
OO eae
information About AVIION® Systems

from Data General’s UNIX® Development Group

In This Issue:

Support for Threads in the

[ro J... Gea} DG/UXTM 5.4 R3.00 Operating System

Contents Data General’s UNIX Development Group has released
an updated version of the DG/UX 5.4 operating

What's In This Technical Brief......2| system. One of the new features of this release

Commitment to Standards 2| (DG/UX 5.4 R3.00) is support for POSIX P1003.4a

Why Use Threads?:csessscssssssseee 3| Draft 6 threads. |

Comparing the Process and POSIX threads enable you to create applications that
Thread Models............. --6| make more efficient use of Symmetric Multiprocessor

Designing with Threads................ 16] Systems (SMPs). In applications that have many

Data General’s Threads parallel tasks, using threads instead of processes can

implementation... . .20| provide significant performance advantages.

FYlI—Thread System Calls........... 24 Compared to processes, threads give application

programmers a more precise and efficient way of

managing different tasks that make up applications.

The thread design fits more closely to the design of

SMP hardware. For applications that have parallel

tasks, a task-per-thread implementation requires significantly less task-switching time

than a task-per-process implementation.

The implementation of threads is analogous to hardware “right sizing.” By selecting

the right tool for a specific requirement, customers can increase productivity and

reduce costs. In general, customers are moving from small numbers of large

computers to server/workstation-based systems.

In effect, threads are “right sized” processes. Compared to processes, threads map

more closely to the underlying SMP hardware and can be more efficient users of the

hardware.

. AViiON is a registered trademark of Data General Corporation.

Review Dr aft DG/UxX is a trademark of Data General Corporation.
FrameMaker is a registered trademark of Frame Technology Corporation.

Not for Release UNIX is a registered trademark of UNIX System Laboratories, Inc.
©1992, 1993 Data General Corporation.

september 30, 1993 11:59 am

Produced on a Data General

AViiON AV4000 with FrameMaker® 3.1X.

012-00XXXX-00

Jeig MelAeY

Page2 @,

What’s in This Technical Brief?

This technical brief focuses on the threads extensions that DG/UX 5.4

R3.00 provides. We start by talking about Data General’s commitment to

standards. Here’s a summary of the sections that follow:

why and when you might want to use threads

a comparison of the threads and process models

considerations for designing applications to use threads

an overview of Data General’s thread implementation

a table of the thread calls that are provided by DG/UX 5.4 R3.00Ooooodo
The Data General Commitment to Standards

As this technical brief was being written, there were no open standards for

thread programming. However, POSIX is drafting the P1003.4a open stan-

dard for threads, and the DG/UX 5.4 R3.00 thread implementation is based

on POSIX P1003.4a Draft 6 (P1003.4a/D6). A subsequent version of the

DG/UxX 5.4 operating system will adhere to the P1003.4a standard.

Because P1003.4a is still in the draft stages, you should be aware that you

may have to make some changes to your code as the standard evolves.

However, the DG/UX 5.4 R3.00 thread implementation allows you to get a

head start on developing thread code with the P1003.4a/D6 calls. When

Draft 7 is released in an update to DG/UX 5.4 R3.00, we will provide back-

ward source-code compatibility to Draft 6 with #define statements, plus

backward object and binary compatibility to Draft 6.

FYl—Terminology

Task—A bounded unit of work within the Threads and Pthreads—The shorthand

context of an application. Most

applications consist of many tasks. We use

the word “task” generically in this

technical brief, because a task can be

mapped to either a process or a thread.

name for POSIX threads is “Pthreads,” and

the POSIX 1003.4a threads calls use a

“pthreads” prefix. Although we use the

generic term of “threads” in this brief, we

are always talking about the POSIX

implementation of threads.

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

q, Page3

Why Use Threads?

Why use threads? The short answer is to gain the benefits of:

QO performance

Q programming conventence

Q portability

The thread model is a logical evolution of the work that’s been done to use

SMP-based computers efficiently. Data General’s implementation of POSIX

threads can help you optimize the performance of your SMP computer sys-

tem while maintaining portability.

As an extension to the process model, threads give you more precise and

convenient ways of managing an application’s tasks. Because threads re-

quire significantly less overhead than processes, a system can:

Q create and exit from 700 threads in the time that it takes to create and exit

from a single process.

Q switch among threads ten times faster than it can switch among

processes.

The thread model, therefore, typically scales much better than the process

model as the processing load on a system increases (as more tasks are add-

ed). Figure 1 shows the difference in system performance as the number of

tasks increases in the process and thread models.

—

System Processes

Performance fo

Threads

Number of Tasks

Figure 1 Performance Improvement With the Thread Model

The advantage of using threads in your applications becomes more appar-

ent as you move your applications to AViiON computers that have more

Job Processors (JPs).

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 -- 012-00XXXX-00

Review Draft

wyeig Maney

Page4 @,

In previous versions of the DG/UX operating system, a process represent-

ed a single flow of control through a program. Scheduling was performed

at the granularity of processes; processes were scheduled (dispatched) onto

an SMP computer’s JPs. The single flow of control through a traditional

process is a thread (the lefthand part of Figure 2).

The traditional single-threaded process can use the resources of only one JP

at a time. And, the traditional process carries with it a significant amount

of overhead just to support its single thread. Because of this overhead, it

can take a relatively long time to create and switch among processes. De-

velopers recognized that a process that supported multiple flows of

control—multiple threads—could share much of a process’s resources

among a process’s different threads.

The DG/UX 5.4 R3.00 operating system supports multi-threaded processes.

As shown in the righthand part of Figure 2, scheduling is performed at the

granularity of threads, so that threads from the same process can run con-

currently on a computer’s JPs. Because of their finer granularity and lower

overhead, threads do a better job taking advantage of SMP systems than do

processes.

Traditional

Process

(Single Threaded)

Muitl-Threaded

Process

JP

y ~ oe TMs
JP || JP}] JP JP || JP

Figure 2 Traditional and Multi-Threaded Processes

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

q@y Pages

Figure 3 is a simple (but practical) example of how a thread implementa-

tion can take advantage of multiple SMPs. Suppose that you have a small

application that has three separate but cooperating tasks: task A, which

reads data from a number of files; task B, which analyzes the data; and task

C, which writes the results to different files. If you run the application in

the context of a single-threaded process, only one of the tasks can run ona

JP at any one time—you can’t take advantage of the tasks’ parallism. The

alternative is to run each task within its own process. This requires three

processes, with their relatively high overhead.

The ability to use a multi-threaded process for this example offers the ad-

vantage of being able to run the three tasks within a single process. The

tasks can run concurrently on different JPs, without the overhead of creat-

ing two additional processes.

Traditional

(Single Threaded) Process

Tasks A, B, and C

canrun

concurrently; A BX C

each task in Its

Tasks A, B, and C

run sequeniially In

(3

‘

o
x

the context of a

single thread; on own thread; each

one JP. thread ona JP.

JP i} JP} ...| JP JP |} JP]| JP

Figure 3. Executing Parallel Tasks

What’s common to applications that take advantage of threads is their abil-

ity to have many tasks that can run concurrently. Applications that can

take advantage of threads include:

Q database servers

Q applications that take advantage of code produced by parallelizing

compilers —

Q commercial distributed and realtime computing

Q X servers

Database applications, for example, present many opportunities to take ad-

vantage of the thread model’s ability to support fanning out. Fan out is the

ability to split a large task into multiple parallel tasks to take advantage of

multiple JPs.

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 - 012-00XXXX-00

Review Draft

ye1q MelAeY
® e

Page6 @,

In the database arena, an example of fanning out is to support the SQL

“order-by” clause. In a large database, the order-by clause can result in sorting op-

erations on hundreds or thousands of rows in a table. Rather than perform the

sorting operation in the context of one process, a database designer can split the

sorting operation into parallel tasks by fanning out the operation among multiple

threads. When the parallel operations are complete, the results can be fanned back

in (Figure 4).

Threads

Parallel

Tasks Fan In
Fan Out

os
o

aetna

ee

AS
“arate te

Raves
Boia

cat

RY SS
ix AS
RRR
SN bs
y BS
Se BS

Figure 4 Fan-Out and Fan-In

Another example where threads can provide performance benefits is in an X server

application. The X protocol requires that an X server run client requests to comple-

tion. Concurrent requests are handled by a round-robin scheduler. This does not

cause a problem for most requests, which are typically very short. However, if a

client request requires a lot of CPU time, the response to interactive requests can

suffer while the X server executes the first request. An example is a request that

renders a complex image.

One (relatively expensive) solution to this problem is to use hardware-based accel-

erators to render images. Another solution is to use a multi-threaded X server.

Assigning each client request to its own thread enables the kernel to perform pre-

emptive scheduling of the threads so that no one request can take control of the

CPU. The multi-threaded X server also automatically takes advantage of SMPs so

that client requests can run concurrently on different JPs.

Comparing the Process and Thread Models

A good way to learn more about threads is to compare the thread model to the tra-

ditional process model. At a high level, a thread is a stripped-down process. A

thread runs in the context of a process, and all of the threads in a process share the

process’s address space and most of the process’s state information. Note that the

thread model does not eliminate the need for processes. Instead, processes act as

“wrappers” for threads (Figure 5 on page 7).

Support for Threads in the DG/UX 5.4 A3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

q, Page 7

Only the information that concerns flow-of-control is unique to a thread. For
example, a thread has its own ID number, its own scheduling priority and

class, and its own stack, which the thread uses to store local variables. And,

threads work independently with separate error numbers and signal masks.

ProcessMAIO TLa# PPPPPORPODECOMPOLEE.

Thread Thread Thread

"teow oo Pre rr rrr rT wen o o COPPER PP Pr rrr rrr? conan

Shared ;
by}

Threads }

Unique

to;

Threads = Thread ID - Thread ID - Thread ID ‘
; - Scheduling - Scheduling - Scheduling ;
; info Info Info ;

; - Errno Value - Errno Value - Errno Value ;

; - Signal mask - Signal mask - Signal mask | $

Figure 5 Threads in the Context of a Process

Unlike processes, which are organized hierarchically, threads are equal sib-

lings that share the resources of a process. This sharing reduces significantly

the thread’s overhead and simplifies inter-thread communication.

In the process scheduling model, an application’s tasks are mapped to single-

threaded processes. The resulting processes, along with the other processes

on a system, compete for the services of a (usually) smaller number of JPs.

(The FYI section on the bottom of the next two pages summarizes how JPs

are arranged in AViiON computers.)

In the thread scheduling model, an application’s tasks are mapped to threads,

which compete with all of the other threads for the system’s JPs. Note that

the thread model does not preclude you from creating single-threaded pro-

cesses. That enables you to migrate your software to the multi-threaded

environment as time permits.

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 - 012-00XXXX-00

Review Draft

yeig MalAay

Page&g |,

Because threads have less overhead than processes, threads can be created

much faster than processes. And, an operating system can switch among

threads faster than it can switch among processes. Therefore, the thread

model generally scales better than the process model. It’s not inconceivable

that you could have systems supporting thousands of threads.

Therefore, compared to the process model, the thread model ensures that

tasks scale well among SMP systems with multiple JPs because threads:

Q minimize the time that it takes to create tasks

Q minimize the resource overhead required to support a task

Q minimize the time that it takes to switch tasks on and off JPs

QO enable related tasks to automatically share an address space

FYl—Caches In AVIION Configurations

Currently, an AViION SMP computer can

have two, four, eight, or sixteen JPs. In

these computers, each JP has its own

instruction and data caches. These per-JP

caches, called primary caches, are at the

first level of the memory hierarchy.

Figure 6 shows a quad-processor

AViiON SMP configuration with just

primary caches. The JPs and main

memory connect via the main system

bus, and peripheral devices connect via

the I/O bus.

In addition to main (physical) memory

and disk storage, the AViiON memory

hierarchy can take advantage of more

levels of cache memory. 8- and 16-JP AViiON

computers have second-level caches as well as

primary caches. The 8-JP AV6280 computer is

an example (Figure 7 at the bottom of page 9).

In the AV6280, each of the 4 second-level

caches service a group of 2 JPs.

The parts of the memory hierarchy are defined

by speed and size.

As a JP executes, its caches accumulate more

and more of the task’s instructions and data.

Once the caches are full, the JP can run at

maximum efficiency—the JP is getting most of

its instructions and data from the caches, and

doesn’t have to wait for relatively slow

memory references.

JPO JP1 JP2 JP3

Primary

instruction avand Data —P | D I D i D I D

Caches _— |

System

Bus

VO (isk) Physical
Bus Gian Memory

Figure 6 Primary Caches in a 4-JP Configuration

DG/UX Technical Brief

November 3, 1993

Support for Threads in the DG/UX 5.4 R3.00 Operating System

012-00XXXX-00

q, Page 9

Creating Tasks

The time that it takes to create (fork) a process then exit from it is quite

high; on the order of 12,000 usec. In contrast, the DG/UX 5.4 R3.00 thread

scheduler can create and exit from a thread in 16 usec. This means that a

thread-based scheduler can create and exit from more than 700 threads in

the time that it takes to create and exit from one process.

FYI—AVIION Configurations (continued) previous task’s instructions and data that

had been stored in the JP’s caches. If the

previous task starts running again on the

same JP, it’s likely that the JP will find none

of the task’s instructions or data in its cache.

Until the caches are reloaded, the JP cannot

run a task at peak performance.

When a task voluntarily suspends itself or

is interrupted, the operating system’s task

scheduler performs a context switch

operation. A context switching operation

carries two kinds of overhead:

QO the time that it takes to save the task’s

state, take the task off the JP, and load a The worst case situation is when, for
new task onto the JP whatever reason, a task is taken off a JP as

soon as the JP’s caches are loaded with the

Q the time that the JPs need to load their _task’s instructions and data. This means that
caches with the new task’s instructions the task is effectively running on a JP that

and data. has no caches. This can present a significant

performance penalty, in addition to the
As a JP executes a new task, the new task’s LousP cumulative overhead of task switching
data and instructions write over the

times.

Primary JP4
Instruction ; D

and Data —3>

Caches
aT

Second-Level

Caches

Physical

Memory

Figure 7 Second-Level Caches in an 8-JP AViiON Computer

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 -- 012-00XXXX-00

Review Draft

wyeig MalAey

Page 10 q@,

Figure 8 compares the time that it takes to create and exit from a process

and a thread. Because of the large difference in the times, the create/exit

time for a thread is shown with its own time scale.

LETT

5 10 15

Process (12,000 usec)

Ltt tt tt

2,000 4,000 6,000 8,000 10,000 12,000
Creation Time (usec)

Figure 8 Comparing Create/Exit Times of Threads and Processes

To see how these timing differences can accumulate in a real-world scenar-

io, assume that you have an application with three tasks, which you want

to run separately so that the tasks have the opportunity to run in parallel.

Using a task-per-process model, you create a “parent” process and then

create two other processes. With the task-per-thread model, you create the

parent process, which has in it one thread, and then create two more

threads within that process.

Table 1 shows the difference in the startup times for these two approaches.

Table 1 Example Create/Exit Times

Using Processes (uses) Using Threads usec)

’ Create initial process (task #1) 12,000 Il Create initial process (task | 12,000
#1, thread #1)

Create child process (task #2) | 12,000 Create thread (task #2) 16

Create child process (task #3) | 12,000 Create thread (task #3) 16

Total Time 36,000 12,032

There’s a 3X difference in times for this example. This difference can pay

big dividends in long-running applications that go through the sequence

many times. An example is a transaction processing application that exe-

cutes this sequence many times a minute.

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

@ Page 17

Task Overhead

We said earlier that a thread runs in the context of a process, and all of the

threads in a process share the process’s address space and most of the pro-

cess’s state information. Therefore, two tasks that are mapped to threads

require significantly less overhead than the same two tasks that are

mapped to two processes.

Because threads have low overhead, you can typically map tasks to threads

without worrying as much about the cumulative effects of system over-

head. For example, each client in a client/server application can be

mapped to a thread. In the process model, a client-per-process mapping

can “run out of gas” quickly as more clients are added, and the system

starts to use more and more resources to handle the overhead of the extra

processes.

Switching Among Tasks

In a multiprogrammed operating system like DG/UX, a task is often

switched off a JP before the task finishes its job. A task is switched off a JP

when:

Q the task gives up the JP due to priority pre-emption

Q the task’s on-JP timeslice runs out

Q the task is suspended, such as when it has to wait for an I/O operation

Q the task must wait for a resource that’s not available

The time that it takes to switch among tasks becomes critical to system

performance. Figure 9 compares average thread-to-thread and process-to-

process switching times. Compared to processes switching times, thread

switching times are 10x faster.

Thread-to-Thread (15-20 usec)

Process-to-Process (150-200 usec)

-By an
eratape

50 100 150 200

Switching Time (usec)

Figure 9 Comparing Switching Times of Threads and Processes

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 - 012-00XXXX-00

Review Draft

AEG MIIAVY

Page 12 q,

process | TIS MECN Soo TSMC Stoop
Process 2

Threed1 MISA Seep MISE Seop

Because process context switches are relatively expensive, the process mod-

el is not well suited for handling applications that have many short-

duration tasks. Overall system performance starts to degrade at the point

that the JPs are spending a disproportionate amount of time handling con-

text switching operations.

Also notice that thread-to-thread switching times (15-20 usec) are compara-

ble to or longer than the time that it takes to create and exit from a thread

(16 usec). This is another advantage of the thread model, which gives you

the option of creating, using, and exiting from threads “on demand.” We

talk more about this technique in the section Look for Opportunities to Reuse

Threads on page 19.

Figure 10 summarizes the performance advantage that can be gained when

running the same short-duration tasks with two threads instead of two

processes. The figure shows how a pair of processes and a pair of threads

might be scheduled onto a single JP.

For comparison, we’ve assumed that each system call results in a context

switch, and that the run time between system calls is small. Over a span of

just three switching operations, the thread implementation completes in

40% less time than the process implementation.

To be honest, this scenario is biased toward the use of the thread model,

and the performance advantage becomes less significant as the run times

between system calls becomes longer. However, the scenario points out the

kind of tasks that can take advantage of threads.

coo IEC sco cm

S = System Call

C = Context Switch

Thread 2 | Siesp EEE Seen IIIS

Litre tttttt ptt it pe tt a
100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (usecs)

Figure 10 Comparing Process and Thread Switching Times

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

q, Page 13

Sharing Address Spaces Among Tasks

In the process model, a task (process) has its own address space. In many

cases, this address-space partitioning is exactly what you want because it

requires that a task take explicit action to share an address space.

In the thread model, a task’s ability to share a process’s address space with

other tasks in the process is implicit—there’s no set up involved and

there’s no need to use the mmap system call.

The difference between the two models is more distinct when you look at

the facilities they provide to synchronize access to shared resources. The

process model’s synchronization facilities are based on semaphores, which

go through the kernel and require a context switching operation. You can

decrease the time that it takes to access a shared resource by using a pro-

prietary combination of sequenced locks! and semaphores. When there is
no contention for a lock, a sequenced lock uses an XMEM instruction to set

the lock. However, if a resource is locked, you must still manipulate a

semaphore.

In addition to semaphores, the thread model provides a pair of simple, fast,

and portable synchronization primitives: Mutual Exclusion locks (mutexes)

and condition variables. In the thread model, semaphores are used to syn-

chronize processes; mutexes and condition variables are used to

synchronize threads.

Mutexes

A mutex is a low-overhead binary lock that provides mutually-exclusive

access to a shared resource, such as a segment of shared memory. Like se-

quenced locks, uncontended references to a mutex-protected resource use

an XMEM instruction. However, contended references to a mutex-protect-

ed resource are 10 times faster than a reference to a resource that is

protected by a semaphore.

Figure 11 shows an example of how a mutex works. In the figure, thread T3

“owns” the mutex that protects the shared data segment, so it is the only

thread that can read and write the segment. Other threads that try to obtain

the mutex while thread T3 holds it are put to sleep on the data segment’s

mutex sleep queue. The sleep queue is ordered by priority. When thread T3

is done accessing the shared data segment, it wakes up the highest priority

sleeping thread; in this case, thread T2.

1.Sequenced locks are described in the Taking Advantage of Symmetric Multiprocessor Systems

technical brief (012-004301).

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 -- 012-00XXXX-00

Review Draft

AJEIG MIIA[Y

Page 14 q,

Threads @ C Bes . Ct)
b j Mutex
\ Sleep Queue

Ye 4 Cm)
Mutex ~

Shared Data (md

Figure 11 Resource Protected by a Mutex

Condition Variables

Condition variables enable a thread to wait for a particular event that will

be signaled by another thread. They perform a similar function as sema-

phores in the process model, but they are typically 10x faster than

semaphores. Used in conjunction with a mutex, a condition variable pro-

d-based vides an efficient sleep queue that you can use to handle the case where a

herria thread has to sleep while waiting for a resource to become available, for
variables are data to arrive, or for an operation to complete. By using a condition vari-

typically 10x able, you avoid tying up a resource for long periods of time.

somaph eras Figure 12 is an example of how a mutex and a condition variable might
work together. In the figure, thread T3 “owns” the mutex that protects the

shared data segment, so it is the only thread that can read and write the

segment. Other threads that tried to obtain the mutex while thread T3 held

it were put to sleep on the data segment’s mutex sleep queue. The sleep

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

@, Page 15

queue is ordered by priority. When thread T3 is done accessing the shared

data segment, it wakes up the highest priority sleeping thread; in this case,

thread T2.

{ Tn

J

Threads ; T1 . T2 T3

R A Mutex Condition Variable
\ i a Sleep Queue Sleep Queue —

' YY

LES J , rm) Lm)
: a Ti > (T1

Ts wed ne
Mutex _ _.

Tn (tn
Shared Data Ct Sd

Figure 12 Mutex and a Condition Variable

Comparing Processes and Threads—A Summary

Table 2 summarizes the differences between the process and thread

models.

Table 2 Comparing the Process and Thread Models

Processes Threads

Scaling :

Q Task creation 12,000 usec. Nearly 1000x faster: 16 usec.

time |

QO Memory For each process, on the order of After the first thread (process-

overhead 8-to-10Kbytes non-pageable thread pair) is created, on the order

memory, plus a minimum of of 100 bytes of non-pageable

64Kbytes pagable memory. memory plus 4Kbytes of pageable

memory.

Q Task switching 150-200 usec. process-to-process. 10x faster: 15-20 usec. thread-to-

time thread.

Shared address space No—each process has its own Threads in a process share the

address space. process's address space.

Inter-Process Sharing memory requires system- Shared memory needs no setup.

Communication and call setup. Synchronization with Synchronization with low-

synchronization semaphores and sequenced locks. overhead mutexes and condition

variables.

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 -- 012-00XXXX-00

Review Draft

Weig MelAay

Page 16 q,

Design Considerations for Using Threads

Should you implement some, all, or none of an application’s tasks with the

process model or with the thread model? If you choose to use threads,

what design issues should you be aware of?

Here are two very general guidelines for choosing between the two

models.

Q The process model is an appropriate choice for applications that require

long-term serial computations or that require the security of separate

address spaces. The process model is also a good choice if programming

convenience outweighs performance.

Q Applications that fit the thread model best are those that have many

short-lived tasks that can run concurrently or have tasks that can share

(or need to share) an address space.The thread model is probably the

right choice if performance outweighs programming convenience.

Remember that the process model is a subset of the thread model. If you

do nothing to an existing non-threaded application, it will run according to

the process model.

Guidelines for Thread Design

When you choose the thread model, follow these design guidelines:

Q Look for parallelism in your applications
Q Establish good data partitioning and locking hierarchies

Q Look for opportunities to reuse threads

Look for Parallelism

Because you may be used to thinking in terms of single-JP systems, you

may not see the parallelism that’s inherent in most applications. However,

it’s often easy to find where you can establish parallel tasks, particularly in

similar computations and in I/O operations.

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

qd, Page 17

In general, you should look for places in applications that you can use

sequences of fan out and fan in operations. The time that it takes to runa

task can often be reduced significantly if you can identify opportunities to

string together a series of fan out and fan in operations (Figure 13).

Threads Threads Threads’ Threads

Task -

Fan Out Fan In Fan Out Fan In

Figure 13 Series of Fan Out and Fan In Operations

On page 6 was an example of using threads to break a database sorting op-
eration into multiple threads. This same fan-out/fan-in technique applies

to other kinds of operations—computations involving arrays, for example.

Lets say that you have an array with 100 rows and 1,000 columns and you

want to find the average for the values in each row. If you think in terms of

a single-process you would set up a do loop to perform the computation

one row at a time. If you think in terms of a multi-threaded process, you

could fan-out the computation by setting up a do loop that created 100

threads—one thread to perform the computations on each row.

This approach would enable the threads to run concurrently on multiple

JPs and you would have the results significantly faster than for the single

threaded case.

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 - 012-00XXXX-00

Review Draft

yeig MelAey

Page 18 q,

Establish Good Data Partitioning.

You can reduce contention for data by segregating large datasets into |

smaller datasets and controlling access to each group with a lock. This data

partitioning enables multiple JPs to work in parallel on different parts of a

dataset (Figure 14).

Homogeneous Data

Caches

Figure 14 Data Partitioning

FPF MPS PFS DHF PESPM A DGMAAAAPHASBAADAA AA EBSA ASL
Partioned Data

Data

Data partitioning is often inherent in an application. Figure 15 shows part

of a relational database, which partitions data into tables and further, into

rows. By assigning mutexes to each of the data elements, you can “lock

down” through the data hierarchy.

TabieOd

AN

Database

(tableO_mutex)

Row0

(database mutex)

V
(table1_mutex) Safe to lock

in this direction

(t1_row0_mutex) (ti_row1_mutex) (t1_rowN_mutex) V

Figure 15 Example Database Locking Hierarchy

Support for Threads in the DG/UX 5.4 R3.00 Operating System

012-00XXXX-00

DG/UX Technical Bref

November 3, 1993

@, Page 19

Look for Opportunities to Reuse Threads

Earlier, we made the point that you can often create and exit from a thread

more quickly than you can switch among threads. This enables you to

avoid tying a thread to a task for too long by reusing threads.

Figure 16 shows two options for assigning threads to a task. The task

performs some computation, followed by a wait period, then some more

computation. You can choose to assign one thread to follow the task from

beginning to completion (T1). Or, you can switch from one thread to

another during the wait period (T1 to T2). Both options have their place in

thread design.

Task Computation

One Thread >
T1

Two Threads —>| —r|

Figure 16 Assigning Threads

When choosing to tie one thread to a task, consider whether the thread is

being wasted during wait time. Or, does the thread carry with it so much

context (cache information) that you want to keep it attached to the task.

You also consider the length of the wait period, since the information

stored in the cache doesn’t stay there indefinitely if it’s not being used by

the processor.

You may decide to switch from one thread to another. Instead of tying up a

thread during a wait period, you create a new thread to finish the task.

When a thread’s job is done, the thread’s cache information doesn’t

immediately disappear. Good thread design can take advantage of the

already-cached data by picking up an available thread with its cache

information still intact, especially if a new thread is in the same group as

the old one.

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 - 012-00XXXX-00

Review Draft

YeIg MIIAeY

Page 20

Data General’s Thread Implementation

Compared to some other thread implementations, Data General’s imple-

mentation of the thread model is unique in two ways:

Q threads are implemented mostly in kernel space—threads are created,

deleted, and scheduled within the kernel

Q there is a one-to-one mapping of threads to small lightweight processes

(LWPs)

These two design features deliver some significant performance advantag-

es over other thread implementations.

Kernel Space Implementation

In Data General’s kernel-space thread implementation, only a small part of

a thread appears in user space. Each thread’s corresponding LWP is in ker-

nel space. These highly-optimized LWPs have very low memory overhead

(128 bytes).

The kernel-space implementation delivers several advantages over imple-

mentations that support threads in user space. For example:

Q both local and global thread operations are fast because they can use

kernel function calls (fast kernel traps)

Q reliability is increased because the thread’ data structures are in the

kernel and cannot be corrupted by a user’s application

One-to-One Threads Mapping

A one-to-one mapping of threads to LWPs eliminates the thread-to-LWP

scheduling layer that is required by implementations that multiplex

threads onto LWPs. The top part of Figure 17 shows the one-to-one map-

ping; the bottom part of the figure shows a multiplexed implementation,

where there are more threads than LWPs. The one-to-one mapping of threads

to LWPs results in minimal dispatch latency when a thread/LWP pair is re-

moved from a JP to allow another thread to run.

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

User

Data General’s

1-1 Mapping of

Threads to LWPs

Kernel

Oe et Oe ee a ee ae a 2 a a

User

Multiplexing

Threads to LWPs

Kernel

q, Page 21

eG] Ge] Gal ~

LLWP | [LWP || LWP] --
Space LWP = JP

= Scheduling

JPO|}JP1||JP2| -*

CPPCC ERODE PROEO DOPE BDO OOOLOOPHOODDPO OOOOH BOODLOLPAAEOOLOOLOPOH®OPROPSAEAEPOEAEFRALE

Thread > LWP

Scheduling

Space LWP > JP

Scheduling

JPO|}|JP1 || JP2

Figure 17 One-to-One and Multiplexed Thread Implementations

Advanced Features

The Data General thread implementation also supports more advanced

performance features, such as the ability to group threads and the ability to

associate groups of threads with groups of JPs. Although these advanced

features are proprietary, their system calls are similar to the POSIX thread

calls and are transparent when used on systems that don’t support thread

grouping and affinity.

Grouping Threads

Assigning just a single thread to a task that has groups of related computa-

tions may not always provide optimal performance. In a database server

application, for example, it’s likely that related computations will work

with the same data files or tables in a database. Using thread groups en-

ables you to take advantage of the cache locality of this data.

DG/UX Technical Brief

November 3, 1993

Support for Threads in the DG/UX 5.4 R3.00 Operating System

-- 012-00XXXX-00

Review Draft

yeig MelAay

Pago 22 q,

Figure 18 compares two options for grouping threads. If you take no ex-

plicit programming action, there’s a N-to-one mapping of threads to

groups. For example, thread group 0 in Figure 18 has a single thread,

which implies that the thread does not have a close relationship with other

threads.

If you have threads that are cooperatively working on the same computa-

tional problem, you can set them up in a group. Thread group 1 in Figure

18 has three cooperating threads.

OI HN Ia MRT

Thread Group 0 Thread Group 1
User Space _ ese

FOGPIS I ttiti(‘(i‘(‘“‘é RMR RRR RSP I a Ra I NIC NN ICRORE ln IR I RIA I I II I NE I I I NS IT Dd aa ee

Kemel Space

Second-Level o
Caches Cc Co Co Co

|JPO||JP1 ||JP2]|JP3|

Figure 18 Thread Groups

A thread group has its own global priority and scheduling policy. And, all

the threads in a thread group share the same on-JP time slice—the threads

are scheduled onto multiple JPs as a group. Because the threads in a group

share scheduling resources, thread-to-thread operations within a group can

be as much 2X faster than thread-to-thread operations that cross group

boundaries.

The other benefit is that the threads in the group can take better advantage

of data that’s stored in a system’s caches. The cache hit ratio will be high if

a group’s threads are working on the same data (a database table, for ex-

ample).

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief
012-QOXXXX-00 November 3, 1993

q, Page 23

Creating Thread > JP Affinity Relationships

If you’re using an AViiON system that shares caches among JPs, you can

take the benefits of thread groups a step further and establish an affinity re-

lationship between a thread group and a set of JPs. In an 8-JP AV6280

system, for example, the four groups of two JPs each have their own

1 Mbyte second-level caches (Figure 19). Each group of four JPs is aJP set.

Second-Level vege Wllelelele eel ele eee Me nee emi ggg OOOO ee ell ggg MP ooCaches seem ere lo -

nay Hoo moe ananemone
Caches

JPO JP1 JP2 JP3 JP4 JP5 JP6 JP7

| JPSetO | {|{ JPSet1 | {| JPSet2 || JPSet3 |

Figure 19 JP Sets

By establishing an affinity relationship between a thread group and a JP

set, you can ensure that any JP in the JP set can run any thread in the

thread group. This enables you to take longer term advantage of the cache

locality among the threads in a thread group (Figure 20).

Thre
Thread Group 0

User Space sce P

Kemel Space .. Second-Level \IZ
“) Caches Cs

JP Set 0 JP Set 1

Figure 20 Threads-Set to JP-Set Affinity Relationship

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 | - 012-00XXXX-00

Review Draft

yeig maiasy

Page 24 q,

FYI—Thread System Calls

The tables in this section list the thread calls that are defined in POSIX

P1003.4a/D6 and provided in DG/UX 5.4 R3.00. Also included (in the last

two tables) are the DG/UX 5.4 R3.00 operating system’s proprietary system

calls. The calls are separated into the following categories:

Oooooo0o0o0 0c ogo
Thread management—Table 3 on page 24

Synchronization primitives—Table 4 on page 25

Thread-specific data—Table 5 on page 26

Thread priority scheduling—Table 6 on page 26

Process scheduling—Table 7 on page 26

Process control—Table 8 on page 27

Signals—Table 9 on page 27

Thread cancellation—Table 10 on page 28

Thread extensions (DG/UX 5.4 R3.00 proprietary)—Table 11 on page 28

Thread grouping (DG/UX 5.4 R3.00 proprietary)—Table 12 on page 28

JP affinity (DG/UX 5.4 R3.00 proprietary)—Table 13 on page 29

Table 3 Thread Management

Call Description

pthread _create() Create a thread

pthread_join() Wait for thread termination

pthread _exit() Terminate a thread normally

pthread _detach() Detach a thread

pthread_self() Find caller’s thread ID

pthread_equal() Compare thread [Ds

pthread_once() Dynamic package initialization

pthread_attr_init() Initialize a thread attributes object

pthread_attr_destroy() Delete a thread attributes object

pthread_attr_setstackstze() Set stack size thread attribute

pthread_attr_getstackstze() Retrieve stack size thread attribute

pthread_attr_setdetachstate() Create a new thread in the detached state

pthread_attr_getdetachstate() Determine if a thread was created as detached

Support for Threads in the DG/UX 5.4 R3.00 Operating System

012-00XXXX-00

DG/UX Technical Brief

November 3, 1993

q, Page 25

Table 4 Synchronization Primitives

Call Description

pthread_mutex_init() Initialize a mutex

pthread_mutex_destroyO Destroy a mutex

pthread_mutex_lockK() . Acquire a mutex lock

pthread_mutex_unlocK) Release a mutex lock

pthread_mutex_trylock() Acquire a mutex lock conditionally

pthread_mutexattr_init0) Initialize default attributes object for a Mutex

pthread_mutexattr_destroy() Destroy attributes object for a Mutex

pthread_cond_init() Initialize a condition

pthread_cond_destroy() Destroy a condition

pthread _cond_wait() Wait for a condition

pthread_cond_timedwait() Timed wait for a condition

pthread_cond_signalQ) Signal a condition

pthread_cond_broadcast() Broadcast a condition

pthread_mutexattr_getpshared() Get process-shared attribute for a Mutex

pthread_mutexattr_setpshared() Set process-shared attribute for a Mutex

pthread_condattr_init() Initialize default attributes object fora

Condition

pthread_condattr_destroy() Destroy attributes object for a Condition

pthread_condattr_getpshared() Get process-shared attribute for a Condition

pthread_condattr_setpshared() Set process-shared attribute for a Condition

DG/UX Technical Brief

November 3, 1993

Support for Threads in the DG/UX 5.4 R3.00 Operating System

- 012-00XXXX-00

Review Draft

yeiq malAoy

Page 26 @

Table 5 Thread-Specific Data

Call Description

pthread _key_create() Create a thread-specific data key

pthread _setspecific() Associate a value with a thread-specific key

pthread_getspecificO . Retrieve the value associated with a thread-

specific key

Table 6 Thread Priority Scheduling

Call Description

pthread_attr_setprioQ | | Set scheduling priority thread attribute

pthread_attr_getprio() Retrieve scheduling priority thread attribute

pthread_attr_setscope() Set contention scope attribute

pthread_attr_getscopeQ) Get contention scope attribute

pthread_attr_setinheritsched() Set scheduling inheritance thread attribute

pthread_attr_getinheritsched() Retrieve scheduling inheritance thread attribute

pthread_attr_setsched() Set scheduling policy thread attribute

pthread_attr_getsched() Retrieve scheduling policy thread attribute

pthread_setschedattr() Set thread scheduling attributes

pthread_getschedattr() Retrieve thread scheduling attributes

pthread_yield() Yield to other threads

Table 7 Process Scheduling

Call | Description
= =

setprio() Set scheduling priority

getprio() Get scheduling priority

setscheduler() Set scheduling policy

getscheduler(Q) Get scheduling policy

yield() Yield to another process

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

Table 8 Process Control

q, Page 27

Call Description

lforkt)—=—=*=<“‘é*d Create ew zprocess==C

exec Execute a file

_exit() Terminate a process

wait() Wait for process termination

waitpid () Wait for process termination

Table 9 Signals

Call Description

sigwait() Synchronously wait for an asynchronously

generated signal

pthread_kill() Send a signal to a thread

sigaction() Examine and change process signal action

sigprocmask() Examine and change thread blocked signals

sigsuspend() Wait for a signal

sigpending() Examine pending signals

pause() Wait for signal delivery

longymp() Non-local jump

siglongymp() Non-local jump

setjmp() Non-local jump handler

sigsetymp() Non-local jump handler

alarm() Schedule alarm

sleep() Delay process execution

raise() Send a signal to a process

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 -- 012-00XXXX-00

Review Draft

Yyeig MalAeyY

Page 28

Table 10 Thread Cancellation

Call Description

pthread_cancel0) Cancel execution of a thread

pthread _setintr() Enable or disable interruptability of a thread

pthread _setintrtype() | Set interruptability type of a thread

pthread _testintr() Establish an interruption point for a thread

pthread_cleanup_push() Register a per-thread cleanup handler

pthread_cleanup_popO Unregister a per-thread cleanup handler

Table 11 DG/UX Thread Extensions

Call Description

dg_pthread_get_lwpid() Gets a thread’s LWP identifier

dg_pthread_is_preempted() Returns 1 if a thread has been timeslice pre-

empted; returns 0 otherwise

dg_pthread_sleepQ Puts a thread to sleep for a specified amount

of time

Table 12 DG/UX Thread Grouping

Call Description

dg_pthread_groupattr_init() Initialize a thread group’s attributes

adg_pthread_groupattr_destroy() Destroy a thread group’s attributes

dg_pthread_groupattr_setinheritsched() Set a thread group’s scheduling inheritence

attribute

dg _pthread _groupattr _getinheritsched() Gets thread group’s scheduling inheritence
attribute

ag_pthread_groupattr_setsched() Set a thread group’s scheduling policy

attribute

ag _pthread_groupattr_getsched() Get a thread group’s scheduling policy

attribute

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Bref

012-00XXXX-00 November 3, 1993

@, Page 29

Table 12 DG/UX Thread Grouping (Continued)

Call Description

dg_pthread_groupattr_setprio() Set a thread group’s scheduling priority

attribute

ag_pthread_groupattr_getprio() Get a thread group’s scheduling priority
attribute

ag _pthread_group_create() Create an empty thread group

ag _pthread_group_destroy() Destroy a thread group

dg _pthread_group_self() Return a thread group’s identifier

dg_pthread_group_equal() Returns 1 if two thread groups are the

same; returns 0 otherwise

ag _pthread_group_get_lwp_group_idQ Returns a thread group’s underlying LWP

group identifier

ag _pthread_group_setschedattr0 Sets the scheduling attributes of a thread

group |

dg_pthread_group_getschedattr() Gets the scheduling attributes of a thread

group

dg_pthread_group_get_timesO Returns the amount of user and system

time used by a thread group

dg pthread_attr_setgroup() Sets a group identifier thread attribute

ag_pthread_attr_getgroup() Gets a group identifier thread attribute

Table 13 DG/UX JP Affinity

Call

SE SL SSNS Sacssaaenaeshanrnassaasnersanannansnarassaanseen=aeasasasae]

dg_cpu_id_set_init()

Description

Initializes a CPU id set

dg_cpu_id_set_destroy() — Destroys a CPUid set

dg cpu_id_set_add_id() Adds a CPU identifier to a CPU id set

dg_cpu_id_set_remove_1d() Removes a CPU identifier from a CPU id set

dg_cpu_id_set_ts_member() Returns 1 if an identifier is in a CPU id set;

returns 0 otherwise

dg _cpu_id_set_assign_set() Assigns the contents of a CPU id set to

another CPU set

dg_cpu_id_set_add_set() Adds the contents of a CPU id set to another

CPU set

DG/UX Technical Brief Support for Threads in the DG/UX 5.4 R3.00 Operating System

November 3, 1993 : - 012-00XXXX-00

Review Draft

eid MalAVYe

Page 30 q,

Table 13 DG/UX JP Affinity (Continued)

Call | Description

dg_cpu_id_set_remove_set() Removes CPU identifiers from a CPU id set

dg_cpu_id_set_has_members() Returns 1 if a CPU id set contains the
specified list of identifiers; returns 0

otherwise

ag_cpu_info_init() . Initializes the dg_cpu_info structure

dg _cpu_info_destroy() Destroys the dg_cpu_info structure

dg_cpu_info() Returns information about a

CPU /cache/memory hierarchy

dg_cpu_affinity_attr_initQ Initializes the affinity attributes object

dg_cpu_affinity_attr_destroy() Destroys the affinity attributes object

dg_cpu_affinity_attr_set_cpu_id_set(0) Sets the CPU id set on which the affined LWP

groups can run

dg_cpu_affinity_attr_get_cpu_id_set() Gets the CPU id set on which the affined LWP
groups can run

dg_cpu_affinity_attr_set_minimum_level() Sets the minimum allowed CPU hierarchy-

level for the affined LWP group

dg_cpu_affinity_attr_get_minimum_level() Gets the minimum allowed CPU hierarchy-

level for one LWP group

dg_cpu_set_affinity() Sets the affinity attributes of one or more LWP

groups

dg_cpu_get_affinity() Gets the affinity attributes of one LWP group

Support for Threads in the DG/UX 5.4 R3.00 Operating System DG/UX Technical Brief

012-00XXXX-00 November 3, 1993

