
¢, DataGeneral
Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

NetWare’ for AViiON Systems:
C Interface Reference Guide

069—000567—00

NetWare® for AVIION® Systems:

C Interface Reference Guide

069-0056 7-00

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085—series) supplied with the software.

Copyright ©Novell Corporation, 1992

Copyright ©Data General Corporation, 1992

All Rights Reserved

Unpublished — All rights reserved under the copyright laws of the United States

Printed in the United States of America

Rev. 00, January 1992

Licensed Material — Property of the copyright holder(s)

Ordering No. 069-000567

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS

DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS.THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS

ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases determine whether any such changes

have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE

LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN

CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS

GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER

AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE

OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY

BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)

ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,

evEN eS pas BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF

All software is made available solely pursuant to the terms and conditions of the applicable license agreement
which governs its use.

Restricted Rights Legend: Use, duplication, or disclosure by the U.S. Government is subject to restrictions

as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at

[DFARS] 252.227--7013 (October 1988).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON is a U.S. registered trademark and DG/UX is a trademark of Data General Corporation.

NetWare is a U.S. registered trademark of Novell, Inc.

UNIX is a US. registered trademark of UNIX Systems Laboratories Inc.

Certain portions of this document were prepared by Data General Corporation and the remaining portions

were prepared by Novell Corporation.

NetWare” for AViioN® Systems:
C Interface Reference Guide

069—000567—00

Revision History: Effective with:

Original Release — January 1992 NetWare” for AViioN® Systems,
Revision 1.30

Preface

IMPORTANT:

This manual provides a systematic and comprehensive reference to the Applications

Programming Interface (API) library of functions and calls for NetWare® for

AViiON® Systems. For more general background information about API functions
and services, please see the companion manual, NetWare® for AViiON® Systems:
C Interface Programmer’s Guide (069—000566).

All references to software versions in this manual are inclusive; no distinction is
made between different releases of the same version. In other words, we refer to
all NetWare 286 products as NetWare 2.x, and we refer to all NetWare 386
products as NetWare 3.x. NetWare for AViiON Systems is compatible with
NetWare 3.x unless otherwise noted. The release notice accompanying your

shipment provides the most current information about exceptions to this

compatibility. :

Unless otherwise noted, NetWare for AViiON Systems servers cannot service API

programs running in a NetWare network.

Organization of this manual

069-000567

Chapter 1 Accounting Service APIs

This chapter explains how to use the Accounting Service APIs that allow file

servers to charge clients for services.

Chapter 2 Bindery Service APIs

This chapter explains how to use the Bindery Service APIs that regulate access to

the file server.

Chapter 3 Connection Service APIs

This chapter explains how to use Connection Service APIs to establish and destroy

logical connections to the file server and control the return of status information _

about those connections.

Chapter 4 File Service APIs

This chapter explains how to use File Service APIs to enable applications to

manipulate files, directories, volumes, trustees, and their associated information.

Chapter 5 Path Service APIs

This chapter explains how to use Path Service APIs to allocate directory handles

and return information about directory paths.

Chapter 6 Queue Management Service APIs

This chapter explains how to use Queue Management Service APIs to control the

flow of jobs and services on the network.

Chapter 7 Server Platform Service APIs

This chapter explains how to use Server Platform Service APIs in function calls

that report file server information and disk usage.

Licensed Material - Property of the copyright holders Hl

Chapter 8 Synchronization Service APIs

This chapter explains how to use Synchronization Service APIs to coordinate access

to network files and other resources.

Chapter 9 Transaction Tracking Service APIs

This chapter explains how to use Transaction Tracking Service APIs to ensure file

integrity of selected files.

Appendix A Constant Declarations and Structure Definitions

‘This appendix defines constants and provides structure requirements for all API

calls.

Appendix B NetWare Errors

This appendix lists all NetWare error codes and explains their interpretation.

Appendix C DG/UX Errors |

This appendix explains how to avoid failures of C calls caused by the two DG/UXTM
interrupt signals, SIGPOLL and SIGALRM.

Appendix D Differences

This appendix describes the differences between the NetWare for AViiON Systems
API library and the API library previously released with NetWare C Interface-DOS.

Related Documents

iv

You received a comprehensive set of documents with your NetWare for AViiON

Systems release package. The manuals listed below are included in that set and
contain information that augments the text of this manual.

NetWare® for AViiON® Systems: Concepts (069-—000483)

This manual provides an alphabetically-arranged glossary of NetWare terminology.

It is written for all levels of NetWare users, but it will be particularly useful to

supervisors who are performing their first installation of the NetWare for AViiON

Systems product.

NetWare® for AViiON® Systems: C Interface Programmer’s Guide (069—000566)

This manual provides a background of information for NetWare applications

programmers and a general overview of available API services and functions. It is

written specifically for applications programmers.

NetWare® for AViiON® Systems: System Administration (069-000487)

This manual provides a reference to the SCONSOLE and HYBRID utilities and the

NetWare for AViiON Systems printing services and utilities. It is written primarily

for network supervisors who will use SCONSOLE and HYBRID to administer the

AViiON file server and set up DG/UX printers using the NetWare printing utilities.

Licensed Material - Property of the copyright holders 069-000567

NetWare®for AViiON® Systems: Installation (069-000488)

This manual provides detailed instructions for planning a NetWare network,

installing NetWare for AViiON Systems on an AViiON computer, configuring client
workstations, and setting up user accounts. It is written for the network

supervisor.

NetWare® for AViiON® Systems: User Book (069—000486)

This manual provides a general overview of NetWare. It is written for first-time

users who are unfamiliar with networks.

NetWare® for AViiON® Systems: Utilities (069-000484)

_ This manual provides an alphabetically-arranged reference for NetWare command

line and menu utilities. It is written for all levels of NetWare users.

Reader, please note

In all examples within the text, we use

This typeface to show system prompts and responses.

To show which NetWare products support a given call, we use a chart similar to the

following:

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / J

Contacting Data General

069-000567

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please contact your local Data General sales

representative.

Telephone assistance

If you are unable to solve a problem with your system, free telephone assistance is

available with your warranty and with most Data General service options. If you

are within the United States or Canada, contact the Data General Customer

Support Center (CSC) by calling 1-800—DG—HELPS. Lines are open from 8:00 a.m.

to 5:00 p.m., your time, Monday through Friday. The center will put you in touch

with a member of Data General’s telephone assistance staff who can answer your

questions.

For telephone assistance outside the United States or Canada, ask your Data

General sales representative for the appropriate telephone number.

Licensed Material - Property of the copyright holders V

Joining our user’s group

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For

more information about membership in the North American Data General Users

Group, call 1-800-253-3902 or 1-508—443-3330.

End of Preface

vi Licensed Material - Property of the copyright holders 069-000567

Contents

Chapter 1 Accounting Service APIs

Function Calls 20... 0.0. ccc ee ee ence ee eee eee e eens 1-1

Introduction to Accounting Services 0... cece eee eee nee 1-1

NWGetAccountStatus 000.00. ce eee ce ee ee ee ene ene as 1-2

NWsubmitAccountCharge 0.0.0... ccc ec ee eee eee eas 1-4

NWsSubmitAccountHold 0.0.00... cc ee ee eens 1-6

NWsSubmitAccountNote 0.0.0... eee cee e ene enee 1-8

Chapter 2 Bindery Service APIs

| Function Calls 0.0.0 cece eee ne ce te teen eee n ences 2-1

Introduction to Bindery Services 0.0. c eee ee eee eee 2-2

NWaAddObjectToSet0 0.0.0.0... cee ce ee eee eens 2-8

NWChangeObjectPassword 0... cece cee eet e eee ees 2-10

NWChangeObjectSecurity0 0.0.00 00. eee ee eee ees 2-12

NWChangePropertySecurity 20... 0.0.0... ccc ec ee eee ees 2-14

NWCloseBindery 0.0.00. ce eee ee eee eee tee eenas 2-16

NWCreateObject 0.0.00 ccc cee eee ee eee eee eee ee nans 2-17

NWCreateProperty 0.0.0.0... 0. cece eee ce ee eee eee eens 2-19

NWDeleteObject0. 00.0.0... eee eee ce eee nee ene wees 221

NWDeleteObjectFromSet 00.0.0... cee ee ee ee eee 2-22

NWDeleteProperty 0... 0... cee ee ee ee ee ee eee ees 2-24

NWGetBinderyAccessLevel 0.00. cece eee eee eee aes 2-26

NWGetObjectID0. 00.00... eee ee een eee e ees 2-28

NWGetObjectName 0.0.0... cee eee cee ee ee eee ee eeee 2-30

NWIsObjectInSet 0.00.0... . cece ee ee ee eee e ne eeee 2-32

NWiIsObjectPasswordOK 0.0.0. cece eee eens 2-34

NWOpenBindery 0... cece eee nee see ee eee 2-36

NWRenameObject 0.0... ce eee ee eee eee eee eee as 2-37

NWscanObject0 0.0.00. ce ee eee eee ee ee eee eee eeeeees 2-38

NWScanProperty 0... ccc cee cee ce ee eee eee eee eee ens 2-40

NWsScanPropertyValue 0.0... ccc eee eee eee eee e ees 2-43

NWWritePropertyValue 0.0.0... 0c. ee ee ee eee eee eee eee 2-46

Chapter 3 Connection Service APIs

Function Calls 0.0.0.0... ccc ee eee eee eee eee e ees 3-1

Introduction to Connection Services 00 cee ee ee ee eee 3-2

NWAttachToServerPlatform0... 0.0... cee ee eee ee ee eee 3-4

NWClearClientConnID 0.0.0.0... ce ee ee ee ee eee 3-6

NWCloseTransport0 0.0.0.0 ccc cece cee ee ee eee eee e eee ee es 3-7

NWDetachFromServerPlatform 0.0... cee eee ee eee eens 3-8

NWGetChientConnID ee ee ne ee eens 3-9

NWGetConnectionInformation0 ccc uececeeeees ... 3-10

NWGetInternetAddress 0.0.0. cee ee ee eee eee eee eee 3-12

NWGetObjectClientConnIDs 0.0... eee eee eee eee 3-13

NWGetServerConnID0 0.0.00... cc ee ee nee e ees 3-15

NWGetsServerConnIDList 0.000.000. 0. cee eee eee eee 3-16

NWLoginToServerPlatform 0.0... ce eee eee ee eee ee eee 3-18

NWLogoutFromServerPlatform 0.0... cee eee ee ee eee ee 3-20

NWRegisterTimeoutErrorFunction0.. 0.0. c eee eee eee eee 3-21

069-000567 Licensed Material - Property of the copyright holders Vil

Chapter 4 File Service APlis

Function Calls 0... 00... ce ee ee cee eee ee eee een ees 4-1

Introduction to File Services... 2... 2.0.0.0... cc cee ee ce eee ee ee eee eee 4-3

NWClearObjectVolRestriction 0.0.0.0... cee eee eee ee eee 4-4

NWCloseFile 20... . 0. 0c cee eee eee eee eee eens 4-6

NWCreateDir 0... ccc ccc eee ec ee eet ee eee eee eee eeas 4-7

NWCreateFile 0.0... 0... ccc eee eee nee eee e nena 4-9

NWCreateNewFile 0... cee ee ee ee eee ee eee as 4-11

NWDeleteDir 0... . cee ee ec eee eee eee eee eas 4-13

NWDeleteFile 0.0... 0. cece ee ee eee eee eee e en eneees 4-15

NWDeleteTrustee 0... ccc eee ee cee ee eee ene ees 4-17

NWFileCopy 0.0 ce cece ee eee cee eee eee e eee sees 4-19

NWGetDirEntryInfo 0.0... ccc ce eee ee ee eee nena 4-21

NWGetDirRestriction 2.0.0... cece ee een eee ee ees 4-23

NWGetEffectiveRights 0.0... cece eee ee eee ee ee eee 4-25

NWGetEntrysTrustees 0. ccc ccc ee ee ee eee ee ee eee eee 4-27

NWGetFileAttributes 0.00.0... 0... cee ee ee ce ee ean 4-29

NWGetNamespacelnfo 0. cc ee ee ee eee eee eee een 4-31

NWGetObjectVolRestriction eee eee eee eee 4-32

NWGetVolInfoWithHandle 0.0... ccc cece eeee eee 4-34

NWGetVolName 00. eee ee ee eee eee ence eeas 4-36

NWGetVolNum ee ee eee ee ee eee eee eee eee ee eee 4-38

NWGetVolsObjectRestrictions 0.0.0... ce eee ee ee eee eee 4-40

NWGetVolUsage 0... ccc ccc eee eee ee eee eee ee eee eees 4-42

NWMoveEntry eee ee eee eee eee eee eee eee eee 4-44

~~ NWMoveFile 2.0... 0... ce ee ee eee eee eee eee ee eee eens 4-46

NWOpenFile 0... 0. ccc cee eee eee eee eee eee e ee neas 4-48

NWPurgeSalvageableFile 0... ce eee ee ee eee ee eee 4-50

NWReadFile ce eee eee ee teen eee eee nae 4-52

NWRecoverSalvageablePile 0.0.0.0... cee eee ee eee eee 4-54

NWRenameDir 0.0... cece cee eee eee eee e enna 4-56

NWScanDirEntryInfo 0.00.0... cc ee eee eee ee 4-58

NWoscanFileEntryInfo 0... 0.00. cc ee ce eee ene 4-60

NWScanSalvageableFiles 2... 0.0... 0. cc ccc eee eee eee ees 4-62

NWscanTrusteePaths 0... cee ee eee eee ee ens 4-64

NWSetDirEntryInfo 2... ec ee ee ee eee ees 4-66

NWSetDirRestriction cece ee ee cece ee eens 4-68

NWSetDirsInheritedRightsMask 0... ec eee eee eee 4-70

NWsetFileAttributes 0.0... 000... ee ee ee ee ee eee ee ees 4-72

NWSetFileEntryInfo 0.0... ce ec eee eee ee eee 4-74

NWSetFilesInheritedRightsMask 0... cc eee ee ee ee eee 4-76

NWSetObjectVolRestriction 0... 0. cc cee ec ee ee ee eee 4-78

NWSsetTrustee 0.00... eee ee ee nee e ees 4-80

NWWriteFile 20... 0... ee ee eee ee ee eee eee ee 4-82

Chapter 5 Path Service APIs
Function Calls 0.0.0.0. cee eee ee eee eee e ee eee ees 5-1

Introduction to Path Services 0.0... ccc cece eee eee eee ee eee 5-1

The NWPath_t structure 0. ccc eee ee ee eee eee ees 5-1

NWaAllocPermanentDirHandle 0... cece ee eee eee oe. BS

NWaAllocTemporaryDirHandle 0.0... ccc cece ee es 5-5

NWDeallocateDirHandle 0.0... cee ee ee ee eee ee 5-7

NWGetDirPath 2.0... 00. cee eee eee eee ences 5-8

NWParseFullPath 0.0... 0... ee eee ee ee ee eee ee eee eee 5-9

NWSetDirHandle 0.2... . 0. ce ce eee eee ee eens 5-11

Vill . Licensed Material - Property of the copyright holders 069-000567

069-000567

Chapter 6 Queue Management Service APIs
Function Calls 2.0.0.0. 0. cc ccc cece ec ee ee ne ee ne ee nees 6-1

Introduction to QMS 0.0... ee ee ee ne eee teen ees 6-2

NWaAbortServicingQueueJdob ... 1... ce ee eee eee 6-3

NWaAttachQueueServerToQueue 2... eee eee ete ee eae 6-5

NWChangeQueueJobEntry 0.0.0.0. ccc ee ee eee eee 6-7

NWChangeQueueJobPosition 0.0.0... cece ee cee eee eens 6-9

NWChangeToClientRights 0.0... ccc cece eee eee ee 6-11

NWCloseFileAndAbortQueueJob 00. cc ee ee ce eee eee ae 6-13

NWCloseFileAndStartQueuedob 00 cee eee ee ee eee eens 6-15

NWCreateQueue ee eee ee ee ee eee eee ee ee eee eae 6-17

NWCreateQueueFile 20.0... cc eee eee eee nen 6-19

NWDestroyQueue.... 0.2... ce ee ee ee eee tena ae 6-22

NWDetachQueueServerFromQueue 0.2 eee eee 6-24

NWFinishServicingQueueJob 0.0.0.0 cc ccc ee eee eee eee 6-26

NWGetQueueJobFileSize Lee eee eee eee eee eee eee 6-28

NWGetQueueJobList 0.0.0.0. 0.0. ee eee ee ee eee ae 6-29

NWReadQueueCurrentStatus 0.0.2... cece eee eee ee eee 6-31

NWReadQueueJobEntry0 0.0.00. cece ee eee ee ee eee as 6-33

NWReadQueueServerCurrentStatus 0.0.0.0 cece eee cena 6-35

NWRemoveJobFromQueue 0... eee ee ee eee eee 6-37

_ NWRestoreQueueServerRights 0.0... cece ee eee eee 6-39

NWServiceQueueJob 0. ee cc ee eee eee eens nee 6-41

NWSetQueueCurrentStatus 0... eee ee ee ee cena 6-43

NWSetQueueServerCurrentStatus 2... cc eee cece eee 6-45

Chapter 7 Server Platform Service APls
Function Calls 2... 0... 0.0.0.0. . cece eee ee ee eee eee eee neee 7-1

NWDisableServerPlatformLogin 0.00... eee 7-2

NWDownServerPlatform ee ee eee ee eee eee ee ees 7-3

NWEnableServerPlatformLogin 0.0... 0.0 cee cee eee ee eee T-4

NWGetDiskUtilization eee eee eee ee ee eens 7-5

NWGetServerPlatformDateAndTime 0... eee ee eens 7-7

NWGetServerPlatformDescriptionStrings-0.. eee e eee 7-9

NWGetServerPlatformInformation 00.00 cc eee cere cece 7-11

NWGetServerPlatformLoginStatus 0.0... 00.0 cece eee eee 7-13

NWGetServerPlatformName cc ee ec eee eee 7-14

NWIsNetWare386 «6.0... cc cee cee eee ee ee eee ees 7-15

NWSetServerPlatformDateAndTime eee ee eee 7-16

Chapter 8 Synchronization Service APis
Function Calls 2.0.0.0. 00. cc ee ce ce ee ee ee ee eee eens 8-1

Introduction to Synchronization Services eee 8-2

NWClearFile 2.0.2... 0.0.0... . ccc ee eee eee ee eee ee ee eee 8-3

NWClearFileSet eee eee eee eee ee eee ee 8-4

NWClearLogicalRecord 0.0.00. eee eee ee ees ... 8-5

NWClearLogicalRecordSet 0.0... ccc eee ee cee ee eee eee es 8-7

NWClearPhysicalRecord 0... cee ce eee eee eee eee eens 8-8

NWClearPhysicalRecordSet 0.0.0... ccc eect ec ee eee ee eee 8-10

NWCloseSemaphore 0... ccc cece cee ee eee eee eee *... 8-11

NWExamineSemaphore 0.0.00 cece ce eee ee eee ee eee wees 8-12

NWLockFileSet 2... 0.0... cece eee eee ee eee eee eee 8-14

NWLockLogicalRecordSet 0.0.0.0 cece eee ee ee eee eee 8-15

NWLockPhysicalRecordSet 0... 0. cece eee eee eee 8-17

NWhLogFile 0.0... . 0c ccc ce eee eee ee eee eee eens 8-19

NWLogLogicalRecord 0.0.0... ccc eee ee ee ee eee eee 8-21

NWLogPhysicalRecord 0. cc cece ee eee ee ee eee eens 8-23

Licensed Material - Property of the copyright holders IX

Chapter 8 Synchronization Service APIs (continued)
NWOpenSemaphore 0... 0.0 ce eee eee eee eee eee ee eee 8-25

NWReleaseFile0. 0.00000. ccc cee ee ee ee nee eee e eens 8-27

NWReleaseFileSet0 0... 00. cc cece eee eee ee eee nee enee 8-28

NWReleaseLogicalRecord0.. 0.0.00 c cee cece eee eee eee ees 8-29

NWReleaseLogicalRecordSet 0.0... ee eee ees 8-30

NWReleasePhysicalRecord 0.0.0... ce eee ee eee ee ees 8-31

NWReleasePhysicalRecordSet0. 00... cee eee eee tees 8-32

NWSignalSemaphore 0... 0. cee cece ee ee eee ee eee eee eas 8-33

NWWaitOnSemaphore 0.0.0. cee eee eee eee n ee 8-34

Chapter 9 Transaction Tracking Service APIs

Function Calls ... 0... 0.0... ec ee ee ee eee eee eee e ee eeeee 9-1

Introduction to Transaction Tracking 00 c eee eae 9-1

NWTTSAbortTransaction0.. 0.0.0 ccc eee ee ee ee eee eens 9-3

NWTTSBeginTransaction0 0.0.00. cc eee ee eee eee ene eeas 9-5

NWtTTSDisableTransactionTracking 2.000 cece ee eeee 9-7

NWTTSEnableTransactionTracking 0.000 cece eee wees 9-8

NWTTSEndTransaction 0.0.0.0. eee eee eee eee ee eee eens 9-10

NWTTSGetConnectionThresholds 2.0... cece ee ee eee 9-12

NWTTSGetControlFlags 0.0 e eee ee eee ee eee 9-14

NWTTSGetProcessThresholds 0.0... cece eee eee eee eae 9-15

NWTTSIsAvailable 2.0... 0.0.00. 0. cee ee ee ee eee eee ees 9-17

NWTTSIsTransactionWritten 0.0... cc cee ee ee eee 9-19

NWTTSSetConnectionThresholds 00.00 cee ee eee ees 9-21

NWTTSSetControlFlags 0... 0. cee eee eee eee eae 9-23

NWTTSSetProcessThresholds ee eee eee eee ee eee 9-24

Appendix A Constant Declarations and Structure Definitions

Accounting ServiceS 0.0... c cece cece ee eee eee eee nee enes A-1

Bindery Services 0.0. cece cece ence eee eee eee nes A-2

Connection Services eee eee ee eee ee eee eee eee ene A-4

File and Path Services eee eee ee ee eee ee eee tenes A-4

Queue Management Services 00000 eee wee A-20

server Platform Services 0.0... cece eee e ee eee ee eee as A-23

Synchronization Services 0.0... ec ee eee eee eens A-25

Appendix B NetWare Errors

NWErn0 .. 1... ee ee eee ee eee een nee eee B-1

Errors returned in the 4th Byte of NWErrno:0000- B-2

Appendix C DG/UX Errors

Appendix D Differences

Overview and Introduction eee ee eee ee eee ee ee eee ee D-1

Global Differences Between Current and Previous APIs D-3

Function Call Index - Previous/Current API Libraries D-7

Console Control Services 000 e eee cee cece een aeee D-10

Licensed Material - Property of the copyright holders 069-000567

Chapter 1

Accounting Service APIs

Function Calls

This chapter describes the following Accounting Service APIs.

API Page

NWGetAccountStatus a ee 1-2

NWSubmitAccountCharge 0... cc eee eee eee ee eee eens 1-4

NWSubmitAccountHold0 0. c cece cece eee e ees 1-6

NWSubmitAccountNote 0.0... cece eee eee eee 1-8

Introduction to Accounting Services

069-000567

The four accounting service calls enable developers to create DG/UXTM servers that
can charge for their services. For example, a database server can charge for the

number of records viewed, the number of requests serviced, or the amount of time

connected. A print server can charge for the number of pages printed.

For a server to charge for services, the server must be a member of the

ACCOUNT_SERVERS property of the file server. See "Accounting Services" in

NetWare® for AViiON® Series Systems C Interface Programmer’s Guide.

To use accounting services, you must be familiar with the NetWare® file server
bindery. See "Introduction to Bindery Services" in Chapter 2 for an explanation of

Bindery objects, properties, and values.

Licensed Material - Property of the copyright holders 1-1

NWGetAccountStatus

Synopsis

Input

Output

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ of /

This function returns the account status of a bindery object.

#include "nwapi.h"

int -ecode:
uint16 serverConnID;

uint16 objectT ype;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
int32 balance;

int32 limit;

NWHoldInfo_t holdsINWMAX_NUMBER_OF_HOLDS];

ccode=NWGetAccountStatus(serverConnID, objectType, objectName,

&balance, &limit, holds);

serverConnID

objectT ype

objectName

balance

limit

holds

balance

limit

holds

Passes the file server connection ID.

Passes the type of bindery object for which the request is

being made. (See Appendix A, Bindery Object Types.)

Passes a pointer to the string containing the object name for

which the account status request is being made.

Passes a pointer to the space allocated for the number of
value units available to the object to buy services on the

network.

Passes a pointer to the space allocated for the value of the

lowest level the object’s account balance can reach before the

object can no longer buy services on the network.

Passes a pointer to the structure allocated for the list of

objectIDs and holdAmounts that have been placed on the

account (maximum = 16). (See Appendix A, NWHoldInfo_t

Structure.)

Receives the number of value units available to the object to
buy services on the network.

Receives the value of the lowest level the object’s account
balance can reach before the object can no longer buy

services on the network. _

Returns a list of objectIDs and holdAmounts that have been

placed on the account (maximum = 16). (See Appendix A,

NWHoldInfo_t Structure.)

Licensed Material - Property of the copyright holders 069-000567

069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xC0 No Account Privileges

0xC1 No Account Balance

OxC4 Account Disabled

OxEA No Such Member

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function queries a file server’s bindery for the current account status of a

specified bindery object by passing the bindery object name and type. The function

returns the object’s balance, limit, and holds parameters.

The value in the balance parameter represents the object’s account balance, usually

in some established monetary unit such as cents.

The holds parameter lists servers that have issued NWSubmitAccountHold calls

against the object and the amount reserved by each value-added server. The holds

parameter is also lists the object ID number of a value-added server that has issued

a NWSubmitAccountHold call against the object. Up to 16 servers can place holds

on the account at one time. Multiple holds from the same server are combined.

Each server hold is made up of two fields: (1) the object ID of the server that placed

the hold, and (2) the amount of that server’s hold.

See Also

NWSubmitAccountHold

Licensed Material - Property of the copyright holders 1 -3

NWSubmitAccountCharge

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ "A ao

This function updates the account of a bindery object by charging for a service and

updating the audit record.

Synopsis

Input

Output

#include “nwapi.h"

int code;

uint16 serverConnID;

uint16 objectT ype;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 serviceT ype;
int32 chargeAmount;

int32 cancelHoldAmount;

uint16 commentT'ype;

char commentLNWMAX_COMMENT_LENGTH}];

ecode=NWSubmitAccountCharge(serverConnID, objectT ype, objectName,
servicelype, chargeAmount, cancelHoldAmount, commentType, comment);

serverConnID

objectT ype

objectName

servicelType

chargeAmount

cancelHoldAmount

commentType

comment

None.

Passes the file server connection ID.

Passes the type of bindery object for which the request is

being made. (See Appendix A, Bindery Object Types.)

Passes a pointer to the name of the object for which the

account status request is being made

Passes the type of service for which the request is being

made (usually the object type of the charging account

server). |

Passes the amount of account server charges for the service

it provides.

Passes the amount to be subtracted from the total amount

of all holds previously placed by the server. If no

NWSubmitAccountHold calls were made prior to providing

the service, this value should be zero.

Passes the type of comment written to the audit report.

Passes a pointer to a comment associated with the object’s

account charge.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x94 No Write Privileges

OxA2 1/O Lock Error

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function charges an object’s account balance and relinquishes a hold against
the object’s account balance. The function can also write a note about the

transaction in an audit record (optional). The charge and hold amounts do not have
to be the same. |

The objectType and objectName parameters must uniquely specify the bindery
object and cannot contain wildcard characters.

The serviceType parameter usually contains the object type of the charging account

server. The common server object types are listed below:

Object Type

Archive Server NWOT_ARCHIVE_SERVER
Job Server NWOT_JOB_SERVER
Print Server NWOT_PRINT_SERVER

See "Introduction to Bindery Services" in Chapter 2 for additional object types.

The commentType parameter contains the number of the comment type in the
comment parameter. Comment types are administered by Data General and are

listed below:

Comment Type Description

1 Connect time charge

2 Disk storage charge

3 Log in note

4 Log out note

5 Account locked note

6 Server time modified note

Developer’s should contact their Data General service representative for unique
comment types. Comment types greater than 8000h are reserved for experimental

purposes.

Notes

The comment parameter is the entry that the value-added server makes in an audit
record. This audit record is contained in the SYS:SYSTEM\NET$ACCT.DAT file.

See Also

NWSubmitAccountNote

069-000567 Licensed Material - Property of the copyright holders 1 “5

NWSubmitAccountHold
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ of /f

This function reserves a specified amount of an object’s account balance pending

a NWSubmitAccountCharge call.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint16 objectT ype;

char objectName[NWMAX_ OBJECT_NAME_LENGTH];
int32 reserveAmount; |

ccode=NWSubmitAccountHold(serverConnID, objectType, objectName,

reserveAmount);

Input

serverConnID Passes the file server connection ID.

objectType Passes the type of bindery object for which the request is

being made. (See Appendix A, Bindery Object Types.)

objectName Passes a pointer to the name of the bindery object for which

the account status request is being made.

reserveAmount Passes the hold amount to be placed against the client’s

account pending service.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x94 No Write Privileges
0xA2 V/O Lock Error

OxC1 No Account Balance

0xC3 Too Many Holds

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function reserves a specified amount of an object’s account balance before that
object receives and is charged for a service on the network.

1 -6 Licensed Material - Property of the copyright holders 069-000567

069-000567

Notes

The object ype and objectName parameters must uniquely identify the bindery
object and may not contain wildcard characters.

The reserveAmount parameter gets the amount that the server expects to charge

for the service it is about to provide to the object.

No more than 16 servers can reserve amounts of an object’s account balance at

one time. Multiple holds from the same server are combined.

Licensed Material - Property of the copyright holders 1 -/

NWSubmitAccountNote

NetWare for

NetWare 2.x NetWare 3.x AVION Systems

JS "A "4

This function adds a note about an object’s account to an audit record. This API

does not charge for the service.

Synopsis

#include "nwapi.h"

int ecode;

uint16 serverConnID;
uint16 objectT ype;

char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 servicel ype;

uint16 commentT ype;

char commentINWMAX_COMMENT_LENGTH}];

ccode=NWSubmitAccountNote(serverConnID, objectType, objectName,

serviceType, commentType, comment);

Input

serverConnID Passes the file server connection ID.

objectT ype Passes the type of bindery object for which the request is
being made. (See Appendix A, Bindery Object Types.)

objectName Passes a pointer to the object name for which the account

status request is being made.

servicelype Passes the type of service for which the request is being
made (usually the object type of the charging account

server).

commentType Passes the type of comment in the comment parameter. (See
Appendix A, Comment Types.)

comment Passes a pointer to the comment associated with the object’s
account.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxEA No Such Member

OxEB Not Set Property

0xEC No Such Set
OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

1 -8 Licensed Material - Property of the copyright holders 069-000567

069-000567

Description

Notes

This function adds a note about an accounting transaction to an audit record.

The objectType and objectName parameters must uniquely identify the bindery
object and may not contain wildcard characters.

The serviceType parameter usually contains the object type of the charging account

server. The common server object types are listed below:

Object Type

Archive Server NWOT_ARCHIVE_SERVER

Job Server NWOT_JOB_SERVER
Print Server NWOT_PRINT_SERVER

The commentType parameter contains the number of the comment type in the

comment parameter. Comment types are administered by Data General and are
listed below:

Comment Type Description

Connect time charge

Disk storage charge

Log in note

Log out note

Account locked note

Server time modified notemm Ord co doe
Developer’s should contact their Data General service representative for unique

comment types. Comment types greater than 8000h are reserved for experimental
purposes. |

The comment parameter contains the entry that the server makes in the audit
record. The audit record is contained in the SYS:SYSTEM\NET$ACCT.DAT file.

End of Chapter

Licensed Material - Property of the copyright holders 1 -9

Chapter 2
Bindery Service APls

Function Calls

069-000567

This chapter contains a description of the following Bindery Service APIs.

API Page

Function Calls 2.0... 0. . ce cc ee ne eee nett eee enes 2-1

Introduction to Bindery Services 0... cece ee eee wees 2-2

NWaAddObjectToSet Cee ee eee eee eee ee eee eee eee es 2-8

NWChangeObjectPassword0 00 c cece eeee see e ees 2-10

NWChangeObjectSecurity 0. ccc cee ee ee ee eens 2-12

NWChangePropertySecurity 0. ccc cece eee ee eee eens 2-14

NWCloseBindery Lee eee ee nen eee eee eee eee teen eee eees 2-16

NWCreateObject 0... ccc ee eee eee teen ee eee ees 2-17

NWCreateProperty 0.0... ccc cc cee ec eee eee teens .. 2-19

NWDeleteObject 0... ec ee eee eee tee nea 2-21

NWDeleteObjectFromSet 0 ccc ee eee eee eens | 2-22

NWDeleteProperty ccc cece ee eee ee et ee eee nes 2-24

NWGetBinderyAccessLevel weet e weet e eee te eee eens 2-26

NWGetObjectID 00000000. Dee ee ee eee eee eens 2-28

NWGetObjectName 0... ccc ee eee eee eee eee ees 2-30

NWIsObjectInSet2 0.0.0.0... 0c eee ee eens ... 2-32

NWIsObjectPasswordOK Lecce eceeaeeueueeeaes 2-34

NWOpenBindery 2... 0. ccc ce eee eee eee eee teen eee 2-36

NWRenameObject 0. cece eee ee ee eee ee eee eee eee 2-37

NWScanObject 0... eee eee ee ee eee eee eens 2-38

NWScanProperty0. 2... cc cece ee eee eee tee eeee ences 2-40

NWScanPropertyValue 2... cece cece eee eee eee ans 2-43

NWWritePropertyValue 0... . ccc ee eee ee eee ee eae 2-46

Licensed Material - Property of the copyright holders

Introduction to Bindery Services

Each NetWare file server includes a small database or bindery implemented as

hidden files. NetWare for AViiON Systems has three hidden bindery files

(NET$OBJ.SYS, NET$VAL.SYS, and NET$PROP.SYS) which are located in

SYS:SYSTEM. Within the Bindery, the NetWare operating system maintains a list

of all objects (entities) allowed to access the file server. NetWare also records

information about each bindery object.

Bindery Objects

A bindery object can be a user, user group, file server, print server, or any other

named entity that can access a file server. Each bindery object consists of the

following components.

Object Name A 48-byte, null-terminated string that contains the name of

| the object. Only printable characters can be used. An object

name cannot include spaces or the following characters:

/ (slash)

\ (backslash)

(colon)

; (semicolon)

, (comma)

* (asterisk)
9

(question mark)

Object ID A 4-byte number that uniquely identifies the object within a
particular file server’s bindery. The NetWare operating

system, not the application, assigns this number.

Object State A 1-byte flag that specifies whether the object is Static

~ (0x00) or Dynamic (0x01). A Static object exists in a bindery

until an application intentionally deletes it with the

NWDeleteObject function. A Dynamic object disappears

from a file server’s bindery when the file server is rebooted.

(In the case of an object that is a service-advertising server,

the object disappears from a bindery when the server ceases

to advertise.)

Object Type | A 2-byte number that classifies an object as a user, user

group, file server, etc. The following is a list of common

object types:

2-2 | Licensed Material - Property of the copyright holders 069-000567

069-000567

Table 2-1 Object Types

Description Object Type

Unknown 0x0000

User 0x0001

User Group 0x0002

Print Queue 0x0003

File Server 0x0004

Job Server 0x0005

Gateway 0x0006

Print Server 0x0007

Archive Queue 0x0008

Archive Server 0x0009

Job Queue 0x000A

Administration 0x000B

SNA Gateway 0x0021

' Remote Bridge Server 0x0024

Synchronization Server 0x002D

Archive Server (Dynamic SAP) 0x002E

Advertizing Print Server __ 0x0047

Btrieve VAP 0x0050

Print Queue User 0x0053

NVT Server 0x009E

Wild OxFFFF

Properties Flag

Object Security

A 1-byte flag that indicates whether one or more properties

are associated with the object.

0x00 = no associated properties

OxFF = one or more associated properties

A 1-byte flag that determines access to the object. The low-

order nibble determines who can read (scan for and find) the

object. The high-order nibble determines who can write to

(add properties to or delete properties from) the object.

Refer Table 2-2 for the values defined for each nibble.

Licensed Material - Property of the copyright holders 2-3

Table 2-2 Security Levels

Hex _ Binary Access _ Description

0 0000 Anyone Access allowed to all clients, even if the
client has not logged in to the file server.

1 0001 Logged Access allowed only to clients who have
logged in to the file server.

2 0010 Object Access allowed only to clients who have

logged in to the file server with the object’s

name, type, and password.

3 0011 Supervisor Access allowed only to clients who have
logged in to the server as the supervisor or

as an object that has supervisor security

equivalence.

4 0100 NetWare Access only allowed to the NetWare

operating system.

For example, 0x31 indicates that any user logged in to the file server can find the
object, but only the supervisor can add a property to the object.

NOTE:

All six components (object name, object ID, object type, object properties, object
state, and object security) are essential elements of a bindery object.

Properties and Values

Each bindery object can have one or more properties associated with it. For
example, the object DAN (object type 0x0001, user) might be associated with the
properties GROUPS_I’M_IN, ACCOUNT_BALANCE, and PASSWORD. Note that
GROUPS_IM_IN is not the name of a user group to which the object belongs. It is
only the name of one category of information associated with that object. In the
same way, ACCOUNT_BALANCE is not an actual numerical balance, and
PASSWORD is not an actual password. Properties only identify categories of
information associated with the object.

Each property has a value associated with it. For example, the value of the
GROUPS_I’M_IN property would be the object ID of a user group to which DAN
belongs. The value of the property ACCOUNT_BALANCE would be user DAN’s
current balance. The value of the PASSWORD property would be DAN’s login
password. — |

Properties fall into one of the following two categories: item or set. These
categories are described below.

Item Property. An Item property is made up of a 128-byte value. For example, the
property ACCOUNT_BALANCE is an Item property that contains a monetary

balance in the first few bytes of a 128-byte string and zeros in the rest.

Licensed Material - Property of the copyright holders 069-000567

Set Property. A Set property contains a list of 1 to 32 object IDs contained in a

128-byte segment. Each object ID is a long integer (4 bytes). The property

GROUPS_I’M_IN is a Set property. The 128-byte segment associated with

GROUPS_I’M_IN contains the object IDs of 1 to 32 user groups to which (in our

example) DAN belongs. The values of Set properties are always object IDs grouped

into one or more 128-byte segments.

A property consists of the following components: property name, property state,

property type, property security, and values flag. These items are described below.

Property Name A 15-byte string that contains the name of the property. A

property name can contain only printable characters except

any of the following:

/ (slash)

\ (backslash)

(colon)

(semicolon)

(comma)

(asterisk)

(question mark)eS ~~ we ee
Property State A 1-byte field with bits 0 and 1 defined. Bit 0 is the

Static/Dynamic flag defined as follows:

3210 Bit number

0000 Static

0001 Dynamic

A Static property exists until it is explicitly deleted. A

Dynamic property is deleted from the file server’s bindery

when the file server is rebooted.

Property Type A 1-byte field with bits 0 and 1 defined. Bit 1 is the

Item/Set flag defined as follows:

3210 Bit number

0000 Item

0010 Set

The values of Item properties are defined and interpreted by
applications or by APIs. The bindery services software

interprets the value of a Set property as a series of object ID

numbers, each 4 bytes long.

For example, the following bit combination indicates a Static
property of type Set:

0010

069-000567 Licensed Material - Property of the copyright holders 2-5

Property Security A 1-byte flag that determines who can access the property.

The low-order nibble determines who can scan for and find

the property (read security). The high-order nibble

determines who can add value(s) to the property (write

security). The following values are defined for each nibble:

0000 Anyone

000 1 Logged

00 1 0 Object

0 0 1 1 Supervisor

0100 NetWarem Wh eH ©
For example, 0x31 (0011 0001) indicates that any user
logged in to the file server can find (read) the property, but

only SUPERVISOR can add (write) values to the property.

Values Flag A 1-byte flag that indicates whether an item property has

more than one value associated with it. The following

values are defined for the byte:

0000 0000 One value

1111 1111 More values

Using Property Values

The following charts list the APIs that need to be used to create properties, verify

written values, delete property values, and delete properties.

Chart 1: Create Properties

Step — Type API

Create the object Set .| NWCreateObject
(if the object does not Item (specifies object type)

exist)

Create the property “) Set NWCreateProperty

(if the property does Item (specifies the object type
not exist) that can use the property)

Write value to property Set NWAddOb ject ToSet

| Item | NWWritePropertyValue

Chart 2: Verify Written Values

Step | Type API

Read value of property Set NWIsObjectInSet

Item NWScanPropertyValue

2-6 Licensed Material - Property of the copyright holders 069-000567

069-000567

Chart 3: Delete Property Values

Step Type APTI

Delete a property value Set NWDeleteObjectFromSet

Item | NWWritePropertyValue

(overwrites existing

value)

Chart 4: Delete Properties

| Step Type API |

| Delete a property set NWDeleteProperty |
Item

Licensed Material - Property of the copyright holders 2-1

NWAddObjectToSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / /

This function adds a member to a bindery property of type SET.

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH);
uint16 objectT ype;

char propertyName[NWMAX_PROPERTY_NAME_LENGTH}];
char memberName[NWMAX_MEMBER_NAME_LENGTH];
uint16 memberType;

ccode=NWAddObjectToSet(serverConnID, objectName, objectType,
propertyName, memberName, memberType);

Input

| serverConnID Passes the current session’s file server connection ID.

objectName Passes a pointer to the set’s object name.

objectType Passes the set’s bindery object type. (See Appendix A,

Bindery Object Types.)

propertyName Passes a pointer to the set’s property name.

memberName Passes a pointer to the name of the previously-created

bindery object being added to the set.

memberType Passes the bindery type of the member being added. (See

Appendix A, Bindery Object Types.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxE9 Member Exists

OxEA No Such Member

OxF8 No Property Write

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

2-8 Licensed Material - Property of the copyright holders 069-000567

069-000567

Description

The objectName, objectT ype, and propertyName parameters must uniquely identify

the property and cannot contain wildcard characters.

The memberName and memberType parameters must uniquely identify the bindery

object to be added and cannot contain wildcard characters. This object must

already exist within the bindery.

The property must be of type SET.

This function searches consecutive segments of the property’s value for an open slot

where it can record the unique bindery object identification of the new member.
The new member is inserted into the first available slot. If no open slot is found, a

new segment is created and the new member’s unique bindery object identification

is written into the first slot of the new segment. The rest of the segment is filled

with zeros. |

Notes

A client must have write access to the property to make this call.

For properties of type ITEM, the application must use NWWritePropertyValue.

See Also

NWIsObjectInSet

NWDeleteObjectFromSet

Licensed Material - Property of the copyright holders 2-9

NWChangeObjectPassword

NetWare for

NetWare 2.x NetWare 3.x AVIION Systems

| / / /

This function changes the password of a bindery object.

Synopsis

#include "nwapi.h"

int ecode;
uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 objectT ype;

char oldPassword[NWMAX_PASSWORD_LENGTH];
char newPasswordI[NWMAX_PASSWORD_LENGTH];

ccode=NWChangeObjectPassword(serverConnID, objectName, objectType,

oldPassword, newPassword)

Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the object name.

objectT ype Passes the object type. (See Appendix A, Bindery Object
Types.)

oldPassword Passes a pointer to the old password.

newPassword Passes a pointer to the new password.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xD7 Duplicate Password

OxF1 Bindery Security
OxF8 No Property Write

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

2-10 Licensed Material - Property of the copyright holders 069-000567

Description

This function creates or changes an object password. It also assigns the property

security (0x44) to the property PASSWORD. The property security allows only the

NetWare operating system to find, or add value to, the property. The PASSWORD

property is created with an associated bindery read and write access level, and the

password property value is assigned the newPassword.

Notes

This is the only function call which can create or change object passwords.

Although PASSWORD is a property, it is a unique property which can not be

created with the NWCreateProperty function call.

There is a distinction between a bindery object without a password property and

a bindery object with a password property that has no value. A workstation is

not allowed to log in to a file server as a bindery object that does not have a

PASSWORD property. However, a workstation is allowed to log in to a file

server as a bindery object with a password with no value.

This function requires read and write access to the bindery object.

See Also

NWIsObjectPasswordOK

069-000567 Licensed Material - Property of the copyright holders 2-1 1

NWChangeObjectSecurity

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

f Sf /

This function changes the security access mask of a bindery object on the file server

connected via the file server connection ID (serverConnID parameter).

Synopsis

#include "“nwapi.h"

int ccode; ,

wuint16 serverConnID;
char objectName[NWMAX_OBJECT_NAME_LENGTH}];
uint16 objectT ype;

uint8 newObjectSecurity;

ccode=NWChangeObjectSecurity(serverConnID, objectName, objectType,

newObjectSecurity);

serverConnID Passes the file server connection ID.

objectName Passes a pointer to a string containing the object name.

objectT ype Passes the type of the bindery object. (See Appendix A,
Bindery Object Types.)

newObjectSecurity Passes the new security access level for the specified object.

Return Values

0 Successful. |
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxF1 Invalid Bindery Security

OxF5 No Object Create

OxFC No Such Object

OxFE Bindery Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName and objectType parameters must uniquely identify the bindery

object and cannot contain wildcard specifiers. | }

The newObjectSecurity parameter is a byte in which the low 4 bits (nibble) control

read security and the high four bits control write security. Read security

determines which clients can find the bindery object when they scan for it. Write

security determines which clients can create properties for the bindery object.

Table 2-2, above, describes this security level.

For example, a bindery object with a newObjectSecurity of 0x31 can be viewed by
any client that has successfully logged in to the file server, but only a client with

security equivalence to SUPERVISOR can add properties to it.

2-12 Licensed Material - Property of the copyright holders 069-000567

Read Security:

0xn0 = NWBS_ANY_READ

Oxnl = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

O0xn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

Oxin = NWBS_LOGGED_WRITE |

0x2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE

0x4n = NWBS_BINDERY_WRITE

This function cannot set or clear BINDERY read or write security.

Notes

Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can change a bindery object’s security.

See Also

NWCreateObject

069-000567 Licensed Material - Property of the copyright holders 2-1 3

NWChangePropertySecurity

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf Jf Jf

This function changes the security access mask of a property in a bindery object on

the file server associated with the file server connection ID (serverConnID

parameter).

Synopsis

#include "nwapi.h"

int ccode;
uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 newPropertySecurity;

ccode=NWChangePropertySecurity(serverConnID, objectName, objectType,

propertyName, newPropertySecurity);

Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the name of the bindery object

associated with the property whose security is being

changed.

objectType Passes the type of the object described by the
objectName parameter. (See Appendix A, Bindery

Object Types.)

propertyName Passes a pointer to the name of the affected property.

newPropertySecurity Passes the new security access level for the property.

Output

None.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxF2 No Object Read Privilege

OxF6 No Property Delete Privilege

OxFB No Such Property

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

2-1 4 Licensed Material - Property of the copyright holders 069-000567

Description

The objectName, objectType, and propertyName parameters must uniquely identify

the property and cannot contain wildcard specifiers.

The newPropertySecurity is a byte in which the low 4 bits (nibble) control read

security and the high 4 bits control write security. Read security determines which

clients can read the property. Write security determines which clients can write to

the property. See Table 2-2, above, for a description of each security level.

For example, a property with a newPropertySecurity of 0x31 can be seen by any

client that has successfully logged in to the file server, but only a client with

security equivalence to SUPERVISOR can write to the property.

Read Security:

Oxn0 = NWBS_ _READ

Oxnl = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

Oxn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

0xIn = NWBS_LOGGED_WRITE

0x2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE

Ox4n = NWBS_BINDERY_WRITE

Notes

This function cannot set or clear BINDERY read or write security.

The requesting process cannot change a property’s security to a level greater

than the process’s access to the property.

This function requires write access to the bindery object, and read and write

access to the property.

See Also

NWCreateObject

NWCreateProperty

069-000567 Licensed Material - Property of the copyright holders 2-1 5

NWCloseBindery
NetWare for

NetWare 2.x NetWare 3.x AVION Systems

/ "A /

This function closes the bindery on the file server associated with the file server
connection ID (serverConnID parameter).

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWCloseBindery(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF Close Failure

0x96 Server Out Of Memory

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Because the bindery files contain all information about the file server’s clients, the

bindery should be archived on a regular basis. However, the file server keeps
bindery files open and locked at all times so that they cannot be accessed directly.
For bindery files to be archived, the bindery must be closed with the

NWCloseBindery function.

This function allows SUPERVISOR, or an object that has security equivalence to
SUPERVISOR, to close and unlock the bindery files, thus allowing the bindery to
be archived. After the bindery files have been archived, the NWOpenBindery
function is used to give control of the bindery files back to the file server. While

the bindery is closed, much of the functionality of the network is disabled.

See Also

NWOpenBindery

2-1 6 Licensed Material - Property of the copyright holders 069-000567

NWCreateObject

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function adds a new object to the bindery on the file server associated with the

file server connection ID (serverConnID parameter).

The bindery object must have a password property to log in to a file server. The

password property is created with the NWChangeObjectPassword function.

Synopsis

#include “nwapi.h"

int ecode; |

uint16 serverConnID; ,

char newObjectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 newObjectType;
uint8 newObjectState;
uint8 newObjectSecurity;

ccode=NWCreateObject(serverConnID, newObjectName, newObjectType,

newObjectState, newObjectSecurity);

Input

serverConnID Passes the server connection ID for the file server whose
bindery is being affected.

newObjectName Passes a pointer to the string containing the new object

name.

newObjectType Passes the bindery type of the new object. (See Appendix A,

Bindery Object Types.)

newObjectState Passes a flag indicating the object state. (See Appendix A,

Bindery Object and Property States.)

newObjectSecurity Passes the new object’s access rights mask.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxEE Object Exists

OxEF Illegal Name

OxF1 Invalid Bindery Security
OxF5 No Object Create Privilege

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 | Licensed Material - Property of the copyright holders 2-17

2-18

Description

The newObjectName and newObjectType parameters must uniquely identify the

bindery object and cannot contain wildcard specifiers.

Only SUPERVISOR or a bindery object that is security equivalent to SUPERVISOR
can create bindery objects.

The newObjectSecurity is a byte in which the low 4 bits (nibble) control read

security while the high 4 bits control write security. Read security determines

which clients can find the bindery object when they scan for it. Write security
determines which clients can create properties for the bindery object. The read and
write values are described in Table 2-2, above.For example, a bindery object with a

newObjectSecurity of 0x31 can be seen by any client that has successfully logged in

to the file server, but only a client with security equivalence to SUPERVISOR can

add properties to it.

Read Security:

Oxn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

Oxn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

Oxin = NWBS_LOGGED_WRITE

0x2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE

—0x4n = NWBS_BINDERY_WRITE

See Also

NWChangeObjectPassword

NWCreateProperty

Licensed Material - Property of the copyright holders 069-000567

NWCreateProperty

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

f /f Jf

This function adds a property to a bindery object.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID:
char objectName[NWMAX_ OBJECT _NAME _LENGTH);
uint16 objectT ype;

char newPropertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 newPropertyTypeAndState;

uint8 newPropertySecurity;

ccode=NWCreateProperty(serverConnID, objectName, objectType,

newPropertyName, newPropertyTypeAndState, newPropertySecurity);

Input

serverConnID Passes the server connection ID.

objectName _ Passes a pointer to the object name receiving the

new property. ,

objectType Passes the type of the affected bindery object. (See
Appendix A, Bindery Object Types.)

newPropertyName Passes a pointer to the name of the property being

created.

newPropertyTypeAndState Passes the OR’ed value of

the property type and the property state. (See

Appendix A, Bindery Property Types and Bindery

Object and Property States.)

newPropertySecurity Passes the new property’s security access mask.

Output |

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxEE Object Exists

OxEF Illegal Name

OxF1 Bindery Security

OxF5 No Object Create

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 2-1 9

Description

The newPropertyTypeAndState parameter defines a property’s type and state

(dynamic or static). A dynamic property is one that is created and deleted
frequently. Dynamic properties are deleted from the bindery when the file server is

rebooted.

The property type indicates the type of data a property value contains. SET

property types contain a set of bindery object identifications. The bindery attaches

no significance to the contents of a property value if the property is of type ITEM.

(See "Introduction to Bindery Services" in this chapter.)

The newPropertySecurity parameter is a byte in which the low 4 bits (nibble)

control read security and the high 4 bits control write security. Read security

controls which clients can read the property. Write security controls which clients

can write to the property. The values for the newPropertySecurity parameter are

described in Table 2-2, above.

For example, a property with the newPropertySecurity parameter equal to 0x31 can

be seen by any client that has successfully logged in to the file server, but only a

client with security equivalent to SUPERVISOR can write to the property.

Read Security:

O0xn0 = NWBS_ANY_READ

Oxn1 = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

Oxn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

Ox1In = NWBS_LOGGED_WRITE

0x2n = NWBS_OBJECT_WRITE

O0x38n = NWBS_SUPER_WRITE

Ox4n = NWBS_BINDERY_WRITE

The requesting process cannot create properties that have security greater than the

process’s access to the bindery object.

The password property is created by calling NWChangeObjectPassword rather than

by using the NWCreateProperty function.

Notes

The PASSWORD property can not be created with this function call. You must
use NWChangeObjectPassword to create or change an object’s password.

This function requires write access to the bindery object.

See Also

NWChangeObjectPassword

NWCreateObject

2-20 Licensed Material - Property of the copyright holders 069-000567

NWDeleteObject

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J ao /

This function removes an object from the bindery of the file server associated with

the file server connection ID (serverConnID).

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;
char objectN ame[NWMAX_ OBJECT _ NAME _LENGTH)];
uint16 objectT ype;

ccode=NWDeleteObject(serverConnID, objectName, objectType);

Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the object name being deleted.

objectT ype Passes the bindery type of the object being deleted. (See
Appendix A, Bindery Object Types.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxF2 No Object Read

OxF4 No Object Delete

OxF6 No Property Delete

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Notes

The objectName and objectType parameters must uniquely identify the bindery

object and cannot contain wildcard specifiers. Only SUPERVISOR or a bindery

object that is security equivalent to SUPERVISOR can delete bindery objects.

See Also

NWDeleteObjectFromSet

069-000567 Licensed Material - Property of the copyright holders 2-21

NWDeleteObjectFromSet

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ "A /

This function deletes a member from a bindery property of type SET on the file

server associated with the file server connection ID (serverConnID).

Synopsis

#include "nwapi.h"

int

uint16

char

uint16

char

char

uint16

ccode;

serverConnID;

objectName[NWMAX_OBJECT_NAME_LENGTH];

objectT ype;

propertyName[NWMAX_PROPERTY_NAME_LENGTH];

memberName[NWMAX_ MEMBER_NAME_LENGTH];

memberType;

ccode=NWDeleteObjectFromSet(serverConnID, objectName, objectType,
propertyName, memberName,; memberType);

Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the name of the bindery object whose set
is being affected.

objectT ype Passes the object type of bindery object whose set is being

affected. (See Appendix A, Bindery Object Types.)

propertyName Passes a pointer to the name of the property (of type SET)
from which the member is being deleted.

memberName Passes A pointer to the name of the bindery object that is

being deleted from the set.

memberType Passes the object type of the member being deleted. (See
_ Appendix A, Bindery Object Types.)

Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

2-22

OxEB Property Not Set Property

OxF8 No Property Write

OxFB No Such Property
OxFC No Such Object

Licensed Material - Property of the copyright holders 069-000567

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

There are two types of bindery properties: ITEM and SET. SET properties are

those that contain multiple bindery objects. (See "Introduction to Bindery Services"
in this chapter.)

See Also

NWaAddObjectToSet —

NWDeleteObject

NWDeleteProperty

069-000567 Licensed Material - Property of the copyright holders 2-23

NWDeleteProperty

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ Jf /

This function removes a property from a bindery object on the file server specified

with the file server connection ID (serverConnID).

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID; |
char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 objectType;

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];

ccode=NWDeleteProperty(serverConnID, objectName, objectType,

propertyName);

input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the object name whose property is being

deleted.

objectT ype Passes the type of the object whose property is being deleted.

(See Appendix A, Bindery Object Types.)

propertyName Passes a pointer to the property name to be deleted.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxF1 Bindery Security
OxF6 No Property Delete

OxFB No Such Property

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName and objectType must uniquely identify the bindery object and

cannot contain wildcard characters.

2-24 Licensed Material - Property of the copyright holders 069-000567

The propertyName parameter may contain wildcards. All matching properties of
the bindery object are deleted when the propertyName contains wildcard

characters. |

Notes

This function requires write access to the bindery object and the property.

See Also

NWDeleteObjectFromSet

069-000567 Licensed Material - Property of the copyright holders 2-25

NWGetBinderyAccessLevel

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ v4 Sf

This function returns the access level of the currently logged-in client based on the

file server specified with the file server connection ID (serverConnID).

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint8 binderyAccessLevel;
uint32 objectID;

ccode=NWGetBinderyAccessLevel(serverConnID, &binderyAccessLevel,

&objectID);

Input

serverConnID Passes the server connection ID.

binderyAccessLevel Passes a pointer to the space allocated for the current
station’s security access mask.

objectID Passes a pointer to the space allocated for the object ID of

the current logged in entity.

Output

binderyAccessLevel Receives the current station’s security access mask.

objectID Receives the object ID of the current logged in entity.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96 Server Out Of Memory

OxF1 Bindery Security

OxFE Directory Locked

OxFF Hardware Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The level of access a client has determines which bindery objects and properties the

process can find and manipulate.

2-26 Licensed Material - Property of the copyright holders 069-000567

The binderyAccessLevel parameter is a byte in which the low 4 bits (nibble)

indicate read security and the high 4 bits indicate write security. Read security

controls which objects and properties the workstation can find when it scans the
bindery. Write security controls which objects and properties the workstation can

modify. Table 2-2, above, summarizes the security values.

For example, a binderyAccessLevel of 0x11 indicates that the requesting

workstation has successfully logged in to the file server and does not have security

equivalence to SUPERVISOR. This client is allowed access to objects that have
LOGGED or OBJECT read or write security.

Read Security:

Oxn0 = NWBS_ANY_READ

O0xnl = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

Oxn4 = NWBS_BINDERY_READ

Write Security:

Ox0n = NWBS_ANY_WRITE

Oxin = NWBS_LOGGED_WRITE

0x2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE

Ox4n = NWBS_BINDERY_WRITE

069-000567 Licensed Material - Property of the copyright holders 2-20

NWGetObjectiD
NetWare for

NetWare 2.x NetWare 3.x AVIION Systems

f / /

This function looks up an object ID of the stated object name and object type in the

bindery on the file server specified with the file server connection ID

(serverConnID).

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;
char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectT ype;

wint32 objectID;

ccode=NWGetObjectID(serverConnID, objectName, objectType, &objectID);

Input —

serverConnID Passes the server connection ID.

objectName Passes a pointer to the name of the object being searched

for. -

objectT ype Passes the bindery type of the object being searched for.
(See Appendix A, Bindery Object Types.)

objectID Passes a pointer to the space allocated for the object ID.

Output

objectID Receives the object ID.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96 Server Out Of Memory

OxF0 Illegal Wildcard

OxFC No Such Object

OxFE Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Since each file server contains its own bindery, object IDs are not consistent across

file servers.

2-28 Licensed Material - Property of the copyright holders 069-000567

The objectName and objectType parameters must uniquely identify the bindery

object and cannot contain wildcard characters.

Notes

The requesting process must be logged in to the file server and have read access

to the bindery object for this call to be successful.

_ See Also

NWChangeObjectSecurity

NWCreateObject

069-000567 Licensed Material - Property of the copyright holders 2-29

NWGetObjectName
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J Jf /

This function returns the name and object type of a bindery object on the file server

specified with the file server connection ID (serverConnID).

Synopsis

#include “nwapi.h"

uint16 ccode;
uint16 serverConnID;

uint32 objectID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;

ccode=NWGetObjectName(serverConnID, objectID, objectName,

&objectType);

Input

serverConnID Passes the server connection ID.

objectID Passes the object ID.

objectName Passes a pointer to the string allocated for the object name.

objectType Passes a pointer to the space allocated for the object type
(optional).

Output

objectName Receives the object name.

objectT ype Receives the object type (optional).

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96 Server Out Of Memory

OxF1 Bindery Security

OxFC No Such Object

OxFE Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The requesting process must be logged in to the file server and have read access

to the bindery object for this call to be successful.

2-30 Licensed Material - Property of the copyright holders 069-000567

See Also

NWChangeObjectSecurity
NWCreateObject

NWGetObjectID

069-000567 Licensed Material - Property of the copyright holders 2-31

NWisObjectinSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J Jf

This function searches a property of type SET for a specified object.

Synopsis

#include "“nwapi.h"

NWBoolean_ts ccode;
uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectT ype;
char propertyName[NWMAX_PROPERTY_NAME_LENGTH];

char memberName[NWMAX_ MEMBER NAME_LENGTH);

uint16 memberType; .)

ccode=NWIsObjectInSet(serverConnID, objectName, objectT ype,

propertyName,

Input

serverConnID

objectName

objectType

propertyName

memberName

memberType

Output

ccode

Return Values

memberName, memberType);

Passes the server connection ID.

Passes a pointer to the name of the object containing the

property being searched.

Passes the object type of the object containing the property

being searched. (See Appendix A, Bindery Object Types.)

Passes a pointer to the property name being searched
(property type SET).

Passes the name of the bindery object being searched for.

Passes the bindery type of the object being searched for. (See

Appendix A, Bindery Object Types.)

This function returns a 1 when searched for object is in set,
or a 0 when it is not.

1 Object was found in set.

0 Object was NOT found in set. One of the following error codes is placed in
NWErrno:

OxFC

OxF1

OxEC

OxFE

No Such Object

Bindery Security

No Such Set

Directory Locked

2-32 Licansed Material - Property of the copyright holders 069-000567

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName, objectType, and propertyName parameters must uniquely identify

the property and cannot contain wildcard specifiers. |

The memberName and memberType parameters must uniquely identify the bindery
object and cannot contain wildcard specifiers. The property must be of type SET.

This function does not expand members of type GROUP in an attempt to locate a
specific member. For example, assume the following bindery objects and properties

exist: |

Object Property Property Value

JOAN |

SECRETARIES GROUP_MEMBERS JOAN’s object ID

EMPLOYEES | GROUP_MEMBERS SECRETARIES’ object

JOAN is not considered a member of EMPLOYEES because she is not explicitly
listed in the EMPLOYEES’ GROUP_MEMBERS property. In addition, the bindery

does not check for recursive (direct or indirect) membership definitions.

Notes

Read access to the property is required for this call.

For properties of type ITEM, the application must use NWScanPropertyValue.

See Also

NWaAddObjectToSet

069-000567 Licensed Material - Property of the copyright holders 2-33

NWisObjectPasswordOK
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf J /

This function verifies the password of a bindery object on the file server specified
with the file server connection ID (serverConnID).

Synopsis

#include "nwapi.h"

NWBoolean_ts ccode;

uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH}];
uint16 objectT ype;

char objectPassword[NWMAX_PASSWORD_LENGTH];

ccode=NWIsObjectPasswordOK(serverConnID, objectName, objectType,

objectPassword);

Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the name of the bindery object whose

password is being verified.

objectT ype Passes the type of the bindery object whose password is

being verified. (See Appendix A, Bindery Object Types.)

objectPassword Passes a pointer to the password to be verified.

Output

None.

Return Values

1 Password is OK.
0 Password is not OK. One of the following errors codes is placed in

NWErrno:

OxC5

OxF1

OxFB

OxFC

Login Lockout

Bindery Security

No Such Property

No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName and objectType parameters must uniquely identify the bindery

object and cannot contain wildcards.

2-34 Licensed Material - Property of the copyright holders 069-000567

A bindery object without a password property is different from a bindery object
with a password property that has no value. A workstation is not allowed to log in
to a file server as a bindery object that does not have a password property.
However, a workstation can log in without a password if the bindery object has
been given a password property that contains no value.

Notes

The requesting workstation does not have to be logged in to the file server to
make this call.

See Also

NWLoginToServerPlatform

069-000567 Licensed Material - Property of the copyright holders 2-35

NWOpenBindery
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ "4 "4

This function reopens a file server bindery that has been closed by a call to

NWCloseBindery.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWOpenBindery(serverConnID);

Input

serverConnID Passes the server connection ID

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF Failure

OxFE Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The bindery files are normally kept open and locked. Therefore, this function is
required only after a NWCloseBindery call has been made.

Notes

Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can open the bindery.

See Also

NWCloseBindery

2-36 Licensed Material - Property of the copyright hoiders 069-000567

NWRenameObject

069-000567

Synopsis

Input

Output

Return

Notes

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function renames an object in the bindery.

#include "nwapi.h"

int ecode;

uint16 serverConnID;
char oldObjectName[INWMAX_OBJECT_NAME_LENGTH}];

char newObjectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectT ype;

ccode=NWRenameObject(serverConnID, oldObjectName, newObjectName,
objectType);

serverConnID

oldObjectName

newObjectName

objectT ype

None.

Values

0 Successful.

Passes the server connection ID.

Passes a pointer to the name of a currently defined object in
the bindery.

Passes a pointer to the new object name.

Passes the object’s bindery type. (See Appendix A, Bindery

Object Types.)

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxEE

OxF0O

OxF3

OxNo

Object Exists

Illegal Wildcard

No Object Rename

Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

The oldObjectName, newObjectName, and ObjectT ype parameters must

uniquely identify the bindery object and cannot contain wildcard specifiers.

Only SUPERVISOR or a bindery object that is security equivalent to

SUPERVISOR can rename bindery objects.

Licensed Material - Property of the copyright holders 9-37

NWScanObject

2-38

This function searches for a bindery object name.

Synopsis

#include "nwapi.h"

NWpBoolean_ts

uint16

char

uint16

int32

NWObjectInfo_t

sequence=-1;

NetWare for

NetWare 2.x NetWare 3.x AVilION Systems

/ / /

ccode;

serverConnID;

searchObjectName[NWMAX_OBJECT_NAME_LENGTH];

searchObjectT ype;

sequence;

objects;

ccode=NWScanObject(serverConnID, searchObjectName, searchObjectType,

&sequence, &objects); |

Input

serverConnID

| searchObjectName

searchObjectType

sequence

objects

Output

sequence

objects

Return Values

Passes the server connection ID.

Passes a pointer to the object name to be searched for

(wildcards: * or ?).

Passes the object type to be searched for; wildcard value:

OxFFFF. (See Appendix A, Bindery Object Types.)

Passes a pointer to the space allocated for the object ID of

the next matching object.

Passes a pointer to the structure allocated for the found

object information. (See Appendix A, NWObjectInfo_t

Structure.)

Receives the object ID of the next matching object.

Receives the information on the found object. (See Appendix

A, NWObjectInfo_t Structure.)

1 Object was found.

0 Object was not found. One of the following error codes is placed in

NWErrno:

OxEF

OxFC

0x93

OxEF

Illegal Name

No More Objects

No Read Privileges

Illegal Name

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 069-000567

Description

This function is used iteratively to scan the bindery for all objects that match both

the searchObjectName and the searchObjectType parameters. The sequence

parameter should be set to -1 for the first search. Upon return, sequence

automatically receives a number to be used as the object identification for the next

call.

The NWObjectInfo_t structure contains the following fields:

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint32 objectID;

uint16 objectType;

uint8 objectState;

uint8 objectSecurity;

The objectState field receives one of the following flags (optional):

NWBE_STATIC = matching object is static

NWBF_DYNAMIC = matching object is dynamic

The objectSecurity parameter is a byte in which the low 4 bits (nibble) control read

security and the high 4 bits control write security. Read security determines which

clients can find the bindery object when they scan for it. Write security defines

which clients can create properties for the bindery object. Below is a chart that
lists these security options.

When scanning several objects, the application scans until NWErrno equals No

More Objects. |

For example, a bindery object with an objectSecurity of 0x31 can be viewed by any

client that has successfully logged in to the file server, but only clients with

security equivalence to SUPERVISOR can add properties.

Read Security:

Oxn0 = NWBS_ANY_READ

Oxnl = NWBS_LOGGED_READ

Oxn2 = NWBS_OBJECT_READ

Oxn3 = NWBS_SUPER_READ

Oxn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

Oxin = NWBS_LOGGED_WRITE
Ox2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE

Ox4n = NWBS_BINDERY_WRITE

Notes

The requesting process must be logged in to the file server and have read access

to the bindery object.

069-000567 Licensed Material - Property of the copyright holders 2-39

NWScanProperty

2-40

Synopsis

NetWare for

NetWare 2.x NetWare 3.x AVIiiON Systems

/ / Jf

This function searches for properties in a bindery object.

#include "nwapi.h"

NWBoolean_ts ecode;
uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH],;

uint16 objectType;
char searchPropertyName[NWMAX_PROPERTY_NAME_LENGT

H];
int32 «sequence;

NWPropertyInfo_t property;

uint8 moreF lag

sequence=-1;

Input

Output

ccode=NWScanProperty(serverConnID, objectName, objectType,
searchPropertyName, &sequence, &property, &moreF lag);

serverConnID Passes the server connection ID.

objectName Passes a pointer to the name of the object whose
properties are being scanned.

objectT ype Passes the bindery type of the object containing the
property. (See Appendix A, Bindery Object Types.)

searchPropertyName Passes a pointer to the property name (with possible
wildcards) being searched for. (See NetWare for

AViiON® Series Systems C Interface Programmer’s
Guide, Chapter 2, “NetWare Properties.")

sequence Passes a pointer to the space allocated for the
sequence number of the next matching object.

property Passes a pointer to the structure allocated for the

found property information. (See Appendix A,

NWPropertyInfo_t Structure.)

moreF lag Passes a pointer to the space allocated for an
indicator of more properties found.

sequence Receives the sequence number of the next matching object.

property | Receives a structure containing information on the found
property. (See Appendix A, NWPropertyInfo_t Structure.)

Licensed Material - Property of the copyright holders 069-000567

069-000567

moreF lag Receives the more properties flag: ©

0x00 = no more properties for this object

OxFF = more properties exist

Return Values

1 Successfully found a property.

0 Aproperty could NOT be found. One of the following error codes is placed
in NWErrno:

OxFB No More Properties

OxF0 Illegal Wildcard
OxFC No Such Object

OxF9 No Property Read

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function iteratively scans the given bindery object for properties that match

the searchPropertyName parameter. The sequence parameter should be assigned a

-1 for the first scan. When the call returns, the moreFlag parameter contains OxFF

if the matched property is not the last property, and the sequence parameter

receives the number to use in the next call.

When scanning several properties, the application should scan until NWErrno is

equal to No More Properties. |

The objectName and objectType parameters must uniquely identify the bindery

object and cannot contain wildcard specifiers.

The NWPropertyInfo_t structure contains the following fields:

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];

uint8 propertyStateAndType;

uint8 propertySecurity;

uint8 propertyHasAValue;

The propertyName field is the name of the bindery property.

The propertyStateAndType field indicates the state and type of the property:

NWBE_STATIC or NWBF_DYNAMIC

ORed with NWBFE_ITEM or NWBF_SET

The propertySecurity field receives a byte in which the low 4 bits (nibble) control
read security and the high 4 bits control write security.

For example, a property with propertySecurity of 0x31 can be viewed by any client

that has successfully logged in to the file server, but only a client with security

equivalence to SUPERVISOR can write to the property.

Licensed Material - Property of the copyright holders 2-41

The propertyHasAValue field receives one of the following flags indicating whether

the property has a value:

0x00 = property has no value

OxFF = property has a value

Notes

This function requires read access to the bindery object as well as the

property. |

See Also

NWScanObject

NWWritePropertyValue

2-42 Licensed Material - Property of the copyright holders 069-000567

NWScanPropertyValue

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function reads the property value of a bindery object.

Synopsis

#include “nwapi.h"

NWBoolean_ts ccode;

uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectT ype;

char propertyNa -'NWMAX PROPERTY _NAME_.

LENGTH]; .
uint8 segmentNumber; |

uint8 segmentData[NWMAX_SEGMENT_DATA_

LENGTH];
uint8 moreSegments,

uint8 propertyType;

segmentNumber=1;

ccode=NWScanPropertyValue(serverConnID, objectName, objectType,

propertyName, &segmentNumber, segmentData, &moreSegments,

&propertyType);

Input

- serverConnID Passes the server connection ID.

objectName Passes a pointer to the object name containing the

property.

objectT ype Passes the object type of the object containing the

property. (See Appendix A, Bindery Object Types.)

propertyName Passes a pointer to the property name whose

information is being retrieved.

segmentNumber Passes a pointer to the segment number of the data

| to be read. (See description below.)

segmentData Passes a pointer to the buffer allocated for the

property data.

moreSegments Passes a pointer to the space allocated for the "more
segments” code:

0x00 = no more segments to be read;

OxFF = more segments to be read)

propertyType Passes a pointer to the space allocated for the

property type.

Licensed Material - Property of the copyright holders 2-43

Output

segmentNumber Receives an incremented number until no more
segments are found.

segmentData Receives the 128-byte buffer of property data. (See
description below.)

moreSegments Receives 0x00 if there are no more segments to be

read; otherwise, it receives OxFF

propertyType Receives the property type. (See Appendix A,
Bindery Property Types.)

Return Values

1 Object successfully found.

0 Object not found. One of the following error codes is placed in

NWErrno:

0x93 No Read Privileges

OxEC No Such Set

OxF9 No Property Read

OxFB No Such Property

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function is used to iteratively read property values with more than 128 bytes

of data. |

The segmentNumber should be set to 1 to read the first data segment of a property
and will be incremented for each subsequent call until the moreSegments flag is set

to 0 or until call fails (ccode=0).

The objectName, objectType, and propertyName parameters must uniquely identify
the property and cannot contain wildcard specifiers.

The propertyType indicates the type of data a property value contains. The SET
property type indicates that the property’s value contains a set of bindery object

identifications. The bindery attaches no significance to the contents of a property

value if the property is of type ITEM. If the property is of type SET, the data

returned in segmentData is an array of bindery object IDs.

The bindery makes no attempt to coordinate activities among multiple stations that

concurrently read or write data to a single property. This means that one station

might read a partially updated property and get inconsistent data if the property’s

data extends across multiple segments. If this presents a problem, coordination on

reads and writes must be handled by application programs. Logical record locks

can be used to coordinate activities among applications.

Licensed Material - Property of the copyright holders 069-000567

Notes

Read access to the property is required to successfully call this function.

See Also

NWCreateProperty

069-000567 Licensed Material - Property of the copyright holders 2-45

NWwWritePropertyValue
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf Jf f

This function writes the property value of a bindery object.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;
char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 objectT ype;

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 segmentNumber;
char dataBuffer[NWMAX_ SEGMENT. DATA_LENGTH];
uint8 moreF lag;

segmentNumber=1;

ccode=NWWritePropertyValue(serverConnID, objectName, objectType,
propertyName, segmentNumber, dataBuffer, moreF lag);

input

serverConnID Passes the server connection ID.

objectName Passes a pointer to the affected object name.

— objectType Passes the object type. (See Appendix A, Bindery
Object Types.)

propertyName Passes a pointer to the property name (type ITEM).

segmentNumber Passes the segment number of the written data (128-

byte chunks.) See "Description" below.

dataBuffer Passes a pointer to the 128-byte buffer that contains

the data. (See "Description" below.)

moreF lag Passes a flag indicating whether more segments are
being written:

0x00 = no more data segments

OxFF = more data segments

Output

None.

2-46 Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxE8 Write to Group

OxF8 No Property Write

OxFB No Such Property

OxFC No Such Object

Note: See Appendix B for a complete list of NetWare errors.

Description

A property value is data that is assigned to a particular bindery property. For
example, a user’s password is saved as a property value for the PASSWORD

property.

The objectName, objectType, and propertyName parameters must uniquely identify

the property and must not contain wildcard characters. The objectName can be

from 1 to 15 characters long. Only printable characters can be used. slashes,

backslashes, colons, semicolons, commas, asterisks, and question marks are

prohibited.

The segmentNumber parameter indicates which segment of data is being written

and should be assigned a value of 1 for the first segment. To write property data to

more than one segment (128 bytes), this function should be called iteratively. In

addition, the moreFlag parameter must contain a value of 0OxFF unless you are

writing to the last data segment. To signal Netware that the last segment is being

written, and all further segments can be truncated, assign the moreF lag parameter

to 0x00.

We recommend that property values be kept to a single segment, (128 bytes) to
improve bindery efficiency.

For NetWare 2.x, create property value segments sequentially. In other words,
before you create segment N, you must have created all segments from 1 to N-1.

However, once all segments of a property value have been established, segments

can then be written at random. If the segment data is longer than 128 bytes, it is
truncated.

The bindery makes no attempt to coordinate activities among multiple workstations

concurrently reading or writing data to a single property. This means that one

workstation might read a partially updated property and get inconsistent data if

the property’s data extends across multiple segments. If this

presents a problem, coordination on reads and writes must be handled by

application programs. Logical record locks can be used to coordinate activities

among applications.

Notes

A client must have write access to the property to call this function.

The objectName, objectType, and propertyName parameters must uniquely

identify the property and cannot contain wildcard specifiers.

| 069-000567 Licensed Material - Property of the copyright holders 2-47

For properties of type SET, the application should use NWAddObjectToSet.

See Also

NWScanPropertyValue

End of Chapter

2-48 Licensed Material - Property of the copyright holders 069-000567

Chapter 3

Connection Service APIs

Function Calls

This chapter describes the following Connection Service APIs.

API

NWAttachToServerPlatform veces

NWClearClientConnID 0... 0.0.00 cece eee

NWCloseTransport 0.00. ccc cece cece ee eee eees

NWDetachFromsServerPlatform eee.

NWGetClientConnID .. 0... cece ccc ccc ccc ceeeeeeeeee.

NWGetObjectClientConnIDs 0.0... 0... eee

NWGetServerConnID 0... ccc ee ee ees

NWLoginToServerPlatform 0.00.0 eee eee ees

NWLogoutFromServerPlatform 0.000 ce ee eee

NWRegisterTimeoutErrorFunction 0.0000 ees

069-000567 Licensed Material - Property of the copyright holders 3-1

Introduction to Connection Services

3-2

The Connection Service calls allow developers to establish and destroy logical

connections to a NetWare file server (creating utilities similar to the Netware

LOGIN, ATTACH, and LOGOUT utilities), and return status information about

those connections. Connection Services enable applications to do the following:

¢ Log in or attach objects to file servers

¢ Log out or detach objects from file servers

¢ Return information about a connection

¢ Return a clientConnID or a serverConnID

Connection Information

Connection information must be maintained by both the server and the connected

client. The file server maintains two related tables:

¢ The File Server Connection Table

e The Password Table

The number of entries allowed in the table depends upon which version of the

operating system the file server is running. NetWare for AViiON Systems allows

250 entries. Each entry in the File Server Connection table contains the network

address of a client. The corresponding entry in the Password table contains the

bindery object ID of the object type that established the connection between that

client and the file server. The file server identifies a connection (both the connected

client and the object attached through that client) by the connection’s position (1 to

250) in these tables. This connection is known to the client as the clientConnID.

The following information is maintained in order to maintain a client connection:

¢ serverConnID |

¢ clientConnID

The serverConnID is a number which represents a server to a client. The

serverConnID is returned to the client by the NWAttachToServerPlatform function

call.

Potential DG/UX errors

The Connection Service APIs use two DG/UX interrupt signals: SIGPOLL and

SIGALRM. These interrupts can cause your C calls that do kernel reads or writes

to fail. If your call fails during a kernel read or write, complete the following:

1. Check the errno value. If the value is EINTR, the interrupts have caused

the error.

2. Redo your read or write.

Licensed Material - Property of the copyright holders 069-000567

069-000567

We suggest that your program check for this condition on all kernel reads and

writes. The code below is an example of how you could check for the condition.

include <errno.h>

rvalue = read(fd, buf, ent);

while(rvalue == -1) {

if(errno == EINTR) {

rvalue = read(fd, buf, ent);

}

else {

break;

}

The interrupts can only cause the error when you have a transport open. The

transport is opened using the NWAttachToServerPlatform call. Use the

NWCloseTransport call to close the transport. After closing the transport, you will

not have this interrupt problem.

Licensed Material - Property of the copyright holders 3-3

NWAttachToServerPlatform
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

"A / /

This function attaches the default client to the named file server.

Synopsis

#include "nwapi.h"

int ecode;

char fileServerName[NWMAX_SERVER_NAME_LENGTH];
uint16 serverConnID;

ccode=NWAttachToServerPlatform(fileServerName, &serverConnID):;

Input

fileServerName Passes a pointer to the name of the target file server.

serverConnID Passes a pointer to the space allocated for the file
server connection ID.

Output

serverConnID Receives the file server connection ID.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxF8 Already Attached to Server

OxF9 No Free Connection Slots

OxFC Unknown File Server

OxFF No Response From Server

Note: See Appendix C for an explanation of possible DG/UX errors. See
Appendix B for a complete listing of possible NetWare errors.

Description

This function initializes and sets up a client connection to a server and allows the
client to log in to the server by using the NWLoginToServerPlatform function. This

function returns a file server connection ID (serverConnID) for the new connection

and places the newly attached file server’s connection information in the client’s

connection tables. After using this function, the client can now login to the file

server as an object.

The fileServerName array should contain either the name of the file server to
attach to or an * (asterisk). If an asterisk is contained in the fileServerName
array, the application will attach to the nearest file server. The asterisk may be
used for utilities which do not require logging in.

3-4 Licensed Material - Property of the copyright holders 069-000567

069-000567

Notes

See Also

This function will automatically open a transport.

NWLoginToServerPlatform

NWCloseTransport

Licensed Material - Property of the copyright holders

NWClearClientConniD
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J

- This function clears a client connection number on the file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint16 clientConnID;

ccode=NWClearClientConnID(serverConnID, clientConnID):

Input

serverConnID Passes the file server connection ID

chentConnID Passes the client connection number to be cleared

Output

None

Return Values

0 Successful. |
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFC No Such Object

OxEF Illegal Name

OxC1 No Account Balance

OxC5 Login Lockout

Note: See Appendix B for a listing of possible NetWare errors.

Description

Clearing a connection will log a client off the network. The client must then re-
attach and login again in order to establish a new connection.

The calling application must be logged in as supervisor or have equivalent rights.

See Also

NWGetObjectClientConnIDs

3-6 Licensed Material - Property of the copyright holders 069-000567

NWCloseTransport
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

v

This function closes the underlying transport protocol. This call is not necessary for
the application to make if the operating system closes open devices on completion of
processes.

Synopsis

#include "nwapi.h”

int ccode;

ccode=NWCloseTransport();

Input

None.

Output

None.

Return Values

0. Successful.

-1 Unsuccessful. The following error code is placed in NWErrno:

0x03 Transport Close Error

Note: See Appendix C for an explanation of possible DG/UX errors. See

Appendix B for a complete listing of possible NetWare errors.

Description

This function closes a transport after the client has logged out of a file server and

detached from all connections. This call should be made at the end of the

application to close the underlying transport.

Notes

The client would not be able to establish or use any connections unless a
transport is open. A transport is automatically opened with

NWAttachToServerPlatform.

See Also

NWaAttachToServerPlatform

NWDetachFromServerPlatform

NWLogoutFromServerPlatform

069-000567 Licensed Material - Property of the copyright holders 3-7

NWDetachFromServerPlatform
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf / Jf

This function breaks a client-file server connection.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWDetachFromServerPlatform(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF Connection Does Not Exist

OxFC Unknown File Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Detaching from a file server is not the same as logging out from a file server.

Detaching relinquishes the connection number the client was using and breaks the

connection. Before the client can send further requests to that file server, it must

be reattached. Logging out from a file server preserves the connection ID and

allows the client to log in again without reattaching.

See Also

NWAttachToServerPlatform

NWLogoutFromServerPlatform

3-8 Licensed Material - Property of the copyright holders 069-000567

NWGetClientConniD
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

"A / /

This function returns the connection number that the requesting client uses to

communicate with the server specified by serverConnID.

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

uint16 clientConnID;

ccode=NWGetClientConnID(serverConnID, &clientConnID);

Input

serverConnID Passes the file server connection ID.

chentConnID Passes a pointer to the current client’s connection
| number.

Output

chentConnID Receives the requesting client’s connection ID

number.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFB Invalid Parameters

0x04 Not Connected To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The clientConnID parameter is an index into the Connection Table maintained by

the file server.

Notes

This call is the same as NWGetClientConnID (with the old function name)

See Also

NWAttachToServerPlatform

NWGetServerConnIDList

069-000567 Licensed Material - Property of the copyright holders 3-9

NWGetConnectioninformation

3-10

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ /

This function allows you to get information about a file server connection.

Synopsis

Input

Output ©

#include "nwapi.h"

int

uint16

uint16

char

uint16

uint32

uint8

ccode;

serverConnID;

clientConnID;

chentObjectName[NWMAX_OBJECT_NAME_LENGTH];
chentObjectType;

chentObjectID; ,

chentLoginTime[NWMAX_LOGIN_TIME_LENGTH];

ccode=NWGetConnectionInformation(serverConnID, clientConnID,

clientObjectName, &clientObjectType, &clientObjectID,

chentLoginTime);

serverConnID Passes the file server connection ID

clientConnID Passes the client connection ID.

clientObjectName Passes a pointer to the space allocated for the client’s

object name.

chientObjectType Passes a pointer to the space allocated for the client’s

object type.

clientObjectID Passes a pointer to the space allocated for the client’s

object ID.

clientLoginTime Passes a pointer to the space allocated for the client’s

: login time.

_ clientObjectName Receives the client’s object name.

clientObjectType Receives the client’s object type.

— clientObjectID Receives the client’s object ID.

clientLoginTime Receives the client’s login time.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF No Response From Server

OxFE Server Bindery Locked

OxFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The clientLoginTime is returned in an array of 7 uint8s. The array will be filled
with the following:

Ist uint8=year (0 through 99; for example: 90=1990)
2nd uint8=month (1 through 12)

3rd uint8=day (1 through 31)
Ath uint8=hour (0 through 23)

5th uint8=minute (0 through 59)
6th uint8=second (0 through 59)
7th uint8=dayOfWeek (0 through 6, 0 = Sunday)

069-000567 Licensed Material - Property of the copyright holders 3-11

NWGetinternetAddress
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ vf

This function gets the internetwork address of any client on the network.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint16 clientConnID;

wuint8 internetAddress| NWMAX_INTERNET_ADDRESS_LENGTH]};

ccode=NWGetInternetAddress(serverConnID, clientConnID,

internetAddress);

Input

serverConnID Passes the file server connection ID.

— chentConnID Passes the client’s connection ID.

internetAddress Passes a pointer to the space allocated for the

internet address.

Output

internetAddress Receives the internet address.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x01 Invalid Parameter Length
0x04 Not Connected To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

An internetwork address comprises the networkNumber, the physicalNodeAddress,

and the socketNumber. The internetwork address uniquely identifies a client

throughout an internetwork. This address can be used to send packets directly to

the client. The physicalNodeAddress is the address of the client’s LAN board.

3-1 2 Licensed Material - Property of the copyright holders 069-000567

NWGetObjectClientConniDs

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function returns a list of server maintained client connection ID numbers for a

specified logged-in object.

Synopsis

input

Output

#include "“nwapi.h"

int

uint16

char

uint16

uint16

uint16

uint16

ccode;

serverConnID;

objectName[NWMAX_OBJECT_NAME_LENGTH];
objectT ype;

numberOfConnections;

connectionListin];

maxListElements;

ccode=NWGetObjectClientConnIDs(serverConnID, objectName, objectType,

&numberOfConnections, connectionList, maxListElements);

- serverConnID Passes the file server connection ID.

objectName Passes a pointer to the bindery object name of the

object whose file server connection numbers are

being returned (wildcards not allowed).

objectT ype Passes the bindery object type of the object whose file

server connection numbers are being obtained. (See

Appendix A, Bindery Object Types.)

numberOfConnections Passes a pointer to the space allocated for the

| number of server connections found for the specified

object.

connectionList | Passes a pointer to the array allocated for the
object’s server connection ID numbers.

maxListElements Passes the number of connectionList elements that

| have been allocated (n).

numberOfConnections Receives the number of server connections found for

the specified object.

connectionList Receives the server connection numbers for the

specified object.

Licensed Material - Property of the copyright holders | 3-1 3

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFC No Such Object

OxEF Illegal Name

OxCl No Account Balance
OxC5 Login Lockout

Note: See Appendix B for a listing of possible NetWare errors.

Description

You should allocate as many elements as you think necessary for the connectionList
parameter and then put that amount in the maxListElements parameter. This
function will return less than or equal the amount that the application specifies. If
fewer clientConnIDs were found than were requested, only numberOfConnections
amount will be copied into connectionList.

See Also

NWClearClientConnID

3-1 4 Licensed Material - Property of the copyright holders 069-000567

NWGetServerConniD
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf / vf

This function returns the file server connection ID.

Synopsis

#include "nwapi.h"

int ccode;

char fileServerName[NWMAX_SERVER_NAME_LENGTH];

uint16 serverConnlID;

ccode=NWGetServerConnID(fileServerName, &serverConnID);

Input

fileServerName Passes a pointer to the name of the target file server.

serverConnID Passes a pointer to the space allocated for the server

connection ID.

Output

serverConnID Receives the file server connection ID.

Return Values

0 Successful.

-1 Unsuccessful. An error code will be placed in NWErrno:

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function gets the server connection ID (serverConnID) which is used in most

other function calls to specify the server connection the client will access. This call

will only return a serverConnID if a connection has already been established.

See Also

NWAttachToServerPlatform

NWGetClientConnID

069-000567 Licensed Material - Property of the copyright holders 3-1 5

NWGetServerConnlDList
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function returns a list of all current server connection IDs for the requesting

client.

Synopsis

int ccode;

uint16 connectionListBuffer[NWMAX_CONNECTION_LIST_LENGTH];

uint16 bufferSize;

uint16 numberOfConnsReturned;

ecode=NWGetServerConnIDList(connectionListBuffer, bufferSize,

&numberOfConnsReturned);

Input

connectionListBuffer Passes a pointer to the buffer allocated for the

7 connection list.

bufferSize Passes the number of connectionListBuffer elements

which were allocated.

numberOfConnsReturned Passes a pointer to the buffer in which the number of

connections is returned.

Output

connectionListBuffer Receives the connection list.

numberOfConnsReturned Receives the number of connections that were

actually placed in the connectionListBuffer.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFB Invalid Parameters

0x04 Not Connected To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The maximum array size is NWMAX CONNECTION LIST LENGTH.

The returned connection list contains all the server connection ID numbers in use

by a client. This function will not return any more connection numbers than the

number you specify with the bufferSize parameter. This function allows the

application to control how many connections it is aware of.

3-1 6 Licensed Material - Property of the copyright holders 069-000567

See Also

NWGetClientConnID

NWGetServerPlatformInformation

069-000567 Licensed Material - Property of the copyright holders 3-1 7

NWLoginToServerPlatform
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Sf J J

This function logs an object in to a connected file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

char name[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectT ype;
char passwordINWMAX_PROPERTY_NAME_LENGTH]:

ccode=NWLoginToServerPlatform(serverConnID, name, type, password);

Input

serverConnID Passes the file server connection ID.

name Passes the name of the client to be logged in.

type Passes the client object type to be logged in. (See

Appendix A, Bindery Object Types.)

password Passes the object password.

Output

None.

Return Values

O Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFC No Such Object
OxEF Illegal Name

OxC1 No Account Balance

OxC5 Login Lockout

OxDE Bad Password

OxDF Old Password

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This call enables a client to identify itself to a file server and thereby be cleared for
access to the network’s file system and resources. The requesting client must first
use NWAttachToServerPlatform to establish a connection with the specified file
server before logging in to the server.

3-1 8 Licensed Material - Property of the copyright holders 069-000567

Notes

If the object does not have a password, a null should be passed in place of the

password parameter. Attaching to a file server is not the same as logging in. A

client attaches to a file server to obtain a connection number (clientConnID).

The client can then log in to the file server using that connection number.

See Also

NWAttachToServerPlatform |

NWGetClientConnID

NWGetServerConnID

NWLogoutFromServerPlatform

069-000567 Licensed Material - Property of the copyright holders 3-1 9

NWLogoutFromServerPlatform
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function logs out the requesting client from the specified server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ecode=NWLogoutFromServerPlatform(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

0. Successful. |
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF Hardware Error _

0x96 Server Out Of Memory

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

NWLogoutFromServerPlatform removes the requesting client’s clientConnID from
the file server but does not relinquish the serverConnID, and therefore a connection

still exist to that server.

Detaching from a file server relinquishes the connection ID and breaks the

connection forcing the client to re-attach before sending any further requests to the

server.

See Also

NWDetachFromServerPlatform

NWLoginToServerPlatform

3-20 Licensed Material - Property of the copyright holders 069-000567

NWRegisterTimeoutErrorFunction

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

"A

This function calls an application supplied function that is called when a timeout
occurs. Timeouts occur when the application does not receive an acknowledgement

from the server platform.

Synopsis

Input

#include "nwapi.h"

int ccode;

int funcQ);

int *ptr;

ptr=(int *)func;

ccode=NWRegisterTimeoutErrorFunction(ptr); |

ptr Passes a pointer to the function the client wants to call.

Output

None.

Return Values

0. Successful.

-1_ Unsuccessful. An error codes will be placed in NWErrno: |

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows an application to determine how a timeout is handled. A

timeout will occur when the server goes down, a network board malfunctions, or the

cabling between the client and the file server is broken.

For example, the application function could handle the timeout by performing one

of the following:

e iS the application.
e Display a message. ; |
¢ Reset the retry count and send out another set of requests for the client.

Although the transport mechanism for the APIs does have a preset retry timeout

and retry count, this function can be used to signal another round of retries before

it times out by calling a client function that returns a 0. This function could be

used in a loop with other APIs to keep them going until this function allows the

API to timeout.

If the application supplied function returns a non-zero value, the connection will be

disabled.

End of Chapter

Licensed Material - Property of the copyright holders 3-21

Chapter 4

File Service APIs

Function Calls

This chapter describes the File Service APIs listed below. Those APIs which are

not currently available on file servers running NetWare for AViiON Systems or

NetWare 2.x are designated [3.x]. Those that are not supported on file servers

running NetWare 2.x but are supported on file servers running NetWare 3.x and

NetWare for AViiON Systems are designated [3.x & NFAS].

API Page

NWClearObjectVolRestriction [3.x] 2... 0.0... ccc ee ee eee 4-4

NWCloseFile 2.0.0... ccc ee rete teen eee eeees 4-6

NWCreateDir 0.0... ccc ccc eee ete eee eee eeee 4-7

NWCreateFile 0.0... ccc ccc eee eee loeeceuueeeas 4-9

NWCreateNewFile ... 0.0... cee teen eens 4-11

NWDeleteDir 2... ce eee eee eas 4-13

NWDeleteFile 0.0... ccc eee ete eee eens 4-15

NWDeleteTrustee0... 0... c cece eee cette eee eenenees 4-17

NWFileCopy 0... . cece eee eee ee eee Leceees 4-19

NWGetDirEntryInfo [3.x & NFAS] 0... ee ee eee 4-21

NWGetDirRestriction [3.x] 2... 0... eee ences 4-23

NWGetEffectiveRights ... 0.0.0.0... cc cc ee eee ee eee 4-25

NWGetEntrysTrustees 0.0... 0... cc eee eee eee ee ee ence 4-27

~NWGetFileAttributes ... 0... ee ce ee eee 4-29

NWGetNameSpacelnfo [3.x & NFAS] cece ee eeee 4-31

NWGetObjectVolRestriction [3.x]... 2.0... 0.2.0... ce ee eee eee 4-32

NWGetVolinfoWithHandle.....................00. re 4-34

NWGetVolName cece eee e eee 4-36

NWGetVolNum Lee ee ee ce eee tenet ete eevee neces 4-38

NWGetVolsObjectRestrictions [3.x] 0 eee ee ee eee 4-40

NWGetVolUsage 0... 0... ccc ccc ee eee eee eee teen eens 4-42

069-000567 Licensed Material - Property of the copyright holders

4-2

API Page

NWMoveEntry (3.x & NFAS] 2... eee cee ec eee eee eee 4-44

NWMoveFile ccc cc ee eee eee ee eens 4-46

NWOpenFile 0... ce ce te cee te ete eee ee eee eens 4-48

NWPurgeSalvageableFile [3.x]... 0... 0.0... cee cee ee eee 4-50

NWReadFile 0.2... cee eaee sce c eee ee ee eens .. 4-52

NWRecoverSalvageableFile [3.x] cece eee eee cee ees 4-54

NWRenameDir 0... cee eee cc ee ce eee ete eaes 4-56

NWScanDirEntryInfo 0. ccc ee ener ete encase 4-58

NWScanFileEntryInfo0 eee ees oeceeeeeseeuees 4-60

NWScanSalvageableFiles [3.x] 0. cee cee cence eee 4-62

NWScanTrusteePaths cece c cece eee n eee eeneees 4-64

NWSetDirEntryInfo ... 2... 0. ce eee ee ee eee eee 4-66

NWSetDirRestriction [3.x] 2.2.0.2... . ee ee ee eee 4-68

NWSetDirsInheritedRightsMask 0c eee eee ee eees 4-70

NWSetFileAttributes ... 0.0.0... ce ee ee eee eens 4-72

NWSetFileEntryInfo 0.0... 0c cece eee eee ee ee eee eee es ATA

_NWSetFilesInheritedRightsMask [3.x & NFAS]..... bbe e ee eens 4-76

NWSetObjectVolRestriction [3.x] ... 0.2... 00. ee cee ee eee 4-78

NWSetTrustee 0.0... ccc eee ee ee ee ee eee eee eee 4-80

NWWriteFPile 0.0... ee ee ee ee eee teens 4-82

Licensed Material - Property of the copyright hoiders 069-000567

Introduction to File Services

069-000567

NetWare file services provide a set of supplementary calls that enable applications

to manipulate files, directories, volumes, trustees, and their associated information.

NetWare rights are checked before a client can perform any file service functions.

The NWPath_t structure

The following structure is used to specify the location of NetWare file or directory:

typedef struct {

NWDirHandle_ts dirHandle;
uint16 serverConnID;
char *pathName;

} NWPath_t;

dirHandle Represents the directory handle allocated by the client
pointing to a particular place in the directory structure

serverConnID Represents the file server which contains the file system
being accessed

pathName Indicates a pointer which points to a character string which
the client must allocate and fill in with a path name

The NWPath_t structure can be used in one of the following ways:

1. The application can pass a 0 in the dirHandle field and then pass a full

path (of the target directory or file) in the pathName field.

2. The application can pass a previously allocated directory handle in the

dirHandle field (see NWAllocTemporaryDirHandle or |

NWAllocPermanentDirHandle) and then can pass a path in the pathName
field which is relative to the directory that the dirHandle points to.

3. The pathName may be null if the dirHandle already references the full
| path.

Licensed Material - Property of the copyright holders 4-3

NWClearObjectVolRestriction
NetWare for

NetWare 2.x NetWare3.x AViiON Systems

/

This function clears any volume restrictions placed on an object with

NWSetQObjectVolRestriction.

Synopsis

#include “nwapi.h"

int ccode; |

uint16 serverConnID;

uint16 volNum;

uint32 objectID;

ccode=NWClearObjectVolRestriction(serverConnID, volNum,

objectID);

input

serverConnID Passes the file server connection ID.

volNum Passes the volume number.

objectID Passes the object ID of the object whose restrictions you

want to clear.

Output

None. —

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Notes

The client must have security equivalence to SUPERVISOR.

4-4 Licensed Material - Property of the copyright holders 069-000567

069-000567

See Also

NWGetVolNum

NWSetObjectVolRestriction

Licensed Material - Property of the copyright holders

NWCloseFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function closes a file after it has been opened with NWOpenFile, |

NWCreateFile, or NWCreateNewFile.

Synopsis

#include "nwapi.h" —

int ecode;

uint16 serverConnID;

NWFileHandle_ta fileHandle;

ccode=NWCloseFile(serverConnID, fileHandle);

Input

serverConnID Passes the file server connection ID.

fileHandle Passes a pointer to the array containing the file handle.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C Invalid Path

- OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function closes a file after you have opened it with NWOpenFile,

NWCreateFile, or NWCreateNewFile and then deallocates the associated file

handle. The file handle value is gained through either the NWCreateFile,

NWCreateNewFile or the NWOpenFile function.

See Also

NWCreateFile

NWCreateNewFile

NWOpenFile

4-6 Licensed Material - Property of the copyright holders 069-000567

NWCreateDir

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

v "A

_ This function creates a NetWare directory on the server specified by the connection
ID.

Synopsis

#include “nwapi.h"

int

NWPath_t

uint16

ccode;

path; :
inheritedRightsMask;

ccode=NWCreateDir(&path, inheritedRightsMask);

Input

path Passes a pointer to the structure containing the
directory handle, file server connection ID, and a
pointer to the path name. (See Appendix A,
NWPath_t Structure.)

inheritedRightsMask Passes the inherited rights mask for the new

Output

None.

Return Values

0 Successful.

directory. (See Appendix A, Trustee Rights and
Inherited Rights Mask.)

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The dirHandle parameter in NWPath_t Structure can be zero if the pathName
parameter contains the complete path of the new directory, including the volume
name. This call will not accept wild card characters, and the requesting client must
have the Create right in the directory that will become the parent directory.

Licensed Material - Property of the copyright holders 4-7

4-8

This call will not sequentially create a string of directories; this call only creates
the last directory provided in the NWPath_t structure provided by the client. This
call differs from NWCreateFile in that a handle is not returned. To obtain a
directory handle to this directory, you must use NWaAllocTemporaryDirHandle or
NWAllocPermanentDirHandle.

See Also

NWDeleteDir

Licensed Material - Property of the copyright holders 069-000567

NWCreateFile

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function allows you to create a new file name and will overwrite an existing
file of the same name.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;
uint32 fileAttributes;

NWFileHandle_ta fileHandle;

ccode=NWCreateFile(&path, fileAttributes, fileHandle);

Input

| path Passes a pointer to the NWPath_t structure containing the
file server connection ID, the directory handle, and a pointer

to the path name. (See Appendix A, NWPath_t Structure.)

fileAttributes Passes the file attributes of the file to be created. (See

Appendix A, File Attributes.)

fileHandle Passes a pointer to the array allocated for the fileHandle.

Output

. fileHandle Receives the file handle for the created file.

- Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

0x9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function creates a new file by passing a file name and receiving a file handle.

This function automatically opens a file allowing you to call NWWriteFile. This

function will overwrite an existing file of the same name.

069-000567 Licensed Material - Property of the copyright holders 4-9

The function fails if the client does not have Create and Erase rights or if a file

with the same name has already been created and that file has been flagged

System, Hidden, or Delete Inhibit.

This function will not sequentially create a string of directories; this function will

only create one file at a time. For example, in the path below, dirl and dir2 must

already have been created, or this call will fail:

volume: \dirl1 \dir2\ filename

See Also

NWCreateNewFile

4-1 0 Licensed Material - Property of the copyright holders 069-000567

NWCreateNewFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ Jf Jf

This function allows you to create a new file, but does not allow you to overwrite an

existing file of the same name.

Synopsis

#include “nwapi.h"

int

NWPath_t

uint32

NWFileHandle_ta

ccode;

path;

fileAttributes;

fileHandle;

ccode=NWCreateNewFile(&path, fileAttributes, fileHandle);

Input

path

fileAttributes

fileHandle

Output

fileHandle

Return Values

0 Successful.

Passes a pointer to the NWPath_t structure containing the

file server connection ID, the directory handle, and the path

name. (See Appendix A, NWPath_t Structure.)

Passes the file attributes of the file to be created. (See

Appendix A, File Attributes.)

Passes a pointer to the array allocated for the fileHandle.

Receives the file handle for the newly created file.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C

OxFF

0x84

0x9B

0Ox9E

OxF8

Invalid Path

File Already Exists

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server |

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function creates a file name and file handle. This function also opens the file

for writing with NWWriteFile.

069-000567 Licensed Material - Property of the copyright holders 4-1 1

This function fails if a file exists with the same name in the same directory or the
client does not have the Create right in the parent directory. Use the
NWCreateFile function if you want to overwrite files with the same name.

This function will not sequentially create a string of directories; this function will
only create one file at a time. For example, in the path below, dirl and dir2 must
already have been created, or this call will fail:

volume: \dirl\dir2\filename

See Also

NWCloseFile

NWCreateFile

4-1 2 Licensed Material - Property of the copyright holders 069-000567

NWDeleteDir

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / /

This function deletes a NetWare directory.

Synopsis

#include "“nwapi.h"

int ccode;

NWPath_t path;

ccode=NWDeleteDir(&path);

Input
|

path Passes a pointer to the NWPath_t structure containing the file
server connection ID, the directory handle, and the path name. (See
Appendix A, NWPath_t Structure.)

Output

None.

Return Values

0. Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C

OxFF

0x84

Ox9B

Ox9E

OxF8

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function fails if any of the following conditions exist:

¢ The directory does not exist.

¢ Files exist in the existing directory.

e Another client has a directory handle pointing to the directory.

¢ The client does not have the Erase right to the target directory.

e The directory has the Delete Inhibit attribute set.

This function will not delete the volume root directory.

If the function succeeds, the function automatically deallocates any directory
handles.

Licensed Material - Property of the copyright holders 4-1 3

See Also

NWCreateDir

4-1 4 Licensed Material - Property of the copyright holders 069-000567

NWDeleteFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ v /

This function marks a file for deletion.

ccode=NWDeleteFile(&path, searchAttributes);

Passes a pointer to the NWPath_t structure

containing the file server connection ID, the directory

handle, and a pointer to the path name. (See

Appendix A, NWPath_t Structure.)

Passes the search attributes for the file, or files, to

be deleted. (See Appendix A, Search Attributes.)

0x00 None (normal files)

0x02 Hidden

0x04 System

0x06 Both

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

uint8 searchAttributes;

Input

path

searchAttributes

Output

| None.

Return Values

0 Successful.

-1 Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

Ox9B

Ox9K

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function deletes a NetWare file, or group of files if wildcard characters are

used by marking them for deletion and rendering them unviewable to the end user.

069-000567 Licensed Material - Property of the copyright holders 4-1 5

The searchAttributes parameter is used to include system and/or hidden files. In
other words, if only the system bit is set in the searchAttributes parameter then all
files will be affected except hidden files. If only the hidden bit is set, all files will
be affected except system files. When neither the hidden nor the system bit is set
(0x00), then only files that are not hidden, system, or both will be affected.

The function fails if a file has been flagged delete inhibit. However, if the
appropriate search attributes are passed with NWDeleteFile, NWDeleteFile can
delete files that have been flagged System or Hidden.

Notes

These files may be recovered with NWRecoverSalvageableFile unless one of
the following conditions exist:

° The file server is running NetWare for AViiON Systems.

e The file server is low on disk space and the set time for saving a
deleted file has passed. Under these conditions, the operating
system will allow another client to overwrite the file.

° The Purge attribute has been set on the file(s) or the parent
directory.

° The operating system has been configured to immediately purge all
deleted files.

See Also

NWPurgeSalvageableFile

NWRecoverSalvageableFile

4-1 6 Licansed Material - Property of the copyright holders 069-000567

NWDeleteTrustee
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf / Jf

This function removes a trustee from a directory’s or file’s trustee list.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

uint32 trusteeObjectID;

ccode=NWDeleteTrustee(&path, trusteeObjectID);

Input

path Passes a pointer to the NWPath_t structure
: containing the file server connection ID, the directory

handle, and a pointer to the path name. (See

Appendix A, NWPath_t Structure.)

trusteeObjectID Passes the trustee object ID of the trustee to be
deleted.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in
NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

OxFE No Trustee Exists

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function revokes a trustee’s rights in a specific directory or file. The
requesting client must have the Access Control right to the directory or file to
delete a trustee.

069-000567 Licensed Material - Property of the copyright holders 4-1 7

Deleting the explicit assignment of an object’s trustee in a directory or file is not

the same as assigning that object no rights in the directory. If no rights are

assigned to a directory or file, the object inherits the rights it has in the parent

directory minus those revoked with the directory’s or file’s Inherited Rights Mask.

Notes

The trusteeObjectID can be obtained by calling NWGetObjectID.

See Also

NWGetEntrysTrustees

NWSetTrustee

4-1 8 | Licensed Material - Property of the copyright holders 069-000567

NWFileCopy
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf / /

This function copies a file, or portion of a file, to another file on the same file
server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWFileHandle_ta sourceFileHandle;

NWFileHandle_ta destinationFileHandle;

uint32 sourceFileOffset;

uint32 destination FileOffset;
uint32 numberOfBytesToCopy;

uint32 numberOfBytesCopied;

ccode=NWFileCopy(serverConnID, sourceFileHandle,

destinationFileHandle, sourceFileOffset, destinationFileOffset,

numberOfBytesToCopy, &numberOfBytesCopied);

Input

serverConnID Passes the file server connection ID.

sourceFileHandle Passes a pointer to the source file handle.
(See “Description” below.)

destinationFileHandle Passes a pointer to the destination file
| handle. (See "Description" below.)

sourceFileOffset Passes the offset, in the source file, where the ©
copying is to begin.

destination FileOffset Passes the offset, in the destination file,
where the copying is to begin.

numberOfBytesToCopy Passes the maximum number of bytes to
copy. 7

numberOfBytesCopied Passes a pointer to the space allocated for the |
number of bytes actually copied. |

Output

numberOfBytesCopied Returns a pointer to the number of bytes
actually copied.

069-000567 Licensed Material - Property of the copyright holders 4-1 9

4-20

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0Ox9B Bad Directory Handle

Ox9E Invalid Filename

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The source and destination files must reside on the same file server. If they do not,
the following error is returned:

NOT_SAME_CONNECTION

To copy the entire source file, specify a value that matches or exceeds the file size

_ in the numberOfBytesToCopy parameter.

Notes

If the destination file is new, the numberOfBytesCopied parameter will return the

size of the destination file; otherwise, the numberOfBytesCopied parameter will

return the number of additional bytes added.

The sourceFileHandle should be obtained by calling NWOpenFile and passing

NWOR_READ in the accessRights parameter. For this function to succeed, the

client must have Read rights to the file.

The destinationFileHandle should be obtained by calling NWOpenFile and passing

NWOR_WRITE in the accessRights parameter. For this function to succeed, the

client must have Create rights in the parent directory.

This function only allows copying files on the same file server. If the client

chooses to copy files across different file servers, the client must create the

destination file (NWCreateFile), read from the source file (NWReadFile),

and write to the destination file (NWWriteFile).

See Also

NWCloseFile

NWCreateFile

NWCreateNewFile

NWOpenFile

NWReadFile

NWWriteFile

Licensed Material - Property of the copyright holders 069-000567

NWGetDirEntrylinfo
NetWare for

NetWare 2.x NetWare 3.x AViIiION Systems

/ Jf

This function provides information about a directory through the directory handle.

Synopsis

#include "“nwapi.h"

int

uintl6

NWDirHandle_ts

NWDirEntryInfo_t

ccode;

serverConnID;

dirHandle;

dirInfo;

ccode=NWGetDirEntryInfo(serverConnID, dirHandle, &dirInfo);

Input

serverConnID

dirHandle

dirInfo

Output

dirInfo

Return Values

Passes the file server connection ID.

Passes the directory handle associated with the

directory you are requesting information for.

Passes a pointer to the NWDirEntryInfo_t structure

allocated for the directory entry information. (See

Appendix A, NWDirEntryInfo_t Structure.)

Receives the directory entry information. (See

Appendix A, NWDirEntryInfo_t Structure.)

0 Successful. .
-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

Ox9B- Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 4-21

Notes

This call is useful for obtaining information from the root directory.

The dirHandle parameter must be allocated using
NWAllocTemporaryDirHandle or NWAllocPermanentDirHandle.

See Also

NWScanDirEntryInfo

NWAllocTemporaryDirHandle

NWAlIlocPermanentDirHandle

4-22 Licensed Material - Property of the copyright holders 069-000567

NWGetDirRestriction

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function checks for a directory’s level and available blocks.

Synopsis

#include "nwapi.h”

int

uint16

NWDirHandle_ts

uint8

NWDirRestriction_t

uint16

ccode;

serverConnID;

dirHandle;

numberOfEntries;

restrictions[n]; |

maxListElements;

ccode=NWGetDirRestriction(serverConnID, dirHandle,

&numberOfEntries, restrictions, maxListElements);

Input

serverConnID

dirHandle

numberOfEntries

restrictions

maxListElements

Output

numberOfEntries

restrictions

Passes the file server connection ID.

Passes the directory handle of the directory to be

scanned.

Passes a pointer to the space allocated for the

number of entries. |

Passes a pointer to the array of structures allocated

for the directory restrictions. (See Appendix A,

NWDirRestriction_t Structure.)

Passes the maximum number of objects that you

expect to have restrictions.

Receives the number of entries actually copied into

the restrictions parameter (0 - n).

Receives the directory restrictions for each entry.

(see Appendix A, NWDirRestriction_t Structure.)

069-000567 Licensed Material - Property of the copyright holders 4-23

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function scans for the amount of disk space assigned to all directories between

the current directory (referenced by the dirHandle) and the root directory. To find

the actual amount of space available to a directory, scan all the entries returned in

the restriction array and use the smallest one.

All directories will have a value in the maxBlocks parameter (from the

NWDirRestriction_t structure). The maxBlocks parameter will return one of the

following:

Ox7FFFFFFF No restrictions have ever been set.

negative value Restrictions were set but they have been cleared. (Use a
zero in NWSetDirRestriction to clear restrictions.)

positive value Restrictions are set, and the positive value is the maximum

value.

To calculate the amount of space in use, simply subtract availableBlocks from

maxBlocks.

Notes

You must allocate a dirHandle before you make this call.

See Also

NWGetDirEntryInfo

NWScanDirEntryInfo

NWSetDirRestriction

4-24 Licensed Material - Property of the copyright holders 069-000567

NWGetEffectiveRights
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function returns the client’s effective rights in the specified directory or file.

ccode=NWGetEffectiveRights(&path, &effectiveRights);

Passes a pointer to the NWPath_t structure

containing the directory handle, the file server

connection ID, and a pointer to the path name. (See

Appendix A, NWPath_t Structure.)

Passes a pointer to the space allocated for the

effective rights for the directory or file. (See

Appendix A, Trustee Rights and Inherited Rights

Mask.)

Synopsis

#include "“nwapi.h"

int ccode;

NWPath_t path;

uint16 effectiveRights;

Input

path

effectiveRights

Output

effectiveRights

Return Values

0 Successful.

-] Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

Receives the effective rights for the directory or file.

(See Appendix A, Trustee Rights and Inherited

Rights Mask.) |

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 4-25

Description

For NetWare 3.x and NetWare for AViiON Systems, the requesting workstation’s

effective rights are determined with the inherited rights mask of the directory (or

file), the chent’s trustee assignments, and the trustee assignments of the groups the

client belongs to.

e Ifthe client has been granted a trustee assignment in a parent directory of

the specified directory, the client’s effective rights are the trustee rights of

the parent directory minus any rights revoked by the specified directory’s

(or file’s) inherited rights mask.

¢ Ifthe client has been granted a trustee assignment to the specified

directory (or file), the client’s effective rights are the current trustee

assignment.

¢ Ifthe client belongs to a group, the group’s effective rights are added to the

client’s effective rights.

Notes

For NetWare 2.x, the effective rights to a file are always the same as the

effective rights in the parent directory.

See Also

NWParseFullPath

NWDeleteTrustee

NWGetEntrysTrustees

NWSetTrustee

4-26 Licensed Material - Property of the copyright holders 069-000567

NWGetEntrysTrustees
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function scans an entry (directory or file) for trustees.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

uint8 numberOfEntries;

NWTrusteeRights_t trustees;

uint16 maxListElements;

ccode=NWGetEntrysTrustees(&path, &numberOfEntries, &trustees, .

maxListElements);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, the server

connection ID, and a pointer to the path name. (See

Appendix A, NWPath_t Structure.)

numberOfEntries Passes a pointer to the space allocated for the

number of entries found.

trustees Passes a pointer to the space allocated for the

trustees. (See Appendix A, NWTrusteeRights_t

Structure.)

maxListElements Passes the maximum number of objects that you
| expect to have trustee rights.

Output

numberOfEntries Receives the number of entries copied into the

trusteeRights parameter (0 - n).

trusteeRights Receives the trustee objectIDs and their associated
rights. (See Appendix A, NWTrusteeRights_t

Structure.)

069-000567 Licensed Material - Property of the copyright holders 4-27

Return Values

0 Successful .

-1 Unsuccessful. One of the following error codes is placed in

NWErrno: |

Ox9C Invalid Path

OxFF No Files Found

Ox9C No Trustees

OxFE Directory Locked

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function scans an entry for trustees and returns their objectID and trustee

rights. For NetWare 3.x, this call may be made to directories or files, since trustees

are assigned to files as well as directories. For NetWare 2.x, this call may be made

only to directories.

The client must have Access Control rights to the directory or file.

See Also

NWDeleteTrustee

NWSetTrustee

4-28 Licensed Material - Property of the copyright holders 069-000567

NWGetFileAttributes
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function returns a specified file’s attributes.

Synopsis

#include “nwapi.h"

int ccode;

NWPath_t path;
uint8 searchAttributes;

uint32 fileAttributes;

ccode=NWGetFileAttributes(&path, searchAttributes, &fileAttributes);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, the file server

connection ID, and a pointer to the path name. (See

Appendix A, NWPath_t Structure.)

searchAttributes Passes the search attributes of the file you are

seeking. (See Appendix A, Search Attributes.)

0x00 None (normal files)

0x02 Hidden

0x04 System

0x06 Both

fileAttributes Passes a pointer to the space allocated for the file’s

attributes. (See Appendix A, File Attributes.)

Output

fileAttributes Receives the file’s attributes. (See Appendix A, File

Return Values

Attributes.)

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in .

NWErrno: :

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 4-29

Description

This function requires File Scan rights to the file.

See Also

NWSetFileAttributes

4-30 Licensed Material - Property of the copyright holders 069-000567

NWGetNameSpacelinfo
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf /

This function returns all name spaces and data stream information for the specified

file server and volume.

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnld;

uint8 volNum;

NWNameSpacelnfo_t nameSpace;

ccode=NWGetNameSpacelnfo(serverConnID, volNum, &nameSpace);

Input

serverConnID Passes the file server connection ID.

volNum Passes the number of the volume associated with the

name space.

namespace Passes a pointer to the structure allocated for the

name space information. (See Appendix A,

NWNameSpacelnfo_t Structure.)

Output

namespace Receives the name space information. (See Appendix

A, NWNameSpacelnfo_t Structure.)

Return Values

4) Successful.
-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B- Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Notes

The volNum can be obtained by calling NWGetVolNum.

See also

NWGetVolNum

069-000567 Licensed Material - Property of the copyright holders 4-31

NWGetObjectVolRestriction

NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/

This function gets the volume restrictions placed on a specified object (such as a

user).

Synopsis

#include "nwapi.h"

int

uint16

uint8

uint32

int32

int32

ccode;

serverConnID;

volNum;

objectID;

restriction;

inUse;

ccode=NWGet ObjectVolRestriction(serverConnID, volNum, objectID,

&restriction, &inUse);

Input

serverConnID Passes the file server connection ID.

volNum

objectID

restriction

inUse

Output

restriction

inUse

4-32

Passes the volume number.

Passes the object ID number for which the

restrictions are being checked.

Passes a pointer to the space allocated for the

object’s volume restrictions.

Passes a pointer to the space allocated for the

amount of volume space currently used by the object.

Receives the object’s volume restrictions on volume

usage.

Receives the current amount of volume usage by the

object.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

=i Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

Ox9B- Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function returns the amount of space restriction based on 4K blocks on a

specified object as well as the current amount of space used by the object. If

restriction value returned is equal to 0x40000000, there are no restrictions.

Clients can receive space restriction information about themselves, but a client

must have security equivalence to SUPERVISOR to receive information about other

objects. |

Notes

The objectID can be obtained by calling NWGetObjectID.

The volNum can be obtained by calling NWGetVolNum.

See Also

NWGetVolNum

NWGetObjectID

069-000567 Licensed Material - Property of the copyright holders 4-33

NWGetVolinfoWithHandle
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J "A

This function returns information about a volume based on a specified NetWare
directory handle.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWDirHandle_ts dirHandle;

NWVolUsage_t volUsage;

ccode=NWGetVolinfoWithHandle(serverConnID, dirHandle, &volUsage);

Input

serverConnID Passes the file server connection ID.

dirHandle Passes the directory handle.

volUsage Passes a pointer to the structure allocated for the

volume usage information. (See Appendix A,

NWVolUsage_t Structure.)

Output

volUsage Receives the volume usage information. (See

Appendix A, NWVolUsage_t Structure.)

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0Ox9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Description

This function returns information based on a directory handle. The information is

placed in the NWVolUsage_t Structure.

Note: If the call is successful, the volume is mounted.

4-34 Licensed Material - Property of the copyright holders 069-000567

The following fields in the structure will always return a 0: purgableBlocks,

notYetPurgableBlocks, maxDirEntriesUsed, volNum, isCached, isHashed, and

isMounted.

Use NWGetVolNum to receive a valid value for the volume number.

Your version of NetWare for AViiON Systems may not support this function. See

the release notice that accompanied your shipment for specific compatibility

restrictions.

For NetWare 3.x, use NWGetVolUsage to return valid values for the following

fields: purgableBlocks and notYetPurgableBlocks.

For NetWare 2.x, use NWGetVolUsage to return valid values for the following

fields: maxDirEntriesUsed, volNum, isCached, isHashed, and isMounted.

Notes

To obtain a directory handle, the application must call
NWAIllocTemporaryDirHandle or NWAllocPermanentDirHandle.

See Also

NWAIlocPermanentDirHandle

NWAllocTemporaryDirHandle

NWGetVolNum

NWGetVolUsage

069-000567 Licensed Material - Property of the copyright holders 4-35

NWGetVoiIName
NetWare for

NetWare 2.x NetWare 3.x AViION Systems

/ / J

This function returns the name of the volume associated with the specified volume

number.

Synopsis

#include "nwapi.h"

int | ccode;

uint16 serverConnID;

uint8 volNum;

char volName[NWMAX_VOLUME_NAME_LENGTH];

ccode=NWGetVolName(serverConnID, volNum, volName);

Input

serverConnID Passes the file server connection ID.

volNum Passes the volume number for which the volume

name is being obtained.

volName Passes a pointer to the space allocated for the |

volume name (16 characters).

Output

volName Receives the volume name.

Return Values

0 Successful. |
-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B- Bad Directory Handle

Ox9EK Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function returns a volume’s name by passing a volume number. The volNum

parameter identifies the volume on the file server’s Volume table. The Volume table

contains information about each volume on the file server.

4-36 Licensed Material - Property of the copyright holders 069-000567

The volName parameter is 16 bytes long (including a null-byte). A volume name

can be from 1 to 16 characters long and cannot include spaces or the following

characters:

* (asterisk)

? (question mark)

(colon)

/ (slash)

\ (backslash)

If a volume name is fewer than 16 characters long, the remaining characters in the

volName parameter are null. If volName is 16 characters long, it is not null-

terminated.

See Also

NWGetVolNum

069-000567 Licensed Material - Property of the copyright holders 4-37

NWGetVoiINum
NetWare for

NetWare 2.x NetWare 3.x AVION Systems

J J J

This function returns the volume number based on the file server connection ID

number and the volume name. This call fails if the volume does not exist or the

volume is not mounted.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlID;

char volName[NWMAX_VOLUME_NAME_ LENGTH];
uint8 volNum; ,

ccode=NWGetVolNum(serverConnID, volName, &volNum);

Input

serverConnID Passes the file server connection ID.

volName Passes a pointer to the volume name. Do not include

a colon with the volume name.

volNum Passes a pointer to the space allocated for the

volume number.

Output

volINum Receives the volume number.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in

~ NWErrno:

0x9C_ Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x98 Volume Does Not Exist

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

4-38 Licensed Material - Property of the copyright holders 069-000567

Description

This function returns a volume’s number based on the file server serverConnID and
volume name.

The volume name cannot contain wildcards.

If the volNum parameter is between 0 and the maximum allowable volume number
on the network, the call is successful and a zero is returned.

See Also

NWGetVolName

069-000567 Licensed Material - Property of the copyright holders 4-39

NWGetVolsObjectRestrictions

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function will scan a volume for any object restrictions.

Synopsis

| #include "nwapi.h"

int

uint16

uint8

uint8

NWUserRestriction_t

uint16

ccode;

serverConnID;

volNum;

numberOfEntries;

restrictions[n];

maxListElements;

ccode=NWGetVolsObjectRestrictions(serverConnID, volNum,

&numberOfEntries, restrictions, maxListElements);

Input

serverConnID

volNum

numberOfEntries

restrictions

maxListElements

Output

numberOfEntries

restrictions

Passes the file server connection ID.

Passes the volume number.

Passes a pointer to the space allocated for the

number of entries.

Passes a pointer to the array of structures allocated

for the user restrictions. (See Appendix A,

NWUserRestriction_t Structure.)

Passes the maximum number of objects that you

expect to have restrictions.

Receives the number of entries that were copied into

the restrictions array (0 - n).

Receives the user restrictions. (See Appendix A,

NWUserRestriction_t Structure.) |

4-40 Licensed Material - Property of the copyright holders 069-000567

069-000567

Return Values

Description

0 Successful.

-1 Unsuccessful.

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

One of the following error codes is placed in

NWErrno:

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

This function returns a list of the object restrictions for a specified volume. All
restrictions are in 4K blocks. A restriction may be zero.

Notes

See Also

The volNum can be obtained by calling NWGetVolNum.

The client must have security equivalence to SUPERVISOR.

NWGetVolNum

NWSetObjectVolRestriction

Licensed Material - Property of the copyright holders 4-41

NWGetVolUsage
| NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / /

This function gives you information about what is available, and in use, on a
certain volume.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint8 volNum;
NWVolUsage_t volUsage;

ccode=NWGetVolUsage(serverConnID, volNum, &volUsage);

Input

serverConnID Passes the file server connection ID.

volNum Passes the volume number of the volume being

checked. |

volUsage Passes a pointer to the structure allocated for the
volume usage information. (See Appendix A,

NWVolUsage_t Structure.)

Output

volUsage Receives the filled-in structure with the volume
| usage information. (See Appendix A, NWVolUsage_t

Structure.)

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0x9C_ Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x98 Volume Does Not Exist (NetWare 3.x and PNW)

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

4-42 Licensed Material - Property of the copyright holders 069-000567

Description

The volNum parameter identifies the volume on the file server’s volume table,

which contains information about each volume on the file server. Use

NWGetVolNum to obtain a volume number.

For NetWare 3.x, the following fields in the NWVolUsage_t Structure will always

return a 0: maxDirEntriesUsed, isCached, isHashed, isRemovable, isMounted. Use

NWGetVolInfoWithHandle to return a valid value for isRemovable. This call fails

if the volume does not exist or the volume isn’t mounted.

For NetWare 2.x, the following fields in the NWVolUsage_t Structure will always
return a 0: purgableBlocks, notYetPurgableBlocks, and sectorsPerBlock. Use

NWGetVolinfoWithHandle to return a valid value for sectorsPerBlock.

See Also

NWGetVolNum

NWGetVoliInfoWithHandle

069-000567 Licensed Material - Property of the copyright holders 4-43

NWMoveeEntry

NetWare for

NetWare 2.x NetWare 3.x AViION Systems

/

This function allows you to move and rename a file or directory.

Synopsis

#include "nwapi.h"

int

NWPath_t

uint8

NWDirHandle_ts

char

ecode;

path;

searchAttributes;

newDirHandle;

newPathName[NWMAX_DIR_PATH_LENGTH];

ccode=NWMoveEntry(&path, searchAttributes, newDirHandle,
newPathName);

Input

path

searchAttributes

newDirHandle

newPathName

Output

None.

Passes a pointer to the structure containing the

directory handle, server connection ID, and a pointer

to the path name of the source file or directory. (See

Appendix A, NWPath_t Structure.)

Passes the search attributes for hidden or system

files or directories. (See "Description" below and

Appendix A, Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06
directories 0x10

files 0x20

Passes the new directory handle of the destination
file or directory. (See "Description" below.)

Passes a pointer to the destination file or

directory name (See "Description" below.)

4-44 Licensed Material - Property of the copyright holders 069-000567

069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The path parameter specifies the source file or directory that the client wants to
move. The client must have Erase rights to the source directory or file and Create

rights in the destination directory.

The searchAttributes parameter must contain either the directories or files search

_ attribute bit so that the file server knows whether a file or directory is being

moved. The directories or files search attribute bit may be OR’ed with the other

search attribute values, if you want to move system or hidden files and directories.

The newDirHandle parameter is the directory handle for the destination of the file

or directory. The destination directory must be on the same file server and volume

as the source directory. The newDirHandle parameter can contain a zero value if a
full path is passed in the newPathName parameter. To use a value other than

zero, the newDirHandle must be allocated using NWAllocPermanentDirHandle or

NWAllocTemporaryDirHandle.

The newPathName parameter is the new name for the directory or file in its new

destination. If zero is passed in the newDirHandle parameter, a full path can be

specified in the newPathName parameter. If a value other than zero is passed in

the newDirHandle parameter, the newPathName parameter should specify only the

directory or file name.

See Also

NWAlIllocPermanentDirHandle

NWaAllocTemporaryDirHandle

NWMoveFile

NWRenameDir

Licensed Material - Property of the copyright holders 4-45

NWMoveFile
NetWare for

NetWare 2.x. NetWare3.x AViiON Systems

"A / /

This function moves or renames a file.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;
uint8 searchAttributes;

NWDirHandle_ts destDirHandle;
char destFileName[NWMAX_FILE_NAME_LENGTH];

ccode=NWMoveFile(&path, searchAttributes, destDirHandle,

destFileName);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name of the source file.

(See Appendix A, NWPath_t Structure.)

searchAttributes Passes the search attributes for hidden or system

files. (See Appendix A, Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06

destDirHandle Passes the directory handle of the destination
directory. (See "Description" below.)

destFileName Passes a pointer to the destination file name. (See

"Description" below.)

Output

None.

4-46 Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

You can use this function to rename a file by simply moving it to the same

directory with a new file name. If you use this call to move a file, the destination

directory must reside on the same server and volume as the source directory.

The destDirHandle may contain a zero value, if a full path is passed in the

destFileName parameter. To obtain a directory handle, call

NWAlJlocTemporaryDirHandle or NWAllocPermanentDirHandle.

The searchAttributes parameter is used to include system and/or hidden files. In

other words, if only the system bit is set in the searchAttributes parameter then all

files will be affected except hidden files. If only the hidden bit is set, all files will

be affected except system files. When neither the hidden nor the system bit is set

(0x00), then only files that are not hidden, system, or both will be affected.

Notes

To move a file to a different server, the application must create a file on the

target server (NWCreateFile or NWCreateNewFile) and then read from the

source file (NWReadFile) and write to the destination file (NWWriteFile).

_ See also

NWAllocTemporaryDirHandle

NWaAllocPermanentDirHandle

NWCreateFile

NWCreateNewFile

NWReadFile

NWWriteFile

069-000567 Licensed Material - Property of the copyright holders 4-47

NWoOpenFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / /

This function opens a previously created file for reading or writing.

Synopsis

#include “nwapi.h"

int

NWPath_t

uint8

uint8

NWFileHandle_ta

ccode;

path;

searchAttributes;

accessRights;

fileHandle;

ccode=NWOpenFile(&path, searchAttributes, accessRights, fileHandle);

Input

path

searchAttributes

accessRights

fileHandle

Output

fileHandle

Passes a pointer to the NWPath_t structure

containing the directory handle, server

connection ID, and a pointer to the path

name. (See Appendix A, NWPath_t

Structure.)

Passes the search attributes for hidden or

system files. (See Appendix A, Search —

Attributes.)

none 0x00

hidden 0x02

— system 0x04

both 0x06

Passes the access rights of the file to open.

(See Appendix A, Open Access Rights.)

Passes a pointer to the space allocated for the

file handle of the file to be opened.

Receives the file handle of file to be opened.

4-48 Licensed Material - Property of the copyright holders 069-000567

069-000567

Return Values

Description

0 Successful.

-1 Unsuccessful.

NWErrno:

0x9C

OxFF

0x94

0x9B

Ox9E

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

Invalid Open Access Rights

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

This function opens a NetWare file and returns the file handle for reading or
writing.

Notes

See Also

You should use NWCloseFile after completing the read or write to the file.

NWCloseFile

NWReadFile

NWWriteFile

Licensed Material - Property of the copyright holders 4-49

NWPurgeSalvageableFile

NetWare for

NetWare 2.x NetWare 3.x AVION Systems

/

This function permanently deletes files that have been erased but are still
recoverable.

Synopsis

#include "nwapi.h"

int ecode;
NWPath_t path;

int32 entryID;

ccode=NWPurgeSalvageableFile(&path, entryID);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

entryID Passes the entryID for the file to be purged. (See
"Notes" below.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C_ Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

When a file is deleted, it can still be recovered for a time period and still uses disk

space. This function can be used

¢ To permanently delete erased but recoverable files.

¢ To free the disk space being used by deleted, but still recoverable, files.

4-50 Licensed Material - Property of the copyright holders 069-000567

This function purges one file previously marked for deletion. Use
NWScanSalvageableFiles until you find a file you want to purge. Then call

NWPurgeSalvageableFile, passing in the entryID that corresponds to the desired
file. The entryID is obtained from NWScanSalvageableFiles.

See Also

NWRecoverSalvageableFile

NWScanSalvageableFiles

069-000567 Licansed Material - Property of the copyright holders 4-51

NWReadFile

4-52

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / "A

This function allows you to read a file.

Synopsis

Input

Output

#include "“nwapi.h"

int

uint16

NWFileHandle_ta

uint32

uint32

uint32

char

ccode;

serverConnID;

fileHandle;

startingOffset;

bytesToRead;

bytesActuallyRead;

data[n];

ccode=NWReadFile(serverConnID, fileHandle, &startingOffset,
bytesToRead, &bytesActuallyRead, data);

serverConnID

fileHandle

startingOffset

bytesToRead

bytesActuallyRead

data

startingOffset

bytesActuallyRead

data

Passes the file server connection ID.

Passes a pointer to the file handle.

Passes the address of the offset where the file read

should begin.

Passes the maximum number of bytes to be read

(should not exceed n).

Passes a pointer to the space allocated for the actual

number of bytes read.

Passes a pointer to the space allocated for the data

being read.

Receives the new offset (previous offset plus the

number of bytes read).

Receives the actual number of bytes that were read
(0 - n).

Receives the data that is read.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in
NWErrno: :

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function reads from a file that has been previously opened with NWCreateFile,
NWCreateNewFile, or NWOpenFile.

See also

NWCloseFile

NWCreateFile

NWCreateNewFile

NWOpenFile

NWWriteFile

069-000567 Licensed Material - Property of the copyright holders 4-53

NWRecoverSalvageableFile

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function restores a deleted, but salvageable file.

Synopsis

#include "nwapi.h"

int ccode;
NWPath_t path;
int32 entryID;

char newFileName[NWMAX_FILE_NAME_LENGTH];

ccode=NWRecoverSalvageableFile(&path, entryID, newFileName);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

entryID Passes the entryID corresponding to the file. (See
"Description" below.)

newFileName Passes a pointer to the space allocated for the
filename. This space contains the name of the file to

be restored. (This name may be the same name as

the salvageable file’s, unless another file was created

with the same name.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B

Ox9E

OxF8

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

4-54 Licensed Material - Property of the copyright holders 069-000567

Description

This function restores one file previously marked for deletion. You should use

NWScanSalvageableFiles until you find a file you want to salvage. Then call

NWRecoverSalvageableFile, passing in the entryID that corresponds to the desired
file. The entryID is obtained from NWScanSalvageableFiles.

Notes

If the client creates more than one file with the same name as an erased

file, the function renames the erased files, replacing the last two characters

of the file extension with 00. For example,

TEST.DAT becomes TEST.DO00

TEST becomes TEST.00

See Also

NWPurgeSalvageableFile

NWScanSalvageableFiles

069-000567 Licensed Material - Property of the copyright holders 4-55

NWRenamebDir

4-56

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function allows you to change the name of a directory.

char newDirName[NWMAX_DIR_NAME_LENGTH];

ccode=NWRenameDir(&path, newDirName);

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

Input

path

newDirName

Output

None.

Return Values

0 Successful.

-l Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0x9B

0x9E

OxF8

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

Passes a pointer to the array allocated for the new

directory name.

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The newDirName parameter should only contain the directory’s new name, not a

path specification. Names longer than the DOS 8.3 will be truncated.

This function will rename, not move, a directory. To move a directory, see

NWMoveEkntry.

Licensed Material - Property of the copyright holders | 069-000567

See Also

NWMovekntry

069-000567 Licensed Material - Property of the copyright holders 4-57

NWScanDirEntryInfo

4-58

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / J

This function scans for directory entry information such as entry names, attributes,

and creation (date and time), archive (date and time), last modification (date and

time).

Synopsis

Input

Output

#include "“nwapi.h"

NWBoolean_ts

NWPath_t

int32

uint8

NWDirEntryInfo_t

entry1D=-1;

ecode;

path;

entryID;

searchAttributes;

dirInfo;

ccode=NWScanDirEntrylInfo(&path, &entryID, searchAttributes,

&dirInfo)

path

entryID

searchAttributes

dirInfo

entryID

dirInfo

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See

"Description" and Appendix A, NWPath_t Structure.)

Passes a pointer to the entryID of the previously

scanned directory. (See "Description".)

Passes the search attributes. (See Appendix A,

Search Attributes.) |

none 0x00

hidden 0x02

system 0x04

both 0x06

Passes a pointer to the structure allocated for the
directory entry information. (See Appendix A,

NWDirEntryInfo_t Structure.)

Receives the entryID of the current directory.

Receives the directory entry information. (See

Appendix A, NWDirEntryInfo_t Structure.)

Licensed Material - Property of the copyright holders 069-000567

Return Values

1 Successful

0 Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The application must provide a search string in the pathName field of the

NWPath_t structure. Use the following examples to determine the search string

you want to specify in the pathName field:

Scan all directories in the sys volume sys:*

Scan all directories under sys:dirl sys:\dir1*

Scan directories under dirl beginning with t sys: \dir1\t*

Scan information on dir2 sys:\dirl1\dir2

_ The entryID parameter should pass in a -1 for the first scan; for subsequent calls,

the entryID of the previously-scanned directory should be passed. This entryID

only has meaning for the file server. The application should not have to

manipulate this value.

Notes

For applications talking to 2.x servers, the following fields in the

NWDirEntryInfo_t structure will contain valid values:

entryName

creation DateAndTime

ownerlD

inheritedRightsMask

The remaining structure members will be zero-filled.

See Also

NWGetDirEntryInfo

NWSetDirEntryInfo

069-000567 Licensed Material - Property of the copyright holders 4-59

NWScanFileEntryinfo

4-60

NetWare for

NetWare 2.x NetWare 3.x AVIiION Systems

Jf Jf J

This function returns information about a file such as owner, size, attributes, last

access (date and time), and creation (date and time).

Synopsis

Input

Output

#include "nwapi.h"

NWBoolean_ts

NWPath_t

int32

uint8

NWFileEntryInfo_t

entry[D=-1;

ccode;

path;

entryID;

searchAttributes;

fileEntryInfo;

ccode=NWScanFileEntryInfo(&path, &entryID, searchAttributes,

&fileEntryInfo);

path

entryID

searchAttributes

fileEntryInfo

entryID

fileEntryInfo

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See |

"Description" and Appendix A, NWPath_t Structure.)

Passes a pointer to the entryID of the previously-
scanned file. (See "Description".)

Passes the search attributes. (See Appendix A,

Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06

Passes a pointer to the structure allocated for the file

entry information. (See Appendix A,

NWFileEntryInfo_t Structure.)

Receives the sequence number of the current file.

Receives the file entry information. (See Appendix

A, NWFileEntryInfo_t Structure.)

Licensed Material - Property of the copyright holders 069-000567

Return Values

1 Successful.

0 Unsuccessful. One of the following error codes is placed in

NWErrmno:

Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The application must provide a search string in the pathName field of the

NWPath_t structure. Use the following examples to determine the search string

you want to specify in the pathName field:

Scan all files in the sys:dirl directory sys:dirl*

Scan all files in the sys:dirl directory beginning with t _sys:dir1\t*

The entryID parameter should pass in a -1 for the first scan; for subsequent calls,
the entryID of the previously-scanned file should be passed. This entryID only has

meaning for the file server. The application should not have to manipulate this

value.

Notes

The fileSize field in the NWFileEntryInfo_t structure contains the logical

file size.

For applications talking to NetWare 2.x file servers, the following fields in

the NWFileEntryInfo_t structure will be zero:

archiverID

updatorID

inheritedRightsMask

namesSpacelD

See Also |

NWSetFileEntryInfo

069-000567 Licensed Material - Property of the copyright holders 4-61

NWScanSalvageableFiles
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function returns information on deleted, but salvageable, files.

Synopsis

#include "nwapi.h"

NWBoolean_ts ccode;

uint16 serverConnID;

NWDirHandle_ts dirHandle;
int32 entryID;

NWSalvageableInfo_t salvagelnfo;

entry[D=-1; :

ccode=NWScanSalvageableFiles(serverConnID, dirHandle, &entryID,

&salvagelnfo);

Input

serverConnID Passes the file server connection ID.

dirHandle Passes the directory handle of the directory to be
scanned.

entryID Passes the entryID of the previously-scanned
salvageable file. (See "Description".)

salvagelnfo Passes a pointer to the structure allocated for the
salvageable entry information. (See Appendix A,

NWSalvageableInfo_t Structure.)

Output

entryID | Receives the entryID of the current salvageable file.
(See “Description”".)

salvagelInfo Receives the structure allocated for the salvageable
entry information. (See Appendix A,

NWSalvageableInfo_t Structure.)

4-62 Licensed Material - Property of the copyright holders 069-000567

Return Values

1 Successful.

0 Unsuccessful. One of the following error codes is placed in

NWErrno:

0x9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The entryID parameter should pass in a -1 for the first scan; for subsequent calls,

the entryID of the previously-scanned file should be passed. This entryID only has

meaning for the file server. The application should not have to manipulate this

value.

See Also

NWRecoverSalvageableFile

NWPurgeSalvageableFile

069-000567 Licensed Material - Property of the copyright holders 4-63

NWScantTrusteePaths

4-64

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function returns the directory paths to which an object has trustee rights.

Synopsis

Input

Output

#include "nwapi.h"

NWBoolean_ts

uint16

uint32

uint8

int32

uint16

char

entryID=-1;

ecode;

serverConnID;

objectID;

volNum;

entryID;

trusteeAccessRights; |

directoryPathINWMAX_DIR PATH LENGTH);

ccode=NWScan TrusteePaths(serverConnID, objectID, volNum, &entryID,

&trusteeAccessRights, directoryPath);

serverConnID

- objectID

~ -volNum

entryID

trusteeAccessRights

directoryPath

entryID

trusteeAccessRights

directoryPath

Passes the server connection ID.

Passes the object ID of the user or group for which

the trustee information is to be found.

Passes the volume number of the volume being

searched.

Passes a pointer to the entryID of the previously-

scanned directory path. (See "Description".)

Passes a pointer to the space allocated for the

trustee’s access mask. (See Appendix A, Trustee

Rights and Inherited Rights Mask.) |

Passes a pointer to the space allocated for the

current trustee’s directory path name.

Receives the entryID of the current directory. (See
“Description".)

Receives the trustee’s access mask. (See Appendix A,

Trustee Rights and Inherited Rights Mask.)

Receives the current trustee’s directory path name.

Licensed Material - Property of the copyright holders 069-000567

Return Values

1 Successful.

0 Unsuccessful. One of the following error codes is placed in

NWErrno: :

OxFC No Such Object

OxFF No Files Found

0x84 No Create Privileges

0Ox9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function is used iteratively to determine all of a bindery object’s trustee

directory paths and corresponding access masks.

The entryID parameter should pass in a -1 for the first scan; for subsequent calls,

the entryID of the previously-scanned directory path should be passed. This

entryID only has meaning for the file server. The application should not have to

manipulate this value.

Notes

Only SUPERVISOR, the object, or a bindery object that is security

equivalent to SUPERVISOR or the object, can scan an object’s trustee

directory paths.

The objectID can be obtained by calling NWGetObjectID.

The volNum can be obtained by using NWGetVolNum.

See Also

NWGetObjectID

NWGetVolNum

069-000567 Licensed Material - Property of the copyright holders 4-65

NWSetDirEntryinfo
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / Jf

This function sets or changes information kept about a directory such as owner,

attributes, creation (date and time), or last access (date and time).

Synopsis

#include “nwapi.h"

int

NWPath_t

uint8

uint32

NWDirEntryInfo_t

ccode;

path;

searchAttributes;

changeAttributes;

dirEntryInfo;

ccode=NWSetDirEntryInfo(&path, searchAttributes, changeAttributes,

&dirEntryInfo);

Input

path

searchAttributes

changeAttributes

dirEntryInfo

Output

None.

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

Passes the search attributes for any hidden or

system files. (See Appendix A, Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06

Passes the new attributes for the directory entry.

(See Appendix A, Change Attributes.)

Passes a pointer to the structure allocated for the

directory entry information. (See Appendix A,

NWDirEntryInfo_t Structure.)

4-66 Licensed Material - Property of the copyright hoiders 069-000567

Return Values

0 Successful.

-1 Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function sets information kept on directories. This information can be seen in

the NWDirEntryInfo_t structure. A pointer to the entire structure should be

passed, even if only one item is being changed. Furthermore, the change attributes

must be passed which correspond to the data being changed. For example, if the

owner of the directory is being changed, then the entire structure would be

_ allocated and the new ownerID would be put in the ownerlID field of the structure.
Correspondingly, the NWCA_OWNER_ID change attribute would be passed in the

changeAttributes parameter. (The ownerID is the object ID of the owner.)

If you use this function to change the name of a directory, you must change the

path.path name to the new directory name for subsequent calls.

Notes

If more than one item is being changed, the change attributes may be OR’ed

together. If you only want to change the directory’s inherited rights mask,

use NWSetDirsInheritedRightsMask.

For NetWare 2.x servers, the only data which can be changed (as referenced

in the NWDirEntryInfo_t structure) is:

creation DateAndTime

ownerID

inheritedRightsMask

For NetWare 3.x and NetWare for AViiON Systems servers, the data that

cannot be changed is: nameSpaceID

See Also

NWScanDirEntryInfo

NWSetDirsInheritedRightsMask

069-000567 Licensed Material - Property of the copyright holders 4-67

NWSetDirRestriction

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function sets (or clears) a directory’s restrictions.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;
NWDirHandle_ts dirHandle;
int32 restriction;

ccode=NWSetDirRestriction(serverConnID, dirHandle, restriction);

Input

serverConnID Passes the file server connection ID.

dirHandle Passes the directory handle of the directory that will
have its restrictions set.

restrictions Passes the restrictions.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C_ Invalid Path
OxFF No Files Found

0x84 No Create Privileges

Ox9B_ Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function requires that the application pass an allocated directory handle to the

directory to which the restrictions apply. The directory handle can be obtained by

calling either NWAllocTemporaryDirHandle or NWAllocPermanentDirHandle.

\

4-68 Licensed Material - Property of the copyright holders 069-000567

The restriction parameter passes a 0 to clear all restrictions or a number

corresponding to the space available in the directory. Restrictions are in 4K blocks;

therefore, a restriction of 1 will restrict the space usage in a particular directory to

AK.

See Also

NWGetDirRestriction

NWaAllocTemporaryDirHandle

NWAllocPermanentDirHandle

069-000567 Licensed Material - Property of the copyright holders 4-69

NWSetDirsinheritedRightsMask
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ / J

This function sets the rights mask for a directory path.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

uint16 newRightsMask;

ccode=NWSetDirsInheritedRightsMask(&path, newRightsMask);

Input

path Passes a pointer to the NWPath_t structure
| | containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

newRightsMask Passes the rights that you want to grant the
directory’s rights mask. (See Appendix A, Trustee

Rights and Inherited Rights Mask.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful.

0x9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

QOx9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function modifies an inherited rights mask for a directory by replacing the

existing mask. The function does not add or subtract rights from the existing
mask. You pass all rights you want in the rights mask with the newRightsMask
parameter.

4-70 Licensed Material - Property of the copyright holders 069-000567

See Also

NWGetDirEntryInfo

NWScanDirEntryInfo

NWSetFilesInheritedRightsMask

069-000567 Licensed Material - Property of the copyright holders 4-71

~

NWSetFileAttributes

4-72

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J Jf /

This function modifies a file’s attributes.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

uint8 searchAttributes;
uint32 fileAttributes;

ccode=NWSetFileAttributes(&path, searchAttributes, fileAttributes);

Input

path Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

searchAttributes Passes the search attributes. (See Appendix A,
Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06

fileAttributes | Passes the file attributes to be set on the file

Return Values

0 Successful.

-1 Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0Ox9B

Ox9E

OxF8

designated in the pathName field in the NWPath_t

structure. (See Appendix A, File Attributes.)

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 069-000567

Description

The searchAttributes parameter is used to include system and/or hidden files. In
other words, if only the system bit is set in the searchAttributes parameter then all
files will be affected except hidden files. If only the hidden bit is set, all files will
be affected except system files. When neither the hidden nor the system bit is set
(0x00), then only files that are not hidden, system, or both will be affected.

See Also

NWSetFileEntryInfo

NWScanFileEntryInfo

069-000567 Licensed Material - Property of the copyright holders 4-73

NWSetFileEntryinfo

4-74

NetWare for

NetWare 2.x NetWare3.x AViiON Systems

Jf / /

This function sets file information such as owner, creation (date and time) and last
access (date and time).

Synopsis

Input

Output

#include "nwapi.h"

int

NWPath_t

uint8

uint32

NWFileEntryInfo_t

ecode;

path;

searchAttributes;

changeAttributes;

fileInfo;

ecode=NWSetFileEntryInfo(&path, searchAttributes, changeAttributes,
&fileInfo);

path

| searchAttributes

changeAttributes

fileInfo

None.

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

Passes the search attributes. (See Appendix A,

Search Attributes.)

none 0x00

hidden 0x02

system 0x04

both 0x06

Passes the change attributes. (See "Description" and
Appendix A, Change Attributes.)

Passes a pointer to the structure allocated for the file

information being set. (See Appendix A,

NWFileEntryInfo_t Structure.)

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0Ox9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function sets information kept on files. This information can be seen in the

NWFileEntryInfo_t structure. A pointer to the entire structure should be passed,

even if only one item is being changed. Furthermore, the change attributes must

be passed which correspond to the data being changed. For example, if the owner

of the file is being changed, then the entire structure would be allocated and the

new ownerID would be put in the ownerID field of the structure. Correspondingly,

the NWCA_OWNER_ID change attribute would be passed in the changeAttributes

parameter.

Notes

To only change the file attributes, use NWSetFileAttributes. To only

change the file’s inherited rights mask, use

NWSetFilesInheritedRightsMask.

For all versions of NetWare servers, the following data cannot be changed:

fileSize

nameSpacelD

In addition, for NetWare 2.x, the following data cannot be changed:

entryName

archiverID

updatorID

updateDateAndTime

inheritedRightsMask

See Also

NWScanFileEntryInfo

NWSetFileAttributes

NWSetFilesInheritedRightsMask

069-000567 Licensed Material - Property of the copyright holders 4-75

NWSetFilesInheritedRightsMask

4-76

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function sets the rights mask for a file.

Synopsis

input

Output

#include "nwapi.h"

int ecode;

NWPath_t path;
newRightsMask;uint16

ccode=NWSetFilesInheritedRightsMask(&path, newRightsMask);

path

newRightsMask

None.

Return Values

Description

0

-1

Successful.

Unsuccessful.

NWErrno:

— 0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

Passes a pointer to the NWPath_t structure

containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

Passes the rights that you want to grant the file’s

rights mask. (See Appendix A, Trustee Rights and

Inherited Rights Mask.)

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

This function modifies an inherited rights mask for a file by replacing the

existing mask. The function does not add or subtract rights from the

existing mask. You pass all rights you want in the rights mask with the
newRightsMask parameter.

Licensed Material - Property of the copyright holders 069-000567

See Also

NWScanFileEntryInfo

NWSetFileAttributes

NWSetFileEntryInfo

069-000567 Licensed Material - Property of the copyright holders 4-77

NWSetObjectVolRestriction

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function sets restrictions on objects in a volume.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 volNum;

uint32 objectID;

int32 restriction;

ccode=NWSetObjectVolRestriction(serverConnID, volNum, objectID,
restriction);

input

serverConnID Passes the file server connection ID.

volNum Passes the volume number.

objectID Passes the bindery object ID of the object for which
the restrictions are being set.

~ restriction Passes the objects volume restrictions.

Output

None.

— Return Values

0 Successful.

-1 Unsuccessful.
NWErrno:

0x9C

OxFF

0x84

0x9B

0Ox9E

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function is similar to NWSetDirRestriction in that a space restriction is set,

but the restriction applies to a specific object rather than overall. Restrictions are

set in 4K blocks.

4-78 Licensed Material - Property of the copyright holders 069-000567

069-000567

Notes

See Also

The objectID can be obtained by calling NWGetObjectID.

The volNum can be obtained by calling NWGetVolNum.

The client must have security equivalence to SUPERVISOR.

NWGetVolNum

NWGetObjectID

NWClearObjectVolRestriction

NWGetObjectVolRestriction

Licensed Material - Property of the copyright holders 4-79

NWSetTrustee
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J J /

This function creates a trustee for a file or directory. It also can changes a current

trustee’s trustee rights.

Synopsis

#include “nwapi.h"

int ccode;

NWPath_t path;
uint32 trusteeObjectID;
uint16 trusteeRightsMask;

ccode=NWSetTrustee(&path, trusteeObjectID, trusteeRightsMask);

Input

path Passes a pointer to the NWPath_t structure
containing the directory handle, server connection

ID, and a pointer to the path name. (See Appendix

A, NWPath_t Structure.)

trusteeObjectID Passes the bindery object ID of the trustee.

trusteeRightsMask Passes the trustee rights mask. (See "Description"

and Appendix A, Trustee Rights and Inherited

Rights Mask.) ,

Output

None.

Return Values

0 Successful.

-1 Unsuccessful.

NWErrno:

0x9C

OxFF

0x84

0x9B

Ox9E

OxF8

One of the following error codes is placed in

Invalid Path

No Files Found

No Create Privileges

Bad Directory Handle

Invalid Filename

Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

4-80 Licensed Material - Property of the copyright holders 069-000567

Description

This function assigns a user with specific rights to a directory or file; the user may

already be a trustee in the directory or may be a new trustee. Once assigned, the

user is called a trustee of that directory. To take rights away from a trustee simply

pass a trusteeRightsMask without those trustee rights bits set.

If the trustee (represented by the trusteeObjectID) is already a trustee for this

directory, all current trustee assignments will be replaced with the new

trusteeRightsMask. This call will not add the new trusteeRightsMask to the

current trustee rights. |

Notes

The trusteeRightsMask is a value that can be obtained by ORing together

all of the desired trustee rights. (See Appendix A, Trustee Rights and

Inherited Rights Mask).

The trusteeObjectID can be obtained using NWGetObjectID.

See Also

NWGetObjectID

069-000567 Licensed Material - Property of the copyright holders 4-81

NWWriteFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J JS J

This function allows you to write to a file.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWFileHandle_ta fileHandle;

uint32 starting Offset;

uint32 bytesToWrite;
char datal[n];

ccode=NWWriteFile(serverConnID, fileHandle, &startingOffset,

bytesToWrite, data);

Input

serverConnID Passes the file server connection ID.

fileHandle Passes a pointer to the file handle.

startingOffset Passes a pointer to the offset where the file write is
supposed to begin.

bytesToWrite Passes the number of bytes to write.

data Passes a pointer to data being written.

Output

startingOffset Receives the new offset (previous offset plus the
number of bytes written).

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

0x9C Invalid Path

OxFF No Files Found

0x84 No Create Privileges

0x9B Bad Directory Handle

Ox9E Invalid Filename

OxF8 Not Attached To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

4-82 Licensed Material - Property of the copyright holders 069-000567

Description

This function will write to a NetWare file after the file has been created and

opened.

Notes

You must first use NWCreateFile, NWCreateNewFile or NWOpenFile to get

a file handle for the file to be written to. The file should be closed using

NWCloseFile after it has been written to.

See Also

NWCloseFile
NWCreateFile

NWCreateNewFile

NWReadFile

End of Chapter

069-000567 Licensed Material - Property of the copyright holders 4-83

Chapter 5

Path Service APIs

Function Calls

This chapter describes the following Path Service APIs.

API Page

NWaAllocPermanentDirHandle 0. cece eee cee eee 5-3

NWaAllocTemporaryDirHandle 0.0.0. cc eeu e eee 2... 5-5

NWDeallocateDirHandle ee eee eee eens 5-7

NWGetDirPath settee eee eee beeen eee eee eee 5-8

NWParseFullPath 0.0... ee ee ee ee ne eens 5-9

NWSetDirHandle 0.0.0... ee eet 5-11

Introduction to Path Services

Path Services system calls provide developers with the necessary tools to do the

following:

¢ Allocate directory handles

¢ Deallocate directory handles

¢ Return information about directory paths

Path Services system calls operate through a series of tables maintained by both

the file server and the client. Clients must maintain tables which keep track of the

directory handles they create. Directory handles represent a full directory path

name and can be used as a convenient method for pointing to a particular place

level in the directory structure. Most calls in the File System Services allow you to

use directory handles when specifying a file or directory. The calls usually accept

the directory handle in the NWPath_t structure.

The NWPath_t structure

The following structure is used to specify the location of NetWare file or directory:

typedef struct {

NWDirHandle_ts dirHandle;

uint16 serverConnID;

char *pathName;

} NWPath_t;

dirHandle Represents the directory handle allocated by the client

pointing to a particular place in the directory structure

069-000567 Licensed Material - Property of the copyright holders 5-1

serverConnID Represents the file server which contains the file system

being accessed

pathName Indicates a pointer which points to a character string which

the client must allocate and fill in with a path name

The NWPath_t structure can be used in one of the following ways:

1. The application can pass a 0 in the dirHandle field and then pass a full

path (of the target directory or file) in the pathName field.

2. The application can pass a previously allocated directory handle in the

dirHandle field (see NWAllocTemporaryDirHandle or

NWAIlocPermanentDirHandle) and then can pass a path in the pathName

field which is relative to the directory that the dirHandle points to.

3. The pathName may be null if the dirHandle already references the full

path.

Licensed Material - Property of the copyright holders 069-000567

NWAliocPermanentDirHandle NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

J / /

This function assigns a permanent directory handle.

Synopsis

#include "nwapi.h"

int

NWPath_t

uint16

NWDirHandle_ts

uint16

ccode;

path;

driveNum;

newDirHandle;

effectiveRightsMask;

ccode=NWAllocPermanentDirHandle(&path, driveNum,

&newDirHandle, &effectiveRightsMask);

Input

path

driveNum

newDirHandle

effectiveRightsMask

Output

newDirHandle

effectiveRightsMask

Return Values

0 Successful.

Passes a pointer to the NWPath_t structure

created for the directory handle, the server

connection ID, and a pointer to the directory

path.

Passes the drive number.

Passes a pointer to the structure allocated for

the new directory handle.

Passes a pointer to the space allocated for the

client’s effective rights to the directory

connected via the newDirHandle parameter.

See "Trustee rights and Inherited Rights

Mask" in Appendix A.

Receives the new directory handle.

Receives the client’s effective rights to the

directory connected via the newDirHandle

parameter. See "Trustee rights and Inherited

Rights Mask" in Appendix A.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x98 Volume Does Not Exist

Ox9C Invalid Path

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders . 5-3

Description

Notes

The directory handles allocated by this call are permanently allocated to the client’s

object ID by the file server unless deallocated by a call to NWDeallocateDirHandle,

or overwritten by allocating over the same dirHandle. The client must keep track

of dirHandles and the directories they represent for use with other function calls.

The driveNum parameter should be a unique number between 1-32. This number

is required by the server when allocating dirHandles. The number could be used by

the client in a table to represent a particular dirHandle, although the actual

dirHandle must always be used when sending requests to the server.

The effectiveRightsMask receives the client’s effective rights to the directory as

determined by ANDing the directories inherited rights mask and the client’s trustee

rights in that directory.

If a volume is specified in the path name, the volume must be represented

by the volume name followed by a colon. You should pass a different drive

number for each dirHandle allocated to avoid overwriting an existing

dirHandle.

See Also

NWAllocTemporaryDirHandle

NWDeallocateDirHandle

NWParseFullPath

Licensed Material - Property of the copyright holders 069-000567

NWAllocTemporaryDirHandle
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function assigns a temporary directory handle.

Synopsis

#include "nwapi.h"

int

NWPath_t

uint16

NWDirHandle_ts

uint16

ccode;

path;

driveNum;

newDirHandle;

effectiveRightsMask;

ccode=NWAllocTemporaryDirHandle(&path, driveNum,

&newDirHandle, &effectiveRightsMask);

Input

path

driveNum

newDirHandle

effectiveRightsMask

Output

newDirHandle

effectiveRightsMask

Return Values

0 Successful.

Passes a pointer to the NWPath_t structure.

created for the directory handle, the server

connection ID, and a pointer to the directory

path.

Passes the drive number.

Passes a pointer to the structure allocated for

the new directory handle.

Passes a pointer to the space allocated for the

trustee’s effective rights to the directory

connected via the newDirHandle parameter.

See “Trustee rights and Inherited Rights

Mask" in Appendix A. |

Receives the new directory handle.

Receives the client's effective rights to the

directory connected via the newDirHandle

parameter. See “Trustee rights and Inherited

Rights Mask" in Appendix A.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x98 Volume Does Not Exist

Ox9C Invalid Path

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 5-5

Description

Notes

The directory handles allocated by this call are automatically deallocated when

either: the client logs out (or is somehow terminated), or a call is made to

NWDeallocateDirHandle, or the dirHandle is overwritten by another allocation.

The client should keep track of allocated directory handles and the directories they

represent. |

The driveNum parameter should be a unique number between 1-32. This number

is required by the server when allocating dirHandles. The number could be used by

the client in a table to represent a particular dirHandle, although the actual

dirHandle must always be used when sending requests to the server.

The effectiveRightsMask receives the client’s effective rights to the directory as

determined by ANDing the directories inherited rights mask and the client’s trustee

rights in that directory.

If a volume is specified in the path name, the volume must be represented

by the volume name followed by a colon. You should pass a different drive

number for each dirHandle allocated to avoid overwriting an existing

dirHandle.

See Also

NWaAllocPermanentDirHandle

NWDeallocateDirHandle

NWParseFullPath

Licensed Material - Property of the copyright holders 069-000567

NWDeallocateDirHandle

069-000567

NetWare for

NetWare 2.x NetWare 3.x AVION Systems

/ J f

This function deallocates an allocated directory handle.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

NWDirHandle_ts dirHandle;

ccode=NWDeallocateDirHandle(serverConnID, dirHandle);

input

serverConnID Passes the file server connection ID.

dirHandle | Passes the directory handle to be deallocated.

Output

None.

Return Values

Notes

See Also

0 Successful.

-1 Unsuccessful.

Note: See Appendix B for a complete listing of possible NetWare errors.

This API does not delete the directory handle. The API breaks the

connection so that the directory handle does not point anywhere.

When a client terminates, logs out, or somehow loses it’s connection, all
directory handles for that workstation are deleted. An End-Of-Job also

deallocates temporary directory handles.

NWAlIlocPermanentDirHandle

NWAllocTemporaryDirHandle

NWGetDirPath

NWParseFullPath

Licensed Material - Property of the copyright holders 5-7

NWGetDirPath
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / v

This function returns the path name of the directory to which the given directory

handle is associated.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWDirHandle_ts dirHandle;

char dirPathINWMAX_DIR_PATH LENGTH];

ccode=NWGetDirPath(serverConnID, dirHandle, dirPath);

Input

serverConnID Passes the file server connection ID.

dirHandle Passes the directory handle for the directory whose

path is to be reported.

dirPath Passes a pointer to the space allocated for the

directory path name associated with the directory

handle (above).

Output

dirPath Receives the directory path name associated with the

directory handle (above).

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x9C Invalid Path

0x9B Bad Directory Handle

OxFF Path Not Locatable

OxFB Invalid Parameters

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function returns the full path to the directory specified by the given directory

handle.

See Also

NWAllocTemporaryDirHandle

NWParseFullPath

5-8 Licensed Material - Property of the copyright holders 069-000567

NWParseFullPath
NetWare for

NetWare 2x NetWare3.x AViiON Systems

J Sf ff

This function parses a directory path string.

Synopsis

#include "nwapi.h"

int ccode;

char pathINWMAX_DIR_PATH_LENGTH];
char serverINWMAX_SERVER_NAME_LENGTH];

uint16 serverConnID;

char volName[NWMAX_VOLUME_NAME_LENGTH];
char directories; NWMAX_DIR_PATH_ LENGTH], —

ccode=NWParseFullPath(path, server, &serverConnID, volName,

directories);

Input

path Passes a pointer to the string containing the path to

be parsed.

server Passes a pointer to a string allocated for the server

name.

serverConnID Passes a pointer to structure containing the

serverConnlID.

volName Passes a pointer to the string allocated for the name

of the volume.

directories Passes a pointer to the string allocated for the

directory names.

Output

server Receives the server name.

serverConnID Receives the file server connection ID.

volName Receives the name of the volume.

directories Receives the directory names.

069-000567 Licensed Material - Property of the copyright holders 5-9

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

Ox9C Invalid Path

Ox9B- Bad Directory Handle

OxFF Path Not Locatable

OxFB Invalid Parameters

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The path parameter must contain a full path name.

If the path is on a local drive, an error is returned. If the path specifies a file

server name and there are no connections to that file server, the

NO_CONNECTIONS error is returned.

See Also

NWGetDirPath

5-1 0 Licensed Material - Property of the copyright holders 069-000567

NWSetDirHandle

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function sets the current directory for the specified directory handle.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

NWDirHandle_ts targetDirHandle;

ccode=NWSetDirHandle(&path, targetDirHandle);

Input

path Passes a pointer to the NWPath_t structure created

for the directory handle, the server connection ID,

and a pointer to the directory path.

targetDirHandle Passes the target directory handle that becomes the

new directory handle for the specified directory.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful.

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function assigns the target directory handle to a directory path defined by the

combined source directory handle and the source directory path.

The dirHandle from the NWPath_t structure is an index number from 1 to 255.

The dirHandle points to a volume or a directory on the file server. A file server

maintains a Directory Handle table for each logged in client. If this call fails, the

targetDirHandle parameter remains unchanged.

This call can only change dirHandles among directories on the same file server. In
cases where multiple file servers are being used, the dirHandle and

targetDirHandle parameter must have the same server connection ID.

The pathName parameter from the NWPath_t structure can identify a full or

partial directory path. A full directory path defines a volume or a directory on a

given file server in the format VOLUME:DIRECTORY/.../DIRECTORY. A partial

directory path specifies at least a directory, and possibly one or more parent

directories.

Licensed Material - Property of the copyright holders 5-1 1

Applications frequently combine a directory handle and a directory path to specify a

target directory. For example, if the specified directory handle points to SYS: and

the specified directory path = PUBLIC/WORDP, then the specified directory is

SYS:PUBLIC/WORDP.

When an application defines a target directory using only a directory handle, the

application must pass a null string in pathName parameter. When an application

defines a directory using only a directory path, the application must set dirHandle

to zero.

Notes

Directory handles must be kept track of separately for each file server

connection.

See Also

NWParseFullPath

NWGetDirPath

End of Chapter

5-1 2 Licensed Material - Property of the copyright holders 069-000567

Chapter 6

Queue Management Service APIs

Function Calls

This chapter describes the following Queue Management Service APIs. Queue
server specific calls are denoted by a bracketed §, [S].

API Page

NWaAbortServicingQueueJob [S]...... 0.0.0.0 eee ee ene 6-3

NWAttachQueueServerToQueue [S]..................00000% ee. 6-5

NWChangeQueueJobEntry 0.00. cc eee eee eee ee eee 6-7

NWChangeQueueJobPosition | Lee eee ee eee eee 6-9

NWChangeToClientRights [S]0..0.0. 0.0.0. cee eee eee 6-11

NWCloseFileAndAbortQueueJob 0. ee ee eee 6-13

NWCloseFileAndStartQueueJob 0. cee eee cece ees 6-15

NWCreateQueue 0.0... ccc eee ce ee eee eee eee eens 6-17

NWCreateQueueFile 0.0... cee ee ee ee eee eee 6-19

NWDestroyQueue See ee ee ee ee ee ee ete eet e eee ees 6-22

NWDetachQueueServerFromQueue [S]-. ee

NWFinishServicingQueuedob [S] 2... 0.0.0... ee ee ee eee 6-26

NWGetQueueJobFileSize[S] 2.0... 0.0.0. cee eee eee ee ee 6-28

NWGetQueueJobList 2... 2... 0 eee eee eee ee eee 6-29

NWReadQueueCurrentStatus 0.0... cee eee eee eee eee 6-31

NWReadQueueJobEntry000 0 ccc cece cee cceeueeeeues 6-33

NWReadQueueServerCurrentStatus Lee ee eee eee eee eee 6-35

NWRemoveJobFromQueue.............0 ccc cece cece uceaeees 6-37

NWRestoreQueueServerRights [S]0. 0.0.0... cee eee eee 6-39

NWServiceQueueJob [S] 2... 0. cee ee ee ee ee ees eee. 6-41

NWSetQueueCurrentStatus 0.0... ce eee ee ee eee eee 6-43

NWSetQueueServerCurrentStatus [S] ... 0.0... 0... cc ee ee ee ee ee 6-45

069-000567 Licensed Material - Property of the copyright holders

Introduction to QMS

Queue Management Services (QMS) allow an application to create queues for

controlling the flow of jobs and services on the network. A queue organizes client

requests for a job server. A job server is software that resides at a specific

workstation and provides services for other workstations on the network. Networks

can have many different kinds of job servers, including print servers, archiving

servers, compiling servers, message-sending servers, and so on. By placing requests

into network queues, a job server can provide service that is both flexible and

efficient.

Some of the function calls in this chapter would only be called by a queue server.
Others might be called by user applications which submit queue jobs and maintain

created queues.

6-2 Licensed Material - Property of the copyright holders 069-000567

NWaAbortServicingQueueJob

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ / /

This function signals the queue management software that a job can not be

completed successfully.

Synopsis

Input

Output |

#include "nwapi.h"

int

uint16

uint32

uint16

ccode;

serverConnID;

queuelD;

jobNumber;

NWFileHandle_ta fileHandle;

ccode=NWAbortServicingQueueJob(serverConnID, queuelID, jobNumber,
fileHandle);

serverConnID Passes the job server connection ID.

queuelD Passes the bindery object ID for the queue in which the

aborted job is located.

jobNumber Passes the job number of the aborted job.

fileHandle Passes a pointer to the file handle of the file associated with

, the aborted job.

None.

Return Value

O Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

OxD4 (212) Queue Full

0xD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Licensed Material - Property of the copyright holders 6-3

6-4

Note: Because NWCloseF ile function is called with NWAbortServicingQueueJob,

you may receive an NWErrno = 0x001100xx. The 0x0011 indicates a file

system services error. See Appendix B for a complete listing of possible

NetWare errors.

Description

This function call allows a job server to inform the Queue Manager that it cannot

complete servicing a job previously accepted for service. This function closes the job
file and resets the job server’s access rights to their original (login) values.

An aborted job returns to its former position in the job queue if its Service Restart
flag (bit 0x10 of the jobControlFlags field in the NWQueueJobStruct_t) is set. For

example, if a job is at the beginning of the queue before being called, it returns to

the beginning of the queue after being aborted. An aborted job could, therefore, be

next in line for service. For this reason, a job should not be aborted because of an

error in the job’s format or requests. Instead, use the

NWFinishServicingQueueJob function. |

Notes

See Also

A job should be aborted only if some temporary internal problem prevents it
from completing. For example, a print job might be aborted if the printer has a

paper jam. After the paper jam is corrected, the job server can service the job

successfully.

If a job is attempting to access data without proper security clearance and is

aborted, the job will remain in the queue and be serviced and aborted again and

again. To remove a job from the job queue, a user would have to use the

NWCloseFileAndAbortQueueJob call, or the queue server would have to use the

NWFinishServicingQueuedob call. |

Only a queue server that has previously accepted a job for service can make this
function call.

NWChangeQueueJobEntry

NWCreateQueueFile

NWFinishServicingQueueJdob
NWReadQueueJobEntry

Licensed Material - Property of the copyright holders 069-000567

NWAttachQueueServerToQueue

069-000567

Synopsis

Input

Output

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J J

This function attaches the calling client to the specified queue as a queue server.

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

ccode=NWAttach QueueServerToQueue(serverConnID, queuelD);

serverConnID Passes the file server connection ID.

queuelID Passes the bindery object ID of the queue being attached.

None.

Return Value

0 Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

0xD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

0xD4 (212) Queue Full

0xD5 (213) No Queue Job

0OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function call is created for queue job servers and must be used before the job

server can perform any services in the queue. After the queue server has logged

into the file server as a queue server (bindery object) this call establishes a

connection between the queue server and the queue . If the queue server logs out

of the file server, this connection to the queue will be detached.

Licensed Material - Property of the copyright holders 6-5

Notes

A client must attach itself to a queue as a job server before it can service jobs
from that queue. A queue can have as many as 25 job servers attached.The
workstation making this function call must be security equivalent to one of the
objects listed in the queue’s Q SERVERS group property.

Licensed Material - Property of the copyright holders 069-000567

NWChangeQueueJobEntry

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

J / /

This function changes the information about a job in a queue.

Synopsis

Input

Output

Return

#include "nwapi.h’;

int

uint16

uint32

ccode;

serverConnID;

queuelD;

NWQueueJdobStruct_t jobStruct;

ccode=NWChangeQueueJobEntry(serverConnID, queueID, &jobStruct);

serverConnID Passes the file server connection ID.

queuelID Passes the bindery object ID of the queue.

- jobStruct Passes a pointer to the job structure that contains

None.

Value

the new information about the job. (See Appendix A,

NWQueueJobStruct_t Structure.)

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

OxD4 (212) Queue Full

0OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

0xDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 6-7

6-8

Description

The following fields in the NWQueueJobStruct_t structure may be changed by the

owner of the job or by a queue operator:

targetServerID

targetExecutionTime

jobType
jobControlF lags

jobDescription

queueRecord

If the caller is an operator, the Operator Hold flag can be reset to a value supplied

by the caller.

Use NWChangeQueueJobPosition to change the job’s service position in the queue.

Notes

See Also

The NWChangeQueueJobEntry function can be used in conjunction with the

NWReadQueueJobEntry function to change a portion of the job’s entry record.

However, if the target entry is already being serviced, the

NWChangeQueueJobEntry function returns a servicing error and makes no

changes to the job’s entry record.

If this call is being used in conjunction with printing and the NWPrintStruct_t,

the structure must first be converted (using the

NWConvertPrintStructToQueueStruct) before this call is made.

NWChangeQueueJobEntry

NWChangeQueueJobPosition

NWConvertPrintStructToQueueStruct

NWGetQueueJobList

NWReadQueueJobEntry

NWRemovedobFromQueue

Licensed Material - Property of the copyright holders 069-000567

NWChangeQueueJobPosition

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ Jf Jf

This function changes a job’s position in a queue.

Synopsis

input

Output

Return

#include "nwapi.h"

int

uint16

uint32

uint16

uint8

ccode;

serverConnID;

queuelD;

jobNumber;

newJobPosition;

ccode=NWChangeQueueJobPosition(serverConnID, queueID, jobNumber,

newJobPosition);

serverConnID Passes the file server connection ID.

queueID Passes the bindery object ID of the affected queue.

jobNumber Passes the job number of the job being repositioned.

newJobPosition Passes the job’s new position.

None.

Value

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

0xDO0 (208) Queue Error

0OxD1 (209) No Queue

0OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

OxD4 (212) Queue Full

0xD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

0xD8 (216) Queue Not Active

OxD9 (217) Station Not Server

0OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure |

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 6-9

Description

The value of the newJobPosition parameter ranges from 1 to 250. Position 1 is the

first position in the queue and position 250 is the last position in a full queue. If a

specified position number places the job beyond the current end of the queue, the
job is placed at the end of the current queue.

Notes

When a job is moved in the queue, the positions of all job entries are updated to

reflect the change. Changing the position of a job being serviced has no effect

on the service of that job. Be Aware that job positions change as other jobs in

the queue are finished being serviced.

The application making this call must be logged in as supervisor.

See Also

NWChangeQueueJobEntry

NWGetQueueJobList

NWReadQueueJobEntry

NWRemovedobFromQueue

6-10 Licensed Material - Property of the copyright holders 069-000567

NWChangeToClientRights
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

"A / /

This function changes a queue server's current login identity to match the identity

of the client for whom the queue server is acting.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint16 jobNumber;

ccode=NWChangeToClientRights(serverConnID, queueID, jobNumber);

Input

serverConnID Passes the queue server connection ID.

queuelID Passes the Bindery object ID of the queue.

jobNumber Passes the job’s job number.

Output

None.

Return Value

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

0xD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

0OxD3 (211) No Queue Rights

0xD4 (212) Queue Full

OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 6-11

6-12

Description

Notes

This function allows a queue server to change its current login identity to match

the identity of the client for which it is acting. This is useful if the queue server

must access files owned by the client but not submitted to the queue by the client

(in other words, if the server must go out and retrieve files by itself). The queue

server's login user ID and associated security equivalence list are replaced by the

ID and security equivalence list of the user who placed the job in the queue.

This function does not change any path mappings that the queue server may have

on the job server. However, all access rights to those directories are recalculated to

conform to the rights of the queue client. Files opened before this call is made will

continue to be accessible with the server’s rights. Files opened after this call is

made will be accessible only with the client’s rights.

The job server is responsible for creating any path mappings that it may need to

carry out the client’s requests after this call has been made.

The NWRestoreQueueServerRights function reverses the effects of the

NWChangeToClientRights function. In addition, the server’s rights are

automatically reset if the server issues a NWFinishServicingQueueJob or

NWaAbortServicingQueueJob function.

Only a queue server that has previously accepted a job for service can call this

function.

See Also

NWAbortServicingQueueJ ob

NWFinishServicingQueueJob

NWRestoreQueueServerRights

Licensed Material - Property of the copyright holders 069-000567

NWCloseFileAndAbortQueueJob
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

v / Jf

This function signals the QMS that a job has not been created properly and should

be removed from the queue.

Synopsis

#include "nwapi.h”

int

uint16

uint32

uint16

NWFileHandle_ta

ccode;

serverConnID;

queuelD;

jobNumber;

fileHandle;

ccode=NWCloseFileAndAbortQueueJob(serverConnID, queueID, jobNumber,

fileHandle);

Input

serverConnID

queueID

jobNumber

fileHandle

Output

None.

Return Values

QO Successful.

Passes the queue server connection ID.

Passes the bindery object ID of the affected queue.

Passes the job entry number of the job whose service is being

aborted. |

Passes a pointer to the file handle of the aborted job’s file

(returned from the NWCreateQueueF ile function call).

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

OxD1

0OxD3

0OxD4

OxD5

OxF5

OxD6

0OxD7

0OxD8

OxFF

0x30

No Queue

No Queue Rights

Queue Full

No Queue Job

No Such Object

No Job Right

Queue Servicing

Queue Not Active

Invalid File Handle

Invalid Connection ID

Note: Because this API uses NWCloseFile, it is possible to get an NWErrno =

0x001100xx. The 0x0011 signifies a file system error. See Appendix B for a

complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 6-1 3

Description

This function allows the client to close a queue job and abort it. The jobNumber

parameter contains the job number returned by QMS when the job was originally

entered in the queue. The file associated with that job number is closed, and the
job is deleted from the queue.

Notes

Only the client that created the queue job can call this function.

See Also

NWCloseFileAndStartQueueJob

NWCreateQueueFile |

NWRemoveJobFromQueue

6-1 4 Licensed Material - Property of the copyright holders 069-000567

NWCloseFileAndStartQueueJob
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function closes a queue file and marks it ready for execution.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint16 jobNumber;

NWFileHandle_ta fileHandle;

ccode=NWCloseFileAndStartQueueJob(serverConnID, queuelD, jobNumber,

fileHandle);

Input

_ serverConnID Passes the queue server connection ID.

queuelD Passes the bindery object ID of the queue in which the

specified job was placed.

jobNumber Passes the job number of the job to be serviced.

fileHandle Passes a pointer to the file handle of the file associated with

, the job to be executed (returned from the

NWCreateQueueFile function call).

Output

None.

Return Values

O Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWEnrrno.

OxD1 No Queue

0OxD3 No Queue Rights

0xD5 No Queue Job

OxF5 No Such Object

OxD7 Queue Servicing

0xD8 Queue Not Active

OxFF Invalid File Handle

0x30 Invalid Connection ID

Note: Because this API uses NWCloseFile, it is possible to get an NWErrno =

0x001100xx. The 0x0011 signifies a file system error. See Appendix B for a

complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 6-15

Description

This function allows the workstation to close a queue job file and mark the job for

execution.

The jobNumber parameter contains the job number returned by QMS when the job

was originally entered in the queue.

When this function finishes, the specified job is ready for execution, if the

userHoldFlag and operatorHoldF lag fields are both cleared and the

targetExecutionTime was either not specified or has elapsed (set with the jobStruct

parameter when the file was created).

Notes

Only the client that created the job can call this function.

See Also

NWCloseFileAndAbortQueueJob

NWCreateQueueFile

NWRemoveJdobFromQueue

6-1 6 Licensed Material - Property of the copyright holders ‘ 069-000567

NWCreateQueue
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

Jf / Jf

This function creates a new queue in the bindery and file system of the specified
file server.

Synopsis

#include "nwapi.h"

int

uint16

char

uint16

NWDirHandle_ts

char

uint32

serverConnID;

queueName[NWMAX_QUEUE_NAME_LENGTH];
queueObjectType;

directoryHandle;

queueSubdirectory[NWMAX_QUEUE_SUBDIR_LENGTH];
newQueuelD;

ccode=NWCreateQueue(serverConnID, queueName, queueObjectType,

directoryHandle, queueSubdirectory, &newQueuelD);

Input

serverConnID

queueName

queueObjectType

directoryHandle

queueSubdirectory

newQueuelD

Output

newQueuelD

Passes the file server connection ID.

Passes a pointer to the name of queue to be created

(48 characters).

Passes a number indicating the bindery object type

for the new queue. |

Passes the NetWare directory handle pointing to the

directory in which the queue’s property is to be

created (0 if the queueSubdirectory parameter

contains the full path).

Passes a pointer to the absolute path or a path

relative to the NetWare directory handle that will

contain the queue files (119 characters, stored in the

_DIRECTORY property).

Passes a pointer to the space allocated for the new

queue ID number.

Receives the new queue ID number.

069-000567 Licensed Material - Property of the copyright holders 6-1 7

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 Directory Full

OxFF Failure

OxF5 No Object Create Privilege

0x30 Invalid Connection ID

0x9B Invalid Dir Handle

0x98 Volume Does Not Exist

OxEE Queue Exists

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function creates a queue in the bindery, using the type and name specified by
the queueObjectType and queueName parameters. The following bindery object

types are defined for queues: |

NWOT_PRINT_QUEUE

NWOT_ARCHIVE_QUEUE

NWOT_JOB_ QUEUE

This function also creates the Q DIRECTORY property. The value for the
Q_ DIRECTORY property is determined by combining the directoryHandle and
queueSubdirectory parameters.

QMS will use the directory handle and directory path parameters to create a queue

directory that holds the system files containing the queue itself and the job files

related to the queue entries. The directory path SYS:SYSTEM is commonly used

for the queue directory. QMS uses this directory to store queue files until they are

serviced.

Next, this function creates the following group properties:

¢ Q SERVERS

¢°Q OPERATORS

¢Q USERS

Notes

Only SUPERVISOR or a bindery object that is security equivalent to

SUPERVISOR can create a queue.

See Also

NWDestroyQueue

6-1 8 Licensed Material - Property of the copyright holders 069-000567

NWCreateQueueFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / /

This function creates a queue file.

Synopsis

#include "nwapi.h"

int

uint16

uint32

ccode;

serverConnID;

queuelD;

NWQueueJobStruct_t jobStruct;
NWFileHandle_ta fileHandle;

ccode=NWCreateQueueFile(serverConnID, queueID, &jobStruct, fileHandle);

Input

serverConnID

queuelD

_ jobStruct

fileHandle

Output

jobStruct

fileHandle

Return Values

0 Successful.

-1 Unsuccessful.

0x99

0OxD7

0OxDO

0xD8

OxD1

0OxDA

OxD3 |

OxFC

OxD4

OxFF

0x30

Passes the file server connection ID.

Passes the bindery’s object ID for the queue.
Passes a pointer to the structure in which the information
about the job is stored. (See Appendix A,
NWQueueJobStruct _t Structure.)

Passes a pointer to the file handle of the file to be created in
the queue.

_ Receives the completed job structure. (See Appendix A,
NWQueueJobStruct_t Structure.)

Receives the file handle of the job’s associated file. (This file
contains data pertaining to the job; for example, a print job
file would contain the actual data to be printed.)

One of the following error codes is placed in NWErrno.

Directory Full

Queue Servicing

Queue Error

Queue Not Active

No Queue

Queue Halted

No Queue Rights

No Such Object

Queue Full

Failure

Invalid Connection ID

069-000567 Licensed Material - Property of the copyright holders 6-1 9

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a client to enter a new job in a queue.

_ The following fields within the NWQueueJobStruct_t structure must be assigned
values before this call can be made. (See Appendix A, NWQueueJobStruct_t
Structure.)

targetServerID The objectID of the queue server or OxFFFFFFFF for
any server. The following example assigns

0xB0000012 as the targetServerID:

jobStruct.targetServerID = 0xB0000012;

targetExecutionTime The time you want the file processed. The field is a
6-byte field with the following format: year, month,
day, hour, minute, second. Use 0xFFFFFFFFFFFF
for first opportunity. The following example assigns
November 1, 1991, 9:30:10 am as the
targetExecutionTime:

jobStruct.targetExecutionTime[0] = 91;

jobStruct.targetExecutionTime[1] = 11;
jobStruct.targetExecutionTime[2] = 1;
jobStruct.targetExecutionTime[3] = 9;
jobStruct.targetExecutionTime[4] = 30;
jobStruct.targetExecutionTime[5] = 10;

jobType The number representing the type of job serviced by
the server; this number is server dependent. The
following example assigns 0x00 as the jobType (0x00
means the queue server does not use this field): —

jobStruct.jobType = 0;

jobControlFlags The control flag that has been assigned to the job.
Use any of the following:

NWCF_OPERATOR_HOLD

NWCF_USER_HOLD

NWCF_ENTRY_OPEN

NWCF_SERVICE_RESTART

NWCF_SERVICE_AUTO_START

The following example assigns NWCF_SERVICE_RESTART:

jobStruct.jobControlFlags = NWCF_SERVICE_RESTART;

_jobDescription A S8tring containing the content or purpose of the job.
The following example assigns "Print Job" as the job

description:

strepyGobStruct.jobDescription, "Print Job");

6-20 Licensed Material - Property of the copyright holders 069-000567

The queueRecord field may need to be filled in.

¢ Ifthe file being submitted to the queue is a NetWare print job, the
client must first allocate a printRecord and fill in the NWPrintRecord_t

Structure.

Use NWConvertPrintStructToQueueStruct to fill in the queueRecord

with the printRecord information. Then NWCreateQueueFile can be

called.

If the client wants to verify the printRecord after making this call, use

NWConvertQueueStructToPrintStruct to convert the queueRecord field

back in to the printRecord.

¢ If the file being submitted to the queue in not a NetWare print job and

the queue server uses the queueRecord parameter, the queue server

must provide its own function to fill in the queueRecord parameter.

e Ifthe queue server does not use the queueRecord parameter, the

parameter does not need to be filled in.

The file server fills in all other fields within the jobStruct parameter and

returns it to the requesting client.

The job will not be serviced until the file is closed with

NWCloseFileAndStartQueuedob.

Notes

This function can be used in conjunction with the NWReadQueueJobEntry

function to change a portion of the job’s entry record. However, if the target

entry is already being serviced, NWChangeQueueJobEntry returns a

Q_ SERVICING error and makes no changes to the job’s entry record.

See Also

NWChangeQueueJobEntry

NWCloseFileAndAbortQueueJob

NWCloseFileAndStartQueuedob

NWConvertPrintStructToQueueStruct

NWConvertQueuestructToPrintStruct

NWRemoveJobFromQueue

069-000567 Licensed Material - Property of the copyright holders 6-21

NWDestroyQueue
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function deletes a queue.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;
uint32 queuelD;

ccode=NWDestroyQueue(serverConnID, queuelD):

Input

serverConnID Passes the file server connection ID.

queuelD Passes the bindery object ID of the queue to be deleted.

Output

None.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

OxFC No Such Object
OxF'4 No Object Delete Privilege
0x30 Invalid Connection ID

OxFF Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function destroys the queue specified by the queueID parameter. All active
jobs are aborted, all servers are detached from the queue, and all jobs in the queue
are destroyed and their associated files deleted. The queue object and its associated
properties are removed from the bindery and the queue’s subdirectory is deleted.

Notes

Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can destroy a queue.

6-22 Licensed Material - Property of the copyright holders 069-000567

See Also

NWCreateQueue

069-000567 Licensed Material - Property of the copyright holders 6-23

NWDetachQueueServerFromQueue
NetWare for

NetWare 2.x NetWare 3.x AVIiON Systems

“4 / /

This function removes the calling client from the queue’s list of active queue

servers.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

ccode=NW DetachQueueServerFromQueue(serverConnID, queuelID);

‘Input

serverConnID Passes the file server connection ID.

queuelID - Passes the bindery object ID of the queue from which the

calling station is being detached.

Output

None.

Return Values

O Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x99 (153) Directory Full

OxDO (208) Queue Error

OxD1 (209) No Queue

0xD2 (210) No Queue Server

0xD3 (211) No Queue Rights

OxD4 (212) Queue Full

0OxD5 (213) No Queue Job

0OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

0OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function removes the requesting client from the queue’s list of active queue

servers. If the requesting client is servicing a job, that service is automatically

aborted.

6-24 Licensed Material - Property of the copyright holders 069-000567

Notes

Only a workstation previously attached to the queue as a queue server can call
this function. ,

See Also

NWAttachQueueServerToQueue

NWReadQueueServerCurrentsStatus

NWSetQueueServerCurrentStatus

069-000567 Licensed Material - Property of the copyright holders 6-25

NWFinishServicingQueueJob

6-26

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J /f J

This function signals that a job has been completed successfully.

Synopsis

Input

Output

Return

#include "“nwapi.h"

int

uint16

uint32

uint16

ccode;

serverConnID;

queuelD;

jobNumber;

NWFileHandle_ta fileHandle;

ccode=NW FinishServicingQueueJob(serverConnID, queuelID, jobNumber,

Passes the bindery object ID of the queue containing the job

fileHandle);

serverConnID Passes the file server connection ID.

queueID

being finished.

jobNumber Passes the job number of the job being finished.

fileHandle Passes a pointer to the file handle for the file associated

with the queue job.

None.

Values

QO Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x99 (153) Directory Full

OxDO0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

0xD4 (212) Queue Full

0xD5 (213) No Queue Job

0xD6 (214) No Job Right

OxD7 (215) Queue Servicing

0xD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Licensed Material - Property of the copyright holders 069-000567

Note: Because this call uses NWCloseFile, it is possible to get

NWErrno=0x001100xx. The 0x0011 indicates a file system error. See

Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a queue server to signal the QMS that it has serviced a job
successfully. The job entry is then destroyed, and the job file is closed and deleted.

The calling queue server’s access rights to the queue server are restored to their

original (login) values.

Notes

Only a queue server that has accepted a job to service can call this function.

See Also

NWaAbortServicingQueueJdob

NWChangeToClientRights

NWServiceQueuedob

069-000567 Licensed Material - Property of the copyright holders 6-27

NWGetQueueJobFileSize
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J Jf /

This function returns the file size of the specified queue job.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint16 jobNumber;

uint32 fileSize;

ccode=NWGetQueueJobFileSize(serverConnID, queueID, jobNumber,

&fileSize);

Input

serverConnID Passes the file server connection ID.

queueID Passes the bindery object ID of the queue to which the job is

associated.

jobNumber Passes the number of the job for which the information will

be obtained.

fileSize Passes a pointer to the space allocated for the file size.

Output

fileSize Receives the file size.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

OxD4 (212) Queue Full

0xD5 (213) No Queue Job

0xD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server |

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

6-28 Licensed Material - Property of the copyright holders 069-000567

NWGetQueueJob List NetWare for

069-000567

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function returns a list of all jobs associated with a given queue.

Synopsis

#include "nwapi.h"

int

uint16

uint32

uint16

uint16

ccode;

serverConnID;

queuelD;

numberOfJobsInQueue;

listOfJobNumbers[NWMAX_NUMBER_OF_JOB_NUMBERS];

ccode=NWGetQueueJobList(serverConnID, queuelD,
&numberOfJobsIn Queue, listOfJobNumbers):

Input

serverConnID Passes the file server connection ID.

queuelID Passes the bindery object ID of the queue whose job

list is being reported.

numberOfJobsInQueue Passes a pointer to the space allocated for the

number of jobs in the queue.

listOfJobNumbers Passes a pointer to the array allocated for the job

numbers.

Output

numberOfJobsInQueue Receives the number of jobs currently in the Queue

(0 - 250).

listOfJobNumbers Receives the job numbers of all the jobs in the queue

Return Values

(O - 250 numbers possible).

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

0xDO (208) Queue Error

0OxD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

OxD4 (212) Queue Full

Licensed Material - Property of the copyright holders 6-29

OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a program to get a list of all the jobs currently in a queue.

When used in conjunction with the NWReadQueueJobEntry function, this function

allows an application to retrieve information about all the jobs in a given queue.

Because the QMS environment is multithreaded, however, the positioning, number

and type of jobs in the queue can change between consecutive calls.

This function allows a workstation to determine how many jobs are in the queue at

a particular instant and the job number of each. If a subsequent call to read

information about a job in the queue fails with a NO_Q JOB error, the requesting

workstation can assume that either the job was deleted from the queue or its

service was completed.

Notes

The workstation making this call must be security equivalent to one of the

objects listed in the queue’s Q USERS or Q OPERATORS group properties.

See Also

NWChangeQueueJobEntry

NWChangeQueueJobPosition

NWReadQueueJobEntry

6-30 Licensed Material - Property of the copyright holders 069-000567

NWReadQueueCurrentStatus

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function returns the current status of a queue.

Synopsis

input

Output

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint8 queueStatus;

uint16 numberOfJobsInQueue;

uint16 numberOfServers;

uint32 serverObjectIDListINWMAX NUMBER_OF_ SERVER.

OBJECT_IDS];
uint16 clientConnIDListINWMAX_NUMBER_OF_SERVER_CONN_

NUMBERS|;

ccode=NWReadQueueCurrentStatus(serverConnID, queuelD,
&queueStatus,&numberOfJobsInQueue, &numberOfServers,

serverObjectIDList, clientConnIDList);

serverConnID

queuelD

queueStatus

numberOfJobsInQueue

numberOfServers

serverObjectIDList

clientConnIDList

queuestatus

numberOfJobsInQueue

Passes the file server connection ID.

Passes the bindery object ID of the queue for which

the status is being obtained.

Passes a pointer to the space allocated for the queue

status.

Passes a pointer to the space allocated for the

- number of jobs in the queue.

Passes a pointer to the space allocated for the

number of attached queue servers.

Passes a pointer to an array allocated for queue

server object IDs associated with the

numberOfServers parameter.

Passes a pointer to an array allocated for

clientConnIDs corresponding to the servers returned
by the serverObjectIDList parameter.

Receives the status of the specified queue. (See

Appendix A, Queue Status Flags.)

Receives the number of jobs currently in the queue.

Licensed Material - Property of the copyright holders 6-31

numberOfServers Receives the number of attached queue servers.

serverObject! DList Receives an array of server IDs associated with the

numberOfServers parameter.

clientConnIDList Receives an array of clientConnIDs corresponding to

the servers returned by the serverObjectIDList

parameter.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

OxFC No Such Object
0x30 Invalid Connection ID

OxFF Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function is a queue server function which reads the current status of the
specified queue. The queueStatus parameter indicates the overall status of the

queue. (See Appendix A, Queue Status Flags.)

The numberOfJobsInQueue parameter contains a count of the number of jobs

currently in the queue, 0 to 250.

The numberOfServers parameter contains a count of the number of queue servers

currently attached to service this queue, 0 to 25.

The serverObjectIDList and clientConnIDList parameters list queue servers

currently servicing the queue by the queue server’s objectID and the queue server’s

current workstation attachment (clientConnID).

Notes

Workstations making this call must be security equivalent to one of the

objects listed in the queue’s Q USERS or Q_.OPERATORS group properties.

See Also

NWAttach QueueServerToQueue

NWDetachQueueServerFromQueue

NWReadQueueServerCurrentStatus

NWSetQueueCurrentStatus

NWSetQueueServerCurrentStatus

6-32 Licensed Material - Property of the copyright holders 069-000567

NWReadQueueJobEntry
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

J J Jf

This function retrieves information about a specified queue job.

Synopsis

#include "nwapi.h"

int

uint16

uint32

uint16

NWQueueJobStruct_t

ccode;

serverConnID;

queuelD;

jobNumber;

jobStruct;

ccode=NWRead QueueJobEntry(serverConnID, queueID, jobNumber,

&jobStruct);

Input.

serverConnID

queuelID

jobNumber

jobStruct

Output

jobStruct

Return Values

0 Successful.

Passes the file server connection ID.

Passes the bindery object ID of the queue associated

with the queue job being read.

Passes the number of the job being read.

Passes a pointer to the structure

(NWQueueJdobStruct_t) allocated for queue job

information. |

Receives the structure containing the queue job

information. (See Appendix A, NWQueueJobStruct_t

Structure.) |

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0xD0 Queue Error

OxFC No Such Object

OxD1 No Queue

0x30 Invalid Connection ID

OxD3 No Queue Rights

OxFF Failure

OxD5 No Queue Job

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 6-33

Description

This function allows an application to retrieve information about a job from a

queue. The job’s full 256-byte record 3 is returned. See NWQueueJobStruct_t
structure in Appendix A.

Notes

Workstations making this call must be security equivalent to one of the objects

listed in the queue’s Q USER or Q_.OPERATORS group properties.

See Also

NWChangeQueueJobEntry

NWChangeQueueJobPosition

NWCreateQueueFile

NWGetQueueJobList

6-34 Licensed Material - Property of the copyright holders 069-000567

NWReadQueueServerCurrentStatus

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

vf Jf

This function reads the current status of a queue server.

Synopsis

#include "nwapi.h"

int

uint16

uint32

uint32

uint16

void

ccode;

serverConnID;

queuelD;

queueServer!D;

queueserverClientConnID;

serverStatusRecord[NWMAX SERVER_STATUS_RECORD._

LENGTH];

ccode=NWRead QueueServerCurrentStatus(serverConnID, queuelD,

queueServerID, queueServerClientConnID, serverStatusRecord);

Input

serverConnID Passes the file server connection ID.

queuelID Passes the bindery object ID of the queue being

affected.

queueServerlID Passes the bindery object ID of the queue server
whose current status is being read.

queueserverClientConnID Passes the connection number of the queue server

being read.

serverStatusRecord Passes a pointer to the buffer allocated for the status

of the specified queue server.

Output

serverstatusRecord Receives a the status of the specified queue server

(64 bytes).

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxDO (208) Queue Error

0xD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

OxD4 (212) Queue Full

0xD5 (213) No Queue Job

Licensed Material - Property of the copyright holders 6-35

0xD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

0xD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a station to read the current status of a queue server. The

QMS maintains a 64-byte status record for each queue server attached to a queue.

The QMS does not interpret the contents of the status record. The record contains

information important to the calling application. We recommend that the first 4

bytes of this record contain an estimated price for the given server to complete a

"standard" job. |

Notes

Workstations making this call must be security equivalent to one of the objects

listed in the queue’s Q_USER or Q_OPERATORS proup properties.

See Also

NWSetQueueServerCurrentStatus

6-36 Licensed Material - Property of the copyright holders 069-000567

NWRemoveJobFromQueue

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function removes.a job from a queue.

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint16 jobNumber;

ccode=NWRemoveJobFromQueue(serverConnID, queuelD,

jobNumber);

input

serverConnID Passes the file server connection ID.

queuelD Passes the bindery object ID of the queue where the job to be
removed is located.

jobNumber Passes the number of the job being removed.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

0xD0 (208) Queue Error

OxD1 (209) No Queue

0OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

OxD4 (212) Queue Full

0OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 6-37

Description

This function allows the workstation to remove a job from a queue. The jobNumber

parameter contains the job number returned by the QMS when the job was created.

The job number can also be obtained by using the NWGetQueueJobList function.

The specified job is removed from the queue, and the job file is closed and deleted.

If the job is being serviced, the service is aborted. Further I/O requests made to the

job’s queue file return an ILLEGAL_FILE_HANDLE error.

Notes

Both the job’s creator and an operator can call this function.

See Also

NWChangeQueueJobEntry

NWChangeQueuedobPosition

NWCreateQueueFile

NWGetQueueJobList

NWReadQueueJobEntry

6-38 Licensed Material - Property of the copyright holders 069-000567

NWRestoreQueueServerRights
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / J

This function restores a server’s own identity after it has assumed its client’s

rights.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWRestoreQueueServerRights(serverConnID);

Input

serverConnID Passes the file server’s connection ID.

Output

None.

Return Values

0. Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

0xD4 (212) Queue Full

0OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a queue server to restore its own identity after it has assumed

its client’s identity using the NWChangeToClientRights function. The queue

server's login user identification and associated security equivalence list are

restored to its original values.

069-000567 Licensed Material - Property of the copyright holders 6-39

This function does not change any of the path mappings (directory bases) held by

the queue server. However, access rights to those directories are adjusted to reflect

the rights the queue server has in those directories.

If the queue server has changed some of its path mappings as part of its efforts to

service the queue job, the queue server must restore those directory bases.

Files opened using the client’s rights before this function is called continue to be

accessible with the client’s rights. Files opened after this function is called are

accessible only with rights of the queue server.

Notes

Only queue servers that have previously changed their identity, using the

NWChangeToClientRights function, can call this function.

See Also

NWChangeToClientRights

6-40 Licensed Material - Property of the copyright holders 069-000567

NWServiceQueueJob
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

ff /

This function allows a queue server to select a new job for servicing.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint16 targetJobType;

NWQueueJobStruct_t jobStruct;

NWFileHandle_ta fileHandle;

ccode=NWServiceQueueJob(serverConnID, queuelD, targetJobType,

&jobStruct, fileHandle);

Input

serverConnID Passes the file server connection ID.

queuelID Passes the bindery object ID of the queue whose jobs are

being serviced.

targetJobType Passes the type of the job to be serviced.

jobStruct Passes a pointer to the job record of the next available job

, returned by the QMS. (See Appendix A,

NWQueueJobStruct_t Structure.)

fileHandle Passes a pointer to the file handle for the file associated

with the job to be serviced.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

0xD3 (211) No Queue Rights

OxD4 (212) Queue Full

0xD5 (213) No Queue Job

0xD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

069-000567 Licensed Material - Property of the copyright holders 6-41

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows a queue server to select a new job for servicing.

Notes

The requesting client must have previously established itself as a queue server

for the target queue.

See Also

NWaAbortServicingQueueJob

NWAttach QueueServerToQueue

NWCreateQueueF ile

NWFinishServicingQueueJob

6-42 Licensed Material - Property of the copyright holders 069-000567

NWSetQueueCurrentStatus
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function modifies a queue’s status.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD;

uint8 queuestatus;

ccode=NWSetQueueCurrentStatus(serverConnID, queuelD,
queuestatus);

Input

serverConnID Passes the file server connection ID.

queuelD Passes the bindery object ID of the queue whose status is
| being updated.

queueStatus Passes the control byte that determines the new status. (See
Appendix A, Queue Status Flags.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

OxD3 No Queue Rights

OxFC No Such Object

0x30 Invalid Connection ID

OxFF Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function allows the operator to control the addition of jobs and servers to the
queue.

069-000567 Licensed Material - Property of the copyright holders 6-43

Notes

The client making this call must be logged in as one of the objects listed in the

_OPERATORS property. The requesting client can become a queue operator

by specifying its objectID when creating the queue (NWCreateQueue) or by

adding its objectID with NWCreateProperty (see the Bindery Services chapter).

See Also

NWAttachQueueServerToQueue

NWCreateQueue

NWDetachQueueServerFromQueue

NWReadQueueCurrentStatus

6-44 Licensed Material - Property of the copyright holders 069-000567

NWSetQueueServerCurrentStatus

069-000567

Synopsis

Input

Output

Return

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J /

This function updates QMS’s copy of a server’s status record.

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

uint32 queuelD; .

void serverstatusRecord[NWMAX_SERVER_STATUS_RECORD _

LENGTH];

ccode=NWSetQueueServerCurrentStatus(serverConnID, queuelD,

serverStatusRecord);

serverConnID Passes the file server connection ID.

queuelD Passes the bindery object ID of the queue to which |

the specified queue server is attached.

serverdStatusRecord Passes a pointer to the buffer containing the new

None.

Values

status record of the queue server (64 bytes).

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno.

0x99 (153) Directory Full

OxD0 (208) Queue Error

OxD1 (209) No Queue

OxD2 (210) No Queue Server

OxD3 (211) No Queue Rights

0xD4 (212) Queue Full

0OxD5 (213) No Queue Job

OxD6 (214) No Job Right

OxD7 (215) Queue Servicing

OxD8 (216) Queue Not Active

OxD9 (217) Station Not Server

OxDA (218) Queue Halted

OxDB (219) Max. Queue Servers

OxFF (255) Failure

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 6-45

Description

The QMS does not interpret the contents of the status record. The record contains
information important to the calling application only. We recommend that the first
A bytes of this record contain an estimated price for the given server to complete a
"standard" job.

Notes

Only workstations that have previously been attached to the queue as a queue
server can make this call.

See Also

NWReadQueueServerCurrentStatus

End of Chapter

6-46 Licensed Material - Property of the copyright holders ' 069-000567

Chapter 7
Server Platform Service APIs

Function Calls

The Server Platform function calls allow developers to report file server
information. Using these function calls, an application can also enable or disable

login capabilities and determine file server disk usage.

This chapter discusses the following Server Platform Service APIs.

069-000567

API Page

NWDisableServerPlatformLogin eee eeeee 7-2

NWDownServerPlatform 0... cc eet eee ene eee 71-3

NWEnableServerPlatformLogin De ee eee eee eee ee ee ee es 7-4

NWGetDiskUtilization 2.2.2... ... cee ec ee ee 7-5

NWGetServerPlatformDateAndTime005. 7-7

NWGetServerPlatformDescriptionStrings 7-9

NWGetServerPlatformInformation 7-11

NWGetServerPlatformLoginStatus ee 7-13

NWGetServerPlatformName re 7-14

NWIsNetWare386 0... 2 ce ee eee ee eens 7-15

NWSetServerPlatformDateAndTime00005 7-16

Licensed Material - Property of the copyright holders

NWDisableServerPlatformLogin
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ / J

This function disables the ability of clients to login to the specified server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWDisableServerPlatformLogin(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

QO Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights
0x96 Server Out Of Memory

OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This call is useful after logging out all clients and then working with the server
such as during backup procedures.

Notes

IMPORTANT: You must remember to enable server login before logging out of
the server or no one, including the client that made this call will be able to
access the server again.

See Also

NWeEnableServerPlatformLogin

7-2 . Licensed Material - Property of the copyright holders 069-000567

NWDownServerPlatform
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ "A /

This function will down the specified server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 forceF lag;

ccode=NWDownServerPlatform(serverConnID, forceF lag);

input

serverConnID Passes the file server connection ID of the server
that will be shutdown

forceF lag Passes one of the following flags:
0x00 - If any files are open, the call returns OxFF and the
server will not go down.

OxFF - Server shuts down after automatically closing all
open files. :

Output

None.

Return Values

O Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights
0x96 Server Out Of Memory

OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This server will check for any open files and will not go down unless you set the
force flag to OxFF in which case all unfinished transaction will be backed out and
all open files will be closed. The operating system will then be shut down and must
be re-booted or brought up from the command line.

069-000567 Licensed Material - Property of the copyright holders 7-3

NWeEnableServerPlatformLogin
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ "A J

_ This function enables clients to login to the specified server

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWEnableServerPlatformLogin(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights
0x96 Server Out Of Memory
OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function enables client login. If clients are already logged in when this
function call is made there will be no interruption of service to those clients. |

See Also

NWDisableServerPlatformLogin

7-4 Licensed Material - Property of the copyright holders 069-000567

NWGetDiskutilization
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / J

This function call returns information about the total disk usage of a specified

client.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 volNumber;

uint32 trusteeID;

uint16 dirCount;

uint16 fileCount;

uint16 blockCount;

ccode=NWGetDiskUtilization(serverConnID, volNumber, trusteeID,

&dirCount, &fileCount, &blockCount);

Input

serverConnID

volNumber

trusteeID

dirCount

fileCount

blockCount

Output

dirCount

fileCount

blockCount

069-000567

Passes the file server connection ID.

Passes the number of the volume being checked.

Passes the client trustee ID (objectID of the trustee).

Passes a pointer to the space allocated for the directory

count.

Passes a pointer to the space allocated for the file count.

Passes a pointer to the space allocated for the cluster count.

Receives the number of directories owned by the trustee in

the specified volume.

Receives the number of files in the specified volume owned

by the trustee. |

Receives the number of blocks used in the specified volume
by the trustee.

Licensed Material - Property of the copyright holders 1-5

Return Values

QO Successful.

-1. Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights
0x96 Server Out Of Memory
OxFB Invalid Parameters
OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function returns disk utilization information about a specified client (or
trustee) based on their object ID number. NetWare blocks are usually 4Kb, but can
be configured otherwise when the file server is initially configured. The
NWGetVolInfoWithHandle (in File Services) returns exact information on the
actual size of blocks on the given file server.

Notes

This call is not valid for NetWare for AViiON Systems servers. NetWare for
AViiON Systems servers do not maintain this information on a per-client
(objectID) basis.

See Also

NWGetVoliInfoWithHandle

Licensed Material - Property of the copyright holders 069-000567

NWGetServerPlatformDateAndTime
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ f /

This function returns the network date and time maintained on the specified file

server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWServerPlatformDateAndTime_t dateAndTime;

ccode=NWGetServerPlatformDateAndTime(serverConnID, &dateAnd
Time);

input

serverConnID Passes the file server connection ID.

dateAndTime Passes a pointer to the structure allocated for the
network date and time. (See "Description," below,

and Appendix A , NWServerPlatformDateAndTime_t
Structure.)

Output

dateAndTime Receives network date and time. (See "Description,"

below, and Appendix A,

NWServerPlatformDateAndTime_t Structure.)

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xC6 No Console Operator Rights

0x96 Server Out Of Memory

OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 1-7

7-8

Description

The NWServerPlatformDateAndTime_t structure is as follows:

typedef struct {

uint8 year (0 through 99; for example: 82=1982;)

uint8 month (1 through 12)

uint8 day (1 through 31)

uint8 hour (0 through 23)

uint8 minute (0 through 59)

uint8 second (0 through 59)

uint8 dayOfWeek (0 through 6, 0 = Sunday)

} NWServerPlatformDateAndTime t;

Notes

Date and time are not automatically synchronized across an internetwork.

If the year is less than 82, the year is considered to be in the 21st century

See Also

NWSetServerPlatformDateAndTime

Licensed Material - Property of the copyright holders 069-000567

NWGetServerPlatformDescriptionStrings
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Sf / /

This function returns descriptive information about a file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NWDescriptionStrings_ t strings;

ccode=NWGetServerPlatformDescriptionStrings(serverConnID, &strings):

Input

serverConnID Passes the file server connection ID.

strings Passes a pointer to the structure allocated for the file
server description stings. (See "Description" below
and Appendix A, NWDescriptionStrings_t Structure.)

Output

strings Receives the file server description strings. (See
“Description” below and Appendix A,
NWDescriptionStrings_t Structure.)

Return Values

0 Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights

0x96 Server Out Of Memory
OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 7-9

Description

The NWDescriptionStrings_t structure is as follows:

typedef struct {

char companyNamel NWMAX _COMPANY_NAME_LENGTH J;

char revisionDescriptioni NWMAX_DESCRIPTION_LENGTH];

char revisionDatel NWMAX_DATE_LENGTH];

char copyrightNoticel NWMAX_COPYRIGHT_NOTICE_LENGTH J];

} NWDescriptionStrings_t;

The companyName parameter receives the name of the company that is providing

this version of NetWare. The revisionDescription parameter receives the NetWare

version and revision description string. The revisionDate parameter receives the

revision date in the form 02/15/1988. The copyrightNotice parameter passes a

pointer to the string allocated for the copyright notice.

Notes

The requesting workstation must be attached to the file server. Console

operator rights are not required to perform this function.

7-1 0 Licensed Material - Property of the copyright holders 069-000567

NWGetServerPlatforminformation
NetWare for

NetWare 2.x NetWare 3.x AVIiION Systems

Sf /

This function obtains information about the specified file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

NW5ServerPlatformInfo_t serverInfo;

ccode=NWGetServerPlatformInformation(serverConnID, &serverInfo):

Input

serverConnID Passes the file server connection ID.

serverlnfo _ . _ Passes a pointer to the structure allocated for the
server information. (See "Description" below and
Appendix A, NWServerPlatformInfo_t Structure.)

Output

serverInfo Receives the server information. (See "Description"
below and Appendix A, NWServerPlatformInfo_t

Structure.)

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights
0x96 server Out Of Memory
OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This routine optionally returns several items of information about a file server
based on a specified file server connection ID. If a certain item is not wanted, a
NULL parameter can be substituted in place of the unwanted parameter. However,

all parameter positions must be occupied.

069-000567 Licensed Material - Property of the copyright holders 7-1 1

7-12

The NWServerPlatformInfo_t structure is as follows:

typedef struct {

uint16

uint16

uint16

uint16

uintl6

uint16

uint16

uintl16

uint16

mayjorVersion;

minorVersion; |

revision;

SFT Level;

TTSLevel;

accountingVersion;

VAPVersion;

queueingVersion;

printServerVersion;

uint16 virtualConsoleVersion;

uint16

uint16

uint16

uint16

uint16

uint16

char

security Restriction Level;

internetBridgeSupport;

maxClientConnSupported;

clientConnInUse;

peakClientConnUsed;

max Volumes;

serverNamel NWMAX SERVER_NAME_LENGTH];

} NWServerPlatformInfo_t;

See Also

NWGetServerPlatformDescriptionStrings

Licensed Material - Property of the copyright holders 069-000567

NWGetServerPlatformLoginStatus
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

Sf / /

_ This function gets the status of the server login—enabled or disabled.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 userLoginAllowed; ©

ccode=NWGetServerPlatformLoginStatus(serverConnID,
&userLoginAllowed);

Input

serverConnID Passes the file server connection ID.

userLoginAllowed Passes a pointer to the space allocated for the status of user

login.

Output

userLoginAllowed Receives the status of user login:

O = User Login Disabled

Non-zero = User Login Enabled

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxC6 No Console Operator Rights

0x96 Server Out Of Memory

OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

The userLoginAllowed parameter receives a non zero value if user login is enabled,

and a 0 if user login is disabled. You must be a supervisor or supervisor equivalent

to make this call.

See Also

NWEnableServerPlatformLogin

NWDisableServerPlatformLogin

069-000567 Licensed Material - Property of the copyright holders 7-13

NWGetServerPlatformName
NetWare for

NetWare 2.x NetWare3.x — AViiON Systems

J J /

This function gets the name of the server platform with the connection ID.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

char serverPlatformName[NWMAX_SERVER_NAME_LENGTH];

ccode=NWGetServerPlatformName(serverConnID, serverPlatformName);

‘Input

serverConnID Passes the file server connection ID.

serverPlatformName | Passes a pointer to the string allocated for the server
name.

Output

serverPlatformName Receives the server name.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFB Invalid Parameters

OxF8 Not Attached To Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

This call does not actually call the server, but accesses the tables maintained by the

Netware for AViiON Systems API Library which keeps track of the server

information returned by the NWAttachToServerPlatform call.

See Also

NWAttachToServerPlatform

7-1 4 Licensed Material - Property of the copyright holders 069-000567

NWisNetWare386
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function checks whether a connected file server is running NetWare 3.x.

Synopsis

#define "nwapi.h"

NWBoolean_ts ccode;
uint16 serverConnID;

ccode=NWIsNetWare386(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

1 Server is running NetWare 3.x

0 Server is not running NetWare 3.x

Notes

NetWare for AViiON Systems corresponds to NetWare 3.x.

069-000567 Licensed Material - Property of the copyright holders 7-1 5

NWSetServerPlatformDateAndTime
| NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ Jf

This function sets the network date and time on the specified file server.

Synopsis

#include "nwapi.h"

int | ccode;

uint16 serverConnID;

NWServerPlatformDateAndTime_t dateAndTime;

ccode=NWSetServerPlatformDateAndTime(serverConnID,

&dateAndTime);

Input

serverConnID Passes the file server connection ID.

dateAndTime Passes a pointer to the structure allocated for the

network date and time. (See "Description," below,

and Appendix A, NWServerPlatformDateAndTime_t

Structure.)

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

— 0xC6 No Console Operator Rights

0x96 Server Out Of Memory

OxFB Invalid Parameters

OxFF No Response From Server

Note: See Appendix B for a listing of possible NetWare errors.

Description

The NWServerPlatformDateAndTime_t structure is as follows:

typedef struct {

uint8 year (0 through 99; for example: 82=1982;)

uint8 month (1 through 12)

uint8 day (1 through 31)

uint8 hour (0 through 23)

uint8 minute (0 through 59)

uint8 second (0 through 59)

uint8 dayOfWeek (0 through 6, 0 = Sunday)

} NWServerPlatformDateAndTime_t;

t-1 6 Licensed Material - Property of the copyright holders 069-000567

Notes

Date and time are not automatically synchronized across an internetwork.

If the year is less than 82, the year is considered to be in the 21st century

This call is not valid for NetWare for AViiON Systems servers. If the system
date and time need to be changed, the host administrator should be contacted.

See Also

NWGetServerPlatformDateAndTime

End of Chapter

069-000567 Licensed Material - Property of the copyright holders 7-17

Chapter 8

Synchronization Service APIs

Function Calls

069-000567

This chapter describes of the following Synchronization Service APIs. They can be

categorized as follows: [L] logical record locks, [P] physical record locks, [F] file

locks, [S] semaphores.

API Page

NWClearFile [F] 2... 0... 0... cece eee eens 8-3

NWClearFileSet [F] 2... 0... 0 ee eee eens 8-4

NWClearLogicalRecord [L]...................... Lee ee eee 8-5

NWClearLogicalRecordSet [L] 0... cee eee ec ee ee eee 8-7

NWClearPhysicalRecord [P]......... 0.0... 0... cc ec eee ee eee eee 8-8

NWClearPhysicalRecordSet [P] 0.0... ccc cece ee ee eee 8-10

NWCloseSemaphore [S] 0.0... eee ee ee ee ee eee tees 8-11

NWExamineSemaphore [S]-. eee ee eee 8-12

NWLockFileSet [F] 2.0.0... 0.0.0... ccc ee eee eee eae 8-14

NW LockLogicalRecordSet [L] 0.00.00 cee eee oe. 8-15

NWLockPhysicalRecordSet [P] ree 8-17

NWLogFile [F]............. Le eee ee ee eee eee ee ee eee 8-19

NWLogLogicalRecord [L] 0.0.0.0 cee eee eee lee ee. 8-21

NWLogPhysicalRecord [P] 2.0... 0... ccc cece ee ee ee eee eee 8-23

NWOpenSemaphore [S] 0c ce cccececcececuceecuues 8-25

NWReleaseFile [F] .. 0.0... . 0. cc ee ee ce nets 8-27

NWReleaseFileSet [F]0.. 0.0... ccc ee ee eee eee 8-28

NWReleaseLogicalRecord [L] 00.0... cee eee eee eee . 8-29

NWReleaseLogicalRecordSet [L] 0.0.00 ccc eee eee 8-30

NWReleasePhysicalRecord [P] 0.0... ccc cee eee eee 8-31

NWReleasePhysicalRecordSet [P] ee eee eee 8-32

NWSignalSemaphore [S] 0.0... cece eee eee ee eet eee 8-33

NWWaitOnSemaphore [S] 0.0... cc cee eee ee eens 8-34

Licensed Material - Property of the copyright holders

Introduction to Synchronization Services

Synchronization services calls enable applications to coordinate access to network

files and other resources. These services are divided into two categories: Locking

and Semaphores.

Locking and Semaphores

NetWare provides calls that allow applications to lock files, physical records, or

logical records. The client must maintain tables which keep track of file and record

locks. There are no APIs which can return this information.

Before locking a file/record, an client should also record the following information

about the file/record in a File Log table residing on the file server:

e¢ Name (for files)

e Location and Size (for records)

There are two kinds of locks available to application developers - physical and

logical. Unlike a physical record lock, a logical record lock does not actually lock

bytes. Instead, a logical record lock acts somewhat like a semaphore. Applications

cooperatively define a logical record name that represents a group of files, records,

structures, etc. When an application locks a logical record, it only locks the logical

record name, and not the group of files, records, or structures the name represents.

Any uncooperative application can ignore a lock on the logical record name and

directly lock the physical files or records. Therefore, applications using logical

record locks should not use other locking techniques simultaneously on the same

data.

NetWare also provides calls that enable applications to create, open, examine, and

close semaphores. Applications can also use semaphore calls to increment and

decrement the value associated with a semaphore.

8-2 Licensed Material - Property of the copyright holders 069-000567

NWClearFile
NetWare for

NetWare 2.x NetWare3.x AViiON Systems

J / J

This function unlocks the specified file and removes it from the File Log table.

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

ccode=NWClearFile(&path);

Input

path Passes a pointer to the name of the file whose file lock is
being cleared.

Output

None.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

If the file is open, this function closes it and invalidates the file handle. The file
can then be accessed by other clients. If the calling client had the file open
multiple times, it is closed as many times and all associated file handles are
invalidated.

Notes

The fileName parameter can specify either a file’s complete path name or a path
relative to the default directory mapping.

See Also

NWClearFileSet

069-000567 Licensed Material - Property of the copyright holders 8-3

NWClearFileSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ f_ | /

This function unlocks all the files logged for a specified client.

Synopsis

#include "nwapi.h"

int ccode;

ecode=NWClearFileSet();

Input

None.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

All open files in the client’s File Log table are closed and the file handles are
cleared. This includes files logged across any servers that have been logged into
the set.

Notes

This function is ignored if the requesting client does not have logged files.

See Also

NWClearFile

NWLockFileSet

NWLog File

NWReleaseF ile

NWReleaseFileSet

8-4 Licensed Material - Property of the copyright holders 069-000567

NWClearLogicalRecord

069-000567

NetWare for

NetWare 2.x NetWare3.x — AViiION Systems

/ / J

This function unlocks a logical record and removes it from the logical record log
table.

Synopsis

#include "nwapi.h" |

int ccode;

uint16 serverConnID;

char logicalRecordName[NWMAX_LOGICAL_RECORD_NAME_
LENGTH];

ccode=NWClearLogicalRecord(serverConnID, logicalRecordName);

Input

serverConnID Passes the file server connection ID.

logicalRecordName Passes a pointer to the name of the logical record
being cleared (128 characters).

Output

None.

Return Values

O Successful. — |
-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error
OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function clears on record residing in the Logical Record Log table associated
exclusively with the requesting client.

Applications define logical record names. A logical record name represents a group
of files, physical records, structures, etc. The NWLogLogicalRecord or
NWLockLogicalRecordSet functions locks one or more logical record names, not the
actual files, physical records, or structures associated with each logical record
name. Any uncooperative application can ignore a lock on the logical record name
and directly lock physical files or records.

Licensed Material - Property of the copyright holders 8-5

8-6

Therefore, applications using logical record locks must not use other locking

techniques simultaneously.

See Also

NWClearLogicalRecordSet

NWLockLogicalRecordSet

NWLogLogicalRecord

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

Licensed Material - Property of the copyright holders 069-000567

NWClearLogicalRecordSet |
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function unlocks and removes all logical records in the Logical Record Log
table (on any of the servers you are attached to).

Synopsis

#include "nwapi.h"

int ccode;

ccode=NWClearLogicalRecordSet_();

Input |

None.

Output

None.

Return Values

QO Successful. |

-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function unlocks all of the logical records that are logged in the Logical Record
Log table and removes them from the table. If the requesting process does not have

_ logged logical records, this function is ignored.

See Also

NWClearLogicalRecord

NWLockLogicalRecordSet

NWLogLogicalRecord

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

069-000567 Licensed Material - Property of the copyright holders 8-7

NWClearPhysicalRecord
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / iv

This function unlocks the specified physical record and removes it from the Log
table.

Synopsis

#include "nwapi.h"

int . ccode;

uint16 serverConnID;

NWFileHandle_ta fileHandle;
uint32 recordstartOffset;

uint32 recordLength;

ccode=NWClearPhysicalRecord(serverConnID, fileHandle, recordStartOffset,

recordLength);

input

serverConnID ’ Passes the file server connection ID.

-fileHandle Passes the file handle associated with the file
containing the physical record being cleared.

recordsStartOffset Passes the offset, within the file, where the locked

record begins.

recordLength Passes the length, in bytes, of the locked record.

Output

None. |

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The Record Log table resides on the file server and is associated exclusively with

the requesting task on the workstation.

8-8 Licensed Material - Property of the copyright holders 069-000567

069-000567

The application locates the physical record within the specified file by passing the

offset in the recordStartOffset parameter and the length in the recordLength

parameter.

Notes

This function is ignored if the requesting workstation does not have logged physical

records.

See Also

NWClearPhysicalRecordSet

NWLockPhysicalRecordSet

NWLogPhysicalRecord

NWReleasePhysicalRecord

NWReleasePhysicalRecordSet

Licensed Material - Property of the copyright holders 8-9

NWClearPhysicalRecordSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J Sf J

This function unlocks and removes all physical records from the Physical Record
Log table.

Synopsis

#include "nwapi.h"

int ccode;

ccode=NWClearPhysicalRecordSet();

Input

None.

Output

None.

Return Values

O Successful. |
-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function clears an entire set of physical records associated with the requesting
client.

Notes

This function is ignored if the requesting workstation does not have logged
physical records.

See Also

NWClearPhysicalRecord

NWLockPhysicalRecordSet

NWLogPhysicalRecord

NWReleasePhysicalRecord

NWReleasePhysicalRecordSet

8-1 0 Licensed Material - Property of the copyright holders 069-000567

NWCloseSemaphore
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ / Jf

This function closes a semaphore.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 NetWareSemaphoreHandle;

ccode=NWCloseSemaphore(serverConnID, NetWareSemaphoreHandle);

Input

serverConnID Passes the file server connection ID.

NetWareSemaphoreHandle Passes the semaphore handle obtained when

| the semaphore was opened

(NWOpenSemaphore).

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

This function decrements the open count of the semaphore, indicating that one less

process is holding the semaphore open. If the requesting process is the last process

to have this semaphore open, the semaphore is deleted.

See Also

NWExamineSemaphore

NWOpenSemaphore

NWSignalSemaphore

NWWaitOnSemaphore

069-000567 Licensed Material - Property of the copyright holders 8-1 1

NWExamineSemaphore
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

vf / /

This function returns the current value and open count for the specified semaphore.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 semaphoreHandle;

int semaphoreValue;

uint16 semaphoreOpenCount;

ccode=NWExamineSemaphore(serverConnID, semaphoreHandle,
&semaphoreValue, &semaphoreOpenCount);

Input

serverConnID

semaphoreHandle

semaphoreValue

semaphoreOpenCount

Output

semaphoreValue

semaphoreOpenCount

Return Values

0 Successful.

Passes the file server connection ID.

Passes the semaphore handle obtained when the
semaphore was opened (NWOpenSemaphore).

Passes a pointer to the space allocated for the -

current semaphore value (optional).

Passes a pointer to the space allocated for the
number of stations that currently have this

semaphore open.

Receives the current semaphore value (optional).

Receives the number of stations that currently have

this semaphore open.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

8-1 2 Licensed Material - Property of the copyright holders 069-000567

Description

The semaphore value is decremented for each NWWaitOnSemaphore function call

and incremented for each NWSignalSemaphore function call.

A positive semaphore value indicates that the application can access the associated

network resource. A negative value indicates the number of processes waiting to

use the semaphore. If the semaphore value is negative, the application must either

enter a waiting queue by calling the function NWWaitOnSemaphore or temporarily

abandon its attempt to access the network resource.

The semaphoreOpenCount parameter indicates the number of processes holding the

semaphore open. A call to NWOpenSemaphore increments this value. A call to

NWCloseSemaphore decrements this value.

See Also

NWCloseSemaphore

NWOpenSemaphore

NWSignalSemaphore

NWWaitOnSemaphore

069-000567 Licensed Material - Property of the copyright holders 8-1 3

NWLockFileSet
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ J "A

This function locks all files that are logged in the File Log table.

Synopsis

#include “nwapi.h"

int ccode;

uint16 timeOut Limit;

ccode=NWLockFileSet(timeOutLimit);

input

timeOutLimit Passes the length of time the file server waits.

Output

None.

Return Values

O Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The timeOutLimit indicates how long the file server will attempt to lock the set.
This limit is specified in units of 1/18 of a second (0 = no wait).

See Also

NWClearFile

NWClearFileSet

NWLogFile

NWReleaseF ile

NWReleaseFileSet

8-1 4 Licensed Material - Property of the copyright holders 069-000567

NWLockLogicalRecordSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ /

This function locks all logical records logged in the Logica] Record Log table.

Synopsis

#include "nwapi.h"

int ccode;

uint8 lockF lags;
uint16 timeOutLimit;

ccode=NWLockLogicalRecordSet(lockFlags, timeOutLimit);

Input

lockF lags Passes one of the following lock flags:

NWLS_EXCLUSIVE

NWLS_SHAREABLE

timeOutLimit Passes the length of time the file server attempts to
lock the record set before timing out.

Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

Applications define logical record names. A logical record name represents a group
of files, physical records, or data structures. NWLogLogicalRecord or
NWLockLogicalRecordSet function affects one or more logical record names, not the
actual files, physical records, or data structures associated with each logical record
name. Any uncooperative application can ignore a lock on the logical record name
and directly lock physical files or records. Therefore, applications using logical
record locks must not simultaneously use other locking techniques.

The timeOutLimit parameter indicates how long the file server will attempt to lock
the logical record set. The timeOutLimit parameter is specified in units of 1/18 of a
second (0 = no wait).

069-000567 Licensed Material - Property of the copyright holders 8-1 5

See Also

NWClearLogicalRecord

NWClearLogicalRecordSet

NWLogLogicalRecord

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

8-1 6 Licensed Material - Property of the copyright holders 069-000567

NWLockPhysicalRecordSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function locks all records logged in the Physical Record Log table.

Synopsis

#include "nwapi.h"

int ccode;
uint8 lockF lags;

uint16 timeOutLimit;.

ccode=NWLockPhysicalRecordSet(lockF lags, timeOutLimit);

Input

lockF lags Passes one of the following lock flags:

NWLS_EXCLUSIVE

NWLS_SHAREABLE

timeOutLimit Passes the length of time the file server attempts to lock the
physical record set before timing out.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The timeOutLimit is specified in units of 1/18 of a second (0 = no wait).

Notes

This function cannot lock a record that is already locked exclusively by another
application. If one or more records, identified in the log table, are already
exclusively locked by another application, the attempt to lock the set fails.

069-000567 Licensed Material - Property of the copyright holders 8-1 1

See Also

NWClearPhysicalRecord

NWClearPhysicalRecordSet

NWLogPhysicalRecord

NWReleasePhysicalRecord

NWReleasePhysicalRecordSet

8-1 8 Licensed Material - Property of the copyright holders 069-000567

NWLogFile
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Jf / J

This function logs the file in the File Log table. Use this function when you need to

lock a set of files. If the lock flag is set, this function also locks the file.

Synopsis

#include “nwapi.h"

int ccode;

NWPath_t path;

uint8 logFlags;

uint16 timeOutLimit;

ccode=NWLogFile(&path, logF lags, timeOutLimit);

Input

path | : Passes a pointer to the file name to be locked (must
be the full path name for the file - up to 255

characters).

logF lags Passes one of the following log flags.

NWFL_LOG_ONLY

NWFL_LOG_AND_LOCK

timeOutLimit Passes the length of time the file server attempts to
log the specified file before timing out.

Output

None.

Return Values

0 Successful. |

-1 Unsuccessful. one of the following error codes is placed in NWErrno: |

OxFD Lock Collision

OxFE Timeout Error

—OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

When the logFlags parameter is set to NWFL_LOG_AND_LOCK, the server will

attempt to lock a file for the length of time specified by the timeOutLimit

parameter. The timeOutLimit parameter is specified in units of 1/18 of a second

(0 = no wait).

069-000567 Licensed Material - Property of the copyright holders 8-1 9

A log table contains data locking information used by a file server. The file server

tracks this information for each workstation and process. Whenever a file, logical

record, or physical record is logged, information identifying the data being logged is

placed in the log table. Normally, a set of files or records is logged and then locked

asa set. However, a single file or record can also be locked when it is placed in the

log table.

When using log tables, a task first logs all of the files or records that are needed to

complete a transaction. The task then attempts to lock the logged set of files or

records. If some of the logged resources cannot be locked, the lock fails and none of

the resources are locked.

See Also

NWClearFile

NWClearFileSet

NWLockFileSet

NWReleaseFile

8-20 Licensed Material - Property of the copyright holders 069-000567

NWLogLogicalRecord
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ /

This function logs a logical record.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;
char logicalRecordN ame[NWMAX_LOGICAL_RECORD_NAME_

LENGTH];

uint8 lockF lags;

uint16 timeOutLimit;

ccode=NWLogLogicalRecord(serverConnID, logicalRecordName, lockFlags,
timeOutLimit);

Input

serverConnID Passes the file server connection ID.

logicalRecordName Passes a pointer to the name of the logical record
being logged (128 characters).

lockF lags Passes one of the following lock flags.

NWPL_LOG_ONLY

NWPL_LOG_AND_LOCK_EXCLUSIVE

NWPL_LOG_AND_LOCK_SHAREABLE

timeOutLimit | Passes the length of time the file server attempts to
lock the record before timing out.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 8-21

8-22

Description

When the lockFlags parameter is set to option one or three, the file server will

attempt to lock the logical record for the length of time specified by the

timeOutLimit parameter. The timeOutLimit parameter is specified in units of 1/18

of a second.

A log table contains data locking information used by a file server. The file server

tracks this information for each workstation and workstation task. Whenever a file

logical record, or physical record is logged, information identifying the data being

logged is placed in the log table.

?

Normally, a set of files or records is logged and then locked as a set. However, a

single file or record can also be locked when it is placed in the log table. The

release functions are used to unlock a lock (or set of locks). The clear functions are

used to unlock and remove a lock (or set of locks) from the log table.

When using log tables, a task first logs all files or records to complete a transaction.

The task attempts to lock the logged set of files or records. If some of the logged

resources cannot be locked, the lock fails and none of the resources are locked.

See Also

NWClearLogicalRecord

NWClearLogicalRecordSet

NWLockLogicalRecordSet

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

Licensed Material - Property of the copyright holders ’ 069-000567

NWLogPhysicalRecord
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function logs a physical record in the Physical Record Log table.

Synopsis

#include "nwapi.h"

int

uint16

NWFileHandle_ta

uint32

uint32

uint8

uint16

ccode;

serverConnID;

fileHandle;

recordStartOffset;

recordLength;

lockF lags;

timeOutLimit;

ccode=NWLogPhysicalRecord(serverConnID, fileHandle, recordStartOffset,

recordLength, lockF lags, timeOutLimit);

Input

serverConnID

fileHandle

recordsStartOffset

recordLength

lockF lags

timeOutLimit

Output

None.

Passes the file server connection ID.

Passes the file handle of the file whose record is

being logged.

Passes the offset into the file where the record being

logged begins. |

Passes the length, in bytes, of the record to be

logged.

Passes one of the following lock flags:

NWPL_LOG_ONLY

NWPL_LOG_AND_LOCK_EXCLUSIVE

NWPL_LOG_AND_LOCK_SHAREABLE

Passes the length of time the file server attempts to

log a record before timing out.

069-000567 Licensed Material - Property of the copyright holders 8-23

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The file server attempts to log the record for the length of time specified by the
timeOutLimit parameter before returning a time out error. The timeoutLimit
parameter is specified in units of 1/18 of a second (0 = no wait).

A log table contains data locking information used by a file server. The file server
tracks this information for each workstation and process. Whenever a file, logical
record, or physical record is logged, information identifying the data being logged is
placed in the log table. Normally, a set of files or records is logged and then locked
as a set. However, a single file or record can also be locked when it is placed in the
log table.

The release functions are used to unlock a lock or set of locks.

The clear functions are used to unlock and remove a lock or set of locks from the
log table.

Notes

When using log tables, a task first logs all files or records to complete a
transaction. The task then attempts to lock the logged set of files or records. If
some of the logged resources cannot be locked, the lock fails and none of the
resources are locked.)

See Also

NWClearLogicalRecord
NWClearLogicalRecordSet

NWLockLogicalRecordSet

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

8-24 Licensed Material - Property of the copyright holders 069-000567

NWOpenSemaphore
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J / J

This function opens a semaphore.

Synopsis

#include "nwapi.h"

int

uint16

char

int

uint32

uint16

ccode;

serverConnID;

semaphoreName[NWMAX_SEMAPHORE_ NAME];
initialSemaphoreValue;

NetWareSemaphoreHandle;

semaphoreOpenCount;

ccode=NWOpenSemaphore(serverConnID, semaphoreName,
initialSemaphoreValue, &NetWareSemaphoreHandle,
&semaphoreOpenCount); —

Input

serverConnID Passes the file server connection ID.

semaphoreName Passes a pointer to the name of the

semaphore to be opened.

initialSemaphoreValue Passes the initial value of the semaphore

being opened (must be greater than 1).

NetWareSemaphoreHandle Passes a pointer to the space allocated for the

NetWare semaphore handle.

semaphoreOpenCount | Passes a pointer to the space allocated for the

number of stations that have this semaphore

opened (optional).

Output

NetWareSemaphoreHandle Receives the NetWare semaphore handle.

semaphoreOpenCount Receives the number of stations that have

Return Values

0 Successful.

this semaphore opened (optional).

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD

OxFE

OxFF

OxFF

Lock Collision

Timeout Error

Lock Error

Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 8-25

8-26

Description

This function creates and initializes the semaphore to the value indicated by the

initialSemaphoreValue parameter.

The semaphoreOpenCount parameter indicates the number of processes currently

using the semaphore. Semaphores can have two purposes under NetWare.

1. Semaphores can limit the number of users to a particular resource. To limit the

number of users, use the NWOpenSemaphore and NWCloseSemaphore function

calls only.

The NWOpenSemaphore call returns the number of processes that currently

have the semaphore open. An application can check the value against a

programmer-defined limit and take appropriate action.

2. Semaphores can restrict access to a particular resource. If access is restricted,

only serial access is allowed. To request access, a resource must open the

semaphore associated with the resource and, through that semaphore, request

permission to access the resource. If the resource is unavailable, the calling

process is placed in a wait queue.

Restricting access to a resource is not limited to allowing only one process to

have access. For example, if the resource being restricted is a modem pool with

four modems, the semaphore could allow access to four users but could restrict

access to subsequent requesters by setting the initialSemaphoreValue

parameter to four.

See Also

NWCloseSemaphore

NWExamineSemaphore

NWSignalSemaphore

NWWaitOnSemaphore

Licensed Material - Property of the copyright holders 069-000567

NWReleaseFile
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ / /

This function unlocks the specified file but does not remove it from the File Log
table. |

Synopsis

#include "nwapi.h"

int ccode;

NWPath_t path;

ccode=NWReleaseFile(&path);

Input

path Passes a pointer to the NWPath_t structure containing the directory
handle, the server connection ID, and a pointer to the path name.
(See Appendix A, NWPath_t Structure.) |

Output

None.

Return Values

0 Successful. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision
OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

See Also

NWClearFile

NWClearFileSet

NWLogFile

NWReleaseFileSet

069-000567 Licensed Material - Property of the copyright holders 8-27

NWReleaseFileSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function unlocks all files logged in the File Log table.

Synopsis

#include "nwapi.h"

int ccode;

ccode=NWReleaseFileSet_();

Input

None.

Output

None.

Return Values

O Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error
OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The NWReleaseFileSet function does not remove files from the log table. This
function is ignored if the requesting workstation does not have locked files.

See Also

NWClearFile

NWClearFileSet

NWLogFile

NWReleaseFile

8-28 Licensed Material - Property of the copyright holders 069-000567

NWReleaseLogicalRecord
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / JS

This function unlocks a logical record but does not remove it from the Logical
Record Log table.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

char logicalRecordName[NWMAX_LOGICAL_RECORD_NAME];

ccode=NWReleaseLogicalRecord(serverConnID, logicalRecordName):

Input

serverConnID Passes the file server connection ID.

_ logicalRecordName Passes a pointer to the name of the logical record
being released (128 characters).

Output

None.

Return Values

0 Successful.

-1_ Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD ~ Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

A log table contains data locking information used by a file server. The file server
tracks this information for each workstation and workstation task. Whenever a
file, logical record, or physical record is logged, information identifying the data
being logged is placed in the log table. Normally, a set of files or records is logged
and then locked as a set. However, a single file or record can also be locked when
it is placed in the log table.

See Also

NWClearLogicalRecord

069-000567 Licensed Material - Property of the copyright holders 8-29

NWReleaseLogicalRecordSet
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

"A / J

This function unlocks all the logical records in the Logical Record Log table.

Synopsis

_ #include "nwapi.h"

int ccode;

ccode=NWReleaseLogicalRecordSet();

input

None.

Output

None.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

The NWReleaseLogicalRecordSet function does not remove logical records from the

log table. This function is ignored if the requesting workstation or process does not

have locked logical records.

See Also

NWClearLogicalRecord

NWClearLogicalRecordSet

NWLockLogicalRecordSet

NWLogLogicalRecord

NWReleaseLogicalRecord

8-30 Licensed Material - Property of the copyright holders 069-000567

NWReleasePhysicalRecord |

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J v Jv

This function unlocks the specified physical record but does not remove it from the
log table.

Synopsis

Input ©

Output

#include “nwapi.h"

int

uint16

NWFileHandle _ta

uint32

uint32

ccode;

serverConnID;

fileHandle;

recordstartOffset;

recordLength;

ccode=NWReleasePhysicalRecord(serverConnID, fileHandle,
recordsStartOffset, recordLength);

serverConnID

fileHandle

recordStartOffset

recordLength

None.

Return Values

See Also

0 Successful.

Passes the file server connection ID.

Passes the file handle associated with the file

containing the specified record.

Passes the offset, within the file, where the physical
record begins.

Passes the length, in bytes, of the record being
released. |

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD

OxFE

OxFF

OxFF

Lock Collision

Timeout Error

Lock Error

Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

NWClearPhysicalRecord

NWClearPhysicalRecordSet

NWLockPhysicalRecordSet

NWLogPhysicalRecord

NWReleasePhysicalRecordSet

Licensed Material - Property of the copyright holders 8-31

NWReleasePhysicalRecordSet
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J "A

This function unlocks all records logged in the Physical Record Log table but leaves
them logged in the table.

Synopsis

#include "nwapi.h"

int ccode;

ccode=NWReleasePhysicalRecordSet();

Input

None.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:
OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Notes

This function is ignored if the workstation does not have locked physical
records.

See Also

NWClearPhysicalRecord

NWClearPhysicalRecordSet
NWLockPhysicalRecordSet |

NWLogPhysicalRecord

NWReleasePhysicalRecord

8-32 Licensed Material - Property of the copyright holders 069-000567

NWSignalSemaphore

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ Jf J

This function signals a semaphore that the station or process is finished.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlID;

uint32 semaphoreHandle;

cecode=NWSignalSemaphore(serverConnID, semaphoreHandle);

Input

serverConnID Passes the file server connection ID.

NetWareSemaphoreHandle Passes the semaphore handle pointing to the

semaphore to be signaled.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

An application must call this function when it finishes accessing the network

resource associated with the semaphore. If processes are waiting to use the

semaphore, the first process in the queue is released (signaled).The

NetWareSemaphoreHandle is a uint32 pointer to a semaphore. An application

obtains this handle with a call to the NWOpenSemaphore function.

See Also

NWCloseSemaphore

NWExamineSemaphore

NWOpenSemaphore

NWWaitOnSemaphore

Licensed Material - Property of the copyright holders . 8-33

NWwWaitOnSemaphore
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

of vf vf

This function decrements a semaphore value.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 semaphoreHandle;
uint16 timeOutLimit;

ccode=NWWaitOnSemaphore(serverConnID, semaphoreHandle,
timeOutLimit);

Input

serverConnID | , Passes the file server connection ID

NetWareSemaphoreHandle Passes the semaphore handle returned from
the NWOpenSemaphore function call.

timeOutLimit Passes the length of time the application will
be wait.

Output

None.

Return Values

O Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFD Lock Collision

OxFE Timeout Error

OxFF Lock Error

OxFF — Unlock Error

Note: See Appendix B for a listing of possible NetWare errors.

Description

If the semaphore value is greater than or equal to zero, the application can access
the associated resource. If the value is less than zero, the function queues the
application for the time interval specified in the timeoutLimit parameter. If the

semaphore value is greater than or equal to zero when the timeout value expires,

the application can access the resource. If the semaphore value is still negative,

the function removes the application from the queue and re-increments the

semaphore value. A semaphore handle is a uint32 pointer to a semaphore and can

be obtained by calling NWOpenSemaphore.

8-34 Licensed Material - Property of the copyright holders 069-000567

The timeout limit indicates how long the file server should wait if the semaphore

value is negative. The timeout limit is specified in units of 1/18 of a second (0 = no

wait).

See Also

NWCloseSemaphore
NWExamineSemaphore

NWOpenSemaphore

NWSignalSemaphore

End of Chapter

069-000567 Licensed Material - Property of the copyright holders 8-35

Chapter 9

Transaction Tracking Service APIs

Function Calls

Note:

This chapter discusses the Transaction Tracking System APIs that are listed below.

Your version of NetWare for AViiON Systems may not support Transaction

Tracking Services. Refer to the release notice accompanying your shipment for

specific restrictions.

API | Page

NWtTTSAbortTransaction0...00.008. eee eeeeeees 9-3

NWTTSBeginTransaction 0.0... cece ce eee eee eee 9-5

NWTTSDisableTransactionTracking 0.000 ce eee eeee 9-7

NWTTSEnableTransactionTracking 0000 ce ee ee ees 9-8

NWTTSEndTransaction 00.0 cece eee eee ee eee ens 9-10

NWTTSGetConnectionThresholds0.0eeeeeeeeeees 9-12

NWTTSGetControlFlags See eee ee ee ee eee ee ee ees see 9-14

NWtTTSGetProcessThresholds 0.0 c ee eee eee e eee 9-15

NWTTSIsAvailable 0... cece ee eee eee 9-17

NWTTSIsTransactionWritten 0... 0 eee eee 9-19

NWTTSSetConnectionThresholds 0c cee cece ween 9-21

NWTTSSetControlFlags 0... ccc ee eee ee ees 9-23

NWTTSSetProcessThresholds 0.000 cece cece ee eeee 9-24

Introduction to Transaction Tracking

069-000567

NetWare file servers that include Transaction Tracking System (TTS) can track

transactions and ensure file integrity by backing out (or erasing) interrupted or

partially completed transactions. TTS only affects to transactional files. A file

becomes transactional when the file’s Transactional extended file attribute is set.

Licensed Material - Property of the copyright holders

For example, a banking database application frequently performs a transaction that

includes the following three writes to database files:

° A debit to one account

e A credit to another account

e A note to a log

The application must complete all three of these writes to maintain database

integrity. Transaction tracking is implemented in two ways, implicit and explicit.

° Implicit Transaction Tracking. Implicit Transaction Tracking

requires no coding on the part of an application developer. If TTS is

installed and enabled on a file server, TTS tracks all transactions to

all transactional files (including transactions made by NetWare to

bindery files).

° Explicit Transaction Tracking. Explicit Transaction Tracking has

two calls: NWTTSBeginTransaction and NWTTSEndTransaction.

Explicit Transaction Tracking requires applications to make TTS

calls, and allows applications to neatly bracket file update sequences

with locking and TTS calls. An application would most likely use

logical or physical record locks with TTS calls (see the

"Synchronization" section).

The following steps describe how TTS tracks each write within a transaction.

1. An application writes new data to a file on a file server.

2. The file server stores the new data in cache memory. The target file

on the file server hard disk remains unchanged.

3. The file server scans the target file on the file server hard disk,

finds the data to be changed (old data), and copies the old data to

cache memory. The file server also records the name and directory

path of the target file and the location and length of the old data

(record) within the file. The target file on the file server hard disk

still remains unchanged.

A, The file server writes the old data in cache memory to a transaction

work file on the file server hard disk. The transaction work file

resides at the root level of volume SYS on the file server. The file is

flagged System and Hidden. The target file on the file server hard

disk still remains unchanged.

5. The file server writes the new data in cache memory to the target

file on the file server hard disk. The target file is now changed.

The file server repeats these steps for each write within a transaction. The

transaction work file grows to accommodate the old data for each write. If the

transaction is interrupted, the file server writes the contents of the transaction

work file to the target file, thereby restoring the file to its pretransaction condition.

In effect, the file server backs out the transaction.

A file server can monitor from 100 to 10,000 transactions at a time. (The maximum

value can be configured with SET for NetWare 3.x.) A file server can track only

one transaction at a time for each session. If a session sends several transactions

to a file server rapidly, the file server queues the transactions and services them

one at a time.

Licensed Material - Property of the copyright holders 069-000567

NWTTSAbortTransaction

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J | / /

This function aborts all transactions, explicit and implicit, on a file that has been
flagged transactional.

Synopsis

Input

Output

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWTTSAbortTransaction(serverConnID);

serverConnID Passes the file server connection ID.

None.

Return Values

Description

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: A return value in NWErrno of OxFE indicates that more than the

threshold number of logical or physical records are still locked by
the application. However, the transaction is still finished and any
locks being held are released. In this case, the file server

automatically starts a new implicit transaction.

See Appendix B for a complete listing of possible NetWare errors.

This function releases the following record locks:

Physical record locks generated by the file server when an application tried
to write an unlocked record

Physical or logical locks that have not been released because of a file write

When this function is complete, all transactions will have been successfully

backed out.

Licensed Material - Property of the copyright holders 9-3

Notes

See Also

If a transaction is aborted, all writes made since the beginning of a

transaction are cancelled, and all files are returned to the state they were

in before the transaction began.

Files can be flagged transactional with NWCreateFile and

- NWSetFileAttributes.

NWCreateF ile

NWoetFileAttributes

NWTTSBeginTransaction

NWTTSEndTransaction

Licensed Material - Property of the copyright holders 069-000567

NWTTSBeginTransaction

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ Jf Sf

This function begins an explicit transaction on a file that has been flagged

transactional.

Synopsis

Input

Output

#include “nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWTTSBeginTransaction(serverConnID);

serverConnID Passes the file server connection ID.

None.

Return Values

Description

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

This function tracks all transactional files that are currently open, and all those

that are opened during the transaction.

When data is written to a transactional file during a transaction, the file server
automatically generates a physical record lock for the region being written. Ifa
lock already exists, no additional lock is generated. This automatic locking can be
disabled using the NWTTSSetControlFlags function.

Notes

Any closing and unlocking of transactional files is delayed until an

NWTTSEndTransaction or NWTTSAbortTransaction is executed. Logical
and physical records are not unlocked until the end of the transaction if file
writes are performed while the lock is in force.

Use NWCreateFile or NWSetFileAttributes to flag a file transactional.

Licensed Material - Property of the copyright holders 9-5

See Also

NWCreateFile

NWSetFileAttributes

NWTTSAbortTransaction

NWTTSSetControlFlags

NWTTSEndTransaction

Licensed Material - Property of the copyright holders 069-000567

NWTTSDisableTransactionTracking
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ J ff

This function disables transaction tracking services on the specified file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWTTSDisableTransactionTracking(serverConnID);

Input

| serverConnID Passes the file server connection ID.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno.)

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

OxC6 No Console Privileges

Note: A return value in NWErrno of OxFE indicates that more than the

threshold number of logical or physical records are still locked by

the application. However, the transaction is still finished and any

locks being held are released. In this case, the file server

automatically starts a new implicit transaction.

See Appendix B for a complete listing of possible NetWare errors.

Description

This function call should be used after transaction services are no longer being

used.

The application making this call must be supervisor or have equivalent rights.

See Also

NWTTSEnableTransactionTracking

NWTTSBeginTransaction

NWTTSIsTransaction Written

069-000567 Licensed Material - Property of the copyright holders 9-7

NWTTSEnableTransactionTracking

9-8

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function enables transaction tracking services on the specified file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

ccode=NWTTSEnableTransactionTracking(serverConnID);

input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno.

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error |

OxFF No Explicit Transaction Active

OxC6 No Console Privileges

Note: A return value in NWErrno of OxFE indicates that more than the

threshold number of logical or physical records are still locked by

the application. However, the transaction is still finished and any

locks being held are released. In this case, the file server

automatically starts a new implicit transaction.

see Appendix B for a complete listing of possible NetWare errors.

Description

This function call will enable TTS if the server has it available. However, the

version of NetWare that the file server is running determines the information the

call returns.

For NetWare 3.x, this call enables TTS. Use NWTTSIsAvailable to check whether

TTS has been disabled.

For NetWare 2.x, this call enables TTS if TTS has been installed on the file server.

If TTS has not been installed, the call will not fail. On file servers running

NetWare 2.x, you should always use NWTTSIsAvailable before making this call.

Licensed Material - Property of the copyright holders 069-000567

069-000567

Notes

See Also >

The application making this call must be supervisor or have equivalent

rights.

NWTTSDisableTransactionTracking

NWTTSBeginTransaction

NWTTSIsAvailable

NWTTSIsTransaction Written

Licensed Material - Property of the copyright holders 9-9

NWTTSEndTransaction
NetWare for

NetWare 2.x NetWare 3.x AViiION Systems

/ Jf /

This function ends an explicit transaction on a file that has been flagged

transactional. The function also returns a transaction reference number.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint32 transactionReferenceNumber;

ccode=NWTTSEndTransaction(serverConnID,

&transactionReferenceNumber);

Input

serverConnID Passes the file server connection ID.

transactionReferenceNumber Passes a pointer to the space allocated for the

transaction reference number for the

transaction being ended.

Output

transactionReferenceNumber Receives the transaction reference number

for the transaction being ended.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno.

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: A return value in NWErrno of OxFE indicates that more than the

threshold number of logical or physical records are still locked by

the application. However, the transaction is still finished and any

locks being held are released. In this case, the file server

automatically starts a new implicit transaction.

See Appendix B for a complete listing of possible NetWare errors.

9-1 0 Licensed Material - Property of the copyright holders 069-000567

Description

The transaction is not necessarily written to disk when the reference number is

returned, however a client must use the NWTTSIsTransaction Written function to

verify that a transaction has been written to disk. If the file server fails before all

updates contained within the transaction have been written to disk, the transaction

will be backed out when the file server is rebooted.

If transaction tracking is disabled, the reference number can still be used to

determine when the transaction has been completely written to disk.

Notes

This function releases all physical record locks generated by the file server

when a write is made to an unlocked record. In addition, physical or logical

locks that have not been released because of a file write are unlocked at this

time.

Files can be flagged transactional with NWCreateFile and with

NWSetFileAttributes.

See Also

NWCreateF ile

NWSetFileAttributes

NWTTSAbortTransaction

NWTTSBeginTransaction

NWTTSIsTransaction Written

069-000567 Licensed Material - Property of the copyright holders 9-1 1

NWTTSGetConnectionThresholds

9-12

NetWare for

NetWare 2.x NetWare3.x AViiION Systems

Sf "A /

This function returns the number of Jogical and physical record locks allowed for

implicit transactions.

Synopsis

Input

Output |

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 logicalRecordLockThreshold;

uint8 physicalRecordLockThreshold;

ccode=NWTTSGetConnectionThresholds(serverConnID,

&logicalRecordLockThreshold, &physicalRecordLockThreshold);

serverConnID Passes the file server connection ID.

logicalRecordLockThreshold Passes a pointer to the space allocated for the

number of logical record locks allowed before

implicit transactions begin (0 to 255).

physicalRecordLockThreshold Passes a pointer to the space allocated for the
number of physical record locks allowed

before implicit transactions begin (0 to 255).

logicalRecordLockThreshold Receives the number of logical record locks

allowed before implicit transactions begin (0

to 255).

physicalRecordLockThreshold Receives the number of physical record locks

allowed before implicit transactions begin (0

Return Values

to 255).

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 069-000567

Description

This function allows an application to get the number of logical and physical record

locks allowed before implicit transactions begin.

The NWTTSSetConnectionThresholds function and this function are useful for

applications that change the implicit application thresholds and later want to

restore them. For example, NWTTSGetConnectionThresholds can get the number

of logical and physical locks, and NWTTSSetConnectionThresholds can do one of

the following:

¢ Turn off implicit transactions. (Applications that use only explicit

transactions, but sometimes generate unnecessary implicit transactions,

need to turn off all implicit transactions.)

¢ Set implicit thresholds for applications that always keep one or more

records locked.)

Notes

The default threshold for logical and physical locks is 0. A threshold of 255

means implicit transactions for that lock type have been completed.

See Also

NWTTSSetConnectionThresholds

069-000567 | Licensed Material - Property of the copyright holders 9-13

NWTTSGetControlFlags
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function returns the control flags byte for files flagged as transactional.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 TTSControlFlags;

ccode=NWTTSGetControlFlags(serverConnID, &TTSControlFlags);

Input

serverConnID Passes the file server connection ID.

TTSControlFlags Passes a pointer to the space allocated for the

Transaction Tracking Control flags. (See Description

below.) |

Output

TTSControlF lags Receives a Transaction Tracking Control flag. (See

Description below.)

Return Values

0 Successful. | |

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Transaction tracking control flags are only valid for files flagged as TTS

(transactional). These control flags are defined as follows:

0x00 Automatic record locking is disabled

0x01 Automatic record locking is enabled

See Also

NWTTSSetControlF lags

9-1 4 Licensed Material - Property of the copyright holders 069-000567

NWTTSGetProcessThresholds

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / J

This function returns the number of explicit physical and logical record locks that

can be done before implicit locking begins.

Synopsis

Input

Output

#include "nwapi.h"

int ccode;

uint16 serverConnID;

uint8 logicalRecordLockThreshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSGetProcessThresholds(serverConnID,

&logicalRecordLockThreshold, &physicalRecordLockThreshold);

serverConnID Passes the file server connection ID.

logicalRecordLockThreshold Passes a pointer to space allocated for the

number of explicit logical record locks

allowed before implicit transactions begin.

physicalRecordLockThreshold Passes a pointer to the space allocated for the

number of explicit physical record locks

allowed before implicit transactions begin.

logicalRecordLockThreshold Receives the number of explicit logical record

locks allowed before implicit transactions

begin.

physicalRecordLockThreshold Receives the number of explicit physical

record locks allowed before implicit

transactions begin .

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF - No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 9-1 5

Description

This function and the NWTTSSetProcessThresholds function are useful for

applications that change the implicit process thresholds and later want to restore

them. For example, NWTTSGetProcessThresholds can query an application for the

number of logical and physical record locks allowed before an implicit transaction

begins. NWTTSSetProcessThresholds can then do one of the following:

¢ Turn off implicit transactions

¢ Set implicit thresholds for applications that always keep one or more

records locked

The default threshold for logical and physical locks is 0. A threshold of 255 means

there will be no implicit transactions allowed for that lock type.

The thresholds returned by this function are valid for the requesting application

only. When the application terminates, the connection thresholds are restored.

Notes

Applications that intend to use only explicit transactions, but

sometimes generate unnecessary implicit transactions, need to turn

off all implicit transactions.

See Also

NWTTSSetProcessThresholds

9-1 6 Licensed Material - Property of the copyright holders | 069-000567

NWTTSIisAvailable

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

J J Jf

This function verifies that the file server supports transaction tracking.

Synopsis

#include "nwapi.h"

NWBoolean_ts ccode;

uint16 serverConnID;

ccode=NWTTSIsAvailable(serverConnID);

Input

serverConnID Passes the file server connection ID.

Output

None.

Return Values

1 Transaction Tracking is available. (See "Description" below.)

0 Transaction Tracking is not available. (See "Description" below.") If

another problem exists, one of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The version of NetWare that the file server is running determines the information

that this call returns.

For NetWare 2.x, this call allows the application to know whether the server has

TTS installed.

1 Indicates that TTS is installed.

0 TTS is not installed.

For NetWare 2.x, the API does not indicate whether TTS is currently enabled. To

ensure that TTS is enabled, NWTTSEnableTransactionTracking should be called.

For NetWare 3.x, this call indicates whether TTS is enabled.

1 Indicates that TTS is enabled.

0 Indicates that TTS has been disabled.

Licensed Material - Property of the copyright holders “ 9-1 7

See Also

NWTTSEnableTransactionTracking

NWTTSDisableTransactionTracking

9-1 8 Licensed Material - Property of the copyright holders 069-000567

NWTTSisTransactionWritten

069-000567

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ f/f /f

This function verifies whether a transaction has been written to disk.

Synopsis

#include "nwapi.h"

NWBoolean_ts ecode;
uint16 serverConnID;

uint32 transactionReferenceNumber;

ccode=NWTTSIsTransactionWritten(serverConnID,

transactionReferenceNumber);

Input

serverConnID Passes the file server connection ID.

transactionReferenceNumber Passes the Transaction Reference number,

obtained from the NWTTSEndTransaction

function.

Output

None.

Return Values

Description

1 Transaction written to disk

0 Transaction not written to disk, and an error code is placed in

— NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Before using NWTTSIsTransactionWritten, use NWTTSEndTransaction to obtain a

valid transactionReferenceNumber. If NWTTSEndTransaction fails, do not use

NWTTSIsTransactionWritten. When NWTTSEndTransaction fails, it returns an

invalid transactionReferenceNumber. When NWTTSIsTransactionWritten is

passed an invalid transactionReferenceNumber, it returns an invalid response.

Applications should not wait for transactions to be written to disk unless it is
absolutely necessary. Because of the file server caching algorithms, it may be 3 to

5 seconds (or longer) before they are actually written.

Licensed Material - Property of the copyright holders 9-1 9

Notes

Transactions are written to disk in the order in which they terminate.

See Also

NWTTSEndTransaction

9-20 Licensed Material - Property of the copyright holders 069-000567

NWTTSSetConnectionThresholds
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/ / /

This function informs NetWare of how many explicit physical and logical record

locks to permit before invoking implicit transactions.

Synopsis

#include “nwapi.h"

int ccode;

uint16 serverConnID;

uint8 JogicalRecordLockThreshold;

uint8 physicalRecordLockThreshold;

ccode=NWTTSSetConnectionThresholds(serverConnID,

logicalRecordLockThreshold, physicalRecordLockThreshold);

Input

serverConnID Passes the file server connection ID.

logicalRecordLockThreshold Passes the number of logical record locks to

allow before implicit transactions begin.

physicalRecordLockThreshold Passes the number of physical record locks to

allow before implicit transactions begin.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE ‘Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567 Licensed Material - Property of the copyright holders 9-21

Description

This function and NWTTSGetConnectionThresholds are useful for applications that

change the implicit application thresholds and later want to restore them. For

example, NWTTSGetConnectionThresholds can obtain the current number of logical

and physical locks and then NWTTSSetConnectionThresholds can do one of the

following:

¢ Turn off implicit transactions. (Applications that use only explicit
transactions, but sometimes generate unnecessary implicit transactions,

need to turn off all implicit transactions.)

e¢ Set implicit thresholds for applications that always keep one or more

records locked.

Notes

The default threshold for logical and physical locks is 0. A threshold of 255
means no implicit transactions for that lock type will be performed.

See Also

NWTTSGetConnectionThresholds

9-22 Licensed Material - Property of the copyright holders 069-000567

NWTTSSetControlFlags
NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

/

This function enables or disables automatic record locking on writes to

transactional files.

Synopsis

#include "“nwapi.h"

int ccode;

uint16 serverConnID;

uint8 TTSControlF lags;

ccode=NWTTSSetControlFlags(serverConnID, TTSControlFlags);

Input

serverConnID Passes the file server connection ID.

TTSControlFlags Passes the Transaction Tracking Control flags. (See

“Description” below.)

Output

None.

Return Values

0 Successful. |
-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Transaction tracking control flags are only valid for files flagged as TTS

(transactional). These flags are defined as follows:

0x00 Automatic record locking is disabled

0x01 Automatic record locking is enabled

See Also

NWTTSGetControlF lags

069-000567 Licensed Material - Property of the copyright holders 9-23

NWTTSSetProcessThresholds

9-24

NetWare for

NetWare 2.x NetWare 3.x AViiON Systems

Sf “4 "4

This function sets the number of logical and physical locks to perform before

implicit locking begins.

Synopsis

#include "nwapi.h”

int ccode;

uint16 serverConnID;

uint8 logicalRecordLock Threshold;
uint8 physicalRecordLockThreshold;

ccode=NWTTSSetProcessThresholds(serverConnID,

logicalRecordLockThreshold, physicalRecordLockThreshold);

Input

serverConnID Passes the file server connection ID.

logicalRecordLockThreshold Passes the number of logical record locks to

allow before implicit transactions begin.

physicalRecordLockThreshold Passes the number of physical record locks to

allow before implicit transactions begin.

Output

None.

Return Values

0 Successful.

-1 Unsuccessful. One of the following error codes is placed in

NWErrno:

OxFE Transaction Restart

OxFD Transaction Tracking Disabled

OxFF Lock Error

OxFF No Explicit Transaction Active

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The thresholds set by this function are valid for the requesting application only.

When the application terminates, the default workstation thresholds are restored.

This function is useful in either turning off implicit transactions or allowing

applications that always keep one or more records locked to work. Applications

that intend to use only explicit transactions, but sometimes generate unnecessary

implicit transactions, can use this function to turn off all implicit transactions.

Licensed Material - Property of the copyright holders 069-000567

Notes

The default threshold for logical and physical locks is 0 unless this number

has been changed using the NWTTSSetConnectionThresholds function. A

threshold of 255 means no implicit transactions for that lock type are

performed.

See Also

NWTTSGetProcessThresholds

End of Chapter

069-000567 Licensed Material - Property of the copyright holders 9-25

Appendix A

Constant Declarations

and Structure Definitions

The following constant and structure definitions are contained in the nwapi.h
include file.

_ Service Page

Accounting ServiceS 0. cece cee ee eee eee eee ee ee eee eee A-1

Bindery ServiceS ccc cee cee eee eee ee eee eee eee eee A-2

Connection Services 00 eeeeeeeee Lecce ee ee eee eens A-4

File and Path Services 0... cece ee nee e ene A-4

Queue Management Services Lee ee ee ee eee tee ee eee eee teens A-20

Server Platform Services cece eee ec eee eee eee ee eens A-23

Synchronization Services 0 0c eee cc ee ce cee teen ene eens A-25

Accounting Services

Constant Definitions: |

NWMAX COMMENT LENGTH 48
NWMAX_NUMBER_OF_HOLDS 32
NWMAX_OBJECT_NAME_LENGTH 48

Comment Types:

NWAN_CONNECT_TIME

NWAN_DISK_STORAGE
NWAN_LOG_IN

NWAN_LOG_OUT

NWAN_ACCOUNT_LOCKED

NWAN_SERVER_TIME_MODIFIED OD OR OD
NWHoldinfo_t Structure:

typedef struct {

uint32 objectID;

int32 holdAmount;

} NWHoldInfo_t;

069-000567 Licensed Material - Property of the copyright holders A-1

The objectID field contains the bindery objectID of the object submitting the hold.

The holdAmount field contains the amount that the objectID placed against the

user’s account balance.

Bindery Services

Constant Definitions:

NWMAX_MEMBER_NAME_LENGTH 48

NWMAX_OBJECT_NAME_LENGTH 48
NWMAX_PASSWORD_LENGTH 16
NWMAX_PROPERTY_NAME_LENGTH 16

NWMAX_PROPERTY_VALUE_LENGTH 128

NWMAX_SEGMENT_DATA_LENGTH 128

Bindery Object Types:

NWOT_WILD OxFFFF
NWOT_UNKNOWN 0x0000
NWOT_USER 0x0001
NWOT_USER_GROUP 0x0002

NWOT_PRINT_QUEUE 0x0003

NWOT_FILE_SERVER 0x0004

NWOT_JOB_SERVER 0x0005

NWOT_GATEWAY 0x0006

NWOT_PRINT_SERVER 0x0007

NWOT_ARCHIVE_QUEUE 0x0008

NWOT_ARCHIVE_SERVER 0x0009

NWOT_JOB_QUEUE — 0x000A

NWOT_ADMINISTRATION 0x000B

NWOT_NAS_SNA_GATEWAY 0x0021

NWOT_REMOTE_BRIDGE_SERVER 0x0024

NWOT_TIME_SYNCHRONIZATION "SERVER 0x002D
NWOT_ARCHIVE_SERVER_DYNAMIC_SAP 0x002E

NWOT_ADVERTISING_PRINT_SERVER 0x0047

NWOT_BTRIEVE_VAP 0x0050

NWOT_PRINT_QUEUE_USER 0x0053

NWOT_NVT_SERVER | 0x009E

Bindery Property Types:

NWBF_ITEM 0x00 Has only one value associated with it (such

as PASSWORD)

~NWBE_SET 0x02 Has many values associated with it (such as

GROUPS_IM_IN)

Licensed Material - Property of the copyright holders 069-000567

069-000567

Bindery Object and Property States:

NWBF_STATIC 0x00 Permanent in bindery until
deliberately deleted

NWBF_DYNAMIC 0x01 Is temporarily allocated and will be
deleted when the server goes down

Bindery Object and Property Security Access Levels:

NWBS_ANY_READ 0x00 Can be read by anyone

NWBS_LOGGED_READ 0x01 Must be logged in to read

NWBS_OBJECT_READ 0x02 Can be read by same object or
- gupervisor

NWBS_SUPER_READ 0x03 Can be read only by

3 supervisor

NWBS_BINDERY_READ 0x04 Can be read only by the bindery

NWBS_ANY_WRITE 0x00 Can be written by anyone

NWBS_LOGGED_WRITE 0x10 Must be logged in to write

NWBS_OBJECT_WRITE 0x20 Can be written by same object or
| supervisor

NWBS_SUPER_WRITE 0x30 Can be written only by the supervisor

NWBS_BINDERY_WRITE 0x40 Can be written only by the bindery

NWObjectinfo_t Structure:

typedef struct {
char objectNamel NWMAX_OBJECT_NAME_LENGTH];
uint32 objectID;

uint16 objectT ype;

uint8 objectState;
uint8 objectSecurity;

} NWObjectInfo_t;

The objectName field contains the name of the bindery object.

The objectID is the unique ID that is assigned to all bindery objects.

The objectType contains a bindery object type (see Bindery Object Types). |

The objectState field contains the state assigned to the object. (See Bindery Object

and Property States.)

The objectSecurity field contains the security assigned to the object. (See Bindery
Object and Property Security Access Levels.)

Licansed Material - Property of the copyright holders A-3

NWPropertyinfo_t Structure:

typedef struct {

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 propertyStateAndType;

uint8 propertySecurity;

uint8 propertyHasAValue;

} NWPropertyInfo_t;

fon prop ore game field contains the name of the bindery property. See NetWare®
for AViuiO

of the assigned properties.

Series Systems C Interface Programmer's Guide for a complete listing

The propertyStateAndType field contains the state and type of the property. (See

Bindery Object and Property States). The Type flag is OR’ed together with the

State flag.

The propertySecurity contains the security assigned to the property. (See Bindery

Object and Property Security Access Levels.)

The propertyHasAValue field contains 0 if there are no associated values or -1

(OxFF) if the property does have a value.

Connection Services

Constant Definitions:

NWMAX_CONNECTION_LIST_LENGTH

NWMAX_INTERNET_ADDRESS_LENGTH
NWMAX_KEYED_PASSWORD_LENGTH

NWMAX_LOGIN_TIME_LENGTH

NWMAX_OBJECT_NAME_LENGTH

File and Path Services

A-4

Constant Definitions:

NWMAX_DIR_NAME_LENGTH

NWMAX_DIR_PATH_LENGTH

NWMAX_DS_NAME

NWMAX_FILE_HANDLE_SIZE

NWMAX_FILE_NAME_LENGTH

NWMAX_NS_COUNT

NWMAX_NS_NAME

NWMAX_NUM_NS

NWMAX_NUM_DS

NWMAX_SERVER_NAME_LENGTH

NWMAX_USER_RESTRICTION

NWMAX_VOLUME_NAME_LENGTH

Licensed Material - Property of the copyright holders

50

12

48

069-000567

File Attributes

NWFA_NORMAL 0x00000000L
NWFA_READ_ ONLY 0x00000001L
NWFA_HIDDEN : | 0x00000002L

NWFA_SYSTEM 0x00000004L

NWFA_EXECUTE_ONLY 0x00000008L
NWFA_NEED_ARCHIVE 0x00000020L
NWFA_SHARABLE 0x00000080L
NWFA_TRANSACTIONAL 0x00001000L

NWFA_INDEXED 0x00002000L

NWFA_READ_ AUDIT 0x00004000L

NWFA_WRITE_AUDIT 0x00008000L
NWFA_PURGE 0x00010000L
NWFA_RENAME_INHIBIT 0x00020000L

NWFA_DELETE_INHIBIT 0x00040000L
NWFA_COPY_INHIBIT 0x00080000L

NWFA_NORMAL The normal attribute allows read/write access to the
file on both NetWare 2.x and NetWare 3.x.

NWFA_READ_ ONLY In NetWare 3.x, NetWare utilities, such as FLAG,
automatically assigns the delete inhibit and rename

inhibit attributes with the read only attribute. In

NetWare 2.x, the additional attributes are not set,

but users cannot delete or rename the file until the

read only attribute is removed.

NWFA_HIDDEN In NetWare 2.x and 3.x, this attribute hides the file
from DOS DIR scans and prevents it from being

deleted or copied. The files will appear using NDIR.

NWFA_SYSTEM In NetWare 2.x and 3.x, this attribute hides the file
from DOS DIR scans and prevents it from being

deleted or copies. However, the files will appear

using NDIR.

NWFA_EXECUTE_ONLY In NetWare 2.x and 3.x, this attribute prevents files
from being copied. Only the supervisor can assign

- this attribute, and it should only be assigned if the

file has been backed up. Once this bit is assigned,

the bit cannot be deleted. This attribute can be set
with FILER.

NWFA_NEED_ARCHIVE In NetWare 2.x and 3.x, NetWare automatically
assigns this bit to files that have been modified since

the last backup.

NWFA_SHARABLE In NetWare 2.x and 3.x, this attribute allows the file
to be used by more than one user at a time and is

usually used in combination with the read only

attribute.

NWFA_TRANSACTIONAL — In NetWare 2.x and 3.x, this attribute indicates that
files will be protected by TTS. TTS ensures that,

when a file is being modified, either all changes are

made or no changes are made.

069-000567 Licensed Material - Property of the copyright holders A-5

NWFA_INDEXED

NWFA_READ_AUDIT

Note:

NWFA_WRITE_AUDIT

NWFA_PURGE

NWFA_RENAME_INHIBIT

NWFA_DELETE_INHIBIT

NWFA_COPY_INHIBIT

In NetWare 3.x, the indexed attribute is no longer

supported since all files are automatically turbo FAT

indexed when they have 64 or more regular FAT

entries and are randomly accessed. However, this

attribute can still be set or cleared for use with

applications.

In NetWare 2.x, this attribute must be set for all
files the user wants indexed. The operating system

must also be configured for indexed files.

This attribute is associated with the NetWare

Audit Trail System. The read and write

audit files record information about who

reads from and writes to a database file.

Write audit makes continuous backup

possible, and the combination of read and

write audit provides greater security.

This bit is currently not supported in NetWare 2.x or

3.x. It will be in future releases.

See NWFA_READ_AUDIT. This bit is currently not

supported in NetWare 2.x or 3.x. It will be in future

releases.

In NetWare 3.x, this attribute prevents the file from

being salvageable. When assigned to a file, this
attribute purges the file as soon as it is deleted.

NetWare 2.x does not support this attribute.

In NetWare 3.x, this attribute restricts users from
renaming files even if they have the modify right. If

they have the modify right, they must remove this

attribute before renaming.

NetWare 2.x does not support this attribute.

In NetWare 3.x, this attribute prevents users from

erasing files even when they have been granted the

erase right at the file or directory level. If they have

the modify right, they can remove this attribute and

then delete the file.

NetWare 2.x does not support this attribute.

In NetWare 3.x, this attribute restricts only the copy

rights of certain applications, such as the Macintosh

Finder. If users have the modify right, they can

remove the copy inhibit attribute and then copy the

file.

Licensed Material - Property of the copyright holders 069-000567

069-000567

Directory Attributes

The file attributes listed below can be assigned to directories. However, in

NetWare 2.x, only NWFA_HIDDEN and NWFA_SYSTEM can be assigned to
directories.

NWFA_HIDDEN 0x00000002L
NWFA_SYSTEM 0x00000004L
NWFA_PURGE 0x00010000L

NWFA_RENAME_INHIBIT 0x00020000L

NWFA_DELETE_INHIBIT 0x00040000L

NWFA_HIDDEN This directory attribute hides the directory from DOS
DIR scans and prevents it from being deleted or

copied. The directory will appear using NDIR.

NWFA_SYSTEM This directory attribute hides the directory from DOS
DIR scans and prevents it from being deleted or

copied. The directory will appear using NDIR.

NWFA_PURGE This directory attribute purges all files in the
directory when the files are deleted. Such files

cannot be recovered or salvaged.

NWFA_RENAME_INHIBIT This directory attribute prevents users from

renaming a directory even when they have been

granted the modify right. If they have the modify

right, they must remove this attribute before

renaming the directory.

NWFA_DELETE_INHIBIT This directory attribute prevents the users from

deleting the directory even when they have been

granted erase rights to the directory. If they have

the modify right, they can remove this attribute and

then delete the directory.

Search Attributes:

NWSA_NONE 0x00 Normal files

NWSA_HIDDEN 0x02 Hidden and normal files
NWSA_SYSTEM 0x04 System and normal files
NWSA_BOTH 0x06 Hidden, system and normal files

NWSA_DIRECTORIES _ 0x10 Normal directories only (cannot be used on

ONLY NetWare 2.x)

NWSA_FILES_ONLY 0x20 Normal files only (cannot be used on
NetWare 2.x) |

A file (or directory) is designated system or hidden when its corresponding file (or

directory) attribute is set. The Search Attributes are used to include system and/or

hidden files (or directories) in a search. In other words, if only the system bit is

set in the searchAttributes parameter then all files (or directories) will be affected

except hidden files (or directories). If only the hidden bit is set, all files (or

directories) will be affected except system files (or directories). When neither the
hidden nor the system bit is set (0x00), then only files (or directories) that are not

hidden, system, or both will be affected.

Licensed Material - Property of the copyright holders A-7

Trustee Rights and Inherited Rights Mask for NetWare 3.x and
NetWare for AViiON Systems.

The bit set by 0x0004 should be ignored by applications running on NetWare 3.x or

NetWare for AViiON Systems.. It is the "open bit” under 2.x only.

Trustee Rights apply to both files and directories in NetWare 3.x and NetWare for

AViiON Systems.

See "Access Rights and Maximum Rights Mask for NetWare 2.x," below, for an
explanation of NetWare 2.x rights.

NWTR_NONE

NWTR_READ

NWTR_WRITE

NWTR_CREATE

NWTR_ERASE

NWTR_ACCESS

NWTR_FILE_SCAN

NWTR_MODIFY

NWTR_SUPERVISOR

NWTR_NORMAL

NWTR_ALL

0x0000

0x0001

0x0002 or 0x0004 (Used only on NetWare 2.x)

0x0008

0x0010

0x0020

0x0040

0x0080

0x0100

Ox00FF

Ox01FF

Each right is described below.

NWTR_READ

NWTR_WRITE

NWTR_CREATE

NWTR_ERASE

NWTR_ACCESS

NWTR_FILE_SCAN

For Directories: User can open and read existing files in

this directory unless blocked by mask or trustee rights

assignment.

For Files: User can open and read this file.

For Directories: User can open and write to files in this

directory unless blocked by mask or trustee rights
assignment.

For Files: User can open and write to this file.

For Directories: User can create files and subdirectories

in this directory.

For Files: User can salvage this file if it is deleted.

For Directories: User can delete this directory if the user

has rights to delete everything inside it.

For Files: User can delete this file.

For Directories: User can modify the trustee list and

inherited rights mask of this directory.

For Files: User can modify this file’s trustee list and

inherited rights mask.

For Directories: When scanning the directory, user can

see the names of files in this directory unless blocked by

mask or trustee rights assignment.

Licensed Material - Property of the copyright holders 069-000567

069-000567

NWTR_MODIFY

NWTR_SUPERVISOR

NWTR_NORMAL

NWTR_ALL

For Files: When scanning the directory, user can see the

name of this file.

For Directories: User can rename this directory and

change the attributes of it.

For Files: User can rename this file and change its

attributes.

For Directories: User has all rights to this directory and

all subdirectories and files. User can grant supervisor

rights to other users in this directory and in

subdirectories and files. User’s rights override all

inherited rights masks in subdirectories and files. User

can assign space limitations to subdirectories.

For Files: User has all rights to this file.

For Directories: User has all of the above rights in this

directory, except for NWTR_SUPERVISOR.

For Files: User has all of the above rights to this file,

except for NWTR_SUPERVISOR.

For Directories: User has all of the above rights in this

directory.

For Files: User has all of the above rights to this file.

Trustee Access Rights and Maximum Rights Mask for NetWare 2.x

NetWare 2.x has the following rights.

NWTA_NONE

NWTA_READ

NWTA_WRITE

NWTA_OPEN

NWTA_CREATE

NWTA_DELETE

NWTA_OWNERSHIP

NWTA_SEARCH

NWTA_MODIFY

NWTA_ALL

0x00

0x01

0x02

0x04

0x08

0x10

0x20

0x40

0x80

OxFF

Each right is defined below.

NWTA_READ

NWTA_WRITE

NWTA_CREATE

If the user also has the NWTA_OPEN right, the user

can open and read existing files in this directory unless

blocked by the maximum rights mask.

If the user also has the NWTA_WRITE right, the user

can open and write to files in this directory unless

blocked by the maximum rights mask.

The user can create and salvage files in this directory

unless blocked by the maximum rights mask. The

Ownership right along with the Create right is required

to create directories.

Licensed Material - Property of the copyright holders A-9

NWTA_DELETE _ The user can delete files. The Ownership right along
with the Delete right is required to delete directories.

For Files: User can delete this file.

NWTA_OWNERSHIP The user can create, rename, or delete subdirectories of
the directory if the user also has the additional needed

right: Create to create, Modify to rename, or Delete to

delete. The user can also modify the trustee list and

maximum rights mask of this directory and its

subdirectories. In the NetWare utilities, this right is

called the Parental right.

NWTA_SEARCH The user can see the names of files and subdirectories in
this directory unless blocked by the maximum rights

mask.

NWTA_MODIFY The user can also change the attributes of the directory,
its files, and subdirectories. If the user also has the

Ownership right, the user can rename the files and

subdirectories.

NWTA_ALL The user has all of the above rights in this directory.

Change Attributes:

Change attributes are used with the NWSetDirEntrylInfo or NWSetFileEntryInfo

function calls. These values can be OR’ed together. In these functions, you pass a

structure containing the new values you want to set, and then use the following

change attributes to specify which fields within the structure contain the new

values. |

NWCA_NAME 0x0001
NWCA_ATTRIBUTES 0x0002

NWCA_CREATE_DATE_AND_TIME 0x000C

NWCA_OWNER_ID 0x0010
NWCA_LAST_ARCHIVED_DATE_AND_TIME 0x0060

NWCA_LAST_ARCHIVED_ID 0x0080

NWCA_LAST_ MODIFY_DATE_AND_ TIME 0x0300

NWCA_LAST_MODIFY_ID 0x0400

NWCA_LAST_ACCESSED_DATE 0x0800

NWCA_INHERITED_RIGHTS_ MASK 0x1000

NWCA_DIR_RESTRICTION 0x2000

NWCA_LAST ACCESSED DATE and NWCA LAST MODIFY ID are not available
for use with directories.

NWCA_NAME Changes the name of the directory or file.

NWCA_ATTRIBUTES Changes the attributes of the directory or file. See "File
Attributes," below, and "Directory Attributes,” below.

Users must have modify rights to the file or directory to

change attributes.

A-1 0 Licensed Material - Property of the copyright holders 069-000567

NWCA_CREATE_DATE_AND_TIME

Changes the date and time the file or directory was
created. See "File Services" in NetWare® for AViiON®
Series Systems C Interface Programmer’s Guide for a

description of this four byte field. Users must have
supervisor equivalence to change the date and time.

NWCA_OWNER_ID Changes the owner of the file or directory by changing
the object ID in the field. Users must have supervisor
equivalence to change the owner of a file or directory.

NWCA_LAST_ARCHIVED_DATE_AND_TIME

Changes the date and time the file or directory was

archived. See "File Services" in NetWare® for AViiON®
Series Systems: C Interface Programmer’s Guide for a

description of this four byte field.

NWCA_LAST_ARCHIVED_ID

Changes the object ID to the user who archived the file

or directory.

NWCA_LAST_MODIFY_DATE_AND_TIME

Changes the date and time the file or directory was

modified. NetWare automatically updates this

information when a file or directory is modified. The

- user must be supervisor equivalent to change this
information with an API. See "File Services" in

NetWare® for AViiON® Series Systems: C Interface
Programmer’s Guide for a description of this four byte

field.

NWCA_LAST_MODIFY_ID

Changes the object ID to the user who modified the file

or directory. NetWare automatically updates this field

when a directory or file is changed. The user must be

supervisor equivalent to change this information with an
API.

NWCA_LAST_ACCESSED_DATE

Changes the date and time the file was accessed.

NetWare automatically updates this information when a
file or directory i is accessed. The user must be

supervisor equivalent to change this gnformation with an
API. See "File Services" in NetWare® for AViiON®
Series Systems: C Interface Programmer’s Guide for a

description of this four byte field. .

NWCA_INHERITED_RIGHTS_ MASK

Changes the trustee rights in the file’s or directory’s

inherited rights mask. See "Trustee Rights and Inherited

Rights Mask for NetWare 3.x and NetWare for AViiON

Systems," in this chapter, for a list of rights that can be

passed. The user must have access control rights to the

file or directory to change the inherited rights mask.

069-000567 Licensed Material - Property of the copyright holders A-1 1

NWCA_DIR_RESTRICTION |
Changes the directory restrictions. A 0 clears all
restrictions; a 1 restricts the directory to 4KB; a 2, to

SKB; etc.

"Open file" Access Rights:

These definitions are used with NWOpenFile. One or both of the following rights

must be assigned to the accessRights parameter:

NWOR_READ 0x01 Opens the file for reading and denies read
access to all other users.

NWOR_ WRITE 0x02 Opens the file for writing and denies write
access to all other users.

The above NWOR_READ or NWOR_WRITE bit mask may be OR’ed with either

NWOR_DENY_READ and NWOR_DENY_WRITE or NWOR_COMPATIBILITY.

NWOR_DENY_READ 0x04 Doesn’t allow others to read to the file while

you have it open

NWOR_DENY_WRITE 0x08 Doesn’t allow others to write to the file while

you have it open |

NWOR_COMPATIBILITY 0x10 Determines access in connection with the

file’s "sharable" attribute.

When the NWOR_COMPATIBILITY bit is set, the following things apply:

¢ NWOR_DENY_READ and NWOR. DENY _WRITE are not applicable,
because they will be ignored.

¢ When the sharable file attribute is set, the file is treated as a sharable file,

no user having exclusive access.

e When the sharable file attribute is not set, one of the following occurs:

¢ If NWOR_COMPATIBILITY bit is OR’ed with NWOR_READ, the file is

opened with write access denied to other users. |

e If NWOR_COMPATIBILITY bit is OR’ed with NWOR_WRITE or both

NWOR_READ and NWOR_WRITE, the file is opened with read and write

access denied to other users.

All of the above information is only applicable if the open call is successful.

The following access right is available for NetWare version 3.1 and above and may

be OR’ed with any of the above values:

NWOR_SYNC_MODE 0x40 Allows "write-through" access; that is, writes
directly to the disk, bypassing any caching

and/or buffering.

A-1 2 Licensed Material - Property of the copyright holders _ 069-000567

Directory and File Handle definitions:

typedef uint8 NWDirHandle_ts;

typedef uint8 NWFileHandle_ta[NWMAX_FILE_HANDLE_SIZE];

Handles are values that represent a complete path and file (or directory) name as

defined in the file servers file handle or directory handle index table. These
handles can be used to specify a file or directory without passing a complete path

name. But in order to use them, you must keep track of them since there are no

“"NWGetHandle" functions.

NWPath_t Structure:

typedef struct {

NWDirHandle_ts dirHandle;
uint16 serverConnID;

char *nathName;

} NWPath_t;

The dirHandle field contains either of the following:

¢ AO, when a full path will be given in the pathName field.

e A value representing an allocated directory Handle.

See NWAllocTemporaryDirHandle or NWAllocPermanentDirHandle.

The serverConnID field is the value corresponding to the server attachment. (See

NWAttachToServerPlatform.)

The pathName field contains the address of a path that is either 1) a full path

when a 0 dirHandle is used, or 2) a relative path when an allocated dirHandle is

used. (The path is relative to the directory that the dirHandle represents.)

No space is allocated for pathName. The application must allocate space for the

path separately and then assign pathName the address of the previously-allocated

space.

NWDirEntryinfo_t Structure:

typedef struct {

uint32 attributes;

uint32 creationDateAndTime;

uint32 ownerID;

uint32 archiveDateAndTime;

uint32 archiverID;

uint32 lastModifyDateAndTime;

uint32 dirRestriction;

uint16 inheritedRightsMask;

uint8 nameSpacelD;

char entryNamel NWMAX_DIR_NAME_LENGTH];
} NWDirEntryInfo_t;

To change these fields with NWSetDirEntryInfo, you must use the Change

Attributes described below. ©

069-000567 Licensed Material - Property of the copyright holders A-1 3

The attributes field for directories contains a bit mask of the directory’s attributes.
This value will be zero when using NWScanDirEntryInfo on a file server running
NetWare 2.x. See "Directory Attributes," in this chapter, and "File Services" in
NetWare® for AViiON® Series Systems: C Interface Programmer's Guide.

The creationDateAndTime field contains the date and_time the directory was

created. See "File Services" in NetWare® for AViiON® Series Systems: C Interface
Programmer’s Guide.

The ownerlID field is the object ID of the directory’s owner. You can use

NWGetObjectName to get the name of the object.

The archiveDateAndTime field contains the date and time the directory was last

archived. See "File Services” in NetWare® for AViiON® Series Systems: C Interface
Programmer’s Guide. |

The archiverID field contains the objectID of the object that archived the directory.

You can use NWGetObjectName to get the name of the object.

The lastModifyDateAndTime contains the date and time the directory was last

modified. See "File Services" in NetWare® for AViiON® Series Systems: C Interface
Programmer's Guide.

The dirRestriction field contains the number of 4K blocks available to that directory

and its subdirectories. This field is set with NWSetDirRestriction. The default is

0.

The inheritedRightsMask field represents the inherited rights mask of the current

directory. See "Trustee Rights and Inherited Rights Mask for NetWare 3.x and

NetWare for AViiON Systems," above.

The nameSpacelID contains a 0 if the directory is a DOS directory and 1 if the

directory is a Macintosh directory, or other numbers representing other name

spaces, if the file server has been configured for them.

The entryName contains the directory name.

NWFileEntryinfo_t Structure:

typedef struct {

uint32 attributes;

uint32 creationDateAndTime;

uint32 ownerID;

uint32 archiveDateAndTime;

uint32 archiverID;

uint32 updateDateAndTime;

uint32 updatorID;

uint32 fileSize;

uint32 lastAccessDateAndTime;

uintl6 inheritedRightsMask;

uint8 nameSpacelD;

char entryNamel NWMAX_FILE_NAME_LENGTH];

}) NWFileEntryInfo_t;

To change these fields with NWSetFileEntryInfo, you must use the Change

Attributes.

A-1 4 Licensed Materia! - Property of the copyright holders 069-000567

The attributes field for the NWFileEntrylInfo structure contains the current file’s

attributes. See "File Attributes," in this chapter, and "File Services" in NetWare®
for AViiON® Series Systems: C Interface Programmer’s Guide.

The creationDateAndTime field contains the date and time the file was created.
The time will always be 0 for NetWare 2.x. See "File Services" in NetWare® for
AViiON® Series Systems: C Interface Programmer’s Guide.

The ownerlID field is the object ID of the file’s owner. You can use

NWGetObjectName to get the name of the object.

The archiveDateAndTime field contains the date and time the file was last

archived. See "File Services" in NetWare® for AViiON® Series Systems: C Interface
Programmer's Guide.

The archiverID field contains the objectID of the object that archived the file. You
can use NWGetObjectName to get the name of the object.

The updateDateAndTime field contains the objectID of the object that updated the

file. See "File Services" in NetWare® for AViiON® Series Systems: C Interface
Programmer’s Guide.

The updatorID field contains the objectID of the object that updated the file. You

can use NWGetObjectName to get the name of the object.

The fileSize field contains the file size in bytes.

The lastAccessDateAndTime field contains the date and time when the file was last

accessed. The time will always be 0. See "File Services" in NetWare® for AViiON®
Series Systems: C Interface Programmer’s Guide.

The inheritedRightsMask field represents the inherited rights mask of the file. See

"Trustee Rights and Inherited Rights Mask for NetWare 3.x and NetWare for

AViiON Systems in this chapter.

The nameSpaceID contains a 0 if the directory is a DOS directory and 1 if the

directory is a Macintosh directory, or other numbers representing other name

spaces, if the file server has been configured for them.

The entryName contains the file name.

NWVolUsage_t Structure:

typedef struct {

uint32 totalBlocks;

uint32 availableBlocks;

uint32 purgableBlocks;

uint32 notYetPurgableBlocks;

uint32 totalDirEntries;

uint32 availDirEntries;

uint32 maxDirEntriesUsed;

uintl6 volNum; |

uintl6 sectorsPerBlock;
uint8 isHashed;

uint8 isCached;

uint8 isRemovable;

uint8 isMounted;

char volNamel NWMAX_ VOLUME_NAME_LENGTH];

} NWVolUsage_t;

069-000567 Licensed Material - Property of the copyright holders A-1 5

A-16

Note:

This structure contains some fields that are only pertinent to NetWare 2.x and
some that are only pertinent to NetWare 3.x and NetWare for AViiON Systems.

The totalBlocks field contains the total amount of 4K blocks allocated to the
volume.

The availableBlocks field contains the amount of 4K blocks not used.

Your version of NetWare for AViiON Systems may not support purgableBLocks and
notYetPurgableBlocks functions. Refer to the release notice accompanying your
shipment for specific restrictions.

The purgableBLocks field contains the amount of blocks marked for deletion and
purgeable. A valid value is only returned from servers running NetWare 3.x.

The notYetPurgableBlocks contains the amount of blocks marked for deletion, but

not yet purgeable, because the file server holds deleted files for a certain amount of
time, before allowing them to be purged (as set by the minimum file delete wait
time console command). A valid value is only returned from servers running

NetWare 3.x.

The totalDirEntries contains the total amount of directories which can be created.

The availDirEntries contains the amount of directories which can be created, based
on the difference between the total amount of directories and the amount of
directories already created.

The maxDirEntriesUsed contains the maximum number of directories in use at one

time since the volume was created.

The volNum field contains the number assigned by the file server to each volume
name (beginning with 0).

The sectorsPerBlock field contains the number of 512 sectors per block within a

volume. For 3.x servers this number will always be 8. For 2.x servers this is

configurable from 1-16.

The isCached field will contain 0 if volume entries are not cached and non-zero if

the volume entries are cached. A valid value is only returned from servers running
NetWare 2.x.

The isHashed field will contain a 0 if volume entries are not hashed, and non-zero
if the volume entries are hashed. A valid value is only returned from servers
running NetWare 2.x.

The isRemovable field will contain 0 if the volume is on fixed media, and a non-zero

value if the volume is on a removable (mountable) medium.

The isMounted field will contain a 0 if the volume is not mounted and non-zero

otherwise. A valid value is only returned from servers running NetWare 2.x.

The volName field contains the name of the volume. Maximum length is 16

characters.

Licensed Material - Property of the copyright holders 069-000567

069-000567

NWDirRestriction_t Structure:

typedef struct {

uint16 level;

uint32 maxBlocks;)

uint32 availableBlocks;

_ } NWDirRestriction_t;

The level field refers to the distance from the directory to the root directory.

The maxBlocks field contains the maximum amount of space assigned to the

directory. Blocks are in 4K units.

All directories will have a value in the maxBlocks parameter. The maxBlocks

parameter will return one of the following:

Ox7FFFFFFF No restrictions have ever been set.

negative value Restrictions were set but they have been cleared. (Use a
zero in NWSetDirRestriction to clear restrictions.)

positive value Restrictions are set, and the positive value is the maximum
value.

The availableBlocks field contains the amount of space assigned to a directory
minus the amount of space used by the directory and its subdirectories. Blocks are

in 4K units.

To calculate the amount of space in use, simply subtract availableBlocks from

maxBlocks.

NWUserRestriction_t Structure:

typedef struct {

uint32 objectID;

uint32 restriction;

} NWUserRestriction_t;

The objectID field contains the bindery objectID of the object corresponding to the
restriction.

The restriction field is specified in 4K blocks and represents the space restrictions

placed within a volume on a particular object.

NWTrusteeRights_t Structure:

typedef struct {

uint32 trusteeID;

uintl6 trusteeRights;

} NWTrusteeRights_t;

The trusteeID field contains the bindery objectID of the trustee.

The trusteeRights field refers to the rights given to the trustee for a particular

directory (or file in NetWare 3.x). (See Trustee Rights and Inherited Rights Mask)

Licensed Material - Property of the copyright holders A-1 7

A-18

NWSalvageableinfo_t Structure:

Note:

typedef struct {

uint32 deletedDateAndTime;

uint32 deleterID;

uint32 attributes;

uint32 creationDateAndTime;

uint32 ownerID;

uint32 archiveDateAndTime;

uint32 archiverID;

uint32 updateDateAndTime;
uint32 updatorID;

uint32 fileSize;

uint32 inheritedRightsMask;
uint32 lastAccessDateAndTime;

uint8 nameSpaceID; —

char fileName[NWMAX_FILE_NAME_LENGTH];

} NWSalvageableInfo_t;

Your version of NetWare for AViiON Systems may not support the

NWSalvageableInfo_t Structure function. Refer to the release notice accompanying

your shipment for specific restrictions.

The deletedDateAndTime field contains the date and time that the file was deleted.

The deleterID field refers to the bindery object ID of the object that deleted the file.

The attributes field contains a value representing the file’s set attributes.

The creationDateAndTime field contains the date and time that the file was

created.

The ownerlID field refers to the bindery object ID of the file’s owner. You can use

NWGetObjectName to get the name of the object.

The archiveDateAndTime field contains the date and time that the file was last

archived.

The archiverID field contains the bindery object ID of the object that archived the

file. You can use NWGetObjectName to get the name of the object.

The updateDateAndTime field contains the date and time that the file was last
changed.

The updatorID field refers to the bindery object ID of the object that made changes

to the file. You can use NWGetObjectName to get the name of the object.

The fileSize field contains the size of the file.

The inheritedRightsMask field contains a value representing the inherited rights

owned by the file.

The lastAccessDateAndTime field contains the date and time that the file was last

accessed.

Licensed Material - Property of the copyright holders 069-000567

The nameSpacelID field contains the name space for the file (0 for DOS, 1 for

Macintosh).

The fileName field contains the name of the file.

NWDataStreamiInfo_t Structure:

typedef struct {

uint8 definedDataStreams;

char dataStreamName[NWMAX_NUM_DSI[INWMAX_DS_NAME];

} NWDataStreamInfo_t;

The definedDataStreams field contains the number of data streams defined on the

file server.

The dataStreamName field contains the names of the data streams defined on the

file server.

_NWNameSpacelnfo_t Structure:

069-000567

typedef struct {

uint8 definedNameSpaces;

char nameSpaceName[NWMAX_NUM_NS] [NWMAX_NS_NAME];

uint8 nameSpaceDataStreams;

NWDataStreamInfo_t dataStream[NWMAX_NUM_NS];

uint8 loadedNSCount; |

uint8 loadedNSINWMAX _NS_COUNT];

uint8 volumesNSCount;

uint8 volumesNS[NWMAX_NS_COUNT];
uint8 volumesDSCount;

uint8 volumesDSINWMAX_NS_COUNT];

} NWNameSpacelInfo_t;

The definedNameSpaces field contains the number of name spaces defined on the
file server.

The nameSpaceName field contains the names of the name spaces that the file

server supports.

The nameSpaceDataStreams field contains the number of data streams defined on

the file server. |

The dataStream field contains the names of the data streams that the file server

supports. .

The loadedNSCount field contains the number of name spaces actually loaded on
the file server.

The loadedNS field contains an index into the defined name space table.

The volumesNSCount field contains the number of name spaces that the volume is

using.

The volumesNS field contains an index into the defined name space table.

The volumesDSCount contains the number of data streams that the volume is

using.

The volumesDS field contains an index into the defined data stream table.

Licensed Material - Property of the copyright holders A-1 9

Queue Management Services

A-20

Constant Definitions:

NWMAX_BANNER_NAME_FIELD_LENGTH

NWMAX_BANNER_FILE_FIELD_LENGTH

NWMAX_CLIENT_RECORD_LENGTH

NWMAX_FORM_NAME_LENGTH

NWMAX_HEADER_FILE_NAME_LENGTH

NWMAX_JOB_DESCRIPTION_LENGTH

NWMAX_JOB_DIR_PATH_LENGTH

NWMAX JOB_FILE_NAME_LENGTH

NWMAX_JOB_STRUCT_SIZE
NWMAX_NUMBER_OF_JOB_NUMBERS

NWMAX_NUMBER_OF_SERVER_CONN_NUMBERS

NWMAX_NUMBER_OF_SERVER_OBJECT_IDS

NWMAX_QUEUE_JOB_TIME_SIZE

NWMAX_QUEUE_NAME_LENGTH

NWMAX_QUEUE_SUBDIR_LENGTH
NWMAX_SERVER_STATUS_RECORD_LENGTH

Queue Status Flags:

NWQS_NO_SERVER_RESTRICTIONS

NWQS_NO_MORE_JOBS

NWQS_NO_MORE_SERVER_ATTACHMENTS

NWQS_SERVERS_DISABLED

NWQueueJobStruct_t Structure:

typedef struct {

uint8 clientStation;

uint8 clientTask;

uint32 clientID;

uint32 targetServerID;

uint8 targetExecutionTime[NWMAX_ QUEUE_JOB_TIME_SIZE];

uint8 jobEntryTime[NWMAX QUEUE_JOB_TIME_SIZE];

uint16 jobNumber; ©

uintl6 jobType; |

uint8 jobPosition;

uint8 jobControlF lags;

uint8 jobFileName[NWMAX _JOB_FILE_NAME_LENGTH}];

NWFileHandle_ta jobFileHandle;

uint8 servicingServerStation;

uint8 servicingServerl'askNumber;

uint32 servicingServerIDNumber;

uint8 jobDescriptionI[NWMAX_JOB_DESCRIPTION_LENGTH], .

NWClientRecord_ta queueRecord;

} NWQueueJobStruct_t;

0x00

0x01

0x02

0x08

typedef char NWClientRecord_ta[NWMAX_CLIENT_RECORD_LENGTH];

Of the fields defined in the NWQueueJobStruct_t structure, the user can modify

only those described below.

Licensed Material - Property of the copyright holders 069-000567

The targetServerID field contains the server ID of the queue server that will

service the job. If this field is set to OxFFFFFFFF, any queue server can service

the job. If the specified queue server is not attached to the queue, QMS removes
the job from the queue.

The targetExecutionTime field indicates the earliest time that the job can be

serviced. The bytes are assigned as follows: year, month, day, hour, minute,
second. If this field is set to OXFFFFFFFFFFFF, the job will be serviced at the first
opportunity.

The jobType field contains a number that identifies the type of job entry. A queue

server can request specific job types from a queue.

The jobControlFlags field contains flag bits indicating the status of the job. Bits in

the field are set as follows:

NWCF_OPERATOR_HOLD 0x80

NWCF_USER_HOLD 0x40
NWCF_ENTRY_OPEN 0x20
NWCF_SERVICE_RESTART 0x10
NWCF_SERVICE_AUTO_START 0x08

When the NWCF_SERVICE_AUTO_START is set, the job will be
serviced after a queue server connection is broken, even if the client has
not cleared the Entry Open bit. If the bit is cleared when a server

connection is broken, QMS removes the job from the queue.

When the NWCF_SERVICE_RESTART is set, the job remains in the

queue (in its current position) when a queue server fails. If this bit is

cleared, QMS removes the job from the queue, when a server fails.

When the NWCF_ENTRY_OPEN is set, the client has not filled the
associated job file. The NWCloseFileAndStartQueueJob function clears
this bit, marking the job is ready for service, if the User Hold and
Operator Hold bits are cleared.

When the NWCF_USER_HOLD is set, the job continues to advance in
the queue, but cannot be serviced until a client or operator clears this
bit.

When the NWCF_OPERATOR_HOLD is set, the job continues to

advance in the queue, but cannot be serviced until the operator clears
this bit.

The jobDescription field contains a null-terminated ASCII text description of the
content or purpose of a job. QMS displays this text as part of the job description

when users or operators examine a queue.

The queueRecord field may contain any 152-byte structure that is known to the

queue server.

069-000567 Licensed Material - Property of the copyright holders A-21

A-22

NWPrintRecord_t Structure:

typedef struct {

uint8 versionNumber;

uint8 tabSize;

uint16 numCopies;

uint16 controlFlags;

uintl6 linesPerPage;

uintl6 charsPerLine;

char formName[NWMAX. FORM_NAME_LENGTH];
char bannerNameField[NWMAX_BANNER_NAME -FIELD_LEN GTH)];
char bannerFileFieldINWMAX_BANNER_FILE_FIELD_LENGTH];

char headerFileName[NWMAX_HEADER_FILE_NAME_LENGTH];

char directoryPath[NWMAX_JOB_DIR_PATH_ LENGTH];

} NWPrintRecord_t;

The versionNumber currently contains 0.

The tabSize field contains the number of spaces tabs will be expanded to (0-18).

The numCopies field contains the number of copies that will be printed.

The controlFlags field contains one or more of the following:

NWPCF_SUPPRESS_FF 0x0008

NWPCF_NOTIFY_USER 0x0010
NWPCF_TEXT_MODE 0x0040

NWPCF_PRINT_BANNER —0x0080

When NWPCF_SUPPRESS_FF is set, the form feed is suppressed.

When NWPCF_NOTIFY_ USER i is set, the user is notified that the job is
finished.

When NWPCF_TEXT MODE is set, tabs are expanded and the lines per
page and characters per line are ignored.

When NWPCF_PRINT_BANNER is set, a banner is printed.

The linesPerPage field refers to the number of lines on one page. The design

default is 66, but a default value is not currently implemented.

The charsPerLine field contains the number of characters on one line. The design

default is 132, but a default value is not currently implemented.

The formName field contains the name of the form to be used in printing.

The bannerNameField field contains the text that is printed in first box of banner -

usually used for user name.

The bannerFileField field contains the text printed in second box in banner -usually
used for file name.

The headerFileName contains the file name that is printed in header of banner.

The directoryPath field contains the full path name of directory, where the file

resides.

Licensed Material - Property of the copyright holders 069-000567

Server Platform Services

069-000567

Constant Definitions:

NWMAX_CONNECTION_LIST_LENGTH 50

NWMAX_COMPANY_NAME_LENGTH 80

NWMAX_COPYRIGHT_NOTICE_LENGTH 80
NWMAX_DATE_LENGTH 24
NWMAX_DESCRIPTION_LENGTH 80

NWMAX_OBJECT_NAME_LENGTH 48

NWMAX_SERVER_NAME_LENGTH 48

NWDescriptionStrings t Structure:

typedef struct {

char companyNamel NWMAX_COMPANY_NAME_LENGTH];

char revisionDescriptioni NWMAX_DESCRIPTION_LENGTH];

char revisionDatel NWMAX DATE_LENGTH];

char copyrightNoticel NWMAX_COPYRIGHT_NOTICE_LENGTH];

} NWDescriptionStrings_t;

Each field in this structure contains a null termination.

The companyName parameter receives the name of the company that is providing

this version of NetWare.

The revisionDescription parameter receives the NetWare version and revision

description string.

The revisionDate parameter receives the revision date in the form 02/15/1988.

The copyrightNotice parameter passes a pointer to the string allocated for the

copyright notice.

NWServerPlatformDateAndTime_t Structure:

typedef struct {

uint8

uint8

uint8

uint8

uint8

uint8

uint8

year;

month;

day;
hour;

minute;

second;

dayOfWeek;

} NWServerPlatformDateAndTime_t;

The date and time are passed in with the following values:

year becomes 0 through 99; for example: 82=1982

month becomes 1 through 12

day becomes 1 through 31

hour becomes 0 through 23

minute becomes 0 through 59

second becomes 0 through 59

dayOfWeek becomes 0 through 6 with 0 being Sunday

Licensed Material - Property of the copyright holders | A-23

A-24

NWServerPlatforminfo_t Structure:

typedef struct {

uintl16 majorVersion;

uinti6 minorVersion;

uintl6 revision;

uintl6 S¥FTLevel;

uintl6 TTSLevel;

uint16 accountingVersion;

uintl16 VAPVersion;

uintl16 queueingVersion;

uintl6 printServerVersion;

uintl6 virtualConsoleVersion;

uint16 securityRestriction Level;

uint16 internetBridgeSupport;

uintl6 maxClientConnSupported;

uintl6 chentConnInUse;

uintl6 peakClentConnUsed;

uintl16 maxVolumes;

char serverName[NWMAX_ SERVER _NAME_LENGTH];

} NWServerPlatformInfo_t;

The majorVersion field contains the major NetWare version number.

The minorVersion field contains the minor version (or subVersion) number.

The revision field refers to the revision level of the NetWare version number.

The SFT Level field indicates which SFT level the file server operating system is
using.

The TTSLevel field indicates which TTS level the file server operating system is

using.

The accountingVersion field contains the Accounting version number.

The VAPVersion contains the VAP version number.

The queueingVersion field refers to the Queuing version number.

The printServerVersion field contains the Print Server version number.

The virtualConsoleVersion field contains the Virtual Console version number.

The securityRestrictionLevel field contains the Security Restriction version number.

The internetBridgeSupport field contains the Internet Bridge support version

number.

The maxClientConnSupported field indicates the maximum number of connections
the file server can support.

The clientConnInUse field contains the number of connections that are currently

using the file server.

The peakClientConnUsed field indicates the maximum number of connections in

use at one time.

Licensed Material - Property of the copyright holders 069-000567

The maxVolumes field contains the maximum allowable number of volumes. For
NetWare 3.x, the maximum is 32. For NetWare for AViiON Systems, the

maximum is configurable.

The serverName field contains the name of the server platform.

Synchronization Services

Constant Definitions:

NWMAX_LOGICAL_RECORD_NAME_LENGTH 80
NWMAX_SEMAPHORE_NAME_LENGTH 127

File Log Flags:

For use with log file calls:

NWFL_LOG_ONLY 0x00
NWFL_LOG_AND_LOCK 0x01

Record Log Flags:

For use with physical and logical record log calls.

NWPL_LOG_ONLY 0x00
NWPL_LOG_AND_LOCK_EXCLUSIVE 0x01
NWPL_LOG_AND_LOCK_SHAREABLE 0x03

If the low-order bit is off, then the file is only logged. If the low-order bit is on,
then the file is logged and locked. The high-order bit determines whether the file is
locked exclusive or locked shareable. Locked has a value of 1; exclusive, 0; and
shareable, 2. Thus locked exclusive is 0x01, and locked shareable is 0x03.

Record Lock Set Flags:

For use with physical and logical record lock set calls.

NWLS_EXCLUSIVE 0x00
NWLS_SHAREABLE 0x02

End of Appendix

069-000567 Licensed Material - Property of the copyright holders A-25

Appendix B

NetWare Errors

NWErrno

When a NetWare API returns an “unsuccessful” completion code (-1 for most calls,

0 for NWBoolean calls), a corresponding error code is placed in NWErrno (provided

as part of NWAPI.h). NWErrno is a 4-byte value that tells you which API section

the failure code came from, where the failure originated -from the client or from the

_ file server, whether the error code is specific to one section of APIs or global among

many sections, and what the actual error code is. This appendix describes the

NWErrno value according to each byte, and the NetWare errors that are

represented by the error code.

Note: You should declare NWErrno (in the nwapi.h include file) and include

NWERRORS.H in your code if you want to receive NetWare errors. The syntax

would be as follows:

#include "nwerrors.h"

extern uint32 NWErrno;

Each byte in the 4-byte NWErrno represents one part of the total error code which

helps you debug your programs calling NetWare APIs. The bytes are labelled

according to the following diagram.

} 1 2 3 a |

The 1st byte in NWErrno is reserved for future use.

The 2nd byte in NWErrno identifies the area of APIs from which the error

originated (Accounting, Bindery, Connection, etc.). The following values correspond

to the API sections: .

0x01 - Accounting

0x07 - Bindery

0x09 - Connection

0x11 - Files

0Ox1B - Path

0x21 - Queue

0x23 - Server Platform

0x27 - Synchronization

0x29 - Transaction Tracking

0x15 - Miscellaneous

The 3rd byte in NWErrno will identify what generated the error: the file server or
an API. This byte will contain one of the following values:

0x00 - File server

0x10 - API

0x20 - API

069-000567 Licensed Material - Property of the copyright holders B-1

If a file server value is returned, the call failed after a valid request was made to

the file server. If an API value is returned, the call failed before a request was

made to the file server.

The 4th Byte in NWErrno will contain a value which represents one of the

following NetWare Errors (as defined in NWERRORS.H).

Errors returned in the 4th Byte of NWErrno:

NWERR_PATH_TOO_LONG

NWERR_BAD_SRCH_DRIVE_VECTOR

NWERR_VERSION_TOO_LOW

NWERR_INVALID_PARAMETER_LENGTH

NWERR_SETTING_UP_TRANSPORT

NWERR_INVALID_PATH_LENGTH

NWERR_SFT_LEVEL_TOO_LOW

NWERR_TRANSPORT_OPEN

NWERR_TRANSPORT_CLOSE

NWERR_NOT_CONNECTED_TO_SERVER

NWERR_CONNECT_LIST_OVERFLOW

NWERR_TTS_LEVEL_TOO_LOW

NWERR_AFP_LEVEL_TOO_LOW

NWERR_INVALID_DRIVE_NUM

NWERR_NO_MORE_RESTRICTIONS

NWERR_NO_DRIVES_AVAILABLE

NWERR_WS_DOES_NOT_SUPPORT

NWERR_INVALID_CONNECTION_ID

NWERRR_INVALID_NCP_PACKET_ LENGTH

NWERR_SETTING_UP_TIMEOUT

NWERR_TRANSPORT_SEND

NWERR_IN_SETTING_SIGNALS

NWERR_FILE_IN_USE_ERROR

NWERR_NO_MORE_FILE_HANDLES

NWERR_NO_OPEN_PRIVILEGES

NWERR_IO_ERROR_NETWORK_DISK

NWERR_NO_CREATE_PRIVILEGES

NWERR_NO_CREATE_DELETE_PRIVILEGES

NWERR_CREATE_FILE_EXISTS_READ_ONLY

NWERR_CREATE_ERROR

NWERR_WILDCARDS_IN_CREATE_FILE_NAME

NWERR_INVALID_FILE_HANDLE

NWERR_NO_SEARCH_PRIVILEGES

NWERR_NO_DELETE_PRIVILEGES

NWERR_NO_RENAME_PRIVILEGES

NWERR_NO_MODIFY_PRIVILEGES

NWERR_SOME_FILES_AFFECTED_IN_USE

NWERR_ENTRY_IN_USE

NWERR_NO_FILES_AFFECTED_IN_USE |

NWERR_SOME_FILES_AFECTED_READ_ONLY

NWERR_NO_FILES_AFFECTED_READ_ONLY

NWERR_ALL_FILE_READ_ONLY

NWERR_SOME_FILES_RENAMED_NAME_EXISTS

NWERR_NO_FILES_RENAMED_NAME_EXISTS

NWERR_NO_READ_PRIVILEGES

NWERR_INVALID_OPEN_ACCESS_RIGHTS

NWERR_NO_WRITE_PRIVILEGES_OR_READ_ ONLY

NWERR_FILE_DETACHED

Licensed Material - Property of the copyright holders

0x01

Ox01

0x01

0x01

0x01

0x02

0x02

0x02

0x03

0x04

0x04

0x04

0x08

0x20

0x24

0x25

0x30

0x30

0x31

0x32

0x33

0x34

0x80

0x81

0x82

0x83

0x84

0x85

0x86

0x87

0x87

0x88

0x89

Ox8A

0x8B

Ox8C

0x8D

0Ox8D

Ox8E

Ox8F

0x90

0x90

Ox91

Qx92

0x93

0x94

0X94

0x95

069-000567

069-000567

NWERR_SERVER_OUT_OF_MEMORY
NWERR_NO_DISK_SPACE_FOR_SPOOL_FILE

NWERR_VOLUME_DOES_NOT_EXIST

NWERR_BAD_VOL_NUM

NWERR_DIRECTORY_FULL

NWERR_INVALID_NAME

NWERR_RENAMING_ACROSS_ VOLUMES

NWERR_BAD_DIRECTORY_HANDLE

NWERR_INVALID_PATH

NWERR_NO_MORE_TRUSTEES

NWERR_NO_MORE_DIRECTORY_HANDLES

NWERR_INVALID_ FILENAME

NWERR_DIRECTORY_ACTIVE

NWERR_DIRECTORY_NOT_EMPTY

NWERR_DIRECTORY_IO_ERROR

NWERR_READ_FILE_WITH_RECORD_LOCKED

NWERR_LOGIN_DENIED_NO_ACCOUNT_BALANC

NWERR_CREDIT LIMIT EXCEEDED

NWERR_LOGIN_DENIED_NO_CREDIT

NWERR_INTRUDER_DETECTION_LOCK

NWERR_LOGIN_LOCKOUT

NWERR_NO_CONSOLE_OPERATOR_RIGHTS

NWERR_Q ERROR

NWERR_NO_QUEUE

NWERR_NO_QUEUE_SERVER

NWERR_NO_QUEUE_RIGHTS

NWERR_Q_ FULL

NWERR_NO_JOB

NWERR_NO_JOB_RIGHTS

NWERR_PASSWORD_NOT_UNIQUE

NWERR_Q SERVICING

NWERR_PASSWORD_TOO_SHORT

NWERR_Q NOT ACTIVE

NWERR_LOGIN_DENIED_NO_CONNECTION

NWERR_Q PASSWORD_TOO_SHORT

NWERR_UNAUTHORIZED_LOGIN_TIME

NWERR_Q HALTED |
NWERR_UNAUTHORIZED_LOGIN_STATION

~ NWERR_MAX_ QUEUE_SERVERS

NWERR_ACCOUNT_DISABLED

NWERR_BAD_PASSWORD :

NWERR_PASSWORD_HAS_EXPIRED_NO_GRACE

NWERR_PASSWORD_HAS_EXPIRED
NWERR_UNENCRYPTED_PASSWORD

NWERR_ACCOUNT_BAD

NWERR_NO_DISK TRACK

NWERR_MAX_LOGINS_EXCEEDED

NWERR_NOT_ITEM_PROPERTY

NWERR_WRITE_PROPERTY_TO_GROUP

NWERR_MEMBER_ALREADY_EXISTS

NWERR_NO_SUCH_MEMBER

NWERR_NOT_SET PROPERTY

NWERR_NO_SUCH_SEGMENT

NWERR_NO_SUCH_SET

NWERR_PROPERTY_ALREADY_EXISTS

NWERR_OBJECT_ALREADY_EXISTS

NWERR_INVALID_NAME

NWERR_WILD_CARD_NOT_ALLOWED

NWERR_ILLEGAL_WILDCARD

NWERR_INVALID_BINDERY_SECURITY

Licensed Material - Property of the copyright holders

0x96

0x97

0x98

0x98

0x99

0x99

Ox9A

Ox9B

0x9C

0x9C

0x9D

0x9E

Ox9F

OxA0

OxAl

OxCl1

0xC2

OxC2

OxC5

OxC5

OxC6

0xD0O

0OxD1

0xD2

OxD3

OxD4

OxD5

0xD6

0xD7

0OxD7

OxD8

OxD8

OxD9

OxD9

0xDA

OxDA

0xDB

OxDB

0xDC

OxDE

OxDE

OxDF

0xD6

0xD7

0xD7

0xD9

OxE8

OxE8

OxE9

OxEA

OxEB

OxEC

OxEC

OxED

OxEE

OxEF

OxF0

OxF0O

OxF1

B-4

NWERR_NO_OBJECT_READ_PRIVILEGE

NWERR_NO_OBJECT_RENAME_PRIVILEGE
NWERR_NO_OBJECT_DELETE_PRIVILEGE
NWERR_NO_OBJECT_CREATE_PRIVILEGE

NWERR_NO_PROPERTY_DELETE_PRIVILEGE

NWERR_NOT_SAME_LOCAL_DRIVE

NWERR_NO_PROPERTY_CREATE_PRIVILEGE

NWERR_TARGET_DRIVE_NOT_LOCAL

NWERR_ALREADY_ATTACHED_TO_SERVER

NWERR_NO_PROPERTY_WRITE_PRIVILEGE

NWERR_NOT_ATTACHED_TO_SERVER

NWERR_NO_FREE_CONNECTION_SLOTS

NWERR_NO_MORE_PROP_VALS

NWERR_NO_PROPERTY_READ_PRIVILEGE

NWERR_NO_MORE_SERVER_SLOTS

NWERR_TEMP_REMAP_ERROR

NWERR_INVALID_PARAMETERS

NWERR_NO_MORE_PROPERTIES

NWERR_NO_SUCH_PROPERTY

NWERR_NOT_386_FILE_SYSTEM

NWERR_INTERNET_PACKET_REQT_CANCELED

NWERR_SEMAPHORE_INVALID_PARMATERS

NWERR_SYNC_INVALID_PARAMETERS

NWERR_UNKNOWN_FILE_SERVER

NWERR_MESSAGE_QUEUE_FULL

NWERR_NO_SUCH_OBJECT

NWERR_NO_MORE_OBJECTS

NWERR_BAD_STATION_NUMBER

NWERR_INVALID_PACKET_LENGTH

NWERR_TTS_DISABLED

NWERR_UNKNOWN_REQUEST

NWERR_BINDERY_LOCKED

NWERR DIRECTORY_LOCKED

NWERR_INVALID_NAME_LENGTH

NWERR_INVALID_SEMAPHORE_NAME_LENGTH

NWERR_IMLPICIT_TRANS_ACTIVE

NWERR_NO_SUCH_RESTRICTION

NWERR_PACKET_NOT_DELIVERABLE

NWERR_RECORDS_STILL_LOCKED

NWERR_SERVER_BINDERY_LOCKED
NWERR_SOCKET_TABLE_FULL

NWERR_SPOOL_DIRECTORY_ERROR

NWERR_SUPERVISOR_HAS_DISABLED_LOGIN

NWERR_TIMEOUT_FAILURE

NWERR_BAD_PRINTER_ERROR

NWERR_BAD_RECORD_OFFSET

NWERR_CLOSE_FCB_ERROR
NWERR_ENTRY_EXISTS

NWERR_ENTRY_NOT_FOUND

NWERR_EXPLICIT_TRANS_ACTIVE

NWERR_FILE_ALREADY_EXISTS

NWERR_FILE_EXTENSION_ERROR

NWERR_FILE_NAME_ERROR

NWERR_HARDWARE_FAILURE

NWERR_INVALID_DRIVE_NUMBER

NWERR_INVALID_INITIAL_SEMAPHORE_VALUE

NWERR_INVALID_SEMAPHORE_HANDLE

NWERR_IO_BOUND_ERROR

NWERR_NO_EXPLICIT_TRANS_ACTIVE

NWERR_NO_FILES_FOUND_ERROR

Licensed Material - Property of the copyright holders

OxF2

OxF3

OxF 4

OxF5

OxF6

OxF6

(OxF7

OxF7

OxF8

OxF8

OxF8

OxF9

OxF9

OxF9

OxFA

OxFA

OxFB

OxF'B

OxFB

OxFB

OxFB

OxF'B

OxFB

OxFC

OxFC

OxFC

OxFC

OxFD

OxFD

OxFD

OxFD

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFE

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

069-000567

069-000567

NWERR_NO_MORE_FILES_FOUND

NWERR_NO_RESPONSE_FROM_SERVER

NWERR_NO_SUCH_OBJECT_OR_BAD_PASSWORD

NWERR_OPEN_FILES

NWERR_PATH_NOT_LOCATABLE

NWERR_QUEUE_FULL_ERROR

NWERR_REQUEST_NOT_OUTSTANDING

NWERR_SEMAPHORE_INVALID_VALUE

NWERR_SEMAPHORE_INVALID_HANDLE

NWERR_SOCKET_ALREADY_OPEN

NWERR_SYNC_LOCK_FAILURE

NWERR_SYNC_ENTRY_NOT_FOUND

NWERR_SYNC_RECORD_NOT_FOUND

~ NWERR_TRANS_NOT_WRITTEN

NWERR_TTS_NOT_AVAILABLE

End of Appendix .

Licensed Material - Property of the copyright holders

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

OxFF

B-5

Appendix C

DG/UX Errors

The NetWare APIs use two DG/UXTM interrupt signals: SIGPOLL and SIGALRM.

These interrupts can cause your C calls that do kernel reads or writes to fail. If

your call fails during a kernel read or write, complete the following:

1. Check the errno value. If the value is EINTR, the interrupts have caused the
error.

2. Redo your read or write.

We suggest that your program check for this condition on all kernel reads and

writes. The code below is an example of how you could check for the condition.

include <errno.h>

rvalue = read(fd, buf, cnt);

while(rvalue == -1) {

if(errno == EINTR) {

rvalue = read(fd, buf, cnt);

}
else {

break;

}

The interrupts can only cause the error when you have a transport open. The

transport is opened using the NWAttachToServerPlatform call. Use the

NWCloseTransport call to close the transport. After closing the transport, you will

not have this interrupt problem. |

End of Appendix

069-000567 Licensed Material - Property of the copyright holders C-1

Appendix D

Differences

069-000567

This Appendix describes the differences between the NetWare for AViiON Systems

API Library, and the API library previously released with NetWare C Interface -

DOS. It is intended for programmers who have written code to previous NetWare

APIs and are modifying their code to work on a NetWare for AViiON Systems

platform. The Appendix points out the key areas of change in the current APIs so

that you can focus on those differences when coding to the new API library.

Use the first part of this Appendix ("Global Differences between Current and

Previous APIs") to find the areas of change which you should pay particular

attention to when converting previous code to the current API library.

Use the second part of this Appendix (Function Call Index - Previous/Current API

Listings") as an index to the previously released API function names (NetWare 2.x)

and the corresponding NetWare for AViiON Systems API function name. The

previous APIs that are not supported in this release of APIs are labelled either not

supported or not in current release.

Not supported. The APIs which are not supported will not be

supported in future releases. The design and

purpose of NetWare for AViiON Systems APIs

prevents future support.

Not in current release. The APIs not in the current release that can be

supported and may be supported in future releases.

The index is organized according to previous APIs and the categories under which

they were grouped.

API Category _ Page

Accounting Services 0... ccc ee ee eee eens D-7

AFP ServiceS cee eee ce eee ete ee ee eee eee ee D-7

Bindery Services 0.2 eee eeeeeee eee eee D-8

Communication Services 00. e eee eee eee eee D-9

Connection Services 0.00. cece eee ee cee eee ee eee D-10

Console Control Services 00. .cce cece eee ee ees D-10

Diagnostic Services 0... ccc cece ee ee teen eas D-11

Directory ServiceS cc cece eee teen eee eee D-12

File Server Environment Services0 ccc eeecees D-13

File Services....... eee ce ee ee eee ee eee ee eee ee ees D-14

‘Message ServiceS 0c cece cee eee eee ee ee teens D-16

Print ServiceS ccc ccc ee eee ee ee ee eee eee eee sees D-17

Queue ServiceS ... 0. ee eee ee eet ee tee eee D-17

SAP ServiceS 0... cece eee cee ee ee eee eee ee ee ees D-18

Synchronization Services 0.00. c cece eee eee eee eee D-19

TTS Calls... ee ee eee ee ee ee eee eee D-19

VAP Services 2... ccc ee cee ee ee eee eee eee e eens D-20

Workstation Environment Services00 00 ec eeeeee D-21

Licensed Material - Property of the copyright holders D-1

New APIs provided in the current library are included under the category heading
in which they are currently found. Some of the previous APIs have been moved to

a new category. These are listed under both their current category and their new

category.

Overview and Introduction

In general, the NetWare for AViiON Systems APIs and previously released APIs

have the following differences:

Names

All current function calls now have an NW prefix on their names. All parameter

names associated with structures and defined variables follow a new naming

convention. Also, a few parameter and function names have been shortened or

changed to more accurately reflect their function and to make them easier to use.

Types

Thirteen function calls have been modified to return boolean values. Most

parameters are now defined as unsigned values. File attributes, date and time

values, and client rights are now passed in larger fields than in previous API

libraries.

Function

All function calls have been modified to return a separate error code along with any

unsuccessful return value (while previous APIs returned an error code in place of

an unsuccessful return value). Most function calls now require a serverConnID

(formerly connectionNumber) to be passed in each time the call is used.

Quantity

The NetWare for AViiON Systems API library contains all of the API function calls

essential to perform the most important network tasks. It does not, however,

include all API function calls previously released with NetWare. Some API calls

have changed categories in the documentation (directory to file services in

particular) but have not changed in function. |

D-2 Licensed Material - Property of the copyright holders 069-000567

The following API categories are currently supported:

Accounting Services

Bindery Services

Connection Services.

File Services

Path Services (formerly Directory Services)

Queue Management Services

Server Platform Services (formerly File Server Environment Services)

Synchronization Services

Transaction Tracking Services

Some calls have been replaced by more efficient calls, and some are simply not

relevant to the environment under which the NetWare for AViiON Systems API

calls will be used. Some of the function calls not included with the current API
library worked directly through the DOS Shell, a TSR (Terminate Stay Resident)

program that monitored local environment activity and kept tables of information

on the network connections.

For example, the previous NetWare printing calls worked directly through the DOS

shell. The printing calls would capture print jobs headed to a local printer port and
re-route them to a network printer. The NetWare for AViiON Systems API calls

simply send the print job directly to the network queue and thereby make the

printing calls unnecessary (and undesirable because of their implementation

through a DOS Shell/TSR Program which makes them non-portable across many

environments).

Global Differences Between Current and Previous APIs

069-000567

The following pages describe the global differences between the NetWare for
AViiON Systems API library and those previously released. These differences are
described in general and should be used as a guide to the specifics documented in
the API Reference Guide: NetWare C Interface for NetWare, Revision 1.0.

Boolean Function Calls

The following function calls return boolean values (1 for true, 0 for false), rather
than the return values of prior (and most of the current) NetWare APIs which
return zero for true (successful) and non-zero values for false (unsuccessful). This
has been done to simplify using these functions in a loop.

Bindery Services File Services

NWScanObject NWScanDirEntryInfo
NWScanProperty NWsSscanFileEntryInfo
NW<ScanPropertyValue NWScanSalvageableFiles
NWIsObjectInSet NWScanTrusteePaths
NWIsObjectPasswordOK

Transaction Tracking Services

NWTTSIsAvailable

Licensed Material - Property of the copyright holders D-3

Connection IDs and Connection Numbers

NetWare for AViiON Systems APIs use differently named parameters to identify
user and server connections. These two API parameter names have changed as
follows:

connectionNumber to clientConnID

econnectionID to serverConnID

The new parameter names more closely reflect the meaning of the parameter:

clientConnID The user’s (client's) connection number in the file server’s

table. |

serverConnID A unique file server in the user tables (created and tracked

| by the NetWare for AViiON Systems APIs).

ServerConnID is used in almost all NetWare for AViiON Systems calls.

Unlike previous APIs that used a "primary, preferred, or default" server connection

ID, NetWare for AViiON Systems APIs pass one server connection ID with every

call: serverConnID. The serverConnID (a uint16 value) must be kept by the user

where previously this data was stored by the DOS Shell. The NWGetServerConnID

function is available to retrieve a lost ID number if necessary.

Having a one to one correlation between the ID number and a server negates the

need to use (and maintain) the primary, preferred, or default ID. Obviously, users

can create their own algorithms if those options are desired. But using the current

APIs leaves no doubt about which server a function is accessing. And passing a

variable in place of serverConnID to other APIs further simplifies using thet new

connection parameter.

Date and time

The date and time parameters for file creation and archiving, formerly two 2-byte

fields, have changed to one 4-byte field. This does not affect how the file server

date and time is specified in a structure.

DOS Shell

NetWare for AViiON Systems APIs access the network directly and do not use a
DOS shell (as previous APIs did) to store and transfer data. A user must now keep

track of data which was previously kept by the shell (in tables).

Data which must now be kept by the user includes:

File and Directory Handles

Drive Mappings

Server Connection IDs

Print Job Routing »

Without a DOS shell, some APIs become extraneous and therefore not currently

supported. But in most cases where an API is not supported, an alternative exists

for accessing the data necessary to perform a desired network task. For example, a

directory handle can always be obtained (even without the GetDirHandle call) by

simply re-allocating a handle.

Licensed Material - Property of the copyright holders 069-000567

~The following DOS-shell-specific APIs are not currently supported:

e WorkStation Services or Environment Calls
- GetShellVersion Information

- GetNumberOfLocalDrives

e Directory Handles, File Handles, and Mappings

- GetDirHandle

- GetFileHandle

e Server Connection [Ds

- SetPrimary(Preferred, or Default)ConnectionID

- GetPrimary(Preferred, or Default)ConnectionID

e Print Services

- StartLPTCapture

- SetCapturePrintJobs

- The NetWare for AViiON Systems APIs provide new functions to open, read, write,
and close a file (a task previously handled by the shell). Some of the new calls
include:

- NWOpenFile

- NWReadFile

- NWWriteFile

- NWCloseFile

Since code written to the NetWare for AViiON Systems APIs can be run without a
DOS shell, the resulting code becomes portable across any platform, with or
without a shell. Users might find it easier to access and use the stored data.
Overhead is reduced through the ability to write directly to queues and to use only
one connectionID for each target server.

Error Codes - Return Values

NetWare for AViiON Systems APIs return a completion code representing success
or failure only. Previous versions of NetWare APIs returned a 1-byte completion
code representing successful completion, or a non-zero value which represented an
error code (which also meant the call had failed).

The NetWare for AViiON Systems APIs return a 4-byte error code by doing the
following: | | |

e Returning a l-byte completion code (of 1, 0, or -1) signifying successful or
unsuccessful completion only.

e Placing a 4-byte error code in the NWErrno field (provided with nwapi.h)
along with any unsuccessful completion code.

069-000567 Licensed Material - Property of the copyright holders D-5

The 4-byte NWErrno field allows more information to be passed back and should

aid in debugging code or analyzing utilities. This field identifies the location and
type of returned errors as follows:

e The 4th byte used for the traditional error codes;

e The 2nd byte identifies the section (Accounting, Bindery, Connection, etc.)
~ from which the error originated;

¢ The 3rd byte identifies the type of error - whether it is unique to a
particular section of calls or prevalent throughout the many types of
function calls; |

e The 1st byte is reserved for future use.

Global Function Name Change - NW Prefix

An uppercase NW has been added to the beginning of each function call name in
the NetWare for AViiON Systems API library.

Example: WritePropertyValue (DOS API call) has been changed to
NWWritePropertyValue (NetWare for AViiON Systems API call)

Parameter Definitions And Structures -

NetWare for AViiON Systems APIs use structures, defined variables, and type
definitions in place of lengthy parameter lists, explicit values, and frequently
repeated values. All definitions are included in the nwapi.h file associated with
NetWare for AViiON Systems APIs.

For example, the parameter list in the previous API named
"GetFileServerDescriptionStrings" passed in four parameters, each a character
string. The current API passes one parameter, NWDescriptionStrings_t, which is
defined as an array of four character strings.

Current APIs have adopted the following naming convention for defined parameter
types:

Prefix Suffix Structure Type

NW t for a defined structure
NW ts for a defined scalar

NW_ _ta for a defined array

Rights and Attributes

Current APIs use the NetWare 3.x security system which differs from previous
NetWare versions with extended File Attributes and Trustee Rights. Previous API
parameters (NetWare 2.x) which set or get rights and attributes were increased in
the NetWare for AViiON Systems APIs to accommodate the larger field containing
the NetWare 3.x rights and attributes. The user should read the definitions of any
functions that involve security. |

The new fields still accommodate NetWare 2.x rights information (if you are
querying a 2.x server), but the data is returned to the user in 3.x format with the
additional rights and attribute bits registering zero. |

Licensed Material - Property of the copyright holders 069-000567

Function Call Index - Previous/Current API Libraries

The following index shows the names of previously released APIs and the current

APIs which have replaced them (many have been changed in name only). This

index also includes any differences which are unique to an API category, and the

status of the calls in it.

This index should be used to direct you to the current API description in the

NetWare® for AViiON® Series Systems C Interface Reference Guide, where you will
find a description of the new APIs including differences in function and parameter

names as well as any global changes described previously in this Appendix.

Note: This list is generated from the APIs in NetWare C Interface - DOS (1989,
NetWare 2.x). This list might not include every API function call previously
released by Novell.

Accounting Services

Accounting services are fully supported with the only differences being those

described previously in this Appendix.

Accounting Services List

Previous API (NetWare 2.x) Corresponding API in Current Library

GetAccountStatus NWGetAccountStatus

SubmitAccountCharge NWSubmitAccountCharge

SubmitAccountHold NWsSubmitAccountHold

SubmitAccountNote NWSubmitAccountNote

AFP Services

AppleTalk Filing Protocol (AFP), namespace, and data stream and data fork APIs

are not currently supported.

AFP Services List

Previous API (NetWare 2.x) Corresponding API in Current Library

AFPAllocTemporaryDirHandle Not in current release.

AFPCreateDirectory Not in current release.

AFPCreateF Tle Not in current release.

AFPDelete Not in current release.

AFPDirectoryEntry Not in current release.

AFPGetEntryIDFromName Not in current release.

AFPGetEntryIDFromNetWareHandle Not in current release.

AFPGetEntryIDFromPathName Not in current release.

AFPGetFileInformation Not in current release.

| (continued)

069-000567 Licensed Material - Property of the copyright holders D-7

AFP Services List

Previous API (NetWare 2.x)

AFPOpenFileFork

AFPRename

AFPScanFileInformation

AFPSetFileInformation

AFPSupported

Bindery Services

Corresponding API in Current Library

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

(concluded)

All bindery services are currently supported. In addition to any differences
described previously in this Appendix, the word "bindery" has been taken out of all
bindery service function names (except for NWOpenBindery, NWCloseBindery, and
NWGetBinderyAccessLevel).

Bindery Services List

Previous API (NetWare 2.x)

AddBinderyObjectToSet

ChangeBinderyObjectPassword

ChangeBinderyObjectSecurity

ChangePropertySecurity

CloseBindery

CreateBinderyObject

CreateProperty

DeleteBinderyObject

| DeleteBinderyObjectFromSet

DeleteProperty |

GetBinderyAccessLevel

GetBinderyObjectID

GetBinderyObjectName

IsBinderyObjectInSet

Open Bindery

ReadPropertyValue

RenameBinderyObject

Scan BinderyObject

ScanProperty

VerifyBinderyObjectPassword

WritePropertyValue

Corresponding API in Current Library

NWaAddObjectToSet

NWChangeObjectPassword

NWChangeObjectSecurity

NWChangePropertySecurity

NWCloseBindery

NWCreateObject

NWCreateProperty

NWDeleteObject

NWDeleteObjectFromSet

NWDeleteProperty

NWGetBinderyAccessLevel

NWGetObjectID

NWGetObjectName

NWIsObjectInSet

NWOpenBindery

NWScanProperty Value

NWRenameObject

NWScanObject

NWScanProperty

NWIsObjectPasswordOK

NWWritePropertyValue

D-8 Licensed Material - Property of the copyright holders 069-000567

069-000567

Communication Services

IPX and SPX service calls can be valuable tools for communicating between

workstation that have a DOS shell. These calls are not relevant to a workstation
running without a shell. Because current APIs are used without a DOS Shell,

Communication Services APIs are not currently supported.

Communication Services List

Current APIs use the services of the Transport Layer Interface (TLI) to send and

receive NCP packets to and from the file server. TLI currently uses IPX as the

transport protocol but is written to be portable, allowing other transport protocols
to be substituted with only minor coding changes.

Previous API (NetWare 2.x)

AES Functions

IPXCancelEvent

IPXGetIntervalMarker

IPXRelinquishControl

IPXScheduleIPXEvent

IPX Functions

IPXCloseSocket

IPXDisconnectFromTarget

IPXGetDataAddress

IPXGetInternetworkAddress

IPXGetLocalTarget

[PXInitialize

IPXListenForPacket

IPXOpenSocket

IPXSendPacket

SPX Functions

SPXAbortConnection

SPXEstablishConnection

SPXGetConnectionStatus

SPXInitialize

SPXListenForConnection

SPXListenForSequencedPacket

SPXSendSequencedPacket

SPXTerminateConnection

Corresponding API in Current Library

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Licensed Material - Property of the copyright holders

Connection Services

All Connection Services APIs are currently supported and some new have been

added. Differences from prior APIs include the addition of APIs that open and
close transports (NWAttachToServerPlatform and NWCloseTransport). These APIs
work with the Transportation Layer Interface (TLI), sending and receiving data
through the NetWare for AViiON Systems interface. In addition to any global

differences described previously in this Appendix, connection service functions
names use "ServerPlatform" instead of "FileServer."

Connection Services List

Previous API (NetWare 2.x)

DetachFromFileServer

EnterLoginArea

GetConnectionInformation

GetConnectionNumber

GetInternetAddress

GetObjectConnectionNumbers

GetStationAddress

Login ToFileServer

LogoutFromFileServer

Logout

Corresponding API in Current Library

NWDetachFromServerPlatform

Not in current release.

NWGetConnectionInformation

NWGetClientConnID

NWGetInternetAddress

NWGetObjectClientConnIDs

Not in current release.

NWLoginToServerPlatform

NWLogoutFromServerPlatform

Not in current release.

NWClearClientConnID

NWGetServerConnID

NWGetServerConnIDList

NWCloseTransport

NWRegisterTimeoutErrorFunction

Console Control Services

With NetWare for AViiON Systems function calls, there is no specified console
relevant to the APIs. Any code written to the host console would have to use host

platform services and therefore the following APIs are not included in the current

API library.

Console Control Services List

Previous AP! (NetWare 2.x) Corresponding API in Current Library

ConsoleDisplay Not included.

ConsoleError Not included.

ConsoleMessage Not included.

ConsoleQuery Not included.

ConsoleRead Not included.

(continued)

Licensed Material - Property of the copyright holders 069-000567

069-000567

Console Control Services List

Previous API (NetWare 2.x)

~ GetScreenMode
InString

OutString

PrintString

ReadKeyboard

SetScreenMode

Corresponding API in Current Library

Not included.

Not included.

Not included.

Not included.

Not included.

Not included.

Diagnostic Services

Many diagnostic services are DOS shell specific and are therefore not currently

supported by NetWare for AViiON Systems.

Diagnostic Services List

Previous API (NetWare 2.x)

iPX/SPX Component Functions

AbortSendingPackets

GetIPXSPXVersion

GetIPXStatistics

Return ReceivedPacketCount

StartCountingPkts

StartSendingPktsTimed

Driver Component Functions

GetBridgeDriverConfiguration

GetBridgeDriverStatistics

GetBridgeDriverStatus
GetShellDriverConfiguration

GetShellDriverStatistics

Environment Component Functions

Begin Diagnostics

EndDiagnostics

Shell Component Functions

GetOSVersionInfo

GetPrimaryServerNumber

GetServerAddressT able

GetServerNameTable

GetShellAddress

GetShellStatistics

GetShellVersionInfo

Corresponding API in Current Library

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

_ Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not supported.

Not supported.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not in current release.

Not supported.

Not supported.

Not supported.

(continued)

Licensed Material - Property of the copyright holders D-11

Diagnostic Services List

Previous API (NetWare 2.x)

Bridge Component Functions

GetAllKnownNetworks

GetAllKnownServers

GetBridgeStatistics

GetLocalTables

GetSpecificNetworkInfo

GetSpecificServerInfo

Corresponding API in Current Library

Not in current release.

Not in current release.

Not in current release.

Not supported.

Not in current release.

Not in current release.

Directory Services

(concluded)

Directory Service calls are now called Path Services. All of previous services are

supported except those that were DOS Shell specific (all essential calls are
included). Some calls have been moved to File Services. Those that have been

moved are designated with a [F]. In addition to any differences described

previously in this Appendix, the following abbreviations are used in this category’s

function names: "directory" changed to "dir," and "volume" changed to "vol."

Directory Service List

Previous API (NetWare 2.x) Corresponding API in Current Library

AddTrusteeToDirectory

AllocPermanentDirectoryHandle

AllocTemporaryDirectoryHandle

CreateDirectory |

DeallocateDirectory Handle

DeleteDirectory

DeleteTrusteeFrom Directory

GetCurrentDirectory

GetDirectoryHandles

GetDirectoryPath

GetDriveInformation

GetEffectiveDirectory Rights

GetSearchDriveVector

Get VolumeInformation

GetVolumeInfoWithHandle

Get VolumelInfoWithNumber

GetVolumeName

GetVolumeNumber

IsSearchDrive

MapDrive

Modify MaximumRightsMask

RenameDirectory

NWSetTrustee [F]

NWAllocPermanentDirHandle

NWaAllocTemporaryDirHandle

NWCreateDir [F]

NWDeallocateDirHandle

NWDeleteDir [F]

NWDeleteTrustee [F]

Not in current release.

Not in current release.

NWGetDirPath

Not in current release.

NWGetEffectiveRights [F'

Not in current release.

NWGetVolUsage [F]

NWGetVolinfoWithHandle [F]

Not in current release.

NWGetVolName [F]

NWGetVolNum [F]

Not in current release.

Not in current release.

NWSetDirsInheritedRightsMask [F]

NWRenamebDir [F]

(continued)

Licensed Material - Property of the copyright holders 069-000567

Directory Service List

Previous API (NetWare 2.x) Corresponding API in Current Library

RestoreDirectoryHandle

SaveDirectoryHandle

Scan BinderyObjectTrusteePaths

Scan DirectoryForTrustees

Scan DirectoryInformation

SetDirectoryHandle

SetDirectoryInformation

SetDrivePath

SetSearchDriveVector

Not in current release.

Not in current release.

NWScanTrusteePaths [F]

NWGetEntrysTrustees [F]

NWScanDirEntryInfo [F]

NWSetDirHandle

NWSetDirEntrylInfo [F]

Not in current release.

Not in current release.

|| NWParseFullPath

File Server Environment Services

(concluded)

File Server Environment Services has been renamed to Server Platform Services.

Most of the DOS file server environment services are supported. Some are DOS

. Shell specific and are therefore not supported. In addition to any differences

described above in this Appendix, the term "ServerPlatform" has replaced
"FileServer" in all function call names. A few calls have been moved. Those that

have moved to Connection Services are designated with a [C];those that have

moved to File Services are designated with a [F]; and those that have moved to

Transaction Tracking Services are designated with a [T].

File Server Environment Services List

Previous API (NetWare 2.x)

CheckConsolePrivileges

CheckNetWareVersion

ClearConnectionNumber

DisableFileServerLogin

DisableTransactionTracking

DownFileServer

EnableFileServerLogin

EnableTransactionTracking

GetBinderyObjectDiskSpaceLeft

GetConnectionsOpenFiles

GetConnectionsSemaphores

GetConnectionsTaskInformation

GetConnectionsUsageStats

GetConnectionsUsingFile

Corresponding API in Current Library

Not included.

Not currently supported.

NWClearClientConnID [C]

NWDisableServerPlatformLogin

NWTTSDisableTransactionTracking [T]

NWDownServerPlatform

NWEnableServerPlatformLogin

NWEnableTransactionTracking [T]

NWGetObjectVolRestriction [F]

Not supported in current release.

Not included.

Not included.

Not included.

Not supported in current release.

GetDiskCacheStats Not supported in current release.

GetDiskChannelStats Not included.

GetDiskUtilization NWGetDisk Utilization

(continued)

Licensed Material - Property of the copyright holders . D-1 3

D-14

File Server Environment Services List

Previous API (NetWare 2.x)

GetDriveMappingTable

GetFileServerDateAndTime

GetFileServerDescriptionStrings

GetFileServerLANIOStats

GetFileServerLoginStatus

GetFileServerMiscInformation

GetFileServerName

GetFileSystemStats

GetLANDriverConfigInfo

GetLogicalRecordInformation

GetLogicalRecordsbyConnection

GetLogicalRecordInformation

GetPathFromDirectoryEntry

GetPhysicalDiskStatistics

GetPhyscialRecordLocksByFile

GetPhysRecLocksbyConnect

AndFile

GetSemaphorelInformation

GetServerInformation

SendConsoleBroadcast

SetFileServerDateAndTime

TTSGetStats

Corresponding API in Current Library

Not included.

NWGetServerPlatformDateAndTime

NWGetServerPlatformDescriptionStrigs

Not supported in current release.

NWGetServerPlatformLoginStatus

Not included.

NWGetServerPlatformName

Not supported in current release.

Not supported in current release.

Not supported in current release

Not supported in current release.

Not supported in current release.

NWGetDirPath [P]

Not supported in current release.

Not supported in current release.

Not supported in current release.

Not supported in current release.

NWGetServerPlatformInformation

Not supported in current release.

NWSetServerPlatformDateAndTime

Not supported in current release.

| NWIsNetWare386

File Services

Most file services are supported. Many function calls previously categorized under
"Directory Services" are now included in "File Services. In addition to any

differences described previously in this Appendix, you should be aware of the
following :

e All parameters containing rights and attributes will be returned in

_ NetWare 3.x format (even if you are calling a 2.x server).

e Four calls have been added - NWOpenFile, NWReadFile, NWWriteFile, and

NWCloseFile - to provide read and write capabilities previously handled by
the shell.

¢ "Volume" has been replaced by "Vol" in all function call names

¢ "Directory" has been replaced by "Dir" in all function call names

Licensed Material - Property of the copyright holders 069-000567

File Services List

Previous API (NetWare 2.x) Corresponding API in Current Library

EraseFiles | NWDeleteFile

FileServerFileCopy NWFileCopy

GetExtendedFileAttributes NWGetFileAttributes

PurgeAllErasedFiles Not included.

PurgeErasedFiles Not included.

RestoreErasedFile Not included.

ScanFileInformation NWScanFileEntryInfo

SetExtendedFileAttributes NWSetFileAttributes

SetFileInformation NWSetFileEntryInfo

| NWClearObjectVolRestriction [386]

NWCloseFile

NWCreateFile

NWCreateNewFile

NWGetDirEntryInfo

NWGetDirRestriction [386]

NWGetNameSpacelnfo

NWGetObjectVolRestriction [386]

NWGetVolsObjectRestrictions [386]

NWMoveEntry

NWMoveFile

NWOpenFile

NWPurgeSalvageableFile [386]

NWReadFile

NWRecoverSalvageableFile [386]

NWScanSalvageableFiles [386]

NWSetDirRestriction [386]

NWSetFilesInheritedRightsMask

NWSetObjectVolRestriction [386]

= NWWriteFile

"= NWCreateDir

NWDeleteDir

NWDeleteTrustee

NWGetEffectiveRights

NWGetEntrysTrustees

NWGetVolInfoWithHandle

NWGetVolName

NWGetVolNum

(continued)

069-000567 Licensed Material - Property of the copyright holders D-1 5

D-16

File Services List

Corresponding API in Current Library

“Calls Moved fron “NWGetVolUsage

: ry Service NWRenameDir

NWScanDirEntryInfo

NWScanTrusteePaths

_ NWSetDirsInheritedRightsMask

_ NWSetDirEntryInfo |

- NWSetTrustee

(concluded)

Message Services

Message Service Calls are DOS Shell specific and are therefore not currently
supported by NetWare for AViiON Systems.

Message Services List

Previous APi (NetWare 2.x) Corresponding API in Current Library

BroadcastToConsole Not in current release.

CheckPipeStatus Not in current release.

CloseMessagePipe Not in current release.

GetBroadcastMessage Not in current release.

GetBroadcastMode Not in current release.

GetPersonalMessage Not in current release.

LogNetwork Message Not in current release.

OpenMessagePipe Not in current release.

SendBroadcastMessage Not in current release.

SendPersonalMessage Not in current release.

SetBroadcastMode Not in current release.

Licensed Material - Property of the copyright holders 069-000567

069-000567

Print Services

Print Services List

Print Services are DOS Shell Specific and are therefore not currently supported.
You can print though by using Queue Management Services calls to write directly
to a NetWare queue connected to a network printer.

Previous API (NetWare 2.x)

CancelLPTCapture

CancelSpecificLPTCapture

- EndLPTCapture

EndSpecificLPTCapture

FlushLPTCapture

FlushSpecificLPTCapture

GetBannerUserName

GetDefaultCaputureF lag

GetDefaultLocalPrinter

GetLPTCaptureStatus

GetPrinterQueue

GetPrinterStatus

GetSpecificCaptureF lags

SetBannerUserName

SetCapturePrintJob

SetCapturePrintQueue

SetDefaultCaptureF lags

SetDefaultLocalPrinter

SetSpecificCaptureF lags

SpecifyCaptureFile

StartLPTCapture

StartSpecificLPTCapture

Corresponding AP! in Current Library

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not in current release.

Not supported.

Not supported.

Not supported.

Not in current release.

Not in current release.

Not supported.

Not in current release.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Queue Services

Queue Services List

Queue Management service calls are fully supported by NetWare APIs. These
calls can be used in place of the Print Service calls.

Previous API (NetWare 2.x) Corresponding API in Current Library

AbortServicingQueueJob NWaAbortServicingQueueJob

Attach QueueServerloQueue NWaAttach QueueServertoQueue

ChangeQueueJobEntry NWChangeQueuedJobEntry

ChangeQueueJobPosition NWChangeQueuedobPosition

ChangeToClientRights NWChangeToClientRights

(continued)

Licensed Material - Property of the copyright holders D-17

D-18

Queue Services List

Previous API (NetWare 2.x) Corresponding AP! in Current Library

CloseFileAndAbortQueueJob NWCloseFileAndAbortQueued ob

CloseFileAndStartQueueJob NWCloseFileAndStartQueueJob

CreateQueue NWCreateQueue

CreateQueueJobAndFile NWCreateQueueFile

DestroyQueue NWDestroyQueue

DetachQueueServerFromQueue NWDetachQueueServerFromQueue

FinishServicingQueueJob NWFinishServicingQueueJob

GetQueueJobFileSize NWGetQueueJobFileSize

GetQueueJobList NWGetQueueJobList

ReadQueueCurrentStatus NWReadQueueCurrentStatus

ReadQueueJobEntry NWReadQueueJobEntry

ReadQueueServerCurrentStatus NWReadQueueServerCurrentsStatus

RemoveJobFromQueue NWRemovedobFromQueue

RestoreQueueServerRights NWRestoreQueueServerRights

ServiceQueueJobAndOpenFile NWServiceQueueJob

SetQueueCurrentStatus NWSetQueueCurrentStatus

SetQueueServerCurrentStatus NWSetQueueServerCurrentStatus

|_| NWConvertPrintStructToQueueStruct

NWConvertQueueStructToPrintStruct

(concluded)

SAP Services

Service Advertising Protocol (SAP) calls are DOS Shell specific and are therefore
not currently supported by NetWare.

SAP Services List

Previous API (NetWare 2.x) Corresponding API in Current Library

AdvertiseService Not in current release.

QueryServices Not in current release.

Licensed Material - Property of the copyright holders 069-000567

Synchronization Services

Synchronization Services are fully supported by NetWare for AViiON Systems. In
addition to any differences described previously in this Appendix, the term
"FileLock" has been replaced with "File" in all function call names that previously
contained "FileLock."

Synchronization Services List

Previous API (NetWare 2.x)

ClearFile

ClearFileSet

ClearLogicalRecord

ClearLogicalRecordSet

ClearPhysicalRecord

ClearPhysicalRecordSet

CloseSemaphore

ExamineSemaphore

GetLockMode

LockFileSet

LockLogicalRecordSet

LockPhysicalRecordSet

LogFile

LogLogicalRecord

LogPhysicalRecord

OpenSemaphore

ReleaseFile

ReleaseFileSet

ReleaseLogicalRecord

ReleaseLogicalRecordSet

ReleasePhysicalRecord

ReleasePhysicalRecordSet

Corresponding API in Current Library

NWClearFile

NWClearFileSet

NWClearLogicalRecord

NWClearLogicalRecordSet
NWClearPhysicalRecord

NWClearPhysicalRecordSet

NWCloseSemaphore |

NWExamineSemaphore

Not in current release.

NWLockFileSet

NWLockLogicalRecordSet

NWLockPhysicalRecordSet

NWLogFile

NWLogLogicalRecord

NWLogPhysicalRecord

NWOpenSemaphore

NWReleaseFile

NWReleaseFileSet

NWReleaseLogicalRecord

NWReleaseLogicalRecordSet

NWReleasePhysicalRecord

NWReleasePhysicalRecordSet

SetLockMode Not in current release.

SignalSemaphore NWsSignalSemaphore

WaitOnSemaphore NWWaitOnSemaphore

TTS Calis

Transaction Tracking Services are completely supported by NetWare APIs.

TTS Calls List

Previous API (NetWare 2.x) Corresponding API in Current Library

TTSAbortTransaction NWTTSAbortTransaction

TTSBeginTransaction NWTTSBeginTransaction

TTSEndTransaction NWTTSEndTransaction

(continued)

069-000567 Licensed Material - Property of the copyright holders D-1 9

D-20

TTS Calls List

Previous AP! (NetWare 2.x) Corresponding API in Current Library

TTSGetApplicationThresholds

TTSGetWorkstationThresholds

TTSIsAvailable

TTSSetApplicationThresholds

TTSSetWorkstationThresholds

TTSTransactionStatus

NWTTSGetProcessThresholds

NWTTSGetConnectionThresholds

NWTTSIsAvailable

NWTTSSetProcessThresholds

NWTTSSetConnectionThresholds

NWTTSIsTransaction Written

. NWTTSGetControlFlags

NWTTSSetControlFlags

: NWDisableTransactionTracking

| NWEnableTransactionTracking

VAP Services

Value Added Process (VAP) Services are not supported 3 in NetWare 3.x and

NetWare for AViiON Systems.

VAP Services List

(concluded)

Previous API (NetWare 2.x) Corresponding API in Current Library

AllocateSegment

CalculateAbsoluteAddress

ChangeProcess

-ChangeSegmentToData

CreateProcess

DeclareExtendedSegment

DeclareSegmentAsData

DelayProcess

DoConsoleError

GetInterruptVector

GetProcessID

GetVAPHeader

InitializationComplete

KillProcess

SegmentToPointer

SetExternalProcessError

SetHardwarelInterruptVector

SetInterruptVector

ShellPassThroughEnable

SleepProcess

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

Not supported.

(continued)

Licensed Material - Property of the copyright holders 069-000567

VAP Services List

Previous API (NetWare 2.x) Corresponding API in Current Library

SpawnProcess Not supported.

VAPAttachToFileServer Not supported.
VAPGetConnectionID Not supported.

VAPGetfileServerName Not supported.

WakeUpProcess Not supported.

(concluded)

Workstation Environment Services

Most Workstation Services are DOS Shell Specific and are therefore not supported
by NetWare APIs.

Workstation Environment Services List

Previous API (NetWare 2.x) Corresponding AP! in Current Library

EndOfJob Not in current release.

GetConnectionID NWGetServerConnID

GetDefaultConnectionID Not supported.

GetFileServerName NWGetServerPlatformName

GetNumberOfLocalDrives Not supported.

GetPreferredConnectionID Not supported.

GetPrimaryConnectionID Not supported.

GetShellVersionInformation Not supported.

IsConnectionIDInUse Not in current release. —

SetEndOfJobStatus Not in current release.

SetNewWareErrorMode Not in current release.

SetPreferredConnectionID Not supported.

SetPrimaryConnectionID Not supported.

End of Appendix

069-000567 Licensed Material - Property of the copyright holders D-21

TO ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity

1-4 Units

5-10 Units

11-40 Units

41-200 Units

Over 200 Units

Shipping & Handling Charge

$5.00

$8.00

$10.00

$30.00

$100.00

_ If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount

$1-$149.99

$150-$499.99

Over $500

TERMS AND CONDITIONS

Discount

0%

10%

20%

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary
or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

saceaacennanla

COMPANY NAME COMPANY NAME

ATTN: | ATTN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title : Date Phone (Area Code) Ext.
(Agrees to terms & conditions on reverse side)

20,0 9 0,9 0 8 Ovo 0 ae ee eee et eee ne .
a recet ac oceror eet e rene te ane cetatetetetaterete tetera’, oF Seiten enes aot ete'

satatereterererececerereserererer ocean teats e hee se cnet rete eeheestetetetetetatetesMaretetatstetsteteteteterstetetetsteveetererecererereererare ara prarecntneacerererer peer Pee D eee Peewee eee me PLN Pete eet ee tere et eect etetatetatetetetetetetetetete!eee oer er erro tare erere rere gre es terw eee s.
or aoe ee ee bre ste ee eo et we ts eee.

4,997 0,0 2 0 8 0 60 00 0 0 0 0 eo no 8 eeear er nena te nore raed orarer er ele e ere erent e.

HIPPING: 2 HANDES oe ORDER TOTAL

O UP ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 - $149.99 0% See B

5-10 Items $ 8.00 $150- $499.99 10% | [ax Exempt # SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% | OF Sales rex
41-200 Items $ 30.00 (if applicable) — Your local* +

sales tax

200+ Items $100.00 | Shipping and +

Check for faster delivery | handling - See A

Additional charge to be determined at time of TOTAL - See C

shipment and added to your bill.

0 UPS Blue Label (2 day shipping)

Cre THANK YOU FOR YOUR ORDER

0 Purchase Order Attached ($50 minimum)

Chesk or Money OrderEncosed PRES SUE, LOW AMBERS EGR Bete
O eck or ne e e :

: oney Urder ENCIOS wo . NO REFUNDS NO RETURNS.
0 Visa 0 MasterCard ($20 minimum on credit cards)

Account Number Expiration Date * Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains

| | | | | | | | | | | | | | TTT a place of business, which covers al! 50 states. Please include
-your local taxes when determining the total value of your order.
f you are uncertain about the correct tax amount, please call
508-870-1600.

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

Form 702

Rev. 8/87

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software

which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all

designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data

by itself does not constitute or evidence a publication or public disclosure. |

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a

period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided

it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been

damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY |

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO

LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.

THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY

DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE

FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT -

~ NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR

DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION

ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational

Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of

law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties

with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and

understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or

additional terms. ,

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to

a particular revision of the product. Consequently user programs or systems based on this information and material may be

revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no

representations as to the utility of this information and material beyond the current revision level which is the subject of the

manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such

use and | and my company (Customer) hold Data General completely harmless therefrom.

NetWare: for

AViiONTM Systems:
C Interface

Reference Guide

069—000567—00}----—---—--~-~--~---.
Cut here and insert in binder spine pocket

