscoscssssesencesesseseseeseeseses A-9

Index

069-701036 Licensed material—property of copyright holder(s) X1

Table

1-1

2-1

2-2

2-3

2-4

2-5

2-6

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

2-18

2-19

2-20

2-21

2-22

2-23

2-24

2-25

2-26

2-27

2-28

2-29

2-30

2-31

2-32

2-33

2-34

2-35

2-36

2-37

2-38

2-39

2-40

2-41

Xil

Tables

Summary of editread Functions and Valuescccsceeseeeesesseeeeeees 1-4

Vi Editing Operationsccccscscscscscssencscscesncecsecesesscsseeessessesesees 2-5

Vi Editing Options Set for Examples in This Chapter006 2-12

Vi Command-Line Optionsccsccecececeeesencscscscsceescecsasesseeseeenes 2-15

Commands to Move the Cursor by a Characterccceeeeseseeeeeeees 2-19

Commands to Move the Cursor by a Linecccecceceseeeeceeesceeeeeees 2-20

Commands to Move the Cursor to the Beginning or End of a Line 2-22

Commands to Move the Cursor to a Specific Characterc000 2-24

Commands to Move the Cursor by a Wordcececscessecseeeeseeeeees 2-26

Commands to Move the Cursor by a Sentenceccececeseeeeeeeeeeees 2-27

Commands to Move the Cursor by a Paragraphccceccscsceceeeees 2-28

Commands to Move the Cursor Within the Current Window 2-29

Commands to Move the Cursor to a Relative Linee ce eeeeeo eee 2-31

Commands to Move the Cursor to a Specific Limececeeeseee eee 2-32

Commands to Scroll and Page Textccccecscsseecseecenescscteeasseens 2-33

Commands to Append Textcccceseccecsccnceceecscencscescscesssaeeeeees 2-36

Commands to Insert Textccccecescececcecscenceeenceaescscescsaencsseaeesees 2-37

Commands to Open a New Line ce cececececececeeecncecscececscsceceoeees 2-38

Commands to Delete Textcc ccc ccececececeececeeeeeecneeencsesaeseeeeess 2-39

Commands to Replace Textccccececeecsceececesceceeeeceseesesssesseeeees 2-47

Commands to Change Textcccccesececscscecensscscscececeeeeeececsseseeees 2-50

Named Registers for Deleted and Yanked Textcccececeseeeeeee ees 2-60

Commands to Yank Textccccesesesecececscscncncececeecsssssesseessessesees 2-62

Commands to Put Text ccc cececcececeececenceceeescescseeecssescscsesseeeeees 2-64

Examples of Delete-and-Put and Yank-and-Put Operations 2-64

Commands to Search for the Next Occurrence of a Pattern 2-69

Metacharacters Used in a vi Pattern Searchcece ec eceee sees eeeeees . 2-71

Addressing Methodscccccececscecceeececececcecesenssceceesesceaeaenssenees 2-73

Substitute Options cece ceeesceeceeeesecenceenceeseensessseeseesceeseseseeseseees 2-74

Advanced Substitution Operatorscccceeeeceeceececeecesceeeesescesseoeees 2-78

Commands to Write the Buffer to a Disk File cece cece ee eee 2-83

Commands to Read a File to the Current Buffer cece eee ee eee 2-85

Commands to Edit the Buffer cece ecee cence eee eee esc eneeeseesenes 2-88

Commands to Search for a Tag in Other Files cece eee ec eee seen eees 2-93

Commands to Exit to the Shell eee eee e cece nee eceeeeenceneeeeees 2-94

Editing Optionscccceceeceeceececeeceececeneeecenseesseeseesenseeeeseeeeneeeee 2-101

Programming and Debugging Optionsccseeeseseececeeeeeeeeseeeeees 2-106

Options for Slow Terminalscsscecscsesceeeeecsssencsesseeeeeseseeeee 2-108

DTK Optionsccecesceec eee eceeceeenceeeeeeecensenseessaeseeeseecsessaseseeeeees 2-110

mm Macro Set Commandsccccccseececescscenceescenescesssseasseseenes 2-111

Escaping Control Codes 1n Macrosc.eseceecenesccsccececceeneessseceees 2-113

Undo Commandsccececeseececencececeececencsaesseaessenssesseeseseseseeees 2-123

Summary Of ed Commandsccccccececescsceceseecncecesssceeessncseesessees 3-3

Licensed material—property of copyright holder(s) 069-701036

3-2

3-3

3-4

3-5

3-6

3-7

3-9

3-10

3-11

4-1

4-2

4-3

A-1

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

069-701036

Tables

Summary of Line Address Syntaxcccscscseeeccreteceesescnenceseeeeeeseees 3-5

Summary of Global Search Commandscccceccecsceeesececseenscaeens 3-12

Summary of Commands for Displaying Textccccecscserececneeeeeeees 3-14

Sample Addresses for Displaying Textcccccecoececseeecsecsceeeceeees 3-15

Summary of Commands for Creating Textcccecesecscscsesecereceeeees 3-16

Summary of Commands for Deleting Textccccesesecsceeeeeereceees 3-20

Summary of Pattern-matching Charactersccccccesecerscscsceeceeecereees 3-28

Summary of Commands for Moving Textcccececcesecsceesecseeeceeees 3-33

Summary of Commands for Manipulating Filescscececseeeneeeeeees 3-37

Summary of Other Useful Commandscccececeeceecsececeeseeeenenes 3-41

Addressing Methods:.:scscscscecscscssscsceceseseseceessssesesssssesseeeseeess 4-3

Sed Editing Commandsc.cscecesecscscncececeseeeceenceceseseseeeseeesesesess 4-4

Substitute Optionscecsccscecsceeescececccnceeeeceseecnsecnceseesessseeeesess 4-12

Regular-Expression Metacharacterscccscocesssscecscecscsesececeesenenes A-2

The Caret (*) and Dollar Sign ($) in Regular Expressions0066 A-3

The Period (.) in Regular Expressionsccccscscscscsceveecseecnceseeeesess A-3

The Asterisk (*) in Regular Expressionscccscsceseceeeesenseseeeeeees A-4

The Backslash (\) in Regular Expressionsccccccscsvessesseeseceeeeees A-5

The Square Brackets ([]) in Regular Expressionsccscceeseeeeeeeee A-6

Extended Regular-Expression Syntaxccccccsccscecceceesecceeenseceeseees A-7

The Escaped Angle Brackets (\< \>) in Regular Expressions A-8

Variations of Escaped Braces (\{ \})c.ceseecscssesesceceveeescscseeenseeens A-9

The Escaped Braces (\{ \}) in Regular Expressionscsseeseeeeees A-9

Licensed material—property of copyright holder(s) Xill

Figure

2-1

2-2

2-3

4-1

XIV

Figures

Editread Configuration Displaycccecsssecsceesceescccsceseessseseeees 1-2

Excerpt of a Sample Windowscscsesesscscsccveesececscesesesesseeeenees 2-10

Typical Screenccccecsscscecscecceseesceeseecesesessesnseeseseeeeseseeseseeseseeee 2-16

Typical Editing Options Displaycccscecececscecesecscecceeeeeeeeeseeees 2-99

Steps for Pattern Matching Across Limescsccecessesecscsceeeececeeees 4-25

Licensed material—property of copyright holder(s) 069-701036

Chapter 1

Using the Command Line Editor:

editread

The command line editor, called editread, is an optional interface that you can invoke

for editing command lines that you enter from the shell. Furthermore, editread offers

a history facility that saves your previously typed commands for later recall and

execution. This history facility offers the same basic function as the C shell’s history;

however, they are different in some important ways, which are discussed in the

section "Using History.”

NOTE: Programmers—you can also use editread with other DG/UX system

programs, such as mxdb and crash. Refer to the Using the Multi-eXtensible

DeBugger (mxdb) for information on mxdb, and the System Manager’s

Reference for the DG/UXTM System for information on crash.

What Is History?

The history facility automatically captures and saves a list of the commands you type

and execute on a command line. It can save only a certain number of commands, but

you can determine that number, up to 500 in a single session. If you find yourself

typing repeatedly the same command (or a variation), you could economize on

keystrokes by using history. History’s recall and repeat facility lets you recall a

previous command to re-execute. Additionally, you can recall a command and edit it

with editread editing keys before re-executing it or you can save the current history as

a file and execute the file as a shell script.

Invoking editread for the First Time

The editread facility is initially turned off. To enable it and accept the default

settings, follow these procedures:

1) In your home directory, create an empty file and name it .editreadre. An

example of creating an empty file named .editreadre with the cat command

follows:

S cat > .editreadre 0

<Ctrl-D>

069-701036 Licensed material—property of copyright holder(s) 1-1

Invoking editread for the First Time

A file named editreadre.proto is provided in /usr/lib on your system as a

model of a .editreadrc file. You may choose to copy this file, renaming it as

-editreadrc, in your home directory.

2) Verify the existence of the file by listing it:

S Is —a .editreadrc 3

The editread facility is now in effect for new shells or mxdb or crash

processes, but not for the current shell.

Viewing editread’s Default Values

To read a quick summary of the editread default values, type the following command

from the shell:

S CtrI-R

Figure 1-1 shows an editread configuration display.

{—

CURSOR CONTROL

backward

forward =

goto_end =

goto_end_ov =

home =

left =

right =

PROCESS CONTRO

eof =

intr =

quit =

NM

susp =

Notice that the caret (*) in this configuration display represents the Ctrl key.

1-2

EDITRE AD

L

CONFIGURATION

LINE EDITING

insert

insert_space

erase

word _ erase

kill

delete _end

CONFIGURING EDITREAD

enable

reconfig

ON

DIS PULA

HISTORY

hist _display =

hist_save =

hist_recall =

hist_scan =

hist_up =

hist_down =

MISCELLANEOUS

prompt =

refresh =

verbatim =

term =

Figure 1-1 Editread Configuration Display

Licensed material—property of copyright holder(s)

23

100

ESC

UP

DOWN

OFF

vt100

069-701036

Viewing editread’s Default Values

Six categories of functions are identified in the editread configuration display:

Cursor control.

Line editing.

History.

Process control.

Configuring editread.

Miscellaneous.

Within each category for each function, you will see a keyword that represents the

function on the left (such as "backward"); to the right is the current value assigned to

the function. A value can be represented as:

Control key sequence; (Ctrl-X), where X is another key such as an

alphabetic or numeric key.

Single key; such as "RIGHT," "LEFT," "UP," and "DOWN," which

correspond to the arrow keys: rightarrow (—), leftarrow (+), uparrow (f),

and downarrow (|) on the cursor motion keypad. Also, the at sign (@) and

the pound sign (#) are single keys.

String value; such as the type of terminal you are using.

Number vat'ue; such as history display length.

ON or OFF condition; ON enables a function, and OFF disables a function.

An unassigned function is considered off.

No setting means that the function is disabled (or unassigned), but you can

assign a key sequence or single key value to it. To disable a function, assign

the OFF value.

Table 1-1 summarizes the editread functions and default values:

NOTE: In the following table, the Ctrl key is used to represent the caret (°).

069-701036 Licensed material—property of copyright holder(s) 1-3

Viewing editread’s Default Values

Table 1-1 Summary of editread Functions and Values

Keyword Description Default

Editread Configuration

enable Turns editread off or on. ON

reconfig Displays the current editread values and concludes Ctrl-R
a redefinition of a single function or multiple

functions.

Cursor Control

right Moves the cursor one position to the right. rightarrow

left Moves the cursor one position to the left. leftarrow

goto_end Moves the cursor to the end of the line. Ctrl-E

goto_end_ov Recalls the previous line and moves the cursor to unassigned

the end of it.

home Returns the cursor to the beginning of the line. Ctrl-A

forward Moves the cursor to the beginning of the next Ctrl-F

word.

backward Moves the cursor backward to the space after the Ctrl-B

previous word.

Line Editing

erase Erases a character one position to the left of the Del

cursor.

word_erase Deletes the current word. Ctrl-T

delete_end Deletes from the cursor position to the end of the Ctrl-K

line.

kill Erases the entire line. Ctrl-U

insert Enables and disables insert mode. Ctrl-N

insert_space When insert mode is in effect, a leading space OFF

always appears when inserting characters to the left

of the cursor.

History

hist_recall Displays the history list. Esc

hist_scan Searches through history list for pattern matches. Ctrl-P

hist_up Recalls the previous command in history. uparrow

hist_down Recalls the next command in the history list. downarrow

hist_save Sets the maximum number of commands to be 100

saved in history.

hist_display Sets the number of commands to be displayed at 23

one time on your screen when you press <Esc>.

(continued)

Licensed material—property of copyright holder(s) 069-701036

Viewing editread’s Default Values

Table 1-1 Summary of editread Functions and Values

Keyword Description Default

History (continued)

write_hist Is not a function you can configure, but a write_hist file<Ctrl-R>

command you can use to write history commands

to a file.

read_hist Is not a function you can configure, but a read_hist file<Ctrl-R>

command you can use to read a file containing a

history list into the current history list.

Process Control

eof Sets the end-of-file character. Ctrl-D

intr Sets the interrupt key. Del

quit Sets the quit key. Ctrl-\

susp Sets the suspend key. Ctrl-Z

Miscellaneous

prompt Precedes the shell prompt symbol with the current OFF

history number.

refresh Refreshes the current line. unassigned

verbatim Nullifies (escapes) the meaning of an editread Ctrl-V

value.

term Identifies your terminal type. vt100

(concluded)

Assigning Values to editread Functions

You can assign values to functions in these places:

@ The current program (sh, esh, mxdb, or crash).

e The EDITREAD environment variable.

e The .editreadre file in your current directory.

e The .editreadrc file in your home directory.

If any editread function is assigned interactively in the current program, it is in effect

only for the current program; it is not exported to child processes or other shells.

Also, when you log out of the system, the assigned functions are dismissed. (See the

next section for information on assigning values interactively.)

Each time you log in to your system or create a new shell, the system retrieves

editread values using this initialization sequence:

1) If the EDITREAD environment variable is set, it is used to enable editread in

new programs that are created. This environment variable is in effect only

for the current session (until you log out of the system), unless you choose to

069-701036 Licensed material—property of copyright holder(s) 1-5

Assigning Values to editread Functions

set the EDITREAD environment variable in the appropriate setup file:

profile for the Bourne shell, and .login for the C shell. If the EDITREAD

environment variable exists, the .editreadre files in your current directory

and your home directory are ignored.

2) If no EDITREAD variable is set, but you have a .editreadre file in your

current directory, the file will be used to enable editread each time you log in

to the system or create a new shell. If you have a .editreadrc file in your

home directory, it will be ignored.

3) If there is no .editreadrc file in your current directory, then the .editreadre

file in your home directory is used to enable editread.

Changing editread Values Interactively

When you change editread values interactively, the changed values will be in effect

only until you leave the program or you log out of the system. The default values

from your .editreadrc file or the EDITREAD environment variable will be restored

automatically for subsequent sessions. An advantage to setting a value interactively is

that the change becomes effective immediately without your having to start a new

process (logging out is one way to start a new shell), which is required when you

assign values in a .editreadrc file or to the EDITREAD environment variable. A

value set interactively overrides the same value set either in a .editreadre file or the

EDITREAD environment variable.

You can reconfigure editread functions interactively using this command format:

function keyword= value [| function keyword=value |<Ctrl-R>

You can make single or multiple function assignments per line, which is terminated by

Ctrl-R. Examples of assigning new values to the functions follow:

S erase = *?<Ctrl-R>

$ intr=‘c hist_recall="z prompt=OFF<Ctrl-R>

$ hist_display = 12 reconfig=f1<Ctrl-R>

In the first line, the erase character function is assigned to Ctrl-?, which is the Del

key. In the second line, the interrupt function is assigned to Ctrl-C, history recall to

Ctrl-Z, and the history prompt is off. In the last line, the history display depth is set

to 12 commands and the reconfiguration key is changed from Ctrl-R to the F1

function key. Any number of spaces can be inserted for readability. At least one

space must separate a value from the next function, however. In this example,

several spaces precede the function name on the line.

1-6 Licensed material—property of copyright holder(s) 069-701036

Assigning Values to editread Functions

If one function has two values, for example,

erase = ~?

erase ~e

the last assignment will take effect, overwriting the previous assignment. To find out

whether your assignment took effect, view the current configuration settings with the

Ctrl-R command and to try out the function.

If two functions have the same value, for example,

erase = ~?

delete _end = ~?

only the first assignment will take effect, and the alternate assignment will not. No

error will be indicated. Only trial and error will show which one is successful.

Assigning Values to the EDITREAD Environment

Variable

From the shell, you can assign values to the environment variable EDITREAD.

Examples follow:

Bourne shell:

$ EDITREAD=’prompt = ON goto_end = OFF goto_end_ov = “a’ 9

$ export EDITREAD 0

C shell:

% seteny EDITREAD ’prompt = ON goto_end = OFF goto_end_ov = “a’ 9

NOTE: For Bourne Shell Users, no spaces can separate the equal sign from the

single quotation mark and the EDITREAD variable name. Your function

assignments can occupy multiple lines; just be sure to terminate each line by

pressing the New Line key. Regardless of the number of lines occupied, the

assignments are enclosed by a pair of single quotation marks (’’). The

closing quotation mark terminates your input.

To verify the current values assigned to the EDITREAD environment variable, type

this command:

S envy 0

The current values will be displayed.

069-701036 Licensed material—property of copyright holder(s) 1-7

Assigning Values to editread Functions

Assigning Values in the .editreadrc File

Using an editor or the cat command, you can edit the .editreadrc file in your home

directory. An example of how to assign values to editread functions in the .editreadre

file follows:

$ cat > .editreadre 0

erase = *? 0

intr = “c hist_recall = Esc prompt = ON 9

hist_disp=12 reconfig=fl 0 |

<Ctrl-D>

You must end each line in the .editreadrc file by pressing the New Line key. You can

edit the .editreadrc file using any editor. The functions that you do not specify will

assume the default values (which you can see by using the Ctrl-R command for the

display of the current configuration). To make your changes take effect, you will

have to log out of, then back in to the system.

Your Line Discipline and editread

By default, the line-editing and control keys defined in the editread facility are copied

from your terminal’s line discipline. As an alternative, you may choose to redefine

some or all keys in your .profile file (or .login file for C shell users) and those key

definitions will be exported to editread. As an example, editread and your terminal

are set up to use Del as the erase key and Ctrl-U as the delete line key. If you

redefine a function in the editread facility, you should make a corresponding change

to your line discipline. Editread and your line discipline should be in agreement.

Refer to Using the DG/UXTM System for more information on setting your line

discipline.

Disabling editread

By default, editread is enabled, or on. This function is useful if you choose to disable

editread either temporarily during a session or permanently. For example, you may

want to use editread when running specific programs in the Bourne shell; however,

you may prefer to use the C shell without editread.

The syntax for changing this function follows:

enable=value<Ctrl-R>

An example follows:

S$ enable=OFF<Ctrl-R>

This example disables editread for the current shell.

* enable=OFF<Ctrl-R>

1-8 Licensed material—property of copyright holder(s) 069-701036

Disabling editread

To disable editread for all subshells and other programs, you can assign the OFF

value to the enable function in the EDITREAD environment variable. An example

follows:

Bourne shell:

$ EDITREAD=’enable=off >

$ export EDITREAD 9

C shell:

% setenv EDITREAD ’enable=OFF’ 9

To disable editread permanently, you would have to delete the .editreadre file and

remove the EDITREAD environment variable, or set enable=off in the .editreadre

file or in the EDITREAD environment variable in the appropriate setup file, which is

-login for C shell users, and .profile for Bourne shell users.

Defining Cursor Control Keys

The cursor control functions are:

® Moving the cursor right.

@ Moving the cursor left.

@ Moving the cursor to the end of the line.

e@ Retrieving the previous line and putting the cursor at the end.

e Returning the cursor to the beginning of the line.

@ Moving the cursor forward one word.

@ Moving the cursor backward one word.

Moving the Cursor Right

By default, you can use the rightarrow key (—) in the cursor motion keypad to

advance the cursor right. This is a nondestructive right move; you can move the

cursor over existing text without erasing it. If the cursor reaches the end of the line,

the cursor remains stationary and the terminal beeps.

The syntax for changing this function follows:

right=value<Ctrl-R>

An example follows:

069-701036 Licensed material—property of copyright holder(s) 1-9

Defining Cursor Control Keys

$ right="U<Ctrl-R>

This example reassigns Ctrl-U to the move-cursor-right function.

Moving the Cursor Left

By default, you can use the leftarrow key (<) in the cursor motion keypad to back up

the cursor. This is a nondestructive left move; you can move the cursor over existing

text without erasing it. If the cursor reaches the beginning of the line, the cursor

remains stationary and the terminal beeps.

The syntax for changing this function follows:

left=value<Ctrl-R>

An example follows:

S left="“U<Ctrl-R>

This example reassigns Ctrl-U to the move-cursor-left function.

Moving the Cursor to the End of the Line

By default, you can use the Ctrl-E key to cursor to the end of the line, the position

following the final character.

The syntax for changing this function follows:

goto_end=value<Ctrl-R>

An example follows:

$ goto_end="U<Ctrl-R>

This example reassigns Ctrl-U to the goto_end function.

1-10 Licensed material—property of copyright holder(s) 069-701036

Defining Cursor Control Keys

Retrieving the Previous Line and Putting the Cursor at

the End

This function appends the rest of the previous event from history and puts the cursor

at the end of the line. By default, this function is unassigned; to enable it, you can

assign the function to a desired key.

The syntax for changing this function follows:

goto_end_ov=value<Ctrl-R>

An example follows:

$ goto_end_ov="U<Ctrl-R>

This example reassigns Ctrl-U to the goto_end_ov function. The following example

shows the behavior of goto_end_ov.

S cd /usr/della >

$ Is<Ctrl-G>

ls /usr/dellal[]

Returning the Cursor to the Beginning of the Line

By default, you can use the Ctrl-A key to move the cursor to the first position in the

line.

The syntax for changing this function follows:

home=value<Ctrl-R>

An example follows:

$ home="U<Ctrl-R>

This example reassigns Ctrl-U to the home function.

Moving the Cursor Forward One Word

By default, you can use the Ctrl-F key to move the cursor forward to the first

character of the next word. If there is no text on the current line after the cursor

when you press Ctrl-F, the corresponding word (the word at the cursor position in the

previous line) is recalled to the screen, and the cursor is advanced to the end of that

word in the line. A word is one or more characters surrounded by white space.

069-701036 Licensed material—property of copyright holder(s) 1-11

Defining Cursor Control Keys

The syntax for changing this function follows:

forward=value<Ctrl-R>

An example follows:

S$ forward=*U<Ctrl-R>

This example reassigns Ctrl-U to the forward function.

Moving the Cursor Backward One Word

By default, you can use the Ctrl-B key to move the cursor backward to the space after

the last character in the previous word. If there is no remaining text on the screen,

the cursor goes to the first position. If the cursor is already in the first position of a

line, the terminal beeps.

The syntax for changing this function follows:

backward=value<Ctrl-R>

An example follows:

S backward="U<Ctrl-R>

This example reassigns Ctrl-U to the backward function.

Defining Line Editing Keys

The line-editing functions are:

1-12

Erasing a character backward.

Erasing a word.

Deleting from the cursor to the end of the line.

Killing (deleting) an entire line.

Inserting text within a line.

Inserting text with a leading space.

Licensed material—property of copyright holder(s) 069-701036

Defining Line Editing Keys

Erasing a Character Backward

By default, you can use the Del key to erase the character one position to the left of

the cursor. If you press this key repeatedly, characters to the left of the cursor will

be erased continuously in a backward direction. If the cursor reaches the beginning

of the line, the cursor remains stationary and the terminal beeps.

The syntax for changing this function follows:

erase=value<Ctrl-R>

An example follows:

S erase="U<Ctrl-R>

This example reassigns Ctrl-U to the erase function.

Erasing a Word

By default, you can use the Ctrl-T key to erase a word or partial word starting at the

cursor position through the end of the word.

The syntax for changing this function follows:

work_erase=value<Ctrl-R>

An example follows:

$ word_erase="U<Ctrl-R>

This example reassigns Ctrl-U to the word_erase function.

Deleting from the Cursor to the End of the Line

By default, you can use the Ctrl-K to delete all text from the current cursor position

to the end of the line.

The syntax for changing this function follows:

delete_end=value<Ctrl-R> .

An example follows:

$ delete_end="U<Ctrl-R>

This example reassigns Ctrl-U to the delete_end function.

069-701036 Licensed material—property of copyright holder(s) 1-13

Defining Line Editing Keys

Deleting an Entire Line

By default, you can use the Ctrl-U key to erase the entire line. The kill character for

editread is the same kill character in the shell. The kill characters for editread and

the shell should be the same. |

The syntax for changing this function follows: |

kill=value<Ctrl-R> |

An example follows: |

$ kill="H<Ctrl-R> |

This example reassigns Ctrl-H to the kill function.

Inserting Text Within a Line

By default, you can use the Ctrl-N Key to turn on insert mode. To edit a line using

insert, you can press Ctrl-N at the desired position to begin inserting text. Characters

you type are inserted to the left of the cursor. When you finish inserting text, press

Ctrl-N again to turn off insert mode and continue normal text entry. Other editread

functions (such as left, right, or home) are also in effect in insert mode. You can

move the cursor within the line and insert text where desired. |

The syntax for changing this function follows: |

insert=value<Ctrl-R> |

An example follows: |

S$ insert=*U<Ctrl-R> |

This example reassigns Ctrl-U to the insert function.

Inserting Text With a Leading Space

By default, the insert_space function is off. This function is related to the insert

mode function (refer to the previous section on insert mode). Insert mode must be

active before this function will be effective. When both functions are on, a leading

space will precede the characters that you type to the left of the cursor. The leading

space is removed from the line when you deactivate insert mode with Ctrl-N. The

function is off by default; to enable it, turn it on. If you are using a slow terminal,

this function may slow down your system response. |

1-14 Licensed material—property of copyright holder(s) 069-701036

Defining Line Editing Keys

The syntax for changing this function follows:

insert_space=value<Ctrl-R>

An example follows:

$ insert_space=ON<Ctrl-R>

This example enables the insert_space function.

Defining History Keys

A major feature of editread is its history facility, which may be particularly useful for

Bourne shell users. If, however, you are a C shell user, you may prefer to use the

history facility in editread rather than in the C shell.

Differences Between editread and C Shell History

The major differences between the editread and C shell history facilities is the

method of recalling and editing history events. (Refer to Using the DG/UXTM System

for more information on the C shell history facility.)

In the editread facility, you can use the arrow keys to scan up and down through the

history list to retrieve the desired item. In the C shell, you can invoke an event using

an exclamation point (!) and the item’s absolute or relative number or a unique

pattern.

In the editread facility, you can edit events using the editing keys. In the C shell, you

can use a set of editing commands to access specific items in the event and perform

substitutions.

The editread history functions are:

@ Recalling a history event.

e Scanning the history list.

@ Moving up the history list.

@ Moving down the history list.

e Setting the maximum history length.

e Setting the history display length.

@ Writing the history list to a file.

069-701036 Licensed material—property of copyright holder(s) 1-15

Defining History Keys

@ Reading a file containing a current history list.

Recalling a History Event

The history recall function searches for the history event number or the most recent

history event that matches the regular expression that you provide and places it on the

command line as the current event. You initiate the search by pressing the Escape

key. If there is no match, your terminal beeps. If you press the Escape key with no

argument, the history list (whose length is defined by the history display length

function covered in a later section) is displayed. You use regular expression syntax

for setting up search patterns. Refer to Appendix A in this manual for information

on regular-expression pattern matching.

When you recall a history event and edit it using the line-editing commands, you will

be editing the current item instead of changing history. Once you terminate a current

item with a New Line, the item is entered in history and will not change.

The syntax for this function follows:

hist_recall=value<Ctrl-R>

An example follows:

S hist_recall=r<Ctrl-R>

This example reassigns the r key to the hist_recall function.

The history list that you recall with the Escape key follows:

S$ <Ese>

12 pwd

13 ls -l

14 cd bin

15 cat test

16 ls test

17 cat rdiffmark

18 vi rdiffmark

19 cp delblanks rdiffmark

20 rm rdiffmark

5 21$

The history prompt has been enabled for the display of this history list (refer to the

section, "Displaying the History Prompt," later in this chapter for more information).

From the command line, you can issue the following command to recall a previous

event from the history list:

$ 21$ cp<Esc>

19 cp delblanks rdiffmark

$ 21$

1-16 Licensed material—property of copyright holder(s) 069-701036

Defining History Keys

Using regular-expression pattern matching, you request the display of the most recent
command in the history list that begins with ep. You terminate a history recall

command with the Escape key. Event 19 is recalled as the current event.

Scanning the History List

By default, you can use the Ctrl-P key to terminate a regular expression when

scanning a history list. The history scan function is similar to the history recall

function, except that all pattern matches (rather than just the most recent match) and

associated prompt number (if the prompt function is on) are displayed. In the

following example, using regular-expression pattern matching, you request the display

of all commands in the history list that begin (*) with ac. You terminate this

command with Ctrl-P.

The syntax for changing this function follows:

hist_scan=value<Ctrl-R>

An example follows:

$ hist_scan="U<Ctrl-R>

This example reassigns Ctrl-U to the hist_scan function.

An example of its default use follows.

$21 *“c<Ctrl-P>

19 cp delblanks rdiffmark

17 cat rdiffmark

15 cat test

14 cd bin

$21

All of these events begin with the letter c.

Moving Up the History List

By default, you can use the uparrow (t) key to move up the history list. This

command recalls the previous command from the history list and displays it as the

current line. Each successive press of the uparrow key causes the previous command

from the history list to be displayed on the command line. You can cycle through the

history list (from most to least recent command) by repeatedly pressing the uparrow

key. When you reach the oldest command in the history list, pressing the uparrow

key again will display the current command line (the most recent command).

069-701036 Licensed material—property of copyright holder(s) 1-17

Defining History Keys

The syntax for changing this function follows: |

hist_up=value<Ctrl-R> |

An example follows: |

$ hist_up=*U<Ctrl-R> |

This example reassigns Ctrl-U to the hist_up function.

Moving Down the History List

By default, you can use the downarrow (|) key to move down the history list. It

recalls the next command from the history list and displays it as the current line.

Each successive press of the downarrow key causes the next command in the history

list to be displayed on the command line. You can cycle through the history list

(from least to most recent command) by repeatedly pressing the downarrow key.

When you reach the most recent command in the history list, pressing the downarrow

key again will repeat the search through the list starting at the oldest command. |

The syntax for changing this function follows: |

hist_down=value<Ctrl-R> |

An example follows: |

$ hist_down=*U<Ctrl-R> |

This example reassigns Ctrl-U to the hist_down function.

Setting the Maximum History Length

The history save function sets the maximum number of history items to be saved

during a single session (while you are logged in). The minimum value is 1; the

maximum 500. This function is assigned the value 100 by default. To change the

value, assign the function to a legal number. You should select an economical history

length because the longer the list, the slower your system will respond when displaying

history.

If you set your history length to 15, as you type your 16th command on the command

line, it is recorded as event 16 in the history list and event 1 is deleted; thus a

constant list of 15 events is maintained. |

The syntax for changing this function follows: |

hist_save=value<Ctrl-R> |

1-18 Licensed material—property of copyright holder(s) 069-701036

Defining History Keys

An example follows: |

$ hist_save=15<Ctrl-R> |

This example sets the hist_save function to 15.

Setting the History Display Length

By default, the history display length is 23. Regardless of the maximum number of

history items saved, you can choose the number of commands in history to be

displayed each time you press the Escape key. The minimum value is 0; the

maximum is the value of the history length function (see the previous section).

You should select a history display length that does not exceed the size of your

screen. If your history display length exceeds a screen, the remaining portion will

scroll up and off the screen. |

The syntax for changing this function follows: |

hist_display=value<Ctrl-R> |

An example follows: |

S$ hist_display=10<Ctrl-R> |

This example sets the hist_display function to 10.

Writing the History List to a File

The write_hist command writes the entire history list to a file, which you can use as

you wish. For example, if you are writing a shell script interactively, after you have

debugged the commands, you may want to save them in a file that you can run as an

executable shell script. |

The syntax follows: | |

write_hist filename<Ctrl-R> |

An example follows: |

$ write_hist historyfile<Ctrl-R> |

This example writes the current history list to a file named historyfile.

069-701036 Licensed material—property of copyright holder(s) 1-19

Defining History Keys

Reading a File Containing a History List

Often, you will use the same set of commands when you start mxdb or crash. It is

easier to save a set of commands in a file, using the write_hist command (previous

section), and then read them in for the next session using the read_hist command.

With a history list intact, you can then retrieve or edit the desired command for

reexecution without having to retype the commands from scratch.

This command reads a file containing command lines (which you can create with an

editor or by writing the history list to a file) and appends it to the current history list.

These commands are not executed, they are just appended to history.

To confirm a successful read operation, you can press the Escape key and see your

updated history list displayed on the screen.

If you inadvertently name an incorrect file to be read, an error message is displayed.

The syntax for the read_hist command follows.

read_hist filename<Ctrl-R>

An example follows:

$ read_hist historyfile<Ctrl-R>

This example causes the file named historyfile to be read into the current history list.

Defining Process Control Keys

The process control commands are designed to interrupt the execution of a process.

The process control keys are:

@ End-of-file (such as to log out or to end input).

e Interrupt (terminate a process).

® Quit.

e Suspend.

Each of the process control functions is set to your terminal’s settings by default.

The settings you make through editread should be consistent with those set by your

terminal. If there is a discrepancy, while editread is in effect, the values you set in

editread will override the terminal default settings. Consult your system administrator

for information on default terminal settings at your site.

1-20 Licensed material—property of copyright holder(s) 069-701036

Defining Process Control Keys

The End-of-File Key (Log Out and End Input)

By default, you can use the Ctrl-D key to set the end-of-file (log out or end input)

control character.

The syntax for changing this function follows:

eof=value<Ctrl-R>

An example follows:

$ eof="U<Ctrl-R>

This example reassigns Ctrl-U to the eof function.

The Interrupt Key

You can use the Ctrl-C key to set the interrupt key, which terminates a process.

The syntax for changing this function follows:

intr=value<Ctrl-R>

An example follows:

$ intr="U<Ctrl-R>

This example reassigns Ctrl-U to the intr function.

The Quit Key

By default, you can use the Ctrl-\ key to set the quit signal key, which terminates the

process but saves an image of memory in a file named core in your current directory,

which can be analyzed.

The syntax for changing this function follows:

quit=value<Ctrl-R>

An example follows:

$ quit="U<Ctrl-R>

This example reassigns Ctrl-U to the quit function.

069-701036 Licensed material—property of copyright holder(s) 1-21

Defining Process Control Keys

The Suspend Key

The suspend function is useful for interrupting a normal program process. By

default, this function is unassigned in the Bourne shell but is set in the C shell. It is

useful for suspending processes (refer to Using the DG/UXTM System for this

information).

The syntax for changing this function follows:

susp=value<Ctrl-R>

An example follows:

$ susp="U<Ctrl-R>

This example reassigns Ctrl-U to the susp function.

Defining Miscellaneous Keys

This group contains four functions not categorized elsewhere. These functions are:

e Displaying the history prompt.

@ Refreshing the current command line display.

@ Enabling verbatim mode.

e Displaying the terminal type.

Displaying the History Prompt

This function is turned off by default; to enable it, assign it the on value. Each

command you enter from the shell or other program is automatically preceded by a

history prompt number, letting you know the current history number of the command

you are entering.

The syntax for changing this function follows:

prompt=value<Ctrl-R>

An example follows:

$ prompt=ON<Ctrl-R>

This example enables the prompt function.

An example of the display of the history number follows:

1-22 Licensed material—property of copyright holder(s) 069-701036

Defining Miscellaneous Keys

$ 32$

This function is particularly useful for scanning the history list. The desired

command and its corresponding history list number are echoed to the command line

each time you press a scan key (the f¢ or | keys, by default) to move up or down the

history list.

Refreshing the Current Command Line Display

By default, the refresh function is unassigned. If your screen becomes littered with

spurious marks, which can result from modem "noise" or broadcast messages, you can

redraw the current command line on the line below the one you were working on by

using the key to which you assign the refresh function.

The syntax for changing this function follows:

refresh=value<Ctrl-R>

An example follows:

S refresh="U<Ctrl-R>

This example reassigns Ctrl-U to the refresh function.

Enabling Verbatim Mode

By default, you can use the Ctrl-V key to escape the interpreted meaning of an

expression, which presents the literal expression on the screen. For example, if you

type Ctrl-T at the shell prompt, it is interpreted as an editread command to delete a

word. If, however, you want to type the literal expression “t, without interpretation

by editread, you must precede it with the keystroke Ctrl-V.

The syntax for changing this function follows:

verbatim=value<Ctrl-R>

An example follows:

$ verbatim="U<Ctrl-R>

This example reassigns Ctrl-U to the verbatim function.

An example of using the default function follows.

<Ctrl-U> <Ctrl-T>

069-701036 Licensed material—property of copyright holder(s) 1-23

Defining Miscellaneous Keys

You will see:

~t

Displaying Terminal Type

Your terminal type is typically defined in your setup file; .profile for the Bourne shell,

and .login for the C shell. You assign your terminal type to the environment variable

TERM. Regardless of where your terminal is defined, that assignment must also be

reflected in editread. The easiest way to check your current terminal type is to enter

this command:

$ echo $TERM 9

vt100

In this example, vt100 was reported as the terminal type. If you have any questions

about your current terminal type, check with your system administrator.

The syntax for changing this function follows:

term=value<Ctrl-R>

An example follows:

$ term=d215<Ctrl-R>

This example reassigns d215 to the term function.

End of Chapter

1-24 Licensed material—property of copyright holder(s) 069-701036

Chapter 2

Using the Full-Screen Editor: vi

Vi, pronounced "vee-eye," is an interactive, visually oriented full-screen editor. Your

terminal screen behaves as a window through which you view a portion of a file. The

vi editor has commands to move the cursor in recognized units (such as a character,

word, line, sentence, and paragraph) and to perform various editing operations. A

combination of the cursor movement and editing commands lets you identify the text

for display in the current window and define the text for editing (such as deleting

several sentences or changing several words). This regularity in command syntax

helps you to remember and apply the commands.

The first several sections of this chapter (through "Vi Editing Operations") give an

orientation to vi; the rest of the chapter gives a detailed description of the vi editing

operations and provides examples of user input and the results produced.

This chapter is not intended as a tutorial; however, you may want to try out the

examples as you go. If you already know the DG/UX system or another UNIX

system, you may choose to read carefully the first part of the chapter up through "Vi

Editing Operations," and then seek out topics that interest you.

The Working Buffer

When you type text into a file or edit an existing file, you are actually working on a

copy of the original disk file that is placed in a temporary workspace called the

working buffer. The permanent file remains unchanged until you issue a command to

overwrite the permanent disk file with the contents of the working buffer. When you

create a new file, vi will not create it until you actually issue a command to write the

working buffer to the file.

If your computer system crashes, the contents of your buffer space may be lost (there

are, however, some ways to recover from errors). To prevent this occurrence, you

are advised to make periodic saves of your working buffer. Alternatively, you may

choose to dismiss all changes made to the current working buffer, thereby keeping the

original disk file intact. To perform periodic saves or to dismiss the contents of the

work buffer, you can issue specific commands through last line mode, which is

discussed in the next section.

069-701036 Licensed material—property of copyright holder(s) 2-1

How vi Operates

How vi Operates

Vi operates in three modes:

@ Input.

® Command.

@e Last line.

Input Mode and Command Modes

While in input mode, vi accepts your input as text, which is displayed as you type it.

To perform any operation besides entering text (such as moving the cursor and

making editing corrections), you have to change vi to command mode. While in

command mode, vi interprets your input as commands, executing each command as

you type it. Your commands are not displayed on the screen.

When you begin an editing session in vi, command mode is the default. Start vi using

the following command:

S vi test

The first key you press will be interpreted as a command. To begin entering text, you

must first issue a command that allows you to enter text. The command is not

displayed. Enter this command to append text to a new file:

a

Then, without pressing the space bar first, enter the text, shown as follows.

The night was dark and dreary 0

when I decided to sit down and 9

write a letter to my friend.[_ |

Finally, use the Escape key to change from input mode to command mode.

In the previous example, you invoked vi, named file test, and used the a command to

indicate that you wanted to append (or enter) text in a file. Note that the a command

is not displayed on the screen. Then, you typed three lines of text, the first two lines

are terminated by pressing the New Line key. Finally, you pressed the Escape key to

end input mode to return to command mode. When you pressed the Escape key, the

cursor moved back a column position, over the period.

If you press the Escape key while in command mode, your terminal will beep in

response. On some terminals, the screen will flash rather than beep. Pressing the

Escape key repeatedly does not affect your file.

2-2 Licensed material—property of copyright holder(s) 069-701036

How vi Operates

Last Line Mode

A third mode offered in vi is last line mode, which provides an extended set of

editing commands. In command mode, you can escape to last line mode temporarily

by typing a colon (:). The character you type will be echoed as a prompt on the

bottom line of the screen, typically line 24. The colon means that the command you

type will affect the file in a forward direction. In addition, you can escape to last line

mode using a question mark (?), which means that the command you type will affect

the file in a backward direction.

The following four sections in this manual cover the types of functions you can

perform from last line mode:

e Searching for patterns in last line mode

® Manipulating files in last line mode

e Setting up your vi environment

e Writing and using macros

Assuming that vi is in command mode (you’ve already pressed the Escape key), let’s

say that you want to search for the literal pattern, "dreary," in the following text.

The night was dark and dreary

when I decided to sit down and

write a letter to my friend[. |

From the cursor position, you want to search in a backward direction, which you

signify with the question mark (?), for the word, "dreary." You can type ? without

first preceding it with :, which signifies last line mode. You end the command by

pressing the New Line key.

?dreary 0

The cursor will be positioned automatically on the first character of the pattern, as

follows.

The night was dark and [djreary

when I decided to sit down and

write a letter to my friend.

Refer to the later section "Quitting vi" for instructions on closing a file.

069-701036 Licensed material—property of copyright holder(s) 2-3

Defining a Terminal for vi

Defining a Terminal for vi

Vi is designed to operate with a variety of terminal types; therefore, before using vi,

you must tell vi the type of terminal you have. Your system administrator probably

will have taken care of this matter for you. Your terminal is defined in the TERM

environment variable or in your setup file—.profile for Bourne shell users and .login

for C shell users. The appropriate setup file must be located in your home directory.

Refer to Appendix A in Using the DG/UXTM System for information on setting up

your terminal.

Differences Among Terminals Used with vi

The editing examples in this chapter assume certain keyboard conventions such as the

use of the New Line key and the Del (Delete) key. Some terminals have a CR

(Carriage Return) key instead of a New Line key. On these terminals, you should use

the Carriage Return. If these keys don’t work, you may need to check your line

discipline, which is discussed in Using the DG/UXTM System. Consult with your

system administrator if you have problems.

Also, this chapter assumes that your terminal provides "new" operations such as

insert and delete characters and lines, which allow vi to keep the screen completely

up-to-date. The examples of terminal output in this chapter may appear somewhat

different from the results produced on your terminal screen. A few differences are as

follows.

@ On some terminals, text that you append and insert may appear to overwrite

existing text. The existing text will reappear as soon as you press the Escape

key to return vi to command mode. Setting the redraw option (in last line

mode) will cause your editing action to take effect immediately, thus

preventing the appearance of overwriting. Setting the redraw option is

covered in a later section "Setting Up Your vi Environment."

e Another trait of some terminals is the appearance of at (@) signs in the first

column of the screen that results from line deletions. Setting the redraw

option also prevents the display of delete symbols. If, however, you do not

set the redraw option, to get rid of these symbols and close up the remaining

lines, you can type Ctrl-R, which refreshes the screen.

e Furthermore, on some terminals, pressing the Escape key repeatedly causes

your terminal to beep. The same action on other terminals will cause a brief

flash (this is a visual beep) if you set the flash option. Neither response is

necessarily considered an error.

2-4 Licensed material—property of copyright holder(s) 069-701036

The Syntax of a vi Command

The Syntax of a vi Command

To perform an editing function from vi command mode, you issue a short command,

which defines precisely the operation to be performed. Each command follows this

syntax:

[number jediting-command| text-object |

where:

number is the number of text objects you wish to operate on; using a number depends

on the command being performed.

editing-command causes a specific operation to be performed on the text, such as to

append, delete, or change text. Table 2-1 identifies the editing operations performed

on text objects:

Table 2-1 Vi Editing Operations

Editing Operation Description

Scroll full screen forward

Scroll full screen backward

Scroll half-screen up

Scroll half-screen down

Append

Insert

Open line

Delete

Replace

Change

Yank (move)

Put

Mark

Moves the display one full screen forward (or up).

Moves the display one full screen backward (or down).

Moves the display one-half screen up (or forward).

Moves the display one-half screen down (or

backward).

Adds text to the right of the cursor.

Allows text to be inserted to the left of the cursor.

Inserts a blank line at the cursor position.

Erases a pre-defined range of text to the right or left

of the cursor.

Overwrites text with new text to the right of the

cursor.

Substitutes a pre-defined text string for a pre-defined

range of text to the right or left of the cursor.

Moves a specified range of text to the right or left of

the cursor.

Places a specified range of text to the right or left of

the cursor.

Delimits a boundary of text to be yanked, changed, or

deleted.

Each of these editing operations is described thoroughly in this chapter.

text-object is the range of text you want to operate on; using a text object depends on

the command being performed.

069-701036 Licensed material—property of copyright holder(s) 2-5

The Syntax of a vi Command

NOTE: No spaces occur between command items. Also, commands are case

sensitive; you should use the command in the exact case it is presented in.

Whether or not to use a number or a text-object depends on the particular

command. Each command is terminated by pressing a New Line (or Carriage

Return) key.

Text Objects

When you work on files containing large bodies of text, it may be advantageous to

treat text as units (such as a word, sentence, or paragraph) rather than individual

characters. Vi recognizes a set of text objects that you can use to identify the specific

text on which an editing function will operate. They are:

@ Character.

@ Word.

@ Space-delimited word.

e Line.

e Sentence.

@ Paragraph.

e Screen window.

@ Mark.

Character

A character is a single byte — a letter, number, punctuation mark, or a

nondisplayable control sequence such as a tab (represented either by pressing the Tab

key or Ctrl-I). Examples of characters follow:

a

0

*

A

9

?

\
Tab space bar

2-6 Licensed material—property of copyright holder(s) 069-701036

Text Objects

Word

A word is a group of adjacent characters bounded on both sides by any combination

of these items: punctuation, space, tab, number, or a new-line. A single punctuation

mark counts as a single word; multiple punctuation marks (with no intervening space)

also count as a single word. Examples of words follow:

Words Number of Words

man 1

man. 2

man). 2

man). He 3

man). He " 4

man). He said, " 6

(a young man). He said, "How are you, son?" 15

Space-Delimited Word

A space-delimited word is the same as a word except that it includes adjacent

punctuation. Space-delimited words are separated by one or more of these items:

space, tab, or new-line. Examples of space-delimited word follow:

Space-Delimited Word Number of Space-

Delimited Words

man 1

man. 1

man). 1

man). He 2

man). He " 3

man). He said, ” 4

(a young man). He said, "How are you, son?" 9

069-701036 Licensed material—property of copyright holder(s) 2-7

Text Objects

Line

A line is a group of characters including spaces and punctuation that ends with a

new-line. A line is not necessarily a single, physical line on your terminal screen. A

line can span several physical lines by wrapping. Only a deliberate press of the New

Line key will terminate a line. Examples of lines follow:

Lines Total Number

of Lines

Paychecks are here! 90 3

Where are they? Jackson 0

Page, noted for his

industry and ambition,

was awarded the "Most Valuable

Staffer" award on Monday, 90

The preceding example shows a total of three lines.

Sentence

A sentence is a group of characters ending with final punctuation and two spaces.

Final punctuation includes a period (.), question mark (?), and exclamation point (!).

If a sentence coincidentally ends at the end of a line (no continuation to the next

line), the new-line following punctuation implies a sentence. Spacing twice is not

necessary in this case. Examples of sentences follow:

Sentence Number of

Sentences

Paychecks are here! Where are they? 0 1

Paychecks are here! Where are they? 0 2

Paychecks? Where? I want mine. 0 3

Jackson Page, noted for his industry 1

and ambition, was awarded the "Most

Valuable Staffer" award on Monday,

2-8 Licensed material—property of copyright holder(s) 069-701036

Text Objects

Paragraph

A paragraph is a group of characters bounded on both sides by one or more blank
lines. Examples of paragraphs follow:

Paragraphs Number of

Paragraphs

Paychecks are here! 1

Paychecks are here! 1

Where are they?

Jackson Page, noted for

his industry and ambition

Paychecks are here! 3

Where are they?

Jackson Page, noted for his

industry and ambition

Screen Window

The screen is defined as the text displayed within the current window. The default

number of lines per screen is one less than the number of lines on your terminal

display (23 typically), plus a last line which is the status line. The screen window is a

predefined number of lines on the screen that certain editing operations treat as a

unit. Window size can be altered through the window size option, which is covered in

the section "Setting Up Your vi Environment” in this chapter. The window can be as

large as the screen less the status line.

069-701036 Licensed material—property of copyright holder(s) 2-9

Text Objects

Figure 2-1 shows an example of a window.

1 This is the first line, which is also Known as home.

12 This is the middle line.

23 This is the last line.

. This is the status line.

Figure 2-1 Excerpt of a Sample Window

Each number in the previous example represents the number of that line on the

screen. The numbers do not actually appear on the screen, however.

Mark

A mark saves an exact location in a file. In command mode, you position the cursor

at the desired location and use a command to save that position in a mark register.

There is no visual mark in your file. To position the cursor at the mark at some later

time, you can direct the cursor to move to the marked location by referencing the

mark register. You can have as many as 26 locations marked in a file.

How vi Relates to the Document

Formatter: DTK

Vi is neither a text formatting program nor a text processing program; it doesn’t

perform right justification, nor does it center text, provide a variety of fonts, or

identify section heads. It was, however, designed for use with a document formatting

program package called the Documenter’s Tool Kit, DTK for short, which can be

ordered as a separate software product.

There are some features in vi that are specifically relevant to DTK users. For

example, in addition to the previously discussed set of vi text objects, there is also a

section object that refers to the beginning of a section and the end of a section, both

with respect to the current cursor position. A section is a unit of text that is labelled

with a section header. The section text object is bounded by the section delimiter

commands recognized by the DTK programs nroff and troff.

Furthermore, nroff and troff recognize a set of paragraph delimiter commands, which

are the beginning and ending of a paragraph. DTK offers several varieties of

document production oriented command sets that you can use to format and produce

your documents. DTK supports the mm macro set. Refer to the DTK package of

documentation (see the Preface for the titles) for more information on the DTK

2-10 Licensed material—property of copyright holder(s) 069-701036

How vi Relates to the Document Formatter: DTK

commands, and refer to the section "Setting Up Your vi Environment" later in this

chapter for more information about recognized mm commands.

Setting Up vi Options

You can set editor options to customize your editing environment to suit your tastes.

A subset of useful options is described here that may be beneficial for your work in

vi. The examples of the editing operations shown in this chapter assume the setup of

these options. A full list of all possible options is given in the section "Setting Up

Your vi Environment,” later in this chapter.

There are three methods for setting these options. Each method specifies how long

the option will remain in effect.

@ EXINIT environment variable.

e .exre file.

@® Last line mode.

The EXINIT environment variable remains in effect for a single log-in session (until

you log out). The .exre file is initialized each time you log in and for each subshell or

new shell generated. The options set in last line mode remain in effect only for the

current editing session (until you exit vi).

Setting the EXINIT environment variable is shown here. For information on the

alternate methods, refer to the section "Setting Up your vi Environment," later in this

chapter.

From the shell, you will assign the values contained within single quotation marks to

the environment variable EXINIT. (More information on environment variables is

given in Using the DG/UXTM System).

Bourne shell:

S$ EXINIT=’set wm=10 smd redraw report=1’ 9

$ export EXINIT 5

C shell:

% setenv EXINIT ’set wm=10 smd redraw report=1’ 9

For the Bourne shell, you assign selected values to the EXINIT variable. A pair of

single quotation marks (’) surround the values. The variable is then exported to the

environment with the export command. When making the assignment, make sure

there are no spaces around the equal sign (=).

For the C shell, you set the same values to the variable, EXINIT. However, you use

one command, setenv, to assign the values to the variable and export the variable to

the environment.

069-701036 Licensed material—property of copyright holder(s) 2-11

Setting Up vi Options

To verify your settings, you can type the following command:

S$ env 2d

EXINIT=set wm=10 smd redraw report=1

They will be in effect automatically only for the current log-in session.

Table 2-2 describes each of these options:

Table 2-2 Vi Editing Options Set for Examples in This Chapter

Option Effect Value

wrapmargin | Performs automatic new line at a wm=10

defined column position from the right

side of the screen.

showmode Displays message in status line smd

indicating mode of operation.

redraw Redraws screen to show insertion of redraw

text and movement of existing text to

the right.

report Reports statistics in status line for all report=1

editing operations affecting one or

more lines.

Useful Tips While Using vi

If you choose to try out some of these commands as you read about them in this

chapter, you may make a few mistakes or you may decide to exit vi for a while.

These four functions may be helpful to you during your vi work. They are:

@ Undoing a command.

@ Redrawing (or refreshing) your screen.

@ Periodically saving the working buffer.

@ Quitting vi.

These topics are discussed in detail in the following sections.

2-12 Licensed material—property of copyright holder(s) 069-701036

Useful Tips While Using vi

Undoing a Command (u)

If you type a command that produces a result you do not like or you prematurely

press a key that causes an undesired command to execute, you can recover with these

simple keystrokes:

From command mode, type the u command to undo the effect produced by the

previous command.

Your original text will be restored to what it was before you issued the command.

You can press this key repeatedly to restore and undo only the preceding command;

this key acts like a toggle switch.

Refreshing Your Screen (Ctrl-L)

If your screen gets littered with spurious marks, which can result from modem

"noise," or broadcast messages, you can refresh your screen in command mode by

pressing Ctrl-L.

Vi will erase the marks from your screen and refresh the screen eliminating

extraneous characters.

Periodically Saving the Working Buffer (:w)

You should perform periodic saves of the working buffer during a vi work session as a

precautionary measure against system crashes. Here’s what you can do:

e From command mode, press the colon (:) key to invoke last line mode. You

will see this keystroke echoed on the status line of the screen.

e Type the w command and press the New Line key.

Your working buffer will be saved in the filename specified when you

invoked vi (if the filename already exists, its original contents are

overwritten). The cursor will return to its previous position on the screen.

Refer to "Commands to Write Files" for a list of variations on this command.

Quitting vi (ZZ, :waq, :q, :q!)

After you have tried some vi commands, you may decide to quit your session for a

while. The easiest ways to quit vi and save the contents of the file are shown as

follows:

From command mode, to save the current buffer and quit vi, type ZZ.

e In last line mode, you can also type the :wq command and press the New

Line key.

069-701036 Licensed material—property of copyright holder(s) 2-13

Useful Tips While Using vi

@ If you have made no changes to the current buffer, quit vi by typing the :q

command and pressing the New Line key. If changes were made, vi issues a

warning message that there was no write since the last change.

e Alternatively, in last line mode, you can quit the session without saving the

buffer contents using :q! and pressing the New Line key.

A copy of your edited text is saved in a file with the name you assigned when you

initialized vi. Your editing session with vi is terminated and you are free to use your

terminal and the system in some other way.

A full list of methods for writing files is given in the section "Manipulating Files in

Last Line Mode,” later in this chapter.

Invoking vi

To invoke the editor vi, from the shell, you type the following command and supply a

filename. Vi will create a file with the assigned name if it doesn’t already exist. Ifa

file with the assigned name already exists, vi will open it for editing. The filename

you choose must follow standard DG/UX system file-naming conventions (refer to

Using the DG/UXTM System for information on filenames).

vi [options | filename

Table 2-3 defines the options.

2-14 Licensed material—property of copyright holder(s) 069-701036

Invoking vi

Table 2-3 Vi Command-Line Options

Command Description

view argument You can substitute view for all vi commands to specify

a read-only mode.

vi Edits an empty buffer.

vi filename Edits an existing file, starting at line 1, or creates one

with filename if it doesn’t exist.

vi + filename Edits an existing file, starting at the last line.

vi line-num filename Edits an existing file, starting at a specific line

number.

vi +/pattern filename Edits an existing file, starting at the first line

containing the specified pattern (refer to Appendix A

for information on regular expression pattern-

matching).

vi filename! filename2 ... | Edits several existing files in sequence. Starts with

line 1 in the first file. When you finish editing a file,

go to the next file by pressing the Escape key, :n (for

next), and the New Line key

vi —r Lists a summary of file(s) being edited that were

automatically saved as a result of a system crash.

vi —r filename Recovers a specific file that was in the working buffer

prior to a system crash. As many as 12 lines or parts

of lines may have been lost. Use this command from

the directory containing the file being edited.

vi —t label If you have a file named tags (which contains lines in

the format label file/string), vi clears the working

buffer to edit file, and positions the cursor on the line

containing string. Refer to the section on producing

and using a tags file in Using the DG/UXTM System.

vi —1 filename Turns on the lisp option (see the section on "Setting

Up Your vi Environment") in the current vi work

session.

vi —wn filename Sets the screen window size to n lines, overriding the

default which can be set using the window option (see

the section titled "Setting Up Your vi Environment").

Figure 2-2 shows a typical screen that appears after you press the New Line key.

069-701036 Licensed material—property of copyright holder(s) 2-15

Invoking vi

(‘

"filename" [New file] y

NN

Figure 2-2 Typical Screen

The screen contains three important items:

Cursor ([7])

The cursor symbol on the top line shows the point at which you can type input. Your

cursor symbol may appear differently.

Tilde (*)

All other lines are marked with a tilde, the symbol designating lines past the end of

the file. When you create an empty file, you will see the appearance of tildes on the

left side of the screen.

Status line ("filename" [New file])

Vi displays the status line on the bottom line of the screen — line 24 on most

terminals. It contains information about the status of the working buffer, such as a

message to alert you to the input mode status and error messages. From this line,

you also issue commands in last line mode.

2-16 Licensed material—property of copyright holder(s) 069-701036

Vi Editing Operations

Vi Editing Operations

The rest of this chapter covers entering text in input mode and editing text in

command mode. The major topics are:

069-701036

Entering text.

Moving the cursor.

Appending text.

Inserting text.

Opening a new line in text.

Deleting text.

Replacing text.

Changing text.

Moving text.

Marking text.

Searching for patterns.

Manipulating files in last line mode.

Setting up your vi environment.

Writing and using macros.

Performing other miscellaneous tasks.

Licensed material—property of copyright holder(s) 2-17

Entering Text

Entering Text

Here’s how you enter text. From command mode, you first need to give a command

to signify that you want to enter text. In this case, you decide to "append" text with

the a command after which you type your text. After you finish entering text, press

the Escape key to signal and end of append mode. Remember that commands

entered in command mode are not visible on the screen. An example follows:

Enter the a command for append mode.

Then, type this text:

Suddenly, we spotted whales in the distance. Daniel saw 0

them first. "Hey look! Here come the whales!" he cried 9

excitedly.[_ |

Then, press the Escape key to end entry mode.

If you make a mistake while entering text, the easiest way to erase a character you

just typed is to press the Del key. Each time you press the Del key, the character

that you back over is deleted. If the Del key does not operate, your terminal may use

another character delete key (refer to Using the DG/UXTM System for information on

selecting a line discipline). You may want to consult your system administrator for

help.

Assuming that you set the automatic wrapmargin option, your text will break at the

closest space-delimited word when it reaches the right margin. A new-line character

is automatically appended to the end of each line when the cursor wraps. If you did

not set this option, you will need to press the New Line key at the conclusion of each

line. You should avoid ending a line with a space as some vi commands may produce

unexpected results if they encounter a space at the end of a line.

Also, if the showmode option is set (refer to Table 2-35), the "APPEND MODE"

message is displayed on the right side of the status line to let you know that vi is

accepting your keystrokes as text input. When you press the Escape key to terminate

input mode, this message disappears from the screen.

Moving the Cursor

With vi in command mode, you can position the cursor anywhere in the current

working buffer. Vi accomplishes this by moving the cursor right and left on a line, up

and down between lines, and backward and forward within the current window and

the entire working buffer. As the cursor approaches the end of a line, it will

normally wrap to the beginning of the next line. If you move the cursor backward to

the beginning of the line, it will wrap to the end of the previous line.

You can also move the cursor through the working buffer by text object units —

character, word, space-delimited word, line, sentence, and paragraph. You can also

move through multiple text objects by preceding the cursor command with a number.

2-18 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Each of these cursor movements is discussed:

By a character.

By a line.

Within a line.

By a word and space-delimited word.

By a sentence.

By a paragraph.

Within the current screen window.

From line to line (nondisplayed portion of file).

Vi must be in command mode before you can use the cursor commands. Once vi is

in command mode, you can use any number of cursor commands to position the

cursor in the working buffer (and your screen). When you type any of these

commands, you will not see their literal appearance. Each keystroke will be

interpreted as an instruction to move the cursor. You will see the effect it produces,

such as moving the cursor right, one position at a time.

Moving the Cursor by a Character

Table 2-4 lists the basic character cursor movement commands.

Table 2-4 Commands to Move the Cursor by a Character

Command | Definition

lor— Moves the cursor one character (or multiple characters) to the

right.

h or — Moves the cursor one character (or multiple characters) to the

left.

Each of these commands can be preceded by a number to indicate the number of

characters you want to move the cursor. Examples of moving the cursor by the

character are given in the following examples. Sample text follows:

Suddenly we spottle]d the whales.

When you use the | command, the cursor moves one character to the right, as

follows:

069-701036 Licensed material—property of copyright holder(s) 2-19

Moving the Cursor

Suddenly we spotte[d] the whales.

When you use the 5h command, the cursor moves five characters to the left, as

follows:

Suddenly we s[plotted the whales.

To accomplish the same character movements, you can use the space bar or

rightarrow key (—+) to move the cursor to the right. To move the cursor to the left,

you can use the Ctrl-H or the leftarrow (—) key. You can also precede each

command with a number to move the cursor multiple character positions.

The maximum number of characters you can specify is restricted by the line length.

If the number of characters you specify (e.g., (88—+)) exceeds the boundaries of the

screen, the cursor goes to the end of the line. If the cursor is already at the end of

the line, your terminal will beep and the cursor will remain stationary.

NOTE: On some terminal keyboards, you can press and hold the given cursor

movement keys to produce a repeated cursor movement. If your terminal

has a Repeat key, you may have to press and hold the cursor key with the

Repeat key.

Moving the Cursor by a Line

You press the New Line key to move the cursor to the beginning of a new line and

you use one of the following commands to move the cursor to the same column

position in other lines. Table 2-5 lists the commands to move the cursor by the line:

Table 2-5 Commands to Move the Cursor by a Line

Command | Definition

j Moves cursor down one line or multiple lines, staying in same column.

Moves cursor up one line or multiple lines, staying in same column.

Each of these commands can be preceded by a number to indicate the number of

lines you want to move the cursor.

NOTE: The j command also maps to the down arrow (|) key. For Data General

terminals in DG mode and the C shell only, however, the | key also maps to

the Suspend key Ctrl-Z, which suspends temporarily the current vi session.

If you use the n| command to move the cursor, you will suspend vi operation

unless you have mapped the suspend function to some other key or have the

novice option set (see a later section "Setting Up Your vi Environment" for

more information about this option). Refer to Using the DG/UXTM System

for information about line disciplines, and Chapter 1 in this manual for

information on redefining process control keys.

Examples of moving the cursor by the line are given using the following sample text:

2-20 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Suddenly, we spotted whales in

the dis[tJance. Daniel was the first to see then.

"Hey look! Here come the whales!" he cried excitedly.

When you use the j command, the cursor moves one line down, with the cursor

remaining in the same column position, as follows:

Suddenly, we spotted whales in

the distance. Daniel was the first to see then.

"Hey lofo|k! Here come the whales!" he cried excitedly.

NOTE: The uparrow (ft) and downarrow (|) keys can also be used to position the

cursor up and down.

When you use the 2k command, the cursor moves from its previous position up two

lines as follows:

Suddenl[y], we spotted whales in

the distance. Daniel was the first to see then.

"Hey look! Here come the whales!" he cried excitedly.

From the cursor position, (if there is no character in the same column of the line

above or below), shown as follows,

Suddenly, we spotted whales in

the distance. Daniel was the first to see them.

"Hey look! Here come the whales!” he cried excite{d]ly.

when you use the k command, the cursor will move to the nearest column that does

contain a character shown as follows:

Suddenly, we spotted whales in

the distance. Daniel was the first to see thenf. |

"Hey look!" Here come the whales!" he cried excitedly.

You can also move the cursor to a line that is not currently displayed on the screen.

If the specified line exists (the cursor is on line 25 and you ask for 24 lines above the

current line 24k), the screen will scroll until the desired line is within view.

Alternatively, if you request a line that exceeds the size of the working buffer (you

ask for 100j and there are only 25 more lines beneath the current line), the terminal

will beep and the cursor will remain stationary.

069-701036 Licensed material—property of copyright holder(s) 2-21

Moving the Cursor

Moving the Cursor Within a Line

There are three methods to move the cursor within a line:

@ To the beginning or end of the line.

® To a specific character in the line.

@ To a specific column in the line.

Moving the Cursor to the End or Beginning of a Line

Table 2-6 lists the three commands to move the cursor to the beginning or end of the

line:

Table 2-6 Commands to Move the Cursor to the Beginning or End of a Line

Command | Definition

$ Puts the cursor on the last character of a line.

0 Puts the cursor on the first character of a line.

Puts the cursor on the first nonblank character of a line.

The following examples show the movement of the cursor produced by each of these

three commands.

To the End of a Line ($)

The following example shows how to move the cursor to the end of the line. The

sample text follows:

Go to the [elnd of the line!

When you use the $ command, the cursor goes to the end of the line as follows:

Go to the end of the line{!]

2-22 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

To the Beginning of a Line (0)

The following example shows how to move the cursor to the beginning of the line.

The sample text follows:

Go to the begi[n]ning of the line!

When you use the 0 command, the cursor goes to the beginning of the line as follows:

[Glo to the beginning of the line!

To the First Nonblank Character of a Line (-)

In some cases the beginning of the line may contain one or more spaces. The 0

command would move the cursor to the beginning of the line to a blank position. To

move the cursor to the first nonblank character, skipping over blanks, you would use

the ~ command instead. The sample text follows:

Go to the first character

of the line

that is [njot blank!

When you use the * command, the cursor goes to the first nonblank character as

follows:

Go to the first character

of the line

[tIhat is not blank!

Moving the Cursor to a Specific Character on a Line

Another way of positioning the cursor on a line is to search for a specific character

on the current line. If you look for something that doesn’t exist, your terminal will

beep and the cursor will remain stationary. Character searches are case-sensitive

unless you set the ignorecase option (refer to "Setting Up Your vi Environment" for

more information).

069-701036 Licensed material—property of copyright holder(s) 2-23

Moving the Cursor

Table 2-7 lists the ways to move the cursor to a specific character within a line.

Table 2-7 Commands to Move the Cursor to a Specific Character

Command | Definition

fx Moves the cursor to the right to the specific character x.

Fx Moves the cursor to the left to the specific character x.

tx Moves the cursor to the right, just to the left of the specific character

x.

Tx Moves the cursor to the left, just to the right of the specific character

x.

Repeats the previous operation in the same direction. The ;

command recalls the previous command and repeats it.

we

, Repeats the previous operation in the opposite direction. The ,

command recalls the previous command and executes the

complementary command (the one that searches in the opposite

direction).

Each of these commands can be preceded by a number to indicate the number of

characters you want to move the cursor.

The sample text follows:

[Glo forward to the letter A on this line.

When you use the fA command, vi searches to the right for the first occurrence of the

letter "A" on the current line as follows:

Go forward to the letter on this line.

More sample text follows:

[Glo forward to just left of the letter i on this line.

When you use the ti command, the cursor moves to the left of the first occurrence of

the letter "i" in the current line, as follows:

Go forward to just left of the letter[Ji on this line.

With the cursor positioned as follows:

Go backward to the letter kon[tlhis line.

2-24 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

when you use the Fk command, the cursor moves left to the previous occurrence of

the letter "k" in the current line.

Go backward to the letter [k] on this line.

From the cursor position, when you use the ; command, vi repeats the most recent

character search command as follows:

Go bacik]lward to the letter k on this line.

Moving the Cursor to a Specific Column on a Line (n])

Columns are specified with an absolute number. This command is helpful when

moving the cursor directly to a known column position in a table, form, or program.

Column positioning is requested using this syntax:

n|

where:

nis a column number.

This command moves the cursor right or left to the specified column number n.

Also, column specification is absolute. It is not relative to the cursor’s current

position.

In the following example, the cursor is in column 8:

Go forwla|lrd to column 20 in this line.

To move the cursor to absolute column 20, you would use the 20] command to

produce the following result:

Go forward to colun[n] 20 in this line.

This command moves the cursor forward and backward in a line. Keep in mind that

your maximum cursor movement is restricted by the length of the line. If you request

a column position that exceeds the line length, the cursor will go to the end of the

line.

069-701036 Licensed material—property of copyright holder(s) 2-25

Moving the Cursor

Moving the Cursor by a Word

Table 2-8 lists the commands that move the cursor by the word:

Table 2-8 Commands to Move the Cursor by a Word

Command | Definition

Ww Moves the cursor forward to the first character in the next word. You

may type w as many times as you want to reach the word you want.

Ww Moves the cursor forward to the first character in the next space-

delimited word.

b If the cursor is positioned on the first character of a word, moves the

cursor backward to the first character of the previous word. If the

cursor is not positioned on the first character of a word, moves the

cursor to the beginning of the current word. This command is the

opposite of the w command.

B This command is the same as the b command except that it applies to

space-delimited words.

e If the cursor is positioned on the end character of a word, moves the

cursor forward to the end character of the next word. If the cursor is

not positioned on the end character of a word, moves the cursor to

the end character of the current word. This command is the

counterpart to the w command.

E This command is the same as the e command except that it applies to

space-delimited words.

Each of these commands can be preceded by a number to indicate the number of

words (or space-delimited words) you want to move the cursor. Sample text follow:

He as[kled, "What is the time?”

By using the w command, the cursor moves to the next word, which is a comma, as

follows:

He asked[,| "What is the time?"

By using the 3W command, the cursor moves to the first character in the third space-

delimited word, as follows:

He asked, "What is [t]he time?"

By using the b command, the cursor moves back to the first character in the previous

word.

2-26 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

He asked, "What [i]s the time?"

By using the 3B command, the cursor moves to the first character of the third space-

delimited word in a backwards direction, as follows:

[Hle asked, "What is the time?"

By using the e command, the cursor moves to the final character in the next word, as

follows:

H[e] asked, "What is the time?"

By using the 3E command, the cursor moves to the final character in the third space-

delimited word, as follows: The word "He" is counted as one of three space-delimited

words.

He asked, "What ifs] the time?"

Moving the Cursor by a Sentence

Table 2-9 lists the commands to move the cursor by the sentence:

Table 2-9 Commands to Move the Cursor by a Sentence

Command | Definition

(Moves the cursor to the beginning of the previous sentence. If the

cursor is located within the paragraph, the cursor moves to the

beginning of the current paragraph.

) Moves the cursor to the beginning of the next sentence.

You can precede each of these commands with a number to indicate the number of

sentences you want to move the cursor.

The following examples show moving the cursor a sentence at a time. Sample text

follows:

Suddenly we spotted [wlhales in the

distance. Daniel was the first to see then.

When you use the (command, the cursor moves to the beginning of the previous

sentence, as follows:

[Suddenly we spotted whales in the

distance. Daniel was the first to see them.

When you use the) command, the cursor moves to the beginning of the next

sentence, as follows:

069-701036 Licensed material—property of copyright holder(s) 2-27

Moving the Cursor

Suddenly we spotted whales in the

distance. [Djaniel was the first to see then.

Moving the Cursor by a Paragraph

Table 2-10 lists the commands to move the cursor by the paragraph:

Table 2-10 Commands to Move the Cursor by a Paragraph

Command | Definition

{ Moves the cursor to the beginning of the previous paragraph. If the
cursor is located within a paragraph, the cursor will move to the

beginning of the current paragraph.

\ Moves the cursor to the beginning of the next paragraph.

Each of these commands can be preceded by a number to indicate the number of

paragraphs you want to move the cursor. The following examples show moving the

cursor by the paragraph. Sample text follows:

Suddenly, we spotted whales in the

distance. [Dlaniel was the first to see then.

"Hey look! Here come the whales!" he cried excitedly.

When you use the { command, the cursor moves to the beginning of the current

paragraph, as follows:

LJ
Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

When you use the } command, the cursor moves to the beginning of the next

paragraph.

Suddenly, we spotted whales in the

Gistance. Daniel was the first to see then.

LI
"Hey look! Here come the whales!" he cried excitedly.

2-28 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Moving the Cursor Within the Current Window

The current window is another name for the visible portion of the working buffer (the

part that you do not scroll up or down). Within the current window, you can move

the cursor to the first non-blank character of the top, middle, or last lines. If one of

these lines is blank, the cursor goes to the first position of the blank line. Table 2-11

specifies the commands that you can use to position the cursor on the top, middle, or

last lines.

Table 2-11 Commands to Move the Cursor Within the Current Window

Command | Definition

H Moves the cursor to the first nonblank character of the first line on

the screen; moves the cursor to the first column if the first line is

blank.

M Moves the cursor to the first nonblank character of the middle line on

the screen; moves the cursor to the first column if the middle line is

blank.

L Moves the cursor to the first nonblank character of the last line on

the screen; moves the cursor to the first column if the last line is

blank.

Examples of using these commands to position the cursor on the home, middle, and
last lines assume a 23-line screen display. Sample text follows.

[Sluddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look! Here come the whales he cried excitedly.

Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

By using the M command, the cursor moves to the first position of the middle of the

current window, shown as follows.

069-701036 Licensed material—property of copyright holder(s) 2-29

Moving the Cursor

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

("Hey look! Here come the whales!" he cried excitedly.

Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

By using the L command, the cursor moves to the beginning of the last line of the

current window, shown as follows.

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

Never had he witnessed such a sight. They were swift, powerful,

[alnd also graceful. The herd moved as one.

You can precede the L command with a number to indicate a line position before the

last line in the current window such as 3L.

By using the H command, the cursor moves to the home (row 1, column 1) position,

shown as follows.

[Sluddenly, we spotted whales in the

distance. Daniel was the first to see then.

"Hey look! Here come the whales he cried excitedly.

Never had he witnessed such a sight. They were swift, powerful,

and also graceful. The herd moved as one.

You can also precede the H command with a number to indicate some line position

after the first line in the current window such as 3H.

2-30 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Moving the Cursor Outside the Current Window

This group of commands enables you to move the cursor to parts of the working

buffer that are not in the current window. Four methods are available for locating

lines.

e Requesting a relative line.

® Requesting a specific line.

® Scrolling.

e Paging.

Moving the Cursor to a Relative Line (+, -)

An alternative to moving the cursor by the line is to specify a relative number of lines

in a positive (+) or negative (—) direction from the current cursor position. When the

line is located, the cursor is put in the first nonblank character position in the line.

Table 2-12 lists the commands that moves the cursor to a relative line:

Table 2-12 Commands to Move the Cursor to a Relative Line

Command | Definition

n+ The screen scrolls down in a positive (+) or forward direction by n

lines. The cursor moves to the first nonblank position on the given

line.

n= The screen scrolls in a negative (—) or backward direction by n lines.

The cursor moves to the first nonblank position on the given line.

The n+ command can also be expressed without using the plus (+) sign.

Examples follow:

13+. The cursor moves down 13 lines.

13> Thecursor moves down 13 lines.

13— The cursor moves up 13 lines.

For lines not located in the current window, the screen will shift up or down to reveal

the wanted lines. If, however, you tried to move the window up to a nonexistent line

(such as backwards 100 lines, expressed as 100-, in a 50-line file), the cursor would

remain on the current line and the terminal would beep.

069-701036 Licensed material—property of copyright holder(s) 2-31

Moving the Cursor

Moving the Cursor to a Specific Line

Table 2-13 lists the commands used for positioning the cursor on an absolute line

number:

Table 2-13 Commands to Move the Cursor to a Specific Line

Command | Definition

nG The cursor goes to line m where n represents the absolute line number

you specified. If that line is not currently on the screen, the window

will shift so that the desired line is displayed.

G The cursor goes to final line in the working buffer and the window will

shift so that the desired line is displayed on the screen.

You can find out the absolute line numbers by setting the number (nu) option from

last line mode (this information is given in the section on "Setting Up Your vi

Environment" later in this chapter). After you set the numbering option, each line in

your file is preceded by an absolute line number. If, for example, you want to

position the cursor on line 150 in your file, from command mode you would issue the

150G command and the portion of the file containing the specified file is positioned

within the current window. The cursor is positioned in the first column of line 150.

To remove line numbers from your file, in last line mode, you can issue the nonu

command.

Scrolling and Paging Text Through the Current Window

There are two ways you can display text that is not visible in the current window.

Scrolling Rolls one-half a screen of text (11 lines by default) up or down in the

buffer. Scrolling is best used when you want to read text continuously as

one line at a time is sent to the screen.

Paging Redraws the screen; shifting a complete page of text (23 lines by default)

up or down in the buffer. Paging is faster than scrolling (depending on

the baud rate and the screen size), but you do not see the context of the

current screen as you do with scrolling.

The amount of text scrolled or paged is relative to the window size and the scroll size

(for scrolling only). The window and scroll options can be set to customize window

and scroll size (refer to the section "Setting Up Your vi Environment" later in this

chapter).

Table 2-14 lists four commands that allow you to scroll and page the text in a file:

2-32 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

Table 2-14 Commands to Scroll and Page Text

Command | Definition

Ctrl-D Scrolls down one-half a screen of text (by default), revealing text that

is below the current window. If the current window is defined as 23

lines, then scroll size will be 11 by default.

Ctrl-U Scrolls up one-half a screen of text (by default), revealing text that is

above the current window. If the current window is defined as 23

lines, then scroll size will be 11 by default.

Ctrl-B Pages up a full screen (23 lines by default), revealing text that is above

the current window. Two lines are skipped between each screen for

faster movement.

Ctrl-F Pages down a full screen (23 lines by default), revealing text that is

below the current window. Two lines from the previous screen are

also displayed in the new screenful for continuity when reading

forward.

When scrolling and paging, if there are not enough lines in the file to satisfy a

scrolling or paging request, you will get what there is. If there are no more lines,

your terminal will beep. If, for example, you’re toward the bottom of a file and vi

cannot scroll forward a full screen, the available lines will be moved to the current

window, and tildes (~) will occupy the first columns of the empty lines to show the

end-of-file. If the bottom of the file was already positioned in the current window and

you tried to move a screen forward again, the screen would remain the same and the

terminal would beep.

By default, a window contains 23 lines. The following sample text shows the current

window with line numbers appearing in the left side of the screen.

NOTE: You can number your lines automatically by using the number editing option

in last line mode (see the section "Setting Up Your vi Environment").

1 The kayaker pointed

2 the nose of his boat

22 downstream. His name

23 was Mike.

By using the Ctrl-F command to page forward, you will cause the next page (22 lines)

of undisplayed text to be presented in the current window. For continuity, however,

there is a two-line overlap. Instead of seeing lines 23-45, you will see lines 22-44.

The cursor can be positioned anywhere on the current screen.

069-701036 Licensed material—property of copyright holder(s) 2-33

Moving the Cursor

22 [djownstream. His name

23 was Mike.

43 Close call!

44 He paddled hard to avoid

Notice the two-line overlap.

By using the Ctrl-D command to scroll one-half screen up (moving in a backward

direction), you would return one-half of the previous screen of text to the current

window. One-half screen equals 11 lines.

9

10

11 He was preparing for

12 what he thought to be a simple rapid.

9

20

21

22 downstream. His name

23 was Mike.

24 He knew no fear.

30 Quick recovery!

31 He resolved to be more careful.

Your next scroll or page actions will be relative to the current cursor position.

Moving the Cursor to a Marked Location

Using marks, you can flag significant areas in your file and save them in mark

registers. After you mark a location with the mark command, you can then return

the cursor to it automatically by specifying the register’s name.

The mark command format follows:

mregister-name

where:

m stands for "mark." You place the cursor at the position you want to mark, and then

issue the m command.

2-34 Licensed material—property of copyright holder(s) 069-701036

Moving the Cursor

register-name is the storage location to which you assign the marked position. You

assign the location to a register that you name with a single letter, a through z.

The go-to-mark command format follows:

position-command register-name

where:

position-command can be either of the following:

‘ (backquote) goes to the exact cursor position saved.

? (single quote) goes to the first nonblank position on the line containing the mark.

register-name is the marked location to which you assigned the marked position. You

can use as many as 26 register names (a through z) per editing session.

The contents of the used registers are cleared when you quit vi.

Sample text follows.

Ski the summit

Ski 4 of the world’s greatest ski areas on

1 lift package --- 8 different mountains ---

256 trails --- 53 lifts --- Located where

our airlines can take you!

What next[?]

By using the ma command, you can mark the current cursor position. This command

marks the cursor’s position at the question mark (?) and assigns the mark to register

a.

Using the ’a command from any file location, you can return the cursor to the first

position in the marked line, as follows.

[What next?

Using the ‘a command from any file location, you can return the cursor to the exact

marked location. This command (a single backquote) positions the cursor at the

exact location marked.

What next[?]

NOTE: Storing a mark in a register with the m command overwrites that register’s

current contents.

069-701036 Licensed material—property of copyright holder(s) 2-35

Appending Text

Appending Text

The append commands put vi in input mode and place the text you type after the

current character (the cursor position) or at the end of the current line. Table 2-15

lists two commands you can use to append text.

Table 2-15 Commands to Append Text

Command | Definition

a Appends text after the cursor position.

A Appends text at the end of the current line.

Before you can actually append any text, you must type one of the append commands,

which puts vi in input mode. The key point to remember is that entry begins after the

cursor.

Sample text follows:

Daniel saw the[Jjwhale spout.

Using the a command enables you to append text. In this sample text, you would

type the a command immediately followed by the text "white" and then press the

space bar to append the word "white" to "the". The "APPEND MODE” message will be

displayed in the status line. After you finish appending text, you press the Escape

key to return to command mode, and the message is removed from the status line.

The result appears as follows.

Daniel saw the white[Jwhale spout.

If you had used the A command, the text would have been appended as follows:

Daniel saw the whale spout.white [_]

For either append command, with the cursor positioned at the end of a line, you can

also press the New Line key once to start a new line of text, or multiple times to

generate multiple blank lines.

2-36 Licensed material—property of copyright holder(s) 069-701036

Inserting Text

Inserting Text

The insert commands put vi in input mode and place the text you type before the

current character or at the beginning of the current line. Table 2-16 lists commands

for inserting text.

Table 2-16 Commands to Insert Text

Command | Definition

i Inserts text before the cursor.

I Inserts text at the beginning of the current line.

Append and insert modes may appear the same but they are slightly different. The

difference is that with insert mode, text entry begins before the cursor, not after. For

example, assume the cursor is positioned as follows:

Daniel saw the[JWwhale spout.

Using the i command enables you to insert text. In this sample text, you would type

the i command, press the space bar, and type the text white to insert the word

"white" before "whale". The "INSERT MODE" message will be displayed in the status

line. After you finish appending text, you press the Escape key to return to command

mode, and the message is removed from the status line.

The result appears as follows.

Daniel saw the whit[e] whale spout.

If the I command had been used, the text would have been inserted as follows:

whit[e]Daniel saw the whale spout.

NOTE: There is a space before the "w" in "white".

For both insert commands, with the cursor positioned at the end of the current line,

you can also generate blank lines by pressing the New Line key any number of times.

After you have inserted text, to return to the command mode of vi, press the Escape

key.

When entering text using the insert or append commands, you may not know when to

press the space bar to get the desired leading or trailing space for the new text. After

you press the Escape key to end input mode, you may see that your spacing was off.

If so, you can use the u command and try again or use the text deletion and insertion

commands to correct the error. Since the a and i commands require that you use

different spacing, you may want to get into the habit of using one or the other

exclusively.

069-701036 Licensed material—property of copyright holder(s) 2-37

Opening a New Line for Text

Opening a New Line for Text

Rather than adding text within a line of text, you may want to generate a completely

new line between two existing lines. Table 2-17 lists two ways to open a blank line for

text entry.

Table 2-17 Commands to Open a New Line

Command | Definition

oO Creates a blank line below the current line.

O Creates a blank line above the current line.

The open commands create a blank line directly above or below the current line, and

positions the cursor in the first column ready for text in input mode. Sample text

follows:

Daniel saw the whale spout.

Daniel saw the white[]whale spout.

Daniel ate shark for dinner.

Using the o command enables you to open a line (below the line containing the

cursor) for typing new text. In this sample text, you would type the o command

followed immediately by the text It looked like a geyser. to open the new line and

enter new text. The "OPEN MODE" message will be displayed in the status line. After

you finish opening a line for new text, you press the Escape key to return to

command mode, and the message is removed from the status line.

The result appears as follows.

Daniel saw the whale spout.

Daniel saw the white whale spout.

It looked like a geyser[.]

Daniel ate shark for dinner.

If you had used the O command instead of the o command, this result would be

produced:

Daniel saw the whale spout.

It looked like a geyser[.]

Daniel saw the white whale spout.

Daniel ate shark for dinner.

The new text was entered on the line above (instead of below) the line containing the |

cursor.

2-38 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting Text

Table 2-18 lists the commands you can use to delete text.

Table 2-18 Commands to Delete Text

Command | Definition

x Deletes a single character (or multiple characters) at the cursor

position and then moves the cursor to the right; a shortcut for dl.

X Deletes a single character (or multiple characters) starting at one

position to the left of the cursor; a shortcut for dh.

dw Deletes a single word (or multiple words) starting at the cursor

position.

dw Deletes a single space-delimited word (or multiple space-delimited

words) starting at the cursor position.

do Deletes characters from (but not including) the cursor position to the

beginning of the line.

D Deletes all characters starting at the cursor position to the end of the

current line.

d$ Another form of the D command; however, it takes a number for

deleting multiple lines.

dd Deletes an entire line (where the cursor is positioned) or multiple

lines.

d(Deletes from the cursor position (but not including the cursor

position) to the beginning of a single sentence or multiple sentences.

d) Deletes from the cursor position to the end of a single sentence (or

multiple sentences).

d{ Deletes from the cursor position (but not including the cursor

position) to the beginning of a single paragraph (or multiple

paragraphs).

d} Deletes from the cursor position to the end of a single paragraph (or

multiple paragraphs).

dposreg Deletes from the cursor position to the position of the mark saved in

the named register.

For most of the delete commands, you can precede the command with a number to

indicate the number of text objects to be deleted. Three delete commands that do

not take numbers are: d0 , D, and dposreg. You can use a number for the first two

commands, but it will have no effect.

Each delete command is demonstrated in the next sections.

069-701036 Licensed material—property of copyright holder(s) 2-39

Deleting Text

Deleting Characters at the Cursor and to the Right

The x command deletes a single character at the cursor position and then moves the

cursor to the right. Sample text follows.

The first f[aJnnual research review will be at Hayes Hall.

By using the x command, you can delete one character marked by the cursor, shown

as follows.

The first [nJnual research review will be at Hayes Hall.

More sample text follows.

The first [aJnnual research review will be at Hayes Hall.

By using the 7x command, you can delete seven characters to the right of (and

including) the cursor, shown as follows.

The first [r]Jesearch review will be at Hayes Hall.

Deleting Characters to the Left of the Cursor

The X command deletes a single character starting at one position to the left of the

cursor. Sample text follows.

The first [r]jesearch review will be at Hayes Hall.

By using the 7X command, you can delete seven characters to the left of (and

including) the cursor, shown as follows.

The [rljlesearch review will be at Hayes Hall.

Deleting Words

The dw command deletes a single word starting at the cursor position. Sample text

follows.

[T]he semi-annual research review will be at Hayes Hall.

By using the 5dw command, you can delete five words to the right of (and including)

the cursor, shown as follows.

[rleview will be at Hayes Hall.

Notice that the word "semi-annual" is counted as three words.

2-40 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting Space-Delimited Words

The dW command deletes a single space-delimited word starting at the cursor

position. Sample text follows.

[The semi-annual research review will be at Hayes Hall.

By using the 54W command, you can delete five space-delimited words to the right of

(and including) the cursor, shown as follows.

[ble at Hayes Hall.

Notice that the word "semi-annual" is counted as one space-delimited word.

Deleting from the Beginning of a Line

The d0 command deletes characters from (but not including) the cursor position to

the beginning of the line. Sample text follows:

The first semi-annual research [rleview will be at Hayes Hall.

By using the d0 command, you can delete all text between the beginning of a line to

the current cursor position, shown as follows.

[rleview will be at Hayes Hall.

Deleting to the End of a Line

The D command deletes all characters starting at the cursor position to the end of the

line. Sample text follows.

The first semi-annual research review [wlill be at Hayes Hall.

By using the D command, you can delete all text between the current cursor position

to the end of the line, shown as follows.

The first semi-annual research review(_]

NOTE: Use of the d$ command to delete to the end of the line performs the same

function.

069-701036 Licensed material—property of copyright holder(s) 2-41

Deleting Text

Deleting Entire Lines

The dd command deletes an entire line (where the cursor is positioned). Sample text

follows.

[OJne panelist will present her ideas on circuit design

concepts.

This panel discussion

will begin promptly at 2 pm. Graduate students

are encouraged to attend.

By using the 3dd command, you can delete three entire lines, starting from the

current line (marked by the cursor), shown as follows.

[wjill begin promptly at 2 pm. Graduate students

are encouraged to attend.

You will see the message "3 lines deleted" in the status line assuming that the

report option (last line mode) is set to 3 or less. See the section on "Setting Up Your

vi Environment" later in this chapter for more information.

Deleting to the Beginning of a Sentence

The d(command deletes from the cursor position (but not including) the cursor

position) to the beginning of a sentence. Sample text follows.

One panelist will present her ideas on circuit design

concepts. This panel discussion

will begin promptly at 2 [plm. Graduate students

are encouraged to attend.

By using the 2d(command, you can delete two sentences, starting from the current

cursor position moving left to the beginning of the second sentence, shown as follows.

[pm. Graduate students

are encouraged to attend.

You will see the message "4 lines deleted" in the status line, assuming the report

option (last line mode) is set to 4 or less. See the section on "Setting Up Your vi

Environment" later in this chapter for more information.

2-42 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

Deleting to the End of a Sentence

The d) command deletes from the cursor position to the end of a sentence. Sample

text follows.

One panelist will present her ideas on circuit design

concepts.

This panel discussion

will begin promptly at 2 [pm. Graduate students

are encouraged to attend.

By using the 2d) command, you can delete two sentences, starting from the cursor

position moving right through the end of the second sentence, shown as follows.

One panelist will present her ideas on circuit design

concepts.

This panel discussion

will begin promptly at 2[]

You will see the message "3 more lines" in the status line assuming the report (last

line mode) option is set to 3 or less. See the section on "Setting Up Your vi

Environment" later in this chapter for more information.

Deleting to the Beginning of a Paragraph

The d{ command deletes from the cursor position (but not including the cursor

position) to the beginning of a paragraph. Sample text follows.

One panelist will present her ideas on circuit

design concepts. This panel discussion will begin promptly

at 2 pm. Graduate students are encouraged to attend.

A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the 2d{ command, you can delete from the cursor position moving left

through the beginning of the second paragraph, shown as follows.

[wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

You will see the message, "6 lines deleted," in the status line assuming the

report option (last line mode) is set to 6 or less. See the section on "Setting Up Your

vi Environment" later in this chapter for more information.

069-701036 Licensed material—property of copyright holder(s) 2-43

Deleting Text

Deleting to the End of a Paragraph

The d} command deletes from the cursor position to the end of a paragraph. Sample

text follows.

One panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly

at 2 pm. Graduate students are encouraged to attend.

A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the 2d} command, you can delete from the cursor position moving right

through the end of two paragraphs, shown as follows.

One panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly

at 2 pm. Graduate students are encouraged to attend.

You will see the message "3 lines deleted" in the status line assuming the report

option (last line mode) is set to 4 or less. See the section on "Setting Up Your vi

Environment" later in this chapter for more information.

Marking Text for Deletion

With the mark command, you can delete text that extends from a specific mark

(whose location is saved in a register) to the cursor position.

You put the cursor at the location you want to mark and save that location in a mark

register using this command format:

mregister-name

where:

m represents "mark."

register-name identifies the register in which the marked location is saved. Valid

register names are a through z.

2-44 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

You can delete text from the mark to the cursor position using a delete command in

the following form.

dposition register

where:

d represents the delete command; it removes text from the current line to the mark

saved in the named register.

position refers to either of two symbols used to mark the end boundary for deletion.

‘ (backquote) marks the exact cursor position.

’ (single quote) marks the line the cursor is on.

register identifies the register containing the appropriate mark. Valid register names

are a through z and A through Z.

Sample text follows.

One panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly

at 2 pm. Graduate students are encouraged to attend.

A [wlorkshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

By using the mz command, you can mark the cursor position and store the position in

register z.

Let’s say you wanted to delete text from the mark to the first line (beginning with

"One".) You would position the cursor on the "0" in "One", shown as follows.

[(O]Jne panelist will present her ideas on circuit

design concepts. The panel discussion will begin promptly

at 2 pm. Graduate students are encouraged to attend.

A workshop will be in the Commons Room afterwards.

She will also tour the circuit design lab.

Using the d‘z command, you can delete from the cursor position to the mark.

The result appears as follows.

Al |

She will also tour the circuit design lab.

069-701036 Licensed material—property of copyright holder(s) 2-45

Deleting Text

Using the d’z command, you can delete from the mark through the entire marked

line, shown as follows.

L
She will also tour the circuit design lab.

Recovering Deleted Lines

Sometimes, through a hasty action or an inadvertent mistake, you can delete lines

that can’t be recovered with the u or U commands. You could have committed this

mistake about five commands ago, for example. Vi offers.an error recovery

mechanism to retrieve a deletion if it occurred within the last nine editing commands.

Vi has nine number registers used for storing the last nine text deletions performed

with a delete command (and also the delete-and-put command). Refer to the section

on "Moving Text" later in this chapter for more information on the delete-and-put

command. The delete-text registers are numbered from 1 through 9. The line-

recover command takes this form:

"nput-command

where:

the double quotation mark (") symbolizes a named register.

n is a register number (1-9).

put-command is either p (put after the cursor) or P (put before the cursor).

With the cursor on the position at which you want the lost lines restored, you would

type the command. If you can’t remember the correct value for n, you might start

with 1 and work your way back to 9. An example of the quick way to do this is:

"Ip

u.

Uu.

u.

Uu.

You are starting at the register 1. If it retrieves unwanted text, you can type an undo

command (u) followed by a dot command (.). The dot will increment the register by 1

and repeat the command. You can type (or repeat) up to eight u. commands as

needed to get to the desired text. You can retrieve no more than the nine most

recent delete operations.

2-46 Licensed material—property of copyright holder(s) 069-701036

Replacing Text

Replacing Text

The replace commands cause the new text you type to overwrite (or replace) existing

text. Table 2-19 lists two commands to replace text.

Table 2-19 Commands to Replace Text

Command | Definition

nr Causes the next character you type to overwrite the character at the

cursor position (or multiple characters beginning at the cursor). After

you type that character, vi automatically returns to command mode.

You do not have to press the Escape key.

R Starting at the cursor position, overwrites existing text until you press

the Escape key to return vi to command mode. If the end of the line

is reached, this command will append the additional input as new text.

You can precede the r command with a number to indicate the number of characters

to be overwritten.

Replacing a Character

The r command cause the next character you type to overwrite the character at the

cursor position. Sample text follows.

There are more than 75 oufe]ldoor Olympic events.

Using the r command enables you to replace text. In this sample text, you would type

the r command followed immediately by the letter t to replace the character "e" with

"t". The "REPLACE 1 CHAR" message is displayed in the status line when you use the

rcommand. It is removed when you type the replacement character.

The result appears as follows.

There are more than 75 ou{t|door Olympic events.

The cursor is stationary, and command mode remains in effect.

In addition to replacing a single character, you can also replace n adjacent characters

with n instances of the same character.

Sample text follows.

Spectators numbering [1]00000 are expected to attend.

Using the 6r9 command, you can replace "100000" with "999999" (or replace the six

numbers "100000" with six instances of the digit "9"). The "REPLACE WITH 1 CHAR"

069-701036 Licensed material—property of copyright holder(s) 2-47

Replacing Text

message is displayed in the status line when you use the r command, and it is

removed when you type the replacement character.

The result appears as follows.

Spectators numbering 99999[9] are expected to attend.

Command mode is still in effect.

Replacing Multiple Characters

The R command overwrites existing text starting at the cursor position and ending

when you press the Escape key to return to command mode. Sample text follows.

Spectators [nlumbering 999999 are expected to attend.

Using the R command enables you to replace multiple characters. In this sample

text, you would type the R command followed immediately by the text rose to their

feet to applaud to replace "numbering 999999 are expected”. The R command

replaces multiple characters until you press the Escape key to terminate entry mode,

returning vi to command mode. The message "REPLACE MODE" is displayed in the

status line after you type R and while you type the replacement text. After you have

completed entering text, you press the Escape key to return to command mode, and

the message is removed from the status line.

The result appears as follows.

Spectators rose to their feet to applaufd] to attend.

Notice that the old text "to attend" remains on the screen. To get rid of unwanted

text, you should use a delete command. (See the section on "Deleting Text" in this

chapter for more information.)

Remember that you are overwriting on the current line only. If your new text exceeds

the boundaries of the old text from the current line, the excess text entered is

appended. This means that you will not overwrite existing text. The following

example illustrates the use of append following overwriting. Sample text follows.

Spectators [|numbering 999999 are expected to attend.

The Olympic Committee began work on the festival years ago.

In this sample text, you would type the R command followed immediately by the text

jammed into the arena for the gymnastics event. to replace the existing text and

append to the end of text.

2-48 Licensed material—property of copyright holder(s) 069-701036

Replacing Text

The result appears as follows.

Spectators jammed into the arena for the gymnastics event, which

featured the defending champion|.]

The Olympic Committee began work on the festival years ago.

Text on the current line was completely overwritten; however, the text exceeding the

current line was appended. Notice that the subsequent text was not overwritten.

Changing Text

The change commands replace existing text with new text. The new text does not

have to occupy the same amount of space as the old text. The change command will

mark the specified amount of text to be changed by placing a dollar sign ($) on the

final character in the range and put vi in input mode. After you finish entering the

new text, you can press the Escape key to return vi to command mode. If the

changed text exceeds the text area marked for change, additional text will be inserted.

If the changed text occupies less space than the text area marked for change, when

you press the Escape key, the old text is deleted and the excess space is squeezed.

069-701036 Licensed material—property of copyright holder(s) 2-49

Changing Text

Table 2-20 lists the change commands:

Table 2-20 Commands to Change Text

Command | Definition

S Substitutes the current character (or multiple characters, starting with

the current character) for another character(s). Input mode is

terminated by pressing the Escape key.

cl Same as ns.

cw Changes a single word (including a fragment) or multiple words to

new text.

cW Changes a single space-delimited word (including a fragment) or

multiple blank- delimited words to new text.

cc Changes all characters in the current line (or multiple lines) beginning

with the current line to new text.

S Same as nee.

Changes the remaining characters in the current line from the cursor

to the end of the line (or multiple lines) to new text.

c$ Same as nC.

c0 Changes the characters in the current line from the cursor to the

beginning of the line (or multiple lines) to new text.

c(Changes from the cursor position (but not including the cursor) to the

beginning of a single sentence (or multiple sentences) to new text.

c) Changes from the cursor position to the end of a single sentence (or

multiple sentences) to new text.

c{ Changes from the cursor position (but not including the cursor) to the

beginning of a single paragraph (or multiple paragraphs) to new text.

c} Changes from the cursor position to the end of a single paragraph (or

multiple paragraphs) to new text.

cposreg Changes from the cursor position to the mark in a forward direction.

For all of the change commands, except the cposreg command, you can precede the

command with a number to indicate the number of text objects to be changed.

2-50 Licensed material—property of copyright holder(s) 069-701036

Changing Text

Substituting Characters

The s command substitutes the current character for another character until you press

the Escape key to return to command mode. Sample text follows.

She [glripped the branch with force.

Using the s command enables you to substitute one character for another and

continue inserting text. After you type the s command, the "CHANGE MODE" message

is displayed on the status line, and a dollar sign ($) marks the beginning of text to be

substituted, shown as follows.

She [S]ripped the branch with force.

Then you can type the substituted characters, such as st. After you finish substituting

text, you press the Escape key to return to command mode.

The result appears as follows.

She s[t]ripped the branch with force.

The appearance of the substitute and insert action is terminal dependent. On some

terminals, if you do not set the redraw option (last line mode), when you type "st",

the cursor may appear to overwrite the existing "r". (See the section on "Setting Up

Your vi Environment" later in this chapter for more information.) After you press

the Escape key, you will see the reappearance of the existing character.

An example of specifying a number with the s command is demonstrated with the

following sample text.

Karen took a deep breath and [s]kated across the ice.

In this sample text, you would type the 4s command followed immediately by the text

tipto to substitute the four characters "tipt" and insert one character "o". After you

finish supplying the substitution text, you press the Escape key to return to command

mode.

The result appears as follows.

Karen took a deep breath and tiptloled across the ice.

Changing Words

The cw command changes the current word, allowing you to continue inserting text

until you press the Escape key to return to command mode. Sample text follows.

The kayaker peeled out and [wlashed down the rapids.

In the sample text, you would type the ew command followed immediately by the text

catapulted to change "washed" to "catapulted". After you finish the changed text,

you press the Escape key to return to command mode.

069-701036 Licensed material—property of copyright holder(s) 2-51

Changing Text

The result appears as follows.

The kayaker peeled out and catapultef[d] down the rapids.

Notice that the length of the changed text does not have to match the length of the

old text. After you pressed the Escape key, text to the right is automatically justified.

Sample text for changing three words follows.

The kayaker peeled out and washed down [t]he rapids.

In this sample text, you would type the 3cw command followed by the text a narrow

chute, to change the existing three words to three new words. After you finish

changing text, you press the Escape key to return to command mode.

The result appears as follows.

The kayaker peeled out and washed down a narrow chutef[.|

Notice that the period counted as a word.

Changing Space-Delimited Words

The cW command is identical to the cw except that the text object changed is a

space-delimited word (adjacent punctuation is considered part of a word). Sample

text follows.

The kayaker peeled out and washed [djown the rapids.

In the sample text, you would type the 3eW command followed immediately by the

text through a boulder garden to change three existing space-delimited words to new

text. After you finish changing text, you press the Escape key to return to command

mode.

The result appears as follows.

The kayaker peeled out and washed through a boulder garden|.]

Changing all Characters in the Current Line

The ce command allows you to change the current line with the cursor positioned

anywhere on the line. If your new text exceeds the text to be changed, you can

continue entering text until you press the Escape key to end input mode. Sample text

follows.

2-52 Licensed material—property of copyright holder(s) 069-701036

Changing Text

Dispatch to All Cab Drivers:

If you piljan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

From the cursor position, you would type the cc command followed immediately by

the following text:

If you care to put in some extra 9

hours for extra pay and if you’re in the vicinity

The ce command erases the current line, and the old text is changed to the new text.

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

Dispatch to All Cab Drivers:

If you care to put in some extra

hours for extra pay and if you’re in the vicinity]

of the Central City Coliseum tonight,

you are in for big business.

Changing to the End of a Line

The C command changes text from the cursor position to the end of the line. This

command places a dollar sign ($) over the final character to be changed. If your new

text exceeds the old text, it will be appended in input mode until you press the Escape

key. Sample text follows.

Dispatch to All Cab Drivers:

If you [pjlan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

In this sample text, you would type the C command followed immediately by this new

text.

want overtime work and will be in the area

The C command erases the current line, and the old text is changed to the new text.

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

069-701036 Licensed material—property of copyright holder(s) 2-53

Changing Text

Dispatch to All Cab Drivers:

If you want overtime work and will be in the arefa]

of the Central City Coliseum tonight,

you are in for big business.

Changing to the Beginning of a Sentence

The c(command changes text from the cursor position to the beginning of a single

sentence or multiple sentences in a left direction. Sample text follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the [CJentral City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

In this sample text, you would type the 2c(command followed immediately by this

text:

If you care to put in some extra 0

hours for extra pay and if you’re 0

in the vicinity of the

Space once following the text.

The c(command erases the current sentence, and the text you type is inserted before

the cursor, pushing existing text on the current line to the next line.

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

Dispatch to All Cab Drivers:

If you care to put in some extra

hours for extra pay and if you’/re

in the vicinity of the[|City Coliseum tonight,

you are in for big business.

There is a record sellout.

2-54 Licensed material—property of copyright holder(s) 069-701036

Changing Text

Changing to the End of a Sentence

The c) command is the complement of the c(command; it changes text from the

cursor to the end of a single sentence or multiple sentences in a right direction.

Sample text follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the [CJentral City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

In this sample text, you would type the c) command followed immediately by this new

text:

Galaxy Superdome tonight during 9

the graveyard shift, do we have a job 0

for you. It’s a concert!

The c) command erases from the cursor to the end of a sentence, and the old text is

changed to the new text.

After you finish the changed text, you press the Escape key to return to command

mode.

On some terminals an at (@) sign may appear in the left margin signifying a deleted

line. The cursor marks the text entry point.

The result appears as follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Galaxy Superdome tonight during

the graveyard shift, do we have a job

for you. It’s a concert[!]

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

069-701036 Licensed material—property of copyright holder(s) 2-55

Changing Text

Changing to the Beginning of a Paragraph

The e{ command changes text from the cursor to the beginning of a single paragraph

or multiple paragraphs in a left direction. Sample text follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the [CJentral City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

In this sample text, you would type the e{ command followed immediately by this new

text:

Taxi Drivers on the west side: 9

A big concert is playing at

the

Space once after the text.

The 2c{ command erases the text from the cursor the beginning of two paragraphs,

and the old text is changed to the new text.

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

Taxi Drivers on the west side:

A big concert is playing at

the[|central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

2-56 Licensed material—property of copyright holder(s) 069-701036

Changing Text

Changing from the Cursor to the End of a Paragraph

The c} command changes text from the cursor position to the end of a paragraph or

multiple paragraphs in a right direction. Sample text follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the [CJentral City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

Your friendly dispatcher, Rose

In this sample text, you would type the following 2c} command followed immediately

by this new text:

Grande Hotel, you might want >

to park your cars close by. There’s 0

a reception for the president of 9

Galax Corp. Cabs will be needed 0

to drive guests across town.

The 2c} command erases text from the cursor position to the end of two paragraphs,

and the old text is changed to the new text.

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Grande Hotel, you might want

to park your cars close by. There’s

a reception for the president of

Galax Corp. Cabs will be needed

to drive guests across town|.]

Your friendly dispatcher, Rose

069-701036 Licensed material—property of copyright holder(s) 2-57

Changing Text

Changing Marked Text

The change mark command changes text from the cursor position to the mark in a

forward direction. Sample text follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Grande Hotel, you might want

to park your cars close by. There’s

a reception for the president of

Galax Corp. Cabs will be needed

to drive guests across town. |]

Your friendly dispatcher, Rose

You must first mark a location in your file. In this sample text, you would mark the

cursor position with ma command, which assigns the cursor position to a mark

register named a. You can use register names a through z to save marked positions.

Defined marks are valid for the current vi session (until you log out).

Then, position the cursor in another file location to mark the boundary of the text to

be changed. In this example, you can move the cursor to the "T" in "There’s",

shown as follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Grande Hotel, you might want

to park your cars close by. [f]here’s

a reception for the president of

Galax Corp. Cabs will be needed

to drive guests across town.

Your friendly dispatcher, Rose

In this sample text, you would then type the e‘a command followed immediately by

this new text:

That area has recently been 0

approved as a cab zone.

2-58 Licensed material—property of copyright holder(s) 069-701036

Changing Text

After you finish the changed text, you press the Escape key to return to command

mode.

The result appears as follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Grande Hotel, you might want

to park your cars close by.

That area has recently been

approved as a cab zone[,]

Your friendly dispatcher, Rose

Moving Text

There are two types of commands for moving text from one area in the working

buffer to another area; they are:

delete-and-put Removes text from one location in the working buffer and puts it

in another location in the working buffer.

yank-and-put Makes a copy of text from one location in the working buffer and

puts it in another location in the working buffer.

Vi uses several different registers for storing deleted and yanked text, which is

covered in the next section.

The general procedure for the delete-and-put and the yank-and-put operations is the

same:

@ Identify the text being deleted or yanked using a delete or yank command.

@ Position the cursor at the location for the moved or copied text.

e Issue the appropriate put command to position the text in the desired

location.

The specific commands used for deleting, yanking, and putting text are given in this

section.

069-701036 Licensed material—property of copyright holder(s) 2-59

Moving Text

Using Registers for Storing Text

There are three types of registers for storing deleted or yanked text that you can put

in another location in the working buffer; they are:

general register Saves the most recently deleted or yanked text implicitly.

numeric register Saves the nine most recently deleted blocks of text implicitly.

alphabetic register Saves deleted or yanked text explicitly for repeated use.

By default, all yanked or deleted text is saved automatically in a general register.

Each time you perform a delete or yank operation, the deleted or yanked text will

overwrite the previous contents of the general register. Also, the text you delete is

saved implicitly in a number register. You do not have to assign a number register

name; vi does it automatically.

With alphabetic registers, you can save text from delete and yank operations to which

you assign a single character name so that you can use that text repeatedly. Table

2-21 lists the two types of named registers (number and alphabetic).

Table 2-21 Named Registers for Deleted and Yanked Text

Register Name | What It Does

a-Z Saves text in specific register, overwriting previously saved text in

that register. To append text to an existing register, you simply

use the register name’s uppercase equivalent. For example, if you

wanted to append more text to existing text register a, you would

use register A. You can append as much text as you want to an

existing register. Note that each new group of appended text is

placed on a new line in the register; you cannot append text to an

existing line in a register. Legal register names for appended text

are A-Z.

1-9 Stores deleted text implicitly. You will not assign explicitly

deleted text to these registers; it is stored there automatically

whenever you use a delete command. However, you can recover

deleted text and put it in another location in the working buffer by

using its register. Since there are only nine numeric registers,

only the last nine deletions can be stored. Therefore, you cannot

recall text from the tenth or more delete operations back (unless

you placed the text in an alphabetic register). The most recent

deletion will be saved in register 1; the oldest deletion will be

saved in register 9.

With text saved in specific registers, you can recall and put the text anywhere in the

working buffer and at any time during a vi work session. The contents of all registers

remain only until you quit vi with the ZZ or :wq commands.

2-60 Licensed material—property of copyright holder(s) 069-701036

Moving Text

The Delete Commands

The delete commands described in the section titled "Deleting Text" are used to erase

text. Deleted text is stored automatically in the general register and a number register

for subsequent put operations. Alternatively, you can also save deleted text in an

alphabetic register for subsequent repeated put operations.

The command format for the delete operation using the general register follows:

delete-command

The command format for the delete operation using an alphabetic register follows.

n" register-name delete-command

where:

n represents the number of text objects to be affected.

The quotation mark (") signifies a named register.

Legal alphabetic registers are a through z; and to append to an existing register, A

through Z.

The delete commands are covered in the section "Deleting Text" in this chapter.

069-701036 Licensed material—property of copyright holder(s) 2-61

Moving Text

The Yank Commands

The yank commands are identical to the delete commands, except that text is not

deleted from the working buffer. Rather, a copy is placed in the general register or a

named register for subsequent puts. Table 2-22 lists the yank commands.

Table 2-22 Commands to Yank Text

Command | Definition

Y Saves a copy of the current line (or multiple lines).

Same as Y.

y_ Same as Y.

yw Saves a copy of a single word (or fragment) or multiple words.

yw Saves a copy of a blank-delimited word (or multiple blank-delimited

words).

y0 Saves a copy of text from the left of the cursor (not including the

cursor position) to the beginning of the line.

y$ Saves a copy of text from the cursor position to the end of the line (or
multiple lines).

y(Saves a copy of the text from the cursor to the beginning of a single

sentence (or multiple sentences).

y) Saves a copy of the text from the cursor (but not including the cursor)

to the end of a single sentence (or multiple sentences).

y{ Saves a copy of the text from the cursor to the beginning of a single

paragraph (or multiple paragraphs).

y} Saves a copy of the text from the cursor to the end of a single

paragraph (or multiple paragraphs).

mreg Marks a position on a line.

yposreg Saves a copy of the text from the marked position (either the entire

line or the exact position saved in the register) to the cursor position.

All yank commands can be preceded by a number to indicate the number of text

objects to be affected except the yO and yposreg commands. If yanked text is being

saved in an alphabetic register, then that register name must precede the yank

command.

The command format for the yank operation using the general register follows:

yank-command

The command format for the yank operation using an alphabetic register follows:

2-62 Licensed material—property of copyright holder(s) 069-701036

Moving Text

n"register-nameyank-command

where:

n represents the number of text objects to be affected.

The quotation mark (") signifies an alphabetic register.

Legal alphabetic register names are a through z; for appended text, A through Z.

The yank commands are covered in the preceding table in this section.

The Put Commands

The put commands copy the text from either the general, number, or alphabetic

registers into the desired location in the working buffer. Text saved in the number

and the alphabetic registers can be put in multiple locations in the working buffer at

any time during a vi work session.

Each time you perform a yank or delete operation using the general register, that text

will overwrite the previous contents. Therefore, it’s a good idea to limit the

operations performed between a yank (or delete) and put operation to cursor

positioning commands. Any interfering commands will alter the contents of the

general register and may give you unexpected results when you use the put command.

However, if you are putting text saved in a alphabetic register, there are no

restrictions on any intervening commands you use between the delete or yank

operations and the put operation.

The general format for the put command using text saved in the general register

follows.

put-command

The general format for the put command using text saved in an alphabetic register

follows.

"register-name put-command

where:

The quotation mark (") signifies a named register.

The register-name is the name that corresponds to the text that was deleted or yanked.

Register names are not case-sensitive when you are putting text. However, you must

be careful with case sensitivity when you yank or delete to a named register. Table

2-23 lists the two forms of the put command:

069-701036 Licensed material—property of copyright holder(s) 2-63

Moving Text

Table 2-23 Commands to Put Text

Command | Definition

p For characters and words, puts the saved text after the current

character or word. For lines, sentences, and paragraphs, puts the

saved text on the line after the current line (containing the cursor).

P For characters and words, puts the saved text before the current

character or word. For lines, sentences, and paragraphs, puts the

saved text on the line before the current line (containing the cursor).

Examples of the Delete-and-Put and the Yank-and-Put

Operations

Table 2-24 gives examples of the commands used for the delete-and-put and yank-

and-put operations using general, number, and alphabetic registers.

Table 2-24 Examples of Delete-and-Put and Yank-and-Put Operations 30

Command | Description

Sdw Deletes five words and saves them in the general register and a

number register implicitly. The most recently deleted text is stored in

number register 1.

p Puts the saved text from the general register on the current line,

following the cursor position.

P Puts the saved text from the general register on the current line,

before the cursor position.

2d{ Deletes two paragraphs from the cursor position to the beginning of

the second paragraph from the cursor. This deleted text is saved in

the general register and register 1 automatically; the previous deletion

is now in register 2.

"2P Retrieves the deleted text from register 2 and puts it on the current

line, before the cursor position.

5"zy} Yanks five paragraphs from the cursor to the end of the fifth

paragraph and saves them in alphabetic register z.

2"Zyw Yanks two words from the cursor position and appends them to

existing register Z.

"ZP Puts the text saved from register Z on the line above the cursor

position.

Two examples using registers are explained fully.

2-64 Licensed material—property of copyright holder(s) 069-701036

Moving Text

Deleting and Putting Text

The dw command deletes text from the cursor position to the end of a word. Sample

text follows.

[T]he semi-annual research review will be at Hayes Hall.

This conference is being planned now.

By using the 5dw command, you can delete five words, starting at the cursor and

moving right.

The result appears as follows.

[rleview will be at Hayes Hall.

This conference is being planned now.

Notice that "semi-annual" is considered three words.

Saving Deleted Text in the General and Number Registers

Deleted text from the preceding example is saved automatically in the general register

and in a number register. In the previous example, you deleted five words using the

Sdw command. Assuming that this deletion is the only one performed in this vi

session, the deleted text is stored in register 1. The deleted text follows.

The semi-annual research

Putting the Saved Text After the Cursor

If you want to insert this deleted text after the current cursor position in another

buffer location, you can position the cursor there, and retrieve the contents of the

general register or the numeric register.

Let’s say you positioned the cursor on the "T" in "This", shown as follows.

review will be at Hayes Hall.

[T]his conference is being planned now.

Since the previous delete operation is the only one in question, you can use the p

command (which retrieves the contents of the general register), or you can specify the

appropriate number register explicitly, in this example "Ip.

This result is produced.

review will be at Hayes Hall.

TThe semi-annual research[Jhis conference is being planned now.

The cursor is positioned on the final character of the inserted text. Vi remains in

command mode.

069-701036 Licensed material—property of copyright holder(s) 2-65

Moving Text

Putting the Saved Text Before the Cursor

If you want to insert the saved text before the cursor, you position the cursor at the

location where you want to put the saved text and type either P or "1P.

Let’s say you positioned the cursor on the "T" in "This", shown as follows.

review will be at Hayes Hall.

[T]hhis conference is being planned now.

Since the previous delete operation is the only one in question, you can use the P

command (which retrieves the contents of the general register), or you can specify the

appropriate number register explicitly, in this example "1P.

This result is produced.

review will be at Hayes Hall.

The semi-annual research[|This conference is being planned now.

The cursor is positioned on the final character of the inserted text. Vi remains in

command mode.

Yanking and Putting from an Alphabetic Register

In the following example, you want to yank two paragraphs extending from the cursor

position to the end of the second paragraph and store it in an alphabetic register

named a. Sample text follows.

Dispatch to All Cab Drivers:

[I]f you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

Your friendly dispatcher, Rose

By using the 2"ay} command, you will yank (y) two (2) paragraphs extending from

the cursor position to the end of the second paragraph (}) and store the text in a

register (") named a.

After you issue this command, the cursor will remain stationary and the message, "8

lines yanked" will be displayed on the status line:

2-66 Licensed material—property of copyright holder(s) 069-701036

Moving Text

The Yanked Text

The following is the text that is stored in register a with the command given in the

preceding example:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

Destination for Yanked Text

After you have saved the text to be moved, you then position the cursor at the

location in the buffer where you want to insert the text. In this example, you want to

move the yanked text to the line following "Your friendly dispatcher, Rose"

shown as follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

[Ylour friendly dispatcher, Rose

Putting the Text in the Destination

After you position the cursor at the place you want to put the saved text, you can

issue this command to actually perform the move operation: "ap.

where:

"is the symbol for a register.

a is the name of the alphabetic register in which the saved text is located.

p is the put command that positions the text on the line following the cursor position.

069-701036 Licensed material—property of copyright holder(s) 2-67

Moving Text

The final result follows.

Dispatch to All Cab Drivers:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

Your friendly dispatcher, Rose

[I]f you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

There is a record sellout.

Concert crowds are expected to leave

the coliseum around midnight.

I can hear those meters ticking now.

The yanked text stored in register a was put on the line after the current line

(containing the cursor). The cursor goes to the first character in the first line of the

put text. Vi remains in command mode.

2-68 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line.Mode

Searching for Patterns in Last Line Mode

A pattern can be either a simple string (such as a word or an expression containing

letters and numbers), or it can be a complex pattern containing special characters

(which are also called metacharacters). Invoking last line mode from command mode,

you can search forward or backward in a file for one or more occurrences of a

pattern. The command format for searching forward follows.

/pattern

where:

/ is the delimiter that precedes the pattern that you are searching for. A search in a

forward direction is implied.

The command format for searching backwards follows.

2pattern

where:

? indicates a pattern search in a backwards direction.

If vi finds the pattern, it will position the cursor on the first character of the pattern.

Table 2-25 lists the commands that locate the next occurrence of a pattern.

Table 2-25 Commands to Search for the Next Occurrence of a Pattern

Command | Definition

n Finds next occurrence of the pattern in the same direction as the

original search.

N Finds the previous occurrence of the pattern in the opposite direction

of the original search.

If the pattern you are searching for contains a slash (/) or a question mark (?), be

sure to escape it with a backslash (\) to prevent it from being interpreted as a search

delimiter.

069-701036 Licensed material—property of copyright holder(s) 2-69

Searching for Patterns in Last Line Mode

There are three editing options (see the section "Setting Up Your vi-Environment"

located in this chapter) that can control vi’s search behavior; they are:

® ignorecase.

® magic.

® wrapscan.

If the ignorecase option is set, then vi will not distinguish between upper- and

lowercase characters when performing a search. If the magic option is set, you can

use the full range of metacharacters for pattern searches. The full range is: *, $, \,

\< and \>, *, ., and [] (refer to Appendix A for a review of metacharacters). If the

option is set to nomagic, then only a subset of the metacharacters will be recognized

in pattern searches; it is: ~, $, , \< and \>.

If the wrapscan option is set, pattern searches cover the entire file. A search in a

forward direction starts at the cursor position and proceeds to the end of the file. A

search in a backward direction starts at the cursor position and proceeds to the

beginning of the file, wrapping to the opposite end until the cursor position is reached

again.

2-/0 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

Metacharacters Used in a vi Pattern Search

Table 2-26 summarizes the metacharacters used in search patterns.

Table 2-26 Metacharacters Used in a vi Pattern Search

Metacharacter | Search Where? Example

“pattern Beginning of line. /’Dispatch

pattern$ End of line. /Dispatch$

pattern. Any single character. -Dispatch

pattern* No occurrence or multiple Dispatch*

occurrences of preceding

character.

\pattern Escape meaning of metacharacter. | \.dog

[pattern] Surrounds choice of characters. [dD] [cC]

pattern\> End of word. sling\>

\<pattern Beginning of word. \<re

Searching and Substituting Patterns

The substitute operation is a combination of the search and change operations. With

the substitute command, you locate the desired pattern and replace it with a

replacement pattern.

The format for the substitute command follows:

: [address |,address | | s/pattern/replacement-string/| g |[¢ |

A pattern is a regular expression delimited by slashes (/ /) by default. You can select

any character to be used in delimiter pairs (such as ? ? or @ @). You should avoid

using characters that are also used as metacharacters. Refer to Appendix A for a list

of metacharacters. The replacement string must also be delimited by the same

delimiters used for the search pattern.

Each part of the substitute command is described in the following sections.

069-701036 Licensed material—property of copyright holder(s) 2-71

Searching for Patterns in Last Line Mode

The Address

By default, vi performs substitutions in the current line only. By using one or two

addresses before the substitute command, you can make the substitution affect one

line or a range of lines anywhere in the buffer. The special address symbol % can be

used to specify all lines in the buffer. There are three ways to specify lines:

@ By line number or symbol.

® By context (with regular-expression pattern matching).

e By offset.

Line Addressing

A line address can be the number of a line in the buffer; the symbol $, which means

the last line in the buffer; or the symbol . (dot), which means the current line.

Context Addressing

A context address is a regular expression delimited by slashes (//) or question marks

(??). It addresses the first line that matches the pattern, searching in a forward (/)

direction or in a backward (?) direction. Offsets, discussed in the next paragraph,

"Offset Addressing," also can be appended to a context address.

Information on regular-expression pattern matching is given in Appendix A.

Offset Addressing

You can specify lines relative to other addresses in this form:

address | + — |n

where:

address refers to a line or context address.

+ refers to after the addressed line.

— refers to before the addressed line.

n refers to the line number offset above or below the addressed line.

Table 2-27 gives examples of line addressing.

2-72 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

Table 2-27 Addressing Methods

Format Example Description

. . Addresses the current line.

$ $ Addresses the final line in the buffer.

% % Abbreviation for 1,$ (all lines).

) oh Addresses all lines from the current

cursor position to the end of the file.

+[+][7] +3 Addresses the nth line following the

+++ current line. If line 100 is the current

+3 line, +++ resets the new current

line to 103.

-(|-|[2] +3 Addresses the nth line preceding the

-——= current line. If line 100 is the current

3 line, ~—=— resets the new current

line to 97.

x 5 Addresses one absolute line number

represented by x.

x,y 5,9 Addresses a range of lines signified

by two absolute line numbers

represented as x,y.

’reg ’a Addresses the line marked with the

mark command (issued from last line

or command mode) and an

alphabetic register name.

» * Addresses the previous current line.

Note that the symbol is formed by

two single quotation marks.

2pattern? ?°The? Addresses lines containing a pattern.

/pattern/,/pattern/ /’The/,/Cabs/ Addresses a range of lines identified

by two patterns.

/pattern/,x !’The/,9 Addresses a range of lines identified

by a pattern and a single absolute line

number, represented as x.

(continued)

069-701036 Licensed material—property of copyright holder(s) 2-73

Searching for Patterns in Last Line Mode

Table 2-27 Addressing Methods

Format Example Description

x,/pattern/ 1,/“The/ Addresses a range of lines

identified by a single absolute

line number, represented as x,

and a pattern.

Ipattern/, [.] [*# —]n | /The/,.+20 Addresses all lines from the

pattern to 20 lines after the

current line.

any-addressing-method! | 1,2! Addresses all lines except

those specified in the range.

(concluded)

Search Patterns and Replacement Strings

The substitute operation is represented by the s command. A delimiter, such as /,

follows the s, which introduces the search pattern. You can represent a pattern

either as a literal pattern, such as the word "Dispatch," or by using regular-expression

pattern matching. You terminate the search pattern with the same delimiter

previously used to introduce the search pattern, such as /, followed by the

replacement pattern such as “Widgets”.

Table 2-28 lists several options that you can append to the substitute command.

Table 2-28 Substitute Options

Option | Description

g Vi substitutes all occurrences of the addressed pattern in a line with

the replacement string. By default, only the first occurrence of the

addressed pattern in a line is substituted with the replacement string.

c For each substitution, you are presented with a request to confirm the

replacement. Each string to be replaced is underscored by caret (*)

symbols and the cursor is positioned after the carets. By responding

with "y," you confirm the substitution and the cursor moves to the

next occurrence of a replacement pattern. Responding with a no

answer, such as "n," you prevent the substitution. This procedure

continues until you have confirmed or denied each replacement, or

you interrupt the command with your interrupt key (typically Ctrl-C).

2-74 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

Behavior of Substitute Options with edcompatible Option

The substitute options, g and c, behave as toggles when the edcompatible (ed) editing

option is set (refer to the section "Setting Up Your vi Environment"). If you set the

edcompatible option, the first time you perform a substitution explicitly setting the g

or ¢ option, you are implicitly setting that option for subsequent search-and-replace

commands. The next time you explicitly specify the same option, it has the implicit

effect of turning off that option.

Substituting in the Current Line

The following sample text is used to show the effect of searching and substituting.

[DJjispatch to all the Cab Drivers on the Second Shift:

If you plan to be in the vicinity of

the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

An example of a simple search and replacement command follows:

:s/the/THE/ 9

where:

s stands for substitute.

"the" is the pattern that you are searching for.

"THE" is the replacement string.

A delimiter (/) separates each field.

Since the cursor is positioned on the first line, only that line is searched for the

identified pattern.

The result appears as follows.

Dispatch to all THE Cab Drivers on the Second Shift:

If you plan to be in the vicinity of

the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

The default is to substitute on the current line only. To search the entire buffer, use

the percent sign (%) as the address (explained in the next section). Only the first

occurrence of the search pattern "the" is substituted.

069-701036 Licensed material—property of copyright holder(s) 2-75

Searching for Patterns in Last Line Mode

Substituting in the Entire Buffer (“%)

Using the preceding sample file, you can now do a search and replacement affecting

the entire buffer with the % command. An example follows.

*%s/the/THE/ 9

The first line is scanned for the occurrence of the search pattern "the". The first

occurrence of the search pattern is substituted with the replacement pattern "THE".

The second occurrence of the search pattern on the first line, however, is not

replaced. The % command recognizes only the first occurrence of the pattern in each

line.

The final result appears as follows.

Dispatch to all THE Cab Drivers on the Second Shift:

If you plan to be in THE vicinity of

THE Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

The g option recognizes multiple occurrences of a search pattern on a single line.

Global Substitution in a Single Line (g)

You can use the global option (g) to repeat a replacement for multiple occurrences of

the pattern on a single line. For example, the following command would replace

every occurrence of "the" in the first line of the sample file with "THE."

:1s/the/THE/g 0

The final results appears as follows.

Dispatch to all THE Cab Drivers on THE second shift:

Confirming Substitutions (c)

You can substitute selected occurrences of a pattern replacement using the

confirmation (c) option. An example follows:

:%s/THE/the/ge 9

This example assumes that all occurrences of the search pattern “THE" are in

uppercase.

Dispatch to THE Cab Drivers on THE Second Shift:
~=—T |

2-76 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

Three carets underline the proposed first substitution. Global substitution stops

temporarily awaiting your response. If you respond with y (for yes) and you press the

New Line key, the substitution is performed and the process continues.

The next proposed substitution occurs as follows:

Dispatch to THE Cab Drivers on THE Second Shift:
“<1 1

Three carets underline the proposed substitution. Global substitution stops again

awaiting your response. If your response is y (for yes) and you press the New Line

key, another substitution is performed and the process continues.

An example of an (no) response for the next proposed substitution follows.

If you plan to be in the vicinity of
~~]

The substitution is not performed and the cursor moves to the next occurrence of the

proposed replacement string "THE".

THE Central City coliseum tonight,
~~“T 1

After all search patterns have been located and substitutions are confirmed, you are

prompted:

3 substitutions on 2 lines

[Hit return to continue] 0

You press the New Line key for a review of your substitutions. You will see:

[Djispatch to all the Cab Drivers on the Second Shift:

If you plan to be in THE vicinity of

the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

You will notice that the first two substitutions of "the" for "THE" were confirmed.

The third was not confirmed, and the fourth was confirmed.

Advanced Substitution

Table 2-29 summarizes the advanced substitution operators used for further

manipulation of the replacement pattern.

069-701036 Licensed material—property of copyright holder(s) 2-77

Searching for Patterns in Last Line Mode

Table 2-29 Advanced Substitution Operators

Operator Definition

~ In the current substitution, repeats the replacement pattern from the

previous substitution.

& Saves search pattern and substitutes it in the replacement pattern.

i \ Surrounds (and thus tags) one or more search pattern(s) for

substitution in the replacement pattern.

\u Converts next single lowercase character in replacement pattern to its

uppercase equivalent.

\U Enables conversion of lowercase replacement pattern to its uppercase

equivalent; the entire replacement pattern is converted unless \e or \E

is encountered mid-pattern.

\l Converts next single uppercase character in replacement pattern to its

lowercase equivalent.

\L Enables conversion of an uppercase replacement pattern to its

lowercase equivalent; the entire replacement pattern is converted

unless \e or \E is encountered mid-pattern.

\e Ends case conversion for the remaining replacement pattern.

\E Same as \e.

Repeating the Previous Replacement Pattern (7)

To repeat a replacement pattern for sequential search patterns, you can simply recall

the previous replacement pattern using tilde (~). The format for repeating the

previous replacement pattern follows:

:[address |s/search-pattern’”/

Sample text follows.

the Central City Coliseum tonight,

An example of a simple substitution command follows.

:s/the/tomorrow 2

The result appears as follows.

tomorrow Central City Coliseum tonight,

Using the previous replacement pattern "tomorrow," you can repeat it in the next

substitution using ~. An example follows:

2-78 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

:s/tonight/"/

The result appears as follows.

tomorrow Central City Coliseum tomorrow,

Substituting a Search Pattern in a Replacement Pattern (&)

This replacement operator is useful when you want to add text to the search pattern

rather than substitute the search pattern with a replacement pattern. The ampersand

(&) stores the text matched by the search pattern so that you can recall and place it in

the replacement pattern. A search pattern can contain regular expression

metacharacters.

The format for placing the search pattern in the replacement pattern follows:

:| address |/search-pattern/replacement-pattern&/

NOTE: The & can appear anywhere within the replacement pattern.

Sample text follows.

the Central City Coliseum tonight,

The following command adds a word to the sample text:

:s/tonight/EARLY &/ 9

The result appears as follows.

the Central City Coliseum EARLY tonight.

Substituting with Tagged Replacement Patterns (\(_\))

With the replacement pattern tag, you can search for and mark the text matched by as

many as nine patterns. In the replacement pattern, you can then rearrange the order

in which the tagged patterns occur.

The command format used for substituting with tagged replacement patterns follows:

:[addr |s/\(tag-word1\) \(tag-word2\)...\(tag-word9/\tag-num \tag-num...\tag-num/

where:

\(tag-word\) is formed by the escaped parentheses surrounding the pattern being

tagged. A tag-word can contain regular expression metacharacters. A maximum of

nine different search patterns can be tagged.

\tag-num causes the text matched by the corresponding tag to be substituted in the

replacement pattern in the specified order. Tag-num is a single digit from 1 to 9.

Sample text follows.

069-701036 Licensed material—property of copyright holder(s) 2-19

Searching for Patterns in Last Line Mode

the Central City Coliseum tonight,

The following is an example of using tagged replacement patterns.

:s/\(Central\) \(City\)/\2 \1/ 3

The first substring "Central" is tagged as 1; the second substring "City” is tagged as

2. The replacement tags cause the contents of locations 1 and 2 to be swapped in the

standard output. Spacing in this command is important.

@ Do not space within delimiters.

@ Do not use a space to separate the final delimiter and the first replacement

pattern.

@ Do space once between replacement tags.

The result appears as follows.

the City Central Coliseum tonight,

You can see that locations 1 and 2 were swapped in standard output.

In addition to tagging patterns for swapping, you can also rearrange them with other

replacement text. An example follows:

:%s/\(Central\) \(City\) \(Coliseum\)/Metro \2 \1 Events \3/ 3

The result appears as follows.

the Metro City Central Events Coliseum tonight,

Converting Cases in the Replacement Pattern (\u \U \I \L)

You can use the case conversion operators to translate all or part of the replacement

pattern to the alternate case. Within a replacement pattern, you can use multiple

operators to alternate between cases.

The format for converting cases follows:

:| address |\s/search-pattern/case-opreplacement-pattern/

NOTE: A case operator (case-op) can appear anywhere within the replacement

pattern.

Sample text follows.

the Central City Coliseum tonight,

An example follows:

:s/tonight/\utomorrow/ 9

The result appears as follows.

2-80 Licensed material—property of copyright holder(s) 069-701036

Searching for Patterns in Last Line Mode

the Central City Coliseum Tomorrow,

Another example follows:

:s/tonight/\utom\Uorrow/ 9

The result appears as follows.

the Central City Coliseum TomORROW,

The \I and \L operators work in a similar manner; uppercase characters are

converted to lowercase characters instead.

Ending Case Conversion (\e \E)

You can use the \e and \E operators to end case conversion within the replacement

pattern. You can use multiple case conversion operators within a replacement

pattern.

The format for ending case conversion follows:

:| address |s/search-pattern/end-case-opreplacement-pattern/

NOTE: An end-case operator (end-case-op) can appear anywhere within the

replacement pattern.

Sample text follows.

the Central City Coliseum tonight,

An example follows:

:s/tonight/\Utom\Eorrow/ 0

The result appears as follows.

the Central City Coliseum TOMorrow,

Another example follows:

:s/tonight/\uto\Uni\eght/ 5

The result appears as follows.

the Central City Coliseum TONIght,

069-701036 Licensed material—property of copyright holder(s) 2-81

Manipulating Files in Last Line Mode

Manipulating Files in Last Line Mode

From the last line, you can issue a variety of commands to operate on files. The

commands perform these types of operations:

® Writing files.

@ Reading files.

e Editing the buffer.

e@ Searching for a tag in other files.

e Exiting to the shell.

You issue these commands using this format:

:command [| command ... |

where:

The colon (:) command activates last line mode.

command operates on the current buffer. Some commands take an optional address.

Refer to Table 2-27 for information on methods of addressing.

| separates optional multiple commands in last line mode. There is no limit on the

number of commands you can enter in last line mode. Your input can wrap to the

next line. As your text wraps to the next line, the top line of the screen will scroll up.

If you use a global command, a comment, or a shell escape from last line mode, it

must be the final command in the sequence.

You must press the New Line key to execute a command in last line mode.

2-82 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Commands to Write Files

Table 2-30 lists the commands to write the buffer to a disk file. Precede each

command with a colon (:), which signifies last line mode.

Table 2-30 Commands to Write the Buffer to a Disk File

Command Description

[addr |w Writes the entire current buffer (or optional lines represented

as addr) to the disk file.

[addr |wq Writes the current buffer (or optional lines represented as

addr) to the disk file and quits the editor.

[addr |x If you have made changes to the buffer and not written them,

writes the buffer contents (or optional lines represented as

addr) to the disk file, then quits the editor; same as ZZ.

| addr |w file Writes the current buffer (or optional lines represented as

addr) to a new disk file.

[| addr |w! file Overwrites the existing disk file with the current buffer (or

optional lines represented as addr).

[addr | w>> file | Appends the buffer contents (or optional lines represented as

addr) to the end of an existing file.

| addr | x file If any changes have been made and not written, writes the

buffer contents (or optional lines represented as addr) to the

specified file and then quits the editor.

preserve Saves the current buffer as if the system had crashed. Use for

emergencies when a write command results in an error.

An example of writing an explicit number of lines from one file to another file using

the [addr |w filename command is given using the following sample text.

Dispatch to all THE Cab Drivers on the Second Shift:

If you plan to be in THE vicinity of

THE Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

This file is in the current buffer. To write this entire file or a subset of this file to

another file, you would first find out the line numbers that specify the range of lines

you want to write. You can set the line-numbering option in last line mode to show

line numbers using this command:

:set nu 0

069-701036 Licensed material—property of copyright holder(s) 2-83

Manipulating Files in Last Line Mode

The result appears as follows.

1 Dispatch to all THE Cab Drivers on the Second Shift:

2 If you plan to be in THE vicinity of

3 THE Central City Coliseum tonight,

4 you are in for big business.

5 I can hear those meters ticking now.

A line number precedes each line in the current buffer

If you wanted to write the first through third lines to another file named cabbies while

leaving the current buffer intact, you would issue this command from last line mode:

:1,3w cabbies 0

"cabbies" [New file] 3 lines, 105 characters

The cursor returns to the first character in the current buffer. As another check that

the file cabbies was written successfully, in last line mode you can temporarily exit to

the shell and list the file in one step. You can issue the long list (Is —1) command to

show the new file’s access permissions (refer to Using the DG/UXTM System more

information). The command you issue and the system response is given as follows:

:'ls cabbies 0

—rw-rw-rw- 1 hank general 105 May 10 6:26 cabbies

[Hit return to continue] []

Pressing the New Line key returns you to the current buffer.

To remove the line numbers in the current buffer, from last line mode you can issue

this command:

: set nonu Oo

Commands to Read Files

Table 2-31 lists the commands used for retrieving copies of existing files for editing

within vi without having to exit vi for the shell. Also, if you specified multiple files

on the command line when you invoked vi, with these commands, you can retrieve

one file after another within vi without having to exit to the shell.

Precede each command with a colon (:), which signifies last line mode.

2-84 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Table 2-31 Commands to Read a File to the Current Buffer

Command | Description

e file Retrieves a copy of the file for editing in the current buffer.

e! Retrieves a copy of the file from the disk file in the current

buffer for editing, discarding all changes made to current

buffer.

e + file-list | Retrieves a copy of the first file in the file-list and positions

the cursor on the last line in the buffer for editing.

e +n file-list | Retrieves a copy of the first file in the file-list and positions

the cursor at line number n in the buffer for editing.

e # Retrieves a copy of the previous file you edited (the one

before the current file) and puts it in the buffer for editing.

n file-list Specifies a new file-list and retrieves a copy of the first file

and puts it in the buffer for editing.

n Retrieves a copy of the next file in the file-list and puts it in

the buffer for editing.

n file Retrieves a copy of the specified file for editing; same as "e

file-list" command.

n! Retrieves a copy of the next file in the file-list without first

writing the current buffer to disk file.

r file Reads a copy of the disk file into the current buffer.

r !cmd Exits to the shell to perform a command and reads the result

into the current buffer.

nr file Reads a copy of the disk file into the current buffer after line

n.

nr !cmd Exits to the shell to perform a command and reads the result

into the current buffer at line n.

rew Starts (rewinds) the current file-list over again.

rew! Same as rew except that the contents of the current buffer are

discarded.

A common task is to read a file into the current buffer at a specific location. An

example of text in the current buffer follows:

069-701036 Licensed material—property of copyright holder(s) 2-85

Manipulating Files in Last Line Mode

Ski the summit

Ski 4 of the world’s greatest ski areas on

1 lift package --- 8 different mountains -—--

[2]56 trails --- 53 lifts --- Located where

our airlines can take you!

What’s next

With the cursor marking the line at which you want to read in the file, issue the read

command from last line mode:

sr cabbie 3

After you press the New Line key, the file is read into the current buffer. The result

is shown as follows:

Ski the summit

Ski 4 of the world’s greatest ski areas on

1 lift package --- 8 different mountains --—-

[Djispatch to all THE Cab Drivers on the Second Shift:

If you plan to be in THE vicinity of

THE Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

256 trails --- 53 lifts --- Located where

our airlines can take you!

What’s next

"cabbies" 5 lines, 194 characters

The cursor remains at the same line position and the contents of file cabbies is read

into the current buffer at the cursor position. The remaining two lines of the original

current buffer are moved down the screen to accommodate the new text. Vi displays

a status message on the last line reporting the filename and the number of lines and

characters it contains.

To undo the result of the read command, you can issue the u command from

command mode; vi then returns the buffer to its previous state (without the contents

of the file read into the current buffer).

2-86 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Commands to Edit the Buffer

Table 2-32 lists the commands to edit the buffer in last line mode, which is invoked

by using the colon (:) command. Some of these editing functions can also be

performed in vi’s command mode.

Several of these commands take the optional final argument p| offset |.

where:

p prints each line changed by an editing operation (after the operation has been

performed), and the number of lines changed by an editing operation. It then

refreshes the screen, positioning that line in the middle of the display as the new

current line.

[offset | is an optional argument to p that resets the current line. It represents a

relative motion from the current line. For example, one or more plus (+) or minus

(—) signs will move the cursor that many times in a forward or backward direction

relative to the current line. Both of these representations, I++-+ and 13+, move the

current line forward three lines.

For some buffer editing commands, addresses are expressed in two explicit ways:

addr and single-addr.

addr designates a range of lines.

single-addr designates a single line.

In some cases, from-addr and to-addr are used to tell you the locations in your file

where text will be edited.

For some commands, you can specify n lines from the current line as an alternative to

addr (as previously discussed).

069-701036 Licensed material—property of copyright holder(s) 2-87

Manipulating Files in Last Line Mode

Table 2-32 Commands to Edit the Buffer

[from-addr | co to-addr [[p | [offset | |

[addr] d [buffer-name] [n] [|p] [offset}]

file [filename |

[addr | g/pattern/cmd [| | cmd ... |

Command Description

address Displays a window of text with the

specified address in the middle of the

screen. The current line is the default

address.

args Prints the current list of files being edited.

The current argument is surrounded by

brackets.

Copies the from-addr line(s) to the line

following the to-addr in the buffer. The

current line is the default from-addr. A

synonym for co is t.

Deletes the addressed line(s) from the

buffer. The current line is the default

address. If you give a lowercase buffer-

name, the command copies deleted lines

to it; for an uppercase buffer-name, the

command appends deleted lines. Deleted

text is saved in a general buffer if you do

not explicitly specify one. Buffer contents

are restored with the put command (see

the pu command further in this table).

The first form (without a filename

argument) prints the current filename,

whether it has been modified since the last

write command, whether it is read only,

the current line, the number of lines in the

buffer, and the percentage of the file that

precedes the current line. The second

form (with a filename argument) changes

the disk filename to filename without

changing the contents of the current

buffer.

Globally searches the addressed lines for

occurrences of the search pattern. Then

these lines are operated on by the

specified command(s). The entire file is

the default address. You can separate

multiple commands with a pipe symbol (|).

(continued)

2-88 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Table 2-32 Commands to Edit the Buffer

Command Description

[addr | g!/pattern/cmd [| cmd ... |

[addr] j{n]|[[p][offset }]

[addr] jt(n][[p][offset}]

[single-addr | mark buffer-name

[addr]\[n][[p][offset]]

[from-addr | m to-addr

Within the range of lines addressed,

searches for all lines that do not match the

search pattern. Then these lines are

operated on by the specified command(s).

The entire file is the default address. You

can separate multiple commands with a

pipe symbol (|). A synonym for g! is v.

Links (or joins) the addressed lines onto a

single line. The current line through the

next line are joined by default. White

space is adjusted automatically. At least

one space is inserted between joined

words; two for sentences (separated by a

period .). White space is deleted from the

beginning of joined lines, if it exists.

A variation of j; links (or joins) the

addressed lines onto a single line with no

white space adjustment. Links the

contents of lines verbatim. The current

line through the next line are joined by

default.

Marks a single line for subsequent

positioning or editing. The current line is

the default address. A synonym for mark

is k.

Temporarily prints (or lists) the addressed

lines, displaying tabs and new-lines as “I

and §$, respectively, at the bottom of the

screen. You then press the New Line key

to return the screen to its previous state.

The current line is the default addr. The

final line printed becomes the new current

line.

Repositions (moves) the text designated by

from-adadr to the line following to-addr.

The current line is the default from-addr.

The first line of the moved text becomes

the new current line.

(continued)

069-701036 Licensed material—property of copyright holder(s) 2-89

Manipulating Files in Last Line Mode

Table 2-32 Commands to Edit the Buffer

Command Description

[addr |nu[n]|[[p][offset] | Temporarily prints (or numbers) each

addressed line with its corresponding

buffer line number at the bottom of the

screen. You then press the New Line key

to return the screen to its previous state.

The current line is the default address.

The last line printed becomes the new

current line. A synonym for nu is #.

[addr |p[n] Temporarily displays (or prints) each

addressed line on the screen. The current

line is the default address. You then press

the New Line key to return the screen to

its previous state. The final line printed

becomes the new current line. A synonym

for p is P.

[single-addr | pu [buffer-name | Places (or puts) previously deleted or

yanked text (see the d and ya commands,

respectively) in the buffer following the

specified address. The current line is the

default address. The default buffer-name

is the general buffer where the text from

the immediately preceding operation was

deleted or yanked to. A specific buffer-

name restores explicitly saved text to the

addressed buffer location. The final line

of the put text becomes the new current

line.

u Reverses (or undoes) the changes made to

the buffer by the previous editing

command, including the global command

(g or g!), which can affect more than one

line. Issuing the u command a second

time reinstates the change; thus, it behaves

as a toggle.

ve Reports the current version of the vi

editor.

(continued)

2-90 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Table 2-32 Commands to Edit the Buffer

Command Description

[addr | ya [buffer-name |[n |

| addr | w tcommand

| single-addr +1]|z[n |

Duplicates (or yanks) the addressed lines,

storing them in a buffer for subsequent

retrieval via the pu (put) command. The

current line is the default address. If you

do not specify a buffer, the yanked text is

saved in a general buffer. Alternatively,

you can save yanked text in an explicitly

named buffer. If you give a lowercase

buffer name, this command copies yanked

lines to it; for an uppercase buffer name,

this command appends yanked text to it.

The current line does not change.

Sends (or writes) the addressed lines as

standard input to a command that is

executed from a subshell. The entire file

is the default address. Note the difference

between this command and the w!

command (covered in the section on

“Commands to Write Files"), which

overwrites the existing disk file with the

current buffer.

Prints a range of lines on the screen,

extending from the line following the

specified address through a line number

which is defined as half the value of the

window editing option (see section on

“Options for Slow Terminals"). For

example, if window=23, the command,

:5z, would cause buffer lines 6-16 and the

status line reserved at the bottom of the

screen to be displayed. Line 2 is the

current address. The last line of the range

of text displayed becomes the new current

line.

(continued)

069-701036 Licensed material—property of copyright holder(s) 2-91

Manipulating Files in Last Line Mode

Table 2-32 Commands to Edit the Buffer

Command Description

[single-addr | z[{ type |[7n] Temporarily prints a window of text on the

screen, positioning the specified address

according to type or n. The current line is

the default address. type positions the

specified address in the window:

default Puts address at top of screen.

, Puts address at middle of screen.

~ Puts address at bottom of screen.

! Scrolls full screen — 1 line up so

address is off top of window.

Scrolls screen back so address

is just off bottom of screen.

+ Scrolls screen forward so address

is just off top of screen.

= Puts address at center of screen

with a row of hyphens above and

below addressed line.

A

The amount of text scrolled in the window

is equal to the double value of the scroll

editing option (see section on "Options for

Slow Terminals"). Alternatively, you can

specify a window of text whose length is

determined by an absolute n value. If non

value is given, 1 line is assumed by default.

The last line in the window becomes the

new current line.

The first form shifts text on the addressed

line to the right (>); the second form, to

the left (<). The amount of space shifted

depends on the value of the shiftwidth

editing option (see section on

"Programming and Debugging Options").

The current line is the default address.

You can specify more than one shift by

using multiple shift operators (such as

>>>). The final line of the addressed

text that is shifted becomes the new

current line.

Reports the number of the last line in the

current buffer.

(concluded)

2-92 Licensed material—property of copyright holder(s) 069-701036

Manipulating Files in Last Line Mode

Searching for a Tag in Other Files

A tag identifies a function or optionally a typedef in a file containing program code,

which is typically written in the C, Pascal, and FORTRAN languages. Before you

can use the tag search facility, you must have a tag file named tags in your current

directory that you produced using the program ctags. Refer to Using the DG/UXTM

System for information on creating a tag file and understanding its contents.

NOTE: In addition to generating a tag file for a programming applications, you can

also manually generate a tag file for text applications using a text editor such

as vi. Regardless of the method used for generating such a file, you can use

the vi commands for tag searches in other files.

Table 2-33 lists the tag commands that you can issue in last line mode (by using the

colon (:) command) to search for a tag label in another file.

Table 2-33 Commands to Search for a Tag in Other Files

Command | Description

tag label Given that a tags file exists in the correct format, vi clears the buffer

and positions the cursor on the first nonblank character in the line

containing the tag. If the tag is in a file different than the one in the

current buffer, you must write the current buffer to a disk file. If the

autowrite option (aw) is set (refer to the section "Setting Up Your vi

Environment" in this chapter), then the current buffer is written for

you before switching files.

tag! label Same as the previous command except that the changes made to the

current buffer are dismissed first.

Commands to Exit to the Shell

With the following commands, you can exit vi temporarily (without having to write

and quit) and enter the shell to execute a command, and then return to the current

file to resume your work session. The current buffer remains intact during the shell

escape. Precede each command with a colon (:), which signifies last line mode.

Table 2-34 lists the shell exit commands.

069-701036 Licensed material—property of copyright holder(s) 2-93

Manipulating Files in Last Line Mode

Table 2-34 Commands to Exit to the Shell

Command Description

! command Exits to a subshell and runs a command immediately. As

soon as the command completes its execution, you are

prompted with this message: [Hit return to continue].

Pressing the New Line key returns you to vi. You can use the

!! command to recall and re-execute the previous shell

command you issued, regardless of the shell used.

| addr |! command | The text lines defined by the address are taken as standard

input to the command executed in the subshell. The resulting

output replaces the input lines. For example, the command

1,5 ! grep "dog" causes the grep command to search for the

pattern "dog" in lines 1-5. Only the lines containing an

occurrence of the pattern are written back to the input file.

The remaining lines not containing the pattern are deleted.

sh Transfers control to a subshell of your default shell: the

Bourne shell or the C shell. You can use Ctrl-D or the exit

command to return control to the vi editing session.

stop C shell only; Transfers control to the parent shell of the

current vi process. One advantage of using stop instead of sh

is that with stop, the commands you enter at the shell are

captured in the parent shell’s history list. Also, it prevents

accidental multiple vi sessions, and it uses fewer system

resources than the sh command. Enter the fg command from

the shell to return control to the suspended vi process.

Once you are in a subshell, you may forget that vi is suspended. In fact, you can

invoke vi with the current filename again and continue working. However, you will

not be working on the version of the file in the buffer; instead, you are working on a

copy of the most recent file written to disk. Always terminate a subshell to return to

the current vi session instead of starting more editing sessions. You can terminate the

subshell using either of these methods:

S exit 0

or

Ss Ctrl-D

If you are using the C shell, type the fg command to return to the current vi session.

2-94 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Setting Up Your vi Environment

You can customize your vi environment to suit your personal tastes by turning on an

option or by assigning a specific value to an option. Such options include right

margin set-up, error and status message display, and definition of window size.

Also, you can define macros to represent a sequence of operations. Refer to the

section "Writing and Using Macros" in this chapter for more information.

How to Set Options

There are three command formats used to set an editing option. With all of these

forms, you can set multiple options in one command. Issue each of these command

formats in last line mode (from command mode, use the colon (:) command).

Turn an Option On or Off

The command formats for turning an option on and off follow:

set option-name

set nooption-name

These commands are terminated with a new-line.

Examples follow:

sset redraw 0

sset noredraw 0

In the first example, the redraw option is enabled. It causes the terminal screen to be

updated after each editing operation. Otherwise, updating is postponed until you

press the Escape key. This option is useful if you have a slow terminal. The option

is disabled in the second example.

Set an Option to a Number Value

The command format for setting an option to a number value follows:

set option=number

An example follows:

sset wm=10 9

The wrapmargin (wm) option generates an automatic new line between words at or

after the defined column position from the right side of the screen.

069-701036 Licensed material—property of copyright holder(s) 2-95

Setting Up Your vi Environment

Set an Option to a String Value

The command format for setting an option to a string value follows:

set option=string

An example follows:

sset term=vt100 9

The set command is used to assign the value of vt100 to the variable term.

Where to Set Options

There are three methods for setting these options:

@ EXINIT variable.

e .exre file.

e Last line mode.

Each time you log in to your system, a specific initialization sequence is used. The

order of processing follows this sequence.

@ If an EXINIT variable is set, it is initialized.

e If no EXINIT variable is set, then the .exre file in the log-in directory is

initialized.

e If you set up multiple .exre files in several directories, the one in the current

directory is initialized.

EXINIT Variable

This method will start vi faster than the other two. If you set it on the command line,

it will be effective for the current log-in session only. You can also set this variable in

the appropriate setup file—.profile for Bourne shell users and .login for C shell users.

If you choose to set it in a setup file, it will be in effect automatically each time you

log in. If the EXINIT variable is present, it will override whatever settings you have

made in the .exre file in your home directory, but not the one set up in the current

directory, if you have multiple .exre files.

The command format varies between the Bourne shell and the C shell. Each form is

given.

2-96 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Bourne shell:

EXINIT=’set option option option ...’

export EXINIT

C shell:

setenv EXINIT ’set option option option ...’

Examples of each follow.

Bourne shell:

EXINIT=’set wm=20 smd redraw’ 9

export EXINIT 9

C shell:

setenv EXINIT ’set wm=20 smd redraw’ 9

As another alternative, you can set up the EXINIT environment variable in your setup

file—.profile for the Bourne shell and .login for the C shell.

.exrc File

You can create a file named .exre in your log-in directory for your set commands.

The options you set in this file will be in effect for all editing sessions for any shell.

You can also create multiple .exre files, placing them at different subdirectory levels.

The .exre file in the current directory will override the .exre file in the log-in

directory. An example of the contents of an .exre file follows:

set wm=20

set smd

set redraw

Or you can put multiple options on a line, separating each option with any amount of

space.

If you put macro definitions (single-character commands that represent a sequence of

operations) in the .exre file, you will need to separate each key map and separate the

first key map from the options with a column separator (|). More information on

macros is in a later section in this chapter. An example follows:

set wm=20 set smd set redraw | map! z italic | ab mm Missoula, Montana 9

In the preceding example, you set three vi editing options, mapped the z key to the

\italic string, and mapped the abbreviation macro name mm to the string

Missoula, Montana. More information on mapping is given in the section "Writing

and Using Macros" later in this chapter.

069-701036 Licensed material—property of copyright holder(s) 2-97

Setting Up Your vi Environment

Last Line Mode

You can set options in last line mode that remain in effect only for the current editing

session. When you terminate vi, these settings are deleted. The same format used

for setting options in the .exrc file is used in last line mode.

Displaying the Current Options Set

You can display the current settings for either of the following:

e Specific option.

e Changed option.

e All options.

Display the Value of a Specific Option

For options that take number or string values, you can find find out the current value

you set during an editing session with the following command format:

set option-name

An example follows:

sset wm 0

wrapmargin=5

From the last line, you request the value of the wrapmargin (wm) option. The option

and current value is reported in the last line and the cursor returns to its previous

position on the terminal screen.

2-98 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Display Values of Changed Options

A changed value is one you set that is different from the default. You can get a

report of the changed options using this format:

set

An example follows:

sset 0

autoindent autowrite redraw report=2 scroll=3 shiftwidth=5

showmode term=vt100 wrapmargin=5

[Hit return to continue]|[|

From the last line, you request the values of all options whose values you have

changed from the default. The options and current values are reported at the bottom

of the screen. To remove the display, press the New Line key.

Display Values for All Options

The following command format displays the current values, changed or default, of

each vi option.

set all

Figure 2-3 shows an example of a typical editing options display.

()
: set all

autoindent nonumber showmode

autoprint nonovice noslowopen

autowrite nooptimize tabstop=8

nobeautify paragraphs=IPLPPPQPP LIpplpipnpb taglength=0

directory=/tmp prompt tags=tags /usr/lib/tags

noedcompatible noreadonly term=vt100

noerrorbells redraw noterse

flash remap timeout

hardtabs=8 report=2 ttytype=vt100

noignorecase scroll=3 warn

nolisp sections=NHSHH HUuhsht+c window=23

nolist shell=/bin/sh wrapscan

magic shiftwidth=5 wrapmargin=5

mesg noshowmatch nowriteany

{Hit return to continue]f]

\ J
Figure 2-3 Typical Editing Options Display

069-701036 Licensed material—property of copyright holder(s) 2-99

Setting Up Your vi Environment

From the last line, you request the values of all options having default and changed

values. All options and current values are reported at the bottom of the screen. To

remove the display from the screen, you press the New Line key.

The Options

The options are divided into these groups:

e Editing.

@ Programming and debugging.

e@ Slow terminals and those operating via a modem.

e DTK (Documenter’s Tool Kit) applications.

2-100 Licensed material—property of copyright holder(s) 069-701036

Editing Options

Table 2-35 lists the editing options.

Setting Up Your vi Environment

Table 2-35 Editing Options

Name Abbrev | Default Description

autoprint

autowrite

beautify

directory

edcompatible

ap

aw

bf

dir

ed

ap

noaw

nobf

dir=/tmp

noed

Option is on or off; displays changed lines to

show the result of an editing operation

performed on the last line.

Option is on or off; if set to aw, before you

switch to editing a different file, exit the

editor, or issue a shell escape command, the

current buffer is written to the current disk

file if the buffer contents have changed since

the last write (see the section "Manipulating

Files in Last Line Mode").

Option is on or off; when set to bf, when

reading a file into the current buffer (see the

section "Reading Files"), removes all control

characters from the display (or "beautifies"

it) with the exception of these control

sequences:

Ctrl-I (Tab)

Ctrl-J (New Line)

Ctrl-L (Formfeed)

Takes string value; defines the default

temporary file used as additional buffer if

your working buffer overflows.

Option is on or off; if set to edcompatible,

then the last line mode substitution

command is affected. When the g (global)

or c (confirm) option (or both) is set, all

subsequent substitute commands set these

options implicitly. These options remain in

effect until you explicitly specify them as

arguments to the substitute command. In the

following command, the options are turned

on explicitly:

:%s/the/THE/ge 9

069-701036 Licensed material—property of copyright holder(s)

(continued)

2-101

Setting Up Your vi Environment

Table 2-35 Editing Options

Name Abbrev Default Description

edcompatible

error bell

flash

hardtabs

ignorecase

list

magic

message

ed

eb

ht

list

magic

mesg

noed

noeb

nofl

ht=8

noic

nolist

magic

mesg

In the next example, no options are set

explicitly but the implicit effects remain:

21,80s/"Dispatch/Message/ 9

To turn off the g and c options, you must set

them again explicitly.

:%s/Cab/Taxi/ge 9

Option is on or off; beeps to signal an error

on terminals that cannot flash.

Option is on or off; for some terminals,

error conditions are signalled by a brief flash

on the screen rather than a beep.

Takes numeric value; matches vi tab settings

to the hardware tab settings of your terminal

or the software tab settings. This option is

useful only if your terminal uses tab settings

other than every 8 spaces.

Option is on or off. If set to ic, ignores case

when searching for regular expressions (see

"Searching for Regular Expressions"). There

is no difference between upper- and

lowercase.

Option is on or off; displays normally

invisible control characters — “I for a tab

and $ for a new-line.

Option is on or off; if nomagic is set,

ignores metacharacters used for regular-

expression pattern searching except: ~*, $, \,

\<, and \>. These metacharacters are

ignored: *, ., &,~, and []. To reinstate the

recognition of all metacharacters even with

nomagic set, precede each metacharacter

with a backslash (\). Also, refer to

Appendix A for information on "Regular

Expressions."

Option is on or off; enables or disables

display of system messages during an editing

session. Messages are sent with the write(1),

wall(1M), or rwall(1M) commands.

2-102 Licensed material—property of copyright holder(s)

(continued)

069-701036

Setting Up Your vi Environment

Table 2-35 Editing Options

Name Abbrev Default Description

novice

number

readonly

remap

report

shell

novice

hu

ro

remap

report

sh

nonovice

honu

noro

remap

report=5

sh=$SHELL

Option is on or off; useful for C shell only. It

should be set in the EXINIT environment

variable or a .exre file; it should not be set in vi

last line mode. If set to nonovice, you can use

Ctrl-Z or the downarrow (|) to suspend vi.

Control is sent to the shell. To resume vi and

put it in the foreground, you can issue the fg

command with the job number and the screen is

refreshed with the current buffer. If novice is

set, the suspend function is disabled and you can

use the downarrow as a cursor scan key.

Option is on or off; numbers each line in the file.

Option is on or off; the file is set to read-only

mode; you can view, but not write to the file.

Option is on or off; if remap is set, recognizes

multiple mappings in a single macro (refer to the

section "Writing and Using Macros" later in this

chapter). For example, if a macro named x is

mapped to y and y is mapped to z, then with

mapping on, x maps to z. If off, x maps to y

only.

Takes numeric value; vi reports the number of

lines changed, deleted, or yanked by your last

command if the number of lines affected is

greater than the report value.

Takes string value; defines the name of the shell

that is executed when you issue a command in

the form — :!. By default, this shell is defined

by the $shell or $SHELL variable for the Bourne

shell and the C shell, respectively (see chapters 5

and 6 for more information). An example

follows:

sh=/bin/csh 9

069-701036 Licensed material—property of copyright holder(s)

(continued)

2-103

Setting Up Your vi Environment

Table 2-35 Editing Options

Name Abbrev | Default Description

showmode smd nosmd Option is on or off; displays the appropriate

mode on the status line:

APPEND MODE

SUBSTITUTE MODE

CHANGE MODE

REPLACE MODE

OPEN MODE

INSERT MODE

INPUT MODE

tabstop ts ts=8 Takes numeric value; specifies the interval

between tab stops.

term term |term=$TERM|Takes string value; defines your terminal type

for the system from the list of legal terminal-

type values. The value you specify must be

consistent with the terminal type defined in

either the TERM environment variable or the

appropriate setup file—.profile for Bourne

shell users and .login for C shell users.

(Refer to Using the DG/UXTM System for

more information on the terminal type). An

example follows:

term=vt100 9

terse terse noterse Option is on or off; if set to terse, error

messages are shortened.

timeout to noto If timeout is on, when you use a macro name

exceeding one character (see the section

"Writing and Using Macros" later in this

manual), you must enter at least a character

per second or the name will be interpreted as

regular text.

(continued)

2-104 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Table 2-35 Editing Options

Name Abbrev Default Description

warning

wrapmargin

wrapscan

warn

ws

warn

wm=0

ws

Option is on or off; issues or inhibits

warning that file hasn’t been written to disk.

If this option is set to warn, and you try to

escape to the shell using the :sh or :!

commands, this message will be displayed:

"[No write since last change]". This

message is a warning that the information

you are editing is not consistent with the disk

file.

Takes numeric value; generates automatic

new line between words at or after the

defined column position from right side of

screen. If set to 0, automatic wrap is not

performed.

Option is on or off; if ws is set, for regular-

expression pattern search operations, the

search starts at the cursor position, goes to

the end of the file, and then to the top of the

file until the cursor position is reached. If

ws is off, the search is restricted to the

cursor position to the end of the file.

069-701036

(concluded)

Licensed material—property of copyright holder(s) 2-105

Setting Up Your vi Environment

Programming and Debugging Options

Table 2-36 lists the programming and debugging options.

Table 2-36 Programming and Debugging Options

Name Abbrev | Default Description

autoindent | ai noai Option is on or off; when set to ai, when vi is in

input mode, each new line begins automatically

in the same column as the column beginning the

previous line. To move left of that column, use

Ctrl-D; to move right, use a space or tab. This

option is particularly useful for entering

programming code that uses statement and

construct nesting.

lisp lisp nolisp Option is on or off; recognizes LISP delimiters

for automatic indentation. If lisp is set, you can

indent lisp code appropriately. Also, it

modifies these symbols, which have a special

meaning for lisp: (), { }, [{, and]]. Also, it

enables the = (formatted print) operator when

using S-expressions. See the showmatch option

in this table.

modelines | ml noml Option is on or off; if ml is set, the first and

last five lines of each input file are checked for

embedded ex commands (see the ex(1) man

page in the User’s Reference for the DG/UXTM

System). If such commands are found, they are

executed. Such a command must be preceded

by :ex or :vi, and must be followed by :. This

option can be set to apply to specific program

source files, such as a tags file, by embedding

the command in a comment in the source file.

shiftwidth | sw sw=8 Takes numeric value; useful only when

autoindent is on. It specifies the software tab

distance for the tab stops for the Ctrl-D, space,

or tab commands, necessary for tabbing in a

backwards direction (to the left) with the

autoindent option (located in this table).

(continued)

2-106 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Table 2-36 Programming and Debugging Options

Abbrev Default Description

showmatch

taglength

tags

writeany

sm

tl

tag

wa

nosm

tl=0

tag=tags /usr/lib/tags

nowa

Option is on or off; when sm is set and

vi is in input mode, when you type a

closing brace (}) or parenthesis ()) that

matches an opening brace ({) or

parenthesis ()) on the same screen, the

cursor jumps to that matching character

for a second, then back, and you can

continue entering text.

Takes numeric value; if the length is

nonzero, the tag name is significant to

this many characters. If the length is 0,

all characters are significant. Refer to

Using the DG/UXTM System for more

information.

Takes string value; defines the name(s)

of one or more tags files (tags files do

not have to be produced by ctags and

they do not have to be named tags).

Each space-separated word in the tags

string is the path of a tags file, which

will be searched sequentially. The

default tags string, tags /usr/lib/tags,

means to first search the tags file named

tags in the current directory. If no

match is found in that file, then the tags

file, /usr/lib/tags will be searched (refer

to the section on ctags in Using the

DG/UXTM System). As an alternative to

the default, you can set up different tags

files throughout your directory system

and specify that they are to be searched

by vi. The format follows: °

set tags=/filepath/tags /filepath/tags 9

Option is on or off; if wa is set, turns

off the checks made by vi when you

want to write a file. If nowa is set,

turns on the checks. You must use w!

to override the checks. Refer to the

section "Commands to Write Files" for

more information.

069-701036

(concluded)

Licensed material—property of copyright holder(s) 2-107

Setting Up Your vi Environment

Options for Slow Terminals

Table 2-37 lists the options that are useful for terminals connected to slow

communications lines or those lacking "smart" terminal capabilities (such as to redraw

your screen with each editing command). All of these options are terminal- and

speed-dependent.

Table 2-37 Options for Slow Terminals

Name {Abbrev |Description

redraw j|redraw_ |Option is on or off; when redraw is on, redraws (or updates)

the entire screen after each editing operation. Otherwise,

updating is postponed until you press the Escape key. The

redraw attribute is in effect automatically for powerful "smart"

terminals operating at a high speed. When operating at a low

baud rate, setting this option to noredraw accelerates

transmission speed at the expense of the appearance of

overwriting existing text.

optimize |optimize | Option is on or off; particularly helpful when operating via

modem. If optimize is set, the screen refresh rate is

accelerated. If your text includes leading spaces on a line and

your terminal interprets the new-line character as a line feed

(without changing the column), then leading space characters

can be avoided for that line.

scroll scr Takes numeric value; defines the number of lines to scroll when

you use Ctrl-D (scroll down) and Ctrl-U (scroll up). If the

window is 23 lines, then the scroll size is 11. By default, scroll

size is half the window size. Refer to the section "Scrolling and

Paging Text Through the Current Window" in this chapter for

more information.

slowopen | slow Option is on or off; for some terminals at slow baud rates, vi

will not open a blank line on the screen when you are entering a

new line of text (such as when you use the o command). Your

editing actions will appear to overwrite existing text. With

slowopen off, your screen is refreshed automatically. When

operating via modem or at low baud rates, setting this option to

off will accelerate transmission speed at the expense of a

noncurrent screen.

(continued)

2-108 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Table 2-37 Options for Slow Terminals

Name /|Abbrev (|Description

window |wi Takes numeric value; this option is terminal dependent. If you

do not set the option, window size is set according to the baud

rate at which your terminal operates:

wi=screen-size — 1 greater than 1200 baud

wi=16 1200 baud

wi=8 less than 1200 baud

You can set the appropriate one explicitly. As an alternative,

you can declare the desired window size according to the baud

rate at which you are operating. The following sizes correspond

with baud rate:

w300_ ~=—less than 1200 baud

w1200 1200 baud

w9600 above 1200 baud

Examples follow:

sset w300 = 15 9

sset w1200 = 23 0

When operating at 300 baud, the screen size will be 15 lines;

when operating at 1200 baud, the screen size will be 23 lines.

(concluded)

069-701036 Licensed material—property of copyright holder(s) 2-109

Setting Up Your vi Environment

DTK Options

Table 2-38 lists the options that are useful if you use the nroff and troff macros.

Table 2-38 DTK Options

Name Default Description

paragraphs

sections

para=IPLPPPQPP LIpplpipnpbp

sect=NHSHH HUuhsh+*c

Takes string value; each pair is an

nroff/troff command that signifies a

paragraph delimiter, which is

recognized by the vi paragraph text

objects, { and }. Refer to the

section "How vi Relates to the

Document Formatter: DTK" for

more information. These defaults

are basic mm, me, and ms paragraph

macros. You can replace the

defaults with any macros you have

written. If you have a single-letter

macro, such as .p, append’a

backslash (\) and a space. The

following example shows how to

replace the defaults with .p and .PP.

:set paragraphs=p\ PP 9d

Takes string value; each pair is an

nroff/troff command that signifies a

section delimiter, which is recognized

by the vi paragraph text objects, [

and]. Refer to the section titled

"How vi Relates to the Document

Formatter: DTK" for more

information. These defaults are

basic mm, me, and ms section

macros. You can replace the

defaults with any macros you have

written. If you have a single-letter

macro, such as .s, append a

backslash (\) and a space. The

following example shows how to

replace the defaults with the macros

-s and .SH.

sset paragraphs=s\ SH 0

The DG/UX system supports only the mm macro set.

2-110 Licensed material—property of copyright holder(s) 069-701036

Setting Up Your vi Environment

Table 2-39 contains a list of the relevant macros contained in this macro set:

Table 2-39 mm Macro Set Commands

Command | Definition

-P New paragraph

LI List item

-H Numbered paragraph

-HU Unnumbered heading

-bp Begin new page

You may want to edit the paragraphs and sections options to show only the mm

macro commands.

Writing and Using Macros

A macro is a single-character (preferably) command name that represents a sequence

of operations. To save keystrokes and time, you can set up frequently used

commands or words into macros. There are two types of macros:

@ Key map macro.

e Abbreviation macro.

You can assign a series of commands to one or more letter keys (for example, m) or

to a function key (for example, F1). You can write macros to be used in command

mode or input mode. For command mode, you will use some of the vi editing

commands to do such operations as append, insert, delete, or change.

A Variation of a key map for input mode is the abbreviation macro, which expands a

macro name into a corresponding word. The difference between the key map used in

input mode and the abbreviation macro is that the latter is used only when it is

entered as a word by itself.

Where to Set Up Macros

There are three methods for setting up macros:

@ EXINIT variable.

e .exre file.

e Last line mode.

Refer to the section "Setting Up Your vi Environment" for more information.

069-701036 Licensed material—property of copyright holder(s) 2-111

Writing and Using Macros

Using Key Maps

You can define key maps to use in both vi command mode and insert mode. The

syntax used for defining such key maps follows.

The following command format defines a macro for use in vi command mode:

map macro-name definition

The following command format defines a macro for use in vi insert mode:

map[!]| macro-name definition

where:

map is the keyword for command mode macros; map! for insert mode macros.

macro-name labels the set of commands that are invoked each time you issue the

macro. Although one character is preferable, a macro name can contain as many as

10 characters. If a macro name contains more than one character, you will have to

type at least one character a second unless the notimeout option is set. See the

section "Setting Up Your vi Environment." Macro names should not contain

characters having a special meaning in vi command mode such as i (insert), a

(append), and o (open). There is no restriction, however, on using characters that

have meaning in last line mode, such as q (quit) and * (a regular-expression

metacharacter) in macro names. The following keys are available for user-defined

macro names:

g q V K V

Ctrl-A CtrlO CtriT * = \

The availability of specific keys for macro names depends on your terminal type.

Make sure a given key is not defined before you use it for a macro. To avoid key

map duplication, you can check the macros currently set with the map command (see

the next section). Also, do not use vi commands in new macros. Alternatively, a

macro name can also be a function key. You are limited to using function keys F1 to

F10. The function keys on your keyboard may not be labelled as such. Regardless of

labelling, the function keys are usually located on the top row of the keyboard or in a

group to one side of the alphanumeric keys. You specify a function key as #n, where

n 1s 1 through 10.

A macro definition can contain any number of commands, which can add up to 100

characters. If you use multiple commands in a macro definition, it is not necessary to

space between them. Table 2-40 lists the control characters that you will need to

precede with a single escape character, represented as a Ctrl-V.

2-112 Licensed material—property of copyright holder(s) 069-701036

Writing and Using Macros

Table 2-40 Escaping Control Codes in Macros

Control Key Keystroke

Escape Ctrl-V

New Line Ctrl-J

Carriage return | Ctrl-M

Escape key Ctrl-[

Setting Up a Command Mode Macro

A macro to perform the write and quit operation in last line mode follows. You type

the following macro definition:

smap q :wq<Ctrl-V> 00

The result of what you type will look like this:

:map q :wq'M

You assign the q key to this function, the write and quit (:wq) command, followed by

one escape character. The Ctrl-V is displayed as a single caret (*) that escapes the

next character you type, which is the new-line. The new-line is displayed as an "M".

The first new-line is part of the definition; the second new-line ends the command

sequence and returns control to vi.

To ensure that the macro definition has taken effect, you can type the map command

from last line mode. The current macro names are listed.

smap o

up “WwW k

q q :wq

left “Y h

right “xX 1

home “H H

£4 ““tbill bill

[Hit return to continue]

The first column contains the macro name; the second column, the control character

sequence used to produce the desired effect; and the final column, the instruction

assigned to the macro name. In this example, two key maps are user defined—q and

function key F4. The other four are provided with vi by default. You can press the

New Line key to return control to command mode.

The macro is effective immediately. While vi is in command mode, you can issue the

q command and you will see the command assigned to it displayed briefly at the

bottom of the screen. The command is executed and then a message is displayed,

reporting the statistics about the file just written.

069-701036 Licensed material—property of copyright holder(s) 2-113

Writing and Using Macros

Setting Up a Function Key Map in Command Mode

An example of mapping a function key to a set of commands follows. You type the

following macro definition:

smap #1 i\italic<Ctrl-V><Esc>Ea\roman<Ctrl-V><Esc>)

What you see on the screen is different from what you typed:

:map #1 i\italicTM [Ea\roman”TM [

You will see only a single caret (“) from typing Ctrl-V and a single open bracket ([)

for typing Esc.

The purpose of this macro is to turn on the italic font for the selected word and then

turn on the roman font at the end of the word. A breakdown of each of these

commands is given:

i Invokes insert mode.

\italic Requests the italic font.

<Ctrl-v> Represents the Escape character, which must precede the next

character.

<Esc> Invokes command mode.

E Moves the cursor to the end of the current word.

a Appends text at the current cursor position.

\roman Requests the roman font.

<Ctrl-v> Represents the Escape character, which must precede the next

character.

<Esc> Invokes command mode.

Sample text used in an example of using this macro follows.

Book titles are italicized:[Many Miles.

Using the F1 key will produce this result:

Book titles are italicized:\italicMany Miles\roman.]

Setting Up a Macro in Input Mode

Two examples of macros you can use while in input mode follow:

smap! z \italic 0

smap! q \roman 9

Each time you use either the z or q macros while vi is in input mode, an associated

string of text is entered automatically.

If you want to use a literal z or q, you will have to escape it by preceding it

with Ctrl-V.

2-114 Licensed material—property of copyright holder(s) 069-701036

Writing and Using Macros

Sample text used for illustrating the z macro follows.

Refer to the []

Using the z macro in input mode causes the mapped text to appear on the screen,

which moves the cursor to the position following the new text, shown as follows.

Refer to the \italicf]

Sample text used for illustrating the q macro follows.

Refer to the \italicUsing the Sprinkler System manualf]

While in input mode, when you use the q macro, the assigned text is inserted at the

cursor position, shown as follows.

Refer to the \italicUsing the Sprinkler System manual\roman{_]

Setting Up a Function Key Map in Input Mode

An example of mapping a function key to an insert mode function follows:

smap! #2 the Sprinkler System 9

This macro assigns the function key F2 (the pound sign, #, represents a function

key), to a string of text.

Sample text used to illustrate this function key map follows.

Refer to the Using []

In input mode, you use the F2 function key map to insert the mapped text string.

The cursor moves to the position following the string, shown as follows.

Refer to the Using the Sprinkler Systenf_]|

Assigning Nested Macro Maps

By default, the remap editing option is set (refer to Table 2-35), which means that

macros can invoke other macros. This means that macros can nest. Several

examples of nested maps follow.

:set remap

:map ~F w

:map #4 “F

069-701036 Licensed material—property of copyright holder(s) 2-115

Writing and Using Macros

The first mapping, ~F, performs the w command, which advances the cursor to the

next word. The second mapping shows that function key, #4 can also be mapped to

the ~F macro. As long as remap is set, ~F will also perform the w command.

To disable nested maps, set the noremap editing option. In this case, the first

mapping will be enabled. In the example, ~F will perform the w command.

Function key #4 will not; instead it will perform the ~F command, which pages the

screen forward.

You should be careful, however, with the order in which you set up macro

definitions. This sequence will not produce the desired results — both key maps will

not perform a page forward command.

:set remap

:map #4 “F

:map ~F w

Function key #4 performs ~F, which pages down a full screen (23 lines). In the next

line, ~F, which is mapped to the w command, will overwrite the previous macro

containing Ctrl-F. Issuing the map command in last line mode will show the setup

of only the last macro.

As a rule, there should be no matchup between the definition field in the first macro

and the macro-name in a subsequent macro. In this example, the arrangement of the

“F in these fields will cause problems.

Deleting a Key Map

A macro can be deleted as easily as created, using this command format:

sunmap macro-name

If the macro was written for use in input mode, you would use the command unmap!

instead. You can verify your deletion by issuing the map command.

Abbreviation Macro

The abbreviation macro facility is similar to mapping in input mode. The difference

between the two is that for the abbreviation macro, the macro name is expanded only

if it is entered as a word by itself. If the abbreviation macro name is entered as a

part of a word, it will not be recognized as an abbreviation macro so it will not be

expanded. The general format used to define a macro follows:

sabbr macro-name String

where:

abbr is the keyword representing an abbreviation macro. You can use "ab" as a short

form of the abbr command.

2-116 Licensed material—property of copyright holder(s) 069-701036

Writing and Using Macros

macro-name labels the text string that is invoked each time you issue the macro name.

string is the text to which the macro name expands each time you issue the macro

name. An example follows:

sab mm Missoula, Montana 0

To ensure that an abbreviation macro has taken effect, you can type the ab command

in last line mode and the press New Line key.

sab 0

mm mm Missoula, Montana

[Hit return to continue][]

The first and second columns give the abbreviation macro name. The final column

gives the string to which the macro name expands. You press the New Line key to

return vi to command mode.

To use this macro, you simply type mm preceded and followed by either of these

keystrokes that produce whitespace:

Tab

Space

New-line

The abbreviation is expanded immediately to "Missoula, Montana" in your file.

Sample text used for illustrating the mm macro follows.

I left my heart in []|

When you type mm, followed by a space, the macro expands and the cursor is

positioned immediately following the expanded text, shown as follows.

I left my heart in Missoula, Montanal_]

Placement of whitespace around the mm macro is crucial. The following sample text

illustrates this.

I drove through{_]|

Using the mm macro followed by a space will not cause the macro to be expanded

because whitespace does not precede mm. The result is shown as follows.

I drove throughmn []

069-701036 Licensed material—property of copyright holder(s) 2-117

Writing and Using Macros

Deleting Abbreviation Macros

If you no longer need a given abbreviation macro, you can specify the unab command

followed by the macro name. This command format follows:

unab macro-name

An example follows:

sunab mm 0

The mm abbreviation macro is deleted from your list.

Undoing the Effect of a Macro

To undo the effect of a macro, in command mode, use the u command. The effect

of the macro is undone. To restore the effect of the macro, use the u command

again. Sample text used.to illustrate the u command follows.

I left my heart in []

By typing mm, followed by a space, you will see the following result.

I left my heart in Missoula, Montanal[_]|

In the preceding example, you used the mm macro to insert the assigned string. The

cursor moves to the position following the inserted string. You can undo the effect of

the macro expansion by using the u command. The text returns to its previous

appearance as follows:

I left my heart in [|

To reinstate the text that you just undid, you can use the u command again. The

result is shown as follows.

I left my heart in Missoula, Montanal_ |

2-118 Licensed material—property of copyright holder(s) 069-701036

Miscellaneous

Miscellaneous

There is a final category of useful commands that do not neatly fit into the primary

categories of editing operations. These topics are covered:

e Transposing characters.

@ Repeating the last command.

e@ Joining two lines on one line.

@ Clearing the screen and redrawing.

@ Changing uppercase to lowercase and vice-versa.

® Getting current editing information.

e Error recovery.

e Alternate ways to invoke vi.

Transposing Characters

A quick way to fix transposed characters is to combine the x and the p commands as

xp. The command x (issued in command mode) deletes the letter; the p command

places it after the next character.

Notice the error in the next line.

What [filtme is it?

By using the xp command, you will see the following result.

What time is it?

The x command deletes the "i", causing the text to the right of the cursor to shift left

one position. Now the cursor is on the "t", so the p command puts back the "i" after

the "t".

Repeating the Previous Command

In command mode the . (dot) command repeats the effect of the previous command.

The dot command (issued in command mode) can be repeated as many times as

desired to repeat a command. The dot command is particularly useful when you need

to make selective, as opposed to global, changes in a file.

069-701036 Licensed material—property of copyright holder(s) 2-119

Miscellaneous

NOTE: Dot commands are ineffective for re-executing commands issued in last line

mode. Such a command will repeat the most recent command that altered

the buffer.

Sample text used for illustrating the . command follows.

I wrote [i]2 memos yesterday.

My dad opened the store in 1912.

I bought 12 pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

With the cursor on the 1 in 12, you issue the ew command to change 12 to a dozen

and press the Escape key to signal an end to the word change. The result is shown as

follows.

I wrote a doze[n] memos yesterday.

My dad opened the store in 1912.

I bought 12 pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

In the next example, you move the cursor to the next occurrence of 12 that you want

to change to a dozen. You move the cursor to the third line, skipping over the

second line, and position the cursor on the 1 in 12, shown as follows.

I wrote a dozen memos yesterday.

My dad opened the store in 1912.

I bought [1]2 pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

Using the . command will repeat the previous command, shown as follows.

I wrote a dozen memos yesterday.

My dad opened the store in 1912.

I bought a doze[n] pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

Joining Lines

The J command (issued in command mode) joins lines. As an alternative, you can

precede the command with a number to specify n lines to join, nJ. You can put the

cursor anywhere on the first line to be joined and then press the J key. The new-line

is stripped from the current line, thus allowing the following line to wrap to the

preceding line. Remember to use the uppercase J because the lowercase j moves the

cursor down. Sample text to illustrate the J command follows.

I wrote 12 [mjemos yesterday.

My dad opened the store in 1912.

I bought 12 pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

2-120 Licensed material—property of copyright holder(s) 069-701036

Miscellaneous

Using the J command produces the following result.

I wrote 12 memos yesterday.[] My dad opened the store in 1912.

I bought 12 pads of paper at the stationery store.

I’ve asked you 12 times to mail that letter.

The amount of text to be wrapped to the preceding line will depend on the screen

length, which you can set through the wrapmargin option (refer to "Setting Up Your

vi Environment” in this chapter for more information on these methods.)

Text is wrapped automatically up to the current line. Notice that two spaces are

automatically inserted after the final punctuation (.) following "afternoon." If there

had been no punctuation, one space would be inserted between the two joined text

objects. This is done to maintain proper spacing both inside a sentence and between

sentences. If you want continuously wrapping text with no new lines, you can press

the J key repeatedly.

Clearing and Refreshing the Terminal Window

If your terminal screen contains spurious marks (such as from the result of broadcast

messages or "noise" on a modem connection), you can restore the current window to

its proper image using the Ctrl-L command in command mode.

Changing Cases

A quick way to change any lowercase letter to uppercase, or vice-versa, is by putting

the cursor on the letter to be changed and, in command mode, typing a ~ (tilde).

For example, to change the letter a to A, with the cursor on a, use the ~ command.

This command also causes the cursor to move one position forward. To convert an

entire line (or part of a line) of text in one case to the alternate case, you can use the

~ command repeatedly. As the cursor moves forward, characters are converted to

the alternate case. Numbers, punctuation, and blanks are unaffected. Sample text

follows.

[T]he Dow is down.

When you use use the ~ command 16 times, you will see this result.

tHE dOW IS DOWn[.]

Each time you use the ~ command, the current character is changed to the alternate

case.

This command can also be modified by a number. Using the 16~ command will

produce the same result.

069-701036 Licensed material—property of copyright holder(s) 2-121

Miscellaneous

Getting Current Editing Information

While you are editing, vi is keeping track of some information about your text. You

can get a report of this information at any time during a vi editing session while in

command mode. Sample text follows.

If you plan to be in the vicinity []

of the Central City Coliseum tonight

Using the Ctrl-G command will produce this result:

"cab.alert" [modified] line 36 of 116 --34%--

where:

"“cab.alert" is the filename.

[modified] means that the file has been changed since it was last saved.

line 36 is the current line number.

of 116 is the total number of lines in file.

—-34%-—— is the percentage of total lines represented by first line through current line.

Error Recovery

There are two methods for recovering from your errors or computer errors.

@ Undoing the last command.

@ Recovering a file lost due to a system crash.

Undoing the Previous Command

Vi allows you to undo the last command you issued in command mode. This is

extremely helpful in allowing you to restore the file to its original state following an

undesired or mistaken command. Table 2-41 lists the undo commands.

2-122 Licensed material—property of copyright holder(s) 069-701036

Miscellaneous

Table 2-41 Undo Commands

Command | Definition

u Undoes the last command. The cursor does not have to be on the

line where the last command was executed. The u command will

undo the effect of the U command (see next table entry).

U Undoes all edits on a single line as long as the cursor remains on that

line. The U command has no effect if you move the cursor from that

line. The U command will undo the effect of the u command.

‘undo In last line mode, undoes the previous command. Issuing this

command a second time reverses the undo command in an identical

manner to multiple uses of the u command.

If you delete several lines by mistake, for example, you can restore them with the u

command. In fact, you can change your mind and delete those lines again with the u

command. With u, you can go back and forth — it’s a toggle.

As an alternative, after you have done a number of editing changes on a line, you can

fix them all and restore the line to its original state with the U command. This

command backs out all changes made since the cursor was positioned on the current

line. Sample text for illustrating the u and U commands follows.

[Dlogs are man’s best friend.

When you use the ew to change dogs to cats, and then press the Escape key, you

will see the following result.

Cat[s] are man’s best friend.

To undo this change, you would use the u command. The result is shown as follows.

[Dlogs are man’s best friend.

To reinstate the original change, you would use the u command again. The result is

shown as follows.

Cat[s] are man’s best friend.

Using the U command will undo the effect of the u command. The result is shown as

follows.

[Dlogs are man’s best friend.

069-701036 Licensed material—property of copyright holder(s) 2-123

Miscellaneous

Recovering Lost Files

If your computer interrupts or disconnects (crashes), vi will be terminated without

warning you, and worse yet, without writing your file to disk. The system does store

an image of your file, which you can recover and continue to work on. You can lose

as much as the last 12 lines or parts of lines changed. Any marks or text saved in

registers will be lost. The following steps tell how to recover a file.

Recovering a File from the Shell

1) Log in to your computer system.

2) Go to the directory in which the lost file was located.

3) Invoke vi from the shell using the following command format:

vi —r filename

where:

the —r option means to recover.

filename names the file being edited during the crash.

You could lose as much as the last 12 lines or parts of lines changed.

NOTE: You will normally receive electronic mail when you log in to the system

again, after your computer has been restored, giving you the name of the file

that was saved for you. You can invoke vi as vi —r to get a list of these files

saved for you, and to find out their exact names.

2-124 Licensed material—property of copyright holder(s) 069-701036

Miscellaneous

Trouble Saving File in a vi Session

There may be instances when you try to save a file and you get a message from the

system informing you that the file system is full or unavailable. Follow these steps to

preserve a copy of your buffer:

1)

2)

3)

069-701036

From last line mode, issue this command:

spreserve 0.

This command saves the current buffer in a reserved directory on the system.

In the meantime, you can continue your work on other files as normal.

After some time has passed, you can check to see if any system resources

have been freed by issuing this command from vi last line mode:

srecover filename 0

If you can successfully recover your file, try writing it again to a permanent

file. If system resources are still unavailable, keep trying until there are

adequate resources or try the following step.

Type this command from last line mode:

stdf >

This commands checks the availability of resources on other file systems. If

there are resources on a system to which you have write permissions, write

your file using this command:

: w! pathname 9

Continue your work at that location and then move the file back to your file

system when resources are available.

End of Chapter

Licensed material—property of copyright holder(s) 2-125

Chapter 3

Using the Line Editor: ed

This chapter discusses the line editor, ed. Ed is versatile and requires little computer

time to perform editing tasks. It can be used on any type of terminal. The examples

of command lines and system responses in this chapter will apply to your terminal,

whether it is a video display terminal or a hardcopy terminal. The ed commands can

be typed in at your terminal or they can be used in a shell program. See Using the

DG/UXTM System for more information on using ed in a shell program.

During an editing session with ed, you are altering the contents of a file in a

temporary (or working) buffer, where you work until you have finished creating or

changing your text. When you edit an existing file, a copy of that file is placed in the

buffer and your changes are made to this copy. The changes have no effect on the

original file until you instruct ed with the write command to move the contents of the

buffer into the file.

Ed always points to a single line in the buffer called the current line. When you

invoke ed to edit an existing file, ed makes the file’s last line the current line so you

can start appending text easily. Unless you specify the number of a different line or

range of lines, ed will perform each command you issue on the current line. In

addition to letting you change, delete, or add text on one or more lines, ed allows

access to files other than the one you are editing — you can read in the contents of

another file or overwrite another file’s contents with lines from the buffer.

After you have read through this chapter and tried the examples, you will have a good

working knowledge of ed. The chapter covers all you need to know to use ed,

including the following topics:

e Invoking ed.

e Displaying text.

e Entering text.

e Deleting text.

e Searching for text and performing global changes to text.

e Rearranging text.

069-701036 Licensed material—property of copyright holder(s) 3-1

Using the Line Editor: ed

e Reading text from and writing text to a file.

e Saving text and quitting ed.

The notation conventions used in this chapter are described in the Preface of this

manual.

Most of the examples in this chapter refer to a file called try-me. The steps for

creating the initial version of this file follows.

S$ cat > try-me 0

This is the first line of text. 0

This is the second line, 9

and this is the third line. 0

This is the fourth line. 0

<Ctrl-D>

You display the file’s contents as follows.

$ cat try-me 0

This is the first line of text.

This is the second line,

and this is the third line.

This is the fourth line.

$

As the chapter progresses, the various examples may change or add to the text in file

try-me.

Invoking ed

Use this format to invoke ed from the shell:

ed [options |filename

where:

options are available for customizing the behavior of ed. See the ed(1) man page in

the User’s Reference for the DG/UXTM System for more information.

The following example shows how to invoke ed to edit the file try-me:

S ed try-me 9

If you are editing a new file, ed responds with a question mark (?) and the filename.

If you are editing an existing file, ed returns the number of characters in the file.

3-2 Licensed material—property of copyright holder(s) 069-701036

Invoking ed

Once you have invoked ed, you are in command mode and can use any of the ed

commands. Table 3-1 summarizes the basic ed commands.

Table 3-1 Summary of ed Commands

Command | Definition

2 Displays the next line in the buffer.

+ Displays the next line in the buffer.

— Displays the previous line in the buffer.

Pp Prints addressed lines on your screen.

n Prints addressed lines with line numbers on your screen.

a Changes control to input mode, appending typed text after the current

line. Terminate input mode by typing a period alone on a line and

pressing the New Line key.

i Inserts text before the addressed line in the buffer.

c Changes the text on the addressed line(s) to new text.

. Quits input mode, returning ed to command mode.

d Deletes text on addressed lines.

u Undoes previous command, restoring any text that was deleted or

changed.

S Substitutes the first occurrence of a string with a replacement string.

g Globally substitutes each instance of a string within a specified range

with a replacement string.

m Moves the addressed line(s) of text (deleting the original) to another

buffer location.

t Copies (duplicates) the addressed lines to another buffer location.

j Joins the current line with the following line.

r Reads the contents of a file into the current buffer.

Ww Writes the addressed lines of the buffer or the entire buffer to a file.

If the file already exists, its contents will be overwritten.

H Turns on help message mode so you receive help messages when ed
detects an error. Usually ed returns a question mark (?) alone ona

line to report an error.

P Turns prompting mode on and off. In prompting mode, ed prompts

you after completing a command.

q Quits ed, without writing buffer contents to the file, and returns to the

shell.

The following section describes the general format that applies to ed commands, and

the sections following describe the various ed commands in detail.

069-701036 Licensed material—property of copyright holder(s) 3-3

General Format of ed Commands

General Format of ed Commands

Ed commands have a simple and regular format:

[address1 [| ,address2 | | command [| argument |

where:

address1,address2 are the positions of lines in the buffer. Address1 through address2

specifies a range of lines that will be affected by the command. If address2 is

omitted, the command will affect only the line specified by address1.

command is one character and tells the editor what task to perform.

argument is a filename, another line address, or some indicator telling what parts of

the text will be modified.

This format will become clearer when you begin to experiment with the ed

commands.

Line Addressing

A line address is a character or group of characters that identifies a line of text.

Before ed can execute commands that add, delete, move, or change text, it must

know the line address of the affected text. The line address precedes the command:

[address1 | ,address2 | | command

Both address1 and address2 are optional. Specify addressI alone to request action on

a single line of text; specify both address1 and address2 to request a range of lines. If

you do not specify any address, ed assumes that the line address is the current line.

Table 3-2 shows the symbols and commands you can use for addressing lines.

3-4 Licensed material—property of copyright holder(s) 069-701036

Line Addressing

Table 3-2 Summary of Line Address Syntax

Address | Description

n Represents line number 7 in the buffer.

. Represents the current line (the line most recently acted on by an ed

command).

$ Represents the last line in the buffer.

, Represents all lines in the buffer (the set of lines from line 1 through

the last line).

; Represents the set of lines from the current line through the last line.

+n Represents the line that is located n lines after the current line.

—n Represents the line that is located n lines before the current line.

fabc Represents the next line in the buffer (searching from the current line

forward) that matches the pattern abc.

2abc Represents the next line in the buffer (searching from the current line

backward) that matches the pattern abc.

glabc Represents the set of all lines that contain the pattern abc.

v/abc Represents the set of all lines that do not contain the pattern abc.

To find out the absolute line number of a particular line, issue the = command,

preceding it with an address indicating that line. The following example shows how to

get the line number of the last line in a file, in this case, a file four lines long. Issuing

this command does not change the current line.

$= 9

4

Numerical Addresses

Ed gives a numerical address to each line in the buffer. The first line of the buffer is

1, the second line is 2, and so on, for each line in the buffer. Any line can be

accessed by ed with its line address number. To see how line numbers address a line,

enter ed with the file try-me and type a number.

S$ ed try-me 0

110

10

This is the first line of text.

30

and this is the third line.

069-701036 Licensed material—property of copyright holder(s) 3-5

Line Addressing

When you issue an address alone as a command, ed assumes the print (p) command.

If the address indicates only one line, ed prints the line and makes it the current line.

If the address indicates more than one line, ed prints only the last line and makes it

the current line. To print all of the lines implied by an address, issue the p command

explicitly with the address.

Numerical line addresses frequently change in the course of an editing session. Later

in this chapter you will create lines, delete lines, or move a line to a different

position. This will change the line address numbers of some lines. The number of a

specific line is always the current position of that line in the editing buffer. For

example, if you add five lines of text between lines 5 and 6, line 6 becomes line 11. If

you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Ed offers a number of symbolic addresses that you can use to refer to a line or set of

lines. These symbols do not require that you know the numbers of any lines in the

buffer.

Current Line

The current line is the line most recently acted on by any ed command. If you have

just entered ed with an existing file, the current line is the last line of the buffer. The

symbol for the address of the current line is a period. Therefore you can display the

current line simply by typing a period (.) and pressing the New Line key.

Try this command in the file try-me:

S ed try-me 0

110

e o

This is the fourth line.

The . is the address. Because a command is not specified after the period, ed

executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:

=o

Ed responds with the line number. For example, in the try-me file, the current line is

4.

a)

This is the fourth line.

o— @

4

3-6 Licensed material—property of copyright holder(s) 069-701036

Line Addressing

Last Line

The symbolic address for the last line of the buffer is $. To verify that $ accesses the

last line, access the try-me file with ed and specify this address on a line by itself.

Keep in mind that when you first invoke ed on a file, your current line is the last line

of the file.

S ed try-me 0

110

a)

This is the fourth line.

$9

This is the fourth line.

NOTE: Remember that the $ address within ed is not the same as the $ prompt

from the shell.

All Lines

When used as an address, a comma (,) refers to all the lines in the buffer, from the

first through the last line. It is an abbreviated form of the string 1,$. Try this

shortcut to print the contents of try-me:

ee

This is the first line of text.

This is the second line,

and this is the third line.

This is the fourth line.

Current Line through the Last Line

The semicolon (3) represents a set of lines beginning with the current line and ending

with the last line in the buffer. It is equivalent to the symbolic address .,$. Try it

with the file try-me:

2p 2

This is the second line,

3p

This is the second line,

and this is the third line.

This is the fourth line.

069-701036 Licensed material—property of copyright holder(s) 3-7

Line Addressing

Relative Addresses

You may often want to address lines with respect to the current line. You can do this

by adding or subtracting a number of lines from the current line with a plus (+) or a

minus (—) sign. Addresses derived in this way are called addresses. To experiment

with relative line addresses, add several more lines to your file try-me, as shown in

the following screen. Also, write the buffer contents to the file so your additions will

be saved:

$ ed try-me 0

110

a)

This is the fourth line.

ad

five 9

SIX 0

seven 0

eight 3

nine 0

ten 0

8

Wa

140

Now try adding and subtracting line numbers from the current line.

49

This is the fourth line.

+30

seven

—5 0

This is the second line,

The following example shows what happens if you ask for a line address that is

greater than the last line or if you try to subtract a number greater than the current

line number.

52

five

—6 9

3-8 Licensed material—property of copyright holder(s) 069-701036

Line Addressing

Notice that the current line remains at line 5 of the buffer. The current line changes

only if you give ed a correct address. The ? response means there is an error. The

section "Other Useful Commands and Information," at the end of this chapter,

explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the buffer for a line containing a particular

character string. To do so, precede the string or pattern with the appropriate

delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a string starts

and ends. The most common delimiter is / (slash), used in the following format:

/pattern

When you specify a pattern preceded by /, ed begins at the current line and searches

forward (down through subsequent lines in the buffer) for the next line containing

pattern. When the search reaches the last line of the buffer, ed wraps around to the

beginning of the buffer and continues its search from line 1. If ed does not find the

pattern, the search ends at the current line.

The following rectangle represents the editing buffer. The path of the arrows shows

the search initiated by /:

4
! ! |

_ ol
first line

starts at current line

last line~— ee — me
r ! | ! Lo

Another useful delimiter is ?. If you specify a pattern preceded by ?, (such as

2pattern), ed begins at the current line and searches backward (up through previous

lines in the buffer) for the next line containing the pattern. If the search reaches the

first line of the buffer, it will wrap around and continue searching upward from the

last line of the buffer. Again, if ed does not find the pattern, the search ends at the

current line.

The following rectangle represents the editing buffer. The path of the arrows shows

the search initiated by ?:

069-701036 Licensed material—property of copyright holder(s) 3-9

Line Addressing

a
j

first line

starts at current line

last line

|

Experiment with these kinds of searches on the file try-me.

$ ed try-me 9

140

28

ten

?first o

This is the first line of text.

/fourth 9

This is the fourth line.

/junk 3

?

In this example, ed found the specified strings first and fourth. Then, because no

command was given with the address, it executed the p command by default,

displaying the lines it had found. When ed cannot find a specified string (such as

junk), it responds with a ?.

When you issue / without specifying a search pattern, ed assumes you want to search

for the last pattern specified. In the file try-me, for example, you can search for the

pattern line by issuing /line once, then search for further occurrences of line merely

by issuing / alone:

8

This is the first line of text.

/line 3

This is the second line,

fod

and this is the third line.

lo

This is the fourth line.

To

This is the first line of text.

3-10 Licensed material—property of copyright holder(s) 069-701036

Line Addressing

Notice that after ed has found all occurrences of the pattern between the line where

you requested a search and the end of the buffer, it wraps around to the beginning of

the buffer and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range of lines,

such as address1 through address2, or you can specify a global search for all lines

containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the first and

last lines of the range, separated by a comma (,). Place this address before the

command. For example, if you want to display lines 2 through 7 of the editing buffer,

give addressI as 2 and address2 as 7 in the following format:

2,7p 2

Try this on the file try-me:

2,/p 2

This is the second line,

and this is the third line.

This is the fourth line.

five

six

seven

If you type 2,7 without the p command, ed prints only line 7, the last line of the range

of addresses.

Relative line addresses can also be used to request a range of lines. Be sure that

addressI precedes address2 in the buffer. Relative addresses are calculated from the

current line, as the following example shows:

49

This is the fourth line

—2,+3p 0

This is the second line,

and this is the third line.

This is the fourth line.

five

six

seven

069-701036 Licensed material—property of copyright holder(s) 3-11

Line Addressing

Global Searches

There are four commands you can use for global searches and other operations.

Table 3-3 shows these commands.

Table 3-3 Summary of Global Search Commands

Command | Definition

g Searches for lines matching a given pattern and performs a command

on those lines.

Vv Searches for lines that do not match a given pattern and performs a

command on those lines.

G Searches for lines matching a given pattern and, for each line found,

lets you issue a command.

Vv Searches for lines not matching a given pattern and, for each line

found, lets you issue a command.

The commands follow these formats:

[address | ,address | | g/pattern/command

[address [,address | | v/pattern/command

[address | ,address | | G/pattern

[| address [,address | | V/pattern

where:

address1 [,address2| is the range of lines that will be searched. The search can be on

one line (address1) or on a range of lines (address1 through address2). If you provide

no address, ed searches the entire buffer.

g is the global search command.

pattern is the regular expression search pattern that defines which of the addressed

lines the command will affect.

command is the command to be executed for the matching lines.

If you do not specify a command for the g and v commands, ed assumes p as the

default and prints the lines found.

You cannot include a command on the G command line. You provide only the

search pattern expression. Internally, ed performs the entire global search first,

marking the lines that satisfy the search pattern. After marking the lines, ed prompts

you with the first one found, printing it on your screen and making it the current line.

You may then issue a command or simply press New Line. Ed executes the

3-12 Licensed material—property of copyright holder(s) 069-701036

Line Addressing

command, if you provided one, and continues to the next marked line. To repeat the

last command issued within the current invocation of G, issue & alone on the

command line. You cannot issue the a, c, i, g, G, v, or V command while the G

command is working. You can halt G prematurely by pressing the Delete key or the

Break key.

The V command operates the same as G except that, instead of selecting lines that

match the given pattern, V selects lines that do not match the pattern. The same

options and restrictions apply to V as apply to G.

The following example shows how you could use the g command to print all lines in

the try-me file that contain the word "line."

g/line/p >

This is the first line of text.

This is the second line,

and this is the third line.

This is the fourth line.

The following example shows how you could use the v command to print all lines not

containing the word "line."

v/line/p 9

five

six

seven

eight

nine

ten

The following example shows how you could use the G command to find all lines

containing the word "line" and then display them one by one, allowing you to

execute a command after each one. If you were to issue the d command after being

prompted by the first line of matching text, you would delete that line, as shown.

Pressing New Line leaves the second line untouched, and issuing the d command

again for the third and fourth lines deletes them both.

G/line 9

This is the first line of text.

do

This is the second line,

0

and this is the third line.

do

This is the fourth line.

do

069-701036 Licensed material—property of copyright holder(s) 3-13

Line Addressing

The following example shows a command that would match all lines not containing

the word line. Pressing New Line after the first matching line, five, leaves it

untouched, while pressing n for the second matching line causes ed to print it with its

line number before continuing the search. The d command deletes the next line, and

pressing the Delete key after the eighth line interrupts the command.

V/line >

five

?

six

no

6 six

seven

do

eight

The various ed commands all follow the basic format described in this section.

Where the commands accept line addresses, they accept any of the address types

described here. The following sections describe the ed commands in detail.

Displaying Text

Ed provides two commands for displaying lines of text in the editing buffer: p and n.

Table 3-4 summarizes these commands.

Table 3-4 Summary of Commands for Displaying Text

Command | Definition

p Displays specified lines of text in the editing buffer.

Displays specified lines of text in the editing buffer with their

numerical line addresses.

Displaying Text Alone (p)

You have already used the p command in several examples. You are probably now

familiar with its general format:

[address1 [| ,address2] | p

The p command does not take arguments. However, it can be combined with a

substitution command line. This will be discussed later in this chapter.

Table 3-5 shows example line addresses and their effect on the p command.

3-14 Licensed material—property of copyright holder(s) 069-701036

Displaying Text

Table 3-5 Sample Addresses for Displaying Text

Example | Effect

1,$p 0 Displays all lines in the buffer.

—5p 2 Moves backward five lines from the current line and displays the line

found there.

+2p 9 Moves forward two lines from the current line and displays the line

found there.

1,/x/p 0 Displays the set of lines from line 1 through the first line after the

current line that contains the character x. It is important to enclose

the letter x between slashes so that ed can distinguish between the

search pattern (x) and the (p) command.

Displaying Text with Line Addresses (n)

The n command displays text and precedes each line with its numerical line address.

It is helpful when you are deleting, creating, or changing lines. The general command

line format for n is the same as that for p.

| address1 | ,address2 | |n

Like p, n does not take arguments, but it can be combined with the substitute

command. Try using n in the try-me file:

$ ed try-me 0

140

1,$n 9

1 This is the first line of text.

2 This is the second line,

3 and this is the third line.

4 This is the fourth line.

5 five

6 six

7 seven

8 eight

9 nine

10 ten

069-701036 Licensed material—property of copyright holder(s) 3-15

Entering Text

Entering Text

Ed has three basic commands for entering new text. Table 11-6 summarizes these

commands.

Table 3-6 Summary of Commands for Creating Text

Command | Definition

a Appends text after the specified line in the buffer.

i Inserts text before the specified line in the buffer.

c Changes the text on the specified line(s) to new text.

Quits text input mode and returns ed to command mode.

Appending Text (a)

The append command a allows you to add text after the current line or a specified

address in the buffer. The general format for the append command line is:

[address1 | a

Specifying an address is optional. The default value of address1 is the current line.

In the following example, a new file called new-file is created. In the first append

command line, the default address is the current line. In the second append

command line, line 1 is specified as address]. The lines are displayed with n so that

you can see their numerical line addresses. Remember, the append mode is ended by

typing a period (.) on a line by itself.

S ed new—file 9

?new-file

ad

Create some lines 0

of text in 0

this file.

a)

1,$n 9

1 Create some lines

2 of text in

3 this file.

lao

This will be line 2 0

This will be line 3 >

8

1,$n 9

1 Create some lines

2 This will be line 2

3 This will be line 3

3-16 Licensed material—property of copyright holder(s) 069-701036

Entering Text

4 of text in

5 this file.

Notice that after you append the two new lines, the line, "of text in" (originally

line 2), becomes line 4.

You can take shortcuts to places in the buffer where you want to append text by

combining the append command with symbolic addresses. The following three

command lines allow you to move through and add to the text quickly in this way.

ad Appends text after the current line.

$a 2 Appends text after the last line in the buffer.

0a. Appends text before the first line in the buffer (at a

symbolic address called line 0).

To try using these addresses, create a one-line file called lines and type the examples

shown in the following screens.

ad

This is the current line. 9

8

po

This is the current line.

oA Dd

This line is after the current line. 9

2

—1,.p 0

This is the current line.

This line is after the current line.

$a d

This is the last line now. 9

a)

$9

This is the last line now.

0a od

This is the first line now. 3

This is the second line now. 9

The line numbers change 0

as lines are added. 0

8

1,4n 3

1 This is the first line now.

2 This is the second line now.

3 The line numbers change

4 as lines are added.

Because the append command creates text after a specified address, the last example

refers to the line before line 1 as the line after line 0. To avoid such circuitous

069-701036 Licensed material—property of copyright holder(s) 3-17

Entering Text

references, use another command provided by the editor: the insert command i.

Inserting Text (i)

The insert command i allows you to add text before a specified line in the editing

buffer. The general command line format for i is the same as that for a:

[addressI |i

As with the append command, you can insert one or more lines of text. To quit

input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command i:

S ed insert 9

?insert

ad

Line 1 0

Line 2 9

Line 3 0

Line 4 9

a)

Wo

28

Now insert one line of text above line 2 and another above line 1. Use the n

command to display all the lines in the buffer:

2i o

This is the new line 2. 9

e oe

1,$n 9

1

1 &m W NY
li 0

Line 1

This is the new line 2.

Line 2

Line 3

Line 4

This is the beginning. 0

a)

1,$n 5

1

HO Uf W NH

3-18

This is the beginning

Line 1

Now this is line 2

Line 2

Line 3

Line 4

Licensed material—property of copyright holder(s) 069-701036

Entering Text

Experiment with the insert command by combining it with symbolic line addresses, as

follows:

oe)

$i >

Changing Text (c)

The change command c erases all specified lines and allows you to create one or

more lines of text in their place. Because c can erase a range of lines, the general

format for the command line includes two addresses.

[| address1 | ,address2 || ¢

where:

addressI is the first and address2 is the last of the range of lines to be replaced by

new text. To erase one line of text, specify only address]. If no address is specified,

ed assumes the current line is the line to be changed.

The change command puts you in text input mode. To leave input mode, type a

period alone on a line.

Now create a file called change in which you can try this command. After entering

the text shown in the screen, change lines 1 through 4 by typing 1,4c:

1,5n 0

1 line 1

2 line 2

3 line 3

4 line 4

5 line 5

1,4c 9

Change line 1 9

and lines 2 through 4 5

- 2

1,$n 3

1 change line 1

2 and lines 2 through 4

3 line 5

Now experiment with c and try to change the current line:

2

line 5

CO

This is the new line 5.

2

2

This is the new line 5.

069-701036 Licensed material—property of copyright holder(s) 3-19

Deleting Text

Deleting Text

This section discusses two ways you can delete text in ed. One way works when you

are in command mode: the d command deletes a line and u undoes the last

command. The other way, which you.can use while in text input mode, involves the

line discipline you use to delete a character or kill a line in the shell. For more

information on shell line discipline, see Using the DG/UXTM System.

Table 3-7 summarizes the ed commands and shell commands you can use to delete

text.

Table 3-7 Summary of Commands for Deleting Text

Command Definition

In Command mode:

d

u

Ctrl-U

Deletes one or more lines of text.

Undoes the previous command.

Deletes the current command line.

In Text Input mode

(shell defaults):

Ctrl-U

Del

Deletes the current line.

Deletes the last character typed.

Deleting Lines (d)

You delete lines of text with the delete command d. The general format for the d

command line is:

[address1 [| ,address2 || d

where:

address1 and address2 specify the range of lines you want to delete. A single address

deletes only that line. Specifying no address deletes the current line.

The next example displays lines 1 through 5 and then deletes lines 2 through 4.

1,5n 0

1 1 horse

2 2 chickens

3 3 ham tacos

4 4 cans of mustard

3-20 Licensed material—property of copyright holder(s) 069-701036

Deleting Text

5 5 bails of hay

2,4d 9

1,$n 3

1 1 horse

2 5 bails of hay

You can delete the last line in the buffer like this:

$d 3

One of the most common errors in ed is forgetting to type a period to leave text input

mode. If you do this, you may add unwanted text to the buffer. The following

example shows how you could accidentally add a print command (1,$p) to the text

before leaving input mode. Because this line is the last one in the text, it becomes

the current line. You can use d to delete it.

$a 9

Last line of text 9

1,$p o

20

pd

1, Sp

dod

po

Last line of text.

Before experimenting with the delete command, you may first want to learn about the

undo command u.

Undoing the Previous Command (u)

The command u (short for undo) nullifies the last command and restores any text

changed or deleted by that command. It takes no addresses or arguments. The

format is:

u

One purpose for which the u command is useful is to restore text you have mistakenly

deleted. If you delete all the lines in the buffer and then type p, ed will respond with

a ? since there are no more lines in the buffer. Use the u command to restore them.

069-701036 Licensed material—property of copyright holder(s) 3-21

Deleting Text

1,$p 2
This is the first line.

This is the middle line.

This is the last line.

1,$d 9

p 2

?

ud

po

This is the last line.

Now experiment with u: use it to undo the append command.

a)

This is the only line of text

ad

Add this line 9

a)

1,$p 0
This is the only line of text

Add this line

Ud

1,$p 0
This is the only line of text

NOTE: You cannot use u to undo the write command w or the quit command q.

You can, however, use u to undo an undo command. The effect of undoing

an undo command is the same as not performing any undo command at all:

if you issue two undo commands one after the other, the second effectively

cancels the first.

Deleting in Text Input Mode (Ctrl-U and Del)

While in text input mode, you can correct the current line of input with the same keys

you use to correct a shell command line. Normally, Ctrl-U performs the line kill

function while the Delete key performs the character delete function. A line kill

deletes the entire current line, and a character delete deletes the preceding character.

These key functions are part of the line discipline you set in the shell. You can

reassign the line kill and character delete functions to other keys if you prefer. For

more information on changing line discipline, see Using the DG/UXTM System.

3-22 Licensed material—property of copyright holder(s) 069-701036

Substituting Text (s)

Substituting Text (s)

You can change your text with a substitute command. This command replaces the

first occurrence of a string of characters with new text. The general command line

format follows.

[| address1 | ,address2 | | s/old-text/new-text | /command |

where:

addressI |,address2] defines the range of lines being addressed by s. The address can

be one line, (address1), a range of lines (addressI through address2), or a global

search address. If no address is given, ed makes the substitution on the current line.

s is the substitute command.

/old-text is the text to be replaced. This argument is usually delimited by slashes, but

can be delimited by other characters such as a question mark ? or a period. The

command replaces the first occurrence of these characters that it finds in the text.

/new-text is the text that will replace the old text. This argument is also delimited by

slashes or the same delimiters used to specify old-text.

/command is any one of the following four commands:

g Change all occurrences of old-text on the specified lines.

I Display the last line of substituted text, including nonprinting characters.

See the last section of this chapter, "Other Useful Commands and

Information."

n Display the last line of the substituted text with its numerical line address.

p Display the last line of substituted text.

069-701036 Licensed material—property of copyright holder(s) 3-23

Substituting Text (s)

Current Line

The simplest example of the substitute command is making a change to the current

line. You do not need to give a line address for the current line.

s/old-text/new-text/

The next example contains a typing error. While the line that contains it is still the

current line, you make a substitution to correct it. The old text is the ai of airor and

the new text is er.

ad

In the beginning, I made an airor.

20

Pp a

In the beginning, I made an airor.

s/ai/er/ 9

Notice that ed gives no response to the substitute command. To yerify that the

command has succeeded in this case, you either have to display the line with p or n,

or include p or n as part of the substitute command line. In the following example, n

is used to verify that the word file has been substituted for the word toad.

“Pp o

This is a test toad

s/toad/file/n o

1 This is a test file

Ed allows you this shortcut: it prints the results of the command automatically if you

omit the last delimiter after the new-text argument:

“Pp 2

This is a test file

s/file/frog 0

This is a test frog

Single Line Other than the Current Line

To substitute text on a line that is not the current line, include an address in the

command line, as follows:

[address1 | s/old-text/new-text/

For example, in the following screen the command line includes an address for the

line to be changed (line 1) because the current line is line 3:

1,3p 0

This is a pest toad

testing testing

come in toad

3-24 Licensed material—property of copyright holder(s) 069-701036

Substituting Text (s)

of

come in toad

1s/pest/test 9

This is a test toad

The preceding example shows how omitting the last delimiter causes ed to print the

new line automatically after the operation.

Range of Lines

You can make a substitution on a range of lines by specifying the first address

(address1) through the last address (address2).

| address1 | ,address2 | | s/old-text/new-text/

If ed does not find the pattern to be replaced on a line, no changes are made to that

line.

In the following example, all the lines in the buffer are addressed for the substitute

command. However, only the lines that contain the string es (the old-text argument)

are changed.

1,$p 9
This is a test toad

testing testing

come in toad

testing 1, 2, 3

1,$s/es/ES/n 9

4 tESting 1, 2, 3

When you specify a range of lines and include p or n at the end of the substitute line,

only the last line changed is printed.

To display all the lines in which text was changed, use the n or p command with the

address 1,$.

1,$n 3

1 This is a tESt toad

2 tESting testing

3 come in toad

4 tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed. To change

every occurrence of a pattern, use the g command, described in the next section.

069-701036 Licensed material—property of copyright holder(s) 3-25

Substituting Text (s)

Global Substitutions (g)

One of the most versatile tools in ed is global substitution. By placing the g

command after the last delimiter on the substitute command line, you can change

every occurrence of a pattern on the specified lines. Try changing every occurrence

of the string es in the last example. If you are following along, doing the examples as

you read this, remember you can use u to undo the last substitute command.

ud

1,$p 0
This is a test toad

testing, testing

come in toad

testing 1, 2, 3

1,$s/es/ES/g 9

1,$p 2
This is a tESt toad

tESting tESting

come in toad

tESting 1, 2, 3

Another method is to use a global search pattern as an address instead of the range of

lines specified by 1,$.

1,$p 0
This is a test toad

testing testing

come in toad

testing 1, 2, 3

g/test/s/es/ES/g 9

1,$p 0
This is a tESt toad

tESting tESting

come in toad

tESting 1, 2, 3

3-26 Licensed material—property of copyright holder(s) 069-701036

Substituting Text (s)

If the global search pattern is unique and matches the argument old-text (text to be

replaced), you can use an ed shortcut: specify the pattern once as the global search

address and do not repeat it as an old-text argument. Ed will remember the pattern

from the search address and use it again as the pattern to be replaced.

g/old-text/s//new-text!g

NOTE: When you use this shortcut, be sure to include two slashes (//) after the s.

1,$p 0
This is a test toad

testing testing

come in toad

testing 1, 2, 3

g/es/s//ES/g >

1,$p 0
This is a tESt toad

tESting tESting

come in toad

tESting 1, 2, 3

Experiment with other search pattern addresses:

/pattern

?pattern

v/pattern

You can combine any of these kinds of searches with a substitution command. In the

following example, the v/pattern search format is used to locate lines that do not

contain the pattern "testing." Then the substitute command s is used to replace the

existing pattern in with a new pattern out on those lines.

v/testing/s/in/out 9

This is a test toad

come out toad

Notice that the line "This is a test toad" was also printed, even though no

substitution was made on it. When the last delimiter is omitted, all lines found with

the search address are printed, regardless of whether or not substitutions have been

made on them.

Now search for lines that do contain the pattern "testing" with the g command.

g/testing/s//jumping 0

jumping testing

jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of the

pattern "testing" in each line. Once again, the lines are displayed on your terminal

because the last delimiter has been omitted.

069-701036 Licensed material—property of copyright holder(s) 3-27

Substituting Text (s)

Metacharacters for Pattern Matching

There are a number of special characters, called metacharacters, that have special

meanings when they appear in search patterns. Consider what happens when you try

to substitute a $, as in the following example:

20

I lost my $ in Las Vegas.

s/$/money 9

I lost my $ in Las Vegas.money

You will find that the replacement text appears at the end of the line rather than in

place of the $. The reason is that the $ is a metacharacter representing the end of the

line. There are also a number of other metacharacters, and when you use one or

more of them in a search pattern, the pattern constitutes a regular expression.

Regular expressions provide a shorthand for expressing search or substitution

patterns. For information on forming regular expressions, see Appendix A.

In addition to the standard metacharacters, ed adds two special characters of its own.

Table 3-8 summarizes the metacharacters and other special characters you can use in

search and substitution patterns.

Table 3-8 Summary of Pattern-matching Characters

Character(s) | Function

. Matches any one character.

* Matches zero or more occurrences of the preceding character.

.* Matches zero or more occurrences of any characters.

° Matches the beginning of the line.

$ Matches the end of the line.

\ Escapes the following character so ed does not interpret it as a special

character.

a Matches the first occurrence of a character in the brackets.

[*...] Matches the first occurrence of a character that is not in the brackets.

& Used in the new-fext part of a substitution command, the ampersand

represents the old-text string that matches the search pattern.

% Used in the new-text part of a substitution command, the percent sign

represents the new-text part of the last substitution command issued.

This symbol is peculiar to ed and is not a regular expression

metacharacter.

3-28 Licensed material—property of copyright holder(s) 069-701036

Substituting Text (s)

In the following example, ed searches for any three-character sequence ending in at.

1,$p 2
rat

cat

turtle

Cow

goat

g/.at o

rat

cat

goat

The * represents zero or more occurrences of whatever character precedes it in the

search or substitution pattern. You could use the + in a substitution command to

delete every unnecessary r in brrroke in the following example:

pe

brrroke

s/br*/br 0

broke

Even though the purpose of the above substitution is not to change the b, the

substitution pattern nevertheless includes the b before the r. If the pattern did not

include the b, it would match the first character tested because that character (or any

character for that matter) would constitute a zero occurrence of r. In the example

above, ed would see that a pattern of r* matches the b in brrroke, so ed would

perform the substitution there and quit. The result would be brrrroke. Remember

that in a substitution, ed changes only the first occurrence of the pattern unless you

request a global substitution with g.

The following example shows how the substitution would occur if the pattern were

only x.

po

brrroke

s/*/r 9

rbrrroke

If you combine the period and the «, the combination will match all characters. With

this combination you can replace all characters in the last part of a line:

pd

Toads are slimy, cold creatures

s/are.*/are wonderful and warm 0

Toads are wonderful and warm

The .* can also replace all characters between two patterns.

po

Toads are slimy, cold creatures

s/are.*cre/are wonderful and warm cre 0

Toads are wonderful and warm creatures

069-701036 Licensed material—property of copyright holder(s) 3-29

Substituting Text (s)

If you want to insert a word at the beginning of a line, use the * (caret) in the search

or substitution pattern to represent the beginning of the line. The next example

places the word all at the beginning of each line:

1,$p 9
creatures great and small

things wise and wonderful

things bright and beautiful

1,$s/"/all / 3

1,$p 9
all creatures great and small

all things wise and wonderful

all things bright and beautiful

The $ is useful for adding characters at the end of a line or a range of lines:

1,$p 2
I love

I need

I use

The IRS wants my

1,$s/$/ money. 3

1,$p 9
I love money.

I need money.

I use money.

The IRS wants my money.

In the preceding example, ed does not treat the . at the end of money. as a special

character because it does not appear as part of the substitution pattern; it appears in

the replacement text. In replacement text, the only characters that have special

meaning are the ampersand (&), the percent sign (%), and the backslash (\).

If you need to include a special character in a search or substitution pattern but you

do not want ed to interpret it as one, you need to escape the special character by

preceding it with \. For example, the following screen shows how to take away the

special meaning of the period:

Pp 2

This is wonderful.

sI\./! 9

This is wonderful!

You can use the same method with a \ itself. If you want to treat a \ as a normal text

character, precede it with a \. For example, if you want to replace the \ symbol with

the word backslash, use the substitute command line shown in the following screen:

1,2p 0

This chapter explains

how to use the \.

s/\\/backslash 0

how to use the backslash.

3-30 Licensed material—property of copyright holder(s) 069-701036

Substituting Text (s)

If you want to add text without changing the rest of the line, the & provides a useful

shortcut. The & repeats the old text in the replacement pattern, so you do not have

to type the pattern twice. For example:

p 2

The neanderthal skeletal remains

s/thal/& man’s/ 9

Pp 2

The neanderthal man’s skeletal remains

Ed remembers the last search or substitution pattern you used, supplying it if you

omit the pattern from a search or substitute command. Ed also remembers the last

replacement pattern (the new-text in a substitution command) that you used, but ed

does not automatically supply it if you omit a replacement pattern from a substitution

command. If you include the percent sign (%) in the replacement pattern of a

substitution command, ed substitutes the replacement pattern you most recently used.

For example, to change the word money to the word gold, repeat the last substitution

from line 1 on line 3, but not on line 4.

1,$n 3

1 I love money

2 I need food

3 I use money

4 The IRS wants my money

1s/money/gold 9

I love gold

3s//% 9

I use gold

1,$n 9

1 I love gold

2 I need food

3 I use gold

4 The IRS wants my money

Ed automatically remembers the word money (the old text to be replaced), so you do

not have to repeat that string between the first two delimiters. The % sign tells ed to

use the last replacement pattern, gold.

When you use brackets in a search or substitution pattern, ed tries to match the first

occurrence of any of the characters enclosed in the brackets and substitute the

specified old text with new text. The brackets can be at any position in the pattern to

be replaced.

In the following example, ed changes the first occurrence of the numbers 6, 7, 8,

or 9 to 4 on each line in which it finds one of those numbers:

1,5p 9
Monday 33,000

Tuesday 75,000

Wednesday 88,000

Thursday 62,000

069-701036 Licensed material—property of copyright holder(s) 3-31

Substituting Text (s)

1,$s/[6789]/4 9

Monday 33,000

Tuesday 45,000

Wednesday 48,000

Thursday 42,000

The next example deletes the Mr or Ms from a list of names:

1,$p 0
Mr Arthur Middleton

Mr Matt Lewis

Ms Anna Kelley

Ms M. L. Hodel

1,$s/M[rs] // 3

1,$p 0
Arthur Middleton

Matt Lewis

Anna Kelley

M. L. Hodel

If a * is the first character in brackets, ed interprets it as an instruction to match

characters that are not within the brackets. However, if the caret is in any other

position within the brackets, ed interprets it literally, as a caret.

1,$p 9
grade A Computer Science

grade B Robot Design

grade A Boolean Algebra

grade D Jogging

grade C Tennis

1,$s/grade [“AB]/grade A 9

1,$p 2
grade A Computer Science

grade B Robot Design

grade A Boolean Algebra

grade A Jogging

grade A Tennis

Whenever you use special characters as wildcards in the text to be changed,

remember to use a unique pattern of characters. In the above example, if you had

used only

1,$s/[°AB]/A 9

you would have changed the g in the word grade to A.

3-32 Licensed material—property of copyright holder(s) 069-701036

Rearranging Text

Rearranging Text

You have now learned to address lines, create and delete text, and make

substitutions. Ed has one more set of versatile and important commands. You can

move, copy, or join lines of text in the editing buffer. Table 3-9 shows the commands

that move text.

Table 3-9 Summary of Commands for Moving Text

Command | Definition

m Moves the specified line(s) to another location in the buffer.

t Copies (transfers) the specified line(s) to another location in the

buffer.

j Joins the current line with the line that follows it.

Moving Lines (m)

The m command allows you to move blocks of text to another place in the buffer.

The general format is

[address1 [| ,address2 | | m [address3 |

where:

address1 | ,address2 | defines the range of lines to be moved. If only one line is

moved, only address] is given. If no address is given, the current line is moved.

m is the move command.

address3 defines the line after which you want the text to appear.

Try the following example to see how the command works. Create a file that contains

these three lines of text:

I want to move this line. 9

I want the first line 9

below this line. 9

069-701036 Licensed material—property of copyright holder(s) 3-33

Rearranging Text —

Type the following command.

1Im3 9

Ed will move line 1 below line 3.

I want to move this line.

I want the first line

below this line.

I want to move this line.

The result appears as follows.

1,$p 0
I want to move this line.

I want the first line

below this line.

1Im3 9

1,$p 9
I want the first line

below this line.

I want to move this line.

If you want to move a paragraph of text, have address1 and address2 define the range

of lines of the paragraph.

In the following example, a block of text (lines 8 through 12) is moved below line 65.

Notice the n command that prints the line numbers of the buffer.

3-34 Licensed material—property of copyright holder(s) 069-701036

Rearranging Text

8,12n 0

8 This is line 8.

9 It is the beginning of a

10 very short paragraph.

11 This paragraph ends

12 on this line.

64,65n 0

64 Move the block of text

65 below this line.

8,12m65 9

59,65n 0

59 Move the block of text

60 below this line.

61 This is line 8.

62 It is the beginning of a

63 very short paragraph.

64 This paragraph ends

65 on this line.

When address3 is 0, as in the following example, the lines are placed at the beginning

of the buffer.

3,4m0 9

Copying Lines (t)

The copy command t (transfer) acts like the m command except that the block of text

is not deleted at the original address of the line. A copy of that block of text is

placed after a specified line of text. The general format of the command line is also

similar:

[address | ,address2 | | t | address3 |

where:

address1 {,address2| defines the range of lines to be copied. If only one line is

copied, only address1 is given. If no address is given, the current line is copied.

t is the copy command.

address3 defines the line after which you want the text to appear.

The next example shows how to copy three lines of text below the last line.

069-701036 Licensed material—property of copyright holder(s) 3-35

Rearranging Text

Safety procedures:

If there is a fire in the building:

Close the door of the room to seal off the fire

Break glass of nearest alarm.

Pull lever.

Locate and use fire extinguisher.

A chemical fire in the lab requires that you:

Break glass of nearest alarm.

Pull lever.

Locate and use fire extinguisher.

The commands and the responses to them are displayed in the next screen. Again,

the n command displays the line numbers:

5,8n 2

5 Close the door of the room to seal off the fire.

6 Break glass of nearest alarm.

7 Pull lever.

8 Locate and use fire extinguisher.

30n 0

30 A chemical fire in the lab requires that you:

6,8t30 9

30,$n 9

30 A chemical fire in the lab requires that you:

31 Break glass of nearest alarm

32 Pull lever

33 Locate and use fire extinguisher

6,8n 0

6 Break glass of nearest alarm

7 Pull lever

8 Locate and use fire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines is placed

after line 30.

3-36 Licensed material—property of copyright holder(s) 069-701036

Rearranging Text

Joining Contiguous Lines (j)

The j command joins the current line with the following line. The general format is:

[address1 { ,address2 | | j

The next example shows how to join several lines together. An easy way of doing this

is to display the lines you want to join using p or n.

1,2p 0

Now is the time to join

the team.

p 2

the team.

Ip o

Now is the time to join

jo

pe

Now is the time to jointhe team.

Notice that there is no space between the last word of the first line "join" and the

first word of the second line "the." You must put a space between them by using the

s command.

Using Other Files

Once you have invoked ed to edit a particular file, you are not limited to using just

that one file. Table 3-10 summarizes the commands that give you access to other

files:

Table 3-10 Summary of Commands for Manipulating Files

Command | Definition

r Inserts the contents of a file into the buffer.

w Writes lines to a file, overwriting the contents of the file if it already

exists.

069-701036 Licensed material—property of copyright holder(s) 3-37

Using Other Files

Reading in a File (r)

You use the r command to insert text from a file into the buffer. The general format

for the read command is:

[| address1 | r filename

where:

addressI defines the line after which you want the read text to appear. If you do not

supply address1, ed appends the read text to the end of the buffer.

r is the read command.

filename is the name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file being edited

and new text being read into it.

1,$n 9

1 March 17, 1986

2 Dear Michael,

3 Are you free later today?

4 Hope to see you there.

3r memo 0

86

3,$n 9

3 Are you free later today?

4 There is a meeting in the

5 green room at 4:30 P.M. today.

6 Refreshments will be served.

7 Hope to see you there.

Ed responds to the read command with the number of characters in the file being

added to the buffer (in the example, memo).

Writing Lines to a File (w)

The w command writes text from the buffer into a file. If the file already exists, the

w command overwrites its contents. The general format is

[address1 | ,address2 | | w[filename |

where:

address1 |,address2| defines the range of lines to be placed in another file. If you do

not use address1 or address2, the entire buffer is written into the file.

w is the write command.

filename is the name of the file that will contain the copied text.

3-38 Licensed material—property of copyright holder(s) 069-701036

Using Other Files

In the following example the body of a letter is saved in a file called memo, so that it

can be sent to other people.

1,$n 9

1 March 17, 1986

2 Dear Kelly,

3 There will be a meeting in the

4 green room at 4:30 P.M. today.

5 Refreshments will be served.

3,5w memo 9

91

The w command places a copy of lines 3 through 5 into a new file called memo. Ed

responds with the number of characters in the new file.

The w command overwrites existing files; it replaces the current contents of the file

with the new block of text. If, in our example, a file called memo had existed before

we had written our new file to that name, the original file’s contents would have been

lost.

You cannot write additional lines to the file memo. If you try to add line 1, the

existing lines (3 through 5) will be erased and the file will contain only line 1.

Saving the Buffer Contents in a File (w)

As we discussed earlier, during an editing session, the system holds your text in a

temporary storage area called a buffer. When you have finished editing, you can save

your work by using the w command just described to copy the buffer contents to a

file.

NOTE: It is a good idea to write the buffer text into your file frequently. If an

interrupt occurs (such as an accidental loss of power to the system), you may

lose the material in the buffer, but you will not lose the copy written to your

file.

To write your text to a file, enter the w command. You do not need to specify a file

name; simply type w and press the New Line key. If you have just created new text,

ed creates a file for it with the name you specified when you entered the editor. If

you have edited an existing file, the w command writes the contents of the buffer to

that file by default.

When ed writes the buffer to a file, it reports at the bottom of the screen the number

of characters written. When the editor reports the number of characters in this way,

the write command has succeeded.

For more information on the w command and writing text to files, see the section

“Writing Lines to a File.”

069-701036 Licensed material—property of copyright holder(s) 3-39

Using Other Files

Quitting ed (q)

After you have saved the buffer contents, terminate the editing session and return to

the shell by typing q (for quit).

Wo

85

q 2

>

The system responds with a shell prompt. At this point the editing buffer vanishes.

If you have changed the text in the editing buffer but have not saved it by executing

the w command, ed warns you by responding with an error. You then have a chance

to write the buffer to a file before quitting. In the following example, Help mode is

off, so the error is only ?.

q 2

?

Wo

85

q 2

>

If, instead of writing the buffer to a file, you type q a second time, the editing buffer’s

contents vanish and ed returns you to the shell without saving your changes. Your

original file, if there was one, remains unchanged.

As an alternative to q, you can use the Q command. The Q command is somewhat

more risky than its lowercase counterpart because it tells ed to terminate even if you

have not saved your changes. If you issue Q without first writing the editing buffer to

a file, ed does not stop to display a warning — it terminates and returns you to the

shell, and the editing buffer vanishes.

3-40 Licensed material—property of copyright holder(s) 069-701036

Other Useful Commands and Information

Other Useful Commands and Information

There are some other commands and a special file that may be useful to you during

editing sessions. Table 3-11 summarizes these commands.

Table 3-11 Summary of Other Useful Commands

Command | Definition

P Turns prompting on and off.

h Display a short error message for the preceding diagnostic ?.

H Turn on help mode. An error message will be given with each

diagnostic ?. Typing H a second time turns off help mode.

l Display nonprinting characters in the text.

f Display the current file name.

f newfile Change the current file name associated with the editing buffer to

newfile.

‘cmd Temporarily escape to the shell to execute a shell command cmd.

In addition, you may find it useful knowing about the ed special work file, ed.hup,

which you can use in recovering an interrupted editing session. A discussion of the

ed.hup file appears at the end of this section.

The use of () and { } are discussed in the ed(1) man page of the User’s Reference for

the DG/UXTM System.

Prompting (P)

By default, ed does not issue any kind of prompt to show that it has finished the last

command and is waiting for you to issue the next. To enter prompt mode, issue the P

command. The ed prompt is the asterisk (*). Pressing P a second time turns off

prompt mode.

°

This is the first line of text.

Pd

*s/text/brilliance 0

This is the first line of brilliance.

*P 9

s/brilliance/nonsense 90

This is the first line of nonsense.

069-701036 Licensed material—property of copyright holder(s) 3-41

Other Useful Commands and Information

Help Commands (h)

When you type a command resulting in an error, ed responds with a question mark

(?). If you would like more detailed information when errors occur, use the help

commands. There are two help commands.

The h command displays a short error message explaining the most recent ?. The H

command not only displays a message explaining the last ?, but it also turns on help

mode so that a short error message is displayed every time the ? appears. Turn off

help mode by issuing H a second time.

You know that if you try to quit ed without writing the changes in the buffer to a file,

you will get a ?. Do this now. When the ? appears, type h:

q?

?

ho

Warning: expecting ‘w’

The ? is also displayed when you specify a new filename on the ed command line.

Give ed a new filename. When the ? appears, type h to find out what the error

message means.

ed newfile 0

? newfile

ho

cannot open input file

This message means one of two things: either there is no file called newfile or there

is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the ? and then turns on the help

mode of ed, so that ed gives you a diagnostic explanation every time the ? is

displayed. To turn off help mode, type H again. The next screen shows H being used

to turn on help mode. Sample error messages are also displayed in response to some

common mistakes:

3-42 Licensed material—property of copyright holder(s) 069-701036

Other Useful Commands and Information

$ ed newfile

?newfile

H 3

cannot open input file

/hello 0

)

illegal suffix

1,22p 9

?

line out of range

ad

I am appending this line to the buffer. 9

ey

s/$ tea party 9

?

illegal or missing delimiter

»$s/$/ tea party 9

?

unknown command

H 0

q?

?

ho

warning: expecting ‘w’

These are some of the most common error messages that you may encounter during

editing sessions:

illegal suffix

Ed cannot find an occurrence of the search pattern hello because the buffer is empty.

line out of range

Ed cannot print any lines because the buffer is empty or the line specified is not in

the buffer.

A substitution command could return the following errors.

illegal or missing delimiter

The delimiter between the old text to be replaced and the new text is missing.

unknown command

address1 was not typed in before the comma; ed does not recognize ,$.

069-701036 Licensed material—property of copyright holder(s) 3-43

Other Useful Commands and Information

Displaying Nonprinting Characters (I)

If your text contains nonprinting characters such as tabs or a control character, you

may want to use the | (list) command. The general format for the | command is the

same as for n and p.

[| address1 [| ,address2 | |1

where:

address1 |,address2] defines the range of lines to be displayed. If no address is given,

the current line will be displayed. If only address! is given, only that line will be

displayed.

1 is the command that displays the nonprinting characters along with the text.

When you use the | command, tabs appear as a > (greater than) character. Control

characters appear as a \nnn sequence, when nnn is the octal ASCII value for the

control character. For example, ed displays Ctrl-G as \007, which is the

corresponding octal ASCII code.

Type in two lines of text that contain a Ctrl-G and a Tab. Then use the | command to

display the lines of text on your terminal.

aod

Add a Ctrl-G (control-g) to this line. 0

Add a Tab (tab) to this line. 5

20

1,21 9

Add a \007 (control-g) to this line. 0

Add a > (tab) to this line. 90

Your terminal’s bell may sound when it prints the Ctrl-G because Ctrl-G is the ASCII

code for the bell character.

3-44 Licensed material—property of copyright holder(s) 069-701036

Other Useful Commands and Information

Displaying and Changing the Current Filename (f)

Ed associates a filename with the editing buffer. When you use the w command

without a filename argument, ed writes the buffer to this filename. By default, this

file is the one you named when you invoked ed. To display the filename associated

with the editing buffer, use the f command. You can also use the f command to

change the current default filename. You do this by issuing the f command with a

filename argument. After changing the current filename, you can write the buffer to

it by issuing the w command without an argument.

The format for displaying the current filename is f alone on a line:

f

To associate the contents of the editing buffer with a new filename, use this general

format:

f newfilename

This command does not change the name of the original file (if it exists); it causes ed

to create a new file or overwrite the contents of the file if it already exists.

Escaping to the Shell (!)

There may be times when you would like to issue a shell command without leaving ed.

For example, you may want to make sure a file does not already exist before using the

w command to write text to it. The ! allows you to issue a shell command without

terminating ed.

The general format for the escape sequence is

shell command line

When you type the ! as the first character on a line, the shell command must follow

on that same line. The shell’s response to your command will appear on the

succeeding lines. When the command has finished executing, a ! will be appear

alone on a line. This means that that you are back in the editor at the current line.

069-701036 Licensed material—property of copyright holder(s) 3-45

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date, type ! and

the shell command date.

po

This is the current line

!date 9

Tue Apr 1 14:24:22 EST 1986

!

po

This is the current line.

You can even use ! to execute sh or csh, according to your preference, so you can

issue numerous commands. Another way to issue more than one command with the !

command is with the semicolon (;). For more information on this use of the

semicolon, see Using the DG/UXTM System.

Recovering from System Interrupts

If, while you are using ed, there is an interrupt to the system or your process hangs,

the system tries to save the contents of the editing buffer in a special file named

ed.hup. Later you can retrieve your text from this file in one of two ways. First, you

can use a shell command to move ed.hup to another file name, such as the name the

file had while you were editing it (before the interrupt). Second, you can enter ed

and use the f command to rename the contents of the buffer. An example of the

second method is shown in the following screen:

ed ed.hup 0

928

f myfile o

myfile

If you use the second method to recover the contents of the buffer, be sure to remove

the ed.hup file afterward.

End of Chapter

3-46 Licensed material—property of copyright holder(s) 069-701036

Chapter 4

Using the Batch Editor: sed

Sed is a noninteractive editor used for editing a copy of the text from a file or

standard input (the terminal screen, input redirected from another source, or input

piped through other system commands). The edited version goes to the screen (or

standard output) by default or you can redirect it to a file.

How sed Processes Input

Sed follows these steps to process input.

1) Sed reads a line from either standard input (the terminal, redirection, or

piping) or from an input file into an editing buffer called the pattern space.

2) Sed reads the first command (from the command line or a script file), and if

the address in the command selects the pattern space, sed edits it.

3) Sed then reads the next command. If the address in the command selects

the pattern space, sed edits it.

4) If there are more commands, sed repeats the previous step for each

command. Sed then sends the results to standard output.

5) If there is more input, sed repeats the entire previous procedure.

The sed Command Format

Sed provides a convenient way to edit text that is located in an input file using a sed

command that you type on the command line or multiple editing commands contained

in a script file. The general form for a sed command follows:

sed [—n | [—e ’sed-command’ [... || [—f script-file | | input-file |

where:

—n (no print); sed will not write the edited lines to standard output (which is

the default). As an alternative, you can use the n argument to the

comment (#) line to produce the same effect (refer to a later section on

"Using Comments in a sed Script" for more information). The p

069-701036 Licensed material—property of copyright holder(s) 4-1

The sed Command Format

command (introduced in Table 4-2) can be used to print explicit lines.

—e (each command); if you use multiple sed commands on the command line,

each one must be preceded by the —e option. If you supply another option

to the sed command (such as =n) it must precede the —e option. A space

separates the —e option from its argument. If you use only one command,

the —e option is unnecessary.

-f (file); for sed scripts only, precedes the name of the file containing the sed

script. It tells sed to read its program from script-file. A space separates

the —f option from its argument.

input-file The input file(s) provides the input to the sed script. If you do not specify

an input file, it is assumed that sed will receive standard input from the

terminal.

A Sed Command Line Versus a Script

You may prefer to write and execute a sed command from the shell if the problem

you’re solving is simple (only one line is necessary), and if you plan to use it only for

the current log-in session. If the problem you're solving is fairly complicated (it will

take more than one line), and if you plan to use it repeatedly, then you’ll probably

want to write a script.

NOTE: The Bourne shell permits you to write multi-line sed commands interactively

through its secondary prompt (>) facility. You will need to escape each

new-line with a backslash (\) except the final new-line, which terminates the

sed command.

Addressing Input Lines

By default, sed searches an input file starting at the first line. The last line is signified

by a dollar sign ($). There are two ways to request a line:

e@ By absolute line number(s).

@ By context (with regular expression pattern matching).

Information on regular-expression pattern matching is given in Appendix A.

4-2 Licensed material—property of copyright holder(s) 069-701036

Addressing Input Lines

Lines can be represented using a single address or by using two addresses to signify a

range of text to be affected by the editing command(s). The first address

(represented as x) specifies the first line in a range; the second address (represented

as y), the final line in the range. Table 4-1 gives examples of line addressing.

Table 4-1 Addressing Methods

Format Example Description

Xx

X,y

/pattern/

/pattern!/,/pattern/

/pattern/,x

x,/pattern/

any-addressing-method!

5

5,9

/’Dispatch/

/’Dispatch/,/Cabs/

/’Dispatch/,9

1,/“Dispatch/

1,2!

Addresses one absolute line number

Addresses a range of lines signified

by two absolute line numbers.

Addresses lines containing a single

pattern.

Addresses a range of lines

identified by two patterns.

Addresses a range of lines

identified by a pattern and a single

absolute line number.

Addresses a range of lines

identified by a single absolute line

number and a pattern.

Addresses all lines except those

specified in the range. If you use

the C shell and you specify an

editing command on the command

line, you will have to escape the

exclamation point with a backslash

(\!) to prevent the C shell from

interpreting it as the history recall

character.

069-701036 Licensed material—property of copyright holder(s) 4-3

Sed Editing Operations

Sed Editing Operations

Table 4-2 lists the types of editing operations sed performs.

Table 4-2 Sed Editing Commands

Editing Command | Definition

Operation

print addressed line P Searches for the address (which is an implicit

pattern or an absolute line number) and prints

to standard output.

Places the current line number in standard

output as a line.

line number

append a Appends new text after the addressed line in

standard output.

insert i Inserts new text before the addressed line in

standard output.

change c Changes addressed text to new text in standard

output.

delete d Deletes addressed line(s) from pattern space.

substitute S Substitutes pattern(s) within addressed line(s)

with replacement string in pattern space.

write Ww Writes addressed line(s) to file.

read r Reads text from a file to an addressed line in

standard output.

quit q Quits searching after the first occurrence of a

pattern match is found in pattern space

show control l Represents control character as its

characters as two-digit ASCII code octal equivalent.

ASCII codes

convert case y Substitutes the search string with a

replacement string in the alternate case. The

strings must be of equal length.

groups commands {} Surrounds a set of commands to be performed

on only the addressed lines.

branching with b Tests for an address match for which

label control jumps to a labelled set of instructions.

Control then goes to the end of the script.

(continued)

4-4 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

Table 4-2 Sed Editing Commands

Editing Command | Definition

Operation

testing with t Tests whether or not a successful substitution

label occurs on the current line. If so, control

jumps to a labelled set of instructions.

Control then goes to the end of the script.

reads next N Reads the next line of input from an input file

line into and appends it to the current pattern space.

pattern space

(concluded)

Using Blank Lines in a sed Script

You can insert blank lines throughout a sed script to make it easier to read. These

lines will not be interpreted.

Using Comments in a sed Script (#)

You can place a single comment line in a sed script as a documentation aid. All text

on the line following a # (pound) sign is ignored by the script. The # must be

positioned at the beginning of only the first line. An error message will be displayed,

and the script will not execute if multiple comments are in the script. The general

format of the comment line follows:

#[n |] comment

where:

indicates a comment.

The n causes sed to suppress all lines from standard output. This argument, which

must appear immediately after the #, has the same effect as the sed command’s —n

option. If you use the n argument after the # comment delimiter, you do not need to

include the —n option on the sed command line. If you do not use the n argument or

the —n option, sed sends the edited input to standard output.

comment is the text serving as documentation.

069-701036 Licensed material—property of copyright holder(s) 4-5

Sed Editing Operations

Sample Input File

An input file named text will be used in this chapter to show the effect of the editing

commands. It follows:

S cat text 0

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

Printing Addressed Line (p)

The print command (p) prints the addressed line that it matches. The general format

for the print command follows:

[address [,address| | p

An example of using the print command follows:

S$ sed ’/"I/p’ text

This simple script searches for all occurrences of a pattern beginning with "I" that are

located at the beginning of the line.

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

I can hear those meters ticking now.

Notice that the edited version of every input line is sent to standard output by default.

The addressed lines (those beginning with "I") are printed twice to standard output.

To eliminate the redundancy of the selected addressed lines in the standard output,

you can use the —n argument on the command line to "not print" all lines. Only the

lines that the p command matches are printed.

S sed —n ’/"I/p’ text

The standard output produced is sent to your terminal screen:

If you plan to be in the vicinity

I can hear those meters ticking now.

4-6 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

Numbering Lines (=)

The line numbering command (=) places the current line number in standard output

as a line.

The general format for the line number command follows:

[address |=

An example of printing the addressed patterns with corresponding line numbers

follows:

S$ sed <n —e °/'I/=’ —e °/'I/p’ text 9

The standard output produced is sent to your terminal screen:

2

If you plan to be in the vicinity

5

I can hear those meters ticking now.

Appending Text (a)

The append command (a) appends one or more lines of text to the addressed line or

to each line (if no address is given) in standard output. Each append command

accepts only one address (not a range). Since appended text is sent to standard

output, it cannot be edited by the sed commands, which operate on the pattern space

only. The general format for the append command follows:

[address |a\

text \

text \

text \

text

where:

address specifies a single absolute line number or a pattern in the input-file to which

the new text is appended in the output. Only a single address can be used; refer to

the section "Addressing Input Lines” for examples.

The a command (append) adds the specified text to the addressed line in standard

output.

Each line, except the final one, ends with a backslash (\), which preserves the effect

of the new-line. When the script executes, the specified text is appended exactly as

specified by the script. Thus, the escaped new lines perform the appropriate line

breaks. Without the backslash to preserve the effect of the new-line, the script would

interpret the first new line as a signal to end the script. Thus, no explicit new lines

would be performed.

069-701036 Licensed material—property of copyright holder(s) 4-7

Sed Editing Operations

The text comprises the new words that you append in the output at the specified

address.

The final new line requires no escape because it terminates the appended text. If you

press the New Line key alone on a line to terminate the append command, an extra

blank line will appear in your output.

An example of a sed script named appender follows:

$ cat appender 0

/business/ a\

THERE IS A RECORD SELLOUT.

This script will locate the line containing the pattern "business" and will append the

specified text on the following line. To run this script, you type:

$ sed —f appender text 0

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

THERE. IS A RECORD SELLOUT.

I can hear those meters ticking now.

Inserting Text (i)

The insert command (i) inserts one or more lines of text before the addressed line in

the pattern space or before each line in the pattern space if no address is given. The

insert command accepts only one address. Since inserted text is sent to standard

output, it cannot be edited by the sed commands that operate on the pattern space

only.

The general format for the insert command follows:

[address \i\

text \

text \

text \

fext

where:

address specifies the addressed line that is matched in the pattern space to which the

new text is appended. Only a single address can be used; refer to the section

4-8 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

"Addressing Input Lines" for examples.

The i (insert) command inserts the specified text in the output at the given address.

The text comprises the new words that you append to the output at the specified

address.

The final new-line requires no escape because it terminates the appended text. If you

press the New Line key on a line alone to terminate append mode, an extra blank line

will appear in your output.

An example of a sed script named inserter follows:

$ cat inserter 0

3 i\

THERE IS A RECORD SELLOUT.

This script will insert the identified text on the line above the addressed line.

To run this script, you type:

$ sed —f inserter text

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

THERE IS A RECORD SELLOUT.

of the Central City Coliseum tonight,

you are in for big business.

I can hear those meters ticking now.

Changing Text (c)

The change command (c) replaces the addressed line(s) that is matched in the pattern

space with new text. Any form of addressing can be used. Since changed text is sent

to standard output, it cannot be edited by the sed commands that operate on the

pattern space only.

The general format for the change command follows:

[| address|,address| |c\

text \

text \

text \

text

069-701036 Licensed material—property of copyright holder(s) 4-9

Sed Editing Operations

where:

address specifies the range of lines matched in the pattern space on which the sed

commands execute. The address can be expressed using a variety of methods given in

the section "Addressing Input Lines.”

The c (change) command changes the addressed text matched in the pattern space to

new text that you specify.

Each line, except the final one, ends with a backslash (\), which preserves the effect

of the new-line. When the script executes, the specified text is appended exactly as

specified by the script. Thus, the new lines perform the appropriate line breaks.

Without the backslash to escape the effect of the new-line, the script would interpret

the first new line as a signal to end the script. Thus, no explicit new lines would be

performed.

The text comprises the new words that you change the addressed text in the pattern

space to.

The final new-line requires no escape because it terminates the appended text. If you

press the New Line key on a line alone to terminate append mode, an extra blank line

will appear in your output.

An example of a sed script named changer follows:

$ cat changer 0

3 c\

YOU SHOULD GET READY FOR SOME ACTION. \

YOU'LL BE CRUISING TONIGHT.

This script will cause the addressed line in the pattern space to be changed to the new

lines of text.

To run this script, you type:

$ sed —f changer text 9

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

YOU SHOULD GET READY FOR SOME ACTION.

YOU'LL BE CRUISING TONIGHT.

you are in for big business.

I can hear those meters ticking now.

4-10 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

Deleting Text (d)

The delete command (d) removes the pattern space, and program control will go to

the top of the sed script

The general format for the delete command follows:

{ address |,address | |d

where:

address specifies the range of lines in the pattern space on which the sed commands

execute. The address can be expressed using a variety of methods given in the section

"Addressing Input Lines."

The d (delete) command removes the addressed text from pattern space.

An example of a sed command follows:

S sed ’/Cab/,/Coliseum/d’ text 3

The standard output produced is sent to your terminal screen:

you are in for big business.

I can hear those meters ticking now.

Substituting Text (s)

The substitute command (s) substitutes the addressed pattern with a replacement

string. The format for the substitute command follows:

[address |,address | | s/pattern/replacement-string/| g|[p][w][n]

where:

address specifies the range of lines in the pattern space on which the sed commands

execute. The address can be expressed using a variety of methods given in the section

“Addressing Input Lines."

The s (substitute) command replaces the addressed pattern with a replacement string.

A pattern can be a literal string or a regular expression to be substituted.

The replacement string is the new text to which you change the pattern.

The three slashes (/ / /) in the preceding format represent delimiters that separate the

s command, the pattern, and the replacement string. You can select any character as

a delimiter (such as ? or @) just as long as you use the same character for all three

delimiters and the character isn’t used in a pattern or the replacement string. Also,

the character should not be a metacharacter. Refer to Appendix A for a list of

069-701036 Licensed material—property of copyright holder(s) 4-11

Sed Editing Operations

metacharacters.

You can also tag specific sub-patterns for subsequent rearrangement in the

replacement string. Furthermore, the replacement string can contain an ampersand

(&), which is replaced with the matched pattern. Tagging and using the ampersand is

covered in a later section in this chapter "Advanced Substitution.”

Four options are available to add to the substitute command. Table 4-3 lists them.

Table 4-3 Substitute Options

Option Description

g Sed substitutes all non-overlapping occurrences of the addressed

pattern in a line with the replacement string. By default, only the first

occurrence of the addressed pattern in a line is substituted with the

replacement string.

Pp Sed writes all lines affected by a substitution to standard output. This

option overrides the —n option set in the command line, which prints

nothing to standard output.

n Sed substitutes only the nth occurrence (represented as a number) of

a pattern with a replacement string.

w filename | This option is identical to the p option except that it appends the

edited line to filename. There should be a space between the w option

and the filename.

Simple Substitution (g, p)

Examples of using sed commands with simple substitution follow:

$ sed —n ’2 s/in/IN/gp’ text 0

The —n argument causes no lines to be printed to standard output. The p option

causes only changed lines to be printed to standard output. If the p option is used

without the —n argument, the changed lines are explicitly printed as well as all other

lines to standard output. The g option substitutes multiple occurrences of a pattern

on the same line.

The standard output produced is sent to your terminal screen:

If you plan to be IN the vicINity

On line 2 only, the pattern "in" is substituted with the replacement string "IN". The g

option causes the replacement pattern to be repeated for multiple occurrences of the

pattern in the same line. If the g option had not been used, only the first occurrence

of the addressed pattern would be replaced.

4-12 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

For substitution operations, if you use a pattern as the address, which is identical to

the pattern to be substituted, you can abbreviate the command format as follows:

/pattern-address!/s//replacement-string/| options |

A shorthand way of expressing the pattern-address and the pattern to be replaced as

the same is to specify the pattern to be substituted as null (no space between the

slashes). An example follows.

$ sed —n ’/Dispatch/s//MESSAGE ALERT/p’ text 9

The standard output produced is sent to your terminal screen:

MESSAGE ALERT to all Cab Drivers:

Substituting the nth Occurrence of a Pattern (n)

Instead of substituting all occurrences of a pattern with a replacement pattern, you

may choose to restrict the replacement to only the nth occurrence on each line. An

example follows:

$ sed —n ’s/in/IN/2p’ text

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicINity

of the Central City Coliseum tonight,

you are in for big busINess.

I can hear those meters ticking now.

Notice that the first occurrence of "in" was not replaced in a line; only the second

occurrence was.

Writing the Substitution to a File (w)

In addition to producing standard output on the terminal screen, you can also write it

explicitly to a file using the w option. An example follows.

$ sed —n ’2,3 s/the/THE/gpw subout’ text 5

In this command, the affected lines are sent not only to standard output but are

written to a file named subout, whose contents follow.

If you plan to be in the THE vicinity

of THE Central City Coliseum tonight,

069-701036 Licensed material—property of copyright holder(s) 4-13

Sed Editing Operations

Advanced Substitution

There are two advanced substitution operations that let you do these manipulations:

@ Tag multiple search patterns and rearrange them within a replacement string

(tagged replacement patterns).

@ Save a search pattern and substitute it within a replacement string (search

pattern saves).

Tagging Patterns: the Escaped Parentheses (\(\))

With the search pattern tag you can locate and mark as many as nine patterns. In the

replacement pattern, you can then rearrange the order in which the tagged patterns

occur.

The command format used for substituting with tagged replacement patterns follows:

sed —n ’s/\(tag-word1\)...\(tag-word\) /Ntag-num1...\tag-num9/p’ inputfile

where:

/ (the slash) is a delimiter.

\(\) (escaped parentheses) surround tagged patterns or substrings.

\tag-num causes the indicated tag to be substituted in the replacement string in the

specified order.

The following example shows how to use tagged search patterns:

$ sed —n ’s/\(Central\) \(City\)/\2 \1/p’ text 5

The substring "Central" is tagged as 1; "City" is tagged as 2. The replacement tags

cause the contents of locations 1 and 2 to be swapped in the standard output.

Spacing in this command is important.

@ Do not space within delimiters.

@ Do not use a space to separate the final delimiter and the first replacement |

string.

@ Do space once between replacement tags.

The example produces this result:

of the City Central Coliseum tonight,

4-14 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

You can see that locations 1 and 2 were swapped in your standard output.

In addition to tagging patterns for swapping, you can also simply rearrange them with

other replacement text. For example, using the same sample line of text, the

following command:

$ sed —n ’s/\(Central\) \(City\) \(Coliseum\)/Metro \2 \1 Events \3/p’ text 9

would produce this output:

of the Metro City Central Events Coliseum tonight,

The replacement text includes the word "Metro", the second tag "City", the first tag

"Central", the word "Events", and finally the third tag "Coliseum".

Modifying the Matching String: the Ampersand (&)

This replacement construct is useful when you want to modify (rather than substitute

entirely) the search pattern with a replacement string. The ampersand (&) stores the

pattern found so that you can recall and place it in the replacement string.

An example of the text to be operated on follows:

you are in for big business.

The following command modifies this text:

$ sed —n ’s/big/INCREDIBLY &/p’ text >

where:

s stands for substitute, big is the search pattern, and INCREDIBLY is the

replacement string. The ampersand (&) saves the search pattern which is used in the

replacement string. Spacing is important here; space within the replacement string

exactly as you want it to appear in the output.

The following result is produced:

you are in for INCREDIBLY big business.

Writing Standard Output to a File (w)

The write command (w) writes the edited pattern space to a file. You can specify up

to ten filenames for output in a sed script. It is similar to the use of the write option

with the substitute command. The format for the write command follows:

| address|,address | | w filename

069-701036 Licensed material—property of copyright holder(s) 4-15

Sed Editing Operations

where:

address specifies the range of lines in the pattern space on which the sed commands

execute. The address can be expressed using a variety of methods given in the section

“Addressing Input Lines."

The w (write) command redirects standard output to filename.

Only the addressed lines are sent to the file with the write command. An example

follows:

S sed ’3,4 w writer-out’ text 9

The entire text file is sent as standard output to your terminal screen.

The output sent to the file named writer-out follows:

$ cat writer-out 0

of the Central City Coliseum tonight,

you are in for big business.

Reading Text from a File (r)

The read command (r) reads the contents of a file and writes it to standard output.

The format for the read command follows:

address r filename

where:

The address specifies the single position in filename to which the new text from

filename is read in standard output. Only a single address can be used; refer to the

section "Addressing Input Lines" for examples.

The r command reads the contents of the specified filename.

The filename is the name of the file from which the new text is read.

An example follows.

$ sed ’/business/r extra’ text 9

When sed reads the input line containing the address "business", the entire file

named extra is read onto the line following the address. The contents of the file

named extra follows.

S$ cat extra 0

WE’LL NEED CABS AT THESE POSTS:

4-16 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

ELM & STEWARD BLVDS

ELK CREEK SHOPPING CENTER

ED’S BODY SHOP

GRAMBLING’S GARDENS

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

If you plan to be in the vicinity

of the Central City Coliseum tonight,

you are in for big business.

WE’LL NEED CABS AT THESE POSTS:

ELM & STEWARD BLVDS

ELK CREEK SHOPPING CENTER

ED’S BODY SHOP

GRAMBLING’S GARDENS

I can hear those meters ticking now.

Quitting after the First Pattern Match (q)

When searching for a pattern, you may want to match only the first occurrence of a

pattern and then quit the process. The general format for the quit command (q)

follows:

addressq

where:

address specifies the range of lines in the pattern space on which the sed commands

execute. The address can be expressed using a variety of methods given in the section

"Addressing Input Lines."

The q command means to quit.

An example of a sed command using quit follows:

$ sed ’/C.*/q’ text o

The pattern sought is a regular expression that refers to any string that begins with an

uppercase "C" and is followed by any number of characters. After the first

occurrence of the pattern is matched and printed, the process quits.

The standard output produced is sent to your terminal screen:

Dispatch to all Cab Drivers:

069-701036 Licensed material—property of copyright holder(s) 4-17

Sed Editing Operations

Displaying Nonprintable Control Characters in Standard
Output (I)

The appearance of nonprintable control characters may not be apparent from just

looking at an input file. If you use sed to manipulate input that contains nonprintable

control characters, you may wish to display (or list) control characters in their two-

digit ASCII (octal) representation. Refer to the first column of the ASCII characters

table in the ASCII chart in Using the DG/UXTM System for the octal representation of

control characters.

The general format for representing control characters as ASCII codes in standard

output using the 1 command follows:

[| address,| address | \l

where:

address specifies the range of lines in the pattern space on which the sed commands

execute. The address can be expressed using a variety of methods given in the section

"Addressing Input Lines."

The I command means to list.

An example of text containing control characters follows:

$ cat .exrc 0

map #1 i\italic”TM [Ea\roman’” [

This command is a function key map from an .exre file (refer to the section "Using

Key Maps" in Chapter 2 in this manual for more information). This key map allows

you to use the F1 key to turn on the italic font for the selected word and then turn on

the roman font at the end of the word.

The appearance of control characters can be confusing. To find out exactly the

control characters that appear in your text, you can use this short sed command:

$ sed —n °1,$)? .exre 5

Standard output follows:

map #1 i\italic33Ea\roman33

The “[notation in the pattern space represents an ASCII octal code of 33, which is an

escape character that is generated with two keystrokes: Ctrl-V and Esc.

4-18 Licensed material—property of copyright holder(s) 069-701036

Sed Editing Operations

Converting Strings of Equal Length (y)

With the translate command (y), you can substitute each character of a string with the

corresponding character in the replacement string. The search string and the

replacement string must have equal lengths.

The format used for translating strings follows:

[| address |,address| \y/string-1/string-2/

where:

The address specifies the range of lines in the pattern space on which the sed

command executes. The address can be expressed using a variety of methods given in

the section "Addressing Input Lines.”

The y command means to translate.

The string-1 refers to the string to be translated.

The string-2 refers to what string-2 is translated to.

An example of converting strings of equal length follows:

$ sed —n °1,$y/abc/ABC/’ text 3

Standard output follows:

DispAtCh to All CAB Drivers:

If you plAn to Be in the viCinity

of the CentrAl City Coliseum tonight,

you Are in for Big BuSiness.

I CAn heAr those meters ticking now.

Using Control Structures: Advanced

There are three control structures you can use in sed scripts for grouping specific

commands to process only the addressed lines in the pattern space. The control

structures are:

e Grouping with braces.

e Simple branching.

@ Conditional branching.

069-701036 Licensed material—property of copyright holder(s) 4-19

Using Control Structures: Advanced

Grouping with Braces ({__})

Only the addressed lines will be affected by the commands enclosed in braces. The

general format for the grouping with braces command follows:

[address[,address | | {

editing-command

editing-command

}
more editing commands

Commands that occur outside the braces will affect either all lines (including those

lines affected by the commands set off by braces) or another set of addressed lines.

Multiple sets of branched instructions can be used in a sed script.

An example of a sed script named bracer follows:

S$ cat bracer 0

Script bracer performs restrictive substitutions

1,3 {

1d

s/vicinity/AREA/

3 a\

THERE IS A RECORD SELLOUT!

}

s/business/MONEY/

1,4s/in/IN/

s/RECORD/BIG/

The commands surrounded by braces affect only lines 1-3. The first line will be

deleted and the pattern “vicinity” will be replaced by "AREA". A string of text is

appended to line 3. The commands following the closed brace apply to the entire

file, including lines 1-3. The pattern “business” will be replaced with "MONEY", and

"in" will be replaced with "IN" only in lines 1~4. The final command is to substitute

"RECORD" with "BIG".

4-20 Licensed material—property of copyright holder(s) 069-701036

Using Control Structures: Advanced

To run this script, you type:

S sed —f bracer text 9

The standard output produced is sent to your terminal screen:

If you plan to be IN the AREA

of the Central City Coliseum tonight,

THERE IS A RECORD SELLOUT!

you are IN for big MONEY.

I can hear those meters ticking now.

All instructions except the last one performed as would be expected. The pattern

"RECORD" was not replaced with "BIG" because sed editing commands operate on the

pattern space only. The append command operates on standard output only;

therefore, those lines cannot be affected by any subsequent editing commands. Also

notice that the replacement of "in" with "IN" did not affect the "in" in "ticking"

because that line was excluded from the address.

Simple Branching to Label (b)

Branching is used to test for an address match for which control jumps to a label that

designates an optional set of commands. A label can contain up to eight characters.

If no commands are associated with the label, control branches to the end of the

script. Otherwise, normal program flow occurs sequentially. The format for the

branching command follows:

[| address|,address | \|bbranch-label

editing-command

editing-command

:branch-label
optional editing command for addressed lines

optional editing command for addressed lines

NOTE: The character "b" is considered part of the eight-character label.

When the address is encountered, control branches to the label.

069-701036 Licensed material—property of copyright holder(s) 4-21

Using Control Structures: Advanced

An example of the sed script brancher follows:

S cat brancher 3

1,3b jump

s/business/MONEY/

s/big/INCREDIBLY &/

s/I can hear/LISTEN TO/p

: Jump

/Dispatch/s//MESSAGE ALERT/

s/\(Central) \(City)/\2 \1/

The address is matched as soon as the program begins processing. So control is

branched to the instructions labelled jump in which two substitutions occur on lines

1-3. After the commands in the label have executed, control returns to the script

instruction that follows the jump. Lines 1-3 are not processed by the remaining

commands in the script.

To run this script, you type:

$ sed —f brancher text 9

The standard output produced is sent to your terminal screen:

MESSAGE ALERT to all Cab Drivers:

If you plan to be in the vicinity

of the City Central Coliseum tonight,

you are in for INCREDIBLY big MONEY

LISTEN TO those meters ticking now.

Conditional Branching to Label (t)

The t (test) command tests whether or not a successful substitution has occurred on

the current line. If there has been a substitution on the current line, control branches

to a label (signifying a group of commands). A label can contain up to eight

characters. If no commands are associated with the label, control goes to the end of

the script. Otherwise, normal program flow occurs sequentially. The format for the

conditional branching command follows:

[address [,address | |\s/pattern/replacement-string/

tbranch-label

editing command

editing command

sbranch-label
optional branch editing command

optional branch editing command

4-22 Licensed material—property of copyright holder(s) 069-701036

Using Control Structures: Advanced

NOTE: The character "t" is considered part of the eight-character label.

An example of a sed script named conditioner follows:

S cat conditioner >

s/Cab Drivers/CABBIES/

t fixer

/business/ c\

EXPECT A LATE NIGHT ON THE STREETS.

/meters/ a\

BE SURE YOU TURN IN YOUR TIME \

BEFORE YOU PUNCH OUT FOR THE EVENING. \

YOUR FRIENDLY DISPATCHER, \

ROSE

: fixer

2,3d

Upon a successful substitution of "CABBIES" for "Cab Drivers," control branches to

the label identified as fixer, where lines 2-3 are deleted and control goes to the

bottom of the script. Otherwise, the line containing the pattern "business" is

changed to another string. Then new text is appended to the line containing the

pattern "meters".

To run this script, you type:

$ sed —f conditioner text 9

The standard output produced is sent to your terminal screen:

Dispatch to all CABBIES:

EXPECT A LATE NIGHT ON THE STREETS.

I can hear those meters ticking now.

BE SURE TO TURN IN YOUR TIME

BEFORE YOU PUNCH OUT FOR THE EVENING.

YOUR FRIENDLY DISPATCHER,

ROSE

069-701036 Licensed material—property of copyright holder(s) 4-23

Pattern Matching Across Lines (N)

Pattern Matching Across Lines (N)

The N command is useful for pattern matching across two lines. It reads the next line

of input from an input file and appends it to the pattern space.

A common editing task is to search for the occurrence of a pattern followed by a

new-line and to strip out the new line, thus joining lines.

A sample input file named memo follows:

S$ cat memo 0

MEMO)

o

FROM: 0

Della Streeto

o

TO:2

Professor Ruhlend

?

RE: 2

Proteinsd

?

NOTE: You will not see an explicit new-line (9) at the end of each line in either your

input or output. Throughout this section, new-lines are explicitly displayed so

that you can see the effect of editing them.

This is a general memorandum format. Your goal is to join all lines containing a

colon (:) with the next line. For example, you want to produce this result:

FROM: Della Street

To accomplish this task, you need to perform these steps in a sed script:

e Search for a pattern ending with a colon (:) and keep it in the pattern space.

@ Append the next line to the current line in the pattern space.

e Substitute the new-line with two spaces, which implicitly joins the two lines.

An example of a sed script named patterner follows:

S cat patterner 0

[J *:9/{K

N

Ss/\\n/ /

}

4-24 Licensed material—property of copyright holder(s) 069-701036

Pattern Matching Across Lines (N)

A successful address match, any line ending in a colon (:), causes the execution of

the instructions surrounded by braces. The matched pattern will remain in the

pattern space and the N (next) instruction appends the next line of input to the

pattern space. The third instruction substitutes the new-line (represented as \n) with

two spaces, thus joining the two lines.

Figure 4-1 illustrates the steps in the process.

FROM:)
FROM:9 Della Streets FROM: Della Streets

1. Matched address in pattern space 2. Next line appended 3. First 9 replaced by 2 spaces

Figure 4-1 Steps for Pattern Matching Across Lines

To run this script, you type:

$ sed —f patterner memo 9

The standard output produced is sent to your terminal screen:

MEMO

FROM: Della Street

TO: Professor Ruhlen

RE: Proteins

There are several more sed commands used for manipulating the pattern space and

another buffer area called the hold space. Refer to the sed(1) man page in the User’s

Reference for the DG/UXTM System for more information.

End of Chapter

069-701036 Licensed material—property of copyright holder(s) 4-25

Appendix A

Regular Expressions

Several DG/UX text-oriented commands (such as ed, editread, ex, expr, grep, pg,

sed, and vi) use regular expressions, which are character patterns used to search and

sometimes replace matching patterns in a file. The egrep and fgrep commands also

use an additional set of metacharacters not covered here. Refer to the grep(1) man

page for this information.

A regular expression can be expressed as either a simple string or a complex pattern

containing special characters called metacharacters. For example, the regular

expression "star" can match each occurrence of star in "star", "start", "restar", or

"restarting". It will not match the pattern "first arrival" because there is a space

between "t" and "a". Each of the letters in the regular expression must appear in the

same sequence in the matching pattern.

Regular expression metacharacters can contain "wildcards" that locate a range of

matching patterns. For example, you can use the period (.) metacharacter to match

any single character. Thus, the regular expression s.ng will match "sang", "sing",

"song", and "sung". The regular expression would also match the occurrence of sang

in "sanguine" or seng in "sengi" and so on. A space could also be a matching pattern

such as s ng in "country’s ngwee".

The commands that use regular expressions don’t all recognize the entire set of

metacharacters. All of them do follow a basic set, while many commands recognize

an extended set.

069-701036 Licensed material—property of copyright holder(s) A-1

Basic Set of Regular Expressions

Basic Set of Regular Expressions

Table A-1 summarizes the basic set of metacharacters used for regular-expression

pattern matching.

Table A-1 Regular-Expression Metacharacters

Metacharacter | Definition

a

Matches a string at the beginning of a line. For example,

“dog matches lines beginning with dog.

$ Matches a string at the end of a line. For example, dog$

matches lines ending with dog.

Matches any single character except a new-line. For

example, .ilk matches silk and bilk.

* A single-character regular expression followed by an

asterisk (*) matches zero or more occurrences of the

single-character expression. For example, ap*eal matches

apeal, appeal, and aeal.

\ Escapes the meaning of a metacharacter. For example,

* matches *.

[] Defines a character class that matches any single character

enclosed in brackets. For example, j[oa]y matches joy

and jay but not joay.

Examples of each metacharacter are shown in the following sections. Throughout the

examples, the matched characters will be shown in boldface type.

The Caret (*) and Dollar Sign ($)

A regular expression beginning with a caret (*) can match a string located only at the

beginning of a line. Similarly, a regular expression ending with a dollar sign ($) will

match a string located only at the end of a line. Table A-2 gives examples using the

caret and dollar sign.

A-2 Licensed material—property of copyright holder(s) 069-701036

Table A-2 The Caret (*) and Dollar Sign ($) in Regular Expressions

Basic Set of Regular Expressions

Regular Expression | Example

“A A dog fetches sticks.

Aspirin relieves headaches.

And fevers too.

st$ She’s the first

She’s the last

It’s the steepest

‘S Matches an empty line.

“who$ Matches a line containing only the string who.

For the expr command, all patterns are assumed to start at the beginning of the line.

The Period (.)

A regular expression consisting of a period matches any single character except a

new-line. Table A-3 gives examples of the period (.).

Table A-3 The Period (.) in Regular Expressions

Regular Example Explanation

Expression

.ing sing Matches "s" followed by "ing".

slinging Matches "I" followed by “ing”.

sting Matches "t" followed by “ing”.

“,.e The end Matches "e" preceded by "Th" at the

beginning of a line.

12e 14f Matches "e" preceded by "12" at the

beginning of a line.

I envy Matches "I" followed by a space and "e"

at the beginning of a line.

S$ We like peaches. | Matches "s" followed by "." at the end of

a line.

we have a Matches a space followed by "a" at the

end of a line.

Hah ! Matches a space followed by an exclamation

mark (!) at the end of a line.

069-701036 Licensed material—property of copyright holder(s)

Basic Set of Regular Expressions

The Asterisk (*)

A regular expression containing an asterisk represents zero or more occurrences of a

match of the preceding character. An asterisk preceded with a period (.*) matches

any character. (A period matches any single character, and an asterisk matches zero

or more occurrences of the preceding regular expression.)

Table A-4 lists examples of using the asterisk.

Table A-4 The Asterisk (*) in Regular Expressions

Regular Example Explanation

Expression

ab*e ae Matches zero occurrences of preceding character "b".

abe Matches one occurrence of preceding character "b".

abbe Matches two occurrences of preceding character "b”.

cat* ca Matches zero occurrences of preceding character "t".

cat Matches one occurrence of preceding character "t".

catt Matches two occurrences of preceding character "t".

catman Matches one occurrence of preceding character "t".

cat.* cat Matches zero occurrences of preceding character ".",

which can be any character.

cats Matches one occurrence of preceding character ".",

which can be any character, and some other

character "s".

catastrophe Matches one occurrence of preceding character ".",

which can be any character, and any number of

other characters "astrophe".

scatters Matches two occurrences of preceding character ".",

which can be any character, and any number of

other characters "ers".

(continued)

A-4 Licensed material—property of copyright holder(s) 069-701036

Basic Set of Regular Expressions

Table A-4 The Asterisk (*) in Regular Expressions

Regular Example Explanation

Expression

.*cat cat Matches zero occurrence of preceding character "c".

ducat Matches two occurrences of preceding character

"c"; in this case "du".

scatters Matches one occurrence of preceding character "c";

in this case "s".

.cat.*s scats Matches a single character before "cat" and no

characters between "cat" and "s".

scatters Matches a single character before "cat" and three

characters between "cat" and "s".

scatter ashes Matches the "s" before "cat", and eight characters

between "cat" and "s".

cat is Will not match; "cat" must be preceded by a single

character.

(concluded)

The Backslash (\)

A backslash escapes a metacharacter, which retains the meaning of the literal

character. Table A-5 lists examples of uses of the backslash.

Table A-5 The Backslash (\) in Regular Expressions

Regular Example | Explanation

Expression

\[weasel\] [weasel] | Matches literal brackets and "weasel".

\\ \ Matches a backslash (\).

\¥\.c *.¢ Matches a literal asterisk (*), a period (.), and a "c”.

f.*\.me filel.me | Matches "f" followed by any number of characters

"ile1" followed by ".me".

f.me Matches "f" followed by ".me".

069-701036 Licensed material—property of copyright holder(s) A-5

Basic Set of Regular Expressions

The Brackets ([])

The brackets define a character class that matches any single character within the

brackets. To specify a character class containing a range of characters or numbers,

you can use a hyphen (—) between the first and last characters of the range.

Metacharacters inside brackets are escaped automatically.

A caret (*) following the left bracket ([) can be used to negate what is enclosed by

brackets; any pattern not specified by the regular expression inside the brackets is

sought. Table A-6 lists examples of pattern matches using character classes.

Table A-6 The Square Brackets ([]) in Regular Expressions

Regular Example | Explanation

Expression

[Dd]og dog Matches "d" and "og".

Dog Matches "D" and "og".

test[1-4] test1 Matches "test" and "1".

test4 Matches "test" and "4",

starttest2 | Matches "test" and "2".

test4000 Matches "test" and "4".

w[ea].* sweater Matches "w", "e", and any number of following

characters, which are "eater".

waste Matches "w", "a", and any number of following

characters, which are "ste".

we Matches "w", "e", and any number of following

characters, which are zero.

[“a-zA-Z] 1*a! Matches the first nonalphabetic character at the

beginning of the line, which is "1".

NOTE: How you use the right bracket (]) as a member of a character class will

depend on the command used. For vi and ex, the right bracket must be

escaped with a backslash (\) and may be anywhere in the character class; for

example, [abe\]d]. For ed, sed, grep, expr, pg, the right bracket must be

the first character in the character class and does not need to be escaped; for

example, []Jabcd].

A-6 Licensed material—property of copyright holder(s) 069-701036

Extended Set of Regular Expressions

Extended Set of Regular Expressions
Table A-7 summarizes the extended set of regular expressions for pattern matching.

Table A-7 Extended Regular-Expression Syntax

Regular Definition

Expression

\C\) Tags a pattern for use in search and replacement operations.

& Stores a search pattern for later use in a replacement pattern.

\< Matches a pattern only at the beginning of a word.

\> Matches a pattern only at the end of a word.

\{ \} Matches a specific number of occurrences of a pattern.

The Escaped Parentheses (\(\))

Only ed, ex, grep, and vi use the escaped parentheses.

The escaped parentheses are used for tagging patterns that you can refer to by

number. You tag a pattern by preceding it with \(and following it with \). Thus, the

first tagged pattern is referred to as \1; the second, \2, and so on. As many as nine

patterns can be tagged for one operation. An example follows:

\(Central\) City \1

The pattern Central is tagged so \1 represents Central. Thus, the regular

expression Central City Central is matched. As another example, you can

repeat the tag as often as needed:

\(Central\) \(City\) \1 \2 \1

This time City is also tagged (as 2) and this regular expression is matched:

Central City Central City Central.

An example of using tags in replacement patterns in vi follows:

:%s/\(Central\) \(City\)/\2 \1/

The percent sign (%) means that the entire buffer is searched for the pattern

Central City. Central is tagged as 1, and City is tagged as 2. The replacement

tags cause the contents of tags 1 and 2 to be swapped, thus producing City

Central throughout the file.

069-701036 Licensed material—property of copyright holder(s) A-7

Extended Set of Regular Expressions

In addition to tagging patterns for swapping, you can also rearrange them with other

replacement text. A vi example follows:

:%s/\(Central\) \(City\) \(Coliseum\)/Metro \2 \1 Events \3/

The output produced by this example might be Metro City Central Events

Coliseum.

The Ampersand (&)

Only ed, ex, sed, and vi use the ampersand.

This replacement construct is useful when you want to modify (rather than substitute

entirely) the search pattern with a replacement pattern. The ampersand stores the

pattern found so that you can recall and place it in the replacement pattern. A vi

example follows:

:%s/big/INCREDIBLY &/

Each match of the pattern big is stored in & in the replacement pattern. An

example of the output would be: INCREDIBLY big.

The Escaped Angle Brackets (\< \>)

Only ex and vi use escaped angle brackets.

The angle brackets are used for matching the beginning of a word (\<) and the end of

a word (\>). Table A-8 lists examples of escaped angle brackets:

Table A-8 The Escaped Angle Brackets (\< \>) in Regular Expressions

Command Locates| Produces

:S/\<driv/fall/g | driven fallen

:s/ing\>/ers/g singing | singers

A-8 Licensed material—property of copyright holder(s) 069-701036

Extended Set of Regular Expressions

The Escaped Braces (\{ \})

Only ed, expr, grep, pg, and sed use the escaped braces.

The braces signify a match of a specific number of occurrences of a pattern. Table

A-9 lists three variations of the escaped braces:

Table A-9 Variations of Escaped Braces (\{ \})

Variation Explanation

pattern\{n\} Matches n occurrences of the preceding pattern.

pattern\{n,\} Matches at least n occurrences of the preceding

pattern.

pattern\{n,m\} Matches any number of occurrences between n and m

where n and m are numbers between 0 and 255.

Table A-10 shows examples of escaped braces:

Table A-10 The Escaped Braces (\{ \}) in Regular Expressions

Regular Example | Explanation

Expression

t\{2\hy tty Matches only two occurrences

of t.

t\{4,\}y tttty Matches at least 4 occurrences

ttttty of t.
tttttty

th{4,5\}y tttty Matches between 4 and

ttttty 5 occurrences of t.

An example of a grep command follows:

S$ grep "t\{4,\}" parts

The output might include: tttty, ttttty, tttttty, and so on.

End of Appendix

069-701036 Licensed material—property of copyright holder(s)

Index

Note: Boldfaced page numbers (e.g.,

1-5) indicate definitions of terms or

other key information.

.editreadrc file 1-1, 1-5, 1-8

.exrc file 2-11, 2-96, 2-97, 2-111, 4-18

-login file 1-6, 1-8, 1-9, 1-24, 2-4, 2-104

.profile file 1-6, 1-8, 1-9, 1-24, 2-4, 2-104

A

Addressing lines __

ed 3-4, 3-6, 3-7, 3-9

sed 4-2

vi 2-72, 2-73

Ampersand (&) metacharacter 2-78,

2-79, 3-28, 3-31, 4-12, 4-15, A-7, A-8

Angle brackets, escaped (\< \>)

metacharacters 2-71, A-7, A-8

Appending text

ed 3-16

sed 4-7

vi 2-18, 2-36

ASCII codes 3-44, 4-4, 4-18

Asterisk (*) metacharacter 3-28, 3-29,

A-2, A-4

Backslash (\) metacharacter 2-71, 3-28,

3-30, A-2, A-5

Batch editor, see Sed

Blank lines in sed script 4-5

Bourne shell

.profile file 1-6, 1-8, 1-9, 1-24, 2-4,

2-104

exit command 2-94

export command 2-11, 2-97

sh command 1-5, 2-94

_ Braces ({ }), grouping with 4-21, 4-22

069-701036 Licensed material—property of copyright holder(s)

Braces, escaped (\{ \}) metacharacters

A-7, A-9

Brackets ({]) metacharacters 2-71, 3-28,

A-2, A-6

Branching 4-21, 4-22

Buffer

editing, see Editing buffer (vi)

working 2-1, 2-13, 2-125, 3-1

C

C shell

login file 1-6, 1-8, 1-9, 1-24, 2-4,

2-104

csh command 1-5, 2-94

setenv command 2-11, 2-97

stop command 2-94

Caret (*) metacharacter 2-71, 3-28, 3-30,

A-2, A-6

cat command 3-2

Changing text

ed 3-19

sed 4-9

vi, see Changing text (vi)

Changing text (vi)

entire line 2-52

marked text 2-58

space-delimited words 2-52

substituting characters 2-51

to beginning of paragraph 2-56

to beginning of sentence 2-54

to end of line 2-53

to end of paragraph 2-57

to end of sentence 2-55

words 2-51

Command format and options

ed 3-4

sed 4-1

vi 2-14

Command line editor, see Editread

Command mode 2-2, 3-16, 3-18, 3-20

Commenting in sed script 4-5

Index-1

Control characters, displaying 4-17

Control sequences

Ctrl-\ (quit) 1-21

Ctrl-] (escape) 2-113

Ctrl-B (page back) 2-32

Ctrl-C (interrupt) 2-74

Ctrl-D 1-21

Ctrl-D (log out) 2-94

Ctrl-D (scroll down) 2-32, 2-108

Ctrl-F (page forward) 2-32

Ctrl-G (editing status) 2-122

Ctrl-I (tab) 2-101

Ctrl-J (new-line) 2-101, 2-113

Ctrl-L (formfeed) 2-101

Ctrl-L (refresh screen) 2-13, 2-121

Ctrl-M (carriage return) 2-113

Ctrl-R (redraw screen) 2-4

Ctrl-U (line kill) 3-22

Ctrl-U (scroll up) 2-32, 2-108

Ctrl-Z (suspend) 1-22, 2-20, 2-103

Converting case

sed 4-18

vi 2-121

Copying text

ed 3-33

vi, see Yanking text (vi)

crash program 1-1, 1-2, 1-5, 1-20

csh command 1-5, 2-94

ctags program 2-93

Cursor control

editread 1-9

vi, see Moving cursor (vi)

D

Debugger programs

crash 1-1, 1-2, 1-5, 1-20

Multi-eXtensible DeBugger (mxdb)

1-1, 1-2, 1-5, 1-20

Deleting text

ed 3-20, 3-22

editread 1-13

sed 4-11

vi 2-39; see also Deleting text (vi)

Deleting text (vi)

and putting it elsewhere in buffer 2-61

entire lines 2-42

examples of delete-and-put 2-64

from beginning of line 2-41

Index-2 Licensed material—property of copyright holder(s)

Deleting text (vi) (cont.)

from cursor to mark 2-44

recovering from register 2-46

space-delimited words 2-41

to beginning of paragraph 2-43

to beginning of sentence 2-42

to end of line 2-41

to end of paragraph 2-44

to end of sentence 2-43

to left of cursor 2-40

to right of cursor 2-40

words 2-40

Displaying nonprinting characters

ed 3-44

sed 4-18

vi 2-89

Displaying text

ed 3-14

vi, see Moving cursor (vi)

Documenter’s Tool Kit (DTK) 2-10,

2-110

Dollar sign ($) metacharacter 2-71, 3-28,

3-30, A-2

E

Ed 3-1

command, see

$ (last line in buffer) 3-7

% replacement symbol 3-28, 3-31

& command 3-13

, (all lines in buffer) 3-7

, (range designator) 3-11

. (current line) 3-6

.= (current line number) 3-6

/ (search string delimiter) 3-9, 3-24,

3-27

; (current through final line) 3-7

? (error message) 3-42

? (search backward) 3-9

? (search string delimiter) 3-24, 3-27

— (line address symbol) 3-8

+ (line address symbol) 3-8

addressing (lines) 3-4

appending text 3-16

changing text 3-19

character string addressing 3-9

command format 3-4

command summary (table) 3-3

069-701036

069-701036

Ed (cont.)

commands to create text (table) 3-16

control keys, see Control sequences

copying lines 3-35

current line 3-1

current line number 3-6

Del key 3-22

deleting text 3-20, 3-22

diagnostics 3-42

displaying text 3-14, 3-44

displaying text with line numbers 3-15

ed.hup file 3-46

ending input mode 3-16

errors 3-43

escaping to shell 3-45

fcommand 3-45

file operations 3-37

filename 3-45

G command 3-12

g command 3-12

global searches 3-12

globally within lines 3-26

H command 3-42

h command 3-42

help commands 3-42

inserting text 3-18

invoking 3-2

joining lines 3-37

killing line 3-22

Icommand 3-44

line addressing 3-4

line range addresses 3-11

metacharacters, see Regular

expression metacharacters

moving lines 3-33

ncommand 3-14, 3-15

nonprinting characters 3-44

numeric line addresses 3-5

p command 3-14

pattern matching 3-9; see also Regular

expression metacharacters

printing line number 3-14

printing text 3-14

prompting 3-41

quitting 3-40

reading from file 3-38

rearranging text 3-33

recovering buffer 3-46

Licensed material—property of copyright holder(s)

regular expressions 3-28; see also

Regular expression

metacharacters

Ed (cont.)

relative line addresses 3-8

replacing text 3-19

restoring text 3-21, 3-46

saving text 3-38, 3-39

searching for non-pattern matches

3-12

searching in text 3-12

selective command execution on non-

pattern match 3-12

selective command execution on

pattern match 3-12

shell escape 3-45

substituting text 3-23

summary of pattern-matching

metacharacters (table) 3-28

symbolic line addresses 3-6

transferring lines 3-35

ucommand 3-21

undoing command 3-21

V command 3-12

v command 3-12

wildcards, see Regular expression

metacharacters

writing to file 3-38

Editing buffer (vi) 2-87

command 2-90

$= command 2-92

> command 2-92

address command 2-88

args command 2-88

co command 2-88

copying addressed lines 2-88

d command 2-88

deleting addressed lines 2-88

file command 2-88

g command 2-88, 2-89

globally searching addressed line 2-88

globally searching for lines not

matching pattern 2-89

j command 2-89

joining addressed lines 2-89

k command 2-89

lcommand 2-89

listing addressed lines 2-89

m command 2-89

Index-3

Index-4

Editing buffer (vi) (cont.)

mark command 2-89

marking addressed line 2-89

moving addressed lines to another

buffer location 2-89

nu command 2-90

numbering addressed lines 2-90

P command 2-90

—p command 2-90

p offset argument 2-87

positioning addressed lines in window

2-88

printing addressed lines 2-90

printing addressed lines in window

2-92

printing changed lines 2-87

printing file status 2-88

printing list of files being edited 2-88

printing range of lines on screen 2-91

pu command 2-90

putting text 2-90

reporting current version of vi 2-90

reporting number of last line 2-92

shifting addressed lines to right and

left 2-92

t command 2-88

ucommand 2-90

undoing effect of command 2-90

ve command 2-90

w command 2-91

writing addressed lines to standard

input for command execution

2-91

ya command 2-91

yanking addressed lines 2-91

zcommand 2-91, 2-92

Editor

batch editor, see Sed

command line, see Editread

full-screen editor, see Vi

line editor, see Ed

Editread 1-1

.editreadrc file 1-1, 1-5, 1-8

assigning values to functions 1-5

configuration display (figure) 1-2

cursor control 1-9

default settings (figure) 1-2

disabling 1-8

EDITREAD environment variable

1-5, 1-6, 1-7, 1-9

Editread (cont.)

functions and defaults (table) 1-4

history 1-1

history facility, see History facility (in

editread)

initialization 1-5

invoking 1-1

line discipline 1-8

line editing 1-12

process control, see Process control

(editread)

refresh command line 1-23

terminal type 1-24

verbatim mode 1-23

EDITREAD environment variable 1-5,

1-6, 1-7, 1-9

Entering text

cat command 3-2

ed 3-16

sed 4-7, 4-8

vi 2-18

env command 2-12

Environment options (vi)

autoindent 2-106

autoprint 2-101

autowrite 2-93, 2-101

beautify 2-101

directory 2-101

displaying 2-98

edcompatible 2-75, 2-101, 2-102

error bell 2-102

flash 2-102

hardtabs 2-102

ignorecase 2-70, 2-102

lisp 2-106

list 2-102

magic 2-70, 2-102

message 2-102

modelines 2-106

novice 2-103

number 2-103

numbering lines 2-84

optimize 2-108

paragraphs 2-110

readonly 2-103

redraw 2-4, 2-12, 2-108

remap 2-103, 2-115

Licensed material—property of copyright holder(s) 069-701036

Environment options (vi) (cont.)

report 2-12, 2-103

scroll 2-92, 2-108

sections 2-110

setting 2-95, 2-96

shell 2-103

shiftwidth 2-106

showmatch 2-107

showmode 2-12, 2-18, 2-104

slowopen 2-108

tabstop 2-104

taglength 2-107

tags 2-107

term 2-104

terse 2-104

timeout 2-104, 2-112

types of 2-100

typical display 2-99

used for editing (table) 2-101

used for programming and debugging

(table) 2-106

used with DTK (table) 2-110

used with slow terminals (table) 2-108

warning 2-105

window 2-109

wrapmargin 2-12, 2-18, 2-105

wrapscan 2-70, 2-105

writeany 2-107

Erasing text

ed 3-20, 3-22

editread 1-13

sed 4-11

vi, see Deleting text (vi)

Escape key 1-16, 1-19, 2-2

Escaped angle brackets (\< \>)

metacharacters 2-71, A-7, A-8

Escaped braces (\{ \}) metacharacters

A-7, A-9

Escaped parentheses (\(\))

metacharacters 2-78, 2-79, 4-14,

A-7

EXINIT environment variable 2-11,

2-96, 2-111

exit command 2-94

export command 2-11, 2-97

069-701036 Licensed material—property of copyright holder(s)

F

Files

display and change filenames (ed)

3-45

ed file 3-1

recovery 2-122, 2-124, 3-46

sed input 4-1

sed script 4-1

status of 2-16, 2-88, 2-122

tags 2-107

vi text 2-1

Full-Screen editor, see Vi

Function key map 4-18

H

Help commands (ed) 3-42

History facility (in editread) 1-1, 1-15

compared with C shell history 1-15

debugging 1-19, 1-20

list length 1-19

moving up and down in list 1-17, 1-18

prompt 1-22

reading list from file 1-20

recalling event 1-16

scanning list by pattern matching 1-17

writing list to file 1-19

Input mode 2-2, 3-16, 3-18, 3-20, 3-22

Inserting text

ed 3-18

editread 1-14

sed 4-8

Vi 2-37

Invoking

ed 3-2

editread 1-1

sed 4-1

vi 2-14

J

Joining lines

ed 3-37

editread 1-11

sed 4-24

vi 2-120

Index-5

L

Last line mode (vi) 2-2, 2-69, 2-82, 2-83,

2-84, 2-87, 2-96, 2-98, 2-111, 2-125

Line addressing

ed 3-4, 3-6, 3-7, 3-9

sed 4-2

Vi 2-72, 2-73

Line discipline 1-8, 2-20, 3-20, 3-22

Line editor, see Ed

Line numbering

ed 3-6, 3-15

sed 4-7

vi 2-84

M

Macros (vi)

abbreviations 2-111, 2-116

defining function keys 2-114, 2-115

deleting 2-116, 2-118

key mapping 2-111

multiple mappings to one macro 2-103

nesting 2-115

setting remap option 2-103

setting up 2-111, 2-113, 2-114

undoing effect of 2-118

used in command mode 2-112

used in insert mode 2-112

Mapping function keys 4-18

Marking text (vi) 2-62

for deletion 2-44

moving cursor to mark 2-34

me macro set 2-110

Metacharacters, see Regular expression

metacharacters

mm macro set 2-10, 2-110, 2-111

Moving cursor (vi)

by character 2-19

by line 2-20

by paragraph 2-28

by relative line 2-31

by sentence 2-27

by word 2-26

outside window 2-31

to absolute line 2-32

to end of file 2-32

to mark 2-34

to specific character on line 2-23

to specific column on line 2-25

Index-6 Licensed material—property of copyright holder(s)

Moving cursor (vi) (cont.)

within current window 2-29

within line 2-22

Moving text

ed 3-33

vi, see Deleting text (vi) and Yanking

text (vi)

ms macro set 2-110

mxdb (Multi-eXtensible DeBugger) 1-1,

1-2, 1-5, 1-20

nroff 2-10

Numbering lines

ed 3-15

sed 4-7

vi 2-84

Oo

Opening line (vi) 2-38

Operating modes

command 2-2, 2-112, 3-16, 3-18, 3-20

input 2-2, 3-16, 3-18, 3-20, 3-22

last line 2-2, 2-69, 2-82, 2-83, 2-84,

2-87, 2-96, 2-98, 2-111, 2-125

Pp

Paging (vi) 2-32

Parentheses, escaped (\(\))

metacharacters 2-78, 2-79, 4-14,

A-7

Pattern matching, see Regular expression

metacharacters

ed, see Searching and substituting

patterns (ed)

sed, see Searching and substituting

patterns (sed)

vi, see Searching and substituting

patterns (vi)

Pattern space (sed)

appending input line to 4-24

definition of 4-1

N command 4-24

Period (.) metacharacter 2-71, 3-28,

3-29, A-2, A-3

Pound sign (#) sed comment symbol 4-5

069-701036

Printing text (ed) 3-14

Process control (editread)

interrupt 1-21

quit 1-21

suspend 1-22

Prompting (ed) 3-41

Putting text elsewhere in buffer

ed 3-35

vi 2-46, 2-64

Q

Quitting

ed 3-40

editread 1-8

vi 2-13

R

Reading from file into buffer

ed 3-38

sed 4-16

vi 2-84

Rearranging text

copying (ed) 3-33, 3-35

moving (ed) 3-33

vi, see Deleting text (vi) and Yanking

text (vi)

Redirecting output 3-2

Refreshing command line 1-23

Refreshing screen (vi) 2-13

Registers for text storage 2-60

legal names 2-46, 2-60, 2-61, 2-63

Regular expression metacharacters

ampersand (&) 2-78, 2-79, 3-28, 3-31,

4-12, 4-15, A-7, A-8

asterisk (*) 3-28, 3-29, A-2, A-4

backslash (\) 2-71, 3-28, 3-30, A-2,

A-5

basic set (table) A-2

brackets ({]) 2-71, 3-28, A-2, A-6

caret (‘) 2-71, 3-28, 3-30, A-2, A-6

dollar sign ($) 2-71, 3-28, 3-30, A-2

escaped angle brackets (\< \>) 2-71,

A-7, A-8

escaped braces (\{ \}) A-7, A-9

escaped parentheses (\(\)) 2-78, 2-79,

4-14, A-7

extended set (table) A-3

069-701036 Licensed material—property of copyright holder(s)

Regular expression metacharacters

(cont.)

ined A-1

in sed A-1

in vi A-1

period (.) 2-71, 3-28, 3-29, A-2, A-3

setting magic option 2-102

used with ed (table) 3-28

used with editread 1-16, 1-17

used with vi (table) 2-71

Removing text

ed 3-20, 3-22

editread 1-13

sed 4-11

vi, see Deleting text (vi)

Repeating last command

ed 3-13

Repeating previous command

vi 2-119

Replacement patterns A-7, A-8

ed, see Searching and substituting

patterns (ed)

sed, see Searching and substituting

patterns (sed)

vi, see Searching and substituting

patterns (vi)

Replacing text

ed 3-19

sed 4-11

vi 2-47, 2-48

S

Scrolling (vi) 2-32

Search patterns, see Regular expression

metacharacters

Searching and substituting patterns (ed)

addressing, see Line addressing

g substitution option 3-26

global search commands (table) 3-12

global substitution 3-26

in range of line 3-25

on addressed line 3-24

on current line 3-24

repeat replacement pattern 3-28, 3-31

Searching and substituting patterns (sed)

finding first pattern match 4-13

printing addressed lines 4-6

search pattern 4-13

Index-7

Index-8

Searching and substituting patterns (sed)

(cont.)

substituting the nth occurrence 4-13

Searching and substituting patterns (vi)

/ search delimiter 2-69

? search delimiter 2-69

“ substitution symbol 2-74

addressing 2-72, 2-73

c substitution option 2-74, 2-75

confirming substitutions 2-76

edcompatible option 2-75

end case conversion in replacement

pattern 2-78, 2-81

g substitution option 2-74, 2-75

globally in line 2-74, 2-76

ignorecase option 2-70

in current line 2-75

in entire buffer 2-76

lowercase replacement pattern 2-78,

2-80

magic option 2-70

metacharacters 2-69

N command 2-69

ncommand 2-69

repeating replacement pattern 2-78

replacement patterns 2-74

search pattern save 2-78, 2-79

search patterns 2-74

substitute options 2-74

tagging replacement patterns 2-78,

2-79

uppercase replacement pattern 2-78,

2-80

wrapscan option 2-70

Sed

comment symbol 4-5

& metacharacter 4-12, 4-15

= line numbering command 4-7

\(\) metacharacters 4-14

{ } grouping symbols 4-20

acommand 4-7

addressed patterns 4-11

addressing input lines 4-2

addressing methods (table) 4-3

appending text 4-7

blank lines in script 4-5

branching 4-21, 4-22

broken line matches 4-24

c command 4-9

Licensed material—property of copyright holder(s)

Sed (cont.)

changing text 4-9

command format and options 4-1

commands, examples of 4-6, 4-7,

4-11, 4-13, 4-14, 4-15, 4-18, 4-19

commenting in script 4-5

control structures 4-19

converting strings of equal length 4-18

d command 4-11

deleting text 4-11

displaying control characters 4-17

editing commands (table) 4-4

g substitution option 4-12

grouping with braces 4-20

icommand 4-8

input file 4-1

inserting text 4-8

interrupting search 4-17

lcommand 4-17

line addressing 4-2

N command 4-24

n substitution option 4-12

numbering lines 4-7

p command 4-6

p substitution option 4-12

pattern matching 4-6

pattern matching across lines 4-24

pattern space, definition of 4-1

printing addressed lines 4-6

processing commands, steps for 4-1

rcommand 4-16

reading from file 4-16

replacement patterns 4-11

replacing text 4-9, 4-11

s command 4-11

script examples 4-8, 4-9, 4-10, 4-20,

4-22, 4-23, 4-24

script file 4-1

search patterns 4-11

stripping out new-lines 4-24

substitute options (table) 4-12

substituting text 4-11

substituting the nth occurrence 4-13

tag substitution 4-14

translating strings of equal length 4-18

wcommand 4-15

w substitution option 4-12, 4-13

writing substitutions to file 4-13

writing to file 4-15

069-701036

setenv command 2-11, 2-97

sh command 1-5, 2-94

Shell escape

ed 3-45

vi 2-93, 2-94

Shell programming

ed script 3-1

Status

editing 2-122

line messages 2-9, 2-12, 2-16, 2-104

Substituting text

ed, see Searching and substituting

patterns (ed)

sed 4-11

vi, see Changing text (vi); Searching

and substituting patterns (vi)

T

Tag search

embedding tag filenames in program

source file 2-106

identifying tags files 2-107

locating tag label in file 2-93

specifying tag name length 2-107

Tagging patterns A-7

ed 3-28, 3-31

sed 4-12, 4-14

vi 2-79

TERM environment variable 2-4

Terminal type definition

editread 1-24

vi 2-4, 2-104, 2-108

Text editor, see V1

Text objects (vi)

character 2-6, 2-19, 2-23, 2-40, 2-47,

2-48, 2-51

line 2-6, 2-20, 2-22, 2-23, 2-25, 2-41,

2-42, 2-52, 2-53, 2-62

mark 2-6, 2-34, 2-44, 2-58, 2-62

paragraph 2-6, 2-10, 2-28, 2-43, 2-44,

2-56, 2-57, 2-62, 2-110

screen window 2-6

section 2-10, 2-110

sentence 2-6, 2-27, 2-42, 2-43, 2-54,

2-55, 2-62

space-delimited word 2-6, 2-41, 2-52,

2-62

window 2-29, 2-32

069-701036 Licensed material—property of copyright holder(s)

Text objects (vi) (cont.)

word 2-6, 2-26, 2-40, 2-51, 2-62

Tilde (~) command 2-78, 2-121

Translating strings (sed) 4-18

Transposing characters (vi) 2-119

troff 2-10

U

Undoing command 2-13, 2-46, 2-86,

2-90, 2-118, 2-122, 2-123, 3-21

V

Verbatim mode (editread) 1-23

Vi 2-31, 2-1

!command 2-94

'! command 2-94

$ command 2-22

% address 2-76

& command 2-78, 2-79

’ (single quote) mark designator 2-35,

2-45

(command 2-27

) command 2-27

, command 2-23

. (dot) command 2-46

.exrc file 2-11, 2-96, 2-97, 2-111

/ search delimiter 2-69

;command 2-23

? search delimiter 2-69

@ symbol 2-4

register designator 2-46, 2-61, 2-62,

2-63

\(\) command 2-78

\(\) command 2-79

\e\E command 2-78, 2-81

\I\L command 2-78, 2-80

\u\U command 2-78, 2-80

“command 2-22

* substitution symbol 2-74

‘ (backquote) mark designator 2-35,

2-45

{ command 2-28

\ command 2-28

~ (tilde) 2-16, 2-33

~command 2-78, 2-121

0 command 2-22

A command 2-36

Index-9

Index-10

Vi (cont.)

acommand 2-36

accessing external files 2-82

appending text 2-18, 2-36

arrow keys 2-20

B command 2-26

b command 2-26

C command 2-49

c¢ command 2-49

c substitution option 2-74, 2-75, 2-76

case conversion 2-121

changing text, see Changing text (vi)

character text object 2-6, 2-19, 2-23,

2-40, 2-47, 2-48, 2-51

clearing screen 2-121

command mode 2-2

command syntax 2-5

Control keys, see Control sequences

cursor 2-16

D command 2-39

d command 2-39

Del key 2-18, 2-20

delete-and-put operations 2-59

deleting text 2-39; see also Deleting

text (vi)

Documenter’s Tool Kit (DTK) 2-10

dot (.) command 2-119

E command 2-26

e command 2-26, 2-84

editing buffer commands (table) 2-87

editing operations (table) 2-5

end case conversion in replacement

pattern 2-78, 2-81

entering text 2-18

environment options, see Environment

options (vi)

Escape key 2-2

EXINIT environment variable 2-11,

2-96, 2-111

exiting to shell 2-93, 2-94

F command 2-23

fcommand 2-23

file operations 2-82

function keys 2-112

G command 2-32

g substitution option 2-74, 2-75, 2-76

global substitutions 2-74

H command 2-29

h command 2-19

Licensed material—property of copyright holder(s)

Vi (cont.)

Icommand 2-37

1command 2-37

input mode 2-2

inserting text 2-37

invoking 2-14

J command 2-120

j command 2-20

joining lines 2-120

k command 2-20

L command 2-29

lcommand 2-19

last line mode 2-1, 2-2, 2-11, 2-96,

2-98, 2-111

line numbers 2-33

line text object 2-6, 2-8, 2-20, 2-22,

2-23, 2-25, 2-41, 2-42, 2-52, 2-53,

2-62

lowercase replacement pattern 2-78,

2-80

M command 2-29

m command 2-34, 2-62

macros, see Macros (vi)

mark text object 2-6, 2-10, 2-44, 2-58,

2-62

metacharacters 2-69; see also Regular

expression metacharacters

mm macro set 2-10

moving cursor 2-18

N command 2-69

ncommand 2-69, 2-84

n| command 2-25

nroff 2-10

number of text objects 2-5

number option 2-33

O command 2-38

o command 2-38

opening line 2-38

operating modes 2-2

options, see Editing options (vi)

P command 2-64

p command 2-64

paging 2-32

paragraph text object 2-6, 2-9, 2-10,

2-28, 2-43, 2-44, 2-56, 2-57, 2-62

preserve command 2-83

putting text 2-63

q command 2-13

q! command 2-13

069-701036

Vi (cont.)

quitting 2-13

R command 2-47

rcommand 2-47, 2-84

reading external files into buffer 2-84

reading from file (table) 2-84

recovering deleted lines 2-46

recovering lost file 2-122

redraw option 2-12

refreshing screen 2-13, 2-121

registers 2-10, 2-35, 2-45, 2-60

regular expression metacharacters, see

Regular expression

metacharacters

repeat replacement pattern 2-78

repeating previous command 2-119

replacement patterns 2-74

replacing text 2-47

report option 2-12

rew command 2-84

S command 2-49

scommand 2-49, 2-71

saving working buffer 2-13

screen window text object 2-6, 2-9,

2-29, 2-32

scrolling 2-32

search and substitution command

2-71

search pattern save 2-78, 2-79

searching for patterns 2-3, 2-69

section text object 2-10

sentence text object 2-6, 2-8, 2-27,

2-43, 2-54, 2-55, 2-62

showmode option 2-12

space bar 2-20

space-delimited word text object 2-6,

2-41, 2-52, 2-62

stop command 2-94

substituting text 2-49

T command 2-23

t command 2-23

tag command, see Tag search

tagged replacement pattern 2-78, 2-79

terminal type definition 2-4, 2-104

text objects, see Text objects (vi)

tilde (() command 2-78, 2-121

tilde symbol 2-16, 2-33

transposing characters 2-119

troff 2-10

069-701036 Licensed material—property of copyright holder(s)

Vi (cont.)

trouble saving file 2-125

U command 2-122, 2-123

ucommand 2-13, 2-46, 2-86, 2-118,

2-122, 2-123

undoing command 2-13, 2-122

uppercase replacement pattern 2-78,

2-80

view command 2-15

W command 2-26

w command 2-13, 2-26, 2-83

window screen text object 2-9

word text object 2-6, 2-7, 2-26, 2-40,

2-51, 2-62

working buffer 2-1

wq command 2-13, 2-83

wrapmargin option 2-12

writing addressed lines to file (table)

2-83

writing buffer 2-13

X command 2-39

x command 2-39

xit command 2-83

Xp command 2-119

Y command 2-62

y command 2-62

yank-and-put operations 2-59

yanking text 2-62

ZZ command 2-13

+ command 2-31

View command 2-15

Visually-oriented editor, see Vi

W

Wildcards, see Regular expression

metacharacters

Working buffer 2-1, 2-13, 2-125, 3-1

Writing to file

ed 3-38, 3-39

sed 4-15

vi 2-13, 2-83, 2-125

Y

Yanking text (vi) 2-62

and putting it elsewhere in buffer

2-46, 2-63, 2-64

examples of yank-and-put 2-64

Index-11

Index-12 Licensed material—property of copyright holder(s) 069-701036

TO ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT
2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity

1-4 Units

5-10 Units

11-40 Units

41-200 Units

Over 200 Units

Shipping & Handling Charge

$5.00

$8.00

$10.00

$30.00

$100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

(Agrees to terms & conditions on reverse side)

COMPANY NAME COMPANY NAME

ATTN: ATTN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.

PET ET ETT TT TET Et ty))=6LELT

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

A Fo 55S HIPPING 32 HANDEING | | B EVOLUME: DISCOUNTS: ORDER TOTAL

0 UPS ADD Order Amount Save Less Discount -
1-4 Items $ 5.00 $0 - $149.99 0% See B

5-10 Items $ 8.00 $150 - $499.99 10% | [ax Exempt # SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% or sales | ax
41-200 It $ 30.00 (if applicable) Your local* +

- ems sales tax
200+ Items $100.00 Shipping and +

Check for faster delivery handling - See A

dditi

Shipment and saded to your bill, ne TOTAL - See ©
1] UPS Blue Label (2 day shipping)

1 Red Label (overnight shipping)

oo BAN MENT METH Dio THANK YOU FOR YOUR ORDER
1 Purchase Order Attached ($50 minimum)

P.O. number is . (Include hardcopy P.O.) PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
C Check or Money Order Enclosed PLEASE ALLOW 2 WEEKS FOR DELIVERY.

O Visa O MasterCard ($20 minimum on credit cards) NO REFUNDS NO RETURNS:

Account Number Expiration Date * Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains
a place of business, which covers all 50 states. Please include
your local taxes when determining the total value of your order.
f you are uncertain about the correct tax amount, please call

508-870-1600.

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data

by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a

period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided

it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been

damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT

NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION

ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such

use and | and my company (Customer) hold Data General completely harmless therefrom.

Using the

DG/UxXTM

Editors

069-701036-01 Oe
Cut here and insert in binder spine pocket

(»DataGeneral Ae
Data General Corporation, Westboro, Massachusetts 01580 H69-701436-41

