

NOTICE

Data General Corporation (DGC) has prepared this manual

for use by DGC personnel and/or customers as a gu ide to

the proper installation, operation, and maintenance of DGC

equipment and software. The drawings and specifications

contained herein are the property of DGC and shall neither

be reproduced in whole or in part without DGC prior

written approval nor be impl ied to grant any I icense to

make, use, or sell equipment manufactured in accordance

herewith.

DGC reserves the right to make changes without notice

in the specifications and materials contained herein and

shall not be responsible for any damages (including conse·

quential) caused by reliance on the materials presented,

including but not limited to typographical or arithmetic

errors, company policy and pricing information. The

information contained herein on DGC software is summary

in nature. More detailed information on DGC software is

available in current released publications.

NOVA, INFOS, and ECLIPSE are registered trademarks of

Data General Corporation, Westboro, Massachusetts.

DASHER, microNOVA, DG/L, AZ-TEXT, and XODIAC
are trademarks of Data General Corporation, Westboro,

Ma ssach usetts.

© Data General Corporation, January, 1981

MP lOS OPERATING SYSTEM
AND

UTILITIES SELF-STUDY
COURSE

TABLE OF CONTENTS

INTRODUCTION
Prerequisites . vi
Abstract . vi
Course Format. vi
Objectives. vii
Duration. .. viii
Required Material. .. viii
Course Map. ix

MODULE ONE ... MP lOS CONCEPTS
Abstract . 1-1
Objectives. .. 1-1
Filenames Quiz. .. 1-23
Pathnames Quiz. .. 1-34
Module One Quiz 1-43

MODULE TWO ... CLI
Abstract . 2-1
Objectives. 2-1
CLI Concepts and Capabilities.. 2-3
How to Enter Commands. 2-7
CLI Commands Entry Quiz. .. 2-25
CLI Commands. .. 2-31
CLI Commands Quiz. .. 2-55
CLI Commands Lab Exercise .. 2-67
CLI Macros. .. 2-99
CLI Macros Quiz ... 2-107
CLI Macros Lab Exercise ... 2-113
Module Two Quiz .. 2-129

(Continued)

iii

MODULE THREE QUIZ
Abstract 3-1
Objectives. .. 3-1
SPEED Concepts. .. 3-2
SPEED Concepts Quiz. 3-15
File Commands ... 3-24
File Commands Quiz ... 3-40
File Commands Lab Exercise .. 3-52
Edit Commands. .. 3-68
Text Editor Quiz. 3-83
Text Editor Lab Exercise . • 3-94

MODULE FOUR ... PROGRAM DEVELOPMENT
Abstract. .. 4-1
Objectives .. , 4-1
Program Development. .. 4-3
Program Development Quiz .. " 4-18
Macroassembler Concepts. .. 4-22
Macroassembler Concepts Quiz ... 4-35
Macroassembler Procedures. .. 4-41
Macroassembler Procedures Quiz. 4~51

Macroassembler Procedures Lab Exercise 4-55
Fortran Compilation. .. 4-73
Fortran Compilation Quiz. .. 4-84
Fortran Compiler Lab Exercise ... 4-88
Assembling Fortran .SR files .. .4-106
Assembling Fortran .SR files Quiz .. .4-113
Assembling Fortran .SR files Lab Exercise4-117
Pascal Compilation .. 4-140
Pascal Compilation Quiz4-150
Pascal Compilation Lab Exercise .. 4-155
Binding ... 4-168
Binder Quiz .. 4-177
Binder Lab Exercises ... 4-181
Assembly Language Lab Exercise ... 4-181
Fortran IV Lab Exercise4-199
Pascal Lab Exercise .. 4-220

(Continued)

iv

MODULE FIVE ... SYMBOLIC DEBUGGER
Abstract. 5-1
Objectives. 5-1
Operating Principles . 5-3
Operating Principles Quiz .. 5-17
Operating Principles Lab Exercise. .. 5-26
Search and Display .. 5-47
Display Formats Quiz. .. 5-58
Search and Display Quiz. .. 5-68
Search and Display Lab Exercise. .. 5-76
Breakpoints. .. 5-94
Breakpoints Quiz. 5-104
DEBUGGER Lab Exercise .. 5-114

MODULE SIX ... SYSTEM MAINTENANCE
Abstract . 6-1
Objectives. 6-1
Disk Initialization. 6-2
DINIT Quiz ... " 6-11
DINIT Lab Exercise. .. 6-18
MOVE Utility '.' .. 6-28
MOVE Utility Quiz ... " 6-35
MOVE Utility Lab Exercise. .. 6-42
FIXUP " . " ... " 6-57
FIXUP Lab Exercise. .. 6-62

APPENDIX A ... DEVICE OPERATIONS

APPENDIX B ... ERROR CODES

APPENDIX C ... RELATED DOCUMENTATION

v

INTRODUCTION

PREREQUISITES

The student should have an understanding of basic Data Processing concepts and terminology
equivalent to an introductory level course in programming or to Data General's S I 00.

ABSTRACT

The MP/OS Operating System and Utilities Self-Study Course is designed for the applications
programmer, systems programmer, and system manager responsible for MP/OS program develop­
ment and MP/OS system management. The Course instructs in the following major topics:

• MP lOS concepts and terminology
• CLI Command Line Interpreter for interacting with MP/OS at your console.
• SPEED Text Editor for entering and modifying source language files.
• Program Development in Assembly, MP/Fortran IV, and MP/Pascal
• Symbolic Debugger for on-line, executable program files.
• System Maintenance: Disk initialization, FIXUP, and the MOVE Utility.

COURSE FORMAT

This is a self-study, audio tape course. This allows you to:

1. learn what, when, and where you want to;
2. select lessons that fit your needs (you do not have to read it all);
3. learn the subject with or without a functioning Data General computer;
4. frequently determine your understanding of the subject matter.

vi

OBJECTIVES

Upon completion of this course, the student will be able to:

1. Use the Command Line Interpreter (CLI) to:
a) manage files
b) control programs
c) manage the user environment
d) manage the system environment
e) manage disk devices

2. Use the SPEED Text Editor to:
a) enter source text
b) modify source text
c) store source text on disc devices.

3. Given a source program written in assembly, MP/Fortran IV, or MP/Pascal prepare the program
for execution under MP/OS. Preparation includes editing, translation, and binding using the
appropriate text editor, assembler, compiler, and binder command lines and options.

4. Use the Symbolic Debugger to display, modify, and test executable program files.

5. Use the Disk Initializer to software format disk media.

6. Use FIXUP to software repair disk media.

7. Use the MOVE utility to transfer files and back-up files.

8. Power-up, load, and on-line system devices and boot MP/OS into operation.

NOTE: Detailed objectives are provided with the introduction o[each Module and Module
segment.

vii

DURATION

This is a self-paced course. Therefore, student completion times will vary. Diligent attention to the
audio-tapes, quizzes, and lab exercises should require about four working days or thirty hours.

REQUIRED MATERIAL

This package is complete in itself. You will notice that it does not require access to a functioning
MP/OS system. However, success is enhanced with unfettered access to a live system.

viii

COURSE MAP

Below is a flowchart of the course modules. It is recommended that you do not alter the sequence
of modules .. If you believe that you have mastery of the subject matter before completion of the
module, then jump to the Module Quiz and test your abilities.

START

MODULE 1 MP/OS
CONCEPTS &

TERMS

MODULE 2
CLI

MODULE 3
SPEED

TEXT EDITOR

MODULE 4
PROGRAM

DEVELOPMENT

MODULE 5
SYMBOLIC
DEBUGGER

MODULE 6
SYSTEM

MAINTENANCE

NOTE: choose the segments appropriate

for your language.

NOTE: Highly recommended for the

assembly language programmer.

ix

MODULE ONE
MP/OS CONCEPTS

MODULE ONE

Abstract

This module surveys the MP/OS operating system's concepts and facilities. Topics include how
MP/OS manages main and peripheral storage, files, data, and I/O.

Objectives

Upon completion of this module, you will be able to:

1. Define, in your own words, the following MP/OS terms:
A) Program Stack
B) Levels
C) eLI
D) Pure Area
E) Impure Area
F) Swap
G) Chain
H) File
I) Directory
1) Pathname
K) Filename
L) Device Directory
M) Root Directory
N) Working Directory
0) I/O Channel
P) Multitasking
Q) Overlays
R) Searchlist

2. Given a list of filenames, identify the legal and illegal MP/OS filenames.

3. Given a filename with an MP/OS extension, state the file type.

4. Given a file's characteristics, state its appropriate attributes.

5. Given a sequence of I/O transfers, state which is fastest, slowest, most efficient, and least
efficient.

1-1

1-2

6. Describe the two main MP/OS memory areas. State the area of code that is common to all
operating environments.

7. Differentiate between root directory, device directory, and working directory by stating a
definition of each in your own words.

8. Given a directory structure, identify the valid and invalid pathnames.

Directions

1. Read the System Overview on the next page of the Student Guide.

. :.:.: ... :.: ..

SYSTEM OVERVIEW

The MP/OS system is a general purpose operating system for the microNOVA line of computers. It
provides features usually associated with larger computer systems, such as multitasking, memory
management, and device independent I/O.

The MP/OS system can be used either for general purpose systems oriented toward program
development, or for smaller stand-alone applications such as real-time process control. You can
generate an MP/OS system containing a desired subset of the full system's power and tailor it to
any configuration of memory boards and peripherals. You can put all software in read-only
memory (ROM) to eliminate the need for mass storage or you can take advantage of the powerful
MP/OS file management system for storing large amounts of data on disks.

Now turn to Figure 1-1 in the Student Guide and listen to the tape for Module One.

NOW START THE TAPE

1-3

Cabinet Dual floppy 10 meg. Dasher CRT

THE FLEXIBILITY OF MP-SYSTEMS

Figure 1-1

1-4

DasherTP1

Board/Chassis
Process Control
Environment

MEMORY

FILES I/O

~ /
MP/OS

/ ~
DEVICES PROGRAMS

CPU

MP/OS AS MANAGER OF RESOURCES

Figure 1-2

1-5

1-6

USER PROGRAM

USER PROGRAM

CLI

PROGRAM STACK

LEVEL 8

LEVEL 7

LEVEL 6

LEVEL 5

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

MP/OS VIEW OF SYSTEM AND USER PROGRAMS

Figure 1-3

SYSTEM CALLS

1. CONTROL TRANSFER

2. INTERPROGRAM COMMUNICATION

3. BREAKFILE CREATION

4. MANIPULATE MEMORY ALLOCATIONS

5. OVERLAY MANAGEMENT

6. CONTROL PROGRAM TIMING

7. RESTART SYSTEM

8. INPUT/OUTPUT

9. CONTROL PERIPHERALS

10. MANAGE FILES

OUTLING OF SOME SYSTEM CALL FACILITIES

Figure 1-4

1-7

1-8

CLI

LEVEL 8

LEVEL 7

LEVEL 6

LEVEL 5

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

PROGRAM STACK AT INITIALIZATION

Figure 1-5

LEVEL 8

LEVEL 7

LEVEL 6

LEVEL 5

LEVEL 4

LEVEL 3

USER.1 PROGRAM LEVEL 2

11·:1.1 .. 1:1:.:1:.1.1.:1:1:1:·1.1:.11 LEVEL 1

PARENT PROGRAM ... CALLER

PROGRAM STACK
AFTER USER CALL

SON PROGRAM (OR DESCENDANT) ... THE CALLED PROGRAM

PROGRAM STACK DURING EXECUTION OF A SWAP

Figure 1-6

1-9

1-10

LEVEL 8

LEVEL 7

LEVEL 6

LEVEL 5

LEVEL 4

LEVEL 3

LEVEL 2

CLI LEVEL 1

PROGRAM STACK AFTER
USER TERMINATION

Figure 1-7

LEVEL 8 LEVEL 8

LEVEL 7 LEVEL 7

LEVEL 6 LEVEL 6

LEVEL 5 LEVEL 5

LEVEL 4 LEVEL 4

LEVEL 3 LEVEL 3

USER PROGRAM 1
- > LEVEL 2 CONTROL USER PROGRAM 2 - ..

LEVEL 2

. .
LEVEL 1

. t:
LEVEL 1

(BEFORE) (AFTER)

CHAIN - STATE OF CALLING PROGRAM IS LOST

SWAP - STATE OF CALLING PROGRAM IS SAVED AND RESTORED ON
LEVEL TWO'S TERMINATION

PROGRAM STACK DURING
A CHAIN OPERATION

Figure 1-8

1-11

8

7

6

5

4

3

2

1

1-12

eLi

USING A BREAK FILE TO STORE
A PROGRAM'S OPERATING STATE

Figure 1-9

MP/OS SYSTEM

TASK SCHEDULER

~--------I-------- --------\--------~

TASK
Program Code

USER PROGRAM

TASK
Program Code

\
\

\
\

\
\

TASK
Program Code

MULTITASKING - MULTIPLE TASKS (ASYNCHRONOUS PATHS OF EXECUTION) IN A
SINGLE PROGRAM

MULTIPROGRAMMING - MULTIPLE PROGRAMS IN MEMORY FOR EXECUTION
(NOT SUPPORTED BY MP/OS)

• 255 TASKS
• CREATE
• PRIORITIZE
• INTERCOMMUNICATION

• KILL

MUL TITASKING

Figure 1-10

1-13

TOP OF MEMORY

t
4°°8
3778

LOWER LOWER
PAGE PAGE
ZERO ZERO

°8
PROGRAM STAND-ALONE
DEVELOPMENT SYSTEM
SYSTEM

BASIC MEMORY ORGANIZATIONS

Figure 1-11

1-14

377

50
47

40
37

30
27

20

17

16

15

o

•
•
•

GENERAL USE OF
USER & MP/OS

PROGRAMS

RESERVED FOR
ECLIPSE COMPATABIL1TY

AND USED BY MP/OS

AUTO-DECREMENT FOR
USER & SYSTEM PROGRAMS

AUTO-INCREMENT FOR
USER & MP/OS PROGRAMS

RESERVED FOR MP/OS

?USP FOR MULTITASKING

RESERVED FOR MP/OS

LOWER PAGE ZERO

MEMORY CONFIGURATION FOR
DEVELOPMENT & STAND-ALONE SYSTEMS

Figure 1-12

1-15

1-16

TOP OF MEMORY

400
377
•
•
•
•
•

MP/OS CODE (PURE)

MP/OS DATA (IMPURE)

USER'S IMPURE AREA

USER'S PURE AREA

LOWER PAGE ZERO

•
•
•
•

PURE AREA - PROGRAM AREA NEVER MODIFIED DURING EXECUTION AND
THEREFORE, NOT SAVED

IMPURE AREA - PROGRAM AREA MODIFIED DURING EXECTION AND SAVED
DURING SWAP

MEMORY CONFIGURATION
FOR A DEVELOPMENT SYSTEM

Figure 1-13

TOP OF PROM

MP/OSCODE

o TOP OF USER AREA ~------------I
USER'S PURE AREA

START OF PROM '-----------.....

TOP OF RAM

® START OF SYSTEM DATA

4008
•
•
•
•
•

MP/OSDATA

USER'S IMPURE AREA

LOWER PAGE ZERO
•
•
•
•

NOTE: Locations 375,376,377 are NOT available for access on some systems.

MEMORY CONFIGURATION FOR A
PROM-BASED STAND-ALONE SYSTEM

Figure 1-14

1-l7

1-18

r - - -
I

OVERLAY
NODE

I USER PROGRAM I
I I
L ___ ..J

MEMORY

~~- .- -==-=====~~.
PROGRAM SEGMENT 1
PROGRAM SEGMENT 2

DISC OR DISKETTE

OVERLAYS - USED FOR INFREQUENTLY USED PROGRAM ROUTINES.
MORE THAN ONE .OL IS ALLOWED

NODE - MEMORY AREA RESERVED FOR OVERLAY ROUTINES.
MORE THAN ONE NODE IS ALLOWED

OVERLAYING

Figure 1-15

DEVICES DATA

DASHER HARD-COPY TERMINAL
DASHER CRT

SOURCE FILES
OBJECT FILES
PROGRAM FILES
OVERLAY FILES

DASHER LP2
10 MB DISC DRIVE
12.5 MB DISC DRIVE
SINGLE DISKETTE DRIVE
DUAL DISKETTE DRIVE
.3 MB DISKETTE
1.26 MB DISKETTE

STAND-ALONE PROGRAM FILES
SYMBOL TABLE FILES
SWAP FILES
BREAK FILES

A "FILE" IS EITHER
AN I/O DEVICE OR
A COLLECTION OF
DATA ON A DISC.

MP/OS DATA MANAGEMENT

Figure 1-16

1-19

FILENAMES

1. 1 to 15 Characters in Length

2. A thru Z Upper Case

3. a thru z Lower Case

4. o thru 9

5. ? (QUESTION MARK or "HOOK")

6. $

7. (UNDERSCORE)

8. (PERIOD)

FILE NAMING RULES

Figure 1·17

1·20

LEGAL FILENAMES

1. NEWJERSEY

2. NEW_ JER$E.Y

3. NEWJERSEY.2

4. NewjeRsey

5. NEWJERSEY?

ILLEGAL FILENAMES

6. NEW JERSEY

7. NEWJE@SEY

8. NEW-JERSEY

9. NEWJERSEY#7

10. NE*JERSEY

LEGAL AND ILLEGAL
FILENAMES

Figure 1-·'8

1-21

TOPICS

• FILENAMES
• 1-15 CHARACTERS
• UPPER OR LOWER CASE
• VALID CHARACTERS (O through 9, ?, -, .)

.. . AND CHECK YOUR PROGRESS

1-22

FILENAMES QUIZ

Identify the legal filenames by placing an "L" in the space provided and identify the illegal file­
names by placing an "I" in the space provided.

l. __ PROGRAMONE

2. __ PROGRAM-ONE

3. __ PROGRAM_ONE

4. __ PROGRAM. 1

5. __ PROGRAM ONE

6. __ PROGRAMONE?

7. __ PROGRAM*1

8. __ PROGRAM@l

9. __ program.one

lO. __ PROGRAM:ONE

L = LEGAL

I = ILLEGAL

CHECK YOUR ANSWERS ON THE
NEXT PAGE

1-23

FILENAMES QUIZ

ANSWERS

L = LEGAL

I = ILLEGAL

I .. L ... PROGRAMONE All Upper-case, nothing fancy

2 .. I ... PROGRAM-ONE Hyphen is an illegal character

3 .. L .. PROGRAM_ONE Under-score is legal.

4 .. L ... PROGRAM. I Numbers are legal characters

5 .. I ... PROGRAM ONE The space is an illegal character

6 .. L ... PROGRAMONE? The question mark is a legal character.

7 .. I ... PROGRAM*1 The asterisk is an illegal character

8 .. I ... PROGRAM@1 The "at" sign is an illegal character

9 .. L ... program.one

10 . I ... PROGRAM:ONE The colon is an illegal character.

YOU SHOULD GET 8 CORRECT OUT OF THE 10 QUESTIONS TO ACHIEVE MASTERY
LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN YOU UNDER­
STAND THE CORRECT ANSWERS. THEN RETURN TO THE AUDIOTAPE.

1-24

FILE FILE FILE FILE

A DIRECTORY: CONTAINS FILES OR
OTHER DIRECTORIES

SUBDIRECTORY: A DIRECTORY CONTAINED
WITHIN ANOTHER DIRECTORY

DIRECTORY FILES AND SUBDIRECTORY FILES

Figure 1-19

1-25

1-26

DEVICE DIRECTORY
@

TTi

LPT

DPD

• • • • (Other •
Devices) •

DEVICE DI RECTORY

Figure 1-20

KEYBOARD
@TTi

IIII
LINE PRINTER
@LPT

DISK UNIT
@DPD

@

(DEVICE DIRECTORY)

LPT
TTO
TTi
DPD
DPX

MEMORY

@DPDO

(DISC DRIVE DEVICE FILENAME)

!
@DPDO:

(ROOT DIRECTORY)

DEVICE DIRECTORY "@" LISTS ALL SYSTEM DEVICES BY FILENAME

ROOT DIRECTORY CONTAINS ALL FILES ON ONE DISC OR DISKETTE

THE DEVICE DIRECTORY, DEVICE,

AND ROOT DIRECTORY

Figure 1-21

1-27

1-28

@

(DEVICE DIRECTORY)

FILE3

LPT

TTO
TTi
DPD

DPX

@DPDO

(DEVICE FILENAME)

~

FILE FOUR FILE.S

THE DEVICE DIRECTORY, DEVICE,
ROOT DIRECTORY, AND FILES.

Figure 1-22

@

(DEVICE DIRECTORY)

LPT
TTO
TTi
DPD
DPX

FILE3 FILE_FOUR

~PDO:DIR.ONE:FILE3

@DPDO
(DEVICE FILENAME)

FILE.S FILE3

@DPDO:DIR.TWO:FILE3

PATHNAMES IDENTIFYING UNIQUE FILES

FigUre 1-23

1-29

PATHNAME

1) A path through a Directory Structure to a particu lar file.

2) A series of filenames separated by colons.

3) Maximum length of 127 characters.

4) All filenames except last one must be directories.

5) Each directory in the path name must be a subdirectory of the preceding directory.

6) Fully qualified pathname begins at root directory.

PATHNAME RULES

Figure 1-24

1-30

@DPDO:PAYROLL:BARRY.1 :A: B B ~

LEGEND

0= DIRECTORY

NONDIRECTORY
-=

FILE
\ =PATH

WORKING DIRECTORY - "CURRENT LOCATION" IN THE DIRECTORY STRUCTURE.
FILE SEARCHES BEGIN AT WORKING DIRECTORY.

DIAGRAM OF A COMPLEX FILE STRUCTURE

Figure 1·25

1·31

GRADE SCORE MONEY SUM

VALID PATHNAMES

1. @DPDO:FORTDIR
2. @DPDO:WHEN
3. MONEY
4. @DPDO:FORTDI R: FORT4
5. @DPDO:FORTDIR:TEST:SCORE

INVALID PATHNAMES

6. TEST:SCORE
7. MONEY:SUM
8. @DPDO:FORTDIR:MASM
9. @DPDO:FORTDIR:EXEC:MONEY:SUM

10. SCORE

Figure 1·26

1·32

CURRENT,
WORKING
DIRECTORY

TOPICS

• PATHNAMES
• FILENAMES SEPARATED BY :
• MAX OF 127 CHARACTERS.
• LAST FILENAME IS A NON-DIRECTORY FILE.

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

1-33

1-34

PATHNAMES QUIZ

Identify the valid and invalid pathnames for the following directory structure. Source is the
working directory.

WORKING
DIRECTORY

CONTENTS

1. SOURCE:ONE.FR

2. ONE.FR

3. SOURCE:@DPXO:

4. @DPXO:MASM.PR

V = VALID

I = INVALID

5. @DPXO:SOURCE:TEXT:CONTENTS

6. SOURCE:EXEC:SPEED.PR

7. SOURCE: EXEC:MASM.PR

LEGEND: o DIRECTORY FILE

XXXXXX NON-DIRECTORY FILE

8. TWO.FR

9. SPEED.PR

10. EXEC:SPEED.PR

CHECK YOUR ANSWERS

ON THE NEXT PAGE

1-35

PATHNAMES QUIZ

ANSWERS

V=VALID

I = INVALID

1. I SOURCE:ONE.FR SOURCE is not visible from SOURCE,just use ONE.FR.

2. V ONE.FR Since SOURCE is the working directory, this is a valid entry.

3. I SOURCE:@DPXO: This is reversed.

4. V @DPXO:MASM.PR Valid because it starts with the root directory.

5. V @DPXO:SOURCE:TEXT:CONTENTS A valid, fully qualified pathname

6. I. . .. SOURCE:EXEC:SPEED.PR Exec is not a subdirectory of source.

7. I .. " SOURCE:EXEC:MASM.PR Exec is not a subdirectory of source.

8. V TWO.FR Two.FR is a file in the working directory.

9. I SPEED.PR SPEED.PR is not in the working directory.

10. I EXEC:SPEED.PR Add the@DPDO:.

YOU SHOULD GET 8 CORRECT OUT OF 10 QUESTIONS TO ACHIEVE MASTERY LEVEL.
REVIEW THE QUESTIONS YOU MAY HA VE MISSED. BE CERTAIN THAT YOU UNDER­
STAND THE CORRECT ANSWERS. THEN RETURN TO THE AUDIOTAPE.

1-36

SEARCH LIST

AN ORDERED LIST OF DIRECTORIES YOU WANT SEARCHED ANY TIME
YOU REFERENCE A FILE NOT LISTED IN THE WORKING DIRECTORY .

•

1-4l1li

SYSTEM MASTER DEVICE HOLDS OPERATING
SYSTEM PROGRAMS. REFERENCED AS ":"

SYSTEM MASTER DEVICE

Figure 1-27

1-37

•

I

BLOCK = 512 BYTES

FILE ELEMENT = ONE OR MORE BLOCKS

• LARGE ELEMENTS ALLOW FAST ACCESS
• SMALL ELEMENTS ALLOW EASY ALLOCATION
• MAXIMUM FILE SIZE DETERMINES IDEAL SIZE

Figure 1-28

1-38

~---------- FILE TYPES ----------....,

[

Character device

Peripheral device Line printer
Directory device

(disc, diskette)

Program file
Files stored Br~ak file

on Disc Push or Swap file
Devices Range of system defined data files

Range of user-defined data files

~-------- FILENAME EXTENSIONS -----------,

.CLI

.SR

.FR

.PAS

.OB

.PR

.PS

.SY

.OL

.SA}

.SP

CLI Macro file
Assembly language source files
Fortran source files
Pascal source files
Object files
Executable program files
Symbol table files for MASM
System files
Overlay files
Stand-alone

program files

.---------- FILE ATTRIBUTES -----------,

P Permanent (file cannot be deleted)
R Read protected (cannot be typed or displayed)
W Write-protected (cannot be edited)
A Unchangeable attributes (attributes cannot be changed)

FILE DESCRIPTORS

Figure 1-29

1-39

1-40

?INCH - INPUT DATA CHANNEL.
?OUCH - OUTPUT DATA CHANNEL

?INCH

I/O CHANNEL: SYSTEM-DEFINED DATA PATH

Figure 1-30

I/O TYPES .1

DYNAMIC I/O

• FAST TRANSFER

• FILE ~ MEMORY

BLOCK I/O (DYNAMIC)

• FASTEST TRANSFER

• DISC ~ MEMORY BUFFER

DATA SENSITI VE

• MEMORY ~ SYSTEM BUFFER

Figure 1-31

1-41

TOPICS

• SOFTWARE CONTROL
• flexible resource manager

• stack
• system calls
• swaps, chains, breakfiles

• multitasking

• MEMORY CONFIGURATIONS
• Lower Page Zero
• Pure & impure program areas
• Stand-alone vs. Program development configurations

• Overlaying

• DATA MANAGEMENT
• Directory and non-directory files.
• Files as I/O device or disk data.
• Device directory, root directory
• System master device

• Searchlist
• File type, extension, attributes.

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

1-42

MODULE ONE QUIZ

Circle the best answer(s) to the following questions. Note that some questions require more than
one answer.

1. MP/OS can be tailored to your application. Therefore, it can be used:
A. in a stand-alone environment.
B. in a program development environment.
C. in a disk/diskette-based operation.
D. as part of a distributed network.

2. MP/OS manages
A. access to main memory.
B. program execution.
C. I/O.
D. disc organization and access.

3. Information about each executing program is maintained in a:
A. directory.
B. program stack.
C. level.
D. channel command word.

4. The Command Line Interpreter (CLI) serves as:
A. ajob control language.
B. directory maintenance utility.
C. peripheral interface program.

5. When the system is initialized, a program named CLI.PR (CLI) is invoked and enters:
A. at level one in the program stack
B. a block
C. a swap
D. an element

1-43

6. When a descendant program is called in to execute and the parent program is saved:
A. a chain occurs
B. a terminate occurs.
C. a swap occurs.
D. a block occurs.

7. The memory locations containing code and data that are never modified during program
execution is referred to as:

A. lower page zero
B. im pure area
C. pure area
D. supervisor area

8. Locations a through 377 for any environment always consist of:
A. pure area.
B. impure area.
C. lower page zero.
D. supervisor area.

9. Which pair(s) can be in memory a the same time?
A. Pure and impure areas.
B. MP/OS code and data.
C. System code and lower page zero.
D. CLI and a compiler.

10. An MP/OS file may be a:
A. collection of data.
B. Dasher Line Printer.
C. Program when resident on disc.
D. non-directory file.

1-44

11. Which of the following is a legal MP lOS filename:
A. BARRY_SMITH
B. BARRY$.M_TH
C. BARRY$._7?H
D. barry. 1

12. A file that may contain other files is called a:
A. character-oriented device
B. directory
C. stack
D. pathname

13. An expression used to reference a file within a directory is called a
A. working directory
B. sub-directory
C. pathname
D. device directory

14. The device directory:
A. is referred to with "@".

B. is the highest directory in the system.
C. contains the filenames of all I/O devices.
D. is a table in memory.

15. The highest directory on a disc device is the:
A. device directory
B. root directory
C. parent directory
D. working directory

16. Every program has a directory from which it executes. This directory is the:

A. device directory
B. root directory
C. paren t directory
D. working directory

1-45

17. An easy way to access common files and programs is to use the:
A. directory list
B. device directory
C. searchlist
D. fully qualified pathname

18. A system-defined data path between a file and an application program is:
A. a filename
B. Block I/O
C. an I/O channel
D. Dynamic I/O

19. CLI is an executable program file. MP/OS would expect which extension to its filename:
A .. OB
B. .PR
C .. PAS
D .. SR

20. A permanent file that cannot be modified would have attributes:
A. PA
B. PR
C. RW
D. AW
E. PW

21. The slowest I/O transfer is:
A. Dynamic I/O
B. Data-sensitive I/O
C. Block I/O

22. MP/OS allows dividing your program into a number of subprograms called:
A subroutines
B. overlays
C. tasks
D. levels

1-46

CHECK YOUR ANSWERS
ON THE FOLLOWING

PAGES

MODULE ONE QUIZ

ANSWERS

1. A,B,C,D. MP/OS systems can be tailored to stand-alone, program development, disk/diskette­
based operations, and part of a distributed network.

2. A,B,C,D. MP/OS provides efficient management of all CPU resources.

3. B. The program stack maintains information about the executing program. Internal
tables (UST and TCB) also maintain information about the user's programs.

4. A,B,C. The CLI is your interactive interface to MP/OS requests and, as such, serves as JCL,
directory maintenance, and peripheral interface.

5. A.

6. C.

7. C.

8. C.

CLI enters the program stack at level one at system initiation. If you create another
file named CLI.PR and delete the original, the new file would be invoked automatically
at initiation. This is not a recommended procedure.

A swap occurs when the parent program's state is saved. The parent's state is lost
during a chain.

The pure area of a program consists of code and data that are never modified during
program execution.

Lower page zero occupies addresses 0 through 377. The organization of the remainder
of memory will vary with the environment and must also be impure.

9. A,B,C. Each of these occupy the memory at the same time, but they are prevented from over­
lapping by MP/OS. CLI can invoke the compiler, but won't be in memory at the
same time.

10. A,B,C,D. A file refers to devices, data sets, and programs when resident on disc.

11. A,B,C,D. All are legal filenames.

12. B. A directory file may contain other files (and other directories).

13. C. A pathname references a file within a directory.

1-47

14. A,B,C,D The device directory, referred to as @, is a system table that lists all the devices in the
system.

15. B.

16. D.

17. C.

18. C.

19. B.

20. E.

21. B.

The Root Directory, referred to as ":", is the highest directory on each disc device.

Each program executes from a working directory. The working directory can easily be
changed, it is not static.

The searchlist is an easy way to access common files and programs. It is a list of
directories to be searched to reference a desired file.

An I/O channel is a system-defmed data path between a file and the application
program.

CLI.PR is the executable version of the Command Line Interpreter.

Attributes P (Permanent) and W (Write-protect) describe a file that cannot be deleted
or modified. Note that the "A" attribute describes a file whose attributes cannot be
changed, although an "A" file's contents may be modified.

Data-sensitive I/O is the slowest type of data transfer in an MP/OS system.

22. A,B,C. A program may be divided into subroutines, overlays, or tasks. The choice depends
on the application.

A SCORE OF 19 CORRECT QUESTIONS OUT OF THE 22 QUESTIONS INDICATES MASTERY
LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN THAT YOU
UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE NEXT SEGMENT
IN THE STUDENT GUIDE.

1-48

MODULE TWO
ell

MODULE TWO

CLI

Abstract

This module is divided into the following sections:

• CLI concepts and functional capabilities
• How to use CLI
• Commands and options
• Command macros

Objectives

Upon completion of this module, you will be able to:

1. State the purpose of the Command Line Interpreter.

2. Given a list of console control character sequences:
a) determine the function performed by either stating from memory or referencing

the appropriate technical source;
b) explain the results of each sequence

3. Given a list of command lines
a) reference the function performed by each command;
b) describe the options performed by appending switches to the command and/or

arguments.
c) describe the results of each command with and without options.

4. Given a processing problem, enter the appropriate eLI command to solve the situation.

5. Define, in your own words:
a) working directory
b) pathname
c) file
d) directory
e) root
f) parent directory
g) searchlist
h) system master device

2-1

6. Given a description of a system file structure:
a) illustrate the file structure by sketching the relation between files;
b) state the pathnames to each file.

7. Given a processing situation enter a Macro command to satisfy the situation.

8. Given a list of eLI macro commands, describe the expected result of the operation.

9. Given a eLI error situation:
a) identify the possible cause of the error;
b) reference the solution to the error;
c) enter a eLI command or series of commands to correct the error.

Directions

1. Turn to figure 2-1 in your Student Guide.

2. Listen to the tape for Module Two.

2-2

FILE MANAGEMENT

CALL UTILITIES

SYSTEM ENV I RONM ENT
MANAGEMENT

PROGRAM MANAGEMENT

CLI FUNCTIONS

Figure 2-1

2-3

2-4

FILE MANAGEMENT

CREATE
DELETE
RENAME
COpy
PRINT
DISPLAY
ATTRIBUTES

CLI FILE MANAGEMENT FUNCTIONS

Figure 2-2

MP/OS UTI LlTI ES

PROGRAM DEVELOPMENT

SPEED
MACROASSEMBLER
PASCAL COMPILER
FORTRAN COMPILER
BINDER
DEBUGGER

SYSTEM

DISK INITIALIZER
MOVE
LIBRARY FILE EDITOR

CLI PROGRAM CALLS

Figure 2·3

2-5

2-6

SYSTEM MANAGEMENT

DIRECTORY
SEARCH LIST
PATHNAME
DEV ICE CHARACTER ISTICS
SHUTDOWN

PROGRAM MANAGEMENT

CHAIN
SWAP

EXECUTE

CLI SYSTEM & PROGRAM MANAGEMENT

Figure 2-4

HOW TO ENTER COMMANDS

Directions

1. Read the following pages on using the console to communicate with CLI.
2. Try the CLI Command Entry Quiz.
3. Return to the tape for Module 2 after completing the reading and Quiz.

Using Control Characters

When you are working at the console, you may find you want to either change something you have
typed or stop what is happening at the console. For example, you can use the DELETE or
RUBOUT key (depending on your console) to correct typographical errors. DELETE/RUBOUT
erases the character to the left of the cursor. In addition, you can use certain control characters to
affect what is happening at the console. Control characters are transmitted when you press the
CTRL key and some other key at the same time. We represent them as CTRL-x where x is the
other key.

The following are control characters you might find useful:

• CTRL-U erases the current command line. This saves you typing a series of DELETEs if you
change your mind about entering a command.

• CTRL-S suspends output to the co:n,sole. On soft-copy devices it freezes the display of in­
formation on the screen; on hard-copy devices it stops the printing of information. You may
want to use CTRL-S if the program you are running is generating a lot of output and you want
to stop and examine it at some point.

• CTRL-Q cancels the effect of CTRL-S: on soft-copy devices it restarts the display of infonna­
tion on the screen; on hard-copy devices it restarts printing.

NOTE: If you type CTRL-S by accident, you may think the system is dead because nothing
you do will have any effect. When this happens, type CTRL-Q. If CTRL-S was the cause of
the problem, CTRL-Q will undo its iffect.

2-7

2-8

The CTRL-key is echoed as an up-arrow.

There are also control sequences you can use. All control sequences consist of CTRL-C followed
by another control character. For example,

• CTRL-C CTRL-A interrupts the current program if the program in question allows interrupts.
If it doesn't, the control sequence has no effect.

• CTRL-C CTRL-B immediately terminates the program that is running. If it is the CLI, the CLI
is refreshed and re-invoked.

Command Formats

Just as languages have syntactical rules which must be observed to make communication possible,
so does the CLI. In other words, you must observe certain rules when entering commands so that
you can communicate with the CLI.

Delimiters and Terminators

CLI command lines consist of a command alone or of a command followed by one or more
arguments. An argument may consist of a filename, program name, etc. Some commands require
arguments, others allow them, and still others do not accept arguments. The command line can be
either in upper or lower case since the CLI does not distinguish between them. If the command
line has one or more arguments, you must delimit the command and each argument. Delimiters
can be:

• One or more spaces (except at the beginning or end of a command line).

• One or more tabs (except at the beginning or end of a command line).

• A single comma.

• Any combination of spaces, tabs, and single commas.

Furthennore, a command is not transmitted to the CLI until you tenninate it properly. You can
use the following as tenninators:

• New line

• Fonn feed

• Carriage return.

So, for example, depending on which delimiters you used, a command line could look like one of
the following three options:

Option one: the space delimiter with the new-line tenninator:

CPEHTE FLOt,jEF..'S ~
)

Option two: the tab delimiter with the new-line tenninator:

CREHTE FLOUERS ~

2-9

Option three: the comma delimiter with the new-line terminator:

CF.:EHTE .. FLOl.JEPS)

Note that in the three options above, the" J "symbol indicates a new line. The right parenthesis
is the CLI prompt.

More examples of command lines are given below. The following three options all perform the
same function of renaming the ORIGINAL file to BACKUP.

Option 1 uses the space delimiters and new-line terminator:

2-10

Option two uses tab delimiters and the new-line terminator:

... - - -
i~! :,,~' i -G ~ ,\ t-1·:

Option three uses the comma delimiter and new-line terminator:

2-11

Switches

You can modify certain eLi commands by using switches. A switch has the format !SWITCHNAME
and may consist of one or more characters. Switches can either be simple or keyword. A simple
switch has the format:

/SWITCH

For example, you can modify the COpy command so that the contents of one file are copied and
then appended to another file. To do so, you would use the /A switch:

COP'(····R TR I G COS I NE l

The DISKSTATUS command can also be modified by appending the byte-length switch /B:

Note that, in this case, no argument was specified so the system assumes a default argument.

2-12

A keyword switch has the format:

/KEYWO RD=value

For example, you can create a file and set the element size with a keyword switch
/ELEMENTSIZE = 10, as shown below:

CREATE/ELEMENTSIZE=10 ZORPl

Be very careful in your spacing of this command. For example, if you insert spaces before and
after the equals sign, you will get:

) CREAif.···ELENENTS I ZE :::: Ji.:.7 ZORP 1
E r ret r: Un kno(,lrF s(.. 1i f ch SF'ec i f i ed
CPEI~TE""ELENENiS I ZE., =.,11::1 .. ZORP
.>

2-13

A commonly used keyword switch is the /L or listing switch. The example below sends the listing
to a disc file named BIND.LS as shown:

Multiple Commands

You can enter more than one CLI command on a line by separating the commands with a semi­
colon (;). For example:

) DIR FUNDS.iDEL HCCTl
,)

The commands are executed from left to right, so if any command is invalid, neither it nor anything
to the right of it will be executed.

In the multiple command example below, you first ask for the rev number of the executable
program PROG.PR and then execute the program.

REVISION PROG.PR;XEQ PROG.PRl

2-14

Continuation Lines

You can continue a command line to the next line by typing an ampersand (&) before the New
Line. The CLI issues the prompt "&)" on the continuation line. For example,

) DEL NU,:-,:,' S'I"NCH $~ l
&) AS'lNCH CONN l
,)

There is no limit to the number of continuation lines you can have. Short lines and long lines
may be continued.

The continuation line below shows the TYPE command for six fIles:

.,..)~.r =1 I'::" ... ;
) J' I 1-.' !-

~) ~NOTHER S~CKUP.TWO MCRE.S~XE l

2-15

Again, spacing is extremely important. For example, if you do not put a space either before or
after the continuation, you will get:

) DEL NUX SYNCH&l
8:) .ttS'r'NCH CONN 1
SYNCHASYNCH, Error: File does nof exisf
.>

In this case, CLI read the filenames as one, "SYNCASYNCH", thus causing an error.

The key is to space your command lines either before or after the continuation character.

2-16

Abbreviations

The CLI allows you to abbreviate all commands and switches. The shortest abbreviation you can
use consists of the smallest number of characters, beginning with the fIrst character, which results
in a unique specifIcation for a command or switch. So, for example, you can abbreviate
FILESTATUS to F since it is the only CLI command which begins with an F. You cannot, how­
ever, abbreviate DELETE to D because several commands begin with D. Even DE would be insuffI­
cient because of the command DEBUG. In fact, the shortest acceptable abbreviation for DELETE
is DEL.

The following is a list of CLI commands and their minimal abbreviations:

COMMAND ABBREVIATION

attributes A
boot BO
bye BY
chain CHAI
characteristics CHAR
copy CO
create CR
Date DA
Debug DEB
delete DEL
directory DIR
diskstatus DISK
dismount DISM
execute E
filestatus F
help H
information I
message ME
mount MO
pathname p
rename REN
revision REV
searchlist S
time TI
type TY
write W
XEQ X

2-17

Parentheses

Parentheses in a command line result in command repetition. If you enter a command followed by
an argument list in parentheses, the eLI executes the arguments in the list as if each argument were
entered on a separate line. For example, the command lines in option one and two below are
equivalent.

Option I:

Option 2:

T :,':,Fr E: ;:.~I l
) T'/iO'[/ l

';-YF'E 2: l

Both options result in a display of the contents of files "X", "Y", and "Z".

2-18

Another example of parentheses is given below. The two options perfonn the same function:

/ DELETE (TESTFILE

~ DELETE TESTFILE1
) DELETE B~CKUP.DNEl
; O£L~TE ORI~IN~L1
...

If a subset of the entire argument list is in parentheses, the command is repeated for each argument
in the subset in conjunction with the remaining argument(s). For example, the command lines in
options one and two below are equivalent. They both result in fIles APPLES and DOUGH being
copied to fIle PIE.

Option 1:

) COpy PIE (APPLES DOUGH) 1

Option 2:

.:: C:;]F"r' /:11 E HPPLE.S l·
COP,,/ PIE DOUGH ,1·

2-19

If you enter a command line with two or more argument groups in parentheses, the eLI executes
the command for the fIrst argument in each group, then for the second, and so on. For example,
the command lines in options one and two are equivalent. They both result in TAX being copied
to SALARY and GLOP being copied to ZORP.

Option l:

,- ,-, '::,. '. \

:_, i_','

Option 2:

i.. ; rl,'\

If you enter a command line with two or more commands in parentheses, followed by an argument,
each command in the parentheses is executed with the argument. For example, the command lines
in options one and two below are equivalent. File TEST.BU will be displayed and then deleted.

Option 1:

,,' (T / r:' r /J E: LET E.:'.. T C S' T , 8" Lt l'

Option 2:

DEL}::TE TE.ST E:::J l

2-20

Another example of two commands in parentheses is given below. Both options perform the same
functions:

Option 1:

Option 2:

) XEG FORTSUM.PR

The REVISION command requests the rev number of the FORTSUM.PR program. XEQ requests
the execution of FORTSUM.

2-21

2-22

Angle Brackets

Angle brackets in a command line result in argument expansion. They can help you code arguments
that contain the same character or character combination. The eLI forms arguments by joining
each character enclosed within angle brackets with the characters that appear immediately before
the left angle bracket and immediately after the right angle bracket. For example, the command
lines in options one and two below are equivalent. They both result in the deletion of the three
files named X.I, X.2, and X.3.

Option I:

; DELETE X.<l 2 3>1

Option 2:

[{ELfiE :~~:. r ,1·
DELETE ,~"i:. 2 l:
DELETE f~·:;.:] 1,

Another example of angle brackets is shown below. Options I and 2 below perform the same
functions:

Option I

Option 2

The result is the display of the three PROG files.

2-23

Order of Evaluation

The CLI allows you to nest angle brackets within angle brackets, parentheses within parentheses,
angle brackets within parentheses, and parentheses within angle brackets. The CLI first expands
the argument list by processing angle brackets from left to right and from inner to outer. When no
angle brackets are left in the command line, the CLI processes parentheses from left to right in
pairs.

Check your progress by trying the Quiz on the next page.

2-24

Directions:

CLI COMMAND ENTRY

QUIZ

Answer the following questions by writing in the appropriate response in the space provided.

1. You have entered the command line shown below, without the terminator:

,) DELETE ,'x,'. i

State two methods for deleting the command without executing it.

A. --
B. --

2. You have just entered the command line to display a very long fIle, as shown below.

) T'r'PE LONGF ILE l

)

How would you stop the display scroll so that you can examine the output?

A.

How would you re-start the display after you have stopped it?

B. --

2-25

2-26

3. What effect does the control sequence tCtB have on programs?

A. __ ___

What effect does tCtB have on CLI?

B. __ _

4. Given the command line below:

T'r'PE.···L ORDER. 1 l

A. What is the delimiter? _______ _
B. What is the terminator? ______ _
C. What is the switch? ________ _
D. What is the argument? _______ _

5. Given the three commands below:

,) TYPE Pj;..'OD l

cop')' NHSTER PROD l
DELETE PROD)

Com bine the three commands on one command line:

) ---------------------------------

6. Given the three commands below:

) T'r'PE PHGE l

) T'/PE BOOK l

,) r'lPE CHHPTER l

,)

Use the continuation symbol and combine the commands into one line with a continuation.
Write your answer in the blank screen below:

7. Given the three commands below:

) T·lPE L H.l l
) T'r'PE.····L R·-· .-r. ,_ l
) Ti .. PE L H3 ~
)

Use parentheses to combine the operation into one command. Use the blank screen below:

)--------------------------------

2-27

2-28

8. Given the commands below:

n'pE.···L rE8T. 1 ~
T'lt!:tE.····L TE.S T . Bt' l
TlPE.···L TEST. Sf;: ~

Use angle brackets to combine the operations into one command. Use the blank screen
below for your answer.

.1 ______________________________ __

Check your answers against those on the following pages.

CLI COMMAND ENTRY

QUIZ ANSWERS

1. The command line may be deleted by:
A. repeatedly pressing the DELETE/RUBOUT key until the command is erased from

the screen.
B. pressing the CONTROL key and U-key simultaneously. (CTRL-U)

2. A. Press CONTROL and S to freeze the screen display.
B. Press CONTROL and Q to restart the frozen display.

3. A tCtB terminates programs and returns control to CLI.
B. tCtB refreshes CLI. That is, the disc copy of CLI is written over the copy currently

in memory. The working directory is re-set to the root.

4. A. The delimiter is a space (between "/L" and ORDER. 1).
B. The terminator is" l "(the new-line)
C. The switch is "/L" (list to the LPT)
D. The argument is the filename "ORDER. 1 ".

5. The three commands combined on one line are:

; TYPE PROG, COpy MASTER PROD; DELETE PROD 1

The key to this answer is the semicolon command separator which allows multiple commands
on one line. Other combinations are possible.

2-29

6. Combining the three TYPE commands and adding the continuation symbol yield:

.> "; 1/ (::J /: FJ i~ C; E /3 Ci Ci !(:~~: l
~I.:'::- C· i~1 R }:; T l:: !\' ~

Note that the system provides the & continuation symbol.

Remember that MP/OS prompts with an ampersand and right parentheses on the continued
line.

7. Combining three TYPE commands with parentheses yields:

8. Combining the TYPE command with angle brackets produces the following

) TYPE/L TEST.(1 au SR}l

If you are satisfied with your progress then continue with the next segment of Module Two.

A SCORE OF 7 CORRECT OUT OF THE 8 QUESTIONS INDICATES MASTERY LEVEL.
REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN YOU UNDERSTAND
THE CORRECT ANSWER. THEN CONTINUE WITH THE NEXT SEGMENT OF MODULE TWO .

..... :.:.:.:.:.:.: :

2-30

CLI COMMANDS

Abstract

This segment of Module Two covers fifteen basic CLI commands which allow the manipulation of
the directory structure, file management, and system monitoring.

Objectives

Upon completion of this segment, you will be able to:

Given the list of CLI commands below,

1. State the function of each command

2. Use each command to solve an appropriate processing problem.

3. Solve an error situation involving selected commands. The commands covered in this segment
are:

attributes date filestatus time
bye delete mount type
copy directory pathname XEQ
create dismount rename

Directions

1. Listen to the tape for this segment of Module Two.

2. Try the CLI COMMANDS QUIZ

3. Do the CLI COMMANDS Lab Exercise.

. :.:.:.:.:.~

2-31

2-32

@TTO

CLI.PR SPEED.PR CLI.OL CLI.PR FORT4.PR FORT4.LB FORT4.PS

.-. f T
:_-1- .!..

@ = device directory
@DPXO = system master device
@DPXO. root directory for primary diskette
@DPX1 = secondary diskette
@DPX1. = root directory for secondary diskette

Figure 2-5

@TTO

CLI.PR SPEED.PR CLI.OL CLI.PR FORT4.PR FORT4.LB FORT4.PS

) D I PECTOP'r' l YOU TYPE

SYSTEM RESPONDS {
L-______________________________________ ~

DIRECTORY COMMAND - DISPLAYS THE CURRENT WORKING DIRECTORY.

Figure 2-6

2-33

2-34

@TTO

CLI.PR SPEED.PR CLI.OL CLI.PR FORT4.PR FORT4.LB FORT4.PS

YOU TYPE

SYSTEM RESPONDS

,) F I LE:5TH TijS l
DIRECTORY @DPX8:

eLI. PR
eLI.OL
SPEED.PR

FILESTATUS COMMAND - DISPLAY THE STATUS OF FILES

Figure 2-7

@TTO

CLI.PR SPEED.PR CLI.OL CLI.PR FORT4.PR FORT4.LB FORT4.PS

YOU TYPE

SYSTEM RESPONDS {

) =ILE3~~TJS/ASSORTME~Tl
DI.~'ECTO.R/ i~OP:;'8:

)

ei...! PR
CL. i . C)L

PRe; 24-JHN-?9
uLF 24-.JHN-79

FILESTATUS/SWITCH [OPTIONAL PATHNAME]

5:34:13
5:34:13

343134
34816
13312

ASSORTMENT - file's Type, Time & Date of last modification, length in bytes.

Figure 2·8

2·35

2-36

NEW FILE ADDED
TO DIRECTOR Y

RUTGERS CLI.PR SPEED.PR CLI.OL

YOU TYPE .;, CRER TE RUTGERS J
)

CLI.PR FORT4.PR FORT4.LB FORT4.PS

CREATE COMMAND _. CREATE A FILE IN THE CURRENTWORKING DIRECTORY.

Figure 2-9

RUTGERS CLI.PR SPEED.PR CLI.OL

YOU TYPE

SYSTEM RESPONDS {

) F I.,oof13 RUTGE(;:S l
DIRECTOR'/ @OPX[I:

PUTGH:S
)

CLI.PR FORT4.PR FORT4.LB FORT4.PS

TXT l-)f1N-@!:.1 @:"31 : J@

Figure 2-10

2-37

YOU TYPE

DIRECTOR Y FILE ADDED
TO WORKING DIRECTOR Y

eRE/DIR COLLEGESl

CREATE/SWITCH

2-38

/DiR - CREATE A DIRECTORY FILE AS A SUBDIRECTORY OF THE CURRENT WORKING
DIRECTORY.

Figure 2-11

RENAMED FILE

f

YOU TYPE
YOU TYPE

SYSTEM RESPONDS

,:; RENRNE RUTGERS PR I NCETON l
) FI.····SORT l
DIRECTORy' &DP,~';'l1:

)

eLI. OL
CLI. p~:
COL.LEGES
PRINCETON
SPEED.PR

RENAME COMMAND - CHANGE A FILE'S NAME.

Figure 2-12

2-39

YOU TYPE) DELETE.····V PRINCETON l]

{
Delefed PRINCETON

SYSTEM RESPONDS ~_) ____________________________________ __

DELETE COMMAND - REMOVE A FILE.

Figure 2-13

2-40

YOU TYPE
SYSTEM ASKS

YOU TYPE

SYSTEM RESPONDS {

) DELETE. U ·C PRINCETON)
PR I NCETON Z~/ES)
Deleted PRINCETON
.>

~--~

DELETE/SWITCH
N = VERIFY WHEN FILE IS DELETED
/C = CONFIRM THAT FILE IS TO BE DELETED.

Figure 2·14

2·41

CLI.PR

YOU TYPE
YOU TYPE

SYSTEM RESPONDS {

) DIP COLLEGES ~
) D I ~'ECTOP'i"' ~
f~DP.~·}3: COLLEGES
,)

DIRECTORY PATHNAME ARGUMENT

NEW WORKING
DIRECTORY

FORT4.PS

MAKE SPECIFIED PATHNAME THE NEW WORKING DIRECTORY

Figure 2-15

2-42

SYSTEM RESPONDS {

YOU TYPE

) DIR ~

) DIR ~
~DP.\l1 :
,)

Figure 2-16

2-43

YOU TYPE -~) !'1i]tll·~T (i.~DF:,~-:,'l l
SYSTEM RESPONDS -~{';.SND I SK

SYSTEM RESPONDS ,!=l}R'T 4. LB
;=1]RT4. F'l~:

F"iJRT 4./=:.5

NEW WORKING

MOUNT DEVICENAME - MAKE DIRECTORY DEVICE (DISC, DISKETTE)
ACCESSIBLE FOR I/O.

Figure 2-17

2-44

CURRENT WORKING·
DIRECTORY

YOU TYPE {
o R {?Ol:',~\'1::.1: l
Cl .'3tr1{J~}l·;i l.PDF',\' 1 l

~--~

DISMOUNT DEVICENAME - PREPARE DISK OR DISKETTE FOR REMOVAL, BRING IT
OFF-LINE.

Figure 2-18

2-45

YOU TYPE {

2-46

HARVARD

,) Cf;:EATE.···DIR SCHOOLS)
,) 0 I R COLLEGES)
,) CREATE HARVARD)
,)

Figure 2-19

SOURCE FILE r-- DESTINATION FILE
~HARVARD HARVARD.BU", "

YOU TYPE {
,:; COP'!"' HHRVHRD. BU HHRVHRD l
,) T·/PE.···'L HHRIJHRIJ HHRIJHRD. BU l
)

~--~

COPY TOFILE FROMFILE - COPY ONE OR MORE FILES TO A DESTINATION FILE.

TYPE - DISPLAY CONTENTS OF FILE(S).

Figure 2·20

2·47

2

DESTINATION FILE

YOU TYPE {~

SYSTEM DISPLAYS {

2-48

HA\\ HARVARD.BU

SOURCE FILE

-' COP'r' @DPX@: SCHOOLS: HRRVRRD HRRVRRD l
) DIR @DPX@:SCHOOLS ~
) FILESTRTUS)

DIRECTOR'}" @DP.~·::@: SCHOOLS

HRRVRRD

Figure 2-21

HARVARD

YOU TYPE
SYSTEM DISPLAYS

YOU TYPE {

SYSTEM DISPLAYS {

HARVARD HARVARD.BU

,) R TTR I BUTES HARVARD'
HARVARD No attribute protection
,) A HARVARD W R ,
) A HARVARD'
HARVARD R bJ
.>

ATTRIBUTES FILENAME - DISPLAY A FILE'S ATTRIBUTES

ATTRIBUTES FILENAME W R P A - ASSIGN ATTRIBUTES TO FILENAME

Figure 2-22

2-49

2-50

HARVARD

YOU TYPE {

SYSTEM DISPLAYS {

HARVARD HARVAR~BU

,) ATTRIBUTES HARVARD P l
,) ATTRIBUTES HARVARD l
HARVARD P
,)

~---~

Figure 2-23

ROOT DIRECTORY OF THE
SYSTEM MASTER DEVICE

WORKING DIRECTOR Y FOR GRADES.PR

GRADES.PR TEST.PR

YOU TYPE {

YOU TYPE {

) DIR @DPXt1 :SCHOOLS:CLHSSES: STUDENTS l
) .'x.'EP GRRDES. PR l

) DIR :SCHOOLS:CLHSSES:STUDENTSl
.> XEI..~ GRHDES l

Figure 2-24

2-51

2-52

GRADES.PR TEST.PR

YOU TYPE
SYSTEM DISPLAYS

.> F'RTHNRNE STUDENTS l
@DF'X@:SCHOOLS:CLRSSES:STUDENTS
)

PATHNAME FILENAME - DISPLAY A COMPLETE PATHNAME

Figure 2-25

YOU TYPE
SYSTEM RESPONDS

YOU TYPE
SYSTEM RESPONDS

) DATE J
l-...IAN-tl!:l

) TINE J
@: lB:@B

)

DATE - SET OR DISPLAY THE SYSTEM DATE.
TIME -SET OR DISPLAY THE SYSTEM TIME.

Figure 2-26

YOU TYPE -+-. T I 1\1£
Oj~TE YOU TYPE .. l·-.)i . .Jf.J -·79

NOTE THE 24 HOUR CLOCK.

Figure 2-27

)

YOU TYPE -~) BrE I)

SYSTEM DISPLAYS

r Hierron ell T~rmjnafin;;t

S1:Isfem shufdoun
[175433
!D0076?
!

Figure 2-28

2-53

COMMON

I FUNCTION I I COMMAND I ABBREVIATION

ATTRIBUTES AT set or display a file's attributes
BYE BY tenninate CLI. Shutdown system.
COpy CO copy one or more files to a destination
CREATE CRE create file a directory file or non-directory file
DATE DA set or display the current system date
DELETE DEL delete one or more files.
DIRECTORY DIR set or display the current working directory.
DISMOUNT DIS prepare a specified disk for removal.
FILESTATUS Fi list file status infonnation
MOUNT MO make directory device accessible for I/O.
PATHNAME Path display a complete, fully qualified, pathname.
RENAME REN change a file's name.
TIME Ti set or display the current system time.
TYPE Ty . type the contents of one or more files.
XEQ X execute a program.

NOW STOP THE TAPE . ..

. . . AND CHECK YOUR PROGRESS

2-54

CLI COMMANDS

QUIZ

Circle the letter that best answers the question.

1. The entry that displays the length, type, and date of last modification of all files in the work­
ing directory is:

A. ATTRIBUTES ~

B. FILESTATUS ~

C. FILESTATUS/ ALL}

D. Fi/ASt

E. ATT/ALL t

2. The command for erasing the file named OVERTIME from the working directory is:

A. DELETE/DIR OVERTIME t

B. D OVERTIME t

C. DEL OVERTIME t

D. ERASE OVERTIME t

E. EXECUTE OVERTIME}

3. The command for displaying the contents of a source file named GENIUS is:

A. DISPLAY GENIUS ~

B. PRINT GENIUS t

C. TYPE GENIUS ~

D. LIST GENIUS ~

E. TGENIUS}

2-55

4. The command for gracefully shutting down the operating system is:

A. OFF}

B. DOWN}

C. BYE}

D. CRASH}

E. HALT}

5. The command for displaying the current working directory is:

A. CURRENT}

B. WORKING}

C. WORKDIR}

D. DIRECTORY l

E. WHERE}

6. The command sequence for displaying the current system time and date is:

A. T; D }

B. TIME; DATE)

C. TD l

D. WHEN}

E. CLOCK)

2-56

7. The command for bringing the disc device DPDO on-line and accessible for I/O is:

A. DIR @DPDO l

B. ON@DPDO l

C. MOUNT @DPDO l

D. MOUNT DPDO l

E. XEQ @DPDO l

8, The command for changing the name of the file PLANT to TREE is:

A. NAME PLANT TREE l

B. CHANGE PLANT TREE l

C. REN PLANT TREE l

D. RENAME TREE PLANT l

E. MAKE PLANT TREE l

9. The command for adding a new non-directory file named TOWER to the working directory is:

A. ADD TOWER l

B. NEW TOWER l

C. CREATE TOWER l

D. CREATE/DIR TOWER l

E. MOUNT TOWER l

2-57

10. The command for displaying the fully qualified pathname of the file SECRET is:

A. DISPLAY SECRET ~

B. FILE SECRET ~

C. FILENAME SECRET ~

D. PATH SECRET ~

E. Fi/NAME SECRET }

11. The command for making the file BOOPSIE a duplicate of the file LOGON.CLI is:

A. DUP BOOPSIE LOGON.CLI ~

B. DUP LOGON.CLI BOOPSIE ~

C. COPY BOOPSIE LOGON.CLI ~

D. COpy BOOPSIE.BU LOGON.CLI ~

E. COpy LOGON.CLI BOOPSIE ~

12. The following command will tell you whether the file PAYROLL can be deleted from the
working directory:

A. FILESTATUS PAYROLL l

B. Fi/AS PAYROLL l

C. ATTRIB PAYROLL l

D. ATTPAYl

E. ATTRIBUTES l

2-58

13. The command for running the program file BROADCAST is:

A. RUN BROADCAST l

B. X BROADCAST l

C. BROADCAST l

D. DO BROADCAST l

E. XEQ BROAD l

14. The command for taking the secondary diskette DPXl off-line and ready for removal is:

A. RELEASE @DPXl l

B. DELETE @DPXl l

C. REMOVE @DPXl l

D. DISMOUNT @DPXl l

E. DISM DPXl l

Check your answers on the following pages.

2-59

CLI COMMANDS

QUIZ ANSWERS

Answers and comments are as follows: correct selection is circled.

1. The entry that displays the length, type, and date of last modification of all mes in the work­
ing directory is:

A. ATTRIBUTES l
Displays Error message: No Argument Specified.

B. FILESTATUS l
Only lists the filenames and working directory.

C. FILESTATUS/ALL l
~ Incorrect switch
~ Fi/AS l

Appropriate abbreviations.
E. ATT/ALL l

Error on switch and incorrect command.

2. The command for erasing the non-directory me named OVERTIME from the working
directory is:

2-60

A. DELETE/DIR OVERTIME l
Overtime is not a directory me.

B. D OVERTIME l
~ Command is abbreviated too far.
\....SI DEL OVERTIME l

Success!
D. ERASE OVERTIME l

Unknown command or macro will be displayed as an error message.
E. EXECUTE OVERTIME

This attempts to run a program called OVERTIME.PR.

3. The command for displaying the contents of a source file named GENIUS is:

A. DISPLAY GENIUS 1
Error: Unknown command or macro.

B. PRINT GENIUS)
Error: unknown command or macro. CD TYPE GENIUS)
Yup!

D. LIST GENIUS)
No ... error message

E. TGENIUS)
Error: abbreviation not unique.

4. The command for gracefully shutting down the operating system is:

A. OFF)
Error: unknown command or macro

B. DOWN)
Same error as A.

CD BYE)
Successful system shutdown.

D. CRASH)
Error: unknown command or macro.

E. HALT)
Same error as D.

5. The command for displaying the current working directory is:

A. CURRENT)
Error.

B. WORKING)
No.

C. WORKDIR)
No such command.

® DIRECTORYJ
Yup.

E. WHERE)
Error: unknown command or macro.

2-61

6. The command sequence for displaying the current system time and date is:

A. T;Dl
Error: abbreviation not unique.

CD TIME; DATEl
This will do it.

C. TDJ
Error: unknown command or macro.

D. WHENJ
Not unless you create a macro to do it.

E. CLOCKJ
Same error as C.

7. The command for bringing the disc device DPDO on-line and ready for I/O is:

A. DIR@DPDO:J
No, this changes the working directory.

B. ON@DPDOJ
Error: Unknown command or macro.

® MOUNT @DPDOJ
This does it.

D. MOUNT DPDO l
Close, but you need the "@" prefix.

E. XEQ @DPDO l
No, error.

8. The command for changing the name of the file PLANT to TREE is:

2-62

A. NAME PLANT TREE ~
Error: unknown command or macro.

B. CHANGE PLANT TREE)
Same error as A.

® REN PLANT TREEJ
This is the one.

D. RENAMETREEPLANTl
Reverse order, Error: file does not exist.

E. MAKE PLANT TREE l
Error same as A.

9. The command for adding a new fIle named TOWER to the working directory is:

A. ADD TOWER)
Error: unknown command or macro.

B. NEW TOWER)
Same asA. CD CREATE TOWERl
Yes, TOWER gets 0 length.

D. CREATE/DIR TOWERl
This works, but makes TOWER a fIle of type "directory".

E. MOUNT TOWERl
Error: argument not a directory device.

10. The command for displaying the fully qualified pathname of the fIle SECRET is:

A. DISPLAY SECRET)
Error: unknown command or macro.

B. FILE SECRET)
No, this displays the presence of a file named SECRET in the working directory
by showing only its filename.

C. FILENAME SECRET 1
Same as B. ® PATH SECRET)
Yes, displays the fully qualified pathname.

E. Fi/NAME SECRET 1
Error: unknown switch.

11. The command for making the fIle BOOPSIE a duplicate of the fIle LOGON.CLI is:

A. DUP BOOPSIE LOGON.eLI J
Error: unknown command or macro.

B. DUP LOGON.CLI BOOPSIEl
Same asA. CD COpy BOOPSIE LOGON.CLI J
This will do it. Note the reverse direction of the copy.

D. COpy BOOPSIE.BU LOGON.CLI J
This works, but not to the fIlename we requested in the question.

E. COpy LOGON.CLI BOOPSIEl
Error: fIle does not exist (BOOPSIE)

2-63

2-64

12. The following command will tell you whether the file PAYROLL can be deleted from the
working directory:

A. FILESTATUS PAYROLU
Displays only whether PAYROLL exists in the working directory by printing the
filename.

B. Fi! AS PAYROLL l
No. Displays the length, type, etc. of PAYROLL, but not its permanence
attribute. ® ATTRIBPAYROLLJ
Yes. Displays the attributes for PAYROLL.

D. ATTPAYJ
No. Error: file does not exist; filename is too short.

E. ATTRIBUTES J
Error: command requires arguments.

13. The command for running the program file BROADCAST is:

A. RUN BROADCASTJ
Error: unknown command or macro. o X BROADCAST l
Got it.

C. BROADCAST l
Error: unknown command or macro.

D. DO BROADCAST J
Same error as A.

E. XEQ BROAD l
Error: file does not exist.

14. The command for taking the secondary diskette DPXl off-line and ready for removal is:

A. RELEASE @DPXll
Error: unknown command or macro.

B. DELETE @DPXll
No, delete expects a filename.

C. REMOVE @DPXlJ
Same error as A.

CE) DISMOUNT@DPX1)
This will do it.

E. DISM DPXll
Close, but the device name requires the "@" prefix.

A SCORE OF 12 CORRECT QUESTIONS OUT OF THE 14 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE SUTDENT GUIDE.

. : ..• :.:.: ..• :

2-65

Now prepare your system for the lab session.

First, your computer system must be powered up, loaded, and on-line. Step-by-step instructions for
doing so are provided in Appendix A of this course. When your system is ready to boot then
continue with the next step.

Second, your operating system must be read into memory. Step-by-step instructions for doing so
are provided in Appendix A of this Course. When your system is ready for execution then begin
the lab exercise on the next page. The lab exercise assumes that you are up and running .

...••.. :-.-: ...•

2-66

CLI COMMANDS

LAB EXERCISE

Abstract

In this exercise you will use the CLI commands for managing files, monitoring the system, and
manipulating the system environment.

Directions

This exercise is designed for use with or without a functioning computer system. For maximum
benefit follow the steps below. Failure to do so diminishes the value of the exercise. Take your
time, keep your head down, and follow through.

1. Cover the "screen" answer we have provided. Answers are separated by a line of asterisks.

2. Read the operation you are to perform.

3. If necessary, reference the CLI command or command sequence in the appropriate docu­
mentation. References include this course and the MP/OS Utilities Reference Manual
093-400002

4. Write down the appropriate command and anticipated response in the space provided. Be
sure to use the complete answer. Be precise and specific.

5. Check your response with the correct answer(s) following the blank screen, only after you
have filled in your response.

6. If your response is accurate, then continue with the next step. If not, try to figure out the
source of your error and make the adjustment.

7. /fyou have a computer, enter the command sequence and re-check your results. Use the
console control characters and sequences as necessary. Note that most CLI errors are caused
by incorrect typing. Fear not: your MP/OS is a stable, mature product. It will not go away
if you misspell a word. MP/OS will issue an error message if it cannot handle your entry. Just
use the error message to diagnose the problem and make the correction.

2-67

I COVER THE ANSWER I
1. Write the command for determining the working directory. Show the system's response.

**

.:-. DIR J
{PDPDB:

The DIRECTORY command displays the current working directory.

Do it on your system.

Several Notes:

2-68

(1) We use the down-arrow symbol (l) to indicate a new line. In reality, this is not echoed
on your terminal.

(2) We use the 10 MB disc as the system master device (DPDO). If your system master
device is a diskette, substitute DPXO for the fllename where required. If it is a 12. MB,
use DPHO. The following table outlines the mass storage (disc) devices currently
available with MP/OS.

MASS STORAGE DEVICE CHARACTERISTICS CURRENTLY AVAILABLE WITH MP/OS:

-----------r----------------,-----------f-----------------
I I I
I I I

MODEL I Fixed I I
I Disk I 6095 I 6038/9
I D" I I I nve I I

NAME II DPHO I DPDO I DPXO, DPXl
I I

-----------~----------------r-----------r-----------------

Capacity/ I 12 Mb I 10 Mb I 315 Kb, 630 Kb
Unit I I I bytes
___________ L ________________ ~-----------~-------------___ _

I I I
Surfaces/ I 2 I 4 I 1
U "t I I I m I I I
-----------~----------------r-----------r-----------------
Heads/ II 2 I 1 I 1

I I
Surface I I I

I I I ----------1-----------------,-----------1------------------
Tracks/ I 192 I 408 I 77
H~ II I I

I I
----------~-----------------r----------I------------------

Sectors/ I 32 I 12 I 8
Track II I I

I I
----------~-----------------~----------~------------------
Bytes/ I 512 I 512 I 512
Sector II I I

I I
----------~----------------~~----------~------------------I I I
Rotational I 49.4 rev/sec I 80 rev/sec I 6 rev/sec

I I I
Speed I I I __________ J ________________ ~ ___________ ~ _________________ _

2-69

2. Detennine the files in your working directory. Show the system's response. (This could be
lengthy so briefly summarize the anticipated response):

**

2-70

) FILESTHTUS l
D I PECTOP'r' IlDPDtl;

CLI.PP
CL I. OL
I'1HSN. PP
/i!HS'/"'1,\'J;.' . F'R
SPEED.PP
EJ;.:{'IJ=:S'
B I /\/[1 . F'~'
BINO.ClL
N!~SN. PS
tal.S·L .. L8
FOFT4.F'P
FOj;:T4. LB
FORT4.F'S
DOC:UNENTS
DISKSTUFF
F' ::: Ci 1..; I~' C: J=:3
?NSG
?SMHF'_i

The FILESTA TUS command displays the files in the working directory.

Do it on your system.

Your system may show several different files. Note the repetition of the directory.

3. Write the command to create a directory file called PRACTISE. Show the system's response:

**

CREATE/DIR PRACTISE)

CREATE sets up a disc file.

Now do it on your system.

Remember to use the /DIR switch on the CREATE command to specify the directory file type.

A simplified illustration of your file structure would look like:

Recall our convention of ovaIling directory files and underlining non-directory files. We did not
elaborate on the files loaded with your system.

2-71

4. Make PRACTISE your working directory. Show the system's response:

**

DIP PRACTISE 1

The DIRECTORY command with an argument makes the specified file the working directory.
Obviously the file must be a directory file.

Do it on your system.

If you type PRACTISE incorrectly, the system will tell you that the file does not exist. No harm is
done, just try again. Remember to space between DIR and PRACTISE or else the system will tell
you that DIRPRACTISE does not exist as a command or macro. Keep trying until you get it right.

2-72

5. Detennine the working directory. Show the full pathname that the system provides:

**

,) DIl~:~
@DPDt1 ; PRHC T I SE
)

Do it on your system.

Note that the system provides the full pathname starting from the root directory (in this case
@DPDO:). As you recall, this does not alter the file structure.

2-73

6. Now create a file called ZORP in the PRACTISE directory. Write the command and
anticipated response:

C~'fH TE ZORP l
)

Now do it on your system.

Since no switches are appended to the CREATE command, ZORP will be a text type file with a
length of zero.

The file structure looks like this (we left off the files loaded with your system).

ZORP

2-74

7. Detennine the working directory and its contents with one command. Show the system's
response:

**

) FILESTATUS/ASSORTNENTJ
DIRECTORY @DPD8:PRACTISE

zopp
,)

Do it on your system

1-...IAN-B8 g: fi9: 58

FILESTATUS could be shortened to FI/AS. The infonnation accompanying the ZORP file is
file type (TXT), date and time of last modification, and length in bytes.

Note that the PRACTISE directory only displays the files in its list. PRACTISE has no "know­
ledge" of other files in the system. You cannot "see" the other files in the system from PRACTISE

2-75

8. Assign read-protect and write-protect attributes to ZORP. Check the success of the opera­
tion. Show the system's response:

**

) RTiF.'IB!..ITE.S ZiJRFt ;;.: /',j l
) H TTR I BUTES ZORP ~

Zi]F,.;F' F..l /,4
)

The ATTRIBUTES command sets and displays the attributes of a specified file.

Now enter the command on your system.

The ATTRIBUTES command may be shortened to "A". You need only specify the simple filename
ZORP and not specify the entire pathname, because the working directory contains ZORP.

2-76

9. Change the name of ZORP to TEST. Show the system's response:

**

) RENANE ZORP TEST l
)

The RENAME command changes the name of a fIle as specified.

Now do it on your system.

The old fIlename is specified first. The new fIlename is specified second. If the new fIlename is
already in use, you may get:

.> l:{Ef1RlrlE Z.Clr~,o TE:3 T l
Error:file alread~ exists
!~tE,:".fJ:::;i~tE., C!DPDl;:.l: Pl"?HC:T I.SE: TES'T

Try another fIlename or use the "/0" switch, as shown in the following illustration.

2-77

REN~NE/O ZORP TESTl

The "/D" switch deletes the original version of TEST and replaces it with the data and name from
ZORP.

The file structure is now:

TEST

You will note that the only difference is that the filename TEST has replaced ZORP in the
directory.

2-78

10. Verify the success of the rename operation from question 9:

**

) FI/HS l
DIRECTORY @DPDB:PRHCTISE

TEST l-...IRN-t1t1 @:@2:03

Do it on your system.

You can use the generalized FILESTATUS command or you can specify a filename argument with
the command:

,) F I/RS TEST l
DIRECTORY @DP09:PRRCTISE

TEST l-...IRN-ftt1 f;,i
)

This becomes very useful when the file structure expands.

2-79

11. Make a duplicate copy of TEST in the same directory. Use TEST.2 as the filename for the
second copy. Write the commands:

COPY duplicates the specified file.

) COP'y' TEST. 2 TEST J
)

Now do it on your system.

Note that the destination fIle is specified first and the sending fIle is second. Simple fIlenames
suffice for copies within the same directory.

The fIle structure is now:

TEST TEST.2

The contents, type, and length of TEST and TEST.2 should be identical.

2-80

12. Verify the copy operation. Show the system's response:

**

) FI ~tB/SORi l
DIRECiORY @OPDt1:PRACiISE

)

iESi
iES·i.2 T"T . ,., ,

l- . ..I.HN-tlt1
l-.../RN-tltl

/,]:/,]2:/,]3
/.] : 14 : ~J6

The "/ASSORTMENT" switch displays the file's type, modification times, and byte lengths.

The "/SORT" switch lists the filenames in alphabetical order.

The command line may be shortened to PI/AS/S.

Note that TEST and TEST.2 are identical in type and length. Their contents (currently empty)
are exactly the same.

2-81

13. Create another directory, within the working directory, called FLOOR. Verify the operation's
success. Show all commands and responses below:

**

) CREATE,··DIR FLOOR l
) Fl tiSl
DIRECTORY IDPD8:PRACTISE

TEST. 2 TXT
TEST TXT
FLOOR DIR

,)

Now do it on your system.

1-..IAN-lt.l0 @: 14:@6 1:,1
1-..IAN-1t.1@ 0:02:03 1t.1
l-...IAN-OO 1:,1:15:11 @

Notice the DIR type assigned to FLOOR. Also, since we did not specifically set the time and
date parameters, we are still operating with the default settings of the year 1900 and the time as
just after midnight.

2-82

14. Make FLOOR the working directory. Verify the success of the operation:

**

) OIR FLOOR l
) DIR l
@DPD@:PRRCTISE:FLOOR

You can now add fIles to the FLOOR directory with simple fIlenames.

2-83

15. Draw a diagram of the file structure. Include only the system directory and the files you
have created in this session. Circle the directories and underline the files. Double circle the
working directory.

TEST TEST.2 8

2-84

16. Create a non-directory file named BOTTOM in the working directory. Verify the success of
the operation:

**

,) CREATE BOTTON)
,) FILE8TATUB)
DIRECTORY @DPD8:PRACTISE;FLOOR

BOTTON
)

CREATE opens and names a file in the working directory (by default).

Now do it on your system.

Your file structure would now look like this:

BOTTOM

Note the addition of BOTTOM to the FLOOR directory.

2-85

17. Detennine the fully qualified pathname to "BOTTOM". Show the commands and responses:

**

) PHTHNHNE BOTTON l
@DPD0'PRHCTISE:FLOOR:BOTTOM
)

PATHNAME displays the fully qualified pathname of the specified file.

The simple fIlename suffices here. If you try to use a partial pathname as the argument, you get:

) PHTHNHNE : BOTTON l
Error: File does nof exisf
PHTHNHI'1E .. : BOTTON
)

No hann is done. Just try again.

2-86

18. This is new. By appending the /1 switch to the CREATE command, you can create a new
file and insert text into it. The /1 switch says that text will be inserted through @TTI the
system console. An example follows:

YOU COMMAND

CLI DOUBLE {
PROMPTS

LAST LINE

) CRER TE.···· I TOPS l
))EHRL 'r' TO BED HND ERRL i" TO R [SE :.:·f-.!Ei,j L INf.>

.>)HERL TH'r' bJEHL TH'/"' HND bJ [Sf ': {,EM LINE'>

Note that CLI prompts with a double right parenthesis during the insertion sequence. Each line
of text is terminated by a NEW-LINE character. The last line of the inserted text is signalled by
a single right parenthesis followed by a NEW-LINE.

Enter the text illustrated above into the TOPS me. Watch your spacing and follow the rules
carefully.

2-87

19. Verify the success of the TOPS operation. Show the command and briefly describe the
anticipated result:

) T'r'PE TOPS l
EARLY TO BED AND EARLY TO RISE
!'ilf~/(£.S' PI 1'11::';-4
HEAL TH'/ MEAL THY AND l.J I SE

,)

The TYPE command displays the contents of the specified file.

Now do it on your system.

Use TYPE/L to get a hard copy printout of the file. The FILESTATUS command (FI/ AS) would
show how many bytes TOPS had covered. The file structure is now:

BOTTOM TOPS

The CREATE/I sequence operates in the working directory.

2-88

20. Make a duplicate copy of TOPS in the parent directory PRACTISE. Name the new
copy NEWFILE . Show the command(s) and responses:

**

,) COP'/", : PRHCT 1SE: NEt·IF ILE TOPS J
)

Enter the command on your system.

The destination me is specified first and the source me second. This destination requires the full
pathname. The me structure is now:

TOPS COPIED
TONEWFILE TOPS

Notice how":" was substituted for@DPDO: This is possible because @DPDO: is the root directory
of the system master device.

2-89

21. Now make PRACTISE the working directory and verify that NEWFILE is a duplicate
of TOPS . Show the commands and responses:

**

,) DIR A JI
) n'PE NEt.JF I LE l
EARLY TO BED AND EARLY TO RISE
NAkES A NAN
HEAL TH~·' l.JEAL THY' AND bilSE

)

DIR 1\ makes the parent directory the working directory.

Now do it on your system.

There are various ways of accomplishing this operation. You could put both commands on one
line:

DIRI\; TYPE NEWFILE l
or you could skip changing the working directory and use the full pathname as:

TYPE @DPDO:PRACTISE:NEWFILE J
or the shorter version:

TYPE :PRACTISE:NEWFILE l "

2-90

22. Make the system directory your working directory. Specify three commands to accomplish
this. You are now in the PRACTISE directory.

l. _________________________ _

2. ___________________________ ___

3. ________________________ ___

1. o I};,: .'\

)

2.) DIP @DPDfj: l
:;

3. "i DIP ""

-'

Perform the operation on your system.

Note that the third option allows you to specify a colon as an abbreviated pathname for@DPDO:.
This option is available only on the system's master device.

2-91

23. Draw the file structure in the box provided. Indicate your current position in the file structure
with a double circle. In.clude only the files you created in this lab.

**

TEST

2-92

NOW THE WORKING
"'--- DIRECTORY

BOTTOM TOPS

24. Delete the PRACTISE directory, files, and sub-directory. @DPDO: is your working
directory. Verify your deletions:

**

) DELEiE.···DIR.····V.····C : PRRCT [SE: FLOOR
:PRRCTISE:FLOOR ?~"ES l
Deleted :PRRCTISE;FLOOR
) DIR ; l
,:; DELETE.·· .. D I R .. ···V.····C : PJ?HC T I SE l
: P~:RCTJSE ?TES l
Deleted :PRRCTISE

The first delete removes the FLOOR directory and files. The second delete erases the PRACTISE
directory and files.

Now perform the operation on your system.

If you specify a directory it will only be deleted if it is empty, unless you use the IDIR switch. If
you use the IDIR switch, the subtree (if any) of the specified directory will be deleted.

The IV switch directs the system to verify the deletions. We also used the IC switch to check or
confirm our desired deletion.

2-93

25. Check the system's date. Then re-assign it to May 6, 1979. Verify the re-assignment.

**

) DATE l
1-.../AN-Btl

,) DATE 6-NAi·'-79 l
) DATE 1

6-NM·'-79

DATE sets or displays the current system date.
TIME sets or displays the current system time.

Now do it on your system.

Note the proper sequence for entering the date parameters: dd-MMM-YY.

The date parameter defaults to I-JAN-OO each time CLI is refreshed. A refresh occurs after system
panics (attempts to POP from level 0) and system initialization.

2-94

26. Check the system time. Re-set it to 12 :45 P. M. Verify the success of the operation.

**

.> TIME 1
8:25:35

.> TINE 12: 4.5: tltl
,) TINE 1
12:45:f13

)

Now perform the operation on your system.

Time is a cumulative quantity. The system time shown here indicates that twenty-five minutes
have passed since the system was booted into operation.

If you do not re-set the system time, it will revert to 0:00:00 with each boot or initialization.

2-95

27. Determine the revision number of eLI. Show the system's response.

**

) REUIBION CLI.PR 1
EH:l.01

The REVISION command displays the rev number of the specified file.

Your eLI should show a different rev number. Remember that the "Revision" command works
only on executable files.

2-96

28. Tenninate your session on the system. Show the system's response.

**

:., 8'/E l
MP/OS eLI Termin

8 '-:IS tem shu tdo(.m
875424

The BYE command safely shuts down the system.

Now do it on your system.

If you have a Dasher hard-copy tenninal, the system will display the truncated message. The Dasher
CRT will display the full message. The console debug is indicated by the "!" prompt.

2-97

2-98

YOUR NEXT STEP
IS TO LEARN
HOW TO USE CLI
MACROS WHICH
BEGIN ON THE
NEXT PAGE ...

CLIMACROS

Abstract

This segment of Module Two describes the procedures for creating and executing CLI Macro files.

Objectives

Upon completion of this segment you will be able to:

1. State the purpose of CLI macro files.

2. Write, enter, and execute CLI macros to solve a processing problem.

3. Given a CLI macro error situation,
a) diagnose the error;
b) reference the solution;
c) write the solution.

Directions

1. Turn to figure 2-29 on the next page of this Guide.

2. Listen to the tape for this segment of Module Two.

3. Try the CLI Macros Quiz.

4. Work the CLI Macros Lab exercise.

2-99

2-100

YOU TYPE -r. CREHTE.,··I CRUNCH. CL I l
SYSTEM -~)

RESPONDS

YOU TYPE

Figure 2-29

CP.:EHTE.····I CF::UNCH.CLI .
MOD_ONEIMOO_TWDIB~CKUP.1,B~CKUP.2 .

-'

Figure 2-30

TYPE/L [CRUNCH.CLI] l

T·r'PE.· .. L CRUNCH. CL I l

CLI MACRO FILES & BRACKETS

Figure 2-31

.> C·REATE.····,[5:J::H(~~'t_O,./E 1
») TfilS IS' THE BARR'/_DNE FILE,)
,) C{(EATED FOF,' THE . CL I t'1ACPO TEST)

.:: '...-:,1(£ I BH,'~:R)·J_ TUei' 1
» TlilS IS THE BAFU~:'r'_TUO FILE ,)
,)) LINE TWO OF SAPRY_TWO)
),) LR:;,~T 1),C" BHI';!F.."rt

_ Tt:}!..: 1
.> ,) ,) ,1
'. .. '

Figure 2-32

) CREATE/I SARPY. 1)
») THIS IS THE BARR)". 1 FILE)
» ??????????????????????????????????)
» »»»»»»»}»»}}>}}}»}»»»»»»}>}»)
.).) .'.' 0 0' .' .' 0' ., .' of of .' .1 " .' .' .' " " .1 .f .f .' " " " " 0' " .J .' .' .1 ,t 1
.> -' LAST LINE OF BARRY. 1)
))))
,)

) CRE/I &ARRY.2)
» THIS IS THE BARRY.2 FILE)
» @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
).> :2222;;:'t~'2;22222~:22222222222222222~'22 1
.>,; 44444444444444444444444444)
» LAST OF BARRY.2)
.>.» 1

Figure 2-33

2-101

2-102

C:F?Ei;' TE.·'·· I TES'T. C'L I l
BARRV_ONE,BARRV_TWO,BARRV,l,BARRY,2:J

) l

YOU TYPE
SYSTEM RESPONSES

YOU TYPE
SYSTEM RESPONSES

Figure 2-34

,) T'/F'E TEE:T. C:L I l
BARR '(_ON£" BAF.:F;:)"_ Tf..JI]" BAf;:R 'j", 1 " BARR)" , 2

.> T'iT'E [TEST eLI] l
THIS IS THE BARRY_ONE FILE
CREATED FOR THE .CLI MAC~O TEST
LAST LINE

THIS IS THE BARRY_TWO FILE
LINE TWO OF BARRY_TWO
LAST OF BARRY_TWO

THIS IS THE BARRY.1 FILE
????1???????1?????????1???????
»»»»»»»»»»»»»»»»»
,
LAST LINE OF BARRY.l

THIS IS BARRY.~ FILE
~@@@@@@@@@@@@@@@@@@~@@@@@@@@@@@

2222222222222?~22?22222?222
444444444444444444444
LAST OF BARRY.?

Figure 2-35

1. ,:; T'r'PE CRUNCH
2. C~'UNCH Error: File does not exist
3.)

Figure 2-36

----~~------~
.> CGP'i"' FILE .. :"; FILE.l FILE.2 FILE.J l
) DELETE FILE.l FILE.2 FILE.J l
.I TYPE.···L FILE. ,:"(,' l

Figure 2-37

YOU WANT TO
BUILD A MACRO --+-.> CJ;:ERTE/I ENDING. CL I 1

FILLUPTHE{ »COP'y' FILE.::.;' FILE.l FILE.2 FILE.J l
FILE »DELETE FILE.l FILE.2 FILE.Jl

))T·r'PE.···"L FILE. X·l
ENDTHE-~)) 1

INSERTION .:;

EXECUTE THE -> fENDING:J 1
MACRO .>

Figure 2-38

2-103

BUILD~~~[
MACRO FILE

EXECUTE
MACRO

EXECUTE MACRO

SAMPLE IS TYPED {

SAMPLE DELETED

2-104

CREATE/I SAMPLE.CLI)
) i'/F'E .~~·1 .~~. l,·

.»)
L-__ ~

,) s'{~ l~lJ':: L E S~RK~F..I /_ tJl··/E 1
Tf~/I:3 ;:3 Tll'E B;!R/~"(_,Jl~E r=ILE
CRE~TED FOR THE .eLI MACRO

Figure 2-39

.> [S'1~!n1FILE BHl\rF..f~/_tJf·4E]).

Ti::-CT
1 1- "_I J

THIS IS THE B~RRY_ONE FILE
CREATED FOR THE .CLI MACRO TEST
, ."', :-• .,... ,f ,. 1. rr-
l..-H·:' j I_..l ;-,r::.

.. '

[IELETE ~.' of c,,'
.'. J. .".

Figure 2-40

BUILD THE [
MACRO FILE

EXECUTE THE
MACRO FILE

.I CREHiE I 8WliCH CL I)

.>)RENHNE .~~ 1.{· TENP)
,))RENHNE .~~'2.~~' .{·1.~~·)

))RENHNE iENP .~~'2.~-:)

,)

SWITCH ~PPLES ORANGES)

Figure 2-41

2-105

TOPICS

• MACROS
• .ClI EXTENSION

• CREATE!I
• EXECUTION

"-

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 2-42

2-106

CLIMACROS

QUIZ

Circle the letter(s) of the correct answer(s) to the following questions. Note that a question may
have more than one correct answer.

I. The command line for creating a macro named QUIZ is:

A. CLI QUIZ 1

B. CLI/I QUIZ.CLI 1

C. CRE/I QUIZ.CLI 1

D. CREATE QUIZ 1

2. The command line for executing a macro me named QUIZ.CLI is:

A. QUIZ 1

B. CLI QUIZ 1

C. [QUIZ] 1

D. [QUIZ.CLI] 1

3. The command line for displaying the contents of the macro me QUIZ.CLI is:

A. TYPE QUIZ 1

B. TYPE QUIZ.CLI 1

C. [TYPE QUIZ.CLI] 1

D. [TYPE QUIZ] 1

2-107

4. Given the following macro me sequence, what will be the result:

) CREATE/I HOWS.CLI }
» FILESTATUS %1% }
» ATTRIBUTES %1% l
» PATHNAME%I% l
») }

) HOWS R l

A. The me "HOWS.CLI" is given the 'R' attribute.

B. The FILESTATUS, ATTRIBUTES, and fully qualified PATHNAME of the
me "HOWS" are displayed.

C. The FILESTATUS, ATTRIBUTES, and PATHNAME of "HOWS.CLI" are
displayed.

D. The FILESTATUS, ATTRIBUTES, and PATHNAME of the me "R" are displayed.

5. Given the following sequence, what is the result:

2-108

) CREATE/I RUN.CLI }
» XEQ MASM %1% l
» XEQ BIND %1% MSL.LB l
»XEQ %1% l
») l
) RUN PROGASM l

A. "PROGASM" is assembled, bound, and executed.

B. "RUN.CLI" is assembled, bound, and executed.

C. "RUN" is assembled, bound, and executed.

D. "MSL.LB" is assembled, bound, and executed.

6. Given the following sequence, what is the result:

) CREATE/I KILL.CLI)
)) ATTRIBUTES %1%)
)) ATTRIBUTES %1% P)
)) DELETE %1%)
))))
) KILL QUIZ.CLI)

A. "QUIZ.CLI" is deleted.

B. "KILL.CLI" is deleted.

C. "QUIZ.CLI""is not deleted.

D. "KILL.CLI" is not deleted.

7. Given the following sequence, what is the result:

) CREATE/I ERASE.CLI)
)) ATTRIBUTES %1 % W)
)) DELETE %1%)
)) FILESTATUS/AS %1%)
))))
) ERASE ERASE.CLI)

A. "ERASE.CLI" is deleted.

B. "ERASE.CLI" is not deleted.

C. "1" is deleted.

D. "1" is not deleted.

CHECK YOUR ANSWERS ON
THE FOLLOWING PAGES.

2-109

CLIMACROS

QUIZ ANSWERS

1. The command line for creating a macro named QUIZ is:

A. CLI QUIZ l
The system displays the error message: Error: unknown command or macro.

B. CLI/I QUIZ.CLI l
Same asA.

® CRE/I QUIZ.CLI l
Yes. This will work. The system responds with a double prompt "))".

D. CREATE QUIZ l
This creates a file named Quiz, but not a macro file.

2. The command line for executing a macro file named QUIZ.CLI is:

CD QUIZ l
Yes, this works. It is not necessary to specify the entire name.

B. CLIQUIZ l
Error: unknown command or macro.

® [QUIZ] l
Yes, this works also.

® [QUIZ.CLI] l
Yes, this works.

3. The command line for displaying the contents of the macro file QUIZ.CLI is:

2-110

A. TYPE QUIZ l
No. The system will display the error message: "Error: file does not exist." CD TYPE QUIZ.CLI l
Yes. The complete filename is necessary here.

® [TYPE QUIZ.CLI] l
Yes, this works.

D. [TYPE QUIZ] l
No, same as A.

4. Given the following macro me sequence, what will be the result:

A.

B.

C.

) CREATE/I HOWS.CLI l
» FILESTATUS %1% l
» ATTRIBUTES %1% J
» PATHNAME %1% l
») l
) HOWS R l

The me "HOWS.CLI" is given the "R" attribute.
No. "R" is a mename in this case.

The FILESTATUS, ATTRIBUTES, and fully qualified PATHNAME of the me
"HOWS" are displayed.

No, in this case "HOWS" is the macro command.
The FILESTATUS, ATTRIBUTES, and PATHNAME of "HOWS.CLI" are displayed

No.
The FILESTATUS, ATTRIBUTES, and PATHNAME of the file "R" are displayed.

Yes. "R" replaces the dummy argument %1%. "R", of course, must exist as a
file in the working directory.

5. Given the following sequence, what is the result:

) CREATE!I RUN.CLI l
» XEQ MASM %1% l
» XEQ BIND %1% MSL.LB l
»XEQ %1% l
»)) l
) RUN PROGASM l

o "PROGASM" is assembled, bound, and executed.
Yes, MASM is the Macroassembler, BIND is the binder. This macro may be
useful for your development work.

B. "RUN.CLI" is assembled, bound, and executed.
No, RUN.CLI is not specified as the dummy argument.

C. "RUN" is assembled, bound, and executed.
No, see B.

D. "MSL.LB" is assembled, bound, and executed.
No, this is the Macroassembler library used in assembly.

2-111

6. Given the following sequence, what is the result:

A.

B.

CD
®

) CREATE/I KILL.CLI)
)) ATTRIBUTES %1%)
)) ATTRIBUTES %1% P)
)) DELETE %1%)
))))
) KILL QUIZ.CLI l

"QUIZ.CLI" is deleted.
No, the pennanent attribute prevents deletion.

"KILL.CLI" is deleted.
No, this is not specified as the argument.

"QUIZ.CLI" is not deleted.
Yes, see A.

"KILL.CLI" is not deleted.
This is true, although indirectly.

7. Given the following sequence, what is the result:

2-112

B.

C.

) CREA TE/I ERASE.CLI l
)) ATTRIBUTES %1% W l
))DELETE%I% l
)) FILESTATUS/AS %1% l
))) l
) ERASE ERASE.CLI l

"ERASE.CLI" is deleted.
Yes, "ERASE.CLI" replaces the dummy argument and is deleted.

"ERASE.CLI" is not deleted.
No. The "W" attribute does not prevent deletion of the file.

"1" is deleted.
No. "1" indicates the position of the argument. That is, the first argument in
the command line substitutes for the %1%.

"1" is not deleted.
"1" is not specified as the filename argument.

A SCORE OF 6 CORRECT ANSWERS OUT OF THE 7 QUESTIONS
INDICATES MASTERY LEVEL. REVIEW THE QUESTIONS YOU
MAY HAVE MISSED. BE CERTAIN THAT YOU UNDERSTAND
THE CORRECT ANSWERS. THEN CONTINUE WITH THE NEXT
SEGMENT IN THE STUDENT GUIDE.

CLIMACROS

LAB EXERCISE

Abstract

In this exercise you will use the CLI commands in macro format.

Directions

This exercise is similar to the previous one. Follow the same step-by-step procedure. Remember:
if you have an MP/l 00, MP/200 or microNOVA, use it to perform this lab exercise.

Briefly:

1. Cover the answers.
2. Read the required operation.
3. Write down the command or answer.
4. Uncover the answer and compare it to yours.
5. Perform the operation on your system.
6. Check the system response.

Again, we assume that your system is up and running. If not, perform the system boot. Follow
the procedure detailed in Appendix A.

Your system should display the CLI initial message and prompt:

.--

"-',J r
' ,_ J.

Your revision number may be different.
. :.:.:.;.:.:.:.: ..

2-113

1. Create a text file called ENIAC with the following:
"Today's minicomputer,
at a cost of $300,
has more computing
capacity than the ENIAC".

Write in the commands and anticipated response:

) CRE~TE/I ENIRC
»TODAY/S MINICOMPUTERJ (NEW LINE)
))AT A COST OF 1388 <NEW LINE'>
)HAS NORE CONFUTING <NEW LINE>
.>)C~P~CIT')" THHN THE ENIHC. <NEW LINE>
).>.> (NEf..J L INf.>
,:;

CREATE/I allows you to input text from your console and create a new file.

Now do it on your system.

Note: remember to terminate each line of text with a New-line or line feed (depending on your
terminal).

2-114

2. Build a macro file that will (1) make a copy of your original file, (2) type the original, and
(3) delete the original. Name the macro file TICKLER. Write the sequence here:

) l-:i~EATE./l TIt-:l(LElx.i:LI
))COP 'r' .~'2.~~· .'!;·1.~;; <" l'/EW LINE'>
»)T'r'PE .~d·~;;(NEW LINE)
))DELETE .~d .~;; (NEW L I HE)
))) <: NEId LINE'>
) l

Do it on your system.

Note: the macro file must have the .CLI extension to be recognized as a macro.

2-115

3. Now use the TICKLER macro file to backup, type, and delete ENIAC. Name the backup file
ENIAC.BU. Show the command and system response:

) TICKLER ENIAC ENIAC.BU
TODAY'S MINICOMPUTER.
AT A COST OF $300
HAS MORE COMPUTING
CAPACITY THAN THE ENIAC.

" .. '

Now enter the sequence on your system.

Note that ENIAC replaces the dummy argument %1% and ENIAC.BU replaces %2%. You can use
the square brackets or leave them off.

2-116

4. Create a macro file named PICKLE that will (I) make two disc copies of your original, (2)
print both copies on the line printer, (3) delete the original and (4) verify the deletion. Write
the complete sequence here:

,) l:;it£ATE.···· I l:' I Cf~·LE . C:L I 'l·
»COpy (~2~ ~3~) ~l~{NEW LINE)
)) T'r'PE./L <" .~:2.'!.;,· .~~'.'3.~~.) < "'IEt~ L I ,kiE.>
»DELETE/U ~l~<NEU LINE)
,
.-'

Do it on your system.

Note the use of parenthesis in the command lines. This eliminates the necessity of typing additional
command lines.

2-117

5. Use PICKLE.CLI to make two copies of ENIAC.BU. Name the copies ENIAC.1 and ENIAC.2.
Type both copies on the line printer. Delete the original and verify the deletion. Show the
system's response:

) PICKLE ENI~C.8U ENIAC.(l 2)1
DELETED EN I He. au 1

Try it on your system.

Note that dummy argument %1% is replaced by ENIAC.BU, %2% by ENIAC.1 and %3% by
ENIAC.2. The angle brackets ease coding. The square brackets are not essential.

2-118

6. In this question we reverse the tables. Given the macro file below:

) CREATE 1 FINAL.eLI l
)) T'rrpE .~~.[t~~~. (" f4El"J LINE,>
)) T1,.'PE .~~·1.~~· <" ,t~EJ;J L I t·/E)
»DELETE/U ~l~{NEw LINE}
.;) TtrtFtE .~~·2.~:.; DEL {) .~~·2.~' <' f-It.:4 L I tIE':-:
').1') l.

What will happen with the following:

) FINAL.CLI TICKLER.CLI PICKLE.CLI l

Briefly describe what will occur (it's too long to write out):

........

2-119

1. FINAL.CLI will be displayed on the console.
2. TICKLER.CLI will be displayed on the console.
3. TICKLER.CLI will be deleted and the deletion will be verified on the console.
4. PICKLE.CLI will be displayed on the console.
S. PICKLE.CLI will be deleted and the deletion will be verified on the console.
6. CLI returns the prompt ")".

The actual response is shown below:

) r- I/""/HL . C:L.r T I \:"/(L :::R . C:L.r F'.r C:l(LE . CL J l
T't' F' E .~~. Ll.~,

T \-'r' E .~~·1.~~

l]j~L ETE.····I.) .~~·1.~~·

TYPE %2%;DEL/U %2~

C;l]tr:r'r'
T~r'F:IE

DELETED TICKLER.CLI
COPY (~2~ ~J~) ~1~
T 'i",o E L. (' .~~'::'I .~~. .~~. J .~~.)
DELETE.····(} .~~·1.~~·

DELETED PICKLE.CLI
.>

Try it on your system.

Make sure that you specify FINAL.CLI or else the macro may misfire.

2-120

7. This is a new one. The WRITE command displays its arguments on the line following the
command. For example:

yOU TYPE -~.:; /AIR I TE .J:.1: jli I [; ISH :3Ht'fFtLE .f.'::i: l
SVSTEM-~'*"'*' Tf-iJE; l.S H SHfr1,CJLE .::::t:

RESPONDS ,)
~--~

If you append the IL switch to the WRITE command, the argument string is displayed on the
line printer.

Another example for the console:

) WR GOOD MORNING!
GOOD MORNING I NP/OS

Here we use the WRITE abbreviation WR.

t"lfCr./CJ~3 IR j~EHDJi l
n;; REHO)"'

The WRITE command is not all that exciting by itself. However, the next question incor­
porates it into a macro command.

2-121

Create a macro file named QUERY that 1) displays the message: "the status of your file is: ",
and 2) displays the filestatus of the requested file. Show the sequence:

.> C:/~~/~/~TE"-"I t!LIER'r'. [:LI l
))l:Jit,f I TE TiiE :3 TH TtlS J]F '/JJLfl;" FILE IS: J
.>)l= I.LES TH TI):3.····,::;$.~~·1.~~· J
.>)) 1,
)

The WRITE command carries the message as its arguments.

Now enter the sequence on your system.

2-122

8. Execute the QUERY macro on itself. Show the command and anticipated results: ---

.:: ~~l..fE~!tr' l]L!l~I~I'/. C'L I l
THE STATUS OF YOUR FILE T ,-. .

..i. .:; ••

DIRECTORY @DPO@:

""'.)"T'"
1,"" i 18-JUL-79 15:51:54

QUERY.eLI replaces the dummy argument %1%. The message, pathname, and files status are
displayed.

Now try it on your system.

Watch the spelling of this one.

2-123

9. More new in/ormation. When CLI is invoked, the macro me LOGON.CLI is automatically
executed (if you have one). Create a LOGON macro that displays a welcome message and the
initial directory name:

) CREATE/I LOGON. eLI l
,))J41~J I if ,Yl:LL Gr l 'rrl]L1F~t !Ji...ll~·J(I l'~C; ~! I ~rEC' TOR ~/

))}J

LOGON.CLI now has a WRITE message and DIRECTORY command.

Enter the sequence on your system.

2-124

10. Execute the LOGON macro. Show the command and anticipated response:

.> LCIl;!]l";~l
}~/E.'-L!] ! trllJfjR ~JCllq}(I /''11i; D.r ,r;:,rEL~ TOJ('/
&0/:';]1] ;
)

T (;-
.1 "_,

It is not necessary to use square brackets or LOGON .CLI.

Try it on your system.

2-125

11. Warning: this sequence is only for the strong-hearted.
Now lets see if LOGON really works! Shutdown your system and bring it back up. List the
sequences and expected responses:

**

) B'lE l
MP/OS eLI TERMINATING
S' 'j"' S T,~ jhl ~s· I-I!j T D Cll4 t·1
674524
! 160J327L

Rev 1.6

MP/QS eLl Rev 1.@
HELLO YOUR WORKING DIRECTORY
I1DF'DI:.1:

BYE shuts down the system.

T'~
J. ~.

1000 27L initiates the boot sequence from the 10MB disc.
The LOGON macro executes just prior to eLI's initial prompt.

Do it on your system.

2-126

THIS CONCLUDES THE CLI MACROS LAB EXERCISE.
AT THIS POINT YOU SHOULD BE ABLE TO CREATE
AND EXECUTE A MACRO FILE. NOW CONTINUE TO
THE MODULE TWO QUIZ.

2-127

MODULE TWO

QUIZ

Directions

1. Answer each question by writing the appropriate answer in the space provided. The answers
are cumulative (that is: each question must account for previous questions and answers).

2. At the end of the quiz, check your answers against the Answer Guide.

3. As an added verification, try the commands in squence (unless noted) on your system. Note:
we assume that your system is up and running. We have used the 10MB. disc as our system
master device (@DPDO).

2-128

REMEMBER: FILL IN THE COMMANDS AND
THE ANTICIPATED SYSTEM RESPONSES.

1. Set the system time to 10:00 A. M.

2. Set the system date to May 6, 1979.

3. Verify the system time and date. Use one command line. (Remember that these questions
are cumulative. That is, your answer should take the previous questions into account.)

4. Build a macro file called WHEN that displays messages such as: "The time is now" and
"today's date is" followed by the system time and date.

2-129

5. Execute the WHEN macro.

6. Given the following diagram:

Create this file structure on your system. (BOSTON will be a sub-directory of your root directory).

2-130

7. Given the following text:

"This is the Jersey me
Don't lose your jersey in Jersey
Third and last line of Jersey."

Write this text into a me named JERSEY in the ORIGINAL directory:

2-131

8. Verify the contents and status of the JERSEY file.

9. Determine the fully qualified pathname of JERSEY.

10. Use one command to make a duplicate of JERSEY called JERSEY.BU in the BACKUP
directory.

2-132

11. Make BOSTON the working directory.

12. Use one command line to compare the status of JERSEY and JERSEY. BU.

2-133

13. Create a macro file called "?" that will display file status information on separate lines.

2-134

Display should include: date the file was last accessed;
date the file was last modified;
byte length
time of last access
time of last modification
type
full pathname.

Check the MP/OS Utilities Reference Manual for info on the switches.

14. Execute the "?" file for JERSEY.

15. Delete the fIles and directories you created in this session. ConfInn, then verify.

16. Shutdown the system.

CHECK YOUR ANSWERS ON
THE FOLLOWING PAGES

2-135

1.

2.

3.

4.

2-136

) T I ME 1 e : l~e : fU3 l
)

) DATE 6-MAY-?9 l
.)

,., TIME;DATE 1
18:88:34

6-MAY-?9

,., CREAT£.'" I NHEN. CL I)

MODULE TWO

QUIZ ANSWERS

))/tIRITE t**** THE TIME IS NON t**)
.> '>TIME)
)/tIRITE *** TODAY'S DATE t**l
))DATE l
».>)

5.

6.

7.

8.

-' WHENl
:t::f::t:t:t THE TINE IS N0l4 :t:t:t
1B:B2:44
:t:t:t TODA'y" S DATE :t:t:t

6-NA'y'-79
.>

.> CREATE/DIR BOSTON l

.> DIR BOSTON l

.> CREATE""DIR BACKUP 1
.> CREATE.····DIR ORIGINAL)
.>

) DIR ORIGINALl
.> CREATE," I ...IERSEY l
.> '>THIS IS THE ...IERSEY FILE J
.>)DON' T LOSE YOUR ...IERSE~J IN .JERSEY l
.> '>THIRD AND LAST LINE OF ...IERSEY l
.> .>.> l

.> TYPE .JERSEY l
THIS IS THE .JERSEY FILE
DON'T LOSE 'y'OUR .JERSE'y' IN .JERSEY
THIRD AND LAST LINE OF ...IERSEY

.> F I /AS .JERSEY l
DIRECTORY @DPXB:BOSTON:ORIGINAL

JERSEY TXT 6-NAY-79 18:85:22
.>

87

2-137

9.

10.

.> PATHNAME . .JERSEY,}
@DPX8:BOSTON: OR IGINAL : • .fERSEY
.>

.> copy ~DPX8: BOSTON: BACKUP: ..JERSEY. BU JERSEY l
)

l1.L ___ ------...I .> DIR BOSTON ~
.>

12.

13.

2-138

.> FI/AS DRIGINAL:JERSEY BACKUP:JERSEY.BUl
DIRECTORY @DPX8:BOSTON:ORIGINAL

JERSEY TXT 6-NAY-79 18: 85: 22
DIRECTORY @DPX8:BOSTON:BACKUP

JERSEY.BU
.>

.> CREATE,·' I ? CL I l
) '>FI /DLA :':1:,
.> '>F I /DLN :,1:'
'»F I /ELEM :':1:':
))FI/LENGTH :':1:,
.>.>FI/TLA :,1:,
»FI/TLM :,1:,
»FI/TYP :':1:,
)'>PATHNAME :':1:':
») l

.>

TXT 6-NAY-79 18:18:34

87

87

14.

15.

16.

) ? JERSEY ,)~
DIRECTORY @DPX0:BOSTON:ORIGINRL

JERSEY 6-MRY-79
D I REC TOR 'y' @DPX0: BOSTON: OR I G I NRL

JERSEY 6-MRY-79
DIRECTORY @DPX0:BOSTON:ORIGINRL

JERSEY 1
DIRECTORY @DPX0:BOSTON:ORIGINRL

,JERSEY 87
DIRECTORY @DPX0:BOSTON:ORIGINRL

JERSEY 10: 18:33
DIRECTORY @DPX0:BOSTON:ORIGINRL

JERSEY 10:05:22
DIRECTORY @DPX0:BOSTON:ORIGINRL

JERSEY TXT
@DPX0:BOSTON:ORIGINAL:...IERSEY
)

) DIR)
@DPX0:
) DELETE/U/C/DIR BOSTON')'
BOS TON? YES 1
Delefed BOSTON
)

) BYE 1
Micron CLI Terminafin9

S':Isfem shufdo(Jn
056301

2-139

2-140

A SCORE OF 13 CORRECT ANSWERS OUT OF THE 16 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN
CONTINUE WITH THE NEXT SEGMENT IN THE STUDENT GUIDE .

.•... :.: : ... ;.

MODULE THREE
SPEED

Abstract

MODULE THREE
SPEED

This module instructs in the use of the SPEED text editor to create, modify, and copy ASCII
source text. The module is divided into the following sections:

• Concepts, terminology, and console control.
• Commands for managing fIles.
• Commands for manipulating text.

Objectives

Upon completion of this module, you will be able to:

1. Use CLI to invoke SPEED;

2. Use SPEED to:
a) open and close fIles for I/O.
b) input and output source text from fIles to the edit buffer;
c) Move the character pointer to specified locations within the text;
d) Insert, modify, and delete text in the edit buffer;
e) Display text in the current edit buffer in various lengths;
f) Call C. L. I.

Directions

Turn to the next page of the Student Guide and read the introduction to the first segment of
Module Three.

3-1

SPEED CONCEPTS

Abstract

This segment of Module Three discusses basic SPEED terminology, console control operations,
and processing concepts.

Objectives

Upon completion of this segment you will be able to:

1. Define, in your own words, the following SPEED terms:
a) command terminator
b) command delimiter
c) character
d) string
e) line
t) page
g) window
h) edit buffer

2. List, in order, the steps in a typical edit cycle.

3. State the three methods for erasing command line characters prior to execution. Describe the
situations for using each method.

4. State the methods for delimiting and terminating command lines.

s. Given an editing situation, draw and label the simple memory configuration.

Directions

Turn to figure 3-1 in your Student Guide and listen to the tape for this segment of Module Three.

3-2

CONTROL
KEY

6040,6042 KSR DASHER PRINTERS

MAIN KEYPAD - 6053 DASHER CRT

MAIN KEYPAD - 6052 DASHER CRT

CONTROL & DELETE KEYS

Figure 3-1

DELETE,
RUBOUT
KEYS

3-3

3-4

!1 THIS IS ~ S~MPLE\E

$$

HARD-COPY DASHER TERMINAL DELETES

Figure 3-2

!I THIS IS ~N EX~MPLE OF CTRL-U AU

$$
!1 HELLO! THIS IS ~ TESTAU

CTRL-U SPEED LINE DELETION

Figure 3-3

!I THIS IS AN EXRMPLE OF THE)
CONTROL-C! CONTROL-A COMBINATION ACAA

$:$
'I THIS IS ~N EXAMPLE OF THE)
CONTFWL-(:', CONTROL-A CONBINATION)
THIS TEST IS SPONSORED B'/)
DRTH GENERAL CORPORATION'S)
INSTRUCTIONAL DEl)fLOPNENT GROUP.,)
BARR'i"' Sf'! I TH PRES I DING OVER THE)
POPULUS. HERE COMES THE TEST AGAH

! #T:/it

CTRL-C, CTRL-A DELETION OF A MULTIPLE-LINE SPEED COMMAND.

LINE - STRING OF CHARACTERS ENDING IN A NEW LINE,
FORM-FEED, CARRIAGE RETURN OR NULL CHARACTER.

Figure 3-4

3-5

TEXT
• One or more ASCII characters
• Upper or lower case

1. CHARACTER
• Occupies one position in Edit Buffer.
• Any single ASCII alph~umeric character.
• TAB, Form-feed, New-line

2. STRING

• Sequence of any ASCII characters

3. SPECIAL CHARACTERS

• Command Terminators tD = $$
• String delimiter

Command Separator ESCape = $

4. LINE • Maximum length limited by console width.
• Minimum length one character.
• Sequence of characters ending with new-line,

carriage return, form-feed, or null character.
5. PAGE

• Sequence of characters ending with a form-feed (CTRL-L)
• Minimum length one character.
• Maximum length limited by memory.

6. WINDOW • Sequence of lines ending at the window length limit

• Set by Window Command.

• 20 lines for CRT

• 60 lines for printer page.
7. EDIT BUFFER

• Area of memory where Speed manipulates your text.

• Limited by memory size

• 36 Buffers available (A-Z, 0-9)

SPEED TERMINOLOGY

Figura 3-5

3-6

1. Invoke SPEED

2. Open fIles for input and output.

3. Read text from the input fIle into the edit buffer.

4. Edit text in the edit buffer.

5. Write text from the edit buffer to the output fIle.

6. Dose the input and output fIles.

7. Exit from SPEED.

EDIT CYCLE

Figure 3-6

3-7

I SPEED.PR

I EDIT BUFFER

MAIN MEMORY

3-8

077777

INVOKING SPEED

Figure 3-7

SPEED.PR
PROG.1

DISC OR DISKETTE

DISC OR DISKETTE

.-------------,0
I~~-.--=~~~I

SPEED.PR

EDIT BUFFER

PROG.1

EDITED
~-- VERSION

'----------- 077777
MAIN MEMORY

SPEED.PR

READ A PAGE OF PROG.1 FOR EDITING

Figure 3-8

UNTOUCHED

3-9

I SPEED.PR I
EDIT BUFFER

PROG.1

"'-

MAIN MEMORY

3-10

DISC OR DISKETTE

o
-.---

. '-1 S-PE-E-D-.PR-I

'7.1
'

UNTOUCHED
ORIGINAL

EDITED
VERSION

077777

OPEN A FILE FOR OUTPUT

Figure 3-9

OPENED,
BUT EMPTY.

I SPEED.PR I
EDIT BUFFER

1-

PROG.1

-

MAIN MEMORY

o

077777

DISC OR DISKETTE

I~~~_.-

ISPEED.PRI

I PROG.1 I

EDITED
VERSION

WRITE THE EDITED VERSION OUT TO DISC

Figure 3-10

3-11

3-12

~-----------------O

CLI.PR J

"'-----------------..... 077777
MAIN MEMORY

DISC OR DISKETTE

I SPEED.PRI

I PROG.1 I I NEWPROGI

TERMINATE SPEED, REINVOKE CLI

Figure 3-11

TOPICS

• CONSOLE CONTROL

• EDIT CYCLE
• MEMORY CONFIGURATION

• TERMINOLOGY

• CONCEPTS

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 3-12

3-13

SPEED CONCEPTS

QUIZ

Abstract

In this exercise you will review basic SPEED tenninology, console control, and SPEED concepts.

Directions

Part One

1. Answer each question by circling the letter(s) of the correct answer(s). Note that a question
may have more than one correct answer.

2. Check your answers against the Answer Guide following the questions. Make sure you under­
stand the cause of any discrepancies.

3-14

1. To delete the last character typed, you press:

A. RUBOUTorDELETE
B. CONTROL-U
C. CONTROL-D
D. ESCAPE
E. CONTROL-C, CONTROL-A

2. To delete one command line (that does not contain any new-line characters), press:

A. (ONE)RUBOUTorDELETE
B. CONTROL-U
C. CONTROL-D
D. ESCAPE
E. REPEATED RUBOUTS or DELETES
F. CONTROL-C, CONTROL-A.

3. To terminate a command line and allow SPEED to execute it, you press:

A. RUBOUT or DELETE
B. CONTROL-U
C. CONTROL-D
D. ESCAPE
E. REPEATED RUBOUTS or DELETES

4. To delimit a command, press:

A. RUBOUTorDELETE
B. CONTROL-U
C. CONTROL-D
D. ESCAPE

5. SPEED command termination is echoed as:

A. $$
B. $
C.
D. #

3-15

6. In SPEED, a character is:

A. any ASCII character
B. Tab
C. fonn-feed
D. new-line

7. Aline is:

A. any ASCII character followed by a new-line.
B. a new-line.
C. a sequence of characters followed by a new-line.
D. a sequence of characters followed by a fonn-feed.

8. A page is:

A. a sequence of characters followed by a new-line.
B. a sequence of lines followed by a fonn-feed.
C. a fonn-feed.
D. one line followed by a fonn-feed.

9. A window is

A. a sequence of characters followed by a new-line.
B. a sequence of lines followed by a fonn-feed.
C. a sequence of lines delimited by the window length limit.
D. a sequence of lines delimited by a CONTROL-D.

10. The edit buffer is

A. an area of disc or diskette space used for manipulating text.
B. an area of memory used for manipulating text.
C. an area of memory used for overlays.
D. an area of disc or diskette space used for holding files opened for I/O.

3-16

11. The RUBOUT or DELETE key is echoed on a hard-copy terminal by:

A. $$
B. $
C. backslash and the last character entered.
D. I\U
E. I\C I\A.

12. To delete several lines of command text prior to execution, you type:

A. RUBOUTorDELETE
B. CONTROL-U
C. CONTROL-D
D. CONTROL-C, CONTROL-A.
E. REPEATED RUBOUTS or DELETES.

Part Two

13. Given the following steps in an edit cycle, list them in their usual order:

A. edit text in the edit buffer.
B. open files for input and output.
C. close the input and output fIles.
D. invoke Speed.
E. exit from Speed.
F. Write text from the edit buffer to the output file.
G. Read text from the input file to the edit buffer.

1. ___ 2. ___ 3. ___ 4. ___ 5. ___ 6. __ _ 7. __ _

3-17

14. Given the following edit situation, draw and label a simple device and memory configuration
to illustrate the situation.

3-18

A. SPEED has been invoked.
B. File EXAMPLE has been opened and a page of text read into Memory.
C. File EXAMPOUT has been opened for output.

Check your answers
on the following page

SPEED CONCEPTS

QUIZ ANSWERS

1. To delete the last character typed, you press:

G) RUB OUT or DELETE
B. CONTROL-U
C. CONTROL-D
D. ESCAPE

A U deletes the entire line.
1\ D tenninates a SPEED command

$ delimits SPEED commands
E. CONTROL-C, CONTROL-A 1\ C, 1\ A deletes a series of lines.

2. To delete one command line (that does not contain any new-line characters), press:

A. (ONE) RUBOUT or DELETE DEL only gets one character. ® CONTROL-U A U erases an entire line.
C. CONTROL-D AD tenninates a SPEED command.

"-
D. ESCAPE ESC. delimits SPEED commands

@ REPEATED RUBOUTS or DELETES tedious, but O.K.
F. CONTROL-C, CONTROL-A. 1\ C 1\ A Yes, works here, too.

3. To terminate a command line and allow SPEED to execute it, you press:

A. RUBOUT or DELETE
B. CONTROL-U

@ CONTROL-D
D. ESCAPE
E. REPEATED RUBOUTS or DELETES

4. To delimit a command, press:

A.
B.
C.

®

RUBOUTorDELETE
CONTROL-U
CONTROL-D
ESCAPE

Refer to 1 and 2, above.

DEL erases one character.
1\ U erases a line with no new-lines
1\ D tenninates the command.

$ Yes!

3-19

5. SPEED command tennination is echoed as:

(0$$
B. $
C.
D. #

6. In SPEED, a character is:

7. Aline is:

@

G). @
D.

any ASCII character
Tab
fonn-feed
new-line

any ASCII character followed by a
new-line.
a new-line.
a sequence of characters followed
by a new-line.
a sequence of characters followed
by a fonn-feed.

8. A page is:

3-20

A.

G)
~
®

a sequence of characters followed
by a new-line.
a sequence of lines followed by a
fann-feed.
a fonn-feed
one-line followed by a form-feed

$$ CONTROL-D.
$ ESCAPE echo.

SPEED prompt
command modifier meaning "all".

Each choice fits the question. Note
that each one occupies one space in
the buffer.

Only D fails this criterion.

No, this defines a page.

Defines a line.

The fonnal definition

Creates a blank page.
Creates a one-line page.

9. A window is

A.

B.

D.

a sequence of characters followed
by a new-line.
a sequence of lines followed by
a fonn-feed.
a sequence of lines delimited
by the window length limit.
CONTROL-D

10. The edit buffer is

A. an area of disc or diskette space
used for manipulating text.

@ an area of memory used for
manipulating text.

C. an area of memory used for
overlays.

D. an area of disc or diskette space
used for holding files opened for I/O.

Defines a line.

Defines a page.

No, a multiple-line command.

No

No, this defines a node.

No

11. The RUB OUT or DELETE key is echoed on a hard-copy tenninal by:

A. $$
B. $

@ backslash and the last character entered.
D. I\U
E. !\CI\A

$$ CONTROL-D echo.
$ ESCAPE echo.

Yes
One-line eraser: CONTROL-U.
Multiple-line eraser: CONTROL-C,

CONTROL-D.

12. To delete several lines of command text prior to execution you type:

A. RUBOUTorDELETE Deletes one character.
B. CONTROL-U I\U Deletes one line.
C. CONTROL-D AD Tenninates a SPEED command.

(ii} CONTROL-C, CONTROL-A
Y. REPEATED RUBOUTS or DELETES

Yes

Only works for one line.

3-21

Part Two

13. Given the following steps in an edit cycle, list them in their usual order:

A. edit text in the edit buffer.
B. open files for input and output.
C. close the input and output files.
D. invoke Speed.
E. exit from Speed.
F. Write text from the edit buffer to the output file.
G. Read text from the input file to the edit buffer.

1. D 2. B 3. G 4 A 5. F 6. C 7. E

14. Given the following edit situation, draw and label a simple device and memory configuration
to illustrate the situation.

3-22

A. SPEED has been invoked.
B. File EXAMPLE has been opened and a page of text read into Memory.
C. File EXAMPOUT has been opened for output.

SPEED.PR

EDIT BUFFER
EXAMPLE

"MAIN MEMORY"

DISC DEVICE

I EXAMPLE I I SPEED.PR I
IEXAMPOUTI

•••.. :.:.:.:.:.:.:0;

A SCORE OF 12 CORRECT ANSWERS OUT OF THE 14 QUESTIONS INDICATES MASTERY
LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN THAT YOU
UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE NEXT SEGMENT
IN THE STUDENT GUIDE.

3-23

FILE COMMANDS

Abstract

This segment of Module Three describes SPEED commands used for opening, closing, reading, and
writing files during an edit session.

Objectives

Upon completion of this segment you will be able to:

1. State and describe the function of commands for:
a) invoking SPEED
b) exiting SPEED
c) opening files
d) closing files
e) reading files
f) writing files
g) displaying file status
h) window and page mode
i) display mode
j) update mode

2. Given a simple editing situation, enter the appropriate file handling command for that
situation.-

Directions

Turn to Figure 3-13 in the Student Guide and listen to the tape for Module Three, segment two.

3-24

) ,'x,'Ei":J SPEED J
SPEED REV 1.BO

YOU TYPE -

SYSTEM {
RESPONDS L-__ ~

YOU TYPE­

SYSTEM {
RESPONDS

) XEt~ SPEED SUNDR''lFILE l
SPEED REV 1.0B
C re.:d e ne(,l f i 1 e? ~·'ES J
I

INVOKING SPEED

Figure 3·13

! FRPR~·'ROLL $$.
I

!FRNONEXISTENT$$
Error: File does nof exisf
FRNONEXIS

FRpathname CTRL·D OPEN a file for READING

FRCOMMAND

Figure 3·14

3-25

! Fj,.JPA~·'RI]LL . NElrJ$:$
I

!FUOLDFILE$$
Error: File alread~ exis~s
FUOLDFILE

FWpathname$$ open a file for writing.

!FOPAYROLL$$
!

.:;: " ,':, ..
.... , ".- "

.. ~ , . ' .. , .. '"... " . ~ -'. '" ' .. '; '"._.;

FOpathname$$

3-26

,-. - r-o -
:.-f~ • .:'':: .=~ ,~.~. , .

FWCOMMAND

. - .

Figure 3-15

OPEN path name for Reading
OPEN pathname for Writing
READ one page of Path name.

FOCOMMAND

Figure 3-16

~ ! FRP~~··ROLL t$
! F/'vP~~··ROLL . NEl.Jt$
!

! FOP~~··ROLL t$

INPUT
FILE

PAYROLL

(PAYROLL)

INPUT
FILE

PAYROLL

FR open for Read

FW open for Write

FO open for Read
open for Write (.TM)
read a page
update mode ON.

FR, FW, FO COMMANDS

Figure 3-17

EDIT
BUFFER

EMPTY

(EMPTY)

EDIT
BUFFER

PAYROLL
PAGE 1

OUTPUT
FILE

PAYROLL.NEW
(EMPTY)

OUTPUT
FILE

PAYROLL.TM
(EMPTY)

3-27

!FU$$
!

!FUFOLLY$$
Error: File does nof exisf
FOLLY

FC$$ CLOSE ALL FILES.

!FC$$
!

!FCFOLLY$$

THE FC COMMAND
Figure 3·18

Error: File does not exist
FOLLY

FU$$ WRITE current buffer to output file WRITE remainder of input file to output file
CLOSE all global files.
CLEARS current buffer.

THE FU COMMAND

Figure 3·19

3·28

!FB$$

!FBINCOf1E$$
!

FB filename$$ WRITE current buffer to output file
WRITE remainder of input file to output file.
CLOSE all global files.
CLEAR current buffer
NAM E output file to original file.

Figure 3·20

3·29

~ ,'Feu

~, !FU$$

~, IF8$$
I

3-30

~

INPUT
FILE

CLOSED

INPUT
FILE

CLOSED

&
DELETED

INPUT
FILE

CLOSED
&

RENAMED
AS.BU

CLOSE COMMANDS

Figure 3-21

EDIT
BUFFER

UNCHANGED

EDIT
BUFFER

EMPTY

EDIT
BUFFER

EMPTY

OUTPUT
FILE

CLOSED

OUTPUT
FILE

EDITED
TEXT&
REST OF
INPUT FILE

&
RENAMED

OUTPUT
FILE

EDITED
TEXT &
REST OF
INPUT FILE

&
RENAMED

! ~"$$
Con firm (" f-command'> ? ~"ES
I

Y$$ YANK (read) a page or window into the buffer .

.> ,\'E(:I SPEEO .····0 l

/0 ... switch turns on display mode READS a page or window of text.

TEXT READ COMMANDS

!5140$$
!

! £J140#"
!

.> XEQ SPEEO/O l

WD Set or display the display mode.
5 WD display 10 lines of text.

Figure 3·22

DISPLAY MODE

Figure 3·23

3·31

!R$$
I

!R$$
Error: No more characfers in inpuf file
R$$

A$$ READ in a page or window of text
APPEND the page or window to the current buffer.

APPEND COMMAND

Figure 3-24

3-32

INPUT EDIT OUTPUT
FILE BUFFER FILE

ALREADY INPUT ONE UNCHANGED

~ ! ~"$$ OPEN PAGE
Conf i rm (' ~"-command'> '? YESJ.

&
!

UNCHANGED

INPUT EDIT OUTPUT
FILE BUFFER FILE

~I ;1<$$
OPEN, PAGE 1 UNCHANGED
UNCHANGED &

PAGE 2

Figure 3·25

3·33

!P$$
!P$$
Error: No open file
P$$

I ?P$$
! PI.J$$
!

P$$ WRITE current buffer to the output file.
nP$$ WRITE n lines of current buffer to output file.

WRITE COMMANDS

Figure 3-26

IE$$

!E$$
Error: No open file
E$$

E$$ WRITE current buffer to the output file.
WRITE remainder of input file to output file.

EJECT COMMAND

Figure 3-27

3-34

~I 1£$$
1

INPUT
FILE

EDIT
BUFFER

OUTPUT
FILE

I UNCHANGED UNCHANGED ADD ONE
(OPEN OR PAGE
CLOSED)

(AT LEAST ONE PAGE
ISTHE SAME)

INPUT EDIT OUTPUT
FILE BUFFER FILE

UNCHANGED EMPTY ALL EDITS
&

REST OF
INPUT FILE

WRITE COMMANDS

Figure 3-28

3-35

~I !Rt$

~ !Rt$
Error: No open file
R$$

~ !Rt$
~ Error: ND more characfers in inpuf file

R$$

R$$ WRITE current buffer to output file.
READ the next page from the input file.

R COMMAND

Figure 3-29

3-36

~I !R$$

~I !PY$$

INPUT
FILE

PAYROLL

INPUT
FILE

PAYROLL

R, PY COMMANDS

Figure 3-30

EDIT OUTPUT
BUFFER FILE

PAGE 2 PAGE 1

EDIT OUTPUT
BUFFER FILE

PAGE 2 PAGE 1

3-37

!F"?$$
Global:

Local:

Inpuf File - @DPX1:SUND~YFILE
Oufpuf File - None

Inpuf File - None
Oufpuf File - None

F?$$ List open, global and local, input and output files.

FILESTATUS COMMAND

Figure 3-31

!H$$ I "'" vr:c Gonf i rm 1" I (;;.v

'----) ------

EXIT SPEED

Figure 3-32

3-38

INVOKE & EXIT

XEQSPEED invoke SPEED.
XEQ SPEED filename
XEQ SPEED/D

invoke and open fIle
invoke with display-on
exit SPEED H$$

FR
FW
FC
FO
FU
FB
F?

y

P
A
E
R

WD
WM

I OPEN & CLOSE FILES I
fIle read
fIle write
fIles close
file open
fIle update
fIle backup
fIle status

READ & WRITE FILES

yank
put
append
eject
put and yank

MODES I
window/page mode
display mode

MODULE 3, FILE COMMANDS SEGMENT

Figure 3-33

3-39

FILE COMMANDS

QUIZ

Abstract

This Quiz reviews the CLI and Speed commands used for managing input and output files during a
Speed edit session.

Directions

1. Circle the letter or letters of the correct answer(s) for the following questions. A question
may have more than one correct answer.

2. Check your answers against the Answer Guide following the QUiz.

3-40

Part I. Multiple Choice

I. A command for invoking SPEED from CLI is:

A. XEQ SPEED ~
B. X SPEED ~
C. SPEED)
D. EXECUTE SPEED)

2. The command line for opening the INVENTORY me for editing is:

A. (from CLI) XEQ SPEED INVENTORY ~

B. (from SPEED) FRINVENTORY 1
C. (from SPEED) FRINVENTORY$$
D. (from SPEED) FWINVENTORY$$

3. A command for opening INVENTORY for outputting edited text is:

A. (from CLI) XEQ SPEED INVENTORY 1
B. (from SPEED) FRINVENTORY ~
C. (from SPEED) FRINVENTORY$$
D. (from SPEED) FWINVENTORY$$

4. A command for closing input and output mes is:

A. FR$$
B. FW$$
C. FC$$
D. E$$

5. The command(s) for writing data to an output me is(are):

A. FW$$
B. W$$
C. P$$
D. E$$

3-41

6. The command(s) for reading data from an input file to the edit buffer is(are):

A. ER$$
B. R$$
C. Y$$
D. P$$

7. The command(s) for outputting the current contents of the edit buffer and reading in the
next page or window length is(are):

A. FWFR$$
B. PY$$
C. R$$
D. 10$$

8. The command for displaying the status of files in SPEED is:

A. FILESTATUS t
B. F?$$
C. WHA?$$
D. HUH?$$

9. The command for terminating SPEED and returning to the calling program is:

A. X$$
B. H$$
C. E$$
D. BYE$$

10. A command that writes out the edit buffer and rest of the input file, clears the edit buffer,
closes files, renames the original file as a .BU, and renames the edited copy as the original is:

3-42

A. FO$$
. B. FN$$
C. FB$$
D. FU$$

11. A command that writes out the edit buffer and the rest of the input file, clears the edit buffer,
closes files, deletes the original, and renames the edited copy as the original is:

A. FO$$
B. FN$$
C. FB$$
D. FU$$

12. A command to open DOOR, yank in a page, and open DOOR.TM for output is:

A. FRDOOR$$
B. FWDOOR$$
C. FODOOR$$
D. FODOORTM$$

13. A command for reading in a page of text to the edit buffer without writing over the current
contents of the buffer:

A. S$$
B. P$$
C. K$$
D. A$$

14. Display mode of 10 may be set with:

A. (from CLI)) X SPEED/D
B. (from SPEED) 10WD$$
C. (from SPEED) 5WD$$
D. (from SPEED) WD=10$$

15. Page mode may be set with:

A. (from SPEED) PW$$
B. (from SPEED) .fjWM$$
C. (from SPEED) PM$$
D. (from CLI) XEQ SPEED

3-43

Part II. Matching Columns

Match the command in the left column with the function in the right column.

1. WD

2. WM

3. FR

4. FU

5. A

6. H

7. FW

8. E

9. FC

10. R

11. FO

12. P

13. FB

14. Y

15. F?

3-44

A. Exit SPEED.

B. open a fIle for input.

C. open a fIle for output.

D. close all fIles.

E. Open input fIles, yank a page, create fIle .TM and open for output.

F. Copy buffer and rest of input to output fIle, close fIles, delete original,
rename output to original.

G. Copy buffer and rest of input to output fIle, close fIles, rename input
to .BU, rename output to original name.

H. Display pathnames of open fIles.

I. Read in one page or window of text.

J. Write buffer to output fIle with a form-feed.

K. Read in one page or window and add it to current buffer.

L. Write out current buffer and rest of input fIle to output fIle.

M Write out current buffer with a form feed, read in one page or window.

N. Set display mode.

O. Set page or window mode.

NOW CHECK YOUR ANSWERS
ON THE FOLLOWING PAGES

FILE COMMANDS

QUIZ ANSWERS

1. A command for invoking SPEED from CLI is:

@ XEQSPEED~
Yes

CD XSPEED~
Yes, abbreviate XEQ.

C. SPEED l
Will work only if SPEED.CLI exists.

~ EXECUTESPEED~
Yes.

2. The command for opening the INVENTORY file for editing is:

@ (from CLI) XEQ SPEED INVENTORY ~
Inventory is the input file.

B. (from SPEED) FRINVENTORY l
Wrong terminator. o (from SPEED) FRINVENTORY$$
Same as A.

D. (from SPEED) FWINVENTORY$$
Opens for output.

3. A command for opening INVENTORY for outputting edited text is:

@ (from CLI) XEQ SPEED INVENTORY ~
Opens INVENTORY for input and output.

B. (from SPEED) FRINVENTORY l
No, only input and wrong terminator.

C. (from SPEED) FRINVENTORY$$
No, only input.

~ (from SPEED) FWINVENTORY$$
Yes!

3-45

4. A command for closing input and output mes is:

A. FR$$
No, command error.

B. FW$$
~ Error command requires arguments.
'-..S.J FC$$

Yes, closes input and output meso
D. E$$

Outputs, but does not close.

5. The command(s) for writing data to an output me is (are):

A. FW$$
Error: Invalid character in pathname; also, wrong one.

B. W$$
~ Error: mega! command
\...SJ P$$

Yes, entire buffer with a Form Feed.
(BE$$

Yes, buffer plus rest of input me.

6. The command(s) for reading data from an input fIle to the edit buffer is (are):

3-46

A. ER$$ Too much: E will read to end of input me and put everything out;
R will have nothing to read.

CD R$$
~ Puts out current buffer, reads one page.
\..SI Y$$

Reads in one page or window (over current buffer).
D. P$$

Puts out the current buffer.

7. The command(s) for outputting the current contents of the edit buffer and reading in
the next page or window length is (are):

A. FWFR$$
No, sets up fIle "FR" for output. eD PY$$

~ Puts buffer out, yanks in a page or window.
~R$$

Same as B.
D. 10$$

No, inserts the character "0" into buffer.

8. The command for displaying the status of fIles in SPEED is:

A.FILESTATUS l

eD E?$$
No, only in CLI.

Yes: input, output, and Update mode are displayed.
C. WHA?$$

No, illegal character, then exits SPEED.
D. HUH? $ $

Exits SPEED (if buffer is empty, if not, fails to exit).

9. The command for terminating SPEED and returning to the calling program is:

A. X$$

eD H$$
"X" may be used to execute CLI commands and Programs from SPEED.

Yes, back to parent, usually CLI.
C. E$$

No, writes out buffer and rest of input fIle.
D. BYE$$

B is an illegal command, Y and E are not executed.

3-47

10. A command that writes out the edit buffer and rest of the input fIle, clears the edit
buffer, closes fIles, renames the original fIle as a .BU, and renames the edited copy as the
original is:

A. FO$$
No, opens fIles, yanks a page and turns on update mode.

B. FN$$
~ No, illegal command.
\..Sl FB$$

Yes.
D. FU$$

Almost, except original input is deleted and output is given original's
name.

11. A command that writes out the edit buffer and the rest of the input fIle, clears the edit
buffer, closes fIles, deletes the original, and renames the edited copy as the original is:

A. FO$$
No, opens fIles; yanks; turns on update mode.

B. FN$$
prror: Illegal command.

C. FB$$
~ No, see question number 10 above.
~FU$$

Yes!

12. A command to open DOOR, yank in a page, and open DOOR.TM for output is:

A. FRDOOR$$
No, only opens DOOR for input.

B. FWDOOR$$
~ No, only opens DOOR for output.
\...SJ FODOOR$$

Yes.
D. FODOOR.TM$$

No, .TM changes fIlenames.

3-48

13. A command for reading in a page of text to the edit buffer without writing over the
current contents of the buffer:

A. S$$
No, a search command error.

B. P$$
No, puts out the buffer.

C. K$$
~ No, kills one line in the buffer up to the C. P.
~A$$

Yes, append

14. Display mode of 10 may be set with:

® (from CLI)) X SPEED/D ~
Yes. CD (from SPEED) 10WD$$
Yes, 20 lines are displayed

C. (from SPEED) 5WD$$
No, mode = 5, here. (10 lines displayed)

D. (from SPEED) WD= 10$$
No, will return the current mode setting.

15. Page mode may be set with:

A. (from SPEED) PW$$
~ No, puts out the buffer.
~ (from SPEED) OWM$$

Yes.
C. (from SPEED) PM$$

No, puts out the buffer, then moves C.P.
G) (from CLI) XEQ SPEED ~

Yes, defaults to page mode.

3-49

Part IT Matching Columns

Match the command in the left column with the function in the right column.

1. N WD A. Exit SPEED.

2. 0 WM B. Open a fIle for input.

3. B FR C. open a fIle for output.

4. F FU D. close all fIles.

5. K A E. Open input fIles, yank a page, create fIle .TM and open for output.

6. A H F. Copy buffer and rest of input to output fIle, close fIles, delete original,
rename output to original.

7. C FW

8. L E G. Copy buffer and rest of input to output fIle, close fIles, rename input to
.BU, rename output to original name.

9. D FC

10. M R H. Display pathnames of open fIles.

11. E. FO I. Read in one page or window of Text.

12. J P J. Write buffer to output fIle with a form-feed.

13. G FB K. Read in one page or window and add it to current buffer.

14. I Y L. Write out current buffer and rest of input fIle to output fIle.

15. H F? M. Write out current buffer with a form feed, read in one page or window.

N. Set display mode.

O. Set page or window mode.

3-50

A SCORE OF'26 CORRECT ANSWERS OUT OF THE 30 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE
WITH THE NEXT SEGMENT IN THE STUDENT GUIDE.

3-51

FILE COMMANDS

LAB EXERCISE

Abstract

This exercise reviews some of the commands covered in the File Commands segment of Module
Three.

Directions

This exercise is similar to the previous labs. You may complete it with or without access to an
MP/OS system. The steps are:

1. Cover the answer;
2. Read the operation;
3. Reference a solution;
4. Write down the solution;
5. Check your answer against the answer provided;
6. Try the commands on your system;
7. Resolve any discrepancies.

To complete this lab you must have the SPEED text editor on your system. The CLI FILESTATUS
command will help here. (Fi SPEED.PR).

You will also need the fIle LABTEST for this exercise. Use the CREATE command with the
Ii switch as shown:

.> CREATE/I LABTESTl
'>'>THIS IS THE FILE LABTESTl
'>'>SECOND LINE OF LABTEST l
'>'>333333333333333333333l
'>'>444444444444444444444l
»5555555555555555555l
.>.>SIXTH AND LAST LINEl
'»'>l

You are now ready for the lab.

3-52

1. Invoke SPEED. Show the commands and anticipated results in the space below:

-" .':<EQ SPEEDJ
SPEED REV 1. ee
!

XEQ SPEED is the short, simple Speed invocation.
XEQ may be abbreviated to XE or X. You may append the 10 switch (XEQ SPEED/D) to your
command to turn on display mode. You may also specify a filename. Use the simple version for
now.

Try it on your system.

SPEED.PR is now ready for execution. The exclamation point is the prompt character.

3-53

2. Open the file LABTEST for editing. Show the commands and responses.

**

!FRLRBTEST$$

The FR command (file read) opens a file for reading. This assumes that LABTEST exists and
does not have the W (write-protected) attribute.

Do it on your system.

Remember that the terminator is CONTROL-D. Note that SPEED did not type out the LABTEST
source in this case. (Display mode is NOT on.)

We used the basic open command. You may have specified others. If you did, close everything
(FC$$) and use the FR command. This avoids confusion with later questions.

3-54

3. Is update mode on? Which fIles are open? Show the entries and anticipated responses.

**

!F'?$$
G1Dbal:

Loca 1 :

Inpu~ File - @DPX1:LRBTEST
Ou~pu~ File - None

Inpu~ File - None
Ou~pu~ File - None

The F? command reports the fIlestatus of open fIles. Note the full pathname of LABTEST, located
on a secondary diJ)kette. Also, note the absence of the UPDATE MODE message. Update mode is
OFF.

Execute the command on your system.

Your pathname may be different, depending on your system.

You can now read text from LABTEST, but you cannot write it out to an output fIle.

3-55

4. Set up LAB.TWO as the output file. Show the command and anticipated response:

! Ft4LABTJ.JO$$

We used the FW command to open the output file. Do the same on your system. Watch your
spacing and new-lines.

Stick to the simple FW command for now.

3-56

5. Now what is the status of your edit fIles? Show all entries before you go to your system.

**

!F?$$
Global:

Local:

Inpu~ File - @DPX1:LABT£ST
Ou~pu~ File - LABTUO

Inpuf File - None
Oufpuf File - None

Again, the F?$$ command displays the Speed fIlestatus information.

Do it on your system.

Note that LAB TWO was shown as the output fIle, but in which directory? The X command
helps this, as shown. Look for our LAB fIles:

IXFIL£STATUS$$
DIR£CTORY @DPXl:

SUNDAYFIL£
LOGON. eLI
PROG_OH£
PROG_OH£.BU

PROG. LS
MASM.PS
M£SSAGE.PR
PROGDEB.LS

Try the command on your system.

PROGD£8MAP
PROG_OH£.OB
PROG_ONE.PR
?MASM.ST. TMP

PROGD£8.PR
PROGDE8.0B
SPEED.PR
LABT£ST
LABTUO

3-57

6. Bring a page of LABTEST into the edit buffer. Show how:

fY$$
f

The Y$$ command yanks, or reads, a page or window of text from the input file to the edit buffer.
Anything in the input buffer is destroyed or written over.

Try it on your system.

Note that nothing was displayed after the Y command. That is, no text was shown on our screen
during the yank. There are several ways of handling this, as shown on the next page.

3-58

7. Turn on display mode. Set it so that 8 lines will be displayed.

!4WD$$
("")THIS IS THE FILE LABTEST
SECOND LINE OF LABTEST
333333333333333333333
444444444444444444444
5555555555555555555
SIXTH RND LAST LINE

!

The nWD$$ command initiates display mode. (n = number of lines to display before and after
the C.P.)

Wow! Turning on the display mode causes the display to begin immediately. Our file is less than
eight lines, so it is displayed in its entirety. (The () is the character pointer. All edits are made
at the current location of the C.P. or character pointer.

The command for determining the current display mode setting is as follows:

!14D=$$
4

Try it.

Note that there are no spaces in the command line. Always multiply the WD value by 2 to get the
number of lines to be displayed.

3-59

8. We will detail the commands for editing text in your edit buffer in the next segment of Module
Three. For now, turn off display mode and verify that it is off:

**

!814D$$
!J.JD=$$
a

The zero modifier for the WD command turns off display mode. You then use the WD as an
argument for the "=" command to display the new display mode setting.

Do it on your system.

3-60

9. For now, write the command for writing the entire buffer to the output file:

!P$$
!

The P$$ command writes the contents of the current buffer to the output file and appends a form­
feed.

Try it on your system.

Does the P command clear (release) the edit buffer? Use th~ following to fmd out:

I#T$$
THIS IS THE FILE LABTEST
SECOND LINE OF LABTEST
333333333333333333333
444444444444444444444
5555555555555555555
SIXTH RND LRST LINE

"#T" is the command for displaying the contents of the entire edit buffer. It is still there.
The "P$$ command only copies the buffer out. Repeated P$$ commands will make multiple copies
of the buffer in the output file.

3-61

10. Now try this. Read in another page from the input file, but do not over-write the edit buffer's
current contents. Write the command and anticipated response:

fA'$
Error: No more characfers in inpu# file
A$$

The A$ $ command reads in a page of text from the input file and adds it to the current edit buffer.

The original input file was only one page long. That page was brought in with the Y command.

No hann is done - do it on your system.

Another Y command would yield the same error. The P command, however, would put the buffer
out, making the output file two pages long. Both pages would show the same six lines. You can try
it if you want.

3-62

11. You have used the basic I/O commands. Now close the files. Show all entries:

!FC$$
!

The FC$$ command closes the input and output files.

Note that FC does not anticipate filename arguments.

Do it on your system.

3-63

12. What is the status of your edit fIles now? Show the commands and anticipated responses.

!F?$$
G1Dbal:

Inpuf Fil~ - Non~
Dufpuf Fil~ - Non~

Local:
Inpuf Fil~ - Non~
Dufpuf Fil~ - Non~

Once again, the F?$$ command displays the Speed file status.

The FC command closed the input and output fIles.

Do it on your system.

3-64

13. We closed the fIles. Is there anything left in the edit buffer? How do you fmd out?

!#T$$
THIS IS THE FILE LABTEST
SECOND LINE OF LABTEST
333333333333333333333
444444444444444444444
5555555555555555555
SIXTH AND LAST LINE
!

The #T command displays the contents of the edit buffer. Fe does not erase the buffer. You
could open another output fIle (FW) and put the buffer out (P) for another copy.

Try the #T command. Remember that the #T command is not necessary if you set the display
mode ON. There is a difference between the two displays. #T displays the entire buffer from
beginning to end. Display mode only shows the lines surrounding the character pointer in a
specified range.

3-65

14. Terminate SPEED.

!H$$
Con firm? ~'ES J

>

The H$ $ command begins the Speed termination process.

SPEED prompts for confIrmation only if there is text in the edit buffer.

Do it on your system.

We returned to CLI, as evidenced by the right parenthesis ")" prompt.

3-66

THIS CONCLUDES THE SPEED FILE COMMANDS LAB EXERCISE.
YOU SHOULD BE ABLE TO MANIPULATE FILES WITH SPEED
COMMANDS. NOW CONTINUE TO THE NEXT SEGMENT OF
MODULE THREE.

3-67

EDIT COMMANDS

Abstract

In this segment of Module Three we discuss various commands for editing text in the edit buffer.
Included are commands for searching, displaying, inserting and deleting text, and moving the
character pointer.

Objectives

Upon completion of this segment, you will be able to:

A. Given a text editing situation, state an appropriate command or series of commands for
solving the editing situation.

B. State, and describe the function of, the commands for:
a) moving the character pointer
b) searching text
c) inserting text
d) deleting text

Directions

1. Tum to figure 3-52 on the next page of your Student Guide and listen to the tape for this
segment of Module Three.

2. Take the Edit Commands Quiz.

3. Try the Text Editor Lab.

3-68

2

)#T$$
tTHIS IS THE SAMPLE TEXT.
LINE Tl.JOtOF SAMPLE.
THE THIRD LINE OF THE SAMPLE.
FOURTH AND LAST LINE. !

3

C. P. on DASHER CRT

(A)THIS IS A SAMPLE TEXT
LINE TUD OF SAMPLE
THE THIRD LINE OF THE SAMPLE
FOURTH AHD LAST LINE

C. P. on DASHER HARD-COPY TERMINAL

Figure 3-52

3-69

3-70

MOVE C.P. TO BEGINNING
OF CURRENT LINE. • ! LII

~ !TII
DISPLAY THE CURRENT LINE~ *THIS IS THE SRNPLE TE.'x:T.

I

MOVE C. P. THREE LINES
FORWARD

DISPLAY THE CURRENT
LINE.

MOVE C. P. TWO LINES
BACKWARDS

DISPLAY THE CURRENT
LINE.

! 3L$$
! TI$
*FOURTH RND LRST LINE.
I

! -2L$$
!TII
*L I NE HIO OF SRNPLE.
!

nL$$ move the C.P. n lines from current position.

C.P. MOVER - THE L COMMAND

Figure 3-53

MOVE THE C.P. TO LINE TWO ! 2...1$$
r-- !i$$

DISPLAY THE CURRENT LINE--' *L IHE Tl~O OF SRNPLE.
!

MOVE THE C.P. TO THE BEGINNING
OF THE BUFFER ! . .1$$

~ !i$$
DISPLAY THE CURRENT --.J *THIS
LINE. !

MOVE THE C.P. TO THE END OF
THE BUFFER •

DISPLAY THE CURRENT f
LINE.

!Z...I$$
!T$$
:k!

IS THE SRNPLE TEXT.·

nJ$$ Move the C.P. to the nth line in the edit buffer.

C.P. MOVER - THE J COMMAND

Figure 3-54

3-71

MOVE THE C.P. FIVE CHARACTERS TO
THE RIGHT.

DISPLAY THE CURRENT LlNE--.!

MOVE THE C.P. THREE
CHARACTERS TO THE LEFT.

! StU$
! T$.$
LINE .*"TUO OF SANPLE"

!-JI'1$$
! T$$
LItHE TUO OF SAMPLE.

nM$$ Move the C.P. n character positions from the current location.

MOVE COMMAND

Figure 3-55

3-72

DISPLAY THE CURRENT LlNE-~

DISPLAY TWO LINES STARTING

!T$$
:n I NE Tt.JO OF BRNPLE.
i

FROM CURRENT LINE -~ .l2T$$
L I HE TJ-JO OF BRNPLE.

1
THE TH I RD L I HE OF THE BRNPLE.
I

DISPLAY ENTIRE BUFFER----i~! #T$$ •
THIB IS THE SRHPLE TEXT.
L I HE HIO OF BRNPLE.
THE TH I RD LINE OF THE SRNPL E.
FOU/;:TH HND LAST L IHE.

T$$ Display the line with the character pointer.

nT$$ Display n lines, starting from the C.P. line.

#T$$ Display all lines.

THE T COMMAND

Figure 3·56

3·73

3-74

{

!ITHIS IS THE SANPLE TE.'x.'T.
LINE TJ..IO OF SANPLE.

INSERT THE TEXT THE THIRD LINE OF THE SANPLE.
FOURTH AND LAST LINE.$$

DISPLAY THE CURRENT LINE+C.P. { ! T$$
FOURTH AND LAST LINE .. t!

INSERT A CHARACTER AT
THE CURRENT LOCATION OF C.P.

DISPLAY C.P. & LINE

MOVE THE C.P. TO LINE 3.
INSERT A LINE

DISPLAY THE WHOLE BUFFER

{
! IJ
$$

!#T$$

{

THIS IS THE SANPLE TEXT.
LINE TbiO OF SANPLE.
THE THIRD LINE OF THE SANPLE.
FOURTH RND LAST LINE.
I

!3...1$$
lITHIS FITS SETbJEEN 3 AND 2J
$$
!#T$$
THIS IS THE SAMPLE TEXT.
LINE TbJO OF SAf"PLE.
THIS FITS SETbJEEN 3 AND 2
THE THIRD LINE OF THE SAf'1PL E .
FOURTH RND LAST LINE .
. !

NEW TEXT STRING INSERTED HERE

I text-string $$ Insert text-string at cu"ent location o[the c.P.

INSERT (I) COMMAND

Figure 3-57

SEARCH FOR "THIRD" ---+ ! STH I RD$$
!

{
!T$$

DISPLAY THE CURRENT LINE fHE THIRD:t LINE OF THE SRf'IPLE.

SEARCH FOR "TEXT"
ERROR MESSAGE

Error: Unsuccessful search
STEXT$$ {

!STEXT$$

/

SEARCH FOR "MISSING LlNK"---. !SNISSING LINK$$

ERROR MESSAGE [
Error: Unsuccessful search
SMISSING

~------------------------~

S text-string $$ Search for text-string

SEARCH COMMANDS

Figure 3-58

3-75

3-76

Move to line 3.
Display the C. P.
Search backwards 3 lines
Display the new C. P.

Search backward
Display the C. P.

Display the C. P.
Search for "Fits"
Display the new C. P.

nS text-string $$

OS text-string $$

n, z S text-string $$

! 3 • .IT$$
(.... .>THIS FITS BETWEEN 3 AND 2
!-3SSAMPLE TEXT$$
! T$$
THIS IS A SAMPLE TEXT(....).
!

$$
!8STHIS$$
!T$$
THIS(·"') IS A SAMPLE TEXT.
I

! T$$
THIS(·"''> IS A SAMPLE TEXT.
!11188SFITS$$
! T$$
TH IS F I TS(.... .> BETWEEN 3 AND 2
!

search for text-string starting from
C.P. and going n lines back toward
the beginning of the buffer.

search for text-string, starting from
C.P. and going back to the beginning
of the current line.

search for text-string, starting from
character position n + 1 and
continuing to character position Z.

SEARCH OPTIONS

Figure 3-69

MOVE C.P. TO BEGINNING OF BUFFER ---. !)$$
SEARCH FOR "THIRD LINE" ---. l NTHI~'D L INE$$

DISPLAY CURRENT LINE THE THIRD L INE.*· OF THE SimPLE. {
! T$$

$$
f NL I NE HW$,i SEARCH FOR "TEXT"

ERROR MESSAGE ~ Err"or: No
NLINE HJO

! lJ$$
!NAARDVRRK$$

file

SEARCH FOR "LINE TWO"
ERROR MESSAGE

Error: No open file
NARRDVARK

!#T$$

N text-string$$ Search for text-string throughout the
entire input file.

NON-STOP N SEARCH COMMAND

Figure 3-60

3-77

3-78

MOVE C.P. TO BEGINNING OF BUFFER --+ ! ... 1$$
CHANGE "SAMPLE" TO "PRACTICE" ---+ ! CSANPL£$PRACT I C£$$

I

! T$$
DISPLAY CURRENT LINE THIS IS THE PRHCTICE.t TE,'x,'T.

CHANGE "THIS IS" TO "L1NE ONE OF"~ ! CTHIS IS$LINE ONE OF$$
ERROR MESSAGE --+ E r ro r: Unsuccess f u 1 sea rch

CTHIS IS$

MOVE C. P. TO LINE ONE
CHANGE "NUCLEAR" TO "SOLAR" ---+ ! ... 1$$

!CNUCLERR$SOLRR$$

C nld-text $ new-text$$ Search for old-text.
Delete old-tex t
Insert new-text

Error: Unsuccessful search
CNUCLERR$

!

Leave C.P. after new-text.

CHANGE (C) COMMAND

Figure 3-61

!C3 AND 2$$,
!T$$
THJ 5 Ii I T5 BETNEEN (....)
!

C text-string $$ Search for text-string
Delete text-string
Leave C.P. after text-string.

CHANGE (C) COMMAND

Figure 3-62

3-79

3-80

DELETE FOUR CHARACTERS ____
FOLLOWING C.P. -------- .t 4D$$

DISPLAY CURRENT LINE {

$$
!T$$ * IS THE PRACTICE TEXT.

~------------------------~

~
MOVE THE C.P. TO "TWO" IN LINE {

DELETE 3 CHARACTERS ~
PRECEDING C.P. {

DISPLAY RESULTS

! STf...IO$$
!T$$
LINE HIO."#: OF SANPLE.
!-3D$$
! T$$
LINE * OF SANPLE.

~------------------------~

nD$$ Delete n characters to the right of the C.P.

-nD$$ Delete n characters to the left of the C.P.

DELETE CHARACTERS (D) COMMAND

Figure 3-63

MOVE C.P. TO LINE TWO --.
DELETE (KILL) ONE LINE --.

FOLLOWING C. P.

DISPLAY ENTIRE BUFFER {

!2...1$$
! 11<:$$
!#T$$
IS THE PRACTICE TEXT.

THIS FITS BETNEEN 3 AND 2
THE THIRD LINE OF THE SANPLE.
FOUf;:7H AND LAST LINE.

MOVE C. P. TO LINE TWO --. ! 2...1$$
DELETE ONE LINE PRECEDING C.P. --. ! -1 K$$

{
·~~j~$FITS BETNEEN 3 AND 2

DISPLAY BUFFER THE THIRD LINE OF THE SANPLE.
FOURTH AND LAST LINE.
!

MOVE C. P. TO THE MIDDLE OF A LINE ~ ! STHIR,.D$$
!T$$
THE THIRD·* LINE OF THE SAf'tPLE.

{
! f($$

DELETE THE CHARACTERS IN ! T$$
THE FRONT OF THE LINE * LINE OF THE SAI'1PLE.

!

nK$$ DELETE n LINES FOLLOWING C.P.

-nK$$ DELETE n LINES PRECEEDING C.P.

DELETE LINES (K) COMMAND

Figure 3-64

3-81

TOPICS

Icp MOVERSI
L line move
J jump to a line
M move character positions

ISEARCHERSI
S search
C change
N non-stop search

IINSERTSI
I Insert
C change

IDELETESI
C change
D delete characters
K kill lines

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 3-65

3-82

TEXT EDITOR

QUIZ

Abstract

This quiz tests your comprehension of the text manipulation commands.

Directions

Part I Multiple Choice

1. Answer the following questions by circling the letter of the correct answer. Questions may
have more than one corrt~ct answer and, therefore, you should circle more than one letter.

2. The contents of the screen shown below are assumed to be in your edit buffer. Reference
this figure for the questions in Part I of this Quiz.

MODULE THREE OF THE MP/OS COURSE.
THIS SEGMENT COVERS TEXT
EDITING COMMRNDS.
URITTEN RPRIL 3~1979

3-83

1. The C. P. is at line one. The command for displaying the entire buffer is:

A. D$$
B. T$$
C. #T$$
D. P$$

2. The C.P. is at line one. A command sequence for displaying only the third line is:

A. 1$$
T$$

B. 3J$$
T$$

C. 3T$$
D. 2K$$

T$$

3. The command for moving the C. P. from line one to line four is:

A. 4J$$
B. 4L$$
C. 3L$$
D. 4M$$

4. The C. P. is at line four: move it to the end of the buffer:

A. ZJ$$
B. lL$$
C. 23M$$
D. 5J$$

5. The C. P. is at the end of the buffer. Move it to the beginning of the buffer and verify the
move:

3-84

A. 11$$
T$$

B. -4L$$
T$$

C. -5L$$
T$$

D. OJ$$
T$$

6. Position the C. P. after "segment" in line two:

A. 2J$$
12M$$

B. IL$$
12M$$

C. 3J$$
-13M$$

7. The C. P. is at line one. Insert the character string "DATA GENERAL CORPORATION"
as line 5:

A. IDATA GENERAL CORPORATION<NEW LINE>
$$

B. 5J$$
TDATA GENERAL CORPORA TION<NEW-LINE>
$$

C. 5J$$
IDATA GENERAL CORPORATION <NEW LINE>
$$

D. 4L$$
CDATA GENERAL CORPORATION <NEW LINE>

8. You have just inserted line 5. The command and response for verifying the location of the
C. P. are:

A. T$$
DATA GENERAL CORPORATION (t)

B. T$$
(t)DATA GENERAL CORPORATION

C. T$$
(t)

D. T$$
DATA GENERAL CORPORATION (t)

3-85

9. The C.P. has been moved to the end of line five. Delete the fifth line that you just inserted.

A. 5KU
B. 5J$$

K$$
C. L$$

lK$$
D. 5J$$

lK$$

10. The C. P. is at line one. Change "1979" to "1980".

A. 4J$$
SI979$$
11980$$

B. 4J$$
SI979$$
-4M$$
11980$$

C. 4J$$
SAPRIL 3, $$
11980$$

D. CI979$1980$$

11. You just changed "1979" to "1980". Verify the change.

A. T$$
B. L$$

T$$
C. lL$$

T$$
D. OT$$

12. The C. P. is at line one. Delete "WRITTEN" from line 4:

A. 4J$$
70$$

B. CWRITTEN$$
C. SWRITTEN$$

-70$$
D. DWRITTEN$$

3-86

Part II Matching Columns

Match the command on the left with the functional description on the right.

COMMANDS FUNCTIONS

C 1. Delete lines of text.

J 2. Search for string, delete it, insert another string.

D 3. Insert string at CP location.

L 4. Delete characters.

S. 5. Search for string in buffer, put, yank (if there are open files).

K 6. Search for string in buffer.

T 7. Move CP character positions.

M 8. Move CP to beginning of specified line, relative to start of buffer.

N 9. Move CP to beginning of a line, relative to current line.

#T 10. Display contents of entire buffer.

I 11. Display contents of current line with CPo

CHECK YOUR ANSWERS
ON THE FOLLOWING PAGES

3-87

TEXT EDITING
QUIZ ANSWERS

1. The C. P. is at line one. The command for displaying the entire buffer is:

A.
B.

@
D.

D$$
T$$
#T$$
P$$

Deletes the fIrst character in the buffer.
Only displays one line
The "#" indicates the entire buffer.
Tries to output one page.

2. The C.P. is at line one. A command sequence for displaying only the third line is:

A. 1$$ Inserts nothing and displays line one.
T$$

(j) 3J$$ C.P. moves to line 3 which is then displayed.
T$$

C. 3T$$ This displays lines 1,2, and 3.
@ 2K$$ This will work: lines I and 2 are deleted and line 3 is displayed.

T$$

3. The command for moving the C. P. from line one to line four·is:

@
B.

@
D.

4J$$
4L$$
3L$$
4M$$

Moves the C.P. to line 5.

Moves the C.P. four character positions.

4. The C.P. is at line four: move it to the end of the buffer:

m ZJ$$
B. lL$$
C. 23M$$
D. 5J$$

3-88

2 means end of buffer.
The beginning of line five represents the end of the buffer.
23 character positions get you to the end of the buffer.
Same as B.

5. The C. P. is at the end of the buffer. Move it to the beginning of the buffer and verify the
move:

1J$$
T$$
-4L$$
T$$
-5L$$
T$$
OJ$$
T$$

1J says jump to line 1.

Line 5 minus 4 equals line 1.

This works even though you subtracted too much.

OJ says jump to line I of buffer.

6. Position the C.P. after "segment" in line two:

@

®

~ D.

7. The C.P.
as line 5:

A.

B.

D.

2J$$
12M$$
IL$$
12M$$
SSEGMENT$$

"segment" is 5 character positions into line two.
Line one plus one line (lL) equals line two.

Search for "segment".
3J$$
-13M$$

Include the NEW-LINE character and spaces when you count
back.

is at line one. Insert the character string "DATA GENERAL CORPORATION"

IDATA GENERAL CORPORA TION<NEW-LINE>
$$ Inserts the string as line one, the current C.P. location.
5J$$
TDATA GENERAL CORPORA TION<NEW LINE>
$$ CP moves to line 5, nothing typed, error!
5J$$
IDATA GENERAL CORPORA TION<NEW LINE>
$$
4L$$
CDATA GENERAL CORPORATION<NEW LINE>$$

CP moves to line 5, then error!

3-89

3-90

8. You have just inserted line S. The command and response for verifying the C. P. location are:

A. T$$
DATA GENERAL CORPORATION (t) WRONG DISPLAY.

B. T$$
(t)DATA GENERAL CORPORATION C.P. IN WRONG PLACE.

© T$$ Yes, C.P. is positioned after NEW-LINE,
(t) now at an empty line 6.

D. T$$
DATA GENERAL CORPORATION (t) WRONG DISPLAY.

9. The C.P. has been moved to the end of line five. Delete the fifth line that you just inserted.

A. SK$$
B. SJ$$

K$$
© IL$$

IK$$
@ SJ$$

IK$$

Deletes nothing.
Almost, but without a number specified with K,

nothing is deleted.
Moves C.P. to front of line S and I with K deletes

one line.
Similar to B, only this time the required "I" is

specified.

10. The C. P. is at line one. Change "1979" to "1980".

A. 4J$$ Inserts 1980 after 1979.
SI979$$
11980$$

B. 4J$$ Inserts 1980 before 1979.
SI979$$
-4M$$
11980$$

C. 4J$$ Inserts 1980 before 1979.
SAPRIL 3,$$
11980$$

@ CI979$1980$$ Changes 1979 to 1980.

11. You just changed "1979" to "1980". Verify the change:

ffi T$$
B. L$$

T$$
C. lL$$

T$$

® OT$$

Displays current line.
Moves C.P. to front of line and

displays whole line.
No. Moves C.P. to next line and displays it.

Yes. "0" requests display of line from beginning to C. P.
location.

12. The C.P. is at line one. Delete "WRITTEN" from line four:

@

®
©

D.

4J$$
7D$$
CWRITTEN$
SWRITTEN$$
-7D$$
DW~ITTEN

Move C.P. to line 4 and delete 7 characters

Deletes "WRITTEN"
Yes. The search moves C.P. after "WRITTEN".

Negative 7 deletes seven characters.
No, error.

PART II ANSWERS FOLLOW
ON THE NEXT PAGE

3-91

Part II Matching Columns

Match the command on the left with the functional description on the right.

COMMANDS FUNCTIONS

2 C 1. Delete lines of text.

8 J 2. Search for string, delete it, insert another string.

4 D 3. Insert string at C P location.

9 L 4. Delete characters.

6 S 5. Search for string in buffer, put, yank (if there are open fIles).

1 K 6. Search for string in buffer.

11 T 7. Move C.P. character positions.

7 M 8. Move CP to beginning of specified line, relative to start of buffer.

S N 9 Move CP to beginning of a line, relative to current line.

10 #T 10. Display contents of entire buffer.

3 I 11. Display contents of current line with CPo

.... ;.: ... :.

3-92

A SCORE OF 19 CORRECT QUESTIONS OUT OF THE 23 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MA Y HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE
WITH THE NEXT SEGMENT IN THE STUDENT GUIDE.

. .•.. :.:.: ...

3-93

3-94

Abstract

TEXT EDITOR
LAB

This Lab exercise covers the commands discussed in Module Three.

Directions

This lab is applicable whether or not you have access to a functional system. The sequence of steps
is the same as for previous labs:

1. Cover the answers.

2. Write your answer in the blank space.

3. Check your answer against the answer provided.

4. Try the sequence on your system.

. ... : .

It is assumed that your system is functioning and the console is displaying the eLI prompt. If not,
follow the directions in Module Two for bringing up your system.

1. Bring SPEED in for execution. Show the system's response:

**

) XEQ SPEED J
SPEED REV 1.00

XEQ may be abbreviated to XE or X.
You may append the "/0" switch to SPEED to turn on display mode (= 1 0). You also may have
a later revision of SPEED.

Use the simple version as shown.

Do it on your system.

3-95

3-96

2. Open a file named TEST for output and verify the operation (i.e., show which files are open).
Show the system's response:

!FUTEST$$
!F?$$
Global:

Local:

Inpuf File - None
Dufpuf File - TEST

Inpuf File - None
Dufpuf File - None

The FW command opens a file for output.
The F? command displays the open files.

Remember to tenninate each command with the CONTROL-D sequence.

Do it on your system.

Our lab environment is a dual diskette with a hard-copy Dasher tenninal (6042).

3. Insert the following text as five lines in your edit buffer: (Show the command and response.)

"Key factors in selecting candidates are:
1. positive professional attitude;
2. concise communications;
3. solid technical background;
4. independent motivated thinking."

, I','

! IKEY FACTORS IN SELECTING CANDIDATES ARE: 1
1. POSITIVE PROFESSIONAL ATTITUDE.; 1
2. CONCISE COMMUNICATIONS.; 1
3. SOLID TECHNICAL BACKGROUNDi)
4. INDEPENDENT fo10TIVATED THINKING.)
$$

The I command inserts text into the buffer at the current location of the C.P.

Do it on your system.

Note: terminate each line with the new line or line feed. Terminate the command string with
the CONTROL-D.

3-97

3-98

4. Display the newly inserted text. Show the C.P. location.

!#T$$
KEY FRCTORS IN SELECTING CRNDIDRTES RRE:
1. POSITIVE PROFESSIONRL RTTITUDE;
2. CONCISE COMMUNICRTIONS;
3. SOLID TECHNICRL BRCKGROUND;
4. INDEPENDENT MOTIVRTED THINKING.

The T command, with the # prefix, displays the entire buffer (not the C.P.).

Do it on your system.

Note that the C.P. is positioned after the last character (line-feed) inserted into the text. This
requires two commands. If your C.P. shows up at the end of the fifth line, then you failed to
insert the last new-line. Use the insert command (I) to get it in.

5. Move the C.P. to the beginning of the buffer and verify the results by displaying the new
C.P.location.

REMEMBER: TO GET THE MAXIMUM
BENEFIT OUT OF THIS EXERCISE,

YOU SHOULD NOT LOOK AT THE ANSWER
UNTIL YOU HAVE WRITTEN OUT YOUR

COMPLETE ANSWER.

! lJ$$
! T$$

(-")KEY FACTORS IN SELECTING CANDIDATES ARE:
!

1J moves the C.P. to line one in the buffer.

The T command displays the current line and C.P.location.

Do it on your system.

This could have been entered as one command line (lJT$$).

3-99

6. Find TECHNICAL. Verify the operation by displaying the line and C.P.

!ST£CHNICAL$$
!T$$
3. SOLID T£CHNICAL(A) BACKGROUND;

The S command searches for the specified text. S uses the C.P. as its reference point, unless
specifically stated otherwise.

Try it.

Note that the C.P. is positioned after TECHNICAL . If you received an error message then check
your typing of the command and your text.

You might also use the N or Q commands for the search.

3-100

7. Use the L command to move to line two. Verify the move by showing the new location
of the C.P.

**

!-2L$$
! T$$
(A)l. POSITIVE PROFESSIONAL ATTITUDE.i
!

You left the C.P. in the fourth line (after TECHNICAL).
-2L moves the C.P. backwards 2 lines.
T displays the line with the C.P.

Try it on your system.

The minus L. command moves the C.P. backwards (upwards) in your text from the C.P.'s current
line position. The operation is a simple subtraction.

This may be entered as one line (- 2LT$ $).

3-101

8. Delete the third line. Verify the operation by displaying the new buffer contents.

**

!3J$$
! 1K$$
!#T$$
KEY FACTORS IN SELECTING CANDIDATES ARE:
1. POSITIVE PROFESSIONAL ATTITUDE;
3. SOLID TECHNICAL BACKGROUND;
4. INDEPENDENT MOTIVATED THINKING;
!

3J forces the C.P. to line three in the buffer.
1 K deletes one line
Yz
#T displays the entire buffer, minus the deleted lines.

Note: The 1 must precede the K to delete one line.

Try it on your system.

This may be entered as one line (3J1KTSS).

3-102

9. Change BACKGROUND to FOREGROUND. Verify the result by displaying the new
line.

**

!CBACKGROUND$FOREGROUND$$
! T$$
3. SOL I D TECHNICAL FOREGROUNDf·".>.i

The C command searches for the first string, deletes it, and inserts the second string.

Try it on your system.

Note: be very careful with spaces in the change command. The character strings are separated by
the ESCAPE character, which is echoed as a single dollar sign ($).

3-103

10. Use the M .and D commands to delete PROFESSIONAL from line two. Show the
results:

**

!2..J$$
! 121'1$$
! 120$$
! T$$
1. POSITIVE (A) RTTITUDE.;

Once again we used the J command to move the C.P. to the specified line (2).

12M moves the C.P. 12 characters to the right.
12D deletes 12 characters following the C.P.

The M and D commands require accurate counting of-characters. Include the space and period
as one character each.

Try it on your system.

3-104

11. Write your text to the output fIle. Determine what remains in your buffer:

**

!P$$
!#T$$
k.E~·' FRCTORS IN SELECTING CRNDIDRTES RRE:
1. POSITIVE RTTITUDE;
3. SOL I D TECHN I CRL FOREGROUND.;
4. INDEPENDENT NOTIVRTED THINKING.;

The P command writes the buffer to the opened output fIle.

The P' command copies out the buffer, but does not clear it. The buffer remains intact.

Try it on your system.

If you receive an error, check your fIle status with the F? command.

3-105

12. Close the output fIle. Return to C.L.I. Display the status of TEST.

!FC$$
!H$$
Conf i rm? YES)

) FI/AS TEST l
DIRECTORY @DPX1:

TEST
.>

FC closes all open files.
H returns to the parent program.

TXT 24-,..IUL -79 18: 46: 38

The CLI FILESTATUS command displays the status of TEST.

Try it on your system.

131

The FC closes all fIles. Speed prompts for an exit confmnation because there is text in the
edit buffer.

3-106

THIS CONCLUDES THE FINAL LAB EXERCISE FOR SPEED.
SHUTDOWN YOUR SYSTEM AND CONTINUE TO
MODULE FOUR.

3 .. 107

MODULE FOUR
MP/OS PROGRAM DEVELOPMENT

MODULE FOUR

MP/OS PROGRAM DEVELOPMENT

Abstract

This module instructs in the concepts and procedures involved in getting your source language
programs into executable form. It is assumed that you already know how to flowchart and code at
least one programming language, and these topics will not be covered here. MP/OS currently
handles MP/Fortran, MP/Pascal, and assembly languages. This module discusses all three of these
languages.

The module is divided into the following segments:

*
*
*
*
*
*
*

The program development cycle on MP/OS systems
Macroassembler Concepts.
Macroassembler Procedures.
MP/Fortran Compilation
MP/Fortran Assembly
MP/Pascal Compilation
Binding and execution of assembly, MP/Pascal, and MP/Fortran mes

You have the option of completing only those sections associated with your language, or you may
complete all of the sections.

Goal

Upon completion of this module you will be able to develop a given source language program for
execution under the MP/OS operating system.

Objectives

Upon completion of this module, you will be able to:

1. State, in your own words, the purpose, input, and output of the Macroassembler and compiler
utilities;

4-1

4-2

2. Given a eLI compiler and Macroassembler command line, identify and state the purpose of
switches and arguments;

3. List the reference material available on compiler and Macroassembler commands (text and
system sources);

4. Given a eLI compiler and Macroassembler command line, describe the results.

5. Write an appropriate eLI compiler or Macroassembler command for compiling or assembling
a given source program. State the output names with extensions.

6. Given a compiler or Macroassembler error message:
A) identify the possible cause of the error,
B) reference a solution to the error.
e) write a eLI command and/or compiler command to correct the error.

7. State, in your own words, the purpose, input and output of the binder utility.

8. Given a eLI binder command line, identify and state the purpose of the switches and
arguments;

9. List the reference material available on binder commands (text and system sources);

10. Given a eLI binder command line, describe the results;

11. Write a eLI binder command line to bind a given object me into executable state. State the
full output names with extensions;

12. Given a binder error message:
A) identify possible causes.
B) reference a possible solution,
C) write a solution with a eLI command line and/or eLI series, and/or binder

command line.

PROGRAM DEVELOPMENT

Abstract

This section introduces you to the sequence of utilities required for developing executable programs
under the MP/OS Operating System.

Objectives

Upon completion of this section you will be able to:

1. State, from memory, the sequence of steps required for developing a given program into
executable form.

2. State the purpose of:
A) Macroassembler
B) compilers
C) binder
D) debugger
E) Text Editor

3. Describe the sequence of events occurring in the system with each step in Program
Development.

4. Define the input and output requirements of each step of Program Development.

Directions

1. Tum to figure 4-1 on the next page of your Student Guide.

2. Listen to the audio-tape for this segment.

4-3

C0

(2)

CD

0

0

0

o

0

@

@

@

4·4

or
WRITE

SOURCE
CODE

USE SPEED
TO ENTER

SOURCE CODE

MACROASSEMBLER
TRANSLATES

USE BINDER
TO BUILDA

PROGRAM FILE

EXECUTE
PROGRAM

FILE

THE
PROGRAM

..

USE PASCAL
USE

FORTRAN
COMPILER

COMPILER

NO_

NO-

..

BIND OBJECT
FILE WITH
DEBUGGER

PROGRAM DEVELOPMENT STEPS

Figure 4·'

MAKE
CORRECTIONS

TO SOURCE CODE

8

r

MP/OS PURE

MP/OS IMPURE

CLI

PAGE ZERO

'MEMORY'

DISK DEVICE

SPEED

MASM I
DEBUGGER

BINDER I
.LB FILES I
FORT41

TYPICAL MEMORY CONFIGURATION AT SYSTEM INITIALIZATION

Figure 4·2

4·5

4-6

)XEQSPEED ~

SPEED REV 000

MP/OS PURE

MP/OS IMPURE

SPEED

PAGE ZERO

'MEMORY'

INVOKING SPEED

Figure 4·3

DISK DEVICE

MASM I
FORT4 I
DEBUGGER I
BINDER I
oLB FILES

!I ...

$$

I !FWYRRAB$$
!P$$
!FC$$

MP/OSPURE

MP/OS IMPURE

SPEED

PAGE ZERO

'MEMORY'

DISK DEVICE

§]
I SPEED I
I MASM I
I FORT4 I
I DEBUGGER I
I BINDER I
I.LB FILES

-..-I YRRAB

CREATING THE TEXT OUTPUT FILE

Figure 4·4

4·7

4-8

!H$$
CONFIRM? YES l

)-

MP/OS PURE

MP/OS IMPURE

CLI

PAGE ZERO

'MEMORY'

=--. ==~~====~~ - .--=

DISK DEVICE

I SPEED I
I MASM I
I FORT4 I
I DEBUGGER I
I BINDER I
I .LB FILES I

YRRAB

EXIT SPEED & RETURN TO CLI

Figure 4-5

cp ,
)XEQ FORT4 YRRAB)
•
•
•

MP/OS PURE

MP/OS IMPURE

PAGE ZERO

'MEMORY'

DISC DEVICE

~
I SPEED I
I MASM I

I DEBUGGER I
I BINDER I
I .LB FILES I

__ ---II~ YRRAB.SR

COMPILING THE SOURCE FILE

Figure 4·6

4·9

4-10

PROGRAM IS RELOCATABLE

•
•

.TITL YRRAB

MP/OS PURE

MP/OS IMPURE

MASM~--+---­

YRRAB.SR

YRRAB.OB

PAGE ZERO

'MEMORY' o

DISK DEVICE

§J
I SPEED I

FORT4

DEBUGGER

BINDER I
.LB FILES

YRRAB I
YRRAB.SR

YRRAB.OB

INVOKING THE MACROASSEMBLER

Figure 4-7

~"
,"-

MP/OSPURE

MP/OS IMPURE

CLI

PAGE ZERO

'MEMORY'

DISK DEVICE

SPEED

MASM I
FORT4 I
DEBUGGER I
BINDER I
.LB FILES

YRRAB I
YRRAB.SR

YRRAB.OB

MACROASSEMBLER TERMINATES, CLI RETURNS

Figure 4-8

)XEQ BIND VRRAB l
•

MP/OS PURE . tZ:Zb'/f?d
- .-

MP/OS IMPURE DISK DEVICE

@!J
SPEED

.LB FILES
MASM

VRRAB.OB FORT4 I
PAGE ZERO DEBUGGER

'MEMORV' BINDER

.LB FILES

I VRRAB I
I VRRAB.SR

VRRAB.OB

I VRRAB.FR

VRRAB.PR

INVOKING THE BINDER

Figure 4-9

4-12

MP/OS PURE

MP/OS IMPURE

CLI

PAGE ZERO

'MEMORY'

DISK DEVICE

~
I SPEED I
I MASM I

FORT4 I
DEBUGGER I
BINDER I
.LB FILES

YRRAB I
YRRAB.SR

YRRAB.OB

YRRAB.FR

YRRAB.PR

BINDER TERMINATES, CLI RETURNS

Figure 4-10

4-13

~EQ YRRAB ~

MP/OS PURE

MP/OS IMPURE

YRRAB.PR

PAGE ZERO

'MEMORY'

EXECUTING THE PROGRAM FILE

Figure 4-11

4-14

DISK DEVICE

@O
I SPEED I
I MASM I
I FORT4 I
I DEBUGGER I
I BINDER I
I YRRAB I
I YRRAB.OB I

YRRAB.PR

)XEQ BIND/D YRRAB l

MP/OS PURE

MP/OS IMPURE

{
DEBUGGER

YRRAB.OB

PAGE ZERO

INVOKING THE DEBUGGER

Figure 4-12

DISK DEVICE

~
I SPEED I
I MASM I
I FORT4 I

DEBUGGER

BINDER I
.LB FILES

YRRAB I
YRRAB.SR

YRRAB.OB

I YRRAB.FR I
YRRAB.PR

4-15

4-16

T
)DEBUG YRRAB l
•
•
•

MP/OSPURE
=-- . - .-

MP/OS IMPURE DISK DEVICE

@!J
I SPEED I

DEBUGGER

YRRAB.PR ! MASM I
FORT4 I
DEBUGGER I

PAGE ZERO

'MEMORY'
BINDER I
.LB FILES I
YRRAB I
YRRAB.SR I
YRRAB.OB I

I YRRAB.FR I
YRRAB.PR

DEBUGGING THE PROGRAM FILE

Figure 4-13

TOPICS

PROGRAM DEVELOPMENT SIMPLIFIED

SPEED

----~ TRANSLATE \-4-------

OBJECT FILE
BINDER

PROGRAM FILE

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

4-17

4-18

PROGRAM DEVELOPMENT
QUIZ

Write the answers to the following questions in the space provided.

1. State, in MP/OS terminology, the major steps in program development.

2. State the purpose, input, and output of the following utilities:

Macroassembler: Purpose: ___________________ _

Input: ____________________ _

Output: ___________________ _

Compiler: Purpose: ___________________ _

Input: ____________________ _

Output: ___________________ _

Speed:
Purpo~: ___________________ _

Input: ____________________ _

Output: ____________________ _

Debugger: Purpose:. __________________ _

Input: ___________________ _

Output: ___________________ _

Binder Purpose: __________________ _

Input:. ___________________ _

Output: __________________ _

3. Each utility program is loaded into _______ space, which begins at address __

4. Each utility program is invoked by a ________ command.

S. Each utility program, by default, stores its output on ____________ _

NOW CHECK YOUR ANSWERS

ON THE NEXT PAGE

4-19

4-20

PROGRAM DEVELOPMENT
QUIZ ANSWERS

1. The major steps in Program Development are:

Enter source code into the system through SPEED
Translate the source code into object code through the compiler

and/or Macroassembler;
Bind the object code into a program file;
Debug the program file (if necessary);
Execute the fmal program file.

2. The purpose, input, and output of the utilities:

Macroassembler: Purpose: Translate MP/Assembly Language Source Code
into Object Code.

Input: Source Code in ASCII format
Output: Object file, or Object code, or Object module

Com piler: Purpose: Translate MP/Pascal or MP/Fortran source code
into object code (with the assistance of the
Macroassembler).

Input: ASCII characters (source code).
Output: Object file or object code

Speed: Purpose: Create and modify source files.
Input: ASCII characters entered on the console.
Output: ASCII source code file.

Debugger: Purpose: Monitors program execution, allows stops,
starts, displays, and alterations.

Input: Program file.
Output: Program file.

Binder: Purpose: Bind object code into a program file.
Input: Object code or object modules and Library Files.
Output: Program file.

3. Each utility is loaded into user space, which begins at address 400.

4. Each utility program is invoked by a eLI command.

5. Each utility program stores its output on the s)!.stem disc or Disc Device.

A SCORE OF 19 CORRECT ANSWERS OUT OF THE 23 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN
CONTINUE WITH THE NEXT SEGMENT IN THE STUDENT GUIDE .

....... ;

4-21

4-22

MACROASSEMBLER CONCEPTS

Abstract

This segment discusses the concepts involved in translating MP / Assembly Language Source Files
into Object Files.

It is highly recommended that Pascal and Fortran programmers complete this segment.

Objectives

Upon completion of this segment you will be able to:

1. State, from memory, the possible Macroassembler outputs.

2. Name, derme, and give examples of two Macroassembler input modes.

3. Given a Macroassembler program listing, identify examples of Macroassembler input modes.

4. Given a Macroassembler program listing, identify the following:

A) line number
B) error flag
C) location counter
D) relocation flag
E) data field
F) source line

5. Given an example of a cross-reference listing, identify:

A) symbol
B)
C)
D)

Directions

relative address
reference page and line
symbol type

1. Tum to the figure 4-14 in your Student Guide.

2. Listen to the tape for this segment of Module Four.

ERROR

LISTING

ASCII

SOURCE
CODE

MACROASSEMBLER

OBJECT

FILE

BINDER

PROGRAM

LISTING

MACROASSEMBLER INPUT AND OUTPUT

Figure 4-14

4-23

4-24

ISTRING MODEl

character strings accepted literally.

INORMAL MODEl

character strings accepted as a series of atoms which may have symbolic interpretation.

MACROASSEMBLER INPUT MODES

Figure 4-15

ISTRING MODEl

character strings accepted literally

1. COMMENTS

2. MACRO DEFINITIONS

3. TEXT STRINGS

;THIS IS A COMMENT.

.MACRO

LOA

LOA

MUL

STA

.TXT

.TXTM

.TXTE

SAMPLE

O,LENGTH

1,WIDTH

0,1

O,AREA

/THIS IS A SAMPLE TEXT STRING/

THE WIDTH IS AREA LENGTH

ATHE MULTIPLY SYMBOL IS A

MACROASSEMBLER STRING MODE INPUT

Figure 4-16

4-25

INORMAL MODEl

Character strings accepted as I ATOMS I

1. SYMBOLS EXAMPLES
PERMANENT SYMBOLS

Pseudo ops .BLOCK .LOC
Pseudo ops & values .PASS, .MCALL

SEMI-PERMANENT SYMBOLS
Instruction Mnemonics JMP,MOV

USER-DEFINED SYMBOLS
Location Name TEMP1
External Name POST
Global Name BASE

2. TERMINALS
OPERATOR TERMINALS

Shift B
Arithmetic +-,
Logical &, !
Relational <,>

BREAK TERMINALS
Spaces fl, 0, t;
Parentheses ()
Brackets []

Comments
<CR> New-line

3. NUMBERS
UNSIGNED o to 65535
SIGNED -32, 768 to 32,767

4. SPECIALS
INDIRECT BIT @

NUMBER SIGN #
ASTERISKS **

MACROASSEMBLER NORMAL MODE INPUT

Figure 4-17

4-26

· TITL
0r-------l·~LI . .!;.,Et~·JTw.1

- .NREt:

PROG_ONE~TITLE IDENTIFIER
S"TRRT .; EN TR 'r' POIf-.fT
-1 .: PURE CODE

0f-------I: NH I N ROUT I NE

S"TRRT: LOR
?OPEN

--- .JHP
S"TH

0-....... LOOP: LOR
LOR
LOR

ft., PRTH

.. ERTN
0., CHRN
O .. CHRN
1 .. S"TPTR
2 .. 36

¥WfHR~·?t1RITE OS
0f---------I.~...I/'1P E~: TN

OBZ nlEN
.)NP RUTHR

.: B'r'TEPOINTER TO PRTHNRNE

.; OPEN CHRNNEL TO @TTO

.: ERROR ON OPEN . .. CL I

.; S"RVE CHRNNEL #

.: IN CRSE IT ItlHNOEREO

.:B'r'TE POINTER TO S"TRR LINE

.: 36 OCTRL B~JTE NSG

.:ORTR SENSITIVE OPTION

.: E~:ROR ON loJR I TE .. TO CL I

.: LOOP 20 TINES

.; l,/RITE RGRIN., UNTIL 0

A MACROASSEMBLER INPUT STREAM

Figure 4-18

4-27

SYMBOLIC INPUT NUMERIC OUTPUT

ADD 2, 1 cJ= 11 11 0 I 0 1 11 1 0 I 0 0 I 0 0 I 0 I 0 0 0 I
MASM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MACROASSEMBLER OUTPUT

Figure 4-19

4-28

ERROR

LISTING

ASCII

SOURCE
CODE

MACROASSEMBLER

OBJECT

FILE

BINDER

PROGRAM

LISTING

MACROASSEMBLER INPUT AND OUTPUT

Figure 4-20

4-29

0001 PROG_ NP.···OS A8SEf'T8LER REV 1 .00 06: 18: 79 11.····51.····42
. TITL PROG_ONE.: TITLE IDENTIFIER

(J2 . cNT Sft1~r ,; ENTR~~ PO It..,T
@3 0800Bl .NREL 1 ;PURE CODE
84
0.':'
06

.: NRIN ROUTINE

I:; 0001:.1B! 020434 STRF.:T: LO;:':,
-'!'OPEN
)NP
STA

@., PRTH ; B'r'TEPOINTER TO PRTHNRNE
.: OPEN CHRNNEL TO @TTO

!39 00f1@3 I @@t1426 ER TN ; ERF..'OF..' ON OPEN . .. CL I
1 @ @tt@04! 040427 e., CHRN ; SAUE CHANNEL #

20 @tttt@4tt . LOC 40 ;LOC 40 HAS ..
21 08840 888888' STI(; .. THE STRC/(POINTER
c.'2 @1:;1041 ftl;;1ftl;;1l:;tO' STI-:.:· .; LOCRTION 41
23 081:.N2 @(10045' 8TI(+45 .iLOC 42 HRS STRC/(
24
'"11:"
'::'.,1 . END START ; END OF RSP1 INPUT
26

:n:[10f1fjfj TOTRL EF..'RORS., 00000 PRSS 1 ERRORS 0003 F'ROG_

o 7 0 0 000 ! 0 2 0 4 3 4 START: LDA 0, PATH .,.

1 234 5 6 7 8 9 10 11 12 13 14 15 16 17 •

LINE
NUMBER

OR
ERROR
FLAG

4-30

,
LOCATION
COUNTER , OAT: FIELD I I ' SOURCYE LINE

DATA FIELD RELOCATION FLAG

RELOCATION FLAG

A MACROASSEMBLER PROGRAM LISTING

Figure 4-21

LUlIT

COLUMN NINE FLAG MEANING

(space) Absolute Address

Page zero relocatable Address

Impure code Address

Pu re code Address

The location counter relocation flag indicates where the instruction or data field is located

in memory.

INSTRUCTION ADDRESS RELOCATION MODE SYMBOLS

Figure 4-22

4-31

DATA FIELD RELOCATION FLAG

(space)

"

&

$

FLAG MEANING

Absolute

Page zero relocatable

Impure code, word relocatable

Pure code, word relocatable

Impure code, byte relocatable

Pure code, byte relocatable

Displacement field is externally defined

The data field relocation flag indicates where the instruction's data field is located in memory.

4-32

DATA FIELD RELOCATION FLAGS

Figure 4-23

RELOCATION FLAG

SYMBOL SYMBOL
TYPE OF SYMBOL

NAME ADDRESS PAGE & LINE WHERE REFERENCED
~ r--"'-'\ f

~
\

AUTHR tl@8t11B! 1 15# 1./18
CHRN @/:.1tlB33 ! 1.····10 1 11 1.···'24 1.····36#
CLEAN BB@t122 ! 1/24#
ERTN ftt!tOft31 ! 1/'69 1/16 1.····23 1.· ... 26 1.·<31#
LOOP tlL1Bt1B5.1 1/11 #
frtESSG 0t1tll:.it15 t 17"2t:.l#
NF'TR 01:.10856 ! 1/20 1/.55#
-pRfft m.,1f;ltJ34 ! ... f-T&T t.rST#
START tl00l1ty8 ! EN 1 02 1.····07# i:.····25
STK tl t1' 1:.1 lli't1' ~ ::'~"'''19# 2.·· .. 21 2' ~·2 .~ ."":-7

L.a,' ~'_'

STPTR tl@@@4t1 / 1.····12 1.····41 #
TNEN 8l~8tt5~i'1 1.71'1 1/'54#
?CLOS tll12283 ! NC 1, 25
'ff tiN.Jifftt:'3 ~# t:·· ... J6# 1, 23# 1/26# 1.· .. ·32#
? -. .1 O@@@€Hl; 1.····09# 1 16# 1.····23# 1 .. ···26# 1.····32#
-?I{ ftft0fttJ2 1.·"'16# 1/2.J#'
?OPEN 0@1743! NC 1/08
?f.:ETU ftffl7t2t"tJ! f'tC J/.Jl
?S'r'SE tl@08@1$ r~-":r'[1 1 t'19 1 .. ···16 1.···'23 1.·· .. 26 1.····J2
fPJR l' T ftt'if'"2UfJ-! -fft"': 1:>"1-5 1.·-rU~:E

SYMBOL MEANING

(spaces) User symbol

EN Entry (defined in .ENT statement)

EO Overlay entry (defined in .ENTO statement)

XD External displacement (defined in .EXTD statement)

XN External normal (defined in .EXTN statement)

NC Named common (defined in .COMM .tatement)

CROSS-REFERENCE SYMBOL TYPES
A MACROASSEMBLER CROSS-REFERENCE LISTING

Figure 4-24

4-33

TOPICS

• MASM CONCEPTS

• MASM INPUT (MODES, STRING & NORMAL)

• MASM OUTPUT OPTIONS (ERROR LIST, PROGRAM LIST)

.. . AND CHECK YOUR PROGRESS

4-34

MACROASSEMBLER CONCEPTS
QUIZ

Circle the appropriate answers to the following questions. Note that there may be more than one
correct answer to a question.
PART I
1. Macroassembler output may include:

A. Error listing
B. Object me
C. Program listing
D. Cross-reference listing

2. The Macroassembler accepts input in the following modes:
A. String
B. Normal
C. Extended
D. Basic

3. Examples of string mode Macroassembler input include: (the question refers only to the
circled area)

A. LDA I,BTPTR [;LOAD THE BYTEPOINTER I
B. .TXT I/THE MICRON HAS LANDED/ I
C. ILDAI 2,CHAN

D. SUB~ 2,2

4. Examples of normal mode Macroassembler input include: (The question refers to the circled
area)

A. I START:! STA 3,SAV ;SAVE RETURN ACCUMULATOR

B. START: \STAI 3,SAV ;SAVE RETURN ACCUMULATOR

r-"""I

C. START: STA 3 , SAY ;SAVE RETURN ACCUMULATOR
L......J

D. START: STA 3,SAV I;SAVE RETURN ACCUMULATORI

4-35

PART II

Fill in the spaces with the answers to the following questions:

Following is a line from a Macroassembler program listing:

II 00005!020560 OPEN: LDA O,LPPTR ;BYTE POINTER TO LPT

Identify the contents of the following fields:

5. Location counter: _________________________ _

6. Error flag: ____________________________ _

7. Line number_· ___________________________ _

8. Source line: ____________________________ _

9. Statement relocation flag: _______________________ _

10. Data field relocation flag: _______________________ _

Following is a line from a Macroassembler cross-reference listing:

START 000000 EN 1/02 1/07 3/39

Identify the following elements:

II. Symbol: ___________________________ _

12. (Relative) address of symbol: _____________________ _

13. Pages where referenced: _______________________ _

14. Lines where referenced: _______________________ _

15. Type ofsymbol: _________________________ _

16. Relocation flag: __________________________ _

4-36

NOW CHECK YOUR ANSWERS

ON THE FOLLOWING PAGE.

4-37

4-38

1.

MACROASSEMBLER CONCEPTS
QUIZ ANSWERS

Macroassembler output may include:
@ Error listing
® Object file
© Program listing
@ Cross-reference

In print, if requested, else on screen
as .OB, by default if error-free
in print, if requested, or on disc, if specified.
in print, only if requested, or on disc if specified.

2. The Macroassembler accepts input in the following modes:
@ String Examples: text strings and comments
® Normal Examples: instruction mnemonics
C. Extended Not applicable
D. Basic Incorrect

3. Examples of string mode macroassembler input include:

® LDA I,BTPTR I;LOAD THE BYTEPOINTERI (COMMENT)

® .TXT liTHE MICRON HAS LANDED/! (TEXT STRING)

© ILDAI 2,CHAN (SEMI-PERMANENT
SYMBOL)

D. SUBEI 2,2 (SPECIAL)

4. Examples of normal mode macroassembler input include:

A. I START: I STA 3,SAV ;SA VE RETURN ACC (UDP SYMBOL)

B. START: ISTA! 3,SAV ;SA VE RETURN ACC (SEMIPERM SYMB)

C. START: STA 3 [JSAV ;SA VE RETURN ACC (BREAK TERM)

D. START: STA 3,SAV I;SA VE RETURN ACC! (COMMENT)

Following is a line from a Macroassembler program listing:

11 00005!020560 OPEN: LDA O,LPPTR ;BYTE POINTER TO LPT

Identify the following elements:

5. Location counter: 00005

6. Error flag: None, error-free line

7. Line number: ..1l

8. Source line: LDA O,LPPTR

9. Relocation flag: ,
-:....

10. Data field relocation flag: SPACE or BLANK

Following is a line from a Macroassembler cross-reference listing:

START 000000 EN 1/02 1/07 3/39

Identify the following elements:

11. Symbol: START (user defmed symbol)

12. (Relative) address of symbol 000000 (first address in program)

13. Pages where referenced: _1_(Twice) and 3.

14. Lines where referenced: 2 and 7 (pj.g~l and 39 (p.Jge 3L

15. Type of symbol: EN (Entry point)

16. Relocation flag: SPACE or BLANK

4-39

4-40

A SCORE OF 13 CORRECT ANSWERS OUT OF THE 16 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN
CONTINUE WITH THE NEXT SEGMENT IN THE STUDENT GUIDE .

..... : : ...

MACROASSEMBLER PROCEDURES

Abstract

This segment covers the procedures for translating assembly language programs from source code to
object code.

Objectives

Upon completion of this segment you will be able to:

1. Given a CLI Macroassembler command line, identify and state the purpose of switches and
arguments;

2. List the reference material available on Macroassembler commands (text and system);
3. Given a CLI Macroassembler command line, describe the results;
4. Write an appropriate CLI Macroassembler command line to assemble a given assembly language

source program. State the output names with extensions;
5. Given an assembler error situation:

A) Identify possible causes,
B) Reference solutions,
C) Write CLI and/or Macroassembler lines to correct the error.

Directions

1. Tum to Figure 4-25 on the next page of the Student Guide.

2. Listen to the tape for this segment.

4-41

4-42

XEQ MASM
'-.,,-J '-.,,-J

[FUNCTION SWITCHES] PATHNAMES [ARGUMENT SWITCHES] l
\.. v J \.'---"v~_-,J

XE REQUIRED
X

OPTIONAL
IE
IF
IL
IK
IL = Listfile
1M
IN
10
IP
IPS = filename

IS
IU
IZ

REQUIRED
file to be assembled

file.SR
file

CLI MACROASSEMBLER COMMAND LINE

Figure 4·25

OPTIONAL
IS

SYMBOL

IE = filename

/E

/F

/K

/L

/L-list­
file

/M

/N

/0

ACTION

Gives the name filename to the object me. Ordinarily the object me has the
name of the first source me in the assembly command line, less the extension
.SR (if any) and with a new extension .OB.

Suppresses the error listing if there is a listing me. If there is no listing me,
then errors will be displayed on the console despite the /E. See Appendix F
for a description of error flags.

Generates or suppresses form feeds as required to produce an even number of
assembly pages. This keeps the fIrst page of successive listings on the outsides
of paper folds, making refolding unnecessary. By default, the macroassembler
generates a form feed at the end of a listing, whether the number of pages is
odd or even.

Keeps the macroassembler's temporary symbol me at the end of assembly.
Since virtually no programs require the use of this me, the macroassembler
deletes it by default.

Produces a listing me on the line printer. Listings always includes a cross
reference of symbols in the program showing the page and line number where
each symbol is used. If you use the /L switch, program MASMXR.PR must be
present in the same directory as the macroassembler itself. MASM.PR itself
is found, but, if it is missing, then an error message will be displayed at your
console.

Produces a listing me, but instead of sending it to the line printer, sends it
to the me designated by listfile. If there is already a listing in this file, then
the new listing allows it. Listfile can be any mename or pathname permitted
by the operating system.

Flags any redefInition of semipermanent symbols as multiple defInition errors
(M).

Produces no object me.

Overrides all listing control pseudo ops: . NOCON, .NOLOC, and .NOMAC.
Also overrides listing suppression.

(CONTINUED)

4-43

IP

IPS­
filename

IR

IS

IV

IZ

4-44

Adds semipermanent symbols to the cross-reference listing. By default they
are not included.

Vsesfilename instead ofMASM.PS to build symbol table me.

Produces a binary me even if there is an assembly error. By default, if there is
an assembly error, the macroassembler does not produce a binary me.

Skips the second assembly pass (produces no.OB me) and saves the macro­
assembler's symbol table, renaming it MASM.PS. (See below, "Macro­
assembler Symbol Table Files.")

Includes user symbols in the object me. When the IU switch is also applied to
the binder command line, then the debugger is able to ftnd user symbols. This
makes debugging easier.

Lists the DGC proprietory license heading at the top of each assembly and
cross-reference page. By default this heading is not listed. Note that this
switch is useful to DGC personnel only.

CLI MACROASSEMBLER COMMAND LINE SWITCHES

Figura 4-26

I SYMBOL

Source-file
IS

ACTION

Skips the fIle named source file on the second pass of assembly. Sourcefile
must not defme any storage words. Typical fIles that might be skipped
include parameter defmition fIles and macro defmition fIles. Skipping such a
fIle on the second assembly pass does not hinder the assembly of other fIles in
the command line. It merely decreases the size of the output listing and
reduces assembly time.

MASM ARGUMENT SWITCH

Figura 4-27

4-45

,:; XEO NRS/'1.·-L=tlLPT ZOr?p)

/L ••• produce a program listing

) ,\'EI] t'1t~SN""L =f..JEBO ZORP)

/L = filename ••. send program listing to disc.

Figure 4-28

4-46

INPUT OUTPUT

ZORP ZORP.OB
CONSOLE ERROR LIST

ZORP ZORP.OB
ERROR LIST ON CONSOLE
PROGRAM LISTING ON LPT

ZORP ZORP.OB
WEBO PROGRAM LISTING
ERRORS ON CONSOLE

INPUT OUTPUT

) XEQ M~SM/B=8ARRY ZORP) ZORP BARRY.OB
ERRORS ON CONSOLE

IB = filename ... name object file with specified filename.

) XEQ MASM/E lORP)

IE ... produce error list on console.

ZORP ZORP .OB
ERRORS ON CONSOLE

ZORP ZORP.OB
TALLY PROGRAM LISTING

WITHOUT ERRORS.

ERRORS ON CONSOLE

IEIL = filename ... Write error file to disc with specified filename.

Figure 4-29

4-47

INPUT OUTPUT

PLOP ERRORS ON CONSOLE

IN ... suppress object file.

PLOP PLOP.OB
ERRORS ON CONSOLE

IR ... create object file despite errors.

PLOP ERRORS ON CONSOLE

IS ... skip pass 2, suppress object file, build MASM symbol table.

Figure 4·30

4-48

/U ... add user-defined symbols to the object files.

INPUT

ZORP
BARRY

ZORP
PLOP

/P •.. include semi·permanent symbols in cross-reference listing.

OUTPUT

ZORP.OB
BARRY.OB
ERRORS ON CONSOLE

ZORP.OB
PLOP.OB
ERRORS ON CONSOLE

) XEQ MASM/L=@LPT/Z BARRY.SRl BARRY.SR BARRY.OB

/Z •.• add DGC proprietary notice to program listing.

Figure 4-31

ERRORS ON CONSOLE
PROGRAM LISTING ON LPT
WITH NOTICE

4-49

TOPICS

• MASM PROCEDURES

• MASM COMMAND LINE
SWITCHES

ARGUMENT

• MASM INPUT

• MASM OUTPUT

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 4-32

4-50

MACROASSEMBLER PROCEDURES
QUIZ

Directions. Fill in the space with the appropriate answers.

Given the following CLI Macroassembler command line, identify the switches and arguments and
state the purpose of the switches and arguments.

XEQ MASM/L/P/U/Z MYPROG

I. Switches: _____________________________ _

2. Arguments: ____________________________ _

3. Purpose of the switches: _______________________ _

4. Purpose of the argument: _______________________ _

List three sources of information on Macroassembler commands:

5. _________________________________ __

6. _____________________________________ _

7. _________________________________ __

Given the following CLI macroassembler command lines; briefly describe the anticipated results
(assume a successful assembly):

) XEQ MASM ONEFILE

8. ___ _

) XEQ MASM/L=TWO.LS TWO

9. __ _

4-51

) XEQ MASM/B=THREE THREEFILE

10., __ ___

) XEQ MASM/N FOURPROG

11. __ ___

) XEQ MASM/U FIVEPROG

12. __ ___

4-52

NOW CHECK YOUR ANSWERS

ON THE FOLLOWING PAGE.

MACROASSEMBLER

QUIZ ANSWERS

The switches, arguments, and purposes are as follows:

) XEQ MASM/L/P/U/Z MYPROG

1. Switches:_IL-/L/U II:...
2. Arguments: MYPROG
3. Purpose of the switches: "/L" produces a listing me on the line printer, if your system is

so confIgured.

"/P" adds semi-permanent (instruction mnemonics) symbols to the cross-reference
listing. Note that some form of the "/L" switch must be included to produce a listing.

"/U" includes user symbols (e.g., labels) in the object me.

"/Z" adds the Data General proprietary license notice to the top of each listing page.
Note that some form of the "/L" switch must be included for this to be worthwhile.
Note also that this is useful to Data General employees only.

4. Purpose of the argument: "MYPROG" identifIes the source language me that is to be
assembled. The object me will be named "MYPROG.OB". Either MYPROG.SR or
MYPROG will be input to MASM.

Sources of Macroassembler information include the following:

5. The CLI "HELP" command, if your system is confIgured with this facility on your media.
6. MP/OS Utilities Reference Manual (D.G. No. 093-400002)
7. This self-study course. Also, MP/OS Assembly Language Programmer's Reference (D.G. No.

093-40000 I).

The anticipated results of the CLI command lines are as follows: (assume a successful assembly).

) XEQ MASM ONEFILE

8. "ONEFILE" is assembled. "ONEFILE.OB" is created and saved on disc. No listing is
produced. Errors are displayed on the console.

4-53

) XEQ MASM/L=TWO.LS TWO

9. "TWO" will be assembled. "TWO.OB" will be created as the object file and saved on disc.
The listing will be written to "TWO.LS" and saved on disc. Errors will be directed to the
system console (as well as the listing file).

) XEQ MASM/B=THREE THREEFILE

10. "THREEFILE" will be assembled. "THREE.OB" will be created as the object file and saved
on disc. No listing will be created or printed. Errors will be displayed on the system console.

) XEQ MASM/N FOURPROG

11. "FOURPROG" will be input to the macroassembler, but no object file will be produced.
Errors will be listed on the system console. No listing file will be produced.

) XEQ MASM/U FIVEPROG

12. "FIVEPROG" will be assembled. "FIVEPROG.OB" will be created as the object file and
saved on disc. The user symbols (e.g., labels) will be included in the object file. Note that this
makes debugging easier.

4-54

A SCORE OF 10 CORRECT ANSWERS OUT OF THE 12 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE
WITH THE NEXT SEGMENT IN THE STUDENT GUIDE.

. :.:.:.;.:.:.:.:

MACROASSEMBLERPROCEDURES

LAB EXERCISE

Directions

This lab exercise is similar to the labs in previous modules. That is, it may be completed with or
without a functional system. For maximum benefit from the exercise it is imperative that you
write in all answers before attempting to enter anything on the system.

First make sure that you have the following fIles on your media.

MASM.PR. .. The Macroassembler
MASMXR.PR. .. Produces the cross-reference listing. Not absolutely essential for

assembly, but necessary for this lab.
MSL.LB ... The macroassembler library routines.
MASM.PS ... Assembler symbol file. Contains the following:

NBID.SR. .. Nova basic instruction defmitions
NSKID.SR. .. Nova skip instruction defmitions
MPIOOID.SR. .. MP/IOO additional defmitions
SYSID.SR. .. System call defmitions
MPARU.SR. .. MP/OS user parameter file
MP200ID.SR. .. MP/200 additional defmitions (only required on MP/200 machines).

The CLI FILESTATUS command will assist you in your search. If you do not have MASM.PS you
can create it with the following procedure:

TYPE the contents of the .SR files listed above. Use the eLI TYPE command to accomplish this.
Read through the fIles to identify which macroassembler statments you need in the MASM.PS
symbol file. For example in the lab that follows, we created a MASM.PS fIle from the NBID.SR
and SYSID.SR fIles, and left out the other fIles. To do this we entered the following:

4-55

The "IS" switch indicates that the macroassembler is producing a new symbol fIle, titled MASM.PS.
This fIle is used during the assembly process.

Now enter the file titled "PROG_ONE" into your system. Use SPEED to create the new fIle. Be
very careful that the statements and statement labels are entered exactly as shown in PROG_ONE.
It is not necessary to enter the comments, although they may prove helpful. You will use
PROG_ONE as the subject of the following exercises. Once you are certain that PROG_ONE is
clean, make a backup copy of it. Use the CLI COpy command as shown:

The FILESTATUS command showed the results on our system:

rrl7RS/S ~­
OIRECTOR~' &OPX1 :

)

MASM.PS
PROG_ONE
PROG_ONE.BU

PST 18-)UN-7!1--rr89: 27
-rxr- 1~-jUN-79 15T~2-:~o

TXT 15-)UN-79 16:56:29

143368
1~
1382

You are now ready to try the questions. Remember to cover the answers until you have written in
your answer.

. -.;.:

4-56

n'F'E PROG_ONE)

STRRT:

LOOF':

HUTH/;' :

NEBSG;

CLERN;

ERTN:

· TITL PROG_ONE.; TITLE IDENTIFIER
· ENT STHRT J ENTR~" POINT
· N~.'EL 1 J PURE CODE

.; ('tHIN F.'OUTINE

LOH 0., PHTH
?OPEN
JNP ERTN
BTR 0 .. CHHN
LOR 0., CHHN
LOH L STPTR
LOH 2.1.36

'''bJR I TE O-=-'-'
JI'1P ERTN
D:5Z THEN
JI'tP HUTHR

LOH 1 .. NPTR
LOH 2., .5.5
n·JRITE OS
)NP ERTN
LOH 0., CHHN
?CLOSE
)NP ERTN
SUB 0 .. 0
SUB 1..1
SUB 2.12

?RETURN

.; ORTH HREHB

J 8'r'TEPOINTER TO PRTHNHNE
JOPEN CHHNNEL TO IPTTO
.; ERROR ON OPEN . .. CL I
.; BHVE CHHNNEL #
.; IN CHSE IT UHNOEREO
.; 8~-'TE POINTER TO STHR LINE
.; 36 OCTHL 8~''TE NSG

J OHTH SENSITIVE OPTION
.; ERROR ON l.JR I TE .. TO CL I
.; LOOP 2t.1 TI NEB
.dJRITE HGHIN., UNTIL 0

.; NSG IS .5.5 OCTHL 8~''TES
J bJR I TE ' Jl1P/OS .. ' NESSHGE
JERROR ON NRITE
.; PF-.'EP FOR CLOSE
JCLOSE CHHNNEL TO IPTTO
JERROR ON ?CLOSE
J CLEHR HCS FOR CLEHN RETUF..'N
.; . .. HC 1 HHS ERROR LENGTH
J ... HC2 HHS POINTEF-.' TO ERROR

.; TO CL I., ERROR RETURNS KEEP
CODES IN HCS

CHHN: 0 .; CHHNNEL # SHVE HREH
PHTH: . +H2

· TXT /IPTTO/.; OUTPUT TO CONSOLE
STPTR: . +U.2

.T,x,'T'#.·(12.>
Tt-JEN: 24 J 24 OCTHL = 20 DEC
I'tPTR: .+H2

BT/(:

· na THE NP,"OS HHS LHNOEO<.'12.>.""
J THE NP/OS STHCI<.'

· N~:EL 3
· BLK .53
· LOC 43
STK
STK
STK+45

.; I NPURE CODE

.; RESERVE .53 bJOROS
J LOC 40 HHS ...
.; . .. THE STHCK POINTER
,; LOCHT ION 41
JLOC 42 HHS STHCK LINIT

· END STHRT .; END OF HSN INPUT

4-57

4-58

1. Assemble PROG_ONE without producing the object me. Write in the commands and the
anticipated responses in the following spaces:

T T T!
f J. I '-

The IN switch suppresses the creation of an object me.·

PROG_DNE;TITLE IDENTIFIER

Now try the command on your system. Give the system some time to respond, especially if you
are working in a diskette environment.

If any errors are displayed on your console, it will be necessary to identify the cause of the error,
reinvoke speed, and edit the source me so that it is error-free. Refer to the appendix of this Guide
for a listing and explanation of the macroassembler error codes. Once the copy is error-free, back
it up again, and go to the next step in this exercise.

2. List the mes associated with PROG_ONE that now exist on your system. (This assumes that
you have successfully completed question 1). Show the commands and anticipated response:

) F I ""R$/S PROG+ J.
DIRECTORY @DPXt:

,)

PRUG_ORE"
PROG_ONE.BU

TXT
TXT

fS-'}Uff-79
18-...IUN-79

11:48:02
11 : 49: 51

1293
1293

Do it on your system. The "IN" switch suppresses the object me creation and, therefore, no
PROG_ONE.OB is produced.

Note that this example was produced in directory @DPXl., on diskette drive number 2 in a dual
diskette system. Your directory may be different, as was explained in previous modules.

4-59

3. Assemble PROG_ONE and create an object fIle despite any errors. Show the anticipated
results:

T"'"!'"! . , 1 i L.. PROG_ONE;TITLE IDENTIFIER

Now try the command on your system. The "/R" switch instructs the macroassembler to produce
the object fIle despite the presence of any errors. No listing is produced.

4-60

4. Verify the existence of the object fIle created in question 3. Show the commands and
anticipated results:

**

" FI /f·~S·./.S F',r.;.'(J~;+ J
D JPECTOP'r" @rrp,~o '

)

F'F:OG_ONE
,::' .~' [I!; _ ,Ct t·1 E . E: t!
PROG_ONf.OB

T,\'T
T.\'T
08F

18-)UN-?9
18-')UN-?9
18-')UN-?9

11'48'1]2
11 : 49' 5.1

129,'3
12~=;I.j

.'312

Now do it on your system. Note that the object me was named "PROG_ONE.OB" as the default.

Delete this version of PROG_ONE.OB so that it does not confuse further exercises. Use the eLI
command shown below:

,) DELETf.· .. ·U.····C PIt;.'OG_GNE. 08)
PRGG_ONE.OB? YES)
Delefed PROG_ONE.OB
.>

4-61

5. Time to get a listing. Assemble PROG_ONE and send the program listing to the line printer.
Show the commands and anticipated results:

.TITL PROG_ONE;TITLE IDENTIFIER

The /L switch requests a program listing.

Do it on your system. Give the macroassembler a little time. By this time all errors should be
cleaned up and, therefore, you should not receive any error messages.

Review the listing. Check the first three columns of each line for errors. Also check the cross­
reference listing for strange user symbols.

4-62

6. List on your console the fIles associated with PROG_ONE that now exist on your system.
Show the command and anticipated results.

REMEMBER: TO GET MAXIMUM
BENEFIT FROM THE EXERCISES,
WRITE IN EACH ANSWER AS
INSTRUCTED.

) F I SORT PROG+ J
DIRECTORY @DPX1:

PROG_ONE
PI<OG_ONE. eu
PROG_ONE.OB

This version ofPROG_ONE.OB was created by the MASM command which included the /L switch.

Do it on your system.

Delete PROG_ONE.OB again. Don't forget to delete only the .OB version.

4-63

7. The listing requires some time to print out. This time, assemble PROG_ONE and send the
program listing to a me called "ONE. LIST" on your disc device. Show all commands and
anticipated results:

**

Now do it on your system.

The IL=ONE.LIST" keyword switch directs the listing, cross-reference table, and error messages
to a disc file named ONE.LIST.

4-64

8. Verify the creation of ONE. LIST. Print it out and then delete it from the system. Show all
commands and briefly describe the anticipated results:

THE ACTUAL LISTING IS ON THE NEXT TWO PAGES.

4-65

4-66

\ FIIAS ONE. lIST
D I "'EC TOP';' IPDPX 1 '

ONE. LIST TXT 18-)UN-79 12<35'21
) rYPEONE.r lSi
0001 PROG_ NP.····OS RSSENBLER REV 1. !..~o 06' 18' 79 12/3'3,,'42

1;12
a3 ~
04
05
06
07 iJOl3lJt1 !t12a'f'3~ST;:WT'
itS
lJY'trr-j ottlgrn€17.:. '" tml e:n:1 g"'4t"!>,;:.''t:6

1 0 00004' 04l~427
11 iJiJiJiJ5TU2!3't2bTVUP'
12 00006'024432
1 '3 <1 1..1 OB7T B'3D tGb'
14
~ ~,

16 Ol~t112'Otl0417
17 @013T:n@T4442
18 00014' I;1l10774
19
20 00015'024441 NESSG'
21 €!€!al to i[I:.8(J55
22
2'3 0 €I 02 fI fI 00'1 Ttl
24 t11:1l122' 1321:1411 CLERN'
25
26 OM25' 01:10484
27 OOl~26' 1 @2480
28 1;10027'12641;11..1
29 UetOJO t 1 ~
::0
'31
32
n
34
'35

£PTR'

· TTTL PPOG_ONt=.' TITLt= IDt=NTIFIt=R
· ENT STRRT .' ENTI<:\" POINT
· fItR1:L 1 .:r>ttRE -"C[lOc

.' f'1~m rwUTINt=

~ IT.PrlTH
?OPEN
Jf'1P t=Rin
STR 0 .. CHPIN
~ 8 .. CHRN
LOR 1 .. STPTR
crm ""_.--'-'-

"'.' ~'to

mPTTt= as
)NP ERTN
rrsz TWEN
)NP RUTHR

LDR 1 .. NPTR
~ .::: .. 55
-rtoJRITE OS
Jf'1P ERTfi
LOR 0 .. CHRN
'7CW::!E
~INP ERTN
SUB O .• @

SUB t..l
Stt8 2.;2

'7RETttRN

.'DRTR RRERS

.'B)'Tt=POINTt=R TO PPlTHNRNt=

.' OPEN CHRNNEL TO @TTO

.~---oN-OPE:f1: .. eLI
.'SRVE CHRNNEL #
.' 11-1 CPlst= IT WPlNDt=RED
.' BnE POINTER TO STRR LINE
.' '36 OCTAL B)'TE ~1SG

.'DrtTPI-SetSITWE OPTION

.' ERROR ON WI<: I TE .. TO CL I

.' LOOP 21;1 TI~IES

.'/oJRITE RGRIN .. UNTIL 0

-' I'TSGIS' 55 Ocrnt· B)'TES
.;/oJR ITE • N I CRON. .' NESSRGE
-' ERROR ON WP ITE
.' PREP FOR CLOSE
.' CLOSE CHRNNEL TO @TTO
.'ERROR ON ?CLOSE

CLERR RCS FOR CLERN RETURN
.' ... RCI HRS ERROR LENGTH

AC2 HAS POINTER TO ERROR

.' TO CL I.. ERROR RETURNS KEEP
CODES IN RCS

36 @1..~@33' @OOOtIE' CHRN' 0 .' CHRNNEL # SRVE RRER
371JIJIJ'3.fTaaa8?a,P{Hw . +IT2
'38 E'@!..~35'840124 . TXT /@TTO/.,OUTPUT TO CONSOLE
39 ~
4@ O@@@@@
41 IJIJa4Ur1JIJIJl",a"".:::o""S;S""'TN:P ·T..,P' . +-t:t2
42 1301..141' tI2tlt141..~ . TXT / l<'12'>/
4.:: !r2U1Jiro
44 tI2@@4tl .,., ~
46 t1201..N!:l
47 U280<1U
48 1..12!..'1t140
49 8280<18
5@ @2tlt14EI
~ .~

52 1:121:1052
5:3 ~
54 01..11..155' 01:11..'11..124 mEN'
55 81J856 tlJlJ!JI'JEt1'tPiR'"
56 @0!..~57' 821:1841:1
~{ ~

58 0201:141..1
59 tl20t:tq!!l
6fl 1:121;1040

24 .'24 OCTRL= 20 DEC
· +fft
· TXT THE /'IP.····OS HRS LRNDED(12 _'

6M2 PROG_
81 020040
0"2 ~
tH 020tl4tl
64 !:"t52ttil
05 04244tl
06 84""6511
07 041522
08 ~
09 020110
Ie 0.rB52:J
11 020114
12 (1485J6
n 842105
14 tt420TZ
15 OOtlOOO
16 .,THE: !1P.····OS SfF-iCK
17
18 0000(11)
19 00600'000050 STK'
20 Oerott4t1
21 tl004tl tltlOOOO'
22 80041 08000iJ'
23 00042 000045'
24

. I1PEL 0

.BLK 50

.LLtC ~
STI<:
STI(
:;TK+45

.' It1PtlRE CODE

.; RESERVE 5ti MOROS
i tOL.- :ttT-mrS

THE STRCK POINTER
.' LOCRTION 41
.' LOC 42 HRS STRCK LINIT

25 . END STRRT .' END OF RSN INPUT
26

f:lUTFfP-mn'IOtlJl t>'l511
CHRN 8l~l'/l~33 ! 1 10
CLERN 88(-1822 ! 1"24#
ERTN 8811031 I 1.···B9
lOOP ~i t~~jt#

NESSG 88t1815! 1.···20#
t1PTIt' ~1 t7L~
PRTH tlt!t1t134! 1/t17
s-;mn ""!:1M" i

/!1<1 t.·· ~l
STK tlOl"lOtltl' 2 19#
STP-fF: nn4fr! trtt
Tt~EN OOtl055I 1 .. ···17
1L.tOS 1':!1':!.:..:'1:t31 /'tC t7~
?J tl0801J 1.····09#
7'-j ~ ~
7K OtltltlO2 1"'16#
"'OPEN ilMTtt-:!1 /'It t:rif8
?RETU tTl1l"l2t1J ! NC 1·<31
~SYSF -OI':!l:tOfJT:rIi'D 171':1"9
7/.oJRIT tl02143 I HC 1.···15

) DELETE.····V.····C ONE. LIST}
ONt: . usn-1'ES 1
Deleted ONE. LIST
rDELETF.:·'tJ.>L. PROG_ONE:. DB 1
PROG_ONE. OS? \·'1
Delefed ~_~.~

t.·.rIS
1/11 1"'24 1··<%#

1· 16 1./23 1····26 1/31#

t.;'5~

1.·<37#
t7tl7'#
2/21 2./22 2.····23
t.;"4t#
1 54#

1 16# 1/23# 1····26# 1 32#
tTff# ~ t~ t."32#
1/23#

t710
1 ·22

If your command sequence matches the answer then perform it on your system. Compare the
ONE.LIST printout with the printout obtained from the previous question. Are they the same?
(They should be, except for the name and the times.)

Save PROG_ONE.OB for a later question.

4-67

9. Assemble PROG_ONE again, but this time make a file named "OBJECT" the object file.
Show the commands and anticipated results:

**

) XEQ MASM/B=OBJECT PROG_ONE~
T T TI

• ; .1 J i- PROG_ONE;TITLE IDENTIFIER

The keyword switch /B=OBJECT names the object file OBJECT.OB.

Now do it on your system. To avoid possible confusion, make sure "OBJECT" is a unique fIlename
No listing is produced with this command.

4-68

10. Verify the existence of the new object fIle. Compare its size with PROG_ONE.OB. Show all
commands and anticipated results:

) fI/LEN PROG_ONE.OB OBJECT.OBl
Dli~.'ECTO,'('r' f!DP,\'1:

PROG_ONE.OB
OB.)ECT.OB

312
312

The /LEN switch on the FILESTATUS command displays the byte length of the fIles.

Now do it on your system. Both OBJECT .OBand PROG_ONE.OB should be the same size. The
only differences should be the fIlenames and time of last modification. Save OBJECT.OB and
delete PROG_ONE.OB.

4-69

11. Assemble PROG_ONE and include your user symbols with the object fIle. Show all commands
and anticipated results:

. TJTL PROG_ONE.i TITLE IDEUT IF IEt~·

)

The "/U" switch adds your user-defmed symbols (labels) to the object fIle. This command switch
is useful as part of the debugging sequence.

Do it.

4-70

12. Compare the size of the PROG_ONE.OB created in question 11 to the OBJECT.OB. Show
all commands and responses:

) ~l/LEN PRO~_ONE.OB OBJECT.OSJ
DIRECTORY @DPX1:

--. ...

r':"JRO;;_Of{E. DB
i]B._i/=t~ T . 1]8

Do it on your system.

PROG_ONE.OB should be larger than OBJECT.OB this time around since the user symbols were
added in.

4-71

4-72

This concludes the macroassembler procedures lab exercises. You may continue to experiment
with the macroassembler switches and results if you so desire. A suggested test is to get a cross­
reference listing after assembling with the "/U" and "/P" switches. The listing should include the
user symbols and semi-permanent symbols (instruction mnemonics).

If you are interested only in assembly language program development, then you should skip to the
Binder segment.

If you are interested in Pascal program development, skip to the Pascal Compilation segment.

If you are interested in Fortran program development, go to the Fortran Compilation segment.

Now continue with
your next segment
in the Student Guide.

FORTRAN COMPILATION

Abstract

This segment discusses the concepts and procedures involved in compiling FORTRAN4 source files.

M.P. Fortran four programs require separate compilation and assembly steps. In this segment we
cover the procedures involved in compiling Fortran Four programs under M.P.O.S. In the next
segment, we cover the procedures for assembling the Fortran compiler's output. Both segments
are required for the Fortran program developer. In addition, the topics covered in the proceding
segments on Macroassembler Concepts and Macroassembler Procedures are highly beneficial for the
Fortran programmer.

NOTE: Pascal Programmers may skip this segment and move on the Pascal compilation.

Objectives

Upon completion of this segment you will be able to:

1. Given a CLI FORTRAN4 compiler command line, identify and state the purpose of the
switches and arguments.

2. List the reference material available on FORTRAN4 compiler commands (text and system).

3. Given a CLI FORTRAN4 compiler command line, describe the results.

4. Write an appropriate CLI FORTRAN4 compiler command to compile a given Fortran program
State the output names with extensions.

5. Given a FORTRAN4 compiler error situation:
A) Identify possible causes;
B) Reference solutions
C) Write commands to correct the error.

Directions

1. Turn to Figure 4-50 on the next page of the Student Guide.

2. Listen to the tape for this segment.

4-73

4-74

XEO FORT4/SWITCHES
~

XEO
XE
X

/L
/L=filename
/S=source file name
/F
/X
/E=errorfile
/P

ARGUMENT
...

filename or
fully qualified

path name
<.FR)

CLI FORTRAN COMPILER COMMAND LINE SYNTAX.

Figure 4-50

SWITCH

IS = fIlename

IL

IL= fIlename

IE = fIlename

IP

IX

IF

FVNCTION

Specifies the name of the assembler source fIle produced by the
compiler.

Produce a listing and send it to the lineprinter.

Produce a listing and send it to the named fIle on Disc.

Write error messages to the specified fIle. Default is to send error
messages to the console.

Compiler reads only the first 72 characters of each line of the input
medium. Default is to read 135 characters, plus a new-line.

Specifies that all lines with an X in column 1 should be compiled.
-Default is to skip -"Xed" lines during compilation.

Vsed in conjunction with the "IV" switch in assembly and binding.
When assembly code is produced, all of the Fortran variables are
internally equivalenced to identifiers recognizable by the Macro­
assembler. The IF switch and IU switch cause all of these equivalences
to be placed in assembler code. Aids debugging.

FORTRAN COMPI LATION OPTIONAL SWITCHES

Figure 4-51

4-75

4-76

FILENAME.FR

FI LENAME.SR
SOURCE FILE

FILENAME.OB
OBJECT FILE

LISTING
(IF REQUESTED)

LISTING
(IF REQUESTED)

TWO STEPS IN FORTRAN OBJECT FILE CREATION

Figure 4-52

RESULT

) XEa FOK'T4 NYFILE l
MYFILE I on Disc
MYFILE.SR

Error Messages on Console

) XEQ FORT4 XYFILE.FRl
MYFILE.FR I .
MYFILE.SR on DIsc

Error Messages on Console

) XEQ FORT4/X NYFILEl
MYFILE I on Disc
MYFILE.SR

Error Messages on Console

IX ... compile conditional compilation lines.

4-77

) XEQ FORT4/L MYFILEI

IL . .. produce a listing on the LPT.

) XEQ FORT4/L=MYFILE.LS NYFILEJ

IL = filename ••. store listing on disc.

) ,~'=:EQ FORT4.·'E=ERRORFILE M'y'FILEl

IE = filename ..• create error file on disc.
Figure 4-54

4-78

RESULT

MYFILE I on Disc
MYFILE.SR

Errors Messages on Console
Listing on LPT

MYFILE I on Disc
MYFILE.SR

Errors Messages on Console
Listing to MYFILE.LS on Disc

MYFILE I on Disc
MYFILE.SR

Errors to Errorfile on Disc
(No Errors creates an empty file).

) XEQ FORT4/S=TEST NYFILE.FRJ

IS = filename ..• name output "filename".

,) XEQ FOFt:T 4.···P N')"'}=" I LE J

IP ••• read 1st 72 characters of input lines.

) :x.'Et~ FORT 4.···F r'f'rtF I LE J'

IF ••• equivalence variables.
Figure 4-55

RESULT

MYFILE.FR I D'
TEST.SR on ISC

Error Messages on Console

MYFILE.SR I D' on ISC
MYFILE.

Error Messages on Console

MYFILE I on Disc
MYFILE.SR

Error Messages on Console

4-79

) n"PE nONn'. LS)
DGC FORTRRN I (.I REt' t15. 28 I S

C :u:.t: TITLE INCOME :U::t
RCCEPT "ENTER 'y'OLlR bJEEKL'r' SRLRR)"", SRLRP)"
RCCEPT"ENTER)"OUR RGE"., RGE

;)'EF:L ~., = SALAR~' :t. 52
TOTRL = 'y'ERU" :t (65 - RGE)

; n'PE "TOTRL INCOME FROM" RGE., "TO RETIREI'1ENT AT 65 IS :$ "., TOTAL
n'PE "TOTRL INCOME FRON" RGE., "TO RETIRENENT RT 65 IS :$ ", TOTRL

:n·t @6!:1.HJtHR.JG
STOP
END

NOTE
ERROR
MESSAGE ERRORS

• REPEATED ON NEXT LINE
• APPENDIX LIST
• ERROR CODES
• SNOWBALLING EFFECT
• ERROR MESSAGES

MONEY.LS OUTPUT LISTING FROM FORT4 COMPILATION.

Figure 4-56

4-80

) fi"PE NONE'r'. SF:)

DGC FORTRAN IV REV 05.2018

C

. /'IRIN:

Ll. :

:t::t:f TITLE 1NCONE .t:f:t:

RCCEPT "ENTER 'lOUR I~EEKL '1" SHLRR')"" ..
· T1 rL ./'IRIN
· ENT .NHIN
.NREL 1
naN 1

.EXTU

. EX TN I

.C81Z .::> ...
FS .

JNP Ii. +1
Lt.

) SF.' ~. HER
· C1
0
6
· TXT "ENTEF: i'OUR I~EEkL 'r' SHLHP'/"
I]
.::>
'-

V.+O ,; SRLRR'/
5

HCCEF'T" ENTER i"OUR RGE ".. HGE
.IS f.: @ . FPEH
· C1
o
6
· na "ENTER 'r'OUR RGE"

2
1,.1.+2 ,;RGE
5

'r'£RI,.)., = SRLHR'r' .t:52
FI·;'FU
· C2
FFLD1
V. +0 ,; SHLHRi"
Ft1U
FF'STl
1,.1.+4 ,;YERLY

SRLRF:~"

(Continued on Next Page)

Figure 4-57

4-81

4-82

TO T HL = 'r'ERU" :t: (" 65 - HGE....,
F[:ELl
.C3

£FJ.DL
U.+2
FS81
FFLDl
V.+4
FNLl

.F.E5n
(.1.+6

JRGE

j 'r'ERL ~'

J TOTRL

n'PE "TOTAL INCO~1E FRON" RGE., "TO RETIRENENT RT 65 IS $ "., TOTAL
jSR (!.FHRI
· C4

6
· TXT "TflTRLI.NCONE FRON"

H'PE "TOTRL INCONE FRON" RGE., "TO RETIRENENT HT 65 IS $ ", TOTRL
:;:.t.t 06fl .t.U CHR 30

-11'1£ 1!.-±i
L ·., .::.

-LJ. : · TXT "TORETIREJ>1ENT RT65 IS $ "
L·, . .:... ..

STOP
jSE
· TXT

END

(! .. SIDP
" "

JSR @.FREI
· [:4: 800012
· CJ : f1f1..tllili
· [2: 01;101;164
· C1 : eaealJ

F5.:::1.0
SFS.=O
L =-.16Z
U. =200+T.
rS.;;;T.+7
FTS. =T. +0
(.1$.=(.1.+7
F(.IS.=(.I.+O
.END

MASM OUTPUT LISTING OF ASSEMBLED .SR FI LE.

Figure 4-57

TOPICS

• FORTRAN COMPI LATION

• COMMAND LINE
• SWITCHES
• OUTPUT
• ERRORS

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

4-83

4-84

MP /FORTRAN4 COMPILATION

QUIZ

Write the answers in the space provided.

Given the following FORTRAN4 CLI Command line, identify the switches and arguments and state
the purpose of the switches and arguments:

) XEQ FORT4/L=SUM.LS/E=SUM.ER/X SUM.FR

1. Switches: __________________________ _

2. A~uments:--

3. Purpose of the switches __________________________________ _

4. Purpose of the argument. _____________________________________ _

List three sources of information on MP/FORTRAN4 compiler commands.

5. ___ __

6. __ __

7. ___ __

Given the following CLI FORTRAN4 compiler command lines, briefly describe the anticipated
result:

) XEQ FORT4 SUM

8. __ __

) XEQ FORT4/L=SUM.LS SUM.FR

9. __ __

) XEQ FORT4/S=NEW SUM

10. __ _

) XEQ FORT4/L/X SUM

11. __ _

) XEQ FORT4/F SUM

12. ____________ --------------------________________________ _

) XEQ FORT4/P SUM

13. __ _

NOW CHECK YOUR ANSWERS
ON THE FOLLOWING PAGES

4-85

4-86

MP /FORTRAN4 COMPILATION

QUIZ ANSWERS

The switches, arguments and purposes are as follows:

) XEQ FORT4/L=SUM.LS/E=SUM.ER/X SUM.FR

1. Switches: /L=SUM.LS /E=SUM.ER /X

2. Argument: SUM.FR

3. Purpose of switches: "/L=SUM.LS" produces a listing and stores it in a me called
SUM.LS; the TYPE command will display this listing me.
"/E=SUM.ER" directs error messages to the me called SUM.ER. Use TYPE here iO.

also. If there are no errors, SUM.ER is still created, but it is an empty me with a
length of O.
"/X" will allow conditional compile lines (X in column 1) to be compiled.

4. Purpose of the argument: SUM.FR identifies the me to be compiled. Compiler output
will be titled SUM.SR. SUM.SR is then input to the macroassembler.

Three sources of information on FORTRAN4 commands include the following:

5. CLI HELP command on systems so equipped;

6. MP/OS Utilities Reference Manual (093-400002)

7. This self-study course.
Also: MP/FORTRAN IV Programmer's Reference (D.G. No. 093-400004).

The anticipated results of the CLI command lines are as follows:

) XEQ FORT4 SUM

8. SUM.FR (or SUM, if SUM.FR does not exist) is compiled. SUM.SR is the compiler's
assembly language output and is stored on disc. No listing is produced. Errors are
displayed on the system console.

) XEQ FORT4/L=SUM.LS SUM.FR

9. SUM.FR is compiled, producing SUM.SR as its assembly language translation. The
listing is produced and stored in SUM.LS on the disc device. Errors are displayed on the
console.

) XEQ FORT4/S=NEW SUM

10. SUM.FR is compiled (or SUM, if SUM.FR does not exist). The compiler's assembly
language translation is stored in the file named NEW.SR, as directed by the /S sWItch. No
listing is produced. Errors are displayed on the system console.

) XEQ FORT4/L/X SUM

11. SUM.FR is compiled (or SUM, if SUM.FR does not exist). SUM.SR is produced as the
compiler's assembly language translation and is stored on disc. A listing is produced on
the line printer. Errors are displayed on the console. The compilation includes all
conditional compilation lines (marked with an X in column one) as directed by the /X
switch.

) XEQ FORT4/F SUM

12. Again, SUM.FR is compiled (or SUM, if SUM.FR does not exist). SUM.SR is produced as
the assembly language translation and includes the equivalenced variables. SUM.SR is
stored on disc. Errors are displayed on the system console. No listing is produced.

) XEQ FORT4/P SUM

13. SUM.FR (or SUM) is compiled. Only the first 72 characters of each FORTRAN source
statement are read by the compiler. SUM.SR is produced as the compiler's assembly
language translation and is stored on disc. Errors are displayed on the system console.
No listing is produced.

A SCORE OF 11 CORRECT ANSWERS OUT OF THE 13 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE
CERTAIN THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE
WITH THE NEXT SEGMENT IN THE STUDENT GUIDE.

. ... :.:.:.:.:.:.:.:.:.:.:

4-87

MP /FORTRAN COMPILER

LAB EXERCISE

Directions

1. To perform the activities in this lab exercise, it is necessary that your system have the follow­
ing file:

FORT4.PR. ... THE FORTRAN4 Compiler

Verify the presence of this file with the FILESTATUS command. Ifit is on your system, but
not in your directory, then modify your searchlist to make it accessible to you.

2. SPEED in the file titled MONEY.FR listed below:

C .t:#::*-. TI TLE I NCONE :I:.t:#:
fLCCEE_I "ENTER 'y'ill!R_J'/EEKL'r'_ SALARY"., SALRR~"
RCCEPT"ENTER ~"OUR RGE" .. RGE
i"ERLr~_5BLBR"{_-*_ 52
TOTRL = ~"ERU" :#: ('65 - RGE')
ITE..E "I.O.IM INCOME ERQJ1" LfJ.[;£ "ffi_REIlRENENIRL65 IS $ ", TOTRL
STOP
END

3. Once you are certain that MONEY.FR is a clean copy, back it up with the CLI COPY
command. Name the backup file INCOME.BU.

You are now ready for the lab exercise. Remember:

1. Cover the answer,
2. Read the question,
3. Write the solution,
4. Check the answer,
5. Perform the operation on your system (if you have access),
6. Resolve any discrepancies.

4-88

1. Compile MONEY.FR. Write in the required commands in full. Show all anticipated results
in the space provided:

,) ,\'E(~ FORT 4 NONE'.,.'. FR J
,)

Note that, in this case, it is not necessary to specify the .FR extension of MONEY. FR.

Now do it on your system.

Compare the actual results with yours and with our example.

If there are any errors, it is necessary to reinvoke Speed, make the appropriate corrections, and
repeat this compilation. Keep doing it until you get it right.

4-89

2. Write the commands to show which files associated with MONEY currently exist on the
system. Show the anticipated results:

) F I.····RS.···'S NONE~}r

DTRFCTORY @OPK1:

2

"1ON£'r'~
NONE'y'. SR

va
66

2£-JU~-~ 9:54:45
26-JUN-79 11:27:47

222
715

The FILEST ATUS command displays the required information. The .FR version is the speed
output. The .SR version was produced by the compiler. Note the use of the "+" template on the
MONEY filename.

Do it on your system. Failure to get MONEY.SR indicates that the compilation failed. Check your
MONEY.FR against our copy and make sure that is a clean copy.

4-90

3. Write the command for displaying the contents of MONEY. SR. Briefly describe the
anticipated results:

4-91

4-92

,) n'PE NONEi". SR l

.. DGC FORTRHN IV REV 05.20IS

.. C ttt TITLE INCONE ttt

. rtRUI:

L 1 . :

.'

ACCEPT
· TIlL
.ENT
.NREL
· TXTN
.£.XIU
. EXTN

"ENTER ~"OU~: NEEKL 'r' SHLH~:'r'''., SHLHR'.,.'
.l'1A1U
.NRIN
1
1

.1
.CSIZ 2
FS .

JNP @.+1
Ll.

JS~: @. FREH
· Cl
o
6
· T,'x,'T "ENTER 'r'OUR toJEEKL 'j" SHLHR'.,.'"
o

V. +0
5

; SHLHR)"

HCCEPT"ENTER ~"OU~: HGE" .. HGE
JSf.' @.FREH
· Cl
o
6
· T,'x,'T "ENTER 'r'OUF.: AGE"
0
2
U.+2
5

j',£RLY =
n~'FLl
c'-' .-· .-

FFLDl
v.+o
n1Ll
FFSJJ
U.+4 .i)·'EF.:L'r'

(Continued on Next Page)

TOTPIL = j'>ERL j" .~: <" 65 - PlGE)
FXFU
.C3

FFLDL
1).+2
FSB1
FFL01
V.+4
Ff'1L1

.FESI.1
V. +6

; YERLY

.; TOTPIL

n'PE "TOTPIL INCONE FROf'1" PlGE.> "TO RETIRENENT PIT 65 IS :I " .. TOTPIL
k/SR l! . FHR I
· C4
8
6
· TXT "TOTAL INCONE FRON"

n'PE "TOTRL INCOME FROf'1" AGE.> "TO RETIRENENT PIT 65 IS :I ".> TOTAL
.t:.t:f; 061.:t .u.t CHR 30

LJ. :
L ·=, . .:.. ..

_INP .@ .. ±1.
L ·., ..:.
· TXT

STOP
)SR
· TXT

END

"TO RETIREMENT AT 65 IS :I "

@.s.rOP
""

JSR @.FRET
. C4: 8881;112
.C3: 8M11l1
p: 1:11:18864

> C1 : 8a8813

FS.=J8
SFS. =I.:t
T.;:;..,-16?
U. =2I:.il.:t+ T .
rs. =T. +7
FTS. =T. +0
US.=U.+7
FVS.=V.+O
. END

Do it on your system.

If you have a hard-copy Dasher terminal as the system console, use the type command without
the IL switch. If you have a line printer, then use the type command with the IL switch.

Save the printout for later reference.

DELETE MONEY.SR to avoid confusion with later exercises. Use the IVle combination.

4-93

4. Compile money and produce a listing in the fIle titled "MONEY.LS". Show the commands
and anticipated results in the space below:

**

.>
> XEQ FORT4 t =MQNE~" L S !tONEY t

)

/L = fIlename makes MONEY.LS the listing file on disc.

Note that our example assumes that you have cleaned up any errors.

Now try it on your system.

The listing file is now on your disc.

4-94

5. Detennine which mes associated with money now exist on your system. Show the commands
and anticipated responses. Note the length of the meso

**

) F1.···'88.····8 NONEY+ r
D1RECTOR~" @DP,'x,'1:

MONE)·'. FR
MONt)·, l S
~1ONE)·'. SR

T,':.:;r
66
66

26-JUN-19
?6-..IUN-19
26-....IUN-19

9:54:45
.1LJl :54
11::31:54

_26B
992

MONEY.FR is the title of your speed output. MONEY.SR is the compiler's assembly language
output. MONEY.LS is the listing me specified by the /L switch.

Do it on your system.

4-95

6. Write the command for displaying the contents of MONEY.LS. Briefly describe the
anticipated results:

**

2_ .TYEE_HONE)' IS}

-,

DGC FORTRAN IV REV 135.2tUS

c :I::J::/: TITLE INCOf>1E .U·."#:
flG.C£E L~lflERj'I1LlR HEEt:U' .SALAR'l".' SALAR\"
RCCEPT"ENTER YOUR RGE"., RGE
Y£RLY = SRLAR)" .f: 52
TOTAL = 'y'ERL 'y' :J: ('65 - RGE'>
.f'y'P..E "T.DIBL.IJ:.lCDP1LFR0t1"_-LAGEL."TO RETIRENENT RT 65 IS $ "., TOTAL
STOP
END

Do it on your system.

MONEY.LS is a listing of the Fortran source language statements.

Again, we used a hard-copy Dasher console and, therefore, only required the type command. To
direct the output to a line printer, use the TYPE/L command.

Delete MONEY.LS and MONEY.SR to avoid conflicts with future activities:

4-96

) DELETE.····U.····C NONE';". LS ["'tONE')". SR Ji
NONE'),'. LS? YES J.
Deleted NONE)". LS
t"rlIJNE~.' . SR"? ')IES J.
De 1 e ted NONE'/. SR

7. Compile money again. This time name the compiler's assembly language output "DUMMY".
Show all commands and anticipated results:

The "/S DUMMY" switch directs the compiler to make DUMMY.SR the output file.

Do it on your system.

4-97

8. Write the commands to determine the output of the previous question (#7). Show the
anticipated results. Make note of the length of the fIles.

.2 El.····,:}s ~1ONEY+ DUftlftly+):
DIRECTOR~" @DP,'x,'l:

MON£~/. FR
.DLll'J.!1..Y-ER

TXT
E..6.

26-• .lUN-79
26-.IlJN-79

9:54 :45
11 . .: ."IS : !'38

222
.992 ..

MONEY.FR is the Fortran source fIle. DUMMY.SR is the compiler's assembly language output.

Do it on your system.

Compare the length ofDUMMY.SR to the previous MONEY. SR. Similar? (They should be!!!)

Type the contents of DUMMY.SR. Compare it with the contents of MONEY.SR. Similar? (They
should be.)

Now delete DUMMY.SR.

4-98

9. Compile money. Make MONEY.ER the error me. Show all commands and anticipated
results:

)~'Ea FORT4.···E=NONEY. ER NONE~J

)

MONEY.ER is assigned as the error me by the IE=MONEY.ER switch.

Do it on your system.

4-99

10. Write the commands to show all mes associated with money that now exist on the system.
Show their lengths. Write the anticipated results:

**

.:" FI AS NONE)"+ l.
DIRECTOR'r' @DPX1:

)

110NE~" . FR
J10NEy~q
NONE'r'. SR

Do it on your system.

TXT 26-. ..IUN-79
66 26-jo/L!.f:1.-7;J
66 26-...IUN-79

9:54:45 ':t.;,':t .:.,,,'"
11:38.:88 ____ EL
11: 38: 18 715

MONEY.ER is 0 length only if there are no errors associated with the compilation of MONEY.FR.

Display the contents of MONEY.ER with the TYPE command:

..2 a'eE MONEY ER L

J

Anything show up? (It shouldn't; MONEY.ER should be an empty me).

Now delete MONEY.ER and MONEY.SR.

4-100

11. Compile money for the last time in this lab exercise. Make MONEY.LS the listing me. Make
the Fortran variables equivalenced to identifiers recognizable by the macroassembler. Show all
commands and anticipated results:

**

,) XEa FORT4.···F.··'L·=NONE~ ... LS NONE'r'. FR

The IL=MONEY.LS switch directs the listing to the MONEY.LS disc file.

The IF switch allows equivalencing.

Do it on your system.

4-101

12. Write the command to show all fIles associated with money that now exist on your system.
Show the anticipated results. Include estimated fIle lengths.

**

Y-PI/RS/S MONEY+ J
DIRECIOR..Y. @DP.':<l : .

f1QNE'y' FR
MONEY. LS
MONE'" SR

Do it on your system.

rXI
66
.Eii

?6-.IlIN-79
26-,..IUN-79
26-.lIlN-79

9: 54: 4,'5
11:42:51
11 : 4?: s.?

222-
268

I8.5£!_

Compare the size of MONEY.SR with the previous MONEY.SR. Is it larger? (It should be: several
lines were added with th~ IF switch).

4-102

13. Write the commands to display the contents of MONEY.SR. Briefly describe the anticipated
results:

**

-' n'PE I'10NH'. SR l

DGC FORTRRN IV REV 05.21:.11 S

C :t: :t:."#: TITLE INCOHE ."#::1:*

RCCEPT "ENTER ~'OUR WEEkI \., SRLRR\'''.,
· TITL. .l'11Uli
.ENT .HRIN
.NREL 1
· TXTN 1
flIlL
. EXTN .1
.CSIZ .:>
FS .

. /'tRIN:
J/'tP @.+1
LL.

L 1 . :

.lSR @.FRER
· C1
0
E.. _._-

· T,\'1 "ENTER rOUR I.JEEKL \' SRLRR\""
a
.:>
.:...

t.l.+0 iSRLf1Fn
I:" .'

RCCEPT"ENTER i"OUR RGE"., RGE
JSR l!..FREA
· C1
o
6
LIT '.B:1TER mllR AGe

8

V.+2 JRGE
5

~'ERL~' = SRLRR\" ."#: 52
FXFU
.C2

(CONTINUED)

SRLRR~

4-103

FFLDl
V.+O iSALRI?i"'
F~lL1
EESli
(.1.+4 J ~"ERL ~.,

TOTAL = ~"ERL ~., :t: (" 6.5 - AGE)
FXFLJ
.C3
FELDl
(.1.+2 .;AGE
FSBl
FFLDl
{.t .• +4 . ..i...Y.ERL.1'
nlL1
EESI..L
(.1.+6 .; TOTAL

n'PE "TOTAL INCOME FROM" .. AGE .. "TO RETIREMENT AT 6.5 IS $ ", TOTAL
.ISR~ . .EJ.J.RI
· C4
~.
6
.TXT "IOTALlf:.lCOP1E FRON"
o

(.1.+2
.f

JAGE

· TXT
Et

"TO RETIRENENT AT 6.5 IS $ "

2
(.1.+6
.5

STOP
.JSR
· T.\'T

END

_lLSTflP
""

. .ISI? . (ilER.£I

· C4 : Ete.10f112
.C3: 000101
· C2: e.100064
· C1 : 000013.

.EL=I0
SFS. =1:1
T.=-161
V. =200+T.
rs. =T. +1
FTS. =T. +1;.1

.. US _=-lLt?
FVS. =(./. +1;.1

TOTRL-= U.+6
rEF.:L \"= (./. +4
tlGE= (.1.+2
SALAI'T= (./. +0

END

; TOTAL

Do it on your system.

MONEY.SR is the assembly language translation of the Fortran source statements. It consists of
both the Fortran statements and the assembly language code that they generate. This version of
MONEY.SR has the Fortran variables equivalenced and listed at the tail-end of the listing.

4-104

This completes the MP/FORTRAN COMPILER Lab Exercise. Save a copy of MONEY.FR for
future references within this course.

Shut down your computer system and continue with the next segment in this Module .

.... :.:.:.:.:.:':.:.:

4-105

ASSEMBLING FORTRAN .SR FILES

Abstract

This segment discusses the procedures available for translating MP/FORTRAN4 files from the
compiled, assembly language state to their object file state.

Objectives

Upon completion of this segment, you will be able to:

1. Given a CLI Macroassembler command line applied in a Fortran context, identify and state
the purpose of the switches and arguments.

2. Given a CLI Macroassembler command line applied in a Fortran context, describe the results.

3. Write appropriate CLI Macroassembler command lines to assemble a given Fortran file under
stated conditions.

4. Given a Macroassembler error situation in a Fortran context:
A) identify possible causes;
B) reference solutions;
C) write commands to correct the error.

Directions

1. Completion of the MACROASSEMBLER segments of this module are extremely worthwhile
at this point.

2. Turn to figure 4-75 on the next page of the Student Guide and listen to the tape for this
segment.

4-106

XEQ MASM/PS=FORT4.PS/SWITCHES ARGUMENT
'--.,----1\ ,.. 1'--.,----1 '--.,----1

COMMAND SYMBOL OPTIONAL .SR FILE
FILE SWITCHES

XEQ SWITCH
XE (REQUIRED)
X

CLI FORTRAN/ASSEMBLY COMMAND LINE SYNTAX

Figure 4-75

4-107

SYMBOL

IE = filename

IE

IF

IK

IL

IL-list­
file

1M

IN

10

4-108

ACTION

Gives the name filename to the object me. Ordinarily the object me has the
name of the ftrst source me in the assembly command line, less the extension
.SR (if any) and with a new extension .OB.

Suppresses the error listing if there is a listing me. If there is no listing me,
then errors will be displayed on the console despite the IE. See Appendix F
for a description of error flags.

Generates or suppresses form feeds as required to produce an even number of
assembly pages. This keeps the ftrst page of successive listings on the outsides
of paper folds, making refolding unnecessary. By default, the macroassembler
generates a form feed at the end of a listing, whether the number of pages is
odd or even.

Keeps the macroassembler's temporary symbol me at the end of assembly.
Since virtually no programs require the use of this me, the macroassembler
deletes it by default.

Produces a listing me on the line printer. Listings always includes a cross
reference of symbols in the program showing the page and line number where
each symbol is used. If you use the IL switch, program MASMXR.PR must be
present in the same directory as the macroassembler itself. MASM.PR itself
is found, but, if it is missing, then an error message will be displayed at your
console.

Produces a listing me, but instead of sending it to the line printer, sends it
to the me designated by listfile. If there is already a listing in this me, then
the new listing allows it. Listfile can be any filename or pathname permitted
by the operating system.

Flags any redeftnition of semipermanent symbols as multiple defmition errors
(M).

Produces no object file.

Overrides all listing control pseudo ops: . NOCON, .NOLOC, and .NOMAC.
Also overrides listing suppression.

(Continued)

MACROASSEMBLER COMMAND LINE SWITCHES

Figure 4-76

IP

IPS­
filename

IR

IS

IU

IZ

Adds semipermanent symbols to the cross-reference listing. By default they
are not included.

Uses filename instead ofMASM.PS to build symbol table file.

Produces a binary me even if there is an assembly error. By default, if there is
an assembly error, the macroassembler does not produce a binary me.

Skips the second assembly pass (produces no.OB file) and saves the macro­
assembler's symbol table, renaming it MASM.PS. (See below, "Macro­
assembler Symbol Table Files.")

Includes user symbols in the object file. When the IU switch is also applied to
the binder command line, then the debugger is able to fmd user symbols. This
makes debugging easier.

Lists the DGC proprietory license heading at the top of each assembly and
cross-reference page. By default this heading is not listed. Note that this
switch is useful to DGC personnel only.

CLI MACROASSEMBLER COMMAND LINE SWITCHES

Figure 4-76

4-109

4-110

) F I .····RS.···-S SUN+ l
DIRECTOR)·' @DPX1:

SUN.FR
SUM. LS
SUM.SR

TXT 1-JRN-00 0:09:57 157
203
983

.>

66 27-JUL-79 10:49:54
66 27-JUL-79 10:49:55

THE SUM FILES AFTER COMPILATION

Figure 4-77

.> gEt=l NRSN.-PS=FORT4. PS SUN. SR
. TITL

) XEt=l NRS,,1/PS=FORT4. PS SUN ,l
. TITL

.NRIN

.NRIN

.> gEl] NRS",/PS=FORT4. PS.···L=SUNNRSN. LS SUN l

RESULT

• SUM.OB on disc
• errors on console

• SUM.OB on disc
• errors on console

• SUM.OB } on
• SUMMASM.LS disc

errors on console

/L = filename . .. direct listing to disc filename.

Figure 4-78

RESULT

,) XEa I1ASM.···PS=FORT4. PS/L SUN 1 SUM.OB on disc

) Errors on Console

IL ... send listing to LPT

) XEa NASN/PS=FORT4. PS,'P.··'L=SUNNASN. LS SUN,l. SUMMASM.LS} on
SUM.OB disc

;. Errors on Console

IP ••• include semi-permanent symbols in cross-reference listing.

;. XEa I1ASM.·'PS=FORT4. PS,..K SUN 1
. TITL

;.

IK ... save temporary symbol file.
Figure 4-79

. MAIN

;. XEa I'tASN,..PS=FORT4. PS/B=SUNDBJ SUI't J
. TITL . MAIN

;.

IB = filename .•• make filename the object file.

,) XEa '1ASM/PS=FORT4. PS/U SUN
. TITL

IU •.• add user-dafined symbols to object file.

Figure 4-80

.NAIN

SUM.OB } on
?MASM.ST.TMP disc

Errors on Console

RESULT

SUMOBJ.OB on disc
Errors on Console

SUM.OB on disc

Errors on Console

4-111

TOPICS

• ASSEMBLING FORTRAN .SR FI LES

• CLI MASM COMMAND LINE
• REQUIRED SWITCH
• OPTIONAL SWITCHES
• OBJECT FILE OUTPUT

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 4-81

4-112

ASSEMBLING FORTRAN .SR FILES

QUIZ

Given the following macroassemb1er command line, identify the switches and arguments and state
the purpose of the switches and arguments.

) XEQ MASM/PS=FORT4.PS/L=PROG.LS/K/B=PROG.OB PROG

1. Switches ____________________________ _

2. Arguments ___________________________ _

3. Purpose of the switches, _______________________ _

4. Purpose of the argument: ______________________ _

Given the following eLI Macroassemb1er command lines, briefly describe the anticipated result of
a successful assembly:

) XEQ MASM/pS=FORT4.PS PROG.SR

5. _________________________________ _

) XEQ MASM/PS=FORT4.PS PROG

6. __ _

4-113

) XEQ MASM/PS=FORT4.PS/L=PROUT.LS PROG

7. __ __

) XEQ MASM/PS=FORT4.PS/B=SPLAT PROG

8. __ __

) XEQ MASM/PS=FORT4.PS/P/L PROG

9. __ __

) XEQ MASM/pS=FORT4.PS/K PROG

10. __ _

) XEQ MASM/PS=FORT4.PS/U PROG

11., ___ _

4-114

Check your answers on

the following page

ASSEMBLING FORTRAN.SR FILES

QUIZ ANSWERS

The switches, arguments, and purposes are as follows:

) XEQ MASM/PS=FORT4.PS/L=PROG.LS/K/B=PROG.OB PROG

1. Switches: /PS=FORT4.PS

2. Argument:

/L=PROG.LS
/K
/B=PROG.OB

PROG

3. Purpose of the switches: /pS=FORT4.PS signals the macroassembler to use FORT4.PS instead
of MASM.PS to build a symbol table file. Failure to include this switch causes an assembly
error and results in no object file. /L=PROG.LS directs the assembly listing to the disc file
named PROG.LS. The listing contains the source statements, assembly translations and octal
representations. (A detailed description of the assembly listing is in the macroassembler
segment of this module.) /K retains the macroassembler temporary symbol table file at the
end of the assembly process. ' This file is titled ?MASM.ST.TMP. /B=PROG.OB directs the
assembler to name the assembled file PROG.OB.OB. The double .OB extension is forced by
the specified name. Default name would be just PROG.OB.

4. The purpose of the argument: PROG identifies the fIle to be assembled. The macroassembler
first searches for PROG.SR. If the search fails, the macroassembler then searches for PROG
without the extension.

The anticipated results of the eLI command lines are as follows:

) XEQ MASM/PS=FORT4.PS PROG.SR

5. The macroassembler will search only for PROG.SR. If the search fails, the macroassembler
will issue an error message, "FILE NOT FOUND". PROG.OB will be produced as the
assembled fIle. No listing is produced. Errors are displayed on the console. The .TITL
message is displayed on the console with a successful assembly.

4-115

) XEQ MASM/PS=FORT4.PS PROG

6. The macroassembler will search for PROG.SR and then PROG. PROG.OB is produced as the
assembled fIle and stored on disc. Errors are displayed on the console. No listing is produced.
The .TITL message is displayed on the console.

) XEQ MASM/PS=FORT4.PS/L=PROUT.LS PROG

7. PROG.SR (or PROG, if PROG.SR does not exist) is assembled, producing PROG.OB as the
assembled fIle. The listing is stored under PROUT.LS on the disc. Errors are directed to the
console. Note that the MASM listing is different from the compiler listing. MASM's listing
includes the octal translations.

) XEQ MASMjPS=FORT4.PS/B=SPLAT PROG

8. PROG.SR (or PROG, if PROG.SR does not exist) is assembled. The assembled fIle is stored
on disc under the name SPLAT.OB. Errors are directed to the console. No listing is produced.

) XEQ MASMjPS=FORT4.PSjP/L PROG

9. PROG.SR (or PROG) is assembled. The assembled fIle is PROG.OB. The listing is directed
to the line printer and contains semi-permanent (instruction mnemonic) symbols. Errors are
sent to the console.

) XEQ MASM/PS=FORT4.PS/K PROG

10. PROG.SR (or PROG, if PROG.SR does not exist) is assembled. The assembled fIle is titled
PROG.OB and is stored on disc. Errors go to the console. No listing. The ?MASM.ST.TMP
temporary symbol table fIle is saved on disc. This is a rather large fIle and is, therefore, not
always preserved.

) XEQ MASM/PS=FORT4.PS/U PROG

11. PROG.SR (or PROG, if PROG.SR does not exist) is assembled. The assembled fIle is titled
PROG.OB and is stored on disc. The object fIle, PROG.OB, includes the user symbols. Errors
go to the console. No listing.

4-116

A SCORE OF 9 CORRECT ANSWERS OUT OF THE 11 QUESTIONS INDICATES
MASTER LEVEL. REVIEW THE QUESTIONS YOU MAY HA VE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

ASSEMBLING FORTRAN .SR FILES

LAB EXERCISE

Directions

1. To complete this lab exercise, you must have the following files on your system:

FORT4.PR The Fortran Compiler
FORT4.PS Assembler symbols for Fortran
MASM.PR The macroassembler
MASMXR.PR The cross-reference for MASM
MONEY.FR Fortran file from previous exercise.

Use the filestatus command to verify their presence. If you do not have MONEY.FR then
SPEED it in. Make sure it is an accurate copy. As usual, the comments are not necessary, but
they make the program easier to read .

.> n'PE NONE~!. FR)
C :t::#::#: TI TLE I NCONE :t:.'#::t:

RCCEPT "ENTER ~"OUR I.JEE/<L)., SALAR)" " .' SALAR)"
ACCEPf"ENTER 'r'OUR AGE"., AGE
)"ERL)., = SALAI<.')! :#: 52
TOTAL =)·'E!<.'L)., :t: ('65 - AGE,)
n'PE "TOTAL INCOf>1E FROf>1" .,AGE., "TO RETIREf>1ENT AT 65 IS $ "., TOmL
STOP
END

2. Delete the current MONEY.SR and MONEY.LS, if they exist. We want to start with a clean
slate.

3. Compile money and make MONEY.LS the listing file. This was done in the Fortran compila­
tion lab and is repeated here for your convenience:

.> XEQ FOR T4""L =NONEY . LS NONE'l l

4-117

4. Check the success of the operation with the ftlestatus command:

.> F I /AS.··-S NONE'r'+.l
DIRECTORY @DPX1:

.>

NONE~·' . FR
MONE~·'. LS
~1ONE'r' . SR

T,'x,'T
66
66

26-)UN-79
27-.)UL-79
27-)UL-79

9:54:45
H.l: 4a: 14
la:4a: 15

268
992

5. TYPE copies of MONEY.LS and MONEY.SR and save them. Note that our development was
done on a dual diskette system. SYSDISK was in drive 0 (@DPXO) and FORTDISK was in
Drive 1 (@DPX1). Also, our configuration included only a hard-copy Dasher terminal and no
line printer.

4-118

Copies of MONEY.SR and MONEY.LS are shown below. Compare them with your printouts.
Be sure that they are not significantly different. After checking them over, begin the lab
exercise.

) n'PE MONE~'. LS)

.>

DGC FORTRAN IV REt! B5.2eIS

C *** TITLE INCOME ***
ACCEPT "ENTER YOUR '.JEEKL ~ .• SALAR~··".. SALAR.,.·
ACCEPT"ENTER H1UR AGE" .• AGE
YERL.,.· = SALAR~·· :t: 52
TOTAL = YERL.,.· :1: (" 65 - AGE'>
n"PE "TOTAL INCOME FROW' .. AGE .. "TO RETIREMENT AT 65 IS $ " .. TOTAL
STOP
END

.> TYPE MONE~/. SR I

.i DGC FORTRAN IV REV 35.23IS

C U.t TITLE INCOME tU

. MAIN:

Lt. :

ACCEPT "ENTER YOUR I<lEEKL Y SALAR~·'''.,
· TITL . MAIN
.ENT . MAIN
.NREL 1
· TXTM 1
.EXTU
. EX TN .1
.CSIZ 2
FS .

JMP @.+1
Ll.

JSR @.FREA
· C1
3
6
· TXT "ENTER ~/OUR NEEKL Y SALARY"
3
2
1..1.+3 .; SALAR~'
5

ACCEPT"ENTER YOUR AGE" I AGE
JSR @.FREA
· C1
3
6
· TXT "ENTER YOUR AGE"
l~

V.+2 .. AGE
5

'r'ERL Y = SALAR'r' .t 52
F,'<,'FLI
.C2
FFLD1
V. +3 i SALARY
FMU
FFSTl
V. +4 i YERL ~I

CONTINUED

SALARY

4-119

4-120

TOTRL = 'y'ERL 'y' ~: <" 65 - RGE')
F,\'FLJ
.C3
FFLDl
V. +2 ;RGE
FSBl
FFLDl
V.+4 ; \'ERL Y
FMLJ
FFSTl
V. +6 .: TOTRL

n'PE
)SR

"TOTRL INCOl'1E FROM" ,RGE., "TO RETIREI'1ENT RT 65 IS :$ "., TOTRL
@.Ft<lRI

· C4
tl
6
· TXT "TOTRL INCOME FRON"
0
2
V.+2 ;RGE
6
· TXT "TO RETIREMENT RT 65 IS :$ "
0
2
V.+6
5

.' STOP
~/SR @.STOP

TXT ""

END
)SR @.FRET

· [:4 : l-=i00012
.CJ: 000101
· C2: 000064
· C 1 : 000l-=i 1 J

,)

FS. =1t1
SFS. =l-=i
T.=-167
V. =200+T.
TS.=T.+7
FTS. =T. +0
VS.=V.+7
FVS.=V.+0
. END

..... :.:.:-:.:.:-;

1. Write the command for assembling the compiled Fortran file MONEY.SR. Show all anticipated
results in the space provided:

**

.> gEl.:? f'1ASN.···PS=FORT4. PS f'1t]NE·t~
. TITL

" ...

The /PS=FORT4.PS keyboard switch is required.

.NAIN

Note that either MONEY or MONEY.SR is sufficient here. The successful assembly is signalled by
the .TITL message and eLI prompt.

If any errors are displayed on your screen, then it is necessary to return to SPEED and edit your
MONEY.FR, recompile, and re-assemble. When ready, continue with the next question.

4-121

2. Write the commands to detennine which fIles associated with MONEY now exist on your
system. Show all anticipated responses:

**

.> F I /L EN,·' T'y'P f'10NE~~'" ~
DIRECTOR'r' @DPXl:

)

MONEY.FR
~10NEY. LS
MONE'r'. SR
~1ONE'r' . 08

TXT
66
66

08F

222
268
992
466

The /LEN ·switch displays the length and the /TYP switch displays the file type.

MONEY.SR was input to the macroassembler and MONEY.OB was the assembled result. Note the
type "OBF" on MONEY.OB. This indicates a binary, object fIle.

Do it on your system.

Delete MONEY.OB so that it does not conflict with later questions. (Save the others.)

4-122

) DELET£.····V.····C ~10NE~~. DB l
MONE~·' . OB? 'r'ES l
De Ie t ed MONE'r'. DB
.>

3. Assemble MONEY. Make MONEYMASM.LS the list file. Show all commands and anticipated
responses:

~*****************************

.> MEa f'tRSN/PS=FORT4. PS.--L=NONEYNRSN. LS NONE')~ l

The /L=MONEYMASM.LS keyword switch directs the listing to the disc file MONEYMASM.LS.

MONEY or MONEY.SR would suffice.

Do it on your system.

4-123

4. Which MONEY files now exist on the system? Write the commands and anticipated responses
before checking the answer and before trying it on your system:

.> FI.···'LEN.····n··p NONE~"+
DIRECTOR'),' @DP.'x:l:

,)

"1ONE'),' . FR
~1ONE)··. LS
f'1ONE~" . Sf;:
f'1ONE'r·f'1RSf'1. LS
1"1ONE~··. OB

T:x:T
66
66

na
OBF

268
992

4478
466

Do it on your system. Note the type "TXT" on MONEYMASM.LS.

If you do not have MONEY.OB and MONEYMASM.LS, then the assembly failed. Failure
necessitates reviewing the source text, re-invoking SPEED, correcting the errors, re-compiling, and
re-assembling.

4-124

5. MONEYMASM.LS makes for interesting reading. Write the command for displaying the
contents of MONEYMASM.LS. Briefly describe the anticipated results (what does it contain):

**

) n'PE NONEWIRSN. LS}
Ot'01 . NRIN NP.·'·OS RSSENBLER REV 1. gt1

01

Hl
11 00@@01
12 @00661
13
14
15 OB6002
16 OOtl!.10! fWOOl 0
17
18 l10t10 1 1802401
1.9 @tlftl.:12 I tlBOOt13!

,; DGC FORTRRN IV REV 05.20IS

C .n.'#: TITLE I NCONE .'#::U

.NRIN:

RCCEPT
· TITL
· ENT
.NREL
· TXTN
.EXTU
. EXTN
· CSIZ
FS.

-fNP
Lt.

"ENTER ~'OUR I.JEEKL ~., SRLRR~·'''., SRLRR~"

.NMN

.NRIN
1
1

.1 .-.
.:::.

lP.+l

20 Ll.:
21
22 01.:10B3!1.:106000$
2301.:101.:14!OB0141!
24 1.:11.10l15! 000000
25 !.1tlti06! 8000e6
26 tltl0tl7! 042516
27 t1521 05
28 051MO
29 054517
30 052522
31 t120127
32 0425t15
33 045514
34 054440
35 0515(11
36 t1461t11
~~,.. 051131
38 00t100(1
39 tlftB24! Ot16660
41.1 00ft25! Ot10tlt12
41 Oft026! Otl0tl11
42 OOt127 I l1f/0805

-fSR
· C1
o
6
· TXT

2
V.+O
5

lP.FRER

"ENTER i"OUR I.JEEKL j" SRLRRi""

CONTINUED

4-125

4-126

43
44
45 88838!886088$
4688831!880141!
47 88832!888888
48 l':f8833! 088886
49 @@034!842516
58 852185
51 851848
52 854517
53 852522
54 828181
55 843585
56 888888
57 00844!888888
58 08845!888882
59 f/8846! E.I88813
68 88847! Ol':f80l':f5

8882 . nMN
81
/t.'12
83 08858!808888$
8488851!088148!
85 88852!888888$
86 88853!aB8811
87 88854!088888$
88 88855!888888$
89 8l':f856! 888815
18
11
12 88857!888888$
13 88868!088137!
1488861!888888$
15 8l':f862! 888813
16 88863!888888$
17 88864!888888$
18 88865!888815
19 88866!808888$
28 88867! 08888'8$
21 8l':f878! 888817
22
23
$ "., TOTAL
2488871!086888$
25 88872!888136!
26 0007J!888880
27 88874!888886
28 80875!852117
29 852181
38 846848
31 844516
32 841517
33 846585
34 828186
35 851117
36 846488
37 88186!888888
38 88187!888882
39 88118!088813
4888111!888886
41 88112! 85211 7
42 828122
43 842524
44 844522
45 842515
46 842516

ACCEPT"ENTER YOUR AGE".,
)SR @.FREA
· Cl
8
6
· TXT "ENTER YOUR AGE"

8
2
lJ.+2
5

; AGE.

\"ERL \., = SALAR\' :#: 52
FXFL1
.C2
FFLD1
lJ. +8 ,; SALAR'r'
F!'7L1
FFSTl
V. +4 ; \"ERL'r'

AGE

TOTAL = YERL'r' :#: (65 - AGE'>
FXFL1
.C3
FFLDI
V. +2 .;AGE
FSBI
FFLD1
V. +4 .; YERL \.,
F!'7Ll

,'FFSTl
·V. +6 ; TOTAL

TYPE "TOTAL INCOME FRO!'7" ,AGE., "TO RETIRE!'7ENT AT 65 IS

)SR @.FURI
· C4
8
6
· TXT "TOTAL INCOME FROM"

8
2
V.+2 ; AGE
6
· TXT "TO RETIREMENT AT 65 IS $ "

CONTINUED

47 -1352848
48 848524
49 828866
58 832448
51 844523
52 820844
53 820888
54 813127!000080
55 0813131080802
56 8131311888817
57 l~8 132 ! 13801385
58
59
68 81313318868130$

0003 ./'IAIN
1.:.11 Ol~ 1341888808
82
03
134 13013518136088$
85 1301361980812 .C4:
06 1301371800101 .C3:
137 130140!1308064 .C2:
08 091411808013 .Cl:
139
10
11
12
13
14
15
16
17
18
19

000010
088088
177611
0001311
177628
177611
OB0020
8013011

8
2
V.+6
5

STOP
JSR

. TXT

END

@.STOP

""

JSR @.FRET
0001312
888ta1
880064
088813

FS.=10
SFS.=8
T.=-167
V.=208+r.
TS. =T. +7
FTS.=T.+O
VS.=V.+7
FVS.=V.+0
. END

; TOTRL

U88888 TOTAL ERRORS, 88888 PRSS 1 ERRORS 8884

FFLDI 880811$ XD 2/85 2/14 2 17
FFSTI 888891$ XD 2/98 2""28
F/'IU 89998U XD 2 87 2/19
FSBI 889819$,II,'D 2/16
FS. 91313810 1/16 3/19#
FTS. 177611 3/15#
FVS. 998911 3/17#
FXFL1 998995$ XD 2/03 2/12
Lt. 0000831 1/19 1/20#
SFS. 131301388 3/11#
TS. 17;::'620 3/14#
T. 177611 3/12# 3 ... ··13 3/14 3/15
VS. 13131313213 3/16#
V. 1308811 1/41 1/59 2/06 2/09

2/39 2/56 3/13# 3/16
· Cl 91301411 1/23 1/46 3/08#
.C2 13881481 2/04 3/137#
.C3 131381371 2/13 3/86#
· C4 1313131361 2/25 3/05#
.FRER 13813987$ XD 1/22 1/45
.FRET 9138986$ XD 3....-84
. FURl 988804$ XD 2/24
.1 8138812 XN 1/14
· /'lAIN 81388011 EN 1/18 1/17#
.STOP 998883$ XD 2/68

)

. "tRIN

2/15 2"'18 2"'21
3/17

4-127

Do it on your system.

MONEYMASM.LS is the assembler's listing fIle. It contains the original Fortran source statements,
the assembly translation, the cross-reference listing, and the octal translation. Assembly listings are
discussed in depth in the macroassembler concepts segment of this module.

Delete MONEYMASM.LS and MONEY.OB from the system so that they do not conflict with
future questions:

4-128

.> DELETE.····V.·,·C f'10NEYf'1RSf'1. LS f'10NE~·'. 08 J
f'10NE~·'f'1RSf'1. LS? ~"ES)
De 1 IE' ~ ed fr1ONE'r'f'1ASf'1. LS
MONE~~. DB? ~"ES,)
De 1 IE' ~ ed f'10NE'r'. 08
.>

6. Assemble MONEY. Make MONEYOBJ the object file. Show all commands and anticipated
responses:

**

) ,:,{EO NRSN.···PS=FORT4. PS.···'B=NONE.., .. OB.) NONE..,"}
. TITL . NRIN

,)

Do it on your system.

The /B switch assigns the object file to the specified file.

4-129

7. Determine which fIles now exist on your system. Show the command and response:

.> F I.····RS.····S NONE~J+ ~
DIRECTOR't' €DPX1:

MONE't'. FR
~10NE~·'. LS
MONEr.SR
MONE~·'OB • .I. 08

TXT
66
66

08F

26-,...IUN-79
27- ... IUL-79
27-• .IUL-79
27- ... IUL-79

9:54:45
10: 40: 14
10: 4tl: 15
13:01:40

268
992
466

Do it on your system. Note the .OB extension on MONEYOBJ. Since this is a binary fIle, you
cannot use the TYPE command to examine it.

Get rid of MONEYOBJ.OB so that it does not conflict with the next questions:

4-130

) DELETE.··'V,""C NDNEYOB ... I. DB ,)
MDNE't'DB • .I. DB? YES J
Df? 1 if] * f?d f10NE't'DB ... I. 08
.>

8. Assemble MONEY. This time, add semi-penn anent sybmols to the cross-reference listing. Make
MONEYMASM.LS the list file:

**

.> X'£iJ MRSM,'·PS=FORT4. PS.· ... P.··'L=MON£W·IRSM. LS NON£~' l

.>

The /P switch directs the assembler to include the semi-penn anent symbols (such as instruction
mnemonics) to the cross-reference listing. This can be an aid in the debugging process.

Do it on your system. Check your spelling.

4-131

9. Which MONEY fIles now exist on your system. Show the command and anticipated responses:

**

) FI.· ... RS S MONEY+J
OIRECTOR~·· &OPX1:

.>

MONE'y'. FR
Jl10NE'y' . L S
MONEY.OB
MQNE'y' . SR
MONE'y'I'1ASI'1.

Do it on your system.

TXT
66

OBF
66

TXT

26-...IUN-79
27-. ..IUL-79
27-...IUL-79
27-. ..IUL-79
27-,..IUL-79

9:54:45
18: 4f': 14
13:85:34
18: 48: 15
13:86:85

222
268
466
992

4574

Note the time appended to the assembler's listing fIle and the object fIle. Are they the same? (They
shouldn't be.)

4-132

10. What would MONEYMASM.LS look like? Is it the same as the previous copy of
MONEYMASM.LS? Write the command and briefly describe the response:

**

) n'PE NONH'NRSN. LS I

FFLOl Ofl81,;111 $,\'0 2 1,;15 2""14 2.····17
FFSTl OOOftO 1 $ XO 2.····08 2 20
FML1 01..'10002$ XO 2/07 2""19
FSBl !:100010$ XO 2.····16
FS. 0081,;110 1 16 3 10#
FrS. 177611 3 15#
FI)S. 008011 3 17#
FXFLl 001:.1805$ XO 2.·''1:13 2 12

-~~I/'1P 1..'11..'10801:1 1 18
-~.ISR OMOOO 1 .. ,,:,':1 ." .:..'- 1/45 2/24 2 60 3/1:14

Lt. 1..100003 ! 1 19 1/20#
SFS. 01.;101..100 3 11#
TS. 177620 3 14#
T. 177611 3/12# 3 13 3/14 3 15
tiS. 01..11.;11..121:.1 3 16#
I). 01..10011 1.····41 1 ·59 2 06 2 09 2 15 2 18 2.····21

2 39 2 56 3 13# 3 16 3/17
· Cl 000141! 1.····23 1/46 3/1.;18#
C? · .- 1.11.11..1141.;1 t 2 04 3.····07#

.C3 01..10137! 2 13 3""06#
· (:4 1100136! 2"''25 3.····05#
· FF..'ER 001..11..'107$ XO 1""22 1 ·45
. FRET 000086$,x:O 3 04
. Ff..IR1 1.100804$.\'0 2 24
.1 01;11:.11..112 .\'N 1 14
.f>1RJN 01381301! EN 1,.,"10 1.····17#
· STOP 0013003$ XO 2 60

,)

4-133

Note the required spelling of the MONEYMASM listing file.

Do it on your system.

Our example shows only the cross-reference listing. Note the addition of the jump instruction
mnemonics (JMP and JSR). Oddly enough, our assembly translation only uses the two jump
mnemonics. All other assembly statements involve system calls to assembler subroutines.

Delete MONEYMASM.LS and MONEY.OB from your system.

4-134

) OELETE,'·V,···C NONEY. 08 f10NEYfo1ASfo1.'"
NONE..,.. . 08"? ~'ES)
Df? 1 f? ~ f?d NONE'r'. 08
fo10NE'r'f1ASf1."? YES'r')
Df? 1 f? ~ f?d NON£'r'fo1ASI'1.
)

11. Assemble MONEY again. This time make CASHLIST the list fIle and add user symbols to the
object fIle. Show the command and anticipated response:

**

,) X£Q NASN,··PS=FORT4. PS/U L=CASHLIST NON£~J l

The IU switch directs the macroassembler to include the user-defmed symbols with the assembled
object fIle.

Do it on your system.

4-135

12. Which MONEY and CASH files now exist on your system? Get their sizes (especially the
object file). Show the command and estimated response:

**

) F I LEN f'10f·/E)'+ CRBH+ l
DIRECTOR')"' @DP,'x,'l:

NONE)". FR
r10NE'y'. LS
NONE i" . SR
NONE')"'.OB
CRBHLIST

Do it on your system.

22::"
268
992
642

4478

Compare the size of this MONEY.OB with previous MONEY.OBs. Bigger? (It should be, you
added the user symbols to the object me.) Also compare the listings.

Get rid of CASH LIST and MONEY.OB:

4-136

,) DEL.····U.··'C CRBHLIST NONEi'.OB 1
CRSHLIST? i"ES l
Delefed CRSHLIST
NONEi'. DB? i"EB l
Delefed MONEY.OB

13. Assemble MONEY for the final time in this lab exercise. This timeJkeep the temporary symbol
table file at the end of the assembly. Show the command and anticipated responses:

**

) I'-::Et~ NASN.···'PS=FORT4. PS/K NONE'r',~
. TITL . NAIN

The /K switch directs the macroassembler to retain the symbol table file upon completion of the
assembly. It is stored under ?MASM,ST.TMP.

Do it on your system.

4-137

14. Which MONEY files exist on the system now? Show the command and responses. Also, dig up
the temporary symbol table file:

) FI,···n'p/LEN NONE~"+ ?+,l
OIRECTOR~·' @OP,'x,'l:

.>

NONE'r'. FR
NONE'r'. LS
NONE'r'. SR
NONE\·'. DB
?MRSM.ST. TMP

TXT
66
66

OBF
PST

222
268
qq::'t -" -"
466

1536@

Note the use of the + template in the filename argument.

Do it on your system. Note the size and type of the ?MASM.ST.TMP file.

Now clean up your system. Delete the ?MASM.ST.TEMP file. Keep the others for use in future
exercises .

4-138

.> DELETE/t./.····C +?+
?~1RSN . ST. TNP? \·'ES
De 1 e of ed ?NRS~1. S T. TNP
)

This concludes the Lab Exercise "Assembling Fortran .SR files. Shut down your system. Keep a
copy of the MONEY source, compiled, and object files (MONEY.FR, MONEY.SR, MONEY.OB).

The next step for the Fortran programmer is the BINDING segment of Module Four. Skip over
the Pascal segment and continue to the BINDER.

4-139 .

PASCAL COMPILATION

Abstract

This unit instructs in the concepts and procedures involved in compiling Pascal source fIles into
relocatable binary object fIles.
NOTE: This segment is of primary interest to the Pascal programmer. Experts in other languages
should skip this segment.
Objectives

Upon completion of this unit, you will be able to:

I. Given a CLI Pascal compiler command line, identify and state the purpose of the switches
and arguments.

2. List the reference material available on Pascal compiler commands.

3. Given a CLI Pascal compiler command line, describe the results.

4. Write an appropriate CLI Pascal compiler command line to compile a given Pascal program.
State the output names with extensions.

5. Given a Pascal compiler error situation:
A) identify possible causes;
B) reference solutions;
C) write commands to correct the error.

6. State the purpose of compiler directives.

7. Given a compiler directive statement, describe the result.

8. Code the compiler directive for producing a stated compiler response.

Directions

I. Tum to figure 4-106 on the next page of the Student Guide.

2. Listen to the tape for this unit.

4-140

XEa PASCAL/SWITCHES

XEa
XE
X

/L
/L = FILENAME

/0 = FILENAME
/E = FILENAME

,
ARGUMENT

FILENAME
PATHNAME

CLI PASCAL COMPILER COMMAND LINE SYNTAX

Figure 4-106

4-141

SWITCH FUNCTION

IL Direct compiler listing to the line printer.

IL = filename Direct compiler listing to the disc file "filename"

10 = filename Give the object file the specified filename.

IE = filename Write error messages to the specified filename and save it on the
disc device.

PASCAL COMPILER COMMAND SWITCHES

Figure 4-101

4-142

FILE.PAS

Listing
if Requested

PASCAL.LB FILE.OB

~
B

FILE.PR

PASCAL PROGRAM DEVELOPMENT

Figure 4-108

4-143

RESULT

.) ,\'EO PRSCRL TEST_ONE l

No Compilation Errors

TEST_ONE }
TEST.ONE.OB

On Disc

Error Count on Console

.> ,!-.;' PRSCRL TEST_ONE. PRS

No Compilation Errors

TEST _ONE.PAS} On Disc
TEST_ONE.OB

Error Count on Console
.>

TEST_ONE } On Disc
TEST _ONE.OB

Listing on LPT

Error Count on Console

/L ... Direct listing to line printer.

Figure 4-109

4-144

) XEQ PRSCRL/L=TEST _ONE. LS TEST _ONE ~

/L = filename ••• send listing to disc under filename.

) ,'x,'Et-:) PRSCRL,·'O=TESTOB I TEST _ONE ~

No COIDPilafion Errors
)

/0 = filename .•• make filename the object file.

) XEt-:) PRSCRL/0=TEST08 i.08 TEST _ONE ~

No COIDPilafion Errors

Figure 4-110

RESULT

TEST _ONE.LS
TEST_ONE }

On Disc
TEST_ONE.OB

Error Count on Console

TEST_ONE
TESTOBJ.OB

} On Disc

Error Count on Console

TESTONE
TESTOBJ.OB

} OnDisc

Error Count on Console

4-145

4-146

·4 ..

B ..
9.

10 ..
1.:1. ..
12.
1:5..
J.4 ..
:I. ;'j ..
l-'>.
:1, '7 ..
lD.
19.

21 ..
'-)"j ;~ ..
23.
24.

~'.6 •
::'~7 ..

F![I) l,!:1O

F'r;:OGF!(lI'i ~:;hITH-l::tNE:;

INCLUDE 10 CALLS.PAS~

{ ********************** } { PRIMITIVE 1/0 ROUTINES }
{ ********************** }
CONST

TYPE

i'iA\ F'rHH LTH

INCH '" OI:;:B:
OUCH" iRO:

{ OPEN OP T IONS}
EX
NZ
CF,
DE
UC
AP

40000FW:
1. OOOOf(B:

4000RB:
20()()RB~

:I. OOOf!B::
4()OF(fj :

CHfiNNEL. '" () ... i!"j::

{STANDARD INPUT CHANNEL}
{STANDARD OUTPUT CHANNEL}

{EXCLUSIVE ACCESS}
{DON'T ZERO BLOCKS ON liD}
{FILE CF(EATIDN}
{FILE DELETION}
{UNCONDITIONAL CREATION}
{f~PPEND}

PATHNAME = STRING MAX_PATH_LTH:
L.INE BUFFER = STRING MAX LINE LTH:
IO_BOFFER = STRING 327-'>7; -
FIL.E_POSITION = RECORD

HIGH: INTEGEF(:
2B. LOW:INTEGER
2'1. END:
30 ..
3:1... EXTERNAL. ASSEMBLY PROCEDURE OPENFILE(VAR CHAN: CHANNEL:
32. FIL.E: PATHNAME:
33. OPTIONS: INTEGER:
34. FIL.E_TYPE: INTEGER:
35. EL.EM_SIZE: INTEGER:
3-'>.. VAR STATUS: INTEGER):
3/'"
3B.. EXTERNAL ASSEMBL.Y PROCEDURE CLOSEFILE(CHAN: CHANNEL: VAR STATUS:INTEGER):
39. EXTERNAL ASSEMBLY PROCEDURE CLDELFIL.E(CHAN: CHANNEL.: VAR STATUS:INTEGER):
40 ..
4:1.. EXTERNAL. ASSEMBLY PROCEDURE LINEREAD(CHAN: CHANNEL.:
42. VAR BUFFER: LINE_BUFFER: VAR STATUS: INTEGER):
43 ..
44. EXTERNAL. ASSEMBL.Y PROCEDURE LINEWRITE(CHAN: CHANNEL: BUFFER: LINE_BUFFER:
45. VAR STATUS: INTEGER):
46 ..
47. EXTERNAL ASSEMBLY PROCEDURE CHARREAD(CHAN: CHANNEL:
4B. LTH: INTEGER: VAl:;: BUFFH(: I O .. ,BUFFER:
4'1.. VAR ~nATUS: INTEGER):
~50 "
5:1... EXTERNAL ASSEMBL.Y PROCEDURE CHARWRITE(CHAN: CHANNEL: BUFFER: IO_BUFFER:
52. VAR STATUS: INTEGER),
5;5 ..

54. EXTERNAL ASSEMBLY PROCEDURE BYTEREAD(CHAN: CHANNEL:
55.. BlJF_ADDRESS: INTEGER~ VAR L.TH: INTEGER:
:,'j-'>. \)(ll:;: STATUS: I NT ECiEf():

so. EXTERNAL. ASSEMBLY PROCEDURE BYTEWRITE(CHAN: CI ~NNEL:
59. BUF_ADDRESS: INTEGER: LTH: INTEGER:
60. VAR STATUS: INTEGER):
61 ..

63.. EXTERNAL ASSEMBLY PROCEDURE GPOSFILE(CHAN: CHANNEL:
64. VAR POSITION: RECAST FILE_POSITION: VAR STATUS: INTEGER):
65 ..
61.) ..
67.

-"6B ..

{

6'1 ..

~~:
/,~ ..

EXTERNAL ASSEMBLY PROCEDURE SPOSFILE(CHAN: CHANNEL:
POSITION: RECAST FILE_POSITIONr VAR STATUS: INTEGER):

IJAI:;: ST:INTEGER:
BEGIN
L.INEWRITE(OUCH.'THIS IS AN EXAMPLE OF MP/PASCAL DEVELOPMENT <12>'.5T):
IF ST <> 0 THEN LINEWRITE(OUCH. 'ERROR ON MESSAGE'.ST)
END. .

COMPILER LISTING

Figure 4-111

$

OPTION

C

N

o

P

R

S

V

STACK COMMAND
DIRECTIVE

OPTION
±

DELIMITER

1 "" _-........ ,,-__ -'1 '---v--J "-.,.-I

<
>

SINGLE LETTER

COMPILER DIRECTIVES COMMENT

Figure 4-112

FUNCTION

Generate code to check all case instructions.

List all INCLUDE files.

Produce code to update statement line numbers.

Generate code to check for overflow on all integer arithmetic
operations.

Generate code to initialize to zero all pointers and structures
containing pointers. Check all pointer references for a value of
nil.

Generate code to check all subrange assignments.

Generate code to check all array subscripts.

Generate code to check all variant references.

COMPILER DIRECTIVES.

Figure 4-113

4-147

4-148

(* $ C + *) CHECK CASE EXPRESSIONS

(*$0-*) SKIP OVERFLOW CHECKING

(* $ I +, R - *) LIST INCLUDE FILES

(*$ < R + *)

SKIP UPDATING LINE NUMBERS

REINSTATE LINE NUMBER
UPDATING

EXAMPLES OF COMPILER DIRECTIVES COMMENTS

Figure 4-114

;-1P/PASCAL REV 1. till

1. PROGRAM SMITH ONE:
2. (UI-*)
3. INCLLJDE 10 CALLS.PAS:

70. VAR ST:INT~GER:
7:L. BEGIN

03-JLJL-79 1~5:03:26

72. LINEWRITEIOLJCH.'THIS IS AN EXAMPLE OF MP/PASCAL DEVELOPMENT <12>'JST):
73. IF ST <> 0 THEN LINEWRITE(OLJCH. 'ERROR ON MESSAGEJ~ST)
74. END ..

Figure 4-115

TOPICS

• MP/PASCAL COMPILATION
• MP/OS UTILITIES REFERENCE MANUAL
• MP/PASCAL PROGRAMMERS REFERENCE MANUAL

• CLI COMMAND LINE
• OPTIONAL SWITCHES
• COMPILER DIRECTIVES

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 4-116

4-149

PASCAL COMPILATION

QUIZ

Write the answers in the space provided.

Given the following CLI Pascal compiler command line, identify the switches and arguments and
state the purpose of the switches and arguments:

) XEQ PASCAL/L=QUIZ.LS/O=QUIZOBJ QUIZ.PAS

1. Switches: ____________________________ _

2. Arguments: ____________________________ _

3. Purpose of the switches: _______________________ _

4. Purpose of the argument:

List three sources of information on MP/Pascal compiler commands:

5.

6.

7.

4-150

Given the following CLI MP/Pascal compiler command lines, briefly describe the anticipated result:

) XEQ PASCAL HOBBIT

8.

) XEQ PASCAL HOBB.PAS

9.

) XEQ PASCAL/L=HOBB.LS HOBB.PAS

10. __ __

) XEQ PASCAL/O=HOBBOBJ HOBBIT

11. __ __

What is the purpose of compiler directives?

12. __ __

4-151

Given the following compiler directive comments coded into separate Pascal programs, describe
the anticipated result:

(*$1- *)

13. __ __

(*$C- *)

14. __ __

(*$O-,R-,C- *)

15. __ __

Check your answers on the

following page ...

4-152

PASCAL COMPILATION

QUIZ ANSWERS

The switches, arguments, and purposes of the following command line are:

1. Switches:

2. Argument:

) XEQ PASCAL/L=QUIZ.LS/O=QUIZOBJ QUIZ.PAS

/L=QUIZ.LS
/O=QUIZOBJ

QUIZ.PAS

3. Purpose of the switches: /L=QUIZ.LS instructs the compiler to store the listing on disc under
the name "QUIZ.LS". This can be displayed by the CLI TYPE command. /O=QUIZOBJ
directs the compiler to name the binary object module "QUIZOBJ.OB".

4. Purpose of the argument: QUIZ.PAS identifies the Pascal source file to be compiled. The
object file is input to the binder to produce an executable program file.

Three sources of information of MP/pASCAL command lines include:

5. MP/OS Utilities Reference Manual (093-40002)

6. The CLI HELP command, if your system is so equipped.

7. This self/study manual

Others: The MP/PASCAL Self/Study course.
MP/PASCAL Programmer's Reference Manual (093-400003).

The anticipated result of the given compiler commands are as follows:

) XEQ PASCAL HOBBIT

8. The compiler is invoked and searches for HOBBIT.PAS. If not found the compiler searches
for HOBBIT. The error count is displayed on the console. No listing is produced. A success­
ful compilation is signalled by the message "NO COMPILATION ERRORS" on the console.
The object file is titled HOBBIT.OB.

4-153

) XEQ PASCAL HOBB PAS

9. This is almost identical to question #8. The only difference is that the compiler searches only
for HOBB.PAS. If not found, the error message "FILE NOT FOUND" is displayed on the
console. No listing is produced. The object file is named TEST.OB and is stored on disc.

) XEQ PASCAL/L=HOBB.LS HOBB.P AS

10. HOBB.PAS is compiled. HOBB.OB is the object file in a successful compile. The error count
is displayed on the console. The listing is stored on disc under the name HOBB.LS.

) XEQ P ASCAL/O-HOBBOBJ HOBBIT

11. HOBBIT.PAS (or HOBBIT, if HOBBIT.PAS does not exist) is compiled. The compiled object
file is stored on disc under the name "HOBBOBJ.OB". No listing is produced. The error
count is directed to the console.

12. The purpose of compiler directives is to request the generation (or non-generation) of code for
various Pascal routines.

The anticipated result of the following Pascal program comments is as follows:

(*$1-*)

13. Do not list the "INCLUDE" files in the compiler listing.

(*$C- *)

14. Do not generate the code for checking case statements.

(*$0-, R-, C- *)

15. Skip the code for checking overflow, updating statement numbers, and checking case state­
ments.

4-154

A SCORE OF 12 CORRECT ANSWERS OUT OF THE 15 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

PASCAL COMPILATION

LAB EXERCISE

Directions

This lab exercise is similar to the preceding exercises: it may be completed with or without a
functioning system. Learning is enhanced by using a computer. Complete each step of the exercise
for maximum benefit.

1. You will need the following files to complete this lab:

PASCAL.PR The Pascal compiler
PASCAL.OL Compiler overlay fIle.
IOCALLS.PASInclude fIles for external procedures.

Use the CLI FILESTATUS command to determine the presence of these fIles. Note that
IOCALLS.PAS is a text file which may be printed out for examination.

2. SPEED in the program "SMITH_TWO" exactly as shown below. Name it "TWO".

pROGRAM SMITH-JWOp
INCLUDE IO_CALLS.PAS:
VAR J,ST:INTEGER;
BEGIN
FOR J:= 1 TO 20 DO LINEWRITE(OUCH~' * <12>',ST~
IF ST <> I THEN LINEWFHTE(OUCH, 'ERF~OR ON WRITE'.1ST);
LINEWRITE (OUCH~' I1P/OS HAS LANDED <12>' JIST);
IF 8T <> ~ THEN LINEWRITE (OUCH., 'ERROR ON LANDING'fST)
END.

4-155

3. Make a backup copy of "TWO". Use the CLI COpy command (or MOVE utility if you are so
equipped). Do not give the backup a name with "TWO" in it, to avoid confusion with the
lab sequence.

You are now ready for the lab exercise. Remember:

I. Cover the answers;
2. Read the question;
3. Write in your answer;
4. Check the answer;
5. Perform the operation on your system.

. :.:.:.:.:.:.:.;.;.. .

4-156

1. Compile TWO. Show the commands and anticipated results in the space below. Do not look at
the answer until you have written in your response. Do not enter any commands on your
system until you have checked your response for accuracy.

**

; XEQ PASC~L T~C)

COIDFilaiion [~rO~5

The system searches first for TWO.PAS and then for TWO.

Did your response match the answer? If not, review the source file for possible errors, SPEED in
the corrections, and continue.

Now do it on your system.

The message "NO COMPILATION ERRORS" indicates an error-free compilation. If any errors
are displayed, it is necessary to return to SPEED, edit the source file, and repeat this first step.

When you are sure you are error-free, continue with question #2.

4-157

2. Which files associated with TWO now exist on your system. Write the command and antici­
pated response:

**

DIRECTORY @DPDO:PASCAL

TWO
TWO.OB

TXT
UDF

3-JUL-79 15:09:42
3-JUL-79 15:20:35

293
:1.140

Note that our directory is @DPDO:PASCAL, a subdirectory on a 10 megabyte disc. Your directory
may be different so adjust your response accordingly.

Now do it on your system.

If you do not have TWO.OB then compilation failed. Reinvoke SPEED, edit your Pascal program,
and try again.

Delete TWO.OB so that it does not conflict with succeeding questions ..

) DELETE./J).····C Tlr.lCf. CIS l
Ti,."l] . Cl13 ?'/E:3 l
DELfiEO T~;'/O. OBI
)

4-158

3. Compile TWO. This time make TWO.LS the listing file. Show all commands and anticipated
responses in the space provided:

**

) XEO P~SCAL/L=TUO.LS TWO

~o COfflPilaiion Errors

Note that either TWO.PAS or TWO would be sufficient in this case.

Now do it on your system.

Be careful of the spelling and spacing.

The "/L=TWO.LS" switch creates a disc file named TWO.LS and writes the listing into it.

4-159

4. Which mes associated with Two now exist on your system? Show the command and anticipated
responses in the space below:

REMEMBER: TO GET MAXIMUM
BENEFIT FROM THIS EXERCISE,
WRITE IN YOUR ANSWERS BEFORE
EXECUTING THEM ON YOUR SYSTEM.

JIRECTORY @DPDO:PASCAL

TWO
TWO.LS
TWO.OB

TXT
UDF
UDF

3-'JUL-79
3"-,,JUL·-79
3-JUL--79

The FILEST ATUS command displays the information.

Now do it on your system.

1.5:09:42
15:18:45
15:18:44

293
~3174

1140

TWO.LS, the requested listing, makes for interesting reading. Print out a copy of this me (TYPE/L).
You will note that it is considerably longer than the few source lines you entered.

(LISTING IS ON THE NEXT PAGE.)

4-160

MP/PASCAL REV 1. l~l~

1. ,.,
<-.

3.
4.
5.
6.
7.
EI.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
I').r"
L ...

PROGRAM SMITH_TWO:
INCLUDE 10 CALLS.PAS:

{ ********************** } { PRIMITIVE 110 ROUTINES }
{ ********************** }
CONST MAX_LINE_LTH 136~

MAX PATH LTH 128:

INCH"" OR8:
OUCH = 1R8:

{ OPEN OPTIONS}
EX = 40000R8:
NZ = 10000R8:
CR = 4000R8:
DE = 2000R8:
UC = 1000R8:
AP = 400R8;

TYPE CHANNEL = 0 •• 15:

{STANDARD INPUT CHANNEL}
{STANDARD OUTPUT CHANNEL}

{EXCLUSIVE ACCESS}
{DON'T ZERO BLOCKS ON liD}
{FIL.E CREATION}
{FILE DELETION}
{UNCONDITIONAL CREATION}
{APPEND}

PATHNAME "" STRING MAX_PATH_LTH:
LINE BUFFER = STRING MAX LINE LTH:
IO_BOFFER = STRING 32767i - .
FILE POSITION "" RECORD

- HIGH: INTEGER:
LOW:INTEGER

END:

EXTERNAL ASSEMBLY PROCEDURE OPENFILEeVAR CHAN: CHANNEL:
FILE: PATHNAME:
OPTIONS: INTEGER:
FILE_TYPE: INTEGER:
ELEM SIZE: INTEGER:

VAR STATUS: INTEGER)~ .

15:18:23

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
~~5 •
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
~j1.

EXTERNAL ASSEMBLY PROCEDURE CLOSEFILEeCHAN: CHANNEL; VAR STATUS:INTEGER);
EXTERNAL ASSEMBLY PROCEDURE CL.DELFIL.EeCHAN: CHANNEL; VAR STATUS:INTEGER);

52.
53.

EXTERNAL ASSEMBLY PROCEDURE LINEREADeCHAN: CHANNEL:
VAR BUFFER: LINE_BUFFER; VAR STATUS: INTEGER);

EXTERNAL ASSEMBLY PROCEDURE LINEWRITEeCHAN: CHANNEL: BUFFER: LINE_BUFFER;
VAR STATUS: INTEGER):

EXTERNAL ASSEMBLY PROCEDURE CHARREADCCHAN: CHANNEL.:
LTH: INTEGER; VAR BUFFER: IO_BUFFER:
VAR STATUS: INTEGER):

EXTERNAL ASSEMBLY PROCEDURE CHARWRITEeCHAN: CHANNEL: BUFFER: IO_BUFFER;
VAR STATUS: INTEGER):

54. EXTERNAL ASSEMBLY PROCEDURE BYTEREADeCHAN: CHANNEL:
55. BUF_ADDRESS: INTEGER; VAR LTH: INTEGER;
56. VAR STATUS: INTEGER):
57.
58. EXTERNAL ASSEMBLY PROCEDURE BYTEWRITECCHAN: CHANNEL:
59. BUF_ADDRESS: INTEGER; LTH: INTEGER;
60. VAR STATUS: INTEGER):
61-
62.
63. EXTERNAL ASSEMBLY PROCEDURE GPOSFILE(CHAN: CHANNEL:
64. VAR POSITION: RECAST FILE_POSITION; VAR STATUS: INTEGER):
65.
66. EXTERNAL ASSEMBLY PROCEDURE SPOSFILEeCHAN: CHANNEL:
67. POSITION: RECAST FILE_POSITION; VAR STATUS: INTEGER):
68 ..
69. VAR J.ST:INTEGER;
70. BEGIN
71. FOR J:= 1 TO 20 DO LINEWRITECOUCH,' * <12;',ST);
72. IF ST <> 0 THEN LINEWRITE(OUCH. 'ERROR ON WRITE',ST);
73. LINEWRITE COUCH,' MICRON HAS LANDED <12>',ST);
74. IF ST <> 0 THEN LINEWRITE COUCH, 'ERROR ON LANDING',ST)
7~5. END.

4-161

Note the addition of the IO_CALLS.PAS infonnation.

DELETE TWO.LS and TWO.OB to avoid confusion with later exercises. Keep the printout of
TWO.LS for later questions:

4-162

) DE1_.····{J ilJJO. JJB Tl:J;]L. S l
Deleted iNO.OB

,)

5. Compile TWO. Make TWOOBJ the object file. Show all commands and anticipated responses:

**

) YEO PASCAL/O=TWOOBJ TWOI

No Compilafion Errors

Now do it on your system.

The "/O=TWOOBJ" keyword switch assigns the disc file "TWOOBJ.OB" as the object file pending
a successful compilation.

4-163

6. Which files associated with TWO now exist on your system? Show all commands and antici­
pated responses?

,; PI TNO+)'
D I RECTOR'r' (PDPDtT: PHSCI~L

TNO
714008...1.08

Now do it on your system.

The default name for the object file is created by stripping the .PAS extension, if any, from the
source file. You overrode the default by appending the /0 switch to the Pascal command.

Compare the length of TWO.OB from previous compilations with TWOOBJ.OB from #5. Are they
the same? (They should be!).

Now delete TWOOBJ.OB

4-164

) DELETE V.····C n;OOB...l.08
Tl~l1I]B.)? IrlES l
DELETED Tl400B...I

7. Your listing file was stretched out by the listing of the "INCLUDE" file IO_CALLS.PAS.
This time we want to create a listing that does not write out each line of IO_CALLS.PAS.
Write the Pascal program comment that suppresses the listing of INCLUDE files. (Just write
the comment, not the whole program.)

**

PROGRAM SMITH TWO:
<*EXAMPLEOF ~OMPILER DIRECTIVE OPTION 'I' *)

-~(*$I-··*)
INCLUDE IO_CALLS.PAS~
VAR J,ST:INTEGER~
BEGIN
FOR J=~ 1 TO 20 DO LINEWRITE(OUCH.' * <12>',ST);
IF ST <> 0 THEN LINEWRITE(OUCH, 'ERROR ON WRITE',ST)~
L.INEWrnTE (OUCH, l HP/OS HAS LANDED <12> I • ST);
IF ST <> 0 THEN LINEWRITE (OUCH, 'ERROR ON LANDING'~ST)
END ..

Notice that our comment was inserted via SPEED.

SPEED the comment into your program. Rename your output so that TWO is the new, edited
version. The SPEED FB or FU commands are useful for this.

4-165

8. Now compile TWO. Produce a listing on the line printer. Briefly describe the contents of the
listing me as they should now appear:

**

MP/PASCAL I:;:EV 00.00 03-JUL-79 15:32:42

1. PROGRAM SMITH_TWO;
2. (*EXAMPLE OF COMPILER DIRECTIVE OPTION 'I' *,
3. (*,I-*'
4. INCLUDE IO_CALLS.PAS;

71. VAR J,ST:INTEGER;
72. BEGIN
73. FOR J:= 1 TO 20 DO LINEWRITE(OUCH.' * <12>',ST);
74. IF ST <> 0 THEN LINEWRITE(OUCH, 'ERROR ON WRITE',ST);
75. LINEWRITE (OUCH,' MP/OS HAS LANDED <12>' ,ST';
76. IF ST <> 0 THEN LINEWRITE (OUCH, 'ERROR ON LANDING',ST)
77. END.

Do it on your system.

The shorter version is forced by the '1-' compiler directive.

Note that if you did not have any INCLUDE statements in your program, the code would °not have
been generated.

4-166

This concludes the Pascal Compilation Lab Exercise. You may want to try the other compiler
directives to see their results. The TWO program is a good experimental example.

When you are ready, shut down the system. Keep a copy of TWO.PAS and TWO.OB for future
reference in this course. Continue with the next segment of this module.

4-167

BINDING

Abstract

This unit instructs in the concepts and procedures involved in binding MP/Fortran, MP/Assembly,
and MP/Pascal relocatable binary object modules into executable program meso

Note: This segment should be completed by programmers of all three languages.

Objectives

Upon completion of this unit, you will be able to:

1. Given a eLI BINDER command line, identify and state the purpose of the switches and
arguments.

2. List the reference material available on BINDER commands.

3. Given a eLI BINDER command line, describe the results.

4. Write an appropriate eLI BINDER command line to bind a given object module into a program
file.

5. Given a BINDER error situation:

A) Identify possible causes;
B) Reference solutions;
e) Write commands to correct the error.

Directions

1. Tum to figure 4-128 on the next page of the Student Guide.

2. Listen to the tape for this segment.

4-168

~ ____ .O_B ____ ~II ~ _____ .L_B ____ ~
~

.PR

FORTRAN OR ASSEMBLY OR PASCAL
SIMPLIFIED BINDING PROCESS

Figure 4-128

MAP

4-169

4-170

XEa BIND/SWITCHES

"---..,--J '-..,.-J

X /0
XE /DN
XEa /DS

IE=filename
/L=filename
/ALPHA
/NUMERIC
/N
/P=filename
/MTOP=addr
/SA
/SYS
IREV=number
ITASKS=number

ARGUMENTS

'------"v
.OB
.LB

J

CLI BINDER COMMAND LINE

Figure 4-129

SWITCH

10

ION

IDS

IE=name

IL=name

IALPHA

lNUMERIC

IN

IP=name

IMTOP=addr

ISA

ISYS

IREV=value

ITASKS=
number

FUNCTION

Include the Debugger, and place the symbol table in the program
immediately above the impure area.

Include the Debugger, but not the symbol table.

Include the Debugger and the symbol table, but put the symbol table at
the top of memory (or just below the pure area if the ISA switch is
specified).

Put error messages into fIle name. If you do not use this switch, error
messages will go to ?OUCH, the standard output channel.

Put the load map in fIle name. If you do not use this switch, no map
will be generated.

(Used with IL) Sort the list of symbols into alphabetical order.

(Used with IL) Sort the list of symbols by numeric value.

Do not search the standard library fIle, MSL.LB.

Put the program in fIle name.PR.

Generate program fIle for a system where the highest available memory
address is addr. If you do not use this switch, the program fIle will be
generated with the assumption that the highest available address is that
of the current system. Addr must be octal.

Generate a stand-alone program: load the impure area at location 4008
and the pure area at the top of memory. Also, do not put the usual
MP/OS header data in the program fIle; do not search MSL.LB (same
as IN); and assume that the highest memory address (/MTOP) is
0777778.

Generate an MP/OS system fIle. (For more information on system
generation, see MPIOS Assembly Language Programmer's Reference).

Set the program's revision number to the value specified. The number
may contain a dot (.) to separate the major and minor revision numbers.

Specify the maximum number of tasks that the program may have active
at one time.

CLI BINDER COMMAND SWITCHES

Figure 4-130

4-171

4-172

.> X£l~ BIND RSf1PROG f1SL. LB)

.) X£Q BIND FORTPROG FORT4. LB l

) X£Q BIND PRSCRLPROG PRSCRL.LB)

RESULT

ASMPROG.PR --.. On Disc

Errors on Console

FORTPROG.PR ---. On Disc

Errors on Console

PASCALPROG.PR ~On Disc

Errors on Console

LIBRARY FILES IN THE BIND LINE

Figure 4-131

.> ,'x,'EQ BIND···"E=PROG. ER PROG LIBE. LB ~

IE = file . .. make file the error file.

.> XEO BIND ,··L=PROGNAP PROG LIBE. LB 1

IL = filename . .. make filename the listing file on disc.

) gEO BIND.····ALPHA.···L=PROGNAP PROG LIBE. LB ~

IALPHA . .. list symbols in alphabetical order in load map.

Figure 4-132

RESULT

PROG.PR
PROG.ER

} On Disc

Errors on Console

PROG.PR } On Disc
PROGMAP

Errors on Console

PROG.PR } On Disc
PROGMAP

Errors on Disc

4-173

RESULT

) gEl] BIND/NUMERIUL=PROGMAP PROG LIBE. LB) PROG.PR }
PROGMAP

On Disc

Errors on Console

/NUMERIC ... list symbols by numeric (address)

) XEt1 BIND/P=PSEUDO PROG LIBE. LB) PSEUDO.PR On Disc

Errors on Console

/P=filename ... name the executable program file, filename.

) gEl] BIND/REV=l. a PROG LIBE. LB) PROG.PR On Disc

Errors on Console

IREV=number ... assign a revision number to the program file.

Figure 4-133

4-174

.> XEQ BIND--"D PROG L IBE. LB ~

10 ... include Debugger and symbol table .

.> XEQ BIND/ON PROG LIBE.LBl

ION • •. include Debugger, exclude symbol table.

~-~@DPX1 :PROG_ONE.PR

Area

PurE'
Impure

Sfarf

400
503

Figure 4-134

End Len9fh

502
552

103
50

RESULT

PROG.PR On Disc

Errors on Console

PROG.PR On Disc

Errors on Console

FilE'name Tifle PurE' Pure Impure Impure Zrel Zrel Abs
Sf rf Lfh Sf rf Lfh Sfrf Lfh Num

PROG_ONE.OB
/'tSL.LB
MSL.LB

)

400 103

SAMPLE BINDER LOAD MAP

Figure 4-135

503 50

4-175

TOPICS

• BINDING OBJECT FILES INTO PROGRAM FILES
• BINDER COMMAND LINES
• FUNCTION SWITCHES

• ERROR COUNT

• LOAD MAP

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 4-136

4-176

BINDER QUIZ

The questions in this quiz apply to MP/Pascal, MP/Fortran, and assembly languages.

Write the answers in the space provided.

Given the following eLI BINDER command line, identify the switches and arguments and state
the purpose of the switches and arguments:

) XEQ BIND/ALPHA/L=TEST.MAP/E=TEST.ER TEST XXX.LB

(Note: XXX.LE refers to the library file for your language.)

1. Switches: _____________________________ _

2. Arguments: ____________________________ _

3. Purpose of the switches: _______________________ _

4. Purpose of the Arguments: ______________________ _

4-177

List at least three sources of information on BINDER commands:

5. __ _

6. __ _

7. __ _

Given the following CLI BINDER command lines, briefly describe the anticipated result: (Note that
the library me has been blank-checked as XXX.LB. Just imagine that it is the library me for your
language.)

) XEQ BIND TEST XXX.LB

8. __ _

) XEQ BIND TEST.OB XXX.LB

9. __ _

) XEQ BIND /L=TEST .LS TEST XXX.LB

10. __ __

) XEQ BIND/REV=1.5/P=TWO TEST XXX.LB

11. __ __

4-178

CHECK YOUR ANSWERS ON
THE FOLLOWING PAGES.

BINDER QUIZ

ANSWERS

The switches, arguments, and purposes of the binder line are as follows:

) XEQ BIND/ALPHA/L=TEST.MPA/E=TEST.ER TEST XXX.LB

1. Switches: /ALPHA
/L=TEST.MAP
/E=TEST.ER

2. Arguments: TEST
XXX.LB (The pseudo library)

3. Purpose of the switches: /ALPHA sorts the map symbols alphabetically and forces their
inclusion in the printout.
/L=TEST.MAP directs the load map to be stored on disc under the name TEST.MAP.
/E=TEST.ER directs error messages to be stored under TEST.ER on disc.
TEST.ER is created whether or not there are any errors.

4. Purpose of the arguments: TEST is the name of the object file to be processed by the BINDER.
XXX.LB is the name of the library file to be searched for the appropriate routines. (Substitute
PASCAL.LB or MSL.LB or FORT4.LB for XXX.LB).

Sources of information on BINDER commands include the following:

5. MP/OS Utilities Reference Manual 09340002

6. CLI HELP command (if your system is so equipped).

7. This Self-Study course.
Also: The MP/Pascal Self-Study Course.

The Programmer's Reference Manual for each language.

4-179

Given the following CLI BINDER command lines, briefly describe the anticipated result:

) XEQ BIND TEST XXX.LB

8. The BINDER searches for TEST.OB and then TEST. A successful seek and bind produces
TEST.PR as the program fIle. The binder will search XXX.LB library for the routines
referenced in TEST. No listing (load map). Errors and warning messages default to the
console.

) XEQ BIND TEST.OB XXX.LB

9. Identical result as in #8. TEST.PR is the program fIle. No load map is produced. Errors
default to the console. The Binder searches only for TEST.OB.

) XEQ BIND/L=TEST.LS TEST XXX.LB

10. Again, similar to #8. The load map is stored on disc under TEST.LS. TEST.PR is the program
file. Messages default to the console. (Errors are also stored in the load map).

) XEQ BIND/REV=1.S/P=TWO TEST XXX.LB

11. TEST is bound with the requested routines from XXX.LB to produce the program file
TWO.PR. TWO's revision number is 1.05. No map. Errors to the console.

4-180

A SCORE OF 9 CORRECT ANSWERS OUT OF THE 11 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

BINDER

LAB EXERCISE

Once again, this lab is designed for your active participation and it can be completed whether or
not you have access to a functioning system.

1. First you will need a series of fIles for completing the lab (skip this requirement if you are
going to "paper and pencil" the lab and not perform the exercises on a system):

BINDER.PR Binder program
BINDER.OL Binder overlays
MSL.LB , The assembly language library

(required by all three languages)

2. Use the CLI FILESTATUS command to be sure that you have these files.' A note about
MSL.LB: even though the Fortran and Pascal bind lines do not specify MSL.LB, it is still
searched and used by the binder in these cases. Look for it in the load map.

3. It is also worthwhile to set your SEARCHLIST to be sure that these fIles are accessible to
your directory.

At this pOint the lab branches to accommodate the different languages. This is
done for the sake of accuracy and to avoid confusion of those minor details
that usually become major obstacles down the road. Tum to the section of this
lab exercise appropriate for your language.

IF YOU ARE PROGRAMMING IN ASSEMBLY LANGUAGE,
THIS IS YOUR SECTION.

The assembly language exercises were executed on a system configured with dual diskettes and a
hard-copy Dasher terminal. Make the necessary adjustments for your system.

1. SPEED in PROG_ONE (if it is not left over from previous lab exercises.) A copy of
PROG_ONE is shown on the following page.

4-181

4-182

.:; r'/PE PROG_ONE)

STRRT:

LOOP:

RUTHR:

NESSG:

CLERN:

ERTN:

CHRN:
PRTH:

. TITL PROG_ON£.; TITLE IDENTIFIER

. ENT START .; ENTRr POINT

.NREL 1 .. PURE CODE

.;NRIN ~'OUTINE

LDA
?OPEN
)/'1P
STR
LDR
LDR
LDA

?1.JRITE
)/'1P
DSZ
~1/'1P

LDA
LOR
?NR I TE
~INP

LOA
?CLOSE
~/I'1P
SUB
SUB
SUB

?RETURN

g .. PATH

ERTN
tl .. CHAN
g .. CHAN
1 .. STPTR
2 .. 36

DS
ERTN
TN EN
RUTHR

1 .. NPTR
2,.55
OS
ERTN
fl,. CHRN

ERTN
tl,. g
1,.1
2.,2

.. ORTA ARERS

.. B'r'TEPOINTER TO PATHNANE

.. OPEN CHANNEL TO @TTO

.. ERROR ON OPEN . .. CLI

.; SAUE CHANNEL #

.; IN CASE IT J.JANDERED

.. BrTE POINTER TO STAR LINE

.. J6 OCTAL B~-'TE NSG

.. DRTR SENSITIVE OPTION

.;ERROR ON J.JRITE .. TO CLI

.;LOOP 2g TINES
; J.JR I TE AGRIN .. UNTIL g

,; NSG IS 55 OCTRL B\'TES
.. NR I TE ' I1P /05 ' , , ' NESSAGE
,; ERROR ON J.JR I TE
,; P~'EP FOR CLOSE
;CLOSE CHRNNEL TO @TTO
,; ERROR ON ?CLOSE
,; CLERR RCS FOR CLEAN RETURN
.. , " RC 1 HRS ERROR LENGTH
;'" RC2 HRS POINTER TO ERROR

.. TO CL I " ERROR RETURNS KEEP
CODES IN ACS

tl ,; CHANNEL # SRVE RREA
,+U'2
, TXT /!HTO/ ,; OUTPUT TO CONSOLE

STPTR: , +H'2
, TXT / *<.'12,'>,"

Tl.JEN: 24 ; 24 OCTAL = 2g DEC
NPTR: ,+1t2

STK:

, TXT ,/ THE I1P/05 HAS LANDED<.'12.'>/
; THEt1P /05 STRCK

,NREL l~
,BLK 5g
,LOC 4tl
STk.'
STI(
STK+45

,; I NPURE CODE
,; RESERVE 5g I.JORDS
,; LOC 4tl HAS '"
,; , " THE STACK POINTER
; LOCATION 41
;LOC 42 HAS STACK LINIT

,END START ,; END OF ASN INPUT

2. Assemble PROG_ONE and get a listing. This was done in previous lab exercises but the
command line is given here for convenience:

) gEl~ fr1RSfr1.···"L=PROG. LS PROG_ONE ~

)

3. Get a copy of PROG.LS and check it for stray errors.

) n"PE PROG. LS
0001 PROG_ NP.····OS RSSENBLER REV 00. t15 1:17: 27: 79 21.·<37 13

· TITL PROG_ONE.: TITLE IDENTIFIER
02 . ENT STRRT .: ENTR~" POINT
1.13 01.1 1:1 BO 1 . NREL 1 .: PURE CODE
04
05 .:NAIN ROUTINE
1:16
07 00@@B!@20434 START:
08
t19 01.1@!.H' 13013426
11.1 1.11.11.104! 041.1427
11 0@005!020426 LOOp:
12 0001.16! 024432
13 00007' ,131:1036
14
15 AUTHR:
16 1:101.;112' B!:.10417
17 1.11.1013!014442
181.101..114!000774
19
20 00015!024441 NESSG:
21 00016' 1.:131.:1055
22
23 01..1021 !0!.11..7f41!:1
24 00022!020411 CLERN:
25
26 tl0(125! I:ltlf1404
27 00026! 11.:124BO
28 O1.'/l.-:'27! 1264f/!.1
29 !:10030! 152401.1
31:.1
31 ERTN:
32
33
34
35
36 00033!000000 CHRN:
37 00034!000072&PRTH:
38 !:1f/I.U5! f14t1124
39 052117
41.:1 t1!.11.101:10
41 00040!000102&STPTR:
42 Of/1.141! 1:120041.1
43 021.1040
44 020041:1
45 1:120040

LOA
?OPEN
.mp
STA
LOA
LOA
LDA

?NRITE
)NP
OSZ
)NP

LOA
LOA
?1.JRITE
)~tP

LOA
?CLOSE
)~tP

SUB
SUB
SUB

?RETURN

1:1.. PRTH

ERTN
0 .. CHRN
0 .. CHAN
1.. STPTR
2.,36

OS
ERTN
T/oJEN
AUTHR

1 .. NPTR
2 .. 55
OS
ERTN
1:1 .. CHAN

ERTN
8 .. 1:1
1..1
2 .. 2

.:DRTR RREAS

o
· +1 :t:2

.: BnEPOINTER TO PRTHNANE

.: OPEN CHANNEL TO @TTO

.: ERROR ON OPEN . .. CL I

.: SAVE CHRNNEL #

.: I N CASE IT I.JANDERED

.: BnE POINTER TO STRR LINE

.: 36 OCTAL BnE NSG

.: DATR SENSITIVE OPTION

.: ERROR ON NRITE .. TO CLI

.: LOOP 20 TINES

.: I.JRITE AGAIN .. UNTIL 0

.: NSG IS 55 OCTRL BnES

.:l.JR ITE I, NP.····OS ! .•• I NESSRGE

.:ERROR ON NRITE

.:PREP FOR CLOSE

.: CLOSE CHRNNEL TO @TTO

.:ERROR ON ?CLOSE

.: CLERR RCS FOR CLERN RETURN

.: ... RC1 HRS ERROR LENGTH

.: . .. RC2 HAS PO INTER TO ERROR

.: TO CL I.. ERROR RETURNS kEEP
CODES IN ACS

.: CHANNEL # SAVE RREA

· TXT .·· .. @TTO..... .: OUTPUT TO CONSOLE

· +1t2
· TXT

(Continued)

4-183

4-184

46 82884l'7f
47 828848
48 828848
49 82884tl
5f' 828l'7f4tl
51 t128848
52 828852
53 885888
54 88855!888824 TWEN:
55 88856'888136&MPTR:
56 88857!828848

24
.+1:1:2
. TXT

.; 24 OCTAL = 28 DEC

THE MP/OS HAS LANDED(12'>/
57 82l'7f848
58 828848
59 82804l'7f
68 828848

t18l'7f2 PROG_
81 828848
82 828848
83 828848
84 852118
85 842448
86 846511
87 841522
l'7f8 847516
l'7f9 828118
18 848523
11 828114
12 848516
13 842185
14 842812
15 888888
16
17
18 888888
19 88888' 8l'7f8858
20 888848
21 88848 888888'
.~?
'-- 8fl041 888888'
23 80842 888845'
24
25
26

STK:

l THE MP/OS STACK

.NREL

.BLK

.LOC
STK
STK
STK+45

. END

8 ; INPURE CODE
58 .; RESERVE 58 WORDS
48 ;LOC 40 HAS ...

.; . .. THE STACK POINTER
; LOCATION 41
; LOC 42 HAS STACK LIMIT

START ; END OF ASM INPUT

:1:1:88888 TOTAL ERRORS .• 88880 PASS 1 ERRORS 0803 PROG_

AUTHR 888818!
CHAN 888833!
CLEAN 00l'7f022!
ERTN 888831!
LOOP 088805!
MESSG 088l'7f15!
MPTR 008856!
PATH 898834!
START 898898! EN
STK 9l7f8999 '
STPTR 999949!
TWEN 98l7f955!
"?CLOS 892283! MC
?I 998813
?J 999998
?K 999982
?OPEN 991743! MC
?RETU 998283! MC
?SYSE 998881$ XD
?WRIT 992143! I'1C

.>

1/15#
1/18
1/24#
1/89
1/11#
1/28#
1/28
1/87
1/82
2/19#
1/12
1/17
1/25
1/89#
1.· ... 89#
1/16#
1/88
U·31
1/89
1/15

1/18
1/11

1/16

1/55#
1/37#
1/87#
2/21
U·41#
1/54#

1/16#
1/16#
1/23#

U·16
1/22

1/24 1/36#

1/23 1/26

2/25
2/22 2/23

1/23# 1/26# 1/32#
1/23# 1/26# 1/32#

You are now ready for the BIND lab exercise. Remember:
1. cover the answer;
2. read the question;
3. write the answer
4. check the answer
5. perform the operation on your system.

1. Bind PROG_ONE into an executable program me. Write your commands and the anticipated
responses in the space below before checking the answers and before entering any commands
on your system:

**

) J<£Q BIND PROG_ON£ ,.,SL. LB)

)

Now do it on your system.

If you fail to include MSL.LB you will get a series of binder errors and unresolved external
references. This is fun if you have a Dasher CRT console, but tedious with a Dasher printer
terminal. You also fail to get an executable program file.

4-185

2. Which mes associated with PROG_ONE now exist on your system? Show the command and
anticipated responses:

**

) FI/AS PROG+)
DIRECTORY @DPXl:

PROG_ONE
PROG_ONE.BU
PROG. LS
PROG_ONE.PR
PROG_ONE.OB

TXT
TXT
TXT
PRG
OBF

18-. ...IUN-79
18-JUN-79
27-. ...IUL-79
27-,.IUL-79
27-,.IUL-79

11:48:82
11 :49:51
21:38:43
21:43:44
21:38:85

1293
1293
3887
1824

312

Note that we created a backup copy of PROG_ONE titled PROG_ONE.BU. The executable
program is named PROG _ ONE.PR.

Now do it on your system.

If you fail to get a .PR file then the bind did not succeed. Go back, try to find the error, and try
again.

4-186

3. To execute PROG_ONE type the following command and watch the result:

:t
:#..

* * * * * * * * * * * * * :#..
:#..

* * :#..
THE I1P,"OS HAS LANDED

Aren't you impressed? Don't forget the XEQ.

Do it on your system and then delete PROG_ONE.PR to avoid confusion with later exercises.

) OELETE/U/C PROG_ONE.PRl
PROG_ONE. PR? YES.l
Delefed PROG_ONE.PR
.>

4-187

4. Bind PROG_ONE and make PROGERRS the error file. Write your command and antici­
pated responses below:

**

) J<EQ BIND,"'E=PROGERRS PROG_ONE NSL. LB 1

)

The /E=PROGERRS keyword switch creates PROGERRS as the error file on disc.

Now do it on your system.

The /E=PROGERRS sets up an error file on disc whether or not there are any errors.

4-188

5. Which fIles associated with PROG_ONE now exist on your system. Show the command and
anticipated responses. (Get their lengths.)

**

) F I /LEN/n1p PROG+ l
DIRECTORY @DPX1:

.>

PROG_ONE
PROG_ONE.BU
PROG.LS
PROGERRS
PROG_ONE.PR
PROG_ONE.DB

TXT
TXT
TXT
TXT
PRG
OBF

The /LEN switch displays the fIle's byte length.
The /TYP switch displays the type.

. Do it on your system.

1293
1293
3887

8
1824

312

Note that since there are no errors, PROGERRS has a length of O. The executable program fIle is
PROG_ ONE.PR.

Type PROGERRS (you should get nothing) and then delete it:

.> TYPE PROGERRS)

.> DEL/V PROGERRS)
Delefed PROGERRS
.>

4-189

6. Now for a load map. Bind PROG_ONE and make PROGMAP the binder load map. Show the
command and anticipated responses:

**

.> I~'EQ BIND/L=PROGMRP PROG_ONE MSL. LB)

The /L=PROGMAP switch assigns PROGMAP as the disc fIle (or diskette fIle) with the load map.

Do it on your system.

Check the lengths of the PROG files (especially the map):

4-190

> FI,..LEN PROG+ l
DIRECTOR'r' @DPX1:

.>

PROG_ONE
PROG_ONE.BU
PROG. LS
PROGMRP
PROG_ONE.PR
PROG_ONE.OB

1293
1293
3807

611
1024

312

7. Get a hard-copy printout ofPROGMAP. Briefly describe what you expect it to contain:

**

) n'PE PROGM~P)

@DPX1:PROG_ONE.PR

PROG_ONE.08
MSL. L8
MSL.L8

)

S~arf

488
583

Do it on your system.

Ti tie

582
552

183
58

Pun~
S~r~

488

Note that your addresses may differ a bit.

Pure Impure
Uh S~rf

183 583

Save the printout. Delete PROGMAP and PROG_ONE.PR:

) DELETE/V/C PROGM~P PROG_ONE.PR)
PROGM~P? YES.)
Delefed PROGM~P
PROG_ONE.PR? YES)
Dele~ed PROG_ONE.PR
)

Impure Zrel Zrel ~bs
Uh S~r~ Uh Num

58 3

4-191

8. Now let's try a variation of the load map. Bind PROG_ONE and get a map (PROGMAP)
with the symbols included in alphabetical order. Show the command and anticipated result in
the space below:

**

) gEQ BIND/~LPHA ... ·L=PROG~1AP PROG_ONE f1SL. LB l

The / ALPHA switch, in conjunction with the /L=PROGMAP switch, will produce an inclusive,
alphabetized load map.

Do it on your system.

Check the length of your fIles this time:

.> FI/S/LEN/TYP PROG+l
DIRECTORY @DPX1:

.>

PROG.LS
PROGMAP
PROG_ONE
PROG_ONE.BU
PROG_ONE.OB
PROG_ONE.PR

TXT
TXT
TXT
TXT
OBF
PRG

3807
852

1293
1293

312
1024

Compare the length of PROGMAP with previous PROGMAPS. Longer? (It should be.)

4-192

9. Get a copy of this version of PROGMAP (from #8). Briefly describe the expected difference
between this PROGMAP (/ ALPHA) and the previous PROGMAP (/ ALPHA):

**

.> TYPE PROGMAP I,

/,/p/C/s Binder Rev 8.84

Area

Pure
Impure

Filename

PROG_ONE.OB
MSL. LB
MSL.LB
?ERTN
?ICAL
?LDBL

.>

Sfad

488
583

888811
888812
888844

Do it on your system.

Ti fIe

PROG_

End Len9fh

582
552

?NRTN
?STBL
?SVLO

183
58

Pure
Sfd

488

Pure
Lfh

183

888818
888845
888843

Impure Impure Zrel Zrel
Sfd Lfh Sfd Lfh

583 58

?SYSE 888817
START 888488

Note that the alphabetized listing goes down column one, then to column two, and so on.

If you would like, you can try the /NUMERIC switch in place of /ALPHA:

) XEQ BIND/NUMERIC/L=PROGMAP PROG_ONE MSL.LB

Abs
Num

3

The only difference is that the symbols are sorted by address. DELETE PROGMAP and save
PROG_ONE.PR

> DELETE PROGf1AP l
>

4-193

10. This time bind PROG_ONE and make MESSAGE the executable program fIle. Show the
command and expected response:

**

) ,'<£Q BIND""P=f1£SSAG£ PROG_ON£ f1SL. LB l

The /P=MESSAGE switch sets up MESSAGE.PR as the executable program fIle.

Do it on your system.

Note that if MESSAGE already exists, the system deletes it and creates a new one with its contents
the executable program file from this bind.

4-194

11. Which fIles associated with PROG and MESSAGE now exist on your system? Are the
MESSAGE and PROG_ONE program fIles the same? Show all entries:

**

) FI/RS/S PROG+ NESSRGE+l
DIRECTOR'£' @DPXl:

NESSRGE.PR PRG
PROG. LS TXT
PROG_ONE TXT
PROG_ONE.BU TXT
PROG_ONE.OB 08F
PROG_ONE.PR PRG

.>

Do it on your system.

27-JUL-79
27-. ..IUL-79
18-,.IUN-79
18-,.IUN-79
27-... IUL-79
27-... IUL-79

22:07: 16
21 :38:43
11:48:02
11:49:51
21:38:05
21: 59: 45

It124
3807
1293
1293

312
1024

You should now have MESSAGE.PR added to your disc device in the working directory.

4-195

12. Execute MESSAGE. Is it the same as PROG_ONE.PR?

**

.> l<EQ f'1ESSAGE l

Do it!

* * * * :#:

* * .t·
:t

* * * .t

* :#:

* * *
* :t:

THE triP/OS HAS LANDED

The results should be identical. The only functional difference is the filename.

4-196

13. Last one. This time bind PROG_ONE and give it a revision number of 3.2. Show your entry
before executing:

**

.> J<El~ BIND REV=3. 2 PROG_ONE MSL. LB)

Do it.

Use the eLI REV command to determine its success:

.> REVISION PROG_ONE. PR)
03.02
) REV PROG_ONE. PR ~
03.02
) REV PROG_ ONE l
Error: Ille9al file fvpe
REU,PROG_ONE
.> REV PROG_ONE. PR l
03.02
.>

Don't forget the .PR extension!! Also, REVISION may be shortened to REV (as shown above).

Note that we did not delete PROG_ONE.PR before binding another PROG_ONE.PR with this
exercise. In this case, the system deleted the old PROG_ONE.PR and created a new one.

4-197

You may wish to experiment with the other command switches. If so, this is the time to do it.

Some points to research are:

How does the ID switch affect the load map? (Check the impure area's allocation and note
the inclusion of the symbol table. We use this switch in Module Five.

How do the ID and IDN switches affect the program length? Is the program file longer?

What affect does the ISA switch have? What is the executable program file like? The load
map?

For the Assembly Language programmer, this concludes the Binder Lab Exercise and also concludes
Module Four. At this point you should be able to develop a given source language program for
execution under MP/OS.

ON TO MODULE FIVE

4-198

IF YOU ARE PROGRAMMING IN FORTRAN4
THIS IS YOUR SECTION.

This section is for the Fortran programmer. Experts in other languages may skip this section.

The FORTRAN4 binder exercises were executed on a system configured with dual diskettes and a
hard-copy Dasher terminal.

1. SPEED in MONEY (if it is not left over from previous lab exercises).

,) n'PE NONn'. FR)
C J.t::t: TI TLE INCONE :t::t::t:

flCCEPT "ENTER ',(,OUf<.' MEEKL ~., SALAR'r'''., SALAR'/
ACCEPT"ENTER ~·'OUf<.' AGE"., AGE
j"ERL i" = SAU.;Ri" :t: 52
TOTAL = j"ERL j" :t: (65 - AGE,)
n'PE "TOTAL INCONE FRON" .. AGE., "TO RETIRENENT AT 65 IS $ ".' TOTAL
STOP
END

Also make sure that you have FORT4.LB, the Fortran Library.

2. Compile MONEY and get a listing. This was done in previous lab exercises but the command
lines are given here for convenience:

.> KEl-:t FORT4.··'L=NONE~/. LS NONEY l

4-199

3. Get a copy of MONEY.LS and check it for stray errors.

) T'/PE NONn'. LS l

,)

DGC FORTRAN IV REV 05.20IS

C .'I::#::t TITLE I NCO~1E :t.'#::#..
ACCEPT "ENTER ~'OUR toJEEKL~' SALAR~·'''., SALAR~"
ACCEPT"ENTER i"OUR AGE"., AGE
~"ERL ~., = SALAR~" :#: 52
TOTAL = ~"EF:L ~., :t <' 65 - AGE)
n'PE "TOTAL INCONE FROW' .' AGE., "TO RETIRENENT AT 65 IS $ "., TOTAL
STOP
END

4. Get a copy of MONEY.SR, the Fortran compiler's translation of MONEY.FR, and check it for
errors.

4-200

) n'PE MONEY. SR)

i D~C FORTRRN IV REV 05.20IS

C *** TITLE INCOME ***

MRIN:

Lt. :

RCCEPT
· TITL
.ENT
.NREL
· TXTM
. EXTU
. EX TN
.CSIZ
FS.

"ENTER ~'OUR NEEKL Y SRLRRY".,
.MRIN
.f>1RIN
1
1

.1
2

JMP fi.+l
L1.

JSR fi.FRER
· Cl
o
6
· TXT "ENTER YOUR WEEKLY SRLRRY"
o
2
V.+O iSRLRRY
5

SRLRRY

(Continued)

ACCEPT"ENTER YOUR AGE", AGE
JSR @.FREA
· C1
8
6
· TXT "ENTER YOUR AGE"
8
2
V.+2
5

.;AGE

'y'ERL 'y' = SALARY :#: 52
FXFLt
.C2
FFLD1
V. +8 .; SALARY
FnLt
FFST1
V. +4 i YERLY

TOTAL = YERL Y :#: (65 - AGE)
FXFLt
.C3
FFLD1
V.+2 iAGE
FS81
FFLD1
V. +4 i YERLY
FMLt
FFST1
V. +6 ; TOTAL

TYPE "TOTAL INCOME FROM" ,AGE, "TO RETIREMENT AT 65 IS $ "., TOTAL
~/SR @.FURI
.C4
8
6
· TXT "TOTAL INCOME FROM"
8
2
V. +2 iAGE
6
· TXT "TO RETIREMENT AT 65 IS $ "
8
2
V. +6 i TOTAL
5

STOP
~/SR

· TXT

END

@.STOP
""

~/SR @.FRET
.C4: 888812
.C3: 888181
. C2: 888864
.C1: 888813

)

FS.=18
SFS.=8
T.=-167
V. =2@@+T.
TS. =T. +7
FTS. =T. +8
VS.=V.+7
FVS.=V.+8
. END

4-201

5. Assemble MONEY.SR, get an assembly listing, and check it for errors.

4-202

,) XEt~ I1HSN.···'L=NONNHSN. LS/PS=FORT4. PS NONEY ~

,)

.> n"PE NONNRSM. LS
00t11 . NRIN NP.····OS RSSENSLER REV 00. t15

t11
07: 28: 79 1.:r·<~2.····55

02
03
tN
1.15
1.16
t17
t~8

.i DGC FORTRRN IV REV 05.20IS

C t:#:t TITLE I NCONE tt.'#:

10
11 1.11.18001
12 t~8t10t1 1
13
14
15 80001.12
16 01.101301 8tl001 0
17 ./'IRIN:
18' OOOt~ 1 1002401
19 00002 I t180003 1
20 U. :
21
22 000831006000$
23 Ol'lMI41080141 1
24 00t'l051 MOt100
25 tl0t'lt16 I 801.11.106
26 t10l1l'l71 042516
27
28
29
31:.1
31

33
34
35
36

1.152185
051 tNt1
054517
052522
020127
f/425t15
045514
05444t1
1.151501
04611:.11
t'l51131

38 1:."l01:."l1:."lt10
39 1.108241 1:."l00l'lOO
40 t1t'lt1251 tl001:."l02
41 tl0026! 81:."l0t'lll
42 Ot'lt127! 00!:.1805
43
44
45 00!:.130!!:.106800$
460t'1031!008141!
47 t1t'liH2! 8001:."l0t1

RCCEPT
· TITL
.ENT
· NREL
· TXT/'1
.EXTU
. EX TN
.CSIZ
FS.

~INP
U.

"ENTER ~'OUR WEEKL T' SRLRR~··".- SRLRR~'­
. MAIN
./'IAIN
1
1

.1
2

@.+1

)SR @.FRER
· Cl
o
6
· TXT "ENTER ~"OUR WEEKL Y SRLRR~""

2
V. +0
5

.:SRLRR~·-

RCCEPT"ENTER ~"OUR RGE".- RGE
JSR @.FRER
· Cl
o

(Continued)

48 99933!99aaa6
49 aaa34!842516
513 13521135
51 135113413
52 1..=154517
53 1352522
54 132131131
55 13435135
56 131313131313
57 aaa44!eaaaee
58 eaa45!eeeea2
59 1..=l9a46! 1313131313
613 9aa47!a9f1Ba5

1313132 . MAIN
131
132
133 aaa5a!98aeaa$
e4aae51!8ae14a!
135 a9a52!8aeaee$
136 aea53! 13131313 11
137 aa954!9aa98a$
@8 @9955!8@aa@@$
99 99956!ea9@15
19
11
12 a9@57!99@8aa$
13 9a96a!8@a137!
1499961!aa@99a$
15 aa962!8aa@13
16 aaa63!aaa8aa$
17 aaa64!8aaaaa$
18 9aa65!8aaa15
19 aa966!aaa8aa$
213 aaa67!8a@aaa$
21 aaa7a!8@a@1?

23
$ ", TOT~L
2499971!aa6@@9$
25 aaa72!a98136!
26 9aa73!8a9999
27 aa974!9@aaa6
28 aaa75!852117
29 9521131
31..'1 9469413
31 1344516
32 1341517
33 13465135
34 13213196
35 1351117
36 @464ge
37 991a6!eaaa9a
38 aa187!ee99a2
39 913 11 8 ! 9@8913
413 99111!9@89@6
41 8a112!952117
42 928122
43 1342524
44 944522
45 @42515
46 1342516
47 @52@49
48 13413524
49 132131366
513 832448
51 1344523
52 132131344
53 132813813
54 a8127!aeeeaa
55 aa139!aeaaa2
56 89131! e@e91 7
57 @9132!99B@95

6
· TXT

9
2
V.+2.
5

"ENTER YOUR AGE"

; AGE

~'ERL Y = SALAR~" :#: 52
FXFL1
,~~

.~'-

FFLDI
V. +@ ; SALARY
FMLI
FFSTl
{./. +4 ; ~'ERL ~.

TOTAL = YERL~' :#: (65 - AGE)
FXFL1
.C3
FFLD1
V. +2 ; AGE
FSBI
FFLD1
V. +4 ; YERLY
FMLl
FFSTl
If. +6 ; TOTAL

n'PE "TOTAL INCO~1E FROW ,AGE .. "TO RETIREMENT AT 65 IS

JSR @.FURI
· C4
9
6
· TXT "TOTAL INCOME FRO,.,.'

@

2
{./. +2 iAGE
6
· TXT "TO RETIREMENT AT 65 IS $ "

13
2
V. +6 i TOTAL
5

(Continued)

4-203

58
59
68 88133!886888$
0003 ./'IAIN

01 88134!888888
82
83
84 88135!006000$
85 08136!808012 .C4:
06 00137!000181 .C3:
07 00140!808064 .C2:
88 00141!808813 .Cl:
09
10
11
12
13
14
15
16
17
18
19

888818
88~888
177611
888811
177628
177611
888828
8@@011

STOP
~/SR

. TXT

END

I!.STOP

""

JSR I!.FRET
888812
888181
888864
888813

FS.=18
SFS.=8
T.=-167
U. =28iHT.
TS. =T. +7
FTS. =T. +8
US.=U.+7
FVS.=V.+8
. END

U:8@888 TOTAL ERRORS .. 88888 PASS 1 ERRORS 8@84 . ~1AIN

FFLDI @88811$ XD 2/85 2/14 2/17
FFSTt @888@1$ XD 2/88 2/2@
F/'ILl @88@82$ XD 2/87 2/19
FS81 888818$ XD 2/16
FS. @88818 1/16 3/18#
FTS. 177611 3/15#
FUS. 888811 3/17#
FXFL1 888885$ XD 2/~3 2,·'12
Ll. 888883! 1/19 1/28#
SFS. 888888 3/11#
TS. 177628 3/14#
T. 177611 3/12# 3/13 3/14 3/15
US. 888828 3/16#
V. 88@811 1/41 1/59 2/86 2/89 2/15

2/39 2/56 3/13# 3/16 3/17
. C1 888141! 1/23 1/46 3/88#
.C2 888148! 2/84 3/87#
.C3 888131! 2/13 3/86#
.C4 888136! 2/25 3/85#
.FREA 888881$ XD 1/·22 1/45
.FRET 888886$ XD 3/84
.FURI 888884$ XD 2/24
. I 888812 XN 1/14
./'IAIN 888881! EN 1/18 1/17#
.STOP 888883$ XD 2/68

)

2,·'18 2/21

Once you are satisfied with the preparation of MONEY.OB, then start the Lab Exercise.

4-204

1. Bind MONEY into an executable ptogram fIle. Write your commands and the anticipated
responses in the space below before checking the answers and before entering any commands
on your system:

**

) XEQ BIND NONEY FORT4. LB ~

If you fail to include FORT4.LB you will get a series of binder errors and unresolved external
references. This is fun if you have a Dasher CRT, but tedious with a Dasher tenninal printer. You
can try it, but you will not get an executable program file.

Now do it on your system.

If you get any errors, you may have to reinvoke SPEED, edit the file, recompile, reassemble, and
rebind.

4-205

2. Which mes associated with MONEY now exist on your system? (Assuming a successful bind).
Show the command and anticipated responses:

) F I /RS/S "'0NE~/+ l
. DIRECTOR~' @DPX1:

.>

MONE~·. FR
MONEY. LS
MONE~·. 08
MONEY.PR
/,10NE~·. SR

Now do it on your system.

TXT
66

08F
PRG

66

26-... IUN-79 9:54:45
28-... IUL-79 13:27:31
28-,..IUL-79 13:33:31
28-... IUL-79 13:42:48
28-... IUL-79 13:27:32

222
268
466

9728
992

MONEY.FR is the original source me (from SPEED). MONEY.LS is the compiler listing.
MONEY.OB is the object file (from MASM). MONEY.PR is the executable program me (from
the binder). MONEY.SR is the source me output by the compiler. MONMASM.LS is the macro­
assembler listing.

If you fail to get a .PR file then the bind did not succeed. Go back and try to find the error, then
try again before continuing.

4-206

3. To execute MONEY, type the following command, answer the questions, and watch the
result: (Press <NEW-LINE> after each response) .

.> XEl'J MONE~/l

ENTER YOUR NEEKL~' SRLRR~'l ee l
ENTER YOUR RGE21l
TOTRL INCOME FROM e. 21 ee8eE 2TO RET IREf'IENT RT 65 IS $

8.228888£ 6
Sfop

.>

You must type the XEQ (or its abbreviation). You do not need the .PR extension on the program
file.

Do it on your system.

In our example, a twenty-one year old earning $100 per week will accumulate $228,000 by the
time of retirement at age 65. Impressive, isn't it?

Delete MONEY.PR to avoid confusion with later exercises:

.> DEL.~··U~·'C MONEY. PR l
MONE'y' . PR? ~'£S l
D~l~f~d MON£Y.PR
.>

4-207

4. Bind MONEY and make MONEYERR the error file. Write your command and anticipated
responses below:

**

.> XEfJ 8INO/E=/'10NEYERR NONE~·· FORT4. L8l

Now do it on your system.

The /E=MONEYERR switch sets up an error file on disc. The file is created whether or not there
are any errors.

Now do it on your system.

4-208

5. Which files associated with MONEY now exist on your system? Show the command and
anticipated responses: (Get their lengths.)

**

.> FI LEN.··'TYP NONE~J+)
DIRECTOR'y' @DPX1:

"tONE'y' . FR
MONEY.LS
MONEY.SR
MONE'y'ERR
MONE'y'. PR
"1ONE'y'.OB

TXT
66
66

TXT
PRG
OBF

222
268
992

e
9728

466

The /LEN switch shows the byte length. The /TYP switch shows the file types

Do it on your system.

Note that since there are no errors, MONEYERR has a length of O. The executable program file is
MONEY.PR.

TYPE MONEYERR (you should get nothing) and then delete it:

.> TYPE NONEYERR)

.> DEL,·'V ·C "1ONEYERR)
NONEYERR? 'y'ES)
Dele~ed NONEYERR
.>

4-209

6. Now for a load map. Bind MONEY and make MONEYMAP the binder load map. Show the
command and anticipated responses:

**

.> XEI.:? BIND/L=NONE~/NRP NONE"l FORT4. LB l

.>

The /L=MONEYMAP switch assigns MONEYMAP as the disc file (or diskette file) with the load
map.

Do it on your system.

Check the lengths of the money files (especially the map):

.> F I/S.··'LEN NONE~/+ l
DIRECTOR'r' t1DP,'x,'l:

.>

Jl10NE'r' . FR
Jl10NE~·'. L S
NONE~·'. OB
NONE~·'. PI?
MONE'r'. SI?
MONEr-'Jl1RP

222
268
466

9728
992
648

Write down the file lengths for comparison with later exercises.

4-210

7. Get a hard-copy printout of MONEYMAP. Briefly describe what you expect it to contain:

) n'PE MONE~'MRP)

MP/OS Binder Rev 13.134

@DPX1:MONEY.PR

Rrea S~arf End Len'iil~h

Pa'iile zero
Pure
Impure

Filename

MONEY. DB
FORT4.LB
MSL. LB

)

513
41313

113263

Do it on your system.

164
113262
112136

TiUe

. MAIN

Note that your addresses may differ a bit.

115
7663

724

Pure
Sfrf

41313
542

7762

Pure Impure Impure Zrel Zrel Rbs
Uh Sfrf Uh S~d Uh Num

142
72213 113265 722 513 115 3

3131

Save the printout. DELETE MONEYMAP and MONEY.PR to avoid conflicts with later questions .

.> DELETEA)/C MONEYMAP MONEY. PR l
MONEtr'MAP? tr'ESl
De 1 e ~ ed MONEtr'MAP
MONE'y' . PR? tr'ES l
De 1 e ~ ed MONEtr'. PR
.>

4-211

8. Now let's try a variation of the load map. Bind MONEY and get a map (MONEYMAP) with
the symbols included i,n alphabetic order. Show the command and anticipated result in the
space below:

**

.> gEt~ BIND/RLPHR--"L=NONEYNRP NONE~I FORT4. LB 1

The /ALPHA switch, in conjunction with the /L=MONEYMAP switch, will produce an inclusive,
alphabetized load map.

Now do it on your system.

Check the length of your ftles this time. Compare the lengths with previous binds:

4-212

.> F I /RS/S t10NE~/+ 1
DIRECTOR~·I @DPX1:

MONE'y'. FR
NONE~/. LS
MONE'y'.OB
NONEY. PR
NONEY.SR
MONEYMAP

TXT
66

OBF
PRG

66
TXT

26-,..IUN-79
28-~IUL-79
28-,..IUL -79
28-JUL-79
28-JUL-79
28-~/UL-79

9:54:45
13:27:31
13:33:31
14:87:24
13:27:32
14:87:25

222
268
466

9728
992

6178

9. Get a copy of this version of MONEYMAP (from #8). Briefly describe the expected difference
between this (/ALPHA) and the previous MONEYMAP:

) TYPE MoNEYMAP)

MP.··-OS Bind~r R~v 8.84

@OPXl:MoNEY.PR

Ar~a Sfad End Len9fh

Pa9~ z~ro
Pur~
Impur~

Fil~nam~

MONEY. DB
FORT4.LB
MSL.LB
. ?OLY
.?ERM
. ?XQT
.ALLO
.ARYS
. BAse
. BOAS
.BRD
. BUR
.FARG
.FARL
. FCAL
.FLSP
.FLSZ
.FREA
. FRET
.FRG0
.FRGI
. FSAV
. FSBR
. FSUB
. FURl
.1
.IOPR
.ISAE

58
4.88

18263

818245
818821
887762
888181
808112
00('534
007453
008068
080861
000161
080168
808141
807758
177777
008056
000144
880156
888157
888143
888114
088113
888857
888635
888111
888148

164
18262
11286

Title

. MAIN

ALLoC
APPEN
ARYSZ
BRO
BUR
D?W
MIllS
DB.E
OFT.8
DUD
EXIT
FA
FAOI
FARG.
FARL.
FB
FCALL
FCEGII
FCGEI
FCGTl
FCLEI
FCLTI
FO
FOVl
FEGI

115
7663

724

Pur~
Sfd

488
542

7762

Pure
Uh

142
7228
381

885831
885477
885685
888755
088761
073101
877881
088115
80544('
886164
800733
086142
886117
087785
007677
886136
086141
886133
886131
886132
886127
886138
886647
886122
886685

(CONTINUED)

IfIlPure IfIlPur~ Zrel Zr~l Abs
Sfd Uh Sfd Uh Num

18265 722 58 115 3

FXL 886412
I.oCA 818687
IoPR. 885563
ISA.E 882148
ISA.N 882137
ISAE. 007034
ISAN. 887836
L?B88 868481
L?B81 864481
L?B82 878481
L?B03 074481
L?B18 868581
L?B11 864581
L?B12 878581
L?B13 874501
L?B28 868681
L?B21 864681
L?B22 878681
L?B23 874681
L?B38 868781
L?B31 864701
L?B32 878781
L?B33 874781
LOB. 887567
M?FF8 868281

4-213

.IS~N @@@137 FERra @@@734 N?FF1 @64281

.LDBT 8@@152 FERTl 888734 N?FF2 @7@281

.N~D 8@@154 FER TN @@@733 N?FF3 874281

.N~DO 8@8155 FFLD1 @@6115 N?FS8 @61281
· NRIN 8@@481 FFSTl @86116 N?FS1 865281
.NEMR t=lt=I@737 FGE t=I@66t=11 N?FS2 t=l712t=11
. MVBC @t=lIH34 FGT t=lt=I66t=13 ~1?FS3 t=l752t=11
. NVBT t=I@t=l135 FHNR 177777 ~1?TFt=I t=l68t=1@1
.NDSP @Mt=l52 FL 886t=113 N?TF1 t=l64 t=It=I 1
.OFLO t=lt=I7162 FL.RT t=I@8123 M?TF2 t=l7t=18t=11
.OVFL t=lt=I8853 FLE t=l86575 ~1?TF3 t=l74 t=It=I 1
.RDFC @t=lft184 FLF,!-,'l 886124 N?TSt=I t=l6Wt=ll
.RDFL t=lt=I@183 FLSP @8t=1674 W?TS1 t=l658t=11
.RERD 8@@186 FLT 886577 ~1?TS2 t=l7W01
. REDS @@81W FUi 886447 N?TS3 0758@1
.RTEB @@0147 FN 886256 ~1?UL 073381
.RTER Ol~0146 F~1L1 886121 N?ULS @772t=11
.RTES 00@15t=1 FNEG1 086126 NRD t=l87621
.SPSZ 0@031O FNG 086540 ~1RDO 807622
.STBT t=I@t=l153 FQRET t=lt=I2145 ~1P~' 086163
· STOP t=l80136 FRCRL t=l86142 ~1P~'8 886162
· SVl~ t=ll~0@55 FRERD 8t=1t=1766 ~1UBC 886757
· THRE l~t=lt=ll t=l2 FRET 882144 ~1VBT 886753
.WRCH t=lt=I0151 FRGt=! 8@7658 NSP t=l8t=1851
.WRIT Ot=lOlt=15 FRG1 887644 OPEN 8t=15457
.WRTS 8t=1t=11@7 FRTSK 177777 P?OP@ 861681
?ERTN 8@t=I@11 FS 8@6854 P?OP1 865681
nCRL 8l~0812 FSRV 882143 P?OP2 t=l716t=11
?LDBL 8@@t=l44 FSB1 88612t=1 P?OP3 875681
?NMR,It,' 811287 FSBR 8t=1577t=1 P?SHt=I t=l614t=11
?NRTN 8t=1t=1f11O FSG Bt=l6517 P?SH1 t=l654t=11
?STBL t=lt=It=I@45 FSGN1 t=lt=I6125 P?SH2 t=l714t=11
?SVLO l~8M43 FSUBR 885621 P?SH3 8754t=11
?SYSE @t=lM17 FWRIT t=lt=It=I772 P?S08 861581
RFSE @t=lOt=l54 FXFL1 t=lt=I6123 P?SOl t=l65581
P?S02 @715@1 RTE8 t=l87232 STB. t=l876t=12
P?S03 t=l75581 RTER t=l87216 STOP t=l87812
QRSTR t=I@716t=1 RTESP 8t=1722t=1 THRER t=l85857
R?ET t=l626t=11 S?RV t=l624t=11 WRCH t=lt=I7433
RDFCH @t=l5181 S?RVE 1625t=11 WRITL t=lt=I5213
RDFLD @t=l5t=175 SRVt=I t=lt=I7t=147 WRITS 8t=15435
RERDL t=I@52@5 SRV2 8t=17121
REDS t=ll~5427 SRV3 t=lt=I7131
RSTR. t=l87147 SN.L t=lt=It=I115

.>

..... :.:.: ... : ...

4-214

Do it on your system.

Note that the alphabetized listing goes down column one, then to column two, and so on.

If you would like, you can try the /NUMERIC switch in place of / ALPHA. The command line is
shown below:

) :x,'EQ BIND.···'L=NONEYNRP/NUNERIC NONE~I FORT4. LBl

The only difference between the /ALPHA and /NUMERIC maps is that the symbols are sorted by
address. DELETE MONEYMAP and save MONEY.PR.

4-215

10. This time bind MONEY, make CASH the executable program fIle, and CASHMAP the listing.
Show the command and expected response:

**

) X£t'J 8IND,(L=CASHNAP/P=CASH NONEY FORT4. L8 1

)

The /P=CASH switch sets up CASH.PR as the executable program fIle. The /L=CASHMAP directs
the load map to the =CASHMAP file on disc.

Do it on your system.

4-216

11. Which mes associated with MONEY and CASH now exist on your system? Are the CASH and
MONEY program mes the same? Show all entries:

**

.> FI/LEN,"n"p/s NONE~I+ CASH+}
DIRECTOR'r' @DPX1:

CASH.PR PRG 9728
CASHMAP TXT 647
MONE'r'. FR TXT 222
MONEY. LS 66 268
MONEY. DB OBF 466
MONEY.PR PRG 9728
MONE'r'. SR 66 992
MONE'r'MAP TXT 6170

.>

Do it on your system.

Execute CASH. Is it the same as MONEY? You can use anyone of the following four to execute
the program me:

.> X CASH}

.> XE CASH 1

.> XEQ CASHl

.> EXECUTE CASH 1

4-217

12. Last one. This time bind MONEY and give it a revision number of 9.8. Show your entry
before executing:

**

) XEt~ BIND/REV=9. 8 NONEY FORT4. LB)

)

The /REV=number switch assigns a revision number to the program file.

Do it.

Use the eLi REV command to d~termine its success:

.> REV I S I ON NONEY. PR)
09.08
) REV MONE~/. PR J
89.88
.> REV MONE~/)
Error: Fil~ do~s nof ~xisf
REV .. MONE..,.·
.> REV MONEY. PR l
89.88
.>

As shown above:

Don't forget the .PR extension!!

The REVISION command may be abbreviated.

4-218

You have covered the binder and the most frequently used switches. You may wish to experiment
with the remaining switches, especially the debugger switches (/0, ION). 00 your experimenting
now with the MONEY and CASH programs. Minimal harm is done if you lose these programs.

This concludes the Binder Lab exercise and Module Four for the Fortran Programmer. You should
now be able to develop a given source language program for execution under MP/OS. Skip the next
section and proceed to Module Five.

4-219

IF YOU ARE PROGRAMMING IN
PASCAL

THIS IS YOUR SECTION.

The Pascal binder exercises were executed on a system confIgured with a 10 meg disc, Dasher CRT,
and Dasher LP2 printer.

Note: This exercise is for the Pascal programmer. Experts in other languages may skip this section.

Directions

1. SPEED in ''TWO'' (if it is not left over from previous lab exercises.)

p~OGRAM SMITH_TWO:
INCLUDE IO_CALLS.PAS;
VAR J~ST:INTEGERj
BEGIN
FOR J:= 1 TO 20 DO LINEWRITE(OUCH,' * (12)',ST~
IF ST (> 0 THEN LINEWRITE(OUCH, 'ERROR ON WRITE',ST)i
lINEWRITE (OUCH,' MICRON HAS LANDED (12)',ST);
IF ST (> 0 THEN LINEWRITE (OUCH, 'ERROR ON LANDING',ST)
END ..

Also make sure that you have PASCAL.LB and IO_CALLS.PAS on your system.

2. Compile TWO and get a listing (TWO.LS). This was done in the Pascal compilation lab and is
repeated here for your convenience:

4-220

No Compilation Errors
,)

3. Get a copy of TWO.LS and check it for stray errors:

i1P/PASCAL REV 00.00 10·-JUL.··79

1. PFWGHAM SMITH. TW()~
2. INCLUDE 10 CALLS.PAS:
3 ..

4. {**********************}
5. {PRIMITIVE 1/0 ROUTINES}
6. {**********************}
? ..
B.
9.

:LO.
IL
12.
1:5.
1.4 •
:l ~j ..

16.
17
18.
19.
20.
21 ..
22 ..
23 ..
24 ..

26.
27.
28 ..
2'1.
30.

CONST MAX .. LINE.J. TH
MAX PATH LTH

INCH = ORB:
OUCH"" 1FW:

{ OPEN OPTIONS}
EX 40000R8:
NZ :lOOOOR8:
CR 4000R8;
DE 2000f<8:
UC :lOOOR8;
AP 40()R8:

136:
:l2B:

{STANDARD INPUT CHANNEL}
{STANDARD OUTPUT CHANNEL.}

{EXCLUSIVE ACCESS}
{DON'T ZERO BLOCKS ON I/O}
{F I LE CI~EATION}

{FILE DELETION}
{UNCONDITIONAL CREATION}
{APPEND}

TYPE CHANNEL. = O •• 15~
PATHNAME = STRING MAX_PATH_LTH;
LINE_BUFFER = STRING MAX_LINE_LTH;
IO_BUFFER = STRING 32767;
FIL.E_POSITION = RECORD

HIGH: INTEGEF<:
LOW:INTEGER

END;

12:2't~10

3:1..
32.
33.
:54.
:35.
36.
37.
31-3.
39.
4().
41.
4':>
4:5.
44.
45.
46.

EXTERNAL ASSEMBLY PROCEDURE OPENFILE(VAR CHAN: CHANNEL.:

EXTERNAL ASSEMBL.Y PROCEDURE
EXTEF<NAL. ASSEMBLY PROCEDURE

EXTEF<NAL ASSEMBLY PROCEDURE
VAR

EXTERNAL ASSEMBLY PROCEDURE

FILE: PATHNAME;
OPTIONS: INTEGER;
FILE TYPE: INTEGER;
ELEM:SIZE: INTEGER:

VAR STATUS: INTEGER);

CLOSEFILE(CHAN: CHANNEL;
CLDELFILE(CHAN: CHANNEL;

LINEREA[I(CHAN: CHANNEL:
BUFFER: LINE .•. BUFFER; VAR

LI NEWR ITE(CHAN: CHANNEL;
VAR STATUS: INTEGER) •

47. EXTERNAL ASSEMBLY PROCEDURE CHARREAD(CHAN: CHANNEL:

VAR STATUS:INTEGER);
VAR STATUS:INTEGER);

STATUS: INTEGER):

BUFFER: LINE .-BUFFER;

48. LTH: INTEGER; VAR BUFFER: IO_BUFFER;
49. VAR STATUS: INTEGER);
50.
5L
52.
53.

EXTERNAL ASSEMBLY PROCEDURE CHARWRITE(CHAN: CHANNEL; BUFFER: IO_BUFFER;
VAR STATUS: INTEGER).

54. EXTERNAL ASSEMBLY PROCEDURE BYTEREAD(CHAN: CHANNEL:

(Continued)

4-221

55. BUF_ADDRESS: INTEGER; VAR LTH: INTEGER;
56. VAR STATUS: INTEGER);
57 ..
58. EXTERNAL ASSEMBLY PROCEDURE BYTEWRITECCHAN: CHANNEL;
59. BUF ADDRESS: INTEGER; LTH: INTEGER;
60. VAR-STATUS: INTEGER)~
61..
62.
63. EXTERNAL ASSEMBLY PROCEDURE GPOSFILECCHAN: CHANNEL;
64. VAR POSITION: RECAST FILE_POSITION; VAR STATUS: INTEGER):
65 ..
66. EXTERNAL ASSEMBLY PROCEDURE SPOSFILECCHAN: CHANNEL:
67. POSITION: RECAST FILE_POSITION; VAR STATUS: INTEGER);
68.
69. VAR J,ST:INTEGER;
70. BEGIN
71. FOR J:= 1 TO 20 DO LINEWRITECOUCH,' * (12)',ST);
72. IF ST <> 0 THEN LINEWRITECOUCH, 'ERROR ON WRITE',ST);
73.. LINEWRITE (OUCH,' MICRON HAS LANDED <12>',ST);
74. IF ST <> 0 THEN LINEWRITE (OUCH, 'ERROR ON LANDING',ST)
?~:5 II END ..

Once you are certain that you have the required programs and that TWO is error-free, then you are
ready for the Lab Exercise.

. :.:.:-: ... :-"

4-222

1. Bind TWO into an executable program me. Write your commands and the anticipated
responses in the space below before checking the answers and before entering any commands
on your system:

) XEQ BIND TWO PASCAL.LBl

Nothing fancy is required here.

Now do it on your system.

If you fail to include P ASCAL.LB, you will get a series of binder errors, unresolved external
references, and warnings. You will also fail to get an executable program file.

4-223

2. Which fIles associated with TWO now exist on your system? Show the command and anticipated
responses: (assuming a successful bind from question #1).

**

!:·:[/(~S/!:) TWO+ l
DIRECTORY @DPDO:PASCAL

TWO TXT
TWD. L.~:; UDF
TWO .. OB UDF
TW() .. PF~ PI:~G

:I. --..JAN····OO
10····,JUl.--"7("t
:1. O-·· .. JUL -"79
:I. ()--,JUL····"7(i

0:00::41
12: 29: ~5~!
l::'~ :: 29 : 3~~
12~34:10

293
31"74
U.40
~50"72 .

The CLI FILESTATUS command displays the requested information. Note the use of the "+"
template.

TWO is the original Pascal source file. TWO.LS is the compiler listing. TWO.OB is the object fIle
(from the compiler). TWO.PR is the executable program fIle. The directory @DPDO:PASCAL is
a subdirectory on a 10 MG disc. Make the appropriate adjustments for your system configuration.

Now do it on your system.

If you fail to get a .PR file then the bind did not succeed. Go back and try to find the error. Then
try again.

4-224

3. To execute TWO, type the following command and watch the result:

-.;.-
·r·
.. ~ .
• "l" •

. ~'
.-~

,':'.

''I''''.·I~

i lit:. MP/OS 1: ,-, ,,-_
',.,J." t '"
i I ri ,1

Impressive, isn't it? Make sure you include the eLI XEQ command.

Do it on your system.

Delete TWO.PR to avoid confusion with later exercises.

) DEL/u/c TWO.PRl
Tl~j~'(:. /='R? if:3l

.~ :"' { 7"~'lO . jerI?

4-225

4. Bind TWO and make TWOERR the error fIle. Write your command and anticipated responses
below:

* •••••• **** •• ** •• *.********.************.*.*.***.************ •• *****************

The /E=TWOERR switch sets up an error file on disc. TWOERR is created whether or not there are
any errors. The file is cumulative. Each additional bind adds to the TWOERR fIle.

Now do it on your system.

4-226

5. Which mes associated with TWO now exist on your system. Show the command and anticipated
responses. (Get their lengths)

**

) FI/AS TWO+ ~
DIRECTORY @DPDO:PASCAL

TWO TXT i-JAN-OO 0:00:41 293
TWO.LS UDF 10-JUL-'79 12:2<1:32 3174
TWO.OB UDF 10-JUL--79 12:29:32 1140
TWO.PR PRG 1 O···JUL·· '79 12:39:30 3072
TWOERR TXT 10-JUL-'79 12:39:02 0

Note that since there are no errors, TWOERR has a length of O. The executable program me is
TWO.PR.

Try it on your system.

TYPE TWOERR (you should get nothing) and then delete it.

.>

4-227

6. Now for a load map. Bind TWO and make TWOMAP the binder load map. Show the command
and anticipated responses:

**

XEQ BIND/L=TWOMAP TWO PASCAL.LB)

The /L=TWOMAP switch assigns TWOMAP as the disc fJle with the load map.

Now do it on your system.

Check the lengths of the ''TWO'' fJles (especially the map):

FI/LEN TWOtl
DIRECTORY @DPDO:PASCAL

TWO.OB
TWO.LS
TWOMAP
TWO.PR
TWO

1].40
3174
:L772
3072

29:5

Make note of the sizes (circle the printout or write down the CRT information) for comparison
with later questions.

4-228

7. Get a hard-copy printout of TWO MAP. Briefly describe what you expect it to contain:

**

MP/OS BINDER REV 0.0

@DPDO:PASCAL:TWO.PR

AREA START END LENGTH

50 102 33
400 2016 1417

PAGE ZERO
PURE
IMPURE 2017 2461 443

FILENAME

TWO.OB
PASCAL.LB

MSL.LB

TITLE

SMITH
SYSIO
?PASC
V?GAD
V?PGB
V?RGE
W?COM
V?ENT
V?CSY
V?POP
V?FUP
V?FAL
V?GIT
V? JMP
ERMSG
lJNINS
SYSEN

PURE
STRT

TWO 400
623

1025
1233
1242
1251
1272
1347
1440
1455
1462
1512
1521
1542
1573

PURE IMPURE IMPURE ZREL ZREL ABS
LTH STRT LTH STRT LTH NUM

223 2017 2
202
206 2021 441 50 33 3

7
7

21
55
71
15
5

30
7

21
31

224

4-229

Do it on your system.

Note that your addresses may differ a bit.

Save the printout. Delete TWOMAP and TWO.PR.

4-230

T~'.lO . F~i;;?
D'E'l,E' fed
.>

I/i~~;l

T~.Jl]. F'R

8. Now let's try a variation of the load map. Bind TWO and get a map (TWOMAP) with the
symbols included in alphabetical order. Show the command and anticipated result in the
space below:

) XEQ BIND/ALPHA/L=TWOMAP TWO PASCAL.LB 1

The / ALPHA switch, in conjunction with the /L=TWOMAP switch, will produce an inclusive, alpha­
betized load map. You must include the listing switch.

Do it on your system.

Check the length of your mes this time (is the map longer?):

) FI/LEN TWO+ 1
DIRECTORY @DPDO:PASCAL

TWO.OB
TWO.LS
TWOMAP
TWD.PR
TWO

1:1. 40
3:1.74
4253
3072
29~)

In Question #6, TWOMAP had a length of 1772. What caused the different sizes?

4-231

9. Get a copy of this version of TWOMAP (from question #8). Briefly describe the expected
difference between this (/ALPHA) version and the previous TWOMAP:

**

4-232

MP/OS BINDER REV 0.0

@DPDO:PASCAl:TWO.PR

AF<EA START END lENGTH

PAGE ZERO
PURE
IMPURE

FILENAME

TWO.OB
PASCAl.lEt

MSl.lB

~)O

400
2017

TITLE

102
2016
2461

SMITH TWO
SYSIO
?PASC
V?GAD
V?PGEt
V'7F<GE
W?COM
V?ENT
V?CSY
V?POP
V?FUP
V?FAL
V?GIT
V?JMP
ERMSG
UN INS
SYSEN

33
1417

443

PURE
STRT

400
623

1025
123:5
1242
125l.
1272
1347
1440
145~5

1462
1512
1521
1542
15'7:5

PURE IMPURE
lTH STRT

223 2017
202
206 2021

7
7

21
55
71
1 ~5

5
30

7
21
31

224

(Continued)

IMPURE ZF(EL. ZREL ABS
LTH STRT LTH NUM

2

441 ~50 33 3

.?ERM 001573 CNS 000102 R?ET 062601

.BITS 000055 D?IV 073101 S?AV 062401

.ERIA 000054 GPOSF 000700 SPOSF 000712

.ERIO 000053 LINER 000752 V?BEG 001406
.. ERRO 000052 LINEW 000767 V?CAD 001233
.HEAP 000050 M?FFO 060201 V?CAL 00134"7
.REGB 000051 M?FF1 064201 V?CJP 001542
?CLOC 177777 M?FF2 070201 V?CSY 001440
?ERTN 00001:l M?FF3 074201 V?END 001117
?ICAL 000012 M?FSO 061201 V?ENT 001355
?L.DBL 000013 M?FS1 065201 V?FAL 001512
?NMAX 002462 M?FS2 071201 V?FIN 001462
?NRTN 000010 M?FS3 075201 V?FJP 001564
?PASC 001025 M?TFO 060001 V?FUP 001474
?STBL 000014 M?TFl 064001 V?GAD 001233
?SVLO 000004 M?TF2 070001 V?GIT 001521
?SYSE 000017 M?TF3 074001 V?JMP 001555
BYrER 000727 M?TSO 061001 V?PGB 001242
BYTEW 000742 M?TS1 065001 V?POP 001455
C1S 000100 M?TS2 071001 V?RGE 001251
C:L6 000071 M?TS3 075001 V?TRU 001513
C2 000074 M?lJL 07:5301 V?VAL 001233
C5 000076 OPENF 000623 V?WEQ 001301
C377 000101 P?OPO 061601 V?WGR 00131:3
C4 000073 P?OP1 065601 V?WLS 001272
C5 000077 P?OP2 071601 V?WNE 001331
C8 000072 P?OP3 075601 V?WNG 001340
CHARI~ 001000 P?SHO 061401 V?WNL 00132;~
CHARW 001014 P?SH1 065401
CLDEL. 000672 P?SH2 071401
CLOSE 000664 P?SH3 075401

.........

4-233

The load map has been expanded by the addition of each symbol.

Do it on your system.

Note that the alphabetized listing goes down column one, then to column two, and so on.

If you would like, you can try the /NUMERIC switch in place of / ALPHA, as shown below:

) X8~ BIND/NUMERIC/L~TWOMAP TWO PASCAL.LB 1

The only difference between /ALPHA and /NUMERIC is that the symbols are sorted by numerical
value (address) with /NUMERIC. Delete TWOMAP and TWO.PR to avoid confusion with later
questions.

4-234

10. This time bind TWO, makes STARS the executable program me, and STARMAP the listing.
Show the command and expected response:

) XEQ BIND/L=STARMAP/P=STARS TWO PASCAL.LB l

The /p=STARS switch sets up ST ARS.PR as the executable program file. /L=ST ARMAP makes
the STARMAP me the disc file load map.

Do it on your system.

4-235

11. Which mes associated with TWO and STARS now exist on your system? Are the STARS and
TWO program mes the same? Show all entries:

* ••••• * •• * ••• * ••••• *.* •••• * ••••••••• ***** •• *********.********.**** ••••• ** •• ***.*

~I/AS/S STAR+ TWO+
DIRECTORY @DPDO:PASCAL

!:,TARMAP TXT
STARS. PF'< pr';:G
TWO TXT
TWO.LS UDF
TWO.DB UDF
TWf • PF< PI:~G

TWOMAP TXT

1.0·-JUL--79
:lO-- .. JUL--79

1-",JAN-'OO
10-,JUL-79
10-'JUL-79
10 JUL 79
l. O--JUL '79

12:59:37 1'7'74
12:59:36 ~5072
O:0():41 ~~93

12: 2(1 : :52 :3174
12::29:32 1140
12: 5!:.): 52 3072
12: !5:j:: 52 42~53

Notice that STARS.PR and TWO.PR are the same length. Notice also that STARMAP and
TWOMAP are not the same length because they were bound with different switches.

Do it on your system.

Execute STARS. Is it the same? You can use anyone of the following four commands to get STARS
flying:

,) ~"< STARS)

) XE STARS)

) XE(~ STARS)

) EXECUTE STARS

After you get STARS to run, DELETE TWO.PR before going on to the next question.

4-236

12. Last one. This time bind TWO and give it a revision number of 7.1. Show your entry before
execution:

**

.> ''(E(~ IHND/I:;:EV==j'.1 TWO PASCAl.... LB l

The /REV=number siwtch assigns a revision number to the executable program file.

Do it.

Use the eLI REV command to determine the success of the operation:

Don't forget the .PR extension on the REV command.

4-237

This concludes the Pascal binding lab exercise. You may wish to experiment with the other switches.
Especially recommended for research are the debugger switches (/0 and ION). Try all of them. Now
is the time for experimentation. The loss of STARS and TWO would be minimal.

This concludes Module Four for the Pascal programmer. At this point you should be able to edit,
compile, bind, and execute a given Pascal source program.

ON TO MODULE FIVE

4-238

MODULE FIVE
SYMBOLIC DEBUGGER

SYMBOLIC DEBUGGER

Abstract

This module instructs in the fundamental concepts and procedures involved in the Symbolic
Debugger. Topics include operating requirements and procedures, memory searching and monitor­
ing, breakpoints, accumulator monitoring, display formats, and program execution.
Note: The Debugger operates on the assembly language level. This Module is designed to allow any
language expert to learn Debugging. Assembly language knowledge is an asset.

Objectives

Upon completion of this module you will be able to:

1. Use the debugger commands to:
a) set and display memory;
b) set and display breakpoints;
c) search memory;
d) set and display accumulators and registers;
e) execute a program from various locations;
o invoke and exit the debugger.

2. Write the command(s) for solving a given debugging situation.

3. Determine the result of a given debugger command.

4. Solve a debugger error situation by:
a) identifying the cause of the error,
b) referencing the solution,
c) entering the command(s) to solve the error.

5. Define, in your own words, the following Symbolic Debugger terms:
a) breakpoint
b) symbol
c) break proceed counter
d) conditional breakpoint

5-1

5-2

e) word register
f) increment register
g) num ber register
h) interrupt register
i) search output device register
j) carry register
k) console register
1) location register

Directions

Begin the first segment of Module Five on the next page of the Student Guide .

..... :.:.:.:.:

OPERATING PRINCIPLES

Abstract

This segment of Module Five discusses the features, operating procedures and requirements, console
control, and errors involved in the Symbolic Debugger.

Objectives

Upon completion of this segment, you will be able to:

1. State the procedures for successfully invoking and exiting the Debugger;
2. correct typing errors at the console;
3. generate special command symbols;
4. state the function of two error responses
5. open, modify, and close memory locations.

Directions

Turn to Figure 5-1 on the next page of the Student Guide and listen to the tape for the first seg­
ment of Module Five.

5-3

5-4

• CONTROL PROGRAM EXECUTION

• SET & DELETE BREAKPOINTS

• SET CONDITIONAL BREAKPOINTS

• DISPLAY & MODIFY MEMORY LOCATIONS

• SEARCH MEMORY

• DISPLAY & MODIFY ACCUMULATORS & REGISTERS

• MODIFY DISPLAY FORMATS

FEATURES of the SYMBOLIC DEBUGGER

Figure 5-1

XEO MASM/U ASMPROG ~

• ADD IV TO THE MACROASSEMBLER COMMAND

XEO BINDID ASMPROG MSL.LB l

• ADD 10 TO THE BINDER COMMAND

XEO/D ASMPROG ~

OR

DEBUG ASMPROG

COMMAND LINES AND THE DEBUGGER

Figure 5-2

5-5

5-6

.> DEBUG DEL TR l

DELTR
Error on ?EXEC
Error: No debu9ger presenf
DEBUG .. DEL TR
)

-" XEQ/D DEL TR
:#:

SYSTEM ERROR RESPONSE

Figure 5-3

DEBUGGER PROMPT AT STARTUP

Figure 5-4

(ARGUMENT) $ COMMAND

• user symbol n breakpoint commands

• address or
address expression

n • decimal or octal integer search commands

A
C accumulator monitors

H

J
L accumulator monitors

M
N
V
W

$... ESCAPE KEY

~} program executors

=

display formatters

&

K symbol delete

F= stack walkback

E ex it debugger

DEBUGGER COMMAND FORMAT

Figure 5·5

5·7

5-8

8RR~··,'·U

8RRR·)'.····U
8RRR~/! U
8RRRYSU

1. STR#?

2. -7SR?

3. ST1234567?

UNDEFINED SYMBOL

DEBUGGER ERROR RESPONSES

Figure 5-6

405!

open address. address! ••.
address! ... open address, display contents

485.····126488 l
START+6 152488 l
START+7 886817l
START+18 888813l
START+11 881824

Using <NEW-LINE> to examine subsequent memory locations.

485/126488 A

START+4 182488 A

START+3 888484 A

START+2 888885

Using <SHI FT-6> to examine preceding memory locations.

OPENING AND DISPLAYING MEMORY LOCATIONS

Figure 5-7

5-9

485.· ... 126480 <'NEW LINE'>

477/868277 (NEW LINE}

<NEW-LINE> ... closes a memory location

~ 485/126488 $8

5-10

477/868277 $8

CLOSING MEMORY LOCATIONS

Figure 5-8

788/020406 880808 (NE~J LINE'>
'--- insert new contents

788/880888 828406 (NEW LINE'> re-insert old contents
788/820406 (NEW LINE)

1888! 111111 <"NEW LINE'> insert new contents

1088/111111 (NEW LINE)

MODIFYING MEMORY LOCATIONS

Figure 5-9

INTEGERS

o to 177777 octal

O.to 65535. decimal

ASCII CHARACTERS

One- or two-character strings

Double quotes

Packed left to right

SYMBOLS

+AND-

Legal name

Defined as Entry Point in Program

Recognizable by Debugger

Truncated to 5 characters

Within expressions

INSTRUCTIONS

I nstruction mnemonic

DEBUGGER INPUT

Figure 5-10

5-11

5-12

0/074656 (NEJ..J LINE)

l=t./074656(NEJ..J LINE)

177776""000000

65534./@0000@

18/077227

8./077227

17?777 .. ,,? invalid octal

invalid decimal

OCTAL 0 to 177777

DECIMAL O. to 65535.

VALID AND INVALID INTEGERS AS DEBUGGER INPUT

Figure 5-11

STRRT/ftZt7f411 (NEI4 LINE'>

GOBRI(/lftZ400 (NEI4 LINE'>

legal names

DLERR.·~·U

FLPTR/U

Not defined as entry points

STRR.····U

STRRTUPRG?

incorrect length

.,fNT STRRT ; ENTR~I POINT DEFINED

. ENT GOBRK .: RNOTHER ENTR~I POINT

legal names are defined as entry points.

SYMBOLS AS DEBUGGER INPUT

Figure 5-12

5-13

5-14

START+3/{'I:t18484 (NEI4 LINE'>

GOBAK+4/t188{H 3 (NEI4 LINE'>

START-2/a88488 (NEI4 LINE'>

GOBAK-l/888484 (NEI4 LINE'>

START+2,'·8888l~5 START+28 (NEI4 LINE'>
START+2/888428 (NEI4 LINE'>

GOBAK + 5.· ... 8a1 824 3+2 (NEI4 LINE'>
GOBAK+5/8a8885 (NEI4 LINE.>

28a+288/l~28411 (NEI4 LINE'>
START/l~28411 (NEI4 LINE'>

+ and - OPERATORS AS DEBUGGER INPUT

Figure 5-13

5t:tB B14354 LOA B .. START <NEW LINE.?
5tlB/B2B7ee <NEW LINE'>

6BB/l 7666B SUB B .. e <NEW LINE'>
6BB/l e24Bt:t (NEW LINE'>

1 BBB/B6eet:tB .. IMP 1 (NEW LINE'>
H,:tBe/BBBt:tBl (NEW LINE'>

INSTRUCTION INPUT

Figure 5.14

5-15

TOPICS

• DEBUGGER FEATURES
• PREPARATION
• INPUT FORMATS
• ERROR RESPONSES
• MEMORY DISPLAY
• MEMORY MODIFICATIONS

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

Figure 5-15

5-16

OPERATING PRINCIPLES QUIZ

Circle the letter of the correct answer. Note that a question may have more than one correct
answer.

1. To make user symbols recognizable to the debugger, your preparation must include:

A. XEQ BIND/V .. .
B. XEQ MASM/U .. .
C. XEQ DEBUG/U
D. XEQ MASM/D

2. To make user symbols recognizable to the debugger, another step you must take is to:

A. define the symbols as entry points.
B. define the symbols in the system stack.
C. define the symbols as offsets of the starting address.
D. give the symbols valid names.

3. To be able to invoke the debugger, you must first use the command:

A. XEQ BIND/V .. .
B. XEQ MASM/U .. .
C. XEQ BIND/D .. .
D. XEQ MASM/D .. .

4. The command for invoking the debugger is:

A. X/D program file
B. DEBUG program file
C. XEQ/D program file
D. DEBUG/D programfile

5. Debugger typing corrections may be made by using:

A. RUBOUTorDELETE
B. ESCAPE
C. ERASE
D. BACKS LASH

5-17

6. The $ in debugger commands is generated by pressing:

A. SHIFT-4
B. SHIFT-6
C. ESCAPE
D. SLASH (/)

7. The error message "U" indicates:

A. an undefined symbol.
B. an error other than an undefmed symbol.
C. an unintelligible entry.
D. an incorrect address.

8. The error message "?" indicates:

A. an undefmed symbol.
B. an error other than an undefined symbol.
C. an illegal address.
D. a Debugger prompt.

9. To open location 1200 you type:

A. 1200!
B. 1200/
C. 1200 DISPLAY
D. 1200 <NEW-LINE>

10. You have opened location 1200. To open location 1177 you type:

A. 1177!
B. 1177/
C. SHIFT-6
D. <RETURN> or <CR>

5-18

11. You have opened location 1200. To open location 1201, you type:

A.
B.
C.

1201!
1201/
SHIFT-6

D. <RETURN>or<CR>

12. You have opened location 1201. To close it, you type:

A.
B.
C.

1201!
1201/
SHIFT-6

D. <NEW-LINE> or <LINE FEED>

13. Location 1600 has all zeroes in it. Change it to all ones and close it.

A. 1600! 111111 <NEW-LINE>
B. 1600/000000 111111 <NEW-LINE>
C. 1600/000000 111111 <CR>
D. 1600/000000 l<CR>

14. Valid integer input to the Debugger includes:

A. 0
B. O.
C. 177777
D. 177777.

15. Valid integer input to the Debugger includes:

A. 800
B. 800.
C. 65537
D. 65537.

5-19

16. Valid modifications oflocation 750 include (750 contains 063711).

A. 750/LDA 0, 1
B. 750/063711 LDAO,1
C. 750/063711 020001
D. 750/063711/LDA 0, I

17. The valid symbol GCHAR is at location 700. GCHAR may be referenced by:

A. 700.
B. 700 +0
C. 500 + 200
D. 1000 - 100

5-20

NOW CHECK YOUR ANSWERS
ON THE FOLLOWING PAGES.

OPERATING PRINCIPLES QUIZ
ANSWERS

1. To make user symbols recognizable to the debugger, your preparation must include:

A.
CD

C.
D.

XEQ
XEQ
XEQ
XEQ

BIND/U .. .
MASM/U .. .
DEBUG/U
MASM/D.

This includes the user symbols with the object file.

2. To make user symbols recognizable to the debugger, another step you must take is to:

B.

C.

define the symbols as entry points.
Yes, use the .ENT statement.

define the symbols in the system stack.
No.

define the symbols as offsets of the starting address.
No, this is automatically by the Debugger.

give the symbols valid names.
Yes, a basic requirement.

3. To be able to invoke the debugger, you must first use the command:

A. XEQ BIND/U .. .
B. XEQ MASM/U .. .

No, this only includes user symbols with the object file. You can debug without
this.

CD XEQ BIND/D ...
This binds the object files, library files, and debugger into a program file.

D. XEQ MASM/D ...

4. The command for invoking the debugger is:

X/D program file
Yes, XEQ is abbreviated

DEBUG program file
Yes.

CD XEQ/D programfile
Yes.

D. DEBUG/D programfile.
The /D switch produces the error: "unknown switch specified".

5-21

5. Debugger typing corrections may be made by using:

~ RUBOUTorDELETE
Yes, depending on your terminal.

B. ESCAPE
No, produces a $.

C. ERASE
No.

D. BACKS LASH.
No.

6. The $ in debugger commands is generated by pressing:

A. Shift4
This produces a "$" but does not function in a command.

B. SHIFT-6
No, generates an up-arrow, which opens and displays the previous location.

© ESCAPE
Yes, echoed as $.

D SLASH. (/)
No, opens and displays an address.

7. The error message "u" indicates:

~ an undefmed symbol.
B. an error other than an undefmed symbol.

No, these receive the "?".
C. an unintelligible entry.

Only if the entry is an undefined symbol.
D. an incorrect address.

Not unless the address is referenced as a symbol.

5-22

8. The error message "?" indicates:

D.

an undefmed symbol.
an error other than an undefmed symbol.
an.illegal address.

Yes, this is an error that is other than an undefmed symbol.
a Debugger prompt.

No, the only visible debugger prompt is the initial *.

9. To open location 1200 you type:

® 1200!
Yes, nothing is displayed.

CD 1200/
Yes, the contents are displayed.

(£) 1200 DISPLAY
No, receives a "?" error.

D. 1200 <NEW-LINE>
No, the new-line (or line-feed) closes the location that was never opened.

10. You have opened location 1200. To open location 1177 you type:

® 1177!
Yes, nothing is displayed.

CD 1177/
Yes, contents are displayed.

(£) Shift-6
Yes, opens and displays contents of previous location ().

D. <RETURN> or <CR>
No, opens and displays 1201.

II. You have opened location 1200. To open location 1201, you type:

® 120l!
Yes, nothing is displayed.

CD 1201/
Yes, opens and displays

C. SHIFT-6
No, opens and displays 1177.

® <RETURN> or <CR>
Yes, opens and displays the succeeding location.

5-23

12. You have opened location 1201. To close it, you type:

A. 120l!
No, the "!" opens it again.

B. 1201/
No, the "I" keeps it open.

© SHIFT-6
Yes, closes 1201, opens and displays 1200.

® <NEW-LINE> or <LINE FEED>
Yes, the choice depends on your console keyboard.

13. Location 1600 has all zeroes in it. Change it to all ones and close it.

@ 1600! 111111 <NEW-LINE>

CD
©

D.

Yes
1600/000000 111111 <NEW-LINE>

Yes, again.
1600/000000 111111 <CR>

Yes, also opens and displays 1601.
1600/000000 1 <CR>

No, only inserts a single one.

14. Valid integer input to the Debugger includes:

5-24

@O

CD O.
An octal zero.

A decimal zero.
© 177777

The maximum octal integer.
D. 177777.

No, exceeds the 65,535 maximum for decimal integers.

15. Valid integer input to the Debugger includes:

A. 800
No, "8" is an invalid octal digit.

CD 800.
Yes, a valid decimal integer.

@) 65537
Yes, a valid octal integer.

D. 65537.
No, exceeds the decimal maximum of 65,535.

16. Valid modifications of location 750 include (750 contains 063711).

A.

CD
@)

D.

750/LDA 0, I
No, the "I" should display 750's contents first.

7501063711 LDA 0, I
Yes, instructions are valid input.

7501063711 020001
Yes. This just happens to be a "LDA 0, 1."

7501063711/LDA 0, I
No, nothing is modified. Note that the second "I" opens and displays location
063711.

17. The valid symbol GCHAR is at location octal 700. GCHAR may be referenced by:

A. 700.
No, decimal 700 is different from octal 700.

CD 700+0
Yes, a valid expression.

@) 500+200
Yes, a valid expression.

® 1000-100
Yes, octal 1000 minus octal 100 equals octal 700.

A SCORE OF 14 CORRECT ANSWERS OUT OF THE 17 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

5-25

OPERATING PRINCIPLES

LAB EXERCISE

Abstract

This exercise covers debugger preparation, error correction, error messages, and memory opening,
display, modification, and closing.

Directions

This lab follows the procedures of previous labs:

1. Cover the answer;
2. Read the question;
3. Write your answer;
4. Check the answer;
5. Perform the operation on your system.

We use the PROG_ONE program in this lab. SPEED it into your system (if it is not already there).
Note the changes to the .ENT statement and the text message. Make the appropriate changes in
your file. The PROG_ONE text is illustrated on the following page. When you are satisfied with
the accuracy of PROG_ONE then begin the lab.

5-26

n'PE PROG_ONE l

STRRT:

LOOp:

· TITL PROG_ONE.; TITLE IDENTIFIER
· ENT STRRT .; ENTR\' POINT
· ENT LOOP
.ENT NESSG
· ENT CLERN
· ENT ERTN
· NREL 1 .; PURE CODE

.;NRIN ROUTINE

LOR
?OPEN
)NP
STR
LOR
LOR
LOR

I..'I •• PRTH

ERTN
a .. CHRN
1:.1 .. CHRN
1.. STPTR
2 .. 36

.; B\'TEPOINTER TO PRTHNRNE

.; OPEN CHRNNEL TO @TTO

.; ERROR ON OPEN . .. CL I

.; SRVE CHRNNEL #

.;IN CRSE IT I4RNDERED

.; B~'TE POINTER TO STRR LINE

.; 36 OCTRL B\'TE I'1SG

RUTHR: ?I4RITE OS .; DRTR SENSITIVE OPTION

!'1ESSG:

CLERN:

ERTN:

CHAN:
PRTH:

~1MP ERTN
DSZ mEN
)NP RUTHR

LDR
LOA
?I4RITE
~1MP
LOR
?CLOSE
)!'1P
SUB
SUB
SUB

?RETURN

1 .. NPTR
2 .. 55
OS
ERTN
a .. CHRN

ERTN
a .. B
1..1

.;DRTR RRERS

.; ERROR ON I4R I TE .. TO CL I

.; LOOP 2B TINES

.;t.JRITE RGRIN .. UNTIL B

.; I'1SG IS 55 OCTRL B\·'TES

.; t.JR I TE 'NP.··-OS ' NESSRGE

.;ERROR ON I4RITE

.; PREP FOR CLOSE

.; CLOSE CHRNNEL TO @TTO

.; ERROR ON ?CLOSE

.' CLERR RCS FOR CLERN RETURN

.' ... RC1 HRS ERROR LENGTH
, . .. RC2 HRS POINTER TO ERROR

.; TO CL I.. ERROR RETURNS kEEP
CODES IN RCS

8 i CHRNNEL # SAVE AREA
· +1:#:2
· TXT /@TTO......; OUTPUT TO CONSOLE

STPTR: . +1.t2
· nIT / :1:<."12'>,·-

TI4EN: 24 .; 24 OCTRL = 2B DEC
NPTR: .+1:1:2

STI(:

· TXT .~~ THE NP.····OS! HAS LANDED(12.>:"~·
.; THE ~1P/OS STRCK

· NREL a
· BLK sa
· LOC 4B
STK
STI(
STK+45

.;INPURE CODE

.;RESERVE 5B 140RDS

.; LOC 41:.1 HRS ...

.' ... THE STRCK POINTER

.;LOCRTION 41

.; LOC 42 HRS STRCK LII'1IT

. END STRRT .;END OF RSN INPUT

5-27

I. Assemble PROG_ONE. Include user symbols and make PROG.LS the list file:

**

) XEl1 f1ASf1 U,···L=PROG. LS PROG_ONE l

The IV directs the Macroassembler to include user symbols (e.g., START, LOOP) in the object
file. /L=PROG.LS assigns the PROG.LS disc file as the listing file.

Do it on your system.

If you receive an "assembly error" message, then re-invoke SPEED, correct the source file, and
try again.

5-28

2. No question here. Get a hard-copy listing of PROG.LS and save it for later.

) T'l'PE PROG. LS }
t1B01 PROG_ NP.····OS ASSENBLER REV 00.05 t18: 01 : 79 14.····03.····02

02
t1J
04
05
t16
07 Ol1f.l001
OS
09
1t1
11 tl!.10f.l0! 020434 START:
12
13 M!.1!.13 1 t100426
14 !.1!.1tll14! 040427
15 00005!020426 LOOP:
16 tl0!.1l16! 024432
1 7 !.1titi!.17 1 030036
18
19 AUTHR:
20 fll1!.112! Mt141 ?
21 t1!.1('11 3! ('114442
22 t'1l1(114 1 f/!.1t17?4
23
24 00015!024441 MESSG:
25 0!.1!.116! 030ft55
26
27 ti!.1f121! Otiti41 ft
28 Ofl022! ti20411 CLEAN:
29
~m ('/!.1!.125! Ofl£14 84
31 ftl1l126! Hi24f.l0
32 !.1(1!.127! 1264!W
33 ft003fl! 1524!.10
34
3~j'

36
... 1,..
38
39

ERTN:

40 00033!OflO@00 CHAN:
41 Ofl034!0000?2&PATH:
42 HOH35 1 f.l4H124
43 H52117
4"/ !:."lHH!:1HO
45 HOH4H!H00102&STPTR:
46 !:.il1l141! e2HH4!.1
47
4 .;:· .'
49
5H
51
t··· • ... ''::
53
54

02H04f.l
!:12f1H4H
H2004!:.i
020H4H
020040
02t1040
t120!:140
02t104f.l
020040

56 0201152

· TITL PROG_ONE.: TITLE IDENTIFIER
· ENT START .: ENTR~" POINT
.ENT LOOP
· ENT NESSG
· ENT CLEAN
· ENT ERTN
· NREL 1 .; PURE CODE

.:NAIN ROUTINE

LDA
-rOPEN
./f>1P
STA
LDA
LDA
LDA

?I.JRITE
.INP
DSZ
.INP

LDA
LDA
?l.JR I TE
)NP
LDA
?CLOSE
)NP
SUB
SUB
SUB

?RETURN

t1 .. PATH

ERTN
0.· CHAN
0 .. CHAN
1 .. STPTR
2 .. 36

DS
ERTN
TI.JEN
AUTHR

1 .. NPTR
2 .. 55
DS
ERTN
0 .. CHAN

ERTN
0 .. 0
L1

.:DATA AREAS

.; BnEPOINTER TO PRTHNANE

.: OPEN CHANNEL TO @TTO

.: ERROR ON OPEN . .. CL I

.:SAVE CHANNEL #

.:IN CASE IT WANDERED

.: B'r'TE POINTER TO STAR LINE

.; 36 OCTAL BnE NSG

.:DATA SENSITIVE OPTION

.; ERROR ON WRITE .. TO CLI

.; LOOP 20 TINES

.:WRITE AGAIN .. UNTIL 0

.: NSG IS 55 OCTAL BnES

.; WR I TE I NP .. ·'OS. . . . I NESSAGE

.:ERROR ON WRITE

.:PREP FOR CLOSE

.: CLOSE CHANNEL TO @TTO

.:ERROR ON '?CLOSE

.: CLEAR ACS FOR CLEAN RETURN

.: . .. AC 1 HAS ERROR LENGTH

.: ... AC2 HAS POINTER TO ERROR

.: TO CL I.. ERROR RETURNS KEEP
CODES IN ACS

o .: CHANNEL # SAVE AREA
· +1*2
· TXT .·'·nTO......: OUTPUT TO CONSOLE

.+1:t:2
· na ,... *<' 12.>/

(CONTINUED)

5-29

5-30

5/ aa5aaa
58 aaa55!aaaa24 TWEN:
59 aaa56!aaa136&MPTR:
6l~ aal~57! a2aa4a

24 .. 24 OCTAL = 28 DEC
.+1*2
. TXT ~ THE MP/OS! HAS LANDED<12.>;:

1313132 PROG_
at 1321313413
132 a2aMa
133 a2aa4ff
134 a2aa4a
135 1321313413
136 1321313413
a? 1321313413
as 13521113
139 13424413
Itl 1346528
11 827517
12 1351441
13 a2a11@
14 13413523
15 13213114
16 848516
17 a421B5
18 8421312
1.9 888131313
2fJ
21
22 13131313813
23 aaaaa'aaaa58 STK:
24 13131313413
25 131313413 aaaaBa'
26 13131341 aaaaaB'
27 13131342 aaaB45 ,
28
29
313

.. THE MP/OS STACK

.NREL a

.8LK 58

. LOC 48
STK
STK
STK+45

. END START

.; INPURE CODE

.. RESERVE 58 WORDS

.; LOC 4tl HAS ...

..... THE STACK POINTER

.. LOCATION 41

.. LOC 42 HAS STACK LIMIT

.. END OF AS~1 INPUT

:t:.t:8Ba8a TOTAL ERRORS, aa888.PASS ERRORS 131383 PROG_

AUTHR 8aaala! 1/19# 1/22
CHAN aaaa33! 1/14 U'15
CLEAN aaaa22! EN 1/85 1/28#
ERTN aaaa31! EN 1/136 1/·13 1/27 1/35#
LOOP aaaaa5! EN 1/83 1/'15#
MESSG aaaa15! EN 1/84 1/24#
MPTR aaal~56 ! 1/24 1/59#
PATH 1313131334! 1/'11 1/41#
START aaaaaB! EN 1/132 1/11# 2/29
STK aaaaaa' 2/23# 2 25 2/26 2/27
STPTR aaaa4a! 1/16 1/45#
TWEN aaaa55! 1/21 1/58#
?CLOS aa22a3! MC 1/29
?I aaaa13 1/13# 1/213# 1/27# 1/38# 1/36#
?J aaaaaa 1/13# 1/28# 1/27# 1/313# 1/36#
?K 13131313132 1/213# 1/27#
?OPEN al~1743! MC 1/12
?RETU aaaZa3! MC 1/35
?SYSE aaaaa1$ XD 1/13 1/213 1/27 1/38 1/36
?WRIT aa2143! IfC 1/19 1/26

)

3. Bind PROG_ONE with the Debugger and library files. Make PROGMAP the binder listing

(load map):

**

) KEl~ 8IND.·~"D.··~L=PROGNAP PROG_ONE NSL. LB l

.>

The /D switch on the BIND command directs the binder to include the Debugger with the program

file.

Now do it on your system.

Don't forget MSL.LB on the tail-end of the bind command line!

5-31

4. Make PROGTWO.PR a backup copy of PROG_ONE.PR. Then determine which PROG files
now exist on your system? Show the commands and anticipated responses.

**

.> COP~! PROGTNO. PR PROG_ONE. PR ~

.>

.> F I AS.····S PROG+~:
DIRECTOR~" @DP,\'l:

PROG. LS
PRI..1GMAP
PRI..1GH/O. PR
PRI..1G_I..1NE
PROG_I..1NE.BU
Pf;.'I..1G_I..1NE.I..1B
PRI..1G_ONE.PR

Now do it on your system.

TXT
T,\'T
Pf;.'G

TXT
OBF
PRG

1-AUG-79
1-AUG-79
1-AUG-79
1-AUG-79

18-... IUN-79
1-AUG-79
1-AUG-79

14:04:41
14: 11 : 56
14: 12: 59
10:02:43
11 :49:51
14:04:01
14: 11 : 55

The backup copy ofPROG_ONE may corne in handy if you lose your original.

5-32

3948
651

6144
1338
1293

534
6144

5. No question here. Get a hard-copy printout of the binder's load map (PROGMAP). Keep it
for later .

.> T'r'PE PROGNAP 1

f'IP.·'·OS Binder Rev @.@4

@DPK1:PROG_ONE.PR

Pure
Impure
S':4mbol

Filename

PROG_ONE.OB
NSL.LB
NSL.LB

Sfad

4@0
5@3

5666

Ti Uf:?

PROG_

End Len9fh

502
5665
5742

1@3
5163

55

Pure
Sfd

4ti@

Pure
Lfh

W3

Impure Impure Zrel Zrel Abs
Sfd Lfh Sfd Lfh NUfll

5@3 50 3
553 5113 23

5-33

6. Invoke the Debugger for PROG_ONE. Write down whichever command you choose along
with the anticipated response.

**

.> DEBUG PROG_ONE 1
:#:

We used the DEBUG command. You could choose the XEQ command with the /D switch
appended. (XEQ/D PROG_ONE) and get the same result.

Try it on your system.

5-34

7. Open the location referenced by the symbol START, display its contents, and close it. Show
the command:

**

START/@2@434 <NEU LINE)

Since START is recognizable to the Debugger, we can use it to reference locations. The slash (/)
command opens and displays START's contents. Pressing new-line or line-feed closes the location.

Do it on your system.

If you receive a "U" error message:
a) check your typing for possible misspelling,
b) check your listing. START must be dermed in a .ENT statement.

Compare the START location in the program listing with your console display. They should show
020434.

5-35

8. Use the "+" operator to open, display, and close the location following START. Show the
anticipated result.

**

STRRT+l.····006017 (NEU LINE)

"START+I/" opens the location referenced by the expression START+ 1 and displays its contents.

To get to the location following start, you can use anyone of the following

401/ because START is at location 400
400+1/ because this = 401.
START+l/ ... because this is a valid expression

Note that 006017 is a jump to the system call handler.

Do it on your system.

Make sure you close the location. Use the new-line or line feed (console-dependent).

Note that we usually space down several lines between commands, by pressing line feed. We do this
only to produce uncluttered examples.

5-36

9. LOOP is a valid symbol name. Open the location referenced by LOOP, display the contents,
and close it. Then display the next three locations following LOOP. Show the entries and
anticipated responses. (Hint: the program listing helps here.)

**

LOOP'--828426 (CR>
LOOP+1 824432 (CR)
LOOP+2 838836 (CR>
LOOP+3 88681?(CR)

"LOOP/" opens the location referenced by LOOP and displays its contents.

Pressing RETURN or CR closes the location, opens the next and displays its contents.

Try it on your system.

Make sure you close LOOP+3 with a new-line.

LOOP is a valid reference because it was defined in an entry statement (.ENT) and was included
as a user symbol (lU).

5-37

10. The symbol AUTHR is part of your program. Open the location referenced by AUTHR and
display its contents. Show the command and anticipated response:

RUTHR U

Since AUTHR is not defmed as an entry point in a .ENT statement, the system responds with the
"U" error.

Try it on your system.

5-38

11. Now open the location referenced by the symbol MESSG. Display its contents, close it, and
take a look at the next six addresses (seven in all). Show the command and anticipated

responses:

**

NESSG t124441 (CR)
MESSG+l @3@@55(CR)
MESSG+2 @@6@17(CR)
MESSG+3 @@2@84<CR)
MESSG+4 @@@41@(CR)
CLEAN @2@411(CR}
CLEAN+l @@6@17(CR)

"MESSG/" opens the location referenced by MESSG and displays the locations contents.

CLEAN is a valid symbol name. The debugger shifts to the different address reference when it
reaches another valid symbol.

Do it on your system.

All except the last address are terminated by a CR or RETURN. The last address is closed with a
NEW-LINE or LINE FEED.

Compare the contents with your program listing.

5-39

12. Open the address referenced by MESSG. Display the contents. Change the contents to
000400. Close the location. Then display it to verify. the modification. Show how first:

**

MESSG/824441 8t184l~8 <NE/IJ LINE'>
MESSG/t1884l~8 < NE/IJ LINE'>

MESSG/ opens the location. The contents are displayed as 02441. You then type 000400 to
change the contents. A NEWLINE closes the location. Re-opening the location displays the new
contents.

Do it on your system.

5-40

13. The MESSG location must be changed back to its original contents of 024441. Open, display,
modify, and close the location. Then re-open and display its re-instated contents:

NESSG.·· .. fH:1~1400 024441 (NEM LINE)
MESSG/024441 (NEW LINE)

The routine is almost identical to that followed in # 12. MESSG/ opens the location referenced by
MESSG.

Do it on your system.

Make sure you close the location.

5-41

14. Use the minus operator to open, display, and close the location four short of LOOP:

LOOP-4/996917 (NEN LINE)

LOOP-4 is also referenced as START + 1. The 006017 is the numeric representation of a jump to
the system call handler.

Do it on your system.

Close the location.

5-42

15. Open, display, and close your program's first two addresses. Use both decimal and octal
notation to reference the first address.

**

256. ,'·020434 (CR'>
START+l 086817 (NEM LINE'>

400...-028434 ,. CR }
START+l 006017 (NEM LINE.>

Decimal 256 is the equivalent of octal 400, the first address in the program. Note the decimal
point indicating decimal notation.

Try it on your system.

Use the CR to move to the next location. Use the NEW-LINE to close the last locations.

5-43

16. Open and display location 401. Use the SHIFT-6 to get to location 400. Show it:

401 g061::.117 ,,-
STRRT g2t1434 (NEU LINE)

401/ opens and displays address 401. It contains 006017. Pressing SHIFT-6 is echoed as an up­
arrow. This closes 401, opens 400 and displays its contents. Location 400 is referenced by the
symbol START.

Try it.

Close the last location.

5-44

17. This will hold us for now. To exit the debugger, use the exit command as shown:

$£
.>

Press ESCAPE followed by "E". The ESCAPE is echoed by the "$".

Do it on your system.

Wait a few seconds for the CLI prompt to return.

5-45

5-46

This concludes the Debugger Operating Principles Lab Exercise. Shut down your system
and continue with the second segment of Module Five.

.

SEARCH AND DISPLAY

Abstract

This segment of Module Five instructs in the Debugger commands for altering display formats and
searching memory.

Objectives

Upon completion of this segment, you will be able to:

1. Write the search commands to display any given part of main memory;

2. Write the command for displaying storage values in the following permanent and/or individual
formats:
a) numeric
b) symbolic
c) instruction
d) byte
e) ASCII
f) byte pointer
g) symbol format

3. Describe the function of the:
a) word register
b) mask register
c) increment register
d) number register

4. Write the commands for loading the four registers above.

. :.:.:.:.:.:.:

5-47

Directions

Tum to Figure 5-34 on the next page of the Student Guide and listen to the tape for the second
segment of Module Five.

5-48

START +3,···gBLNB4 <NEU LINE'>

START +3 t1BB4ft4 i ...INP GOBAK+3 <NEU LINE'>

; ... display contents in instruction format.

Figure 5·34

GOBAK+2/1524BB iSUB 2 2 <NEU LINE'>

GOBAK +2/ 1524gB i SUB 2 2 = 1524BB < NEU LINE'>

= ... display contents in numeric format.

Figure 5·35

5·49

SYMBOL

=

&

*

>

5-50

[DISPLAY FORMAT

(Equals) Numeric format

(Colon) Symbolic format

(Semi-colon) I nstruction format

(Under-line) Byte format

(Single quote) ASC II format

(Ampersand) Byte Pointer format

(Asterisk) Symbol format with Bit 0 = O.

(Right arrow) Display String given by Byte Pointer

SINGLE ITEM DATA DISPLAY FORMATS

Figure 5-36

1 GOBR/(/l 82488 : 182488 <' SW1BOL I C FORMRT'>

2 GOBR/(""182488 ;SUB 8 8 <' INSTRUCTION FORMRT.)

3

4

5

6

GOBR/(/182488 _285 8 (' B'r'TE FORMRT'>

GOBR/(/182488 '(285 }(8.> (' RSC I I FORMRT'>

GOBRK/182488 &841288 8 (BYTE POINTER FORMRL)

GOBR/(/132488 :#:\OEB+ 1713 (' S~~MBOL FORMRT UITH BIT a = 3'>

Figure 5-37

5-51

5-52

102400 NUMERIC FORMAT
&

1 0 2 4 0 0 NUMERIC FORMAT

~ ~~~~~

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 BIT PATTERN

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 BITS DIVIDED

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 BITS GROUPED AS BYTES

~ \.......,-J '------' '------' \.......,-J '------' \ J

2 0 500 0

•
2050 BYTE FORMAT

NUMERIC FORMAT TO BYTE FORMAT

Figure 5-38

GOBRK +-6""853538 I It/X (CR'>
GOBRK+-7 t154532 I 'r'Z (NEM LINE>

ASCII DISPLAY FORMAT

Figure 5-39

$N 88e8t18 (NEI" LINE.>

$N .•.. Open & Display the number register

$N 8t1l=t888 177777 (NEM LINE>

STRRT/+8457. (CR>
STRRT+1 +38S7.(CR>
STRRT+2 +5. (CR>
STRRT+3 +26@.(CR)
GOBRK -31488. (CR>
GOBRK+1 -21248.(CR)
GOBRK+2 -11888. (CR>
GOBRK+3 +3887. (CR>
GOBRK+4 +ll.(CR)
GOBRK+5 +532. (CR>
GOBRK+6 +22368. (CR>
GOBRK+7 +22874.(CR>
GOBAK+18 +8.(CR>
GOBAK+ll +8. (NEU LINE>

Number Register = 0 ? ... Display is octal format.
Number Register = O? .•• Display is decimal format.

$N -1.888888 (NEU LINE.>
START"'828411 (CR>
STRRT+1 886817 (CR>
STRRT+2 8ff8885 (CR)
STRRT+3 888484 (CR>
GOBAK 102488 (NEU LINE.>

DECIMAL NUMERIC FORMAT DISPLAY

Figure 5-40

5-53

SYMBOL

$=

$:

$;

$-

$'

$&

5-54

FORMAT

(ESCAPE, EQUALS) Numeric Format

(ESCAPE, COLON) Symbolic Format

(ESCAPE, SEMI-COLON) Instruction Format.

(ESCAPE, UNDER-SCORE) Byte Format

(ESCAPE, SINGLE QUOTE) ASCII Format

(ESCAPE, AMPERSAND) Byte Pointer Format

PERMANENT DATA DISPLAY FORMAT COMMANDS

Figure 5-41

$,;
START.···LDA l:1 GOBA!(+5 <CR.>
START+l JSR @\SYSE<CR)
START+2 CLE<CR)
START+3 ...1NP GOBAk'+3<CR.>
GOBAk' SUB 00<CR)
GOBAk'+1 SUB 1 I<CR)
GOBAk'+2 SUB 2 2(CR)
GOBAk'+3 ...1SR @\SYSE<CR>
GOBAk'+4 ...1NP \ICAL+l <CR)
GOBAk'+5 ...1NP +24 2<CR)
GOBAk'+6 STA 2 @+130 3<CR)
GOBAk'+? STA 3 \DEB+6l:1 ':;CR)
GOBAk' + 1l:1 l:1 .:; CR'>
GOBAf(+11 l:1 (NEW LINE)

$; ... Display contents in Instruction Format.

$:
START.····2l:1411 < CR)
START+l \STEN+154 ?(CR)

STAJ;:T+2 +5 (CR.>
START+3 GOBAk' <CR)
GOBAk' 1824l:10<CR)
GOBAk'+1 1264l:1l:1 <CR)
GOBAk'+2 1.524l:1l:1 < CR'>
GOBAk'+3 \STEN+154 <CR'>
GOBAk'+4 \ICAL+l (CR)
GOBAk'+5 \DEB+337 <CR)
GOBAk'+6 5353l:1 (CR'>
GOBAk'+? 54532 <CR)
GOBAk'+19 +0 <CR)
GOBAk'+ 11 +0 -: CR.>
GOBAK+12 +0 <NEI4 LINE}

$: ... Display Contents in Symbolic Format.

Figure 5-42

5-55

5-56

$=
START.····B2t1411 (CR}
START+l 99691?{CR>
START+2 9BB8B5{CR>
STRRT+3 9BB4B4{CR>
GOBR/(1 824BB (CR)'
GOBA/(+1 1264BB(CR>
GOBA/(+2 1524BB{CR)
GOBA/(+3 BB6Bl?{CR>
GOBR/(+4 BBBB13 (CR)
GOBA/(+5 BBIB24 (CR)
GOBA/(+6 B5353B{CR}
GOBR/(+? B54532 (CR}
GOBA/(+ HI BtlBBtlB (CR'>
GOBA/(+11 BBBBBB{CR)

. GOBA/(+ 12 BBBBt1B {NEW LINE}

$= ... display contents in numeric format.

$­
START.····41
START+l
START+2
START+3

11 (CR'>
141?<CR'>
B 5{CR}
1 4 ? < CR'>

GOBA/(2B5 t1 < CR'>
GOBA/(+ 1 255 t1 < CR'>
GOBA/(+2 325 t1 < CR'>
GOBA/(+3 14 l?<CR'>
GOBA/(+4 B 13 {CR'>

2 24 (CR'>
12? 13B <CR'>
131 132 <CR>
B B {CR}
B B<CR'>

GOBA/(+5
GOBA/(+6
GOBA/(+?
GOBA/(+11::1
GOBA/(+11
GOBA/(+12 B B <NEW LINE.>

$- ... display contents in byte format.

Figure 5-43

$'
STARr. ! <' 11 } (CR)
START+1 <.'14 }<:17 .>{CR}
START+2 <.'0 }<.'5 }<CR)
START+3 (1 }<.'4 }<CR)
GOBAK <.'205 }<.'0 }<CR)
GOBAK+1 <.'255 }<.'0 }<CR)
GOBAK+2 (325 }<.'0 ><CR)
GOBAK+3 (14 ><.'17 }(CR)
GOBAK+4 <.'0 }<.'13 }<CR)
GOBAK+5 (2 ><24 >(CR)
GOBAK+6 WX<CR)
GOBAK+7 ~"Z (CR)
GOBAK+10 <0 ><0 ><CR)
GOBAK+11 <0 }<0 ><CR)
GOBAK+12 <0 ><0 > <CR)
GOBAK+13 <0 }<0 } <NEU LINE)

$' ... display contents in ASCII format.

$t:
START.···'010204 1 (CR)
START+l 0030071<CR)
STRRT+2 000002 1 <CR)
STRRT+3 000202 0{CR)
GOBAK /..:141200 0 <CR)
GOBAK+1 0532000<CR)
GOBAK+2 0652000{CR)
GOBRK+3 003007 1 (CR)
GOBAK+4 0000051<CR)
GOBAK+5 000412 0 <CR)
GOBAK+6 025654 0 <CR)
GOBAI(+7 0262.55 0 <CR)
GOBAK+10 000000 0<CR)
GOBAK+11 0000000(CR>
GOBAK+12 000/..:10/..:1 /..:1 <NEU LINE)

$& ... display contents in byte pointer format.

Figure 5-44

..... :.:.:.:.:.:.;.: : ..

5-57

DISPLAY FORMATS QUIZ

Match the symbols on the left with the display fonnat on the right.

1. = A.) Byte fonnat

2. B.) symbolic fonnat

3. C.) byte pointer fonnat

4. (under-score) D.) numeric fonnat

5. (single quote) E.) symbol fonnat (bit 0 = 0).

6. * F.) instruction fonnat

7. & G.) ASCII fonnat

Given the following displays, identify the display fonnat:

8. START/020411

9. START/020411

10. START/020411

11. START/020411

12. START/020411

13. START/020411

5-58

:20411

;LDA o GOBAK+5

_41 11

'!<11>

*20411

Now check your answers
on the following pages

DISPLAY FORMATS
QUIZ ANSWERS

Match the symbols on the left with the display fonnat on the right.

1. D = A.) Byte fonnat

2. B B.) Symbolic fonnat

3. F C.) byte pointer format

4. A (under-score) D.) numeric fonnat

5. G (single quote) E.) symbol fonnat (bit 0 = 0).

6. E * F.) instruction fonnat

7. C & G.) ASCII fonnat

Given the following displays, identify the fonnat:

8. START/020411 Numeric fonnat (by default, the display fonnat is numeric).

9. START/020411 :20411 Symbolic fonnat --
to. START/020411 ;LDA 0 GOBAK+5 Instruction fonnat ------------------------------------
11. START/020411 _41 11 Byte fonnat ---
12. START/020411 '!<11> ASCII fonnat ---
13. START/020411 *20411 Symbol fonnat (Bit 0 = 0)

A SCORE OF 11 CORRECT ANSWERS OUT OF THE 13 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE AND RETURN TO THE TAPE .

....... ~

5-59

5-60

SPECIFY VALUE TO FIND
(WORD REGISTER)

SPECIFY SEARCH INCREMENT
(INCREMENT REGISTER)

DETERMINE MASK VALUE
(MASK REGISTER)

SPECIFY RANGE OF SEARCH
(SEARCH COMMAND)

STEPS FOR SEARCHING MEMORY

Figure 5-45

$U 888888 (NEU LINE>

$1" 88888t.1 < NEU LINE>

$..J 888881 <NEU LINE>

$$
+8 876112
+1 866233
+2 l:t61511
+3 866437
+4 888888

. +5 8l:t8465
+6 8585,'77
+7 888888
\NRTN 8,'77227
\ERTN 8,'77235
\ICRL 875681
\ICRL+1 876144

$W ... open and display the word register
$M ... open and display the mask register
$J ... open and display the increment register.

MASK REGISTER 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I

+ + + + + + + + + + + + + + + +
ANY VALUE 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

RESULT OF AND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SEARCH ALL OF MEMORY

Figure 5-46

5-61

5-62

$S
+8 D08S 3 PTR
+1 DOSC 1 DKP
+2 DISS 8 TTO
+3 DIC 1 RLM+3
+4 8
+5 ... IMP 'ST8L +25
+6 STA 2 'ST8L+143

$W . .. open Word register
$M ... open Mask register
$J ..• open Increment register

MEMORY SEARCH WITH INSTRUCTION DISPLAY FORMAT

Figure 5-47

COMMAND

$S

end-address$S

start-address<$S

start-address<end-address$S

DESCRIPTION

search al\ of memory

search memory from
location 0 to the
specified address

search memory from
the specified address
to the memory limit
(inclusive)

search memory from
the specified start
address to the specified
end address, inclusive.

SEARCH COMMANDS

Figure 5-48

EXAMPLE

$S
search a\l of memory

400$S
search from 0 to 400
(inclusive).

1000<$S
search from 1000
to limit

100<200$S
search from 100 to
200, inclusive.

5-63

5-64

$W 888888
$1"1 8t1888f1
$. ../ 888881

15$$
+8 876112
+1 866233
+2 l7f61511
+3 866437
+4 l7ftillil888
+5 f1t7fl7f465
+6 85l7f5?7
+7 t1ffl7f888
\NRTN 8?7227
\£RTN 87?235
\lCAL l7f756fi1
\lCAL+1 876144
\lCAL+2 l7f76811
\lCAL+3 866488

1 H.7f8($S
\D£8+413
\0£8+414
\D£8+415
\0£8+416
\0£8+417
\D£8+428
\0£8+421
\D£8+422

818677
1:188772
824714
838675
834656
142433
117785
888422

n$S ... search from 0 to n

n<$S . .. search from n to limit.

$ (ESCAPE) ... halt the search.

SEARCH COMMANDS

Figure 6-49

$M t1f1f1&&&
$1"1 &&&&&&
$...1 &&&&&1

7&&(;::'87$8
\[1£8+213
\0£8+214
\0£8+215
\[1£8+216
\[1£8+217
\[1£8+221:.1
\0£8+221
\0£8+222

82&486
1&7t137
1254&1
&&247&
&&6436
8&8763
1 ???74

n<x$S ... search from n to x.

Figure 5-50

5-65

5-66

WORD
REGISTER

MASK
REGISTER

$t" 1::.11::.10000 4BI::.1 < NEl4 LINE'>
$14 OOI::.14BO <NEW LINE'>

$M B09999 177777 (NEW LINE)
$n 177777 <NEW LINE'>

$S
\S rBL +331 9f:.1I::.141::.10
\DEB+J 11::.""1 999490
3512 1::.11::.""1841::.10
\STST+2t.1 1::.101::.1408
\STEN+27 8B0499
\STEN+146 99940B
\STEN+166 8BB4BB

$S ... search from 0 to limit

LOCATION 3512 = 000400 = 0 000 000 1 00 000 000

MASK REGISTER = 177777 = 1 1 11 11 1 1 1 1 1 1 1 11 1

AND
o 000 000 100 000 000

WORD REGISTER = 000400 = 0 000 000 1 00 000 000

WORD REGISTER MATCHES LOCATION VALUE

SEARCH FOR A SPECIFIC VALUE

Figure 5-51

$t" 000400 HAL T <NEW LINE'>
$t" 063077 <CR >
$1'1 177777

S0e0(600l:t$S
Sl"17 HRLT
Sl:t20 HRLT
5l"21 HRLT
5022 HALT
S823 HRLT
S824 HALT
Sl"2S HRLT
5026 HALT
S027 HRLT
S030 HALT
S031 HALT
5032 HRLT
S033 HALT
Sl"34 HRLT
S83S HALT
S036 HALT
5444 HRLT

SEARCH FOR A SPECIFIC VALUE (HALT)

Figure 5-52

$1" 063077 I1O(.lL# 8 .. 2 SKP
$1" 111111

$"" 177777

$S
3174 MOVL# 0 2 SKP
3512 MOVL# l:t 2 SKP

SEARCH FOR A SPECIFIC VALUE (111111)

Figure 5-53

5-67

SEARCH AND DISPLAY QUIZ

Circle the correct answers. A question may have more than one correct answer.

1. The default display format is:

A. numeric
B. symbolic
C. byte
D. instruction

2. To set the permanent display format to instruction format use:

A. $=
B. $;
C. $:
D. $'

3. To set the permanent display to numeric format, you use:

A. $=
B. $,
C. $
D. $&

4. To set the display of data to symbolic format, use:

A. $=
B. $:
C. $;
D. $-

5-68

5. To set the display to ASCII format, use:

A. $:
B. $_
C. $'
D. $&

6. To set the display of data to Byte format, use:

A. $:
B. $_
C. $'
D. $&

7. To set the display of data to byte pointer format, use:

A. $'
B. $_
C. $&
D. $:

8. Assume the permanent display is numeric. To display an individual data item in instructional
format, use:

A. *
B. I
C.
D.

9. To display #8's data item in ASCII format, use:

A. &
B.
C.
D. =

5-69

10. Assume the word and mask registers contain zeroes. The command to search and display all
of memory is:

A. $A
B. $S
C. O$S
D. S$

11. The Word and Mask registers contain zeroes. Search and display from location 0 to location
200.
A. 0 - 200$S
B. 0,200$S
C. 200$S
D. 0<200$S

12. The word and mask registers contain zeroes. Search and display from address 200 to the
memory limit.
A. 200<$S
B. 200>$S
C. 200$S
D. 200>0$S

13. The word and mask registers contain zeroes. Search and display from address 200 to address
200.
A. 220, 200$S
B. 200<220$S
C. 200>220$S
D. 200 - 220$S

14. To search for one specific value, set the mask register to:

A. 000000
B. 111111
C. 177777
D. -1.

5-70

15. To search only for 000250, set the word register to:

A. 177777
B. 000000
C. 250
D. +168.

Check your answers
on the following pages

5-71

1. The default display format is:

CD numeric
B. symbolic
C. byte
D. instruction

SEARCH AND DISPLAY
QUIZ ANSWERS

six bit, unsigned octal integers.

2. To set the permanent display format to instruction format use:

A. $= numeric

CD $; yes, instruction
C. $: symbolic
D. $' ASCII

3. To set the permanent display to numeric, you use:

CD $=
B. $; instruction
C. $- byte
D. $& byte pointer

4. To set the display of data to symbolic format, use:

A. $= numeric

CD $: symbolic
C. $; instruction
D. $- byte

5-72

5. To set the display to ASCII fonnat, use:

A. $:
B. $_

©$'
D. $&

symbolic
byte
ASCII
byte pointer

6. To set the display of data to Byte fonnat, use:

A.
CD

c.
D.

$:
$-
$'
$&

symbolic
byte
ASCII
byte pointer

7. To set the display of data to byte pointer fonnat, use:

A. $'
B. $_

©$&
D. $:

ASCII
byte
byte pointer
symbolic

8. Assume the pennanent display is numeric. To display an individual data item in instructional
fonnat, use:

A. * symbol with bit 0 = 0
B. I nothing occurs

©
D. symbol

9. To display #8's data item in ASCII format, use:

A. &
B.

©'
D. =

byte pointer
instruction
ASCII
numeric

5-73

10. Assume the word and mask registers contain zeroes. The command to search and display all
of memory is:

A. $A

CD $S
C. O$S
D. S$

displays accumulators, plus.

searches and displays only location O.
undefined symbol error $SU.

11. The Word and Mask registers contain all zeroes. Search and display from location a to location
200.
A. 0- 200$S No, evaluates (0 - 200) = 177600.

B.
CD
®

0,200$S
200$S
0<200$S

Then tries to search from a to 177600.
No, error: "0, 200$?"
Yes.
Yes.

12. The word and mask registers contain zeroes. Search and display from location 200 to the
memory limit.

® 200<$S
B. 200>$S
C. 200$S
D. 200>0$S

Yes.
Starts at zero and continues beyond 200.
No, searches from a to 200.
No, searches only location O.

13. The word and mask registers contain zeroes. Search and display from address 200 to address
200.
A.

CD
C.
D.

200,200$S.
200<220$S.
200>220$S.
200 - 220$S.

No, produces error message: "200, 220$?"
Yes.
No, starts at a and goes to 220.
No, tries to cover a to 177760.

14. To search for one specific value, set the mask register to:

5-74

A. 000000
B.

CD
®

111111
177777
-1.

Yes, the octal value.
Yes, the decimal value.

15. To search only for 000250, set the word register to:

A. 177777
B. 000000

0250
® +168

Yes, the octal value.
Yes, the decimal value.

A SCORE OF 12 CORRECT ANSWERS OUT OF THE 15 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

5-75

Abstract

SEARCH AND DISPLAY
LAB EXERCISE

This lab exercise covers permanent display commands, single value display commands, the number
register, and the search commands.

Directions

You will need the version of PROG_ONE that includes the symbol table and the Debugger.
Preparation of this program was performed in the Operating Principles Lab Exercise. If you do not
have a properly prepared PROG_ONE then return to the previous lab exercise and complete the
preparatory steps. When ready, continue with this lab.

Once again, follow the lab steps:

1. Cover the answer;
2. Read the question.
3. Write down the answer,
4. Check the answer,
5. Perform it on your system.

5-76

1. Write a command for bringing PROG_ONE back in for debugging:

**

) DEBUG PROG_ONE ~
:t

Of course, you can use any variation of the XEQ command:
X/D PROG_ONE
XE/D PROG_ONE
XEQ/D PROG_ONE

Do it on your system.

The asterisk prompt indicates you are ready to roll.

5-77

2. Write the command for displaying location 400 in numeric format. Show the anticipated
response:

**

4at~.····a2a434 <NEW LINE'>

The command 4001 opens and displays the contents of address 400.

Since numeric format is the default display, you need not enter any "$=" commands.

Do it on your system.

Close 400 with a new-line or line-feed, depending on your console keyboard.

5-78

3. Open, display, and close location 414 in numeric and instruction format.

**

414/999774 ;JMP LOOP+3<NEU LINE)

414,···999774 <NEU LINE)
$..
414.···· ... if'1P LOOP+3 <" NEW LINE)
$=

The command 414/ opens location 414 and displays its contents as 000774. The ";" command
translates 000774 into the JMP instruction.

You have your choice of doing this on one line or several.

Do it on your system.

Be sure to close the location and return the display to numeric format ($=).

5-79

4. CLEAN is a valid symbol for this program, (it was defined in a .ENT statement). Open,
display, and close the location four addresses beyond CLEAN. Make the display in numeric
and instruction format:

**

CLEAN+4.····1 B24BB .; SUB B f:1 (NEU LINE'>

The command CLEAN+4/ opens location CLEAN+4 and displays its contents as 102400. The
";" command translates the contents to the subtract instruction.

CLEAN+4 is a valid expression containing the "+" operator. The display change can be made on
one line. The altered format holds for one item only.

Do it on your system.

5-80

5. Display the location three words beyond START in numeric, symbolic, and numeric formats:

**

START+],···81::.1I::.N26 : CLEAN+4 =888426 <NE14 LINE)

The command START+B/ opens location START+3 and displays its contents as 000426.

The ":" is for symbolic format and "=" is for numeric format.

Try it on your system.

5-81

6. Open, display, and close decimal location 313. Make the display in numeric and ASCII
fonnats.

**

313. /046520 'MP <NEU LINE>

The command 313./ opens location 313. and displays its contents as 046520.

Decimal notation" is indicated by the decimal point following 313. ASCII fonnat is displayed by
the single quote ('). The ASCII translation of 046520 is "MP".

Do it to it.

ASCII fonnat is excellent for text strings defmed in .TXT statements.

5-82

7. Open, display, and close the word register, mask register, and increment register:

**

$l~ gggggg < NEW LINE.'>
$1'1 gtlgggg <NEI~ LINE.'>
$) gggggl<NEU LINE.'>

$W opens and displays the word register, which is the value searched for in search sequences.
$M opens and displays the mask register. $J opens and displays the search increment register.
(Note that $1 opens and displays the interrupt register.)

Do it on your system.

,.

The mask and word registers should display their default values of zero. The increment register
should contain a one. Insert these values if they do not already have them.

5-83

8. Use a search command to search and display addresses 425 to 430. Make the display instruc­
tion format. Write your commands and anticipated responses:

**

$.;
42S{4301S
CL£RN+3 ..INP £RTN
CL£RN+4 SUB 0 0
CL£RN+S SUB 1 1
CLERN+6 SUB 2 2

The "$;" commands sets the display to instruction format. The "25<30" sets the search range.
"$S" kicks off the search.

Try the sequence on your system. Compare the results with your program listing. They should
match.

5-84

9. Use byte format in a search and display of the words from ERTN+25 to ERTN+35. Write
the commands and briefly describe the anticipated responses:

**

$­
ERTN+25(ERTN+35$S
ERTN+25 2 136
ERTN+26 4ft 4ft
Ef;:TN+2? 4ft 4ft
ERTN+38 4ft 4f:.l
ERTN+31 4f:.l 4ft
Et;,'TN+32 4ft 4tl
EFnN+33 4ft 40
ERTN+34 4ft 4ft
ERTN+35 4ft 4ft

Byte format is set with the "$_" command. The search commands accept the address expressions
for specifying the search range. ERTN+25 <ERTN+35 is the specified search range.$S initiates
the search.

Enter the sequence on your system.

The sequence of 40's constitute the sixteen spaces in the print line.

5-85

10. Search and display locations 467 to 501. Use ASCII format. Write the commands and briefly
describe the results:

**

$'
467(5al$S
ERTN+36 TH
ERTN+37 E
ERTN+4@ !1P
ERTN+41 /0
E~;ITN+42 S!
ERTN+43 H
EI(TN+44 AS
ERTN+45 L
EIt~TN+46 AN
ERTN+47 DE
ERTN+58 D(12 }

ASCII format is set with the $' command. The range is from 467 to 501, (467 < Sal). This is a
text message in a print-line of the PROG_ONE program.

Perform it on your system.

Note that the addresses are specified in octal notation.

5-86

11. Search and display the first ten memory locations in your system in decimal numeric format.
Write the full commands and briefly describe the results.

**

$=

$N t3t3t3t1t3t3 1 <NEU LINE'>
$N +1.11$S
+0 +31818.
+1 +27883.
+2 +25417.
+."3 +27935.
+4 +t.1.
+5 +363.
+6 +2t3S63.
+7 +ff.
\NRTN t324t37.
\ERTN +32413.

$= insures that the display is in numeric format.
$N opens and displays the number register.

The number register determines octal and decimal numeric displays. When the number register
contains zero, the display is octal (the default). When equal to any non-zero number, the display
is decimal.

The search command says to search from 0 to 11 (first 10).

Do it on your system.

You could also use 0 <1 O$S for the search.

5-87

12. A new command. "$Z" directs the Debugger to repeat the previous search command using
the same limits.

Set the display back to octal and repeat the search of locations 0 to 1 0:

$N +1. g <NEM LINE'>
$N gggffg~l < NEM LINE'>
$Z
+fl 076112
+1 l166233
+2 l161511
+J l166437
+4 8flfl888
+5 8l1l1553
-+:5 I;."1Sl'15 ;::'7
+ 7 l1l1lH~88
\NRTN 1:.1;::'7227
\ERTN 87;::'235

$N opens and displays the number register.

First re-set the number register to zero for octal display. The "$Z" command repeats the previous
search as it was specified.

Try it.

Compare the results. They should be the same.

5-88

13. This is a little harder. Search locations 400 to 420 for the value of 006017. Show all

commands and anticipated responses:

1 $t.J 6661:0""166 6617 < NE;"; LINE'>
$U 1:0""166617 (NEN LINE'>

2 $M 666666 177777 (NEN LINE'>
$M 177777 (NEN LINE'>

3 466(426$S
STRRT+1 666617
LOOP+::3 666617
nE:3SG+2 666617

First set the word register to 6017, the value to find (1). Then set the mask register to 177777, so
that only the specified value will be matched. (2) Close both registers.

400 to 420 specifies the search range. $S starts the search (3).

Do it.

"6017" is a JSR instruction. This instruction is used in three locations within our search range.

5-89

14. We get fancy before the last questions. Search every fifth location in memory for the value 1.
(Numeric display.) Show all. Briefly describe the expected result:

1 $.. 1 0000111 5. <NEM LINE'>
$ • .1 000l1l15 <NEM LINE.>

2 $t./ @@6@17 4@@<NEM LINE'>
$U l1@@4l1@ (NEM LINE'>

3

$/11 177777 <NEM LINE'>

$8
36E1l1
70635
70117

0004110
0l1l14l1B
8@@4@@

"$J" opens and displays the increment register. We inserted a decimal five, closed it, and then
checked the success of the alteration (1). The word register was then modified to 400 (2). "$S"
starts the search of memory (3).

Try it on your system.

Y our results may easily be different. Fiddle with the increment to get a match of 400.

5-90

15. Two new commands. $R restarts the program from the address specified in the location
register. $L opens and displays the contents of the location register.

Open and display the location register:

$L 000400 <HEM LINE'>

The command $L opens the location register and displays its contents. Your program will start
running from the address specified in the location register.

The starting address of PAGE_ONE should be just above Page Zero (0 to 377) at address 400.

Try it on your system.

Be sure to close the register.

5-91

16. Now re-start PROG_ONE at the address contained in the location register. Briefly describe
the anticipated response:

* THE I'IP/DS! HAS LANDED

"$R" runs the program from the address in the location register.
Do it on your system.
Note that after the program runs, the Debugger terminates. BYE off your system.

5-92

This concludes the Search and Display Lab Exercise. Shut down your system and continue
with the third segment of Module Five on the following page of your Student Guide.

".;.:.:.:.:.:.:.:.:.;.} ~.

5-93

BREAKPOINTS

Abstract

This segment discusses breakpoints, break proceed counters, conditional breakpoints, and accumu­
lator displays.

Objectives

Upon completion of this segment you will be able to:

1. Set, display, and delete breakpoints in a given program.

2. Display the contents of the four accumulators, the stack register and the frame register.

3. Open, display, and modify the contents of an accumulator, stack register, and frame register.

4. Execute a given program with breakpoints and monitor the accumulators, stack registers,
and frame register at each break.

5. Re-start a given program from a breakpoint.

6. Set a conditional breakpoint and execute a given program with the conditional breakpoint.

7. Identify the defmition of breakpoint and conditional breakpoint.

8. Match the following commands with their functions:
a) $A
b) n$A (n=O to 5)
c) $B
d) address $B
e) $D
t) n$D (n=O to 15)

5-94

Directions

Tum to figure 5-71 on the next page of your Student Guide and listen to the tape for segment
three of Module Five.

5-95

.> DE8UG DEL TR TUO ~
:t:

$8

4@5$8

G08RK+2$8

$8
815. G08AK+1
B14. GOBRK+2

$R

B15. G08RK+1

$B . . display the current breakpoints.

address $B ... set a breakpoint at address.

Breakpoints are numbered 15. to O.

BREAKPOINT COMMANDS

Figure 5-71

8 888888 1 888888 2 888@88 3 888415 4 888415 5 8@8415

TTTTTT
ACCUMULATOR 0 AC1 AC2 AC3 STACK FRAME

REGISTER REGISTER

PROGRAM EXECUTION WITH A BREAKPOINT

Figure 5-72

5-96

$P

814. G08RK+::::
B 88888B 1 @@O@O@ :::: @@@@B@ 3 000415 4 Og0415 5 000415

$P

$P ... restart execution from current breakpoint

PROGRAM EXECUTION FROM BREAKPOINTS

Figure 5-73

5-97

5-98

4l~t1$8

481$8
482$8
483$8
484$8
485$8

$8
815. STRRT
814. STRRT+l
813. STRRT+2
812. STRRT+3
811. G08R/(
818. G08R/(+1

14.$D

$8
815. STRRT
813. STRRT+2
812. STRRT+3
811. G08R/(
818. GOBR/(+l

n.$D ... delete breakpoint n.

$0 ... delete all breakpoints.

DELETING BREAKPOINTS

Figure 5-74

40B$8
4Bl$8
4B2$8

$8
815. STAf:T
814. START+l
813. START+2

15.$Q BBBBBl <NEN LINE)

14.$Q BBBBBl <NEN LINE)

13.$Q BBBBBl <NEN LINE)

n.$O ... open and display the break proceed counter for breakpoint n.

1.5. $Q BBBBtIl 5 <NEN LINE.>

15. $t~ BBtIBt15 < NEl4 LINE'>

BREAK PROCEED COUNTER .•. how many times to execute an instruction before stopping the
program and re-entering the Debugger.

BREAK PROCEED COUNTER

Figure 5-75

5-99

1

2

3

4

5

6

5-100

$H
@ BBBBBB 1 BBBBBB 2 BBBBBB 3 BBBBBB 4 BBB415 5 BBB415

$A . .. display ACO, AC1, AC2, AC3, stack register and frame register.

t1$H BBBBBB (NE~J LINE'>

1$H BBBBBB(NEU LINE'>

2$H BBBBBB <'NEU LINE'>

3$H BBBftftB <NEt~ LINE'>

4$H BBB415<NEU LINE'>

5$H BBB415 (NEU LINE)

n$A . .. open and display register n. (n is 0 to 5).

t1$H BBt1BBB

1$H OOOBBO

2$H Ot100BB

3$H tlBOBBfI

4$H BBB415

$H
B 833333 1

ACCUMULATOR COMMAND

Figure 5-76

33333 (NEW LINE)

55555 <NEU LINE'>

99. <NEU LINE)

GOBHK <NEU LINE'>

5+2 {NEU LINE'>

t155555
.-,
.:::. BflB143

..:' . flBB4B4 4 BBBBB?

MODIFYING ACCUMULATORS AND REGISTERS

Figure 5-77

5 flBt1415

C0
CONDITION

CE
CN
CL
CG
CLE
CGE

SYMBOL

CE

CN

CL

CG

. CLE

CGE

0
(NUMBER)

BREAKPOINT
NUMBER

@

0)
TEST

0 ACO
1 AC1
2 AC2
3 AC3
4 STACK

POINTER
5 FRAME

POINTER

CONTENTS =
AN ADDRESS

NUMERIC OR
SYMBOLIC
ADDRESS

0
[VALUE]

COMPARISON
VALUE

Figure 5-78

MEANING

Compare equal

Compare not equal

Compare less than

Compare greater than

Compare less than or equal

Compare greater than or equal

CONDITIONAL TESTS iN
A CONDITIONAL BREAKPOINT COMMAND LINE

Figure 5-79

5-101

~ I CEllo.)8C8]

Return control to the Debugger at breakpoint 15 if the contents of ACO = O.

~ I CGU4.)1 [177777]

Return control to the debugger at breakpoint 14 if the contents of ACI are greater than minus one.

~ I CLEf 13.)~4[o88]
Return control to the debugger at breakpoint 13 if the contents of the location pointed to by the
stack pointer are less than or equal to five hundred.

Figure 5-80

~ I CE(J2.)GOBAK+3[6817J

Return control to the debugger at breakpoint 12 if the contents at address GOBAK+3 equa16017.

~ I CN(11.)418[13]

Return control to the debugger at breakpoint 11 if the contents of location 410 are not equal to 13.

~ I CEUS.)489[LDA B GOBAK+5]

Return to the debugger at breakpoint 15 if location 400 is the instruction LDA 0, GOBAK +5.

Figure 5-81

5-102

TOPICS

• BREAKPOINTS
• BREAK PROCEED COUNTER
• CONDITIONAL BREAKPOINTS

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

5-103

BREAKPOINTS QUIZ

Circle the correct answers. Note that a question may have more than one correct answer.

1. When a program reaches the location of a (n) , program -----------------------------
execution stops and control transfers back to the Debugger.

A. breakpoint
B. break proceed counter
C. accumulator
D. mask register

2. A command to display all currently active breakpoints is:

A. $A
B. $B
C. $C
D. $D

3. A command to set a breakpoint at address 505 is:

A. 505$B
B. 505.$B
C. B505$
D. $B505

4. A command to delete all currently active breakpoints is:

A. $A
B. $B
C. $C
D. $D

5-104

5. The command to delete breakpoint 15. currently set at location 404 is:

A. 15.$B
B. 404.$B
C. 15.$D
D. 15$D

6. A command to display the four accumulators, the stack register and the frame register is:

A. $A
B. $B
C. $C
D. $D

7. A command to open and display the contents of accumulator 3 is:

A. 3A
B. 3$A
C. 3A$
D. $3A

8. AC2 contains 000000. A command sequence to open, display, insert 177777, and close
accumulator 2 would look like:

A. 2$A 177777 <NEW-LINE>
B. 2$A 000000 177777
C. 2$A 000000 177777 <NEW-LINE>
D. 2$A 000000 1177777$ <NEW-LINE>

9. A command to open and display the location register is:

A. $A
B. $L
C. $C
D. $R

5-105

10. A command to restart program execution at the address contained in the location register is:

A. $p.
B. $L
C. $C
D. $R

11. A command to restart program execution from the current breakpoint is:

A. $P
B. $L
C. $C
D. $R

12. The default value of a break proceed counter is initially:

A. 0
B. 1
C. 177777
D. -1

13. The break proceed counter for breakpoint 12. is set to 1. Set it to 5:

A. 12.$A 000001 5 <NEW-LINE>
B. 12.$B 000001 5 <NEW-LINE>
C. 12.$Q 000001 5 <NEW-LINE>
D. 12.$C 000001 5 <NEW-LINE>

5-106

14. Breakpoint #12's break proceed counter is set to 5. This means that breakpoint #12's
location will execute times before transferring control back to the Debugger.

A. 0
B. 1
C. 5
D. 12

15. The first breakpoint you assign is given the number:

A. O.
B. 1.
C. 15.
D. 16.

16. Breakpoint 10. is assigned to address 600. A command to return control to the Debugger at
breakpoint 10. if accumulator 0 equals 0 is:

A. O$A = 10 <NEW LINE>
B. CE(10.) 0 [0]
C. CE(O) 10. [0]
D. CE(O) 0 [10.]

17. Breakpoint 13. is set at location 405. A command to return control to the debugger at break­
point 13 if the valid symbol COUNT is less than 5 is:

A. CL(13.) COUNT [5]
B. 13.(COUNT) CL [5]
C. CL(5.) COUNT [13.]
D. 13.(CL) 5 [COUNT]

5-107

18. Breakpoint 2 is set at location 750. A command to return control to the Debugger at break­
point 2 if the address pointed to by accumulator 3 is equal to 1 is:

A. CE(2.) 3 [1]
B. CE(2.) @3 [1]
C. CE (1.) 2 [3]
D. CE(750.)@2 [3]

5-108

Check your answers
on the following pages.

BREAKPOINTS
QUIZ ANSWERS

1. When a program reaches the location of a(n) , program
----~-----------------------execution stops and control transfers back to the Debugger.

® breakpoint (this assumes the break proceed counter was set to 1.)

B.
C.

break proceed counter
accumulator

D. mask register

2. A command to display all currently active breakpoints is:

A. $A

CD $B
C. $C
D. $D

displays ACO,1,2,3, stack register and frame register.

opens & displays the carry register.
deletes all current breakpoints.

3. A command to set a breakpoint at address 505 is:

®
B.
C.
D.

505$B
505.$B
B505$
$B505

No, sets a breakpoint at decimal 505.
No, creates an error.
No.

4. A command to delete all currently active breakpoints is:

A. $A
B. $B

No, displays ACO,1,2,3, stack register and frame register.
No, displays current breakpoints.

C. $C
® $D

No, opens & displays the carry register.

5-109

5. The command to delete breakpoint 15. currently set at location 404 is:

A.
B.

©
D.

15.$B
404.$B
15.$D
l5$D

No, sets a breakpoint at decimal address 15.
No, sets a breakpoint at decimal location 404.
Yes, note the decimal notation.
No, creates a "?" error.

6. A command to display the four accumulators, the stack register and the frame register is:

CD $A
B. $B
C. $C
D. $D

No, displays breakpoints
No, displays carry register
No, deletes breakpoints.

7. A command to open and display the contents of accumulator 3 is:

A. 3A No, does nothing

CD 3$A Yes.
C. 3A$ No, yields "3A$?"
D. $3A No, gets a "?" and a "U".

8. AC2 contains 000000. A command sequence to open, display, insert 177777, and close
accumulator 2 would look like:

A. 2$A 177777 <NEW-LINE> No, skipped the current display
B. 2$A 000000 177777 No, forgot to close it.

© 2$A 000000 177777 <NEW-LINE> Yes
D. 2$A 000000 1177777$ <NEW-LINE> No, the 1. .. $ is an error.

5-110

9. A command to open and display the location register is:

A. $A
CD $L

No, displays ACO; 1,2,3, stack register, and frame register.

C. $C No, opens & displays the carry register.
D. $R No, restarts program execution at address contained in

location register.

10. A command to restart program execution at the address contained in the location register is:

A. $P
B. $L

No, restarts program execution from the current breakpoint
No, opens and displays the location register.

C. $C
@ $R

No, opens & displays the carry register.
Yes.

11. A command to restart program execution from the current breakpoint is:

CD $P
B. $L
C. $C

No, opens & displays the location register.
No, opens & displays the carry register.

D. $R No, restarts program execution from the address in the
location register.

12. The default value of a break proceed counter is initially:

A. o
CD 1

177777
-1

Automatically set to 1 with the creation of each breakpoint
C.
D.

13. The break proceed counter for breakpoint 12. is set to 1. Set it to 5:

A.
B.

©
D.

12.$A 000001 5 <NEW-LINE>
12.$B 000001 5 <NEW-LINE>
12.$Q 000001 5 <NEW-LINE>
12.$C 000001 5 <NEW-LINE>

No, gets an error for 12.$A.
No, first sets a breakpoint at 1210.
Yes, now set to 5.
No, gets" 12.$C?"

5-111

14. Breakpoint # 12's break proceed counter is set to 5. This means that breakpoint # 12's
location will execute times before transferring control back to the Debugger.

A. 0
B.
05

D. 12

IS. The first breakpoint you assign is given the number:

A. o.
B. 1. o 15.
D. 16.

Breakpoints are numbered in reverse order, in decimal
15 to O.

16. Breakpoint 10. is assigned to address 600. A command to return control to the Debugger at
breakpoint 10. if accumulator 0 equals 0 is:

A. O$A = 10 <NEW LINE>
CD CE(10.) 0 [0]

C. CE(O) 10. [0]

D. CE(O) 0 [10.]

No, opens and displays ACO, then sets it to 10.
Yes. condition-breakpoint-AC-value.
No, returns to Debugger at breakpoint 0, if address 10.
contains a O.
No, returns to Debugger at breakpoint 0, if address 0
contains a 10. However, breakpoints cannot be set at
locations 0 or I.

17. Breakpoint 13. is set a location 405. A command to return control to the debugger at break­
point 13 if the valid symbol COUNT is less than 5 is:

5-112

@
B.
C.

D.

CL(13.) COUNT[5]
13. (COUNT) CL [5]
CL(5.) COUNT [13.]

13.(CL) 5 [COUNT]

No, "13.(" produces "?"
No, returns to Debugger at breakpoint 5. if address COUNT
is less than a decimal 13.
No, "13.(" produces "?"

18. Breakpoint 2 is set at location 750. A command to return control to the Debugger at break­
point 2 if the address pointed to by accumulator 3 is equal to 1 is:

A. CE(2.) 3 [1]
CE(2.) @3 [1]
CEO.) 2 [3]

No, returns to Debugger at breakpoint 2. if AC3 contains a 1.

CD
C.
D. CE(750.)@2 [3]

No, returns to Debugger at breakpoint 1. if AC2 has a 3.
No, the "750" produces an error.

A SCORE OF 16 CORRECT QUESTIONS OUT OF THE 18 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

5-113

DEBUGGER LAB EXERCISE

Abstract

This lab covers all of the commands discussed in the three segments of Module Five. The lab is
applicable for programmers of Assembly as well as MP/Fortran IV.

Directions

Once again, you will need PROG_ONE to complete questions in this lab. Preparation of
PROG_ONE is detailed in the Operating Principles Lab Exercise. You are ready for this lab when
PROG_ONE is bound with the libraries and Debugger into the program file PROG_ONE.PR.

As always:

1. Cover the answers,
2. Read the question,
3. Write the answer,
4. Check the answer,
5. Enter the answer on your system.

.• "

5-114

Additional information on the Debugger may be found in the MP/OS Utilities Reference Manual.

****~***

Note for MP/FortranIV programmers:

For your convenience, the command sequence for preparing a Fortran program (e.g. MONEY):

1. XEQ FORT4/L=MONEY.LS MONEY

Compile MONEY. Make MONEY.LS the compiler listing and MONEY.SR the compiler
output.

2.)XEQ MASM/PS=FORT4.PS/F/L=MONMASM.LS MONEY.

Assemble MONEY.SR and output MONEY.OB. Equivalence internal values (/F). Make
MONMASM.LS the assembler listing (extremely helpful).

3.) XEQ BIND/U/D/L=MONEYMAP MONEY FORT4.LB

Bind MONEY.OB with FORT4.LB and the Debugger. Include the user symbols (/U). Make
MONEYMAP the load map. MONEY.PR is the program file.

4.)DEBUG MONEY

Invoke the Debugger with the MONEY.PR file.

**

When ready, start the Lab

5-115

1. Invoke the Debugger for PROG_ONE. Write in your command and anticipated response
before checking the answer or entering it on your system.

**

.> DEBUG PROG_ONl: l
:t:

The star (*) is the Debugger's initial prompt.

Do it on your system.

5-116

2. Write the commands for displaying the location register, accumulators, stack register, and
frame register. Estimate the responses:

**

$L 80&4 Ott <" NfbJ LINE:>

$R
@ 880000 1 808088 2 880800 3 880088 4 800503 5 800583

$L opens and displays the location register (the program's starting address). The New-line closes the
register. $A displays ACs 0 to 3, the stack register, and the frame register.

Do it on your system.

5-117

3. Write the commands to search through your program and display the instruction "LDA 2, 55":

**

2 $N tl@8l':tt18 1 ????? (NEl" LINE.>
$N 1 ????? (NEW LINE'>

1 $W @@8888 LOA 2 55 (NEW LINE'>
$toJ 838l':t55 (NEW LINE'>

3 4t18(5@8$S
t1ESSG+ 1 @38l':t55

First set the word register to the value to fmd (LDA 2,55). Either the instruction or its octal
equivalent will do. Second, set the mask register to reject all other combinations. Then search the
program area from 400 to 503.

Try it on your system.

The load instruction is at MESSG+ 1.

5-118

4. Write the commands to search through locations 3000 to 4000 to fmd the occurrences of
the all-one bit pattern (177777):

2 $N 177777<NEU LINE'>

1 $t.J 838055 1 77777 < NEU LINE.>
$t.J 177777 <NEU LINE.>

3 3888 (4888$S
36Hl1 177777
36t.H 17::'777

First set the word register to 177777, the value to fmd. Next, set the mask register to the full mask
(it was already set). Then search from 3000 to 4000.

Do it on your system.

Be sure to close the registers with new-line or line-feeds, depending on your console.

5-119

5. Write the commands to display all of the accumulators, the stack register, and the frame
register. Then write the commands to open, display, and close the above words.

$H
@ 800000 1 000000 2 000000 3 00000@ 4 000503 5 @00503
O$H 000000 <NEW LINE>
l$H 000000 <NEW LINE)
2$H 000000<NEW LINE}
3$H 000000<NEW LINE)
4$H 000503{NEW LINE}
5$14 000.503 '(NEW LINE)

$A displays the accumulators and registers.
n$A opens and displays the n accumulator or register.

Be sure to close each word.

Try it on your system.

5-120

6. Open and display AC3. Set it to 111111. Close it. Then re-set it to its original value. Show
all:

**

3$~ 000000 111111<NEW LINE>
3$~ 111111 (NEW LINE)

3$~ 111111 B <NEW LINE)
3$~ 000000 <NEt.J LINE)

3$A opens and displays accumulator 3.
AC3 contains all zeroes. Typing 111111 immediately after inserts this value.

Do it on your system.

5-121

7. Execute PROG_ONE. Briefly describe the anticipated responses:

$R

.>

I'm impressed.

:t:
.*.
:t:
:t
:t:
:t:
:t:
:t:
:t:
:t:
:t:
.*.
:t:
:t:
:#:
.*.
:t:
:t:
:t
:t:

THE "1P.·'·OS! HRS LRNDED

$R restarts program execution from the address in the location register.

Perform it on your system.

Note that the program terminates and eLI returns. Re-invoke the Debugger for PROG_ONE .

.> DEBUG PROG_ONE ~
:t:

Everything reverts to its default value.

5-122

8. Open, display, and close locations 400, ERTN+22, and CLEAN. Make the displays numeric,
instruction, and ASCII:

40€V02t=t434 iLDA 0 ERTN+3 ' !<"34 .> <NEU LINE'>

ERTN+22.· ... 020eS2 iLDA e 'STBL+5 ' * <NEU LINE'>

CLERn/~12e411 iLDA e ERTN+2 ' !{11) <NEU LINE'>

400/ opens location 400 and displays its contents (numeric 020434). ";" translates this to the
LDA instruction.

Numeric is the default display format. Instruction format is produced by the semi-colon (;) and
ASCII by the single quote (').

Try it.

The "*,, is one of twenty printed as output of the program PROG_ONE.

5-123

9. Change location 455 from 24 to 2. Restart the program. Describe the anticipated response:

5-124

455/888824 2 <NE/4 LINE)

$R

.>

."#. •

. t
THE NP.····OS! HAS LANDED

"455/" opens and displays the location. Insert the 2 immediately after the contents. Close the
word.

$R runs the program with the modified count.

Do it!

Only two stars are printed because 455 has the loop counter. 24 octal is 20 decimal. We previously
printed 20 stars, now only 2 print.

10. Re-invoke the Debugger for PROG_ONE and check the contents of location 455. Write it

all down:

,) :~""'D PF..'OG_ONE l
:t:
455/000024 <NEU LINE}

455/ opens location 455 and displays its contents.

Note that 455 reverted to its original setting of 24 (20 in decimal).

Do it on your system.

Modifications are temporary, they are re-set with each invocation of the Debugger.

5-125

11. Make LOOP+6 a conditional breakpoint that will return to the Debugger only when the loop
counter (1WEN, at ERTN+24) is ten. Write it down fIrst:

LOOP+6$B
$B
815. LOOP+6

CE(15.)ERTN+24[H,7f:J

First set the breakpoint at LOOP+6. Then defIne it as conditional. CE is the condition (equal),
15. is the breakpoint number, ERTN+24 (or 455) is the location to be tested, and 10 is the
comparison value.

Enter this on your system.

5-126

12. Now restart program execution from the address in the location register. Describe what you
think will occur:

$R

B15 LOOP+6

.t:

.t:
:#:
.t:
.t:
."#:
:#:
.t:
.t:
.t:
.t:

o 00@@@2 1 @011@2 2 000027 3 000503 4 000503 5 000503

$R starts PROG_ONE. Eleven stars are printed until TWEN (ERTN + 24) is down to. 10. The
Debugger returns. The breakpoint number and address are displayed. ACO, 1, 2, 3, the stack
register, and frame register are displayed.

Try it on your system.

5-127

5-128

13. The Program has halted and the Debugger is in control. What are the contents of the location
register and TWEN (ERTN + 24 or 455)?:

**

$L 131313413 (NEU LINE)

ERTN+24""BBtltl1B (NEt4 LINE)

$L opens and displays the current location. We stopped at address 413, which is also referenced by
LOOP+6. TWEN is not a valid symbol. ERTN + 24 or 455 open and display TWEN's value. The
program stopped with TWEN equal to 10, as instructed.

Display these on your system.

Make sure you close both locations.

14. Re-start program execution. Describe what you think will happen:

:tP
:I:

)

:1:
:t:
:.#:
.t:
.t:
:#:
:#:
:t:

THE NP/OS! HRS LRNDED

$P restarts PROG_ONE from the breakpoint. The remaining stars (9) are printed, then the message

Do it on your system.

The remaining messages print and PROG_ONE terminates.

5-129

15. Invoke the Debugger for PROG_ONE for the last time. Set two breakpoints: one at LOOP+6
and the other at MESSG+ 1. Show all:

.> XE.···'O FROG_ONE l
.t:
LOOP+6$B
$8
815. LOOP+6
NESSG+l$8
$8
815. LOOP+6
814. NESSG+l

LOOP+6$B sets a breakpoint at the location referenced by LOOP+6.

The $B command verifies the breakpoints by displaying their numbers and addresses.

Set it up on your system.

5-130

16. Make breakpoint 15 conditional. Return to the Debugger only when the loop counter (TWEN,
located at ERTN+24) is equal to 5. Make breakpoint 14 unconditional:

CE(15.)ERTN+24[5:J

CE sets the comparison to equal. We are stopping at breakpoing 15. ERTN+24 is the location
tested. [5] specifies the comparison value.

Try it on your system.

Remember that 15. is in decimal notation.

5-131

17. Now start PROG_ONE. Describe what should occur: (Refer to your listing for aid.)

**

$P

B 1.5. LOOF'+6
@ B@@@@2 1 @@11B2 2 BB@B27 3 @@B5B3 4 BgB5g3 5 BBg5B3

$R starts PROG_ONE rolling.

Do it.

Fifteen stars (*) should print out before the Debugger returns and displays the breakpoint and
accumulators.

Display the location register and loop counter:

$L B0l;;.14130lEW LINE)

ERTN+24.····g0rnl.05 alEW LINE.>

5-132

18. Restart PROG_ONE. What will happen?

$P

B14. nESSG+l
o 600002 1 001136 2 000027 3 000503 4 000503 5 000583

$P restarts execution from a breakpoint.

Try it.

The stars should finish before another halt, at breakpoint 14. What are the contents of the location
register and loop counter now?

$L 000416 (NEl.J LINE'>

5-133

19. Before the "MPjOS . .. " message prints out, make a change. Modify "MPjOS" to "BARRY".
Take it one step at a time. (Your listing helps here):

ERTN+4@/@4652@ 'NP "BR <NEI~ LINE.>

ERTN+41 @27517 '.····0 "RR <NEU LINE'>

ERTN+42 851441 'S! "Y! <NEU LINE'>

ERTN+43 1::121::11 H.~ <NEU LINE'>
$'
ERTN+4@<"ERTN+42'S
ERTN+48 BR
E~'TN+41 RR
E/~~ TN+42 ~., !

A search of your program me or the listing shows the text message "MPjOS" starts at ERTN + 40.
Open it. Display it in ASCII. Then type "BA" to change MP to BA. Close the location and
continue with the remaining locations.

Perform this operation on your system.

5-134

20. Last one. Run PROG_ONE. What will occur now?

**

$P
THE BRRRtr'! HRS LRNDED

$P runs PROG_ONE. The modified message is printed. The program terminates and eLI returns.

5-135

5-136

This concludes the Debugger Lab Exercise and Module Five. At this point you should be able
to invoke the Debugger and use it to interactively debug a given program.

Now proceed to MODULE SIX.

.•......

MODULE SIX
SYSTEM MAINTENANCE

MODULE SIX

SYSTEM MAINTENANCE

Abstract

This module is divided into three segments:

• Disk initialization - software formatting for disc media utilizing the DINIT utility program
• FIXUP - software repair of disc media utilizing the FIXUP utility program.
• MOVE - transfer of fIles from one directory to another utilizing the MOVE utility program.

Objectives

Upon completion of this module you will be able to:

1. Execute the disc initializer utility to:
a) software format a disc or diskette;
b) install system programs on a disc or diskette

2. Execute the FIXUP utility to software repair a disc or diskette.

3. Use the MOVE utility to transfer fIles from one given directory to another.

".' .. : .. ;.:.'

6-1

6-2

DISK INITIALIZATION

Abstract

The Disk Initializer utility program (DINIT) is used to build an MP/OS me structure on a disk or
diskette and to optionally install three system programs. This segment discusses the procedures
involved in disk initialization under MP/OS.

Objectives

Upon completion of this segment you will be able to:

1. Identify the functions of DIN IT;

2. Initialize (software format) a disk or diskette.

3. Install system mes on an initialized disk or diskette.

Directions

Tum to Figure 6-1 on the next page of the Student Guide and listen to the audio-tape for the first
segment of Module Six.

DISK INITIALIZER

builds storage format or structure

pre-requisite for data storage

number of bad blocks

location of bad blocks

location of free space

name of all files

location of all files

install device bootstrap loader

install MP/OS

install FIXUP.

DINIT

Figure 6-1

6-3

6-4

1. LOAD THE DISK OR DISKETTE

2. SOFTWARE FORMAT THE DISK

3. INSTALL SYSTEM FILES

DINIT STEPS

Figure 6-2

) XEa DINIT/SWITCHES

XE
x
~

ID ALWAYS REBUILD
LABEL BLOCKS

IV ASK VERIFICATION OF
FILE INSTALLATION

CLI COMMAND LINE TO INVOKE DINIT

Figure 6-3

) g DINIT l
NP,,-OS DIB!:.:" INITIALIZER REV 1, 13g

Disk unit name?

DINIT CALL AND TITLE MESSAGE

Figure 6-4

....-----------VALID DISK UNIT NAMES------------.

@DPX(0-7) 6038 diskette

*@DPV(0-7)

@DPD(0-7)

@DPH(0-7)

60 XX quad density diskette

60XX cartridge disk

12.5 MB disk

1 Dis k un i t name ? X.~~·.'x:.'x,·.:_< l

Possible disk names

itDP.'={
itDPH
itDPD
itDP}"

2 Di sk uni t name ? @DP.'x; l

Unit # re~uired afler disk name

3 Disk unit name'? @DPH1l
Error: File does not exist

Ini lial ize another disk 'f fEB l

Disk unit name '?

*Informational purposes only.

DINIT DIALOGUE

Figure 6-5

6-5

6-6

') XEO OINIT.····U ~
NP.···OS DISK INITIALIZEJ;.' J;.'EU 1.00

1 Disk unii name ? ~DPX1~

2 '1P.···05 format ihe disk ? ~·'ES t

4

5

Formaiting destro~s previous disk structure,

Disk 1.0.: "NENSCRATCH"

Con ti nue forma it i ng di sk ? ~'ES ~
Disk 1.0. (0 to 15 chars) ? SCRATCHJ

The follouing patierns are available:

#1 - 155555
#2 - 133333
#3 - 066666
#4 - 000000
#5 - 177777

Run {,Ihich paiterns ? 4 .. 5t

6 -- Running patiern #4 (000000)
-- Running patiern #5 (177777)

9

10

11

12

Bad Blocks = 0
pta.x: i Ilium number 0 f f i 1 es ? 400 ~

Rounded UP io 1016.

** Disk is softuare formaited **
Install a booisirap ? YESt
Bootsfrap pathname (NL for BOOTDPX.SA) ?
** Disk booisirap installed **
Install FI,\'UP ? fES ~
FIXUP P3thname (NL for FIXUP.SA) ?

** FIXUP installed **
I ns fall /liP/OS? YES ~
S~sfem pafhname (NL for MP OS . S~··) ? t
:#:.1: NP/OS insfalled :l::l:

13 Ini tial ize another disk .-;. NO ~

DINIT DIALOGUE
Figure 6-6

) ~10UNT @DP,'x,' 1 l
SCRATCH
,) DISK.····F @DPX1 l
@DPX1

517 Blocks available
99 Blocks in use

1816 Files can be creafed
2 Recoverable errors

,) FILESTATUS/AS fPDPX1: + l

ACCESSING AN INITIALIZED DISKETTE

Figure 6-7

6-7

6-8

) XED DINIT l
NP/OS DISK INITIALIZER REV 1.09

Di sk uni t name '? @DPX1 l

NP ... ··OS format the disk '? ~''ES l·
Disk 1.D. (0 to 15 chars) ? BLANKDISK l

The following patterns are available:

#1 - 155.555
#2 - 13."3.'333
#.'3 - 066666
#4 - 000000
#5 - 177777

Run which patterns '? 1~2

-- Running pattern #1 (155555)
-- Running pattern #2 (133333)

Bad Blocks = e
i'1axilnum number of files? 50 l

Rounded UP fo 1016.

** Disk is software formatted **
Install a bootstrap? NO l

Install FIKUP ? NO }

Install I1P/OS ? NO l

Initialize another disk? NOl

INITIALIZING A BLANK DISK

Figure 6-8

.> nOUNT ~DPX 1 l
BLANKD1SK
.>

.> D1SK.···"8 @DPX1 l
@DP,'x,'l

.> D I SI<>'F @DPXn
@DPX1

309248 Byfes available
6144 Byfes in use

3 Recoverable errors

6t14
12

1016 '\

Blocks available
Blocks in use
Files can be created
Recoverable errors

ACCESSING A "BLANK" DISKETTE

Figure 6-9

6-9

TOPICS

• DINIT
• MP/OS UTILITIES REFERENCE MANUAL
• INVOKE
• SURFACE ANALYSIS
• SYSTEM INSTALLATION

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

6-10

DINITQUIZ

Circle the correct answer. A question may have more than one correct answer.

l. A command for invoking the Disk Initializer is:

A. DINIT l
B. X DKINIT l
C. DISK l
D. XEQ DIN IT l

2. The "IV" switch on the DINIT command requests DINIT to ask whether you want the:

A. default MP/OS
B. default bootstrap loader
C. default FIXUP
D. default DINIT.

3. The "/D" switch on the DINIT command directs the disk initializer to:

A. request confirmation before loading the default FIXUP.
B. destroy the previous disk structure without confirmation.
C. destroy the previous disk structure, but only after confirmation.
D. display the DISKSTATUS after initialization.

4. The Disk initializer is a:

A. pre-requisite for data storage.
B. surface analyzer.
C. disk structure formatter
D. software formatter.

6-11

5. The Disk initializer records:

A. the number of bad disk blocks.
B. the location of bad disk blocks.
C. the number of available blocks.
D. the location of available blocks.

6. DINIT may be requested to install:

A. FIXUP
B. Bootstrap loader
C. MP/OS
D. no files.

7. Valid disk unit names may include:

A. DPXl
B @DPX
C. @DPX1:
D. @DPXl

8. The maximum number of files is allocated in multiples of:

A. 10
B. 1000
C. 1016
D. 32,576

9. A valid disk I.D. is:

A. SCRATCHDISKFOUR
B. DISK
C. SCRA TCH_DISKFOUR
D. 4DISK

6-12

10. The three files that may be installed by DINIT (FIXUP, BOOT, and MP/OS) occupy about:

A. 3 blocks.
B. 12 blocks.
C. 100 blocks.
D. 1016 blocks.

11. You decide to forego installation of the three files (FIXUP, BOOT, MP/OS). DINIT uses
up about:

A. 0 blocks.
B. 12 blocks.
C. 100 blocks.
D. 1016 blocks.

Check your answers
on the following pages.

6-13

6-14

DINIT QUIZ
ANSWERS

1. A command for invoking the Disk Initia1izer is:

A. DINIT)
Error: unknown command or macro.

B. X DKINIT)
Program name: DKINIT.PR error: file does not exist.

C. DISK)
No, this is the abbreviated DISKSTATUS command.

® XEQDINIT)

2. The "/V" switch on the DINIT command requests DINIT to ask whether you want the:

A.

CD
©

D.

default MP lOS
Always asked, with or without the "/V" switch.

default bootstrap loader
default FIXUP
default DINIT.

No, not installed with DINIT. Use MOVE or COpy

3. The "/D" switch on the DINIT command directs the disk initializer to:

A. request confirmation before loading the default FIXUP.
No, this occurs with "/V"

CD destroy the previous disk structure without confirmation.
C. destroy the previous disk structure, but only after confirmation.

No, this occurs when the "/D" switch is left off.
D. display the DISKSTATUS after initialization.

No, requires the DISK command.

4.

5.

6.

7.

The Disk initializer is a:

CD pre-requisite for data storage.
(in an MP/OS environment)

CD surface analyzer.
(detennines bad blocks)

~ disk structure fonnatter
D. software fonnatter

(C & D are equivalent)

The Disk initializer records: I the number of bad disk blocks.
B. the location of bad disk blocks.
C. the number of available blocks.
D. the location of available blocks.

DINIT may be requested to install:

~F~ B. Bootstrap loader
C. MP/OS
D. no meso

(answer "no" to A,B, & C)

Valid disk unit names may include:

A. DPXl
Valid name requires the "@" prefix to distinguish it as a device.

B. @DPX
disk requires unit #

C. @DPXI:
Identifies the directory on @DPXl.

@ @DPXI
O,K. for the diskette in the secondary drive.

6-15

6-16

8. The maximum number of files is allocated in multiples of:

A. 10
B. 1000

® 1016
D. 32,576

Maximum number that can be requested. Provides excellent use of disk space but
slowest access times.

9. A valid disk I.D. is:

CD SCRATCHDISKFOUR
o to 15 characters

® DISK
Not a reserved name.

C. SCRATCH_DISKFOUR
Too long.

D. 4DISK
Cannot begin with a digit.

10. The three files that may be installed by DINIT (FIXUP, BOOT, and MP/OS) occupy about:

A.
B.

D.

3 blocks.
12 blocks

12 blocks are used up without the 3 files.
100 blocks

3 files require about 87, Formatter sets up about 12.
1016 blocks

Maximum file count allocated in multiples of 1016.

11. You decide to forego installation of the three files (FIXUP, BOOT, MP/OS). DINIT uses up
about:

A. 0 blocks.
® 12 blocks.

For tracking bad blocks, free space, root directory, etc.
C. 100 blocks.
D. 1016 blocks.

A SCORE OF 9 CORRECT QUESTIONS OUT OF THE 11 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

6-17

6-18

DINIT LAB

Abstract

This exercise takes you through a disk initialization sequence.

Directions

You need the program DINIT.PR on your system to complete this exercise. The CLI FILESTATUS
command will verify the existence of the DINIT program. You also need a second device to load
the disc medium to be initialized. Load the device and you are ready for the lab. As always:

1. Cover the answers;
2. Read the question;
3. Write the answer;
4. Check the answer;
5. Enter the response on your system.

. .•.. :.:.:

1. Write the command to invoke the disk initializer and install the default files. Show the
anticipated responses:

) ,"':EO
1"1,0.···03

[lItHT l
DIS/(INITIRLIZEf..'

Disk unif nam~ ?

REV 1.0ft

XEQ DINIT invokes the Disk Initializer utility program.

The question specifies no switches.

Try it on your system.

6-19

2. Insert a valid disk unit name for your DINIT. What happens next?

**

6-20

Disk unif name ? ~DPX1

NP.·-OB formal. fhe disk? fES
Disk 1.0. (8 1.0 15 chars) ?

MP.···OS fcrrmaf fhe disk '"j' '/ES

@DPXI is valid for our example system, configured with a dual diskette drive.

Enter the appropriate response for your system. (See figure 6-5 for assistance or force DINIT
help by answering with a new-line. It will give you a list of valid names.)

If you get any errors, check the spelling of the disk unit name.

Answer "Yes" to "Format the Disk?"

3. Give your new medium the name "TEST" when DINIT asks for the I.D. Describe what
follows:

**

Disk J.D. (8 fo 15 chars) ? TESTl'

The follouin9 pafferns are available:

#1 - 155555
#2 - 133333
#3 - 866666
#4 - e8B888
#5 - 1?7???

Run uhich pafferns ?

The Disk may go nameless (0 characters) or be identified in up-to 15 characters.

Enter it on your system.

The bit patterns for surface analysis follow the Disk I.D.

6-21

4. Use patterns "155555" and "177777" for surface analysis. What should occur?

**

6-22

J;:un (,Ihich Faf ferns'? 1 5 ~

Runnin~ Faffern #1 (155555)
Runnin~ Faffern #5 (177777)

Bad Blocks = 0
Maxi~um number of files?

The system reports the pattern being run. When done, it reports the number of bad blocks.

Try it on your system.

This takes a little time, so be patient. DINIT displays the pattern it is using. If your media has
too many bad blocks, DINIT will issue an error message.

5. Request 2000 files as your maximum. What happens next?

**

Maxi~um number of files? 2990
Rounded UP fo 2032.

** Disk is soffware formaffed **
Insfall a boofsfrap ?

The maximum number of files is set at 2032.

Try it.

You are O.K. if DINIT displays the message "Disk is software formatted".

6-23

6. Install all three system files. Show the dialogue:

6-24

Insfa11 a boofsf rap ? ~··ES l
*t Disk boofsfrap insfa11ed *t
Insfa11 FIXUP? ~~ESl
** FIXUP insfa11ed t*
Insfa11 NP.····OS ? ~"ES l
S':IstE'm pathnaflll? (NL fot- I'tP .. ··OS. S,J) o?
."#::#: MP.·'OS ins f a 11 ed .1::#:

Inifia1ize anofher disk? NO l

Respond with YES for each question.

Do it on your disk.

We do not want to initialize another disk so answer.!!2 to the last question and return to CLI.

7. Access your newly initialized media and determine the available space:

) nOUNT IPDPXl l
TEST
,) DISI(.···"8 IPDPX1l
IPDP,\'l

,) DISK.···-p IPDP;''i'l}
@DPg1

264192
512@f;.7

1

.516
Hl@

2@32
1

B':Ites available
B':Ites in use
Recoverable errors

Blocks available
Blocks in use
Files can be created
Recoverable errors

MOUNT @DPXI brings the secondary diskette on-line and ready for software access.

Perform it on your system.

You can also "DIR" to @DPXl:, copy files to it, and in general use @DPXl: as necessary.

6-25

8. End of the line. Dismount the medium and BYE off your system.

**

6-26

) [lISfrTOUNT (~[lP,'x,'ll

) B'r'E l
MP/OS eLI Terminafin9

Sl:Isfem shufdoun
~1.5671.5
I

Do it.

This concludes the DINIT Lab Exercise. Shut down your system. Continue with the next
segment of Module Six on the next page of your Student Guide.

. ... :.:.:.;.:

6-27

6-28

MOVE UTILITY

Abstract

The MP/OS MOVE utility program provides a method for transferring files from one directory to
another. The MOVE utility is an excellent means of backing-up your files.

Objectives

Upon completion of this segment, you will be able to:

1. Write and execute the MOVE command line for solving a given file transfer problem.

2. Identify the function of the MOVE command switches.

3. Back-up a series of files.

Directions

Turn to Figure 6-18 on the next page of the Student Guide and listen to the audiotape for the
second segment of Module Six.

XEa MOVE/SWITCHES
~

XE
X

/L
/V

DIRECTORY

I
DEFAUL T:DESTINATION

FILE(S)

I
FILES TO
BE MOVED

/L=file DEFAULT # (ALL)
/DELETE
/RECENT
/AFTER/TLM=DD-MMM-YY:hh:mmm;ss
/BEFORE/TLM=DD-MM-YY:hh:mmm:ss
/FROM

MOVE COMMAND LINE SYNTAX

Figure 6-1a

..--------l: SWITCH :1-----------1: FUNCTION :1-------....,
/FROM

/DELETE

/L
/L=LlST-FI LE
/RECENT

IV

/ AFTE R/TLM=DD-MMM-YY: HH: MM :SS

/BEFORE/TLM=DD-MMM-YY:HH:MM:SS

Move files from the specified directory to the
current directory
If "FILE" exists in the destination directory,
delete it and then move "FILE" there from the
source directory.
List names of files moved at the printer
List names of files moved in "LIST-FILE"
If "FILE" already exists in the destination directory
move "FILE" only if the version in the source
directory is more recent.
List file names at the users console as each file is
moved.
Move only files last modified after time and date
specified.
Move only files last modified before time and date
specified.

~----------------------MOVECOMMANDSWITCHES----------------------~

Figure 6-19

6-29

6-30

:·::EO NOVE HJODIR SANPLE)

."

) XEO NOVE/V TNODIR SAMPLE)
@DP,\'O: SANPLE

N ... list moved files on the console.

,) ;:';'E(') NOUE.···L HJODIR SANPLE)

)

IL . .. list moved files on line printer.

MOVE EXAMPLES

Figure 6-20

RESULT

SAMPLE ~TWODIR

SAMPLE---.TWODIR
CONSOLE DISPLAY

SAMPLE~ TWODIR
LPT DISPLAY

) g NOVE.···L=SRNPLE. LS HJODIR SRNPLE 1

IL = filename . .. list moved files on disk file "filename".

) g NOVE.····U.···L=SRNPLE. LS Tl40DIR SRNPLE 1
IPDP.:-.::tl: SRNPLE

) r'r'PE SRNPLE. LS 1
IPDP.\·O: SRf'1PLE

) g NO(.lE.····V.···FRON Tt40DIR SRNPLE 1
IPDP.:-{l :.Tl40DIR: SRNPLE

RESULT

SAMPLE rwODIR
SAMPLE.LS on DISK

SAMPLE TWODlR
SAMPLE.LS on DISK
CONSOLE DISPLAY

SAMPLE @DPXO:
CONSOLE DISPLAY

IFROM ... move files from specified directory to working directory

MOVE EXAMPLES

Figure 6-21

6-31

6-32

) XEO NOUE.····U.···DELETE TUOO IF..' SHNPLE l
IJ!OP,\'[t: SHNPLE

RESULT

NEW SAMPLE~TWODIR
CURRENT SAMPLE DELETED
CONSOLE DISPLAY

/DELETE . .. delete files with conflicting names in destination directory.

~ .:. '!.;' NOVE.····U/F..'ECENT TUOOlF..' SHNPLE l
!PDP,\'O: SHNPLE

)

MOST RECENT
SAMPLE ~ TWODI R
OLDER SAMPLE DELETED
CONSOLE DISPLAY

NO MESSAGE, NO MOVE

/RECENT ... retain only most recent file if names conflict.

~) ,\' NOUE.····U.···AFTER .. ···TLN= l-JUN-79 nlOo IF..' } FILES MODIFIED SINCE
{?OP'\'[1 : ·?NSG
IJ!DP,\'[1: HHEN. CL I
I:POPX[1 : LIS T
I:PDP,\'O: ?SI,JHP_l
IJ!OPX[1:LOGON.CLI
IJ!DPX[1:SHNPLE
!PDPX[1:Tt-JOSHNPLE
IJ!DP,\'O: SHNPLE. LS

/AFTER ... move files modified after specified time.

MOVE EXAMPLES

Figure 6-22

JUNE 1, '79~TWODIR

CONSOLE DISPLAY

-.. X f10VE.··-(./.····BEFORE. TU·1=31:.1-f1A)/-79: 12 TJ.IODIRl
@DPXB:CLI.PR
@DP.!-:'·B : CL I . OL
@DPXB : ER~1ES
@DP.!-:'·B : BOOTDPX . SA
@DP.!-:,·B : BOOTDPD . SA
@DPXt":t:DINIT. PR
@DPXB : S~"SCALL . PR
@DPXt":t:FIXUP. PR
@DPXB:FIXUP.SA
@DPXt":t: FD I SP . PR
@DPXB:f1ICRON.OL
@DPXB:f10VE.PR
@DP.'x:B : MICRON. SY'

/BEFORE ... move files modified before time specified.

) X f10V~,-'V TJ.JODIR F+ ~
@DPXB:FIXUP.PR
@DPXB:FIXUP.SA
@DPXB:FDISP.PR

.>

;-. XEQ f10VE TNODIR SAMPLE 1

RESULT

FILES MODIFIED BEFORE
MAY 30, '79--.. TWODI R

CONSOLE DISPLAY

ALL FILES ---. TWODIR

CONSOLE DISPLAY

II/arnino;: Fi1~ alr~ad":l ~.)1.·is*s@DPX1:TNODIR:SAMPLE

MOVE EXAMPLES

Figure 6-23

6-33

TOPICS

• MOVE UTILITY
• INVOKE - XEa MOVE
• OPTIONAL SWITCHES
• SOURCE DIRECTORY
• DESTINATION DIRECTORY

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

6-34

MOVE UTILITY QUIZ

Given the following fIle structure:

A B c o MOVE.PR

E

where A, B, C, D, E are non-directory fIles and @DPDO:, @DPXO:, and QUIZ are directory files.
All 3 directories are on the searchlist. @DPDO: is the working directory unless stated otherwise.

Circle the correct command line for the following transfers. A question may have more than one
correct answer. The questions are not cumulative. The fIle structure is always as shown above for
each question.

1. The command line for moving file A to directory QUIZ is:

A. XEQ MOVE A QUIZ l
B. XEQ MOVE QUIZ A l
C. XEQ MOVE @DPDO: A l
D. XEQ MOVE @DPXO:QUIZ l

6-35

6-36

2. Move to QUIZ all @DPDO: files that have been modified (edited, created, compiled, etc.)
since January 1 of 1979.

A. X MOVE/AFTER/TLM QUIZ A, B, C, D l
B. X MOVE/AFTER/TLM=1-JAN-79 QUIZ)
C. X MOVE/BEFORE/TLM=31-DEC-78:12:00:00 QUIZA,B,C,D l
D. X MOVE/BEFORE/TLM=1-JAN-79 QUIZ # l

3. Move A and B to QUIZ. Delete any files named A and B in QUIZ as part of the move.

A. X MOVE A, B QUIZ/DELETE l
B. XE MOVE/DELETE QUIZ l
C. XEQ MOVE/DEL QUIZ A, B }
D. XEQ/DEL MOVE QUIZ A, B l

4. Back-up all files in @DPDO: to QUIZ. Print a list of the files on the console.

A. X MOVE/FROM/V QUIZ # l
B. X MOVE/ALL/V QUIZ}
C. X MOVE/RECENT/V QUIZ A, B, C, D. l
D. X MOVE/V QUIZ l

5. Transfer all files in @DPDO: that have not been modified since April 15, 1979. Move them to
QUIZ and print a listing on the line printer.

A. MOVE/L/BEFORE/TLM= 15-APR-79 QUIZ l
B. X MOVE/L/BEFORE/TLM=15:APR:79 QUIZ #J
C. X MOVE/BEFORE/TLM=APR-15-79 QUIZ l
D. X MOVE/L/BEFORE/TLM=15-APR-79:24 QUIZ l

6. Move E to @DPDO:. Type the name of the moved file on the console and the line printer.

A. X MOVE/V/L QUIZ E)
B. X MOVE/V /L/FROM QUIZ E)
C. X MOVE/V /L/FROM QUIZ J
D. X MOVE/L/V @DPDO: E l

7. Back-up all files in @DPDO: to QUIZ. In case of conflict with fIles in QUIZ, keep the fIles
that were last updated.

A. X MOVE/AFTER QUIZ J
B. XEQ MOVE/RECENT QUIZ # l
C. XEQ MOVE/RECENT QUIZ l
D. X MOVE/BEFORE QUIZ l

Check your answers
on the following pages.

6-37

6-38

Given the following file structure:

A B c

MOVE UTILITY QUIZ
ANSWERS

o MOVE.PR

E

where A, B, C, D, E are non-directory files and @DPDO:, @DPXO:, and Quiz are directory files.
All 3 directories are on the searchlist. @DPDO: is the working directory unless stated otherwise.

Circle the correct command line for the following transfers. A question may have more than one
correct answer. The questions are not cumulative. The file structure is always as shown above
for each question.

1. The command line for moving file A to directory QUIZ is:

A. XEQ MOVE A QUIZ l
Target directory and filename are switched.

CD XEQ MOVE QUIZ A l
O,K. since QUIZ is on the searchlist.

C. XEQ MOVE @DPDO: A l
No, wrong destination directory.

® XEQ MOVE @DPXO:QUIZ A l
Full pathname for destination directory.

2. Move to QUIZ all @DPDO: files that have been modified (edited, created, compiled, etc.)
since January 1 of 1979.

A. X MOVE/AFTER/TLM QUIZ A, B, C, D }

Wrong time.
CD X MOVE/AFTER/TLM=l-JAN-79 QUIZl

Yes. When filenames are not stated, default of all is assumed.
C. X MOVE/BEFORE/TLM=3l-DEC-78:l2:00:00 QUIZ A,B,C,Dl

No, wrong time and switch.
D. X MOVE/BEFORE/TLM=I-JAN-79 QUIZ # 1

Same as C.

3. Move A and B to QUIZ. Delete any files named A and B in QUIZ as part of the move.

A. X MOVE A, B QUIZ/DELETE}
No, all sorts of errors.

B. XE MOVE/DELETE QUIZ 1
Close, but moves A, B, C, and D.

© XEQ MOV /DEL QUIZ A, B 1
DELETE switch may be abbreviated.

D. XEQ/DEL MOVE QUIZ A, B 1
No, switch is in the wrong place.

4. Back-up all files in @DPDO: to QUIZ. Print a list of the files on the console.

A. X MOVE/FROM/V QUIZ # 1
No, moves E to @DPDO: which is the wrong direction.

B. X MOVE/ ALL/V QUIZ 1
No, error: unknown switch specified

© X MOVE/RECENT/V QUIZ A, B, C, D. 1
Yes, this works. If there are any name conflicts, the most recent is kept.

® X MOVE/V QUIZ 1
Yes, if the filenames are not specified, all is assumed.

6-39

6-40

5. Transfer all files in @DPDO: that have not been modified since April 15, 1979. Move them to
QUIZ and print a listing on the line printer.

A. MOVE/L/BEFORE/TLM=15-APR-79 QUIZ ~
No, need XEQ.

B. X MOVE/L/BEFORE/TLM=15:APR:79 QUIZ # l
No, wrong separators in the date field.

C. X MOVE/BEFORE/TLM=APR-15-79 QUIZ l
No, date recorded incorrectly.

® X MOVE/L/BEFORE/TLM=15-APR-79:24 QUIZ l
Moves all files modified on or before April 15.

6. Move E to @DPDO: . Type the name of the moved file on the console and the line printer.

A. X MOVE/V/L QUIZ E l
Tries to move E to QUIZ, file already exists there.

CD X MOVE/V /L/FROM QUIZ E}
Yes, QUIZ becomes the source directory, @DPDO: is the target.

© X MOVE/V /L/FROM QUIZ l
Yes, E is the only file in QUIZ.

D. X MOVE/L/V @DPDO: E 1
No, @DPDO: is the working directory.

7. Back-up all files in @DPDO: to QUIZ. In case of conflict with files in QUIZ, keep the files
that were last updated.

A. X MOVE/AFTER QUIZ 1
Moves all files, but does not handle conflicting names.

CD XEQ MOVE/RECENT QUIZ # l
The "#" template means "all".

© XEQ MOVE/RECENT QUIZ J
No files named so "all" default is assumed.

D. X MOVE/BEFORE QUIZ 1
Moves all files except those modified anytime today.

A SCORE OF 6 CORRECT QUESTIONS OUT OF THE 7 QUESTIONS INDICATES
MASTERY LEVEL. REVIEW THE QUESTIONS YOU MAY HAVE MISSED. BE CERTAIN
THAT YOU UNDERSTAND THE CORRECT ANSWERS. THEN CONTINUE WITH THE
NEXT SEGMENT IN THE STUDENT GUIDE.

. ... ;.:.:.:::.:::.:.:.: ... :

6-41

6-42

MOVE UTILITY

LAB EXERCISE

Abstract

This lab provides practice in the use of the MOVE utility for transferring files from one directory

to another.

Directions

1. You will need the file MOVE.PR for completion of this lab. The CLI FILESTATUS command
will help you find it.

2. Set the system time to 11 o'clock. A reminder is shown in the screen below:

) r I NE 11: @@ : @@)

.>

3. Create a directory named MOVEDIR. Make MOVEDIR the working directory. Create three
empty files: HOUSE, HOME, HOTEL, as shown below:

) CRER TE""D I R NOVED I R)
.> DIR NOVEDIR)
.> CRERTE HOUSE,)
.> CRERTE HONE)
.> CRERTE HOTEL J
.>

4. Return to the first working directory. Create a directory named LABDIR. Make LABDIR
the working directory. Create an empty file named BOAT.

) [fIR ,\)
.> CRER TE/D I R LRBD I R)
.> DIR LRBDIR 1
.> CRERTE BORT 1
.>

5. Make MOVEDIR the working directory for the start of the lab exercise. Add LABDIR and
MOVEDIR to the searchlist.

) DIR MOUEDIRJ

) SEARCH LIS T @DP.!'{@:., @DP.'x,'1:., @DP:'~'1: f'1OVED I R., @DPX 1 : LABD I R J
,) SEARCH J
@DP,'x:f:.l : .' @DPX1 : .' @DPX1 : MOVED I R., @DPX 1 : LABD I R
,)

The answers in this lab were worked out on a secondary diskette drive (@DPXI:). The complete
file structure looks like this:

HOUSE HOME HOTEL BOAT

MOVE.PR is in @DPXO: on the primary diskette drive.

6-43

6-44

6. Note the modification times for the newly created files:

,) FI RS
DIRECTOR~" @DP,'x,'I: NOVEDIR

)

HOUSE
HO~1E
HOTEL

TXT
TXT
TXT

,) FI RS I1DPX1: LRBDIR: +
DIRECTOR..,.' @DPX1:LRBDIR

BORT TXT
,)

You are now ready for the lab. Remember:

1. Cover the answers,
2. Read the question,
3. Write the answer,
4. Compare the answers,
5. Enter the sequence on your system.

9-RUG-79
9-RUG-79
9-RUG-?9

11:88:38
11 : 8t1: 35
11:88:48

9-RUG-79 11:81:38

. .. :.:.:.:.:.:.:

I. Transfer HOUSE to the LABDIR directory. Verify the transfer by printing a list of the files
moved on the console.

**

> XEa NOVE.····V LABD I R HOUSE l
@DP.~·l : NOVEDIR: HOUSE

The IV lists the name of the file that is moved. Note that IV does not list the new file's pathname,
it shows the pathname of the moved file.

LABDIR is the destination directory. HOUSE is the file to move.

Try it on your system.

If you get an error, check your spelling and the entire command line.

6-45

2. Check the modification time of the moved file. Has it changed since HOUSE was created?
Write the command and anticipated response:

**

6-46

,\ FI.·'·TLN LA8DIR:HOUS£)
DIR£CTOR~" @DPXl :LA8DIR

HOUS£
.., ..

11:t16:45

The /TLM switch displays the time of last modification. Modification (creation) occurs with a
move and the TLM is updated.

Do it on your system.

3. Move all three files in MOVEDIR to LABDIR. If there are any filename conflicts, keep the
file that was last modified. Verify the moves on the console:

**

) g NOUE.····U.···RECENT LRBD I R H+ l
tlDP,\'l : NOUED I R : HONE
tlDPXl :NOUEDIR:HOTEL

IRECENT says that in the case of similar filenames in the source and destination directories, move
the file only if the version in the source directory (MOVEDIR) is more recent than the version in
the destination directory (LABDIR).

IV lists the moved filenames on the console.

Try the command on your system.

6-47

4. Which files are now in LABDIR. Are they the most recent? Write the command and antici­
pated response:

6-48

.> FI.'·TLN LABDIR:+ ~
DIRECTOR..," IPDPX1: LABDIR

BOAT
HOUSE
HONE
HOTEL

11 : tU : 38
11 :06:45
11:09:04
11:09:21

The /TLM switch displays the time of last modification.

Try it on your system.

Compare these times with the MOVEDIR files:

.> F I.····TL", NOVEDIR: + l
DIRECTOR..," IPDPX1: f'1OVEDIR

HOUSE
HONE
HOTEL

11:00:30
11:00:35
11:00:40

Delete LABDIR's HOUSE and HOME (Keep HOTEL).

.> DELETE.··'V,,"C f!DP.'x,·1: LRBDIR: HOUSE t1DP.!-{1: LRBDIR: HONE
t1DPX 1 : LRBD I R : HOUSE? ~"ES J
Dt?lt?~t?d t1DPX1:LRBDIR:HOUSE
@DPX1:LABDIR:HOME? fESJ
Dt?lt?~t?d @DPX1:LRBDIR:HOME
)

5. Move all three "H" files from MOVEDIR to LABDIR. Delete any files in LABDIR that
conflict with the transferring files.

,) X NOVE.··'V,·'DELETE LRBD I R H+ l.
@DPX1:MOVEDIR:HOUSE
f!DPX1 : MO{.lEDIR: HOf'1E
@DPX1:MO{.lEDIR:HOTEL

,)

/DELETE directs MOVE.PR to delete any conflicting files in the destination directory (LABDIR)
before transferring the file from the source directory (MOVEDIR).

Do it on your system.

The only conflict in filenames involves HOTEL. Don't forget the XEQ or its abbreviation or else
you may get:

) 110VE.··'().··'DELETE LABD I R H+ l.
Error: Unkno(,tn command or macro
MO{.lE tVDELETE .. LRBDIR .. H+
)

6-49

6. Which files now exist in LABDIR? What are their TLM's?

6-50

) FI.·'·TLN LRBDIR:+l
DIRECTOR~·· @DPX1:LRBDIR

.>

BORT
HOUSE
HONE
HOTEL

Do it on your system.

11:81:38
11: 13: 32
11: 13: 49
11 : 14: €IS

Note that a newer version of HOTEL, the conflicting file, was moved into LABDIR.

7. What happens to the source files involved in a MOVE? Are they deleted? Modified? Updated?
Show the MOVEDIR files. What should occur?

**

) FI.····TLN NOVEDIR: + ~
DIRECTOR~" @DPX1:NOVEDIR

HOUSE
HONE
HOTEL

Try it on your system.

11 :33:38
11: t18: 35
11:88:48

The source files are neither deleted, nor modified, nor updated.

Delete the files in LABDIR

) aIR LRBDIR 1
.> OELETE,·'{.i + 1
Dele~ed BORT
Dele~ed HOUSE
De 1 e ~ ed HOl'1E
Dele~ed HOTEL
.>

•

6-51

8. Make MOVEDIR the working directory again. Move all MOVEDIR files modified before
11 o'clock today to LABDIR.

**

6-52

.> OIR NOVEOIR ~ .

.> XEa NOVE/V/BEFORE.····TLN=ll: ttt~: gg LABOIR ~

IV asks for a display of moved files.
IBEFORE/TLM = says to move files modified before eleven o'clock. No date parameters are
specified so Today is accepted as the default.

Execute the sequence on your system.

Nothing moves because all MOVEDIR files were modified (created) after II o'clock.

9. Move all MOVEDIR files modified after eleven o'clock today. Show the command and the
anticipated response:

) XEt~ NOUE.····V.····AFTER TLN= 11 : 00: tl0 LABD If(.' HO+ ~
CPDP,\'l : NOUED I R : HOUSE
CPDPXl :NOVEDIR:HONE
CPDP,x,'l :NOUEDIR:HOTEL

LABDIR is the target directory. MOVEDIR is the source directory. HO+ requests all files begin­
ing with the characters H O. No date is coded so today is the default.

Do it on your system.

IV provides the display. All three HO files are moved because they were all created after 11 o'clock

Delete the MOVEDIR files:

) DEL.····U.····C +- ~

HOUSE? rES l
Deleted HOUSE
HONE? ~'EPJ
Delefed HONE
HOTEL? }··UP l
Deleted HOTEL
)

6-53

10. MOVEDIR is the working directory. Move the LABDIR files to MOVEDIR. Write the names
of the transferred files in MOVELIST.

**

6-54

.> XEQ NOVE.···'L=NOVELIST.···FRON LRBDIR H+ l

/L = MOVELIST sets up a disc file with the names of the transferred files.

/FROM sets LABDIR as the source directory and MOVEDIR as the destination directory. All the
H files are moved.

Do it.

11. Last one. Type MOVELIST. What do you think it contains?

) n'PE NOVELIST
@DPX1:LABDIR:HOUSE
@DPXl :LABDIR:HONE
@DPX1:LABDIR:HOTEL

MOVELIST lists the source filenames. The list grows each time MOVELIST is used in the /L=
switch.

Do it.

Clean up your system by deleting the files and directories created for this lab.

) DIR .. ,
.> DELETE""DIR LABDIR ft10VEDIR

6-55

6-56

This concludes the Move Utility Lab Exercise. At this point you should be able to use the
Move Utility and options for file transfers. Now proceed to the next segment of Module Six .

..... :.:.;.:.:.:.: ...

FIXUP

Abstract

The FIXUP.PR program is used for software-repairing a disk that was not properly DISMOUNTed
due to user error or a system failure. This segment describes the requirements and procedures
involved in running FIXUP.

Objectives

Upon completion of this segment you will be able to run FIXUP to repair a disk or diskette.

Directions

Tum to figure 6-73 on the next page of the Student Guide and listen to the audiotape for the
third segment of Module Six.

6-57

6-58

877401
1 ! 33L

2

3

4

s{

6

/'IP/OS DISK REPfHR UTILIT)", REV, 0t.1,04

Lat,el: INITDISK

Direcfories: 1
Files: 22 Hulfi-level files: 0

Free blocks: 47
Blocks in use: 569
Bad blocks: 0

"""""",t"""""""""
", Disk is repaired ",

/'Ip.,"os Be faTes f Rev, l,!W

"':#.':#."",*"':1:"':1:",*' HP,,"OS IS RERD\' ,t,*'"",*,:#::#.'t',U':#."":#.",*':#.'tt:#.':#.'
"""""",t"""""""", ',U':#.',t"t,t"t":#.',:#.',,,,*',:#.' SET THE TIHE RND DRTE ":#.":#.'t""",:t",*,t:#.':#::#.'

/'IP/OS eLI
,)

Rev, 1. el~

FIXUP ON A SYSTEM DISK

Figure 6-46

1 .> x FIXUP l

MP.···OS DISk' REPAIR UTILITr REV. 1.08

2 Lis~ fi lename (NL for @TTO'> ? l

3 Disk name? OPXll

4 Posssible disk names

@DP,'x,'
@DPO
@OP~·'

@DPH

5 Disk name ? @DP,'x,' l
File does no~ exis~

6 Oi sk name ? iDPXl l

7 ******** Repair Lis~in9 ********
Disk: @OPXl

Direc~ories: 1
Files: e
Free blocks: 599
Blocks in use: 17
Bad blocks: e

Label: BLANKDISK

Mul~i-level files: e

8 *** Disk is repaired ***
9 Repai r ano~her disk ? ~"ES l

FIXUP ON A NON·SYSTEM DISKETTE

Figure 6·47

6·59

6-60

) 110UNT @DPX1~
BLf~NI(O I 51(
) DI51(""F @OPX1 ~
@OPXl

599 Blocks available
17 Blocks in use

1016 Files can be creafed
9 Recoverable errors

MOUNT diskname ... bring a disk device on.

MOUNTING A REPAIRED DISK

Figure 6-48

TOPICS

• FIXUP
• DEVICE NAMES
• SYSTEM DISK vs. NON-SYSTEM DISK

NOW STOP THE TAPE ...

. . . AND CHECK YOUR PROGRESS

6-61

6-62

FIXUP LAB EXERCISE

Abstract

This lab covers the procedures involved in repairing improperly dismounted disk media.

Directions

You will need the following mes to complete this lab:

FIXUP.SA the stand-alone FIXUP program, on your system disk or diskette.
FIXUP.PR the user-invoked FIXUP program on your system disk or diskette.

In addition, you will need at least two disk devices. The examples in this lab were run on a dual
diskette system, so make the appropriate adjustments for your system.

On to the lab.

. :-.:-

1. Bring up your system. Describe what occurs:

! 3.JL
t1P.····OS Rev. 1. !:1t~
:t.t·.t: HELLO! NP.····OS IS RERD}.' .t::t:.'#:
.t::t. .. *. SET THE S}"STEN TINE RND DRTE :t.1.':f,'

t1P.··'OS CL I f;.'ev. 1. t1t:}

Do it on your system.

Our example has a LOGON.CLI macro that executes before the CLI message is displayed. Use
the appropriate device code for your console debug load command.

6-63

2. Move the computer ON/OFF switch to the OFF position, then turn it back ON. Boot the
system again. Describe the action:

**

6-64

.> 133166
!33L
I1P/OS DISK REPAIR UTILInJ REV. 1. ee

t***t*** Repair Lisfin9 *****t**
Label: S~-'SDISf(

Direcfories: 1
Files: 28 Mulfi-level files: 8

Free blocks: 22
Blocks in use: 594
Bad blocks: 7

t*****t*******************
*** Disk is repaired ***
I1P/OS Rev. 1 _ l:tlit
~::#:.*- HELLO! I'1P-,--OS IS RERD'y' t.-*t..
:#:*-* SET THE S~·'STEM TU1E RND DATE *:#:.*

I1P/OS eLI
)

Rev _ 1. elit

The OFF/ON action sends you back to CONSOLE DEBUG.

Doit!!

This time, FIXUP runs first, then MP/OS comes in. This occurs only with the system disk. Non­
system disks must have FIXUP run explicitly from CLI.

3. Load the secondary disk device. Run FIXUP on it. Send the listing to the console. Describe
what should occur:

**

) XEfl FIXUP J

f1P,"'OS DISK REPRIR UTILI!)" REV. 1.8ft

LisE filename (NL for @TTO) ? J

Disk name? f!DPX1 J

"""" Repair Lisfin9 """"
Disk: @DP,'x,'l

Direcfories: 1
Files: 8

Free blocks: 517
Blocks in use: 99
Bad blocks: 8

Label: SCRRTCH

f1ulfi-level files: 8

""""""""""""""""
", Disk is repaired ",

Repair anofher disk? NO J

This repair requires your assistance.

Do it on your system.

Our diskette is named SCRATCH.

6-65

4. Bring the repaired disk on-line and run a DISKSTATUS on it. Does it compare with the
FIXUP listing?

6-66

.> MOUNT @DPX1 J
SCRATCH
,) DISK.'·F IEDPX1 J
@DPX1

517
99

H't16
3

Blocks available
Blocks in use
Files can be creafed
Recoverable errors

MOUNTing brings the diskette on-line. The system responds with the diskette's I.D. when success­
fully mounted.

Try it on your system.

Note the comparison between the FIXUP repair listing and the DISKSTATUS listing.

5. Put the secondary device off-line and shut down the system:

,) DISf'TOLlNT @OP:X:l ~
,) B~"E

MP,"OS eLI TerminaUn9

S":Isiem shuido(,m
855251
I

Do it.

6-67

6-68

This concludes the FIXUP Utility Lab Exercise. At this point you should be able to use
FIXUP to software-repair an improperly dismounted disc device.

This also concludes Module Six.

The following appendices have useful information and exercises on device operations, error
codes, and related documentation.

. :.:.:

APPENDIX A
DEVICE OPERA liONS

DEVICE OPERATIONS

Abstract

This unit is divided into three step-by-step exercises:

• Power-up and on-line of your processor and Dasher terminal.

• Power-up, load, and on-line your disc and diskette subsystems.

• Bootstrap MP/OS.

A-I

A-2

EXERCISE 1

Abstract

In this exercise you will go through the basic operations required for powering-up and setting
on-line your processor and Dasher tenninal.

Directions

Follow the step-by-step procedures stated below. Skip those devices not included in your system.

1. Push the POWER switch on your MP control panel to the ON position.

Figure A-1

2. Observe the status of the POWER indicator. It should be lit. The computer is now ON.

Figure A-2

A-3

DASHER DISPLAY

3. Pull the Dasher POWER control out. Wait twenty seconds and observe the screen.

4. Swivel the unit around so that you can access the rear switches.

Figure A-3

A-4

5. Push the MODE switch to the LINE position. This sets the Dasher on-line.

6. Push the PARITY switch to the EVEN setting.

7. Turn the DATA RATE rotary switch to setting appropriate for your system.

Figure A-4

A-5

A-6

ALPHA
LOCK

8. Swivel the Dasher around so that it faces forward again. Observe the screen. If you have
the console debug option, your screen should display the prompt and blinking cursor.

9. Locate the ALPHA LOCK on the Dasher keyboard. Press the key so that uppercase entries
are transmitted to the terminal.

Your Dasher is now ready to fly.

Work through the following exercises for each device in your system.

Figure A-5

EXERCISE 2

Abstract

In this exercise you will power-up, load, and set on-line your disc and diskette devices.

Directions DISKETTE SUBSYSTEM

microNOV A computers are supported by diskette subsystems which provide 157K words (single
drive) or 315K words (dual-drive) of on-line storage. The diskette subsystem contains an integral
data channel controller and 10-foot cable to computer-based or stand-alone card-frame systems.
The controller is contained within the diskette drive unit, and is cabled to the external I/O bus.
The external I/O bus may still be propagated beyond the diskette unit, consistent with I/O bus
configuration specifications. Diskette medium is compatible and transferable to NOVA 3 based
diskette subsystems. The diskette subsystem is packaged in a rack-mountable 19"W x 7"H x 22"D
chassis. Multiple controllers, each supporting one or two drives, can be chained on a single system.

Model 6038
Model 6039
Model1098A

IIUIIY TIIfK = . . .

1. Press the POWER switch to the ON position.

One-drive system (157K words)
Two-drive system (315K words)
Carton of 10 diskettes

..or ON ow . -

2. Observe the POWER indicator. It should now be lit along with the WRITE LOCK indicator.

Figure A-6

A-7

A-8

" ,0, MADY 1'RACK. ttl
~-. . . .

• " t ~

3. Select your primary diskette drive by turning the drive select wheel to "0".

4. Observe the TRACK 0 indicator. It should be lit for the drive you selected as your primary
drive.

Figure A-7

5. If you intend to write on your diskette, then place a piece of tape over the WRITE LOCK
hole. If you do not intend to write on the diskette, then leave the hole uncovered.

Figure A-8

6. Depress the door latch on the diskette drive. Slide the diskette into the drive as shown.
Press the door shut.

7. Observe the READY light. It should now be lit. If you did not tape the WRITE LOCK
hole, the WRITE LOCK light should now be lit. If the light is not lit, then you will be
able to read and write to the diskette.

Your diskette is now ready to fly.

Figure A-9

A-9

A-lO

DISC SUBSYSTEM

The Model 6095 Cartridge Disc Subsystem offsers a single 10MB disc drive. The disc drive contains
a single spindle for one fixed 5MB and one removable 5MB cartridge disc. The subsystem controller
interfaces the disc drive to any microNOV A computer and mounts at the rear of the drive (no I/O
slot in computer).

Each of the four available disc surfaces in the 10MB disc drive is accessed by a read-write head. The
head positioning system accurately positions the four heads in unison at any of 408 cylinders. The
average positioning time is 38 milliseconds with track-to-track and full stroke positioning of 8 and
70 milliseconds respectively.

mNOVA
CPU

I/O BUS (16-line)

6038, -9
DISKETTE

Figure A-10

TERMINATOR PCB

6095
DISC
SUBSYSTEM

It is also suggested that since the data is fully buffered, the disc drive be placed on the bus as a low
priority device (electrically "distant" from the CPU). This is to insure that high speed devices that
require minimum data channel latency receive priority on the I/O bus.

The disc drive operates at 2400 RPM and transfers data at 312,000 bytes per second.

Media interchange between various 6095 subsystem drives is a normal design specification, and
should be routine if drives are properly maintained.

Data General does not guarantee interchange of media between Mode16095-type drives and Model
4234-type 10MB drives. The user may, in fact, fmd that the media is interchangeable in most cases,
but may not rely upon it as a design specification.

The 6095 disc subsystem operates exclusively with microNOVA systems (e.g., not on NOVA/
ECLIPSE). However, 6095 cartridges are physically and format compatible with 6045 (6050)
NOVA/ECLIPSE systems (media interchange compatible). The 6095 has approximately 95%
parts commonality with existing 10MB subsystems and therefore, all applicable drive specifica­
tions (such as environment, power requirements, etc.) will be identical to the 6045,6050 systems.
The major difference is with the "disc cable interface board" subassembly which is now replaced
with a new integrated controller board subassembly. This controller functionally equates to the
605 I controller PCB in the NOVA/ECLIPSE environment, and is required due to the nature of the
microNOV A I/O bus structure. The controller supports only one drive and does not support dual
porting.

The 6095 subsystem is identical to the 6050 drive in terms of rack mounting requirements.

A major advance achieved in the DGC cartridge disc subsystems is the compact, easily accessible
packaging of the drive and power supply. The drive requires only I O~ inches of vertical rack
space and the power supply is accessed by an innovative drop-down subassembly. Further, the
drive design results in lower power dissipation (500 watts maximum) than with previously offered
models.

The microNOV A 10MB disc controller is an 8" x 15" printed circuit board which is installed at the
rear of the drive. The controller is programmed using the basic I/O commands for the microNOV A
processor. The data transfer takes place independently through the data channel.

Model 6095 DG/Disc Subsystems are self-contained units that connect to any microNOV A
computer via the 16-line I/O bus. Any other device that connects to the microNOV A I/O bus
(e.g. diskette, DG/DAC, etc.) may be daisy-chained off the 10MB subsystem. Make sure that the
terminator PCB is present on the device furthest from the CPU. .

A-ll

I. Push the POWER switch to the ON position. This should cause the POWER and LOAD
indicators to light.

2. Press the LOAD switch to the LOAD position.

Figure A-ll

A-12

,

3. Release the drive latches and slide the disc drive out.

Figure A-12

A-13

4. Grasp the disc cartidge handle in your right hand. Support the bottom dust cover in your
left hand.

5. Press your right thumb against the release switch at the base of the handle.

6. Push the switch to the left and raise the handle. This will release the bottom dust cover.

Figure A·13

A-14

7. Lift the cartidge straight out of the dust cover.

8. Place the cartidge into the drive cavity. The sliding latch is towards the front of the drive.

9. Lower the cartidge handle until it is flat on the cartidge. Place the dust cover over the
cartidge, making sure it fits into the cavity properly.

10. Slide the drive into the cabinet until the front panel latches engage the drive into place.

Figure A-14

A-IS

11. Turn the LOAD/READY switch to READY. When the READY indicator goes on, the
drive is on-line with the processor and is ready to receive commands.

Figure A-15

A-16

EXERCISE 3

Abstract

This exercise describes the procedures for booting MP/OS from disc devices.

\1.
L-________________________________ ~

Figure A-16

1
2.

Name

~------------------~------~------~

Disk(ette) Drive Code

10 Mbyte disk 27 DPD

0.3 Mbyte diskette* 33 DPX

12.5 Mbyte disk 26 DPH

1.2 Mbyte diskette - DPY

Device codes for disk drives

When the disk has been installed and is
on-line, you can bootstrap the operating
system. On your terminal you will notice
some numbers, followed by an exclamation
mark (!). This is a prompt, informing you
that the system is waiting for you to enter
a command.

Before you can enter the bootstrapping
command, you must find out what the
device code is for your particular disk
drive. A device code is a form of identi­
fication number. The default device codes
for the disk drives are shown in the Table.

A-17

! li:.1@i::.12?L
You now type the bootstrapping command
appropriate for your system. The command
has the following fonnat:

1
3

.
L-________________________ ~

BOOT FROM A DISC
Figure A-17

[1188833L

A-I8

BOOT FROM A DISKETTE
Figure A-18

! 1 i]t11J26L

BOOT FROM A FIXED DISC

Figura A-19

MP/OS Rev. 1.80
MP/OS eLI Rev. 1.@9

Figura A-20

1000device_codeL

where the I signifies you are talking to a
high speed (data channel) device; the
device_code number identifies the disk
drive; and the L indicates that the MP/OS
System is to be loaded into the computer's
memory.

4. You will now see the MP/OS and CLI
title messages.

NOTE: If you have a Model 6038/39
diskette drive, you only type:

33L

i.e. you omit the 1000 before the device
code.

The right parenthesis is followed by a
blinking underscore called a cursor*. Your
MP/OS system is now up, with the paren­
thesis indicating that the Command Line
Interpreter (CLI) is running and waiting for
you to type in commands.

*If you have a hard-copy terminal instead
of a display terminal, you will not have a
cursor.

APPENDIX B
ERROR CODES

FORTRAN COMPILER ERROR MESSAGES

N Means that the syntax error is not necessarily fatal.

C Means the scan of the statement is continued if the error is a syntax error. The continued
scan applies only to syntex errors; errors at a different level mayor may not allow the
scan to continue.

In FORMAT statements, the error is generally fatal. In declaration statements, if a
conflict occurs, the last declaration for the identifier is ignored.

B-1

I CODE I
00
01
02 N
03 N
04 N
05
06
07
10 C
11
12
13
14
16
17
20
21
22
23
24
25 C
26 C

27
30
31
32
33
34 C
35
36
37 C
40 C
41
42 C
43
44
45

B-2

I MEANING I
Working space exhausted. Fatal, but compiler continues.
Multiply-defmed parameter.
Mixed precision operands.
Unknown statement type.
Something other than blanks at statement end.
Syntax error in DATA variable list.
Syntax error in DATA literal list.
Syntax error in statement function.
Missing integer in FORMAT.
Error in parameter list of CALL.
Array identifier not followed by a left or right parenthesis or comma.
Illegal element in expression.
Improper use of array name.
Missing operator.
Illegal sequence of adjacent operators.
Illegal element/operator when "(" or literal or variable expected.
Premature statement end for an IF.
Trailing period (.) missing in operator such as .EQ.
Illegal continuation line (follows comment or has label).
Period (.) not followed by letter or number.
Format error.
Format error after repeat count. (Errors 25 and 26 together indicate an illegal
character. These errors may repeat on one statement.)
Abnormal end to FORMAT statement.
Expression didn't close at end of statement.
Multiply-defmed error.
Variably-dimensioned array is not a dummy.
Variable list longer than value list in DATA.
Identifier in more than one type declaration.
Unclosed DO loop in program.
COMMON variable previously declared EXTERNAL, subprogram or dummy.
Dummy identifier predefmed.
Dimension error.
Improper statement terminating DO loop.
Variable dimension for main program array.
Array size is greater than 32K.
Parentheses don't close before statement end.
Expected numeric operand for unary minus.

46
47 N
50 C
51
52
53
54
55
56 C
57 C
60 C

61
62
63
64 C
65 C
66
67
70
71
72
73 N
74 N
75
76 N
77
100 C
101
102
103
104
105
106
107
111
112 C

Expected logical operand for .NOT.
Illegal operand types for current operator.
DATA statement error; types don't match.
Both members of EQUIVALENCE pair in COMMON.
Beginning of COMMON extended by EQUIVALENCE.
Irrecoverable format error.
Statement function name in conflict with previous declaration.
Multiply-defmed dummy identifier in statement function.
Too few subscripts in DATA or EQUIVALENCE.
Subscripts out of bounds in DATA or EQUIVALENCE.
Format syntactical structure of statement is in error, punctuation is missing,
or an identifier is of the wrong variety.
Undefined label.
Attempt to load or store external or array.
Array element can't be specified for a dummy array.
Identifier in EXTERNAL previously declared in other than type declaration.
A variable dimension is not a dummy.
Variable on DATA list not in labeled COMMON.
Two variables, neither in COMMON, are EQUIVALENCEd.
A subscript is not type integer.
Wrong number of arguments for reserved name function.
Wrong type of arguments for a reserved name function.
Non-digit in label field.
Carriage return in label field.
Improper statement in block data subprogram.
Unreferenced label.
Stack variable referenced in statement function.
Variable stack has no room for all run-time variables.
Undeclared identifier in statement function expression.
RETURN statement in main program.
Abnormal return in function subprogram.
$ followed by something other than a digit.
End of file without END.
Wrong number of subscripts.
Illegal use of statement function name.
Hollerith constant not ended at statement end.
Truncated integer with magnitude greater than 2** 15-1.

B-3

B-4

114 C
115 C
116 C
117
120

121
122
123
124
125
126
127
130
131
140-160

Exponent error in REAL variable.
Exponent error in DOUBLE PRECISION variable.
Illegal character for FORTRAN statement.
Statement function lacks argument.
Literal error of one of the following types: (a) two operands not both literals,
(b) two literals of different types, or (c) source line is (%it("literal,
literal_operator") where: %it ("literaL operator") is not a right parenthesis.
Attempted EQUN ALENCE to dummy argument.
Error in CHANTASK statement.
ID is used as an array element in DATA statement, but not declared array.
Illegal literal value for step coU?t of a DO index.
Illegal complex relational tests.
Missing "," in I/O list.
Extraneous ",".
Illegal variable name.
Subscripted variable in DO list.
Compiler errors for debugging only.

FATAL SYSTEM ERRORS

Because MP/OS shares its address space with the user, it must be extremely suspicious of the integ­
rity of its code and data. An errant user program can easily destroy critical portions of the operat­
ing system. The system must also be able to respond meaningfully in the presence of hardware
faults. The system periodically checksums its code to detect over-writes and automatically retries
failing device operations whenever necessary. Sometimes all this is to no avail and the only option
is to report a fatal error.

On an uncrecoverable error, the following will be printed:

Fatal error 1#,:: ABC D E F

Is the number of the fatal error.
A Is the ACO.
B Is ACI.
C Is AC2.
D Is AC3.
E Is the stack pointer.
F Is the frame pointer.

These registers have differing interpretations depending on the fatal error number. This writeup is
intended as a brief guide to MP/OS users as to the meaning of those numbers. When reporting an
error, you should always include the complete text of the fatal error message. In addition, as
noted in the following table, sometimes you should include the contents of locations 5, 6, and 7.

Fatal error 0

Fatal error 1

An internal system call has returned an error and there is no way to recover
from it. For instance, in interrupt servicing, an IUNPEND, ID destined to wake
up the task pended on this interrupt could conceivably return "INV ALID
TASK IDENTIFIER" if the user wrote on the system database where this
information is stored.

ACO contains a MP/OS error code.

System checksum error. When the system has idle time, it checksums its pure
area. If this changes, someone has stored into system space. No registers are
meaningful here.

B-5

Fatal error 2

Fatal error 3

Fatal error 4

Fatal error 5

Fatal error 6

Fatal error 7

Fatal error 10 -

Fatal error 11 -

B-6

The system is doing a JMP O. The register set is needed in an STR as well as
the contents of locations 5, 6, and 7. This is almost always an indication that
a critical database has been corrupted.

To perform a boot, the system must shut itself down. After this shutdown has
proceded to dismount devices, etc. an error cannot be tolerated.

ACO contains a MP/OS error code.

The system was unable to clear an interrupting device for which there was no
interrupt handler.

AC 1 is the device code of the offending device.
If AC 1 is -1 then a powerfail has occurred.

The system received an interrupt from an "impossible" device (one whose
device code is not in the range 0 to 76).

ACI is the device code of the offending device.

The system was unable to refresh CLI.PR. The register set is immaterial.

The system encountered an error while attempting to read in a system overlay
(or release one). The most probable cause is an unrecoverable device error
while reading the system master device.

A resource inconsistency was detected in the system. This can occur when the
user program has written into system impure space. The register set and
locations 5, 6, and 7 are needed for the STR. Note that the fatal error code
number is in octal.

System internal error. Again, the full state is needed for the STR.

APPENDIX C
RELATED DOCUMENTATION

Rela ted Courses

MP/PASCAL PROGRAMMING SELF-STUDY COURSE. Audio-tape fonnat. Written for the
programmer responsible for applications and system maintenance. Familiarity with a high-level
language is suggested but not required.

microNOV A/MP-SERIES HARDWARE MAINTENANCE SELF-STUDY COURSE.

Related Manuals

The list that follows gives a brief description of each of the other manuals which describe Micro­
products and the MP/OS system.

• An Introduction to Microproducts and MP/OS describes the hardware and software in general
tenns, to give an overview of your MP/Computer and its capabilities.

• Microproducts Hardware Systems Reference gives a detailed functional description of the
Microproducts line of Microcomputers and related peripherals, board by board.

• Learning to Use the MP/OS Operating System should be read by anyone who has never used
an MP/Computer. It introduces the MP/OS file system and the Command Line Interpreter.
A console session gives you step by step hands-on experience with your new MP/Computer.

• Assembly Language Programmer's Reference is the main source of infonnation for the
assembly language programmer. It describes the instruction sets of MP/Computers in detail,
and gives details of the Macroassembler and operating system.

• MP/OS Utilities Reference describes the utility programs available with the MP/OS system.

• MP/Fortran IV Programmers' Reference covers all of the features of this powerful high level
language.

• MP/Pascal Programmers Reference describes Data General's extended version of PASCAL.

C-I

