¢ DataGeneral

Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

NetWare® for AViiON" Systems:
C Interface Reference Guide

069-000567-00

NetWare® for AViiON® Systems:
C Interface Reference Guide

069-00567-00

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Copyright ©Novell Corporation, 1992

Copyright ©Data General Corporation, 1992

All Rights Reserved

Unpublished — All rights reserved under the copyright laws of the United States
Printed in the United States of America

Rev. 00, January 1992

Licensed Material — Property of the copyright holder(s)

Ordering No. 069000567

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS.THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other information contained in
flhis dl(;ecument without prior notice, and the reader should in all cases determine whether any such changes
ave been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO 1.OST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,
ISEIY%E]I)FA?J%EHASS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF

All software is made available solely pursuant to the terms and conditions of the applicable license agreement
which governs its use.

Restricted Rights Legend: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
[DFARS] 252.227-7013 (October 1988).

DATA GENERAL CORPORATION
4400 Computer Drive
Westboro, MA 01580

AViiON is a U.S. registered trademark and DG/UX is a trademark of Data General Corporation.
NetWare is a U.S. registered trademark of Novell, Inc.
UNIX is a U.S. registered trademark of UNIX Systems Laboratories Inc.

Certain portions of this document were prepared by Data General Corporation and the remaining portions
were prepared by Novell Corporation.

NetWare® for AViiON® Systems:
C Interface Reference Guide

069-000567-00
Revision History: Effective with:
Original Release — January 1992 NetWare® for AViiON® Systems,

Revision 1.30

Preface

IMPORTANT:

This manual provides a systematic and comprehensive reference to the Applications
Programming Interface (API) library of functions and calls for NetWare® for
AViiON® Systems. For more general background information about API functions
and services, please see the companion manual, NetWare® for AViiON® Systems:

C Interface Programmer’s Guide (069-000566).

All references to software versions in this manual are inclusive; no distinction is
made between different releases of the same version. In other words, we refer to
all NetWare 286 products as NetWare 2.x, and we refer to all NetWare 386
products as NetWare 3.x. NetWare for AViiON Systems is compatible with
NetWare 3.x unless otherwise noted. The release notice accompanying your
shipment provides the most current information about exceptions to this
compatibility.

Unless otherwise noted, NetWare for AViiON Systems servers cannot service API
programs running in a NetWare network.

Organization of this manual

069-000567

Chapter 1 Accounting Service APIs

This chapter explains how to use the Accounting Service APIs that allow file
servers to charge clients for services.

Chapter 2 Bindery Service APIs

This chapter explains how to use the Bindery Service APIs that regulate access to
the file server.

Chapter 3 Connection Service APIs

This chapter explains how to use Connection Service APIs to establish and destroy
logical connections to the file server and control the return of status information
about those connections.

Chapter 4 File Service APIs

This chapter explains how to use File Service APIs to enable applications to
manipulate files, directories, volumes, trustees, and their associated information.

Chapter 5 Path Service APIs

This chapter explains how to use Path Service APIs to allocate directory handles
and return information about directory paths.

Chapter 6 Queue Management Service APIs

This chapter explains how to use Queue Management Service APIs to control the
flow of jobs and services on the network.

Chapter 7 Server Platform Service APIs

This chapter explains how to use Server Platform Service APIs in function calls
that report file server information and disk usage.

Licensed Material - Property of the copyright holders m

Chapter 8 Synchronization Service APIs

This chapter explains how to use Synchronization Service APIs to coordinate access
to network files and other resources.

Chapter 9 Transaction Tracking Service APIs

This chapter explains how to use Transaction Tracking Service APIs to ensure file
integrity of selected files.

Appendix A Constant Declarations and Structure Definitions

This appendix defines constants and provides structure requirements for all API
calls.

Appendix B NetWare Errors
This appendix lists all NetWare error codes and explains their interpretation.
Appendix C DG/UX Errors

This appendix explains how to avoid failures of C calls caused by the two DG/UX™
interrupt signals, SIGPOLL and SIGALRM.

Appendix D Differences

This appendix describes the differences between the NetWare for AViiON Systems
API library and the API library previously released with NetWare C Interface-DOS.

Related Documents

iv

You received a comprehensive set of documents with your NetWare for AViiON
Systems release package. The manuals listed below are included in that set and
contain information that augments the text of this manual.

NetWare® for AViiON® Systems: Concepts (069—000483)

This manual provides an alphabetically-arranged glossary of NetWare terminology.
It is written for all levels of NetWare users, but it will be particularly useful to
supervisors who are performing their first installation of the NetWare for AViiON
Systems product.

NetWare® for AViiON® Sy.étems: C Interface Programmer’s Guide (069—000566)

This manual provides a background of information for NetWare applications
programmers and a general overview of available API services and functions. It is
written specifically for applications programmers.

NetWare® for AViiON® Systems: System Administration (069—000487)
This manual provides a reference to the SCONSOLE and HYBRID utilities and the
NetWare for AViiON Systems printing services and utilities. It is written primarily

for network supervisors who will use SCONSOLE and HYBRID to administer the
AViiON file server and set up DG/UX printers using the NetWare printing utilities.

Licensed Material - Property of the copyright holders 069-000567

NetWare®for AViiON® Systems: Installation (069—000488)

This manual provides detailed instructions for planning a NetWare network,
installing NetWare for AViiON Systems on an AViiON computer, configuring client
workstations, and setting up user accounts. It is written for the network
supervisor.

NetWare® for AViiON® Systems: User Book (069-000486)

This manual provides a general overview of NetWare. It is written for first-time
users who are unfamiliar with networks.

NetWare® for AViiON® Systems: Utilities (069-000484)

This manual provides an alphabetically-arranged reference for NetWare command
line and menu utilities. It is written for all levels of NetWare users.

Reader, please note

In all examples within the text, we use

This typeface to show system prompts and responses.

To show which NetWare products support a given call, we use a chart similar to the
following:

NetWare for
NetWare 2x NetWare 3.x AViiON Systems
v v v/

Contacting Data General

069-000567

Data General wants to assist you in any way it can to help you use its products.
Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please contact your local Data General sales
representative.

Telephone assistance

If you are unable to solve a problem with your system, free telephone assistance is
available with your warranty and with most Data General service options. If you
are within the United States or Canada, contact the Data General Customer
Support Center (CSC) by calling 1-800-DG-HELPS. Lines are open from 8:00 a.m.
to 5:00 p.m., your time, Monday through Friday. The center will put you in touch
with a member of Data General’s telephone assistance staff who can answer your
questions.

For telephone assistance outside the United States or Canada, ask your Data
General sales representative for the appropriate telephone number.

Licensed Material - Property of the copyright holders v

Joining our user’s group

Please consider joining the largest independent organization of Data General users,
the North American Data General Users Group (NADGUG). In addition to making
valuable contacts, members receive FOCUS monthly magazine, a conference
discount, access to the Software Library and Electronic Bulletin Board, an annual
Member Directory, Regional and Special Interest Groups, and much more. For
more information about membership in the North American Data General Users
Group, call 1-800-253—-3902 or 1-508-443-3330.

End of Preface

Vi Licensed Material - Property of the copyright holders 069-000567

Contents

069-000567

Chapter 1 Accounting Service APIs

Function Calls 1-1
Introduction to Accounting Services 1-1
NWGetAccountStatust e 1-2
NWSubmitAccountCharget iiuuinunnn... 1-4
NWSubmitAccountHold 1-6
NWSubmitAccountNote 1-8
Chapter 2 Bindery Service APIs
Function Calls 2-1
Introduction to Bindery Servicesiitiiini. 2-2
NWAddObjectToSetttt e 2-8
NWChangeObjectPassword00uuuuiunne... 2-10
NWChangeObjectSecurityot inneinnnnnn.. 2-12
NWChangePropertySecurityttt 2-14
NWCloseBindery 2-16
NWCreateObjectt 2-17
NWCreateProperty it 2-19
NWDeleteObject oottt e 2-21
NWDeleteObjectFromSet0 iueuiunnn... 2-22
NWDeletePropertyt 2-24
NWGetBinderyAccessLevel 2-26
NWGetObjectIDt e e e 2-28
NWGetObjectNameuiinitiiiit . 2-30
NWIsObjectInSetot e 2-32
NWIsObjectPasswordOKt 2-34
NWOpenBindery ittt 2-36
NWRenameObject 2-37
NWScanObjectooi it e e 2-38
NWScanPropertyc..iiuii ittt 2-40
NWScanPropertyValue 2-43
NWWritePropertyValue 2-46
Chapter 3 Connection Service APIs
Function Calls 3-1
Introduction to Connection Servicesuuiiinennenn.. 3-2
NWAttachToServerPlatform 34
NWClearClientConnID 3-6
NWCIoseTransport vv vttt ittt e ettt 3-7
NWDetachFromServerPlatformccou.... 3-8
NWGetClientConnID iiiininenan... ... 39
NWGetConnectionInformation 3-10
NWGetInternetAddresst 3-12
NWGetObjectClientConnIDs i, 3-13
NWGetServerConnID 3-15
NWGetServerConnIDList i 3-16
NWLoginToServerPlatform, 3-18
NWLogoutFromServerPlatform 3-20
NWRegisterTimeoutErrorFunction 3-21

Licensed Material - Property of the copyright holders Vil

Chapter 4 File Service APls

Function Calls e, 4-1
Introduction to File Services i . 4-3
NWClearObjectVolRestriction0iuuinenunenno... 4-4
NWCloseFile e i, 4-6
NWCreateDir0t et i 4-7
NWCreateFile 4-9
NWCreateNewFilettt 4-11
NWDeleteDiro ii it e e e e e e e 4-13
NWDeleteFile i, 4-15
NWDeleteTrusteeuiiiiiniiinn i, 4-17
NWEFileCopy .o ioit ittt e e e e 4-19
NWGetDirEntryInfo 4-21
NWGetDirRestrictionttt 4-23
NWGetEffectiveRights 4-25
NWGetEntrysTrusteesot 4-27
NWGetFileAttributes i, 4-29
NWGetNameSpaceInfo 4-31
NWGetObjectVolRestriction ~— 4-32
NWGetVollnfoWithHandle e 4-34
NWGetVoINameiiiiiiii e, 4-36
NWGetVoINum et 4-38
NWGetVolsObjectRestrictionso uuieruunnnn.. 4-40
NWGetVolUsageoiiiiiiiii i i, 4-42
NWMoveEntry i e 4-44
NWMoveFile i e i 4-46
NWOpenFile e 4-48
NWPurgeSalvageableFile 4-50
NWReadFile i i 4-52
NWRecoverSalvageableFile 4-54
NWRenameDir 4-56
NWSecanDirEntryInfo 4-58
NWScanFileEntryInfo i 4-60
NWScanSalvageableFiles 4-62
NWSecanTrusteePaths i 4-64
NWSetDirEntryInfo 4-66
NWSetDirRestrictionttt 4-68
NWSetDirsInheritedRightsMask 4-70
NWSetFileAttributes 4-72
NWSetFileEntryInfo 4-74
NWSetFilesInheritedRightsMask 4-76
NWSetObjectVolRestriction uiurnnnn.. 4-78
NWSetTrustee e 4-80
NWWriteFile i i e 4-82
Chapter 5 Path Service APIs
Function Calls i i 5-1
Introduction to Path Services i, 5-1
The NWPath_t structure 5-1
NWAllocPermanentDirHandle53
NWAIllocTemporaryDirHandle 5-5
NWDeallocateDirHandle 5-7
NWGetDirPath i e e 5-8
NWParseFullPath i 5-9
NWSetDirHandle it 5-11

A\"111] Licensed Material - Property of the copyright holders 069-000567

069-000567

Chépter 6 Queue Management Service APls

Function Calls

Introduction to QMS
NWAbortServicingQueuedob
NWAttachQueueServerToQueue 0uiunun..
NWChangeQueuedobEntry
NWChangeQueuedobPosition0oiiiuniinn..
NWChangeToClientRights
NWCloseFileAndAbortQueuedob
NWCloseFileAndStartQueuedob0t
NWCreateQUueuet e ettt
NWCreateQueueFile 0 ..
NWDestroyQueuettt e e e
NWDetachQueueServerFromQueue
NWPFinishServicingQueuedob
NWGetQueuedobFileSize S
NWGetQueuedobList i,
NWReadQueueCurrentStatusciuneinin ..
NWReadQueuedobEntry i
NWReadQueueServerCurrentStatus
NWRemoveJobFromQueueovuinit e,
NWRestoreQueueServerRights
NWServiceQueuedobttt
NWSetQueueCurrentStatus,
NWSetQueueServerCurrentStatus

Chapter 7 Server Platform Service APIs
Function Calls i
NWDisableServerPlatformLogin
NWDownServerPlatform
NWEnableServerPlatformLogin
NWGetDiskUtilization i,
NWGetServerPlatformDateAndTime
NWGetServerPlatformDescriptionStrings
NWGetServerPlatformInformation
NWGetServerPlatformLoginStatus
NWGetServerPlatformName
NWIsNetWare386ttt

Chapter 8 Synchronization Service APIs
Function Calls i
Introduction to Synchronization Services
NWClearFilet iiinn
NWClearFileSet i i
NWClearLogicalRecord i,
NWClearLogicalRecordSett iinuinnenunn.
NWClearPhysicalRecord i,
NWClearPhysicalRecordSet
NWCloseSemaphoretiiiin i, ..
NWExamineSemaphore it iiiiirinennnnnnnn.
NWLockFileSeti it i
NWLockLogicalRecordSet iiiiiiinenon..
NWLockPhysicalRecordSet
NWLogFile i e e et e
NWLogLogicalRecordttt
NWLogPhysicalRecord

Licensed Material - Property of the copyright holders

ix

Chapter 8 Synchronization Service APIs (continued)

NWOpenSemaphore 8-25
NWReleaseFile 8-27
NWReleaseFileSet 8-28
NWReleaseLogicalRecord 8-29
NWReleaseLogicalRecordSet, 8-30
NWReleasePhysicalRecord 8-31
NWReleasePhysicalRecordSet, 8-32
NWSignalSemaphore 8-33
NWWaitOnSemaphore it 8-34
Chapter 9 Transaction Tracking Service APls
Function Calls i 9-1
Introduction to Transaction Tracking 9-1
NWTTSAbortTransactiont iiiinmmenannn.. 9-3
NWTTSBeginTransaction ittt 9-5
NWTTSDisableTransactionTrackingouuun.... 9-7
NWTTSEnableTransactionTracking0uu.... 9-8
NWTTSEndTransaction0. ittt 9-10
NWTTSGetConnectionThresholds 9-12
NWTTSGetControlFlags e 9-14
NWTTSGetProcessThresholds 9-15
NWTTSIsAvailable e e 9-17
NWTTSIsTransactionWritten 9-19
NWTTSSetConnectionThresholds 9-21
NWTTSSetControlFlags 9-23
NWTTSSetProcessThresholds e e e 9-24
Appendix A Constant Declarations and Structure Definitions
Accounting ServiCest e A-1
Bindery Services A-2
Connection Servicesuiiii ittt A4
File and Path Services it A4
Queue Management Servicescuuiin ittt A-20
Server Platform Services A-23
Synchronization Services A-25

Appendix B NetWare Errors
NWEITNO e e e e e e B-1

Appendix C DG/UX Errors
Appendix D Differences

Overview and Introduction e, D-1
Global Differences Between Current and Previous APIs D-3
Function Call Index - Previous/Current API Libraries D-7
Console Control Servicesttt D-10

Licensed Material - Property of the copyright holders 069-000567

Chapter 1
Accounting Service APIs

Function Calls

This chapter describes the following Accounting Service APIs.

API Page
NWGetAccountStatus i .. 1-2
NWSubmitAccountChargettt iinnnennnn 14
NWSubmitAccountHold i 1-6
NWSubmitAccountNote 1-8

Introduction to Accounting Services

069-000567

The four accounting service calls enable developers to create DG/UX™ servers that

can charge for their services. For example, a database server can charge for the

number of records viewed, the number of requests serviced, or the amount of time

connected. A print server can charge for the number of pages printed.

For a server to charge for services, the server must be a member of the

ACCOUNT _SERVERS property of the file server. See "Accounting Services" in

NetWare® for AViiON® Series Systems C Interface Programmer’s Guide.

To use accounting services, you must be familiar with the NetWare® file server

bindery. See "Introduction to Bindery Services" in Chapter 2 for an explanation of

Bindery objects, properties, and values.

Licensed Material - Property of the copyright holders

NWGetAccou ntStatus

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v v/ v

This function returns the account status of a bindery objecf.

Synopsis
#include "nwapi.h"

int

uintl6

uintl6

char

int32

int32
NWHoldInfo_t

ccode;

serverConnlD;

objectType;
objectName[NWMAX_OBJECT_NAME_LENGTH];
balance;

limit;

holdsINWMAX_NUMBER_OF_HOLDS];

ccode=NWGetAccountStatus(serverConnlD, objectType, objectName,
&balance, &limit, holds);

Input
serverConnlD

objectType
objectName

balance

limit

holds

Output

balance

limit

holds

Passes the file server connection ID.

Passes the type of bindery object for which the request is
being made. (See Appendix A, Bindery Object Types.)

Passes a pointer to the string containing the object name for
which the account status request is being made.

Passes a pointer to the space allocated for the number of
value units available to the object to buy services on the
network.

Passes a pointer to the space allocated for the value of the
lowest level the object’s account balance can reach before the
object can no longer buy services on the network.

Passes a pointer to the structure allocated for the list of
objectIDs and holdAmounts that have been placed on the
account (maximum = 16). (See Appendix A, NWHoldInfo_t
Structure.)

Receives the number of value units available to the object to
buy services on the network.

Receives the value of the lowest level the object’s account
balance can reach before the object can no longer buy
services on the network.

Returns a list of objectIDs and holdAmounts that have been
placed on the account (maximum = 16). (See Appendix A,
NWHoldInfo_t Structure.)

1 '2 Licensed Material - Property of the copyright holders 069-000567

069-000567

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xCo No Account Privileges
0xC1 No Account Balance
0xC4 Account Disabled

0xEA No Such Member

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function queries a file server’s bindery for the current account status of a
specified bindery object by passing the bindery object name and type. The function
returns the object’s balance, limit, and holds parameters.

The value in the balance parameter represents the object’s account balance, usually
in some established monetary unit such as cents.

The holds parameter lists servers that have issued NWSubmitAccountHold calls
against the object and the amount reserved by each value-added server. The holds
parameter is also lists the object ID number of a value-added server that has issued
a NWSubmitAccountHold call against the object. Up to 16 servers can place holds
on the account at one time. Multiple holds from the same server are combined.
Each server hold is made up of two fields: (1) the object ID of the server that placed
the hold, and (2) the amount of that server’s hold.

See Also

NWSubmitAccountHold

Licensed Material - Property of the copyright holders 1 ‘3

NWSubmitAccountCharge

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v v v

This function updates the account of a bindery object by charging for a service and
updating the audit record.

Synopsis

Input

Output

L4

#include "nwapi.h"

int
uintl6
uintl6
char
uintl6
int32
int32
uintl16
char

code;

serverConnlID;

objectType;
objectName[NWMAX_OBJECT_NAME_LENGTH];
serviceType;

chargeAmount;

cancelHoldAmount;

commentType;
comment{NWMAX_COMMENT LENGTH];

ccode=NWSubmitAccountCharge(serverConnlD, objectType, objectName,
serviceType, chargeAmount, cancelHoldAmount, commentType, comment);

serverConnlID Passes the file server connection ID.

objectType

objectName

serviceType

Passes the type of bindery object for which the request is
being made. (See Appendix A, Bindery Object Types.)

Passes a pointer to the name of the object for which the
account status request is being made

Passes the type of service for which the request is being
made (usually the object type of the charging account
server).

chargeAmount Passes the amount of account server-charges for the service

it provides.

cancelHoldAmount Passes the amount to be subtracted from the total amount

of all holds previously placed by the server. If no
NWSubmitAccountHold calls were made prior to providing
the service, this value should be zero.

commentType Passes the type of comment written to the audit report.

comment

None.

Passes a pointer to a comment associated with the object’s
account charge.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x94 No Write Privileges
0xA2 I/0 Lock Error

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function charges an object’s account balance and relinquishes a hold against
the object’s account balance. The function can also write a note about the
transaction in an audit record (optional). The charge and hold amounts do not have
to be the same. ‘

The objectType and objectName parameters must uniquely specify the bindery
object and cannot contain wildcard characters.

The serviceType parameter usually contains the object type of the charging account
server. The common server object types are listed below:

Object Type

Archive Server NWOT_ARCHIVE_SERVER
Job Server NWOT_JOB_SERVER
Print Server NWOT_PRINT _SERVER

See "Introduction to Bindery Services" in Chapter 2 for additional object types.

The commentType parameter contains the number of the comment type in the
comment parameter. Comment types are administered by Data General and are

listed below:
Comment Type Description
1 Connect time charge
2 Disk storage charge
3 Log in note
4 Log out note
5 Account locked note
6 Server time modified note

Developer’s should contact their Data General service representative for unique
comment types. Comment types greater than 8000h are reserved for experimental
purposes.
Notes
The comment parameter is the entry that the value-added server makes in an audit
record. This audit record is contained in the SYS:SYSTEM\NET$ACCT.DAT file.
See Also

NWSubmitAccountNote

063-000567 Licensed Material - Property of the copyright holders 1 '5

NWSubmitAccountHold

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v

This function reserves a specified amount of an object’s account balance pending
a NWSubmitAccountCharge call.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlD;

uint16 objectType;

char objectName[NWMAX_OBJECT NAME_LENGTH];
int32 reserveAmount;

ccode=NWSubmitAccountHold(serverConnlD, objectType, objectName,
reserveAmount);

Input
serverConnID
objectType
objectName
reserveAmount
Output
None.

Return Values

0 Successful.
-1 Unsuccessful.

0x94
0xA2
0xC1
0xC3

Passes the file server connection ID.

Passes the type of bindery object for which the request is
being made. (See Appendix A, Bindery Object Types.)

Passes a pointer to the name of the bindery object for which
the account status request is being made.

Passes the hold amount to be placed against the client’s
account pending service.

One of the following error codes is placed in NWErrno:

No Write Privileges
1I/0 Lock Error

No Account Balance
Too Many Holds

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function reserves

a specified amount of an object’s account balance before that

object receives and is charged for a service on the network.

Licensed Material - Property of the copyright holders 063-000567

069-000567

Notes

The objectType and objectName parameters must uniquely identify the bindery
object and may not contain wildcard characters.

The reserveAmount parameter gets the amount that the server expects to charge
for the service it is about to provide to the object.

No more than 16 servers can reserve amounts of an object’s account balance at
one time. Multiple holds from the same server are combined.

Licensed Material - Property of the copyright holders 1 '7

NWSubmitAccountNote

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems

v v v

This function adds a note about an object’s account to an audit record. This API
does not charge for the service.

Synopsis
#include "nwapi.h"
int ccode;
uintl16 serverConnlD;
uint16 objectType;
char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 serviceType;
uint16 commentType;
char comment[NWMAX_COMMENT _LENGTH];

ccode=NWSubmitAccountNote(serverConnID, objectType, objectName,
serviceType, commentType, comment);

Input

serverConnID Passes the file server connection ID.

objectType Passes the type of bindery object for which the request is
being made. (See Appendix A, Bindery Object Types.)

objectName Passes a pointer to the object name for which the account
status request is being made.

serviceType Passes the type of service for which the request is being
made (usually the object type of the charging account
server).

commentType Passes the type of comment in the comment parameter. (See
Appendix A, Comment Types.)

comment Passes a pointer to the comment associated with the object’s
account.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xEA No Such Member
0xEB Not Set Property
0xEC No Such Set
0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

1 '8 Licensed Material - Property of the copyright holders 063-000567

069-000567

Description

Notes

This function adds a note about an accounting transaction to an audit record.

The objectType and objectName parameters must uniquely identify the bindery
object and may not contain wildcard characters.

The serviceType parameter usually contains the object type of the charging account
server. The common server object types are listed below:

Object Type

Archive Server NWOT_ARCHIVE_SERVER
Job Server NWOT_JOB_SERVER

Print Server NWOT_PRINT_SERVER

The commentType parameter contains the number of the comment type in the
comment parameter. Comment types are administered by Data General and are
listed below:

Comment Type Description

Connect time charge

Disk storage charge

Log in note

Log out note

Account locked note
Server time modified note

O O O DN =

Developer’s should contact their Data General service representative for unique
comment types. Comment types greater than 8000h are reserved for experimental
purposes.

The comment parameter contains the entry that the server makes in the audit
record. The audit record is contained in the SYS:SYSTEM\NET$ACCT.DAT file.

End of Chapter

Licensed Material - Property of the copyright holders 1 '9

Chapter 2
Bindery Service APIs

Function Calls

069-000567

This chapter contains a description of the following Bindery Service APIs.

API Page
Function Calls i i i 2-1
Introduction to Bindery Services 0. ... 2-2
NWAddODbjectToSeto oie et ittt ettt 2-8
NWChangeObjectPasswordccciiiiiinnnnnnnennn 2-10
NWChangeObjectSecurityottt . 2-12
NWChangePropertySecuritycittmnnnnnnnn.. 2-14
NWCloseBindery i iiiitiininmnteiaaaannann, 2-16
NWCreateObject it i, 2-17
NWCreatePropertycuiiiitineiiieennnnnn. 2-19
NWDeleteObjectcviiiiiiit ittt iinannnn, 2-21
NWDeleteObjectFromSeto i, - 2-22
NWDeletePropertyo ittt ittt it i e e 2-24
NWGetBinderyAccessLevel 2-26
NWGetObjectID..................v 2-28
NWGetObjectNamecutiiiiinnriennnneeennneennns 2-30
NWIsObjectInSet i e 2-32
NWIsObjectPasswordOK it 2-34
NWOpenBindery0iiiiiiiiitiiiiieeinnnnnnn. 2-36
NWRenameObjectttt iinenn.. 2-37
NWScanObjectttt it et e 2-38
NWScanPropertycoiiiiiiiniiiiiiii i, 2-40
NWSecanPropertyValue 2-43
NWWritePropertyValue 2-46

Licensed Material - Property of the copyright holders

2-1

Introduction to Bindery Services

Each NetWare file server includes a small database or bindery implemented as
hidden files. NetWare for AViiON Systems has three hidden bindery files
(NET$OBJ.SYS, NET$VAL.SYS, and NET$PROP.SYS) which are located in
SYS:SYSTEM. Within the Bindery, the NetWare operating system maintains a list
of all objects (entities) allowed to access the file server. NetWare also records
information about each bindery object.

Bindery Objects

A bindery object can be a user, user group, file server, print server, or any other
named entity that can access a file server. Each bindery object consists of the
following components.

Object Name A 48-byte, null-terminated string that contains the name of
the object. Only printable characters can be used. An object
name cannot include spaces or the following characters:

/ (slash)

\ (backslash)
: (colon)

; (semicolon)
s (comma)

* (asterisk)

2

(question mark)

Object ID A 4-byte number that uniquely identifies the dbject within a
particular file server’s bindery. The NetWare operating
system, not the application, assigns this number.

Object State A 1-byte flag that specifies whether the object is Static
(0x00) or Dynamic (0x01). A Static object exists in a bindery
until an application intentionally deletes it with the
NWDeleteObject function. A Dynamic object disappears
from a file server’s bindery when the file server is rebooted.
(In the case of an object that is a service-advertising server,

the object disappears from a bindery when the server ceases
to advertise.)

Object Type A 2-byte number that classifies an object as a user, user

group, file server, etc. The following is a list of common
object types:

2'2 Licensed Material - Property of the copyright holders 069-000567

069-000567

Table 2-1 Object Types

Properties Flag

Object Security

Description Object Type
Unknown 0x0000
User 0x0001
User Group 0x0002
Print Queue 0x0003
File Server 0x0004
Job Server 0x0005
Gateway 0x0006
Print Server 0x0007
Archive Queue 0x0008
Archive Server 0x0009
Job Queue 0x000A
Administration 0x000B
SNA Gateway 0x0021
Remote Bridge Server 0x0024
Synchronization Server 0x002D
Archive Server (Dynamic SAP) 0x002E
Advertizing Print Server 0x0047
Btrieve VAP 0x0050
Print Queue User 0x0053
NVT Server 0x009E
Wild 0xFFFF
A 1-byte flag that indicates whether one or more properties

are associated with the object.

0x00 = no associated properties

0xFF = one or more associated properties

A 1-byte flag that determines access to the object. The low-
order nibble determines who can read (scan for and find) the
object. The high-order nibble determines who can write to

(add properties to or delete properties from) the object.
Refer Table 2-2 for the values defined for each nibble.

Licensed Material - Property of the copyright holders

2-3

Table 2-2 Security Levels

Hex Binary Access Description
0 0000 Anyone Access allowed to all clients, even if the

client has not logged in to the file server.

1 0001 Logged Access allowed only to clients who have
logged in to the file server.

2 0010 Object Access allowed only to clients who have
logged in to the file server with the object’s
name, type, and password.

3 0011 Supervisor Access allowed only to clients who have
- logged in to the server as the supervisor or
as an object that has supervisor security
equivalence.

4 0100 NetWare Access only allowed to the NetWare
operating system.

For example, 0x31 indicates that any user logged in to the file server can find the
object, but only the supervisor can add a property to the object.

NOTE:

All six components (object name, object ID, object type, object properties, object
state, and object security) are essential elements of a bindery object.

Properties and Values

Each bindery object can have one or more properties associated with it. For
example, the object DAN (object type 0x0001, user) might be associated with the
properties GROUPS_I'M_IN, ACCOUNT_BALANCE, and PASSWORD. Note that
GROUPS_PM_IN is not the name of a user group to which the object belongs. It is
only the name of one category of information associated with that object. In the
same way, ACCOUNT_BALANCE is not an actual numerical balance, and
PASSWORD is not an actual password. Properties only identify categories of
information associated with the object.

Each property has a value associated with it. For example, the value of the
GROUPS_I'M_IN property would be the object ID of a user group to which DAN
belongs. The value of the property ACCOUNT_BALANCE would be user DAN’s
current balance. The value of the PASSWORD property would be DAN’s login

password. :

Properties fall into one of the following two categories: item or set. These
categories are described below.

ltem Property. An Item property is made up of a 128-byte value. For example, the

property ACCOUNT_BALANCE is an Item property that contains a monetary
balance in the first few bytes of a 128-byte string and zeros in the rest.

Licensed Material - Property of the copyright holders 069-000567

068-000567

Set Property. A Set property contains a list of 1 to 32 object IDs contained in a
128-byte segment. Each object ID is a long integer (4 bytes). The property
GROUPS_I'M_IN is a Set property. The 128-byte segment associated with
GROUPS_I'M_IN contains the object IDs of 1 to 32 user groups to which (in our
example) DAN belongs. The values of Set properties are always object IDs grouped
into one or more 128-byte segments.

A property consists of the following components: property name, property state,
property type, property security, and values flag. These items are described below.

Property Name

Property State

Property Type

Licensed Material - Property of the copyright holders

A 15-byte string that contains the name of the property. A
property name can contain only printable characters except
any of the following:

/ (slash)

\ (backslash)
: (colon)

; (semicolon)
s (comma)

* (asterisk)

?

(question mark)

A 1-byte field with bits 0 and 1 defined. Bit 0 is the
Static/Dynamic flag defined as follows:

3210 Bit number
0000 Static
0001 Dynamic

A Static property exists until it is explicitly deleted. A
Dynamic property is deleted from the file server’s bindery
when the file server is rebooted.

A 1-byte field with bits 0 and 1 defined. Bit 1 is the
Item/Set flag defined as follows:

3210 Bit number
0000 Item
0010 Set

The values of Item properties are defined and interpreted by
applications or by APIs. The bindery services software
interprets the value of a Set property as a series of object ID
numbers, each 4 bytes long.

For example, the following bit combination indicateé a Static
property of type Set:

0010

Property Security A 1-byte flag that determines who can access the property.
The low-order nibble determines who can scan for and find
the property (read security). The high-order nibble
determines who can add value(s) to the property (write
security). The following values are defined for each nibble:

0 0 0 0 Anyone
0001 Logged

0 0 1 0 Object

0 0 1 1 Supervisor
0100 NetWare

B W~ O

For example, 0x31 (0011 0001) indicates that any user
logged in to the file server can find (read) the property, but
only SUPERVISOR can add (write) values to the property.

Values Flag A 1-byte flag that indicates whether an item property has
more than one value associated with it. The following
values are defined for the byte:

0000 0000 One value
1111 1111 More values

Using Property Values

The following charts list the APIs that need to be used to create properties, verify
written values, delete property values, and delete properties.

Chart 1: Create Properties

Step Type API
Create the object Set .| NWCreateObject
(if the object does not Item (specifies object type)
exist)
Create the property | Set NWCreateProperty
(if the property does Item (specifies the object type
not exist) that can use the property)
Write value to property Set NWAddObjectToSet
Item | NWWritePropertyValue

Chart 2: Verify Written Values

Step ! Type API
Read value of property Set NWIsObjectInSet

Item NWScanPropertyValue

Licensed Material - Property of the copyright holders 069-000567

069-000567

Chart 3: Delete Property Values

Step Type APT
Delete a property value Set NWDeleteObjectFromSet
Item NWWritePropertyValue
(overwrites existing
value)
Chart 4: Delete Properties
Step Type API
Delete a property Set NWDeleteProperty
Item

Licensed Material - Property of the copyright holders

2-7

NWAddODbjectToSet

2-8

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v/ v

This function adds a member to a bindery property of type SET.

Synopsis

#include "nwapi.h”

int
uint16
char
uint16
char
char
uint16

ccode;

serverConnlD;
objectName[NWMAX_OBJECT_NAME_LENGTH);
objectType;
propertyName[NWMAX_PROPERTY_NAME_LENGTH];
memberName[NWMAX_MEMBER_NAME_LENGTH];
memberType;

ccode=NWAddObjectToSet(serverConnID, objectName, objectType,
propertyName, memberName, memberType);

Input

serverConnlID Passes the current session’s file server connection ID.

objectName Passes a pointer to the set’s object name.

objectType Passes the set’s bindery object type. (See Appendix A,

Bindery Object Types.)

propertyName Passes a pointer to the set’s property name.

memberName Passes a pointer to the name of the previously-created

bindery object being added to the set.

memberType Passes the bindery type of the member being added. (See

Output

None.

Return Values

Appendix A, Bindery Object Types.)

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xE9 Member Exists
0xEA No Such Member
0xF'8 No Property Write

0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 069-000567

069-000567

Description

The objectName, objectType, and propertyName parameters must uniquely identify
the property and cannot contain wildcard characters.

The memberName and memberType parameters must uniquely identify the bindery
object to be added and cannot contain wildcard characters. This object must
already exist within the bindery.

The property must be of type SET.

This function searches consecutive segments of the property’s value for an open slot
where it can record the unique bindery object identification of the new member.
The new member is inserted into the first available slot. If no open slot is found, a
new segment is created and the new member’s unique bindery object identification
is written into the first slot of the new segment. The rest of the segment is filled
with zeros.

Notes

A client must have write access to the property to make this call.

For properties of type ITEM, the application must use NWWritePropertyValue.
See Also

NWIsObjectInSet

NWDeleteObjectFromSet

Licensed Material - Property of the copyright holders 2-9

NWChangeObjectPassword

2-10

NetWare 2.x NetWare 3.x

NetWare for
AVIION Systems

v

v/

v

This function changes the password of a bindery object.

Synopsis
#include "nwapi.h"

int ccode;
uint16 serverConnID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 objectType;

char oldPasswordINWMAX_PASSWORD_LENGTH];
char newPasswordNWMAX_PASSWORD_LENGTH];

ccode=NWChangeObjectPassword(serverConnlD, objectName, objectType,

oldPassword, newPassword)

Input

serverConnlID Passes the file server connection ID.

objectName Passes a pointer to the object name.

objectType Passes the object type. (See Appendix A, Bindery Object

Types.)

oldPassword Passes a pointer to the old password.

newPassword Passes a pointer to the new password.

Output

None.

Return Values
0 Successful.

-1 TUnsuccessful. One of the following error codes is placed in NWErrno:

0xD7 Duplicate Password
0xF1 Bindery Security
0xF'8 No Property Write
0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders

069-000567

Description

This function creates or changes an object password. It also assigns the property
security (0x44) to the property PASSWORD. The property security allows only the
NetWare operating system to find, or add value to, the property. The PASSWORD
property is created with an associated bindery read and write access level, and the
password property value is assigned the newPassword.

Notes

This is the only function call which can create or change object passwords.
Although PASSWORD is a property, it is a unique property which can not be
created with the NWCreateProperty function call.

There is a distinction between a bindery object without a password property and
a bindery object with a password property that has no value. A workstation is
not allowed to log in to a file server as a bindery object that does not have a
PASSWORD property. However, a workstation is allowed to log in to a file
server as a bindery object with a password with no value.

This function requires read and write access to the bindery object.

See Also
NWIsObjectPasswordOK

069-000567 Licensed Material - Property of the copyright holders 2-11

NWChangeObjectSecurity

2-12

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v

This function changes the security access mask of a bindery object on the file server
connected via the file server connection ID (serverConnID parameter).

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlD;

char objectName[NWMAX_OBJECT NAME_LENGTH];
uint16 objectType;

uint8 newObjectSecurity;

ccode=NWChangeObjectSecurity(serverConnlID, objectName, objectType,
newObjectSecurity);

serverConnID Passes the file server connection ID.

objectName Passes a pointer to a string containing the object name.

objectType Passes the type of the bindery object. (See Appendix A,
Bindery Object Types.)

newObjectSecurity Passes the new security access level for the specified object.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xF1 Invalid Bindery Security
0xF5 No Object Create

0xFC No Such Object

0xFE Bindery Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName and objectType parameters must uniquely identify the bindery
object and cannot contain wildcard specifiers. '

The newObjectSecurity parameter is a byte in which the low 4 bits (nibble) control
read security and the high four bits control write security. Read security
determines which clients can find the bindery object when they scan for it. Write
security determines which clients can create properties for the bindery object.
Table 2-2, above, describes this security level.

For example, a bindery object with a newObjectSecurity of 0x31 can be viewed by

any client that has successfully logged in to the file server, but only a client with
security equivalence to SUPERVISOR can add properties to it.

Licensed Material - Property of the copyright hoiders 0639-000567

069-000567

Notes

See Also

Read Security:

0xn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ

Write Security:
0xOn = NWBS_ANY_WRITE
0x1n = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT_WRITE
0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

This function cannot set or clear BINDERY read or write security.

Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can change a bindery object’s security.

NWCreateObject

Licensed Material - Property of the copyright holders

2-13

NWChangePropertySecurity

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v/ v/ v

This function changes the security access mask of a property in a bindery object on
the file server associated with the file server connection ID (serverConnID

parameter).
Synopsis
#include "nwapi.h"”
int ccode;
uint16 serverConnlID;
char objectName[NWMAX_OBJECT NAME_LENGTH];
uint16 objectType;
char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 newPropertySecurity;

ccode=NWChangePropertySecurity(serverConnID, objectName, objectType,
propertyName, newPropertySecurity);

Input
serverConnlD Passes the file server connection ID.
objectName Passes a pointer to the name of the bindery object
associated with the property whose security is being
changed.
objectType Passes the type of the object described by the
objectName parameter. (See Appendix A, Bindery
Object Types.) :
propertyName Passes a pointer to the name of the affected property.
newPropertySecurity Passes the new security access level for the property.
Output
None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xF2 No Object Read Privilege
0xF6 No Property Delete Privilege
0xFB No Such Property

0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

2'1 4 Licensed Material - Property of the copyright holders 069-000567

Description

The objectName, objectType, and propertyName parameters must uniquely identify
the property and cannot contain wildcard specifiers.

The newPropertySecurity is a byte in which the low 4 bits (nibble) control read
security and the high 4 bits control write security. Read security determines which
clients can read the property. Write security determines which clients can write to
the property. See Table 2-2, above, for a description of each security level.

For example, a property with a newPropertySecurity of 0x31 can be seen by any
client that has successfully logged in to the file server, but only a client with
security equivalence to SUPERVISOR can write to the property.

Read Security:
0xn0 = NWBS_ANY_READ
0xnl1 = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ
Write Security:
0x0n = NWBS_ANY_WRITE
0x1n = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT_WRITE

0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

Notes

This function cannot set or clear BINDERY read or write security.

The requesting process cannot change a property’s security to a level greater
than the process’s access to the property.

This function requires write access to the bindery object, and read and write
access to the property.

See Also

NWCreateObject
NWCreateProperty

069-000567 Licensed Material - Property of the copyright holders 2'1 5

NWCloseBindery

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v/ v/

This function closes the bindery on the file server associated with the file server
connection ID (serverConnlID parameter).

Synopsis

#include "nwapi.h”

int ccode;

uint16 serverConnlD;

ccode=NWCloseBindery(serverConnID);
Input

serverConnlD Passes the file server connection ID.
Output

None.

Return Values

0 Successful.
-1 TUnsuccessful. One of the following error codes is placed in NWErrno:

0xFF Close Failure
0x96 Server Out Of Memory

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Because the bindery files contain all information about the file server’s clients, the
bindery should be archived on a regular basis. However, the file server keeps
bindery files open and locked at all times so that they cannot be accessed directly.
For bindery files to be archived, the bindery must be closed with the
NWCloseBindery function.

This function allows SUPERVISOR, or an object that has security equivalence to
SUPERVISOR, to close and unlock the bindery files, thus allowing the bindery to
be archived. After the bindery files have been archived, the NWOpenBindery

function is used to give control of the bindery files back to the file server. While
the bindery is closed, much of the functionality of the network is disabled.

See Also
NWOpenBindery

2"1 6 Licensed Material - Property of the copyright holders 069-000567

NWCreateObject

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v

This function adds a new object to the bindery on the file server associated with the
file server connection ID (serverConnlID parameter).

The bindery object must have a password property to log in to a file server. The
password property is created with the NWChangeObjectPassword function.

Synopsis
#include "nwapi.h"
int ccode;
uint16 serverConnlD;
char newObjectName[NWMAX_OBJECT NAME_LENGTH];
uint16 newObjectType;
uint8 newObjectState;
uint8 newObjectSecurity;

ccode=NWCreateObject(serverConnID, newObjectName, newObjectType,
newObjectState, newObjectSecurity);

Input

serverConnlD

newObjectName

newObjectType

newObjectState

Passes the server connection ID for the file server whose
bindery is being affected.

Passes a pointer to the string containing the new object
name.

Passes the bindery type of the new object. (See Appendix A,
Bindery Object Types.)

Passes a flag indicating the object state. (See Appendix A,
Bindery Object and Property States.)

newObjectSecurity Passes the new object’s access rights mask.

Return Values
0 Successful.

-1 Unsuccessful. One of the following error codes is placed in NWErn_lo:

0xEE
0xEF
0xF1
0xF5

Object Exists

Illegal Name

Invalid Bindery Security
No Object Create Privilege

Note: See Appendix B for a complete listing of possible NetWare errors.

069-000567

Licensed Material - Property of the copyright hoiders 2'1 7

2-18

Description

The newObjectName and newObjectType parameters must uniquely identify the
bindery object and cannot contain wildcard specifiers.

Only SUPERVISOR or a bindery object that is security equivalent to SUPERVISOR
can create bindery objects.

The newObjectSecurity is a byte in which the low 4 bits (nibble) control read
security while the high 4 bits control write security. Read security determines
which clients can find the bindery object when they scan for it. Write security
determines which clients can create properties for the bindery object. The read and
write values are described in Table 2-2, above.For example, a bindery object with a
newObjectSecurity of 0x31 can be seen by any client that has successfully logged in
to the file server, but only a client with security equivalence to SUPERVISOR can
add properties to it.

Read Security:

0xn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE
0x1ln = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT _WRITE
0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

See Also

NWChangeObjectPassword
NWCreateProperty

Licensed Material - Property of the copyright holders 069-000567

NWCreateProperty

068-000567

NetWare for
NetWare 2.x NetWare 3.x AVIiON Systems
v v v/

This function adds a property to a bindery object.

Synopsis
#include "nwapi.h"
int ccode;
uint16 serverConnlD;
char obJectName[NWMAX OBJECT NAME _LENGTH];
uint16 objectType;
char newPropertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 newPropertyTypeAndState;
uint8 newPropertySecurity;

ccode=NWCreateProperty(serverConnlD, objectName, objectType,
newPropertyName, newPropertyTypeAndState, newPropertySecurity);

Input

serverConnlID

objectName

objectType

newPropertyName

newPropertyTypeAndState

newPropertySecurity

Output

None.

Return Values

0
-1

Successful.

Passes the server connection ID.

Passes a pointer to the object name receiving the
new property.

Passes the type of the affected bindery object. (See
Appendix A, Bindery Object Types.)

Passes a pointer to the name of the property being
created.

Passes the OR’ed value of

the property type and the property state. (See
Appendix A, Bindery Property Types and Bindery
Object and Property States.)

Passes the new property’s security access mask.

Unsuccessful. One of the following error codes is placed in NWErrno:

0xEE
0xEF
0xF1
0xF5

Object Exists
Illegal Name
Bindery Security
No Object Create

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders 2"1 9

2-20

Description

The newPropertyTypeAndState parameter defines a property’s type and state
(dynamic or static). A dynamic property is one that is created and deleted
frequently. Dynamic properties are deleted from the bindery when the file server is
rebooted.

The property type indicates the type of data a property value contains. SET
property types contain a set of bindery object identifications. The bindery attaches
no significance to the contents of a property value if the property is of type ITEM.
(See "Introduction to Bindery Services" in this chapter.)

The newPropertySecurity parameter is a byte in which the low 4 bits (nibble)
control read security and the high 4 bits control write security. Read security
controls which clients can read the property. Write security controls which clients
can write to the property. The values for the newPropertySecurity parameter are
described in Table 2-2, above.

For example, a property with the newPropertySecurity parameter equal to 0x31 can
be seen by any client that has successfully logged in to the file server, but only a
client with security equivalent to SUPERVISOR can write to the property.

Read Security:

0xn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE
0x1n = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT_WRITE
0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

The requesting process cannot create properties that have security greater than the
process’s access to the bindery object.

The password property is created by calling NWChangeObjectPassword rather than
by using the NWCreateProperty function.

The PASSWORD property can not be created with this function call. You mu.ét
use NWChangeObjectPassword to create or change an object’s password.

This function requires write access to the bindery object.

See Also

NWChangeObjectPassword
NWCreateObject

Licensed Material - Property of the copyright holders 069-000567

NWDeleteObject

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v 4 v/

This function removes an object from the bindery of the file server associated with
the file server connection ID (serverConnlID).
Synopsis
#include "nwapi.h"”
int ccode;
uint16 serverConnlD;
char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;

ccode=NWDeleteObject(serverConnlID, objectName, objectType);

Input
serverConnID Passes the file server connection ID.
objectName Passes a pointer to the object name being deleted.
objectType Passes the bindery type of the object being deleted. (See
Appendix A, Bindery Object Types.)
Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xF2 No Object Read
0xF4 No Object Delete
0xF6 No Property Delete

0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Notes
The objectName and objectType parameters must uniquely identify the bindery
object and cannot contain wildcard specifiers. Only SUPERVISOR or a bindery
object that is security equivalent to SUPERVISOR can delete bindery objects.
See Also

NWDeleteObjectFromSet

069-000567 Licensed Material - Property of the copyright holders 2-21

NWDeleteObjectFromSet

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v v v/

This function deletes a member from a bindery property of type SET on the file
server associated with the file server connection ID (serverConnlID).

Synopsis

#include "nwapi.h"

int
uintl6
char
uintl16
char
char
uint16

ccode;

serverConnID;
objectName[NWMAX_OBJECT_NAME_LENGTH];
objectType;
propertyName[NWMAX_PROPERTY_NAME_LENGTH];
memberName[NWMAX_MEMBER_NAME_LENGTH];
memberType;

ccode=NWDeleteObjectFromSet(serverConnID, objectName, objectType,
propertyName, memberName, memberType);

Input
serverConnID Passes the file server connection ID.
objectName Passes a pointer to the name of the bindery object whose set
is being affected.
objectType Passes the object type of bindery object whose set is being
affected. (See Appendix A, Bindery Object Types.)
propertyName Passes a pointer to the name of the property (of type SET)
from which the member is being deleted.
memberName Passes A pointer to the name of the bindery object that is
being deleted from the set.
memberType Passes the object type of the member being deleted. (See
Appendix A, Bindery Object Types.)
Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

2-22

0xEB Property Not Set Property
0xF8 No Property Write

0xFB No Such Property

0xFC No Such Object

Licensed Material - Property of the copyright holders 069-000567

068-000567

Note: See Appendix B for a complete listing of possible NetWare errors.

Description
There are two types of bindery properties: ITEM and SET. SET properties are

those that contain multiple bindery objects. (See "Introduction to Bindery Services"
in this chapter.)

See Also
NWAddObjectToSet

NWDeleteObject
NWDeleteProperty

Licensed Material - Property of the copyright holders 2-23

NWDeleteProperty

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v/ v/ v

This function removes a property from a bindery object on the file server specified
with the file server connection ID (serverConnID).

Synopsis
#include "nwapi.h"”
int ccode;
uint16 serverConnlD;
char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;
char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
ccode=NWDeleteProperty(serverConnlD, objectName, objectType,
propertyName);
Input

serverConnID Passes the file server connection ID.

objectName Passes a pointer to the object name whose property is being
deleted.

objectType Passes the type of the object whose property is being deleted.
(See Appendix A, Bindery Object Types.)

propertyName Passes a pointer to the property name to be deleted.

Output

None.

Return Values

0 Successful.
-1 TUnsuccessful. One of the following error codes is placed in NWErrno:

0xF1 Bindery Security
0xF6 No Property Delete
0xFB No Such Property

0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.
Description

The objectName and objectType must uniquely identify the bindery object and
cannot contain wildcard characters.

2'24 Licensed Material - Property of the copyright holders 069-000567

068-000567

The propertyName parameter may contain wildcards. All matching properties of
the bindery object are deleted when the propertyName contains wildcard
characters. '

Notes
This function requires write access to the bindery object and the property.
See Also
NWDeleteObjectFromSet
Licensed Material - Property of the copyright holders 2-25

NWGetBinderyAccessLevel

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v/

This function returns the access level of the currently logged-in client based on the
file server specified with the file server connection ID (serverConnID).

Synopsis

#include "nwapi.h"

int ccode;
uint16 serverConnlD;
uint8 binderyAccessLevel;
uint32 objectID;
ccode=NWGetBinderyAccessLevel(serverConnlID, &binderyAccessLevel,
&objectID);
Input
serverConnID Passes the server connection ID.
binderyAccessLevel Passes a pointer to the space allocated for the current
station’s security access mask.
objectID Passes a pointer to the space allocated for the object ID of
the current logged in entity.
Output

binderyAccessLevel Receives the current station’s security access mask.

objectID Receives the object ID of the current logged in entity.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96 Server Out Of Memory
0xF1 Bindery Security

0xFE Directory Locked

0xFF Hardware Failure

Note: See Appendix B for a complete listing of possible NetWare errors.
Description

The level of access a client has determines which bindery objects and properties the
process can find and manipulate.

2-26 Licensed Material - Property of the copyright holders 069-000567

The binderyAccessLevel parameter is a byte in which the low 4 bits (nibble)
indicate read security and the high 4 bits indicate write security. Read security
controls which objects and properties the workstation can find when it scans the
bindery. Write security controls which objects and properties the workstation can
modify. Table 2-2, above, summarizes the security values.

For example, a binderyAccessLevel of 0x11 indicates that the requesting
workstation has successfully logged in to the file server and does not have security
equivalence to SUPERVISOR. This client is allowed access to objects that have
LOGGED or OBJECT read or write security.

Read Security:

0xn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

0x1n = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT_WRITE
0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

069-000567 Licensed Material - Property of the copyright holders 2-27

NWGetObjectID

2-28

NetWare for
NetWare 2.x NetWare 3.x AVIION Systems
v/ v v

This function looks up an object ID of the stated object name and object type in the
bindery on the file server specified with the file server connection ID

(serverConnlID).

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlD;

char objectName[NWMAX_OBJECT NAME_LENGTH];
uint16 objectType;

uint32 objectID;

ccode=NWGetObjectID(serverConnID, objectName, objectType, &objectID);

Input-
serverConnID
objectName
objectType
objectID
Output
objectID

Return Values
0 Successful.

Passes the server connection ID.

Passes a pointer to the name of the object being searched
for.

Passes the bindery type of the object being searched for.
(See Appendix A, Bindery Object Types.)

Passes a pointer to the space allocated for the object ID.

Receives the object ID.

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96

0xF0
0xFC
0xFE

Server Qut Of Memory
Illegal Wildcard

No Such Object
Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Since each file server contains its own bindery, object IDs are not consistent across

file servers.

Licensed Material - Property of the copyright holders 069-000567

The objectName and objectType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

Notes
The requesting process must be logged in to the file server and have read access
to the bindery object for this call to be successful.
See Also
NWChangeObjectSecurity
NWCreateObject

069-000567 Licensed Material - Property of the copyright holders 2-29

NWGetObjectName

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v/

This function returns the name and object type of a bindery object on the file server
specified with the file server connection ID (serverConnID).

Synopsis
#include "nwapi.h"
uint16 ccode;
uint16 serverConnlD;
uint32 objectID;
char objectName[NWMAX_OBJECT_NAME_LENGTH];

uint16 quectType;
ccode=NWGetObjectName(serverConnlID, objectID, objectName,

&objectType);
Input
serverConnlID Passes the server connection ID.
objectID Passes the object ID.
objectName Passes a pointer to the string allocated for the object name.
objectType Passes a pointer to the space allocated for the object type
(optional).
Output
objectName Receives the object name.
objectType Receives the object type (optional).

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0x96 Server Out Of Memory
0xF1 Bindery Security

0xFC No Such Object

0xFE Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.
Description

The requesting process must be logged in to the file server and have read access
to the bindery object for this call to be successful.

2’30 Licensed Material - Property of the copyright holders 069-000567

See Also
NWChangeObjectSecurity

NWCreateObject
NWGetObjectID

069-000567 Licensed Material - Property of the copyright holders 2"31

NWIisObjectinSet

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v/
This function searches a property of type SET for a specified object.
Synopsis
#include "nwapi.h"
NWBoolean_ts ccode;
uint16 serverConnlD;
char objectName[NWMAX_OBJECT NAME_LENGTH];
uint16 objectType;
char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
char memberName[NWMAX_MEMBER_NAME_LENGTH];
uint16 memberType; :
ccode=NWIsObjectInSet(serverConnID, objectName, objectType,
propertyName, memberName, memberType);
Input
serverConnID Passes the server connection ID.
objectName Passes a pointer to the name of the object containing the
property being searched.
objectType Passes the object type of the object containing the property
being searched. (See Appendix A, Bindery Object Types.)
propertyName Passes a pointer to the property name being searched
(property type SET).
memberName Passes the name of the bindery object being searched for.
memberType Passes the bindery type of the object being searched for. (See
Appendix A, Bindery Object Types.)
Output

ccode This function returns a 1 when searched for object is in set,
or a 0 when it is not.

Return Values

1 Object was found in set.
0 Object was NOT found in set. One of the following error codes is placed in

NWErrno:
0xFC No Such Object
0xF1 Bindery Security

0xEC No Such Set
0xFE Directory Locked

2'32 Licensed Material - Property of the copyright holders : 069-000567

068-000567

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The objectName, objectType, and propertyName parameters must uniquely identify
the property and cannot contain wildecard specifiers.

The memberName and memberType parameters must uniquely identify the bindery
object and cannot contain wildcard specifiers. The property must be of type SET.

This funétion does not expand members of type GROUP in an attempt to locate a
specific member. For example, assume the following bindery objects and properties
exist:

Object Property Property Value

JOAN |
SECRETARIES GROUP_MEMBERS JOAN’s object ID
EMPLOYEES GROUP_MEMBERS IS]:]):‘.CRETARIES’ object

JOAN is not considered a member of EMPLOYEES because she is not explicitly
listed in the EMPLOYEES’ GROUP_MEMBERS property. In addition, the bindery
does not check for recursive (direct or indirect) membership definitions.

Notes
Read access to the property is required for this call.
For properties of type ITEM, the application must use NWScanPropertyValue.
See Also
NWAddObjectToSet
Licensed Material - Property of the copyright holders 2-33

NWIisObjectPasswordOK

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v/ v

This function verifies the password of a bindery object on the file server specified
with the file server connection ID (serverConnlID).

Synopsis
#include "nwapi.h"
NWBoolean_ts ccode;
uintl6 serverConnlD;
char objectName[NWMAX_OBJECT_NAME_LENGTH];
uintl6 objectType;
char objectPasswordINWMAX_PASSWORD_LENGTH];
ccode=NWIsObjectPasswordOK(serverConnlD, objectName, objectType,
objectPassword);
Input
serverConnlD Passes the file server connection ID.
objectName Passes a pointer to the name of the bindery object whose
password is being verified.
objectType Passes the type of the bindery object whose password is
being verified. (See Appendix A, Bindery Object Types.)
obj'ectPasswdrd Passes a pointer to the password to be verified.
Output
None.

Return Values

1 Password is OK.
0 Password is not OK. One of the following errors codes is placed in

NWErrno:
0xC5 Login Lockout
0xF1 Bindery Security

0xFB No Such Property
0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.
Description

The objectName and objectType parameters must uniquely identify the bindery
object and cannot contain wildcards.

2-34 Licensed Material - Property of the copyright holders 068000567

A bindery object without a password property is different from a bindery object
with a password property that has no value. A workstation is not allowed to log in
to a file server as a bindery object that does not have a password property.
However, a workstation can log in without a password if the bindery object has
been given a password property that contains no value.

Notes

The requesting workstation does not have to be logged in to the file server to
make this call.

See Also

NWLoginToServerPlatform

069-000567 Licensed Material - Property of the copyright holders 2'35

NWOpenBindery

2-36

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v/ v/ v/
This function reopens a file server bindery that has been closed by a call to
NWCloseBindery.
Synopsis

#include "nwapi.h”

int ccode;

uint16 serverConnlD;

ccode=NWOpenBindery(serverConnID);

Input

serverConnID Passes the server connection ID

Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFF Failure
0xFE Directory Locked

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The bindery files are normally kept open and locked. Therefore, this function is
required only after a NWCloseBindery call has been made.

Notes
Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can open the bindery.

See Also
NWCloseBindery

Licensed Material - Property of the copyright holders 069-000567

NWRenameObject

069-000567

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems

v/ v v/

This function renames an object in the bindery.

Synopsis

Input

Output

Return

Notes

#include "nwapi.h”

int ccode;

uint16 serverConnlD;

char 0ldObjectName[NWMAX_OBJECT NAME_LENGTH];
char newObjectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;

ccode=NWRenameObject(serverConnlID, oldObjectName, newObjectName,

objectType);

serverConnlID

oldObjectName

newObjectName

objectType

None.

Values

0 Successful.

Passes the server connection ID.

Passes a pointer to the name of a currently defined object in
the bindery.

Passes a pointer to the new object name.

Passes the object’s bindery type. (See Appendix A, Bindery
Object Types.)

-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xEE
0xFO
0xF3
0xNo

Object Exists
Illegal Wildcard
No Object Rename
Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

The oldObjectName, newObjectName, and ObjectType parameters must
uniquely identify the bindery object and cannot contain wildcard specifiers.
Only SUPERVISOR or a bindery object that is security equivalent to
SUPERVISOR can rename bindery objects.

Licensed Material - Property of the copyright holders 2‘37

NWScanObject

2-38

This function searches for a bindery object name.

Synopsis
#include "nwapi.h"

NWBoolean_ts
uint16

char

uintl6

int32
NWObjectInfo_t

sequence=-1;

NetWare for
NetWare 2.x NetWare 3.x AVIiON Systems
v v v

ccode;
serverConnlID;
searchObjectName[NWMAX_OBJECT NAME_LENGTH];
searchObjectType;
sequence;
objects;

ccode=NWScanObject(serverConnlD, searchObjectName, searchObjectType,
&sequence, &objects);

Input
serverConnlID

searchObjectName
searchObjectType
sequence

objects

Output
sequence

objects

Return Values

Passes the server connection ID.

Passes a pointer to the object name to be searched for
(wildcards: * or ?).

Passes the object type to be searched for; wildcard value:
0xFFFF. (See Appendix A, Bindery Object Types.)

Passes a pointer to the space allocated for the object ID of
the next matching object.

Passes a pointer to the structure allocated for the found

object information. (See Appendix A, NWObjectInfo_t
Structure.)

Receives the object ID of the next matching object.

Receives the information on the found object. (See Appendix
A, NWObjectInfo_t Structure.)

1 Object was found.
0 Object was not found. One of the following error codes is placed in

NWErrno:

0xEF
0xFC
0x93

0xEF

Illegal Name

No More Objects
No Read Privileges
Illegal Name

Note: See Appendix B for a complete listing of possible NetWare errors.

Licensed Material - Property of the copyright holders

069-000567

Description

Notes

This function is used iteratively to scan the bindery for all objects that match both
the searchObjectName and the searchObjectType parameters. The sequence
parameter should be set to -1 for the first search. Upon return, sequence
aultiomatically receives a number to be used as the object identification for the next
call.

The NWObjectInfo_t structure contains the following fields:

char objectName[NWMAX_OBJECT NAME_LENGTH];
uint32 objectID;

uint16 objectType;

uint8 objectState;

uint8 objectSecurity;

The objectState field receives one of the following flags (optional):

NWBF_STATIC = matching object is static
NWBF_DYNAMIC = matching object is dynamic

The objectSecurity parameter is a byte in which the low 4 bits (nibble) control read
security and the high 4 bits control write security. Read security determines which
clients can find the bindery object when they scan for it. Write security defines
which clients can create properties for the bindery object. Below is a chart that
lists these security options.

When scanning several objects, the application scans until NWErrno equals No
More Objects.

For example, a bindery object with an objectSecurity of 0x31 can be viewed by any
client that has successfully logged in to the file server, but only clients with
security equivalence to SUPERVISOR can add properties.

Read Security:

0xn0 = NWBS_ANY_READ

0xnl = NWBS_LOGGED_READ
0xn2 = NWBS_OBJECT_READ
0xn3 = NWBS_SUPER_READ
0xn4 = NWBS_BINDERY_READ

Write Security:

0x0n = NWBS_ANY_WRITE

0x1n = NWBS_LOGGED_WRITE
0x2n = NWBS_OBJECT_WRITE
0x3n = NWBS_SUPER_WRITE
0x4n = NWBS_BINDERY_WRITE

The requesting process must be logged in to the file server and have read access
to the bindery object.

Licensed Material - Property of the copyright holders 2-39

NWScanProperty

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v v v
This function searches for properties in a bindery object.
Synopsis
#include "nwapi.h"
NWBoolean_ts ccode;
uint16 serverConnID;
char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;
char searchPropertyName[NWMAX_PROPERTY_NAME_LENGT
H];
int32 sequence;
NWPropertyInfo_t property;
uint8 moreFlag
sequence=-1;

ccode=NWScanProperty(serverConnID, objectName, objectType,
searchPropertyName, &sequence, &property, &moreFlag);

Input

serverConnID Passes the server connection ID.

objectName Passes a pointer to the name of the object whose
properties are being scanned.

objectType Passes the bindery type of the object containing the
property. (See Appendix A, Bindery Object Types.)

searchPropertyName Passes a pointer to the property name (with &ossible
wildcards) being searched for. (See NetWare® for
AViiON® Series Systems C Interface Programmer’s
Guide, Chapter 2, "NetWare Properties.")

sequence Passes a pointer to the space allocated for the
sequence number of the next matching object.

property Passes a pointer to the structure allocated for the
found property information. (See Appendix A,
NWPropertyInfo_t Structure.)

moreFlag Passes a pointer to the space allocated for an
indicator of more properties found.

Output
sequence Receives the sequence number of the next matching object.
property Receives a structure containing information on the found

property. (See Appendix A, NWPropertyInfo_t Structure.)

2'40 Licensed Material - Property of the copyright holders 069-000567

069-000567

moreFlag Receives the more properties flag:

0x00 = no more properties for this object
0xFF = more properties exist

Return Values

1 Successfully found a property.

0 A property could NOT be found. One of the following error codes iS placed

in NWErrno:
0xFB No More Properties
0xF0 Illegal Wildcard
0xFC No Such Object
0xF9 No Property Read

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function iteratively scans the given bindery object for properties that match
the searchPropertyName parameter. The sequence parameter should be assigned a
-1 for the first scan. When the call returns, the moreFlag parameter contains 0xFF
if the matched property is not the last property, and the sequence parameter
receives the number to use in the next call.

When scanning several properties, the application should scan until NWErrno is
equal to No More Properties. ‘

The objectName and objectType parameters must uniquely identify the bindery
object and cannot contain wildcard specifiers.

The NWPropertyInfo_t structure contains the following fields:

char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 propertyStateAndType;

uint8 propertySecurity;

uint8 propertyHasAValue;

The propertyName field is the name of the bindery property.
The propertyStateAndType field indicates the state and type of the property:

NWBF_STATIC or NWBF_DYNAMIC
ORed with NWBF_ITEM or NWBF_SET

The propertySecurity field receives a byte in which the low 4 bits (nibble) control
read security and the high 4 bits control write security.

For example, a property with propertySecurity of 0x31 can be viewed by any client

that has successfully logged in to the file server, but only a client with security
equivalence to SUPERVISOR can write to the property.

Licensed Material - Property of the copyright holders 2'41

The propertyHasAValue field receives one of the following flags indicating whether
the property has a value:

0x00 = property has no value
0xFF = property has a value

Notes
This function requires read access to the bindery object as well as the
property.
See Also
NWScanObject
NWWritePropertyValue

2"42 Licensed Material - Property of the copyright holders 069-000567

NWScanPropertyValue

069-000567

This function reads the property value of a bindery object.

Synopsis

Input

#include "nwapi.h"

NWBoolean_ts
uint16

char

uint16

char

uint8
uint8
uint8
uint8

segmentNumber=1;

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v
ccode;
serverConnlID;
objectName[NWMAX_OBJECT_NAME_LENGTH];
objectType;

propertyNa NWMAX_PROPERTY_NAME_
LENGTH];

segmentNumber;
segmentDatalNWMAX_SEGMENT_DATA_
LENGTH];

moreSegments,

propertyType;

ccode=NWScanPropertyValue(serverConnlID, objectName, objectType,
propertyName, &segmentNumber, segmentData, &moreSegments,

&propertyType);
serverConnID Passes the server connection ID.
objectName Passes a pointer to the object name containing the
property.
objectType Passes the object type of the object containing the
property. (See Appendix A, Bindery Object Types.)
propertyName Passes a pointer to the property name whose
information is being retrieved.
segmentNumber Passes a pointer to the segment number of the data
to be read. (See description below.)
segmentData Passes a pointer to the buffer allocated for the
property data.
moreSegments Passes a pointer to the space allocated for the "more
segments” code:
0x00 = no more segments to be read;
0xFF = more segments to be read)
propertyType Passes a pointer to the space allocated for the

property type.

Licensed Material - Property of the copyright hoiders 2'43

Output

segmentNumber Receives an incremented number until no more
segments are found.

segmentData Receives the 128-byte buffer of property data. (See
description below.)

moreSegments Receives 0x00 if there are no more segments to be
read; otherwise, it receives 0xFF

propertyType Receives the property type. (See Appendix A,
Bindery Property Types.) '

Return Values

1 Object successfully found.
0 Object not found. One of the following error codes is placed in
NWErrno:

0x93 No Read Privileges
0xEC No Such Set

0xF9 No Property Read
0xFB No Such Property

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

This function is used to iteratively read property values with more than 128 bytes
of data.

The segmentNumber should be set to 1 to read the first data segment of a property
and will be incremented for each subsequent call until the moreSegments flag is set
to 0 or until call fails (ccode=0).

The objectName, objectType, and propertyName parameters must uniquely identify
the property and cannot contain wildcard specifiers.

The propertyType indicates the type of data a property value contains. The SET
property type indicates that the property’s value contains a set of bindery object
identifications. The bindery attaches no significance to the contents of a property
value if the property is of type ITEM. If the property is of type SET, the data
returned in segmentData is an array of bindery object IDs.

The bindery makes no attempt to coordinate activities among multiple stations that
concurrently read or write data to a single property. This means that one station
might read a partially updated property and get inconsistent data if the property’s
data extends across multiple segments. If this presents a problem, coordination on
reads and writes must be handled by application programs. Logical record locks
can be used to coordinate activities among applications.

Licensed Material - Property of the copyright holders 069-000567

Notes
Read access to the property is required to successfully call this function.

See Also
NWCreateProperty

069-000567 Licensed Material - Property of the copyright holders 2'45

NWWritePropertyValue

2-46

NetWare for
NetWare 2.x NetWare 3.x AVIiiON Systems
v/ v v/
This function writes the property value of a bindery object.
Synopsis
#include "nwapi.h"
int ccode;
uint16 serverConnlID;
char objectName[NWMAX_OBJECT NAME_LENGTH];
uint16 objectType;
char propertyName[NWMAX_PROPERTY_NAME_LENGTH];
uint8 segmentNumber;
char dataBufferlNWMAX_SEGMENT DATA_LENGTH];
uint8 moreFlag;
segmentNumber=1;
ccode=NWWritePropertyValue(serverConnID, objectName, objectType,
propertyName, segmentNumber, dataBuffer, moreFlag);
Input
serverConnID Passes the server connection ID.
objectName Passes a pointer to the affected object name.
objectType Passes the object type. (See Appendix A, Bindery
Object Types.)
propertyName Passes a pointer to the property name (type ITEM).
segmentNumber Passes the segment number of the written data (128-
byte chunks.) See "Description” below.
dataBuffer Passes a pointer to the 128-byte buffer that contains
the data. (See "Description” below.)
moreFlag Passes a flag indicating whether more segments are
being written:
0x00 = no more data segments
0xFF = more data segments
Output
None.

Licensed Material - Property of the copyright holders

069-000567

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in
NWErrno:

0xE8 Write to Group
0xF8 No Property Write
0xFB No Such Property
0xFC No Such Object

Note: See Appendix B for a complete list of NetWare errors.

Description

A property value is data that is assigned to a particular bindery property. For
example, a user’s password is saved as a property value for the PASSWORD
property.

The objectName, objectType, and propertyName parameters must uniquely identify
the property and must not contain wildcard characters. The objectName can be
from 1 to 15 characters long. Only printable characters can be used. slashes,
backslashes, colons, semicolons, commas, asterisks, and question marks are
prohibited.

The segmentNumber parameter indicates which segment of data is being written
and should be assigned a value of 1 for the first segment. To write property data to
more than one segment (128 bytes), this function should be called iteratively. In
addition, the moreFlag parameter must contain a value of 0xFF unless you are
writing to the last data segment. To signal Netware that the last segment is being
written, and all further segments can be truncated, assign the moreFlag parameter
to 0x00.

We recommend that property values be kept to a single segment (128 bytes) to
improve bindery efficiency.

For NetWare 2.x, create property value segments sequentially. In other words,
before you create segment N, you must have created all segments from 1 to N-1.
However, once all segments of a property value have been established, segments
can then be written at random. If the segment data is longer than 128 bytes, it is
truncated.

The bindery makes no attempt to coordinate activities among multiple workstations
concurrently reading or writing data to a single property. This means that one
workstation might read a partially updated property and get inconsistent data if
the property’s data extends across multiple segments. If this

presents a problem, coordination on reads and writes must be handled by
application programs. Logical record locks can be used to coordinate activities
among applications.

Notes
A client must have write access to the property to call this function.

The objectName, objectType, and propertyName parameters must uniquely
identify the property and cannot contain wildcard specifiers.

. 069-000567 Licensed Material - Property of the copyright holders 2'47

2-48

See Also

For properties of type SET, the application should use NWAddObjectToSet.

NWScanPropertyValue

End of Chapter

Licensed Material - Property of the copyright holders 069-000567

Chapter 3
Connection Service APIs

Function Calls

This chapter describes the following Connection Service APIs.

API

NWAttachToServerPlatform
NWClearClientConnID
NWCloseTransportttt nnnnn.
NWDetachFromServerPlatform

' NWGetC]ientCohnID

NWGetObjectClientConnIDs0iiiirenennn..

NWGetServerConnIDt

NWLoginToServerPlatform
NWLogoutFromServerPlatform

NWRegisterTimeoutErrorFunction

069-000567 Licensed Material - Property of the copyright holders

Introduction to Connection Services

The Connection Service calls allow developers to establish and destroy logical
connections to a NetWare file server (creating utilities similar to the Netware
LOGIN, ATTACH, and LOGOUT utilities), and return status information about
those connections. Connection Services enable applications to do the following:

* Log in or attach objects to file servers

* Log out or detach objects from file servers
* Return information about a connection

* Return a clientConnID or a serverConnID

Connection Information

Connection information must be maintained by both the server and the connected
client. The file server maintains two related tables:

¢ The File Server Connection Table
¢ The Password Table

The number of entries allowed in the table depends upon which version of the
operating system the file server is running. NetWare for AViiON Systems allows
250 entries. Each entry in the File Server Connection table contains the network
address of a client. The corresponding entry in the Password table contains the
bindery object ID of the object type that established the connection between that
client and the file server. The file server identifies a connection (both the connected
client and the object attached through that client) by the connection’s position (1 to
250) in these tables. This connection is known to the client as the clientConnID.

The following information is maintained in order to maintain a client connection:

¢ serverConnlD
¢ clientConnlD

The serverConnlD is a number which represents a server to a client. The
serverConnlD is returned to the client by the NWAttachToServerPlatform function
call.

Potential DG/UX errors

The Connection Service APIs use two DG/UX interrupt signals: SIGPOLL and
SIGALRM. These interrupts can cause your C calls that do kernel reads or writes
to fail. If your call fails during a kernel read or write, complete the following:

1. Check the errno value. If the value is EINTR, the interrupts have caused
the error.
2. Redo your read or write.

3'2 Licensed Material - Property of the copyright holders 069-000567

069-000567

We suggest that your program check for this condition on all kernel reads and
writes. The code below is an example of how you could check for the condition.

include <errno.h>

rvalue = read(fd, buf, cnt);
while(rvalue == -1) {
if{ errno == EINTR) {
rvalue = read(fd, buf, cnt);
}
else {
break;
}

The interrupts can only cause the error when you have a transport open. The
transport is opened using the NWAttachToServerPlatform call. Use the
NWCloseTransport call to close the transport. After closing the transport, you will
not have this interrupt problem.

Licensed Material - Property of the copyright holders 3'3

NWAttachToServerPlatform

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems

v v/ v/

This function attaches the default client to the named file server.

Synopsis

#include "nwapi.h"

int ccode;
char fileServerName[NWMAX_SERVER_NAME_LENGTH];
uint16 serverConnlID;

ccode=NWAttachToServerPlatform(fileServerName, &serverConnlID);

Input
fileServerName Passes a pointer to the name of the target file server.
serverConnID Passes a pointer to the space allocated for the file
server connection ID.
Output

serverConnlID Receives the file server connection ID.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xF8 Already Attached to Server
0xF9 No Free Connection Slots
0xFC Unknown File Server
OxFF No Response From Server

Note: See Appendix C for an explanation of possible DG/UX errors. See
Appendix B for a complete listing of possible NetWare errors.

Description

This function initializes and sets up a client connection to a server and allows the
client to log in to the server by using the NWLoginToServerPlatform function. This
function returns a file server connection ID (serverConnID) for the new connection
and places the newly attached file server’s connection information in the client’s
connection tables. After using this function, the client can now login to the file
server as an object.

The fileServerName array should contain either the name of the file server to
attach to or an * (asterisk). If an asterisk is contained in the fileServerName
array, the application will attach to the nearest file server. The asterisk may be
used for utilities which do not require logging in.

3'4 Licensed Material - Property of the copyright holders 069-000567

069-000567

Notes

See Also

This function will automatically open a transport.

NWLoginToServerPlatform
NWCloseTransport

Licensed Material - Property of the copyright holders

3-5

NWClearClientConnlD

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v/ v
This function clears a client connection number on the file server.

Synopsis

#include "nwapi.h"

int ccode;

uint16 serverConnlID;

uint16 clientConnID;

ccode=NWClearClientConnID(serverConnID, clientConnID);
Input

serverConnID Passes the file server connection ID

clientConnID Passes the client connection number to be cleared
Output

None

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFC No Such Object
OxEF Illegal Name

0xC1 No Account Balance
0xC5 Login Lockout

Note: See Appendix B for a listing of possible NetWare errors.

Description

Clearing a connection will log a client off the network. The client must then re-
attach and login again in order to establish a new connection.

The calling application must be logged in as supervisor or have equivalent rights.

See Also

NWGetObjectClientConnIDs

3-6 Licensed Material - Property of the copyright holders 069-000567

NWCloseTransport
NetWare for
NetWare 2.x NetWare 3.x AViiON Systems

v

This function closes the underlying transport protocol. This call is not necessary for
the application to make if the operating system closes open devices on completion of
processes.

Synopsis
#include "nwapi.h"
int ccode;

ccode=NWCloseTransport();

Input

None.

Output

None.

Return Values

0 = Successful.
-1 Unsuccessful. The following error code is placed in NWErrno:

0x03 Transport Close Error

Note: See Appendix C for an explanation of possible DG/UX errors. See
Appendix B for a complete listing of possible NetWare errors.

Description

This function closes a transport after the client has logged out of a file server and
detached from all connections. This call should be made at the end of the
application to close the underlying transport.

Notes
The client would not be able to establish or use any connectionsAunless‘ a
transport is open. A transport is automatically opened with
NWAttachToServerPlatform.

See Also

NWAttachToServerPlatform
NWDetachFromServerPlatform
NWLogoutFromServerPlatform

069-000567 Licensed Material - Property of the copyright holders 3-7

NWDetachFromServerPlatform

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v/ v/ v

This function breaks a client-file server connection.

Synopsis
#include "nwapi.h"
int ccode;
uint16 serverConnlID;

ccode=NWDetachFromServerPlatform(serverConnID);

Input

serverConnlD Passes the file server connection ID.

Output

None.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

OxFF Connection Does Not Exist
0xFC Unknown File Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

Detaching from a file server is not the same as logging out from a file server.
Detaching relinquishes the connection number the client was using and breaks the
connection. Before the client can send further requests to that file server, it must
be reattached. Logging out from a file server preserves the connection ID and
allows the client to log in again without reattaching.

See Also

NWAttachToServerPlatform
NWLogoutFromServerPlatform

Licensed Material - Property of the copyright holders 069-000567

NWGetClientConniD

069-000567

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v/ v/

This function returns the connection number that the requesting client uses to
communicate with the server specified by serverConnlID.
Synopsis
#include "nwapi.h”
int ccode;
uint16 serverConnID;

uint16 clientConnlID;

ccode=NWGetClientConnID(serverConnID, &clientConnID);

Input
serverConnlD Passes the file server connection ID.
clientConnID Passes a pointer to the current client’s connection
number.
Output
clientConnID Receives the requesting client’s connection ID
number.

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFB Invalid Parameters
0x04 Not Connected To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The clientConnID parameter is an index into the Connection Table maintained by
the file server.

Notes

This call is the same as NWGetClientConnID (with the old function name)

See Also

NWAttachToServerPlatform
NWGetServerConnIDList

Licensed Material - Property of the copyright holders 3'9

NWGetConnectioninformation

3-10

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems

v/ v/

This function allows you to get information about a file server connection.

Synopsis

Input

Output

#include "nwapi.h"

int
uint16
uint16
char
uint16
uint32
uint8

ccode;

serverConnlID;

clientConnlID;
clientObjectName[NWMAX_OBJECT_NAME_LENGTH];
clientObjectType;

clientObjectID;
clientLoginTime[NWMAX_LOGIN_TIME_LENGTH];

ccode=NWGetConnectionInformation(serverConnID, clientConnID,
clientObjectName, &clientObjectType, &clientObjectID,
clientLoginTime);

serverConnlD Passes the file server connection ID

clientConnID Passes the client connection ID.

clientObjectName Passes a pointer to the space allocated for the client’s
object name.

clientObjectType Passes a pointer to the space allocated for the client’s
object type.

clientObjectID Passes a pointer to the space allocated for the client’s
object ID.

clientLoginTime Passes a pointer to the space allocated for the client’s
login time.

- clientObjectName Receives the client’s object name.

clientObjectType Receives the client’s object type.

clientObjectID Receives the client’s object ID.

clientLoginTime Receives the client’s login time.

Licensed Material - Property of the copyright holders 069-000567

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFF No Response From Server

0xFE Server Bindery Locked
0xFC No Such Object

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

The clientLoginTime is returned in an array of 7 uint8s. The array will be filled
with the following:

1st uint8=year (0 through 99; for example: 90=1990)
2nd uint8=month (1 through 12)

3rd uint8=day (1 through 31)

4th uint8=hour (0 through 23)

5th uint8=minute (0 through 59)

6th uint8=second (0 through 59)

7th uint8=dayOfWeek (0 through 6, 0 = Sunday)

069-000567 Licensed Material - Property of the copyright holders 3-11

NWGetinternetAddress

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems

v/ v/

This function gets the internetwork address of any client on the network.

Synopsis
#include "nwapi.h"
int ccode;
uint16 serverConnlID;

uint16 clientConnlD;
uint8 internetAddress] NWMAX_INTERNET_ADDRESS_LENGTH };

ccode=NWGetInternetAddress(serverConnlID, clientConnID,
internetAddress);

Input
serverConnID Passes the file server connection ID.
clientConnID Passes the client’s connection ID.
internetAddress Passes a pointer to the space allocated for the
internet address.
Output

internetAddress Receives the internet address.

Return Values

0 Successful.
-1 TUnsuccessful. One of the following error codes is placed in NWErrno:

0x01 Invalid Parameter Length
0x04 Not Connected To Server

Note: See Appendix B for a complete listing of possible NetWare errors.

Description

An internetwork address comprises the networkNumber, the physicalNodeAddress,
and the socketNumber. The internetwork address uniquely identifies a client
throughout an internetwork. This address can be used to send packets directly to
the client. The physicalNodeAddress is the address of the client’s LAN board.

3'1 2 Licensed Material - Property of the copyright holders 069-000567

NWGetObjectClientConnlIDs

068-000567

NetWare for
NetWare 2.x NetWare 3.x AViiON Systems
v v v

This function returns a list of server maintained client connection ID numbers for a

specified logged-in object.

Synopsis

Input

Output

#include "nwapi.h"

int ccode;

uint16 serverConnlID;

char objectName[NWMAX_OBJECT_NAME_LENGTH];
uint16 objectType;

uint16 numberQOfConnections;

uint16 connectionList[n];

uint16 maxListElements;

ccode=NWGetObjectClientConnIDs(serverConnlID, objectName, objectType,
&numberOfConnections, connectionList, maxListElements);

serverConnID

objectName

objectType

numberOfConnections

connectionList

maxListElements

numberOfConnections

connectionList

Passes the file server connection ID.

Passes a pointer to the bindery object name of the
object whose file server connection numbers are
being returned (wildcards not allowed).

Passes the bindery object type of the object whose file
server connection numbers are being obtained. (See
Appendix A, Bindery Object Types.)

Passes a pointer to the space allocated for the
number of server connections found for the specified
object.

Passes a pointer to the array allocated for the
object’s server connection ID numbers.

Passes the number of connectionList elements that
have been allocated (n).

Receives the number of server connections found for
the specified object.

Receives the server connection numbers for the
specified object.

Licensed Material - Property of the copyright holders 3"1 3

Return Values

0 Successful.
-1 Unsuccessful. One of the following error codes is placed in NWErrno:

0xFC No Such Object
0xEF Illegal Name

0xC1 No Account Balance
0xC5 Login Lockout

Note: See Appendix B for a listing of possible NetWare errors.

Description

You should allocate as many elements as you think necessary for the connectionList
parameter and then put that amount in the maxListElements parameter. This
function will return less than or equal the amount that the application specifies. If
fewer clientConnIDs were found than were requested, only numberOfConnections
amount will be copied into connectionList.

See Also

NWClearClientConnI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>