
@, DataGeneral
Data General Corporation, Westboro, Massachusetts 01580

Customer Documentation

NetWare for AViiON Systems:
C Interface Programmer’s Guide

069-—000566—00

NetWare® for AVIION® Systems:

C Interface Programmer's Guide

069-000566-00

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085—series) supplied with the software.

Copyright ©Novell Corporation, 1992

Copyright ©Data General Corporation, 1992

All Rights Reserved

Unpublished — All rights reserved under the copyright laws of the United States

Printed in the United States of America

Rev. 00, January 1992

Licensed Material — Property of the copyright holder(s)

Ordering No. 069-000566

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS

DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS.THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S); AND THE CONTENTS OF
THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases determine whether any such changes

have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS
GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE
OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY
BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,
oyEN 1 pe HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF

All software is made available solely pursuant to the terms and conditions of the applicable license agreement
which governs its use.

Restricted Rights Legend: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at

[DFARS] 252.227—7013 (October 1988).

DATA GENERAL CORPORATION

4400 Computer Drive

Westboro, MA 01580

AViiON is a U.S. registered trademark and DG/OUX is a trademark of Data General Corporation.

NetWare is a U.S. registered trademark of Novell, Inc.

UNIX is a U.S. registered trademark of UNIX Systems Laboratories Inc.

Certain portions of this document were prepared by Data General Corporation and the remaining portions
were prepared by Novell Corporation.

N etWare® for AViiON ® Systems:
C Interface Programmer’s Guide

069—000566—00

Revision History: Effective with:

Original Release — January 1992 NetWare” for AViiON® Systems
Revision 1.30

3

Preface

IMPORTANT:

This manual provides background information about the Applications Programming
Interface (API) for NetWare® for AViiON® Systems file servers. It explains the
methods of operation and the services that are available to application

programmers. NetWare® for AViiON® Systems: C Interface Reference Guide
provides detailed information about the specific function calls that control those
services.

This manual is a descendant of the Application Programmer’s Guide to NetWare®,
published in February 1986. While the earlier manual was oriented toward BASIC
programmers who write application programs, this manual has a broader scope.
The NetWare for AViiON Systems APIs are designed for application developers who
want to write DG/UX"TMTM applications independent of the NetWare shell.
Applications written with these APIs are compatible with NetWare 286, NetWare
386 and NetWare for AViiON Systems servers, unless otherwise noted.

NetWare for AViiON Systems is compatible with NetWare version 3.0, unless
otherwise noted. All references to NetWare version 3.0 in this manual apply to
NetWare for AViiON Systems. The release notice accompanying your shipment
provides the most current information about exceptions to this compatibility.

Unless otherwise noted, NetWare for AViiON Systems servers cannot service API
programs running in a NetWare network.

Organization of this manual

069-000566

Chapter 1 Accounting Services

This chapter explains how to use the Accounting Services that allow servers to
charge clients for services.

Chapter 2 Bindery Services

This chapter explains how to control the Bindery Services that regulate access to
the file server.

Chapter 3 Connection Services

This chapter explains how to establish and destroy logical connections to the file
server and control the return of status information about those connections.

Chapter 4 File Services

This chapter explains how to regulate the File Services that enable applications to
manipulate files, directories, volumes, trustees, and their associated information.

Chapter 5 Path Services

This chapter explains how to set up the Path Services to allocate directory handles
and return information about directory paths.

Chapter 6 Queue Services

This chapter explains how to set up the Queue Management Services to control the
flow of jobs and services on the network.

Licensed Material - Property of the copyright holders iii

Chapter 7 Server Platform Services

This chapter explains how to write function calls that report file server information

and disk usage.

Chapter 8 Synchronization Services

This chapter explains how to use the Synchronization Services to coordinate access
to network files and other resources.

Chapter 9 Transaction Tracking Services

This chapter explains how to use Transaction Tracking System attributes to ensure
file integrity of selected files.

Related Documents

You received a comprehensive set of documents with your NetWare for AViiON
Systems release package. The manuals listed below are included in that set and
contain information that augments the text of this manual.

NetWare® for AViiON® Systems: C Interface Reference Guide (069—000567)

This manual provides a comprehensive set of command instructions and API
program calls for all available NetWare API services and functions, and a complete
cross reference to the previously-released DOS API library. It is written specifically

for applications programmers.

NetWare® for AViiON® Systems: Concepts (069—000483)

This manual provides an alphabetically-arranged glossary of NetWare terminology.
It is written for all levels of NetWare users, but it will be particularly useful to
supervisors who are performing their first installation of the NetWare for AViiON
Systems product.

NetWare®for AViiON® Systems: Installation (069-000488)

This manual provides detailed instructions for planning a NetWare network,
installing NetWare for AViiON Systems on an AViiON computer, configuring
client workstations, and setting up user accounts. It is written for the
network supervisor.

NetWare® for AViiON® Systems: System Administration (069—000487)

This manual provides a reference to the SCONSOLE and HYBRID utilities and the
NetWare for AViiON Systems printing services and utilities. It is written primarily
for network supervisors who will use SCONSOLE and HYBRID to administer the
AViiON file server and set up DG/UX printers using the NetWare printing utilities.

NetWare® for AViiON® Systems: User Book (069-000486)

This manual provides a general overview of NetWare. It is written for first-time
users who are unfamiliar with networks.

NetWare® for AViiON® Systems: Utilities (069-000484)

This manual provides an alphabetically-arranged reference for NetWare command
line and menu utilities. It is written for all levels of NetWare users.

Licensed Material - Property of the copyright holders . 069-000566

Reader, please note

In all examples within the text, we use

This typeface to show system prompts and responses.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please contact your local Data General sales
representative.

Telephone assistance

If you are unable to solve a problem with your system, free telephone assistance is

available with your warranty and with most Data General service options. If you

are within the United States or Canada, contact the Data General Customer

Support Center (CSC) by calling 1-800-DG—HELPS. Lines are open from 8:00 a.m.

to 5:00 p.m., your time, Monday through Friday. The center will put you in touch

with a member of Data General’s telephone assistance staff who can answer your

questions.

For telephone assistance outside the United States or Canada, ask your Data

General sales representative for the appropriate telephone number.

Joining our user’s group

069-000566

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For

more information about membership in the North American Data General Users

Group, call 1-800-253-3902 or 1-508-443-3330.

End of Preface

Licensed Material - Property of the copyright holders V

Contents

069-000566

Chapter 1 Accounting Services
Bindery Properties 0.0... ccc cece ee cence ee nee e teen ees 1-1

Accounting Audit File......... 0.0... 0.0 ccc cc eee eee nce e nea 1-4

File Server Charges 0.0... ce eee ccc cece een eeeevas 1-12

Data Structures ... 0.2... ccc ccc eee ce eee een nee enes 1-13

Chapter 2 Bindery Services
Bindery Overview 0c. cece cece ee cee ence nent eneeees 2-1
Bindery Security 0.0... ccc ccc eee eee eee eee eeceeaes 2-3
Bindery Objects 0... cece ee eee ee ee ee eee eee ee enews 2-6
Bindery Properties 0.0... cece eee e cece ene enneeuas 2-9

Chapter 3 Connection Services
Attaching and Detaching 0.0... ccc eee eee eee ences 3-1
Logging in and logging out 0.0 ccc ce eee eee cence 3-2
Connection Tables 0.0... 0. ccc ccc ccc cece eee cence ee eeans 3-2

Chapter 4 File Services
File Identification 0.0.0.0... 0c cc eee eee eee eee naeeaes 4-1
SECUrItY 2. ee ee eee eee ee eee eee e eee eeeeneeens 4-4

File Manipulation 0.0.0.0... cece ce eee ete e eee eees 4-7
Directory Manipulation 0... 0. ccc ccc ec eee ween eas 4-12
Volumes .. 1... cc ccc cc ee ce eee eee ee eee eee eee eneeeees 4-14
TYUStEES 6... ee ee cc eee ence een e een eeeeeeeeeee 4-16
Salvageable Files 0... ee cc eee cece e nese eens 4-17

Chapter 5 Path Services
Tables Accessed By Path Servicescc cee ccc eceeeees 5-1
Directory Handles 0.0... ccc ccc eee ce eee e ence nee eee ee an 5-2

Chapter 6 Queue Services
Why Use QMS? 0... ccc cece ee eee eee teneeneenen 6-1
Queues and the Bindery 0... cece cece ence eens 6-2
The Queue Process 0.0.0... cece ccc nce cece eee neeeeeaes 6-5
Using Queue Services. ... 0.0... 0... eee cc ee eee eee eeneees 6-10

Chapter 7 Server Platform Services
Function Calls ... 0.0... . ccc ee cc eee cence nee eeeneus 7-1
Disabling Logins 0. ccc ccc cee cece cece eee neteeennees 7-2
Getting and Setting Server Information 00.0000 ceeee 7-2

Chapter 8 Synchronization Services
An Introduction to File Sharing 0.0.0... ccc ccc cece ee ueus 8-1
Locking Files and File Sets 00... cece ccc cece c eee eas 8-2
Locking Records 0.0.0. e ccc eee eee eee eee eeeeeeueeeuas 8-3
Semaphores 0... 0... ccc eee eee ee ee eee eee e tence eneeceeeus 8-5

Chapter 9 Transaction Tracking Services
Introduction... 0... 0... cece cee cc eee eee een eeueeeeus 9-1
Transaction Tracking Types 0.0... ccc cece eee eee ce eewas 9-4
Record Locking 0.0... ccc ccc cece eee cece nee eee nees 9-4

Transaction Backouts 0.0.0 cece cece cece ees e eee e neues 9-5
Applications and TTS 0... 0.000 c eee e eee aes 9-8

Licensed Material - Property of the copyright holders vil

Chapter 1

Accounting Services

Accounting Services is an Applications Programming Interface (API) that allows a
server to charge for the use of its services. For example, a database server can
charge for the number of records viewed, the number of requests serviced, or the
amount of connect time. A print server can charge for the number of pages printed.

The file server supervisor determines the charge for each type of service, and the
file server bindery stores the list of authorized accounting servers and each client’s
accounting information.

Once a server is listed as an authorized accounting server and has logged in, it can
submit a charge to a client’s account, place a hold against a client’s account, or
query a client’s account status. An audit trail of all charges is accumulated in an
audit file. This chapter is divided into the following sections:

¢ Bindery Properties

e Accounting Audit File |

¢ File Server Charges

e Data Structures

Bindery Properties

069-000566

Information used by the accounting APIs is stored in three bindery properties:

e ACCOUNT_SERVERS property

¢ ACCOUNT_BALANCE property

¢ ACCOUNT_HOLDS property _

These properties are discussed in detail in the following sections.

ACCOUNT_SERVERS Property

When accounting is enabled (using the NetWare® utility SYSCON), the
ACCOUNT_SERVERS property is created and attached to the file server object.
This property contains the bindery object ID of every server, including the file
server, authorized to submit accounting records to clients. Before a server can
charge for its services, the server must be added to the ACCOUNT_SERVERS
property.

For example, to enable a server called PRINTSERV to charge clients for services on
a file server called SAM, you must complete the following steps.

1. Install accounting on the file server SAM. Log in as supervisor and run
SYSCON. Select to install accounting.

2. Use NWCreateObject to create PRINTSERV as a bindery object. Contact
Novell's API Consulting Group if you need a unique object type.

Licensed Material - Property of the copyright holders 1 -1

3. Add PRINTSERV to the ACCOUNT_SERVERS property. Use
NWAddObjectToSet.

For the objectName parameter, use the file server’s name (SAM).

For the objectT ype parameter, use the file server’s type

(NWOT_FILE_SERVER).

For the propertyName parameter, use ACCOUNT_SERVERS.

For the memberName parameter, use the object name created in Step 2

(PRINTSERYV).

For the memberType parameter, use the object that you declared in Step 2 (for
a print server, NWOT_PRINT_SERVER).

The ACCOUNT_SERVERS property is of type set and has read-supervisor and
write-supervisor security access levels. If a file server object has no
ACCOUNT_SERVERS property, servers should assume that accounting is disabled,
and no charges for services are made.

ACCOUNT_BALANCE Property

When accounting is enabled, each user object is given an ACCOUNT BALANCE
property. Every user object created after accounting is enabled will also be given
an ACCOUNT_BALANCE property. An object’s account balance and minimum
balance are stored in this property. Servers can deny services to an object if the
object has no ACCOUNT_BALANCE property.

The ACCOUNT_BALANCE property is of type data and has read-object and write-
supervisor security access levels. The account balance places a general limitation
on a client’s use of all network resources. However, Accounting Services does not
provide any method for placing a ceiling on a client’s use of a particular resource or
service.

The account balance usually represents some monetary unit such as cents. The
system administrator must ensure that all servers submit their charges using the
Same monetary unit. If an object’s account balance has no more funds, servers
should refuse further service. However, if service has already been rendered, the
server can charge for it even though no funds are in the account balance. Setting
the minimum balance to 80000000h (the most negative signed long integer)
indicates the object has no minimum balance, in which case service should never be
refused.

_ The ACCOUNT_BALANCE property has several property fields which are
described below.

Property Fields

The fields in the first data block of the ACCOUNT_BALANCE property are listed
and defined below.

Licensed Material - Property of the copyright holders 069-000566

Table 1-1 ACCOUNT_BALANCE Property

Offset Field Type

0 Balance int32

4 Minimum Balance int32

8 Reserved uint8 [120]

Balance. This field contains a signed integer that indicates the account balance.

Minimum Balance. This field contains a signed integer that indicates the lowest

permissible balance. Services that cause the balance to drop below this minimum
are denied. The minimum can be positive (requiring the user to always maintain
some funds) or negative (allowing the user to receive services after the balance has
dropped below zero.)

Reserved. This field contains NetWare internal information.

ACCOUNT_HOLDS Property

The server can place a hold on a client’s account before a request is serviced to
ensure that the client has sufficient funds to pay for service. If the hold succeeds,
this indicates the client has sufficient funds. The server can then perform the
requested service, submit a charge for the service, then release the amount placed
on hold.

If there are holds against a client’s account, the holds are stored in the
ACCOUNT_HOLDS property. If there are no holds on the account, this property is
not present. The ACCOUNT_HOLDS property is dynamic, of type data, and has
read-object and write-supervisor security access levels.

If a hold, along with all other holds, require more funds than exist in the client’s
account (client’s funds have gone below minimum balance), the hold request fails.
The requested service should then be refused. An attempt to hold also fails if 16
other severs have already placed holds on a client’s account.

If the server does not place a hold on an account to ensure the client has sufficient
funds, the server should query the account before rendering service. Then, if the
client’s account is empty, the request for service should be refused. Ifa holding
server is disconnected, the hold it had on a client’s account is cleared. The holding
server can also explicitly clear a hold. If a server submits multiple holds, they
accumulate into one hold.

The ACCOUNT_HOLDS property has several property fields which are described
below.

Property Fields

The fields in the first data block are shown in Table 1-2.

069-000566 Licensed Material - Property of the copyright holders 1 -3

Table 1-2 ACCOUNT_HOLDS Property

Offset Field Type

0 Holder ID 1 uint32

4 Amount 1 uint32

120 Holder ID 16 uint32

124 Amount 16 uint32

Holder ID. This field contains the bindery object ID of the server placing the hold.
If this field is zero, the hold slot is not in use regardless of the contents of the
amount field.

Amount. This field contains the amount of the hold.

Accounting Audit File

In addition to monitoring a network by charging, querying, or holding a client’s
account, Accounting Services offers a method for monitoring network resources by
keeping an audit trail of all charges. The two APIs, NWSubmitAccountCharge and
NWSubmitAccountNote and the Accounting Audit file (NET$ACCT.DAT) are the
tools used to keep the Audit trail.

The audit file has normal attributes and resides in the SYS:SYSTEM directory. It
can be read by utility programs and can be deleted or renamed with standard
DG/UX commands. |

When the two APIs are called, a detailed record of all accounting charges and
activities is kept in the Accounting Audit file) NET$ACCT.DAT. For example,
when a server submits a charge or a note, a Charge Record or a Note Record is
added to the audit file. This section describes the structure of these two records
and then describes in detail two of the records’ fields: the comment type field and
the comment field.)

Charge and Note Records

The Charge record and Note record are distinguished by the contents of their
Record Type field. When the server charges an account through the
NWSubmitAccountCharge function call, a Charge record is added to the
NET$ACCT.DAT audit file.

This Charge record contains information about the charge such as the object ID of
the server submitting the charge, when the charge is submitted, the amount of the
charge, etc.

Likewise, when the server calls the NWSubmitAccountNote function call, a Note
record is added to the NET$ACCT.DAT audit file. It also contains information such
as the bindery object ID of the server submitting the note, when the note is
submitted, ete.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Both records also contain a Comment field.

e Charge record. The Comment field of the Charge record contains a binary
record that holds information about the charge. For example, the file server
uses the comment field of the Charge record to record the number of service
units (connect time, disk I/Os, packet I/Os, etc.) from which a charge is
computed.

e Note record. The Comment field of the Note record contains information such
as whether a station is logging in or out,.and when it is doing so. This field
also contains the physical address of the station logging in or out.

A more detailed list and description of each record’s fields are provided below.

Charge Record Structure

The Charge record structure is shown below.

Table 1-3 Charge Record Structure

Offset Field Type

0 Length uint16

2 Server ID uint32

6 Time Stamp unit8 [6]

12 Record Type uint8 [1]

13 Completion Code uint8 [1]

14 Service Type uint16

16 Client ID uint32

20 Amount uint32

24 Comment Type uint16

26 Comment | char [*]

Length. This field contains the number of bytes in the record excluding Length

itself.

Server ID. This field contains the object ID of the server submitting the accounting

request.

Time Stamp. This field contains the date and time the server submitted the

charge. The format is year (year = current year - 1900), month, day, hour, month,

second, where each is a byte-sized integer.

Record Type. This field contains the record type: A Charge Record is type 1, and

a Note Record is type 2.

Completion Code. This field contains the completion code of the Submit Charge
request. If the completion code is SUCCESSFUL (00) or CREDIT EXCEEDED

(C2), the account balance is debited.

Licensed Material - Property of the copyright holders 1 “5

Service Type. This field contains the specific type of service for which the charge is
made. External servers should use their object type. If a server provides several
different services, and no reasonable object type equivalents exist for these services,
you should contact Novell’s API Consulting Group for a well-known service type.
Usually, however, the server should use its object type and distinguish the type of
service being charged for in the comment field of the charge record.

Client ID. This field contains the object ID of the object that is being charged for

service.

Amount. This field contains the amount of the charge. Amount can be negative if
the server must make a refund.

Comment Type. This field contains the type of the comment record. The comment
type is used to locate the associated record descriptor in the comment record
definitions file (NET$REC.DAT). That record descriptor contains the field layout
and text descriptions for the comment record. (See "Comment Type Field
Definitions" in this chapter for more information on comment fields.)

Comment types are administered by Novell. Contact Novell’s API Consulting
Group for unique comment types. Comment types greater than 8000h are reserved
for experimental purposes.

Comment. The Comment field of the Charge Record contains a binary record that
holds information about the charge. For example, the file server uses the comment
field to record the number of service units (connect time, disk I/Os, packet I/Os,
etc.) from which a charge is computed. (See "Comment Field Definitions" in this
chapter for more information on comment fields.)

Note Record Structure

The Note Record structure is shown below.

Table 1-4 Note Record Structure

Offset Field Type

0 Length uint16

2 Server ID uint32

6 Time Stamp unit8 [6]

12 Record Type uint8 [1]

13 Reserved uint8 [1]

14 Service Type uint16

16 Client ID uint32

20 Comment Type uint16

22 Comment char [*]

Length. This field contains the number of bytes in the record excluding Length
itself. |

Server ID. This field contains the object ID of the server submitting the accounting
request. A Server ID of zero indicates a request by an internal server.

Licensed Material - Property of the copyright holders 069-000566

Time Stamp. This field contains the date and time the server submitted the note.
The format is year (year = current year - 1900), month, day, hour, month, second,
where each is a byte-sized integer.

Record Type. This field contains the record type: Charge Record is type 1, and
Note Record is type 2.

service Type. This field contains the specific type of service to which the note
applies. External servers should use their object type. If a server provides several
disparate types of services, and no reasonable object type equivalents exist for these
services, you can contact Novell’s API Consulting Group for a well-known service
type. Usually, however, the server should use its object type and distinguish the
type of service for which the note is produced in the comment field of the note
record.

Client ID. This field contains the object ID to which the note applies.

Comment Type. This field contains the type of the comment record. The comment
type is used to locate the associated record descriptor in the comment record
definitions file (NET$REC.DAT). That record descriptor contains the field layout
and text descriptions for the comment record. (See "Comment Type Field
Definitions" below for more information on comment fields.)

Comment types are administered by Novell. Contact Novell’s API Consulting
Group for unique comment types. Comment types greater than 8000h are reserved
for experimental purposes.

Comment. This field contains a binary record that holds information relating to
the charge or note. For example, the file server records in this field whether a
station is logging in or out, and when it is doing so. This field also contains the
physical address of the station logging in or out. (See "Comment Field Definitions"
in this chapter for more information on comment fields.)

Comment Type Field Definitions

The NWSubmitAccountCharge function call and the NWSubmitAccountNote
function call allow a file server to record information in the audit file about a
client’s account activities. This information is a binary record in the Comment field —
of the Note Record or Charge Record. These record types are described below.

Connect Time Charge

The Comment Type is 1.

This record contains the number of minutes a station was connected to the server,
the number of packets sent to the server, and the number of disk I/Os.

The fields in this comment type are listed below.

069-000566 Licensed Material - Property of the copyright holders 1-7

Table 1-5 Connect Time Charge

Offset Field Type

0 Connect Time uint32

4 Request Count uint32

8 Bytes Read Hi unit16

10 Bytes Read 2 uint16

12 Bytes Read Lo uint16

14 Bytes Written Hi uint16

16 Bytes Written 2 uint16

18 Bytes Written Lo uint16

The format control string:

“Connected %lu minutes; %lu requests; %04x%04x%04xh bytes read;

%04x%04x%04xh bytes written."

Disk Storage Charge

The Comment Type is 2.

This Comment contains the number of blocks owned by an account at the time of

the charge and the number of days in the charge period. The fields in this

comment type are listed below.

Table 1-6 Disk Storage Charge

Offset Field Type

0 Blocks Owned uint32

4 Number Of Half Hours uint32

The format control string:

"%lu disk blocks stored for %lu half-hours."

1 -8 Licensed Material - Property of the copyright holders 069-000566

Log In Note

The Comment Type is 3.

This Comment is recorded whenever an object successfully logs in. The Comment
field of the Note Record contains the physical address of the station logging in. The
fields in this comment type are listed below.

Table 1-7 Log In Note

Offset Field Type
ed

0 Net int32

4 Node (high) int32

8 Node (low) uint16

The format control string:

“Login from address %1x:%1x%x."

Log Out Note

The Comment Type is 4.

This Comment is recorded whenever an object logs out. The Comment field of the
Note Record contains the physical address of the station eazing 0 out. The fields in
this comment type are listed below.

Table 1-8 Log Out Note

Offset Field Type

Net int32

4 Node (high) int32

8 Node (low) uint16

The format control string:

“Logout from address %1x:%lx%x."

069-000566 Licensed Material - Property of the copyright holders 1-9

Account Locked Note

The Comment Type is 5.

This Comment is recorded whenever an account is locked because of too many

incorrect login attempts. The Client field of the Note Record contains the object ID

of the object being locked out. The Comment field of the Note Record contains the
physical address of the station being locked out. The fields in this comment type
are listed below.

Table 1-9 Account Locked Note

Offset Field Type

Net int32

4 Node (high) int32

8 Node (low) uint16

The format control string:

“Account intruder lockout caused by address %1x:%1x%x."

Server Time Modified Note

The Comment Type is 6.

This Comment is recorded when an operator modifies the server time. The Time
Stamp field contains the current time before the change was made. The Client field
contains the object ID of the object which changed the time. The comment field
contains the new time and date. The fields in this comment type are listed below.

Table 1-10 Server Time Modified Note

Offset Field Type

0 Year Since 1900 uint8 [1]

1 Month uint8 [1]

2 Day unit8 [1]

3 Hour — - uint8 [1]

4 Minute uint8 [1]

5 Second uint8 [1]

The format control string:

“System time changed to 19%02d-%02d-%02d %d:%02d:%02d."

1 =1 0 Licensed Material - Property of the copyright holders 069-000566

Comment Field Definitions

The NET$REC.DAT file is a companion file to the NET$ACCT.DAT Audit file. It

contains the information for formatting and the control strings for displaying the

binary records in the Comment fields of the Charge and Note Records. Utility

programs use the information in NET$REC.DAT to display the Charge and Note

records from the NET$ACCT.DAT audit file. The information in the

NET$REC.DAT file is listed in Table 1-11.

Table 1-11 NET$REC.DAT File

Offset Field Type

0 Length uint16

2 Comment Type uint16

4 Data Type Count uint8 [1]

5 Data Type Value [1] | uint8

6 Data Type Element(s) [1] (as data type defines)

Data Type Value [n] uint8

Data Type Element(s) (as data type defines)

Length. This field contains the length of the record descriptor, not including the

Length field itself. The length is

(Field Count * 2) + Format Length + 4

Comment Type. This field contains the type of the comment being described. This

Comment Type is also a field in the Charge and Note records, used there as a

reference to this record descriptor. Well known comment types can be obtained

from Novell’s API Consulting Group. Comment types 8000h and higher are
reserved for experimental purposes.

Data Type. This field contains the data type of the record. Valid types are listed |
below.

Table 1-12 Data Types

Value Element Description

1 An 8-bit value

2 A 16-bit value with the bytes stored

3 A 32-bit value with the bytes stored

4 An 8-bit value followed by an array of characters.
The size of the array is specified by the length value.

069-000566 Licensed Material - Property of the copyright holders 1 -1 1

NOTE: You should read and write data in hi-lo format. Then, for your
particular hardware, take the appropriate action.

Data Type Count. This field contains the number of data types to follow. Data
types were listed in Table 1-12, above.

File Server Charges

1-12

File servers can submit charges for connection time, requests made, blocks read,
blocks written, and disk storage. The following Accounting Services bindery
properties describe these charges. The first four properties (CONNECT_TIME,
REQUESTS_MADE, BLOCKS_READ, BLOCKS_WRITTEN) share the same data
structure. The last property, DISK_STORAGE, has a different data structure.
This section describes each charge. The data structures are described later in this
chapter.

CONNECT_TIME Property

This property designates the amount a file server can charge for connect time.
Connect time is measured from the time the user logs in to the time the user logs
out. The user’s account is checked each half hour. If the account balance falls
below the lowest permissible balance, the user is disconnected following 5 minute
and 1 minute warnings.

REQUESTS_MADE Property

This property designates the amount a file server can charge for requests made to
the file server. After logging out, the user can be charged for the total number of
requests submitted to the file server since logging in. While the user is logged in,
the user’s account is checked each half hour. If the account balance falls below the
lowest permissible balance, the user is disconnected following 5 minute and 1
minute warnings.

BLOCKS READ Property

This property designates the amount the file server can charge for blocks read.
After logging out, the user can be charged for the number of blocks (4096 bytes per
block) read since logging in. While the user is logged in, the user’s account is
checked each half hour. If the account balance falls below the lowest permissible
balance, the user is disconnected following 5 minute and 1 minute warnings.

BLOCKS WRITTEN Property

This property designates the amount the file server can charge for blocks written.
After logging out, the user can be charged for the number of blocks (4096 bytes per
block) written from disk since logging in. While the user is logged in, the user’s
account is checked each half hour. If the account balance falls below the lowest
permissible balance, the user is disconnected following 5 minute and 1 minute
warnings.

Licensed Material - Property of the copyright holders 069-000566

DISK_STORAGE Property

This property designates the amount the file server can charge for disk storage.
The charge is computed at regular intervals as follows:

¢ The total disk storage for each user is calculated.

¢ Total disk storage is multiplied by the number of half hours since the last disk
storage charge was made.

¢ The result is multiplied by the current charge rate.

Unlike charges designated in the CONNECT_TIME, REQUESTS_MADE,
BLOCKS_WRITTEN, and BLOCKS_READ properties, the list of times and the
charge rates designated in the DISK_STORAGE property represent a specific time
a charge is made and a specific rate for the charge.

Data Structures

069-000566

The file server maintains a schedule of charges for its services in bindery property
data structures. The data structure for connection time, requests made, blocks
read, and blocks written is described below. The data structure for disk storage is
described later in this chapter.

Connection-Time, Requests-Made, Blocks-Read, and Blocks-Written Charges

The CONNECT_TIME, REQUESTS_MADE, BLOCKS_READ, and
BLOCKS_WRITTEN properties share the same data structure. This structure is
shown in Table 1-13.

Table 1-13 Data Structure for Four Types of Charges

Offset Field Type

0 Time of Next Change uint32

4 Current Charge Rate Multiplier uint16

6 Current Charge Rate Divisor uint16

8 Days Change Occurs Mask 1 uint8 [1]

9 Time Change Occurs 1 uint8 [1]

10 Charge Rate Multiplier 1 uint16

12 Charge Rate Divisor 1 uint16

122 Days Change Occurs Mask 20 uint8 [1]

123 Time Change Occurs 20 uint8 [1] |

124 Charge Rate Multiplier 20 uint16

126 Charge Rate Divisor 20 uint16

Time Of Next Change. This field contains the time of the next change. Time is
measured in minutes since January 1, 1985.

Licensed Material - Property of the copyright holders 1 -1 3

1-14

Current Charge Rate Multiplier and Divisor. These fields contain the Current
Charge Rate Multiplier and Divisor. The charge is computed as follows:

¢ The unit of service (connect time, requests made, blocks read, or blocks written)
is multiplied by the Current Charge Rate Multiplier.

¢ The resulting value is divided by the Current Charge Rate Divisor to give the
charge made against the user’s account. (If the Current Charge Rate Multiplier
or Divisor is zero, no charge is made for the service.)

Days Change Occurs Mask. This field contains a bit mask that specifies the days
of the week for which the charge rate applies. If the bit corresponding to the day of
the week is set (bit 0 = Sunday, ..., bit 6 = Saturday), the charge is made during
that day at the half hour specified in Time Change Occurs. If this field is zero, no
changes are made. .

Time Change Occurs. This field contains the half hour (12am = 0, ..., 11:30pm = 47)
during which the specified charge rate takes effect. These changes in the charge
rate are listed in this property structure according to increasing half hours.

Charge Rate Multiplier and Divisor. These fields contain the charge rate that takes
effect at the specified time.

Disk Storage Charges

Charges for disk storage are maintained in the DISK_STORAGE property. The
structure of this property is described below.

Table 1-14 DISK_STORAGE Data Structure

Offset Field Type

0 Time of Next Change uint32-

4 Time of Previous Charge uint16

8 Days Charge Occurs 1 uint8 [1]

9 Time Charge Occurs 1 uint8 [1]

10 Charge Rate Multiplier 1 uint16

12 Charge Rate Divisor 1 uint16

122 Days Change Occurs Mask 20 uint8 [1]

123 Time Change Occurs 20 uint8 [1]

124 Charge Rate Multiplier 20 uint16

126 Charge Rate Divisor 20 uint16

Time of Next Charge. This field contains the time of the next charge. Time is

measured in minutes since January 1, 1985.

Time of Previous Charge. This field contains the time of the previous charge.
Time is measured in minutes since January 1, 1985.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Days Charge Occurs Mask. This field contains a bit mask that specifies the days

of the week for which the charge rate applies. If the bit corresponding to the day of

the week is set (bit 0 = Sunday, ..., bit 6 = Saturday), the charge is made during

that day at the half hour specified in Time Change Occurs. If this field is zero, no

changes are made.

Time Charge Occurs. This field contains the half hour (12am = 0, ...,

11:30pm = 47) during which the specified charge rate takes effect. These changes

in the charge rate are listed in this property structure according to increasing half

hours.

Charge Rate Multiplier and Divisor. These fields contain the charge rate used to

calculate the disk storage charge at the specified half hour on the specified days.

The charge is computed as follows:

e The current disk storage for each user is calculated in 4K blocks.

¢ Current disk storage is multiplied by the number of half hours since the last

disk storage charge was made.

¢ The result is multiplied by the charge rate multiplier and divided by the charge
rate divisor to produce the final disk storage charge. |

End of Chapter

Licensed Material - Property of the copyright holders 1 -1 5

Chapter 2

Bindery Services

In a local area network environment there is the need for a name service which
provides a way for network resources and clients to be identified.. A resource is
anything that provides a service such as a file server, print server or database
server. A client is the consumer of the services provided by a resource. Each
NetWare® file server maintains a database of the resources and clients available on
the network. This special-purpose database is called the bindery. This chapter is
divided into the following sections:

¢ Bindery Overview

¢ Bindery Security

¢ Bindery Objects

¢ Bindery Properties

Bindery Overview

069-000566

The fundamental benefit of the bindery is that it allows the design of an organized
and secure operating environment. The bindery provides the foundation upon
which NetWare’s client security and server advertising are built. The bindery
contains information on each client and is the basis upon which NetWare’s client
security mechanisms are built, including client password protection, client
accounting and client restrictions.

The bindery also contains information about each resource on the network. For
example, resources which advertise their services have their name and
internetwork address stored in every file server’s bindery in the internetwork.
Therefore, the bindery can also be used as a resource directory where clients can
extract a listing of all resources available on the network.

The bindery is not designed to be used exclusively by the NetWare operating
system, but is a flexible database with an extensive programming interface that can
also be used by third-party applications. Applications can access the bindery to
extract information about network users and resources. The bindery can also be
used to store application specific information. For example, an application’s user
and configuration information could be stored in the bindery.

Bindery Components

The bindery is comprised primarily of components called objects and properties. An
object can be a user, user group, file server, print server, or any other logical or
physical entity on the network that has been given a name. Each object has
associated with it a set of characteristics called properties, as represented in the
figure below.

Licensed Material - Property of the copyright holders 2-1

2-2

Object

Property Property Property

LY Ll Uy
Property Property — Property

Value Value Value

Each object can have multiple properties associated with it. Each property may
have an attached value. The property’s value contains the actual data that is
associated with a property.

A user’s set of properties may include a password, an account balance, and a list of
groups the user is a member of whereas a server might have just one property

which contains its network address.

The actual data associated with a property is stored in the property’s value. A

user's password, for example, is stored in the property value associated with the

password property. An example bindery object and its associated properties and
values is shown in the figure below.

DAN

il

PASSWORD ACCOUNT _ GROUPS
BALANCE "M_IN

"COMPILE" 1000 81459216
(balance) (EVERYONE'S

object ID#)

-100 39283711

(credit limit) (ENGINEER’S

object ID#)

Bindery Constraints

The bindery can contain any combination of up to 65,000 bindery objects and
properties. Although the bindery’s structure is flexible, it should not be overloaded

with seldom-used information. A user’s mailing list or login preference, for

example, might be better stored in the user’s mailbox directory. A large bindery is
naturally slower to access than a small bindery, and will affect the overall

performance of the network. Also, when updates are made to the bindery, there is
no attempt to coordinate requests among multiple workstations. Logical locks may
be used to coordinate bindery management among workstations.

Licensed Material - Property of the copyright holders 069-000566

Bindery Files

Each file server maintains its bindery as hidden files in the SYS:SYSTEM
directory. The bindery files are NET$OBJ.SYS, NET$PROP.SYS, and
NETS$VAL.SYS. The NET$OBJ.SYS file contains objects; NET$PROP.SYS,
properties; and NET$VAL.SYS file, property values.

Each file server manages its own bindery files independently of other file servers’
binderies. Therefore, the resources and clients available to one file server may not
be available to other file servers. Even when similar objects are defined in more
than one bindery, each object’s unique ID differs from one bindery to another. (An

object is given a unique ID when it is created.)

Archiving Bindery Files

It is important to archive the bindery on a regular basis because the bindery files
contain information about the file server’s clients. However, the bindery files
cannot be accessed directly because the file server keeps the bindery files open and
locked at all times. To archive the bindery files, the bindery must be closed with
the Close Bindery function. The Close Bindery function allows the supervisor, or

an object that is security equivalent to the supervisor, to close and unlock the
bindery files, thus allowing the bindery to be archived. After the bindery files have
been archived, the Open Bindery function is used to give control of the bindery files
back to the file server. While the bindery is closed, much of the functionality of the
network is disabled. Therefore, the time that the bindery is closed should be kept
to a minimum.

Bindery Access

Applications can query the network for information about named network objects
through the bindery function calls. In addition to reading the bindery, applications
can use bindery function calls to create bindery objects, add properties to bindery
objects, and give values to bindery objects’ properties. The ability of the application

to read from or write to the bindery depends upon the security access levels of both
the object and the property to be accessed. The security is enforced by the
operating system of the file server where the bindery resides.

Bindery Security

069-000566

Each file server administers the security for its local resources, services and client
accounts through the bindery. The bindery has several levels of security which
together provide a flexible yet secure operating environment. Each object and
property in the bindery has a security access level associated with it. The security
access level controls the read and write access to a bindery object and its properties.
Each bindery has a SUPERVISOR object that is granted special bindery security
privileges. The supervisor is allowed to grant these special administrative
privileges to other objects through the security equivalence feature. The security
equivalence feature allows a bindery object to be granted the same access rights as
another object. The security equivalence feature is also useful in defining user
groups. User groups are a means of logically organizing users into workgroups.
This allows the system supervisor to simplify the security process. Generally, a
user group is assigned specific directory access rights, then users are added to the
user group.

Licensed Material - Property of the copyright holders 2-3

Directory Trustees

The bindery’s security and the file system’s security are independent. The bindery
does not store any of the file system’s directory trustee information. Directory
trustees are stored in directory entries which are an integral part of NetWare’s
physical directory structure. The only relationship that the bindery and the file
system have is the file system stores each directory’s trustee in the form of an
object ID. Refer to the File System discussion for more information on file system
security and directory trustees.

Security Levels

The bindery’s security level controls the read and write access of others to a bindery
object or property. Each bindery object has an object security level associated with
it, and each property has a property security level associated with it. The object
security and the property security are each two nibbles; the low-order nibble
controls the read security and the high-order nibble controls the write security.
The following chart defines the values for each nibble.

Table 2-1 Security Levels

Hex Binary Access Description

0 0000 Anyone Access allowed to all clients, even if the

client has not logged in to the file

server.

1 0001 Logged Access allowed only to clients who have |
logged in to the file server.

2 0010 Object Access allowed only to clients who have

logged in to the file server with the

object’s name, type, and password.

3 0011 Supervisor Access allowed only to clients who have
logged in to the server as the

supervisor or as an object that has

supervisor security equivalence.

4 0100 NetWare Access only allowed to the NetWare

operating system.

For example, a bindery object with an object security level of 31h (supervisor write--
logged read) can be viewed by any client that has successfully logged in to the
server, but can only have properties added to it by a client that is security
equivalent to the supervisor. If this object has a property with a property security
level of 33h (supervisor write--supervisor read), the property and its value can only
be viewed or modified by a client that is security equivalent to the supervisor.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Supervisor Privileges

Kach bindery has an object named SUPERVISOR. The supervisor is the network
administrator and is given special access to the bindery. The supervisor, for
example, is the only object that can create, delete, or rename bindery objects. It is
also the only object that can close and open the bindery for archiving purposes.
The supervisor may grant supervisor privileges to other objects through the
security equivalence feature.

Security Equivalence

The security equivalence feature allows a bindery object to be granted the same
access rights as another object. For example, using security equivalence, the
supervisor can grant supervisor rights to other objects. Once one bindery object is
created and given detailed security assignments, another object needing the same
security can be given security equivalence to the first object.

SECURITY_EQUALS Property

A list of objects that a client is security equivalent to is stored in the client’s
SECURITY_EQUALS property. This property is used when determining a client’s
access rights to the file server. When an object logs in to a file server the object’s
access rights are logically OR’ed together with the access rights possessed by the

objects listed in its SECURITY_EQUALS property. When determining an object's
directory access rights, the file server’s directory parsing algorithm uses only the
first 32 objects listed in this property. However, the bindery does allow the
SECURITY_EQUALS set to grow beyond 32 objects.

Security equivalences are not transitive. As a result, an object is security
equivalent only to the objects explicitly listed in its SECURITY_EQUALS property.
In other words, an object’s security equivalence is not extended to the equivalences
held by an object to which it is security equivalent. For example, if MARY is
security equivalent to JOHN and JOHN is security equivalent to SUPERVISOR,
MARY is not automatically security equivalent to SUPERVISOR.

User Groups

The security equivalence feature is also useful in defining user groups. User
groups are a means of logically organizing users into workgroups. This allows the

system supervisor to simplify the security process. Generally, a user group is

assigned specific directory access rights, then users are added to the user group.

When a user is added to a user group with the NetWare utility SYSCON, the user’s
object ID is added to the group’s GROUP_MEMBERS property. The group’s object
ID is then added to the user’s GROUP’S_I’M_IN and SECURITY_EQUALS
properties.

The group’s GROUP_MEMBERS property and the user’s GROUPS_I’M_IN property
are used together to logically define a group. The SECURITY_EQUALS property is
used to ensure that a group member has the directory rights assigned to the
group’s object.

Licensed Material - Property of the copyright holders 2-5

Bindery Objects

The bindery is a collection of named objects. An object can be a user, user group,
file server, print server, print queue, or any other logical or physical entity on the
network that has been given a name. Each object has an object name, an object

type, an object ID, a dynamic flag, and an object security associated with it. The
object name and type uniquely identify the bindery object. The object’s ID number,

a numeric value that is assigned to the object when it is created, also uniquely

identifies the object. The dynamic flag indicates whether the object is dynamic or

static. The object security determines whether other objects can access it.

Table 2-2 Object Structure

Field Type

Object Name char [0-47]

Object ID uint32

Object Type uint16

Properties Flag uint8

Object State uint8

Write/Read Security uint8

Object Name

An object’s name is 1 to 47 characters long and must contain only printable

characters (21h through 7Dh). Control characters, spaces, slashes (/), backslashes
(\), colons (:), semicolons (;), commas (,), asterisks (*), question marks (?), and tildes

(~) are invalid characters. Object names are recorded in uppercase in the bindery.

The asterisk (*) and question mark (?) are wild characters and can be used to

specify a search pattern when scanning for bindery objects. An asterisk (*) matches
0 or more characters. Thus the pattern "*" will match any object name. A question

mark (?) matches exactly one character. Thus the pattern "??" will only match two
character object names.

An object is uniquely identified by the object’s name and the object’s type. Thus,
two objects with the same name and different types may exist in the same bindery.

Object ID

Each bindery object is given a unique ID when it is created. This ID is a number

which is used as a simple method of identifying an object without specifying the

object’s name and type. The object ID is only guaranteed to be unique within one
file server’s bindery. Also, the ID number does not identify the file server’s bindery
in which an object is defined.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Object Type

The object type identifies the object as a specific type of client or resource.

NetWare’s currently defined object types are listed in Table 2-3.

Table 2-3 Object Types

Description Object Type

Unknown 0x0000

User 0x0001

User Group 0x0002

Print Queue 0x0003

File Server 0x0004

Job Server 0x0005

Gateway 0x0006

Print Server 0x0007

Archive Queue 0x0008

Archive Server 0x0009

Job Queue 0x000A

Administration 0x000B

SNA Gateway | 0x0021

Remote Bridge Server 0x0024

Synchronization Server 0x002D

Archive Server (Dynamic SAP) 0x002E

Advertizing Print Server 0x0047

Btrieve VAP 0x0050

Print Queue User 0x0053

NVT Server 0x009E

Wild OxFFFF

The WILD object type (FFFFh) is not an actual object type that would be associated

with a bindery object. It is used when scanning the bindery if the actual object

type is not known or not relevant to the caller. The WILD object type may not be

used when adding an object to the bindery.

Object types up to 8000h are reserved for well-known object types. Other object

types may be defined and used by third-party applications as needed. If a general

purpose object type is needed, contact Novell’s API Consulting Group for

assignment of a well-known object type.

Each object type has a set of specifications associated with it. An object created

with a defined object type must adhere to the specifications that are defined for

that particular object type. For example, an object that is declared as a user must

have a password property to login to the file server. A user is also required to have

an ACCOUNT_BALANCE property to login if the file server is charging for its

services.

Adhering to object type specifications is particularly important for third party value

added servers. For example, a server that declares itself as a print server of object

type 0007h is expected to provide the same services and have the same client/server

protocol as the print server provided by Novell.

Licensed Material - Property of the copyright holders 2-1

Some value added servers need to be recorded in the bindery as both a resource and
a client. For example, a server that uses the Service Advertising Protocol (SAP) to
advertise its existence on the network, and that also accesses other NetWare API’s
such as accounting or queue management needs to be defined in the bindery as two
separate objects, each with different object types.

One object type would be used for advertising the server, while the other type
allows the server to login to the file server as a client and use Accounting or Queue
Management. An advertising server is created as a dynamic object, meaning it is
an object that is created and deleted frequently. Also, dynamic objects are deleted
from the bindery when the file server is initialized. A client object is not dynamic
in nature. Clients are static objects that are not created and deleted frequently,
but are created once and deleted by the supervisor only when the client no longer

needs access to the file server.

Furthermore, the file server does not perform security checks on servers that are
advertising. Any server can advertise its services using the Service Advertising
Protocol (SAP). The lack of security checks means that an advertising server’s
access to the file server is very limited. Therefore, the server must also be defined
as a client object in each file server’s bindery that it needs further access to. In
order to gain further access, the value added server must login to the file server as
a client.

A number of security checks are performed on the client object before it is allowed
access to the file server. Once the client passes the security checks it has access to
other services provided by the file server such as file I/O, queue management, and
accounting.

A print server is an example of a value added server that requires more than one
object type. As indicated in the list of defined NetWare object types, there is an
advertising print server (0047h), a print queue (0003h), and a static print server

(0007h) object type. All three object types are assigned to and used by a NetWare
print server. | ,

The advertising print server is used to advertise that the physical print server is up
and running. The print queue is used as a queuing mechanism between the print
server and its clients. The static print server type is used by the physical print
server to log in to the file server and access its services such as file I/O, queue
management, and accounting.

Properties Flag

The properties flag indicates whether one or more properties are associated with an
object.

Object State

The object state indicates the expected life time of an object. An object is either
static (00h) or dynamic (01h). A static object is a long term object that must be
explicitly deleted from the bindery when it is no longer useful. An object of type
user is a good example of a static object. A dynamic object is one that is created
and deleted frequently, and therefore, is deleted when the file server is brought
down and re-initialized. The dynamic flag is used by advertising servers which
need to be dynamically added to and deleted from other file servers’ binderies.

Licensed Material - Property of the copyright holders 069-000566

Object Security

The object security controls the read and write access of others to the bindery

object. The low-order nibble determines who can read (scan for and find) the object.

The high-order nibble determines who can write to (add properties to or delete

properties from) the object. Table 2-4 defines the values for each nibble.

Table 2-4 Object Security Levels

Hex Binary Access Description

0 0000 Anyone Access allowed to all clients, even if the
client has not logged in to the file

server.

1 0001 Logged Access allowed only to clients who have

logged in to the file server.

2 0010 Object Access allowed only to clients who have

logged in to the file server with the

object’s name, type, and password.

3 0011 Supervisor Access allowed only to clients who have

logged in to the server as the

supervisor or as an object that has

supervisor security equivalence.

4 0100 NetWare Access only allowed to the NetWare

operating system.

For example, an object security of 31h (supervisor write--logged read) indicates that
any user logged in to the file server can find the object, but only the supervisor can

add a property to the object.

Bindery Properties

069-000566

Properties are named pieces of information that are attached to objects. Each

bindery object may have one or more properties associated with it. For example,

the user DAN (object type 0001h) might have associated with it the properties
GROUPS_I’M_IN, ACCOUNT_BALANCE, and PASSWORD.

Note that GROUPS_I’M_IN is not the name of a user group to which the object

belongs. It is only the name of one category of information associated with that
object. In the same way, ACCOUNT_BALANCE is not an actual numerical

balance, and PASSWORD is not an actual password. Properties only identify

categories of information associated with the object.

Each property has a value associated with it. For example, a value associated with

the property GROUPS_I’M_IN must be the object ID of a user group to which DAN
belongs. The value of the property ACCOUNT_BALANCE must be user DAN’s
current balance. The value of the property PASSWORD must be DAN’s login

password (perhaps COMPILE). Although a property can only have one value, the
value can contain multiple segments (each segment being 128 bytes long).

Licensed Material - Property of the copyright holders 2-9

2-10

Property Categories

Properties fall into one of two categories: set property or item property. The
category determines the type of values the property can have and the number of

values.

Set Property

A set property has associated with it a list or set of object IDs that are contained in

the property’s value. The property value of a set property can consist of multiple

segments where each segment may contain up to 32 object IDs. (Each object ID is
4 bytes. Therefore, the maximum number of object IDs that one 128-byte segment
can hold is 32.)

A user’s GROUPS_I’M_IN property is a set property. The property value associated
with the GROUPS_I’M_IN property contains the object IDs of the groups to which
the user, DAN (in the above example), belongs. The values of set properties are
always object IDs grouped into one or more 128-byte segments. It is important that
set property values do not contain anything other than object IDs because the
operating system interprets each segment of a set property value to be an array of

object IDs.

When an object is deleted from a set property, the operating system searches

consecutive segments of the property’s value for an object ID that matches the

object ID of the member to be deleted. When the member is found it is deleted.
The remaining IDs in the segment are shifted and the last previously used slot in
the segment is filled with zeros. This ensures that IDs within a segment are
packed. However, IDs are not packed between segments.

Item Property

An item property has associated with it a property value which can contain any
type of data (typically contains a numeric value, a string or a structure). The
bindery attaches no significance to the contents of a item property’s value. An item
property's value is defined and interpreted by APIs and by application programs
not by the bindery process.

A user’s PASSWORD and ACCOUNT_BALANCE properties are both examples of
item properties. The PASSWORD property is defined to have only one segment and
contains an encrypted password. The ACCOUNT_BALANCE property value
contains a monetary balance in the first 4 bytes and a credit limit in the next 4
bytes of the 128-byte segment. The rest of the segment is filled with zeros.

Property Fields

Each property has a property name, property state, property type, and a property
security associated with it. The property name identifies an object’s property. The
property flags field contains two flags: the static/dynamic flag and the item/set flag.
The static/dynamic flag indicates the expected life time of a property. The item/set
flag specifies the type of information that is stored in the property's value. The
property security determines who has access to the property.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Property Name

A property’s name is 1 to 15 characters long and must contain only printable
characters (21h through 7Dh). Control characters, spaces, slashes (/), backslashes
(\), colons (:), semicolons (;), commas (,), asterisks (*), question marks (?), and tildes
(~) are invalid characters. Property names are recorded in uppercase in the
bindery.

The asterisk (*) and question mark (?) are wild characters and can be used to
specify a search pattern when scanning a bindery object’s properties. An asterisk
(*) matches 0 or more characters. Thus the pattern "*" will match any property
name. A question mark (?) matches exactly one character. Thus the pattern "??"
will only match two character property names.

Property State

The property state flag indicates the expected life time of a property. A property is
either static or dynamic. A static property is a long term property that must be
explicitly deleted from the bindery when it is no longer useful. The
ACCOUNT_BALANCE property is an example of a static property. A dynamic
property is one that is created and deleted frequently, and therefore, is deleted
when the file server is brought down and re-initialized. The ACCOUNT HOLDS
property is an example of a dynamic property.

Bit 0 is the static/dynamic flag and is defined as follows:

0 Static property

1 Dynamic property

Property Type

The item/set flag indicates whether the property's value contains an item or a set of
object IDs. The contents of item property values are defined and interpreted by
applications or by application program interfaces (APIs). The contents of set
property values are interpreted by the bindery process as a series of object ID
numbers, each 4 bytes long.

Bit 1 is the item/set flag and is defined as follows:

0 Item property

1 set property

Property Security

The property security controls the read and write access of others to the property.
The low-order nibble determines who can read (sean for and find) the property.
The high-order nibble determines who can write to (modify) the property’s value.
See Table 2-4, above, for definitions of the values for each nibble.

Licensed Material - Property of the copyright holders 2-1 1

NetWare Properties

NetWare has defined many different properties for many different purposes. Some
properties contain further information about an object while others are used to
administer the network security system. All properties defined by Novell which
contain numeric data (including set properties) are stored in hi-lo order.

Table 2-5 lists all of the properties defined by NetWare. The bindery property
descriptions follow the table. The other properties are described in the appropriate
chapter for the API (for example, the Accountin
Chapter 1, “Accounting Services").

Table 2-5 Properties Defined by NetWare

g properties are described in

Property Name Object Flags Security Application Program
Type Write Read _ Interface (API)

ACCOUNT_BALANCE _ User Static Item 3 2 Accounting
ACCOUNT_HOLDS User Dynamic Item 3 2 Accounting
ACCOUNT_SERVERS File Server Static Set 3 1 Accounting
ACCT_LOCKOUT File Server StaticItem 3 3 Security
BLOCKS_READ File Server StaticItem 3 1 Accounting
BLOCKS_WRITTEN File Server StaticItem 3 1 Accounting
CONNECT_TIME File Server StaticItem 3 1 Accounting
DISK_STORAGE File Server StaticItem 3 1 Accounting
GROUP_MEMBERS User Group —_— Static Set 3 1 Bindery
GROUPS_I’M_IN User Static Set 3 1 Bindery
IDENTIFICATION User StaticItem 3 1 Bindery
LOGIN_CONTROL User StaticItem 3 2 Security
NET_ADDRESS File Server Dynamic Item 4 0 Service Advertising
NODE_CONTROL User StaticItem 3 2 Security
OLD_PASSWORDS User StaticItem 3 3 Security
OPERATORS File Server Static Set 3 3 Bindery
PASSWORD User Static Item 4 4 Bindery
Q DIRECTORY Print Queue StaticItem 3 3 Queue Management
Q OPERATORS Print Queue Static Set 3 1 Queue Management
Q SERVERS Print Queue Static Set 3 1 Queue Management
Q_ USERS Print Queue Static Set 3 1 Queue Management
REQUESTS_MADE File Server Static Item 3 1 Accounting
SECURITY_EQUALS User Static Set 3 2 Bindery
USER_DEFAULTS Supervisor Static Item 3 1 Security

GROUP_MEMBERS Property. The GROUP_MEMBERS property contains a list of
users that are members of a user group. This property is attached to user group

objects. The GROUP_MEMBERS property is a static/set property and has object
read and supervisor write security access levels.

GROUPS_I’N_IN Property. The GROUPS_I’M_IN property contains a list of user
groups that a user is a member of. This property is attached to user objects. The

GROUPS_I’M_IN property is a static/set property and has logged read and

supervisor write security access levels.

2-12 Licensed Material - Property of the copyright holders 069-000566

069-000566

IDENTIFICATION Property. The IDENTIFICATION property contains a user or

user group’s full name. This property is attached to user and user group objects.

The IDENTIFICATION property is a static/item property and has logged read and

supervisor write security access levels.

OPERATORS Property. The OPERATORS property contains a list of objects that

are authorized file server console operators. This property is attached to the file

server's object. The OPERATORS property is a static/set property and has

supervisor read and supervisor write security access levels.

PASSWORD Property. The PASSWORD property contains an object’s encrypted

password. This property is attached to user objects. Any object that logs in to the

file server is required to have the PASSWORD property. The PASSWORD property

can be created with the Change Bindery Object Password function call. The

PASSWORD property is a static/item property and has NetWare read and NetWare

write security access levels.

SECURITY_EQUALS Property. The SECURITY_EQUALS property contains a list

of objects that an object is security equivalent to. This property is attached to user

and user group objects. The SECURITY_EQUALS property is a static/set property

and has object read and supervisor write security access levels.

End of Chapter

Licensed Material - Property of the copyright holders 2-1 3

Chapter 3

Connection Services

This chapter covers Connection services. Connection Services are used to create
connections to file servers and return information about those connections and the
clients that made them.

Note: These procedures are not necessary for previous versions of the DOS client
APIs; connections are maintained by the DOS shell with which the APIs
communicate. They are, however, necessary for NetWare for AViiON Systems.

This chapter is divided into the following sections:

e Attaching and detaching

e Logging in and logging out

e Connection Tables

Attaching and Detaching

069-000566

In order to access and manage NetWare file servers and their associated network
resources, an API client must first open a transport with, and then attach to, a file
server. The call, NWAttachToServerPlatform, performs both of these functions;
however, the client can use the call NWOpenTransport to open the transport
separately, before using NWAttachToServerPlatform. NWAttachToServerPlatform
searches the network for the nearest server. Once the API call finds a server, the
API call searches the bindery for the specified file server.

If the API call finds the address and name of the specified server in the bindery,
the API call places the address and name of the server in a Client Connection
Table. The API call then sends a packet to the specified file server. If the file
server responds with an available connection slot, the attachment is successful.
The call, NWAttachToServerPlatform, returns a file server connection number
(serverConnID) to the client.

Once an API client has established a file server attachment, that attachment
remains valid until the API client breaks that attachment or the connection is
broken for the client. When the connection is broken, the client’s object ID and
client connection number (clientConnID) are removed from the file server’s
Connection Information Table. That connection slot then becomes available to
other clients who want to attach.

The calls, NWDetachFromServerPlatform and NWClearConnID can be used to
remove a clientConnID from the file server’s Connection Information Table, and
thus break the connection.

The NetWare watchdog will also clear a client’s connection when the client does not
respond to the watchdog packets. If the watchdog has not heard from a client in
five minutes, the watchdog sends a watchdog packet to the client. If the client does
not respond, the watchdog starts sending watchdog packets at one-minute intervals
for up to ten minutes. If the client does not respond by the end ofthe fifteen
minutes, the watchdog assumes that the client is no longer connected to the file
server and clears the client’s connection.

Licensed Material - Property of the copyright holders 3-1

Once a client has been detached, the client must then re-attach before the client

can log in again.

Logging in and logging out

After attaching to a file server, an application must log in to the file server by

using NWLoginToServerPlatform. Logging in allows the client to gain the rights

and privileges necessary to manage and manipulate network resources. To login to
a file server, an application must provide a bindery object’s name, type, and

_ password. When an object logs in to a file server, the file server puts the object’s
ID number in the file server's Password table and in the Connection Information

Table.

When an object logs out of a file server, the file server removes the object’s ID from
the file server’s Password table. However, the object’s ID is not removed from the
Connection Information Table until the object detaches from the file server.

Connection Tables

Two connection tables are kept, one by the APIs and the other by the file server.

Client Connection Table

The Client Connection table is kept by the APIs for each client attached to the file
server. Various APIs allow the client to query the table for the information listed

below. The other fields in the table are for internal use only and contain
information such as packet size and the number of packet retries.

This table contains the following information that APIs can query.

File server connection number (serverConnID). This field contains the file server
connection number. The APIs assigns this number (0 through 7) as the client
attaches to file servers. The first file server, or the client’s default file server, is
assigned 0; the next file server, 1; and so forth. If the client has already attached
to 8 file servers, the attempt to attach to a ninth file server fails.

File server name. This field contains the name of the file server that the client is

attached or logged into.

NetWare version. This field contains the version of the operating system that the
file server is running.

Client connection number (clientConniD). This field contains the client connection
number. The file server assigns this number (0 through 250) as the file server
grants a connection slot to a client. If all of the file servers connection slots have
been assigned to other clients, the attempt to attach fails. The number of slots
varies with the version of the operating system. NetWare for AViiON Systems

supports up to 250 connection slots, depending upon your license agreement.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Connection Information Table

The file server maintains the Connection Information table. This table contains all

clients attached or logged into the file server. The APIs use the client’s
clientConnID and serverConnID to query the table for the following information.

Object Name (clientObjectName). This field contains the object’s name. Each

object must be created on the file server before the object can log in. (For example,

you can create users with SYSCON or print queues with PCONSOLE.) Each object

must be given a unique name for its type. This name becomes the

clientObjectName that must be passed by the API for a client to log in.

Object ID (clientObjectiD). This field contains the object ID. As each object is
created, the file server assigns the object a unique object ID. This number is used

to identify the object without specifying the object’s name and type.

Object Type (clientObjectType). This field contains the object type. As each object

is created, the object must be assigned a bindery type. When a user is created with

SYSCON, SYSCON assigns type User to the object. When a group is created with

SYSCON, SYSCON assigns type Group to the object. See Chapter 2, “Bindery
Services,” for a list of possible bindery types.

Login Time (clientLoginTime). This field contains the date and time that the object

logged in to the file server.

Network address and Node address (internetAddress). This field contains the

unique address of the client. This address is made up of the client’s network

address and node address. The network address is the address that has been

assigned to the cabling system the client is physically cabled to. The node address

is the address of the network board installed in the client’s workstation.

Using Client Connection [Ds

The clientConnID (or client connection number) indicates the number allocated by

the file server to a particular client. It is important not to confuse clientConnID

with serverConnID. These numbers can provide an easy way to identify objects

logged in on the network and obtain additional information about them. The API
call, NWGetConnectionInformation, uses both (serverConnId and clientConnID) to
return the object name, type, ID and login time about the object that has made the

connection. Likewise, the API call, NWGetInternetAddress, uses both

(serverConnID and clientConnID) to return the network and node address a

connection is using.

A list of all the connections for a particular bindery object can be obtained with

NWGetObjectClientConnIDs. To make this API call, an application must pass in

the object’s name and type. A client can obtain its own connection number with the

default file server with NWGetClientConnID.

End of Chapter

Licensed Material - Property of the copyright holders 3-3

Chapter 4

File Services

File Services enable applications to manipulate file system information. Because
NetWare for AViiON Systems function calls work independent of the NetWare
client shell, the file system service APIs provide many of the functions that would
normally be taken care of by the NetWare client shell. This chapter is divided into
the following sections: |

e File Identification

¢ Security

¢ File Manipulation

e Directory Manipulation

¢ Volume Manipulation

e Trustees

¢ Salvageable Files

File Identification

069-000566

File Service APIs identify files by using directory handles, file handles, paths,
wildcards, entry IDs, and search attributes. Each is described below.

Directory Handles

A directory handle is a number from 0 to 255 that points to a volume or directory
and each workstation maintains a table of directory handles. Directory handles are
created with the Path Service APIs. (For more information on creating directory
handles, see Chapter 5, Path Services.)

Directory handles can be used in the following ways to identify a file:

¢ When a specific directory handle is known, a file can be identified by passing
the directory handle and the file name.

¢ When a zero is passed as the directory handle, a file can be identified by
passing the full path as the file’s name.

See “Paths” on the following page for proper syntax.

File Handles

NetWare creates file handles when a file is opened or created. The file handle is a
pointer to the location of the file. The APIs that either create or open the file are
responsible for creating the handle and passing it to the application. When the
application closes the file, the application should return the file handle so that the
API can deleted it from the workstation’s table.

Licensed Material - Property of the copyright holders 4-1

Paths

When specifying a file to a file services call, an application can use either a full or a
partial file path. A full file path has the following format:

Volume:\ Directory \ Directory \ File

Because a full file path completely specifies a file, file services calls ignore the value
of their directory handle parameter when an application passes a full file path.

When a full path is specified, set the directory handle to zero.

A partial file path includes a file name and optionally one or more antecedent
directory names. The file service routine then combines the directory handle

setting and the partial file path to obtain a full file specification. For example,

suppose an application calls a file services routine and passes a directory handle

mapped to the directory WORK:\HOME\MARY and a file path parameter

containing the partial file path ACCTS\ACTIVE\ZZYZX.DAT. The routine would

use the directory handle and partial file path to identify the file:

WORK:\HOME\MARY\ ACCTS\ACTIVE\ZZYZX.DAT.

Wildcards

Some file services calls accept wildcard characters in file names. To see which calls

provide wild card functionality, see NetWare® for AViiON® Systems: C Interface
Reference Guide. NetWare supports the following wildcard characters:

Character Name

* Asterisk

? Question Mark

A* Augmented Asterisk

A? Augmented Question Mark

A, Augmented Period

Each wildcard character is described below.

Asterisk. An asterisk matches zero or more characters. The pattern * therefore
matches any string. The pattern *.* matches anything with a period. (It does not
match names without a period, since a period is treated as any other character).

Question Mark. A question mark matches exactly one character, even a period.

Augmented Asterisk. The augmented asterisk is an asterisk with its high-order bit
set. It matches any character except a period.

Augmented Question Mark. An augmented question mark is a question mark with
its high-order bitset. It matches one character or an end-of-string.

Augmented Period. The augmented period is a period with its high-order bit set.
This character matches a period or an end-of-string. The augmented period is
included primarily to allow a shell or program to search for file names while
ignoring trailing periods.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Table 4-1 gives examples of wildcard strings and file names that would and would

not match them.

Table 4-1 Wildcard Patterns

Character Example Matches Does Not Match

* * All files

* A.B AB

? A?C ABC AC

A.C ABBC

A* AX ABC A.B

FILE :

AAFC AC ABC.C

ABBC

A? AARC ABC A.C

AC

AA?A? A A.B

AB

ABC

A, AB*. AB ABC ©

AB. AB.C

Entry IDs

Entry [Ds are used with many of the file system API calls. It is used to signal the

file server to search for the file. The application should never have to use or

manipulate this value, except for the first time the call is used.

When a call uses an entry ID (the entryID parameter), the parameter should be

initialized to -1. For subsequent calls, the entryID value will be filled in by the file

server and should not be altered. This value is an internal number used by the file

server, which represents the previously-scanned entry.

Search Attributes

Some File Service functions (NWDeleteFile, NWScanFileEntryInfo, and

NWSetFileEntryInfo) act on normal, hidden, or system files, depending upon the

setting of a search attributes parameter. These functions always act on normal

files, whether the hidden or system bit is set or not. The search attribute

parameter does NOT set a file or directory’s attributes, it merely indicates to the

file server the type of file or directory being looked at.

The search attributes for a given function call are compared with the file or

directory’s attribute byte. For example, calling NWScanFileEntryInfo with a search

attribute of system will allow files to be scanned that are either normal or that

have the system bit (in their attribute byte) turned on.

Licensed Material - Property of the copyright holders 4-3

Security

To assign various attributes to files or directories requires the use of
NWSetFileAttributes, NWSetDirEntryInfo, or NWSetFileEntryInfo. When using
search attributes in conjunction with setting attributes, the search attributes
should reflect the file or directory as it currently exists, not as the file or directory
will be after the attributes are set.

All file service APIs require security checking before the function is completed. If
the requesting client fails the security check, the function also fails. The functions
check for one or more of the following: bindery security, effective rights, and
attributes. The following examples illustrate security checking.

Bindery security Some APIs require the client to have read and write
privileges to bindery objects. For example, the API that sets
volume restrictions (NWSetObjectVolRestriction), checks to
make sure the client has a bindery access level of supervisor
equivalence for the object. If the client does not have
supervisor equivalence, the call fails.

Effective rights Some APIs require the client to have specific rights. For
example, the API that deletes a file (NWDeleteFile) checks
to make sure that the client has Erase rights to the file. If
the client does not have Erase rights to the file, the call to
delete the file fails.

Attributes Some APIs require the file to have specific attributes turned
off. The API that deletes a file checks the file’s current
attributes. If the Delete Inhibit attribute has been set, the
file cannot be deleted. Therefore the call to delete the file
fails.

Each of type of security check is described in greater detail on the following pages.

Bindery Security

Bindery security controls the read and write access to bindery objects and bindery
properties. Each bindery object has an object security level associated with it, and
each property has a property security level associated with it.

Both objects and properties use the security access levels that are shown in Table
4-2.

Licensed Material - Property of the copyright holders 069-000566

Table 4-2 Security Levels

Access Description

Anyone Access allowed to all clients, even if the client has not logged in to

the file server. Both a read and a write bit can be set.

Logged Access allowed only to clients who have logged in to the file server.

Both a read and a write bit can be set.

Object Access allowed only to clients who have logged in to the file

server with the object’s name, type and password. Both a

read and a write bit can be set.

Supervisor Access allowed only to clients who have logged in to the server as

the supervisor or as an object that has supervisor security

equivalence. Both a read and a write bit can be set.

NetWare Access only allowed to the NetWare operating system.

For more information, see Chapter 2, Bindery Services.

Effective Rights

Effective rights are the rights a user can actually exercise in a given directory or

file. Effective rights for NetWare 2.x differ from those for NetWare 3.x and

NetWare for AViiON Systems. For NetWare 2.x, see Appendix A, NetWare® for
AViiON® Systems: C Interface Reference Guide.

To determine a user’s effective rights in NetWare 3.x and NetWare for AViiON

Systems, you must know what rights were granted in trustee assignments and

what the directory or file’s Inherited Rights Mask is.

The following three sections define the effects of each right, the effects of trustee

assignments, and the effects of the Inherited Rights Mask.

Rights

Both trustee assignments and Inherited Rights Masks use the same eight trustee

rights to control access to directories and files. The eight rights are shown in the

list below. Each right is represented by its initial.

S Supervisory C Create F File Scan

R Read E Erase A Access Control

W Write M Modify

Each of these is defined below.

069-000566 Licensed Material - Property of the copyright holders 4-5

supervisory. Grants all rights to the directory, its files and subdirectories. The

Supervisory right overrides any restrictions placed on subdirectories or files with an
Inherited Rights Mask. Clients who have this rights in a directory can grant other
clients Supervisory rights to the directory, its files and its subdirectories. Once the
Supervisory rights has been granted, it can be revoked only from the directory to
which it was granted. It cannot be removed from the Inherited Rights Mask.

Read. Grants the right to open and read the file.

Write. Grants the right to open and write to the file. Clients usually need the
Modify right also because writing to a file requires modification to the file’s
attributes.

Create. Grants the right to create files and directories and to salvage files.

Erase. Grants the right to delete directories and files. All delete functions require
the user to have this right. One create function (NWCreateFile) requires the client
to have this right also because the function deletes existing files with the same
name as the new file.

Modify. Grants the right to change directory.and file attributes. It also grants the
right to rename directories and files. It does not grant the right to modify the
contents of a file. The right to modify the contents of a file is granted with the
Write right.

File Scan. Grants the right to see directories and files. It also grants the right to
see from the point the right is assigned up the directory structure to the root.

Access Control. Grants the right to modify a directory’s or a file’s trustee
assignments and Inherited Rights Mask.

Trustee Assignments

Trustee assignments are rights granted to specific users (or groups) that allow
trustees to use a file or a directory in particular ways, for example, only for
reading. The network manager can select the appropriate rights to assign to users
or groups in each directory or file.

A trustee assignment automatically grants users the right to see to the root of a
directory. However, users can’t see other subdirectories in the directory unless they
have been granted rights in those subdirectories or have been granted the

_ Supervisory right in the directory.

Trustee assignments allow rights to flow down the directory structure. In other
words, users will usually have the same rights in a subdirectory or file as they were
granted in the parent directory. However, if the sudirectory’s or file’s Inherited
Rights Mask is modified, their effective rights can change.

inherited Rights Mask

An Inherited Rights Mask is given to each file or directory when created. Although
the default Inherited Rights Mask includes all rights, users can only exercise the
rights they have been granted in trustee assignments.

Licensed Material - Property of the copyright holders 069-000566

An Inherited Rights Mask only affects users’ rights in a level below the point they
were granted trustee assignments. If the Inherited Rights Mask is modified for a

file or a subdirectory below the original trustee assignment, the only rights the user

can inherit for the file or the subdirectory are rights that are allowed by the
Inherited Rights Mask. The rights in the Inherited Rights Mask are AND’ed to the
effective rights of the parent directory. | |

For example, if Ann is granted the Read right with a directory trustee assignment

but the Read right is revoked by the Inherited Rights Mask at the subdirectory

level, Ann cannot read files in the subdirectory.

Attributes

Attributes assign special properties to files and directories. Attributes override
rights and prevent tasks that effective rights would allow. They can be used to
restrict or inhibit copying, deleting, renaming, writing, and sharing. The list below
shows the specific directory and file attributes and their associated letter

representation.

Directory Attributes Letter Representation

Delete Inhibit D

Hidden H

Purge Pp

Rename Inhibit R

System Sy

File Attributes Letter Representation

Archive Needed A

Copy Inhibit C

Delete Inhibit D

Execute Only xX

Hidden H

Indexed I
Purge P

Read Audit Ra

Read Only / Read Write Ro / RW

Rename Inhibit R

Shareable S

System Sy
Transactional T

Write Audit Wa

File Manipulation

The File Service APIs allow clients to manipulate files. They can do the following:
create files, delete files, open files, close files, read from files, write to files, move
files, get and set file attributes, scan and set file information, set file inherited
rights mask, scan and set file trustee assignments. Each task is described below
except scan and set trustee assignments, which are discussed later in this chapter.

069-000566 Licensed Material - Property of the copyright holders 4-7

Copying and Moving Files

NetWare has three APIs that move or copy files: NWFileCopy, NWMoveFile, and
NWMoveEntry.

The NWFileCopy function copies network files. Both the source and destination
files must reside on the same file server.

The NWMoveFile function moves or renames a file. Both the source and
destination files must reside on the same file server and the same volume.

The NWMoveEntry function moves or renames either files or directories.

To copy a file from one file server to another, the application must create the
destination file (NWCreateFile or NWCreateNewFile), read from the source file
(NWReadFile), and then write to the destination file (NWWriteFile).

Creating Files

Two function calls create files: NWCreateFile and NWCreateNewFile. The
NWCreateFile function will create a new file name and also allows for overwriting
an existing file of the same name. The NWCreateNewFile function only creates a
new file name, and this request will always fail if a file with the same name
already exists. Users need Create rights to use NWCreateNewFile and Create and
Delete rights to use NWCreateFile.

Creating a file doesn’t allocate any space. The file size will be zero until data is
actually written to the file. The minimum file size is 4KB.

Deleting Files

The NWDeleteFile function marks specified files for deletion. Files are specified by
passing a directory handle and file path (which can include wildcards) to the
function. The NWPurgeSalvageableFile function actually deletes all files that a
workstation has marked for deletion. Until files that have been marked for
deletion are purged, they can be restored by calling the NWRecoverSalvageableFile
function. The NWDeleteFile function corresponds to the DOS ERASE or DEL
commands.

Opening and Closing Files

The NWOpenFile function allows a client to open an existing file for reading or
writing. This function must be called before calling the read or write function. The
client must have Read rights to open and read an existing file or Write rights to
open and write to an exiting file.

The NWCloseFile function closes a file after it has been opened with NWOpen File.

Reading from and Writing to Files

The NWReadFile function allows you to read a file. The NWWriteFile function
allows you to write to a file.

Licensed Material - Property of the copyright holders 069-000566

069-000566

The NWReadFile and NWWriteFile calls require a file handle to the file which will
be read from or written to. This file handle is obtained by either opening or
creating a file. This file handle points to a file located on a NetWare file server.

The client must have Read rights to read a file and Write rights to write to a file.
The client usually needs to have Modify rights to write to a file because most write
operations change the file’s attributes.

Getting and Setting File Attributes

NetWare has four functions that allow manipulation of a file attributes. Two
functions, NWScanFileEntryInfo and NWSetFileEntryInfo, are discussed in the
next section. These two allow you to scan and set file attributes as well as many
other file information fields.

The NWGetFileAttributes function returns a specified file’s attributes. The
NWSetFileAttributes allows a client to modify a file’s attributes to a specified
attribute value. The client must have Modify rights in to the specified file, and the
file must not be in use by other clients. This call supports wildcard attribute
setting.

One attribute, the Execute Only attribute, cannot be reset. Since the attribute
cannot be reset, setting this attribute requires the client to have supervisor

equivalence.

See the section, “Attributes” later in this chapter for a list of supported attributes. —

Scanning and Setting File Information

NetWare has two functions that allow manipulation of file information:
NWScanFileEntryInfo and NWSetFileEntryInfo.

The NWScanFileEntryInfo function returns information about the file, and the
NWSetFileEntryInfo function sets information kept on files. This information can
be seen in the NWFileEntryInfo_t structure. A pointer to the entire structure
should be passed, even if only one item is being scanned or changed.

Some items have a separate function that allows you to scan or change only that
item. These items are shown in the table below. .

Table 4-3 Security Levels

ltem Scan Function Set Function

Attributes NWGetFileAttributes NWSetFileAttributes

Inherited Rights Mask NWSetFilesInheritedRightsMask

Name | NWMoveFile

Trustees NWGetEntrysTrustees NWSetTrustee

Licensed Material - Property of the copyright holders 4-9

4-10

Since the functions listed above are designed to scan or change one item, we

recommend using them if you have only the specific item to change or scan. Use

the NWScanFileEntryInfo and NWSetFileEntryInfo when you need to change

multiple items.

Using NWSetFileEntryInfo requires more than passing a pointer to the entire file

structure. You must also pass change attributes which correspond to the data

being changed. For example, if the owner of the file is being changed, then the

entire structure would be allocated and the new ownerID would be put in the

ownerlID field of the structure. Correspondingly, the NWCA_OWNER_ID ‘change

attribute would be passed in the changeAttributes parameter.

The client’s security requirements change with the item being changed. The date

and time fields and ID fields require the client to have supervisor equivalence.

(These fields are described in the “IDs and Users” and “Date and Time Information”

sections.) Other items require the rights shown in the table below.

Table 4-4 Client Security Requirements

item — Rights

Attributes Access Control except for Execute Only.

Execute Only requires the client to have

supervisor equivalence.

Inherited Rights Mask Access Control

Name Modify

IDs and Users

Some structure members of the file system API calls are bindery object IDs of

users. These object IDs are used to identify the following: archiverID, ownerID,

updatorID, trusteeID, and objectID. If you would like to know the object name
associated with those IDs, the object name can be obtained by calling the

NWGetObjectName function.

The operating system automatically fills these fields with the object ID of the user

who performs the task. For example, the ownerlID is the user who created the file.

A client must have supervisor equivalence to set the owner of the file to another

user.

Date and Time Information

Several of the file system API calls, such as NWGetDirEntryInfo and

NWScanFileEntryInfo receive time and date information for creation, last

modification, last archive, and last access. When a user performs these operations,
the operating system automatically fills the fields with the system the date and
time. A client must have supervisor equivalence to change the date and time.

Licensed Material - Property of the copyright holders 069-000566

069-000566

The date and time are stored in a four byte value (uint32); the format is shown
below.

Most Significant Byte , Least Significant Byte

Year Month Day

Hour Minute Second

7! gl sl al 3h al al ol al el sl al al al al o

The first two bytes of the four byte value contain the year, month, and day. The
last two bytes contain the hour, minute, and second.

Year. The year field is the seven high-order bits of the most significant byte. To
obtain the actual year, add 1980 to the value in the year field.

Month. The month field comprises the low-order bit of the most significant byte
and the three high order bits of the least significant byte. This field is a number
from 1 to 12.

Day. The day field is the four low-order bits of the least significant byte. This field
is a number from 1 to 31.

Hour. The hour field is the five high-order bits of the third byte.

Minute. The minute field is the three low-order bits of the third byte and the three
high-order bits of the fourth byte.

Seconds. The seconds field is the five low-order bits of the fourth byte and
contains a value from 0 to 29; multiply by 2 to obtain the actual second’s value.

Setting the File’s Inherited Rights Mask

The inherited rights masks are given to each file and directory at creation. The file
inherited rights mask controls which directory rights can be exercised on the file.
See “Effective Rights,” in this chapter, for additional information on rights.

The APIs allow you to set the rights mask for a file. The rights you pass overlay
the existing inherited rights mask. You cannot add a right by passing in only one
right; you must pass in all rights that you want set in the inherited rights mask.

The client must have Access Control rights to the file to set the inherited rights
mask.

Getting Information on File Name Spaces

The NWGetNameSpacelInfo function returns all name spaces and data stream
information for the specified file server and volume. This call is valid for NetWare
for AViiON Systems and NetWare version 3.x. This function passes three
parameters.

NWGetNameSpacelnfo(serverConnID, volNum, &nameSpace)

Licensed Material - Property of the copyright holders 4-1 1

Directory Manipulation

The File Service APIs allow clients to manipulate directories. They can do the
following: create directories, delete directories, rename directories, scan and set
directory information, set directory inherited rights mask, get and set directory
restrictions, and scan and set directory trustees. Each task is described below
except scan and set directory trustees. See the section, “Trustees,” later in this
chapter for additional information.

Creating Directories

The NWCreateDir function creates a directory on the server specified by the
connection ID. This function passes a pointer to the structure containing the
directory handle, file server connection ID, and a pointer to the path name. It also
passes the Inherited Rights Mask for the new directory. The dirHandle parameter
can be zero if the dirPath parameter contains the complete path of the new
directory, including the volume name. This call will not accept wild card characters.
Also the requesting client must have Create and Parental rights in the directory
that will become the parent directory.

This call will not sequentially create a string of directories; this call only creates
the last directory provided in the NWPath_t structure provided by the client. It
creates only one directory at a time. |

This call differs from NWCreateFile in that a handle is not returned. To obtain a
directory handle to this directory, you must use NWAllocTemporaryDirHandle or
NWAIlocPermanentDirHandle.

Deleting Directories

The NWDeleteDir function deletes a NetWare directory. The call expects a pointer
to the NWPath_t structure containing the directory handle, file server connection
ID, and the path name. This function will fail if the directory does not exist or
there are files in the existing directory. This function automatically deallocates any
directory handles pointing to the directory, but will fail if another client has the
directory handle pointing to the directory.

Renaming Directories

The NWRenameDir function allows you to change the name of a directory. This
call does not move a directory to a new location. NWRenameDir expects a pointer
to the NWPAth_t structure containing the directory handle, file server connection
ID, and the path name. It also passes a pointer to the array allocated for the new
directory name.

The newDirName parameter should only contain the directory’s new name, not a
path specification. Names longer than the DOS 8.3 will be truncated.

If the application is moving a directory, NWMoveEntry should be used.

4-1 2 Licensed Material - Property of the copyright holders 069-000566

069-000566

Scanning Directory Information

The NWScanDirEntryInfo function scans for directory entry information such as
entry name, attributes, and creation, archive, last modification date and time.

The function passes four parameters as shown below.

NWScanDirEntryInfo(&path, &entryID, searchAttributes, &dirInfo)

The application must provide a search string in the pathName field of the
NWPath_t structure such as SYS:APPS*. If all directories are scanned, the
pathName field in the NWPath_t structure should contain ...*. If, for example,
only directories beginning with “t” are being scanned, pathName should contain
vee \E*,

Getting Directory Information

Two function calls allow you to get directory information. The NWGetDirEntryInfo
function provides information about a directory through the directory handle. The
correct syntax is shown below. :

NWGetDirEntryInfo(serverConnID, dirHandle, &dirInfo)

This call is valid for NetWare for AViiON Systems and NetWare version 3.x. It is
useful for obtaining information from the root directory. The dirHandle parameter
must be allocated using the NWAllocTemporaryDirHandle or
NWAllocPermanentDirHandle call.

Another function, NWGetDirRestriction, obtains restriction information, such as
maximum blocks and available blocks. This information is obtained for the
specified directory and the directories above it. The restrictions are set using
NWSetDirRestriction. Five parameters are being passed in this function.

NWGetDirRestriction(serverConnID, dirHandle, &numberOfEntries,
&restrictions, maxListElements)

This function scans for the amount of disk space assigned to all directories between
the current directory (referenced by the dirHandle) and the root directory. To find
the actual amount of space available to a directory, scan all the entries returned in
the restriction array and use the smallest one. Directories which have no
restrictions will not return any information. If no entries are returned, no space
restrictions exist for the specified directory.

To calculate the amount of space in use, simply subtract availableBlocks from
maxBlocks. If maxBlocks is a negative value, the limit is 0. If the availableBlocks
value is negative, the available blocks is 0.

This function is available for NetWare for AViiON Systems and NetWare version
3.x. You must allocate a dirHandle before you make this call.

Setting Directory Information

Two functions allow for setting directory information. The NWSetDirEntryInfo
function sets information kept on directories. This information can be seen in the
NWDirEntryInfo_t structure. A pointer to the entire structure should be passed,
even if only one item is being changed. Furthermore, the change attributes must
be passed which correspond to the data being changed; these attributes can be
OR’ed together to make several changes. For example, if the owner of the directory

Licensed Material - Property of the copyright holders 4-1 3

is being changed, the entire structure would then be allocated and the new

ownerID would be put in the ownerlID field of the structure. Correspondingly, the

NWCA_OWNER_ID change attribute would be passed in the changeAttributes

parameter.

The NWSetDirRestriction function sets or clears a directory’s restrictions. This

function requires that the application pass an allocated directory handle to the

directory to which the restrictions apply.

The restriction parameter passes a 0 to clear all restrictions ora number __

corresponding to the space available in the directory. Restrictions are in 4K blocks,

therefore, a restriction of 1 will restrict the space usage in a particular directory to

4K.

This call is valid for NetWare for AViiON Systems and NetWare version 3.x. The

directory handle can be obtained by calling either NWAllocTemporaryDirHandle or

NWAllocPermanentDirHandle.

setting the Directory’s Inherited Rights Mask

The NWSetDirsInheritedRightsMask function modifies the rights mask for a —

directory path. It passes three parameters as shown below.

NWSetDirsInheritedRightsMask(&path, revokeRightsMask,

grantRightsMask)

This function will revoke directory rights by removing from the inherited rights

mask any rights the application passes in with the revokeRightsMask parameter.

It will grant rights by adding to the file’s inherited rights mask any rights passed

in with the grantRightsMask parameter. >

Volumes

A NetWare 3.x file server can have up to 32 disk volumes installed. NetWare for

AViiON Systems has a configurable number of volumes. NetWare provides eight

calls for obtaining information about volumes.

Clearing Volume Restrictions

The NWClearObjectVolRestriction function clears any volume restrictions placed on

an object by the NWSetObjectVolRestriction call. This function passes three

parameters.

NWClearObjectVolRestriction(serverConnID, volNum, objectID).

This function is only valid on NetWare 3.x.

Getting Volume Restrictions

Two file system API calls get the restriction information associated with a volume.

These two functions are only valid on NetWare 3.x.

4-1 4 Licensed Material - Property of the copyright holders 069-000566

069-000566

The NWGetObjectVolRestriction function acquires the volume restrictions that are
placed on a specified object (such as a user). The function passes five parameters.

NWGetObjectVolRestriction(serverConnID, volNum, objectID, &restriction,
&inUse)

This function returns the amount of space restriction based on 4K blocks on a
specified object. as well as the current amount of space used by the object. There
are no restrictions if the restriction value returned is 0x40000000.

The NWGetVolsObjectRestrictions call will get any object restrictions on a volume.
It passes five parameters (see the example below).

NWGetVolsObjectRestrictions(serverConnID, volNum, numberOfEntries,
&restrictions, &maxListElements)

This call returns the number of entries that were copied into the restrictions array
(0 - n) and the user restrictions.

Setting Volume Restrictions

The NWSetObjectVolRestriction function sets the volume restrictions on a specified
object (such as a user). The function passes four parameters.

NWSetObjectVolRestriction(serverConnID, volNum, objectID, restriction)

This function is similar to NWSetDirRestriction in that a Space restriction is set,
but the restriction applies to a specific object rather than overall. Restrictions are
set in 4Kbyte blocks. This call is only valid with NetWare versions 3.x. The
volume number can be obtained by calling NWGetVolNum.

Getting Volume Numbers

The NWGetVolNum function returns the volume number based on the file server
connection ID number and the volume name. The volume name cannot contain
wildeards. If the volNum parameter is between 0 and the maximum allowable
volume number on the network, the call is successful and a zero is returned. This
call passes three parameters as shown below.

_ NWGetVolNum(serverConnID, volName, &volNum)

The NWGetVolNum is the inverse of NWGetVolName, returning a volume’s slot
number, given its name.

Getting Volume Names

The NWGetVolName function returns the name of a volume (a string of up to 16
characters) given a specified volume number [0..31]. The volNum parameter
identifies the volume on the file server's Volume table. The Volume table contains
information about each volume on the file server. The volName parameter is 16
bytes long (including a null-byte). A volume name can be from 1 to 16 characters
long and cannot include spaces or special characters such as *?,:,/, and \. This
call passes three parameters as shown below.

NWGetVolName(serverConnID, volNum, volName)

Licensed Material - Property of the copyright holders 4-1 5

Getting Volume Information

Trustees

Two calls get information about a volume: NWGetVolInfoWithHandle and
NWGetVolUsage. The NWGetVoliInfoWithHandle function returns directory and
physical data about a volume, when passed a dirHandle pointing to the volume.
The function returns the volume’s name, the number of blocks on the volume, the
number of sectors per block, the number of unused blocks on the volume, the
number of directory slots on the volume, the number of unused directory slots, and
a flag indicating whether the volume is removable. To obtain a directory handle,
the application must call NWAllocTemporaryDirHandle or
NWAllocPermanentDirHandle.

The NWGetVolUsage function also returns information about what is available, and
in use, on a certain volume. The volNum parameter identifies the volume on the
file server’s Volume table, which contains information about each volume on the file
server.

Both functions pass three parameters with the exception that one passes dirHandle
and the other passes volNum.

NWGetVolInfoWithHandle(serverConnID, dirHandle, &volUsage)

NWGetVolUsage(serverConnID, volNum, &volUsage)

Trustees can be assigned to directories and files. The File Service APIs allow you
to add new trustees, delete existing trustees, get trustee information, and modify
trustee assignments. Each task is described below.

Deleting Trustees

The NWDeleteTrustee function revokes a trustee’s rights in a specific directory and
removes the trustee from a directory’s trustee list. To delete a trustee, the
requesting client must have Access Control rights to the directory or file.

Deleting the explicit assignment of an object’s trustee in a directory is not the same
as assigning that object no rights in the directory. If no rights are assigned in a
directory, the object inherits the same rights it has in the parent directory.

This function passes two parameters as shown below. The trusteeObjectID can be
obtained by calling NWGetObjectID.

NWDeleteTrustee(&path, trusteeObjectID)

Getting Rights Information

4-16

Three calls get information related to rights assignments, such as effective rights,
trustees, or the directory paths that trustees have rights to.

The NWGetEffectiveRights function returns a client’s effective rights in the
specified directory. This function passes two parameters.

NWGetEffectiveRights(&path, &effectiveRightsMask)

Licensed Material - Property of the copyright holders 069-000566

The requesting workstation’s effective rights are determined by ANDing the
inherited rights mask of the directory with the client’s current trustee rights. For

detailed explanations of how effective rights are derived, see the section, “Effective

Rights,” in this chapter.

The NWGetEntrysTrustees function returns trustee information such as trustee

objectIDs and their associated rights. The number of trustees returned is specified

by the application. The numberOfEntries returns the actual number of trustees

found by the call.

This call passes four parameters.

NWGetEntrysTrustees(&path, &numberOfEntries, trusteeRights,

maxListElements)

The NWScanTrusteePaths function returns the directory paths to which an object

has trustee rights. This function is used iteratively to determine all the trustee

directory paths of a bindery object and their corresponding access masks.

This call passes six parameters as shown below.

NWScanTrusteePaths(serverConnID, objectID, volNum, &entryID,

&trusteeAccessRights, directoryPath)

Setting Trustees

The NWSetTrustee function creates a trustee or changes a current trustee’s trustee
rights to a directory. To take rights away from a trustee, simply pass a
trusteeRightsMask without those bits set. This function passes three parameters as
can been seen in the entry below.

NWSetTrustee(&path, trusteeObjectID, trusteeRightsMask)

The trusteeRightsMask can be obtained by ORing together all of the desired trustee

rights.

Salvageable Files

Note:

When files are deleted under NetWare, they are actually saved in the buffer. The

deleted files can be purged, restored, or viewed by using the following calls.

Your NetWare for AViiON Systems version may not support Salvaging Files and
Purging Files. Refer to the release notice accompanying your shipment for specific
restrictions.

Scanning Salvageable Files

069-000566

The NWScanSalvageableFiles function returns information on deleted, but
salvageable, files. This call is only valid for NetWare version 3.x. It passes four
parameters.

NWScanSalvageableFiles(serverConnID, dirHandle, &entryID,

&salvageableInfo)

Licensed Material - Property of the copyright holders | 4-1 tT

Purging Files

The NWPurgeSalvageableFile function permanently deletes files that have been
erased but are still recoverable. This function frees up the disk space used by
deleted, but still recoverable files. It is only valid on NetWare version 3.x.

The NWPurgeSalvageableFile function passes two parameters: a pointer to the
structure path and entryID. The entryID parameter can be obtained by calling

NWScanSalvageableFiles. |

~

Recovering Files

The NWRecoverSalvageableFile function restores a deleted, but salvageable file.
This call can only restore files that were deleted by the last call to NWDeleteFile,
and cannot recover files that were marked for deletion prior to a call to
NWPurgeSalvageableFile.

To call this function, you should first use the NWScanSalvageableFiles until you
find a file you want to salvage. Then, call the NWRecoverSalvageableFile passing
in the entryID from NWScanSalvageableFiles corresponding to the desired file.
This function is only valid on NetWare version 3.x.

This call passes three parameters.

NWRecoverSalvageableFile(&path, entryID, newFileName)

If an application running on a different workstation creates a file with the same
name as the deleted file, the function renames the recovered file, replacing the last
two characters of the file extension with 00. For example, FILE.T00 replaces
FILE.TXT.

End of Chapter

4-1 8 Licensed Material - Property of the copyright holders 069-000566

Chapter 5

Path Services

The Path Services calls enable an application program to allocate and deallocate
directory handles.

Tables Accessed By Path Services

069-000566

File servers and workstations maintain several tables that are used by Path Service
APIs, They are the following: Directory Table and Directory Handle Table.

Directory Table

To record information about directories, a file server maintains a Directory Table.
Entries in the Directory Table define a file server’s directory structure; all Directory
Services calls access the Directory Table. The Directory Table contains 3 kinds of
entries: directory nodes, file nodes, and trustee nodes.

A directory node includes the following information about a directory: directory
name, attribute byte, maximum rights mask, creation date, creator’s object ID, a
link to the parent directory, and a link to a trustee node (if one exists).

A file node includes the following information about a file: file name, attribute
byte, file size, creation date, last-accessed date, last-updated date and time, last
archive date and time, the file owner’s object ID, and a link to a directory.

A trustee node includes the following information: the object IDs of one to five
trustees of a directory linked to the trustee node, one to five corresponding trustee
rights masks, a link to a directory, and a link to the next trustee node (if one

exists).

Directory Handle Table

The file server maintains a directory handle table for each workstation logged into
it. The directory handle table has 256 entries (0x00...0xFF), each of which can be
set to point to a volume or directory path. When a workstation requests a directory
handle, the file server enters the volume number and directory entry number for
the specified directory into the directory handle table for the requesting

workstation. Applications running on the workstation can then refer to a directory
using a directory handle, which is actually an index into the directory handle table.

Directory handles are discussed in greater detail in "Directory Handles" later in
this chapter.

Licensed Material - Property of the copyright holders 5-1

Directory Handles

Once a directory handle is set, you can use the directory handle to specify a volume

or a directory path on the file server. NetWare APIs that refer to directories permit
you to specify a directory path in three different ways.

¢ Allocate a directory handle to point to the target directory.

¢ Use both a directory handle and a complementary directory path to specify the
complete path. The directory handle must lead part of the way to the target
directory, and the directory path must lead the rest of the way.

e Specify the entire directory path.

When an application begins executing, the application must allocate all the
directory handles that it needs.

The path services uses the NWPath_t structure below to specify the location of

NetWare file or directory.

NWPath_t Structure

typedef struct {

NWDirHandle_ts dirHandle;

uint16 serverConnID;

char *pathName;

} NWPath_t;

The dirHandle field represents the directory handle allocated by the client pointing
to a particular place in the directory structure. The dirHandle is specific to the file

server connection (serverConnID) and can only be used to access directories or files

on that file server.

The serverConnlD field represents the file server connection which contains the file
system being accessed.

The pathName field is a pointer which points to a character string which the client

must allocate and fill in with a path name.

The NWPath_t structure can be used in one of three ways:

1. The application can pass a 0 in the dirHandle field and then pass a full
path (of the target directory or file) in the pathName field. In the following
example, the path to be accessed is the SYS:APPS/WP directory on file

server connection 0 (first file server attached to).

NWPath_t path;

char fullPath[NWMAX_DIR_PATH_ LENGTH];

path.serverConnID = 0;

path.dirHandle = 0;

strepy(fullPath, "SYS:APPS/WP");

path.pathName = fullPath;

Licensed Material - Property of the copyright holders 069-000566

069-000566

The application can pass a previously allocated directory handle in the

dirHandle field (see NWAllocTemporaryDirHandle or

NWAlIlocPermanentDirHandle) and then can pass a path in the pathName

field which is relative to the directory that the dirHandle points to. In the
following example, the path to be accessed is the SYS:APPS/WP directory on

file server connection 0 (first file server attached to). A dirHandle of 3 has

already been allocated for SYS:APPS.

NWPath_t path;

char partialPathI[NWMAX_DIR_ PATH LENGTH];

path.serverConnID = 0;

path.dirHandle = 3;

strepy(partialPath, "WP");

path.pathName = partialPath;

The application can allocate a directory handle to point to the target

directory. Note that the pathName is null when the dirHandle being

passed already references the full path. In the following example, the path

to be accessed is the SYS:APPS/WP directory on file server connection 0

(first file server attached to). A dirHandle of 4 has already been allocated

for SYS:APPS/WP.

NWPath_t path;

char noPath[NWMAX_DIR_PATH_ LENGTH];

path.serverConnID = 0;

path.dirHandle = 4;

strepy(noPath, "");

path.pathName = noPath;

Path Services provides six calls to allow the manipulation of directory handles:

NWaAllocPermanentDirHandle

NWAllocTemporaryDirHandle

NWDeallocateDirHandle

NWGetDirPath

NWParseFullPath

NWSetDirHandle

The NWAllocPermanentDirHandle function allows an application to assign a

directory handle and permanently maps a workstation drive to a network directory.

The NWAllocTemporaryDirHandle function temporarily assigns a directory handle

and maps a workstation drive to a network directory.

Licensed Material - Property of the copyright holders 5-3

The NWDeallocateDirHandle function deallocates a previously allocated directory

handle. However, the file server automatically deallocates directory handles under

the following situations:

e Temporary directory handles are deallocated when the application loses its
connection (logs out).

e Permanent directory handles are deallocated when another permanent handle is
allocated to the same path.

The full path that a directory handle points to can be seen using the
NWGetDirPath function call. To further see the different parts of a full path, the
NWParseFullPath is used.

The NWSetDirHandle function assigns a directory handle to a file server directory
path (relative to an existing directory handle).

Permanent and Temporary Directory Handles

Temporary directory handles exist until the application that allocated them exits or

calls the EndOfJob function. The mapping of a workstation drive letter to a
permanent directory handle continues after the application that created the
mapping exits. Temporary directory handles also differ from permanent directory
handles in that several temporary directory handles can be assigned the same drive
letter, but still be separate handles mapped to different directory paths.

Applications allocate permanent directory handles by calling

NWAllocPermanentDirHandle, which takes the same parameters as
NWAllocTemporaryDirHandle. Permanent directory handles are not automatically
deallocated when the application that allocated them exits. The
NWDeallocateDirHandle function is provided to deallocate directory handles. Even
though NetWare automatically deallocates temporary directory handles when the
application that allocated them exits, some application developers prefer to
explicitly deallocate temporary directory handles as a matter of programming style.

File Paths

When specifying a file to a file services call, an application can use either a full or a
partial file path. A full file path has the following format:

Volume:\Directory\...\Directory\ File

Because a full file path completely specifies a file, file services calls ignore the value
of their directory handle parameter when an application passes a full file path.

A partial file path includes a file name and optionally one or more antecedent
directory names. The file service routine then combines the directory handle
setting and the partial file path to obtain a full file specification. For example,
suppose an application calls a file services routine and passes a directory handle
mapped to the directory WORK:\HOME\MARY and a file path parameter
containing the partial file path ACCTS\ACTIVE\ZZYZX.DAT. The routine would
use the directory handle and partial file path to identify the file
WORK:\HOME\MARY\ ACCTS\ACTIVE\ZZYZX.DAT.

Licensed Material - Property of the copyright holders 069-000566

069-000566

A full path, including a server name has the following format:

Server/Volume:\ Directory \...\ Directory \File

The NWParseFullPath function call uses the full path, including server name.

End of Chapter

Licensed Material - Property of the copyright holders

Chapter 6

Queue Services

Queue Services make NetWare’s Queue Management System (QMS) available to
developers. To explain queue services, this chapter is divided into the following
sections:

e Why Use QMS?

¢ Queues and the Bindery

e The Queue Process

e Using Queue Services

Why Use QMS?

069-000566

Among the methods that developers can use to distribute processes on the network
QMS is perhaps the simplest and most direct. Although not a suitable solution for
all situations, QMS offers some advantages over other methods.

Applications that need to do the following may want to consider using QMS:

e Exercise control over the flow and execution of large workloads

e Define specifications and protocols for processing jobs

¢ Provide broad safeguards to protect job information and network data

Control

Generally, QMS is suited to applications that are dealing with large workloads and
need the flexibility and control inherent in the queuing process. Time and
efficiency are somewhat less important to these applications than are security and
reliability. :

For example, an archive server is a good candidate for QMS. An archive server
cares less about speed than about a dependable and secure operating environment.
In addition, archive jobs may need to be sorted and managed according to size,
priority, kind, and other properties. QMS offers the regulatory features these tasks
require.

Flexibility

Flexibility is another one of QMS’s advantages. Although every queue must adhere
to QMS’s standard structure, QMS allows applications to define their own
specifications within the QMS format. Thus, queues can transmit information that
is specific to a specialized service. For example, a print server could use QMS to
define its own protocol for handling diverse printing formats.

Licensed Material - Property of the copyright holders 6-1

Security

QMS is based on NetWare’s Bindery and takes advantage of the Bindery’s

extensive security structure. Along with NetWare’s directory security, the

Bindery’s organization clearly defines the relationship among queues, users, and

queue servers. An application can ensure that only qualified users work with

network data, whether it is placed temporarily in a queue or stored permanently on

network disks.

In addition to the advantages listed so far, QMS is relatively easy for developers to

use. Since QMS exploits NetWare’s existing design and security features, it avoids

possible conflicts with other NetWare services. Developers who are already

familiar with NetWare’s Bindery should find QMS’s design familiar and accessible.

In addition, Queue Services contain an extensive group of function calls that help

make QMS simple and convenient to manage.

Queues and the Bindery

Queues form the basis of QMS. Simply put, a queue is a group of jobs waiting to be

serviced. On one end of the queue are users, who submit jobs, and at the other end

are queue servers that process the jobs. For the most part, jobs proceed

sequentially through the queue, those arriving first being serviced before those that

come after.

Queues are objects in a file server's bindery. Defining a queue as a bindery object

allows QMS to guarantee that only authorized users will access and modify the

queue. By defining users, operators, and servers as properties of the queue, QMS

provides extensive control over how the queue is used and who may use it. For

more information about the structure of the Bindery, see Chapter 2.

The Queue Object

As with any bindery object, a queue has a name, type, ID number, and security

status. The queue’s name and ID number identify it uniquely among queues in a

file server’s bindery. Particularly on an internetwork, it is important to note that a

queue exists in the bindery of a specific file server.

QMS limits each queue to a single type of service. When an application creates a

queue, it must define the type of jobs that queue intends to hold. Some queue types

are designated by Novell. For example, a print queue is defined as

NWOT_PRINT_QUEUE and will only accept jobs that correspond to that type.

When QMS creates a queue, the queue is assigned the security levels

NWBS_ANY_READ (read anyone) and NWBS_SUPER_WRITE (write supervisor).

The NWBS_ANY_READ level allows users to scan the bindery for a list of queues

of a particular type. On the other hand, the NWBS_SUPER, WRITE level ensures

that only the supervisor will be able to modify the queue’s properties.

Licensed Material - Property of the copyright holders 069-000566

069-000566

The features of a queue object are given in Table 6-1. The queue properties are
described below.

Table 6-1 The Queue Object

Feature Explanation

Name Assigned by the application

ID number Assigned by QMS

Type A number identifying the queue’s work

Status . NWBS_ANY_READ | NWBS_SUPER_WRITE

Properties Q DIRECTORY

Q_USERS)
Q_ OPERATORS

Q SERVERS

Queue Properties

QMS attaches four properties to the queue object in the bindery: Q_ DIRECTORY,
Q_USERS, Q_SERVERS, and Q OPERATORS. These properties let an application
control access to the queue through normal bindery routines.

The queue properties Q USERS, Q_OPERATORS, and Q SERVERS define the role
of queues and their relationship with other QMS components. In most case, these
properties are sufficient to accommodate a queue server's needs, although an
application may define additional queue properties, as well. (For example, a queue
could define as a property the type of hardware device that the queue is associated
with--printer, plotter, tape, etc.)

The Q_DIRECTORY Property

The first property, Q DIRECTORY, has a security level of NWBS_SUPER_READ |
NWBS_SUPER_WRITE (read supervisor and write supervisor). The other three
properties are NWBS_ANY_READ | NWBS_SUPER_READ (read anyone and write
supervisor). Thus, only the supervisor can see or modify the value of
Q_DIRECTORY, but any logged in user can see the value of Q USERS,
Q_SERVERS, and Q OPERATORS.

When an application creates a queue, it must specify a directory path. QMS will
use this path to create a queue directory that holds the system files and job files
related to queue entries. The directory path SYS:SYSTEM is commonly used for
the queue directory; however, you may specify any path.

QMS names the queue directory with queue’s ID number. The complete directory
path, including the queue directory, is assigned to the Q DIRECTORY property.
The path string specified by the application cannot exceed
NWMAX_PROPERTY_VALUE_LENGTH (128 characters, including the null
terminator).

Licensed Material - Property of the copyright holders 6-3

Q_DIRECTORY is an item property; each queue has only one.

Table 6-2 Example of a Queue Directory

Feature Explanation

Path SYS:\SYSTEM

Queue ID 015D03

Queue Directory SYS:\SYSTEM\015D03

The Q_USERS Property

QMS makes queues available to users through the Q USERS property. This set
property is a list of all the users who may place a job in a queue. The list can
contain both user names and group names.

If a user is the security equivalent of any object listed in the Q_USERS property,
that user has access to the queue. Likewise, when a group name is added to the

Q_USERS property, all users in the group have access to the queue. Since the
Q_USERS property is NWBS_SUPER_WRITE, only the supervisor can add or

remove users from a queue. However, to use the queue, the supervisor must also
be added to the Q USERS property, just like any other object. If the supervisor

does not want to place any restrictions on the queue, the group EVERYONE can be

added to the Q_ USERS property.

The Q_SERVERS Property

For a queue to be serviced, a value must be assigned to the queue’s Q_ SERVERS
property. This property holds a list of all the queue servers that can handle jobs
placed in the queue. If an application does not assign any queue servers to the
Q SERVERS property, jobs may be placed in the queue, but they will not be
serviced.

Before an application can assign a queue server to a queue, the queue server must
exist as an object on the file server where the queue resides. As a bindery object, a
queue server can log in to the file server and search for queues. QMS checks a
queue server's login name and password against the servers listed in a queue’s
Q_SERVER property to determine if the queue server is authorized to service the
queue.

When an application creates a queue server as a bindery object, it must specify the
queue server's object type. As with queue types, Novell has designated object types
for queue servers. The following object types are designated as queue servers:

Object Type

Print server NWOT_PRINT_SERVER

Job server NWOT_JOB_SERVER

Archive server NWOT_ARCHIVE_SERVER

Licensed Material - Property of the copyright holders 069-000566

If you need an object type that is not defined, contact Novell’s API Consulting

Group.

An application must also assign an account balance to the queue server.

The Q_OPERATORS Property

QMS attaches a Q_ OPERATORS property to each queue, which contains a list of

all users who are authorized to manage the queue. An application must assign

values to a the Q_ OPERATORS property before the queue can be managed.

Operators can modify the specifications for a particular job, as well as manipulate

the order of jobs in the queue. Operators can also set the status of a queue,

suspending the operation of the queue as needed.

As with the Q_USERS property, user or group names can be added to the

Q_OPERATORS property. In other words, queue operators must exist in a file

server’s bindery as user and group objects. In order for the object SUPERVISOR to

perform operator tasks, it must also be added as an object to the Q OPERATORS

property

Supervisors and QMS

Developers should keep in mind the different security levels involved in a QMS

application. An application needs supervisor equivalence to install and configure a
queue server, since only supervisors can perform the bindery operation related to
QMS.

However, queue users and queue operators need no special rights to exercise their

privileges. Any user assigned to a queue’s Q_ USERS property can submit jobs, and
any user assigned to a queue’s Q OPERATORS property can manage the operation

of the queue.

The Queue Process

069-000566

When a queue is created in the bindery, QMS automatically assigns it a
Q DIRECTORY property containing the queue directory path. Within this
directory, QMS creates two system files that it uses to manage the queue. As jobs
are submitted to the queue, temporary queue files are also placed in the queue
directory.

QMS Files

Queue files are named with the characters Q$ followed by the last four digits of the
queue’s ID number. One file maintains a list of queue servers currently attached to
the queue and has the extension .SRV. The other file maintains information about
the jobs in the queue and has the extension .SYS. Both files are flagged HIDDEN
when created.

A job is submitted to a queue as a queue file. Queue files use the same naming
conventions as the queue system files, only each extension is a three digit number.
The extension numbers of queue files reflect the sequence of queue jobs as they are
created (.001, .002, .003, etc.).

Licensed Material - Property of the copyright holders 6-5

When a queue file is created, a queue job structure (NWQueueJobStruct_t) is
appended to the beginning of the file. The queue job structure takes up the first
255 bytes of the queue file. QMS uses this information to process the job. As jobs
are processed, both the queue file and its reference within the .SYS file are deleted.

The queue file itself can contain any data needed for completing the job. If the
queue supplies printing services, the queue file could contain the data to be printed.
Or, if the queue supplies compiling services, the queue file might contain a
compilation makefile. Developers are also free to use the queue file for
transmitting their own protocol information.

The NWQueueJobStruct_t Structure

All the information QMS requires to process a job is placed in the
NWQueueJobStruct_t. Some of this information must be supplied by the
application that creates the queue job; the rest is supplied by QMS. After the job is
in the queue, the queue operator or the user who submitted the job can modify the
information that indicates how to process the job.

NWQueueJobSiruct_t Fields

Table 6-3 lists all of the fields in the NWQueueJobStruct_t Structure. A
description of each field follows the table.

Table 6-3 NWQueueJobStruct_t Structure

Field Type

clientStation uint8

clientTask uint8

clientID uint32

targetServerID uint32

targetExecutionTime uint8INWMAX QUEUE_JOB_TIME SIZE]

jobEntryTime uint8LNWMAX_QUEUE_JOB_TIME_SIZE]

jobNumber uintl6

jobType uint16

jobPosition uint8

jobControlFlags uint8

jobFileName uint8LNWMAX_JOB_FILE_NAME_LENGTH}]

jobFileHandle NWFileHandle_ta |

servicingServerStation uint8

servicingServerlaskNumber —_uint8

servicingServerIDNumber uint32

jobDescription

queueRecord

uint8[NWMAX_JOB_DESCRIPTION_LENGTH]

NWClientRecord_ta

Licensed Material - Property of the copyright holders 069-000566

069-000566

QMS automatically fills in all the fields in the structure except the following which
must be filled in by the application:

targetServerID

targetExecutionTime

jobType
jobControlFlags

jobDescription

queueRecord

ClientStation. This field contains the number of the station that placed the job in

the queue.

clientTask. This field contains the number of the task the station was performing

when it placed the job in the queue.

ClientiID. This field contains the user ID number of the station that placed the job
in the queue.

targetServerlD. This field contains the ID number of the queue server that is

requested to service the job. A value of FF FF FF FF (4 bytes of 0xFF) indicates
that any server may service the job. Otherwise, this field contains a queue server’s
ID number. |

targetExecutionTime. This field contains the earliest time the client wants the job
to be serviced. If this field is set to FF FF FF FF FF FF (6 bytes of 0xFF), the job
will be serviced at the first opportunity.

This 6 byte field is divided as follows.

First byte Year 0 - 99 (91 for 1991)

Second byte Month 1-12

Third byte Day 1-31

Fourth byte Hour 0 - 23

Fifth byte Minute 0 - 59
Sixth byte Second 0 - 59

jobEntryTime. This field contains the time that the job was placed in the queue.
The time is taken from the system clock on the file server where the queue is
found. This field is a 6 byte field. See "targetExecutionTime" above for an
explanation of the bytes.

jobNumber. This field contains the number that QMS assigns to the queue entry
when the job is placed in the queue. A client should use this number when
referring to the job.

jobType. This field contains a number that identifies the job by type. This field
can contain any additional information that the client needs to transmit to the
queue server. Applications are free to define and interpret this field as needed.
Developers should avoid assigning -1 to a job type. If the queue server does not use
the field, set the field to 0x00.

jobPosition. This field contains the position of the job in the queue. The entry at
the head of the queue is number 1, the next entry is 2, and so on. As jobs are
removed from the queue, the position numbers are updated to reflect the new
position of the jobs that remain.

jobControlFlags. This field contains flag bits indicating the current status of the
job. The bits are defined in Table 6-4.

Licensed Material - Property of the copyright holders 6-7

Table 6-4 Job Control Flags

Flag Explanation

NWCF_SERVICE_AUTO_ START Setting this bit allows a job to go in the

queue automatically if the connection is

broken between the station submitting the

job and the file server where the queue
resides. Clearing this bit automatically

removes a job from the queue if the

connection breaks and the client has not

yet released the job.

NWCF_SERVICE_RESTART Setting this bit allows a job to remain in a

queue in the event of a service failure.

The queue server will attempt to service

the job when service to the queue resumes.

Clearing this bit allows the job to be
removed from the queue if it has not been

serviced successfully.

NWCF_ENTRY_OPEN This bit is for QMS’s internal

management. It remains set as long as

the client has not released the queue file to

the queue. When the client has released

the job, QMS clears the bit.

NWCF_USER_HOLD Setting this bit places the job on hold. The

job will continue to advance in the queue,

but it will not be serviced until this bit is

cleared.

NWCF_OPERATOR_HOLD Setting this bit places the job on hold. The

job will continue to advance in the queue,
but it will not be serviced until this bit is
cleared.

jobFileName. This field contains the name of the queue file created to process the

job.

jobFileHandle. This field contains the file handle to the queue file that has been

created in the queue. The handle can be used to write additional information to the

file.

servicingServerStation. This field contains the task number of the queue server
servicing a job. When no server is servicing a job, the value of this field is left
undefined.

servicingServerlDNumber. This field contains the object ID of the queue server

servicing a job. When no server is servicing the job, this field is set to zero. By

testing this field, an application can determine whether a job is being serviced.

jobDescription. This field contains a null-terminated ASCII string. Applications

can use this field to help identify the type or purpose of the job.

Licensed Material - Property of the copyright holders 069-000566

069-000566

queueRecord. This field can contain any additional information that the client

needs to transmit to the queue server. Applications are free to define and interpret
this field as needed. Any values placed in this field will not be affected by QMS.

Managing the NWQueueJobStruct_t Structure

The NWQueueJobStruct_t structure plays several distinct roles in the queuing
process. QMS, queue servers, clients and operators all depend on certain fields to
transmit information at various points in the job process.

1. First, the following fields must be completed before the job can be placed in the
queue.

targetServerID

targetExecutionTime

jobType
jobControlFlags

jobDescription

queueRecord

Next, when a job is placed in the queue, QMS records information in the
following fields.

clientStation

clientTask

clientID

jobEntryTime

jobNumber

jobPosition

jobControlFlags [NWCF_ENTRY_OPEN]

jobFileName

jobFileHandle

Once the job is in the queue, the user who submitted the job or the queue
operator can read and modify information in the following fields:

targetServerID

targetExecutionTime

jobType
jobPosition

jobControlFlags

jobDescription

queueRecord

When a server attaches to the queue, QMS checks the following fields to
determine if the server is authorized to handle the job.

targetServerID

targetExecutionTime

servicingServer]|DNumber

jobType
jobControlFlags

The server cannot service the job if one of the following is set:

NWCF_OPERATOR_HOLD

NWCF_USER_HOLD

NWCF_ENTRY_OPEN

Licensed Material - Property of the copyright holders 6-9

5. Finally, when QMS releases a job to a queue server, the following fields are

filled in:

servicingServersStation

servicingServerlaskNumber

servicingServer!|DNumber

Using Queue Services

6-10

Queue services has five areas of management:

e Creating queues in the bindery

¢ Submitting jobs to queues

¢ Monitoring and controlling the status of jobs and queues

e Creating queue servers in the bindery

e Servicing entries in queues as a queue server

Not all applications need to manage all five areas. For example, a simple word

processing application could supply only the code to submit the job into a print

queue. A more sophisticated application could also allow users to monitor and

control their jobs in the queue. However, a print server would mainly be concerned

with the last area, servicing entries in a print queue.

Each area of management is described below.

Creating Queues in the Bindery

Queues are created with NWCreateQueue. The client that creates the queue needs

to be logged in with supervisor equivalency.

The NWCreateQueue creates the queue as a bindery object and as a directory.

Typical bindery types for queues are listed below:

Object Type

Print Queue NWOT_PRINT_QUEUE

Archive Queue NWOT_ARCHIVE_QUEUE

Job Queue NWOT_JOB_QUEUE

It also creates four bindery property types and assigns them to the queue:

Q_ DIRECTORY

Q_ SERVERS

Q_OPERATORS

Q_USERS

The Q_ DIRECTORY property stores the path information for the queue directory.

Usually a standard naming convention is used for the directory. For example, the

print queue directories created with PCONSOLE are subdirectories to

SYS:SYSTEM, have a .NPQ extension, and are named by giving them the character

value of their hexadecimal object ID. The Q_ DIRECTORY property is an item

property.

Licensed Material - Property of the copyright holders 069-000566

069-000566

The other three properties are set properties and allow you to assign bindery

objects to them.

e The Q_SERVERS property stores the object IDs of the servers that have been

added to this property. These servers, and only these servers, can service the

queue. If no servers are assigned to the queue, no jobs will be serviced. The

queue server must be created as a bindery object before the queue server can be

assigned to this property. See “Creating Queue Servers in the Bindery,” in this

chapter.)

¢ The Q OPERATORS property stores the object IDs of the users or groups that
can perform maintenance tasks on the queues. These objects are able to delete

all jobs in the queue, rearrange the order of the jobs in the queue, change job
servicing information, and control the submission of new jobs. Usually

SUPERVISOR is added to this group.

¢ The Q_USERS property stores the object IDs of the users or groups that have

permission to use the queue. Each object can delete its own jobs or change the

job servicing information. If no objects are assigned to the queue as queue

users, no one can submit a job to the queue. Usually the group EVERYONE is

added to this group.

Use NWAddObjectToSet to add bindery objects to the properties. Use
NWDeleteObjectFromSet to remove a bindery object from the properties.

Use NWCreateProperty to create additional bindery properties for the queue. If

you create a set property, use NWAddObjectToSet to add objects to the property. If

you create an item property, use NWWritePropertyValue to write the value to the

property.

Use NWDestroyQueue to delete a queue from the bindery.

Submitting Jobs to Queues

For a client to submit a job to a queue, the client must have its object ID (or the
object ID of a group that client belongs to) in the Q USERS property.

To submit a job to the queue, complete the following steps:

1. Assign values to the necessary fields in the NWQueueJobStruct_t Structure.
(See “NWCreateQueueFile” in the Reference Guide.)

2. Ifthe queue server uses the queueRecord field, assign a value to the
queueRecord field.

¢ Ifthe job is a NetWare print job, use NWConvertPrintStructToQueueStruct.

e Ifthe job is not a NetWare print job, use the queue server’s function to fill
in the queueRecord field.

3. Create a file in the queue. Use NWCreateQueueFile.

4. Write the file to the queue. Use NWWriteFile. Use the file handle that was
created with NWCreateQueueFile.

5. Close the file. Use NWCloseFileAndStartQueueJob. If an error occurs, you can
use NWCloseFileAndAbortQueueJob which closes the source file and removes
the job from the queue.

The job is now ready to be serviced.

Licensed Material - Property of the copyright holders 6-1 1

6-12

Monitoring and controlling the status of jobs and queues

The ability to monitor and control jobs in the queue varies.

Clients which have been assigned to the Q. OPERATOR property can control the
queue and the jobs.

Clients which have been assigned to the Q_USERS property can control their
own jobs and as users, they can view information about the queue and other
user’s jobs in the queue.

Clients which have not been added to either property cannot view the queue
status or queue job information.

Queue servers which have been added to Q SERVERS property can read and
service jobs in the queue.

Table 6-5 Queue Controls

Task API Client

Delete a job NWRemoveJobFromQueue Owner

Operator

View job information NWReadQueueJobEntry* User

Operator

Server

Change job information NWChangeQueueJobEntry Owner

Operator

Server

List jobs in the queue NWGetQueueJobList User

Operator

Server

Change servicing order NWChangeQueueJobPosition Operator

View queue status flags NWReadQueueCurrentStatus User

Server

Set queue status flags NWSetQueueCurrentStatus Operator

View queue server flags NWReadQueueServerCurrentStatus User

Set queue server flags NWSetQueueServerCurrentStatus Operator

*
If the job is a NetWare print job, use NWConvertQueueStructToPrintStruct
before reading the job. If the job is not a NetWare print job and the queue
server required a function to change the job into a queue job, use the queue
server’s function to return the job to its original form.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Creating Queue Servers in the Bindery

To create a queue server, follow the steps outlined below.

1. Create the queue server as a bindery object. The client that creates the queue
server needs to be logged in as supervisor equivalent. Use NWCreateObject to
create the queue server. Assign the object an appropriate object type. Typical

types for queue servers are listed below: |

Object Type

Job Server NWOT_JOB_SERVER

Print Server NWOT_PRINT_ SERVER

Archive Server NWOT_ARCHIVE_SERVER

Get the object ID of the queue server. Use NWGetObjectID. (The object ID

number must be passed with some of the other API calls.)

Create a PASSWORD property for the queue server and assign the property a

value. Use NWChangeObjectPassword.

Create properties for the queue server. Use NWCreateProperty. For example,

the print server creates two properties: PS_USERS and PS_OPERATORS.

Both of these properties are of the type set and are given the access level of

NWBS_LOGGED_READ, NWBS_LOGGED_WRITE, and
NWBS_OBJECT_WRITE.

Check for accounting on the file server. Use NWScanProperty and look for a

file server property of ACCOUNT_SERVERS. If this property exists, create an
ACCOUNT_BALANCE property for the queue server and write an
ACCOUNT_BALANCE value to the property. The ACCOUNT_BALANCE

property is of type item so use NWWritePropertyValue.

If you need a directory to store information in, create a directory for the queue
server. Use NWCreateDir. Assign the queue server to be a trustee of the

directory. Use NWSetTrustee.

Add objects to the properties created in Step 4. Usually user SUPERVISOR
will be added to an operator property and group EVERYONE is added to a
user property. For set properties, use NWAddObjectToSet. For item

properties, use NWWritePropertyValue.

To delete a queue server from a file server, use the following APIs:

¢ Use NWDeleteObject to delete a queue server from the bindery.

¢ Use NWDeleteDir to delete any directories created for the queue server.

Servicing Entries in the Queue

To service jobs in a queue, the queue server needs to perform the following tasks.

1.

2.

Log the queue server into the file server. Use NWAttachToServerPlatform

and NWLoginToServerPlatform.

Attach the queue server to the queue. Use NWAttachQueueServerToQueue.
The queue server must first be a member of the queue’s Q SERVERS
property. See "Creating Queues in the Bindery" in this chapter.

Licensed Material - Property of the copyright holders 6-1 3

6-14

Get the current status of the queue. Use NWReadQueueCurrentStatus.

Check to see if there are jobs to be serviced. Use NWGetQueueJobList.

Find the next job that needs to be serviced. Use NWReadQueueJobEntry. If

the queue server needs to know the size of the job, use NWGetQueueJobSize.

Select the job for servicing. Use NWServiceQueucJob.

Read the job. Use NWReadFile.

Process the job. This varies with the queue server. A print server would send

the file to the printer with the appropriate printing codes. An archive server

would send the file to a backup device with the appropriate formatting codes.

The process could also involve having the queue server assume the rights of

the client. For example, an archive server could assume the rights of the

client before restoring files to enforce the following:

¢ The clients could restore only files that they had the appropriate rights to.

¢ The clients could restore files only to directories that they had the create
right in.

¢ The clients could be assigned as the owner of the restored file.

You should use NWChangeToClientRights before processing the job and then

use NWRestoreQueueServerRights when the job is finished.

9. Remove the job from the queue. Use NWFinishServicingQueueJob.

10. Repeat Step 4 through Step 9 for additional jobs in the queue.

NWDetachQueueServerFromQueue should be used before bringing down the queue

server.

NWaAbortServicingQueueJob can be used to interrupt the servicing of a job.

End of Chapter

Licensed Material - Property of the copyright holders 069-000566

Chapter 7

Server Platform Services

This chapter discusses Server Platform (File Server) services. The Server Platform
calls are closely related to the Connection Services calls. Server Platform services
allow a client to enable and disable file server login, and return information and
statistics about file server configurations and activity. The server information
returns in a structure form as defined in Appendix A of the NetWare® for AViiON®
Series Systems C Interface Reference Guide. Most of these calls require supervisory
access privileges.

Function Calls

The Server Platform calls provide two major types of services: 1) Disable and
enable servers and 2) Get and set server information. Listed below are the calls
and their services.

Disable and Enable Servers Get and Set Server Information

NWDisableServerPlatformLogin NWGetDisk Utilization
NWDownServerPlatform NWGetServerPlatformDateAndTime
NWEnableServerPlatformLogin NW6GetServerPlatformInformation

NWGetServerPlatformName

NWGetServerPlatformDescriptionStrings
NWGetServerPlatformLoginStatus
NWIsNetWare386

NWSetServerPlatformDateAndTime

Date and Time

The information on date and time on the server is not the same as those defined in
the file system services. Server date and time information are stored in a structure
while file system’s date and time information are stored in 4 bytes. Table 7-1 lists
the fields in the NWServerPlatformDateAndTime t Structure. A description of
each field follows the table.

Table 7-1 NWServerPlatformDateAndTime_t Structure

Field Type

year a uint8
month uint8

day uint8

hour uint8

minute uint8

second uint8

dayOfWeek uint8

069-000566 Licensed Material - Property of the copyright holders T-1

year. The year field is passed in a value from 0 through 99. For example, 91

becomes 1991, and 10 becomes 2010.

month. The month field passes in a value from 1 through 12.

day. The day field passes in a value from 1 through 31.

hour. The hour field passes in a value from 0 through 23. Noon is 12.

minute. The minute field passes in a value from 0 through 59.

second. The second field passes in a value from 0 through 59.

dayOfWeek. The dayOfWeek field passes in a value from 0 through 6. Sunday

is 0.

Boolean Functions

NWIsNetWare386 is the only server call to return 1 if success or 0 if fails. This

call returns a boolean rather than an integer type.

Disabling Logins

Disabling the login does not allow users to login. If the application disables the
login and then loses its connection (or logout), the server will have to be rebooted.

For practical reasons, the application should disable the login, perform intended

tasks or operations on the server, and then enable the login.

To see whether the login is disabled, call NWGetServerPlatformLoginStatus.

Getting and Setting Server Information

The types of server information available to an application are listed below. The
list also includes how each type of information is set.

Types of Server Information How Is the Information Set

Server’s Date and Time Calling NWSetServerPlatformDateAndTime

Server Platform Information When the server is configured

Server Name Set at installation

Server Description Strings Internal to NetWare

Server Login Status Call NWDisableServerPlatformLogin or

NWEnableServerPlatformLogin

End of Chapter

Licensed Material - Property of the copyright holders 069-000566

Chapter 8

synchronization Services

This chapter explains the NetWare services that control file and record sharing.
Developers can use these calls to manage file access among users on the network.
This chapter includes the following topics:

e An Introduction to File Sharing

e Locking Files and File Sets

¢ Locking Records

¢ Semaphores

e File-sharing Strategies

An Introduction to File Sharing

069-000566

One of the major aims of a NetWare network is to allow many users to easily access
data that is kept on common storage devices. The file server controls access to
these storage devices, retrieving and writing data as requested by workstations.
Such files can be considered network files, in contrast to local files that are stored
on a workstation’s local disk drives and are accessed only by that workstation.

Through the file server, workstations not only have access to the same network
files, but they have access to the same network files at the same time. Several
workstations can open the same file, retrieve its contents into workstation memory,
make changes, and write the file back to storage.

So long as network files are intended to be read only, no conflict should occur
between workstations as they retrieve files and read their contents. However,
when network files need to be altered and updated, the potential for conflict
becomes very great.

If even two workstations, independent of one another, are changing the contents of
a file at the same time, the results can be disastrous. Since files are copied into
workstation memory as they are read, both workstations are only dealing with a
“working copy” of the file and must write any changes they make back to the disk.
As both workstations update the network file, neither one is aware of the changes
the other is making.

Synchronization Services are designed to help applications avoid the sort of file-
sharing conflicts described above. These services are based on the concept of data
locking. Before an application allows a user to modify a file, the file is locked so
that only that user has access to it. As soon as the modifications are made, the
application releases the file, allowing other users to modify it. :

In situations that involve many interdependent files, the potential for problems is
compounded. Groups of files may have to be locked together until a single
modification is carried through to the end. In the meantime, the application may
permit other users to read the locked files, so long as the do not attempt to change
anything.

Licensed Material - Property of the copyright holders 8-1

Data locking reduces the likelihood of two workstations attempting to update the

same file simultaneously, but it is only a partial solution. Data locking does not

solve the problem of one station being unaware of the changes another station has

introduced into a file.

For example, suppose that workstation #1 locks a file and modifies it while

workstation #2 is reading the file. When workstation #1 releases the file,

workstation #2 is free to write to it. But workstation #2 is working on an instance

of the file that does not include the current changes made by workstation #1. From

banking records to travel reservations to inventory control, the scenarios for a

catastrophic error resulting from this arrangement are easy to imagine.

To ensure that a workstation always has a current copy of a file when making

changes, an application can do one of two things. On the one hand, an application

can simply lock the data so that only one user has access to it at a time, whether

for reading or for modifying. On the other hand, an application can perform a read-

modify-write cycle every time the user makes a modification. This latter approach -

is usually the more desirable, since it promotes a true multi-user environment.

An application should perform a read-modify-write cycle in conjunction with data

locking. The exact arrangement for synchronizing changes will depend on the

nature of the data the application is dealing with. Typically, an application should

present the data to the user and wait for the user to make a change. When a

change is requested, the application locks the data and rereads it. The application

can determine whether the change is feasible according to the current status of the

data. Then the application has the choice of aborting the change or carrying

through.

While data locking solves many problems, it also introduces others. One serious

concern is that data locking can result in a deadlock between to workstations.

Typically, if a workstation attempts to lock file that is already locked, the

workstation will wait for the file’s release. A deadlock can occur when two

workstations attempt to lock the same two files together as a set. If each

workstation succeeds in locking one of the files and then enters a waiting state,

both workstations can remain there indefinitely waiting for the other to release its

file.

These are the basic issues involved in synchronizing file usage on the network.

Synchronization Services provide several ways of solving these problems. The

following sections will look at each approach in detail.

Locking Files and File Sets

The simplest way to handle data locking is in terms of files. NetWare provides an

automatic file-locking mechanism through its system of file attributes. However,

Synchronization Services present a more powerful tool for locking files and

coordinating their usage.

File Locking Through File Attributes

By default, NetWare places an automatic file lock on any file that is in use through

NetWare’s system of file attributes. NetWare’s FLAG utility allows users to mark a

file as shareable or non-shareable, as well as read-write and read-only. Developers

can provide the same effect by using the calls found in File Services (see

Chapter 4). |

Licensed Material - Property of the copyright holders 069-000566

Using file attributes to lock a file allows only one user to access the file at a time.

This is an easy way to protect data, and is adequate for many situations. For

example, word processing text files are generally designed for a single user to

access. By using NetWare’s automatic file attribute, a word processing program

can save itself the trouble of testing and assigning file locks.

Locking Files Manually

Synchronization Services contain a group of calls that allow an application to lock

specific files individually or together as a set. These calls include

NWClearFile

NWClearFileSet

NWLockFileSet

NWLogFile

NWReleaseFile

NWReleaseFileSet

As might be inferred from the calls listed above, working with file locks consists of

four separate tasks: logging, locking, releasing, and clearing.

A file server maintains a log table for each client, listing the file or files a

workstation wants to lock. Taken together, the files in the log table are a file set.

The file server will attempt to lock all of these files together. If any one of the files

is already locked by another workstation, the attempt to lock the file set will fail.

An application can use the call NWLogFile to enter a file in the log table. The call

includes a parameter, lockDirective, that allows the application to specify if the file

should only be added to the log table or if the file server should go ahead and

attempt to lock the file. Another parameter, timeoutLimit, indicates how long the

file server should attempt to lock the file if the file is currently in use.

When an application has entered all the files it needs to lock in the log table, this

file set can then be locked by making the call NWLockFileSet. Like NWLogFile,

NWLockFileSet also has a parameter, timeoutLimit that controls the file server’s

efforts to lock the file set. Once the file set is locked, no other workstation can

access any one of the files until it is released.

NWReleaseFile allows an application to release the lock on a particular file. The

file remains in the log table and will be locked with the other files in the table the

next time NWLockFileSet is called. NWReleaseFile affects only the file that is
specified, all other locked files remain locked. The call NWReleaseFileSet releases

all the files a workstation has locked.

Finally, a pair of calls, NWClearFile and NWClearFileSet, can be used to remove
files from the log table of the requesting workstation. If a file is currently locked,

these calls release the lock. NWClearFile can be used to remove individual files

from the table. NWClearFileSet empties the entire log table.

Locking Records

069-000566

Although file locking is an effective way to protect data, it may create quite an
inconvenience for other users. This is especially true if a lot of data must be locked
while only a tiny portion is being updated. Record locking allows an application to

restrict data locking to individual records, structure, and variables.

Licensed Material - Property of the copyright holders 8-3

These records can be locked while the remainder of a file is available to other

users. NetWare allows an application to use either physical or logical record locks.

Physical Record Locks

Like a file lock, a physical record lock is associated with specific bytes of data on

the file server’s disk storage. Physical record locks can be used in conjunction with

file locks to obtain a wide range of data locking features.

The following Synchronization Services are relevant to physical record locks:

NWClearPhysicalRecord

NWClearPhysicalRecordSet

NWLockPhysicalRecordSet

NWLogPhysicalRecord |

NWReleasePhysicalRecord

NWReleasePhysicalRecordSet

The calls for manipulating physical record locks are equivalent to those for

manipulating file locks and include logging, locking, releasing, and clearing. Like

files, physical records are logged into a table that the file server uses to coordinate
the record locking. An application can manage this process the same way it would

manage file locking (see "Locking Files and File Sets" in this chapter).

An application can log a physical record using the call NWLogPhysicalRecord. This

call passes a DOS handle for the file that contains the record. The record is

indicated by passing its starting offset along with the record’s length.

Another parameter, lockDirective, indicates whether the record should locked at the

time it is logged. If the record is locked, it can be made available to other —

workstations for reading or it can be made available exclusively to the requesting

workstation.

An application can lock all the records in the log table by calling

NWLockPhysicalRecordSet. Individual records and record sets can be released and
cleared using the calls NWClearPhysicalRecord, NWClearPhysicalRecordSet,
NWReleasePhysicalRecord, and NWReleasePhysicalRecordSet. These calls work

virtually the same as their file lock equivalents (see "Locking Files and File Sets" in —

this chapter).

Logical Record Locks

Many applications may find it simpler and more convenient to identify records
logically rather than physically. A logical record is a name that represents network
data. The data may include files or physical records. An application can assign

logical records as it chooses, but it must consistently that data by its record name.

Logical records are logged, locked, released, and cleared the same as physical
records. However, locking a logical record locks only the record name, not the data
it refers to. When a workstation locks a logical record, other workstation will have
to wait until the record is released before they can lock it.

Licensed Material - Property of the copyright holders | 069-000566

Logical record locks serve more as coordinating devices than as security devices.

Their effectiveness depends on the internal consistency of the application that

creates them. A locked logical record cannot prevent another workstation from

tampering with the locked data if the workstation knows the data’s address.

Since files and physical records affect data directly, they invalidate logical record

locks. For this reason, logical record locks should never be used in conjunction with

file locks or physical record locks.

They following Synchronization Services control logical record locking:

NWClearLogicalRecord

NWClearLogicalRecordSet

NWLockLogicalRecordSet

NWLogLogicalRecord

NWReleaseLogicalRecord

-NWReleaseLogicalRecordSet

Individual records are logged, locked, cleared, and released by passing a character

pointer to the logical record name. This contrasts with physical records, which are

referenced by a file handle and a record address. Logical record names can be up to

100 bytes in length including a null terminator.

As with physical records, an attempt to lock a logical record or record set is

controlled by a time-out limit. When the limit expires, the file server aborts the

attempt to lock the records. Another parameter, lockDirective, indicates whether

the record should locked at the time it is logged.

Semaphores

069-000566

Semaphores, like logical records, are labels that indirectly control network activity.

In essence, a semaphore is an ASCII string with an associated value. A semaphore

name can be up to 127 bytes in length. Its value may be from 0 through 127.

It is up to an application to define the influence of the semaphores it creates.

Generally, semaphores are used to control access to a network resource. For

example, a semaphore can be used to limit a resource to one user at a time or to a

specified number of maximum users.

The following Synchronization Services deal with semaphores:

NWCloseSemaphore

NWExamineSemaphore

NWOpenSemaphore

NWSignalSemaphore

NWWaitOnSemaphore

An application access a semaphore’s resource by opening the semaphore. When a

semaphore is opened its value is automatically decremented by one. An application

can open a semaphore by making the call NWOpenSemaphore. If the semaphore

does not exist, NWOpenSemaphore will create it.

NWOpenSemaphore passes a semaphore name and an initial value. The initial

value is assigned to the semaphore only if the semaphore does not already exist.

NWOpenSemaphore returns a semaphore handle and an open count. The open

count indicates how many applications have the semaphore open.

Licensed Material - Property of the copyright holders 8-5

When an application is finished using a semaphore’s resource, it must make the
call NWSignalSemaphore to increment the semaphore’s value. The application
must also call NWCloseSemaphore to decrement the semaphore’s open count by
one. When a semaphore’s open count reaches 0, the semaphore is deleted. Both of
these calls pass the semaphore handle.

The call NWExamineSemaphore allows an application to find out a semaphore’s
value and its open count without attempting to open the semaphore. The
semaphore value can be positive or negative (from -127 through 127). A positive
value indicates that the application can open the semaphore and access its
resource. A negative value indicates the number of processes waiting to open the
semaphore. Based on this value, the application may have to wait until another
application closes the semaphore before it can access the resource.

A application can use the call NWWaitOnSemaphore to wait for a semaphore to
open. NWWaitOnSemaphore decrements a semaphore’s value by one. If the value
is greater than or equal to 0, then the application can access the semaphore’s
resource. If the value is a negative number, the application is placed in a queue.

Through a parameter, timeOutLimit, the NWWaitOnSemaphore call passes the
amount of time the application wants to wait for the semaphore. When the time-
out expires, the semaphore value is tested again. If it is positive, the application
can access the resource. If it is negative, the application is removed from the queue
and the semaphore value is incremented.

End of Chapter

Licensed Material - Property of the copyright holders 069-000566

Chapter 9

Transaction Tracking Services

Note:

Introduction

NetWare Transaction Tracking Services (TTS) is a feature that ensures data
integrity on files that otherwise would be corrupted when updates on the files are
interrupted by such things as hardware failures or power outages. Transaction is
defined as a set of one or more writes that must be completed together to maintain
file and database integrity. TTS guarantees that all writes within a transaction
will be completed or none will be completed. This chapter is divided into the
following sections:

¢ Introduction

¢ Transaction Tracking Types

e Record Locking

e Transaction Backouts

e Applications, the User, and TTS

Your version of NetWare for AViiON Systems may not support Transaction
Tracking Services. Refer to the release notice accompanying your shipment for
specific restrictions.

The NetWare Transaction Tracking System allows multiple stations to have the
protection of transactions while concurrently updating database files. If a
workstation fails during a transaction, the database changes made by that
workstation can be cancelled or backed out, without affecting other workstations.

Transaction tracking is most useful in multiuser software that employs record
locking, such as database applications. It is less useful in single-user applications
that deal primarily with entire files instead of records, such as word processors or
spreadsheets.

The Transaction Process

069-000566

The following steps describe how TTS tracks each write within a transaction: —

1. An application writes new data to a file on a file server.

2. The file server stores the new data in cache memory. The target file on the
file server hard disk is unchanged.

3. The file server scans the target file on the file server hard disk, finds the
data to be changed (old data), and copies the old data to cache memory.
The file server also records the name and directory path of the target file
and the location and length of the old data (record) within the file. The
target file on the file server hard disk remains unchanged.

4, The file server writes the old data in cache memory to a transaction work
file on the file server hard disk. This transaction work file resides at the
root level of the SYS volume on the file server. The file is flagged System
and Hidden. The target file on the file server hard disk is still unchanged.

Licensed Material - Property of the copyright holders 9-1

5. The file server writes the new data in cache memory to the target file on
the file server hard disk. The target file is now changed.

The file server repeats these steps for each write within a transaction, and the
transaction work file grows to accommodate the old data for each write. If the

transaction is interrupted, the file server writes the contents of the transaction
work file to the target file, thereby restoring the file to pretransaction condition. In
effect, the file server backs out the transaction.

Installation and Operation of TTS

This section gives some guidelines for TTS installation and operation to ensure that
your system runs smoothly.

Work Files and Work Volume

During NetWare installation, you must specify which volume on the file server will

be used for transaction work files. This work volume must have plenty of disk
space and if possible, be located on a different disk channel than the database files.
If it is located on a different disk channel, backout data can be written simul-
taneously with database updates.

Transactions per DOS Task

A file server can monitor 100 to 10,000 transactions at a time. This value is
configurable with SET. (The default is the maximum.) However, a file server can
monitor only one transaction at a time for each workstation DOS task. If a task
sends several transactions to a file server rapidly, the file server queues the
transactions and services them one at a time.

Transaction Length

Transactions can be any length and contain any number of write requests.
However, it is important to remember that large transactions require more space
for the transaction work files. For example, a transaction in which an application
truncated a 10 megabyte file to 1 megabyte, the transaction command would
require over 9 megabytes of transaction work file space. It takes the file server

about twice as long to process a disk write request to a transaction file as it does to
process a conventional write request.

Just as exclusive locks should not be in force for long, transactions should not be
active for long. Although transaction work files are reused, they cannot be reused
until all transactions to which they correspond are completed. And if there are
many large transactions or transactions of long duration, the transaction work files
must be extended, consuming more space on the volume. It is unlikely that the
transaction work volume would run out of space, but it is possible. If the work

volume runs out of space, transaction tracking is automatically disabled and the
following message appears at the file server console:

Transaction Tracking disabled because the volume is full.

Licensed Material - Property of the copyright holders 069-000566

069-000566

This message is issued when the volume containing the transaction work files
becomes full. Processing will continue as usual; however, transaction tracking is
disabled from then on (the same as if disabled from the file server console).

Any transactions that write after transactions are disabled cannot be backed out if
the station or file server fails. After freeing more space on the transaction work
volume, transactions may be turned on again using the file server console command
Enable Transactions.

Disk Cache Buffers

Transaction tracking uses extra disk cache buffers. Ideally, you should have at
least 8K of disk cache buffers per station that uses the file server. An insufficient
number of cache buffers causes thrashing.

Marking Files Transactional

Transaction Tracking occurs only on the files that have their transaction flag bit
set. You can modify the bit with the NetWare FLAG utility, or applications can
modify it using the File System APIs (NWSetFileAttributes). When this bit is set,
files are referred to as transaction files. Work files or report files probably should
not be marked transactional.

A file marked transactional cannot be deleted or renamed. To delete or rename
such a file, flag it non-transactional. Usually, a database file is deleted or renamed
before being compressed or used to generate a newer database. Forcing the user to
flag a transaction file non-transactional makes the user more aware of transaction
tracking. It also reminds the user to flag the new database file transactional. The
application should handle this situation if it is TTS aware.

File Server System Files

The file server uses transaction tracking when updating the system files. This
includes bindery and queue management files. Though no users are running TTS
applications, the file server may require some transaction backouts to preserve
system file integrity if the server goes down abnormally.

Spanning Multiple File Servers

Transactions can span multiple file servers. However, the explicit transaction calls
must be issued to each server individually. Use the serverConnID parameter to
specify which server gets the explicit transaction requests.

When spanning multiple servers, you must also consider backout windows. One file
server may crash before committing the transaction, while another does not. A
workstation can send an Explicit End Transaction to one file server, but crash
before sending it to another. The application program must handle these problems.

Novell recommends that implicit transactions not span multiple file servers.

Licensed Material - Property of the copyright holders 9-3

Non-Transactional Servers and TTS

A file server that does not support transaction tracking still returns successful

completion codes when explicit transaction calls are made. This means that

applications can be modified to use explicit transaction calls and still function if the

application uses a NetWare server that is not supporting transaction tracking.

Transaction Tracking Types

There are two categories or types of transaction tracking: Explicit and Implicit.

Explicit transaction tracking begins when an application makes an Explicit Begin
Transaction function call and ends when an application makes an Explicit End
Transaction function call or an Abort Transaction call.

Implicit transactions begin automatically when an application does its first logical

or physical record lock on a transaction file. (By default, an implicit transaction

begins on the first lock.) When all records are unlocked, the file server assumes

that the transaction has ended.

The NetWare utility SETTTS and the set and get threshold function calls are
provided to alter the number of locks required to start and end an implicit

transaction. For example, some multiuser applications may always keep one or

more records locked.

Implicit transaction tracking is designed to work transparently with existing
multiuser software that uses record locking (physical or logical, NetWare or DOS).
All the user must do is flag the multiuser database files as transactional;

everything else is automatic. However, implicit transactions are not guaranteed to

work with all multiuser applications. For example, applications that do not

synchronize file updates exclusively with record locks and applications that

synchronize updates improperly may not work.

Explicit transaction tracking has an advantage over implicit transaction tracking in

that it allows applications to determine precisely when updates within the

transaction are written to disk. In addition, Explicit Begin Transaction and

Explicit End Transaction calls within the application allow the developer to identify

the beginning and end of file update sequences.

Identifying the beginning and end of file update sequences makes it easier for
applications to group file updates and practice correct record locking practices.

Correct record locking practices include locking and unlocking records as a group to
avoid deadlock, and not leaving records locked exclusive while waiting for keyboard
input.

Modifying an application with explicit transaction calls does not affect its operation

in a non-NetWare environment.

Record Locking

Record locking provides security and data protection during transactions. If a

record is not locked by an application but is written to during a transaction, the file
server physically locks that record automatically. This physical lock remains in

force until the transaction is completed. Physically locking written records is an
added protection that prevents other workstations from examining or modifying

them while they are being changed.

Licensed Material - Property of the copyright holders 069-000566

The file server usually holds logical and physical record locks on a file until the end

of the transaction, even if the file is unlocked by a workstation before the

transaction is completed.

For example, if a workstation requests an unlock before a transaction is completed,

it will get a SUCCESSFUL completion code indicating that the records are

unlocked; however, the lock is actually held until the transaction is complete. The

one exception to this is a file that is not updated while the lock is in force. A

request to unlock such a file is honored.

The file server delays record unlocking because the data controlled by the locks

could still be changed by a transaction backout. Thus, the file server guarantees

that other workstations will not see data that is being changed until those changes

are final. If multiple stations attempt to change a file, only the first station is

allowed to make the change. Usually, multiuser software synchronizes and

prevents other workstations from examining records that are being changed.

If a workstation attempts to read from or write to a record that is physically locked

by the file server, the workstation gets a "locked" error. This means that

applications which do logical record locks can potentially get unexpected physical

lock errors. However, because unlocking logical records is also delayed during a file

write, this should never happen if the logical record synchronization is correct. The

logical record locks keep other workstations away from the physically locked

records.

It is important to point how that in a non-TTS environment it is valid to unlock

some updated records in the middle of a transaction if they have been completely

updated. In a TTS environment, however, those records cannot be unlocked

because they can still be changed--not by the application but by a transaction

backout.

Transaction Backouts

069-000566

Transactions are backed out because of system failures resulting from hardware

problems and power outages at the workstation or the file server. But backouts

also occur because of problems with applications running on a workstation or

because of user intervention at a workstation.

Causes

Below is a list of some common causes for a transaction backout.

¢ Transaction backout occurs if an application terminates while a transaction is

in progress (a begin transaction with no end transaction). For example, the

user may enter a CTRL-Break.

¢ Transaction backout occurs if, after terminating, an application leaves records

locked.

e¢ Transaction backout occurs if there has been no activity from a station for 15

minutes. If a server does not receive packets from one of the workstations listed

in its Connection Table for more than five minutes, it sends a Watch Dog packet

to that station. If the station does not respond, the server continues to send a

packet every minute for fifteen minutes.

¢ After fifteen minutes, if the workstation still does not respond, the server logs it

out. Usually lack of response from a workstation indicates a power failure,

software hang, or a problem with an intermediate network route, etc.

Licensed Material - Property of the copyright holders 9-5

¢ Transaction backout occurs if a station re-attaches to the same server after
rebooting and reloading the shell. If the station attaches to a different server
after a reboot, the file server Watch Dog process will re-initialize the station
after 5 minutes.

¢ Transaction backout occurs if a CLEAR STATION or a DOWN command is
issued at the file server system console.

Solutions

The following are some general suggestions of how to recover from a workstation or
file server that goes down and therefore backs out a transaction.

Workstation

When a workstation goes down in the middle of a transaction the user may not
know exactly which transaction was completed and which was backed out.
However, unless the application is multi-tasking, it should have only one
transaction active at the time of the crash. Even if a workstation goes down,
transactions that were completed but not yet written to disk will be written to disk
and will not be backed out.

If the station goes down and transactions were backed out, the user must ensure
that the last transaction was complete, or if it was not complete, do it over again.
If could be partially completed if the application incorrectly used several
transactions per operation. The following message will appear at the file server
console if transactions were backed out:

Transaction being backed out for station ##.

This message is given at the file server console if a transaction is backed out for
any reason other than an Abort Transaction from the application. Note that if the
station had several tasks active, several messages are given. The file server Down
command can force several of these messages to be issued.

If a workstation goes down and cannot be brought back up, the user should issue a
CLEAR STATION command at the file server console. Besides affecting the
transaction tracking system, the downed station keeps its records locked, which
may affect other stations. If the CLEAR STATION command is not issued, the file
server Watch Dog process will clear out the station after 15 minutes.

File Server

Unlike the workstation, if the file server goes down before transactions have been
written to the disk, it will back out any incomplete transactions when it is rebooted.

If your file server does go down and files are backed out, the following message will
be issued at the file server console:

transactions need to be backed out. Type a character to start
the backout. |

Licensed Material - Property of the copyright holders 069-000566

069-000566

This message will appear when the file server is being brought up (after all of the
volumes have been mounted). The transaction tracking software has detected that
some of the transactions were not completed before the server went down. You
should not see this message unless the server went down abnormally.

After bringing up a file server that crashed, the user is responsible for determining
which updates were completed and which were backed out and need to be repeated.
A good practice is to verify that the last few changes were actually made.
Remember that most transactions should be committed to disk within 3 to 5

seconds of being completed. However, any operation completed within 10 seconds of

a failure should be examined. After the file server is brought up, a good practice is

to have the workstation operators review their last operation. If it is not
completed, they should also review the next to last operation, and so on.

If the NWTTSIsTransactionWritten call is used by the application, the user will
have a better idea of when transactions were actually completed. However, just
because the application thought that a transaction was not completed does not
mean that it wasn’t. The transaction could have been completed between the last
time the application checked and the time the file server crashed.

Disable/Enable Transaction Tracking

Transaction tracking can be disabled or enabled from the file server console with
the commands Disable Transactions and Enable Transactions. However, even
when transaction tracking is disabled, tracking occurs in a partial way:

¢ The Explicit Begin and End Transaction calls still denote transactions and work
correctly.

¢ The NWTTSIsTransactionWritten call still returns correct status.

If TTS is disabled, the only loss to explicit and implicit transaction calls is the
capability of backing out incomplete transactions. For example, if a file server or

workstation fails while transaction tracking is disabled, you cannot back out
because the backout information will not have been saved, and the database could
be corrupted.

When transaction tracking is re-enabled at the system console, backout capability
will only be provided to new transactions. Transactions that are in progress when

transaction tracking is re-enabled won’t have backout, and the possibility of file
corruption still exists until these unprotected transactions are completed and
written to disk. It is important to note that a transaction can be backed out if the
workstation does not write to a transaction file after transactions are disabled. Ifa
workstation does a write after transactions are disabled, the transaction is

invalidated and any previous backout information for that transaction is ignored.

Disable Transactions

DISABLE TRANSACTIONS (NetWare 2.x), DISABLE TTS (NetWare 3.x) and
NWTTSDisableTransactionTracking (NetWare for AViiON Systems) are commands
that turn off the backout capability of the transaction tracking system. Any
transactions written after transactions have been disabled cannot be backed out. A
transaction that has not written anything since transactions were disabled can still
be backed out while transactions are disabled. Normally, this command is used
only for testing.

Licensed Material - Property of the copyright holders 9-7

Enable Transactions

ENABLE TRANSACTIONS (NetWare 2.x), ENABLE TTS (NetWare 3.x), and
NWTTSEnableTransactionTracking (NetWare for AViiON Systems) are commands
that re-enable transaction tracking. Any previous transaction backout information
is erased, except those that were active at the time transactions were disabled and
did not write anything. These transactions are not erased and can still be backed
out.

Applications and TTS

Almost all applications should work correctly with TTS implicit or explicit
transactions, or be easily adapted to do so. However, the following TTS record
locking features discussed earlier could adversely affect certain applications:

e Physical and logical record locks remain in force until the end of the
transaction.

e Records unlocked in the middle of a transaction are usually held until the
transaction completes.

¢ The file server automatically generates a physical lock when a record is written
if the record is not yet locked.

Explicit Transactions: Deadlocking

Consider, for example, the following application running without TTS: The
application locks a "header" record. It then needs to allocate data records in
several files. It does this by locking an "avail" record in one of the data files,
allocates the record, changes the record, and then unlocks the "avail" record.

It continues in this manner, allocating another data record in another file, never
locking more than one "avail" record at a time. Having only one "avail" record
locked at a time is the way the application avoids deadlocks.

However, when the same application is run with TTS enabled, the file server keeps
the “avail” records locked (even after an unlock request) because the "header"
record is still locked and the transaction is still going. Meanwhile, the application
thinks it has unlocked them.

Thus, one workstation locks "avail" record A and another locks “avail” record B.
When the stations request an unlock on their "avail" records, they will get back
SUCCESSFUL completion codes even though the records remain locked. Then,
when the first station attempts to lock "avail" record B, and the second station
attempts to lock “avail” record A, the workstations will deadlock. An application
that runs fine without transaction tracking cannot run with it.

The same types of deadlocking problems can occur if multiple stations attempt to
extend the same transaction file. This is because the file server delays the
completion of the second file extend until the first transaction is completed.

There are several ways applications can be changed to overcome these problems
with transaction tracking.

¢ Deadlock can be avoided if the application always locks the "avail" records in a
certain order (“avail" A, if ever locked, is ALWAYS locked before "avail" B).

¢ Deadlock is also avoided if the NetWare "lock record set" command is used to
lock all "avail" records at once.

Licensed Material - Property of the copyright holders 069-000566

069-000566

Most multiuser application will not have deadlocking problems with TTS, because
the cases that cause deadlock are obscure.

Implicit Transactions

Implicit transactions should work correctly with almost all multiuser software that
uses record locks, except in the following circumstances:

Semaphore Synchronization

Multiuser packages that synchronize using methods other than record locks may
not work with implicit transactions. For example, if an application uses
semaphores or data in a file to synchronize, it may not correctly signal implicit
transaction begins and ends to the file server.

Single or Multiple Transactions

The user and the application may view what are actually several transactions as a
single transaction, while TTS treats the transactions separately. For example,
suppose that to add a new customer, the user first adds the customer to the
"billings" database files (one transaction), then adds the customer to the "order
entry" database files (another, separate transaction). The user assumes there will
be no problem adding to the "billings" file and also to the "order entry" file.

However, if the file server (or workstation) goes down with the customer added to
the "billings" files and not to the “order entry" files, the user or the application may
not detect this inconsistency; the database would remain inconsistent. Even if the
problem is detected, the application may not allow the user to add the customer
only to the "order entry" files, or delete the customer only from the "billings" file.

Premature Unlocking

Transactions should not continue after all locks are released because once all
records in a transaction are unlocked, the application has lost control over the data.
For example, an application may want to lock additional records to finish a
transaction, but be unable to get the records locked. If this is the case, it should
back out the changes it has already made. Even if an application could get
additional records locked to complete a transaction, those records may have already
been changed by another workstation.

Some applications may know that after they unlock all of their records, the rest of
the transaction will always work and never have lock problems. However, these
types of applications will only work with explicit transactions.

Transactions Too Large

If an application package never releases all of its record locks, everything is done as
one large implicit transaction. It still works fine, but the granularity of the
different updates is lost. Large transactions tie up disk space in the transaction
work files. Having too many large transactions active could possibly fill up the
volume containing the transaction work files. If this occurs, transaction backouts
have to be disabled. Note that this type of package can also overflow the record
locking tables, because most of the physical and logical record locks are not released
until the transaction is completed.

Licensed Material - Property of the copyright holders 9-9

If an application needs to keep a lock (for example, to control the number of users

the application supports), the solution may be to not flag the file with permanent

record locks as transactional.

Another possible solution is to add explicit transaction begin and end requests.

And a third solution is to use the Set Implicit Transaction Record Lock Threshold

function and set the record lock threshold to the number of records permanently

kept active by the application.

Applications, the User, and TTS

Novell is encouraging multiuser software developers to test, verify and certify that

their software is TTS compatible. These developers may wish to publish a set of

special instructions for running their package with TTS. TTS-aware applications

can often minimize the user’s need to understand TTS, but there are some things,

particularly file server failure recovery, that require the user to understand how

TTS works even with a TTS aware application.

The user also needs to understand how to handle transaction files. In particular,

for example, these files cannot be deleted or renamed as explained in the
Introduction. Also, if the file is moved or restored from backup, the transaction

attribute will be lost and will need to be restored.

It is also important for users to know that certain operations can be performed

more efficiently without TTS. A good example is data file compression. Some

databases require their data files to be compressed periodically to recover deleted

records. The compression is performed by only one workstation and results in a
new database being generated.

Before the compression, the user should flag the database files non-transactional so
that all of the compression operations do not become one gigantic transaction.

(Some database software uses file locks instead of record locks during compression,

and will not have this problem.)

It is important for the user to understand the nature of compression and the fact
that a new database file is generated. If application software were not TTS aware,

the new database file would not be flagged by the application as transactional. The
user must remember to handle this case.

The user needs to be aware of the TTS work file volume and its memory
requirements.

The user needs to determine which files need to be flagged transactional. This
implies the user knows the purpose of each application file. All shared database
files including index files should be marked transactional. Failure to mark all files
violates a fundamental assumption of the TTS system and will cause transaction

backouts to be incomplete.

The user needs to know how to operate the FLAG utility.

End of Chapter

9-1 0 Licensed Material - Property of the copyright holders 069-000566

TO ORDER

1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

b) Check or Money Order - Make payable to Data General Corporation.

c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:

Total Quantity Shipping & Handling Charge

1-4 Units $5.00

5-10 Units $8.00

11-40 Units $10.00

41-200 Units $30.00

Over 200 Units $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

Separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$1-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times. |

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U.S. Headquarters will be forwarded to the

appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

Mail To: Data General Corporation

Attn: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581 - 9973

ADDRESS (NO PO BOXES)

ATTN: ATTN:

ADDRESS

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.

Check for faster delivery

Additional charge to be determined at time of
shipment and added to your bill.

1 UPS Blue Label (2 day shipping)

O Red Label (overnight s

($50 minimum

. (Include hardcopy P.O.)

O Visa O MasterCard ($20 minimum on credit cards)

Expiration Date

[TTT
Account Number

LET ET TELE te tty

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

ING: ORDER TOTAL

ADD Order Amount Save Less Discount _
1-4 Items $ 5.00 $0 -— $149.99 0% See B

5-10 Items $ 8.00 $150 - $499.99 10% Tax Exempt # SUB TOTAL
11-40 Items $ 10.00 Over $500.00 20% Sia

(if applicable) Your local* +
41-200 Items $ 30.00 sales tax

200+ Items $100.00 Shipping and +
| handling - See A

TOTAL - See C

THANK YOU FOR YOUR ORDER

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or
use tax on all purchases shipped to states where DG maintains

a place of business, which covers ali 50 states. Please include

your local taxes when determining the total value of your order.
f you are uncertain about the correct tax amount, please call
508-870-1600.

- Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance

with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order

Form. These terms and conditions apply to all orders, telephone, telex, or mail. By accepting these products the Customer

accepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software
which is the subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under

this Agreement, exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall

abide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all
designs, engineering details and other data pertaining to the products described in such publication. Licensed software

materials are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer

and DGC and such PLA is made a part of and incorporated into this Agreement by reference. A copyright notice on any data
by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a
period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided
it is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and

DGC’s sole obligation and liability for defective media. This limited media warranty does not apply if the media has been
damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY |
A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO
LIABILITY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT

EXCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.
THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY
DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE
FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT |
NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST DATA, OR
DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION
ACCRUES.

7. GENERAL :
A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational
Services Order Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of
law rules. Such contract is not assignable. These terms and conditions constitute the entire agreement between the parties
with respect to the subject matter hereof and supersedes all prior oral or written communications, agreements and
understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional-terms and

conditions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting, or
additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to
a particular revision of the product. Consequently user programs or systems based on this information and material may be
revision-locked and may not function properly with prior or future revisions of the product. Therefore, Data General makes no
representations as to the utility of this information and material beyond the current revision level which is the subject of the
manual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such
use and | and my company (Customer) hold Data General completely harmless therefrom.

NetWare® for
AViiON® Systems:

C Interface |

Programmer’s

Guide

069—000566—00}—---------------.
Cut here and insert in binder spine pocket

